Convergent close-coupling calculations of electron-helium scattering
Energy Technology Data Exchange (ETDEWEB)
Fursa, D.V.; Bray, I. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre
1996-11-01
We present a review of the recent electron-helium calculations and experiments concentrating on the extensive application of the convergent close-coupling (CCC) method. Elastic, excitation, and ionization processes are considered, as well as excitation of the metastable states. The present status of agreement between theory and experiment for elastic and discrete excitations of the ground state is, in our view, quite satisfactory. However, discrepancies for excitation of the metastable states are substantial and invite urgent attention. Application of the CCC method to the calculation of differential ionization cross sections is encouraging, but also shows some fundamental difficulties. (authors). 92 refs., 15 figs.
Convergent close-coupling calculations of electron-helium scattering
Energy Technology Data Exchange (ETDEWEB)
Fursa, D.V.; Bray, I. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre
1996-11-01
We present a review of the recent electron-helium calculations and experiments concentrating on the extensive application of the convergent close-coupling (CCC) method. Elastic, excitation, and ionization processes are considered, as well as excitation of the metastable states. The present status of agreement between theory and experiment for elastic and discrete excitations of the ground state is, in our view, quite satisfactory. However, discrepancies for excitation of the metastable states are substantial and invite urgent attention. Application of the CCC method to the calculation of differential ionization cross sections is encouraging, but also shows some fundamental difficulties. (authors). 92 refs., 15 figs.
Adjustment of Born-Oppenheimer electronic wave functions to simplify close coupling calculations.
Buenker, Robert J; Liebermann, Heinz-Peter; Zhang, Yu; Wu, Yong; Yan, Lingling; Liu, Chunhua; Qu, Yizhi; Wang, Jianguo
2013-04-30
Technical problems connected with use of the Born-Oppenheimer clamped-nuclei approximation to generate electronic wave functions, potential energy surfaces (PES), and associated properties are discussed. A computational procedure for adjusting the phases of the wave functions, as well as their order when potential crossings occur, is presented which is based on the calculation of overlaps between sets of molecular orbitals and configuration interaction eigenfunctions obtained at neighboring nuclear conformations. This approach has significant advantages for theoretical treatments describing atomic collisions and photo-dissociation processes by means of ab initio PES, electronic transition moments, and nonadiabatic radial and rotational coupling matrix elements. It ensures that the electronic wave functions are continuous over the entire range of nuclear conformations considered, thereby greatly simplifying the process of obtaining the above quantities from the results of single-point Born-Oppenheimer calculations. The overlap results are also used to define a diabatic transformation of the wave functions obtained for conical intersections that greatly simplifies the computation of off-diagonal matrix elements by eliminating the need for complex phase factors.
Close-coupling calculations of fine-structure excitation of Ne II due to H and electron collisions
Stancil, Phillip C.; Cumbee, Renata; Wang, Qianxia; Loch, Stuart; Pindzola, Michael; Schultz, David R.; Buenker, Robert; McLaughlin, Brendan; Ballance, Connor
2016-06-01
Fine-structure transitions within the ground term of ions and neutral atoms dominate the cooling in a variety of molecular regions and also provide important density and temperature diagnostics. While fine-structure rates due to electron collisions have been studied for many systems, data are generally sparse for elements larger than oxygen, at low temperatures, and for collisions due to heavy particles. We provide rate coefficients for H collisions for the first time. The calculations were performed using the quantum molecular-orbital close-coupling approach and the elastic approximation. The heavy-particle collisions use new potential energies for the lowest-lying NeH+ states computed with the MRDCI method. The focus of the electron-impact calculations is to provide fine-structure excitation rate coefficients down to 10 K. We compare with previous calculations at higher temperatures (Griffin et al. 2001), and use a range of calculations to provide an estimate of the uncertainty on our recommended rate coefficients. A brief discussion of astrophysical applications is also provided.Griffin, D.C., et al., 2001, J. Phys. B, 34, 4401This work partially supported by NASA grant No. NNX15AE47G.
Institute of Scientific and Technical Information of China (English)
Zhong Hua SHI; Mao Chu GONG; Yao Qiang CHEN
2006-01-01
A catalyst comprised novel high surface area alumina support was prepared to control emission of automobiles. The results showed that prepared catalyst could satisfy the requirements of a high performance close coupled catalyst for its good catalytic activity at low temperature and good stability at high temperature.
Why Closely Coupled Work Matters in Global Software Development
DEFF Research Database (Denmark)
Jensen, Rasmus Eskild
2014-01-01
We report on an ethnographic study of an offshore global software development project between Danish and Philippine developers in a Danish company called GlobalSoft. We investigate why the IT- developers chose to engage in more closely coupled work as the project progressed and argue that closely...... coupled work supported the collaboration in a very challenging project. Three key findings are presented: 1) Closely coupled work practices established connections across the collaboration ensuring knowledge exchange and improving coordination between project members, 2) Closely coupled work practices...... diminished the formation of sub-groups locally and established new faultlines across the geographical distance, and 3) Closely coupled work enabled the creation of connections across organizational hierarchies allowing information to travel seamlessly between layers in the organization and consequently...
Why Closely Coupled Work Matters in Global Software Development
DEFF Research Database (Denmark)
Jensen, Rasmus Eskild
2014-01-01
coupled work supported the collaboration in a very challenging project. Three key findings are presented: 1) Closely coupled work practices established connections across the collaboration ensuring knowledge exchange and improving coordination between project members, 2) Closely coupled work practices......We report on an ethnographic study of an offshore global software development project between Danish and Philippine developers in a Danish company called GlobalSoft. We investigate why the IT- developers chose to engage in more closely coupled work as the project progressed and argue that closely...... diminished the formation of sub-groups locally and established new faultlines across the geographical distance, and 3) Closely coupled work enabled the creation of connections across organizational hierarchies allowing information to travel seamlessly between layers in the organization and consequently...
On Closely Coupled Dipoles in a Random Field
DEFF Research Database (Denmark)
Andersen, Jørgen Bach; Vincent, L.
2006-01-01
Reception of partially correlated fields by two closely coupled electrical dipoles is discussed as a function of load impedances and open-circuit correlations. Two local maxima of the power may be achieved for two different load impedances, but in those cases the output correlations are high...
Dynamics Analysis of Close-coupling Multiple Helicopters System
Institute of Scientific and Technical Information of China (English)
Zhao Zhigang; Lu Tiansheng
2008-01-01
The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary. Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.
Convergent Close-Coupling Approach to Electron-Atom Collisions
Bray, Igor; Stelbovics, Andris
2007-01-01
It was with great pleasure and honour to accept the invitation to make a presentation at the symposium celebrating the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on our own during the development of the CCC method for electron-atom collisions. There are a number of key problems that need to be dealt with when developing a general computational approach to such collisions. Traditionally, the electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate results. At high energies an infinite number of discrete channels and the target continuum are open, but perturbative techniques are able to yield accurate results. However, at the intermediate energies perturbative techniques fail and computational approaches need to be found for treating the infinite number of open channels. In addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing the boundary conditions for ionization processes. The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the complexity associated with the above-mentioned problems. The unique nature of the problem allowed for accurate solution leading to benchmark results which could then be used to test the much more general approaches to electron-atom collision problems. The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin and Poet have been collectively cited around 250 times to date and are still being cited in present times. Many of the citations came from our own work during the course of the development of the CCC method, which we now describe.
Energy Technology Data Exchange (ETDEWEB)
Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.
2004-06-01
Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment.
Institute of Scientific and Technical Information of China (English)
YANG Xiao-Yan; XIE Wen-Chong; LIU De-Ming
2008-01-01
We investigate the sensitivity enhancement of surface plasmon resonance(SPR)sensors using planar metallic films closely coupled to nanogratings.The strong coupling between localized surface plasmon resonances(LSPRs)presenting in metallic nanostructures and surface plasmon polaritons(SPPs)propagating at the metallic film surface leads to changes of resonance reflection properties,resulting in enhanced sensitivity of SPR sensors.The effects of thickness of the metallic films,grating period and metal materials on the refractive index sensitivity of the device are investigated.The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU(refractive index unit)using optimized structure parameters.Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.
A close-coupling multi-antenna type radio frequency driven ion source.
Oka, Y; Shoji, T
2012-02-01
A newly close coupling multi-antenna type radio frequency driven ion source is tested for the purpose of essentially improving plasma coupling on the basis of our old type ion source, which reuses a NNBI (negative ion source for neutral beam injection) ion source used in 1∕5th scale of the Large Helical Device NNBI. The ion source and the antenna structure are described, and the efficient plasma production in terms of the positive ion saturation current (the current density) is studied. The source is made of a metal-walled plasma chamber which is desirable from the point of view of the structural toughness for fusion and industrial application, etc. At around 160 kW of rf input power, the ion saturation current density successfully reaches the 5 A∕cm(2) level with a gas pressure of 0.6-2 Pa in hydrogen for 10 ms pulse duration. The rf power efficiency of the plasma production with a close coupling configuration of the antenna is improved substantially compared to that with the previous antenna unit in the old type ion source. The power efficiency is assessed as competing with that of other types of sources.
The convergent close-coupling method for a Coulomb three-body problem
Energy Technology Data Exchange (ETDEWEB)
Bray, I. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Stelbovics, A.T. [Murdoch Univ., Perth, WA (Australia). School of Mathematical and Physical Sciences
1994-09-01
The close-coupling method relies on the reformulation of the Schroedinger equation into an infinite set of coupled-channel equations by expanding over the complete set of target states. The difficulty in applying this approach is that the continuum channels are known to be very important in the intermediate-energy region and coupling to them must be included with little approximation. The application of the Convergent Close-Coupling (CCC) method is discussed which allows the continuum to be treated in a systematic manner via the use of square-integrable states. The CCC method utilizes an expansion of the target in a complete set of orthogonal L{sup 2} functions which form a basis for the underlying Hilbert space. The utility of the method relies on being able to demonstrate convergence in the scattering amplitudes of interest as the basis size is increased. Numerical examples for the well known Temkin-Poet problem are used to illustrate the method. It is estimated the methods may be readily applied to full electron-atom scattering problem. 17 refs., 4 figs.
Low-energy positronium-hydrogen elastic scattering using the six-state close coupling approximation
Energy Technology Data Exchange (ETDEWEB)
Sinha, Prabal K. [Department of Physics, Bangabasi College, 19, Rajkumar Chakraborty Sarani, Calcutta 700 009 (India); Basu, Arindam; Ghosh, A.S. [Department of Theoretical Physics, Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032 (India)
2000-07-14
Positronium-hydrogen elastic scattering is investigated using the six-state full close coupling approximation employing the basis set Ps(1s,2s,2p)+H(1s,2s,2p). S-wave singlet and triplet scattering and also the corresponding scattering length and effective range are compared with the corresponding predictions of Drachman and Houston and the Belfast group. We also report phase shifts up to l=2 and the integrated elastic cross sections. Present results indicate that the effect of target excitation as well as the effect of excitations of both the atoms are significant in the energy region considered. We also report the angle integrated Ps(1s)+H(1s){yields}Ps(2p)+H(1s) and Ps(1s)+H(1s){yields}Ps(1s)+H(2p) excitation cross sections. (author)
Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater.
Dobrowsky, P H; Carstens, M; De Villiers, J; Cloete, T E; Khan, W
2015-12-01
Many studies have concluded that roof harvested rainwater is susceptible to chemical and microbial contamination. The aim of the study was thus to conduct a preliminary investigation into the efficiency of a closed-coupled solar pasteurization system in reducing the microbiological load in harvested rainwater and to determine the change in chemical components after pasteurization. The temperature of the pasteurized tank water samples collected ranged from 55 to 57°C, 64 to 66°C, 72 to 74°C, 78 to 81°C and 90 to 91°C. Cations analyzed were within drinking water guidelines, with the exception of iron [195.59 μg/L (55°C)-170.1 μg/L (91°C)], aluminum [130.98 μg/L (78°C)], lead [12.81 μg/L (55°C)-13.2 μg/L (91°C)] and nickel [46.43 μg/L (55°C)-32.82 μg/L (78°C)], which were detected at levels above the respective guidelines in the pasteurized tank water samples. Indicator bacteria including, heterotrophic bacteria, Escherichia coli and total coliforms were reduced to below the detection limit at pasteurization temperatures of 72°C and above. However, with the use of molecular techniques Yersinia spp., Legionella spp. and Pseudomonas spp. were detected in tank water samples pasteurized at temperatures greater than 72°C. The viability of the bacteria detected in this study at the higher temperature ranges should thus be assessed before pasteurized harvested rainwater is used as a potable water source. In addition, it is recommended that the storage tank of the pasteurization system be constructed from an alternative material, other than stainless steel, in order for a closed-coupled pasteurization system to be implemented and produce large quantities of potable water from roof harvested rainwater.
A blended wing body airplane with a close-coupled, tilting tail
Nasir, R. E. M.; Mazlan, N. S. C.; Ali, Z. M.; Wisnoe, W.; Kuntjoro, W.
2016-10-01
This paper highlights a novel approach to stabilizing and controlling pitch and yaw motion via a set of horizontal tail that can act as elevator and rudder. The tail is incorporated into a new design of blended wing body (BWB) aircraft, known as Baseline-V, located just aft of the trailing edge of its inboard wing. The proposed close-coupled tail is equipped with elevators that deflect in unison, and can tilt - an unusual means of tilting where if starboard side is tilted downward at k degree, and then the portside must be tilted upward at k degree too. A wind tunnel experiment is conducted to investigate aerodynamics and static stability of Baseline-V BWB aircraft. The model is being tested at actual flight speed of 15 m/s (54 km/h) with varying angle of attack for five elevator angle cases at zero tilt angle and varying sideslip angle for four tilt angle cases at one fixed elevator angle. The result shows that the aircraft's highest lift-to-drag ratio is 32. It is also found that Baseline-V is statically stable in pitch and yaw but has no clear indication in terms of roll stability.
Microstructure of InN epilayers deposited in a close-coupled showerhead reactor
Ganguli, Tapas; Kadir, Abdul; Gokhale, Mahesh; Kumar, Ravi; Shah, A. P.; Arora, B. M.; Bhattacharya, Arnab
2008-11-01
The microstructure of epitaxial InN layers has been analyzed by high-resolution X-ray diffraction. Various mosaic block parameters like the tilt and twist between the blocks and an estimate of their lateral coherence lengths have been obtained for a large number of InN epitaxial layers deposited under different V/III ratios, temperatures and reactor pressures. Based on the detailed analysis of the microstrain, we have arrived at a set of optimized deposition parameters for InN in a close-coupled showerhead reactor. We also conclude that excessively high V/III ratio, as mentioned in a few earlier reports, is not a prerequisite for the deposition of high-quality InN layers. In fact, all deposition parameters that lead to an increase in the dissociation of ammonia beyond a critical value lead to increase in the screw dislocation density as indicated by an increase in the tilt value. Interestingly, we find that the density of edge dislocation, indicated by the twist value of the epilayers remains nearly the same irrespective of the deposition parameters.
Directory of Open Access Journals (Sweden)
Po Hu
2016-06-01
Full Text Available The synchronous tuning of the self-oscillating wireless power transfer (WPT in a close-coupling condition is studied in this paper. The Hamel locus is applied to predict the self-oscillating points in the WPT system. In order to make the system operate stably at the most efficient point, which is the middle resonant point when there are middle resonant and split frequency points caused by frequency-splitting, the receiver (RX rather than the transmitter (TX current is chosen as the self-oscillating feedback variable. The automatic delay compensation is put forward to eliminate the influence of the intrinsic delay on frequency tuning for changeable parameters. In addition, the automatic circuit parameter tuning based on the phase difference is proposed to realize the synchronous tuning of frequency and circuit parameters. The experiments verified that the synchronous tuning proposed in this paper is effective, fully automatic, and more robust than the previous self-oscillating WPT system which use the TX current as the feedback variable.
Choi, B. H.; Poe, R. T.
1977-01-01
A detailed vibrational-rotational (V-R) close-coupling formulation of electron-diatomic-molecule scattering is developed in which the target molecular axis is chosen to be the z-axis and the resulting coupled differential equation is solved in the moving body-fixed frame throughout the entire interaction region. The coupled differential equation and asymptotic boundary conditions in the body-fixed frame are given for each parity, and procedures are outlined for evaluating V-R transition cross sections on the basis of the body-fixed transition and reactance matrix elements. Conditions are discussed for obtaining identical results from the space-fixed and body-fixed formulations in the case where a finite truncated basis set is used. The hybrid theory of Chandra and Temkin (1976) is then reformulated, relevant expressions and formulas for the simultaneous V-R transitions of the hybrid theory are obtained in the same forms as those of the V-R close-coupling theory, and distorted-wave Born-approximation expressions for the cross sections of the hybrid theory are presented. A close-coupling approximation that conserves the internuclear axis component of the incident electronic angular momentum (l subscript z-prime) is derived from the V-R close-coupling formulation in the moving body-fixed frame.
Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization
Energy Technology Data Exchange (ETDEWEB)
Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David
2011-04-01
As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top
Energy Technology Data Exchange (ETDEWEB)
Heiser, J.H. [Brookhaven National Lab., Upton, NY (United States). Environmental and Waste Technology Center; Dwyer, B. [Sandia National Lab., Albuquerque, NM (United States)
1997-09-01
The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained.
Kadyrov, A S
2016-01-01
Much progress in the theory of positron scattering on atoms has been made in the ten years since the review of Surko, Gribakin and Buckman [J. Phys. B 38, R57 (2005)]. We review this progress for few-electron targets with a particular emphasis on the two-centre convergent close-coupling and other theories which explicitly treat positronium (Ps) formation. While substantial progress has been made for Ps formation in positron scattering on few-electron targets, considerable theoretical development is still required for multielectron atomic and molecular targets.
PROBLEMS AND COSTS OF THE EUROPEAN UNION EXPANSION WITH OVER 27 STATES
Directory of Open Access Journals (Sweden)
Marina Zaharioaie
2010-12-01
Full Text Available Once on his way to enlargement, the European Union has taken a road of no return. History has shown that all candidate countries have become a point of EU Member States. The question thus is not where you go to the European Union enlargement, but how it will look after the enlargement of the Union politically, economically and socially. The objective of this paper is to analyze potential problems and costs of enlargement beyond the 27 states. Thus, we performed an analysis on the implications of enlargement to the Balkans to Asia Minor and even to the former Soviet bloc countries.
Fernández-Menchero, L; Bartschat, K
2016-01-01
There are major discrepancies between recent ICFT (Intermediate Coupling Frame Transformation) and DARC (Dirac Atomic R-matrix Code) calculations (Fern\\'andez-Menchero et al. 2014, Astron. Astroph. 566 A104, Aggarwal et al. 2016 Mon. Not. R Astr. Soc. 461 3997) regarding electron impact excitation rates for transitions in several Be-like ions, as well as claims that DARC calculations are much more accurate and the ICFT results might even be wrong. To resolve possible reasons for these discrepancies and to estimate the accuracy of the various results, we carried out independent B-Spline R-Matrix (BSR) calculations for electron-impact excitation of the Be-like ion N$^{3+}$. Our close-coupling expansions contain the same target states (238 levels overall) as the previous ICFT and DARC calculations, but the representation of the target wave functions is completely different. We find close agreement among all calculations for the strong transitions between low-lying states, whereas there remain serious discrepanci...
Lee, T G; Martin, R; Clark, T K; Forrey, R C; Balakrishnan, N; Stancil, P C; Schultz, D R; Dalgarno, A; Ferland, G J
2004-01-01
The two most recently published potential energy surfaces (PESs) for the HeH$_2$ complex, the so-called MR (Muchnick and Russek) and BMP (Boothroyd, Martin, and Peterson) surfaces, are quantitatively evaluated and compared through the investigation of atom-diatom collision processes. The BMP surface is expected to be an improvement, approaching chemical accuracy, over all conformations of the PES compared to that of the MR surface. We found significant differences in inelastic rovibrational cross sections computed on the two surfaces for processes dominated by large changes in target rotational angular momentum. In particular, the H$_2$($\
Fernández-Menchero, L.; Zatsarinny, O.; Bartschat, K.
2017-03-01
There are major discrepancies between recent intermediate coupling frame transformation (ICFT) and Dirac atomic R-matrix code (DARC) calculations (Fernández-Menchero et al 2014 Astron. Astrophys. 566 A104; Aggarwal et al 2016 Mon. Not. R. Astron. Soc. 461 3997) regarding electron-impact excitation rates for transitions in several Be-like ions, as well as claims that the DARC calculations are much more accurate and the ICFT results might even be wrong. To identify possible reasons for these discrepancies and to estimate the accuracy of the various results, we carried out independent B-spline R-matrix calculations for electron-impact excitation of the Be-like ion {{{N}}}3+. Our close-coupling (CC) expansions contain the same target states (238 levels overall) as the previous ICFT and DARC calculations, but the representation of the target wave functions is completely different. We find close agreement among all calculations for the strong transitions between low-lying states, whereas there remain serious discrepancies for the weak transitions as well as for transitions to highly excited states. The differences in the final results for the collision strengths are mainly due to differences in the structure description, specifically the inclusion of correlation effects, rather than the treatment of relativistic effects or problems with the validity of the three methods to describe the collision. Hence there is no indication that one approach is superior to another, until the convergence of both the target configuration and the CC expansions have been fully established.
Betancourt-Lineares, Armandor; Irigoyen-Camacho, María Esther; Mejía-González, Adriana; Zepeda-Zapeda, Marco; Sánchez-Pérez, Leonor
2013-01-01
To identify the prevalence and severity of dental fluorosis in communities located in 28 states of Mexico. The National Dental Caries Survey 2001 (NDCS2001) data base was analyzed. The information of 26,893 students, ages 12 and 15 years old, of 27 states and the Federal District was examined. Dean's dental fluorosis index was applied by standardized examiners. The fluorosis prevalence and the Community Fluorosis Index (FCI) were calculated. The fluorosis prevalence was 27.9% (95% CI 24.4, 28.5). A statistical significance difference in the fluorosis prevalence was observed among the states studied (p dental fluorosis index. A low level of the FCI was found in the localities belonging to 19 (67.9%) of the states studied (FCI dental fluorosis is a public health problem. Two-thirds of the states had localities with low prevalence of dental fluorosis; however, approximately, one-third of the states investigated the fluorosis levels showed the need of a reduction in fluoride exposure among the young population.
Calvo, L F; Gil, M V; Otero, M; Morán, A; García, A I
2012-04-01
The feasibility and operation performance of the gasification of rice straw in an atmospheric fluidized-bed gasifier was studied. The gasification was carried out between 700 and 850 °C. The stoichiometric air-fuel ratio (A/F) for rice straw was 4.28 and air supplied was 7-25% of that necessary for stoichiometric combustion. Mass and power balances, tar concentration, produced gas composition, gas phase ammonia, chloride and potassium concentrations, agglomeration tendencies and gas efficiencies were assessed. Agglomeration was avoided by replacing the normal alumina-silicate bed by a mixture of alumina-silicate sand and MgO. It was shown that it is possible to produce high quality syngas from the gasification of rice straw. Under the experimental conditions used, the higher heating value (HHV) of the produced gas reached 5.1 MJ Nm(-3), the hot gas efficiency 61% and the cold gas efficiency 52%. The obtained results prove that rice straw may be used as fuel for close-coupled boiler-gasifier systems.
Energy Technology Data Exchange (ETDEWEB)
Wright, C.W.
1987-03-01
This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.
R-matrix calculation of low-energy electron collisions with LiH
Energy Technology Data Exchange (ETDEWEB)
Antony, B K [Centre of Molecular and Optical Sciences, Open University, Milton Keynes (United Kingdom); Joshipura, K N [Department of Physics, Sardar Patel University, Vallabh Vidyanagar, 388 120 Gujarat (India); Mason, N J [Centre of Molecular and Optical Sciences, Open University, Milton Keynes (United Kingdom); Tennyson, Jonathan [Department of Physics and Astronomy, University College London, Gower St., London WC1E 6BT (United Kingdom)
2004-04-28
Calculations are performed for electron scattering from LiH. These show that use of a close-coupled expansion gives results significantly different from calculations performed at the static exchange level employed in all previous calculations. In particular the close-coupled calculations find a Feshbach resonance which follows the first excited, a{sup 3}{sigma}{sup -}, state curve. This resonance could provide a route to dissociative attachment and electron impact vibrational excitation. Elastic scattering cross sections, which are very large, as well as inelastic cross sections for excitation to the four lowest electronically excited states are presented as a function of LiH bond length.
Energy Technology Data Exchange (ETDEWEB)
Comolli, A.G.; Johanson, E.S.; Karolkiewicz, W.F.; Lee, L.K.; Popper, G.A.; Stalzer, R.H.; Smith, T.O.
1993-06-01
This is the final report of a four year and ten month contract starting on October 1, 1988 to July 31, 1993 with the US Department of Energy to study and improve Close-Coupled Catalytic Two-Stage Direct Liquefaction of coal by producing high yields of distillate with improved quality at lower capital and production costs in comparison to existing technologies. Laboratory, Bench and PDU scale studies on sub-bituminous and bituminous coals are summarized and referenced in this volume. Details are presented in the three topical reports of this contract; CTSL Process Bench Studies and PDU Scale-Up with Sub-Bituminous Coal-DE-88818-TOP-1, CTSL Process Bench Studies with Bituminous Coal-DE-88818-TOP-2, and CTSL Process Laboratory Scale Studies, Modelling and Technical Assessment-DE-88818-TOP-3. Results are summarized on experiments and studies covering several process configurations, cleaned coals, solid separation methods, additives and catalysts both dispersed and supported. Laboratory microautoclave scale experiments, economic analysis and modelling studies are also included along with the PDU-Scale-Up of the CTSL processing of sub-bituminous Black Thunder Mine Wyoming coal. During this DOE/HRI effort, high distillate yields were maintained at higher throughput rates while quality was markedly improved using on-line hydrotreating and cleaned coals. Solid separations options of filtration and delayed coking were evaluated on a Bench-Scale with filtration successfully scaled to a PDU demonstration. Directions for future direct coal liquefaction related work are outlined herein based on the results from this and previous programs.
Institute of Scientific and Technical Information of China (English)
陈兰芳
2016-01-01
The single-electron, two-centre atomic orbital close-coupling method is adopted to calculate elec-tron-loss cross sections of H(2s) in H(1s) + H(2s) collisions. The theoretical results are compared with experimental data. Our studies have shown that the electron-loss cross sections of H(2s) in H(1s) + H(2s) collisions calculated by the single-electron, two-centre atomic orbital close-coupling method are in reasona-ble agreement with experimental data. The ionization and de-excitation cross sections of H(2s), and the cap-ture cross sections of H(1s) in H(1s) + H(2s) collisions are also presented.%采用单电子的双中心原子轨道强耦合方法，计算了H(1s)+H(2s)碰撞体系H(2s)失去电子过程的总截面，并与前人的实验结果进行了比较。研究表明，采用双中心原子轨道强耦合方法得到的H(1s)+H(2s)体系H(2s)失去电子过程的截面与实验比较符合。同时，还给出了H(1s)+H(2s)碰撞体系H (2s)电离过程、H(1s)俘获电子过程和H(2s)退激发到H(1s)过程的理论截面。
Institute of Scientific and Technical Information of China (English)
余春日; 张杰; 江贵生
2009-01-01
基于发展的分子间相互作用势, 采用密耦方法计算了入射能量从1到140 meV范围内He原子与HI分子碰撞的微分截面、分波截面和积分截面.通过与He-HX(X=F,Cl,Br)体系分波截面的比较, 印证了He-HI体系相互作用势以及密耦计算结果的可靠性.结果表明:小角散射的概率大于大角散射的概率;碰撞能量越高,散射概率就越小, 尾部效应也越弱.总积分截面主要来自弹性碰撞的贡献;非弹性积分截面以00→01和00→02跃迁的贡献为主,其中00→02跃迁的贡献最大.
Siquieri, R; Doernberg, E; Emmerich, H; Schmid-Fetzer, R
2009-11-18
In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase Al(3)Ni. The model approach is calibrated by systematic comparison to microstructures grown under controlled conditions in directional solidification experiments. To illustrate the efficiency of the model it is employed to investigate the effect of temperature gradient on the microstructure evolution of Al-36 wt% Ni during solidification.
Hayakawa, K. K.; Udell, D. R.; Iwata, M. M.; Lytle, C. F.; Chrisco, R. M.; Greenough, C. S.; Walling, J. A.
1972-01-01
The results are presented of an investigation into the availability and performance capability of measurement components in the area of cryogenic temperature, pressure, flow and liquid detection components and high temperature strain gages. In addition, technical subjects allied to the components were researched and discussed. These selected areas of investigation were: (1) high pressure flange seals, (2) hydrogen embrittlement of pressure transducer diaphragms, (3) The effects of close-coupled versus remote transducer installation on pressure measurement, (4) temperature transducer configuration effects on measurements, and (5) techniques in temperature compensation of strain gage pressure transducers. The purpose of the program was to investigate the latest design and application techniques in measurement component technology and to document this information along with recommendations for upgrading measurement component designs for future S-2 derivative applications. Recommendations are provided for upgrading existing state-of-the-art in component design, where required, to satisfy performance requirements of S-2 derivative vehicles.
基于紧凑耦合的平面印刷单极子手机天线设计%Closed-coupling planar printed monopole for mobile phone application
Institute of Scientific and Technical Information of China (English)
胡海峰; 姜宇
2014-01-01
A mobile phone antenna using a closed -coupling planar printed monopole for covering multi-bands of WWAN operation was presented.This antenna was formed by a monopole slot and a parasitic strip closed-coupled with similar size.The antenna used me-ander to get a smaller size.The space below the principal part was hollowed out, and it had a simple and closed structure, which was convenient for integrated design.Two resonance center frequencies 950 MHz and 2 250 MHz were generated by the base frequency and the higher resonant mode of both the planar monopole and the parasitic strip, which covered the main frequency of communication for mobile, such as GSM900/GSM1800/1900/UMTS and LTE2300/2500.%设计了一款基于紧凑耦合的平面单极子手机天线，该天线由尺寸相当、紧凑耦合的平面单极子和寄生枝节构成，天线采用曲流技术可以获得更小的尺寸，主体部分下方镂空且结构上的简单、紧凑，利于整机设计。平面单极子和寄生枝节的基频及高阶共振模共同作用，使天线产生950 MHz和2250 MHz两个谐振中心频率，覆盖了当今手机通信的GSM900／GSM1800／1900／UMTS以及LTE2300／2500等频段。
Luo, D.; Pradhan, A. K.
1990-01-01
The new R-matrix package for comprehensive close-coupling calculations for electron scattering with the first three ions in the boron isoelectronic sequence, the astrophysically significant C(+), N(2+), and O(3+), is presented. The collision strengths are calculated in the LS coupling approximation, as well as in pair-coupling scheme, for the transitions among the fine-structure sublevels. Calculations are carried out at a large number of energies in order to study the detailed effects of autoionizing resonances.
Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)
Chandra, N.; Temkin, A.
1975-01-01
A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.
National Oceanic and Atmospheric Administration, Department of Commerce — Declination is calculated using the current International Geomagnetic Reference Field (IGRF) model. Declination is calculated using the current World Magnetic Model...
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
Nonadiabatic quantum dynamics calculations for the N + NH --> N(2) + H reaction.
Yang, Huan; Hankel, M; Varandas, Antonio; Han, Keli
2010-09-01
Nonadiabatic quantum dynamics calculations on the two coupled potential energy surfaces (PESs) (1(2)A' and 2(2)A') and also adiabatic quantum calculations on the lowest adiabatic PES are reported for the title reaction. Reaction probabilities for total angular momenta, J, varying from 0 to 160, are calculated to obtain the integral cross section (ICS) for collision energies ranging from 0.05 to 1.0 eV. Calculations using both the close coupling and the Centrifugal Sudden (CS) approximation are carried out to evaluate the role of Coriolis coupling effects for this reaction. The results of the nonadiabatic calculations show that the nonadiabatic effects in the title reaction for the initial state of NH (v = 0, j = 0) could be neglected, at least in the collision energy range considered in this study.
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Calculator will calculate the total magnetic field, including components (declination, inclination, horizontal intensity, northerly intensity,...
Sarkadi, L
2015-01-01
The three-body dynamics of the ionization of the atomic hydrogen by 30 keV antiproton impact has been investigated by calculation of fully differential cross sections (FDCS) using the classical trajectory Monte Carlo (CTMC) method. The results of the calculations are compared with the predictions of quantum mechanical descriptions: The semi-classical time-dependent close-coupling theory, the fully quantal, time-independent close-coupling theory, and the continuum-distorted-wave-eikonal-initial-state model. In the analysis particular emphasis was put on the role of the nucleus-nucleus (NN) interaction played in the ionization process. For low-energy electron ejection CTMC predicts a large NN interaction effect on FDCS, in agreement with the quantum mechanical descriptions. By examining individual particle trajectories it was found that the relative motion between the electron and the nuclei is coupled very weakly with that between the nuclei, consequently the two motions can be treated independently. A simple ...
Thibault, Franck; Boulet, Christian; Ma, Qiancheng
2014-01-01
We present quantum calculations of the relaxation matrix for the Q branch of N2 at room temperature using a recently proposed N2-N2 rigid rotor potential. Close coupling calculations were complemented by coupled states studies at high energies and provide about 10200 two-body state-to state cross sections from which the needed one-body cross-sections may be obtained. For such temperatures, convergence has to be thoroughly analyzed since such conditions are close to the limit of current computational feasibility. This has been done using complementary calculations based on the energy corrected sudden formalism. Agreement of these quantum predictions with experimental data is good, but the main goal of this work is to provide a benchmark relaxation matrix for testing more approximate methods which remain of a great utility for complex molecular systems at room (and higher) temperatures.
Institute of Scientific and Technical Information of China (English)
Shen Guang-Xian; Linghu Rong-Feng; Wang Rong-Kai; Yang Xiang-Dong
2007-01-01
In this paper, close-coupling method was applied to the He-H2(D2,T2) system, and the first vibrational excitation differences of these partial wave cross sections, this paper have obtained the change rules of the partial wave cross sections with increases of quantum number, and with change of reduced mass of system. Based on the calculation,influence on the partial wave cross sections brought by the variations in the reduced mass of systems and in the relative kinetic energy of incident atoms is discussed.
Threlfall, John
2002-01-01
Suggests that strategy choice is a misleading characterization of efficient mental calculation and that teaching mental calculation methods as a whole is not conducive to flexibility. Proposes an alternative in which calculation is thought of as an interaction between noticing and knowledge. Presents an associated teaching approach to promote…
Geochemical Calculations Using Spreadsheets.
Dutch, Steven Ian
1991-01-01
Spreadsheets are well suited to many geochemical calculations, especially those that are highly repetitive. Some of the kinds of problems that can be conveniently solved with spreadsheets include elemental abundance calculations, equilibrium abundances in nuclear decay chains, and isochron calculations. (Author/PR)
Autistic Savant Calendar Calculators.
Patti, Paul J.
This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these…
How Do Calculators Calculate Trigonometric Functions?
Underwood, Jeremy M.; Edwards, Bruce H.
How does your calculator quickly produce values of trigonometric functions? You might be surprised to learn that it does not use series or polynomial approximations, but rather the so-called CORDIC method. This paper will focus on the geometry of the CORDIC method, as originally developed by Volder in 1959. This algorithm is a wonderful…
Quantum-mechanical calculations of cross sections for electron collisions with atoms and molecules
Bartschat, Klaus; Zatsarinny, Oleg
2016-01-01
An overview of quantum-mechanical methods to generate cross-section data for electron collisions with atoms and molecules is presented. Particular emphasis is placed on the time-independent close-coupling approach, since it is particularly suitable for low-energy collisions and also allows for systematic improvements as well as uncertainty estimates. The basic ideas are illustrated with examples for electron collisions with argon atoms and methane. For many atomic systems, such as e-Ar collisions, highly reliable cross sections can now be computed with quantified uncertainties. On the other hand, while electron collision calculations with molecules do provide key input data for plasma models, the methods and computer codes presently used require further development to make these inputs robust.
Energy Technology Data Exchange (ETDEWEB)
Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)
DEFF Research Database (Denmark)
Bahr, Patrick; Hutton, Graham
2015-01-01
In this article, we present a new approach to the problem of calculating compilers. In particular, we develop a simple but general technique that allows us to derive correct compilers from high-level semantics by systematic calculation, with all details of the implementation of the compilers...... falling naturally out of the calculation process. Our approach is based upon the use of standard equational reasoning techniques, and has been applied to calculate compilers for a wide range of language features and their combination, including arithmetic expressions, exceptions, state, various forms...
Radar Signature Calculation Facility
Federal Laboratory Consortium — FUNCTION: The calculation, analysis, and visualization of the spatially extended radar signatures of complex objects such as ships in a sea multipath environment and...
Electrical installation calculations basic
Kitcher, Christopher
2013-01-01
All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo
Electrical installation calculations advanced
Kitcher, Christopher
2013-01-01
All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio
Electronics Environmental Benefits Calculator
U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...
R-matrix calculations of electron impact electronic excitation of BeH
Darby-Lewis, Daniel; Mašín, Zdeněk; Tennyson, Jonathan
2017-09-01
The R-matrix method is used to perform high-level calculations of electron collisions with beryllium mono-hydride at its equilibrium geometry with a particular emphasis on electron impact electronic excitation. Several target and scattering models are considered. The calculations were performed using (1) the UKRMol suite which relies on the use of Gaussian type orbitals (GTOs) to represent the continuum and (2) using the new UKRMol+ suite which allows the inclusion of B-spline type orbitals in the basis for the continuum. The final close-coupling scattering models used the UKRMol+ code and a frozen core, valence full configuration interaction, method based on a diffuse GTO atomic basis set. The calculated electronic properties of the molecule are in very good agreement with state-of-the-art electronic structure calculations. The use of the UKRMol+ suite proved critical since it allowed the use of a large R-matrix sphere (35 Bohr), necessary to contain the diffuse electronic states of the molecule. The corresponding calculations using UKRMol are not possible due to numerical problems associated with the combination of GTO-only continuum and a large R-matrix sphere. This work provides the first demonstration of the utility and numerical stability of the new UKRMol+ code. The inelastic cross sections obtained here present a significant improvement over the results of earlier studies on BeH.
Calculators and Polynomial Evaluation.
Weaver, J. F.
The intent of this paper is to suggest and illustrate how electronic hand-held calculators, especially non-programmable ones with limited data-storage capacity, can be used to advantage by students in one particular aspect of work with polynomial functions. The basic mathematical background upon which calculator application is built is summarized.…
Interval arithmetic in calculations
Bairbekova, Gaziza; Mazakov, Talgat; Djomartova, Sholpan; Nugmanova, Salima
2016-10-01
Interval arithmetic is the mathematical structure, which for real intervals defines operations analogous to ordinary arithmetic ones. This field of mathematics is also called interval analysis or interval calculations. The given math model is convenient for investigating various applied objects: the quantities, the approximate values of which are known; the quantities obtained during calculations, the values of which are not exact because of rounding errors; random quantities. As a whole, the idea of interval calculations is the use of intervals as basic data objects. In this paper, we considered the definition of interval mathematics, investigated its properties, proved a theorem, and showed the efficiency of the new interval arithmetic. Besides, we briefly reviewed the works devoted to interval analysis and observed basic tendencies of development of integral analysis and interval calculations.
Unit Cost Compendium Calculations
U.S. Environmental Protection Agency — The Unit Cost Compendium (UCC) Calculations raw data set was designed to provide for greater accuracy and consistency in the use of unit costs across the USEPA...
EFFECTIVE DISCHARGE CALCULATION GUIDE
Institute of Scientific and Technical Information of China (English)
D.S.BIEDENHARN; C.R.THORNE; P.J.SOAR; R.D.HEY; C.C.WATSON
2001-01-01
This paper presents a procedure for calculating the effective discharge for rivers with alluvial channels.An alluvial river adjusts the bankfull shape and dimensions of its channel to the wide range of flows that mobilize the boundary sediments. It has been shown that time-averaged river morphology is adjusted to the flow that, over a prolonged period, transports most sediment. This is termed the effective discharge.The effective discharge may be calculated provided that the necessary data are available or can be synthesized. The procedure for effective discharge calculation presented here is designed to have general applicability, have the capability to be applied consistently, and represent the effects of physical processes responsible for determining the channel, dimensions. An example of the calculations necessary and applications of the effective discharge concept are presented.
