Convergent close-coupling calculations of electron-helium scattering
Energy Technology Data Exchange (ETDEWEB)
Fursa, D.V.; Bray, I. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre
1996-11-01
We present a review of the recent electron-helium calculations and experiments concentrating on the extensive application of the convergent close-coupling (CCC) method. Elastic, excitation, and ionization processes are considered, as well as excitation of the metastable states. The present status of agreement between theory and experiment for elastic and discrete excitations of the ground state is, in our view, quite satisfactory. However, discrepancies for excitation of the metastable states are substantial and invite urgent attention. Application of the CCC method to the calculation of differential ionization cross sections is encouraging, but also shows some fundamental difficulties. (authors). 92 refs., 15 figs.
Convergent close-coupling calculations of electron-hydrogen scattering
International Nuclear Information System (INIS)
The convergence of the close-coupling formalism is studied by expanding the target states in an orthogonal L2 Laguerre basis. The theory is without approximation and convergence is established by simply increasing the basis size. The convergent elastic, 2s, and 2p differential cross sections, spin asymmetries, and angular correlation parameters for the 2p excitation at 35, 54.4, and 100 eV are calculated. Integrated and total cross sections as well as T-matrix elements for the first five partial waves are also given. 30 refs., 3 tabs., 9 figs
Close-coupling R-matrix calculations for electron-ion recombination cross sections
International Nuclear Information System (INIS)
Close-coupling (CC) calculations of electron-ion recombination cross sections using the R-matrix method are presented and benchmarked with available experimental measurements. The electron-ion recombination process, including resonant and non-resonant recombination may be unified as a natural extension of the coupled-channel approximation, as traditionally employed for photoionization and electron-ion scattering. Recombination cross sections can be calculated to the same accuracy by employing similar eigenfunction expansions for the target ion. Detailed results are obtained for electron recombination with C V, C VI, O VIII and Fe XXV. Several sets of theoretical calculations are reported and discussed: non-relativistic CC in LS coupling, relativistic CC in the Breit-Pauli approximation, with radiative attenuation and fine structure, and the relativistic distorted-wave approximation. The theoretical results are in very good agreement with highly accurate experimental measurements at the Heidelberg test storage ring for C V, C VI and O VIII, and the electron-ion beam trap at Livermore for Fe XXV. We discuss the overall effect of radiation damping of all resonances on effective cross sections and rates, important for H- and He-like ions. In addition to agreement with experimental data, the validity of the CC calculations is demonstrated by the continuity between the calculated photorecombination, dielectronic recombination and electron impact excitation cross sections. Certain issues related to the works of Badnell et al (1998 J. Phys. B: At. Mol. Opt. Phys. 31 L239) and Robicheaux (1998 J. Phys. B: At. Mol. Opt. Phys. 31 L109) are also addressed. (author)
International Nuclear Information System (INIS)
We report rigid-rotator close coupling calculations and quasiclassical trajectory calculations for HF--HF collisions with total angular momentum zero. The results are compared to test the trajectory method
Adjustment of Born-Oppenheimer electronic wave functions to simplify close coupling calculations.
Buenker, Robert J; Liebermann, Heinz-Peter; Zhang, Yu; Wu, Yong; Yan, Lingling; Liu, Chunhua; Qu, Yizhi; Wang, Jianguo
2013-04-30
Technical problems connected with use of the Born-Oppenheimer clamped-nuclei approximation to generate electronic wave functions, potential energy surfaces (PES), and associated properties are discussed. A computational procedure for adjusting the phases of the wave functions, as well as their order when potential crossings occur, is presented which is based on the calculation of overlaps between sets of molecular orbitals and configuration interaction eigenfunctions obtained at neighboring nuclear conformations. This approach has significant advantages for theoretical treatments describing atomic collisions and photo-dissociation processes by means of ab initio PES, electronic transition moments, and nonadiabatic radial and rotational coupling matrix elements. It ensures that the electronic wave functions are continuous over the entire range of nuclear conformations considered, thereby greatly simplifying the process of obtaining the above quantities from the results of single-point Born-Oppenheimer calculations. The overlap results are also used to define a diabatic transformation of the wave functions obtained for conical intersections that greatly simplifies the computation of off-diagonal matrix elements by eliminating the need for complex phase factors. PMID:23345171
Armour, E. A. G.; Plummer, M.
2016-08-01
In a previous paper (2010 Phys. Rev. A 82 042702; 2014 Phys. Rev. A 89 069901(E)), one of us (EAGA) calculated the resonant contribution to {Z}{eff}({k}0), the effective number of electrons available for annihilation by a positron with wave number k 0, in the scattering of a heavy positron by H2. The mass of the positron was increased just sufficiently for a bound state to occur. This calculation was carried out using the Kohn variational method. An alternative method is to use the close-coupled equations for the system under consideration. We compare our results with those obtained by Gribakin and Lee (2006 Phys. Rev. Lett. 97 193201). There is a resonant contribution to {Z}{eff}({k}0) from the vibrationally excited quasibound state which may be described by a Breit–Wigner resonance formula arising naturally from the close-coupling analysis if a certain additional assumption is made. There is also a separate resonant contribution to {Z}{eff}({k}0) from the open channel function influenced by the quasibound state, and a cross term. It is shown that the contribution from the quasibound state is very similar to the expression for the resonant contribution obtained by Gribakin and Lee. Comparison is made with other treatments, for example, the close-coupling calculation of Nishimura and Gianturco (2003 Phys. Rev. Lett. 90 183201).
Institute of Scientific and Technical Information of China (English)
Zhong Hua SHI; Mao Chu GONG; Yao Qiang CHEN
2006-01-01
A catalyst comprised novel high surface area alumina support was prepared to control emission of automobiles. The results showed that prepared catalyst could satisfy the requirements of a high performance close coupled catalyst for its good catalytic activity at low temperature and good stability at high temperature.
International Nuclear Information System (INIS)
A close-coupling calculation is performed for the photoionization cross section of the high-lying core-excited state 1s2s22p5 1Po of Ne2+ in the energy region of the double K-vacancy resonance 1s02s22p6 1S. The calculation is carried out by using the R-matrix method in the LS-coupling scheme, which includes 27 target states and extensive configuration interaction. The KK-KL x-ray energy, rate and autoionization width of the double K-vacancy state, together with KK-KLL Auger energies and branching ratios of the main channels, are obtained from the cross sections and the contributions of these channels. The calculated resonance energy and x-ray rate are in good agreement with the existing experimental and theoretical results. For the Auger width, our result agrees well with the available experimental result and it is very close to the average of other theoretical data, which shows considerable differences with each other. The Auger energy of the predominate channel KK-KL23L23 2D is in rather good agreement with recent experiments on the Auger spectra. Our branching ratios for the channels KK-KL23L23 2D and KK-KL23L23 2S are larger than the results obtained by the multi-configuration Dirac–Fock method by ∼20% on average, which may be due to the coupling of the continuum channels. (paper)
Onda, K.; Truhlar, D. G.
1978-01-01
A calculation has been made of the elastic scattering and rotational excitation cross sections for e(-)-N2 scattering at 30 and 50 eV using quantum chemical techniques specially designed to be applicable to elastic and inelastic electron scattering by general polyatomic molecules. The angle dependence of the sum of the elastic and rotational excitation differential cross sections is in good agreement with experiment at all scattering angles at both energies, but at 50 eV the difference from experiment exceeds the experimental uncertainty at small scattering angles and near the minimum of the differential cross section. At large scattering angles the rotational excitation cross sections are predicted to exceed the elastic scattering cross sections. The absolute cross sections agree with experiment at some angles but at other angles are as much as 51% (30 eV) or 90% (50 eV) higher; this may be due at least in part to the difficulty of putting the experimental results on an absolute scale.
Fernandez-Menchero, L; Del Zanna, G; Badnell, N R
2015-01-01
We have carried-out two intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of C-like Fe $^{20+}$, both of which use the same expansions for their configuration interaction (CI) and close-coupling (CC) representations. The first expansion arises from the configurations 2s$^2$ 2p$^2$, 2s 2p$^3$, 2p$^4$, {2s$^2$ 2p, 2s 2p$^2$, 2p$^3$} nl, with n=3,4, for l=0-3, which give rise to 564 CI/CC levels. The second adds configurations 2s$^2$ 2p 5l, for l=0-2, which give rise to 590 CI/CC levels in total. Comparison of oscillator strengths and effective collision strengths from these two calculations demonstrates the lack of convergence in data for n=4 from the smaller one. Comparison of results for the 564 CI/CC level calculation with an earlier ICFT R-matrix calculation which used the exact same CI expansion but truncated the CC expansion to only 200 levels demonstrates the lack of convergence of the earlier data, particularly for n=3 levels. Also, we find that t...
Close coupling wave packet theory of atom diatom scattering
International Nuclear Information System (INIS)
In the space-fixed (SF) coordinate frame and body-fixed (BF) coordinate frame, the state to state transitional probabilities for the He-H2 system are calculated by using the recently developed close coupling wave packet method. The results show that the two theories formulated in the SF frame and BF frame are equivalent, and the calculated results of the two method coincide with that of close coupling method, and that the calculational efficiency in the SF frame is higher than that in the BF frame as the number of coupled terms increases
Why Closely Coupled Work Matters in Global Software Development
DEFF Research Database (Denmark)
Jensen, Rasmus Eskild
2014-01-01
We report on an ethnographic study of an offshore global software development project between Danish and Philippine developers in a Danish company called GlobalSoft. We investigate why the IT- developers chose to engage in more closely coupled work as the project progressed and argue that closely...
Dynamics Analysis of Close-coupling Multiple Helicopters System
Institute of Scientific and Technical Information of China (English)
Zhao Zhigang; Lu Tiansheng
2008-01-01
The particularity and practicality of harmony operations of close-coupling multiple helicopters indicate that the researches on it are urgent and necessary. Using the model that describes two hovering helicopters carrying one heavy load, an inertia coordinate system and body coordinate systems of each sub-system are established. A nonlinear force model is established too. The equilibrium computation results can be regarded as the reference control inputs of the flight control system under hovering or low-speed flight condition. After the establishment of a translation kinematics model and a posture kinematics model, a coupling dynamics model of the multiple helicopter system is set up. The results can also be regarded as the base to analyze stabilization and design a controller for a close-coupling multiple helicopters harmony operation system.
Solving close-coupling equations in momentum space without singularities III
Bray, A W; Kadyrov, A S; Fursa, D V; Bray, I
2016-01-01
The analytical treatment of the Greens function in the convergent close-coupling method [Bray et al. Comp. Phys. Comm. 203 147 (2016)] has been extended to charged targets. Furthermore, we show that this approach allows for calculation of cross sections at zero channel energy. For neutral targets this means the electron scattering length may be obtained from a single calculation with zero incident energy. For charged targets the non-zero excitation cross sections at thresholds can also be calculated by simply setting the incident energy to the exact threshold value. These features are demonstrated by considering electron scattering on H and He+.
Flowfield study of a close-coupled canard configuration
O'Leary, John F.
1992-01-01
A nulling five-hole pressure probe was used to complete a flowfield survey behind a close-coupled canard and wing model set a 32 degrees angle of attack. The canard and wing were both low-aspect-ratio, highly swept, delta platforms with rounded leading edges. The model was set at to condition of maximum life enhancement of the canard/wing configuration over a corresponding wing-alone configuration, based on previous force measurements. For comparison, the pressure measurements were made wi...
Convergent Close-Coupling Approach to Electron-Atom Collisions
Bray, Igor; Stelbovics, Andris
2007-01-01
It was with great pleasure and honour to accept the invitation to make a presentation at the symposium celebrating the life-long work of Aaron Temkin and Richard Drachman. The work of Aaron Temkin was particularly influential on our own during the development of the CCC method for electron-atom collisions. There are a number of key problems that need to be dealt with when developing a general computational approach to such collisions. Traditionally, the electron energy range was subdivided into the low, intermediate, and high energies. At the low energies only a finite number of channels are open and variational or close-coupling techniques could be used to obtain accurate results. At high energies an infinite number of discrete channels and the target continuum are open, but perturbative techniques are able to yield accurate results. However, at the intermediate energies perturbative techniques fail and computational approaches need to be found for treating the infinite number of open channels. In addition, there are also problems associated with the identical nature of electrons and the difficulty of implementing the boundary conditions for ionization processes. The beauty of the Temkin-Poet model of electron-hydrogen scattering is that it simplifies the full computational problem by neglecting any non-zero orbital angular momenta in the partial-wave expansion, without loosing the complexity associated with the above-mentioned problems. The unique nature of the problem allowed for accurate solution leading to benchmark results which could then be used to test the much more general approaches to electron-atom collision problems. The immense value of the Temkin-Poet model is readily summarised by the fact that the initial papers of Temkin and Poet have been collectively cited around 250 times to date and are still being cited in present times. Many of the citations came from our own work during the course of the development of the CCC method, which we now describe.
Energy Technology Data Exchange (ETDEWEB)
Horner, D.A.; Colgan, J.; Martin, F.; McCurdy, C.W.; Pindzola, M.S.; Rescigno, T.N.
2004-06-01
Symmetrized complex amplitudes for the double photoionization of helium are computed by the time-dependent close-coupling and exterior complex scaling methods, and it is demonstrated that both methods are capable of the direct calculation of these amplitudes. The results are found to be in excellent agreement with each other and in very good agreement with results of other ab initio methods and experiment.
Close-Coupling R-Matrix Approach to Simulating Ion-Atom Collisions for Accelerator Applications
Stoltz, Peter
2005-01-01
We have implemented an R-matrix close coupling approach to calculate capture, ionization, stripping and excitation cross-sections for 0.5 to 8.0 MeV K+ incident on Ar. This is relevant to the High Current Experiment at Lawrence Berkley National Laboratory. These cross sections are used to model accelerator particle dynamics where background gasses can interfere with beam quality. This code is a semi-classical approach that uses quantum mechanics to describe the particle interactions and uses classical mechanics to describe the nuclei trajectories. We compare a hydrogenic approximation for K+ with a pseudo-potential approach. Further we are developing a variational approach to quickly determine the best pseudo-potential parameters. Since many R-Matrix computationalists use this pseudo-potential approach, this approach will be useful for helping generate cross sections for any collision system.
Institute of Scientific and Technical Information of China (English)
YANG Xiao-Yan; XIE Wen-Chong; LIU De-Ming
2008-01-01
We investigate the sensitivity enhancement of surface plasmon resonance(SPR)sensors using planar metallic films closely coupled to nanogratings.The strong coupling between localized surface plasmon resonances(LSPRs)presenting in metallic nanostructures and surface plasmon polaritons(SPPs)propagating at the metallic film surface leads to changes of resonance reflection properties,resulting in enhanced sensitivity of SPR sensors.The effects of thickness of the metallic films,grating period and metal materials on the refractive index sensitivity of the device are investigated.The refractive index sensitivity of nanograting-based SPR sensors is predicted to be about 543 nm/RIU(refractive index unit)using optimized structure parameters.Our study on SPR sensors using planar metallic films closely coupled to nanogratings demonstrates the potential for significant improvement in refractive index sensitivity.
Full-dimensional close-coupling study of rovibrationally inelastic scattering of SiO- H2
Yang, B.; Wang, X.; Zhang, P.; Stancil, P. C.; Bowman, J. M.; Balakrishnan, N.; Forrey, R. C.
2016-05-01
Molecular collisional excitation rate coecients are required to interpret spectra of molecular gas not in local thermodynamic equilibrium. Silicon monoxide (SiO) has been detected in a variety of astronomical sources and is of astrophysical importance. Its rovibrational level populations are perturbed by collisions with He, H and H2. The corresponding collisional rate coefficients and their temperature dependence are largely unknown. Theoretical scattering calculations are the primary source of such rate coefficients. In this work a full-dimensional (6D) potential energy surface (PES) of SiO- H2 was calculated using the high-level CCSD(T)-F12B method and fitted using an invariant polynomial approach in 6D. We performed the first full dimensional quantum close-coupling scattering calculations for SiO in collision with H2 on the 6D PES. Pure state-to-state rotational excitation transitions from SiO(v1 = 0 , j1 = 0-10) are computed. For rovibrational transitions, state-to-state and total quenching cross sections and corresponding rate coefficients from several low-lying rotational levels in the first excited vibrational level of SiO are calculated for both para- H2 and ortho- H2 collisions. Work at UGA and Emory are supported by NASA Grant No. NNX12AF42G, at UNLV by NSF Grant No. PHY-1505557, and at Penn State by NSF Grant No. PHY-1503615.
Development of a cement-polymer close-coupled subsurface barrier technology
International Nuclear Information System (INIS)
The primary objective of this project was to further develop close-coupled barrier technology for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and chemically resistant polymer layer. The technology has matured from a regulatory investigation of issues concerning barriers and barrier materials to a pilot-scale, multiple individual column injections at Sandia National Labs (SNL) to full scale demonstration. The feasibility of this barrier concept was successfully proven in a full scale ''cold site'' demonstration at Hanford, WA. Consequently, a full scale deployment of the technology was conducted at an actual environmental restoration site at Brookhaven National Lab (BNL), Long Island, NY. This paper discusses the installation and performance of a technology deployment implemented at OU-1 an Environmental Restoration Site located at BNL
Influence of melt superheat on breakup process of close-coupled gas atomization
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In close-coupled gas atomization(CCGA), the influences of melt superheat on breakup process are fundamental to obtain desired or finer powder. Based on a series of Cu atomization experiment under different superheating conditions, the influences of melt superheat on breakup process were studied. Experimental results indicate that as the melt superheat is increased to 150, 200, 250 and 300 K, the mean particle size (D50) decreases consequently to 34.9, 32.3, 30.9 and 19.7 μm. Theoretical analysis reveals that the primary breakup and secondary breakup processes are close coupled, and the melt superheat radically influences the melt properties,and plays a crucial role on governing the filming process of primary breakup and the atomization modes of secondary breakup. There exists a strong nonlinear decrease of contact angle of melt to nozzle orifice wall when the superheat is increased from 250 K to 300 K,leading to a marked fall of the film thickness formed in primary breakup, and D50 of copper powders is therefore sharply reduced.However, the log-normal distribution feature of particle size has not been substantially improved.
International Nuclear Information System (INIS)
The orientation parameter and the dipole moment of the n = 2 states of He+ resulting from electron capture in He2+ + H collisions are examined using the classical trajectory Monte Carlo (CTMC) method and the close-coupling expansion using two-centre atomic orbitals at 10, 25 and 50 keV amu-1. It is shown that the orientation parameters calculated from the two theories are in good agreement but large discrepancies exist for the dipole moments. Together with previous similar comparisons for p-H collisions, we conclude that the CTMC method is not reliable in predicting the coherence parameters of excited states formed in atomic collisions. (author)
Durability of three-way and close-coupled catalysts for Euro Ⅳ regulation
Institute of Scientific and Technical Information of China (English)
JIA Liwei; SHEN Meiqing; WANG Jun; WANG Jiaming; CHU Xia; GU Weiwei
2008-01-01
The durability of three-way catalyst (TWC) and corresponding close-coupled catalyst (CCC) for Euro Ⅳ stage regulation was in-vestigated through Vehicle Road Running Mode tests, whereas emissions of regulated pollutants of three car fleet were investigated at every 100,000 km miles. The results showed that HC, NOx, and CO emission values could meet Euro Ⅳ regulation limits at every point. The redox properties of TWC and CCC were measured by CO reduction during each isothermal. It was obvious that both aged TWC and aged CCC behaved a good redox property at 673 and 773 K. Based on XRD and BET measurement results, TWC and CCC washcoat were character-ized with good thermal stability.
International Nuclear Information System (INIS)
Details are here provided of amendments to the atomic structure code CIV3 which allow the optional adjustment of Slater parameters and average energies of configurations so that they result in improved energy levels and eigenvectors. It is also indicated how, in principle, the resultant improved eigenvectors can be utilised by the R-matrix collision code, thus providing an optimised target for close coupling collision strength calculations. An analogous computational method was recently reported for distorted wave collision strength calculations and applied to Fe XIII. The general method is suitable for the computation of collision strengths for complex ions and in some cases can then provide a basis for collision strength calculations in ions where ab initio computations break down or result in unnecessarily large errors. (author)
Efficiency of a closed-coupled solar pasteurization system in treating roof harvested rainwater.
Dobrowsky, P H; Carstens, M; De Villiers, J; Cloete, T E; Khan, W
2015-12-01
Many studies have concluded that roof harvested rainwater is susceptible to chemical and microbial contamination. The aim of the study was thus to conduct a preliminary investigation into the efficiency of a closed-coupled solar pasteurization system in reducing the microbiological load in harvested rainwater and to determine the change in chemical components after pasteurization. The temperature of the pasteurized tank water samples collected ranged from 55 to 57°C, 64 to 66°C, 72 to 74°C, 78 to 81°C and 90 to 91°C. Cations analyzed were within drinking water guidelines, with the exception of iron [195.59 μg/L (55°C)-170.1 μg/L (91°C)], aluminum [130.98 μg/L (78°C)], lead [12.81 μg/L (55°C)-13.2 μg/L (91°C)] and nickel [46.43 μg/L (55°C)-32.82 μg/L (78°C)], which were detected at levels above the respective guidelines in the pasteurized tank water samples. Indicator bacteria including, heterotrophic bacteria, Escherichia coli and total coliforms were reduced to below the detection limit at pasteurization temperatures of 72°C and above. However, with the use of molecular techniques Yersinia spp., Legionella spp. and Pseudomonas spp. were detected in tank water samples pasteurized at temperatures greater than 72°C. The viability of the bacteria detected in this study at the higher temperature ranges should thus be assessed before pasteurized harvested rainwater is used as a potable water source. In addition, it is recommended that the storage tank of the pasteurization system be constructed from an alternative material, other than stainless steel, in order for a closed-coupled pasteurization system to be implemented and produce large quantities of potable water from roof harvested rainwater.
A study of measurement and analysis of flow distribution in a close-coupled catalytic converter
Energy Technology Data Exchange (ETDEWEB)
Cho, Y.S.; Kim, D.S. [Kookmin University, Seoul (Korea); Joo, Y.C. [Soonchunhyang University, Asan (Korea)
2001-04-01
In this study, results from an experimental and numerical study of flow distribution in a close-coupled catalytic converter (CCC) are presented. The experiments were carried out using a flow measurement system. Flow distribution at the exit of the first monolith in the CCC was measured using a pitot tube under steady and transient flow conditions. Numerical analysis was done using a CF D code at the same test conditions, and the results were compared with the experimental results. Experimental results showed that the uniformity index of exhaust gas velocity decreases as Reynolds number increases. Under the steady flow conditions, flow through each exhaust pipe concentrates on a small region of the monolith. Under the transient flow conditions, flow through each exhaust pipe with the engine firing order interacts with each other to spread the flow over the monolith face. The numerical analysis results support the experimental results, and help explain the flow pattern in the entry region of the CCC. (author). 6 refs., 8 figs.
Zimmermann, Judith; Wentrup, Cecilia; Sadowski, Miriam; Blazejak, Anna; Gruber-Vodicka, Harald R; Kleiner, Manuel; Ott, Jörg A; Cronholm, Bodil; De Wit, Pierre; Erséus, Christer; Dubilier, Nicole
2016-07-01
The level of integration between associated partners can range from ectosymbioses to extracellular and intracellular endosymbioses, and this range has been assumed to reflect a continuum from less intimate to evolutionarily highly stable associations. In this study, we examined the specificity and evolutionary history of marine symbioses in a group of closely related sulphur-oxidizing bacteria, called Candidatus Thiosymbion, that have established ecto- and endosymbioses with two distantly related animal phyla, Nematoda and Annelida. Intriguingly, in the ectosymbiotic associations of stilbonematine nematodes, we observed a high degree of congruence between symbiont and host phylogenies, based on their ribosomal RNA (rRNA) genes. In contrast, for the endosymbioses of gutless phallodriline annelids (oligochaetes), we found only a weak congruence between symbiont and host phylogenies, based on analyses of symbiont 16S rRNA genes and six host genetic markers. The much higher degree of congruence between nematodes and their ectosymbionts compared to those of annelids and their endosymbionts was confirmed by cophylogenetic analyses. These revealed 15 significant codivergence events between stilbonematine nematodes and their ectosymbionts, but only one event between gutless phallodrilines and their endosymbionts. Phylogenetic analyses of 16S rRNA gene sequences from 50 Cand. Thiosymbion species revealed seven well-supported clades that contained both stilbonematine ectosymbionts and phallodriline endosymbionts. This closely coupled evolutionary history of marine ecto- and endosymbionts suggests that switches between symbiotic lifestyles and between the two host phyla occurred multiple times during the evolution of the Cand. Thiosymbion clade, and highlights the remarkable flexibility of these symbiotic bacteria. PMID:26826340
Choi, B. H.; Poe, R. T.
1977-01-01
A detailed vibrational-rotational (V-R) close-coupling formulation of electron-diatomic-molecule scattering is developed in which the target molecular axis is chosen to be the z-axis and the resulting coupled differential equation is solved in the moving body-fixed frame throughout the entire interaction region. The coupled differential equation and asymptotic boundary conditions in the body-fixed frame are given for each parity, and procedures are outlined for evaluating V-R transition cross sections on the basis of the body-fixed transition and reactance matrix elements. Conditions are discussed for obtaining identical results from the space-fixed and body-fixed formulations in the case where a finite truncated basis set is used. The hybrid theory of Chandra and Temkin (1976) is then reformulated, relevant expressions and formulas for the simultaneous V-R transitions of the hybrid theory are obtained in the same forms as those of the V-R close-coupling theory, and distorted-wave Born-approximation expressions for the cross sections of the hybrid theory are presented. A close-coupling approximation that conserves the internuclear axis component of the incident electronic angular momentum (l subscript z-prime) is derived from the V-R close-coupling formulation in the moving body-fixed frame.
Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization
Energy Technology Data Exchange (ETDEWEB)
Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David
2011-04-01
As the technology for titanium metal injection molding (Ti-MIM) becomes more readily available, efficient Ti alloy fine powder production methods are required. An update on a novel close-coupled gas atomization system has been given. Unique features of the melting apparatus are shown to have measurable effects on the efficiency and ability to fully melt within the induction skull melting system (ISM). The means to initiate the melt flow were also found to be dependent on melt apparatus. Starting oxygen contents of atomization feedstock are suggested based on oxygen pick up during the atomization and MIM processes and compared to a new ASTM specification. Forming of titanium by metal injection molding (Ti-MIM) has been extensively studied with regards to binders, particle shape, and size distribution and suitable de-binding methods have been discovered. As a result, the visibility of Ti-MIM has steadily increased as reviews of technology, acceptability, and availability have been released. In addition, new ASTM specification ASTM F2885-11 for Ti-MIM for biomedical implants was released in early 2011. As the general acceptance of Ti-MIM as a viable fabrication route increases, demand for economical production of high quality Ti alloy powder for the preparation of Ti-MIM feedstock correspondingly increases. The production of spherical powders from the liquid state has required extensive pre-processing into different shapes thereby increasing costs. This has prompted examination of Ti-MIM with non-spherical particle shape. These particles are produced by the hydride/de-hydride process and are equi-axed but fragmented and angular which is less than ideal. Current prices for MIM quality titanium powder range from $40-$220/kg. While it is ideal for the MIM process to utilize spherical powders within the size range of 0.5-20 {mu}m, titanium's high affinity for oxygen to date has prohibited the use of this powder size range. In order to meet oxygen requirements the top
International Nuclear Information System (INIS)
The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45 degree angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained
Energy Technology Data Exchange (ETDEWEB)
Heiser, J.H. [Brookhaven National Lab., Upton, NY (United States). Environmental and Waste Technology Center; Dwyer, B. [Sandia National Lab., Albuquerque, NM (United States)
1997-09-01
The primary objective of this project was to develop and demonstrate the installation and measure the performance of a close-coupled barrier for the containment of subsurface waste or contaminant migration. A close-coupled barrier is produced by first installing a conventional, low-cost, cement-grout containment barrier followed by a thin lining of a polymer grout. The resultant barrier is a cement-polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. The technology has matured from a regulatory investigation of the issues concerning the use of polymers to laboratory compatibility and performance measurements of various polymer systems to a pilot-scale, single column injection at Sandia to full-scale demonstration. The feasibility of the close-coupled barrier concept was proven in a full-scale cold demonstration at Hanford, Washington and then moved to the final stage with a full-scale demonstration at an actual remediation site at Brookhaven National Laboratory (BNL). At the Hanford demonstration the composite barrier was emplaced around and beneath a 20,000 liter tank. The secondary cement layer was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a cone-shaped barrier. The primary barrier was placed by panel jet-grouting with a dual-wall drill stem using a two part polymer grout. The polymer chosen was a high molecular weight acrylic. At the BNL demonstration a V-trough barrier was installed using a conventional cement grout for the secondary layer and an acrylic-gel polymer for the primary layer. Construction techniques were identical to the Hanford installation. This report summarizes the technology development from pilot- to full-scale demonstrations and presents some of the performance and quality achievements attained.
Kadyrov, A S
2016-01-01
Much progress in the theory of positron scattering on atoms has been made in the ten years since the review of Surko, Gribakin and Buckman [J. Phys. B 38, R57 (2005)]. We review this progress for few-electron targets with a particular emphasis on the two-centre convergent close-coupling and other theories which explicitly treat positronium (Ps) formation. While substantial progress has been made for Ps formation in positron scattering on few-electron targets, considerable theoretical development is still required for multielectron atomic and molecular targets.
FDTD analysis of close-coupled 418 MHz radiating devices for human biotelemetry
International Nuclear Information System (INIS)
This paper describes the finite-difference time-domain (FDTD) analysis of antenna-body interaction effects occurring when chest-mounted 418 MHz radio transmitters are used for medical telemetry applications. Whole-body software models (homogeneous, layered and tissue-segmented) were developed for an adult male subject. Using an electrically small (300 mm2) planar loop antenna, calculated radiation efficiencies ranged between 33.5% and 39.2% for a whole-body model, and between 60.7% and 66.1% for a torso; radiation patterns were found to be largely independent of model composition. The computed radiation efficiency for a 21.5 kg phantom representing a six-year-old female was within 1.1 dB of measured results (actual body mass 28 kg) and well-correlated azimuthal radiation patterns were noted. (author)
PROBLEMS AND COSTS OF THE EUROPEAN UNION EXPANSION WITH OVER 27 STATES
Directory of Open Access Journals (Sweden)
Marina Zaharioaie
2010-12-01
Full Text Available Once on his way to enlargement, the European Union has taken a road of no return. History has shown that all candidate countries have become a point of EU Member States. The question thus is not where you go to the European Union enlargement, but how it will look after the enlargement of the Union politically, economically and socially. The objective of this paper is to analyze potential problems and costs of enlargement beyond the 27 states. Thus, we performed an analysis on the implications of enlargement to the Balkans to Asia Minor and even to the former Soviet bloc countries.
Energy Technology Data Exchange (ETDEWEB)
Kim, Duk Sang; Cho, Yong Seok [Kookmin Univ., Seoul (Korea, Republic of)
2004-11-01
Results from an experimental study of flow distribution in a Close-coupled Catalytic Converter (CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC.
Carette, T; Argenti, L; Lindroth, E
2013-01-01
We present a robust, ab initio method for addressing atom-light interactions and apply it to photoionization of argon. We use a close-coupling ansatz constructed on a multi-configurational Hartree-Fock description of localized states and B-spline expansions of the electron radial wave functions. In this implementation, the general many-electron problem can be tackled thanks to the use of the ATSP2K libraries [CPC 176 (2007) 559]. In the present contribution, we combine this method with exterior complex scaling, thereby allowing for the computation of the complex partial amplitudes that encode the whole dynamics of the photoionization process. The method is validated on the 3s3p6np series of resonances converging to the 3s extraction. Then, it is used for computing the energy dependent differential atomic delay between 3p and 3s photoemission, and agreement is found with the measurements of Gu\\'enot et al. [PRA 85 (2012) 053424]. The effect of the presence of resonances in the one-photon spectrum on photoioniz...
Wilkosz, Benjamin Eduard
2015-01-01
In the work presented here, a detailed aerodynamic analysis of an aero engine centrifugal compressor is given. Steady and unsteady 3D-RANS simulations, as well as extensive experimental data have been used for the analysis. The compressor investigated contains a close-coupled pipe-diffuser. A radial-axial deswirler guides the air into the combustion chamber.The investigation presented gives a detailed insight in the loss mechanisms as well as their origin within the centrifugal compressor. In...
Energy Technology Data Exchange (ETDEWEB)
Wright, C.W.
1987-03-01
This document reports the results of the chemical analysis and toxicological testing of process materials sampled during the operation of the Advanced Coal Liquefaction Research and Development Facility (Wilsonville, AL) in the reconfigured, integrated (RITSL run No. 247), the close-coupled, reconfigured, integrated (CCRITSL run No. 249), and the Wyodak coal integrated (ITSL run No. 246) two-stage liquefaction operating modes. Chemical methods of analysis included proton nuclear magnetic resonance spectroscopy, adsorption column chromatography, high resolution gas chromatography, gas chromatography/mass spectrometry, and low-voltage probe-inlet mass spectrometry. Toxicological evaluation of the process materials included a histidine reversion assay for microbial mutagenicity, an initiation/promotion assay for tumorigenicity in mouse skin, and an aquatic toxicity assay using Daphnia magna. The results of these analyses and tests are compared to the previously reported results derived from the Illinois No. 6 coal ITSL and nonintegrated two-stage liquefaction (NTSL) process materials from the Wilsonville facility. 21 refs., 13 figs., 21 tabs.
Bernacchi, C.; Kimball, B. A.; Quarles, D. R.; Long, S. P.; Ort, D. R.
2006-12-01
Stomatal responses to atmospheric change have been documented through a range of enclosure-based experiments. Increases in atmospheric concentration of CO2 ([CO2]) has been shown to decrease stomatal conductance (gs) for a many species under numerous conditions. Less well understood, however, is the extent to which leaf level responses translate to changes in ecosystem evapotranspiration, ET. Since many changes at the soil, plant and canopy microclimate level may feed back on ET, it is not certain that decrease in gs will decrease ET in rainfed crops. To examine the scaling of the effect of elevated [CO2] on gs at the leaf to ecosystem ET, soybean (Glycine max) was grown in field conditions under control (ca 375 μmol CO2 mol-1 air) and elevated [CO2] (ca. 550 μmol mol^{- 1}) using Free Air CO2 Enrichment (FACE). ET was measured from the time of canopy closure to crop senescence using a residual energy balance approach over four growing seasons. Elevated [CO2] caused ET to decrease between 9 and 16% depending on year and despite large increases in photosynthesis and seed yield. Although elevated [CO2] increased leaf area and canopy temperature (Tc), ET was closely coupled (0.78) to gs of the upper canopy leaves; this relationship was not altered by growth at elevated [CO2]. The findings are consistent with model and historical analyses which suggest that, despite system feedbacks, decreased gs at elevated [CO2] results in decreased transfer of water vapor to the atmosphere.
Gladden, R Matthew; Martinez, Pedro; Seth, Puja
2016-01-01
In March and October 2015, the Drug Enforcement Administration (DEA) and CDC, respectively, issued nationwide alerts identifying illicitly manufactured fentanyl (IMF) as a threat to public health and safety (1,2). IMF is unlawfully produced fentanyl, obtained through illicit drug markets, includes fentanyl analogs, and is commonly mixed with or sold as heroin (1,3,4). Starting in 2013, the production and distribution of IMF increased to unprecedented levels, fueled by increases in the global supply, processing, and distribution of fentanyl and fentanyl-precursor chemicals by criminal organizations (3). Fentanyl is a synthetic opioid 50-100 times more potent than morphine (2).* Multiple states have reported increases in fentanyl-involved overdose (poisoning) deaths (fentanyl deaths) (2). This report examined the number of drug products obtained by law enforcement that tested positive for fentanyl (fentanyl submissions) and synthetic opioid-involved deaths other than methadone (synthetic opioid deaths), which include fentanyl deaths and deaths involving other synthetic opioids (e.g., tramadol). Fentanyl deaths are not reported separately in national data. Analyses also were conducted on data from 27 states(†) with consistent death certificate reporting of the drugs involved in overdoses. Nationally, the number of fentanyl submissions and synthetic opioid deaths increased by 426% and 79%, respectively, during 2013-2014; among the 27 analyzed states, fentanyl submission increases were strongly correlated with increases in synthetic opioid deaths. Changes in fentanyl submissions and synthetic opioid deaths were not correlated with changes in fentanyl prescribing rates, and increases in fentanyl submissions and synthetic opioid deaths were primarily concentrated in eight states (high-burden states). Reports from six of the eight high-burden states indicated that fentanyl-involved overdose deaths were primarily driving increases in synthetic opioid deaths. Increases in
Calculation of electron-helium scattering
Energy Technology Data Exchange (ETDEWEB)
Fursa, D.V.; Bray, I.
1994-11-01
We present the Convergent Close-Coupling (CCC) theory for the calculation of electron-helium scattering. We demonstrate its applicability at a range of projectile energies of 1.5 to 500 eV to scattering from the ground state to n {<=}3 states. Excellent agreement with experiment is obtained with the available differential, integrated, ionization, and total cross sections, as well as with the electron-impact coherence parameters up to and including the 3{sup 3} D state excitation. Comparison with other theories demonstrates that the CCC theory is the only general reliable method for the calculation of electron helium scattering. (authors). 66 refs., 2 tabs., 24 figs.
Siquieri, R; Doernberg, E; Emmerich, H; Schmid-Fetzer, R
2009-11-18
In this work we present experimental and theoretical investigations of the directional solidification of Al-36 wt% Ni alloy. A phase-field approach (Folch and Plapp 2005 Phys. Rev. E 72 011602) is coupled with the CALPHAD (calculation of phase diagrams) method to be able to simulate directional solidification of Al-Ni alloy including the peritectic phase Al(3)Ni. The model approach is calibrated by systematic comparison to microstructures grown under controlled conditions in directional solidification experiments. To illustrate the efficiency of the model it is employed to investigate the effect of temperature gradient on the microstructure evolution of Al-36 wt% Ni during solidification.
Calculation of electron scattering on excited states of sodium
International Nuclear Information System (INIS)
The results of electron-sodium scattering for the 3D → 3P transition at the projectile energy of 5 eV calculated using the Convergent Close Coupling method are presented. These include spin-resolved and spin-averaged alignment, orientation, and coherence parameters, as well as differential cross section and spin asymmetry. This calculation simultaneously produces results for the transitions 3P→3P at 6.52 eV and 3S → 3P at 8.62 eV. The three transitions are used to study the nature of the convergence in the close-coupling expansion. The results were found to be in good agreement with the existent experimental data. 15 refs., 9 figs
International Nuclear Information System (INIS)
We investigated how the pulse parameters of optical frequency combs affect the rotational excitation probability of the lithium chloride (7Li37Cl) molecule. Time evolution of the rotational population distribution was calculated by the close-coupling method. It was confirmed that the rotational excitation is restricted owing to the centrifugal distortion of the rotating molecule. (author)
Calculations of electron-impact ionisation of {{Fe}}^{25+} and {{Fe}}^{24+}
Fursa, Dmitry V.; Bostock, Christopher J.; Bray, Igor; Fontes, Christopher J.
2016-09-01
Electron-impact ionisation cross sections for the hydrogen- and helium-like ions of iron are calculated. The convergent close-coupling and distorted-wave methods in the relativistic and nonrelativistic formulations are used. The cross sections are in very good agreement with the results of the corresponding methods, with the relativistic formulation establishing the benchmarks to few percent accuracy.
基于紧凑耦合的平面印刷单极子手机天线设计%Closed-coupling planar printed monopole for mobile phone application
Institute of Scientific and Technical Information of China (English)
胡海峰; 姜宇
2014-01-01
A mobile phone antenna using a closed -coupling planar printed monopole for covering multi-bands of WWAN operation was presented.This antenna was formed by a monopole slot and a parasitic strip closed-coupled with similar size.The antenna used me-ander to get a smaller size.The space below the principal part was hollowed out, and it had a simple and closed structure, which was convenient for integrated design.Two resonance center frequencies 950 MHz and 2 250 MHz were generated by the base frequency and the higher resonant mode of both the planar monopole and the parasitic strip, which covered the main frequency of communication for mobile, such as GSM900/GSM1800/1900/UMTS and LTE2300/2500.%设计了一款基于紧凑耦合的平面单极子手机天线，该天线由尺寸相当、紧凑耦合的平面单极子和寄生枝节构成，天线采用曲流技术可以获得更小的尺寸，主体部分下方镂空且结构上的简单、紧凑，利于整机设计。平面单极子和寄生枝节的基频及高阶共振模共同作用，使天线产生950 MHz和2250 MHz两个谐振中心频率，覆盖了当今手机通信的GSM900／GSM1800／1900／UMTS以及LTE2300／2500等频段。
Closed-coupling planar printed monopole for mobile phone application%基于紧凑耦合的平面印刷单极子手机天线设计
Institute of Scientific and Technical Information of China (English)
胡海峰; 姜宇
2014-01-01
设计了一款基于紧凑耦合的平面单极子手机天线，该天线由尺寸相当、紧凑耦合的平面单极子和寄生枝节构成，天线采用曲流技术可以获得更小的尺寸，主体部分下方镂空且结构上的简单、紧凑，利于整机设计。平面单极子和寄生枝节的基频及高阶共振模共同作用，使天线产生950 MHz和2250 MHz两个谐振中心频率，覆盖了当今手机通信的GSM900／GSM1800／1900／UMTS以及LTE2300／2500等频段。%A mobile phone antenna using a closed -coupling planar printed monopole for covering multi-bands of WWAN operation was presented.This antenna was formed by a monopole slot and a parasitic strip closed-coupled with similar size.The antenna used me-ander to get a smaller size.The space below the principal part was hollowed out, and it had a simple and closed structure, which was convenient for integrated design.Two resonance center frequencies 950 MHz and 2 250 MHz were generated by the base frequency and the higher resonant mode of both the planar monopole and the parasitic strip, which covered the main frequency of communication for mobile, such as GSM900/GSM1800/1900/UMTS and LTE2300/2500.
Hybrid theory and calculation of e-N2 scattering. [quantum mechanics - nuclei (nuclear physics)
Chandra, N.; Temkin, A.
1975-01-01
A theory of electron-molecule scattering was developed which was a synthesis of close coupling and adiabatic-nuclei theories. The theory is shown to be a close coupling theory with respect to vibrational degrees of freedom but is a adiabatic-nuclei theory with respect to rotation. It can be applied to any number of partial waves required, and the remaining ones can be calculated purely in one or the other approximation. A theoretical criterion based on fixed-nuclei calculations and not on experiment can be given as to which partial waves and energy domains require the various approximations. The theory allows all cross sections (i.e., pure rotational, vibrational, simultaneous vibration-rotation, differential and total) to be calculated. Explicit formulae for all the cross sections are presented.
Institute of Scientific and Technical Information of China (English)
何伟; 廉保旺; 冯晓明
2012-01-01
在传统的GPS/INS紧耦合组合导航系统中,由于伪距和多普勒频移误差的存在,系统存在一定的误差偏移.针对这种误差偏移,设计了一种联邦卡尔曼滤波组合导航算法,该算法采用二级卡尔曼滤波器,将卫星接收模块解算出的伪距信息和多普勒频移信息在第一级卡尔曼滤波后,与INS模块结算出的信息进行修正处理,再通过主滤波器得到紧耦合算法的INS解算结果校正量和定位位置最优估计.通过计算机仿真结果分析表明,该方法相对于传统的紧耦合组合导航算法可以有效减小误差,具有一定的理论价值和实用价值.%In the traditional GPS/INS closely coupled system,whole system exists bias because of the bias of pseudo range and doppler shift. To remove the bias, the location algorithm based on federation Kalman filter algorithm is designed. This algorithm has two Kalman filters. The first Kalman filter filters the pseudo range and doppler shift get from the GPS module. Then, the results get from the first Kalman filter is filtered by the second Kalman filter with the data get from the INS module. The correcting value of the location results get from the second Kalman filter can be used to correct the position and velocity to get the optimum estimate. The simulation results show that the federation Kalman filter algorithm can decrease the bias compared with the traditional Kalman filter algorithm. The federation Kalman filter algorithm has theoretical and practical value.
International Nuclear Information System (INIS)
New methods for the accurate quantum mechanical treatment of inelastic atom-molecule collisions and electron scattering are considered. The advantages of expanding the system wave function in adiabatic basis functions are emphasized. For a model collinear He-H2 system, the advantages of using vibrationally adiabatic basis functions in close coupling calculations of vibrationally elastic and inelastic transition probabilities are shown. For this system the detailed dynamics of multiquantum transitions is also considered, and the significance of various reactance matrix elements is probed. The close coupling method with conventional, l-dominant, and rotationally and orbitally adiabatic basis functions is applied to rotationally inelastic electron-molecule scattering in the laboratory frame. Electron-N2 scattering is treated in the rigid rotator approximation at total energy E = 30 eV and total angular momentum J = 5. The l-dominant bases afford a useful approximation, but dramatically more accurate results can be obtained with even smaller adiabatic bases. The accuracy and efficiency of close coupling calculations using conventional, l-dominant, adiabatic, and adiabatic l-dominant bases in rotationally inelastic atom-molecule scattering are compared. He-HF is treated in the rigid-rotator approximation at E = 0.05 and 0.017 eV for J = 4, 12, and 20. The effect of various reactance matrix elements on the partial cross sections is shown. S-, p-, and d-wave inelastic e-H scattering is treated in the 1s-2s close coupling approximation. The effects of electron exchange can be successfully approximated by replacing the nonlocal exchange potentials with approximate energy-dependent local potentials
SRD 166 MEMS Calculator (Web, free access) This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.
DEFF Research Database (Denmark)
Petersen, Kurt Erling
1986-01-01
approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very...... complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested....
International Nuclear Information System (INIS)
Reviewed is the effect of heat flux of different system parameters on critical density in order to give an initial view on the value of several parameters. A thorough analysis of different equations is carried out to calculate burnout is steam-water flows in uniformly heated tubes, annular, and rectangular channels and rod bundles. Effect of heat flux density distribution and flux twisting on burnout and storage determination according to burnout are commended
McCarty, George
1982-01-01
How THIS BOOK DIFFERS This book is about the calculus. What distinguishes it, however, from other books is that it uses the pocket calculator to illustrate the theory. A computation that requires hours of labor when done by hand with tables is quite inappropriate as an example or exercise in a beginning calculus course. But that same computation can become a delicate illustration of the theory when the student does it in seconds on his calculator. t Furthermore, the student's own personal involvement and easy accomplishment give hi~ reassurance and en couragement. The machine is like a microscope, and its magnification is a hundred millionfold. We shall be interested in limits, and no stage of numerical approximation proves anything about the limit. However, the derivative of fex) = 67.SgX, for instance, acquires real meaning when a student first appreciates its values as numbers, as limits of 10 100 1000 t A quick example is 1.1 , 1.01 , 1.001 , •••• Another example is t = 0.1, 0.01, in the functio...
International Nuclear Information System (INIS)
Risk and reliability analysis is increasingly being used in evaluations of plant safety and plant reliability. The analysis can be performed either during the design process or during the operation time, with the purpose to improve the safety or the reliability. Due to plant complexity and safety and availability requirements, sophisticated tools, which are flexible and efficient, are needed. Such tools have been developed in the last 20 years and they have to be continuously refined to meet the growing requirements. Two different areas of application were analysed. In structural reliability probabilistic approaches have been introduced in some cases for the calculation of the reliability of structures or components. A new computer program has been developed based upon numerical integration in several variables. In systems reliability Monte Carlo simulation programs are used especially in analysis of very complex systems. In order to increase the applicability of the programs variance reduction techniques can be applied to speed up the calculation process. Variance reduction techniques have been studied and procedures for implementation of importance sampling are suggested. (author)
Nonadiabatic quantum dynamics calculations for the N + NH --> N(2) + H reaction.
Yang, Huan; Hankel, M; Varandas, Antonio; Han, Keli
2010-09-01
Nonadiabatic quantum dynamics calculations on the two coupled potential energy surfaces (PESs) (1(2)A' and 2(2)A') and also adiabatic quantum calculations on the lowest adiabatic PES are reported for the title reaction. Reaction probabilities for total angular momenta, J, varying from 0 to 160, are calculated to obtain the integral cross section (ICS) for collision energies ranging from 0.05 to 1.0 eV. Calculations using both the close coupling and the Centrifugal Sudden (CS) approximation are carried out to evaluate the role of Coriolis coupling effects for this reaction. The results of the nonadiabatic calculations show that the nonadiabatic effects in the title reaction for the initial state of NH (v = 0, j = 0) could be neglected, at least in the collision energy range considered in this study.
Failures probability calculation of the energy supply of the Angra-1 reactor rods assembly
International Nuclear Information System (INIS)
This work analyses the electric power system of the Angra I PWR plant. It is demonstrated that this system is closely coupled with the safety engineering features, which are the equipments provided to prevent, limit, or mitigate the release of radioactive material and to permit the safe reactor shutdown. Event trees are used to analyse the operation of those systems which can lead to the release of radioactivity following a specified initial event. The fault trees technique is used to calculate the failure probability of the on-site electric power system
HTR-2000: Computer program to accompany calculations during reactor operation of HTGR's
International Nuclear Information System (INIS)
HTR-2000 - developed for arithmetical control of pebble bed high temperature reactors with multiple process - is closely coupled to the actual operation of the reactor. Using measured nuclear and thermo-hydraulical parameters as well as detailed model of pebble flow and exact information and fuel burnup, loading and discharge it obtains an excellent simulation of the status of the reactor. The geometry is modelled in three dimensions, so asymmetries in core texture can be taken into account for nuclear and thermohydraulical calculations. A continuous simulation was performed during five years of AVR operation. The comparison between calculated and measured data was very satisfying. In addition, experiments which had been performed at AVR for re-calculating the control rod worth were simulated. The arithmetical analysis shows that at presence of a compensating-absorber in the reactor core the split reactivity worth for single absorbers can be determined by calculation but not by methods of measuring. (orig.)
Textual Economy through Close Coupling of Syntax and Semantics
Stone, M; Stone, Matthew; Webber, Bonnie
1998-01-01
We focus on the production of efficient descriptions of objects, actions and events. We define a type of efficiency, textual economy, that exploits the hearer's recognition of inferential links to material elsewhere within a sentence. Textual economy leads to efficient descriptions because the material that supports such inferences has been included to satisfy independent communicative goals, and is therefore overloaded in Pollack's sense. We argue that achieving textual economy imposes strong requirements on the representation and reasoning used in generating sentences. The representation must support the generator's simultaneous consideration of syntax and semantics. Reasoning must enable the generator to assess quickly and reliably at any stage how the hearer will interpret the current sentence, with its (incomplete) syntax and semantics. We show that these representational and reasoning requirements are met in the SPUD system for sentence planning and realization.