DEFF Research Database (Denmark)
Frederiksen, Morten
2014-01-01
Williamson’s characterisation of calculativeness as inimical to trust contradicts most sociological trust research. However, a similar argument is found within trust phenomenology. This paper re-investigates Williamson’s argument from the perspective of Løgstrup’s phenomenological theory of trust....... Contrary to Williamson, however, Løgstrup’s contention is that trust, not calculativeness, is the default attitude and only when suspicion is awoken does trust falter. The paper argues that while Williamson’s distinction between calculativeness and trust is supported by phenomenology, the analysis needs...... to take actual subjective experience into consideration. It points out that, first, Løgstrup places trust alongside calculativeness as a different mode of engaging in social interaction, rather conceiving of trust as a state or the outcome of a decision-making process. Secondly, the analysis must take...
Magnetic Field Grid Calculator
National Oceanic and Atmospheric Administration, Department of Commerce — The Magnetic Field Properties Calculator will computes the estimated values of Earth's magnetic field(declination, inclination, vertical component, northerly...
Scientific calculating peripheral
Energy Technology Data Exchange (ETDEWEB)
Ethridge, C.D.; Nickell, J.D. Jr.; Hanna, W.H.
1979-09-01
A scientific calculating peripheral for small intelligent data acquisition and instrumentation systems and for distributed-task processing systems is established with a number-oriented microprocessor controlled by a single component universal peripheral interface microcontroller. A MOS/LSI number-oriented microprocessor provides the scientific calculating capability with Reverse Polish Notation data format. Master processor task definition storage, input data sequencing, computation processing, result reporting, and interface protocol is managed by a single component universal peripheral interface microcontroller.
Current interruption transients calculation
Peelo, David F
2014-01-01
Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,
Shielding calculations for SSC
Energy Technology Data Exchange (ETDEWEB)
Van Ginneken, A.
1990-03-01
Monte Carlo calculations of hadron and muon shielding for SSC are reviewed with emphasis on their application to radiation safety and environmental protection. Models and algorithms for simulation of hadronic and electromagnetic showers, and for production and transport of muons in the TeV regime are briefly discussed. Capabilities and limitations of these calculations are described and illustrated with a few examples. 12 refs., 3 figs.
Geometric unsharpness calculations
Energy Technology Data Exchange (ETDEWEB)
Anderson, D.J. [International Training and Education Group (INTEG), Oakville, Ontario (Canada)
2008-07-15
The majority of radiographers' geometric unsharpness calculations are normally performed with a mathematical formula. However, a majority of codes and standards refer to the use of a nomograph for this calculation. Upon first review, the use of a nomograph appears more complicated but with a few minutes of study and practice it can be just as effective. A review of this article should provide enlightenment. (author)
Source and replica calculations
Energy Technology Data Exchange (ETDEWEB)
Whalen, P.P.
1994-02-01
The starting point of the Hiroshima-Nagasaki Dose Reevaluation Program is the energy and directional distributions of the prompt neutron and gamma-ray radiation emitted from the exploding bombs. A brief introduction to the neutron source calculations is presented. The development of our current understanding of the source problem is outlined. It is recommended that adjoint calculations be used to modify source spectra to resolve the neutron discrepancy problem.
INVAP's Nuclear Calculation System
Ignacio Mochi
2011-01-01
Since its origins in 1976, INVAP has been on continuous development of the calculation system used for design and optimization of nuclear reactors. The calculation codes have been polished and enhanced with new capabilities as they were needed or useful for the new challenges that the market imposed. The actual state of the code packages enables INVAP to design nuclear installations with complex geometries using a set of easy-to-use input files that minimize user errors due to confusion or mi...
Neyrinck, Marleen M; Vrielink, Hans
2015-02-01
It's important to work smoothly with your apheresis equipment when you are an apheresis nurse. Attention should be paid to your donor/patient and the product you're collecting. It gives additional value to your work when you are able to calculate the efficiency of your procedures. You must be capable to obtain an optimal product without putting your donor/patient at risk. Not only the total blood volume (TBV) of the donor/patient plays an important role, but also specific blood values influence the apheresis procedure. Therefore, not all donors/patients should be addressed in the same way. Calculation of TBV, extracorporeal volume, and total plasma volume is needed. Many issues determine your procedure time. By knowing the collection efficiency (CE) of your apheresis machine, you can calculate the number of blood volumes to be processed to obtain specific results. You can calculate whether you need one procedure to obtain specific results or more. It's not always needed to process 3× the TBV. In this way, it can be avoided that the donor/patient is needless long connected to the apheresis device. By calculating the CE of each device, you can also compare the various devices for quality control reasons, but also nurses/operators.
OFTIFEL PERSONALIZED NUTRITIONAL CALCULATOR
Directory of Open Access Journals (Sweden)
Malte BETHKE
2016-11-01
Full Text Available A food calculator for elderly people was elaborated by Centiv GmbH, an active partner in the European FP7 OPTIFEL Project, based on the functional requirement specifications and the existing recommendations for daily allowances across Europe, data which were synthetized and used to give aims in amounts per portion. The OPTIFEL Personalised Nutritional Calculator is the only available online tool which allows to determine on a personalised level the required nutrients for elderly people (65+. It has been developed mainly to support nursing homes providing best possible (personalised nutrient enriched food to their patients. The European FP7 OPTIFEL project “Optimised Food Products for Elderly Populations” aims to develop innovative products based on vegetables and fruits for elderly populations to increase length of independence. The OPTIFEL Personalised Nutritional Calculator is recommended to be used by nursing homes.
INVAP's Nuclear Calculation System
Directory of Open Access Journals (Sweden)
Ignacio Mochi
2011-01-01
Full Text Available Since its origins in 1976, INVAP has been on continuous development of the calculation system used for design and optimization of nuclear reactors. The calculation codes have been polished and enhanced with new capabilities as they were needed or useful for the new challenges that the market imposed. The actual state of the code packages enables INVAP to design nuclear installations with complex geometries using a set of easy-to-use input files that minimize user errors due to confusion or misinterpretation. A set of intuitive graphic postprocessors have also been developed providing a fast and complete visualization tool for the parameters obtained in the calculations. The capabilities and general characteristics of this deterministic software package are presented throughout the paper including several examples of its recent application.
Salgado, C A; Salgado, Carlos A.; Wiedemann, Urs Achim
2003-01-01
We calculate the probability (``quenching weight'') that a hard parton radiates an additional energy fraction due to scattering in spatially extended QCD matter. This study is based on an exact treatment of finite in-medium path length, it includes the case of a dynamically expanding medium, and it extends to the angular dependence of the medium-induced gluon radiation pattern. All calculations are done in the multiple soft scattering approximation (Baier-Dokshitzer-Mueller-Peign\\'e-Schiff--Zakharov ``BDMPS-Z''-formalism) and in the single hard scattering approximation (N=1 opacity approximation). By comparison, we establish a simple relation between transport coefficient, Debye screening mass and opacity, for which both approximations lead to comparable results. Together with this paper, a CPU-inexpensive numerical subroutine for calculating quenching weights is provided electronically. To illustrate its applications, we discuss the suppression of hadronic transverse momentum spectra in nucleus-nucleus colli...
Spin Resonance Strength Calculations
Courant, E. D.
2009-08-01
In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.
Spin resonance strength calculations
Energy Technology Data Exchange (ETDEWEB)
Courant,E.D.
2008-10-06
In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Compared with ellipse cavity, the spoke cavity has many advantages, especially for the low and medium beam energy. It will be used in the superconductor accelerator popular in the future. Based on the spoke cavity, we design and calculate an accelerator
Haida Numbers and Calculation.
Cogo, Robert
Experienced traders in furs, blankets, and other goods, the Haidas of the 1700's had a well-developed decimal system for counting and calculating. Their units of linear measure included the foot, yard, and fathom, or six feet. This booklet lists the numbers from 1 to 20 in English and Haida; explains the Haida use of ten, hundred, and thousand…
Curvature calculations with GEOCALC
Energy Technology Data Exchange (ETDEWEB)
Moussiaux, A.; Tombal, P.
1987-04-01
A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. They show how to apply this package to the Schwarzchild case and they discuss the different results.
Daylight calculations in practice
DEFF Research Database (Denmark)
Iversen, Anne; Roy, Nicolas; Hvass, Mette;
programs can give different results. This can be due to restrictions in the program itself and/or be due to the skills of the persons setting up the models. This is crucial as daylight calculations are used to document that the demands and recommendations to daylight levels outlined by building authorities...
Radioprotection calculations for MEGAPIE.
Zanini, L
2005-01-01
The MEGAwatt PIlot Experiment (MEGAPIE) liquid lead-bismuth spallation neutron source will commence operation in 2006 at the SINQ facility of the Paul Scherrer Institut. Such an innovative system presents radioprotection concerns peculiar to a liquid spallation target. Several radioprotection issues have been addressed and studied by means of the Monte Carlo transport code, FLUKA. The dose rates in the room above the target, where personnel access may be needed at times, from the activated lead-bismuth and from the volatile species produced were calculated. Results indicate that the dose rate level is of the order of 40 mSv h(-1) 2 h after shutdown, but it can be reduced below the mSv h(-1) level with slight modifications to the shielding. Neutron spectra and dose rates from neutron transport, of interest for possible damage to radiation sensitive components, have also been calculated.
PIC: Protein Interactions Calculator.
Tina, K G; Bhadra, R; Srinivasan, N
2007-07-01
Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside.
Zero Temperature Hope Calculations
Energy Technology Data Exchange (ETDEWEB)
Rozsnyai, B F
2002-07-26
The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task
Linewidth calculations and simulations
Strandberg, Ingrid
2016-01-01
We are currently developing a new technique to further enhance the sensitivity of collinear laser spectroscopy in order to study the most exotic nuclides available at radioactive ion beam facilities, such as ISOLDE at CERN. The overall goal is to evaluate the feasibility of the new method. This report will focus on the determination of the expected linewidth (hence resolution) of this approach. Different effects which could lead to a broadening of the linewidth, e.g. the ions' energy spread and their trajectories inside the trap, are studied with theoretical calculations as well as simulations.
Angarita, Fernando A.; University Health Network; Acuña, Sergio A.; Mount Sinai Hospital; Jimenez, Carolina; University of Toronto; Garay, Javier; Pontificia Universidad Javeriana; Gömez, David; University of Toronto; Domínguez, Luis Carlos; Pontificia Universidad Javeriana
2010-01-01
Acute calculous cholecystitis is the most important cause of cholecystectomies worldwide. We review the physiopathology of the inflammatory process in this organ secondary to biliary tract obstruction, as well as its clinical manifestations, workup, and the treatment it requires. La colecistitis calculosa aguda es la causa más importante de colecistectomías en el mundo. En esta revisión de tema se resume la fisiopatología del proceso inflamatorio de la vesículabiliar secundaria a la obstru...
Calculations in furnace technology
Davies, Clive; Hopkins, DW; Owen, WS
2013-01-01
Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi
OECD Maximum Residue Limit Calculator
With the goal of harmonizing the calculation of maximum residue limits (MRLs) across the Organisation for Economic Cooperation and Development, the OECD has developed an MRL Calculator. View the calculator.
Bhatnagar, Shalabh
2017-01-01
Sound is an emerging source of renewable energy but it has some limitations. The main limitation is, the amount of energy that can be extracted from sound is very less and that is because of the velocity of the sound. The velocity of sound changes as per medium. If we could increase the velocity of the sound in a medium we would be probably able to extract more amount of energy from sound and will be able to transfer it at a higher rate. To increase the velocity of sound we should know the speed of sound. If we go by the theory of classic mechanics speed is the distance travelled by a particle divided by time whereas velocity is the displacement of particle divided by time. The speed of sound in dry air at 20 °C (68 °F) is considered to be 343.2 meters per second and it won't be wrong in saying that 342.2 meters is the velocity of sound not the speed as it's the displacement of the sound not the total distance sound wave covered. Sound travels in the form of mechanical wave, so while calculating the speed of sound the whole path of wave should be considered not just the distance traveled by sound. In this paper I would like to focus on calculating the actual speed of sound wave which can help us to extract more energy and make sound travel with faster velocity.
Multilayer optical calculations
Byrnes, Steven J
2016-01-01
When light hits a multilayer planar stack, it is reflected, refracted, and absorbed in a way that can be derived from the Fresnel equations. The analysis is treated in many textbooks, and implemented in many software programs, but certain aspects of it are difficult to find explicitly and consistently worked out in the literature. Here, we derive the formulas underlying the transfer-matrix method of calculating the optical properties of these stacks, including oblique-angle incidence, absorption-vs-position profiles, and ellipsometry parameters. We discuss and explain some strange consequences of the formulas in the situation where the incident and/or final (semi-infinite) medium are absorptive, such as calculating $T>1$ in the absence of gain. We also discuss some implementation details like complex-plane branch cuts. Finally, we derive modified formulas for including one or more "incoherent" layers, i.e. very thick layers in which interference can be neglected. This document was written in conjunction with ...
Molecular Dynamics Calculations
1996-01-01
The development of thermodynamics and statistical mechanics is very important in the history of physics, and it underlines the difficulty in dealing with systems involving many bodies, even if those bodies are identical. Macroscopic systems of atoms typically contain so many particles that it would be virtually impossible to follow the behavior of all of the particles involved. Therefore, the behavior of a complete system can only be described or predicted in statistical ways. Under a grant to the NASA Lewis Research Center, scientists at the Case Western Reserve University have been examining the use of modern computing techniques that may be able to investigate and find the behavior of complete systems that have a large number of particles by tracking each particle individually. This is the study of molecular dynamics. In contrast to Monte Carlo techniques, which incorporate uncertainty from the outset, molecular dynamics calculations are fully deterministic. Although it is still impossible to track, even on high-speed computers, each particle in a system of a trillion trillion particles, it has been found that such systems can be well simulated by calculating the trajectories of a few thousand particles. Modern computers and efficient computing strategies have been used to calculate the behavior of a few physical systems and are now being employed to study important problems such as supersonic flows in the laboratory and in space. In particular, an animated video (available in mpeg format--4.4 MB) was produced by Dr. M.J. Woo, now a National Research Council fellow at Lewis, and the G-VIS laboratory at Lewis. This video shows the behavior of supersonic shocks produced by pistons in enclosed cylinders by following exactly the behavior of thousands of particles. The major assumptions made were that the particles involved were hard spheres and that all collisions with the walls and with other particles were fully elastic. The animated video was voted one of two
Ahrens, Thomas J.; Okeefe, J. D.; Smither, C.; Takata, T.
1991-01-01
In the course of carrying out finite difference calculations, it was discovered that for large craters, a previously unrecognized type of crater (diameter) growth occurred which was called lip wave propagation. This type of growth is illustrated for an impact of a 1000 km (2a) silicate bolide at 12 km/sec (U) onto a silicate half-space at earth gravity (1 g). The von Misses crustal strength is 2.4 kbar. The motion at the crater lip associated with this wave type phenomena is up, outward, and then down, similar to the particle motion of a surface wave. It is shown that the crater diameter has grown d/a of approximately 25 to d/a of approximately 4 via lip propagation from Ut/a = 5.56 to 17.0 during the time when rebound occurs. A new code is being used to study partitioning of energy and momentum and cratering efficiency with self gravity for finite-sized objects rather than the previously discussed planetary half-space problems. These are important and fundamental subjects which can be addressed with smoothed particle hydrodynamic (SPH) codes. The SPH method was used to model various problems in astrophysics and planetary physics. The initial work demonstrates that the energy budget for normal and oblique impacts are distinctly different than earlier calculations for silicate projectile impact on a silicate half space. Motivated by the first striking radar images of Venus obtained by Magellan, the effect of the atmosphere on impact cratering was studied. In order the further quantify the processes of meteor break-up and trajectory scattering upon break-up, the reentry physics of meteors striking Venus' atmosphere versus that of the Earth were studied.
A project based on multi-configuration Dirac-Fock calculations for plasma spectroscopy
Comet, M.; Pain, J.-C.; Gilleron, F.; Piron, R.
2017-09-01
We present a project dedicated to hot plasma spectroscopy based on a Multi-Configuration Dirac-Fock (MCDF) code, initially developed by J. Bruneau. The code is briefly described and the use of the transition state method for plasma spectroscopy is detailed. Then an opacity code for local-thermodynamic-equilibrium plasmas using MCDF data, named OPAMCDF, is presented. Transition arrays for which the number of lines is too large to be handled in a Detailed Line Accounting (DLA) calculation can be modeled within the Partially Resolved Transition Array method or using the Unresolved Transition Arrays formalism in jj-coupling. An improvement of the original Partially Resolved Transition Array method is presented which gives a better agreement with DLA computations. Comparisons with some absorption and emission experimental spectra are shown. Finally, the capability of the MCDF code to compute atomic data required for collisional-radiative modeling of plasma at non local thermodynamic equilibrium is illustrated. In addition to photoexcitation, this code can be used to calculate photoionization, electron impact excitation and ionization cross-sections as well as autoionization rates in the Distorted-Wave or Close Coupling approximations. Comparisons with cross-sections and rates available in the literature are discussed.
Giantomassi, Matteo; Huhs, Georg; Waroquiers, David; Gonze, Xavier
2014-03-01
Many-Body Perturbation Theory (MBPT) defines a rigorous framework for the description of excited-state properties based on the Green's function formalism. Within MBPT, one can calculate charged excitations using e.g. Hedin's GW approximation for the electron self-energy. In the same framework, neutral excitations are also well described through the solution of the Bethe-Salpeter equation (BSE). In this talk, we report on the recent developments concerning the parallelization of the MBPT algorithms available in the ABINIT code (www.abinit.org). In particular, we discuss how to improve the parallel efficiency thanks to a hybrid version that employs MPI for the coarse-grained parallelization and OpenMP (a de facto standard for parallel programming on shared memory architectures) for the fine-grained parallelization of the most CPU-intensive parts. Benchmark results obtained with the new implementation are discussed. Finally, we present results for the GW corrections of amorphous SiO2 in the presence of defects and the BSE absorption spectrum. This work has been supported by the Prace project (PaRtnership for Advanced Computing in Europe, http://www.prace-ri.eu).
The rating reliability calculator
Directory of Open Access Journals (Sweden)
Solomon David J
2004-04-01
Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.
Energy Technology Data Exchange (ETDEWEB)
Isaacson, A.D.
1978-08-01
Using an approximate evaluation of Miller's golden rule formula to calculate autoionization widths which allows for the consideration only of L/sup 2/ functions, the positions and lifetimes of the lowest /sup 1/,/sup 3/P autoionizing states of He have been obtained to reasonable accuracy. This method has been extended to molecular problems, and the ab initio configuration interaction potential energy and width surfaces for the He(2/sup 3/S) + H/sub 2/ system have been obtained. Quantum mechanical close-coupling calculations of ionization cross sections using the complex V* - (i/2) GAMMA-potential have yielded rate constants in good agreement with the experimental results of Lindinger, et al. The potential energy surface of the He(2/sup 1/S) + H/sub 2/ system has also been obtained and exhibits not only a high degree of anisotropy, but also contains a relative maximum for a perpendicular (C/sub 2//sub v/) approach which appears to arise from s-p hybridization of the outer He orbital. However, similar ab initio calculations on the He(2/sup 1/S) + Ar system do not show such anomalous structure. In addition, the complex poles of the S-matrix (Siegert eigenvalues) were calculated for several autoionizing states of He and H/sup -/, with encouraging results even for quite modest basis sets. This method was extended to molecular problems, and results obtained for the He(2/sup 3/S) + H and He(2/sup 1/S) + H systems. 75 references.
New Arsenic Cross Section Calculations
Energy Technology Data Exchange (ETDEWEB)
Kawano, Toshihiko [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-04
This report presents calculations for the new arsenic cross section. Cross sections for ^{73,74,75} As above the resonance range were calculated with a newly developed Hauser-Feshbach code, CoH3.
Cosmological Calculations on the GPU
Bard, Deborah; Allen, Mark T; Yepremyan, Hasmik; Kratochvil, Jan M
2012-01-01
Cosmological measurements require the calculation of nontrivial quantities over large datasets. The next generation of survey telescopes (such as DES, PanSTARRS, and LSST) will yield measurements of billions of galaxies. The scale of these datasets, and the nature of the calculations involved, make cosmological calculations ideal models for implementation on graphics processing units (GPUs). We consider two cosmological calculations, the two-point angular correlation function and the aperture mass statistic, and aim to improve the calculation time by constructing code for calculating them on the GPU. Using CUDA, we implement the two algorithms on the GPU and compare the calculation speeds to comparable code run on the CPU. We obtain a code speed-up of between 10 - 180x faster, compared to performing the same calculation on the CPU. The code has been made publicly available.
Bluteau, M M; Badnell, N R
2015-01-01
With construction of ITER progressing and existing tokamaks carrying out ITER-relevant experiments, accurate fundamental and derived atomic data for numerous ionization stages of tungsten (W) is required to assess the potential effect of this species upon fusion plasmas. The results of fully relativistic, partially radiation damped, Dirac $R$-matrix electron-impact excitation calculations for the W$^{44+}$ ion are presented. These calculations use a configuration interaction and close-coupling expansion that opens-up the 3d-subshell, which does not appear to have been considered before in a collision calculation. As a result, it is possible to investigate the arrays, [3d$^{10}$4s$^2-$3d$^9$4s$^2$4f] and [3d$^{10}$4s$^2-$3d$^9$4s4p4d], which are predicted to contain transitions of diagnostic importance for the soft x-ray region. Our $R$-matrix collision data are compared with previous $R$-matrix results by Ballance and Griffin as well as our own relativistically corrected, Breit-Pauli distorted wave and plane-...
Song, L.; Balakrishnan, N.; Walker, K. M.; Stancil, P. C.; Thi, W. F.; Kamp, I.; van der Avoird, A.; Groenenboom, G. C.
2015-11-01
We present calculated rate coefficients for ro-vibrational transitions of CO in collisions with H atoms for a gas temperature range of 10 K ≤ T ≤ 3000 K, based on the recent three-dimensional ab initio H-CO interaction potential of Song et al. Rate coefficients for ro-vibrational v=1,j=0-30\\to v\\prime =0,j\\prime transitions were obtained from scattering cross sections previously computed with the close-coupling (CC) method by Song et al. Combining these with the rate coefficients for vibrational v=1-5\\to v\\prime \\lt v quenching obtained with the infinite-order sudden approximation, we propose a new extrapolation scheme that yields the rate coefficients for ro-vibrational v=2-5,j=0-30\\to v\\prime ,j\\prime de-excitation. Cross sections and rate coefficients for ro-vibrational v=2,j=0-30\\to v\\prime =1,j\\prime transitions calculated with the CC method confirm the effectiveness of this extrapolation scheme. Our calculated and extrapolated rates are very different from those that have been adopted in the modeling of many astrophysical environments. The current work provides the most comprehensive and accurate set of ro-vibrational de-excitation rate coefficients for the astrophysical modeling of the H-CO collision system. The application of the previously available and new data sets in astrophysical slab models shows that the line fluxes typically change by 20%-70% in high temperature environments (800 K) with an H/H2 ratio of 1; larger changes occur for lower temperatures.
Equilibrium calculations of firework mixtures
Energy Technology Data Exchange (ETDEWEB)
Hobbs, M.L. [Sandia National Labs., Albuquerque, NM (United States); Tanaka, Katsumi; Iida, Mitsuaki; Matsunaga, Takehiro [National Inst. of Materials and Chemical Research, Tsukuba, Ibaraki (Japan)
1994-12-31
Thermochemical equilibrium calculations have been used to calculate detonation conditions for typical firework components including three report charges, two display charges, and black powder which is used as a fuse or launch charge. Calculations were performed with a modified version of the TIGER code which allows calculations with 900 gaseous and 600 condensed product species at high pressure. The detonation calculations presented in this paper are thought to be the first report on the theoretical study of firework detonation. Measured velocities for two report charges are available and compare favorably to predicted detonation velocities. However, the measured velocities may not be true detonation velocities. Fast deflagration rather than an ideal detonation occurs when reactants contain significant amounts of slow reacting constituents such as aluminum or titanium. Despite such uncertainties in reacting pyrotechnics, the detonation calculations do show the complex nature of condensed phase formation at elevated pressures and give an upper bound for measured velocities.
Global nuclear-structure calculations
Energy Technology Data Exchange (ETDEWEB)
Moeller, P.; Nix, J.R.
1990-04-20
The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to {epsilon}{sub 2} and {epsilon}{sub 4} used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and {Beta}-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential.
CALCULATION OF LASER CUTTING COSTS
Directory of Open Access Journals (Sweden)
Bogdan Nedic
2016-09-01
Full Text Available The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, comparison' of costs made by other unconventional methods and provides documentation that consists of reports on estimated costs.
Calculation of Spectra of Solids:
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1975-01-01
The Gilat-Raubenheimer method simplified to tetrahedron division is used to calculate the real and imaginary part of the dynamical response function for electrons. A frequency expansion for the real part is discussed. The Lindhard function is calculated as a test for numerical accuracy. The condu...
Calculator. Owning a Small Business.
Parma City School District, OH.
Seven activities are presented in this student workbook designed for an exploration of small business ownership and the use of the calculator in this career. Included are simulated situations in which students must use a calculator to compute property taxes; estimate payroll taxes and franchise taxes; compute pricing, approximate salaries,…
Calculating charged defects using CRYSTAL
Bailey, Christine L.; Liborio, Leandro; Mallia, Giuseppe; Tomić, Stanko; Harrison, Nicholas M.
2010-07-01
The methodology for the calculation of charged defects using the CRYSTAL program is discussed. Two example calculations are used to illustrate the methodology: He+ ions in a vacuum and two intrinsic charged defects, Cu vacancies and Ga substitution for Cu, in the chalcopyrite CuGaS2.
Economic calculation in socialist countries
Ellman, M.; Durlauf, S.N.; Blume, L.E.
2008-01-01
In the 1930s, when the classical socialist system emerged, economic decisions were based not on detailed and precise economic methods of calculation but on rough and ready political methods. An important method of economic calculation - particularly in the post-Stalin period - was that of
Closure and Sealing Design Calculation
Energy Technology Data Exchange (ETDEWEB)
T. Lahnalampi; J. Case
2005-08-26
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post
A mathematical basis for automated structured grid generation with close coupling to the flow solver
Energy Technology Data Exchange (ETDEWEB)
Barnette, D.W.
1998-02-01
The first two truncation error terms resulting from finite differencing the convection terms in the two-dimensional Navier-Stokes equations are examined for the purpose of constructing two-dimensional grid generation schemes. These schemes are constructed such that the resulting grid distributions drive the error terms to zero. Two sets of equations result, one for each error term, that show promise in generating grids that provide more accurate flow solutions and possibly faster convergence. One set results in an algebraic scheme that drives the first truncation term to zero, and the other a hyperbolic scheme that drives the second term to zero. Also discussed is the possibility of using the schemes in sequentially constructing a grid in an iterative algorithm involving the flow solver. In essence, the process is envisioned to generate not only a flow field solution but the grid as well, rendering the approach a hands-off method for grid generation
Unsteady Aerodynamic Interaction in a Closely Coupled Turbine Consistent with Contra-Rotation
2014-08-01
30320. [4] Puterbaugh, S. L. and Copenhaver , W. W., 1994, "Flow Field Unsteadiness in the Tip Region of a Transonic Compressor Rotor," in...8] Kemp, N. H. and Sears, W. R., “Aerodynamic Interference Between Moving Blade Rows,” Journal of Aero. Science , Vol. 20, No. 9, September 1953, pp...585-597 [9] Kemp, N. H. and Sears, W. R., “The Unsteady Forces Due to Viscous Wakes in Turbomachines,” Journal of Aero. Science , Vol. 22, No. 7
DEFF Research Database (Denmark)
Jensen, Rasmus Eskild
coupled work practices emphasize the importance of establishing mutual shared dependencies across project members and locations to establish an incentive for more interaction. Sharing dependencies across horizontal and vertical hierarchies connected project members, which enabled knowledge sharing......, continuities rarely emerge, because the establishment of shared norms and expectations are constantly disrupted. However, despite the lack continuity the project members in this particular project managed to create coordinative practices allowing them to experience the best collaboration to date. Using...... this as a starting point, it is clear that researchers still know little about how practitioners adjust and adapt to persistent discontinuities in globally distributed teams or how practitioners coordinate the work to bridge persistent discontinuities. Investigating the data material from an ethnographic work place...
Blue LED mass production in a close-coupled showerhead MOCVD tool (Conference Presentation)
Boyd, A. R.; Behmenburg, H.; Feron, O.; McAleese, Clifford; O'Dowd, J.; Beckers, Arthur; Heuken, Michael
2017-02-01
We report the mass production of blue LEDs on dry-etched patterned sapphire substrates using the AIX R6 tool in a 31×4" configuration. The system was operated in a continuous run mode, i.e. cleaning the showerhead after a series of LED runs. Production stability was characterized by monitoring of wavelength, light output power (LOP), and electrostatic discharge (ESD) yields. We developed a dynamic multi-zone Topside Temperature Control and the TEQualizer function. The TEQualizer function is based on a 400nm pyrometry open loop wafer surface temperature control, using Inside P400 by Laytec. Combining this wafer-to-wafer and run -to-run temperature stability improvement with an optimized wafer carrier, we demonstrated an on-wafer uniformity of stdv of 1.1nm, a wafer-to-wafer uniformity of stdv 1.1nm and a run-to-run reproducibility of stdv 90% in a 6 nm bin. LOP stability was demonstrated within a 3% window with no visible run-to-run trend. An absolute buffer layer growth temperature window was defined through a Design of Experiment on buffer layers targeting best ESD yield - in particular looking into defect related morphology and its correlation with Inside P400 readings. We have demonstrated an ESD yield >90% in continuous run mode to be used in the mass production of InGaN based blue LEDs.
Optical Properties of Closely Coupled Dilute Nitride Mid-Infrared InNSb Quantum Dots
2008-08-01
Stranski-Krastanow growth mode, the hopping barrier is given by E = Es +nEb + Estr . Es is the surface binding energy of an adatom to the wetting layer...Eb is the bond energy to the nearest neighbor’s atom, n is the number of the nearest neighbor atoms, and Estr is the energy due to the generated
Practical astronomy with your calculator
Duffett-Smith, Peter
1989-01-01
Practical Astronomy with your Calculator, first published in 1979, has enjoyed immense success. The author's clear and easy to follow routines enable you to solve a variety of practical and recreational problems in astronomy using a scientific calculator. Mathematical complexity is kept firmly in the background, leaving just the elements necessary for swiftly making calculations. The major topics are: time, coordinate systems, the Sun, the planetary system, binary stars, the Moon, and eclipses. In the third edition there are entirely new sections on generalised coordinate transformations, nutr
The Collective Practice of Calculation
DEFF Research Database (Denmark)
Schrøder, Ida
on the idea that professions are hybrids by introducing the notion of qualculation as an entry point to investigate decision-making in child protection work as an extreme case of calculating on the basis of other elements than quantitative numbers. The analysis reveals that it takes both calculation...... and judgement to reach decisions to invest in social services. The line is not drawn between the two, but between the material arrangements that make decisions possible. This implies that the insisting on qualitatively based decisions gives the professionals agency to collectively engage in practical...... arrangements that affords calculations of both qualitative measures of the individual case and distant accounting numbers....
Transfer Area Mechanical Handling Calculation
Energy Technology Data Exchange (ETDEWEB)
B. Dianda
2004-06-23
This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use
Calculation of Rydberg interaction potentials
Weber, Sebastian; Tresp, Christoph; Menke, Henri; Urvoy, Alban; Firstenberg, Ofer; Büchler, Hans Peter; Hofferberth, Sebastian
2017-07-01
The strong interaction between individual Rydberg atoms provides a powerful tool exploited in an ever-growing range of applications in quantum information science, quantum simulation and ultracold chemistry. One hallmark of the Rydberg interaction is that both its strength and angular dependence can be fine-tuned with great flexibility by choosing appropriate Rydberg states and applying external electric and magnetic fields. More and more experiments are probing this interaction at short atomic distances or with such high precision that perturbative calculations as well as restrictions to the leading dipole-dipole interaction term are no longer sufficient. In this tutorial, we review all relevant aspects of the full calculation of Rydberg interaction potentials. We discuss the derivation of the interaction Hamiltonian from the electrostatic multipole expansion, numerical and analytical methods for calculating the required electric multipole moments and the inclusion of electromagnetic fields with arbitrary direction. We focus specifically on symmetry arguments and selection rules, which greatly reduce the size of the Hamiltonian matrix, enabling the direct diagonalization of the Hamiltonian up to higher multipole orders on a desktop computer. Finally, we present example calculations showing the relevance of the full interaction calculation to current experiments. Our software for calculating Rydberg potentials including all features discussed in this tutorial is available as open source.
A Romberg Integral Spreadsheet Calculator
Directory of Open Access Journals (Sweden)
Kim Gaik Tay
2015-04-01
Full Text Available Motivated by the work of Richardson’s extrapolation spreadsheet calculator up to level 4 to approximate definite differentiation, we have developed a Romberg integral spreadsheet calculator to approximate definite integral. The main feature of this version of spreadsheet calculator is a friendly graphical user interface developed to capture the needed information to solve the integral by Romberg method. Users simply need to enter the variable in the integral, function to be integrated, lower and upper limits of the integral, select the desired accuracy of computation, select the exact function if it exists and lastly click the Compute button which is associated with VBA programming written to compute Romberg integral table. The full solution of the Romberg integral table up to any level can be obtained quickly and easily using this method. The attached spreadsheet calculator together with this paper helps educators to prepare their marking scheme easily and assist students in checking their answers instead of reconstructing the answers from scratch. A summative evaluation of this Romberg Spreadsheet Calculator has been conducted by involving 36 students as sample. The data was collected using questionnaire. The findings showed that the majority of the students agreed that the Romberg Spreadsheet Calculator provides a structured learning environment that allows learners to be guided through a step-by-step solution.
SIMULATE-4 pin power calculations
Energy Technology Data Exchange (ETDEWEB)
Bahadir, T. [Studsvik Scandpower, Inc., 1087 Beacon St., Newton, MA 02459 (United States); Lindahl, S. Oe [Studsvik Scandpower AB, Hantverkargatan 2A, SE-722 12 Vasteraas (Sweden)
2006-07-01
A new pin power reconstruction module has been implemented in Studsvik Scandpower's next generation nodal code, SIMULATE-4. Heterogeneous pin powers are calculated by modulating multi-group pin powers from the sub-mesh solver of SIMULATE-4 with pin form factors from single-assembly CASMO-5 lattice calculations. The multi-group pin power model captures instantaneous spectral effects, and actinide tracking on the assembly sub-mesh describes exposure-induced pin power variations. Model details and verification tests against high order multi-assembly transport methods are presented. The accuracy of the new methods is also demonstrated by comparing SIMULATE-4 calculations with measured critical experiment pin powers. (authors)
Insertion device calculations with mathematica
Energy Technology Data Exchange (ETDEWEB)
Carr, R. [Stanford Synchrotron Radiation Lab., CA (United States); Lidia, S. [Univ. of California, Davis, CA (United States)
1995-02-01
The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectory solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.
MFTF-B performance calculations
Energy Technology Data Exchange (ETDEWEB)
Thomassen, K.I.; Jong, R.A.
1982-12-06
In this report we document the operating scenario models and calculations as they exist and comment on those aspects of the models where performance is sensitive to the assumptions that are made. We also focus on areas where improvements need to be made in the mathematical descriptions of phenomena, work which is in progress. To illustrate the process of calculating performance, and to be very specific in our documentation, part 2 of this report contains the complete equations and sequence of calculations used to determine parameters for the MARS mode of operation in MFTF-B. Values for all variables for a particular set of input parameters are also given there. The point design so described is typical, but should be viewed as a snapshot in time of our ongoing estimations and predictions of performance.
Molecular calculations with B functions
Steinborn, E O; Ema, I; López, R; Ramírez, G
1998-01-01
A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals, and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules.
Friction and wear calculation methods
Kragelsky, I V; Kombalov, V S
1981-01-01
Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a
Multifragmentation calculated with relativistic forces
Feldmeier, H; Papp, G
1995-01-01
A saturating hamiltonian is presented in a relativistically covariant formalism. The interaction is described by scalar and vector mesons, with coupling strengths adjusted to the nuclear matter. No explicit density depe ndence is assumed. The hamiltonian is applied in a QMD calculation to determine the fragment distribution in O + Br collision at different energies (50 -- 200 MeV/u) to test the applicability of the model at low energies. The results are compared with experiment and with previous non-relativistic calculations. PACS: 25.70Mn, 25.75.+r
Methods for Melting Temperature Calculation
Hong, Qi-Jun
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which
Theoretical Calculation of MMF's Bandwidth
Institute of Scientific and Technical Information of China (English)
LI Xiao-fu; JIANG De-sheng; YU Hai-hu
2004-01-01
The difference between over-filled launch bandwidth (OFL BW) and restricted mode launch bandwidth (RML BW) is described. A theoretical model is founded to calculate the OFL BW of grade index multimode fiber (GI-MMF),and the result is useful to guide the modification of the manufacturing method.
Data Acquisition and Flux Calculations
DEFF Research Database (Denmark)
Rebmann, C.; Kolle, O; Heinesch, B;
2012-01-01
In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....
Calculations for cosmic axion detection
Krauss, L.; Moody, J.; Wilczek, F.; Morris, D. E.
1985-01-01
Calculations are presented, using properly nomalized couplings and masses for Dine-Fischler-Srednicki axions, of power rates and signal temperatures for axion-photon conversion in microwave cavities. The importance of the galactic-halo axion line shape is emphasized. Spin-coupled detection as an alternative to magnetic-field-coupled detection is mentioned.
ITER Port Interspace Pressure Calculations
Energy Technology Data Exchange (ETDEWEB)
Carbajo, Juan J [ORNL; Van Hove, Walter A [ORNL
2016-01-01
The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.
Affect and Graphing Calculator Use
McCulloch, Allison W.
2011-01-01
This article reports on a qualitative study of six high school calculus students designed to build an understanding about the affect associated with graphing calculator use in independent situations. DeBellis and Goldin's (2006) framework for affect as a representational system was used as a lens through which to understand the ways in which…
Ab Initio Calculations of Oxosulfatovanadates
DEFF Research Database (Denmark)
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...
Dead reckoning calculating without instruments
Doerfler, Ronald W
1993-01-01
No author has gone as far as Doerfler in covering methods of mental calculation beyond simple arithmetic. Even if you have no interest in competing with computers you'll learn a great deal about number theory and the art of efficient computer programming. -Martin Gardner
Directory of Open Access Journals (Sweden)
Adriano Kozoroski Reis
2012-03-01
Full Text Available O objetivo geral deste trabalho é verificar os meios de disseminação da Educação Fiscal no Brasil, especificamente nos 27 estados da federação, distribuídos nas regiões Norte, Nordeste, Sudeste, Sul e Centro-Oeste. Como objetivos específicos tem-se: determinar mecanismos para a gestão transparente e eficiente dos recursos públicos; mostrar formas de divulgação destas ações para a sociedade e apresentar maneiras para a sociedade exercer o pleno exercício da cidadania. A metodologia utilizada é de pesquisa descritiva e bibliográfica, associada ao desempenho de órgãos públicos na disseminação da educação fiscal. A trajetória metodológica divide-se em três fases: a primeira, “Fundamentação Teórica”, em que são abordados os temas relacionados ao assunto pesquisado. Trata-se de temas atinentes a Finanças Públicas, Sistema Tributário Nacional, Direito Constitucional, Controle Externo e Educação Fiscal. Na segunda fase apresenta-se a “Pesquisa de Campo”, com a utilização de questionários aplicados aos profissionais ligados aos programas de educação fiscal. Na terceira e última fase apresenta-se uma “Proposta de Modelo de Gestão para Educação Fiscal”. No final conclui-se que a perspectiva de avanço no programa de Educação Fiscal e a integração da sociedade ao controle social e transparente da gestão pública necessitam de um modelo de gestão capaz de avaliar os resultados do programa. The aim of this study is to test the means of dissemination of Fiscal Education in Brazil specifically in the 27 states of the federation, distributed in North, Northeast, Southeast, South and Midwest. The specific objectives are to: Determine mechanisms for efficient and transparent management of public resources; Show forms of disclosure of these actions to society; and present ways for society to exercise full citizenship. The methodology used is descriptive and literature associated with the performance
The Dental Trauma Internet Calculator
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg
2012-01-01
Background/Aim Prediction tools are increasingly used to inform patients about the future dental health outcome. Advanced statistical methods are required to arrive at unbiased predictions based on follow-up studies. Material and Methods The Internet risk calculator at the Dental Trauma Guide pro...... were based on the tooth’s root development stage and other risk factors at the time of the injury. Conclusions This article explains the data base, the functionality and the statistical approach of the Internet risk calculator....... injuries: concussion, sub-luxation, extrusion, lateral luxation, intrusion, avulsion, crown fractures without luxation, root fractures and avulsion. The prognoses for pulp necrosis, pulp canal obliteration, infection related root resorption, ankylosis, surface resorption, marginal bone loss and tooth loss...
CONTRIBUTION FOR MINING ATMOSPHERE CALCULATION
Directory of Open Access Journals (Sweden)
Franica Trojanović
1989-12-01
Full Text Available Humid air is an unavoidable feature of mining atmosphere, which plays a significant role in defining the climate conditions as well as permitted circumstances for normal mining work. Saturated humid air prevents heat conduction from the human body by means of evaporation. Consequently, it is of primary interest in the mining practice to establish the relative air humidity either by means of direct or indirect methods. Percentage of water in the surrounding air may be determined in various procedures including tables, diagrams or particular calculations, where each technique has its specific advantages and disadvantages. Classical calculation is done according to Sprung's formula, in which case partial steam pressure should also be taken from the steam table. The new method without the use of diagram or tables, established on the functional relation of pressure and temperature on saturated line, is presented here for the first time (the paper is published in Croatian.
Archimedes' calculations of square roots
Davies, E B
2011-01-01
We reconsider Archimedes' evaluations of several square roots in 'Measurement of a Circle'. We show that several methods proposed over the last century or so for his evaluations fail one or more criteria of plausibility. We also provide internal evidence that he probably used an interpolation technique. The conclusions are relevant to the precise calculations by which he obtained upper and lower bounds on pi.
Parallel plasma fluid turbulence calculations
Energy Technology Data Exchange (ETDEWEB)
Leboeuf, J.N.; Carreras, B.A.; Charlton, L.A.; Drake, J.B.; Lynch, V.E.; Newman, D.E.; Sidikman, K.L.; Spong, D.A.
1994-12-31
The study of plasma turbulence and transport is a complex problem of critical importance for fusion-relevant plasmas. To this day, the fluid treatment of plasma dynamics is the best approach to realistic physics at the high resolution required for certain experimentally relevant calculations. Core and edge turbulence in a magnetic fusion device have been modeled using state-of-the-art, nonlinear, three-dimensional, initial-value fluid and gyrofluid codes. Parallel implementation of these models on diverse platforms--vector parallel (National Energy Research Supercomputer Center`s CRAY Y-MP C90), massively parallel (Intel Paragon XP/S 35), and serial parallel (clusters of high-performance workstations using the Parallel Virtual Machine protocol)--offers a variety of paths to high resolution and significant improvements in real-time efficiency, each with its own advantages. The largest and most efficient calculations have been performed at the 200 Mword memory limit on the C90 in dedicated mode, where an overlap of 12 to 13 out of a maximum of 16 processors has been achieved with a gyrofluid model of core fluctuations. The richness of the physics captured by these calculations is commensurate with the increased resolution and efficiency and is limited only by the ingenuity brought to the analysis of the massive amounts of data generated.
AGING FACILITY CRITICALITY SAFETY CALCULATIONS
Energy Technology Data Exchange (ETDEWEB)
C.E. Sanders
2004-09-10
The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the
Calculation of gas turbine characteristic
Mamaev, B. I.; Murashko, V. L.
2016-04-01
The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.
Semiclassical calculation of decay rates
Bessa, A; Fraga, E S
2008-01-01
Several relevant aspects of quantum-field processes can be well described by semiclassical methods. In particular, the knowledge of non-trivial classical solutions of the field equations, and the thermal and quantum fluctuations around them, provide non-perturbative information about the theory. In this work, we discuss the calculation of the one-loop effective action from the semiclasssical viewpoint. We intend to use this formalism to obtain an accurate expression for the decay rate of non-static metastable states.
Digital calculations of engine cycles
Starkman, E S; Taylor, C Fayette
1964-01-01
Digital Calculations of Engine Cycles is a collection of seven papers which were presented before technical meetings of the Society of Automotive Engineers during 1962 and 1963. The papers cover the spectrum of the subject of engine cycle events, ranging from an examination of composition and properties of the working fluid to simulation of the pressure-time events in the combustion chamber. The volume has been organized to present the material in a logical sequence. The first two chapters are concerned with the equilibrium states of the working fluid. These include the concentrations of var
Yet another partial wave calculator
Energy Technology Data Exchange (ETDEWEB)
Greenwald, Daniel; Rauch, Johannes [TUM, Munich (Germany)
2016-07-01
We will present a new C++ library for partial wave analysis: YAP - yet another partial wave calculator. YAP is intended for amplitude analyses of the decays of spin-0 heavy mesons (principally B and D) to multiple (3, 4, etc.) pseudoscalar mesons but is not hard coded for such situations and is flexible enough to handle other decay scenarios. The library allows for both model dependent and model independent analysis methods. We introduce the software, and demonstrate examples for generating Monte Carlo data efficiently, and for analyzing data (both with the aid of the Bayesian Analysis Toolkit).
Rate calculation with colored noise
Bartsch, Thomas; Benito, R M; Borondo, F
2016-01-01
The usual identification of reactive trajectories for the calculation of reaction rates requires very time-consuming simulations, particularly if the environment presents memory effects. In this paper, we develop a new method that permits the identification of reactive trajectories in a system under the action of a stochastic colored driving. This method is based on the perturbative computation of the invariant structures that act as separatrices for reactivity. Furthermore, using this perturbative scheme, we have obtained a formally exact expression for the reaction rate in multidimensional systems coupled to colored noisy environments.
Electronics reliability calculation and design
Dummer, Geoffrey W A; Hiller, N
1966-01-01
Electronics Reliability-Calculation and Design provides an introduction to the fundamental concepts of reliability. The increasing complexity of electronic equipment has made problems in designing and manufacturing a reliable product more and more difficult. Specific techniques have been developed that enable designers to integrate reliability into their products, and reliability has become a science in its own right. The book begins with a discussion of basic mathematical and statistical concepts, including arithmetic mean, frequency distribution, median and mode, scatter or dispersion of mea
Band calculation of lonsdaleite Ge
Chen, Pin-Shiang; Fan, Sheng-Ting; Lan, Huang-Siang; Liu, Chee Wee
2017-01-01
The band structure of Ge in the lonsdaleite phase is calculated using first principles. Lonsdaleite Ge has a direct band gap at the Γ point. For the conduction band, the Γ valley is anisotropic with the low transverse effective mass on the hexagonal plane and the large longitudinal effective mass along the c axis. For the valence band, both heavy-hole and light-hole effective masses are anisotropic at the Γ point. The in-plane electron effective mass also becomes anisotropic under uniaxial tensile strain. The strain response of the heavy-hole mass is opposite to the light hole.
Calculational Tool for Skin Contamination Dose Assessment
Hill, R L
2002-01-01
Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.
NATIONAL STORMWATER CALCULATOR USER'S GUIDE ...
The National Stormwater Calculator is a simple to use tool for computing small site hydrology for any location within the US. It estimates the amount of stormwater runoff generated from a site under different development and control scenarios over a long term period of historical rainfall. The analysis takes into account local soil conditions, slope, land cover and meteorology. Different types of low impact development (LID) practices (also known as green infrastructure) can be employed to help capture and retain rainfall on-site. Future climate change scenarios taken from internationally recognized climate change projections can also be considered. The calculator provides planning level estimates of capital and maintenance costs which will allow planners and managers to evaluate and compare effectiveness and costs of LID controls.The calculator’s primary focus is informing site developers and property owners on how well they can meet a desired stormwater retention target. It can be used to answer such questions as:• What is the largest daily rainfall amount that can be captured by a site in either its pre-development, current, or post-development condition?• To what degree will storms of different magnitudes be captured on site?• What mix of LID controls can be deployed to meet a given stormwater retention target?• How well will LID controls perform under future meteorological projections made by global climate change models?• What are the relativ
Flow Field Calculations for Afterburner
Institute of Scientific and Technical Information of China (English)
ZhaoJianxing; LiuQuanzhong; 等
1995-01-01
In this paper a calculation procedure for simulating the coimbustion flow in the afterburner with the heat shield,flame stabilizer and the contracting nozzle is described and evaluated by comparison with experimental data.The modified two-equation κ-ε model is employed to consider the turbulence effects,and the κ-ε-g turbulent combustion model is used to determine the reaction rate.To take into accunt the influence of heat radiation on gas temperature distribution,heat flux model is applied to predictions of heat flux distributions,The solution domain spanned the entire region between centerline and afterburner wall ,with the heat shield represented as a blockage to the mesh.The enthalpy equation and wall boundary of the heat shield require special handling for two passages in the afterburner,In order to make the computer program suitable to engineering applications,a subregional scheme is developed for calculating flow fields of complex geometries.The computational grids employed are 100×100 and 333×100(non-uniformly distributed).The numerical results are compared with experimental data,Agreement between predictions and measurements shows that the numerical method and the computational program used in the study are fairly reasonable and appopriate for primary design of the afterburner.
Dissecting Reactor Antineutrino Flux Calculations
Sonzogni, A. A.; McCutchan, E. A.; Hayes, A. C.
2017-09-01
Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from 235U, 239Pu, 241Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the 238U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6 % MeV-1 in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.
Calculation of sound propagation in fibrous materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1996-01-01
Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....
Full two-electron calculations of antiproton collisions with molecular hydrogen
DEFF Research Database (Denmark)
Lühr, Armin Christian; Saenz, Alejandro
2010-01-01
Total cross sections for single ionization and excitation of molecular hydrogen by antiproton impact are presented over a wide range of impact energies from 1 keV to 6.5 MeV. A nonperturbative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the electrons....
Calculations for electron-impact excitation and ionization of beryllium
Zatsarinny, Oleg; Bartschat, Klaus; Fursa, Dmitry V.; Bray, Igor
2016-12-01
The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudostate and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the {(2s2p)}3P and {(2s2p)}1P states strongly depends on the respective term. The current predictions represent an extensive set of electron scattering data for neutral beryllium, which should be sufficient for most modeling applications.
Calculations for electron-impact excitation and ionization of beryllium
Zatsarinny, Oleg; Fursa, Dmitry V; Bray, Igor
2016-01-01
The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set o...
Painless causality in defect calculations
Cheung, C; Cheung, Charlotte; Magueijo, Joao
1997-01-01
Topological defects must respect causality, a statement leading to restrictive constraints on the power spectrum of the total cosmological perturbations they induce. Causality constraints have for long been known to require the presence of an under-density in the surrounding matter compensating the defect network on large scales. This so-called compensation can never be neglected and significantly complicates calculations in defect scenarios, eg. computing cosmic microwave background fluctuations. A quick and dirty way to implement the compensation are the so-called compensation fudge factors. Here we derive the complete photon-baryon-CDM backreaction effects in defect scenarios. The fudge factor comes out as an algebraic identity and so we drop the negative qualifier ``fudge''. The compensation scale is computed and physically interpreted. Secondary backreaction effects exist, and neglecting them constitutes the well-defined approximation scheme within which one should consider compensation factor calculatio...
Dyscalculia and the Calculating Brain.
Rapin, Isabelle
2016-08-01
Dyscalculia, like dyslexia, affects some 5% of school-age children but has received much less investigative attention. In two thirds of affected children, dyscalculia is associated with another developmental disorder like dyslexia, attention-deficit disorder, anxiety disorder, visual and spatial disorder, or cultural deprivation. Infants, primates, some birds, and other animals are born with the innate ability, called subitizing, to tell at a glance whether small sets of scattered dots or other items differ by one or more item. This nonverbal approximate number system extends mostly to single digit sets as visual discrimination drops logarithmically to "many" with increasing numerosity (size effect) and crowding (distance effect). Preschoolers need several years and specific teaching to learn verbal names and visual symbols for numbers and school agers to understand their cardinality and ordinality and the invariance of their sequence (arithmetic number line) that enables calculation. This arithmetic linear line differs drastically from the nonlinear approximate number system mental number line that parallels the individual number-tuned neurons in the intraparietal sulcus in monkeys and overlying scalp distribution of discrete functional magnetic resonance imaging activations by number tasks in man. Calculation is a complex skill that activates both visual and spatial and visual and verbal networks. It is less strongly left lateralized than language, with approximate number system activation somewhat more right sided and exact number and arithmetic activation more left sided. Maturation and increasing number skill decrease associated widespread non-numerical brain activations that persist in some individuals with dyscalculia, which has no single, universal neurological cause or underlying mechanism in all affected individuals.
CONDOR-CITVAP-MCNP calculation line description
Energy Technology Data Exchange (ETDEWEB)
Villarino, Eduardo Anibal [INVAP S.E., San Carlos de Bariloche (Argentina)
2002-07-01
A general description of the CONDOR-CITVAP-MCNP calculation line is given. This calculation line starts at cross section library and allows burnup dependent detailed calculation using MCNP. This calculation line is divided in two main methodologies: CONDOR-CITVAP that allows the 3-Dimensional core burnup calculation and MCNP that performs detailed transport calculations, both methodologies are coupled using the NDDUMP code. A short description of the used codes are given: CONDOR code performs the cell calculation, generating burnup dependent macroscopic cross section and burnup dependent numerical densities per material. CITVAP codes perform the burnup dependent core calculation, including the fuel management and calculates the burnup distribution per material. NDDUMP code generates materials burnup dependent numerical densities to be used by MCNP code. This paper presents a detailed description of the CONDOR-CITVAP-MCNP calculation line and a numerical comparison of the proposed methodology. (author)
Factors affecting calculation of L
Ciotola, Mark P.
2001-08-01
A detectable extraterrestrial civilization can be modeled as a series of successive regimes over time each of which is detectable for a certain proportion of its lifecycle. This methodology can be utilized to produce an estimate for L. Potential components of L include quantity of fossil fuel reserves, solar energy potential, quantity of regimes over time, lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and downtime between regimes. Relationships between these components provide a means of calculating the lifetime of communicative species in a detectable state, L. An example of how these factors interact is provided, utilizing values that are reasonable given known astronomical data for components such as solar energy potential while existing knowledge about the terrestrial case is used as a baseline for other components including fossil fuel reserves, quantity of regimes over time, and lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and gaps of time between regimes due to recovery from catastrophic war or resource exhaustion. A range of values is calculated for L when parameters are established for each component so as to determine the lowest and highest values of L. roadmap for SETI research at the SETI Institute for the next few decades. Three different approaches were identified. 1) Continue the radio search: build an affordable array incorporating consumer market technologies, expand the search frequency, and increase the target list to 100,000 stars. This array will also serve as a technology demonstration and enable the international radio astronomy community to realize an array that is a hundred times larger and capable (among other things) of searching a million stars. 2) Begin searches for very fast optical pulses from a million stars. 3) As Moore's Law delivers increased computational capacity, build an omni-directional sky survey array capable of detecting strong, transient
Thermodynamic Calculations for Complex Chemical Mixtures
Mcbride, B. J.
1986-01-01
General computer program, CECTRP, developed for calculation of thermodynamic properties of complex mixtures with option to calculate transport properties of these mixtures. Free-energy minimization technique used in equilibrium calculation. Rigorous equations used in transport calculations. Program calculates equilibrium compositions and corresponding thermodynamic and transport properties of mixtures. CECTRP accommodates up to 24 reactants, 20 elements, and 600 products, 400 of which are condensed. Written in FORTRAN IV for any large computer system.
Selfconsistent calculations for hyperdeformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)
1996-12-31
Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.
RTU Comparison Calculator Enhancement Plan
Energy Technology Data Exchange (ETDEWEB)
Miller, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-07-01
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
RTU Comparison Calculator Enhancement Plan
Energy Technology Data Exchange (ETDEWEB)
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
2014-03-31
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
RTU Comparison Calculator Enhancement Plan
Energy Technology Data Exchange (ETDEWEB)
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
2014-03-31
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
Explosion Calculations of SN1087
Wooden, Diane H.; Morrison, David (Technical Monitor)
1994-01-01
Explosion calculations of SNT1987A generate pictures of Rayleigh-Taylor fingers of radioactive Ni-56 which are boosted to velocities of several thousand km/s. From the KAO observations of the mid-IR iron lines, a picture of the iron in the ejecta emerges which is consistent with the "frothy iron fingers" having expanded to fill about 50% of the metal-rich volume of the ejecta. The ratio of the nickel line intensities yields a high ionization fraction of greater than or equal to 0.9 in the volume associated with the iron-group elements at day 415, before dust condenses in the ejecta. From the KAO observations of the dust's thermal emission, it is deduced that when the grains condense their infrared radiation is trapped, their apparent opacity is gray, and they have a surface area filling factor of about 50%. The dust emission from SN1987A is featureless: no 9.7 micrometer silicate feature, nor PAH features, nor dust emission features of any kind are seen at any time. The total dust opacity increases with time even though the surface area filling factor and the dust/gas ratio remain constant. This suggests that the dust forms along coherent structures which can maintain their radial line-of-sight opacities, i.e., along fat fingers. The coincidence of the filling factor of the dust and the filling factor of the iron strongly suggests that the dust condenses within the iron, and therefore the dust is iron-rich. It only takes approximately 4 x 10(exp -4) solar mass of dust for the ejecta to be optically thick out to approximately 100 micrometers; a lower limit of 4 x 10(exp -4) solar mass of condensed grains exists in the metal-rich volume, but much more dust could be present. The episode of dust formation started at about 530 days and proceeded rapidly, so that by 600 days 45% of the bolometric luminosity was being emitted in the IR; by 775 days, 86% of the bolometric luminosity was being reradiated by the dust. Measurements of the bolometric luminosity of SN1987A from
Energy Technology Data Exchange (ETDEWEB)
Bouhafs, Nezha; Lique, François, E-mail: francois.lique@univ-lehavre.fr [LOMC–UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)
2015-11-14
We present a new three-dimensional potential energy surface (PES) for the NH(X{sup 3}Σ{sup −})–Ne van der Waals system, which explicitly takes into account the NH vibrational motion. Ab initio calculations of the NH–Ne PES were carried out using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations [RCCSD(T)]. The augmented correlation-consistent quadruple zeta (aug-cc-pVQZ) basis set was employed. Mid-bond functions were also included in order to improve the accuracy in the van der Waals well. Using this new PES, we have studied the collisional excitation of NH(X{sup 3}Σ{sup −}) by Ne. Close-coupling calculations of the collisional excitation cross sections of the fine-structure levels of NH by Ne are performed for energies up to 3000 cm{sup −1}, which yield, after thermal average, rate coefficients up to 350 K. The propensity rules between fine-structure levels are reported, and it is found that F-conserving cross sections are larger than F-changing cross sections even if the propensity rules are not as strong as for the NH–He system. The calculated rate coefficients are compared with available experimental measurements at room temperature and a fairly good agreement is found between experimental and theoretical data, confirming the good quality of the scattering calculations and also the accuracy of the potential energy surface used in this work.
CHP Energy and Emissions Savings Calculator
Download the CHP Emissions Calculator, a tool that calculates the difference between the anticipated carbon dioxide, methane, nitrous oxide, sulfur dioxide, and nitrogen oxide emissions from a CHP system to those of a separate heat and power system.
Dynamics Calculation of Travel Wave Tube
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
During the dynamics calculating of the travel tube, we must obtain the field map in the tube. The field map can be affected by not only the beam loading, but also the attenuation coefficient. The calculation of the attenuation coefficient
A New Approach for Calculating Vacuum Susceptibility
Institute of Scientific and Technical Information of China (English)
宗红石; 平加伦; 顾建中
2004-01-01
Based on the Dyson-Schwinger approach, we propose a new method for calculating vacuum susceptibilities. As an example, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is presented.
76 FR 71431 - Civil Penalty Calculation Methodology
2011-11-17
... TRANSPORTATION Federal Motor Carrier Safety Administration Civil Penalty Calculation Methodology AGENCY: Federal... its civil penalty methodology. Part of this evaluation includes a forthcoming explanation of the... methodology for calculation of certain civil penalties. To induce compliance with federal regulations,...
Pressure Vessel Calculations for VVER-440 Reactors
Hordósy, G.; Hegyi, Gy.; Keresztúri, A.; Maráczy, Cs.; Temesvári, E.; Vértes, P.; Zsolnay, É.
2003-06-01
Monte Carlo calculations were performed for a selected cycle of the Paks NPP Unit II to test a computational model. In the model the source term was calculated by the core design code KARATE and the neutron transport calculations were performed by the MCNP. Different forms of the source specification were examined. The calculated results were compared with measurements and in most cases fairly good agreement was found.
Mathematical Creative Activity and the Graphic Calculator
Duda, Janina
2011-01-01
Teaching mathematics using graphic calculators has been an issue of didactic discussions for years. Finding ways in which graphic calculators can enrich the development process of creative activity in mathematically gifted students between the ages of 16-17 is the focus of this article. Research was conducted using graphic calculators with…
47 CFR 1.1623 - Probability calculation.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623... Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be computed to no less than three significant digits. Probabilities will be truncated to the number of...
Status Report of NNLO QCD Calculations
Klasen, M
2005-01-01
We review recent progress in next-to-next-to-leading order (NNLO) perturbative QCD calculations with special emphasis on results ready for phenomenological applications. Important examples are new results on structure functions and jet or Higgs boson production. In addition, we describe new calculational techniques based on twistors and their potential for efficient calculations of multiparticle amplitudes.
A general formalism for phase space calculations
Norbury, John W.; Deutchman, Philip A.; Townsend, Lawrence W.; Cucinotta, Francis A.
1988-01-01
General formulas for calculating the interactions of galactic cosmic rays with target nuclei are presented. Methods for calculating the appropriate normalization volume elements and phase space factors are presented. Particular emphasis is placed on obtaining correct phase space factors for 2-, and 3-body final states. Calculations for both Lorentz-invariant and noninvariant phase space are presented.
Decimals, Denominators, Demons, Calculators, and Connections
Sparrow, Len; Swan, Paul
2005-01-01
The authors provide activities for overcoming some fraction misconceptions using calculators specially designed for learners in primary years. The writers advocate use of the calculator as a way to engage children in thinking about mathematics. By engaging with a calculator as part of mathematics learning, children are learning about and using the…
Microscopic Calculations of 240Pu Fission
Energy Technology Data Exchange (ETDEWEB)
Younes, W; Gogny, D
2007-09-11
Hartree-Fock-Bogoliubov calculations have been performed with the Gogny finite-range effective interaction for {sup 240}Pu out to scission, using a new code developed at LLNL. A first set of calculations was performed with constrained quadrupole moment along the path of most probable fission, assuming axial symmetry but allowing for the spontaneous breaking of reflection symmetry of the nucleus. At a quadrupole moment of 345 b, the nucleus was found to spontaneously scission into two fragments. A second set of calculations, with all nuclear moments up to hexadecapole constrained, was performed to approach the scission configuration in a controlled manner. Calculated energies, moments, and representative plots of the total nuclear density are shown. The present calculations serve as a proof-of-principle, a blueprint, and starting-point solutions for a planned series of more comprehensive calculations to map out a large set of scission configurations, and the associated fission-fragment properties.
Status of lattice field theory calculations
Energy Technology Data Exchange (ETDEWEB)
Sharpe, S.R.
1990-01-01
This report briefly discusses the following topics: overview of all present calculation; reliability criteria for quenched calculation; quenched versus full QCD, and difficulties facing full QCD; results for the quenched pion wavefunction''; results for the quenched hadron spectrum; results for quenched B{sub K}; A new method for calculating the surface tension; the non-pertubative upper bound on the Higgs mass; and toward the TERAFLOP machine.
Calculation of the Moments of Polygons.
1987-06-01
2.1) VowUK-1N0+IDIO TUUNTKPlNO.YKNO C Calculate AREA YKXK-YKPIND*IKNO-YKNO*XKP1NO AIKA-hEEA4YKXX C Calculate ACEIT ACENT (1)- ACEIT ( 1) VSUNI4TKIK... ACEIT (2) -ACENT(2) .VSUNYKXK C Calculate SECHON 3ECNON (1) -SCNON( 1) TKXK*(XX~PIdO*VSUNXKKO**2) SECNO(2) -SEn N(2) .yrf* (XKP114*YKP1MO.XKO*YXO+VB1hi
Axial force calculation of passive magnetic bearing
National Research Council Canada - National Science Library
Vučković Ana N; Raičević Nebojša B; Ilić Saša S; Aleksić Slavoljub R; Perić Mirjana T
2014-01-01
.... Configuration like this one resembles the one passive magnetic bearing has. Force calculation is performed using semi analytical approach based on fictitious magnetization charges and discretization technique...
Pile Load Capacity – Calculation Methods
Directory of Open Access Journals (Sweden)
Wrana Bogumił
2015-12-01
Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.
MATNORM: Calculating NORM using composition matrices
Pruseth, Kamal L.
2009-09-01
This paper discusses the implementation of an entirely new set of formulas to calculate the CIPW norm. MATNORM does not involve any sophisticated programming skill and has been developed using Microsoft Excel spreadsheet formulas. These formulas are easy to understand and a mere knowledge of the if-then-else construct in MS-Excel is sufficient to implement the whole calculation scheme outlined below. The sequence of calculation used here differs from that of the standard CIPW norm calculation, but the results are very similar. The use of MS-Excel macro programming and other high-level programming languages has been deliberately avoided for simplicity.
Surface Tension Calculation of Undercooled Alloys
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.
Modern Feynman Diagrammatic One-Loop Calculations
Reiter, Thomas; Greiner, Nicolas; Guffanti, Alberto; Guillet, Jean-Philippe; Heinrich, Gudrun; Karg, Stefan; Kauer, Nikolas; Kleinschmidt, Tobias; Koch-Janusz, Maciej; Luisoni, Gionata; Mastrolia, Pierpaolo; Ossola, Giovanni; Pilon, Eric; Rodgers, Mark; Tramontano, Francesco; Wigmore, Ioan
2010-01-01
In this talk we present techniques for calculating one-loop amplitudes for multi-leg processes using Feynman diagrammatic methods in a semi-algebraic context. Our approach combines the advantages of the different methods allowing for a fast evaluation of the amplitude while monitoring the numerical stability of the calculation. In phase space regions close to singular kinematics we use a method avoiding spurious Gram determinants in the calculation. As an application of our approach we report on the status of the calculation of the amplitude for the process $pp\\to b\\bar{b}b\\bar{b}+X$.
Calculating Electromagnetic Fields Of A Loop Antenna
Schieffer, Mitchell B.
1987-01-01
Approximate field values computed rapidly. MODEL computer program developed to calculate electromagnetic field values of large loop antenna at all distances to observation point. Antenna assumed to be in x-y plane with center at origin of coordinate system. Calculates field values in both rectangular and spherical components. Also solves for wave impedance. Written in MicroSoft FORTRAN 77.
46 CFR 154.520 - Piping calculations.
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Piping calculations. 154.520 Section 154.520 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... Process Piping Systems § 154.520 Piping calculations. A piping system must be designed to meet...
SGEMP Analysis using the Programmable Calculator.
1980-08-30
step represents a single key stroke on the calculator such as a multiply or storage operation.) Calculator memory can he partitioned variably between...is (in M KS units): Em = / Fmr 0 v1 E , (A-18) where F is a dimensionless number that is a function of the emission spectrum and angular distribution
10 CFR 766.102 - Calculation methodology.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Calculation methodology. 766.102 Section 766.102 Energy DEPARTMENT OF ENERGY URANIUM ENRICHMENT DECONTAMINATION AND DECOMMISSIONING FUND; PROCEDURES FOR SPECIAL ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a...
40 CFR 1065.850 - Calculations.
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...
Calculated optical absorption of different perovskite phases
DEFF Research Database (Denmark)
Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2015-01-01
We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...
Teaching Discrete Mathematics with Graphing Calculators.
Masat, Francis E.
Graphing calculator use is often thought of in terms of pre-calculus or continuous topics in mathematics. This paper contains examples and activities that demonstrate useful, interesting, and easy ways to use a graphing calculator with discrete topics. Examples are given for each of the following topics: functions, mathematical induction and…
Using Calculators in Mathematics 12. Student Text.
Rising, Gerald R.; And Others
This student textbook is designed to incorporate programable calculators in grade 12 mathematics. The seven chapters contained in this document are: (1) Using Calculators in Mathematics; (2) Sequences, Series, and Limits; (3) Iteration, Mathematical Induction, and the Binomial Theorem; (4) Applications of the Fundamental Counting Principle; (5)…
Calculation reliability in vehicle accident reconstruction.
Wach, Wojciech
2016-06-01
The reconstruction of vehicle accidents is subject to assessment in terms of the reliability of a specific system of engineering and technical operations. In the article [26] a formalized concept of the reliability of vehicle accident reconstruction, defined using Bayesian networks, was proposed. The current article is focused on the calculation reliability since that is the most objective section of this model. It is shown that calculation reliability in accident reconstruction is not another form of calculation uncertainty. The calculation reliability is made dependent on modeling reliability, adequacy of the model and relative uncertainty of calculation. All the terms are defined. An example is presented concerning the analytical determination of the collision location of two vehicles on the road in the absence of evidential traces. It has been proved that the reliability of this kind of calculations generally does not exceed 0.65, despite the fact that the calculation uncertainty itself can reach only 0.05. In this example special attention is paid to the analysis of modeling reliability and calculation uncertainty using sensitivity coefficients and weighted relative uncertainty.
Calculated Atomic Volumes of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, H.; Andersen, O. K.; Johansson, B.
1979-01-01
The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....
Calculation of cohesive energy of actinide metals
Institute of Scientific and Technical Information of China (English)
钱存富; 陈秀芳; 余瑞璜; 耿平; 段占强
1997-01-01
According to empirical electron theory of solids and molecules (EET), an equation for calculating the cohesive energy of actinide metals is given, the cohesive energy of 9 actinide metals with known crystal structure is calculated, which is identical with the experimental values on the whole, and the cohesive energy of 6 actinide metals with unknown crystal structure is forecast.
Atomic Structure Calculations for Neutral Oxygen
Norah Alonizan; Rabia Qindeel; Nabil Ben Nessib
2016-01-01
Energy levels and oscillator strengths for neutral oxygen have been calculated using the Cowan (CW), SUPERSTRUCTURE (SS), and AUTOSTRUCTURE (AS) atomic structure codes. The results obtained with these atomic codes have been compared with MCHF calculations and experimental values from the National Institute of Standards and Technology (NIST) database.
Calculating "g" from Acoustic Doppler Data
Torres, Sebastian; Gonzalez-Espada, Wilson J.
2006-01-01
Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…
Calculation of Temperature Rise in Calorimetry.
Canagaratna, Sebastian G.; Witt, Jerry
1988-01-01
Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)
New tool for standardized collector performance calculations
DEFF Research Database (Denmark)
Perers, Bengt; Kovacs, Peter; Olsson, Marcus;
2011-01-01
A new tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance for a number of representative cities in Europe...
Efficient Calculation of Earth Penetrating Projectile Trajectories
2006-09-01
CALCULATION OF EARTH PENETRATING PROJECTILE TRAJECTORIES by Daniel F . Youch September 2006 Thesis Advisor: Joshua Gordis... Daniel F . Youch 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Postgraduate School Monterey, CA 93943-5000 8. PERFORMING...EFFICIENT CALCULATION OF EARTH PENETRATING PROJECTILE TRAJECTORIES Daniel F . Youch Lieutenant Commander, United States Navy B.S., Temple
Sniderman, A.D.; Tremblay, A.J.; Graaf, J. de; Couture, P.
2014-01-01
OBJECTIVES: This study tests the validity of the Hattori formula to calculate LDL apoB based on plasma lipids and total apoB. METHODS: In 2178 patients in a tertiary care lipid clinic, LDL apoB calculated as suggested by Hattori et al. was compared to directly measured LDL apoB isolated by ultracent
Data base to compare calculations and observations
Energy Technology Data Exchange (ETDEWEB)
Tichler, J.L.
1985-01-01
Meteorological and climatological data bases were compared with known tritium release points and diffusion calculations to determine if calculated concentrations could replace measure concentrations at the monitoring stations. Daily tritium concentrations were monitored at 8 stations and 16 possible receptors. Automated data retrieval strategies are listed. (PSB)
Heat Calculation of Borehole Heat Exchangers
Directory of Open Access Journals (Sweden)
S. Filatov
2013-01-01
Full Text Available The paper considers a heat calculation method of borehole heat exchangers (BHE which can be used for designing and optimization of their design values and included in a comprehensive mathematical model of heat supply system with a heat pump based on utilization of low-grade heat from the ground.The developed method of calculation is based on the reduction of the problem general solution pertaining to heat transfer in BHE with due account of heat transfer between top-down and bottom-up flows of heat carrier to the solution for a boundary condition of one kind on the borehole wall. Used the a method of electrothermal analogy has been used for a calculation of the thermal resistance and the required shape factors for calculation of a borehole filler thermal resistance have been obtained numerically. The paper presents results of heat calculation of various BHE designs in accordance with the proposed method.
2015-11-23
currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES...suppressed. Other prototypes of these types of MEFSSs were also designed and fabricated and characterized. Details of the design and measurement...e.g., shorting pins or series inductors ) within the body of the antenna were among the first structures examined in this area [1]–[3]. One of the
Effect of closed-couple gas atomization pressure on the performances of Al-20Sn-1 Cu powders
Institute of Scientific and Technical Information of China (English)
ZHAO Xinming; XU Jun; ZHU Xuexin; ZHANG Shaoming
2008-01-01
Al-20Sn-1 Cu powders were prepared by gas atomization in an argon atmosphere with atomizing pressures of 1.1 and 1.6 MPa.The characteristics of the powders are determined by means of dry sieving,scanning electron microscopy (SEM),optical microscopy (OM),and X-ray diffractometry (XRD).The results show that the powders exhibit a bimodal size distribution and a higher gas pressure results in a broad size distribution.All particles in both cases are spherical or nearly spherical and satellites form on the surface of coarse particles.Dendritic and cellular structures coexist in the particle.With decreasing particle diameter,the secondary dendrite arm spacing (SDAS) decreases and the cooling rate increases.The particles processed under high gas atomization pressure (1.6 MPa) exhibit a lower SDAS value and a higher cooling rate than those of the same size under low gas atomization pressure (1.1 MPa).The XRD results show that the Sn content increases with decreasing particle size.
Simon, J. S.; Valavani, L.
1991-01-01
The use of a closed-loop control to allow surge-free operation of a compression system beyond its uncontrolled surge line is addressed. In contrast to previous analyses which used a linearized model, the approach described directly addresses the nonlinear nature of the compressor characteristic using a Liapunov-based control law design formulation. The proposed approach is fairly generic and should be of interest for gas turbine engines as well as other applications.
Energy Technology Data Exchange (ETDEWEB)
Beck, D.D.; Sommers, J.W.; DiMaggio, C.L. [Physics and Physical Chemistry Department, General Motors NAO Research and Development Center, Warren, MI (United States)
1997-03-21
The oxygen storage capacity of a 56,000 mile aged warmup and underfloor converter system was characterized as a function of axial location along the converters and compared with fresh samples having the same formulation. Measurements of oxygen storage were made using a titration technique and at conditions expected to be commonly encountered during OBD-II diagnosis of catalyst performance. Vehicle aging resulted in a dramatic loss of oxygen storage in the warmup converter presumably due to the severe thermal sintering, but the significant amount of phosphorus (P) and zinc (Zn) poison accumulation on this converter was found to impact oxygen storage minimally. This is in contrast to the measured impact of P and Zn deposition on warmed-up hydrocarbon conversion, which was found to be significant relative to the impact of thermal sintering. The underfloor converter was found to have retained nearly all of its original oxygen storage after vehicle aging, consistent with operation of this converter at moderate temperatures which do no result in severe thermal sintering of the noble metals and the ceria. The impact of sulfur on the oxygen storage of both warmup and underfloor converter sections was dramatic. Sections in the forward part of the warmup converter and in the front brick of the underfloor converter had relatively modest oxygen storage capacity which was almost completely blocked as the sulfur concentration reached 75-150 ppm (equivalent in gasoline). Other sections such as the rear of the warmup converter and the rear monolith of the underfloor converter had more oxygen storage capacity, which was significantly decreased as the sulfur concentration reached 150 ppm equivalent in fuel, and was approached complete loss near 500 ppm sulfur equivalent in fuel
Simon, J. S.; Valavani, L.
1991-01-01
The use of a closed-loop control to allow surge-free operation of a compression system beyond its uncontrolled surge line is addressed. In contrast to previous analyses which used a linearized model, the approach described directly addresses the nonlinear nature of the compressor characteristic using a Liapunov-based control law design formulation. The proposed approach is fairly generic and should be of interest for gas turbine engines as well as other applications.
Yin, Chang; Fan, Fenliang; Song, Alin; Cui, Peiyuan; Li, Tingqiang; Liang, Yongchao
2015-07-01
Preferable inorganic fertilization over the last decades has led to fertility degradation of black soil in Northeast China. However, how fertilization regimes impact denitrification and its related bacterial community in this soil type is still unclear. Here, taking advantage of a suit of molecular ecological tools in combination of assaying the potential denitrification (DP), we explored the variation of activity, community structure, and abundance of nirS and nirK denitrifiers under four different fertilization regimes, namely no fertilization control (N0M0), organic pig manure (N0M1), inorganic fertilization (N1M0), and combination of inorganic fertilizer and pig manure (N1M1). The results indicated that organic fertilization increased DP, but inorganic fertilization had no impacts. The increase of DP was mirrored by the shift of nirS denitrifiers' community structure but not by that of nirK denitrifiers'. Furthermore, the change of DP coincided with the variation of abundances of both denitrifiers. Shifts of community structure and abundance of nirS and nirK denitrifiers were correlated with the change of soil pH, total nitrogen (TN), organic matter (OM), C:P, total phosphorus (TP), and available phosphorus (Olsen P). Our results suggest that the change of DP under these four fertilization regimes was closely related to the shift of denitrifying bacteria communities resulting from the variation of properties in the black soil tested.
Development of Fast running DNBR Calculation Code
Energy Technology Data Exchange (ETDEWEB)
Kwon, Hyuk; Seo, K. W.; Kim, S. J.; Hwang, D. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-10-15
SMART core adopted a core protection(SCOPS) and a supervising system(SCOMS) to satisfy the SAFDL for AOO and normal operation. Generally, the criteria is limited to the DNBR limit so that the DNBR calculation module is required in the protection and the supervising system of core. There are CPU time limit and calculation robustness as some requirements of the DNBR calculation module in SCOPS and SCOMS caused by hardware limitations. The non-iterative few channel methods are needed to satisfy the requirements. Non-iterative numerical method is similar to the CETOP algorithm originated from ref. 1. The method is known as the non-iterative prediction and correction method. An optimum number of channels for core lumping model is selected as 4- channel which is same channel number of CETOP model. A compensation model of lumped channel is needed to ensure that the 4-channel thermal hydraulic field is nearly equivalent to that field of 1/8-core model that is calculated by MATRA-S. The code called FAST that is fast running DNBR calculation is developed to satisfy the requirements of CPU time and calculation robustness. Present paper is described of characteristics and calculation results of developed FAST code
Validation of fluorescence transition probability calculations
Pia, M G; Sudhaka, Manju
2009-01-01
A systematic and quantitative validation of the K and L shell X-ray transition probability calculations according to different theoretical methods has been performed against experimental data. This study is relevant to the optimization of data libraries used by software systems, namely Monte Carlo codes, dealing with X-ray fluorescence. The results support the adoption of transition probabilities calculated according to the Hartree-Fock approach, which manifest better agreement with experimental measurements than calculations based on the Hartree-Slater method.
Program Calculates Current Densities Of Electronic Designs
Cox, Brian
1996-01-01
PDENSITY computer program calculates current densities for use in calculating power densities of electronic designs. Reads parts-list file for given design, file containing current required for each part, and file containing size of each part. For each part in design, program calculates current density in units of milliamperes per square inch. Written by use of AWK utility for Sun4-series computers running SunOS 4.x and IBM PC-series and compatible computers running MS-DOS. Sun version of program (NPO-19588). PC version of program (NPO-19171).