Textual Economy through Close Coupling of Syntax and Semantics
Stone, Matthew; Webber, Bonnie
1998-01-01
We focus on the production of efficient descriptions of objects, actions and events. We define a type of efficiency, textual economy, that exploits the hearer's recognition of inferential links to material elsewhere within a sentence. Textual economy leads to efficient descriptions because the material that supports such inferences has been included to satisfy independent communicative goals, and is therefore overloaded in Pollack's sense. We argue that achieving textual economy imposes stron...
On-Site was developed to provide modelers and model reviewers with prepackaged tools ("calculators") for performing site assessment calculations. The philosophy behind OnSite is that the convenience of the prepackaged calculators helps provide consistency for simple calculations,...
Directory of Open Access Journals (Sweden)
R Fathi
2013-09-01
Full Text Available In this work, total excitation cross section of atomic hydrogen in the collision of bare ion was calculated employing a three body Faddeev formalism. In the present calculation, initially the first order electronic amplitude was calculated using the interaction potential which led to inelastic form factor. Secondly, the first order nuclear amplitude was calculated and added to the first order electronic amplitude. This second term was calculated employing the near-the-shell two body transition operator. The interaction energy was assumed to be in the intermediate and high energy limits . Finally, the results were compared with the relevant cross sections calculated under monocentric close-coupling data in the literature.
Distillation Calculations with a Programmable Calculator.
Walker, Charles A.; Halpern, Bret L.
1983-01-01
Describes a three-step approach for teaching multicomponent distillation to undergraduates, emphasizing patterns of distribution as an aid to understanding the separation processes. Indicates that the second step can be carried out by programmable calculators. (A more complete set of programs for additional calculations is available from the…
Sarkadi, L
2015-01-01
The three-body dynamics of the ionization of the atomic hydrogen by 30 keV antiproton impact has been investigated by calculation of fully differential cross sections (FDCS) using the classical trajectory Monte Carlo (CTMC) method. The results of the calculations are compared with the predictions of quantum mechanical descriptions: The semi-classical time-dependent close-coupling theory, the fully quantal, time-independent close-coupling theory, and the continuum-distorted-wave-eikonal-initial-state model. In the analysis particular emphasis was put on the role of the nucleus-nucleus (NN) interaction played in the ionization process. For low-energy electron ejection CTMC predicts a large NN interaction effect on FDCS, in agreement with the quantum mechanical descriptions. By examining individual particle trajectories it was found that the relative motion between the electron and the nuclei is coupled very weakly with that between the nuclei, consequently the two motions can be treated independently. A simple ...
Institute of Scientific and Technical Information of China (English)
WU Yong; YAN Bing; LIU Ling; WANG Jian-Guo
2007-01-01
The single charge transfer process in 3 He2+ + 4He collisions is investigated using the quantum-mechanical molecularorbital close-coupling method, in which the adiabatic potentials and radial couplings are calculated by using the ab initio multireference single- and double-excitation configuration interaction methods. The differential cross sections for the single charge transfer are presented at the laboratorial energies E = 6kev and 10keV for the projectile 3He2+. Comparison with the existing data shows that the present results are better in agreement with the experimental measurements than other calculations in the dominant small angle scattering, which is attributed to the accurate calculations of the adiabatic potentials and the radial couplings.
Autistic Savant Calendar Calculators.
Patti, Paul J.
This study identified 10 savants with developmental disabilities and an exceptional ability to calculate calendar dates. These "calendar calculators" were asked to demonstrate their abilities, and their strategies were analyzed. The study found that the ability to calculate dates into the past or future varied widely among these calculators. Three…
Institute of Scientific and Technical Information of China (English)
Shen Guang-Xian; Linghu Rong-Feng; Wang Rong-Kai; Yang Xiang-Dong
2007-01-01
In this paper, close-coupling method was applied to the He-H2(D2,T2) system, and the first vibrational excitation differences of these partial wave cross sections, this paper have obtained the change rules of the partial wave cross sections with increases of quantum number, and with change of reduced mass of system. Based on the calculation,influence on the partial wave cross sections brought by the variations in the reduced mass of systems and in the relative kinetic energy of incident atoms is discussed.
Quantum-mechanical calculations of cross sections for electron collisions with atoms and molecules
Bartschat, Klaus; Zatsarinny, Oleg
2016-01-01
An overview of quantum-mechanical methods to generate cross-section data for electron collisions with atoms and molecules is presented. Particular emphasis is placed on the time-independent close-coupling approach, since it is particularly suitable for low-energy collisions and also allows for systematic improvements as well as uncertainty estimates. The basic ideas are illustrated with examples for electron collisions with argon atoms and methane. For many atomic systems, such as e-Ar collisions, highly reliable cross sections can now be computed with quantified uncertainties. On the other hand, while electron collision calculations with molecules do provide key input data for plasma models, the methods and computer codes presently used require further development to make these inputs robust.
Full two-electron calculations of antiproton collisions with molecular hydrogen
DEFF Research Database (Denmark)
Lühr, Armin Christian; Saenz, Alejandro
2010-01-01
Total cross sections for single ionization and excitation of molecular hydrogen by antiproton impact are presented over a wide range of impact energies from 1 keV to 6.5 MeV. A nonperturbative time-dependent close-coupling method is applied to fully treat the correlated dynamics of the electrons...... is demonstrated. The present findings provide benchmark results which might be useful for the development of molecular models........ Good agreement is obtained between the present calculations and experimental measurements of single-ionization cross sections at high energies, whereas some discrepancies with the experiment are found around the maximum. The importance of the molecular geometry and a full two-electron description...
Personal Finance Calculations.
Argo, Mark
1982-01-01
Contains explanations and examples of mathematical calculations for a secondary level course on personal finance. How to calculate total monetary cost of an item, monthly payments, different types of interest, annual percentage rates, and unit pricing is explained. (RM)
Threlfall, John
2002-01-01
Suggests that strategy choice is a misleading characterization of efficient mental calculation and that teaching mental calculation methods as a whole is not conducive to flexibility. Proposes an alternative in which calculation is thought of as an interaction between noticing and knowledge. Presents an associated teaching approach to promote…
Theoretical calculation of photoionization cross sections of B-like ions: N2+,O3+ and F4+
Institute of Scientific and Technical Information of China (English)
Wang Guo-Li; Zhou Xiao-Xin
2009-01-01
There can be found some notable discrepancies with regard to the resonance structures when R-matrix calculations from the Opacity Project and other sources are compared with recent absolute experimental measurements of Bizau et al [Astron. Astrophts. 439 387 (2005)] for B-like ions N2+,03+ and F4+. We performed close-coupling calculatious based on the R-matrix formalism for the photoionizations of ions mentioned above both for the ground states and first excited states in the near threshold regions. The present results are compared with experimental ones given by Bizau et al and earlier theoretical ones. Excellent agreement is obtained between our theoretical results and the experimental photoionization cross sections. The present calculations show a significant improvement over the previous theoretical results.
International Nuclear Information System (INIS)
The semiclassical model RB (Robert, D. and Bonamy, J. (Journal de Physique (Paris), 1979, 40, 923 for calculation of line width and line shift has been used in many applications. It contains an approximate 'parabolic' trajectory. Bykov, A.D. et al, Atmospheric and Oceanic Optics (1992) 5, 587, have recently proposed an analytical expression for an exact treatment of the classical path. This paper analyses the consequence of introducing the exact trajectory within the RB model for the H2-He Q(1) line chosen as a simple test. Moreover, a comparison with results of exact close-coupling calculations is also given for this molecular system. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)
Energy Technology Data Exchange (ETDEWEB)
Nagao, Yoshiharu [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment
1998-03-01
In material testing reactors like the JMTR (Japan Material Testing Reactor) of 50 MW in Japan Atomic Energy Research Institute, the neutron flux and neutron energy spectra of irradiated samples show complex distributions. It is necessary to assess the neutron flux and neutron energy spectra of an irradiation field by carrying out the nuclear calculation of the core for every operation cycle. In order to advance core calculation, in the JMTR, the application of MCNP to the assessment of core reactivity and neutron flux and spectra has been investigated. In this study, in order to reduce the time for calculation and variance, the comparison of the results of the calculations by the use of K code and fixed source and the use of Weight Window were investigated. As to the calculation method, the modeling of the total JMTR core, the conditions for calculation and the adopted variance reduction technique are explained. The results of calculation are shown. Significant difference was not observed in the results of neutron flux calculations according to the difference of the modeling of fuel region in the calculations by K code and fixed source. The method of assessing the results of neutron flux calculation is described. (K.I.)
Electrical installation calculations basic
Kitcher, Christopher
2013-01-01
All the essential calculations required for basic electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practice. A step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3Fo
Electronics Environmental Benefits Calculator
U.S. Environmental Protection Agency — The Electronics Environmental Benefits Calculator (EEBC) was developed to assist organizations in estimating the environmental benefits of greening their purchase,...
Electrical installation calculations advanced
Kitcher, Christopher
2013-01-01
All the essential calculations required for advanced electrical installation workThe Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike. The book provides a step-by-step guide to the successful application of electrical installation calculations required in day-to-day electrical engineering practiceA step-by-step guide to everyday calculations used on the job An essential aid to the City & Guilds certificates at Levels 2 and 3For apprentices and electrical installatio
Calculators and Polynomial Evaluation.
Weaver, J. F.
The intent of this paper is to suggest and illustrate how electronic hand-held calculators, especially non-programmable ones with limited data-storage capacity, can be used to advantage by students in one particular aspect of work with polynomial functions. The basic mathematical background upon which calculator application is built is summarized.…
Relativistic shell model calculations
Furnstahl, R. J.
1986-06-01
Shell model calculations are discussed in the context of a relativistic model of nuclear structure based on renormalizable quantum field theories of mesons and baryons (quantum hadrodynamics). The relativistic Hartree approximation to the full field theory, with parameters determined from bulk properties of nuclear matter, predicts a shell structure in finite nuclei. Particle-hole excitations in finite nuclei are described in an RPA calculation based on this QHD ground state. The particle-hole interaction is prescribed by the Hartree ground state, with no additional parameters. Meson retardation is neglected in deriving the RPA equations, but it is found to have negligible effects on low-lying states. The full Dirac matrix structure is maintained throughout the calculation; no nonrelativistic reductions are made. Despite sensitive cancellations in the ground state calculation, reasonable excitation spectra are obtained for light nuclei. The effects of including charged mesons, problems with heavy nuclei, and prospects for improved and extended calculations are discussed.
International Nuclear Information System (INIS)
The authors discuss two projects involving quantal collision theory calculations on supercomputers. In the first project the authors are considering HF-HF collisions and calculating rotational energy transfer for collisions of rigid molecules and vibrational-to-vibrational (V-V) energy transfer for collisions including all degrees of freedom. They examined several potential energy surfaces, and they parametrized a new one that should be more accurate for the cross correlation of the forces. For rotational energy transfer they also compared the results to classical trajectory calculations. The quantal calculations were carried out by integrating the close coupling equations with scattering boundary conditions using an extensively vectorized R matrix propagation code on the Control Data Corporation Cyber 205 computer. In the second project they are considering atom-diatom reactive collisions for low initial rotational states and both the ground and first excited vibrational state. The three arrangement channels (A =BC, AB+C, and AC+B) are coupled by the Fock scheme, and the reactive amplitude density (obtained by operating on the initial state with the reactance operator or the total wave function with the interaction potential) is expanded in a square-integrable basis set. This leads to a large system of coupled algebraic equations which are constructed and solved using a large-memory Cray-2 computer. Variational improvements have been tested successfully for nonreactive collisions and will soon be implemented for reactive collisions
nuclear reactor design calculations
International Nuclear Information System (INIS)
In this work , the sensitivity of different reactor calculation methods, and the effect of different assumptions and/or approximation are evaluated . A new concept named error map is developed to determine the relative importance of different factors affecting the accuracy of calculations. To achieve this goal a generalized, multigroup, multi dimension code UAR-DEPLETION is developed to calculate the spatial distribution of neutron flux, effective multiplication factor and the spatial composition of a reactor core for a period of time and for specified reactor operating conditions. The code also investigates the fuel management strategies and policies for the entire fuel cycle to meet the constraints of material and operating limitations
International Nuclear Information System (INIS)
We present GW calculations of molecules, ordered and disordered solids and interfaces, which employ an efficient contour deformation technique for frequency integration and do not require the explicit evaluation of virtual electronic states nor the inversion of dielectric matrices. We also present a parallel implementation of the algorithm, which takes advantage of separable expressions of both the single particle Green's function and the screened Coulomb interaction. The method can be used starting from density functional theory calculations performed with semilocal or hybrid functionals. The newly developed technique was applied to GW calculations of systems of unprecedented size, including water/semiconductor interfaces with thousands of electrons
Radioactive cloud dose calculations
International Nuclear Information System (INIS)
Radiological dosage principles, as well as methods for calculating external and internal dose rates, following dispersion and deposition of radioactive materials in the atmosphere are described. Emphasis has been placed on analytical solutions that are appropriate for hand calculations. In addition, the methods for calculating dose rates from ingestion are discussed. A brief description of several computer programs are included for information on radionuclides. There has been no attempt to be comprehensive, and only a sampling of programs has been selected to illustrate the variety available
Handout on shielding calculation
International Nuclear Information System (INIS)
In order to avoid the difficulties of the radioprotection supervisors in the tasks related to shielding calculations, is presented in this paper the basic concepts of shielding theory. It also includes exercises and examples. (author)
DEFF Research Database (Denmark)
Frederiksen, Morten
2014-01-01
. Contrary to Williamson, however, Løgstrup’s contention is that trust, not calculativeness, is the default attitude and only when suspicion is awoken does trust falter. The paper argues that while Williamson’s distinction between calculativeness and trust is supported by phenomenology, the analysis needs......Williamson’s characterisation of calculativeness as inimical to trust contradicts most sociological trust research. However, a similar argument is found within trust phenomenology. This paper re-investigates Williamson’s argument from the perspective of Løgstrup’s phenomenological theory of trust...... to take actual subjective experience into consideration. It points out that, first, Løgstrup places trust alongside calculativeness as a different mode of engaging in social interaction, rather conceiving of trust as a state or the outcome of a decision-making process. Secondly, the analysis must take...
A Simple Calculator Algorithm.
Cook, Lyle; McWilliam, James
1983-01-01
The problem of finding cube roots when limited to a calculator with only square root capability is discussed. An algorithm is demonstrated and explained which should always produce a good approximation within a few iterations. (MP)
EFFECTIVE DISCHARGE CALCULATION GUIDE
Institute of Scientific and Technical Information of China (English)
D.S.BIEDENHARN; C.R.THORNE; P.J.SOAR; R.D.HEY; C.C.WATSON
2001-01-01
This paper presents a procedure for calculating the effective discharge for rivers with alluvial channels.An alluvial river adjusts the bankfull shape and dimensions of its channel to the wide range of flows that mobilize the boundary sediments. It has been shown that time-averaged river morphology is adjusted to the flow that, over a prolonged period, transports most sediment. This is termed the effective discharge.The effective discharge may be calculated provided that the necessary data are available or can be synthesized. The procedure for effective discharge calculation presented here is designed to have general applicability, have the capability to be applied consistently, and represent the effects of physical processes responsible for determining the channel, dimensions. An example of the calculations necessary and applications of the effective discharge concept are presented.
Unit Cost Compendium Calculations
U.S. Environmental Protection Agency — The Unit Cost Compendium (UCC) Calculations raw data set was designed to provide for greater accuracy and consistency in the use of unit costs across the USEPA...
Geometric unsharpness calculations
Energy Technology Data Exchange (ETDEWEB)
Anderson, D.J. [International Training and Education Group (INTEG), Oakville, Ontario (Canada)
2008-07-15
The majority of radiographers' geometric unsharpness calculations are normally performed with a mathematical formula. However, a majority of codes and standards refer to the use of a nomograph for this calculation. Upon first review, the use of a nomograph appears more complicated but with a few minutes of study and practice it can be just as effective. A review of this article should provide enlightenment. (author)
Scientific calculating peripheral
Energy Technology Data Exchange (ETDEWEB)
Ethridge, C.D.; Nickell, J.D. Jr.; Hanna, W.H.
1979-09-01
A scientific calculating peripheral for small intelligent data acquisition and instrumentation systems and for distributed-task processing systems is established with a number-oriented microprocessor controlled by a single component universal peripheral interface microcontroller. A MOS/LSI number-oriented microprocessor provides the scientific calculating capability with Reverse Polish Notation data format. Master processor task definition storage, input data sequencing, computation processing, result reporting, and interface protocol is managed by a single component universal peripheral interface microcontroller.
Current interruption transients calculation
Peelo, David F
2014-01-01
Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,
Electrical installation calculations
Watkins, AJ
2006-01-01
Designed to provide a step by step guide to successful application of the electrical installation calculations required in day to day electrical engineering practice, the Electrical Installation Calculations series has proved an invaluable reference for over forty years, for both apprentices and professional electrical installation engineers alike.Now in its seventh edition, Volume 1 has been fully updated to meet the requirements of the 2330 Level 2 Certificate in Electrotechnical Technology from City & Guilds, and will also prove a vi
Uncertainty calculations made easier
Energy Technology Data Exchange (ETDEWEB)
Hogenbirk, A.
1994-07-01
The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL).
Uncertainty calculations made easier
International Nuclear Information System (INIS)
The results are presented of a neutron cross section sensitivity/uncertainty analysis performed in a complicated 2D model of the NET shielding blanket design inside the ITER torus design, surrounded by the cryostat/biological shield as planned for ITER. The calculations were performed with a code system developed at ECN Petten, with which sensitivity/uncertainty calculations become relatively simple. In order to check the deterministic neutron transport calculations (performed with DORT), calculations were also performed with the Monte Carlo code MCNP. Care was taken to model the 2.0 cm wide gaps between two blanket segments, as the neutron flux behind the vacuum vessel is largely determined by neutrons streaming through these gaps. The resulting neutron flux spectra are in excellent agreement up to the end of the cryostat. It is noted, that at this position the attenuation of the neutron flux is about 1 l orders of magnitude. The uncertainty in the energy integrated flux at the beginning of the vacuum vessel and at the beginning of the cryostat was determined in the calculations. The uncertainty appears to be strongly dependent on the exact geometry: if the gaps are filled with stainless steel, the neutron spectrum changes strongly, which results in an uncertainty of 70% in the energy integrated flux at the beginning of the cryostat in the no-gap-geometry, compared to an uncertainty of only 5% in the gap-geometry. Therefore, it is essential to take into account the exact geometry in sensitivity/uncertainty calculations. Furthermore, this study shows that an improvement of the covariance data is urgently needed in order to obtain reliable estimates of the uncertainties in response parameters in neutron transport calculations. (orig./GL)
Quantum calculations for rotational energy transfer in nitrogen molecule collisions
Huo, Winifred M.; Green, Sheldon
1996-05-01
Rotational energy transfer in collisions of nitrogen molecules has been studied theoretically, using the N2-N2 rigid-rotor potential of van der Avoird et al. [J. Chem. Phys. 84, 1629 (1986)]. For benchmarking purposes, converged close coupling (CC) calculations have been carried out to a total energy of about 200 cm-1. Coupled states (CS) approximation calculations have been carried out to a total energy of 680 cm-1, and infinite order sudden (IOS) approximation calculations have also been carried out. The CC and CS cross sections have been obtained both with and without identical molecule exchange symmetry, whereas exchange was neglected in the IOS calculations. The CS results track the CC cross sections rather well: between 113-219 cm-1 the average deviation is 14%, with accuracy improving at higher energy. Comparison between the CS and IOS cross sections at the high energy end of the CS calculations, 500-680 cm-1, shows that IOS is sensitive to the amount of inelasticity and the results for large ΔJ transitions are subject to larger errors. State-to-state cross sections with even and odd exchange symmetry agree to better than 2% and are well represented as a sum of direct and exchange cross sections for distinguishable molecules, an indication of the applicability of a classical treatment for this system. This result, however, does not apply to partial cross sections for given total J, but arises from a near cancellation of the interference terms between even and odd exchange symmetries on summing over partial waves. In order to compare with experimental data for rotational excitation rates of N2 in the n=1 excited vibrational level colliding with ground vibrational level (n=0) bath N2 molecules, it is assumed that exchange scattering between molecules in different vibrational levels is negligible and direct scattering is independent of n so that distinguishable molecule rigid rotor rates may be used. With these assumptions good agreement is obtained. Although
Big Bang Nucleosynthesis Calculation
Kurki-Suonio, H
2001-01-01
I review standard big bang nucleosynthesis and some versions of nonstandard BBN. The abundances of the primordial isotopes D, He-3, and Li-7 produced in standard BBN can be calculated as a function of the baryon density with an accuracy of about 10%. For He-4 the accuracy is better than 1%. The calculated abundances agree fairly well with observations, but the baryon density of the universe cannot be determined with high precision. Possibilities for nonstandard BBN include inhomogeneous and antimatter BBN and nonzero neutrino chemical potentials.
Quantum scattering calculations for ro-vibrational de-excitation of CO by hydrogen atoms
Song, Lei; Balakrishnan, N.; van der Avoird, Ad; Karman, Tijs; Groenenboom, Gerrit C.
2015-05-01
We present quantum-mechanical scattering calculations for ro-vibrational relaxation of carbon monoxide (CO) in collision with hydrogen atoms. Collisional cross sections of CO ro-vibrational transitions from v = 1, j = 0 - 30 to v' = 0, j' are calculated using the close coupling method for collision energies between 0.1 and 15 000 cm-1 based on the three-dimensional potential energy surface of Song et al. [J. Phys. Chem. A 117, 7571 (2013)]. Cross sections of transitions from v = 1, j ≥ 3 to v' = 0, j' are reported for the first time at this level of theory. Also calculations by the more approximate coupled states and infinite order sudden (IOS) methods are performed in order to test the applicability of these methods to H-CO ro-vibrational inelastic scattering. Vibrational de-excitation rate coefficients of CO (v = 1) are presented for the temperature range from 100 K to 3000 K and are compared with the available experimental and theoretical data. All of these results and additional rate coefficients reported in a forthcoming paper are important for including the effects of H-CO collisions in astrophysical models.
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
Compared with ellipse cavity, the spoke cavity has many advantages, especially for the low and medium beam energy. It will be used in the superconductor accelerator popular in the future. Based on the spoke cavity, we design and calculate an accelerator
Daylight calculations in practice
DEFF Research Database (Denmark)
Iversen, Anne; Roy, Nicolas; Hvass, Mette;
programs can give different results. This can be due to restrictions in the program itself and/or be due to the skills of the persons setting up the models. This is crucial as daylight calculations are used to document that the demands and recommendations to daylight levels outlined by building authorities...
Languages for structural calculations
International Nuclear Information System (INIS)
The differences between human and computing languages are recalled. It is argued that they are to some extent structured in antagonistic ways. Languages in structural calculation, in the past, present, and future, are considered. The contribution of artificial intelligence is stressed
Curvature calculations with GEOCALC
Energy Technology Data Exchange (ETDEWEB)
Moussiaux, A.; Tombal, P.
1987-04-01
A new method for calculating the curvature tensor has been recently proposed by D. Hestenes. This method is a particular application of geometric calculus, which has been implemented in an algebraic programming language on the form of a package called GEOCALC. They show how to apply this package to the Schwarzchild case and they discuss the different results.
International Nuclear Information System (INIS)
Modeling the spectral emission of low-charge iron group ions enables the diagnostic determination of the local physical conditions of many cool plasma environments such as those found in H II regions, planetary nebulae, active galactic nuclei, etc. Electron-impact excitation drives the population of the emitting levels and, hence, their emissivities. By carrying-out Breit-Pauli and intermediate coupling frame transformation (ICFT) R-matrix calculations for the electron-impact excitation of Fe2+, which both use the exact same atomic structure and the same close-coupling expansion, we demonstrate the validity of the application of the powerful ICFT method to low-charge iron group ions. This is in contradiction to the finding of Bautista et al., who carried-out ICFT and Dirac R-matrix calculations for the same ion. We discuss possible reasons.