Spreadsheet Based Scaling Calculations and Membrane Performance
Energy Technology Data Exchange (ETDEWEB)
Wolfe, T D; Bourcier, W L; Speth, T F
2000-12-28
Many membrane element manufacturers provide a computer program to aid buyers in the use of their elements. However, to date there are few examples of fully integrated public domain software available for calculating reverse osmosis and nanofiltration system performance. The Total Flux and Scaling Program (TFSP), written for Excel 97 and above, provides designers and operators new tools to predict membrane system performance, including scaling and fouling parameters, for a wide variety of membrane system configurations and feedwaters. The TFSP development was funded under EPA contract 9C-R193-NTSX. It is freely downloadable at www.reverseosmosis.com/download/TFSP.zip. TFSP includes detailed calculations of reverse osmosis and nanofiltration system performance. Of special significance, the program provides scaling calculations for mineral species not normally addressed in commercial programs, including aluminum, iron, and phosphate species. In addition, ASTM calculations for common species such as calcium sulfate (CaSO{sub 4}{times}2H{sub 2}O), BaSO{sub 4}, SrSO{sub 4}, SiO{sub 2}, and LSI are also provided. Scaling calculations in commercial membrane design programs are normally limited to the common minerals and typically follow basic ASTM methods, which are for the most part graphical approaches adapted to curves. In TFSP, the scaling calculations for the less common minerals use subsets of the USGS PHREEQE and WATEQ4F databases and use the same general calculational approach as PHREEQE and WATEQ4F. The activities of ion complexes are calculated iteratively. Complexes that are unlikely to form in significant concentration were eliminated to simplify the calculations. The calculation provides the distribution of ions and ion complexes that is used to calculate an effective ion product ''Q.'' The effective ion product is then compared to temperature adjusted solubility products (Ksp's) of solids in order to calculate a Saturation Index (SI
Pressure vessel calculations for VVER-440 reactors.
Hordósy, G; Hegyi, Gy; Keresztúri, A; Maráczy, Cs; Temesvári, E; Vértes, P; Zsolnay, E
2005-01-01
For the determination of the fast neutron load of the reactor pressure vessel a mixed calculational procedure was developed. The procedure was applied to the Unit II of Paks NPP, Hungary. The neutron source on the outer surfaces of the reactor was determined by a core design code, and the neutron transport calculations outside the core were performed by the Monte Carlo code MCNP. The reaction rate in the activation detectors at surveillance positions and at the cavity were calculated and compared with measurements. In most cases, fairly good agreement was found.
Hamming generalized corrector for reactivity calculation
Energy Technology Data Exchange (ETDEWEB)
Suescun-Diaz, Daniel; Ibarguen-Gonzalez, Maria C.; Figueroa-Jimenez, Jorge H. [Pontificia Universidad Javeriana Cali, Cali (Colombia). Dept. de Ciencias Naturales y Matematicas
2014-06-15
This work presents the Hamming method generalized corrector for numerically resolving the differential equation of delayed neutron precursor concentration from the point kinetics equations for reactivity calculation, without using the nuclear power history or the Laplace transform. A study was carried out of several correctors with their respective modifiers with different time step calculations, to offer stability and greater precision. Better results are obtained for some correctors than with other existing methods. Reactivity can be calculated with precision of the order h{sup 5}, where h is the time step. (orig.)
Assessment of seismic margin calculation methods
Energy Technology Data Exchange (ETDEWEB)
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.
Neutron skyshine calculations for the PDX tokamak
Energy Technology Data Exchange (ETDEWEB)
Wheeler, F.J.; Nigg, D.W.
1979-01-01
The Poloidal Divertor Experiment (PDX) at Princeton will be the first operating tokamak to require a substantial radiation shield. The PDX shielding includes a water-filled roof shield over the machine to reduce air scattering skyshine dose in the PDX control room and at the site boundary. During the design of this roof shield a unique method was developed to compute the neutron source emerging from the top of the roof shield for use in Monte Carlo skyshine calculations. The method is based on simple, one-dimensional calculations rather than multidimensional calculations, resulting in considerable savings in computer time and input preparation effort. This method is described.
Energy of plate tectonics calculation and projection
Directory of Open Access Journals (Sweden)
N. H. Swedan
2013-02-01
Full Text Available Mathematics and observations suggest that the energy of the geological activities resulting from plate tectonics is equal to the latent heat of melting, calculated at mantle's pressure, of the new ocean crust created at midocean ridges following sea floor spreading. This energy varies with the temperature of ocean floor, which is correlated with surface temperature. The objective of this manuscript is to calculate the force that drives plate tectonics, estimate the energy released, verify the calculations based on experiments and observations, and project the increase of geological activities with surface temperature rise caused by climate change.
Ti-84 Plus graphing calculator for dummies
McCalla
2013-01-01
Get up-to-speed on the functionality of your TI-84 Plus calculator Completely revised to cover the latest updates to the TI-84 Plus calculators, this bestselling guide will help you become the most savvy TI-84 Plus user in the classroom! Exploring the standard device, the updated device with USB plug and upgraded memory (the TI-84 Plus Silver Edition), and the upcoming color screen device, this book provides you with clear, understandable coverage of the TI-84's updated operating system. Details the new apps that are available for download to the calculator via the USB cabl
The WFIRST Galaxy Survey Exposure Time Calculator
Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien
2013-01-01
This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.
Multigrid Methods in Electronic Structure Calculations
Briggs, E L; Bernholc, J
1996-01-01
We describe a set of techniques for performing large scale ab initio calculations using multigrid accelerations and a real-space grid as a basis. The multigrid methods provide effective convergence acceleration and preconditioning on all length scales, thereby permitting efficient calculations for ill-conditioned systems with long length scales or high energy cut-offs. We discuss specific implementations of multigrid and real-space algorithms for electronic structure calculations, including an efficient multigrid-accelerated solver for Kohn-Sham equations, compact yet accurate discretization schemes for the Kohn-Sham and Poisson equations, optimized pseudo\\-potentials for real-space calculations, efficacious computation of ionic forces, and a complex-wavefunction implementation for arbitrary sampling of the Brillioun zone. A particular strength of a real-space multigrid approach is its ready adaptability to massively parallel computer architectures, and we present an implementation for the Cray-T3D with essen...
Direct calculation of wind turbine tip loss
DEFF Research Database (Denmark)
Wood, D.H.; Okulov, Valery; Bhattacharjee, D.
2016-01-01
The usual method to account for a finite number of blades in blade element calculations of wind turbine performance is through a tip loss factor. Most analyses use the tip loss approximation due to Prandtl which is easily and cheaply calculated but is known to be inaccurate at low tip speed ratio....... We develop three methods for the direct calculation of the tip loss. The first is the computationally expensive calculation of the velocities induced by the helicoidal wake which requires the evaluation of infinite sums of products of Bessel functions. The second uses the asymptotic evaluation...... of those sums by Kawada. The third uses the approximation due to Okulov which avoids the sums altogether. These methods are compared to the tip loss determined independently and exactly for an ideal three-bladed rotor at tip speed ratios between zero and 15. Kawada's asymptotic approximation and Okulov...
Large Numbers and Calculators: A Classroom Activity.
Arcavi, Abraham; Hadas, Nurit
1989-01-01
Described is an activity demonstrating how a scientific calculator can be used in a mathematics classroom to introduce new content while studying a conventional topic. Examples of reading and writing large numbers, and reading hidden results are provided. (YP)
Measured and Calculated Volumes of Wetland Depressions
U.S. Environmental Protection Agency — Measured and calculated volumes of wetland depressions This dataset is associated with the following publication: Wu, Q., and C. Lane. Delineation and quantification...
Spectra: Time series power spectrum calculator
Gallardo, Tabaré
2017-01-01
Spectra calculates the power spectrum of a time series equally spaced or not based on the Spectral Correlation Coefficient (Ferraz-Mello 1981, Astron. Journal 86 (4), 619). It is very efficient for detection of low frequencies.
46 CFR 170.090 - Calculations.
2010-10-01
... necessary to compute and plot any of the following curves as part of the calculations required in this subchapter, these plots must also be submitted: (1) Righting arm or moment curves. (2) Heeling arm or...
Risk calculation method for complex engineering system
Directory of Open Access Journals (Sweden)
Li-ping WANG
2011-09-01
Full Text Available This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM, which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.
HST Cycle 19 Exposure Time Calculators
York, Brian Andrew; Diaz, R. I.; Busko, I.; Greenfield, P.; Laidler, V.; Miller, T.; Sienkiewicz, M.; Sosey, M.
2010-05-01
The Exposure Time Calculator (ETC) is a web-based application that assists users in calculating the exposure time needed for their HST observations, or the Signal-to-Noice Ratio (SNR) they can attain with a given HST observing time. These quantities are key for the preparation of proposals and observations during Phase I and Phase II of the proposing cycle and therefore have to be sufficiently accurate for each of the supported observing modes of all the HST instruments. Developing a general tool that shares communality among the different instruments is complicated, not only form the point of view of attaining accuracy of the calculations but also regarding reliability, portability, and maintainability. We are currently developing a new version of the ETC for Cycle 19 in Python to improve these qualities and to provide a basis for JWST Exposure Time Calculators. This poster describes the improvements over the previous ETC and the current status of the new version.
Fair and Reasonable Rate Calculation Data -
Department of Transportation — This dataset provides guidelines for calculating the fair and reasonable rates for U.S. flag vessels carrying preference cargoes subject to regulations contained at...
Quantum Monte Carlo Calculations of Light Nuclei
Pieper, Steven C
2007-01-01
During the last 15 years, there has been much progress in defining the nuclear Hamiltonian and applying quantum Monte Carlo methods to the calculation of light nuclei. I describe both aspects of this work and some recent results.
Quantum chemical calculations of glycine glutaric acid
Arioǧlu, ćaǧla; Tamer, Ömer; Avci, Davut; Atalay, Yusuf
2017-02-01
Density functional theory (DFT) calculations of glycine glutaric acid were performed by using B3LYP levels with 6-311++G(d,p) basis set. The theoretical structural parameters such as bond lengths and bond angles are in a good agreement with the experimental values of the title compound. HOMO and LUMO energies were calculated, and the obtained energy gap shows that charge transfer occurs in the title compound. Vibrational frequencies were calculated and compare with experimental ones. 3D molecular surfaces of the title compound were simulated using the same level and basis set. Finally, the 13C and 1H NMR chemical shift values were calculated by the application of the gauge independent atomic orbital (GIAO) method.
Representation and calculation of economic uncertainties
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans
2002-01-01
Management and decision making when certain information is available may be a matter of rationally choosing the optimal alternative by calculation of the utility function. When only uncertain information is available (which is most often the case) decision-making calls for more complex methods...... of representation and calculation and the basis for choosing the optimal alternative may become obscured by uncertainties of the utility function. In practice, several sources of uncertainties of the required information impede optimal decision making in the classical sense. In order to be able to better handle...... to uncertain economic numbers are discussed. When solving economic models for decision-making purposes calculation of uncertain functions will have to be carried out in addition to the basic arithmetical operations. This is a challenging numerical problem since improper methods of calculation may introduce...
Temperature calculation in fire safety engineering
Wickström, Ulf
2016-01-01
This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained. Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculat...
Note about socio-economic calculations
DEFF Research Database (Denmark)
Landex, Alex; Andersen, Jonas Lohmann Elkjær; Salling, Kim Bang
2006-01-01
these effects must be described qualitatively. This note describes the socio-economic evaluation based on market prices and not factor prices which has been the tradition in Denmark till now. This is due to the recommendation from the Ministry of Transport to start using calculations based on market prices......This note gives a short introduction of how to make socio-economic evaluations in connection with the teaching at the Centre for Traffic and Transport (CTT). It is not a manual for making socio-economic calculations in transport infrastructure projects – in this context we refer to the guidelines...... for socio-economic calculations within the transportation area (Ministry of Traffic, 2003). The note also explains the theory of socio-economic calculations – reference is here made to ”Road Infrastructure Planning – a Decision-oriented approach” (Leleur, 2000). Socio-economic evaluations of infrastructure...
DOWNSCALE APPLICATION OF BOILER THERMAL CALCULATION APPROACH
Zelený, Zbynĕk; Hrdlička, Jan
2016-01-01
Commonly used thermal calculation methods are intended primarily for large scale boilers. Hot water small scale boilers, which are commonly used for home heating have many specifics, that distinguish them from large scale boilers especially steam boilers. This paper is focused on application of thermal calculation procedure that is designed for large scale boilers, on a small scale boiler for biomass combustion of load capacity 25 kW. Special issue solved here is influence of formation of dep...
Efficient Finite Element Calculation of Nγ
DEFF Research Database (Denmark)
Clausen, Johan; Damkilde, Lars; Krabbenhøft, K.
2007-01-01
This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing.......This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing....
Providing driving rain data for hygrothermal calculations
DEFF Research Database (Denmark)
Kragh, Mikkel Kristian
1996-01-01
Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations.......Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations....
R-matrix calculation for photoionization
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
We have employed the R-matrix method to calculate differe ntial cross sections for photoionization of helium leaving helium ion in an exci ted state for incident photon energy between the N=2 and N=3 thresholds (69～73 eV) of He+ ion. Differential cross sections for photoionization in the N=2 level at emission angle 0° are provide. Our results are in good agreem ent with available experimental data and theoretical calculations.
Calculation Methods for Wallenius’ Noncentral Hypergeometric Distribution
DEFF Research Database (Denmark)
Fog, Agner
2008-01-01
distribution are derived. Range of applicability, numerical problems, and efficiency are discussed for each method. Approximations to the mean and variance are also discussed. This distribution has important applications in models of biased sampling and in models of evolutionary systems....... is the conditional distribution of independent binomial variates given their sum. No reliable calculation method for Wallenius' noncentral hypergeometric distribution has hitherto been described in the literature. Several new methods for calculating probabilities from Wallenius' noncentral hypergeometric...
PROSPECTS OF MANAGEMENT ACCOUNTING AND COST CALCULATION
Directory of Open Access Journals (Sweden)
Marian ŢAICU
2014-11-01
Full Text Available Progress in improving production technology requires appropriate measures to achieve an efficient management of costs. This raises the need for continuous improvement of management accounting and cost calculation. Accounting information in general, and management accounting information in particular, have gained importance in the current economic conditions, which are characterized by risk and uncertainty. The future development of management accounting and cost calculation is essential to meet the information needs of management.
Computerized calculation of material balances in carbonization
Energy Technology Data Exchange (ETDEWEB)
Chistyakov, A.M.
1980-09-01
Charge formulations and carbonisation schedules are described by empirical formulae used to calculate the yield of coking products. An algorithm is proposed for calculating the material balance, and associated computer program. The program can be written in conventional languages, e.g. Fortran, Algol etc. The information obtained can be used for on-line assessment of the effects of charge composition and properties on the coke and by-products yields, as well as the effects of the carbonisation conditions.
Users enlist consultants to calculate costs, savings
Energy Technology Data Exchange (ETDEWEB)
1982-05-24
Consultants who calculate payback provide expertise and a second opinion to back up energy managers' proposals. They can lower the costs of an energy-management investment by making complex comparisons of systems and recommending the best system for a specific application. Examples of payback calculations include simple payback for a school system, a university, and a Disneyland hotel, as well as internal rate of return for a corporate office building and a chain of clothing stores. (DCK)
Green's function calculations of light nuclei
Sun, ZhongHao; Wu, Qiang; Xu, FuRong
2016-09-01
The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.
A revised calculational model for fission
Energy Technology Data Exchange (ETDEWEB)
Atchison, F.
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
A Java Interface for Roche Lobe Calculations
Leahy, D. A.; Leahy, J. C.
2015-09-01
A JAVA interface for calculating various properties of the Roche lobe has been created. The geometry of the Roche lobe is important for studying interacting binary stars, particularly those with compact objects which have a companion which fills the Roche lobe. There is no known analytic solution to the Roche lobe problem. Here the geometry of the Roche lobe is calculated numerically to high accuracy and made available to the user for arbitrary input mass ratio, q.
Reciprocity Theorems for Ab Initio Force Calculations
Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.
1996-01-01
We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.
Realistic level density calculation for heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Cerf, N. [Institut de Physique Nucleaire, Orsay (France); Pichon, B. [Observatoire de Paris, Meudon (France); Rayet, M.; Arnould, M. [Institut d`Astronomie et d`Astrophysique, Bruxelles (Belgium)
1994-12-31
A microscopic calculation of the level density is performed, based on a combinatorial evaluation using a realistic single-particle level scheme. This calculation relies on a fast Monte Carlo algorithm, allowing to consider heavy nuclei (i.e., large shell model spaces) which could not be treated previously in combinatorial approaches. An exhaustive comparison of the predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented.
Flow calculation of a bulb turbine
Energy Technology Data Exchange (ETDEWEB)
Goede, E.; Pestalozzi, J.
1987-01-01
In recent years remarkable progress has been made in the field of theoretical flow calculation. Studying the relevant literature one might receive the impression that most problems have been solved. But probing more deeply into details one becomes aware that by no means all questions are answered. The report tries to point out what may be expected of the quasi-three-dimensional flow calculation method employed and - much more important - what it must not be expected to accomplish. (orig.)
Calculating Cumulative Binomial-Distribution Probabilities
Scheuer, Ernest M.; Bowerman, Paul N.
1989-01-01
Cumulative-binomial computer program, CUMBIN, one of set of three programs, calculates cumulative binomial probability distributions for arbitrary inputs. CUMBIN, NEWTONP (NPO-17556), and CROSSER (NPO-17557), used independently of one another. Reliabilities and availabilities of k-out-of-n systems analyzed. Used by statisticians and users of statistical procedures, test planners, designers, and numerical analysts. Used for calculations of reliability and availability. Program written in C.
Linear Response Calculations of Spin Fluctuations
Savrasov, S. Y.
1998-09-01
A variational formulation of the time-dependent linear response based on the Sternheimer method is developed in order to make practical ab initio calculations of dynamical spin susceptibilities of solids. Using gradient density functional and a muffin-tin-orbital representation, the efficiency of the approach is demonstrated by applications to selected magnetic and strongly paramagnetic metals. The results are found to be consistent with experiment and are compared with previous theoretical calculations.
Obliged to Calculate: "My School", Markets, and Equipping Parents for Calculativeness
Gobby, Brad
2016-01-01
This paper argues neoliberal programs of government in education are equipping parents for calculativeness. Regimes of testing and the publication of these results and other organizational data are contributing to a public economy of numbers that increasingly oblige citizens to calculate. Using the notions of calculative and market devices, this…
Environmental flow allocation and statistics calculator
Konrad, Christopher P.
2011-01-01
The Environmental Flow Allocation and Statistics Calculator (EFASC) is a computer program that calculates hydrologic statistics based on a time series of daily streamflow values. EFASC will calculate statistics for daily streamflow in an input file or will generate synthetic daily flow series from an input file based on rules for allocating and protecting streamflow and then calculate statistics for the synthetic time series. The program reads dates and daily streamflow values from input files. The program writes statistics out to a series of worksheets and text files. Multiple sites can be processed in series as one run. EFASC is written in MicrosoftRegistered Visual BasicCopyright for Applications and implemented as a macro in MicrosoftOffice Excel 2007Registered. EFASC is intended as a research tool for users familiar with computer programming. The code for EFASC is provided so that it can be modified for specific applications. All users should review how output statistics are calculated and recognize that the algorithms may not comply with conventions used to calculate streamflow statistics published by the U.S. Geological Survey.
Calculation of building heating demand in EPIQR
Energy Technology Data Exchange (ETDEWEB)
Wittchen, K.B.; Aggerholm, S. [Danish Building Research Institute, Hoersholm (Denmark)
2000-07-01
Calculations of energy requirements for space heating in EPIQR are based on an existing computer programme, made according to the European standard EN 832:1998. The programme was originally a stand-alone programme with its own user interface. This has been stripped of and the source code re-compiled into a dynamic link library (DLL) controlled by EPIQR. The method is based on a monthly calculation of heat losses and usable heat gains for the building. For the calculation, the monthly mean values of the external temperature and solar radiation are applied, and the heat gain from lighting and appliances, as well as the heat-accumulating capacity of the building, are taken into consideration. In EPIQR, some input parameters have been fixed to ensure that the user only has to supply simple input data to carry out a heating requirement calculation. This paper describes the applied calculation technique and the assumptions made in EPIQR to carry out heating requirement calculations and how energy-saving retrofit is evaluated using the software. (author)
Validation of dose calculation programmes for recycling
Energy Technology Data Exchange (ETDEWEB)
Menon, Shankar [Menon Consulting, Nykoeping (Sweden); Brun-Yaba, Christine [Inst. de Radioprotection et Securite Nucleaire (France); Yu, Charley; Cheng, Jing-Jy [Argonne National Laboratory, IL (United States). Environmental Assessment Div.; Bjerler, Jan [Studsvik Stensand, Nykoeping (Sweden); Williams, Alexander [Dept. of Energy (United States). Office of Environmental Management
2002-12-01
This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on
Language in calculation: a core mechanism?
Benn, Yael; Zheng, Ying; Wilkinson, Iain D; Siegal, Michael; Varley, Rosemary
2012-01-01
Although there is evidence that exact calculation recruits left hemisphere perisylvian language systems, recent work has shown that exact calculation can be retained despite severe damage to these networks. In this study, we sought to identify a "core" network for calculation and hence to determine the extent to which left hemisphere language areas are part of this network. We examined performance on addition and subtraction problems in two modalities: one using conventional two-digit problems that can be easily encoded into language; the other using novel shape representations. With regard to numerical problems, our results revealed increased left fronto-temporal activity in addition, and increased parietal activity in subtraction, potentially reflecting retrieval of linguistically encoded information during addition. The shape problems elicited activations of occipital, parietal and dorsal temporal regions, reflecting visual reasoning processes. A core activation common to both calculation types involved the superior parietal lobule bilaterally, right temporal sub-gyral area, and left lateralized activations in inferior parietal (BA 40), frontal (BA 6/8/32) and occipital (BA 18) regions. The large bilateral parietal activation could be attributed to visuo-spatial processing in calculation. The inferior parietal region, and particularly the left angular gyrus, was part of the core calculation network. However, given its activation in both shape and number tasks, its role is unlikely to reflect linguistic processing per se. A possibility is that it serves to integrate right hemisphere visuo-spatial and left hemisphere linguistic and executive processing in calculation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Paramedics’ Ability to Perform Drug Calculations
Directory of Open Access Journals (Sweden)
Eastwood, Kathyrn J
2009-11-01
Full Text Available Background: The ability to perform drug calculations accurately is imperative to patient safety. Research into paramedics’ drug calculation abilities was first published in 2000 and for nurses’ abilities the research dates back to the late 1930s. Yet, there have been no studies investigating an undergraduate paramedic student’s ability to perform drug or basic mathematical calculations. The objective of this study was to review the literature and determine the ability of undergraduate and qualified paramedics to perform drug calculations.Methods: A search of the prehospital-related electronic databases was undertaken using the Ovid and EMBASE systems available through the Monash University Library. Databases searched included the Cochrane Central Register of Controlled Trials (CENTRAL, MEDLINE, CINAHL, JSTOR, EMBASE and Google Scholar, from their beginning until the end of August 2009. We reviewed references from articles retrieved.Results: The electronic database search located 1,154 articles for review. Six additional articles were identified from reference lists of retrieved articles. Of these, 59 were considered relevant. After reviewing the 59 articles only three met the inclusion criteria. All articles noted some level of mathematical deficiencies amongst their subjects.Conclusions: This study identified only three articles. Results from these limited studies indicate a significant lack of mathematical proficiency amongst the paramedics sampled. A need exists to identify if undergraduate paramedic students are capable of performing the required drug calculations in a non-clinical setting.[WestJEM. 2009;10:240-243.
Paramedics’ Ability to Perform Drug Calculations
Eastwood, Kathryn J; Boyle, Malcolm J; Williams, Brett
2009-01-01
Background: The ability to perform drug calculations accurately is imperative to patient safety. Research into paramedics’ drug calculation abilities was first published in 2000 and for nurses’ abilities the research dates back to the late 1930s. Yet, there have been no studies investigating an undergraduate paramedic student’s ability to perform drug or basic mathematical calculations. The objective of this study was to review the literature and determine the ability of undergraduate and qualified paramedics to perform drug calculations. Methods: A search of the prehospital-related electronic databases was undertaken using the Ovid and EMBASE systems available through the Monash University Library. Databases searched included the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, CINAHL, JSTOR, EMBASE and Google Scholar, from their beginning until the end of August 2009. We reviewed references from articles retrieved. Results: The electronic database search located 1,154 articles for review. Six additional articles were identified from reference lists of retrieved articles. Of these, 59 were considered relevant. After reviewing the 59 articles only three met the inclusion criteria. All articles noted some level of mathematical deficiencies amongst their subjects. Conclusions: This study identified only three articles. Results from these limited studies indicate a significant lack of mathematical proficiency amongst the paramedics sampled. A need exists to identify if undergraduate paramedic students are capable of performing the required drug calculations in a non-clinical setting. PMID:20046240
Comparison of Polar Cap (PC) index calculations.
Stauning, P.
2012-04-01
The Polar Cap (PC) index introduced by Troshichev and Andrezen (1985) is derived from polar magnetic variations and is mainly a measure of the intensity of the transpolar ionospheric currents. These currents relate to the polar cap antisunward ionospheric plasma convection driven by the dawn-dusk electric field, which in turn is generated by the interaction of the solar wind with the Earth's magnetosphere. Coefficients to calculate PCN and PCS index values from polar magnetic variations recorded at Thule and Vostok, respectively, have been derived by several different procedures in the past. The first published set of coefficients for Thule was derived by Vennerstrøm, 1991 and is still in use for calculations of PCN index values by DTU Space. Errors in the program used to calculate index values were corrected in 1999 and again in 2001. In 2005 DMI adopted a unified procedure proposed by Troshichev for calculations of the PCN index. Thus there exists 4 different series of PCN index values. Similarly, at AARI three different sets of coefficients have been used to calculate PCS indices in the past. The presentation discusses the principal differences between the various PC index procedures and provides comparisons between index values derived from the same magnetic data sets using the different procedures. Examples from published papers are examined to illustrate the differences.
Good Practices in Free-energy Calculations
Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christopher
2013-01-01
As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in drug design. Yet, in a number of instances, the reliability of these calculations can be improved significantly if a number of precepts, or good practices are followed. For the most part, the theory upon which these good practices rely has been known for many years, but often overlooked, or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. The current best practices for carrying out free-energy calculations will be reviewed demonstrating that, at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. In energy perturbation and nonequilibrium work methods, monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision. In thermodynamic integration and probability distribution (histogramming) methods, properly designed adaptive techniques yield nearly uniform sampling of the relevant degrees of freedom and, by doing so, could markedly improve efficiency and accuracy of free energy calculations without incurring any additional computational expense.
Accurate free energy calculation along optimized paths.
Chen, Changjun; Xiao, Yi
2010-05-01
The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.
LDA+DCA calculations of cuprate superconductors
Kent, Paul; Macridin, Alexandru; Schulthess, Thomas; Krogh Andersen, Ole
2005-03-01
We present calculations of the properties of realistic models of single-layer cuprate superconductors. A multi-band Hubbard model is obtained from downfolded material specific local density approximation (LDA) density functional theory (DFT) calculations. The on-site U is obtained from constrained DFT calculations. The resulting model is solved using the dynamic cluster approximation (DCA) and quantum Monte Carlo, for small clusters. Some of us have previously shown that DCA calculations of the single band Hubbard model, with empirical parameters, reproduce key features of the experimental phase diagram, including the d-wave superconducting region and pseudogap. In the multi-band model, we find a superconducting region, and discuss how the computed transition temperature depends on the downfolded band structure. In model calculations, we test the sensitivity of the transition temperature to changes in the individual hopping terms, including the copper-oxygen and oxygen-oxygen hybridization. Work supported by the Division of Materials Science and Engineering, U.S. Department of Energy, under Contract DE-AC05-00OR22725 with UT-Battelle LLC.
Using Inverted Indices for Accelerating LINGO Calculations
DEFF Research Database (Denmark)
Kristensen, Thomas Greve; Nielsen, Jesper; Pedersen, Christian Nørgaard Storm
2011-01-01
The ever growing size of chemical data bases calls for the development of novel methods for representing and comparing molecules. One such method called LINGO is based on fragmenting the SMILES string representation of molecules. Comparison of molecules can then be performed by calculating...... the Tanimoto coefficient which is called the LINGOsim when used on LINGO multisets. This paper introduces a verbose representation for storing LINGO multisets which makes it possible to transform them into sparse fingerprints such that fingerprint data structures and algorithms can be used to accelerate...... queries. The previous best method for rapidly calculating the LINGOsim similarity matrix required specialised hardware to yield a significant speedup over existing methods. By representing LINGO multisets in the verbose representation and using inverted indices it is possible to calculate LINGOsim...
Using inverted indices for accelerating LINGO calculations.
Kristensen, Thomas G; Nielsen, Jesper; Pedersen, Christian N S
2011-03-28
The ever growing size of chemical databases calls for the development of novel methods for representing and comparing molecules. One such method called LINGO is based on fragmenting the SMILES string representation of molecules. Comparison of molecules can then be performed by calculating the Tanimoto coefficient, which is called LINGOsim when used on LINGO multisets. This paper introduces a verbose representation for storing LINGO multisets, which makes it possible to transform them into sparse fingerprints such that fingerprint data structures and algorithms can be used to accelerate queries. The previous best method for rapidly calculating the LINGOsim similarity matrix required specialized hardware to yield a significant speedup over existing methods. By representing LINGO multisets in the verbose representation and using inverted indices, it is possible to calculate LINGOsim similarity matrices roughly 2.6 times faster than existing methods without relying on specialized hardware.
Perturbation calculation of thermodynamic density of states.
Brown, G; Schulthess, T C; Nicholson, D M; Eisenbach, M; Stocks, G M
2011-12-01
The density of states g (ε) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g*(ε) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g(ε) for quantum systems using the Wang-Landau approach.
Lagrange interpolation for the radiation shielding calculation
Isozumi, Y; Miyatake, H; Kato, T; Tosaki, M
2002-01-01
Basing on some formulas of Lagrange interpolation derived in this paper, a computer program for table calculations has been prepared. Main features of the program are as follows; 1) maximum degree of polynomial in Lagrange interpolation is 10, 2) tables with both one variable and two variables can be applied, 3) logarithmic transformations of function and/or variable values can be included and 4) tables with discontinuities and cusps can be applied. The program has been carefully tested by using the data tables in the manual of shielding calculation for radiation facilities. For all available tables in the manual, calculations with the program have been reasonably performed under conditions of 1) logarithmic transformation of both function and variable values and 2) degree 4 or 5 of the polynomial.
eQuilibrator--the biochemical thermodynamics calculator.
Flamholz, Avi; Noor, Elad; Bar-Even, Arren; Milo, Ron
2012-01-01
The laws of thermodynamics constrain the action of biochemical systems. However, thermodynamic data on biochemical compounds can be difficult to find and is cumbersome to perform calculations with manually. Even simple thermodynamic questions like 'how much Gibbs energy is released by ATP hydrolysis at pH 5?' are complicated excessively by the search for accurate data. To address this problem, eQuilibrator couples a comprehensive and accurate database of thermodynamic properties of biochemical compounds and reactions with a simple and powerful online search and calculation interface. The web interface to eQuilibrator (http://equilibrator.weizmann.ac.il) enables easy calculation of Gibbs energies of compounds and reactions given arbitrary pH, ionic strength and metabolite concentrations. The eQuilibrator code is open-source and all thermodynamic source data are freely downloadable in standard formats. Here we describe the database characteristics and implementation and demonstrate its use.
Numerical inductance calculations based on first principles.
Shatz, Lisa F; Christensen, Craig W
2014-01-01
A method of calculating inductances based on first principles is presented, which has the advantage over the more popular simulators in that fundamental formulas are explicitly used so that a deeper understanding of the inductance calculation is obtained with no need for explicit discretization of the inductor. It also has the advantage over the traditional method of formulas or table lookups in that it can be used for a wider range of configurations. It relies on the use of fast computers with a sophisticated mathematical computing language such as Mathematica to perform the required integration numerically so that the researcher can focus on the physics of the inductance calculation and not on the numerical integration.
Challenges in Large Scale Quantum Mechanical Calculations
Ratcliff, Laura E; Huhs, Georg; Deutsch, Thierry; Masella, Michel; Genovese, Luigi
2016-01-01
During the past decades, quantum mechanical methods have undergone an amazing transition from pioneering investigations of experts into a wide range of practical applications, made by a vast community of researchers. First principles calculations of systems containing up to a few hundred atoms have become a standard in many branches of science. The sizes of the systems which can be simulated have increased even further during recent years, and quantum-mechanical calculations of systems up to many thousands of atoms are nowadays possible. This opens up new appealing possibilities, in particular for interdisciplinary work, bridging together communities of different needs and sensibilities. In this review we will present the current status of this topic, and will also give an outlook on the vast multitude of applications, challenges and opportunities stimulated by electronic structure calculations, making this field an important working tool and bringing together researchers of many different domains.
Automated one-loop calculations with GOSAM
Energy Technology Data Exchange (ETDEWEB)
Cullen, Gavin [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinrich, Gudrun; Reiter, Thomas [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, Gionata [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, Giovanni [New York City Univ., NY (United States). New York City College of Technology; New York City Univ., NY (United States). The Graduate School and University Center; Tramontano, Francesco [European Organization for Nuclear Research (CERN), Geneva (Switzerland)
2011-11-15
We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)
Detailed Burnup Calculations for Research Reactors
Energy Technology Data Exchange (ETDEWEB)
Leszczynski, F. [Centro Atomico Bariloche (CNEA), 8400 S. C. de Bariloche (Argentina)
2011-07-01
A general method (RRMCQ) has been developed by introducing a microscopic burn up scheme which uses the Monte Carlo calculated spatial power distribution of a research reactor core and a depletion code for burn up calculations, as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy dependent cross-section libraries and full 3D geometry of the system is input for the calculations. The resulting predictions for the system at successive burn up time steps are thus based on a calculation route where both geometry and cross-sections are accurately represented, without geometry simplifications and with continuous energy data. The main advantage of this method over the classical deterministic methods currently used is that RRMCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burn up codes adopted until now are the widely used MCNP5 and ORIGEN2 codes, but other codes can be used also. For using this method, there is a need of a well-known set of nuclear data for isotopes involved in burn up chains, including burnable poisons, fission products and actinides. For fixing the data to be included on this set, a study of the present status of nuclear data is performed, as part of the development of RRMCQ method. This study begins with a review of the available cross-section data of isotopes involved in burn up chains for research nuclear reactors. The main data needs for burn up calculations are neutron cross-sections, decay constants, branching ratios, fission energy and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross-section data for burn up calculations, using some of the main available evaluated nuclear data files. Basically, the RRMCQ detailed burn up method includes four
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Kenny, Elise P
2015-01-01
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution ...
Parallel scalability of Hartree–Fock calculations
Energy Technology Data Exchange (ETDEWEB)
Chow, Edmond, E-mail: echow@cc.gatech.edu; Liu, Xing [School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0765 (United States); Smelyanskiy, Mikhail; Hammond, Jeff R. [Parallel Computing Lab, Intel Corporation, Santa Clara, California 95054-1549 (United States)
2015-03-14
Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree–Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.
Cosmology calculations almost without general relativity
Jordan, T F
2003-01-01
The Friedmann equation can be derived for a Newtonian universe. Changing mass density to energy density gives exactly the Friedmann equation of general relativity. Accounting for work done by pressure then yields the two Einstein equations that govern the expansion of the universe. Descriptions and explanations of radiation pressure and vacuum pressure are added to complete a basic kit of cosmology tools. It provides a basis for teaching cosmology to undergraduates in a way that quickly equips them to do basic calculations. This is demonstrated with calculations involving: characteristics of the expansion for densities dominated by radiation, matter, or vacuum; the closeness of the density to the critical density; how much vacuum energy compared to matter energy is needed to make the expansion accelerate; and how little is needed to make it stop. Travel time and luninosity distance are calculated in terms of the redshift and the densities of matter and vacuum energy, using a scaled Friedmann equation with the...
Dose calculations for intakes of ore dust
Energy Technology Data Exchange (ETDEWEB)
O`Brien, R.S
1998-08-01
This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these `ores` contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another `parent` radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures. 15 refs., 14 tabs., 3 figs.
Energy Band Calculations for Maximally Even Superlattices
Krantz, Richard; Byrd, Jason
2007-03-01
Superlattices are multiple-well, semiconductor heterostructures that can be described by one-dimensional potential wells separated by potential barriers. We refer to a distribution of wells and barriers based on the theory of maximally even sets as a maximally even superlattice. The prototypical example of a maximally even set is the distribution of white and black keys on a piano keyboard. Black keys may represent wells and the white keys represent barriers. As the number of wells and barriers increase, efficient and stable methods of calculation are necessary to study these structures. We have implemented a finite-element method using the discrete variable representation (FE-DVR) to calculate E versus k for these superlattices. Use of the FE-DVR method greatly reduces the amount of calculation necessary for the eigenvalue problem.
Daylight calculations using constant luminance curves
Energy Technology Data Exchange (ETDEWEB)
Betman, E. [CRICYT, Mendoza (Argentina). Laboratorio de Ambiente Humano y Vivienda
2005-02-01
This paper presents a simple method to manually estimate daylight availability and to make daylight calculations using constant luminance curves calculated with local illuminance and irradiance data and the all-weather model for sky luminance distribution developed in the Atmospheric Science Research Center of the University of New York (ARSC) by Richard Perez et al. Work with constant luminance curves has the advantage that daylight calculations include the problem's directionality and preserve the information of the luminous climate of the place. This permits accurate knowledge of the resource and a strong basis to establish conclusions concerning topics related to the energy efficiency and comfort in buildings. The characteristics of the proposed method are compared with the method that uses the daylight factor. (author)
Calculation of noncontact forces between silica nanospheres.
Sun, Weifu; Zeng, Qinghua; Yu, Aibing
2013-02-19
Quantification of the interactions between nanoparticles is important in understanding their dynamic behaviors and many related phenomena. In this study, molecular dynamics simulation is used to calculate the interaction potentials (i.e., van der Waals attraction, Born repulsion, and electrostatic interaction) between two silica nanospheres of equal radius in the range of 0.975 to 5.137 nm. The results are compared with those obtained from the conventional Hamaker approach, leading to the development of modified formulas to calculate the van der Waals attraction and Born repulsion between nanospheres, respectively. Moreover, Coulomb's law is found to be valid for calculating the electrostatic potential between nanospheres. The developed formulas should be useful in the study of the dynamic behaviors of nanoparticle systems under different conditions.
Calculation of Radiation Damage in SLAC Targets
Energy Technology Data Exchange (ETDEWEB)
Wirth, B D; Monasterio, P; Stein, W
2008-04-03
Ti-6Al-4V alloys are being considered as a positron producing target in the Next Linear Collider, with an incident photon beam and operating temperatures between room temperature and 300 C. Calculations of displacement damage in Ti-6Al-4V alloys have been performed by combining high-energy particle FLUKA simulations with SPECTER calculations of the displacement cross section from the resulting energy-dependent neutron flux plus the displacements calculated from the Lindhard model from the resulting energy-dependent ion flux. The radiation damage calculations have investigated two cases, namely the damage produced in a Ti-6Al-4V SLAC positron target where the irradiation source is a photon beam with energies between 5 and 11 MeV. As well, the radiation damage dose in displacements per atom, dpa, has been calculated for a mono-energetic 196 MeV proton irradiation experiment performed at Brookhaven National Laboratory (BLIP experiment). The calculated damage rate is 0.8 dpa/year for the Ti-6Al-4V SLAC photon irradiation target, and a total damage exposure of 0.06 dpa in the BLIP irradiation experiment. In both cases, the displacements are predominantly ({approx}80%) produced by recoiling ions (atomic nuclei) from photo-nuclear collisions or proton-nuclear collisions, respectively. Approximately 25% of the displacement damage results from the neutrons in both cases. Irradiation effects studies in titanium alloys have shown substantial increases in the yield and ultimate strength of up to 500 MPa and a corresponding decrease in uniform ductility for neutron and high energy proton irradiation at temperatures between 40 and 300 C. Although the data is limited, there is an indication that the strength increases will saturate by doses on the order of a few dpa. Microstructural investigations indicate that the dominant features responsible for the strength increases were dense precipitation of a {beta} (body-centered cubic) phase precipitate along with a high number density
Numerical calculation of impurity charge state distributions
Energy Technology Data Exchange (ETDEWEB)
Crume, E. C.; Arnurius, D. E.
1977-09-01
The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.
Calculating reliability measures for ordinal data.
Gamsu, C V
1986-11-01
Establishing the reliability of measures taken by judges is important in both clinical and research work. Calculating the statistic of choice, the kappa coefficient, unfortunately is not a particularly quick and simple procedure. Two much-needed practical tools have been developed to overcome these difficulties: a comprehensive and easily understood guide to the manual calculation of the most complex form of the kappa coefficient, weighted kappa for ordinal data, has been written; and a computer program to run under CP/M, PC-DOS and MS-DOS has been developed. With simple modification the program will also run on a Sinclair Spectrum home computer.
Pumping slots: Coupling impedance calculations and estimates
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.
1993-08-01
Coupling impedances of small pumping holes in vacuum-chamber walls have been calculated at low frequencies, i.e., for wavelengths large compared to a typical hole size, in terms of electric and magnetic polarizabilities of the hole. The polarizabilities can be found by solving and electro- or magnetostatic problem and are known analytically for the case of the elliptic shape of the hole in a thin wall. The present paper studies the case of pumping slots. Using results of numerical calculations and analytical approximations of polarizabilities, we give formulae for practically important estimates of slot contribution to low-frequency coupling impedances.
Transmission pipeline calculations and simulations manual
Menon, E Shashi
2014-01-01
Transmission Pipeline Calculations and Simulations Manual is a valuable time- and money-saving tool to quickly pinpoint the essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. The manual's three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics in this book include pressure and temperature profile of natural gas pipelines, how to size pipelines for specified f
Improving on calculation of martensitic phenomenological theory
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Exemplified by the martensitic transformation from DO3 to 18R in Cu-14.2Al-4.3Ni alloy and according to the principle that invariant-habit-plane can be obtained by self-accommodation between variants with twin relationships, and on the basis of displacement vector, volume fractions of two variants with twin relationships in martensitic transformation, habit-plane indexes, and orientation relationships between martensite and austenite after phase transformation can be calculated. Because no additional rotation matrixes are needed to be considered and mirror symmetric operations are used, the calculation process is simple and the results are accurate.
DFT calculations with the exact functional
Burke, Kieron
2014-03-01
I will discuss several works in which we calculate the exact exchange-correlation functional of density functional theory, mostly using the density-matrix renormalization group method invented by Steve White, our collaborator. We demonstrate that a Mott-Hubard insulator is a band metal. We also perform Kohn-Sham DFT calculations with the exact functional and prove that a simple algoritm always converges. But we find convergence becomes harder as correlations get stronger. An example from transport through molecular wires may also be discussed. Work supported by DOE grant DE-SC008696.
Local orbitals in electron scattering calculations*
Winstead, Carl L.; McKoy, Vincent
2016-05-01
We examine the use of local orbitals to improve the scaling of calculations that incorporate target polarization in a description of low-energy electron-molecule scattering. After discussing the improved scaling that results, we consider the results of a test calculation that treats scattering from a two-molecule system using both local and delocalized orbitals. Initial results are promising. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
The new pooled cohort equations risk calculator
DEFF Research Database (Denmark)
Preiss, David; Kristensen, Søren L
2015-01-01
total cardiovascular risk score. During development of joint guidelines released in 2013 by the American College of Cardiology (ACC) and American Heart Association (AHA), the decision was taken to develop a new risk score. This resulted in the ACC/AHA Pooled Cohort Equations Risk Calculator. This risk...... disease and any measure of social deprivation. An early criticism of the Pooled Cohort Equations Risk Calculator has been its alleged overestimation of ASCVD risk which, if confirmed in the general population, is likely to result in statin therapy being prescribed to many individuals at lower risk than...
Idiot savant calendrical calculators: maths or memory?
O'Connor, N; Hermelin, B
1984-11-01
Eight idiot savant calendrical calculators were tested on dates in the years 1963, 1973, 1983, 1986 and 1993. The study was carried out in 1983. Speeds of correct response were minimal in 1983 and increased markedly into the past and the future. The response time increase was matched by an increase in errors. Speeds of response were uncorrelated with measured IQ, but the numbers were insufficient to justify any inference in terms of IQ-independence. Results are interpreted as showing that memory alone is inadequate to explain the calendrical calculating performance of the idiot savant subjects.
Calculated Electron Fluxes at Airplane Altitudes
Schaefer, R K; Stanev, T
1993-01-01
A precision measurement of atmospheric electron fluxes has been performed on a Japanese commercial airliner (Enomoto, {\\it et al.}, 1991). We have performed a monte carlo calculation of the cosmic ray secondary electron fluxes expected in this experiment. The monte carlo uses the hadronic portion of our neutrino flux cascade program combined with the electromagnetic cascade portion of the CERN library program GEANT. Our results give good agreement with the data, provided we boost the overall normalization of the primary cosmic ray flux by 12\\% over the normalization used in the neutrino flux calculation.
Program Calculates Power Demands Of Electronic Designs
Cox, Brian
1995-01-01
CURRENT computer program calculates power requirements of electronic designs. For given design, CURRENT reads in applicable parts-list file and file containing current required for each part. Program also calculates power required for circuit at supply potentials of 5.5, 5.0, and 4.5 volts. Written by use of AWK utility for Sun4-series computers running SunOS 4.x and IBM PC-series and compatible computers running MS-DOS. Sun version of program (NPO-19590). PC version of program (NPO-19111).
Relaxation Method For Calculating Quantum Entanglement
Tucci, R R
2001-01-01
In a previous paper, we showed how entanglement of formation can be defined as a minimum of the quantum conditional mutual information (a.k.a. quantum conditional information transmission). In classical information theory, the Arimoto-Blahut method is one of the preferred methods for calculating extrema of mutual information. We present a new method akin to the Arimoto-Blahut method for calculating entanglement of formation. We also present several examples computed with a computer program called Causa Comun that implements the ideas of this paper.
Spectral Transforms Calculation through Decision Diagrams
Directory of Open Access Journals (Sweden)
Radomir S. Stanković
2002-01-01
Full Text Available In this paper, calculation of spectral transforms through Decision diagrams (DDs and relationship of this method with FFT-like algorithms is discussed. It is shown that in DDs methods the basic operations in FFT-like algorithms are performed not on vectors but instead on parts of DDs as a data structure. Such a data structure represents the input signals, the intermediate results obtained during the calculation as well as the final output results. It should be noticed that, unlike FFT-like algorithms, DDs methods permit to take advantages from both, the properties of the transform matrices and the particular properties of the processed signals.
Necessity of Exact Calculation for Transition Probability
Institute of Scientific and Technical Information of China (English)
LIU Fu-Sui; CHEN Wan-Fang
2003-01-01
This paper shows that exact calculation for transition probability can make some systems deviate fromFermi golden rule seriously. This paper also shows that the corresponding exact calculation of hopping rate inducedby phonons for deuteron in Pd-D system with the many-body electron screening, proposed by Ichimaru, can explainthe experimental fact observed in Pd-D system, and predicts that perfection and low-dimension of Pd lattice are veryimportant for the phonon-induced hopping rate enhancement in Pd-D system.
Precise calculations of the deuteron quadrupole moment
Energy Technology Data Exchange (ETDEWEB)
Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-06-01
Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.
Density functional calculations of nanoscale conductance
Energy Technology Data Exchange (ETDEWEB)
Koentopp, Max; Chang, Connie [Department of Chemistry and Chemical Biology, Rutgers University, 610 Taylor Road, Piscataway, NJ 08854 (United States); Burke, Kieron [Department of Chemistry, UC Irvine, 1102 Natural Sciences 2, Irvine, CA 92697 (United States); Car, Roberto [Department of Chemistry and Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, NJ 08544 (United States)
2008-02-27
Density functional calculations for the electronic conductance of single molecules are now common. We examine the methodology from a rigorous point of view, discussing where it can be expected to work, and where it should fail. When molecules are weakly coupled to leads, local and gradient-corrected approximations fail, as the Kohn-Sham levels are misaligned. In the weak bias regime, exchange-correlation corrections to the current are missed by the standard methodology. For finite bias, a new methodology for performing calculations can be rigorously derived using an extension of time-dependent current density functional theory from the Schroedinger equation to a master equation. (topical review)
Epa, V. C.; Thorson, W. R.
1990-09-01
This paper concludes a theoretical study of vibrational dynamics in the bifluoride ion FHF-, which exhibits strongly anharmonic and coupled motions. Two previous papers have described an extended model potential surface for the system, developed a scheme for analysis based on a zero-order adiabatic separation of the proton bending and stretching motions (ν2,ν3) from the slower F-F symmetric-stretch motion (ν1), and presented results of accurate calculations of the adiabatic protonic eigenstates. Here the ν1 motion has been treated, in adiabatic approximation and also including nonadiabatic couplings in close-coupled calculations with up to three protonic states (channels). States of the system involving more than one quantum of protonic excitation (e.g., 2ν2, 2ν3 σg states; 3ν2, ν2+2ν3 πu states; ν3+2ν2, 3ν3 σu states) exhibit strong mixing at avoided crossings of protonic levels, and these effects are discussed in detail. Dipole matrix elements and relative intensities for vibrational transitions have been computed with an electronic dipole moment function based on ab initio calculations for an extended range of geometries. Frequencies, relative IR intensities and other properties of interest are compared with high resolution spectroscopic data for the gas-phase free ion and with the IR absorption spectra of KHF2(s) and NaHF2(s). Errors in the ab initio potential surface yield fundamental frequencies ν2 and ν3 100-250 cm-1 higher than those observed in either the free ion or the crystalline solids, but these differences are consistent and an unambiguous assignment of essentially all transitions in the IR spectrum of KHF2 is made. Calculated relative intensities for stretching mode (ν3, σu symmetry) transitions agree well with those observed in both KHF2 [e.g., bands (ν3+nν1), (ν3+2ν2), (3ν3), etc.] and the free ion (ν3,ν3+ν1). Calculated intensities for bending mode (ν2, πu symmetry) transitions agree well with experiment for the ν2
Calculation of U-value for Concrete Element
DEFF Research Database (Denmark)
Rose, Jørgen
1997-01-01
This report is a U-value calculation of a typical concrete element used in industrial buildings.The calculations are performed using a 2-dimensional finite difference calculation programme.......This report is a U-value calculation of a typical concrete element used in industrial buildings.The calculations are performed using a 2-dimensional finite difference calculation programme....
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
7 CFR 1416.704 - Payment calculation.
2010-01-01
... for: (1) Seedlings or cuttings, for trees, bushes or vine replanting; (2) Site preparation and debris...) Replacement, rehabilitation, and pruning; and (6) Labor used to transplant existing seedlings established..., the county committee shall calculate payment based on the number of qualifying trees, bushes or...
Combinatorial optimization tolerances calculated in linear time
Goldengorin, Boris; Sierksma, Gerard
2003-01-01
For a given optimal solution to a combinatorial optimization problem, we show, under very natural conditions, the equality of the minimal values of upper and lower tolerances, where the upper tolerances are calculated for the given optimal solution and the lower tolerances outside the optimal
Around the Sun in a Graphing Calculator.
Demana, Franklin; Waits, Bert K.
1989-01-01
Discusses the use of graphing calculators for polar and parametric equations. Presents eight lines of the program for the graph of a parametric equation and 11 lines of the program for a graph of a polar equation. Illustrates the application of the programs for planetary motion and free-fall motion. (YP)
Normalisation of database expressions involving calculations
Denneheuvel, S. van; Renardel de Lavalette, G.R.
2008-01-01
In this paper we introduce a relational algebra extended with a calculate operator and derive, for expressions in the corresponding language PCSJL, a normalisation procedure. PCSJL plays a role in the implementation of the Rule Language RL; the normalisation is to be used for query optimisation.
On the calculation of Mossbauer isomer shift
Filatov, Michael
2007-01-01
A quantum chemical computational scheme for the calculation of isomer shift in Mossbauer spectroscopy is suggested. Within the described scheme, the isomer shift is treated as a derivative of the total electronic energy with respect to the radius of a finite nucleus. The explicit use of a finite nuc
Calculations of dietary exposure to acrylamide
Boon, P.E.; Mul, de A.; Voet, van der H.; Donkersgoed, van G.; Brette, M.; Klaveren, van J.D.
2005-01-01
In this paper we calculated the usual and acute exposure to acrylamide (AA) in the Dutch population and young children (1-6 years). For this AA levels of different food groups were used as collected by the Institute for Reference Materials and Measurements (IRMM) of the European Commission's Directo
Conductance calculations with a wavelet basis set
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel
2003-01-01
. The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...
Calculation of Thermochemical Constants of Propellants
Directory of Open Access Journals (Sweden)
K. P. Rao
1979-01-01
Full Text Available A method for calculation of thermo chemical constants and products of explosion of propellants from the knowledge of molecular formulae and heats of formation of the ingredients is given. A computer programme in AUTOMATH-400 has been established for the method. The results of application of the method for a number of propellants are given.
Work Function Calculation For Hafnium- Barium System
Directory of Open Access Journals (Sweden)
K.A. Tursunmetov
2015-08-01
Full Text Available The adsorption process of barium atoms on hafnium is considered. A structural model of the system is presented and on the basis of calculation of interaction between ions dipole system the dependence of the work function on the coating.
Precipitates/Salts Model Sensitivity Calculation
Energy Technology Data Exchange (ETDEWEB)
P. Mariner
2001-12-20
The objective and scope of this calculation is to assist Performance Assessment Operations and the Engineered Barrier System (EBS) Department in modeling the geochemical effects of evaporation on potential seepage waters within a potential repository drift. This work is developed and documented using procedure AP-3.12Q, ''Calculations'', in support of ''Technical Work Plan For Engineered Barrier System Department Modeling and Testing FY 02 Work Activities'' (BSC 2001a). The specific objective of this calculation is to examine the sensitivity and uncertainties of the Precipitates/Salts model. The Precipitates/Salts model is documented in an Analysis/Model Report (AMR), ''In-Drift Precipitates/Salts Analysis'' (BSC 2001b). The calculation in the current document examines the effects of starting water composition, mineral suppressions, and the fugacity of carbon dioxide (CO{sub 2}) on the chemical evolution of water in the drift.
Heat pipe thermosyphon heat performance calculation
Novomestský, Marcel; Kapjor, Andrej; Papučík, Štefan; Siažik, Ján
2016-06-01
In this article the heat performance of the heat pipe thermosiphon is achieved through numerical model. The heat performance is calculated from few simplified equations which depends on the working fluid and geometry. Also the thermal conductivity is good to mentioning, because is really interesting how big differences are between heat pipes and full solid surfaces.
Block Tridiagonal Matrices in Electronic Structure Calculations
DEFF Research Database (Denmark)
Petersen, Dan Erik
This thesis focuses on some of the numerical aspects of the treatment of the electronic structure problem, in particular that of determining the ground state electronic density for the non–equilibrium Green’s function formulation of two–probe systems and the calculation of transmission in the Lan...
Tubular stabilizer bars – calculations and construction
Directory of Open Access Journals (Sweden)
Adam-Markus WITTEK
2011-01-01
Full Text Available The article outlines the calculation methods for tubular stabilizer bars. Modern technological and structural solutions in contemporary cars are reflected also in the construction, selection and manufacturing of tubular stabilizer bars. A proper construction and the selection of parameters influence the strength properties, the weight, durability and reliability as well as the selection of an appropriate production method.
Stabilizer bars: Part 1. Calculations and construction
Directory of Open Access Journals (Sweden)
Adam-Markus WITTEK
2010-01-01
Full Text Available The article outlines the calculation methods for stabilizer bars. Modern technological and structural solutions in contemporary cars are reflected also in the construction and manufacturing of stabilizer bars. A proper construction and the selection of parameters influence the strength properties, the weight, durability and reliability as well as the selection of an appropriate production method.
40 CFR 1065.650 - Emission calculations.
2010-07-01
... into the system boundary, this work flow rate signal becomes negative; in this case, include these negative work rate values in the integration to calculate total work from that work path. Some work paths... interval. When power flows into the system boundary, the power/work flow rate signal becomes negative;...
5 CFR 1653.4 - Calculating entitlements.
2010-01-01
... PROCESSES AFFECTING THRIFT SAVINGS PLAN ACCOUNTS Retirement Benefits Court Orders § 1653.4 Calculating... purchased as of the effective date; and (iii) Multiplying the price per share as of the payment date by the... estimate the amount of a payee's entitlement when it prepares the court order decision letter and will...
Net analyte signal calculation for multivariate calibration
Ferre, J.; Faber, N.M.
2003-01-01
A unifying framework for calibration and prediction in multivariate calibration is shown based on the concept of the net analyte signal (NAS). From this perspective, the calibration step can be regarded as the calculation of a net sensitivity vector, whose length is the amount of net signal when the
Calculation of Nucleon Electromagnetic Form Factors
Renner, D B; Dolgov, D S; Eicker, N; Lippert, T; Negele, J W; Pochinsky, A V; Schilling, K; Lippert, Th.
2002-01-01
The fomalism is developed to express nucleon matrix elements of the electromagnetic current in terms of form factors consistent with the translational, rotational, and parity symmetries of a cubic lattice. We calculate the number of these form factors and show how appropriate linear combinations approach the continuum limit.
Ammonia synthesis from first principles calculations
DEFF Research Database (Denmark)
Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis
2005-01-01
The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...
Calculations of dietary exposure to acrylamide
Boon, P.E.; Mul, de A.; Voet, van der H.; Donkersgoed, van G.; Brette, M.; Klaveren, van J.D.
2005-01-01
In this paper we calculated the usual and acute exposure to acrylamide (AA) in the Dutch population and young children (1-6 years). For this AA levels of different food groups were used as collected by the Institute for Reference Materials and Measurements (IRMM) of the European Commission's
Towards the exact calculation of medium nuclei
Energy Technology Data Exchange (ETDEWEB)
Gandolfi, Stefano [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Carlson, Joseph Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lonardoni, Diego [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wang, Xiaobao [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2016-12-19
The prediction of the structure of light and medium nuclei is crucial to test our knowledge of nuclear interactions. The calculation of the nuclei from two- and three-nucleon interactions obtained from rst principle is, however, one of the most challenging problems for many-body nuclear physics.
Complex Kohn calculations on an overset grid
Greenman, Loren; Lucchese, Robert; McCurdy, C. William
2016-05-01
An implentation of the overset grid method for complex Kohn scattering calculations is presented, along with static exchange calculations of electron-molecule scattering for small molecules including methane. The overset grid method uses multiple numerical grids, for instance Finite Element Method - Discrete Variable Representation (FEM-DVR) grids, expanded radially around multiple centers (corresponding to the individual atoms in each molecule as well as the center-of-mass of the molecule). The use of this flexible grid allows the complex angular dependence of the wavefunctions near the atomic centers to be well-described, but also allows scattering wavefunctions that oscillate rapidly at large distances to be accurately represented. Additionally, due to the use of multiple grids (and also grid shells), the method is easily parallelizable. The method has been implemented in ePolyscat, a multipurpose suite of programs for general molecular scattering calculations. It is interfaced with a number of quantum chemistry programs (including MolPro, Gaussian, GAMESS, and Columbus), from which it can read molecular orbitals and wavefunctions obtained using standard computational chemistry methods. The preliminary static exchange calculations serve as a test of the applicability.
Combinatorial optimization tolerances calculated in linear time
Goldengorin, Boris; Sierksma, Gerard
2003-01-01
For a given optimal solution to a combinatorial optimization problem, we show, under very natural conditions, the equality of the minimal values of upper and lower tolerances, where the upper tolerances are calculated for the given optimal solution and the lower tolerances outside the optimal soluti
7 CFR 760.307 - Payment calculation.
2010-01-01
...) The monthly feed cost calculated by using the normal carrying capacity of the eligible grazing land of...) By 56. (j) The monthly feed cost using the normal carrying capacity of the eligible grazing land... pastureland by (ii) The normal carrying capacity of the specific type of eligible grazing land or...
7 CFR 1416.504 - Payment calculation.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.504 Section 1416.504 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS 2006 EMERGENCY AGRICULTURAL DISASTER ASSISTANCE...
Calculation of tubular joints as compound shells
Golovanov, A. I.
A scheme for joining isoparametric finite shell elements with a bend in the middle surface is described. A solution is presented for the problem of the stress-strain state of a T-joint loaded by internal pressure. A refined scheme is proposed for calculating structures of this kind with allowance for the stiffness of the welded joint.
Computational chemistry: Making a bad calculation
Winter, Arthur
2015-06-01
Computations of the energetics and mechanism of the Morita-Baylis-Hillman reaction are ``not even wrong'' when compared with experiments. While computational abstinence may be the purest way to calculate challenging reaction mechanisms, taking prophylactic measures to avoid regrettable outcomes may be more realistic.
Calculating Traffic based on Road Sensor Data
Bisseling, Rob; Gao, Fengnan; Hafkenscheid, Patrick; Idema, Reijer; Jetka, Tomasz; Guerra Ones, Valia; Sikora, Monika
2014-01-01
Road sensors gather a lot of statistical data about traffic. In this paper, we discuss how a measure for the amount of traffic on the roads can be derived from this data, such that the measure is independent of the number and placement of sensors, and the calculations can be performed quickly for la
Vibrational Spectra and Quantum Calculations of Ethylbenzene
Institute of Scientific and Technical Information of China (English)
Jian Wang; Xue-jun Qiu; Yan-mei Wang; Song Zhang; Bing Zhang
2012-01-01
Normal vibrations of ethylbenzene in the first excited state have been studied using resonant two-photon ionization spectroscopy.The band origin of ethylbenzene of S1←S0 transition appeared at 37586 cm-1.A vibrational spectrum of 2000 cm-1 above the band origin in the first excited state has been obtained.Several chain torsions and normal vibrations are obtained in the spectrum.The energies of the first excited state are calculated by the time-dependent density function theory and configuration interaction singles (CIS) methods with various basis sets.The optimized structures and vibrational frequencies of the S0 and S1 states are calculated using Hartree-Fock and CIS methods with 6-311++G(2d,2p) basis set.The calculated geometric structures in the S0 and S1 states are gauche conformations that the symmetric plane of ethyl group is perpendicular to the ring plane.All the observed spectral bands have been successfully assigned with the help of our calculations.
Calculating Free Energies Using Average Force
Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.
Gaseous Nitrogen Orifice Mass Flow Calculator
Ritrivi, Charles
2013-01-01
The Gaseous Nitrogen (GN2) Orifice Mass Flow Calculator was used to determine Space Shuttle Orbiter Water Spray Boiler (WSB) GN2 high-pressure tank source depletion rates for various leak scenarios, and the ability of the GN2 consumables to support cooling of Auxiliary Power Unit (APU) lubrication during entry. The data was used to support flight rationale concerning loss of an orbiter APU/hydraulic system and mission work-arounds. The GN2 mass flow-rate calculator standardizes a method for rapid assessment of GN2 mass flow through various orifice sizes for various discharge coefficients, delta pressures, and temperatures. The calculator utilizes a 0.9-lb (0.4 kg) GN2 source regulated to 40 psia (.276 kPa). These parameters correspond to the Space Shuttle WSB GN2 Source and Water Tank Bellows, but can be changed in the spreadsheet to accommodate any system parameters. The calculator can be used to analyze a leak source, leak rate, gas consumables depletion time, and puncture diameter that simulates the measured GN2 system pressure drop.
IOL Power Calculation after Corneal Refractive Surgery
Directory of Open Access Journals (Sweden)
Maddalena De Bernardo
2014-01-01
Full Text Available Purpose. To describe the different formulas that try to overcome the problem of calculating the intraocular lens (IOL power in patients that underwent corneal refractive surgery (CRS. Methods. A Pubmed literature search review of all published articles, on keyword associated with IOL power calculation and corneal refractive surgery, as well as the reference lists of retrieved articles, was performed. Results. A total of 33 peer reviewed articles dealing with methods that try to overcome the problem of calculating the IOL power in patients that underwent CRS were found. According to the information needed to try to overcome this problem, the methods were divided in two main categories: 18 methods were based on the knowledge of the patient clinical history and 15 methods that do not require such knowledge. The first group was further divided into five subgroups based on the parameters needed to make such calculation. Conclusion. In the light of our findings, to avoid postoperative nasty surprises, we suggest using only those methods that have shown good results in a large number of patients, possibly by averaging the results obtained with these methods.
Using Angle calculations to demonstrate vowel shifts
DEFF Research Database (Denmark)
Fabricius, Anne
2008-01-01
This paper gives an overview of the long-term trends of diachronic changes evident within the short vowel system of RP during the 20th century. more specifically, it focusses on changing juxtapositions of the TRAP, STRUT and LOT, FOOT vowel centroid positions. The paper uses geometric calculation...
The conundrum of calculating carbon footprints
DEFF Research Database (Denmark)
2016-01-01
A pre-condition for reducing global warming is to minimise the emission of greenhouse gasses (GHGs). A common approach to informing people about the link between behaviour and climate change rests on developing GHG calculators that quantify the ‘carbon footprint’ of a product, a sector or an actor...
Block Tridiagonal Matrices in Electronic Structure Calculations
DEFF Research Database (Denmark)
in the Landauer–Büttiker ballistic transport regime. These calculations concentrate on determining the so– called Green’s function matrix, or portions thereof, which is the inverse of a block tridiagonal general complex matrix. To this end, a sequential algorithm based on Gaussian elimination named Sweeps...
Radionuclide release calculations for SAR-08
Energy Technology Data Exchange (ETDEWEB)
Thomson, Gavin; Miller, Alex; Smith, Graham; Jackson, Duncan (Enviros Consulting Ltd, Wolverhampton (United Kingdom))
2008-04-15
Following a review by the Swedish regulatory authorities of the post-closure safety assessment of the SFR 1 disposal facility for low and intermediate waste (L/ILW), SAFE, the SKB has prepared an updated assessment called SAR-08. This report describes the radionuclide release calculations that have been undertaken as part of SAR-08. The information, assumptions and data used in the calculations are reported and the results are presented. The calculations address issues raised in the regulatory review, but also take account of new information including revised inventory data. The scenarios considered include the main case of expected behaviour of the system, with variants; low probability releases, and so-called residual scenarios. Apart from these scenario uncertainties, data uncertainties have been examined using a probabilistic approach. Calculations have been made using the AMBER software. This allows all the component features of the assessment model to be included in one place. AMBER has been previously used to reproduce results the corresponding calculations in the SAFE assessment. It is also used in demonstration of the IAEA's near surface disposal assessment methodology ISAM and has been subject to very substantial verification tests and has been used in verifying other assessment codes. Results are presented as a function of time for the release of radionuclides from the near field, and then from the far field into the biosphere. Radiological impacts of the releases are reported elsewhere. Consideration is given to each radionuclide and to each component part of the repository. The releases from the entire repository are also presented. The peak releases rates are, for most scenarios, due to organic C-14. Other radionuclides which contribute to peak release rates include inorganic C-14, Ni-59 and Ni-63. (author)
Procedures for Calculating Residential Dehumidification Loads
Energy Technology Data Exchange (ETDEWEB)
Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-06-01
Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.
Calculating Contained Firing Facility (CFF) explosive
Energy Technology Data Exchange (ETDEWEB)
Lyle, J W.
1998-10-20
The University of California awarded LLNL contract No. B345381 for the design of the facility to Parsons Infrastructure Technology, Inc., of Pasadena, California. The Laboratory specified that the firing chamber be able to withstand repeated fxings of 60 Kg of explosive located in the center of the chamber, 4 feet above the floor, and repeated firings of 35 Kg of explosive at the same height and located anywhere within 2 feet of the edge of a region on the floor called the anvil. Other requirements were that the chamber be able to accommodate the penetrations of the existing bullnose of the Bunker 801 flash X-ray machine and the roof of the underground camera room. These requirements and provisions for blast-resistant doors formed the essential basis for the design. The design efforts resulted in a steel-reinforced concrete snucture measuring (on the inside) 55 x 5 1 feet by 30 feet high. The walls and ceiling are to be approximately 6 feet thick. Because the 60-Kg charge is not located in the geometric center of the volume and a 35-K:: charge could be located anywhere in a prescribed area, there will be different dynamic pressures and impulses on the various walls floor, and ceiling, depending upon the weights and locations of the charges. The detailed calculations and specifications to achieve the design criteria were performed by Parsons and are included in Reference 1. Reference 2, Structures to Resist the E xts of Accidental L%plosions (TMS- 1300>, is the primary design manual for structures of this type. It includes an analysis technique for the calculation of blast loadings within a cubicle or containment-type structure. Parsons used the TM5- 1300 methods to calculate the loadings on the various fling chamber surfaces for the design criteria explosive weights and locations. At LLNL the same methods were then used to determine the firing zones for other weights and elevations that would give the same or lesser loadings. Although very laborious, a hand
CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS
Energy Technology Data Exchange (ETDEWEB)
C.E. Sanders
2005-04-07
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for
First-principles calculations of novel materials
Sun, Jifeng
Computational material simulation is becoming more and more important as a branch of material science. Depending on the scale of the systems, there are many simulation methods, i.e. first-principles calculation (or ab-initio), molecular dynamics, mesoscale methods and continuum methods. Among them, first-principles calculation, which involves density functional theory (DFT) and based on quantum mechanics, has become to be a reliable tool in condensed matter physics. DFT is a single-electron approximation in solving the many-body problems. Intrinsically speaking, both DFT and ab-initio belong to the first-principles calculation since the theoretical background of ab-initio is Hartree-Fock (HF) approximation and both are aimed at solving the Schrodinger equation of the many-body system using the self-consistent field (SCF) method and calculating the ground state properties. The difference is that DFT introduces parameters either from experiments or from other molecular dynamic (MD) calculations to approximate the expressions of the exchange-correlation terms. The exchange term is accurately calculated but the correlation term is neglected in HF. In this dissertation, DFT based first-principles calculations were performed for all the novel materials and interesting materials introduced. Specifically, the DFT theory together with the rationale behind related properties (e.g. electronic, optical, defect, thermoelectric, magnetic) are introduced in Chapter 2. Starting from Chapter 3 to Chapter 5, several representative materials were studied. In particular, a new semiconducting oxytelluride, Ba2TeO is studied in Chapter 3. Our calculations indicate a direct semiconducting character with a band gap value of 2.43 eV, which agrees well with the optical experiment (˜ 2.93 eV). Moreover, the optical and defects properties of Ba2TeO are also systematically investigated with a view to understanding its potential as an optoelectronic or transparent conducting material. We find
On the Origins of Calculation Abilities
Directory of Open Access Journals (Sweden)
A. Ardila
1993-01-01
Full Text Available A historical review of calculation abilities is presented. Counting, starting with finger sequencing, has been observed in different ancient and contemporary cultures, whereas number representation and arithmetic abilities are found only during the last 5000–6000 years. The rationale for selecting a base of ten in most numerical systems and the clinical association between acalculia and finger agnosia are analyzed. Finger agnosia (as a restricted form of autotopagnosia, right–left discrimination disturbances, semantic aphasia, and acalculia are proposed to comprise a single neuropsychological syndrome associated with left angular gyrus damage. A classification of calculation disturbances resulting from brain damage is presented. It is emphasized that using historical/anthropological analysis, it becomes evident that acalculia, finger agnosia, and disorders in right–left discrimination (as in general, in the use of spatial concepts must constitute a single clinical syndrome, resulting from the disruption of some common brain activity and the impairment of common cognitive mechanisms.
A priori calculations for the rotational stabilisation
Directory of Open Access Journals (Sweden)
Iwata Yoritaka
2013-12-01
Full Text Available The synthesis of chemical elements are mostly realised by low-energy heavy-ion reactions. Synthesis of exotic and heavy nuclei as well as that of superheavy nuclei is essential not only to find out the origin and the limit of the chemical elements but also to clarify the historical/chemical evolution of our universe. Despite the life time of exotic nuclei is not so long, those indispensable roles in chemical evolution has been pointed out. Here we are interested in examining the rotational stabilisation. In this paper a priori calculation (before microscopic density functional calculations is carried out for the rotational stabilisation effect in which the balance between the nuclear force, the Coulomb force and the centrifugal force is taken into account.
Numerical calculations of magnetic properties of nanostructures
Kapitan, Vitalii; Nefedev, Konstantin
2015-01-01
Magnetic force microscopy and scanning tunneling microscopy data could be used to test computer numerical models of magnetism. The elaborated numerical model of a face-centered lattice Ising spins is based on pixel distribution in the image of magnetic nanostructures obtained by using scanning microscope. Monte Carlo simulation of the magnetic structure model allowed defining the temperature dependence of magnetization; calculating magnetic hysteresis curves and distribution of magnetization on the surface of submonolayer and monolayer nanofilms of cobalt, depending on the experimental conditions. Our developed package of supercomputer parallel software destined for a numerical simulation of the magnetic-force experiments and allows obtaining the distribution of magnetization in one-dimensional arrays of nanodots and on their basis. There has been determined interpretation of magneto-force microscopy images of magnetic nanodots states. The results of supercomputer simulations and numerical calculations are in...
Pressure Correction in Density Functional Theory Calculations
Lee, S H
2008-01-01
First-principles calculations based on density functional theory have been widely used in studies of the structural, thermoelastic, rheological, and electronic properties of earth-forming materials. The exchange-correlation term, however, is implemented based on various approximations, and this is believed to be the main reason for discrepancies between experiments and theoretical predictions. In this work, by using periclase MgO as a prototype system we examine the discrepancies in pressure and Kohn-Sham energy that are due to the choice of the exchange-correlation functional. For instance, we choose local density approximation and generalized gradient approximation. We perform extensive first-principles calculations at various temperatures and volumes and find that the exchange-correlation-based discrepancies in Kohn-Sham energy and pressure should be independent of temperature. This implies that the physical quantities, such as the equation of states, heat capacity, and the Gr\\"{u}neisen parameter, estimat...
The Gravity- Powered Calculator, a Galilean Exhibit
Cerreta, Pietro
2014-04-01
The Gravity-Powered Calculator is an exhibit of the Exploratorium in San Francisco. It is presented by its American creators as an amazing device that extracts the square roots of numbers, using only the force of gravity. But if you analyze his concept construction one can not help but recall the research of Galileo on falling bodies, the inclined plane and the projectile motion; exactly what the American creators did not put into prominence with their exhibit. Considering the equipment only for what it does, in my opinion, is very reductive compared to the historical roots of the Galilean mathematical physics contained therein. Moreover, if accurate deductions are contained in the famous study of S. Drake on the Galilean drawings and, in particular on Folio 167 v, the parabolic paths of the ball leaping from its launch pad after descending a slope really actualize Galileo's experiments. The exhibit therefore may be best known as a `Galilean calculator'.
Tearing mode stability calculations with pressure flattening
Ham, C J; Cowley, S C; Hastie, R J; Hender, T C; Liu, Y Q
2013-01-01
Calculations of tearing mode stability in tokamaks split conveniently into an external region, where marginally stable ideal MHD is applicable, and a resonant layer around the rational surface where sophisticated kinetic physics is needed. These two regions are coupled by the stability parameter. Pressure and current perturbations localized around the rational surface alter the stability of tearing modes. Equations governing the changes in the external solution and - are derived for arbitrary perturbations in axisymmetric toroidal geometry. The relationship of - with and without pressure flattening is obtained analytically for four pressure flattening functions. Resistive MHD codes do not contain the appropriate layer physics and therefore cannot predict stability directly. They can, however, be used to calculate -. Existing methods (Ham et al. 2012 Plasma Phys. Control. Fusion 54 025009) for extracting - from resistive codes are unsatisfactory when there is a finite pressure gradient at the rational surface ...
Equation of State from Lattice QCD Calculations
Energy Technology Data Exchange (ETDEWEB)
Gupta, Rajan [Los Alamos National Laboratory
2011-01-01
We provide a status report on the calculation of the Equation of State (EoS) of QCD at finite temperature using lattice QCD. Most of the discussion will focus on comparison of recent results obtained by the HotQCD and Wuppertal-Budapest collaborations. We will show that very significant progress has been made towards obtaining high precision results over the temperature range of T = 150-700 MeV. The various sources of systematic uncertainties will be discussed and the differences between the two calculations highlighted. Our final conclusion is that these lattice results of EoS are precise enough to be used in the phenomenological analysis of heavy ion experiments at RHIC and LHC.
Energy Technology Data Exchange (ETDEWEB)
Gamiz, E.; /CAFPE, Granada /Granada U., Theor. Phys. Astrophys. /Fermilab; DeTar, C.; /Utah U.; El-Khadra, A.X.; /Illinois U., Urbana; Kronfeld, A.S.; /Fermilab; Mackenzie, P.B.; /Fermilab; Simone, J.; /Fermilab
2011-11-01
We report on the status of the Fermilab-MILC calculation of the form factor f{sub +}{sup K}{pi}(q{sup 2} = 0), needed to extract the CKM matrix element |V{sub us}| from experimental data on K semileptonic decays. The HISQ formulation is used in the simulations for the valence quarks, while the sea quarks are simulated with the asqtad action (MILC N{sub f} = 2 + 1 configurations). We discuss the general methodology of the calculation, including the use of twisted boundary conditions to get values of the momentum transfer close to zero and the different techniques applied for the correlators fits. We present initial results for lattice spacings a {approx} 0.12 fm and a {approx} 0.09 fm, and several choices of the light quark masses.
Normal mode calculations of trigonal selenium
DEFF Research Database (Denmark)
Hansen, Flemming Yssing; McMurry, H. L.
1980-01-01
symmetry. The intrachain force field is projected from a valence type field including a bond stretch, angle bend, and dihedral torsion. With these coordinates we obtain the strong dispersion of the upper optic modes as observed by neutron scattering, where other models have failed and give flat bands......The phonon dispersion relations for trigonal selenium have been calculated on the basis of a short range potential field model. Electrostatic long range forces have not been included. The force field is defined in terms of symmetrized coordinates which reflect partly the symmetry of the space group....... In this way we have eliminated the ambiguity in the choice of valence coordinates, which has been a problem in previous models which used valence type interactions. Calculated sound velocities and elastic moduli are also given. The Journal of Chemical Physics is copyrighted by The American Institute...
High-Power Wind Turbine: Performance Calculation
Directory of Open Access Journals (Sweden)
Goldaev Sergey V.
2015-01-01
Full Text Available The paper is devoted to high-power wind turbine performance calculation using Pearson’s chi-squared test the statistical hypothesis on distribution of general totality of air velocities by Weibull-Gnedenko. The distribution parameters are found by numerical solution of transcendental equation with the definition of the gamma function interpolation formula. Values of the operating characteristic of the incomplete gamma function are defined by numerical integration using Weddle’s rule. The comparison of the calculated results using the proposed methodology with those obtained by other authors found significant differences in the values of the sample variance and empirical Pearson. The analysis of the initial and maximum wind speed influence on performance of the high-power wind turbine is done
Gas production and activation calculation in MEGAPIE
Energy Technology Data Exchange (ETDEWEB)
Thiolliere, Nicolas; Guertin, Arnaud [SUBATECH, EMN-IN2P3/CNRS-Universite, Nantes, F-44307 (France); David, Jean-Christophe; Leray, Sylvie; Letourneau, Alain; Michel-Sendis, Franco; Panebianco, Stefano; Stankunas, Gediminas [CEA Saclay, Irfu/SPhN, 91191 Gif Sur Yvette (France); Eid, Mohamed [CEA Saclay, DEN/DM2S/SERMA, 91191 Gif Sur Yvette (France); Konobeyev, Alexander Yu.; Fischer, Ulrich [Institut fuer Reaktorsicherheit, FZK GmbH, 76021 Karlsruhe (Germany); Eikenberg, Jost; Groeschel, Friedrich; Wagner, Werner; Wernli, Beat; Zanini, Luca [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Latge, Christian [CEA Cadarache, DEN/DTN/DIR, Saint Paul Lez Durance, F-13108 (France); Lemaire, Sebastien [CEA Bruyeres-le-Chatel, DAM Ile de France, 91297 Arpajon cedex (France); Nishihara, Kenji [JAEA, Ibaraki-ken 319-1195 (Japan)
2008-07-01
The Megawatt Pilot Experiment (MEGAPIE) project was started in 2000 to design, build and operate a liquid Lead-Bismuth Eutectic (LBE) spallation neutron target at the power level of 1 MW. Gas measurements by gamma spectroscopy performed at the beginning of irradiation in August 2006 has led to the determination of main radioactive isotopes released by the LBE. Comparison with calculations performed with several validated codes supplies important volatile elements release fraction estimation in a spallation target. In addition, calculations with MCNPX2.5.0, FLUKA and SNT codes coupled with evolution programs have been performed in order to study the activation of the target. It provides important information on structural materials (such as container, window and bypass tube) and LBE activation just following the end of irradiation and at different cooling times. The induced database is relevant for safety and radioprotection during operation, for the post-irradiation experiments and for target dismantlement. (authors)
Labview virtual instruments for calcium buffer calculations.