International Nuclear Information System (INIS)
Two sets of close coupling calculations have been carried out on the Cray-2 and the Cray Y-MP using the R-matrix method: (i) a 38-term calculation in LS coupling and (ii) a 41-level fine structure calculation in the Breit-Pauli approximation. The first set includes the quartet and sextet terms dominated by the configurations 3d64s, 3d7 and 3d6 4p and collision strengths are calculated for all 703 transitions in LS coupling. The second set of calculations is carried out using the Breit-Pauli version of the R-matrix method and includes a number of important fine structure levels from the quartet and the sextet multiplets and 820 corresponding transitions. Detailed autoionization structures are obtained in both sets of collision strengths, and a significant enhancement is seen in the effective collision strengths for a number of transitions due to the resonances: for example, an enhancement of factors of 1.4, 2.5 and 1.15 respectively for transitions from the 6D ground term to the lowest 4F, 4D and 4P terms. (author)
Zero Temperature Hope Calculations
Energy Technology Data Exchange (ETDEWEB)
Rozsnyai, B F
2002-07-26
The primary purpose of the HOPE code is to calculate opacities over a wide temperature and density range. It can also produce equation of state (EOS) data. Since the experimental data at the high temperature region are scarce, comparisons of predictions with the ample zero temperature data provide a valuable physics check of the code. In this report we show a selected few examples across the periodic table. Below we give a brief general information about the physics of the HOPE code. The HOPE code is an ''average atom'' (AA) Dirac-Slater self-consistent code. The AA label in the case of finite temperature means that the one-electron levels are populated according to the Fermi statistics, at zero temperature it means that the ''aufbau'' principle works, i.e. no a priory electronic configuration is set, although it can be done. As such, it is a one-particle model (any Hartree-Fock model is a one particle model). The code is an ''ion-sphere'' model, meaning that the atom under investigation is neutral within the ion-sphere radius. Furthermore, the boundary conditions for the bound states are also set at the ion-sphere radius, which distinguishes the code from the INFERNO, OPAL and STA codes. Once the self-consistent AA state is obtained, the code proceeds to generate many-electron configurations and proceeds to calculate photoabsorption in the ''detailed configuration accounting'' (DCA) scheme. However, this last feature is meaningless at zero temperature. There is one important feature in the HOPE code which should be noted; any self-consistent model is self-consistent in the space of the occupied orbitals. The unoccupied orbitals, where electrons are lifted via photoexcitation, are unphysical. The rigorous way to deal with that problem is to carry out complete self-consistent calculations both in the initial and final states connecting photoexcitations, an enormous computational task
Linewidth calculations and simulations
Strandberg, Ingrid
2016-01-01
We are currently developing a new technique to further enhance the sensitivity of collinear laser spectroscopy in order to study the most exotic nuclides available at radioactive ion beam facilities, such as ISOLDE at CERN. The overall goal is to evaluate the feasibility of the new method. This report will focus on the determination of the expected linewidth (hence resolution) of this approach. Different effects which could lead to a broadening of the linewidth, e.g. the ions' energy spread and their trajectories inside the trap, are studied with theoretical calculations as well as simulations.
Calculations in furnace technology
Davies, Clive; Hopkins, DW; Owen, WS
2013-01-01
Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi
Lopez, Cesar
2015-01-01
MATLAB is a high-level language and environment for numerical computation, visualization, and programming. Using MATLAB, you can analyze data, develop algorithms, and create models and applications. The language, tools, and built-in math functions enable you to explore multiple approaches and reach a solution faster than with spreadsheets or traditional programming languages, such as C/C++ or Java. This book is designed for use as a scientific/business calculator so that you can get numerical solutions to problems involving a wide array of mathematics using MATLAB. Just look up the function y
Walker, Kyle M; Yang, B H; Groenenboom, G C; van der Avoird, A; Balakrishnan, N; Forrey, R C; Stancil, P C
2015-01-01
Carbon monoxide is a simple molecule present in many astrophysical environments, and collisional excitation rate coefficients due to the dominant collision partners are necessary to accurately predict spectral line intensities and extract astrophysical parameters. We report new quantum scattering calculations for rotational deexcitation transitions of CO induced by H using the three-dimensional potential energy surface~(PES) of Song et al. (2015). State-to-state cross sections for collision energies from 10$^{-5}$ to 15,000~cm$^{-1}$ and rate coefficients for temperatures ranging from 1 to 3000~K are obtained for CO($v=0$, $j$) deexcitation from $j=1-45$ to all lower $j'$ levels, where $j$ is the rotational quantum number. Close-coupling and coupled-states calculations were performed in full-dimension for $j$=1-5, 10, 15, 20, 25, 30, 35, 40, and 45 while scaling approaches were used to estimate rate coefficients for all other intermediate rotational states. The current rate coefficients are compared with prev...
Configuration space Faddeev calculations
International Nuclear Information System (INIS)
The detailed study of few-body systems provides one of the most effective means for studying nuclear physics at subnucleon distance scales. For few-body systems the model equations can be solved numerically with errors less than the experimental uncertainties. We have used such systems to investigate the size of relativistic effects, the role of meson-exchange currents, and the importance of quark degrees of freedom in the nucleus. Complete calculations for momentum-dependent potentials have been performed, and the properties of the three-body bound state for these potentials have been studied. Few-body calculations of the electromagnetic form factors of the deuteron and pion have been carried out using a front-form formulation of relativistic quantum mechanics. The decomposition of the operators transforming convariantly under the Poincare group into kinematical and dynamical parts has been studies. New ways for constructing interactions between particles, as well as interactions which lead to the production of particles, have been constructed in the context of a relativistic quantum mechanics. To compute scattering amplitudes in a nonperturbative way, classes of operators have been generated out of which the phase operator may be constructed. Finally, we have worked out procedures for computing Clebsch-Gordan and Racah coefficients on a computer, as well as giving procedures for dealing with the multiplicity problem
Multilayer optical calculations
Byrnes, Steven J
2016-01-01
When light hits a multilayer planar stack, it is reflected, refracted, and absorbed in a way that can be derived from the Fresnel equations. The analysis is treated in many textbooks, and implemented in many software programs, but certain aspects of it are difficult to find explicitly and consistently worked out in the literature. Here, we derive the formulas underlying the transfer-matrix method of calculating the optical properties of these stacks, including oblique-angle incidence, absorption-vs-position profiles, and ellipsometry parameters. We discuss and explain some strange consequences of the formulas in the situation where the incident and/or final (semi-infinite) medium are absorptive, such as calculating $T>1$ in the absence of gain. We also discuss some implementation details like complex-plane branch cuts. Finally, we derive modified formulas for including one or more "incoherent" layers, i.e. very thick layers in which interference can be neglected. This document was written in conjunction with ...
International Nuclear Information System (INIS)
I took only few topics to investigate, some on which I had some personal interest, and others that I felt rather crucial for the design. In this document I report my calculations on these various subjects. Therefore this document represents my tangible contribution to TRISTAN design. I give in the following the list of the topics which are discussed in this document. 1. Increase of the vertical betatron emmitance by skew quadrupoles in the electron storage ring. 2. Bremsstrahlung. 3. Dipole correcting system for electron ring. 4. Wigglers at low energies 5. Steady state compensation of beam loading in the single beam mode in the electron storage ring. 6. Coupled bunch longitudinal instability for electron ring. 7. Ion production and trapping in the electron storage ring for TRISTAN. 8. Estimate of the longitudinal impedance for the TRISTAN electron storage ring. (author)
Ahrens, Thomas J.
2001-01-01
We examined the von Mises and Mohr-Coulomb strength models with and without damage effects and developed a model for dilatancy. The models and results are given in O'Keefe et al. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting with the bolide in the atmosphere produce final crater profiles having the major features found in the field measurements. These features included a central uplift, an inner ring, circular terracing and faulting. This was accomplished with undamaged surface strengths of approximately 0.1 GPa and at depth strengths of approximately 1.0 GPa. We modeled the damage in geologic materials using a phenomenological approach, which coupled the Johnson-Cook damage model with the CTH code geologic strength model. The objective here was not to determine the distribution of fragment sizes, but rather to determine the effect of brecciated and comminuted material on the crater evolution, fault production, ejecta distribution, and final crater morphology.
Parallel nearest neighbor calculations
Trease, Harold
We are just starting to parallelize the nearest neighbor portion of our free-Lagrange code. Our implementation of the nearest neighbor reconnection algorithm has not been parallelizable (i.e., we just flip one connection at a time). In this paper we consider what sort of nearest neighbor algorithms lend themselves to being parallelized. For example, the construction of the Voronoi mesh can be parallelized, but the construction of the Delaunay mesh (dual to the Voronoi mesh) cannot because of degenerate connections. We will show our most recent attempt to tessellate space with triangles or tetrahedrons with a new nearest neighbor construction algorithm called DAM (Dial-A-Mesh). This method has the characteristics of a parallel algorithm and produces a better tessellation of space than the Delaunay mesh. Parallel processing is becoming an everyday reality for us at Los Alamos. Our current production machines are Cray YMPs with 8 processors that can run independently or combined to work on one job. We are also exploring massive parallelism through the use of two 64K processor Connection Machines (CM2), where all the processors run in lock step mode. The effective application of 3-D computer models requires the use of parallel processing to achieve reasonable "turn around" times for our calculations.
Surface retention capacity calculation
David, Vaclav; Dostal, Tomas
2010-05-01
Flood wave transformation in the floodplain is the phenomenon which is researched within interdisciplinary project NIVA - Water Retention in Floodplains and Possibilities of Retention Capacity Increase. The project focuses on broad range of floodplain ecosystem services and mitigation of flooding is one of them. Despite main influence on flood wave transformation is due to flow retardation, retention in surface depressions within floodplain has been analyzed to get better overview of whole transformation process. Detail digital relief model (DRM) has been used for given purposes to be able to analyze terrain depressions volumes. The model was developed with use of stereophotogrammetric evaluation of airborne images with high resolution of 10 cm. It was essential for purposes of presented analysis not to apply pit removal routines which are often used for generation of DRM for hydrological modelling purposes. First, the methodology of analysis was prepared and tested on artificial surface. This surface was created using random raster generation, filtration and resampling with final resolution of 1000 x 1000 units and height of maximum 10 units above datum. The methodology itself is based on analysis of areas inundated by water at different elevation levels. Volume is than calculated for each depression using extraction of terrain elevations under corresponding water level. The method was then applied on the area of Lužnice River floodplain section to assess retention capacity of real floodplain. The floodplain had to be cut into sections perpendicular to main river orientation for analyses as the method was tested for square shaped area without any significant inclination. Results obtained by mentioned analysis are presented in this paper. Acknowledgement Presented research was accomplished within national project NIVA - Water Retention in Floodplains and Possibilities of Retention Capacity Increase, nr. QH82078. The project is funded by Ministry of Agriculture of
The rating reliability calculator
Directory of Open Access Journals (Sweden)
Solomon David J
2004-04-01
Full Text Available Abstract Background Rating scales form an important means of gathering evaluation data. Since important decisions are often based on these evaluations, determining the reliability of rating data can be critical. Most commonly used methods of estimating reliability require a complete set of ratings i.e. every subject being rated must be rated by each judge. Over fifty years ago Ebel described an algorithm for estimating the reliability of ratings based on incomplete data. While his article has been widely cited over the years, software based on the algorithm is not readily available. This paper describes an easy-to-use Web-based utility for estimating the reliability of ratings based on incomplete data using Ebel's algorithm. Methods The program is available public use on our server and the source code is freely available under GNU General Public License. The utility is written in PHP, a common open source imbedded scripting language. The rating data can be entered in a convenient format on the user's personal computer that the program will upload to the server for calculating the reliability and other statistics describing the ratings. Results When the program is run it displays the reliability, number of subject rated, harmonic mean number of judges rating each subject, the mean and standard deviation of the averaged ratings per subject. The program also displays the mean, standard deviation and number of ratings for each subject rated. Additionally the program will estimate the reliability of an average of a number of ratings for each subject via the Spearman-Brown prophecy formula. Conclusion This simple web-based program provides a convenient means of estimating the reliability of rating data without the need to conduct special studies in order to provide complete rating data. I would welcome other researchers revising and enhancing the program.
Energy Technology Data Exchange (ETDEWEB)
Isaacson, A.D.
1978-08-01
Using an approximate evaluation of Miller's golden rule formula to calculate autoionization widths which allows for the consideration only of L/sup 2/ functions, the positions and lifetimes of the lowest /sup 1/,/sup 3/P autoionizing states of He have been obtained to reasonable accuracy. This method has been extended to molecular problems, and the ab initio configuration interaction potential energy and width surfaces for the He(2/sup 3/S) + H/sub 2/ system have been obtained. Quantum mechanical close-coupling calculations of ionization cross sections using the complex V* - (i/2) GAMMA-potential have yielded rate constants in good agreement with the experimental results of Lindinger, et al. The potential energy surface of the He(2/sup 1/S) + H/sub 2/ system has also been obtained and exhibits not only a high degree of anisotropy, but also contains a relative maximum for a perpendicular (C/sub 2//sub v/) approach which appears to arise from s-p hybridization of the outer He orbital. However, similar ab initio calculations on the He(2/sup 1/S) + Ar system do not show such anomalous structure. In addition, the complex poles of the S-matrix (Siegert eigenvalues) were calculated for several autoionizing states of He and H/sup -/, with encouraging results even for quite modest basis sets. This method was extended to molecular problems, and results obtained for the He(2/sup 3/S) + H and He(2/sup 1/S) + H systems. 75 references.
Calculation of multiphoton ionization processes
Chang, T. N.; Poe, R. T.
1976-01-01
We propose an accurate and efficient procedure in the calculation of multiphoton ionization processes. In addition to the calculational advantage, this procedure also enables us to study the relative contributions of the resonant and nonresonant intermediate states.
Bluteau, M M; Badnell, N R
2015-01-01
With construction of ITER progressing and existing tokamaks carrying out ITER-relevant experiments, accurate fundamental and derived atomic data for numerous ionization stages of tungsten (W) is required to assess the potential effect of this species upon fusion plasmas. The results of fully relativistic, partially radiation damped, Dirac $R$-matrix electron-impact excitation calculations for the W$^{44+}$ ion are presented. These calculations use a configuration interaction and close-coupling expansion that opens-up the 3d-subshell, which does not appear to have been considered before in a collision calculation. As a result, it is possible to investigate the arrays, [3d$^{10}$4s$^2-$3d$^9$4s$^2$4f] and [3d$^{10}$4s$^2-$3d$^9$4s4p4d], which are predicted to contain transitions of diagnostic importance for the soft x-ray region. Our $R$-matrix collision data are compared with previous $R$-matrix results by Ballance and Griffin as well as our own relativistically corrected, Breit-Pauli distorted wave and plane-...
Calculation of electrons scattering on hydrogenic targets
Energy Technology Data Exchange (ETDEWEB)
Bray, I. [Flinders Univ. of South Australia, Adelaide, SA (Australia). Electronic Structure of Materials Centre; Stelbovics, A.T. [Murdoch Univ., Perth, WA (Australia). School of Mathematical and Physical Sciences
1994-10-01
This review is structured in the following way. Firstly, it gives an outline of the various electron scattering methods currently in use, then discusses their strengths and weaknesses, and contrast these with the Convergent Close-Coupling (CCC) method. This will be followed by a section devoted to the detailed description of the CCC method. Subsequently, various comparisons of experiment, the CCC method, and those of other available theories will be presented for a number of targets. It concentrates on issues of greatest interest, namely where treatment of the target continuum is of great importance, or where there are unresolved discrepancies with experiment. Lastly, it indicates what is considered to be outstanding problems and suggests future directions for our approach to electron scattering problems. 124 refs., 10 figs.
A comparison of carbon calculators
International Nuclear Information System (INIS)
International attention to carbon dioxide emissions is turning to an individual's contribution, or 'carbon footprint.' Calculators that estimate an individual's CO2 emissions have become more prevalent on the internet. Even with similar inputs, however, these calculators can generate varying results, often by as much as several metric tons per annum per individual activity. This paper examines the similarities and differences among ten US-based calculators. Overall, the calculators lack consistency, especially for estimates of CO2 emissions from household electricity consumption. In addition, most calculators lack information about their methods and estimates, which impedes comparison and validation. Although carbon calculators can promote public awareness of carbon emissions from individual behavior, this paper reveals the need for improved consistency and transparency in the calculators
Song, L.; Balakrishnan, N.; Walker, K. M.; Stancil, P. C.; Thi, W. F.; Kamp, I.; van der Avoird, A.; Groenenboom, G. C.
2015-11-01
We present calculated rate coefficients for ro-vibrational transitions of CO in collisions with H atoms for a gas temperature range of 10 K ≤ T ≤ 3000 K, based on the recent three-dimensional ab initio H-CO interaction potential of Song et al. Rate coefficients for ro-vibrational v=1,j=0-30\\to v\\prime =0,j\\prime transitions were obtained from scattering cross sections previously computed with the close-coupling (CC) method by Song et al. Combining these with the rate coefficients for vibrational v=1-5\\to v\\prime \\lt v quenching obtained with the infinite-order sudden approximation, we propose a new extrapolation scheme that yields the rate coefficients for ro-vibrational v=2-5,j=0-30\\to v\\prime ,j\\prime de-excitation. Cross sections and rate coefficients for ro-vibrational v=2,j=0-30\\to v\\prime =1,j\\prime transitions calculated with the CC method confirm the effectiveness of this extrapolation scheme. Our calculated and extrapolated rates are very different from those that have been adopted in the modeling of many astrophysical environments. The current work provides the most comprehensive and accurate set of ro-vibrational de-excitation rate coefficients for the astrophysical modeling of the H-CO collision system. The application of the previously available and new data sets in astrophysical slab models shows that the line fluxes typically change by 20%-70% in high temperature environments (800 K) with an H/H2 ratio of 1; larger changes occur for lower temperatures.
Global nuclear-structure calculations
Energy Technology Data Exchange (ETDEWEB)
Moeller, P.; Nix, J.R.
1990-04-20
The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to {epsilon}{sub 2} and {epsilon}{sub 4} used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and {Beta}-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential.
Global nuclear-structure calculations
International Nuclear Information System (INIS)
The revival of interest in nuclear ground-state octupole deformations that occurred in the 1980's was stimulated by observations in 1980 of particularly large deviations between calculated and experimental masses in the Ra region, in a global calculation of nuclear ground-state masses. By minimizing the total potential energy with respect to octupole shape degrees of freedom in addition to ε2 and ε4 used originally, a vastly improved agreement between calculated and experimental masses was obtained. To study the global behavior and interrelationships between other nuclear properties, we calculate nuclear ground-state masses, spins, pairing gaps and Β-decay and half-lives and compare the results to experimental qualities. The calculations are based on the macroscopic-microscopic approach, with the microscopic contributions calculated in a folded-Yukawa single-particle potential
CALCULATION OF LASER CUTTING COSTS
Directory of Open Access Journals (Sweden)
Bogdan Nedic
2016-09-01
Full Text Available The paper presents description methods of metal cutting and calculation of treatment costs based on model that is developed on Faculty of mechanical engineering in Kragujevac. Based on systematization and analysis of large number of calculation models of cutting with unconventional methods, mathematical model is derived, which is used for creating a software for calculation costs of metal cutting. Software solution enables resolving the problem of calculating the cost of laser cutting, comparison' of costs made by other unconventional methods and provides documentation that consists of reports on estimated costs.
Thermal reliability and performance improvement of close-coupled catalytic converter
Energy Technology Data Exchange (ETDEWEB)
Hijikata, Toshihiko; Kurachi, Hiroshi; Katsube, Fumio [NGK Insulators, Ltd., Nagoya (Japan); Honacker, H. van
1996-09-01
This paper proposes a high temperature catalytic converter design using a ceramic substrate and intumescent matting. It also describes the improvement of converter performance using an advanced thin wall ceramic substrate. Due to future tightening of emission regulations and improvement of fuel economy, higher exhaust gas temperatures are suggested. Therefore, reduction of thermal reliability of an intumescent mat will be a concern because the catalytic converter will be exposed to high temperatures. For this reason, a new design converter has been developed using a dual cone structure for both the inlet and outlet cones. This minimizes heat conduction through the cone and decreases the temperature affecting the mat area. This design converter, without the use of a heat-shield, reduces the converter surface temperature to 441 C despite a catalyst bed temperature of 1,050 C. The long term durability of the converter is demonstrated by the hot vibration test. Since the new design converter does not need a heat-shield, the catalyst diameter can be enlarged by the width of the air gap used in the current design converter. By using an advanced thin wall ceramic substrate, such as 0.11 mm/620 kcpsm (4 mil/400 cpsi), it is possible to improve emission performance and pressure drop compared with the conventional 0.16 mm/620 kcpsm (6 mil/400 cpsi) ceramic substrate.
DEFF Research Database (Denmark)
Jensen, Rasmus Eskild
, continuities rarely emerge, because the establishment of shared norms and expectations are constantly disrupted. However, despite the lack continuity the project members in this particular project managed to create coordinative practices allowing them to experience the best collaboration to date. Using...... and personal connections on several levels. These connections made the team more resistant to frequent changes in the team composition and made it easier to trace commitment in the everyday work, which was essential for completing the task. In conclusion, the dissertation found that changes...
Melt metal sheet breaking mechanism of close-coupled gas atomization
Institute of Scientific and Technical Information of China (English)
OUYANG Hong-wu; HUANG Bai-yun; CHEN Xin; YU Wen-tao
2005-01-01
The gas atomization is the process that a liquid mass is disintegrated into a collection of liquid melt droplets by the impact of high velocity gas stream and solidified into metal particles. However, the liquid melt sheet breaking mechanism has not been fully understood. So the experimental research was carried out under the condition of lower melt superheat. The results reveal that there are three approaches about melt metal sheet's breakage: from the edges of sheets, from inner surface of sheets, and disrupted by other droplets and sheets. The approach of melt sheet breakage is dependent on its thickness. The thicker sheets (above 25 μm) are disintegrated mainly by the way of droplet's departing from edges, and the thinner sheets (below 10 μm) are chiefly breaking from the inner surface.
Calculation of Spectra of Solids:
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1975-01-01
The Gilat-Raubenheimer method simplified to tetrahedron division is used to calculate the real and imaginary part of the dynamical response function for electrons. A frequency expansion for the real part is discussed. The Lindhard function is calculated as a test for numerical accuracy. The condu...
Calculation of two Belyi pairs
Dremov, V. A.
2008-01-01
We calculate two Belyi pairs using the properties of Mulase-Penkava differential. Details are provided including accurate construction of coordinates, variables and equations. The calculation is a part of the work which results in a catalogue arXiv:0710.2658
Deconstructing Calculation Methods: Part 1
Thompson, Ian
2007-01-01
The aim of this series of four articles is to look critically, and in some detail, at the primary strategy approach to written calculation, as set out on pages 5 to 16 of the "Guidance paper" "Calculation." The underlying principle of that approach is that children should use mental methods whenever they are appropriate, whereas for calculations…
Calculations of effective atomic number
Energy Technology Data Exchange (ETDEWEB)
Kaliman, Z. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia); Orlic, N. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia)], E-mail: norlic@ffri.hr; Jelovica, I. [Department of Physics, Faculty of Arts and Sciences, Omladinska 14, Rijeka (Croatia)
2007-09-21
We present and discuss effective atomic number (Z{sub eff}) obtained by different methods of calculations. There is no unique relation between the computed values. This observation led us to the conclusion that any Z{sub eff} is valid only for given process. We illustrate calculations for different subshells of atom Z=72 and for M3 subshell of several other atoms.
Calculator. Owning a Small Business.
Parma City School District, OH.
Seven activities are presented in this student workbook designed for an exploration of small business ownership and the use of the calculator in this career. Included are simulated situations in which students must use a calculator to compute property taxes; estimate payroll taxes and franchise taxes; compute pricing, approximate salaries,…
Shielding calculational system for plutonium
International Nuclear Information System (INIS)
A computer calculational system has been developed and assembled specifically for calculating dose rates in AEC plutonium fabrication facilities. The system consists of two computer codes and all nuclear data necessary for calculation of neutron and gamma dose rates from plutonium. The codes include the multigroup version of the Battelle Monte Carlo code for solution of general neutron and gamma shielding problems and the PUSHLD code for solution of shielding problems where low energy gamma and x-rays are important. The nuclear data consists of built in neutron and gamma yields and spectra for various plutonium compounds, an automatic calculation of age effects and all cross-sections commonly used. Experimental correlations have been performed to verify portions of the calculational system. (23 tables, 7 figs, 16 refs) (U.S.)
Closure and Sealing Design Calculation
International Nuclear Information System (INIS)
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post-closure monitoring will not
Closure and Sealing Design Calculation
Energy Technology Data Exchange (ETDEWEB)
T. Lahnalampi; J. Case
2005-08-26
The purpose of the ''Closure and Sealing Design Calculation'' is to illustrate closure and sealing methods for sealing shafts, ramps, and identify boreholes that require sealing in order to limit the potential of water infiltration. In addition, this calculation will provide a description of the magma that can reduce the consequences of an igneous event intersecting the repository. This calculation will also include a listing of the project requirements related to closure and sealing. The scope of this calculation is to: summarize applicable project requirements and codes relating to backfilling nonemplacement openings, removal of uncommitted materials from the subsurface, installation of drip shields, and erecting monuments; compile an inventory of boreholes that are found in the area of the subsurface repository; describe the magma bulkhead feature and location; and include figures for the proposed shaft and ramp seals. The objective of this calculation is to: categorize the boreholes for sealing by depth and proximity to the subsurface repository; develop drawing figures which show the location and geometry for the magma bulkhead; include the shaft seal figures and a proposed construction sequence; and include the ramp seal figure and a proposed construction sequence. The intent of this closure and sealing calculation is to support the License Application by providing a description of the closure and sealing methods for the Safety Analysis Report. The closure and sealing calculation will also provide input for Post Closure Activities by describing the location of the magma bulkhead. This calculation is limited to describing the final configuration of the sealing and backfill systems for the underground area. The methods and procedures used to place the backfill and remove uncommitted materials (such as concrete) from the repository and detailed design of the magma bulkhead will be the subject of separate analyses or calculations. Post
Practical astronomy with your calculator
Duffett-Smith, Peter
1989-01-01
Practical Astronomy with your Calculator, first published in 1979, has enjoyed immense success. The author's clear and easy to follow routines enable you to solve a variety of practical and recreational problems in astronomy using a scientific calculator. Mathematical complexity is kept firmly in the background, leaving just the elements necessary for swiftly making calculations. The major topics are: time, coordinate systems, the Sun, the planetary system, binary stars, the Moon, and eclipses. In the third edition there are entirely new sections on generalised coordinate transformations, nutr
Relativistic calculations of atomic structure
Fricke, Burkhard
1984-01-01
A review of relativistic atomic structure calculations is given with a emphasis on the Multiconfigurational-Dirac-Fock method. Its problems and deficiencies are discussed together with the contributions which go beyond the Dirac-Fock procedure.
Calculations of turbulent separated flows
Zhu, J.; Shih, T. H.