Reitz, Frederick B; Pollack, Gerald H
2003-01-01
Labview VIs based upon the calculator programs of Fabiato and Fabiato (J. Physiol. Paris 75 (1979) 463) are presented. The VIs comprise the necessary computations for the accurate preparation of multiple-metal buffers, for the back-calculation of buffer composition given known free metal concentrations and stability constants used, for the determination of free concentrations from a given buffer composition, and for the determination of apparent stability constants from absolute constants. As implemented, the VIs can concurrently account for up to three divalent metals, two monovalent metals and four ligands thereof, and the modular design of the VIs facilitates further extension of their capacity. As Labview VIs are inherently graphical, these VIs may serve as useful templates for those wishing to adapt this software to other platforms.
A Methodology for Calculating Radiation Signatures
Energy Technology Data Exchange (ETDEWEB)
Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bathke, Charles G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); James, Michael R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-05-01
A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.
Isogeometric analysis in electronic structure calculations
Cimrman, Robert; Kolman, Radek; Tůma, Miroslav; Vackář, Jiří
2016-01-01
In electronic structure calculations, various material properties can be obtained by means of computing the total energy of a system as well as derivatives of the total energy w.r.t. atomic positions. The derivatives, also known as Hellman-Feynman forces, require, because of practical computational reasons, the discretized charge density and wave functions having continuous second derivatives in the whole solution domain. We describe an application of isogeometric analysis (IGA), a spline modification of finite element method (FEM), to achieve the required continuity. The novelty of our approach is in employing the technique of B\\'ezier extraction to add the IGA capabilities to our FEM based code for ab-initio calculations of electronic states of non-periodic systems within the density-functional framework, built upon the open source finite element package SfePy. We compare FEM and IGA in benchmark problems and several numerical results are presented.
Toward a nitrogen footprint calculator for Tanzania
Hutton, Mary Olivia; Leach, Allison M.; Leip, Adrian; Galloway, James N.; Bekunda, Mateete; Sullivan, Clare; Lesschen, Jan Peter
2017-03-01
We present the first nitrogen footprint model for a developing country: Tanzania. Nitrogen (N) is a crucial element for agriculture and human nutrition, but in excess it can cause serious environmental damage. The Sub-Saharan African nation of Tanzania faces a two-sided nitrogen problem: while there is not enough soil nitrogen to produce adequate food, excess nitrogen that escapes into the environment causes a cascade of ecological and human health problems. To identify, quantify, and contribute to solving these problems, this paper presents a nitrogen footprint tool for Tanzania. This nitrogen footprint tool is a concept originally designed for the United States of America (USA) and other developed countries. It uses personal resource consumption data to calculate a per-capita nitrogen footprint. The Tanzania N footprint tool is a version adapted to reflect the low-input, integrated agricultural system of Tanzania. This is reflected by calculating two sets of virtual N factors to describe N losses during food production: one for fertilized farms and one for unfertilized farms. Soil mining factors are also calculated for the first time to address the amount of N removed from the soil to produce food. The average per-capita nitrogen footprint of Tanzania is 10 kg N yr-1. 88% of this footprint is due to food consumption and production, while only 12% of the footprint is due to energy use. Although 91% of farms in Tanzania are unfertilized, the large contribution of fertilized farms to N losses causes unfertilized farms to make up just 83% of the food production N footprint. In a developing country like Tanzania, the main audiences for the N footprint tool are community leaders, planners, and developers who can impact decision-making and use the calculator to plan positive changes for nitrogen sustainability in the developing world.
Eigenvalue translation method for mode calculations.
Gerck, E; Cruz, C H
1979-05-01
A new method is described for the first few modes calculations in a interferometer that has several advantages over the Allmat subroutine, the Prony method, and the Fox and Li method. In the illustrative results shown for some cases it can be seen that the eigenvalue translation method is typically 100-fold times faster than the usual Fox and Li method and ten times faster than Allmat.
On the Origins of Calculation Abilities
Ardila, A.
1993-01-01
A historical review of calculation abilities is presented. Counting, starting with finger sequencing, has been observed in different ancient and contemporary cultures, whereas number representation and arithmetic abilities are found only during the last 5000–6000 years. The rationale for selecting a base of ten in most numerical systems and the clinical association between acalculia and finger agnosia are analyzed. Finger agnosia (as a restricted form of autotopagnosia), right–left discrimina...
TINTE. Nuclear calculation theory description report
Energy Technology Data Exchange (ETDEWEB)
Gerwin, H.; Scherer, W.; Lauer, A. [Forschungszentrum Juelich GmbH (DE). Institut fuer Energieforschung (IEF), Sicherheitsforschung und Reaktortechnik (IEF-6); Clifford, I. [Pebble Bed Modular Reactor (Pty) Ltd. (South Africa)
2010-01-15
The Time Dependent Neutronics and Temperatures (TINTE) code system deals with the nuclear and the thermal transient behaviour of the primary circuit of the High-temperature Gas-cooled Reactor (HTGR), taking into consideration the mutual feedback effects in twodimensional axisymmetric geometry. This document contains a complete description of the theoretical basis of the TINTE nuclear calculation, including the equations solved, solution methods and the nuclear data used in the solution. (orig.)
Uncertainty calculation in (operational) modal analysis
Pintelon, R.; Guillaume, P.; Schoukens, J.
2007-08-01
In (operational) modal analysis the modal parameters of a structure are identified from the response of that structure to (unmeasurable operational) perturbations. A key issue that remains to be solved is the calculation of uncertainty bounds on the estimated modal parameters. The present paper fills this gap. The theory is illustrated by means of a simulation and a real measurement example (operational modal analysis of a bridge).
CALCULATION OF KAON ELECTROMAGNETIC FORM FACTOR
Institute of Scientific and Technical Information of China (English)
WANG ZHI-GANG; WAN SHAO-LONG; WANG KE-LIN
2001-01-01
The kaon meson electromagnetic form factor is calculated in the framework of coupled Schwinger-Dyson and Bethe-Salpeter formulation in simplified impulse approximation (dressed vertex) with modified fiat-bottom potential,which is a combination of the flat-bottom potential taking into consideration the infrared and ultraviolet asymptotic behaviours of the effective quark-gluon coupling. All the numerical results give a good fit to experimental values.
Bias in Dynamic Monte Carlo Alpha Calculations
Energy Technology Data Exchange (ETDEWEB)
Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-06
A 1/N bias in the estimate of the neutron time-constant (commonly denoted as α) has been seen in dynamic neutronic calculations performed with MCATK. In this paper we show that the bias is most likely caused by taking the logarithm of a stochastic quantity. We also investigate the known bias due to the particle population control method used in MCATK. We conclude that this bias due to the particle population control method is negligible compared to other sources of bias.
A Paleolatitude Calculator for Paleoclimate Studies.
Directory of Open Access Journals (Sweden)
Douwe J J van Hinsbergen
Full Text Available Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1 restore the relative motions between plates based on (marine magnetic anomalies, and (2 reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km. This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high
Automation of 2-loop Amplitude Calculations
Jones, S P
2016-01-01
Some of the tools and techniques that have recently been used to compute Higgs boson pair production at NLO in QCD are discussed. The calculation relies on the use of integral reduction, to reduce the number of integrals which must be computed, and expressing the amplitude in terms of a quasi-finite basis, which simplifies their numeric evaluation. Emphasis is placed on sector decomposition and Quasi-Monte Carlo (QMC) integration which are used to numerically compute the master integrals.
Configuration mixing calculations in soluble models
Cambiaggio, M. C.; Plastino, A.; Szybisz, L.; Miller, H. G.
1983-07-01
Configuration mixing calculations have been performed in two quasi-spin models using basis states which are solutions of a particular set of Hartree-Fock equations. Each of these solutions, even those which do not correspond to the global minimum, is found to contain interesting physical information. Relatively good agreement with the exact lowest-lying states has been obtained. In particular, one obtains a better approximation to the ground state than that provided by Hartree-Fock.
Scaling Calculations for a Relativistic Gyrotron.
2014-09-26
a relativistic gyrotron. The results of calculations are given in Section 3. The non- linear , slow-time-scale equations of motion used for these...corresponds to a cylindrical resonator and a thin annular electron beam ;, " with the beam radius chosen to coincide with a maximum of the resonator...entering the cavity. A tractable set of non- linear equations based on a slow-time-scale formulation developed previously was used. For this
Calculation of reactor antineutrino spectra in TEXONO
Chen Dong Liang; Mao Ze Pu; Wong, T H
2002-01-01
In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out
Perturbative calculation of quasi-normal modes
Siopsis, G
2005-01-01
I discuss a systematic method of analytically calculating the asymptotic form of quasi-normal frequencies. In the case of a four-dimensional Schwarzschild black hole, I expand around the zeroth-order approximation to the wave equation proposed by Motl and Neitzke. In the case of a five-dimensional AdS black hole, I discuss a perturbative solution of the Heun equation. The analytical results are in agreement with the results from numerical analysis.
Prediction and calculation for new energy development
Institute of Scientific and Technical Information of China (English)
Fu Yuhua; Fu Anjie
2008-01-01
Some important questions for new energy development were discussed, such as the prediction and calculation of sea surface temperature, ocean wave, offshore platform price, typhoon track, fn'e status, vibration due to earth-quake, energy price, stock market's trend and so on with the fractal methods ( including the four ones of constant di-mension fractal, variable dimension fractal, complex number dimension fractal and fractal series) and the improved res-caled range analysis (R/S analysis).
Transport calculations of antiproton-nucleus interactions
Larionov, A B; Pshenichnov, I A; Satarov, L M; Greiner, W
2010-01-01
The Giessen Boltzmann-Uehling-Uhlenbeck transport model is extended and applied to the antiproton-nucleus interactions in a wide beam momentum range. The model calculations are compared with the experimental data on $\\bar p$-absorption cross sections on nuclei with an emphasis on extraction of the real part of an antiproton optical potential. The possibility of the cold compression of a nucleus by an antiproton in-flight is also considered.
Warhead Performance Calculations for Threat Hazard Assessment
1996-08-01
correlation can be drawn between an explosive’s heat of combustion, heat of detonation , and its EWF. The method of Baroody and Peters41 was used to calculate...from air-blast tests can be rationalized to a combination of an explosive’s heat of combustion and heat of detonation ratioed to the heat of...Center, China Lake, California, NWC TM 3754, February 1979. 41. Baroody, E. and Peters, S., Heats of Explosion, Heat of Detonation , and Reaction
Index calculation by means of harmonic expansion
Imamura, Yosuke
2015-01-01
We review derivation of superconformal indices by means of supersymmetric localization and spherical harmonic expansion for 3d N=2, 4d N=1, and 6d N=(1,0) supersymmetric gauge theories. We demonstrate calculation of indices for vector multiplets in each dimensions by analysing energy eigenmodes in S^pxR. For the 6d index we consider the perturbative contribution only. We put focus on technical details of harmonic expansion rather than physical applications.
Spin dependent calculation of calcium manganese oxide
Rathod, Ruchi; Kansara, Shivam; Gupta, Sanjeev K.; Sonvane, Yogesh
2017-05-01
Particularly interesting as candidates for technological applications are the manganese perovskites with AMnO3 formula. In this paper, we investigated the ground states properties of the CaMnO3 perovskite oxide. Our structural properties are given using GGA in the aim to introduce the exchange correlation potential using density functional calculation. Generally, the perovskites materials of ABO3-type are well known with their anti/ferroelectric, piezoelectric and anti/ferromagnetism properties applied in remarkable technological studies.
Theoretical Calculations of Atomic Data for Spectroscopy
Bautista, Manuel A.
2000-01-01
Several different approximations and techniques have been developed for the calculation of atomic structure, ionization, and excitation of atoms and ions. These techniques have been used to compute large amounts of spectroscopic data of various levels of accuracy. This paper presents a review of these theoretical methods to help non-experts in atomic physics to better understand the qualities and limitations of various data sources and assess how reliable are spectral models based on those data.
Calculation of Loudspeaker Cabinet Diffraction and Correction
Institute of Scientific and Technical Information of China (English)
LE Yi; SHEN Yong; XIA Jie
2011-01-01
A method of calculating the cabinet edge diffractions for loudspeaker driver when mounted in an enclosure is proposed,based on the extended Biot-Tolstoy-Medwin model.Up to the third order,cabinet diffractions are discussed in detail and the diffractive effects on the radiated sound field of the loudspeaker system are quantitatively described,with a correction function built to compensate for the diffractive interference.The method is applied to a practical loudspeaker enclosure that has rectangular facets.The diffractive effects of the cabinet on the forward sound radiation are investigated and predictions of the calculations show quite good agreements with experimental measurements.Most loudspeaker systems employ box-like cabinets.The response of a loudspeaker mounted in a box is much rougher than that of the same driver mounted on a large baffle.Although resonances in the box are partly responsible for the lack of smoothness,a major contribution is the diffraction of the cabinet edges,which aggravates the final response performance.Consequently,an analysis of the cabinet diffraction problem is required.%A method of calculating the cabinet edge diffractions for loudspeaker driver when mounted in an enclosure is proposed, based on the extended Biot-Tolstoy-Medwin model. Up to the third order, cabinet diffractions are discussed in detail and the diffractive effects on the radiated sound field of the loudspeaker system are quantitatively described, with a correction function built to compensate for the diffractive interference. The method is applied to a practical loudspeaker enclosure that has rectangular facets. The diffractive effects of the cabinet on the forward sound radiation are investigated and predictions of the calculations show quite good agreements with experimental measurements.
A Paleolatitude Calculator for Paleoclimate Studies.
van Hinsbergen, Douwe J J; de Groot, Lennart V; van Schaik, Sebastiaan J; Spakman, Wim; Bijl, Peter K; Sluijs, Appy; Langereis, Cor G; Brinkhuis, Henk
2015-01-01
Realistic appraisal of paleoclimatic information obtained from a particular location requires accurate knowledge of its paleolatitude defined relative to the Earth's spin-axis. This is crucial to, among others, correctly assess the amount of solar energy received at a location at the moment of sediment deposition. The paleolatitude of an arbitrary location can in principle be reconstructed from tectonic plate reconstructions that (1) restore the relative motions between plates based on (marine) magnetic anomalies, and (2) reconstruct all plates relative to the spin axis using a paleomagnetic reference frame based on a global apparent polar wander path. Whereas many studies do employ high-quality relative plate reconstructions, the necessity of using a paleomagnetic reference frame for climate studies rather than a mantle reference frame appears under-appreciated. In this paper, we briefly summarize the theory of plate tectonic reconstructions and their reference frames tailored towards applications of paleoclimate reconstruction, and show that using a mantle reference frame, which defines plate positions relative to the mantle, instead of a paleomagnetic reference frame may introduce errors in paleolatitude of more than 15° (>1500 km). This is because mantle reference frames cannot constrain, or are specifically corrected for the effects of true polar wander. We used the latest, state-of-the-art plate reconstructions to build a global plate circuit, and developed an online, user-friendly paleolatitude calculator for the last 200 million years by placing this plate circuit in three widely used global apparent polar wander paths. As a novelty, this calculator adds error bars to paleolatitude estimates that can be incorporated in climate modeling. The calculator is available at www.paleolatitude.org. We illustrate the use of the paleolatitude calculator by showing how an apparent wide spread in Eocene sea surface temperatures of southern high latitudes may be in part
Calculation and application of liquidus projection
Institute of Scientific and Technical Information of China (English)
CHEN Shuanglin; CAO Weisheng; YANG Ying; ZHANG Fan; WU Kaisheng; DU Yong; Y.Austin Chang
2006-01-01
Liquidus projection usually refers to a two-dimensional projection of ternary liquidus univariant lines at constant pressure. The algorithms used in Pandat for the calculation of liquidus projection with isothermal lines and invariant reaction equations in a ternary system are presented. These algorithms have been extended to multicomponent liquidus projections and have also been implemented in Pandat. Some examples on ternary and quaternary liquidus projections are presented.
Flow calculation in a bulb turbine
Energy Technology Data Exchange (ETDEWEB)
Goede, E.; Pestalozzi, J.
1987-02-01
In recent years remarkable progress has been made in the field of computational fluid dynamics. Sometimes the impression may arise when reading the relevant literature that most of the problems in this field have already been solved. Upon studying the matter more deeply, however, it is apparent that some questions still remain unanswered. The use of the quasi-3D (Q3D) computational method for calculating the flow in a fuel hydraulic turbine is described.
HISTORY OF NAVAL ARMOUR CALCULATION IN ROMANIA
Directory of Open Access Journals (Sweden)
KUMBETLIAN Garabet
2014-09-01
Full Text Available The article below describes the history of thick plate calculation in Romania and its impact and recognition by the Department of Defense-“DoD” (Executive Department of the Government of the United States of America. The DoD has three subordinated departments: Army, Navy and Air Force. In addition, there are many Defense Agencies, such as the Defense Advanced Research Projects Agency and schools, including the National Defense University [1].
Preconditioned iterations to calculate extreme eigenvalues
Energy Technology Data Exchange (ETDEWEB)
Brand, C.W.; Petrova, S. [Institut fuer Angewandte Mathematik, Leoben (Austria)
1994-12-31
Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.
Practical Rhumb Line Calculations on the Spheroid
Bennett, G. G.
About ten years ago this author wrote the software for a suite of navigation programmes which was resident in a small hand-held computer. In the course of this work it became apparent that the standard text books of navigation were perpetuating a flawed method of calculating rhumb lines on the Earth considered as an oblate spheroid. On further investigation it became apparent that these incorrect methods were being used in programming a number of calculator/computers and satellite navigation receivers. Although the discrepancies were not large, it was disquieting to compare the results of the same rhumb line calculations from a number of such devices and find variations of some miles when the output was given, and therefore purported to be accurate, to a tenth of a mile in distance and/or a tenth of a minute of arc in position. The problem has been highlighted in the past and the references at the end of this show that a number of methods have been proposed for the amelioration of this problem. This paper summarizes formulae that the author recommends should be used for accurate solutions. Most of these may be found in standard geodetic text books, such as, but also provided are new formulae and schemes of solution which are suitable for use with computers or tables. The latter also take into account situations when a near-indeterminate solution may arise. Some examples are provided in an appendix which demonstrate the methods. The data for these problems do not refer to actual terrestrial situations but have been selected for illustrative purposes only. Practising ships' navigators will find the methods described in detail in this paper to be directly applicable to their work and also they should find ready acceptance because they are similar to current practice. In none of the references cited at the end of this paper has the practical task of calculating, using either a computer or tabular techniques, been addressed.
Inductance Calculations of Variable Pitch Helical Inductors
2015-08-01
current. Using the classical skin depth definition , we can adjust the effec- tive diameters used to calculate the inductances. The classical skin depth can...are not. The definition of classical skin depth is an approximation that assumes that all the cmrent is flowing evenly within the region encompassed...inductance can be applied to other more complex forms of geometry, including tapered coils, by simply using the more general forms of the self- and
Calculation of sulfide capacities of multicomponent slags
Pelton, Arthur D.; Eriksson, Gunnar; Romero-Serrano, Antonio
1993-10-01
The Reddy-Blander model for the sulfide capacities of slags has been modified for the case of acid slags and to include A12O3 and TiO2 as components. The model has been extended to calculate a priori sulfide capacities of multicomponent slags, from a knowledge of the thermodynamic activities of the component oxides, with no adjustable parameters. Agreement with measurements is obtained within experimental uncertainty for binary, ternary, and quinary slags involving the components SiO2-Al2O3-TiO2-CaO-MgO-FeO-MnO over wide ranges of composition. The oxide activities used in the computations are calculated from a database of model parameters obtained by optimizing thermodynamic and phase equilibrium data for oxide systems. Sulfur has now been included in this database. A computing system with automatic access to this and other databases has been developed to permit the calculation of the sulfur content of slags in multicomponent slag/metal/gas/solid equilibria.
Methods for Calculation of Geogenetic Depth
Institute of Scientific and Technical Information of China (English)
Liu Ruixun; Lü Guxian; Wang Fangzheng; Wei Changshan; Guo Chusun
2004-01-01
Some current methods for the calculation of the geogenetic depth are based on the hydrostatic model, it is induced that the depth in certain underground place is equal to the pressure divided by the specific weight of rock, on the assumption that the rock is hydrostatic and overlain by no other force but gravity. However, most of rock is in a deformation environment and non-hydrostatic state, especially in an orogenic belt, so that the calculated depth may be exaggerated in comparison with the actual depth according to the hydrostatic formula. In the finite slight deformation and elastic model, the relative actual depth value from the 3-axis strain data was obtained with the measurement of strain including that of superimposed tectonic forces but excluding that of time factor for the strain. If some data on the strain speed are obtained, the depth would be more realistically calculated according to the rheological model because the geological body often experiences long-term creep strains.
Treatment Registration and Nuclide Decay Calculation System
Institute of Scientific and Technical Information of China (English)
WU Jian-guo; XU Bo; CHEN Zhi-jun; ZHOU Ai-qing; WANG Xue-qin; ZHANG Bin; MA Tao; SHEN Jun-jin; LIU Jie; JIN Hai-xia
2008-01-01
Objective:To design a software to do the complicated and multiple calcula-tions automatically in routine internal radionuclide irradiation therapy to avoid mistakes and shorten patients waiting times. Methods:The software is designed on the Microsoft Windows XP operating system. Visual Basic 5.0 and Microsoft Access 2000 are used re-spectively as the programming language and database system here. The data and DBGrid controls and VB data window guide of Visual Basic were used to control access to and Ac-cess database. Results: Not only can the radioactivity of any radionuclide be calculated, but also the administered total iodine dose of therapy for hyperthyroidism or thyroid cancer and the total administered 153 Sm-EDTMP solutions for remedy of bone metastasis of malig-nant tumor can be ciphered out. Conclusion: The work becomes easier, faster, more cor-rect and interesting when the software can make the complicated and multiple calculations automatically. Patients' information, diagnosis and treatment can be recorded for further study.
Starting Time Calculation for Induction Motor.
Directory of Open Access Journals (Sweden)
Abhishek Garg
2015-05-01
Full Text Available This Paper Presents The Starting Time Calculation For A Squirrel Cage Induction Motor. The Importance Of Starting Time Lies In Determining The Duration Of Large Current, Which Flows During The Starting Of An Induction Motor. Normally, The Starting Current Of An Induction Motor Is Six To Eight Time Of Full Load Current. Plenty Of Methods Have Been Discovered To Start Motor In A Quick Time, But Due To Un-Economic Nature, Use Are Limited. Hence, For Large Motors Direct Online Starting Is Most Popular Amongst All Due To Its Economic And Feasible Nature. But Large Current With Dol Starting Results In A Heavy Potential Drop In The Power System. Thus, Special Care And Attention Is Required In Order To Design A Healthy System. A Very Simple Method To Calculate The Starting Time Of Motor Is Proposed In This Paper. Respective Simulation Study Has Been Carried Out Using Matlab 7.8.0 Environment, Which Demonstrates The Effectiveness Of The Starting Time Calculation.
Agriculture-related radiation dose calculations
Energy Technology Data Exchange (ETDEWEB)
Furr, J.M.; Mayberry, J.J.; Waite, D.A.
1987-10-01
Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.
Quantum mechanical calculations and mineral spectroscopy
Kubicki, J. D.
2006-05-01
Interpretation of spectra in systems of environmental interest is not generally straightforward due to the lack of close analogs and a clear structure of some components of the system. Computational chemistry can be used as an objective method to test interpretations of spectra. This talk will focus on applying ab initio methods to complement vibrational, NMR, and EXAFS spectroscopic information. Examples of systems studied include phosphate/Fe-hydroxides, arsenate/Al- and Fe-hydroxide, fractured silica surfaces. Phosphate interactions with Fe-hydroxides are important in controlling nutrient availability in soils and transport within streams. In addition, organo-phosphate bonding may be a key attachment mechanism for bacteria at Fe-oxide surfaces. Interpretation of IR spectra is enhanced by model predictions of vibrational frequencies for various surface complexes. Ab initio calculations were used to help explain As(V) and As(III) adsorption behavior onto amorphous Al- and Fe-hydroxides in conjunction with EXAFS measurements. Fractured silica surfaces have been implicated in silicosis. These calculations test structures that could give rise to radical formation on silica surfaces. Calculations to simulate the creation of Si and SiO radical species on sufaces and their subsequent production of OH radicals will be discussed.
Modified embedded atom method calculations of interfaces
Energy Technology Data Exchange (ETDEWEB)
Baskes, M.I.
1996-05-01
The Embedded Atom Method (EAM) is a semi-empirical calculational method developed a decade ago to calculate the properties of metallic systems. By including many-body effects this method has proven to be quite accurate in predicting bulk and surface properties of metals and alloys. Recent modifications have extended this applicability to a large number of elements in the periodic table. For example the modified EAM (MEAM) is able to include the bond-bending forces necessary to explain the elastic properties of semiconductors. This manuscript will briefly review the MEAM and its application to the binary systems discussed below. Two specific examples of interface behavior will be highlighted to show the wide applicability of the method. In the first example a thin overlayer of nickel on silicon will be studied. Note that this example is representative of an important technological class of materials, a metal on a semiconductor. Both the structure of the Ni/Si interface and its mechanical properties will be presented. In the second example the system aluminum on sapphire will be examined. Again the class of materials is quite different, a metal on an ionic material. The calculated structure and energetics of a number of (111) Al layers on the (0001) surface of sapphire will be compared to recent experiments.
Coupled-cluster calculations of nucleonic matter
Hagen, G; Ekström, A; Wendt, K A; Baardsen, G; Gandolfi, S; Hjorth-Jensen, M; Horowitz, C J
2014-01-01
Background: The equation of state (EoS) of nucleonic matter is central for the understanding of bulk nuclear properties, the physics of neutron star crusts, and the energy release in supernova explosions. Purpose: This work presents coupled-cluster calculations of infinite nucleonic matter using modern interactions from chiral effective field theory (EFT). It assesses the role of correlations beyond particle-particle and hole-hole ladders, and the role of three-nucleon-forces (3NFs) in nuclear matter calculations with chiral interactions. Methods: This work employs the optimized nucleon-nucleon NN potential NNLOopt at next-to-next-to leading-order, and presents coupled-cluster computations of the EoS for symmetric nuclear matter and neutron matter. The coupled-cluster method employs up to selected triples clusters and the single-particle space consists of a momentum-space lattice. We compare our results with benchmark calculations and control finite-size effects and shell oscillations via twist-averaged bound...
How Accurately can we Calculate Thermal Systems?
Energy Technology Data Exchange (ETDEWEB)
Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A
2004-04-20
I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.
TEA: A Code Calculating Thermochemical Equilibrium Abundances
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
Vestibule and Cask Preparation Mechanical Handling Calculation
Energy Technology Data Exchange (ETDEWEB)
N. Ambre
2004-05-26
The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process.
Cost Calculation Model for Logistics Service Providers
Directory of Open Access Journals (Sweden)
Zoltán Bokor
2012-11-01
Full Text Available The exact calculation of logistics costs has become a real challenge in logistics and supply chain management. It is essential to gain reliable and accurate costing information to attain efficient resource allocation within the logistics service provider companies. Traditional costing approaches, however, may not be sufficient to reach this aim in case of complex and heterogeneous logistics service structures. So this paper intends to explore the ways of improving the cost calculation regimes of logistics service providers and show how to adopt the multi-level full cost allocation technique in logistics practice. After determining the methodological framework, a sample cost calculation scheme is developed and tested by using estimated input data. Based on the theoretical findings and the experiences of the pilot project it can be concluded that the improved costing model contributes to making logistics costing more accurate and transparent. Moreover, the relations between costs and performances also become more visible, which enhances the effectiveness of logistics planning and controlling significantly
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei; Draper, Terrence
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan [1] that \\understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out rst-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large scale computer simulation. We started out by calculating the nucleon form factors { electromagnetic [2], axial-vector [3], NN [4], and scalar [5] form factors, the quark spin contribution [6] to the proton spin, the strangeness magnetic moment [7], the quark orbital angular momentum [8], the quark momentum fraction [9], and the quark and glue decomposition of the proton momentum and angular momentum [10]. These rst round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical e ects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge con gurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations [11, 12]. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at 300 MeV and obtained the strange form factors [13], charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs [14], the strangeness and charmness [15], the
Numerical precision calculations for LHC physics
Energy Technology Data Exchange (ETDEWEB)
Reuschle, Christian Andreas
2013-02-05
In this thesis I present aspects of QCD calculations, which are related to the fully numerical evaluation of next-to-leading order (NLO) QCD amplitudes, especially of the one-loop contributions, and the efficient computation of associated collider observables. Two interrelated topics have thereby been of concern to the thesis at hand, which give rise to two major parts. One large part is focused on the general group-theoretical behavior of one-loop QCD amplitudes, with respect to the underlying SU(N{sub c}) theory, in order to correctly and efficiently handle the color degrees of freedom in QCD one-loop amplitudes. To this end a new method is introduced that can be used in order to express color-ordered partial one-loop amplitudes with multiple quark-antiquark pairs as shuffle sums over cyclically ordered primitive one-loop amplitudes. The other large part is focused on the local subtraction of divergences off the one-loop integrands of primitive one-loop amplitudes. A method for local UV renormalization has thereby been developed, which uses local UV counterterms and efficient recursive routines. Together with suitable virtual soft and collinear subtraction terms, the subtraction method is extended to the virtual contributions in the calculations of NLO observables, which enables the fully numerical evaluation of the one-loop integrals in the virtual contributions. The method has been successfully applied to the calculation of jet rates in electron-positron annihilation to NLO accuracy in the large-N{sub c} limit.
Campbell, David L.; Watts, Raymond D.
1978-01-01
Program listing, instructions, and example problems are given for 12 programs for the interpretation of geophysical data, for use on Hewlett-Packard models 67 and 97 programmable hand-held calculators. These are (1) gravity anomaly over 2D prism with = 9 vertices--Talwani method; (2) magnetic anomaly (?T, ?V, or ?H) over 2D prism with = 8 vertices?Talwani method; (3) total-field magnetic anomaly profile over thick sheet/thin dike; (4) single dipping seismic refractor--interpretation and design; (5) = 4 dipping seismic refractors--interpretation; (6) = 4 dipping seismic refractors?design; (7) vertical electrical sounding over = 10 horizontal layers--Schlumberger or Wenner forward calculation; (8) vertical electric sounding: Dar Zarrouk calculations; (9) magnetotelluric planewave apparent conductivity and phase angle over = 9 horizontal layers--forward calculation; (10) petrophysics: a.c. electrical parameters; (11) petrophysics: elastic constants; (12) digital convolution with = 10-1ength filter.
Electrical Conductivity Calculations from the Purgatorio Code
Energy Technology Data Exchange (ETDEWEB)
Hansen, S B; Isaacs, W A; Sterne, P A; Wilson, B G; Sonnad, V; Young, D A
2006-01-09
The Purgatorio code [Wilson et al., JQSRT 99, 658-679 (2006)] is a new implementation of the Inferno model describing a spherically symmetric average atom embedded in a uniform plasma. Bound and continuum electrons are treated using a fully relativistic quantum mechanical description, giving the electron-thermal contribution to the equation of state (EOS). The free-electron density of states can also be used to calculate scattering cross sections for electron transport. Using the extended Ziman formulation, electrical conductivities are then obtained by convolving these transport cross sections with externally-imposed ion-ion structure factors.
A Lattice Calculation of Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent [Univ. of Southern Denmark, Odense (Denmark). CP3-Origins; Univ. of Southern Denmark, Odense (Denmark). Danish IAS; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Hadjiyiannakou, Kyriakos [Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2015-04-15
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using N{sub f}=2+1+1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
Using reciprocity in Boundary Element Calculations
DEFF Research Database (Denmark)
Juhl, Peter Møller; Cutanda Henriquez, Vicente
2010-01-01
The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated...... as the reciprocal radiation problem. The present paper concerns the situation of having a point source (which is reciprocal to a point receiver) at or near a discretized boundary element surface. The accuracy of the original and the reciprocal problem is compared in a test case for which an analytical solution...
Calculation of thermal noise in grating reflectors
Heinert, Daniel; Friedrich, Daniel; Hild, Stefan; Kley, Ernst-Bernhard; Leavey, Sean; Martin, Iain W; Nawrodt, Ronny; Tünnermann, Andreas; Vyatchanin, Sergey P; Yamamoto, Kazuhiro
2013-01-01
Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflective structures exists. In this work we present a theoretical calculation of a grating reflector's noise. We further apply it to a proposed 3rd generation gravitational wave detector. Depending on the grating geometry, the grating material and the temperature we obtain a thermal noise decrease by up to a factor of ten compared to conventional dielectric mirrors. Thus the use of grating reflectors can substantially improve the noise performance in metrological applications.
Configurational space continuity and free energy calculations
Tian, Pu
2016-01-01
Free energy is arguably the most importance function(al) for understanding of molecular systems. A number of rigorous and approximate free energy calculation/estimation methods have been developed over many decades. One important issue, the continuity of an interested macrostate (or path) in configurational space, has not been well articulated, however. As a matter of fact, some important special cases have been intensively discussed. In this perspective, I discuss the relevance of configurational space continuity in development of more efficient and reliable next generation free energy methodologies.
Inductance calculations working formulas and tables
Grover, Frederick W
1946-01-01
This authoritative compilation of formulas and tables simplifies the design of inductors for electrical engineers. It features a single simple formula for virtually every type of inductor, together with tables from which essential numerical factors may be interpolated. Although compiled in the 1940s, before calculators and computers, this book provides fundamental equations that professionals and practitioners can use to produce algorithms for computer programs and spreadsheets.Starting with a survey of general principles, it explains circuits with straight filaments; parallel elements of equa
A Lattice Calculation of Parton Distributions
Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2016-01-01
We present results for the $x$ dependence of the unpolarized, helicity, and transversity isovector quark distributions in the proton using lattice QCD, employing the method of quasi-distributions proposed by Ji in 2013. Compared to a previous calculation by us, the errors are reduced by a factor of about 2.5. Moreover, we present our first results for the polarized sector of the proton, which indicate an asymmetry in the proton sea in favor of the $u$ antiquarks for the case of helicity distributions, and an asymmetry in favor of the $d$ antiquarks for the case of transversity distributions.
A lattice calculation of parton distributions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznann Univ. (Poland). Faculty of Physics; Hadjiyiannakou, Kyriakos [George Washington Univ., Washington, DC (United States). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2016-09-15
We present results for the x dependence of the unpolarized, helicity, and transversity isovector quark distributions in the proton using lattice QCD, employing the method of quasi-distributions proposed by Ji in 2013. Compared to a previous calculation by us, the errors are reduced by a factor of about 2.5. Moreover, we present our first results for the polarized sector of the proton, which indicate an asymmetry in the proton sea in favor of the u antiquarks for the case of helicity distributions, and an asymmetry in favor of the d antiquarks for the case of transversity distributions.
A Lattice Calculation of Parton Distributions
Alexandrou, Constantia; Drach, Vincent; Garcia-Ramos, Elena; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2015-01-01
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using Nf = 2 + 1 + 1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
Calculated Bulk Properties of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.
1978-01-01
Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...
On the Calculation of Formal Concept Stability
Directory of Open Access Journals (Sweden)
Hui-lai Zhi
2014-01-01
Full Text Available The idea of stability has been used in many applications. However, computing stability is still a challenge and the best algorithms known so far have algorithmic complexity quadratic to the size of the lattice. To improve the effectiveness, a critical term is introduced in this paper, that is, minimal generator, which serves as the minimal set that makes a concept stable when deleting some objects from the extent. Moreover, by irreducible elements, minimal generator is derived. Finally, based on inclusion-exclusion principle and minimal generator, formulas for the calculation of concept stability are proposed.
Quantum Statistical Calculation of Exchange Bias
Institute of Scientific and Technical Information of China (English)
WANG Huai-Yu; DAI Zhen-Hong
2004-01-01
The phenomenon of exchange bias of ferromagnetic (FM) films, which are coupled with an antiferromagnetic (AFM) film, is studied by Heisenberg model by use of the many-body Green's function method of quantum statistical theory for the uncompensated case. Exchange bias HE and coercivity Hc are calculated as functions of the FM film thickness L, temperature, the strength of the exchange interaction across the interface between FM and AFM and the anisotropy of the FM. Hc decreases with increasing L when the FM film is beyond some thickness. The dependence of the exchange bias HE on the FM film thickness and on temperature is also qualitatively in agreement with experiments.
Calculational Investigation for Mine-Clearance Experiments
1981-08-31
Charge Calculation LFT7 Dese ir p= 10 k/m310 lb/ft Charge AMB1IENT AIR Ojrn FIGURE 17. SAP Problem 5.0013 Initial Mesh Configuration 3’ zones of air...LI co OCO -c i C 0 *Lt’ 3d ) 0as~ a a 4)45 I I I I ~14-~ 12 Problem 5.0008 S10 Ii aa I 044 Qiý4 4 0 I 2- 7,Ref lected Shock Brief Negative Phase 0 2 4
Speed mathematics secrets skills for quick calculation
Handley, Bill
2011-01-01
Using this book will improve your understanding of math and haveyou performing like a genius!People who excel at mathematics use better strategies than the restof us; they are not necessarily more intelligent.Speed Mathematics teaches simple methods that will enable you tomake lightning calculations in your head-including multiplication,division, addition, and subtraction, as well as working withfractions, squaring numbers, and extracting square and cube roots.Here's just one example of this revolutionary approach to basicmathematics:96 x 97 =Subtract each number from 100.96 x 97 =4 3Subtract
Calculated Bulk Properties of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.
1978-01-01
Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...
What Factors Affect Intraocular Lens Power Calculation?
Fayette, Rose M; Cakiner-Egilmez, Tulay
2015-01-01
Obtaining precise postoperative target refraction is of utmost importance in today's modern cataract and refractive surgery. Emerging literature has linked postoperative surprises to corneal curvature, axial length, and estimation of the effective IOL position. As demonstrated in this case presentation, an inaccuracy in the axial length measurement can lead to a myopic surprise. A review of the literature has demonstrated that prevention of postoperative refractive surprises requires highly experienced nurses, technicians, and/ or biometrists to take meticulous measurements using biometry devices, and surgeons to re-evaluate these calculations prior to the surgery.
Parallel solutions of correlation dimension calculation
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The calculation of correlation dimension is a key problem of the fractals. The standard algorithm requires O(N2) computations. The previous improvement methods endeavor to sequentially reduce redundant computation on condition that there are many different dimensional phase spaces, whose application area and performance improvement degree are limited. This paper presents two fast parallel algorithms: O(N2/p + logp) time p processors PRAM algorithm and O(N2/p) time p processors LARPBS algorithm. Analysis and results of numeric computation indicate that the speedup of parallel algorithms relative to sequence algorithms is efficient. Compared with the PRAM algorithm, The LARPBS algorithm is practical, optimally scalable and cost optimal.
Rooftop Unit Comparison Calculator User Manual
Energy Technology Data Exchange (ETDEWEB)
Miller, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-04-30
This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.
Atomic Reference Data for Electronic Structure Calculations
Kotochigova, S; Shirley, E L
We have generated data for atomic electronic structure calculations, to provide a standard reference for results of specified accuracy under commonly used approximations. Results are presented here for total energies and orbital energy eigenvalues for all atoms from H to U, at microHartree accuracy in the total energy, as computed in the local-density approximation (LDA) the local-spin-density approximation (LSD); the relativistic local-density approximation (RLDA); and scalar-relativistic local-density approximation (ScRLDA).
Motor Torque Calculations For Electric Vehicle
Directory of Open Access Journals (Sweden)
Saurabh Chauhan
2015-08-01
Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.
Molecular transport calculations with Wannier Functions
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2005-01-01
We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane...... is applied to a hydrogen molecule in an infinite Pt wire and a benzene-dithiol (BDT) molecule between Au(111) surfaces. We show that the transmission function of BDT in a wide energy window around the Fermi level can be completely accounted for by only two molecular orbitals. (c) 2005 Elsevier B.V. All...
Calculations in bridge aeroelasticity via CFD
Energy Technology Data Exchange (ETDEWEB)
Brar, P.S.; Raul, R.; Scanlan, R.H. [Johns Hopkins Univ., Baltimore, MD (United States)
1996-12-31
The central focus of the present study is the numerical calculation of flutter derivatives. These aeroelastic coefficients play an important role in determining the stability or instability of long, flexible structures under ambient wind loading. A class of Civil Engineering structures most susceptible to such an instability are long-span bridges of the cable-stayed or suspended-span variety. The disastrous collapse of the Tacoma Narrows suspension bridge in the recent past, due to a flutter instability, has been a big impetus in motivating studies in flutter of bridge decks.
Photoionization of zinc by TDLDA calculations
Stener, M.; Decleva, P.
1997-10-01
Absolute photoionization cross section profiles of Zn have been calculated at TDLDA and LDA level, employing a very accurate B-spline basis set and the modified Sternheimer approach. The van Leeuwen - Baerends exchange correlation potential has been used, since its correct asymptotic behaviour is able to support virtual states and describe core-excited resonances. A comparison with available theoretical and experimental data has been performed when possible. The present method has been proven to be robust to analyse wide photon energy regions (from threshold up to 200 eV) and discuss the various shapes of one-electron resonances.
Calculations in fundamental physics mechanics and heat
Heddle, T
2013-01-01
Calculations in Fundamental Physics, Volume I: Mechanics and Heat focuses on the mechanisms of heat. The manuscript first discusses motion, including parabolic, angular, and rectilinear motions, relative velocity, acceleration of gravity, and non-uniform acceleration. The book then discusses combinations of forces, such as polygons and resolution, friction, center of gravity, shearing force, and bending moment. The text looks at force and acceleration, energy and power, and machines. Considerations include momentum, horizontal or vertical motion, work and energy, pulley systems, gears and chai
The spacing calculator software—A Visual Basic program to calculate spatial properties of lineaments
Ekneligoda, Thushan C.; Henkel, Herbert
2006-05-01
A software tool is presented which calculates the spatial properties azimuth, length, spacing, and frequency of lineaments that are defined by their starting and ending co-ordinates in a two-dimensional (2-D) planar co-ordinate system. A simple graphical interface with five display windows creates a user-friendly interactive environment. All lineaments are considered in the calculations, and no secondary sampling grid is needed for the elaboration of the spatial properties. Several rule-based decisions are made to determine the nearest lineament in the spacing calculation. As a default procedure, the programme defines a window that depends on the mode value of the length distribution of the lineaments in a study area. This makes the results more consistent, compared to the manual method of spacing calculation. Histograms are provided to illustrate and elaborate the distribution of the azimuth, length and spacing. The core of the tool is the spacing calculation between neighbouring parallel lineaments, which gives direct information about the variation of block sizes in a given category of structures. The 2-D lineament frequency is calculated for the actual area that is occupied by the lineaments.
Energy Technology Data Exchange (ETDEWEB)
NONE
1963-07-01
This note constitutes the first edition of a Handbook for the calculation of reactor protections. This handbook makes it possible to calculate simply the different neutron and gamma fluxes and consequently, to fix the minimum quantities of materials necessary under general safety conditions both for the personnel and for the installations. It contains a certain amount of nuclear data, calculation methods, and constants corresponding to the present state of our knowledge. (authors) [French] Cette note constitue la premiere edition du 'Formulaire sur le calcul de la protection des reacteurs'. Ce formulaire permet de calculer de facon simple les difterents flux de neutrons et de gamma et, par suite, de fixer les quantites minima de materiaux a utiliser pour que les conditions generales de securite soient respectees, tant pour le personnel que pour les installations. Il contient un certain nombre de donnees nucleaires, de methodes de calcul et de constantes correspondant a l'etat actuel de nos connaissances. (auteurs)
Proton Affinity Calculations with High Level Methods.
Kolboe, Stein
2014-08-12
Proton affinities, stretching from small reference compounds, up to the methylbenzenes and naphthalene and anthracene, have been calculated with high accuracy computational methods, viz. W1BD, G4, G3B3, CBS-QB3, and M06-2X. Computed and the currently accepted reference proton affinities are generally in excellent accord, but there are deviations. The literature value for propene appears to be 6-7 kJ/mol too high. Reported proton affinities for the methylbenzenes seem 4-5 kJ/mol too high. G4 and G3 computations generally give results in good accord with the high level W1BD. Proton affinity values computed with the CBS-QB3 scheme are too low, and the error increases with increasing molecule size, reaching nearly 10 kJ/mol for the xylenes. The functional M06-2X fails markedly for some of the small reference compounds, in particular, for CO and ketene, but calculates methylbenzene proton affinities with high accuracy.
Hohlraum calculations for the NIF opacity platform
Dodd, E. S.; Perry, T. S.; Tregillis, I. L.; Kline, J. L.; Heeter, R. F.; Liedahl, D. A.; Opachich, Y. P.
2015-11-01
A summary of initial hohlraum calculations for planned opacity experiments at the National Ignition Facility (NIF) will be given. The purpose of these experiments is to make LTE opacity measurements of iron at the same conditions as previous experiments on Sandia's Z facility: 156 eV and 190 eV. Ongoing discrepancies between opacity data and theory make corroborating data highly important. The target considered in these calculations is a standard cylindrical hohlraum, with diameter 5.75 mm, but baffles have been placed between the laser hot spot and the sample to maintain the iron in LTE. The hohlraum is driven with a 3 ns flat top laser pulse, but limited to 500 kJ and only the outer beams. The inner beams will be used to drive a capsule implosion, which backlights the iron for the absorption measurements. The iron itself is a thin disk, mixed with magnesium as a spectroscopic tracer, and tamped with beryllium to minimize expansion. A description of the experimental set-up will be given. Supported under the US DOE by the Los Alamos National Security, LLC under contract DE-AC52-06NA25396.
An Efficient Algorithm to Calculate BICM Capacity
Böcherer, Georg; Alvarado, Alex; Corroy, Steven; Mathar, Rudolf
2012-01-01
Bit-interleaved coded modulation (BICM) is a practical approach for reliable communication over the AWGN channel in the bandwidth limited regime. For a signal point constellation with 2^m points, BICM labels the signal points with bit strings of length m and then treats these m bits separately both at transmitter and receiver. To determine the capacity of BICM, the mutual information between input and output has to be maximized over the bit pmfs. This is a non-convex optimization problem. So far, the optimal pmfs were determined via exhaustive search, which is of exponential complexity in m. In this work, an algorithm called bit-alternating convex concave method (BACM) is developed. This algorithm calculates BICM capacity with a complexity that scales approximately as m^3. The algorithm iteratively applies convex optimization techniques. BACM is used to calculate BICM capacity of 4,8,16,32, and 64-PAM in AWGN. For constellations with more than 8 points, the presented values are the first results known in lite...
Lattice calculation of nonleptonic charm decays
Energy Technology Data Exchange (ETDEWEB)
Simone, J.N.
1991-11-01
The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order G{sub f} in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D {yields} K{pi}, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin {1/2} channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.
Lattice calculation of nonleptonic charm decays
Energy Technology Data Exchange (ETDEWEB)
Simone, James Nicholas [Univ. of California, Los Angeles, CA (United States)
1991-11-01
The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order G_{f } in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D → Kπ, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin 1/2 channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.
Calculation of the CIPW norm: New formulas
Pruseth, Kamal L.
2009-02-01
A completely new set of formulas, based on matrix algebra, has been suggested for the calculation of the CIPW norm for igneous rocks to achieve highly consistent and accurate norms. The suggested sequence of derivation of the normative minerals greatly deviates from the sequence followed in the classical scheme. The formulas are presented in a form convenient for error-free implementation in computer programs. Accurate formulas along with the use of variable molecular weights for CaO and FeO; corrected formula weights for apatite, pyrite and fluorite; and suggested measures to avoid significant rounding off errors to achieve absolute match between the sum of the input weights of the oxides and the sum of the weights of the estimated normative minerals. Using an analogous procedure for determining the oxidation ratios of igneous rocks as used in the SINCLAS system of Verma et al (2002, 2003), the suggested calculation scheme exactly reproduces their results except for apatite for reasons explained in the text, but with a superior match between the totals for about 11,200 analyses representing rocks of a wide range of composition
A corrector for spacecraft calculated electron moments
Directory of Open Access Journals (Sweden)
J. Geach
2005-03-01
Full Text Available We present the application of a numerical method to correct electron moments calculated on-board spacecraft from the effects of potential broadening and energy range truncation. Assuming a shape for the natural distribution of the ambient plasma and employing the scalar approximation, the on-board moments can be represented as non-linear integral functions of the underlying distribution. We have implemented an algorithm which inverts this system successfully over a wide range of parameters for an assumed underlying drifting Maxwellian distribution. The outputs of the solver are the corrected electron plasma temperature T_{e}, density N_{e} and velocity vector V_{e}. We also make an estimation of the temperature anisotropy A of the distribution. We present corrected moment data from Cluster's PEACE experiment for a range of plasma environments and make comparisons with electron and ion data from other Cluster instruments, as well as the equivalent ground-based calculations using full 3-D distribution PEACE telemetry.
Calculation of the CIPW norm: New formulas
Indian Academy of Sciences (India)
Kamal L Pruseth
2009-02-01
A completely new set of formulas,based on matrix algebra,has been suggested for the calculation of the CIPW norm for igneous rocks to achieve highly consistent and accurate norms.The suggested sequence of derivation of the normative minerals greatly deviates from the sequence followed in the classical scheme.The formulas are presented in a form convenient for error-free implementation in computer programs.Accurate formulas along with the use of variable molecular weights for CaO and FeO;corrected formula weights for apatite,pyrite and ﬂuorite;and suggested measures to avoid signiﬁcant rounding off errors to achieve absolute match between the sum of the input weights of the oxides and the sum of the weights of the estimated normative minerals.Using an analogous procedure for determining the oxidation ratios of igneous rocks as used in the SINCLAS system of Ver ma et al (2002,2003),the suggested calculation scheme exactly reproduces their results except for apatite for reasons explained in the text,but with a superior match between the totals for about 11,200 analyses representing rocks of a wide range of composition.
Criticality Calculations with MCNP6 - Practical Lectures
Energy Technology Data Exchange (ETDEWEB)
Brown, Forrest B. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Rising, Michael Evan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3); Alwin, Jennifer Louise [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Monte Carlo Methods, Codes, and Applications (XCP-3)
2016-11-29
These slides are used to teach MCNP (Monte Carlo N-Particle) usage to nuclear criticality safety analysts. The following are the lecture topics: course information, introduction, MCNP basics, criticality calculations, advanced geometry, tallies, adjoint-weighted tallies and sensitivities, physics and nuclear data, parameter studies, NCS validation I, NCS validation II, NCS validation III, case study 1 - solution tanks, case study 2 - fuel vault, case study 3 - B&W core, case study 4 - simple TRIGA, case study 5 - fissile mat. vault, criticality accident alarm systems. After completion of this course, you should be able to: Develop an input model for MCNP; Describe how cross section data impact Monte Carlo and deterministic codes; Describe the importance of validation of computer codes and how it is accomplished; Describe the methodology supporting Monte Carlo codes and deterministic codes; Describe pitfalls of Monte Carlo calculations; Discuss the strengths and weaknesses of Monte Carlo and Discrete Ordinants codes; The diffusion theory model is not strictly valid for treating fissile systems in which neutron absorption, voids, and/or material boundaries are present. In the context of these limitations, identify a fissile system for which a diffusion theory solution would be adequate.
Nonlinear calculating method of pile settlement
Institute of Scientific and Technical Information of China (English)
贺炜; 王桂尧; 王泓华
2008-01-01
To study calculating method of settlement on top of extra-long large-diameter pile, the relevant research results were summarized. The hyperbola model, a nonlinear load transfer function, was introduced to establish the basic differential equation with load transfer method. Assumed that the displacement of pile shaft was the high order power series of buried depth, through merging the same orthometric items and arranging the relevant coefficients, the solution which could take the nonlinear pile-soil interaction and stratum properties of soil into account was solved by power series. On the basis of the solution, by determining the load transfer depth with criterion of settlement on pile tip, the method by making boundary conditions compatible was advised to solve the load-settlement curve of pile. The relevant flow chart and mathematic expressions of boundary conditions were also listed. Lastly, the load transfer methods based on both two-broken-line model and hyperbola model were applied to analyzing a real project. The related coefficients of fitting curves by hyperbola were not less than 0.96, which shows that the hyperbola model is truthfulness, and is propitious to avoid personal error. The calculating value of load-settlement curve agrees well with the measured one, which indicates that it can be applied in engineering practice and making the theory that limits the design bearing capacity by settlement on pile top comes true.
ARTc: Anisotropic reflectivity and transmissivity calculator
Malehmir, Reza; Schmitt, Douglas R.
2016-08-01
While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.
Phage therapy pharmacology: calculating phage dosing.
Abedon, Stephen
2011-01-01
Phage therapy, which can be described as a phage-mediated biocontrol of bacteria (or, simply, biocontrol), is the application of bacterial viruses-also bacteriophages or phages-to reduce densities of nuisance or pathogenic bacteria. Predictive calculations for phage therapy dosing should be useful toward rational development of therapeutic as well as biocontrol products. Here, I consider the theoretical basis of a number of concepts relevant to phage dosing for phage therapy including minimum inhibitory concentration (but also "inundation threshold"), minimum bactericidal concentration (but also "clearance threshold"), decimal reduction time (D value), time until bacterial eradication, threshold bacterial density necessary to support phage population growth ("proliferation threshold"), and bacterial density supporting half-maximal phage population growth rates (K(B)). I also address the concepts of phage killing titers, multiplicity of infection, and phage peak densities. Though many of the presented ideas are not unique to this chapter, I nonetheless provide variations on derivations and resulting formulae, plus as appropriate discuss relative importance. The overriding goal is to present a variety of calculations that are useful toward phage therapy dosing so that they may be found in one location and presented in a manner that allows facile appreciation, comparison, and implementation. The importance of phage density as a key determinant of the phage potential to eradicate bacterial targets is stressed throughout the chapter.
Calculation of fractional electron capture probabilities
Schoenfeld, E
1998-01-01
A 'Table of Radionuclides' is being prepared which will supersede the 'Table de Radionucleides' formerly issued by the LMRI/LPRI (France). In this effort it is desirable to have a uniform basis for calculating theoretical values of fractional electron capture probabilities. A table has been compiled which allows one to calculate conveniently and quickly the fractional probabilities P sub K , P sub L , P sub M , P sub N and P sub O , their ratios and the assigned uncertainties for allowed and non-unique first forbidden electron capture transitions of known transition energy for radionuclides with atomic numbers from Z=3 to 102. These results have been applied to a total of 28 transitions of 14 radionuclides ( sup 7 Be, sup 2 sup 2 Na, sup 5 sup 1 Cr, sup 5 sup 4 Mn, sup 5 sup 5 Fe, sup 6 sup 8 Ge , sup 6 sup 8 Ga, sup 7 sup 5 Se, sup 1 sup 0 sup 9 Cd, sup 1 sup 2 sup 5 I, sup 1 sup 3 sup 9 Ce, sup 1 sup 6 sup 9 Yb, sup 1 sup 9 sup 7 Hg, sup 2 sup 0 sup 2 Tl). The values are in reasonable agreement with measure...
EOSPEC: a complementary toolbox for MODTRAN calculations
Dion, Denis
2016-09-01
For more than a decade, Defence Research and Development Canada (DRDC) has been developing a Library of computer models for the calculations of atmospheric effects on EO-IR sensor performances. The Library, called EOSPEC-LIB (EO-IR Sensor PErformance Computation LIBrary) has been designed as a complement to MODTRAN, the radiative transfer code developed by the Air Force Research Laboratory and Spectral Science Inc. in the USA. The Library comprises modules for the definition of the atmospheric conditions, including aerosols, and provides modules for the calculation of turbulence and fine refraction effects. SMART (Suite for Multi-resolution Atmospheric Radiative Transfer), a key component of EOSPEC, allows one to perform fast computations of transmittances and radiances using MODTRAN through a wide-band correlated-k computational approach. In its most recent version, EOSPEC includes a MODTRAN toolbox whose functions help generate in a format compatible to MODTRAN 5 and 6 atmospheric and aerosol profiles, user-defined refracted optical paths and inputs for configuring the MODTRAN sea radiance (BRDF) model. The paper gives an overall description of the EOSPEC features and capacities. EOSPEC provides augmented capabilities for computations in the lower atmosphere, and for computations in maritime environments.
Fastlim: a fast LHC limit calculator.
Papucci, Michele; Sakurai, Kazuki; Weiler, Andreas; Zeune, Lisa
Fastlim is a tool to calculate conservative limits on extensions of the Standard Model from direct LHC searches without performing any Monte Carlo event generation. The program reconstructs the visible cross sections (cross sections after event selection cuts) from pre-calculated efficiency tables and cross section tables for simplified event topologies. As a proof of concept of the approach, we have implemented searches relevant for supersymmetric models with R-parity conservation. Fastlim takes the spectrum and coupling information of a given model point and provides, for each signal region of the implemented analyses, the visible cross sections normalised to the corresponding upper limit, reported by the experiments, as well as the [Formula: see text] value. To demonstrate the utility of the program we study the sensitivity of the recent ATLAS missing energy searches to the parameter space of natural SUSY models. The program structure allows the straightforward inclusion of external efficiency tables and can be generalised to R-parity violating scenarios and non-SUSY models. This paper serves as a self-contained user guide and indicates the conventions and approximations used.
LIKEDM: Likelihood calculator of dark matter detection
Huang, Xiaoyuan; Tsai, Yue-Lin Sming; Yuan, Qiang
2017-04-01
With the large progress in searches for dark matter (DM) particles with indirect and direct methods, we develop a numerical tool that enables fast calculations of the likelihoods of specified DM particle models given a number of observational data, such as charged cosmic rays from space-borne experiments (e.g., PAMELA, AMS-02), γ-rays from the Fermi space telescope, and underground direct detection experiments. The purpose of this tool - LIKEDM, likelihood calculator for dark matter detection - is to bridge the gap between a particle model of DM and the observational data. The intermediate steps between these two, including the astrophysical backgrounds, the propagation of charged particles, the analysis of Fermi γ-ray data, as well as the DM velocity distribution and the nuclear form factor, have been dealt with in the code. We release the first version (v1.0) focusing on the constraints from indirect detection of DM with charged cosmic and gamma rays. Direct detection will be implemented in the next version. This manual describes the framework, usage, and related physics of the code.
Calculating lunar retreat rates using tidal rhythmites
Kvale, E.P.; Johnson, H.W.; Sonett, C.P.; Archer, A.W.; Zawistoski, A.N.N.
1999-01-01
Tidal rhythmites are small-scale sedimenta??r}- structures that can preserve a hierarchy of astronomically induced tidal periods. They can also preserve a record of periodic nontidal sedimentation. If properly interpreted and understood, tidal rhjthmites can be an important component of paleoastronomy and can be used to extract information on ancient lunar orbital dynamics including changes in Earth-Moon distance through geologic time. Herein we present techniques that can be used to calculate ancient Earth-Moon distances. Each of these techniques, when used on a modern high-tide data set, results in calculated estimates of lunar orbital periods and an EarthMoon distance that fall well within 1 percent of the actual values. Comparisons to results from modern tidal data indicate that ancient tidal rhythmite data as short as 4 months can provide suitable estimates of lunar orbital periods if these tidal records are complete. An understanding of basic tidal theory allows for the evaluation of completeness of the ancient tidal record as derived from an analysis of tidal rhythmites. Utilizing the techniques presented herein, it appears from the rock record that lunar orbital retreat slowed sometime during the midPaleozoic. Copyright ??1999, SEPM (Society for Sedimentary Geology).
Calculation of dose distribution above contaminated soil
Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko
2017-07-01
The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.
Fastlim. A fast LHC limit calculator
Energy Technology Data Exchange (ETDEWEB)
Papucci, Michele [Michigan Univ., Ann Arbor, MI (United States). Michigan Center for Theoretical Physics; Sakurai, Kazuki [King' s College London (United Kingdom). Physics Dept.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Zeune, Lisa [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2014-02-15
Fastlim is a tool to calculate conservative limits on extensions of the Standard Model from direct LHC searches without performing any Monte Carlo event generation. The program reconstructs the visible cross sections from pre-calculated efficiency tables and cross section tables for simplified event topologies. As a proof of concept of the approach, we have implemented searches relevant for supersymmetric models with R-parity conservation. Fastlim takes the spectrum and coupling information of a given model point and provides, for each signal region of the implemented analyses, the visible cross sections normalised to the corresponding upper limit, reported by the experiments, as well as the exclusion p-value. To demonstrate the utility of the program we study the sensitivity of the recent ATLAS missing energy searches to the parameter space of natural SUSY models. The program structure allows the straight-forward inclusion of external efficiency tables and can be generalised to R-parity violating scenarios and non-SUSY models. This paper serves as a self-contained user guide, and indicates the conventions and approximations used.
Fastlim: a fast LHC limit calculator
Energy Technology Data Exchange (ETDEWEB)
Papucci, Michele [University of Michigan, Michigan Center for Theoretical Physics, Ann Arbor, MI (United States); Sakurai, Kazuki [King' s College London, Physics Department, London (United Kingdom); Weiler, Andreas [CERN TH-PH Division, Meyrin (Switzerland); Zeune, Lisa [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany)
2014-11-15
Fastlim is a tool to calculate conservative limits on extensions of the Standard Model from direct LHC searches without performing any Monte Carlo event generation. The program reconstructs the visible cross sections (cross sections after event selection cuts) from pre-calculated efficiency tables and cross section tables for simplified event topologies. As a proof of concept of the approach, we have implemented searches relevant for supersymmetric models with R-parity conservation. Fastlim takes the spectrum and coupling information of a given model point and provides, for each signal region of the implemented analyses, the visible cross sections normalised to the corresponding upper limit, reported by the experiments, as well as the CL{sub s} value. To demonstrate the utility of the program we study the sensitivity of the recent ATLAS missing energy searches to the parameter space of natural SUSY models. The program structure allows the straightforward inclusion of external efficiency tables and can be generalised to R-parity violating scenarios and non-SUSY models. This paper serves as a self-contained user guide and indicates the conventions and approximations used. (orig.)
Quantum Monte Carlo Calculations of Neutron Matter
Carlson, J; Ravenhall, D G
2003-01-01
Uniform neutron matter is approximated by a cubic box containing a finite number of neutrons, with periodic boundary conditions. We report variational and Green's function Monte Carlo calculations of the ground state of fourteen neutrons in a periodic box using the Argonne $\\vep $ two-nucleon interaction at densities up to one and half times the nuclear matter density. The effects of the finite box size are estimated using variational wave functions together with cluster expansion and chain summation techniques. They are small at subnuclear densities. We discuss the expansion of the energy of low-density neutron gas in powers of its Fermi momentum. This expansion is strongly modified by the large nn scattering length, and does not begin with the Fermi-gas kinetic energy as assumed in both Skyrme and relativistic mean field theories. The leading term of neutron gas energy is ~ half the Fermi-gas kinetic energy. The quantum Monte Carlo results are also used to calibrate the accuracy of variational calculations ...
The calculation of information and organismal complexity
Directory of Open Access Journals (Sweden)
Xu Cunshuan
2010-10-01
Full Text Available Abstract Background It is difficult to measure precisely the phenotypic complexity of living organisms. Here we propose a method to calculate the minimal amount of genomic information needed to construct organism (effective information as a measure of organismal complexity, by using permutation and combination formulas and Shannon's information concept. Results The results demonstrate that the calculated information correlates quite well with the intuitive organismal phenotypic complexity defined by traditional taxonomy and evolutionary theory. From viruses to human beings, the effective information gradually increases, from thousands of bits to hundreds of millions of bits. The simpler the organism is, the less the information; the more complex the organism, the more the information. About 13% of human genome is estimated as effective information or functional sequence. Conclusions The effective information can be used as a quantitative measure of phenotypic complexity of living organisms and also as an estimate of functional fraction of genome. Reviewers This article was reviewed by Dr. Lavanya Kannan (nominated by Dr. Arcady Mushegian, Dr. Chao Chen, and Dr. ED Rietman (nominated by Dr. Marc Vidal.
Cognitive Reflection Versus Calculation in Decision Making
Directory of Open Access Journals (Sweden)
Aleksandr eSinayev
2015-05-01
Full Text Available Scores on the three-item Cognitive Reflection Test (CRT have been linked with dual-system theory and normative decision making (Frederick, 2005. In particular, the CRT is thought to measure monitoring of System 1 intuitions such that, if cognitive reflection is high enough, intuitive errors will be detected and the problem will be solved. However, CRT items also require numeric ability to be answered correctly and it is unclear how much numeric ability vs. cognitive reflection contributes to better decision making. In two studies, CRT responses were used to calculate Cognitive Reflection and numeric ability; a numeracy scale was also administered. Numeric ability, measured on the CRT or the numeracy scale, accounted for the CRT’s ability to predict more normative decisions (a subscale of decision-making competence, incentivized measures of impatient and risk-averse choice, and self-reported financial outcomes; Cognitive Reflection contributed no independent predictive power. Results were similar whether the two abilities were modeled (Study 1 or calculated using proportions (Studies 1 and 2. These findings demonstrate numeric ability as a robust predictor of superior decision making across multiple tasks and outcomes. They also indicate that correlations of decision performance with the CRT are insufficient evidence to implicate overriding intuitions in the decision-making biases and outcomes we examined. Numeric ability appears to be the key mechanism instead.
Unified approach to alpha decay calculations
Indian Academy of Sciences (India)
C S Shastry; S M Mahadevan; K Aditya
2014-05-01
With the discovery of a large number of superheavy nuclei undergoing decay through emissions, there has been a revival of interest in decay in recent years. In the theoretical study of decay the -nucleus potential, which is the basic input in the study of -nucleus systems, is also being studied using advanced theoretical methods. In the light of these, theWentzel–Kramers–Brillouin (WKB) approximation method often used for the study of decay is critically examined and its limitations are pointed out. At a given energy, the WKB expression uses barrier penetration formula for the determination of the transmission coefficient. This approach utilizes the -nucleus potential only at the barrier region and ignores it elsewhere. In the present era, when one has more precise experimental information on decay parameters and better understanding of -nucleus potential, it is desirable to use a more precise method for the calculation of decay parameters. We describe the analytic -matrix (SM) method which gives a procedure for the calculation of decay energy and mean life in an integrated way by evaluating the resonance pole of the -matrix in the complex momentum or energy plane. We make an illustrative comparative study of WKB and -matrix methods for the determination of decay parameters in a number of superheavy nuclei.
Electron mobility calculation for graphene on substrates
Energy Technology Data Exchange (ETDEWEB)
Hirai, Hideki; Ogawa, Matsuto [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Tsuchiya, Hideaki, E-mail: tsuchiya@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Kamakura, Yoshinari; Mori, Nobuya [Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)
2014-08-28
By a semiclassical Monte Carlo method, the electron mobility in graphene is calculated for three different substrates: SiO{sub 2}, HfO{sub 2}, and hexagonal boron nitride (h-BN). The calculations account for polar and non-polar surface optical phonon (OP) scatterings induced by the substrates and charged impurity (CI) scattering, in addition to intrinsic phonon scattering in pristine graphene. It is found that HfO{sub 2} is unsuitable as a substrate, because the surface OP scattering of the substrate significantly degrades the electron mobility. The mobility on the SiO{sub 2} and h-BN substrates decreases due to CI scattering. However, the mobility on the h-BN substrate exhibits a high electron mobility of 170 000 cm{sup 2}/(V·s) for electron densities less than 10{sup 12 }cm{sup −2}. Therefore, h-BN should be an appealing substrate for graphene devices, as confirmed experimentally.
Group Contribution Methods for Phase Equilibrium Calculations.
Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian
2015-01-01
The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.
Improved calculation of relic gravitational waves
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper, we have improved the calculation of the relic gravitational waves (RGW) in two aspects. First, we investigate the transfer function by taking into consideration the redshift-suppression effect, the accelerating expansion effect, the damping effect of free-streaming relativistic particles, and the damping effect of cosmic phase transition, and give a simple approximate analytic expression, which clearly illustrates the dependence on the cosmological parameters.Second, we develop a numerical method to calculate the primordial power spectrum of RGW in a very wide frequency range, where the observed constraints on ns (the scalar spectral index) and Ps(ko) (the amplitude of primordial scalar spectrum) and the Hamilton-Jacobi equation are used. This method is applied to two kinds of inflationary models,which satisfy the current constraints on ns, α (the running of ns) and r (the tensor-scalar ratio). We plot them in the r - Ωg diagram, where Ωg is the strength of RGW, and study their measurements from the cosmic microwave background (CMB) experiments and laser interferometers.
Reactivity of Tourmaline by Quantum Chemical Calculations
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
ZnAb initio calculations on reactivity of tourmaline were performed using both Gaussian and density function theory discrete variation method (DFT-DVM). The HF, B3LYP methods and basis sets STO-3G(3d,3p),6-31G(3d,3p) and 6-311++G(3df,3pd) were used in the calculations. The experimental results show energy value obtained from B3LYP and 6-31++1G(3df,3pd) basis sets is more accurate than those from other methods. The highest occupied molecular orbital (HOMO) of the tourmaline cluster mainly consists of O atom of hydroxyl group with relative higher energy level, suggesting that chemical bond between those of electron acceptor and this site may readily form, indicating the higher reactivity of hydroxyl group. The lowest unoccupied molecular orbital (LUMO) of the tourmaline cluster are dominantly composed of Si, O of tetrahedron and Na with relative lower energy level, suggesting that these atoms may tend to form chemical bond with those of electron donor. The results also prove that the O atoms of the tourmaline cluster have stronger reactivity than other atoms.
Free-Energy Calculations. A Mathematical Perspective
Pohorille, Andrzej
2015-01-01
Ion channels are pore-forming assemblies of transmembrane proteins that mediate and regulate ion transport through cell walls. They are ubiquitous to all life forms. In humans and other higher organisms they play the central role in conducting nerve impulses. They are also essential to cardiac processes, muscle contraction and epithelial transport. Ion channels from lower organisms can act as toxins or antimicrobial agents, and in a number of cases are involved in infectious diseases. Because of their important and diverse biological functions they are frequent targets of drug action. Also, simple natural or synthetic channels find numerous applications in biotechnology. For these reasons, studies of ion channels are at the forefront of biophysics, structural biology and cellular biology. In the last decade, the increased availability of X-ray structures has greatly advanced our understanding of ion channels. However, their mechanism of action remains elusive. This is because, in order to assist controlled ion transport, ion channels are dynamic by nature, but X-ray crystallography captures the channel in a single, sometimes non-native state. To explain how ion channels work, X-ray structures have to be supplemented with dynamic information. In principle, molecular dynamics (MD) simulations can aid in providing this information, as this is precisely what MD has been designed to do. However, MD simulations suffer from their own problems, such as inability to access sufficiently long time scales or limited accuracy of force fields. To assess the reliability of MD simulations it is only natural to turn to the main function of channels - conducting ions - and compare calculated ionic conductance with electrophysiological data, mainly single channel recordings, obtained under similar conditions. If this comparison is satisfactory it would greatly increase our confidence that both the structures and our computational methodologies are sufficiently accurate. Channel
UncertiantyQuantificationinTsunamiEarlyWarningCalculations
Anunziato, Alessandro
2016-04-01
The objective of the Tsunami calculations is the estimation of the impact of waves caused by large seismic events on the coasts and the determination of potential inundation areas. In the case of Early Warning Systems, i.e. systems that should allow to anticipate the possible effects and give the possibility to react consequently (i.e. issue evacuation of areas at risk), this must be done in very short time (minutes) to be effective. In reality, the above estimation includes several uncertainty factors which make the prediction extremely difficult. The quality of the very first estimations of the seismic parameters is not very precise: the uncertainty in the determination of the seismic components (location, magnitude and depth) decreases with time because as time passes it is possible to use more and more seismic signals and the event characterization becomes more precise. On the other hand other parameters that are necessary to establish for the performance of a calculation (i.e. fault mechanism) are difficult to estimate accurately also after hours (and in some cases remain unknown) and therefore this uncertainty remains in the estimated impact evaluations; when a quick tsunami calculation is necessary (early warning systems) the possibility to include any possible future variation of the conditions to establish the "worst case scenario" is particularly important. The consequence is that the number of uncertain parameters is so large that it is not easy to assess the relative importance of each of them and their effect on the predicted results. In general the complexity of system computer codes is generated by the multitude of different models which are assembled into a single program to give the global response for a particular phenomenon. Each of these model has associated a determined uncertainty coming from the application of that model to single cases and/or separated effect test cases. The difficulty in the prediction of a Tsunami calculation response is
Development of thermodynamic databases for geochemical calculations
Energy Technology Data Exchange (ETDEWEB)
Arthur, R.C. [Monitor Scientific, L.L.C., Denver, Colorado (United States); Sasamoto, Hiroshi; Shibata, Masahiro; Yui, Mikazu [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Neyama, Atsushi [Computer Software Development Corp., Tokyo (Japan)
1999-09-01
Two thermodynamic databases for geochemical calculations supporting research and development on geological disposal concepts for high level radioactive waste are described in this report. One, SPRONS.JNC, is compatible with thermodynamic relations comprising the SUPCRT model and software, which permits calculation of the standard molal and partial molal thermodynamic properties of minerals, gases, aqueous species and reactions from 1 to 5000 bars and 0 to 1000degC. This database includes standard molal Gibbs free energies and enthalpies of formation, standard molal entropies and volumes, and Maier-Kelly heat capacity coefficients at the reference pressure (1 bar) and temperature (25degC) for 195 minerals and 16 gases. It also includes standard partial molal Gibbs free energies and enthalpies of formation, standard partial molal entropies, and Helgeson, Kirkham and Flowers (HKF) equation-of-state coefficients at the reference pressure and temperature for 1147 inorganic and organic aqueous ions and complexes. SPRONS.JNC extends similar databases described elsewhere by incorporating new and revised data published in the peer-reviewed literature since 1991. The other database, PHREEQE.JNC, is compatible with the PHREEQE series of geochemical modeling codes. It includes equilibrium constants at 25degC and l bar for mineral-dissolution, gas-solubility, aqueous-association and oxidation-reduction reactions. Reaction enthalpies, or coefficients in an empirical log K(T) function, are also included in this database, which permits calculation of equilibrium constants between 0 and 100degC at 1 bar. All equilibrium constants, reaction enthalpies, and log K(T) coefficients in PHREEQE.JNC are calculated using SUPCRT and SPRONS.JNC, which ensures that these two databases are mutually consistent. They are also internally consistent insofar as all the data are compatible with basic thermodynamic definitions and functional relations in the SUPCRT model, and because primary
Relativistic Few-Body Hadronic Physics Calculations
Energy Technology Data Exchange (ETDEWEB)
Polyzou, Wayne [Univ. of Iowa, Iowa City, IA (United States)
2016-06-20
The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In
Void growth in metals: Atomistic calculations
Energy Technology Data Exchange (ETDEWEB)
Traiviratana, Sirirat [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Bringa, Eduardo M. [Materials Science Department, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Benson, David J. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); Meyers, Marc A. [Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA 92093 (United States); NanoEngineering, University of California, San Diego, La Jolla, CA 92093 (United States)], E-mail: mameyers@ucsd.edu
2008-09-15
Molecular dynamics simulations in monocrystalline and bicrystalline copper were carried out with LAMMPS (Large-scale Atomic/Molecular Massively Parallel Simulator) to reveal void growth mechanisms. The specimens were subjected to tensile uniaxial strains; the results confirm that the emission of (shear) loops is the primary mechanism of void growth. It is observed that many of these shear loops develop along two slip planes (and not one, as previously thought), in a heretofore unidentified mechanism of cooperative growth. The emission of dislocations from voids is the first stage, and their reaction and interaction is the second stage. These loops, forming initially on different {l_brace}1 1 1{r_brace} planes, join at the intersection, if the Burgers vector of the dislocations is parallel to the intersection of two {l_brace}1 1 1{r_brace} planes: a <1 1 0> direction. Thus, the two dislocations cancel at the intersection and a biplanar shear loop is formed. The expansion of the loops and their cross slip leads to the severely work-hardened region surrounding a growing void. Calculations were carried out on voids with different sizes, and a size dependence of the stress threshold to emit dislocations was obtained by MD, in disagreement with the Gurson model which is scale independent. This disagreement is most marked for the nanometer sized voids. The scale dependence of the stress required to grow voids is interpreted in terms of the decreasing availability of optimally oriented shear planes and increased stress required to nucleate shear loops as the void size is reduced. The growth of voids simulated by MD is compared with the Cocks-Ashby constitutive model and significant agreement is found. The density of geometrically necessary dislocations as a function of void size is calculated based on the emission of shear loops and their outward propagation. Calculations are also carried out for a void at the interface between two grains to simulate polycrystalline
FUEL HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS
Energy Technology Data Exchange (ETDEWEB)
C.E. Sanders
2005-06-30
The purpose of this design calculation is to perform a criticality evaluation of the Fuel Handling Facility (FHF) and the operations and processes performed therein. The current intent of the FHF is to receive transportation casks whose contents will be unloaded and transferred to waste packages (WP) or MGR Specific Casks (MSC) in the fuel transfer bays. Further, the WPs will also be prepared in the FHF for transfer to the sub-surface facility (for disposal). The MSCs will be transferred to the Aging Facility for storage. The criticality evaluation of the FHF features the following: (I) Consider the types of waste to be received in the FHF as specified below: (1) Uncanistered commercial spent nuclear fuel (CSNF); (2) Canistered CSNF (with the exception of horizontal dual-purpose canister (DPC) and/or multi-purpose canisters (MPCs)); (3) Navy canistered SNF (long and short); (4) Department of Energy (DOE) canistered high-level waste (HLW); and (5) DOE canistered SNF (with the exception of MCOs). (II) Evaluate the criticality analyses previously performed for the existing Nuclear Regulatory Commission (NRC)-certified transportation casks (under 10 CFR 71) to be received in the FHF to ensure that these analyses address all FHF conditions including normal operations, and Category 1 and 2 event sequences. (III) Evaluate FHF criticality conditions resulting from various Category 1 and 2 event sequences. Note that there are currently no Category 1 and 2 event sequences identified for FHF. Consequently, potential hazards from a criticality point of view will be considered as identified in the ''Internal Hazards Analysis for License Application'' document (BSC 2004c, Section 6.6.4). (IV) Assess effects of potential moderator intrusion into the fuel transfer bay for defense in depth. The SNF/HLW waste transfer activity (i.e., assembly and canister transfer) that is being carried out in the FHF has been classified as safety category in the &apos
Benchmark calculations for electron-impact excitation and ionization of beryllium
Zatsarinny, Oleg; Bartschat, Klaus; Fursa, Dmitry V.; Bray, Igor
2016-09-01
The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium for energies from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with previous results based on nonperturbative convergent pseudostate and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a shape resonance. The ionization from the (2 s 2 p) 3 P and (2 s 2 p) 1 P states strongly depends on the respective term. The current predictions represent an extensive set of electron scattering data for neutral beryllium, which should be sufficient for most modeling applications. This work was supported by the United States National Science Foundation (OZ and KB) and the Australian Research Council (DVF and IB).
Calculating Auroral Oval Pattern by AE Index
Institute of Scientific and Technical Information of China (English)
CHEN Anqin; LI Jiawei; YANG Guanglin; WANG Jingsong
2008-01-01
The relationship between the auroral oval pattern, i.e., location, size, shape, and intensity, and the auroral electrojet activity index (AE index) is studied. It is found that the maximal auroral intensity is elliptically distributed, and the lengths of semimajor and semiminor axes are positively correlated to AE.The intensity along the normal of the auroral oval can be satisfyingly described by a Gaussian distribution,and the maximum and the full width at half maximum of the Gaussian distribution are both positively correlated to AE. Based on these statistical results, a series of experimental formulas as a function of AE are developed to calculate the location, size, shape, and intensity of the auroral oval. These formulas are validated by the auroral images released by SWPC/NOAA.