1993-01-01
A numerical study of incompressible turbulent separated flows is carried out by using two-equation turbulence models of the K-epsilon type. On the basis of realizability analysis, a new formulation of the eddy-viscosity is proposed which ensures the positiveness of turbulent normal stresses - a realizability condition that most existing two-equation turbulence models are unable to satisfy. The present model is applied to calculate two backward-facing step flows. Calculations with the standard K-epsilon model and a recently developed RNG-based K-epsilon model are also made for comparison. The calculations are performed with a finite-volume method. A second-order accurate differencing scheme and sufficiently fine grids are used to ensure the numerical accuracy of solutions. The calculated results are compared with the experimental data for both mean and turbulent quantities. The comparison shows that the present model performs quite well for separated flows.
Transfer Area Mechanical Handling Calculation
Energy Technology Data Exchange (ETDEWEB)
B. Dianda
2004-06-23
This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use
Quantitative calculation of dislocation mobility
Energy Technology Data Exchange (ETDEWEB)
Swaminarayan, S.; Preston, D.L.
1999-07-01
The authors present a new method to calculate the response of dislocations to applied stress. This new method, called the dislocation treadmill, can be used to study the effect of vacancies, interstitials, stresses, strain rate, temperature, etc., on the steady state velocity of the dislocation. The authors demonstrate the use of the method by calculating the response of a dislocation to a constant applied shear stress.
The calculation of pressure vessels
International Nuclear Information System (INIS)
The calculation guidelines of the Arbeitsgemeinschaft Druckbehaelter (task group for pressure vessels) have been revised with the following objective: conversion to international standards (SI), adaption to the latest state of guidelines for production and testing, revision of the contents of individual regulations. Another target of the cooperating interest groups of producers, operators, and supervisory bodies was a harmonization of the approaches for calculation with other German guidelines, in particular the Technische Regeln fuer Dampfkessel (technical regulations for steam boilers). (orig./RW)
Flexible mental calculation and "Zahlenblickschulung"
Rechtsteiner-Merz, Charlotte; Rathgeb-Schnierer, Elisabeth
2015-01-01
International audience; The study focuses on the development of mental calculation of elementary students who show difficulties in learning math. In total, 20 children in 8 classes were observed during their first year at school. The math education of five classes was based on a special approach called “Zahlenblickschulung”, whereas three classes experienced more regular lessons. The collected data allowed a development of a typology of flexibility in mental calculation. Additionally, it was ...
Multifragmentation calculated with relativistic forces
International Nuclear Information System (INIS)
A saturating hamiltonian is presented in a relativistically covariant formalism. The interaction is described by scalar and vector mesons, with coupling strengths adjusted to the nuclear matter. No explicit density dependence is assumed. The hamiltonian is applied in a QMD calculation to determine the fragment distribution in O + Br collision at different energies (50 - 200 MeV/u) to test the applicability of the model at low energies. The results are compared with experiment and with previous non-relativistic calculations. (orig.)
Hydraulic calculation of pressure pipes
Mikhalev, M. A.
2012-01-01
In the present time there is only one classic method for hydraulic calculation of pressure pipes. In it fluid flow velocity and pipeline diameter are considered as given values.The paper proposes a procedure for physical modeling and hydraulic calculation of pressure pipes, based on the theory of similarity. Methods for obtaining similarity criteria from combinations of similarity numbers were discussed. Similarity numbers and criteria and criteria equations were defined.
Bulut, N; Castillo, J F; Jambrina, P G; Kłos, J; Roncero, O; Aoiz, F J; Bañares, L
2015-12-17
Accurate quantum reactive scattering time-dependent wave packet close-coupling calculations have been carried out to determine total reaction probabilities and integral cross sections for the O(+) + H2 → OH(+) + H reaction in a range of collision energies from 10(-3) eV up to 1.0 eV for the H2 rovibrational states (v = 0; j = 0, 1, 2) and (v = 1; j = 0) using the potential energy surface (PES) by Martı́nez et al. As expected for a barrierless reaction, the reaction cross section decays rapidly with collision energy, Ec, following a behavior that nearly corresponds to that predicted by the Langevin model. Rotational excitation of H2 into j = 1, 2 has a very moderate effect on reactivity, similarly to what happens with vibrational excitation below Ec ≈ 0.3 eV. However, at higher collision energies the cross section increases notably when H2 is promoted to v = 1. This effect is explained by resorting to the effective potentials in the entrance channel. The integral cross sections have been used to calculate rate constants in the temperature range 200-1000 K. A good overall agreement has been found with the available experimental data on integral cross sections and rate constants. In addition, time-independent quantum mechanical and quasi-classical trajectory (QCT) calculations have been performed on the same PES aimed to compare the various methodologies and to discern the detailed mechanism of the title reaction. In particular, the analysis of individual trajectories has made it possible to explain, in terms of the coupling between reagent relative velocity and the topography of the PES, the presence of a series of alternating maxima and minima in the collision energy dependence of the QCT reaction probabilities for the reactions with H2(v=0,1,j=0), which are absent in the quantum mechanical calculations. PMID:25822338
The Dental Trauma Internet Calculator
DEFF Research Database (Denmark)
Gerds, Thomas Alexander; Lauridsen, Eva Fejerskov; Christensen, Søren Steno Ahrensburg;
2012-01-01
Background/Aim Prediction tools are increasingly used to inform patients about the future dental health outcome. Advanced statistical methods are required to arrive at unbiased predictions based on follow-up studies. Material and Methods The Internet risk calculator at the Dental Trauma Guide......) in the period between 1972 and 1991. Subgroup analyses and estimates of event probabilities were based on the Kaplan-Meier and the Aalen-Johansen method. Results The Internet risk calculator shows individualized prognoses for the short and long-term healing outcome of traumatized teeth with the following...... were based on the tooth’s root development stage and other risk factors at the time of the injury. Conclusions This article explains the data base, the functionality and the statistical approach of the Internet risk calculator....
Insertion device calculations with mathematica
Energy Technology Data Exchange (ETDEWEB)
Carr, R. [Stanford Synchrotron Radiation Lab., CA (United States); Lidia, S. [Univ. of California, Davis, CA (United States)
1995-02-01
The design of accelerator insertion devices such as wigglers and undulators has usually been aided by numerical modeling on digital computers, using code in high level languages like Fortran. In the present era, there are higher level programming environments like IDL{reg_sign}, MatLab{reg_sign}, and Mathematica{reg_sign} in which these calculations may be performed by writing much less code, and in which standard mathematical techniques are very easily used. The authors present a suite of standard insertion device modeling routines in Mathematica to illustrate the new techniques. These routines include a simple way to generate magnetic fields using blocks of CSEM materials, trajectory solutions from the Lorentz force equations for given magnetic fields, Bessel function calculations of radiation for wigglers and undulators and general radiation calculations for undulators.
Canister Transfer Facility Criticality Calculations
Energy Technology Data Exchange (ETDEWEB)
J.E. Monroe-Rammsy
2000-10-13
The objective of this calculation is to evaluate the criticality risk in the surface facility for design basis events (DBE) involving Department of Energy (DOE) Spent Nuclear Fuel (SNF) standardized canisters (Civilian Radioactive Waste Management System [CRWMS] Management and Operating Contractor [M&O] 2000a). Since some of the canisters will be stored in the surface facility before they are loaded in the waste package (WP), this calculation supports the demonstration of concept viability related to the Surface Facility environment. The scope of this calculation is limited to the consideration of three DOE SNF fuels, specifically Enrico Fermi SNF, Training Research Isotope General Atomic (TRIGA) SNF, and Mixed Oxide (MOX) Fast Flux Test Facility (FFTF) SNF.
Verification of Internal Dose Calculations.
Aissi, Abdelmadjid
The MIRD internal dose calculations have been in use for more than 15 years, but their accuracy has always been questionable. There have been attempts to verify these calculations; however, these attempts had various shortcomings which kept the question of verification of the MIRD data still unanswered. The purpose of this research was to develop techniques and methods to verify the MIRD calculations in a more systematic and scientific manner. The research consisted of improving a volumetric dosimeter, developing molding techniques, and adapting the Monte Carlo computer code ALGAM to the experimental conditions and vice versa. The organic dosimetric system contained TLD-100 powder and could be shaped to represent human organs. The dosimeter possessed excellent characteristics for the measurement of internal absorbed doses, even in the case of the lungs. The molding techniques are inexpensive and were used in the fabrication of dosimetric and radioactive source organs. The adaptation of the computer program provided useful theoretical data with which the experimental measurements were compared. The experimental data and the theoretical calculations were compared for 6 source organ-7 target organ configurations. The results of the comparison indicated the existence of an agreement between measured and calculated absorbed doses, when taking into consideration the average uncertainty (16%) of the measurements, and the average coefficient of variation (10%) of the Monte Carlo calculations. However, analysis of the data gave also an indication that the Monte Carlo method might overestimate the internal absorbed doses. Even if the overestimate exists, at least it could be said that the use of the MIRD method in internal dosimetry was shown to lead to no unnecessary exposure to radiation that could be caused by underestimating the absorbed dose. The experimental and the theoretical data were also used to test the validity of the Reciprocity Theorem for heterogeneous
Molecular calculations with B functions
Steinborn, E O; Ema, I; López, R; Ramírez, G
1998-01-01
A program for molecular calculations with B functions is reported and its performance is analyzed. All the one- and two-center integrals, and the three-center nuclear attraction integrals are computed by direct procedures, using previously developed algorithms. The three- and four-center electron repulsion integrals are computed by means of Gaussian expansions of the B functions. A new procedure for obtaining these expansions is also reported. Some results on full molecular calculations are included to show the capabilities of the program and the quality of the B functions to represent the electronic functions in molecules.
Ab Initio Calculations of Oxosulfatovanadates
DEFF Research Database (Denmark)
Frøberg, Torben; Johansen, Helge
1996-01-01
Restricted Hartree-Fock and multi-configurational self-consistent-field calculations together with secondorder perturbation theory have been used to study the geometry, the electron density, and the electronicspectrum of (VO2SO4)-. A bidentate sulphate attachment to vanadium was found to be stable...... with anO-V-O angle of 72.5 degrees . The calculated spectrum shows bands in reasonable agreement with anexperimental spectrum which has been attributed to (VO2SO4)-. The geometry and the electron density fortwo binuclear vanadium complexes proposed as intermediates in the vanadium catalyzed SO2...
Data Acquisition and Flux Calculations
DEFF Research Database (Denmark)
Rebmann, C.; Kolle, O; Heinesch, B;
2012-01-01
In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation.......In this chapter, the basic theory and the procedures used to obtain turbulent fluxes of energy, mass, and momentum with the eddy covariance technique will be detailed. This includes a description of data acquisition, pretreatment of high-frequency data and flux calculation....
Friction and wear calculation methods
Kragelsky, I V; Kombalov, V S
1981-01-01
Friction and Wear: Calculation Methods provides an introduction to the main theories of a new branch of mechanics known as """"contact interaction of solids in relative motion."""" This branch is closely bound up with other sciences, especially physics and chemistry. The book analyzes the nature of friction and wear, and some theoretical relationships that link the characteristics of the processes and the properties of the contacting bodies essential for practical application of the theories in calculating friction forces and wear values. The effect of the environment on friction and wear is a
Directory of Open Access Journals (Sweden)
Adriano Kozoroski Reis
2012-03-01
Full Text Available O objetivo geral deste trabalho é verificar os meios de disseminação da Educação Fiscal no Brasil, especificamente nos 27 estados da federação, distribuídos nas regiões Norte, Nordeste, Sudeste, Sul e Centro-Oeste. Como objetivos específicos tem-se: determinar mecanismos para a gestão transparente e eficiente dos recursos públicos; mostrar formas de divulgação destas ações para a sociedade e apresentar maneiras para a sociedade exercer o pleno exercício da cidadania. A metodologia utilizada é de pesquisa descritiva e bibliográfica, associada ao desempenho de órgãos públicos na disseminação da educação fiscal. A trajetória metodológica divide-se em três fases: a primeira, “Fundamentação Teórica”, em que são abordados os temas relacionados ao assunto pesquisado. Trata-se de temas atinentes a Finanças Públicas, Sistema Tributário Nacional, Direito Constitucional, Controle Externo e Educação Fiscal. Na segunda fase apresenta-se a “Pesquisa de Campo”, com a utilização de questionários aplicados aos profissionais ligados aos programas de educação fiscal. Na terceira e última fase apresenta-se uma “Proposta de Modelo de Gestão para Educação Fiscal”. No final conclui-se que a perspectiva de avanço no programa de Educação Fiscal e a integração da sociedade ao controle social e transparente da gestão pública necessitam de um modelo de gestão capaz de avaliar os resultados do programa. The aim of this study is to test the means of dissemination of Fiscal Education in Brazil specifically in the 27 states of the federation, distributed in North, Northeast, Southeast, South and Midwest. The specific objectives are to: Determine mechanisms for efficient and transparent management of public resources; Show forms of disclosure of these actions to society; and present ways for society to exercise full citizenship. The methodology used is descriptive and literature associated with the performance
Methods for Melting Temperature Calculation
Hong, Qi-Jun
Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which
Dead reckoning calculating without instruments
Doerfler, Ronald W
1993-01-01
No author has gone as far as Doerfler in covering methods of mental calculation beyond simple arithmetic. Even if you have no interest in competing with computers you'll learn a great deal about number theory and the art of efficient computer programming. -Martin Gardner
Professional Growth & Support Spending Calculator
Education Resource Strategies, 2013
2013-01-01
This "Professional Growth & Support Spending Calculator" helps school systems quantify all current spending aimed at improving teaching effectiveness. Part I provides worksheets to analyze total investment. Part II provides a system for evaluating investments based on purpose, target group, and delivery. In this Spending Calculator…
Quasiclassical Calculations in Beam Dynamics
Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.
2000-01-01
We present some applications of general harmonic/wavelet analysis approach (generalized coherent states, wavelet packets) to numerical/analytical calculations in (nonlinear) quasiclassical/quantum beam dynamics problems. (Naive) deformation quantization, multiresolution representations and Wigner transform are the key points.
ITER Port Interspace Pressure Calculations
Energy Technology Data Exchange (ETDEWEB)
Carbajo, Juan J [ORNL; Van Hove, Walter A [ORNL
2016-01-01
The ITER Vacuum Vessel (VV) is equipped with 54 access ports. Each of these ports has an opening in the bioshield that communicates with a dedicated port cell. During Tokamak operation, the bioshield opening must be closed with a concrete plug to shield the radiation coming from the plasma. This port plug separates the port cell into a Port Interspace (between VV closure lid and Port Plug) on the inner side and the Port Cell on the outer side. This paper presents calculations of pressures and temperatures in the ITER (Ref. 1) Port Interspace after a double-ended guillotine break (DEGB) of a pipe of the Tokamak Cooling Water System (TCWS) with high temperature water. It is assumed that this DEGB occurs during the worst possible conditions, which are during water baking operation, with water at a temperature of 523 K (250 C) and at a pressure of 4.4 MPa. These conditions are more severe than during normal Tokamak operation, with the water at 398 K (125 C) and 2 MPa. Two computer codes are employed in these calculations: RELAP5-3D Version 4.2.1 (Ref. 2) to calculate the blowdown releases from the pipe break, and MELCOR, Version 1.8.6 (Ref. 3) to calculate the pressures and temperatures in the Port Interspace. A sensitivity study has been performed to optimize some flow areas.
Relativistic multiple scattering Xα calculations
International Nuclear Information System (INIS)
A one component relativistic theory has recently been developed and tested on isolated atoms and on molecules through the molecular scattered-wave formalism of Johnson, while its application to energy-band calculations (through a relativistic augmented-plane-wave program) has also been considered
Prenatal radiation exposure. Dose calculation
International Nuclear Information System (INIS)
The unborn child requires special protection. In this context, the indication for an X-ray examination is to be checked critically. If thereupon radiation of the lower abdomen including the uterus cannot be avoided, the examination should be postponed until the end of pregnancy or alternative examination techniques should be considered. Under certain circumstances, either accidental or in unavoidable cases after a thorough risk assessment, radiation exposure of the unborn may take place. In some of these cases an expert radiation hygiene consultation may be required. This consultation should comprise the expected risks for the unborn while not perturbing the mother or the involved medical staff. For the risk assessment in case of an in-utero X-ray exposition deterministic damages with a defined threshold dose are distinguished from stochastic damages without a definable threshold dose. The occurrence of deterministic damages depends on the dose and the developmental stage of the unborn at the time of radiation. To calculate the risks of an in-utero radiation exposure a three-stage concept is commonly applied. Depending on the amount of radiation, the radiation dose is either estimated, roughly calculated using standard tables or, in critical cases, accurately calculated based on the individual event. The complexity of the calculation thereby increases from stage to stage. An estimation based on stage one is easily feasible whereas calculations based on stages two and especially three are more complex and often necessitate execution by specialists. This article demonstrates in detail the risks for the unborn child pertaining to its developmental phase and explains the three-stage concept as an evaluation scheme. It should be noted, that all risk estimations are subject to considerable uncertainties.
AGING FACILITY CRITICALITY SAFETY CALCULATIONS
International Nuclear Information System (INIS)
The purpose of this design calculation is to revise and update the previous criticality calculation for the Aging Facility (documented in BSC 2004a). This design calculation will also demonstrate and ensure that the storage and aging operations to be performed in the Aging Facility meet the criticality safety design criteria in the ''Project Design Criteria Document'' (Doraswamy 2004, Section 4.9.2.2), and the functional nuclear criticality safety requirement described in the ''SNF Aging System Description Document'' (BSC [Bechtel SAIC Company] 2004f, p. 3-12). The scope of this design calculation covers the systems and processes for aging commercial spent nuclear fuel (SNF) and staging Department of Energy (DOE) SNF/High-Level Waste (HLW) prior to its placement in the final waste package (WP) (BSC 2004f, p. 1-1). Aging commercial SNF is a thermal management strategy, while staging DOE SNF/HLW will make loading of WPs more efficient (note that aging DOE SNF/HLW is not needed since these wastes are not expected to exceed the thermal limits form emplacement) (BSC 2004f, p. 1-2). The description of the changes in this revised document is as follows: (1) Include DOE SNF/HLW in addition to commercial SNF per the current ''SNF Aging System Description Document'' (BSC 2004f). (2) Update the evaluation of Category 1 and 2 event sequences for the Aging Facility as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004c, Section 7). (3) Further evaluate the design and criticality controls required for a storage/aging cask, referred to as MGR Site-specific Cask (MSC), to accommodate commercial fuel outside the content specification in the Certificate of Compliance for the existing NRC-certified storage casks. In addition, evaluate the design required for the MSC that will accommodate DOE SNF/HLW. This design calculation will achieve the objective of providing the criticality safety results to support the preliminary design of the Aging
CONTRIBUTION FOR MINING ATMOSPHERE CALCULATION
Directory of Open Access Journals (Sweden)
Franica Trojanović
1989-12-01
Full Text Available Humid air is an unavoidable feature of mining atmosphere, which plays a significant role in defining the climate conditions as well as permitted circumstances for normal mining work. Saturated humid air prevents heat conduction from the human body by means of evaporation. Consequently, it is of primary interest in the mining practice to establish the relative air humidity either by means of direct or indirect methods. Percentage of water in the surrounding air may be determined in various procedures including tables, diagrams or particular calculations, where each technique has its specific advantages and disadvantages. Classical calculation is done according to Sprung's formula, in which case partial steam pressure should also be taken from the steam table. The new method without the use of diagram or tables, established on the functional relation of pressure and temperature on saturated line, is presented here for the first time (the paper is published in Croatian.
Calculation of gas turbine characteristic
Mamaev, B. I.; Murashko, V. L.
2016-04-01
The reasons and regularities of vapor flow and turbine parameter variation depending on the total pressure drop rate π* and rotor rotation frequency n are studied, as exemplified by a two-stage compressor turbine of a power-generating gas turbine installation. The turbine characteristic is calculated in a wide range of mode parameters using the method in which analytical dependences provide high accuracy for the calculated flow output angle and different types of gas dynamic losses are determined with account of the influence of blade row geometry, blade surface roughness, angles, compressibility, Reynolds number, and flow turbulence. The method provides satisfactory agreement of results of calculation and turbine testing. In the design mode, the operation conditions for the blade rows are favorable, the flow output velocities are close to the optimal ones, the angles of incidence are small, and the flow "choking" modes (with respect to consumption) in the rows are absent. High performance and a nearly axial flow behind the turbine are obtained. Reduction of the rotor rotation frequency and variation of the pressure drop change the flow parameters, the parameters of the stages and the turbine, as well as the form of the characteristic. In particular, for decreased n, nonmonotonic variation of the second stage reactivity with increasing π* is observed. It is demonstrated that the turbine characteristic is mainly determined by the influence of the angles of incidence and the velocity at the output of the rows on the losses and the flow output angle. The account of the growing flow output angle due to the positive angle of incidence for decreased rotation frequencies results in a considerable change of the characteristic: poorer performance, redistribution of the pressure drop at the stages, and change of reactivities, growth of the turbine capacity, and change of the angle and flow velocity behind the turbine.
Electronics reliability calculation and design
Dummer, Geoffrey W A; Hiller, N
1966-01-01
Electronics Reliability-Calculation and Design provides an introduction to the fundamental concepts of reliability. The increasing complexity of electronic equipment has made problems in designing and manufacturing a reliable product more and more difficult. Specific techniques have been developed that enable designers to integrate reliability into their products, and reliability has become a science in its own right. The book begins with a discussion of basic mathematical and statistical concepts, including arithmetic mean, frequency distribution, median and mode, scatter or dispersion of mea
Rate calculation with colored noise
Bartsch, Thomas; Benito, R M; Borondo, F
2016-01-01
The usual identification of reactive trajectories for the calculation of reaction rates requires very time-consuming simulations, particularly if the environment presents memory effects. In this paper, we develop a new method that permits the identification of reactive trajectories in a system under the action of a stochastic colored driving. This method is based on the perturbative computation of the invariant structures that act as separatrices for reactivity. Furthermore, using this perturbative scheme, we have obtained a formally exact expression for the reaction rate in multidimensional systems coupled to colored noisy environments.
Calculation of transonic aileron buzz
Steger, J. L.; Bailey, H. E.
1979-01-01
An implicit finite-difference computer code that uses a two-layer algebraic eddy viscosity model and exact geometric specification of the airfoil has been used to simulate transonic aileron buzz. The calculated results, which were performed on both the Illiac IV parallel computer processor and the Control Data 7600 computer, are in essential agreement with the original expository wind-tunnel data taken in the Ames 16-Foot Wind Tunnel just after World War II. These results and a description of the pertinent numerical techniques are included.
Digital calculations of engine cycles
Starkman, E S; Taylor, C Fayette
1964-01-01
Digital Calculations of Engine Cycles is a collection of seven papers which were presented before technical meetings of the Society of Automotive Engineers during 1962 and 1963. The papers cover the spectrum of the subject of engine cycle events, ranging from an examination of composition and properties of the working fluid to simulation of the pressure-time events in the combustion chamber. The volume has been organized to present the material in a logical sequence. The first two chapters are concerned with the equilibrium states of the working fluid. These include the concentrations of var
Calculational Tool for Skin Contamination Dose Assessment
Hill, R L
2002-01-01
Spreadsheet calculational tool was developed to automate the calculations preformed for dose assessment of skin contamination. This document reports on the design and testing of the spreadsheet calculational tool.
Atomic physics: computer calculations and theoretical analysis
Drukarev, E. G.
2004-01-01
It is demonstrated, how the theoretical analysis preceding the numerical calculations helps to calculate the energy of the ground state of helium atom, and enables to avoid qualitative errors in the calculations of the characteristics of the double photoionization.
Calculation of sound propagation in fibrous materials
DEFF Research Database (Denmark)
Tarnow, Viggo
1996-01-01
Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements.......Calculations of attenuation and velocity of audible sound waves in glass wools are presented. The calculations use only the diameters of fibres and the mass density of glass wools as parameters. The calculations are compared with measurements....
Flow Field Calculations for Afterburner
Institute of Scientific and Technical Information of China (English)
ZhaoJianxing; LiuQuanzhong; 等
1995-01-01
In this paper a calculation procedure for simulating the coimbustion flow in the afterburner with the heat shield,flame stabilizer and the contracting nozzle is described and evaluated by comparison with experimental data.The modified two-equation κ-ε model is employed to consider the turbulence effects,and the κ-ε-g turbulent combustion model is used to determine the reaction rate.To take into accunt the influence of heat radiation on gas temperature distribution,heat flux model is applied to predictions of heat flux distributions,The solution domain spanned the entire region between centerline and afterburner wall ,with the heat shield represented as a blockage to the mesh.The enthalpy equation and wall boundary of the heat shield require special handling for two passages in the afterburner,In order to make the computer program suitable to engineering applications,a subregional scheme is developed for calculating flow fields of complex geometries.The computational grids employed are 100×100 and 333×100(non-uniformly distributed).The numerical results are compared with experimental data,Agreement between predictions and measurements shows that the numerical method and the computational program used in the study are fairly reasonable and appopriate for primary design of the afterburner.
Light Pipe Energy Savings Calculator
Owens, Erin; Behringer, Ernest R.