Variational Calculation of the Effective Action
Sugihara, T
1998-01-01
An indication of spontaneous symmetry breaking is found in the two-dimensional $\\lambda\\phi^4$ model, where an attention is payed to a functional form of an effective action. An effective energy, which is an effective action for a static field, is obtained as a functional of the classical field from the ground state of hamiltonian $H[J]$ interacting with a constant external field. The energy and wavefunction of the ground state are calculated in terms of DLCQ (Discretized Light-Cone Quantization) under antiperiodic boundary condition. A field configuration which is physically meaningful is found as a solution of the quantum mechanical Euler-Lagrange equation in the $J\\to 0$ limit. It is shown that there exists a nontrivial field configuration in the broken phase of $Z_2$ symmetry because of a boundary effect.
Theoretical calculation of ozone vibrational infrared intensities
Adler-Golden, S. M.; Langhoff, S. R.; Bauschlicher, C. W., Jr.; Carney, G. D.
1985-01-01
An ab initio dipole moment function for ozone has been computed using the CASSCF (complete active space self-consistent field) method, and forms the basis for a calculation of ozone infrared band intensities. Vibrational wave functions were generated using the variational method with potential energy surfaces derived from experimental force constants. Computed values of the permanent dipole moment, dipole moment derivatives, and infrared band strengths are all found to be in remarkably good agreement with experiment. Intensities are predicted for hot bands for which experimental values are unavailable, and implications for atmospheric ozone spectroscopy are discussed. As the dipole moment matrix element signs are now established for nearly all of the observed bands, further refinement of the dipole moment function is possible.
Columbia River flow-time calculations
Energy Technology Data Exchange (ETDEWEB)
Soldat, J.K.
1958-11-21
Re-appraisal of the available data on flow times of the Columbia River between the reactor areas and Pasco was undertaken to permit extrapolation of the flow-time curves to lower river flow rates. Comparisons were made between data collected by the US Corps of Engineers and Regional Monitoring and with the equation for calculation of flow times developed by H.T. Norton. Extrapolation of the Regional Monitoring float study data to a flow of 3 {times} 10{sup 5} gallons per second was accomplished by comparison with the slope of the curve obtained from the US Corps of Engineers data; the latter covered flow times from 100-F Area to Pasco over a range of 3.4 {times} 10{sup 5} gps to 3.7 {times} 10{sup 6} gps. The revised flow-time curves are illustrated in Figures 1 through 6.
p Ka calculation of poliprotic acid: histamine
De Abreu, Heitor A.; De Almeida, Wagner B.; Duarte, Hélio A.
2004-01-01
Various theoretical studies have been reported addressing the performance of solvation models available to estimate p Ka values. However, no attention has been paid so far to the role played by the electronic, thermal and solvation energy individual contributions to the Gibbs free energy of the deprotonation process. In this work, we decompose the total Gibbs free energy into three distinct terms and then evaluate the dependence of each contribution on the level of theory employed for its determination using different levels of theory. The three possible p Kas of histamine have been estimated and compared with available experimental data. We found that the electronic energy term is sensitive to the level of theory and basis set, and, therefore, could be also a source of error in the theoretical calculation of p Kas.
Microscopic versus macroscopic calculation of dielectric nanospheres
Kühn, M.; Kliem, H.
2008-12-01
The issue of nanodielectrics has recently become an important field of interest. The term describes nanometric dielectrics, i. e. dielectric materials with structural dimensions typically smaller than 100 run. In contrast to the behaviour of a bulk material the nanodielectrics can behave completely different. With shrinking dimensions the surface or rather boundary effects outweigh the volume effects. This leads to a different observable physics at the nanoscale. A crucial point is the question whether a continuum model for the calculation of dielectric properties is still applicable for these nanomaterials. In order to answer this question we simulated dielectric nanospheres with a microscopic local field method and compared the results to the macroscopic mean field theory.
Calculation of light emission in sonoluminescence
Institute of Scientific and Technical Information of China (English)
LI ChaoHui; AN Yu
2009-01-01
We modify a uniform model of single bubble sonoluminescenca, in which heat diffusion, water vapor diffusion and chemical reactions are included to describe the bubble dynamics, and the processes of electron-atom bremsstrahlung, electron-ion bremsstrahlung and recombination radiation, radiative attachment of electrons to atoms and molecules, line emissions of OH radicals and Na atoms are taken into account to calculate the light emission. With this model, we compute the light pulse width, the photon number per flash, the continuum and line spectra and the gas species as the products of chemical reactions, and try to compare with all the experimental data available. We obtain good agreement with the observations of Ar and Xe bubbles in many cases, but fail to match the experi-mental data of the photon number per flash. We also find that for He bubble the computed photon number is always too small to interpret the observations.
Cooling rate calculations for silicate glasses.
Birnie, D. P., III; Dyar, M. D.
1986-03-01
Series solution calculations of cooling rates are applied to a variety of samples with different thermal properties, including an analog of an Apollo 15 green glass and a hypothetical silicate melt. Cooling rates for the well-studied green glass and a generalized silicate melt are tabulated for different sample sizes, equilibration temperatures and quench media. Results suggest that cooling rates are heavily dependent on sample size and quench medium and are less dependent on values of physical properties. Thus cooling histories for glasses from planetary surfaces can be estimated on the basis of size distributions alone. In addition, the variation of cooling rate with sample size and quench medium can be used to control quench rate.
Molecular orbital calculations using chemical graph theory
Dias, Jerry Ray
1993-01-01
Professor John D. Roberts published a highly readable book on Molecular Orbital Calculations directed toward chemists in 1962. That timely book is the model for this book. The audience this book is directed toward are senior undergraduate and beginning graduate students as well as practicing bench chemists who have a desire to develop conceptual tools for understanding chemical phenomena. Although, ab initio and more advanced semi-empirical MO methods are regarded as being more reliable than HMO in an absolute sense, there is good evidence that HMO provides reliable relative answers particularly when comparing related molecular species. Thus, HMO can be used to rationalize electronic structure in 1t-systems, aromaticity, and the shape use HMO to gain insight of simple molecular orbitals. Experimentalists still into subtle electronic interactions for interpretation of UV and photoelectron spectra. Herein, it will be shown that one can use graph theory to streamline their HMO computational efforts and to arrive...
Relativistic calculations of coalescing binary neutron stars
Indian Academy of Sciences (India)
Joshua Faber; Phillippe Grandclément; Frederic Rasio
2004-10-01
We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.
Distributed Function Calculation over Noisy Networks
Directory of Open Access Journals (Sweden)
Zhidun Zeng
2016-01-01
Full Text Available Considering any connected network with unknown initial states for all nodes, the nearest-neighbor rule is utilized for each node to update its own state at every discrete-time step. Distributed function calculation problem is defined for one node to compute some function of the initial values of all the nodes based on its own observations. In this paper, taking into account uncertainties in the network and observations, an algorithm is proposed to compute and explicitly characterize the value of the function in question when the number of successive observations is large enough. While the number of successive observations is not large enough, we provide an approach to obtain the tightest possible bounds on such function by using linear programing optimization techniques. Simulations are provided to demonstrate the theoretical results.
Operational source receptor calculations for large agglomerations
Gauss, Michael; Shamsudheen, Semeena V.; Valdebenito, Alvaro; Pommier, Matthieu; Schulz, Michael
2016-04-01
For Air quality policy an important question is how much of the air pollution within an urbanized region can be attributed to local sources and how much of it is imported through long-range transport. This is critical information for a correct assessment of the effectiveness of potential emission measures. The ratio between indigenous and long-range transported air pollution for a given region depends on its geographic location, the size of its area, the strength and spatial distribution of emission sources, the time of the year, but also - very strongly - on the current meteorological conditions, which change from day to day and thus make it important to provide such calculations in near-real-time to support short-term legislation. Similarly, long-term analysis over longer periods (e.g. one year), or of specific air quality episodes in the past, can help to scientifically underpin multi-regional agreements and long-term legislation. Within the European MACC projects (Monitoring Atmospheric Composition and Climate) and the transition to the operational CAMS service (Copernicus Atmosphere Monitoring Service) the computationally efficient EMEP MSC-W air quality model has been applied with detailed emission data, comprehensive calculations of chemistry and microphysics, driven by high quality meteorological forecast data (up to 96-hour forecasts), to provide source-receptor calculations on a regular basis in forecast mode. In its current state, the product allows the user to choose among different regions and regulatory pollutants (e.g. ozone and PM) to assess the effectiveness of fictive emission reductions in air pollutant emissions that are implemented immediately, either within the agglomeration or outside. The effects are visualized as bar charts, showing resulting changes in air pollution levels within the agglomeration as a function of time (hourly resolution, 0 to 4 days into the future). The bar charts not only allow assessing the effects of emission
Improving the accuracy of dynamic mass calculation
Directory of Open Access Journals (Sweden)
Oleksandr F. Dashchenko
2015-06-01
Full Text Available With the acceleration of goods transporting, cargo accounting plays an important role in today's global and complex environment. Weight is the most reliable indicator of the materials control. Unlike many other variables that can be measured indirectly, the weight can be measured directly and accurately. Using strain-gauge transducers, weight value can be obtained within a few milliseconds; such values correspond to the momentary load, which acts on the sensor. Determination of the weight of moving transport is only possible by appropriate processing of the sensor signal. The aim of the research is to develop a methodology for weighing freight rolling stock, which increases the accuracy of the measurement of dynamic mass, in particular wagon that moves. Apart from time-series methods, preliminary filtration for improving the accuracy of calculation is used. The results of the simulation are presented.
Numerical calculation of turbomachinery cascade flows
Liu, Feng
A numerical method for solving both the Euler and the Reynolds-averaged Navier-Stokes equations for flows in turbomachinery cascades is presented and verified. The method is based on a finite volume method with an explicit multi-stage time-stepping scheme originally developed by Jameson for the Euler equations. Modified discretization schemes, based on Martinelli's work for the second order derivatives in the Navier-Stokes equations, are proposed for both the cell-vertex and the cell-centered schemes. The new schemes avoid a potential discretization problem with kinked meshes. Use of artificial dissipation to stabilize a central difference scheme and capture shocks is discussed. Local time stepping and residual smoothing are used to increase the allowable time steps for stability. A multigrid method is employed to accelerate convergence to steady state. For steady inviscid flows enthalpy damping is also used. The method is capable of handling flows of low Mach number (lower than 0.3), and transonic and supersonic flows. Both laminar and turbulent flows are calculated in solving the Reynolds-averaged equations. The Reynolds number may range from order 1 to 10(exp 7) or even higher as long as enough mesh resolution and a proper turbulence model are provided. The Baldwin-Lomax algebraic turbulence model is used in the current work. An elliptic mesh generator is used to generate H-type meshes for cascades. The cell-centered scheme is programmed in both two- and three-dimensions for the Euler equations. Numerical results included a two-dimensional Hobson cascade, a supersonic wedge cascade and the VKI turbine cascade. The three-dimensional code is used to calculate the flow in a low pressure turbine cascade. Results compare well with experimental data at design conditions. At off-design conditions, the Euler method fails in regions of large separations.
Experience in coal sampling parameters calculation
Directory of Open Access Journals (Sweden)
Rudolf Tomanec
2005-11-01
Full Text Available This paper describes the selection of parameters neccessary for the calculation of minimal representative quantity of coal sample for various investigations in the field of mineral processing. The procedure is illustrated on the example case of the Drmno coal field, from where the coal is delivered to the thermal power plant Kostolac. Two primary samples of coal, crushed down to different sizes and prepared (homogenized and divided, are analyzed for the ash content and the results were statisticaly processed. The analytical results are statistically processed. Analytical and graphical solutions, at the lowest sampling error, give an optimum range of the representative minimal sample mass for the given coal size. The coefficient of proportionality, k, which characterizes the kind of mineralization in the given material, and α exponent for the Drmno coal type, are determined.
Towards reliable calculations of the correlation function
Maj, Radoslaw; 10.1142/S0218301307009221
2008-01-01
The correlation function of two identical pions interacting via Coulomb potential is computed for a general case of anisotropic particle's source of finite life time. The effect of halo is taken into account as an additional particle's source of large spatial extension. Due to the Coulomb interaction, the effect of halo is not limited to very small relative momenta but it influences the correlation function in a relatively large domain. The relativistic effects are discussed in detail and it is argued that the calculations have to be performed in the center-of-mass frame of particle's pair where the (nonrelativistic) wave function of particle's relative motion is meaningful. The Bowler-Sinyukov procedure to remove the Coulomb interaction is tested and it is shown to significantly underestimate the source's life time.
Calculations of energy consumption in ventilation systems
Energy Technology Data Exchange (ETDEWEB)
Kreslins, Andris; Ramata, Anna [Riga Technical University (Latvia)], e-mail: kreslins@rbf.rtu.lv, email: Anna.Ramata@rtu.lv
2011-07-01
Energy cost is an important economic factor in the food industry production process. With the rising price of energy, a reduction in energy consumption would greatly impact production and the end product. The aim of this study was to develop a methodology for optimizing energy consumption. A comparison between a traditional ventilation system and a mechanical system was carried out; the necessary enthalpy for heating the air supply and thermal energy consumption were calculated and compared for both systems during the heating season, from October to April, using climatological data for Latvia. Results showed that energy savings of 46% to 87% can be achieved by applying the methodology in the design of industrial buildings; in addition, a well-designed ventilation system increases the workers' productivity. This study presented a methodology which can optimize energy consumption in the food industry sector.
Density functional calculations on hydrocarbon isodesmic reactions
Fortunelli, Alessandro; Selmi, Massimo
1994-06-01
Hartree—Fock, Hartree—Fock-plus-correlation and self-consistent Kohn—Sham calculations are performed on a set of hydrocarbon isodesmic reactions, i.e. reactions among hydrocarbons in which the number and type of carbon—carbon and carbon—hydrogen bonds is conserved. It is found that neither Hartree—Fock nor Kohn—Sham methods correctly predict standard enthalpies, Δ Hr(298 K), of these reactions, even though — for reactions involving molecules containing strained double bonds — the agreement between the theoretical estimates and the experimental values of Δ Hr seems to be improved by the self-consistent solution of the Kohn—Sham equations. The remaining discrepancies are attributed to intramolecular dispersion effects, that are not described by ordinary exchange—correlation functionals, and are eliminated by introducing corrections based on a simple semi-empirical model.
Calculating Outsourcing Strategies and Trials of Strength
DEFF Research Database (Denmark)
Christensen, Mark; Skærbæk, Peter; Tryggestad, Kjell
was termed ‘internal optimization’ to first increase efficiency and be followed by anticipated sequential tenders to test the free market against internal provision. This option implied a time perspective where outsourcing, if not economically feasible, would be postponed and subsequently tested....... The alternative option was an immediate outsourcing strategy with facility services being the object of large cross-functional contracts for all Danish military establishments. By succeeding in presenting ‘internal optimization’ as an outsourcing option (as opposed to the usual ‘make’ option) this case...... demonstrates the power of projects and their use of accounting calculation. We study how the two options emerged and were valued differently by the supra-national outsourcing program and the local Defense projects over 22 years and how that valuation process involved accounting. Drawing on Actor-Network Theory...
Zero energy scattering calculation in Euclidean space
Carbonell, J
2016-01-01
We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe-Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe-Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Zero energy scattering calculation in Euclidean space
Directory of Open Access Journals (Sweden)
J. Carbonell
2016-03-01
Full Text Available We show that the Bethe–Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe–Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe–Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Zero energy scattering calculation in Euclidean space
Energy Technology Data Exchange (ETDEWEB)
Carbonell, J. [Institut de Physique Nucléaire, Université Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France); Karmanov, V.A., E-mail: karmanov@sci.lebedev.ru [Lebedev Physical Institute, Leninsky Prospekt 53, 119991 Moscow (Russian Federation)
2016-03-10
We show that the Bethe–Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe–Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe–Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
Zero energy scattering calculation in Euclidean space
Carbonell, J.; Karmanov, V. A.
2016-03-01
We show that the Bethe-Salpeter equation for the scattering amplitude in the limit of zero incident energy can be transformed into a purely Euclidean form, as it is the case for the bound states. The decoupling between Euclidean and Minkowski amplitudes is only possible for zero energy scattering observables and allows determining the scattering length from the Euclidean Bethe-Salpeter amplitude. Such a possibility strongly simplifies the numerical solution of the Bethe-Salpeter equation and suggests an alternative way to compute the scattering length in Lattice Euclidean calculations without using the Luscher formalism. The derivations contained in this work were performed for scalar particles and one-boson exchange kernel. They can be generalized to the fermion case and more involved interactions.
ANALYTICAL METHODS FOR CALCULATING FAN AERODYNAMICS
Directory of Open Access Journals (Sweden)
Jan Dostal
2015-12-01
Full Text Available This paper presents results obtained between 2010 and 2014 in the field of fan aerodynamics at the Department of Composite Technology at the VZLÚ aerospace research and experimental institute in Prague – Letnany. The need for rapid and accurate methods for the preliminary design of blade machinery led to the creation of a mathematical model based on the basic laws of turbomachine aerodynamics. The mathematical model, the derivation of which is briefly described below, has been encoded in a computer programme, which enables the theoretical characteristics of a fan of the designed geometry to be determined rapidly. The validity of the mathematical model is assessed continuously by measuring model fans in the measuring unit, which was developed and manufactured specifically for this purpose. The paper also presents a comparison between measured characteristics and characteristics determined by the mathematical model as the basis for a discussion on possible causes of measured deviations and calculation deviations.
Development of automatic luminosity calculation framework
Lavicka, Roman
2015-01-01
Up-to-date knowledge on the collected number of events and integrated luminosity is crucial for the ALICE data taking and trigger strategy planning. The purpose of the project is to develop a framework for the automatic recalculation of achieved statistics and integrated luminosity on a daily basis using information from the ALICE data base. We have been encouraged encouraged to work on the improvement of available luminosity calculation algorithms, in particular accounting for pile-up corrections. Results are represented in a form of trending plots and summary tables for different trigger classes and stored in the personal web site of the author with an outlook on the possibility to story it in the ALICE monitoring repository.
Calculation methods of the nuclear characteristics
Dubovichenko, S B
2010-01-01
In the book the mathematical methods of nuclear cross sections and phases of elastic scattering, energy and characteristics of bound states in two- and three-particle nuclear systems, when the potentials of interaction contain not only central, but also tensor component, are presented. Are given the descriptions of the mathematical numerical calculation methods and computer programs in the algorithmic language "BASIC" for "Turbo Basic" of firm "Borland" for the computers of the type IBM PC AT. For the numerical solutions of the initial Schroedinger equations are used finite- difference and variational methods, and also method of Runge-Kutta with the automatic calling sequence on the assigned accuracy of results for the scattering phase shifts and binding energy. Is given the description not of the standard methods of solving the system of equations of Schroedinger to the bound states and the alternative to Schmidt's method, method of solution of the generalized matrix problem at the eigenvalues. The developed...
Calculation of topological connectivity index for minerals
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Topological method was applied firstly to calculate the topological connectivity index of minerals (TCIM). The reciprocal of effective atomic refractivity of metal dement in minerals was chosen as its valence. The reasonability of TCIM as an activity criterion was tested through comparison of TCIM with two kinds of dectronegativity parameter, i.e. ionic percentage and energy criteria of Yang's electronegativity, solubility product, energy criterion according to the gen eralized perturbation theory and adsorption of flotation reagents on the surface of minerals. The results indicated that TCIM is an effective structural parameter of minerals to study the structure-activity relationship. In addition, different mineral is of different TCIM value, so TCIM brings about convenience in comparison of flotation activity for minerals.
Matrix model calculations beyond the spherical limit
Energy Technology Data Exchange (ETDEWEB)
Ambjoern, J. (Niels Bohr Institute, Copenhagen (Denmark)); Chekhov, L. (L.P.T.H.E., Universite Pierre et Marie Curie, 75 - Paris (France)); Kristjansen, C.F. (Niels Bohr Institute, Copenhagen (Denmark)); Makeenko, Yu. (Institute of Theoretical and Experimental Physics, Moscow (Russian Federation))
1993-08-30
We propose an improved iterative scheme for calculating higher genus contributions to the multi-loop (or multi-point) correlators and the partition function of the hermitian one matrix model. We present explicit results up to genus two. We develop a version which gives directly the result in the double scaling limit and present explicit results up to genus four. Using the latter version we prove that the hermitian and the complex matrix model are equivalent in the double scaling limit and that in this limit they are both equivalent to the Kontsevich model. We discuss how our results away from the double scaling limit are related to the structure of moduli space. (orig.)
Marginal Loss Calculations for the DCOPF
Energy Technology Data Exchange (ETDEWEB)
Eldridge, Brent [Federal Energy Regulatory Commission, Washington, DC (United States); Johns Hopkins Univ., Baltimore, MD (United States); O' Neill, Richard P. [Federal Energy Regulatory Commission, Washington, DC (United States); Castillo, Andrea R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2016-12-05
The purpose of this paper is to explain some aspects of including a marginal line loss approximation in the DCOPF. The DCOPF optimizes electric generator dispatch using simplified power flow physics. Since the standard assumptions in the DCOPF include a lossless network, a number of modifications have to be added to the model. Calculating marginal losses allows the DCOPF to optimize the location of power generation, so that generators that are closer to demand centers are relatively cheaper than remote generation. The problem formulations discussed in this paper will simplify many aspects of practical electric dispatch implementations in use today, but will include sufficient detail to demonstrate a few points with regard to the handling of losses.
Calculation of light emission in sonoluminescence
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
We modify a uniform model of single bubble sonoluminescence,in which heat diffusion,water vapor diffusion and chemical reactions are included to describe the bubble dynamics,and the processes of electron-atom bremsstrahlung,electron-ion bremsstrahlung and recombination radiation,radiative attachment of electrons to atoms and molecules,line emissions of OH radicals and Na atoms are taken into account to calculate the light emission. With this model,we compute the light pulse width,the photon number per flash,the continuum and line spectra and the gas species as the products of chemical reactions,and try to compare with all the experimental data available. We obtain good agreement with the observations of Ar and Xe bubbles in many cases,but fail to match the experimental data of the photon number per flash. We also find that for He bubble the computed photon number is always too small to interpret the observations.
COSTS CALCULATION OF TARGET COSTING METHOD
Directory of Open Access Journals (Sweden)
Sebastian UNGUREANU
2014-06-01
Full Text Available Cost information system plays an important role in every organization in the decision making process. An important task of management is ensuring control of the operations, processes, sectors, and not ultimately on costs. Although in achieving the objectives of an organization compete more control systems (production control, quality control, etc., the cost information system is important because monitors results of the other. Detailed analysis of costs, production cost calculation, quantification of losses, estimate the work efficiency provides a solid basis for financial control. Knowledge of the costs is a decisive factor in taking decisions and planning future activities. Managers are concerned about the costs that will appear in the future, their level underpinning the supply and production decisions as well as price policy. An important factor is the efficiency of cost information system in such a way that the information provided by it may be useful for decisions and planning of the work.
COSTS CALCULATION OF TARGET COSTING METHOD
Directory of Open Access Journals (Sweden)
Sebastian UNGUREANU
2014-06-01
Full Text Available Cost information system plays an important role in every organization in the decision making process. An important task of management is ensuring control of the operations, processes, sectors, and not ultimately on costs. Although in achieving the objectives of an organization compete more control systems (production control, quality control, etc., the cost information system is important because monitors results of the other. Detailed analysis of costs, production cost calculation, quantification of losses, estimate the work efficiency provides a solid basis for financial control. Knowledge of the costs is a decisive factor in taking decisions and planning future activities. Managers are concerned about the costs that will appear in the future, their level underpinning the supply and production decisions as well as price policy. An important factor is the efficiency of cost information system in such a way that the information provided by it may be useful for decisions and planning of the work.
Improved algorithm for calculating the Chandrasekhar function
Jablonski, A.
2013-02-01
Theoretical models of electron transport in condensed matter require an effective source of the Chandrasekhar H(x,omega) function. A code providing the H(x,omega) function has to be both accurate and very fast. The current revision of the code published earlier [A. Jablonski, Comput. Phys. Commun. 183 (2012) 1773] decreased the running time, averaged over different pairs of arguments x and omega, by a factor of more than 20. The decrease of the running time in the range of small values of the argument x, less than 0.05, is even more pronounced, reaching a factor of 30. The accuracy of the current code is not affected, and is typically better than 12 decimal places. New version program summaryProgram title: CHANDRAS_v2 Catalogue identifier: AEMC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC license, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 976 No. of bytes in distributed program, including test data, etc.: 11416 Distribution format: tar.gz Programming language: Fortran 90 Computer: Any computer with a Fortran 90 compiler Operating system: Windows 7, Windows XP, Unix/Linux RAM: 0.7 MB Classification: 2.4, 7.2 Catalogue identifier of previous version: AEMC_v1_0 Journal reference of previous version: Comput. Phys. Commun. 183 (2012) 1773 Does the new version supersede the old program: Yes Nature of problem: An attempt has been made to develop a subroutine that calculates the Chandrasekhar function with high accuracy, of at least 10 decimal places. Simultaneously, this subroutine should be very fast. Both requirements stem from the theory of electron transport in condensed matter. Solution method: Two algorithms were developed, each based on a different integral representation of the Chandrasekhar function. The final algorithm is edited by mixing these two
a Relativistic Calculation of Baryon Masses
Giammarco, Joseph Michael
1990-01-01
We calculate ground state baryon masses using a saddle-point variational (SPV) method, which permits us the use of fully relativistic 4-component Dirac spinors without the need for positive energy projection operators. This variational approach has been shown to work in the relativistic domain for one particle in an external potential (Dirac equation). We have extended its use to the relativistic 3-body Breit equation. Our procedure is as follows: we pick a trial wave function having the appropriate spin, flavor and color dependence. This can be accomplished with a non-symmetric relativistic spatial wave function having two different size parameters if the the first two quarks are always chosen to be identical. We than calculate an energy eigenvalue for the particle state and vary the parameters in our wave function to search for a "saddle-point". We minimize the energy with respect to the two size parameters and maximize with respect to two parameters that measure the contribution from the negative-energy states. This gives the baryon's mass as a function of four input parameters: the masses of the up, down and strange quarks (m_{u=d },m_{s}), and the strength of the coupling constants for the potentials ( alpha_{s},mu). We do this for the eight Baryon ground states and fit these to experimental data. This fit gives the values of the input parameters. For the potentials we use a coulombic term to represent one-gluon exchange and a linear term for confinement. For both terms we include a retardation term required by relativity. We also add delta function and spin-spin terms to account for the large contribution of the coulomb interaction at the origin. The results we obtain from our SPV method are in good agreement with experimental data. The actual search for the saddle-point parameters and the fitting of the quark masses and the values of the coupling strengths was done on a CDC Cyber 860.
Activation calculation of the EURISOL mercury target
Energy Technology Data Exchange (ETDEWEB)
Rapp, B.; David, J.C.; Blideanu, V.; Dore, D.; Ridikas, D.; Thiolliere, N
2006-08-15
We have used MCNPX coupled to CINDER to estimate the production of radioactive nuclides in the EURISOL 4 MW liquid mercury target during a 40 years'lifetime of the installation. The calculations have been done with different intra-nuclear cascade and fission evaporation model combinations. A benchmark exercise has allowed a better understanding of differences seen between these models for the creation of tritium and fission products. To obtain a realistic production yield for tritium gas in proton induced spallation reactions, we recommend using the ISABEL-RAL model, while both CEM2k and BERTINI-RAL overestimate the production rate above 1 GeV incident proton. The best combinations of models to calculate the residual nuclei production are those using ABLA fission-evaporation model, CEM2k or combinations using RAL model are giving too broad mass distributions when compared to available data. An extensive list of radio-nuclides was obtained and is available on tabular format, we show that the 4 nuclei whose contributions to the total activity of the mercury target (after 40 years of irradiation) are the most important are the following: -) 1 day after shutdown: Y{sup 91} (15%), Y{sup 90} (13%), Hg{sup 197} (6%) and Sr{sup 89} (5%); -) 1 year after shutdown: H{sup 3} (19%), Y{sup 90} (17%), Sr{sup 90} (17%) and Nb{sup 93*} (10%); -) 10 years after shutdown: Y{sup 90} (22%), Sr{sup 90} (22%), H{sup 3} (18%) and Nb{sup 93*} (14%); and -) 100 years after shutdown: Mo{sup 93} (34%), Nb{sup 93*} (32%), Pt{sup 193} (9%) and Y{sup 90} (8%). (A.C.)
An integrated tool for loop calculations: AITALC
Lorca, Alejandro; Riemann, Tord
2006-01-01
AITALC, a new tool for automating loop calculations in high energy physics, is described. The package creates Fortran code for two-fermion scattering processes automatically, starting from the generation and analysis of the Feynman graphs. We describe the modules of the tool, the intercommunication between them and illustrate its use with three examples. Program summaryTitle of the program:AITALC version 1.2.1 (9 August 2005) Catalogue identifier:ADWO Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWO Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Computer:PC i386 Operating system:GNU/ LINUX, tested on different distributions SuSE 8.2 to 9.3, Red Hat 7.2, Debian 3.0, Ubuntu 5.04. Also on SOLARIS Programming language used:GNU MAKE, DIANA, FORM, FORTRAN77 Additional programs/libraries used:DIANA 2.35 ( QGRAF 2.0), FORM 3.1, LOOPTOOLS 2.1 ( FF) Memory required to execute with typical data:Up to about 10 MB No. of processors used:1 No. of lines in distributed program, including test data, etc.:40 926 No. of bytes in distributed program, including test data, etc.:371 424 Distribution format:tar gzip file High-speed storage required:from 1.5 to 30 MB, depending on modules present and unfolding of examples Nature of the physical problem:Calculation of differential cross sections for ee annihilation in one-loop approximation. Method of solution:Generation and perturbative analysis of Feynman diagrams with later evaluation of matrix elements and form factors. Restriction of the complexity of the problem:The limit of application is, for the moment, the 2→2 particle reactions in the electro-weak standard model. Typical running time:Few minutes, being highly depending on the complexity of the process and the FORTRAN compiler.
Enhancing calculation of thin sea ice growth
Appel, Igor
2016-12-01
The goal of the present study is to develop, generate, and integrate into operational practice a new model of ice growth. The development of this Sea Ice Growth Model for Arctic (SIGMA), a description of the theoretical foundation, the model advantages and analysis of its results are considered in the paper. The enhanced model includes two principal modifications. Surface temperature of snow on ice is defined as internal model parameter maintaining rigorous consistency between processes of atmosphere-ice thermodynamic interaction and ice growth. The snow depth on ice is naturally defined as a function of a local snowfall rate and linearly depends on time rather than ice thickness. The model was initially outlined in the Visible Infrared Radiometer Suite (VIIRS) Sea Ice Characterization Algorithm Theoretical Basis Document (Appel et al., 2005) that included two different approaches to retrieve sea ice age: reflectance analysis for daytime and derivation of ice thickness using energy balance for nighttime. Only the latter method is considered in this paper. The improved account for the influence of surface temperature and snow depth increases the reliability of ice thickness calculations and is used to develop an analytical Snow Depth/Ice Thickness Look up table suitable to the VIIRS observations as well as to other instruments. The applicability of SIGMA to retrieve ice thickness from the VIIRS satellite observations and the comparison of its results with the One-dimensional Thermodynamic Ice Model (OTIM) are also considered. The comparison of the two models demonstrating the difference between their assessments of heat fluxes and radical distinction between the influences of snow depth uncertainty on errors of ice thickness calculations is of great significance to further improve the retrieval of ice thickness from satellite observations.
Data calculation program for RELAP 5 code
Energy Technology Data Exchange (ETDEWEB)
Silvestre, Larissa J.B.; Sabundjian, Gaiane, E-mail: larissajbs@usp.br, E-mail: gdjian@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)
2015-07-01
As the criteria and requirements for a nuclear power plant are extremely rigid, computer programs for simulation and safety analysis are required for certifying and licensing a plant. Based on this scenario, some sophisticated computational tools have been used such as the Reactor Excursion and Leak Analysis Program (RELAP5), which is the most used code for the thermo-hydraulic analysis of accidents and transients in nuclear reactors. A major difficulty in the simulation using RELAP5 code is the amount of information required for the simulation of thermal-hydraulic accidents or transients. The preparation of the input data leads to a very large number of mathematical operations for calculating the geometry of the components. Therefore, a mathematical friendly preprocessor was developed in order to perform these calculations and prepare RELAP5 input data. The Visual Basic for Application (VBA) combined with Microsoft EXCEL demonstrated to be an efficient tool to perform a number of tasks in the development of the program. Due to the absence of necessary information about some RELAP5 components, this work aims to make improvements to the Mathematic Preprocessor for RELAP5 code (PREREL5). For the new version of the preprocessor, new screens of some components that were not programmed in the original version were designed; moreover, screens of pre-existing components were redesigned to improve the program. In addition, an English version was provided for the new version of the PREREL5. The new design of PREREL5 contributes for saving time and minimizing mistakes made by users of the RELAP5 code. The final version of this preprocessor will be applied to Angra 2. (author)
Calculating Organic Carbon Stock from Forest Soils
Directory of Open Access Journals (Sweden)
Lucian Constantin DINCĂ
2015-12-01
Full Text Available The organic carbon stock (SOC (t/ha was calculated in different approaches in order to enhance the differences among methods and their utility regarding specific studies. Using data obtained in Romania (2000-2012 from 4,500 profiles and 9,523 soil horizons, the organic carbon stock was calculated for the main forest soils (18 types using three different methods: 1 on pedogenetical horizons, by soil bulk density and depth class/horizon thickness; 2 by soil type and standard depths; 3 using regression equations between the quantity of organic C and harvesting depths. Even though the same data were used, the differences between the values of C stock obtained from the three methods were relatively high. The first method led to an overvaluation of the C stock. The differences between methods 1 and 2 were high (and reached 33% for andosol, while the differences between methods 2 and 3 were smaller (a maximum of 23% for rendzic leptosol. The differences between methods 2 and 3 were significantly lower especially for andosol, arenosol and vertisol. A thorough analysis of all three methods concluded that the best method to evaluate the organic C stock was to distribute the obtained values on the following standard depths: 0 - 10 cm; 10 - 20 cm; 20 - 40 cm; > 40 cm. For each soil type, a correlation between the quantity of organic C and the sample harvesting depth was also established. These correlations were significant for all types of soil; however, lower correlation coefficients were registered for rendzic leptosol, haplic podzol and fluvisol.
Accurate calculation of the p Ka of trifluoroacetic acid using high-level ab initio calculations
Namazian, Mansoor; Zakery, Maryam; Noorbala, Mohammad R.; Coote, Michelle L.
2008-01-01
The p Ka value of trifluoroacetic acid has been successfully calculated using high-level ab initio methods such as G3 and CBS-QB3. Solvation energies have been calculated using CPCM continuum model of solvation at the HF and B3-LYP levels of theory with various basis sets. Excellent agreement with experiment (to within 0.4 p Ka units) was obtained using CPCM solvation energies at the B3-LYP/6-31+G(d) level (or larger) in conjunction with CBS-QB3 or G3 gas-phase energies of trifluoroacetic acid and its anion.
[Generating person-years and calculating SMR using SAS: a simple program for exact calculations].
Marchand, J-L
2010-10-01
The computation of standardized incidence/mortality ratios or Poisson regression requires the calculation of person-years generated in a cohort. Softwares can do that, but SAS users still need to program this step themselves. Various algorithms were published previously, but they do not perform exact calculations: the present paper describes a simple program, which creates exact person-years, and computes SMRs. This program provides a referenced tool to perform this analysis in a cohort, with SAS or another language (the algorithm used can be easily adapted). Copyright © 2010 Elsevier Masson SAS. All rights reserved.
40 CFR 1033.705 - Calculating emission credits.
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Calculating emission credits. 1033.705... Calculating emission credits. The provisions of this section apply separately for calculating emission credits for NOX or PM. (a) Calculate positive emission credits for an engine family that has an FEL below the...
42 CFR 403.253 - Calculation of benefits.
2010-10-01
... values on the initial calculation date of— (A) Expected incurred benefits in the loss ratio calculation period, to— (B) The total policy reserve at the last day of the loss ratio calculation period: and (ii... Ratio Provisions § 403.253 Calculation of benefits. (a) General provisions. (1) Except as provided...
FIESTA 2: Parallelizeable multiloop numerical calculations
Smirnov, A. V.; Smirnov, V. A.; Tentyukov, M.
2011-03-01
The program FIESTA has been completely rewritten. Now it can be used not only as a tool to evaluate Feynman integrals numerically, but also to expand Feynman integrals automatically in limits of momenta and masses with the use of sector decompositions and Mellin-Barnes representations. Other important improvements to the code are complete parallelization (even to multiple computers), high-precision arithmetics (allowing to calculate integrals which were undoable before), new integrators, Speer sectors as a strategy, the possibility to evaluate more general parametric integrals. Program summaryProgram title:FIESTA 2 Catalogue identifier: AECP_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECP_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL version 2 No. of lines in distributed program, including test data, etc.: 39 783 No. of bytes in distributed program, including test data, etc.: 6 154 515 Distribution format: tar.gz Programming language: Wolfram Mathematica 6.0 (or higher) and C Computer: From a desktop PC to a supercomputer Operating system: Unix, Linux, Windows, Mac OS X Has the code been vectorised or parallelized?: Yes, the code has been parallelized for use on multi-kernel computers as well as clusters via Mathlink over the TCP/IP protocol. The program can work successfully with a single processor, however, it is ready to work in a parallel environment and the use of multi-kernel processor and multi-processor computers significantly speeds up the calculation; on clusters the calculation speed can be improved even further. RAM: Depends on the complexity of the problem Classification: 4.4, 4.12, 5, 6.5 Catalogue identifier of previous version: AECP_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 735 External routines: QLink [1], Cuba library [2], MPFR [3] Does the new version supersede the previous version?: Yes Nature of problem: The sector
Iron diffusion from first principles calculations
Wann, E.; Ammann, M. W.; Vocadlo, L.; Wood, I. G.; Lord, O. T.; Brodholt, J. P.; Dobson, D. P.
2013-12-01
The cores of Earth and other terrestrial planets are made up largely of iron1 and it is therefore very important to understand iron's physical properties. Chemical diffusion is one such property and is central to many processes, such as crystal growth, and viscosity. Debate still surrounds the explanation for the seismologically observed anisotropy of the inner core2, and hypotheses include convection3, anisotropic growth4 and dendritic growth5, all of which depend on diffusion. In addition to this, the main deformation mechanism at the inner-outer core boundary is believed to be diffusion creep6. It is clear, therefore, that to gain a comprehensive understanding of the core, a thorough understanding of diffusion is necessary. The extremely high pressures and temperatures of the Earth's core make experiments at these conditions a challenge. Low-temperature and low-pressure experimental data must be extrapolated across a very wide gap to reach the relevant conditions, resulting in very poorly constrained values for diffusivity and viscosity. In addition to these dangers of extrapolation, preliminary results show that magnetisation plays a major role in the activation energies for diffusion at low pressures therefore creating a break down in homologous scaling to high pressures. First principles calculations provide a means of investigating diffusivity at core conditions, have already been shown to be in very good agreement with experiments7, and will certainly provide a better estimate for diffusivity than extrapolation. Here, we present first principles simulations of self-diffusion in solid iron for the FCC, BCC and HCP structures at core conditions in addition to low-temperature and low-pressure calculations relevant to experimental data. 1. Birch, F. Density and composition of mantle and core. Journal of Geophysical Research 69, 4377-4388 (1964). 2. Irving, J. C. E. & Deuss, A. Hemispherical structure in inner core velocity anisotropy. Journal of Geophysical
Improvement of Neutronics Calculation Methods for Fast Reactors
Takeda, Toshikazu
2011-01-01
To accurately estimate neutronics properties of fast reactors, particularly Japan Sodium-cooled Fast Reactor of1,500 MW electric, calculational methods are being improved in Japan.This paper describes the planning and the ongoing development of the neutronics calculation methods in the fieldof 1) assembly calculations including the calculations of effective cross sections, 2) core calculations and 3) uncertaintyevaluation and uncertainty reduction.