2009-04-01
Dependence on fossil fuels is unsustainable and therefore a shift to renewable energy sources such as sunlight is required. Light pipes provide a way to utilize sunlight for interior lighting, and can reduce the need for fossil fuel-generated electrical energy. Because consumers considering light pipe installation may be more strongly motivated by cost considerations than by sustainability arguments, an easy means to examine the corresponding costs and benefits is needed to facilitate informed decision-making. The purpose of this American Physical Society Physics and Society Fellowship project is to create a Web-based calculator to allow users to quantify the possible cost savings for their specific light pipe application. Initial calculations show that the illumination provided by light pipes can replace electric light use during the day, and in many cases can supply greater illumination levels than those typically given by electric lighting. While the installation cost of a light pipe is significantly greater than the avoided cost of electricity over the lifetime of the light pipe at current prices, savings may be realized if electricity prices increase.
Calculations for electron-impact excitation and ionization of beryllium
Zatsarinny, Oleg; Fursa, Dmitry V; Bray, Igor
2016-01-01
The B-spline R-matrix and the convergent close-coupling methods are used to study electron collisions with neutral beryllium over an energy range from threshold to 100 eV. Coupling to the target continuum significantly affects the results for transitions from the ground state, but to a lesser extent the strong transitions between excited states. Cross sections are presented for selected transitions between low-lying physical bound states of beryllium, as well as for elastic scattering, momentum transfer, and ionization. The present cross sections for transitions from the ground state from the two methods are in excellent agreement with each other, and also with other available results based on nonperturbative convergent pseudo-state and time-dependent close-coupling models. The elastic cross section at low energies is dominated by a prominent shape resonance. The ionization from the $(2s2p)^3P$ and $(2s2p)^1P$ states strongly depends on the respective term. The current predictions represent an extensive set o...
Langage C++ et calcul scientifique
Saramito, Pierre
2005-01-01
La simulation numérique est devenue essentielle dans de nombreux domaines tels que la mécanique des fluides et des solides, la météo, l'évolution du climat, la biologie ou les semi-conducteurs. Elle permet de comprendre, de prévoir, d'accéder là où les instruments de mesures s'arrêtent. Ce livre présente des méthodes performantes du calcul scientifique : matrices creuses, résolution efficace des grands systèmes linéaires, ainsi que de nombreuses applications à la résolution par éléments fini...
Painless causality in defect calculations
Cheung, C; Cheung, Charlotte; Magueijo, Joao
1997-01-01
Topological defects must respect causality, a statement leading to restrictive constraints on the power spectrum of the total cosmological perturbations they induce. Causality constraints have for long been known to require the presence of an under-density in the surrounding matter compensating the defect network on large scales. This so-called compensation can never be neglected and significantly complicates calculations in defect scenarios, eg. computing cosmic microwave background fluctuations. A quick and dirty way to implement the compensation are the so-called compensation fudge factors. Here we derive the complete photon-baryon-CDM backreaction effects in defect scenarios. The fudge factor comes out as an algebraic identity and so we drop the negative qualifier ``fudge''. The compensation scale is computed and physically interpreted. Secondary backreaction effects exist, and neglecting them constitutes the well-defined approximation scheme within which one should consider compensation factor calculatio...
Thermodynamic Calculations for Systems Biocatalysis
DEFF Research Database (Denmark)
Abu, Rohana; Gundersen, Maria T.; Woodley, John M.
2015-01-01
‘Systems Biocatalysis’ is a term describing multi-enzyme processes in vitro for the synthesis of chemical products. Unlike in-vivo systems, such an artificial metabolism can be controlled in a highly efficient way in order to achieve a sufficiently favourable conversion for a given target product...... on the basis of kinetics. However, many of the most interesting non-natural chemical reactions which could potentially be catalysed by enzymes, are thermodynamically unfavourable and are thus limited by the equilibrium position of the reaction. A good example is the enzyme ω-transaminase, which catalyses...... be altered by coupling with other reactions. For instance, in the case of ω-transaminase, such a coupling could be with alanine dehydrogenase. Herein, the aim of this work is to identify thermodynamic bottlenecks within a multi-enzyme process, using group contribution method to calculate the Gibbs free...
Energy Technology Data Exchange (ETDEWEB)
Fung, Jimmy [Los Alamos National Laboratory; Schofield, Sam [LLNL; Shashkov, Mikhail J. [Los Alamos National Laboratory
2012-06-25
We did not run with a 'cylindrically painted region'. However, we did compute two general variants of the original problem. Refinement studies where a single zone at each level of refinement contains the entire internal energy at t=0 or A 'finite' energy source which has the same physical dimensions as that for the 91 x 46 mesh, but consisting of increasing numbers of zones with refinement. Nominal mesh resolution: 91 x 46. Other mesh resolutions: 181 x 92 and 361 x 184. Note, not identical to the original specification. To maintain symmetry for the 'fixed' energy source, the mesh resolution was adjusted slightly. FLAG Lagrange or full (Eulerian) ALE was used with various options for each simulation. Observation - for either Lagrange or ALE, point or 'fixed' source, calculations converge on density and pressure with mesh resolution, but not energy, (not vorticity either).
Calculating the GONG Leakage Matrix
Hill, F.; Howe, R.
Since spherical harmonics do not form a complete orthonormal basis set over a portion of a sphere, helioseismic spectra computed for a specific target mode with degree ellt and azimuthal degree mt also contain modes with nearby ell'' and m''. These spatial leaks greatly increase the complexity of the observed spectrum, complicating the spectral fitting and degrading the resulting mode parameter estimates. This is particularly true where the target mode and the leaks have similar frequencies. Some strategies for fitting helioseismic spectra explicitly include the leakage matrix which estimates the relative strength of a mode (ell'' and m'') in the spectrum at (ellt,mt). Since the fitting methods assume that the matrix is correct and apply it as a constraint, an inaccurate matrix introduces systematic errors in the estimated mode parameters. It is thus important to have as accurate a matrix as possible. Here we report on the calculation of the leakage matrix for the GONG observations. The matrix elements are essentially the integrals (over the observed portion of the solar surface) of the crossproducts of the two spherical harmonics. However, several effects have been included to increase the accuracy of the matrix. These include the projection factor of the observable (velocity, intensity, modulation), the spatial apodization applied to the data, the finite rectangular pixel dimensions of the observations, and possible errors in the estimated image geometry. Other factors to be incorporated are the observed MTF, the merging of the GONG images, and the horizontal components of the oscillatory velocity field. We will compare the latest calculation with the observed spectrum and assess the relative importance of the input factors. We will also compare the leakage matrices for velocity and intensity to estimate their contribution to the large apparent differences in the helioseismic spectra obtained from these observables.
Dyscalculia and the Calculating Brain.
Rapin, Isabelle
2016-08-01
Dyscalculia, like dyslexia, affects some 5% of school-age children but has received much less investigative attention. In two thirds of affected children, dyscalculia is associated with another developmental disorder like dyslexia, attention-deficit disorder, anxiety disorder, visual and spatial disorder, or cultural deprivation. Infants, primates, some birds, and other animals are born with the innate ability, called subitizing, to tell at a glance whether small sets of scattered dots or other items differ by one or more item. This nonverbal approximate number system extends mostly to single digit sets as visual discrimination drops logarithmically to "many" with increasing numerosity (size effect) and crowding (distance effect). Preschoolers need several years and specific teaching to learn verbal names and visual symbols for numbers and school agers to understand their cardinality and ordinality and the invariance of their sequence (arithmetic number line) that enables calculation. This arithmetic linear line differs drastically from the nonlinear approximate number system mental number line that parallels the individual number-tuned neurons in the intraparietal sulcus in monkeys and overlying scalp distribution of discrete functional magnetic resonance imaging activations by number tasks in man. Calculation is a complex skill that activates both visual and spatial and visual and verbal networks. It is less strongly left lateralized than language, with approximate number system activation somewhat more right sided and exact number and arithmetic activation more left sided. Maturation and increasing number skill decrease associated widespread non-numerical brain activations that persist in some individuals with dyscalculia, which has no single, universal neurological cause or underlying mechanism in all affected individuals. PMID:27515455
On Calculation of Amplitudes in Quantum Electrodynamics
Karplyuk, Kostyantyn; Zhmudsky, Oleksandr
2012-01-01
A new method of calculation of amplitudes of different processes in quantum electrodynamics is proposed. The method does not use the Feynman technique of trace of product of matrices calculation. The method strongly simplifies calculation of cross sections for different processes. The effectiveness of the method is shown on the cross-section calculation of Coulomb scattering, Compton scattering and electron-positron annihilation.
Factors affecting calculation of L
Ciotola, Mark P.
2001-08-01
A detectable extraterrestrial civilization can be modeled as a series of successive regimes over time each of which is detectable for a certain proportion of its lifecycle. This methodology can be utilized to produce an estimate for L. Potential components of L include quantity of fossil fuel reserves, solar energy potential, quantity of regimes over time, lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and downtime between regimes. Relationships between these components provide a means of calculating the lifetime of communicative species in a detectable state, L. An example of how these factors interact is provided, utilizing values that are reasonable given known astronomical data for components such as solar energy potential while existing knowledge about the terrestrial case is used as a baseline for other components including fossil fuel reserves, quantity of regimes over time, and lifecycle patterns of regimes, proportion of lifecycle regime is actually detectable, and gaps of time between regimes due to recovery from catastrophic war or resource exhaustion. A range of values is calculated for L when parameters are established for each component so as to determine the lowest and highest values of L. roadmap for SETI research at the SETI Institute for the next few decades. Three different approaches were identified. 1) Continue the radio search: build an affordable array incorporating consumer market technologies, expand the search frequency, and increase the target list to 100,000 stars. This array will also serve as a technology demonstration and enable the international radio astronomy community to realize an array that is a hundred times larger and capable (among other things) of searching a million stars. 2) Begin searches for very fast optical pulses from a million stars. 3) As Moore's Law delivers increased computational capacity, build an omni-directional sky survey array capable of detecting strong, transient
Benchmark calculations for EGS5
International Nuclear Information System (INIS)
In the past few years, EGS4 has undergone an extensive upgrade to EGS5, in particularly in the areas of low-energy electron physics, low-energy photon physics, PEGS cross section generation, and the coding from Mortran to Fortran programming. Benchmark calculations have been made to assure the accuracy, reliability and high quality of the EGS5 code system. This study reports three benchmark examples that show the successful upgrade from EGS4 to EGS5 based on the excellent agreements among EGS4, EGS5 and measurements. The first benchmark example is the 1969 Crannell Experiment to measure the three-dimensional distribution of energy deposition for 1-GeV electrons shower in water and aluminum tanks. The second example is the 1995 Compton-scattered spectra measurements for 20-40 keV, linearly polarized photon by Namito et. al., in KEK, which was a main part of the low-energy photon expansion work for both EGS4 and EGS5. The third example is the 1986 heterogeneity benchmark experiment by Shortt et. al., who used a monoenergetic 20-MeV electron beam to hit the front face of a water tank containing both air and aluminum cylinders and measured spatial depth dose distribution using a small solid-state detector. (author)
Calculating system reliability with SRFYDO
Energy Technology Data Exchange (ETDEWEB)
Morzinski, Jerome [Los Alamos National Laboratory; Anderson - Cook, Christine M [Los Alamos National Laboratory; Klamann, Richard M [Los Alamos National Laboratory
2010-01-01
SRFYDO is a process for estimating reliability of complex systems. Using information from all applicable sources, including full-system (flight) data, component test data, and expert (engineering) judgment, SRFYDO produces reliability estimates and predictions. It is appropriate for series systems with possibly several versions of the system which share some common components. It models reliability as a function of age and up to 2 other lifecycle (usage) covariates. Initial output from its Exploratory Data Analysis mode consists of plots and numerical summaries so that the user can check data entry and model assumptions, and help determine a final form for the system model. The System Reliability mode runs a complete reliability calculation using Bayesian methodology. This mode produces results that estimate reliability at the component, sub-system, and system level. The results include estimates of uncertainty, and can predict reliability at some not-too-distant time in the future. This paper presents an overview of the underlying statistical model for the analysis, discusses model assumptions, and demonstrates usage of SRFYDO.
Selfconsistent calculations for hyperdeformed nuclei
Energy Technology Data Exchange (ETDEWEB)
Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)
1996-12-31
Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.
RTU Comparison Calculator Enhancement Plan
Energy Technology Data Exchange (ETDEWEB)
Miller, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-07-01
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
RTU Comparison Calculator Enhancement Plan
Energy Technology Data Exchange (ETDEWEB)
Miller, James D.; Wang, Weimin; Katipamula, Srinivas
2014-03-31
Over the past two years, Department of Energy’s Building Technologies Office (BTO) has been investigating ways to increase the operating efficiency of the packaged rooftop units (RTUs) in the field. First, by issuing a challenge to the RTU manufactures to increase the integrated energy efficiency ratio (IEER) by 60% over the existing ASHRAE 90.1-2010 standard. Second, by evaluating the performance of an advanced RTU controller that reduces the energy consumption by over 40%. BTO has previously also funded development of a RTU comparison calculator (RTUCC). RTUCC is a web-based tool that provides the user a way to compare energy and cost savings for two units with different efficiencies. However, the RTUCC currently cannot compare savings associated with either the RTU Challenge unit or the advanced RTU controls retrofit. Therefore, BTO has asked PNNL to enhance the tool so building owners can compare energy and savings associated with this new class of products. This document provides the details of the enhancements that are required to support estimating energy savings from use of RTU challenge units or advanced controls on existing RTUs.
Energy Technology Data Exchange (ETDEWEB)
Bouhafs, Nezha; Lique, François, E-mail: francois.lique@univ-lehavre.fr [LOMC–UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76063 Le Havre (France)
2015-11-14
We present a new three-dimensional potential energy surface (PES) for the NH(X{sup 3}Σ{sup −})–Ne van der Waals system, which explicitly takes into account the NH vibrational motion. Ab initio calculations of the NH–Ne PES were carried out using the open-shell single- and double-excitation coupled cluster approach with non-iterative perturbational treatment of triple excitations [RCCSD(T)]. The augmented correlation-consistent quadruple zeta (aug-cc-pVQZ) basis set was employed. Mid-bond functions were also included in order to improve the accuracy in the van der Waals well. Using this new PES, we have studied the collisional excitation of NH(X{sup 3}Σ{sup −}) by Ne. Close-coupling calculations of the collisional excitation cross sections of the fine-structure levels of NH by Ne are performed for energies up to 3000 cm{sup −1}, which yield, after thermal average, rate coefficients up to 350 K. The propensity rules between fine-structure levels are reported, and it is found that F-conserving cross sections are larger than F-changing cross sections even if the propensity rules are not as strong as for the NH–He system. The calculated rate coefficients are compared with available experimental measurements at room temperature and a fairly good agreement is found between experimental and theoretical data, confirming the good quality of the scattering calculations and also the accuracy of the potential energy surface used in this work.
Calculation Methods for Wallenius’ Noncentral Hypergeometric Distribution
DEFF Research Database (Denmark)
Fog, Agner
2008-01-01
conditional distribution of independent binomial variates given their sum. No reliable calculation method for Wallenius' noncentral hypergeometric distribution has hitherto been described in the literature. Several new methods for calculating probabilities from Wallenius' noncentral hypergeometric...
Dynamics Calculation of Travel Wave Tube
Institute of Scientific and Technical Information of China (English)
无
2011-01-01
During the dynamics calculating of the travel tube, we must obtain the field map in the tube. The field map can be affected by not only the beam loading, but also the attenuation coefficient. The calculation of the attenuation coefficient
A New Approach for Calculating Vacuum Susceptibility
Institute of Scientific and Technical Information of China (English)
宗红石; 平加伦; 顾建中
2004-01-01
Based on the Dyson-Schwinger approach, we propose a new method for calculating vacuum susceptibilities. As an example, the vector vacuum susceptibility is calculated. A comparison with the results of the previous approaches is presented.
Pressure Vessel Calculations for VVER-440 Reactors
Hordósy, G.; Hegyi, Gy.; Keresztúri, A.; Maráczy, Cs.; Temesvári, E.; Vértes, P.; Zsolnay, É.
2003-06-01
Monte Carlo calculations were performed for a selected cycle of the Paks NPP Unit II to test a computational model. In the model the source term was calculated by the core design code KARATE and the neutron transport calculations were performed by the MCNP. Different forms of the source specification were examined. The calculated results were compared with measurements and in most cases fairly good agreement was found.
40 CFR 89.207 - Credit calculation.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Credit calculation. 89.207 Section 89... Trading Provisions § 89.207 Credit calculation. (a) Requirements for calculating NO X credits from Tier 1 engines rated at or above 37 kW. (1) For each participating engine family, emission credits (positive...
Thermohydraulic calculation of WWER-type NPP
International Nuclear Information System (INIS)
Technique of thermohydraulic calculation of the WWER-type NPP in unsteady processes is described. Effective algorithm for solving hydrodynamics equations without regard for acoustic effects permitting to use enough large time integration step is given. Calculation of two-dimensional temperature fields in fuel element is considered. Method for calculating a pressurizer, steam generators and pumps is described as well
10 CFR 766.102 - Calculation methodology.
2010-01-01
... 10 Energy 4 2010-01-01 2010-01-01 false Calculation methodology. 766.102 Section 766.102 Energy... ASSESSMENT OF DOMESTIC UTILITIES Procedures for Special Assessment § 766.102 Calculation methodology. (a) Calculation of Domestic Utilities' Annual Assessment Ratio to the Fund. Domestic utilities shall be...
7 CFR 760.1106 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.1106 Section 760.1106 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... Payment calculation. (a) Preliminary, unadjusted LCP payments are calculated for a producer by...
7 CFR 1416.104 - Payment calculation.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.104 Section 1416.104 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... PROGRAMS Livestock Compensation Program § 1416.104 Payment calculation. (a) LCP payments are calculated...
7 CFR 1416.504 - Payment calculation.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.504 Section 1416.504 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... PROGRAMS Tropical Fruit Disaster Program § 1416.504 Payment calculation. (a) Payments are calculated...
40 CFR 1065.650 - Emission calculations.
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Emission calculations. 1065.650 Section 1065.650 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.650 Emission calculations....
Three-dimensional rf structure calculations
International Nuclear Information System (INIS)
The calculation of three-dimensional rf structures is rapidly approaching adolescence, after having been in its infancy for the last four years. This paper will show the kinds of calculations that are currently being performed in the frequency domain and is a companion paper to one in which time-domain calculations are described. 13 refs., 14 figs
Quantum Transport Calculations Using Periodic Boundary Conditions
Wang, Lin-Wang
2004-01-01
An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This method allows the use of conventional ground state ab initio programs without big changes. The computational effort is only a few times of a normal ground state calculations, thus is makes accurate quantum transport calculations for large systems possible.
47 CFR 1.1623 - Probability calculation.
2010-10-01
... 47 Telecommunication 1 2010-10-01 2010-10-01 false Probability calculation. 1.1623 Section 1.1623... Mass Media Services General Procedures § 1.1623 Probability calculation. (a) All calculations shall be computed to no less than three significant digits. Probabilities will be truncated to the number...
International Nuclear Information System (INIS)
Cross sections and polarization of impact radiation have been calculated for the excitation of Be+(2s) and Mg+(3s) ions in collisions with ground-state He and Ne atom targets in the energy range E/sub cm/ = 0.5--100 keV. Each ion-atom pair has been treated as a quasi-one-electron three-particle system consisting of the valence electron of the ion, the closed-shell ion core, and the closed-shell rare-gas atom. The interactions among these three have been represented by model potentials. Charge transfer and excitation of the rare-gas target atoms are neglected. We have obtained three- and seven-state (in the case of Mg+) close-coupling solutions to the impact-parameter equations, assuming a rectilinear trajectory for the motion of the two heavy particles. Comparisons are made of theoretical predictions based on two Bottcher-type model potential (V/sub B/1 and V/sub B/2) and the simple Hartree-Fock frozen-core potentials (V/sub HF/) for the electron--rare-gas interaction. The predictions based on V/sub HF/ agree better with experimental results than do those based on V/sub B/1 or V/sub B/2, especially in the case of Be+-Mg+--He collisions
Calculation of electron scattering on atoms and ions
Energy Technology Data Exchange (ETDEWEB)
Bray, I.
1995-02-01
This paper reviews the applications of the convergent close-coupling (CCC) method to electron scattering on light atoms and ions. Particular emphasis is given to those areas where other theories have difficulty, e g. total ionization cross sections and the associated spin asymmetries. It begins with the simplest application to the Temkin-Poet model problem of electron-hydrogen scattering, which is used to validate the CCC approach. Subsequently, results are given for electron impact ionization of various initial states of the targets H(1s,2s), He(1{sup 1}S,2{sup 3.1}S), He{sup +}(1s), Li(2s), O{sup 5+}(2s) and Na(3s). 50 refs., 10 figs.
Argosy 4 - A programme for lattice calculations
International Nuclear Information System (INIS)
This report contains a detailed description of the methods of calculation used in the Argosy 4 computer programme, and of the input requirements and printed results produced by the programme. An outline of the physics of the Argosy method is given. Section 2 describes the lattice calculation, including the burn up calculation, section 3 describes the control rod calculation and section 4 the reflector calculation. In these sections the detailed equations solved by the programme are given. In section 5 input requirements are given, and in section 6 the printed output obtained from an Argosy calculation is described. In section 7 are noted the principal differences between Argosy 4 and earlier versions of the Argosy programme
Multilinguals’ language choice for mental calculation
Dewaele, Jean-Marc
2007-01-01
The present study investigates self-reported language choice for mental calculations among 1,454 adult multilinguals from a variety of linguistic, social and ethnic backgrounds. As mental calculation is a complex cognitive operation involving both language-dependent and language independent processes, we sought to establish a baseline of first language (L1) or foreign language(s) (LX) use for mental calculation and identify the factors that influence multilinguals’ choice of...
Comparison of methods for calculating water erosion
Svobodová, Pavlína
2011-01-01
Bachelor thesis presents a comparison of methods for calculating water erosion. The aim is to summarize available evidence concerning the problems of water erosion. There are presented some methods how to calculate average annual erosion of soils, and selected models for calculating the erosion immediately. There are also listed possible erosion control measures through which we can at least slow the effects of erosion, rather than stop completely.
Calculation of plasma characteristics of the sun
Institute of Scientific and Technical Information of China (English)
Muhammad Abbas Bari; Zhong Jia-Yong; Chen Miu; Zhao Jing; Zhang Jie
2006-01-01
The ionization level and free electron density of most abundant elements (C, N, O, Mg, Al, Si, S, and Fe) in the sun are calculated from the centre of the sun to the surface of the photosphere. The model and computations are made under the assumption of local thermodynamic equilibrium (LTE). The Saha equation has been used to calculate the ionization level of elements and the electron density. Temperature values for calculations along the solar radius are taken from referebces.
Some Calculations for Cold Fusion Superheavy Elements
X. H. Zhong; Li, L.; Ning, P. Z.
2004-01-01
The Q value and optimal exciting energy of the hypothetical superheavy nuclei in cold fusion reaction are calculated with relativistic mean field model and semiemperical shell model mass equation(SSME) and the validity of the two models is tested. The fusion barriers are also calculated with two different models and reasonable results are obtained. The calculations can give useful references for the experiments in the superheavy nuclei synthesized in cold fusion reactions.
Handbook for the calculation of reactor protections
International Nuclear Information System (INIS)
This note constitutes the first edition of a Handbook for the calculation of reactor protections. This handbook makes it possible to calculate simply the different neutron and gamma fluxes and consequently, to fix the minimum quantities of materials necessary under general safety conditions both for the personnel and for the installations. It contains a certain amount of nuclear data, calculation methods, and constants corresponding to the present state of our knowledge. (authors)
Dynamic calculations of pressurized water reactor internals
International Nuclear Information System (INIS)
A mathematical model is briefly described for the calculation of oscillations in the WWER-440 reactor internals. The model was developed for improved safety of the type of reactors. It allows calculating vibrations resistance of reactor components, mainly during accidents, such as loss of coolant accidents. Some results are given of the calculation of forces acting in the rupture of the reactor inlet and outlet pipes. (Z.M.)
Pile Load Capacity – Calculation Methods
Directory of Open Access Journals (Sweden)
Wrana Bogumił
2015-12-01
Full Text Available The article is a review of the current problems of the foundation pile capacity calculations. The article considers the main principles of pile capacity calculations presented in Eurocode 7 and other methods with adequate explanations. Two main methods are presented: α – method used to calculate the short-term load capacity of piles in cohesive soils and β – method used to calculate the long-term load capacity of piles in both cohesive and cohesionless soils. Moreover, methods based on cone CPTu result are presented as well as the pile capacity problem based on static tests.
Evaluating Energy Sector Investments: Calculating Volatility
Directory of Open Access Journals (Sweden)
Edson de Oliveira Pamplona
2013-01-01
Full Text Available A major task in assessing risks of investment projects is defining the approach to calculating the project’s volatility. Looking at assorted estimation techniques, this paper calculates their volatilities. The techniques originate from authors in the area and involve project-specific variables of uncertainty. These techniques are applied to a case of electricity distribution through real options. Results are then compared. The difference between the calculated volatilities was low, leaving, in the case of the project evaluated here, the decision unchanged. The paper’s contribution consists of providing a detailed presentation of calculating volatility by the methods cited and by comparing the results obtained by its application.
The conundrum of calculating carbon footprints
DEFF Research Database (Denmark)
Strobel, Bjarne W.; Erichsen, Anders Christian; Gausset, Quentin
2016-01-01
A pre-condition for reducing global warming is to minimise the emission of greenhouse gasses (GHGs). A common approach to informing people about the link between behaviour and climate change rests on developing GHG calculators that quantify the ‘carbon footprint’ of a product, a sector or an actor....... There is, however, an abundance of GHG calculators that rely on very different premises and give very different estimates of carbon footprints. In this chapter, we compare and analyse the main principles of calculating carbon footprints, and discuss how calculators can inform (or misinform) people who wish...
Surface Tension Calculation of Undercooled Alloys
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Based on the Butler equation and extrapolated thermodynamic data of undercooled alloys from those of liquid stable alloys, a method for surface tension calculation of undercooled alloys is proposed. The surface tensions of liquid stable and undercooled Ni-Cu (xNi=0.42) and Ni-Fe (xNi=0.3 and 0.7) alloys are calculated using STCBE (Surface Tension Calculation based on Butler Equation) program. The agreement between calculated values and experimental data is good enough, and the temperature dependence of the surface tension can be reasonable down to 150-200 K under the liquid temperature of the alloys.
Unravelling the Mysteries of Expert Mental Calculation.
Hope, Jack A.
1985-01-01
The processes and procedures used by expert mental calculators are identified from a literature review. Experts are characterized by knowledge of a variety of methods, ability to recall numerical equivalents, and ability to remember the numbers involved in various stages of calculations. (MNS)
40 CFR 91.1307 - Credit calculation.
2010-07-01
... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Credit calculation. 91.1307 Section 91...) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES In-Use Credit Program for New Marine Engines § 91.1307 Credit calculation. For each participating engine family, emission credits (positive or...
Sniderman, A.D.; Tremblay, A.J.; Graaf, J. de; Couture, P.
2014-01-01
OBJECTIVES: This study tests the validity of the Hattori formula to calculate LDL apoB based on plasma lipids and total apoB. METHODS: In 2178 patients in a tertiary care lipid clinic, LDL apoB calculated as suggested by Hattori et al. was compared to directly measured LDL apoB isolated by ultracent
Calculation of resonance integral for fuel cluster
International Nuclear Information System (INIS)
The procedure for calculating the shielding correction, formulated in the previous paper [6], was broadened and applied for a cluster of cylindrical rods. The sam analytical method as in the previous paper was applied. A combination of Gauss method with the method of Almgren and Porn used for solving the same type of integral was used to calculate the geometry functions. CLUSTER code was written for ZUSE-Z-23 computer to calculate the shielding corrections for pairs of fuel rods in the cluster. Computing time for one pair of fuel rods depends on the number of closely placed rod, and for two closely placed rods it is about 3 hours. Calculations were done for clusters containing 7 and 19 UO2 rods. results show that calculated values of resonance integrals are somewhat higher than the values obtained by Helstrand empirical formula. Taking into account the results for two rods from the previous paper it can be noted that the calculated and empirical values for clusters with 2 and 7 rods are in agreement since the deviations do not exceed the limits of experimental error (±2%). In case of larger cluster with 19 rods deviations are higher than the experimental error. Most probably the calculated values exceed the experimental ones result from the fact that in this paper the shielding correction is calculated only in the region up to 1 keV
Calculated LET-Spectrum of Antiprotons
DEFF Research Database (Denmark)
Bassler, Niels
-LET components resulting from the annihilation. Though, the calculations of dose-averaged LET in the entry region may suggest that the RBE of antiprotons in the plateau region could significantly differ from unity. Materials and Methods Monte Carlo simulations using FLUKA were performed for calculating...
Calculated optical absorption of different perovskite phases
DEFF Research Database (Denmark)
Castelli, Ivano Eligio; Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2015-01-01
We present calculations of the optical properties of a set of around 80 oxides, oxynitrides, and organometal halide cubic and layered perovskites (Ruddlesden-Popper and Dion-Jacobson phases) with a bandgap in the visible part of the solar spectrum. The calculations show that for different classes...
Stability Test for Transient-Temperature Calculations
Campbell, W.
1984-01-01
Graphical test helps assure numerical stability of calculations of transient temperature or diffusion in composite medium. Rectangular grid forms basis of two-dimensional finite-difference model for heat conduction or other diffusion like phenomena. Model enables calculation of transient heat transfer among up to four different materials that meet at grid point.
7 CFR 760.406 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.406 Section 760.406 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... calculation. (a) Under this subpart, separate payment rates for eligible livestock owners and...
DEFF Research Database (Denmark)
Nielsen, Claus Werner; Nielsen, Ole-Kenneth
2009-01-01
Many countries are in the process of mapping their national CO2 emissions, but only few have managed to produce an overall report at municipal level yet. Denmark, however, has succeeded in such a project. Using a new national IT-based calculation model, municipalities can calculate the extent of...
7 CFR 760.909 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.909 Section 760.909 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... Payment calculation. (a) Under this subpart separate payment rates are established for eligible...
Calculated Atomic Volumes of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, H.; Andersen, O. K.; Johansson, B.
1979-01-01
The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium.......The equilibrium atomic volume is calculated for the actinide metals. It is possible to account for the localization of the 5f electrons taking place in americium....
7 CFR 1416.704 - Payment calculation.
2010-01-01
... 7 Agriculture 10 2010-01-01 2010-01-01 false Payment calculation. 1416.704 Section 1416.704 Agriculture Regulations of the Department of Agriculture (Continued) COMMODITY CREDIT CORPORATION, DEPARTMENT... PROGRAMS 2005 Hurricane Tree Assistance Program § 1416.704 Payment calculation. (a) An approved...
7 CFR 760.307 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.307 Section 760.307 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... calculation. (a) An eligible livestock producer will be eligible to receive payments for grazing losses...
7 CFR 760.1203 - Payment calculation.
2010-01-01
... 7 Agriculture 7 2010-01-01 2010-01-01 false Payment calculation. 760.1203 Section 760.1203 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF... calculation. (a) Producers must be paid for feed losses of higher costs only for one of the three years,...
30 CFR 5.30 - Fee calculation.
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fee calculation. 5.30 Section 5.30 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS FEES FOR TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS § 5.30 Fee calculation....
47 CFR 65.306 - Calculation accuracy.
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Calculation accuracy. 65.306 Section 65.306 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Exchange Carriers § 65.306 Calculation...
Calculating the Greeks by Cubature formulas
Teichmann, Josef
2004-01-01
We provide cubature formulas for the calculation of derivatives of expected values in the spririt of Terry Lyons and Nicolas Victoir. In financial mathematics derivatives of option prices with respect to initial values, so called Greeks, are of particular importance as hedging parameters. Cubature formulas allow to calculate these quantities very quickly. Simple examples are added to the theoretical exposition.
40 CFR 1065.850 - Calculations.
2010-07-01
... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Calculations. 1065.850 Section 1065.850 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Testing With Oxygenated Fuels § 1065.850 Calculations. Use the...
Data base to compare calculations and observations
Energy Technology Data Exchange (ETDEWEB)
Tichler, J.L.
1985-01-01
Meteorological and climatological data bases were compared with known tritium release points and diffusion calculations to determine if calculated concentrations could replace measure concentrations at the monitoring stations. Daily tritium concentrations were monitored at 8 stations and 16 possible receptors. Automated data retrieval strategies are listed. (PSB)
Calculation of Temperature Rise in Calorimetry.
Canagaratna, Sebastian G.; Witt, Jerry
1988-01-01
Gives a simple but fuller account of the basis for accurately calculating temperature rise in calorimetry. Points out some misconceptions regarding these calculations. Describes two basic methods, the extrapolation to zero time and the equal area method. Discusses the theoretical basis of each and their underlying assumptions. (CW)
Atomic Structure Calculations for Neutral Oxygen
Alonizan, Norah; Qindeel, Rabia; Ben Nessib, Nabil
2016-01-01
Energy levels and oscillator strengths for neutral oxygen have been calculated using the Cowan (CW), SUPERSTRUCTURE (SS), and AUTOSTRUCTURE (AS) atomic structure codes. The results obtained with these atomic codes have been compared with MCHF calculations and experimental values from the National Institute of Standards and Technology (NIST) database.
Calculating "g" from Acoustic Doppler Data
Torres, Sebastian; Gonzalez-Espada, Wilson J.
2006-01-01
Traditionally, the Doppler effect for sound is introduced in high school and college physics courses. Students calculate the perceived frequency for several scenarios relating a stationary or moving observer and a stationary or moving sound source. These calculations assume a constant velocity of the observer and/or source. Although seldom…
Investment Return Calculations and Senior School Mathematics
Fitzherbert, Richard M.; Pitt, David G. W.
2010-01-01
The methods for calculating returns on investments are taught to undergraduate level business students. In this paper, the authors demonstrate how such calculations are within the scope of senior school students of mathematics. In providing this demonstration the authors hope to give teachers and students alike an illustration of the power and the…
Modeling tire deformation for power loss calculations
Energy Technology Data Exchange (ETDEWEB)
Whicker, D.; Rohde, S.M.
1981-01-01
A combined thermo-mechanical model for calculating tire power loss has been developed at GMR. This paper presents the techniques for developing the realistic finite element models needed in both the thermal and deformation portions of the combined model. It also describes the techniques used in calculating deformed tire shapes. First, procedures are outlined for automatically generating a finite element discretization of a tire. Then, this discretization, together with information about the properties of tire materials, is used to develop a finite element model of the tire. This model is used in MSC NASTRAN to calculate compliances, i.e., the response of the tire to inflation and to unit loads applied at points on the tire surface. These compliances are then used in an algorithm which calculates the deformed shape of a tire loaded against the pavement surface. Sample results are presented to show the agreement between calculated and measured tire deformation.
Semantic Similarity Calculation of Chinese Word
Directory of Open Access Journals (Sweden)
Liqiang Pan
2014-08-01
Full Text Available This paper puts forward a two layers computing method to calculate semantic similarity of Chinese word. Firstly, using Latent Dirichlet Allocation (LDA subject model to generate subject spatial domain. Then mapping word into topic space and forming topic distribution which is used to calculate semantic similarity of word(the first layer computing. Finally, using semantic dictionary "HowNet" to deeply excavate semantic similarity of word (the second layer computing. This method not only overcomes the problem that it’s not specific enough merely using LDA to calculate semantic similarity of word, but also solves the problems such as new words (haven’t been added in dictionary and without considering specific context when calculating semantic similarity based on semantic dictionary "HowNet". By experimental comparison, this thesis proves feasibility,availability and advantages of the calculation method.
Tools for calculations in color space
Sjodahl, Malin
2013-01-01
Both the higher energy and the initial state colored partons contribute to making exact calculations in QCD color space more important at the LHC than at its predecessors. This is applicable whether the method of assessing QCD is fixed order calculation, resummation, or parton showers. In this talk we discuss tools for tackling the problem of performing exact color summed calculations. We start with theoretical tools in the form of the (standard) trace bases and the orthogonal multiplet bases (for which a general method of construction was recently presented). Following this, we focus on two new packages for performing color structure calculations: one easy to use Mathematica package, ColorMath, and one C++ package, ColorFull, which is suitable for more demanding calculations, and for interfacing with event generators.
Ajili, Yosra; Hammami, Kamel; Jaidane, Nejm Eddine; Lanza, Mathieu; Kalugina, Yulia N; Lique, François; Hochlaf, Majdi
2013-07-01
We closely compare the accuracy of multidimensional potential energy surfaces (PESs) generated by the recently developed explicitly correlated coupled cluster (CCSD(T)-F12) methods in connection with the cc-pVXZ-F12 (X = D, T) and aug-cc-pVTZ basis sets and those deduced using the well-established orbital-based coupled cluster techniques employing correlation consistent atomic basis sets (aug-cc-pVXZ, X = T, Q, 5) and extrapolated to the complete basis set (CBS) limit. This work is performed on the benchmark rare gas-hydrogen halide interaction (HCl-He) system. These PESs are then incorporated into quantum close-coupling scattering dynamical calculations in order to check the impact of the accuracy of the PES on the scattering calculations. For this system, we deduced inelastic collisional data including (de-)excitation collisional and pressure broadening cross sections. Our work shows that the CCSD(T)-F12/aug-cc-pVTZ PES describes correctly the repulsive wall, the van der Waals minimum and long range internuclear distances whereas cc-pVXZ-F12 (X = D,T) basis sets are not diffuse enough for that purposes. Interestingly, the collision cross sections deduced from the CCSD(T)-F12/aug-cc-pVTZ PES are in excellent agreement with those obtained with CCSD(T)/CBS methodology. The position of the resonances and the general shape of these cross sections almost coincide. Since the cost of the electronic structure computations is reduced by several orders of magnitude when using CCSD(T)-F12/aug-cc-pVTZ compared to CCSD(T)/CBS methodology, this approach can be recommended as an alternative for generation of PESs of molecular clusters and for the interpretation of accurate scattering experiments as well as for a wide production of collisional data to be included in astrophysical and atmospherical models. PMID:23443908
Benchmark calculations of sodium fast critical experiments
International Nuclear Information System (INIS)
The high expectations from fast critical experiments impose the additional requirements on reliability of final reconstructed values, obtained in experiments at critical facility. Benchmark calculations of critical experiments are characterized by impossibility of complete experiment reconstruction, the large amounts of input data (dependent and independent) with very different reliability. It should also take into account different sensitivity of the measured and appropriate calculated characteristics to the identical changes of geometry parameters, temperature, and isotopic composition of individual materials. The calculations of critical facility experiments are produced for the benchmark models, generated by the specific reconstructing codes with its features when adjusting model parameters, and using the nuclear data library. The generated benchmark model, providing the agreed calculated and experimental values for one or more neutronic characteristics can lead to considerable differences for other key characteristics. The sensitivity of key neutronic characteristics to the extra steel allocation in the core, and ENDF/B nuclear data sources is performed using a few calculated models of BFS-62-3A and BFS1-97 critical assemblies. The comparative analysis of the calculated effective multiplication factor, spectral indices, sodium void reactivity, and radial fission-rate distributions leads to quite different models, providing the best agreement the calculated and experimental neutronic characteristics. This fact should be considered during the refinement of computational models and code-verification purpose. (author)
Upper Subcritical Calculations Based on Correlated Data
Energy Technology Data Exchange (ETDEWEB)
Sobes, Vladimir [ORNL; Rearden, Bradley T [ORNL; Mueller, Don [ORNL; Marshall, William BJ J [ORNL; Scaglione, John M [ORNL; Dunn, Michael E [ORNL
2015-01-01
The American National Standards Institute and American Nuclear Society standard for Validation of Neutron Transport Methods for Nuclear Criticality Safety Calculations defines the upper subcritical limit (USL) as “a limit on the calculated k-effective value established to ensure that conditions calculated to be subcritical will actually be subcritical.” Often, USL calculations are based on statistical techniques that infer information about a nuclear system of interest from a set of known/well-characterized similar systems. The work in this paper is part of an active area of research to investigate the way traditional trending analysis is used in the nuclear industry, and in particular, the research is assessing the impact of the underlying assumption that the experimental data being analyzed for USL calculations are statistically independent. In contrast, the multiple experiments typically used for USL calculations can be correlated because they are often performed at the same facilities using the same materials and measurement techniques. This paper addresses this issue by providing a set of statistical inference methods to calculate the bias and bias uncertainty based on the underlying assumption that the experimental data are correlated. Methods to quantify these correlations are the subject of a companion paper and will not be discussed here. The newly proposed USL methodology is based on the assumption that the integral experiments selected for use in the establishment of the USL are sufficiently applicable and that experimental correlations are known. Under the assumption of uncorrelated data, the new methods collapse directly to familiar USL equations currently used. We will demonstrate our proposed methods on real data and compare them to calculations of currently used methods such as USLSTATS and NUREG/CR-6698. Lastly, we will also demonstrate the effect experiment correlations can have on USL calculations.
Using Inverted Indices for Accelerating LINGO Calculations
DEFF Research Database (Denmark)
Kristensen, Thomas Greve; Nielsen, Jesper; Pedersen, Christian Nørgaard Storm
2011-01-01
The ever growing size of chemical data bases calls for the development of novel methods for representing and comparing molecules. One such method called LINGO is based on fragmenting the SMILES string representation of molecules. Comparison of molecules can then be performed by calculating the...... queries. The previous best method for rapidly calculating the LINGOsim similarity matrix required specialised hardware to yield a significant speedup over existing methods. By representing LINGO multisets in the verbose representation and using inverted indices it is possible to calculate LINGOsim...
The WFIRST Galaxy Survey Exposure Time Calculator
Hirata, Christopher M.; Gehrels, Neil; Kneib, Jean-Paul; Kruk, Jeffrey; Rhodes, Jason; Wang, Yun; Zoubian, Julien
2013-01-01
This document describes the exposure time calculator for the Wide-Field Infrared Survey Telescope (WFIRST) high-latitude survey. The calculator works in both imaging and spectroscopic modes. In addition to the standard ETC functions (e.g. background and SN determination), the calculator integrates over the galaxy population and forecasts the density and redshift distribution of galaxy shapes usable for weak lensing (in imaging mode) and the detected emission lines (in spectroscopic mode). The source code is made available for public use.
Calculation of external dose from distributed source
International Nuclear Information System (INIS)
This paper discusses a relatively simple calculational method, called the point kernel method (Fo68), for estimating external dose from distributed sources that emit photon or electron radiations. The principles of the point kernel method are emphasized, rather than the presentation of extensive sets of calculations or tables of numerical results. A few calculations are presented for simple source geometries as illustrations of the method, and references and descriptions are provided for other caluclations in the literature. This paper also describes exposure situations for which the point kernel method is not appropriate and other, more complex, methods must be used, but these methods are not discussed in any detail
Neutronic parameters calculations of a CANDU reactor
International Nuclear Information System (INIS)
Neutronic calculations that reproduce in a simplified way some aspects of a CANDU reactor design were performed. Starting from some prefixed reactor parameters, cylindrical and uniform iron adjuster rods were designed. An appropriate refueling scheme was established, defininig in a 2 zones model their dimensions and exit burnups. The calculations have been done using the codes WIMS-D4 (cell), SNOD (reactivity device simulations) and PUMA (reactor). Comparing with similar calculations done with codes and models usually employed for CANDU design, it is concluded that the models and methods used are appropriate. (Author)
Hamming generalized corrector for reactivity calculation
Energy Technology Data Exchange (ETDEWEB)
Suescun-Diaz, Daniel; Ibarguen-Gonzalez, Maria C.; Figueroa-Jimenez, Jorge H. [Pontificia Universidad Javeriana Cali, Cali (Colombia). Dept. de Ciencias Naturales y Matematicas
2014-06-15
This work presents the Hamming method generalized corrector for numerically resolving the differential equation of delayed neutron precursor concentration from the point kinetics equations for reactivity calculation, without using the nuclear power history or the Laplace transform. A study was carried out of several correctors with their respective modifiers with different time step calculations, to offer stability and greater precision. Better results are obtained for some correctors than with other existing methods. Reactivity can be calculated with precision of the order h{sup 5}, where h is the time step. (orig.)
Assessment of seismic margin calculation methods
Energy Technology Data Exchange (ETDEWEB)
Kennedy, R.P.; Murray, R.C.; Ravindra, M.K.; Reed, J.W.; Stevenson, J.D.
1989-03-01
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs.
Stopping-power calculations for semiconductors
International Nuclear Information System (INIS)
The method developed by Brandt and Reinheimer which explicitly includes the effect of the semiconductor gap has been used to calculate the proton and α-particle stopping powers of the valence-electron gas of C (diamond), ZnTe, and U. These values, as well as those existing for Si and Ge, have been combined with the stopping contribution of the electronic core obtained from the statistical atomic model of Bonderup. Stopping powers have also been calculated using the statistical model alone. The calculated curves, which are valid for all incident projectile energies, reproduce the overall features of the semiempirical slowing-down curves, but not always the absolute values
Note about socio-economic calculations
DEFF Research Database (Denmark)
Landex, Alex; Andersen, Jonas Lohmann Elkjær; Salling, Kim Bang
2006-01-01
for socio-economic calculations within the transportation area (Ministry of Traffic, 2003). The note also explains the theory of socio-economic calculations – reference is here made to ”Road Infrastructure Planning – a Decision-oriented approach” (Leleur, 2000). Socio-economic evaluations of infrastructure......This note gives a short introduction of how to make socio-economic evaluations in connection with the teaching at the Centre for Traffic and Transport (CTT). It is not a manual for making socio-economic calculations in transport infrastructure projects – in this context we refer to the guidelines...
Equivalent-spherical-shield neutron dose calculations
International Nuclear Information System (INIS)
Neutron doses through 162-cm-thick spherical shields were calculated to be 1090 and 448 mrem/h for regular and magnetite concrete, respectively. These results bracket the measured data, for reinforced regular concrete, of /approximately/600 mrem/h. The calculated fraction of the high-energy (>20 MeV) dose component also bracketed the experimental data. The measured and calculated doses were for a graphite beam stop bombarded with 100 nA of 800-MeV protons. 6 refs., 2 figs., 1 tab
Ti-84 Plus graphing calculator for dummies
McCalla
2013-01-01
Get up-to-speed on the functionality of your TI-84 Plus calculator Completely revised to cover the latest updates to the TI-84 Plus calculators, this bestselling guide will help you become the most savvy TI-84 Plus user in the classroom! Exploring the standard device, the updated device with USB plug and upgraded memory (the TI-84 Plus Silver Edition), and the upcoming color screen device, this book provides you with clear, understandable coverage of the TI-84's updated operating system. Details the new apps that are available for download to the calculator via the USB cabl
Energy of plate tectonics calculation and projection
Directory of Open Access Journals (Sweden)
N. H. Swedan
2013-02-01
Full Text Available Mathematics and observations suggest that the energy of the geological activities resulting from plate tectonics is equal to the latent heat of melting, calculated at mantle's pressure, of the new ocean crust created at midocean ridges following sea floor spreading. This energy varies with the temperature of ocean floor, which is correlated with surface temperature. The objective of this manuscript is to calculate the force that drives plate tectonics, estimate the energy released, verify the calculations based on experiments and observations, and project the increase of geological activities with surface temperature rise caused by climate change.
Fluidization calculation on nuclear fuel kernel coating
International Nuclear Information System (INIS)
The fluidization of nuclear fuel kernel coating was calculated. The bottom of the reactor was in the from of cone on top of the cone there was a cylinder, the diameter of the cylinder for fluidization was 2 cm and at the upper part of the cylinder was 3 cm. Fluidization took place in the cone and the first cylinder. The maximum and the minimum velocity of the gas of varied kernel diameter, the porosity and bed height of varied stream gas velocity were calculated. The calculation was done by basic program
Pairing schemes for HFB calculations of nuclei
Duguet, T; Bonche, P
2005-01-01
Several pairing schemes currently used to describe superfluid nuclei through Hartree-Fock-Bogolyubov (HFB) calculations are briefly reviewed. We put a particular emphasis on the regularization recipes used in connection with zero-range forces and on the density dependence which usually complement their definition. Regarding the chosen regularization process, the goal is not only to identify the impact it may or may not have on pairing properties of nuclei through spherical 1D HFB calculations but also to assess its tractability for systematic axial 2D and 3D mean-field and beyond-mean-field calculations.
RA-0 reactor. New neutronic calculations
International Nuclear Information System (INIS)
An updating of the neutronic calculations performed at the RA-0 reactor, located at the Natural, Physical and Exact Sciences Faculty of Cordoba National University, are herein described. The techniques used for the calculation of a reactor like the RA-0 allows prediction in detail of the flux behaviour in the core's interior and in the reflector, which will be helpful for experiments design. In particular, the use of WIMSD4 code to make calculations on the reactor implies a novelty in the possible applications of this code to solve the problems that arise in practice. (Author)
Pressure vessel calculations for VVER-440 reactors.
Hordósy, G; Hegyi, Gy; Keresztúri, A; Maráczy, Cs; Temesvári, E; Vértes, P; Zsolnay, E
2005-01-01
For the determination of the fast neutron load of the reactor pressure vessel a mixed calculational procedure was developed. The procedure was applied to the Unit II of Paks NPP, Hungary. The neutron source on the outer surfaces of the reactor was determined by a core design code, and the neutron transport calculations outside the core were performed by the Monte Carlo code MCNP. The reaction rate in the activation detectors at surveillance positions and at the cavity were calculated and compared with measurements. In most cases, fairly good agreement was found.
Assessment of seismic margin calculation methods
International Nuclear Information System (INIS)
Seismic margin review of nuclear power plants requires that the High Confidence of Low Probability of Failure (HCLPF) capacity be calculated for certain components. The candidate methods for calculating the HCLPF capacity as recommended by the Expert Panel on Quantification of Seismic Margins are the Conservative Deterministic Failure Margin (CDFM) method and the Fragility Analysis (FA) method. The present study evaluated these two methods using some representative components in order to provide further guidance in conducting seismic margin reviews. It is concluded that either of the two methods could be used for calculating HCLPF capacities. 21 refs., 9 figs., 6 tabs
Semidirect algorithms in electron propagator calculations
Energy Technology Data Exchange (ETDEWEB)
Zakrzewski, V.G.; Ortiz, J.V. [Univ. of New Mexico, Albuquerque, NM (United States)
1994-12-31
Electron propagator calculations have been executed with a semi-direct algorithm that generates only a subset of transformed electron repulsion integrals and that takes advantage of Abelian point group symmetry. Diagonal self-energy expressions that are advantageous for large molecules are employed. Illustrative calculations with basis sets in excess of 200 functions include evaluations of the ionization energies of C{sup 2{minus}}{sub 7} and Zn(C{sub 5}H{sub 5}){sub 2}. In the former application, a bound dianion is obtained for a D{sub 3h} structure. In the latter, many final states of the same symmetry are calculated without difficulty.
46 CFR 170.090 - Calculations.
2010-10-01
... necessary to compute and plot any of the following curves as part of the calculations required in this subchapter, these plots must also be submitted: (1) Righting arm or moment curves. (2) Heeling arm or...
Large Numbers and Calculators: A Classroom Activity.
Arcavi, Abraham; Hadas, Nurit
1989-01-01
Described is an activity demonstrating how a scientific calculator can be used in a mathematics classroom to introduce new content while studying a conventional topic. Examples of reading and writing large numbers, and reading hidden results are provided. (YP)
Resonance integral calculations for high temperature reactors
International Nuclear Information System (INIS)
Methods of calculation of resonance integrals of finite dilution and temperature are given for both, homogeneous and heterogeneous geometries, together with results obtained from these methods as applied to the design of high temperature reactors. (author)
Methods of bone marrow dose calculation
International Nuclear Information System (INIS)
Several methods of bone marrow dose calculation for photon irradiation were analised. After a critical analysis, the author proposes the adoption, by the Instituto de Radioprotecao e Dosimetria/CNEN, of Rosenstein's method for dose calculations in Radiodiagnostic examinations and Kramer's method in case of occupational irradiation. It was verified by Eckerman and Simpson that for monoenergetic gamma emitters uniformly distributed within the bone mineral of the skeleton the dose in the bone surface can be several times higher than dose in skeleton. In this way, is also proposed the Calculation of tissue-air ratios for bone surfaces in some irradiation geometries and photon energies to be included in the Rosenstein's method for organ dose calculation in Radiodiagnostic examinations. (Author)
Reactor physics calculations in the Nordic countries
International Nuclear Information System (INIS)
The seventh biennial meeting on reactor physics calculations in the Nordic countries was arranged by VTT Energy on May 8-9, 1995. 26 papers on different subjects in the field of reactor physics were presented by 45 participants representing research establishments, technical universities, utilities, consultants and suppliers. Resent development and verification of the program systems of ABB Atom, Risoe, Scandpower, Studsvik and VTT Energy were the main topic of the meeting. Benchmarking of the two assembly codes CASMO-4 and HELIOS is proceeding. Cross section data calculated with CASMO-HEX have been validated for the Loviisa reactors. On core analysis ABB atom gives a description on its latest core simulator version POLCA7 with the calculation Core Master 2 and the BWR core supervision system Core Watch. Transient calculations with HEXTRAN, HEXTRAN- PLIM, TRAB, RAMONA, SIMULATE-3K and a code based on PRESTO II/POLCA7 were also presented
Slide Rule For Calculating Curing Schedules
Heater, Don
1995-01-01
Special-purpose slide rule devised for calculating schedules for storing and curing adhesives, sealants, and other materials characterized by known curing times and shelf lives. Prevents mistakes commonly made in determining storage and curing schedules.
Quasiclassical Calculations for Wigner Functions via Multiresolution
Fedorova, A N; Fedorova, Antonina N.; Zeitlin, Michael G.
2001-01-01
We present the application of variational-wavelet analysis to numerical/analytical calculations of Wigner functions in (nonlinear) quasiclassical beam dynamics problems. (Naive) deformation quantization and multiresolution representations are the key points.
Temperature calculation in fire safety engineering
Wickström, Ulf
2016-01-01
This book provides a consistent scientific background to engineering calculation methods applicable to analyses of materials reaction-to-fire, as well as fire resistance of structures. Several new and unique formulas and diagrams which facilitate calculations are presented. It focuses on problems involving high temperature conditions and, in particular, defines boundary conditions in a suitable way for calculations. A large portion of the book is devoted to boundary conditions and measurements of thermal exposure by radiation and convection. The concepts and theories of adiabatic surface temperature and measurements of temperature with plate thermometers are thoroughly explained. Also presented is a renewed method for modeling compartment fires, with the resulting simple and accurate prediction tools for both pre- and post-flashover fires. The final chapters deal with temperature calculations in steel, concrete and timber structures exposed to standard time-temperature fire curves. Useful temperature calculat...
Risk calculation method for complex engineering system
Directory of Open Access Journals (Sweden)
Li-ping WANG
2011-09-01
Full Text Available This paper presents a rapid and simple risk calculation method for large and complex engineering systems, the simulated maximum entropy method (SMEM, which is based on integration of the advantages of the Monte Carlo and maximum entropy methods, thus avoiding the shortcoming of the slow convergence rate of the Monte Carlo method in risk calculation. Application of SMEM in the calculation of reservoir flood discharge risk shows that this method can make full use of the known information under the same conditions and obtain the corresponding probability distribution and the risk value. It not only greatly improves the speed, compared with the Monte Carlo method, but also provides a new approach for the risk calculation in large and complex engineering systems.
Spreadsheet Templates for Chemical Equilibrium Calculations.
Joshi, Bhairav D.
1993-01-01
Describes two general spreadsheet templates to carry out all types of one-equation chemical equilibrium calculations encountered by students in undergraduate chemistry courses. Algorithms, templates, macros, and representative examples are presented to illustrate the approach. (PR)
76 FR 71431 - Civil Penalty Calculation Methodology
2011-11-17
... Uniform Fine Assessment (UFA) algorithm, which FMCSA currently uses for calculation of civil penalties... penalty is less than $2,000, however. In such cases, the UFA algorithm may generate a gross revenue...
Nuclear structure calculations for astrophysical applications
International Nuclear Information System (INIS)
Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account
Non-perturbative background field calculations
Stephens, C. R.
1988-01-01
New methods are developed for calculating one loop functional determinants in quantum field theory. Instead of relying on a calculation of all the eigenvalues of the small fluctuation equation, these techniques exploit the ability of the proper time formalism to reformulate an infinite dimensional field theoretic problem into a finite dimensional covariant quantum mechanical analog, thereby allowing powerful tools such as the method of Jacobi fields to be used advantageously in a field theory setting. More generally the methods developed herein should be extremely valuable when calculating quantum processes in non-constant background fields, offering a utilitarian alternative to the two standard methods of calculation—perturbation theory in the background field or taking the background field into account exactly. The formalism developed also allows for the approximate calculation of covariances of partial differential equations from a knowledge of the solutions of a homogeneous ordinary differential equation.
Modified equipartition calculation for supernova remnants
Arbutina, B; Andjelic, M M; Pavlovic, M Z; Vukotic, B
2011-01-01
Determination of the magnetic field strength in the interstellar medium is one of the most complex tasks of contemporary astrophysics. We can only estimate the order of magnitude of the magnetic field strength by using a few very limited methods. Besides Zeeman effect and Faraday rotation, the equipartition or the minimum-energy calculation is a widespread method for estimating magnetic field strength and energy contained in the magnetic field and cosmic ray particles by using only the radio synchrotron emission. Despite of its approximate character, it remains a useful tool, especially when there is no other data about the magnetic field in a source. In this paper we give a modified calculation which we think is more appropriate for estimating magnetic field strengths and energetics in supernova remnants (SNRs). Finally, we present calculated estimates of the magnetic field strengths for all Galactic SNRs for which the necessary observational data are available. The web application for calculation of the mag...
Representation and calculation of economic uncertainties
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans
2002-01-01
Management and decision making when certain information is available may be a matter of rationally choosing the optimal alternative by calculation of the utility function. When only uncertain information is available (which is most often the case) decision-making calls for more complex methods...... of representation and calculation and the basis for choosing the optimal alternative may become obscured by uncertainties of the utility function. In practice, several sources of uncertainties of the required information impede optimal decision making in the classical sense. In order to be able to better handle...... to uncertain economic numbers are discussed. When solving economic models for decision-making purposes calculation of uncertain functions will have to be carried out in addition to the basic arithmetical operations. This is a challenging numerical problem since improper methods of calculation may introduce...
Relativistic Calculations for Be-like Iron
Institute of Scientific and Technical Information of China (English)
YANG Jian-Hui; LI Ping; ZHANG Jian-Ping; LI Hui-Li
2008-01-01
Relativistic configuration interaction calculations for the states of 1s22s2, 1s22s3l (l=s,p,d) and 1s22p3l (l=s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable.
Direct calculation of wind turbine tip loss
DEFF Research Database (Denmark)
Wood, D.H.; Okulov, Valery; Bhattacharjee, D.
2016-01-01
The usual method to account for a finite number of blades in blade element calculations of wind turbine performance is through a tip loss factor. Most analyses use the tip loss approximation due to Prandtl which is easily and cheaply calculated but is known to be inaccurate at low tip speed ratio....... We develop three methods for the direct calculation of the tip loss. The first is the computationally expensive calculation of the velocities induced by the helicoidal wake which requires the evaluation of infinite sums of products of Bessel functions. The second uses the asymptotic evaluation...... of those sums by Kawada. The third uses the approximation due to Okulov which avoids the sums altogether. These methods are compared to the tip loss determined independently and exactly for an ideal three-bladed rotor at tip speed ratios between zero and 15. Kawada's asymptotic approximation and Okulov...
Fair and Reasonable Rate Calculation Data
Department of Transportation — This dataset provides guidelines for calculating the fair and reasonable rates for U.S. flag vessels carrying preference cargoes subject to regulations contained at...
Limit calculation in MSSM Higgs boson searches
Energy Technology Data Exchange (ETDEWEB)
Berger, Joram; Caspart, Rene; Colombo, Fabio; Boer, Wim de; Frensch, Felix; Friese, Raphael; Gilbert, Andrew; Mueller, Thomas; Quast, Guenter; Treiber, Benjamin; Wolf, Roger [Institut fuer Experimentelle Kernphysik (IEKP), KIT (Germany)
2015-07-01
After run one of the LHC Supersymmetry still remains one of the favorite theories for physics beyond the Standard Model. In the minimal realization of Supersymmetry, the minimal supersymmetric Standard Model, five Higgs bosons exist. In my presentation I present limit calculation approaches for MSSM Higgs boson searches. The talk focuses on model dependent limit calculation by combining different charged and neutral MSSM Higgs boson searches.
Software Metrics: Calculation and Optimization of Thresholds
Abhishek Kumar Maheswari
2011-01-01
In this article, we present a algorithmic method for the calculation of thresholds (the starting point for a new state) for a software metric set. To this aim, machine learning and data mining techniques are utilized. We define a data-driven methodology that can be used for efficiency optimization of existing metric sets, for the simplification of complex classification models, and for the calculation of thresholds for a metric set in an environment where no metric set yet exists. The methodo...
Energy of plate tectonics calculation and projection
N. H. Swedan
2013-01-01
Mathematics and observations suggest that the energy of the geological activities resulting from plate tectonics is equal to the latent heat of melting, calculated at mantle's pressure, of the new ocean crust created at midocean ridges following sea floor spreading. This energy varies with the temperature of ocean floor, which is correlated with surface temperature. The objective of this manuscript is to calculate the force that drives plate tectonics, estimate the energy released, verify the...
Calculation of the resonant ionization of helium
International Nuclear Information System (INIS)
Autoionizing resonances in the compound system of an electron and a helium ion are observed in kinematically-complete ionization experiments for electrons on helium atoms. The differential cross section is calculated for comparison with these experiments in an equivalent-local form of the distorted-wave impulse approximation. Resonant scattering amplitudes are calculated by a six-state momentum-space coupled-channels method. 10 refs., 1 tab., 2 figs
Making calculated energy certificate for choosen building
Hafner, Rok
2015-01-01
The graduation thesis addresses four given energy efficiency certificates for the preschool in Škofja Loka, calculated according to the valid legislation and work methodology. The building in question was built in the seventies of last century and had it's efficiency improved in 2014. The state of the building before improvements has both measured and calculated efficiency certificates made using the KI Energija 2014 program, while the two energy efficiency certificates for the...
Three dimensional diffusion calculations of nuclear reactors
International Nuclear Information System (INIS)
This work deals with the three dimensional calculation of nuclear reactors using the code TRITON. The purposes of the work were to perform three-dimensional computations of the core of the Soreq nuclear reactor and of the power reactor ZION and to validate the TRITON code. Possible applications of the TRITON code in Soreq reactor calculations and in power reactor research are suggested. (H.K.)
Efficient Finite Element Calculation of Nγ
DEFF Research Database (Denmark)
Clausen, Johan; Damkilde, Lars; Krabbenhøft, K.
2007-01-01
This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing.......This paper deals with the computational aspects of the Mohr-Coulomb material model, in particular the calculation of the bearing capacity factor Nγfor a strip and a circular footing....
Users enlist consultants to calculate costs, savings
Energy Technology Data Exchange (ETDEWEB)
1982-05-24
Consultants who calculate payback provide expertise and a second opinion to back up energy managers' proposals. They can lower the costs of an energy-management investment by making complex comparisons of systems and recommending the best system for a specific application. Examples of payback calculations include simple payback for a school system, a university, and a Disneyland hotel, as well as internal rate of return for a corporate office building and a chain of clothing stores. (DCK)
INTERNAL CALCULATION IN TERM BUSINESS DECISION MAKING
Jugoslav Aničić, Miloje Jelić, Jasmina M. Đurović, Srećko Radoičić, Živojin B. Prokopović
2014-01-01
Business-financial decision making represent prime activity of top management. Growing complexity in the business ,market and rapid technological change require fast and appropriate answer of top management. Confident and efficient system of internal calculation gives confident base, for making financial decision and strategic as well. Companies of industrial sector in Serbia can significantly improve their business performance by improving internal calculation systems. The preservation and s...
Calculation Methodology for Flexible Arithmetic Processing
García Chamizo, Juan Manuel; Mora Pascual, Jerónimo Manuel; Mora Mora, Higinio; Signes Pont, María Teresa
2003-01-01
A new operation model of flexible calculation that allows us to adjust the operation delay depending on the available time is presented. The operation method design uses look-up tables and progressive construction of the result. The increase in the operators’ granularity opens up new possibilities in calculation methods and microprocessor design. This methodology, together with the advances in technology, enables the functions of an arithmetic unit to be implemented on the basis of techniques...
A revised calculational model for fission
Energy Technology Data Exchange (ETDEWEB)
Atchison, F.
1998-09-01
A semi-empirical parametrization has been developed to calculate the fission contribution to evaporative de-excitation of nuclei with a very wide range of charge, mass and excitation-energy and also the nuclear states of the scission products. The calculational model reproduces measured values (cross-sections, mass distributions, etc.) for a wide range of fissioning systems: Nuclei from Ta to Cf, interactions involving nucleons up to medium energy and light ions. (author)
PROSPECTS OF MANAGEMENT ACCOUNTING AND COST CALCULATION
Directory of Open Access Journals (Sweden)
Marian ŢAICU
2014-11-01
Full Text Available Progress in improving production technology requires appropriate measures to achieve an efficient management of costs. This raises the need for continuous improvement of management accounting and cost calculation. Accounting information in general, and management accounting information in particular, have gained importance in the current economic conditions, which are characterized by risk and uncertainty. The future development of management accounting and cost calculation is essential to meet the information needs of management.
VVER-related burnup credit calculations
International Nuclear Information System (INIS)
The calculations related to a VVER burnup credit calculational benchmark proposed to the Eastern and Central European research community in collaboration with the OECD/NEA/NSC Burnup Credit Criticality Benchmark Working Group (working under WPNCS - Working Party on Nuclear Criticality Safety) are described. The results of a three-year effort by analysts from the Czech Republic, Finland, Germany, Hungary, Russia, Slovakia and the United Kingdom are summarized and commented on. (author)
Realistic level density calculation for heavy nuclei
Energy Technology Data Exchange (ETDEWEB)
Cerf, N. [Institut de Physique Nucleaire, Orsay (France); Pichon, B. [Observatoire de Paris, Meudon (France); Rayet, M.; Arnould, M. [Institut d`Astronomie et d`Astrophysique, Bruxelles (Belgium)
1994-12-31
A microscopic calculation of the level density is performed, based on a combinatorial evaluation using a realistic single-particle level scheme. This calculation relies on a fast Monte Carlo algorithm, allowing to consider heavy nuclei (i.e., large shell model spaces) which could not be treated previously in combinatorial approaches. An exhaustive comparison of the predicted neutron s-wave resonance spacings with experimental data for a wide range of nuclei is presented.
Green's function calculations of light nuclei
Sun, ZhongHao; Wu, Qiang; Xu, FuRong
2016-09-01
The influence of short-range correlations in nuclei was investigated with realistic nuclear force. The nucleon-nucleon interaction was renormalized with V lowk technique and applied to the Green's function calculations. The Dyson equation was reformulated with algebraic diagrammatic constructions. We also analyzed the binding energy of 4He, calculated with chiral potential and CD-Bonn potential. The properties of Green's function with realistic nuclear forces are also discussed.
PROSPECTS OF MANAGEMENT ACCOUNTING AND COST CALCULATION
Marian ŢAICU
2014-01-01
Progress in improving production technology requires appropriate measures to achieve an efficient management of costs. This raises the need for continuous improvement of management accounting and cost calculation. Accounting information in general, and management accounting information in particular, have gained importance in the current economic conditions, which are characterized by risk and uncertainty. The future development of management accounting and cost calculation is essential to me...
Reciprocity Theorems for Ab Initio Force Calculations
Wei, C; Mele, E J; Rappe, A M; Lewis, Steven P.; Rappe, Andrew M.
1996-01-01
We present a method for calculating ab initio interatomic forces which scales quadratically with the size of the system and provides a physically transparent representation of the force in terms of the spatial variation of the electronic charge density. The method is based on a reciprocity theorem for evaluating an effective potential acting on a charged ion in the core of each atom. We illustrate the method with calculations for diatomic molecules.
Providing driving rain data for hygrothermal calculations
DEFF Research Database (Denmark)
Kragh, Mikkel Kristian
1996-01-01
Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations.......Due to a wish for driving rain data as input for hygrothermal calculations, this report deals with utilizing commonly applied empirical relations and standard meteorological data, in an attempt to provide realistic estimates rather than exact correlations....
A Java Interface for Roche Lobe Calculations
Leahy, D. A.; Leahy, J. C.
2015-09-01
A JAVA interface for calculating various properties of the Roche lobe has been created. The geometry of the Roche lobe is important for studying interacting binary stars, particularly those with compact objects which have a companion which fills the Roche lobe. There is no known analytic solution to the Roche lobe problem. Here the geometry of the Roche lobe is calculated numerically to high accuracy and made available to the user for arbitrary input mass ratio, q.
Validation of fluorescence transition probability calculations
M. G. PiaINFN, Sezione di Genova; P. Saracco(INFN, Sezione di Genova); Manju Sudhaka(INFN, Sezione di Genova)
2015-01-01
A systematic and quantitative validation of the K and L shell X-ray transition probability calculations according to different theoretical methods has been performed against experimental data. This study is relevant to the optimization of data libraries used by software systems, namely Monte Carlo codes, dealing with X-ray fluorescence. The results support the adoption of transition probabilities calculated according to the Hartree-Fock approach, which manifest better agreement with experimen...
Full CI benchmark calculations on CH3
Bauschlicher, Charles W., Jr.; Taylor, Peter R.
1987-01-01
Full CI calculations have been performed on the CH3 radical. The full CI results are compared to those obtained using CASSCF/multireference CI and coupled-pair functional methods, both at the equilibrium CH distance and at geometries with the three CH bonds extended. In general, the performance of the approximate methods is similar to that observed in calculations on other molecules in which one or two bonds were stretched.
Characteristic parameters of drift chambers calculation
International Nuclear Information System (INIS)
We present here the methods we used to analyse the characteristic parameters of drift chambers. The algorithms to calculate the electric potential in any point for any drift chamber geometry are presented. We include the description of the programs used to calculate the electric field, the drift paths, the drift velocity and the drift time. The results and the errors are discussed. (Author) 7 refs
Calculation of mixed core safety parameters
International Nuclear Information System (INIS)
The purpose of this presentation is the reactor physics explanation of the most important nuclear safety parameters in mixed TRIGA cores as well as their calculation methods and appropriate computer codes. Nuclear core parameters, such as power density peaking factors and temperature reactivity coefficients are considered. The computer codes adapted, tested and widely available for TRIGA nuclear calculations are presented. Thermal-hydraulics aspects of safety analysis are not treated
R-matrix calculation for photoionization
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
We have employed the R-matrix method to calculate differe ntial cross sections for photoionization of helium leaving helium ion in an exci ted state for incident photon energy between the N=2 and N=3 thresholds (69～73 eV) of He+ ion. Differential cross sections for photoionization in the N=2 level at emission angle 0° are provide. Our results are in good agreem ent with available experimental data and theoretical calculations.
Application of backtracking algorithm to depletion calculations
International Nuclear Information System (INIS)
Based on the theory of linear chain method for analytical depletion calculations, the burn-up matrix is decoupled by the divide and conquer strategy and the linear chain with Markov characteristic is formed. The density, activity and decay heat of every nuclide in the chain can be calculated by analytical solutions. Every possible reaction path of the nuclide must be considered during the linear chain establishment process. To confirm the calculation precision and efficiency, the algorithm which can cover all the reaction paths of the nuclide and search the paths automatically according to to problem description and precision restrictions should be sought. Through analysis and comparison of several kinds of searching algorithms, the backtracking algorithm was selected to search and calculate the linear chains using Depth First Search (DFS) method. The depletion program can solve the depletion problem adaptively and with high fidelity. The solution space and time complexity of the program were analyzed. The new developed depletion program was coupled with Monte Carlo program MCMG-II to calculate the benchmark burn-up problem of the first core of China Experimental Fast Reactor (CEFR). The initial verification and validation of the program was performed by the calculation. (author)
Accurate free energy calculation along optimized paths.
Chen, Changjun; Xiao, Yi
2010-05-01
The path-based methods of free energy calculation, such as thermodynamic integration and free energy perturbation, are simple in theory, but difficult in practice because in most cases smooth paths do not exist, especially for large molecules. In this article, we present a novel method to build the transition path of a peptide. We use harmonic potentials to restrain its nonhydrogen atom dihedrals in the initial state and set the equilibrium angles of the potentials as those in the final state. Through a series of steps of geometrical optimization, we can construct a smooth and short path from the initial state to the final state. This path can be used to calculate free energy difference. To validate this method, we apply it to a small 10-ALA peptide and find that the calculated free energy changes in helix-helix and helix-hairpin transitions are both self-convergent and cross-convergent. We also calculate the free energy differences between different stable states of beta-hairpin trpzip2, and the results show that this method is more efficient than the conventional molecular dynamics method in accurate free energy calculation.
Good Practices in Free-energy Calculations
Pohorille, Andrew; Jarzynski, Christopher; Chipot, Christopher
2013-01-01
As access to computational resources continues to increase, free-energy calculations have emerged as a powerful tool that can play a predictive role in drug design. Yet, in a number of instances, the reliability of these calculations can be improved significantly if a number of precepts, or good practices are followed. For the most part, the theory upon which these good practices rely has been known for many years, but often overlooked, or simply ignored. In other cases, the theoretical developments are too recent for their potential to be fully grasped and merged into popular platforms for the computation of free-energy differences. The current best practices for carrying out free-energy calculations will be reviewed demonstrating that, at little to no additional cost, free-energy estimates could be markedly improved and bounded by meaningful error estimates. In energy perturbation and nonequilibrium work methods, monitoring the probability distributions that underlie the transformation between the states of interest, performing the calculation bidirectionally, stratifying the reaction pathway and choosing the most appropriate paradigms and algorithms for transforming between states offer significant gains in both accuracy and precision. In thermodynamic integration and probability distribution (histogramming) methods, properly designed adaptive techniques yield nearly uniform sampling of the relevant degrees of freedom and, by doing so, could markedly improve efficiency and accuracy of free energy calculations without incurring any additional computational expense.
Comparison of Polar Cap (PC) index calculations.
Stauning, P.
2012-04-01
The Polar Cap (PC) index introduced by Troshichev and Andrezen (1985) is derived from polar magnetic variations and is mainly a measure of the intensity of the transpolar ionospheric currents. These currents relate to the polar cap antisunward ionospheric plasma convection driven by the dawn-dusk electric field, which in turn is generated by the interaction of the solar wind with the Earth's magnetosphere. Coefficients to calculate PCN and PCS index values from polar magnetic variations recorded at Thule and Vostok, respectively, have been derived by several different procedures in the past. The first published set of coefficients for Thule was derived by Vennerstrøm, 1991 and is still in use for calculations of PCN index values by DTU Space. Errors in the program used to calculate index values were corrected in 1999 and again in 2001. In 2005 DMI adopted a unified procedure proposed by Troshichev for calculations of the PCN index. Thus there exists 4 different series of PCN index values. Similarly, at AARI three different sets of coefficients have been used to calculate PCS indices in the past. The presentation discusses the principal differences between the various PC index procedures and provides comparisons between index values derived from the same magnetic data sets using the different procedures. Examples from published papers are examined to illustrate the differences.
Pressure Profile Calculation with Mesh Ewald Methods.
Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál
2016-09-13
The importance of calculating pressure profiles across liquid interfaces is increasingly gaining recognition, and efficient methods for the calculation of long-range contributions are fundamental in addressing systems with a large number of charges. Here, we show how to compute the local pressure contribution for mesh-based Ewald methods, retaining the typical N log N scaling as a function of the lattice nodes N. This is a considerable improvement on existing methods, which include approximating the electrostatic contribution using a large cutoff and the, much slower, Ewald calculation. As an application, we calculate the contribution to the pressure profile across the water/vapor interface, coming from different molecular layers, both including and removing the effect of thermal capillary waves. We compare the total pressure profile with the one obtained using the cutoff approximation for the calculation of the stresses, showing that the stress distributions obtained using the Harasima and Irving-Kirkwood path are quite similar and shifted with respect to each other at most 0.05 nm. PMID:27508458
Effective action calculation in lattice QCD
International Nuclear Information System (INIS)
A method (called the effective action method) devised to make analytic calculations in Quantum Chromodynamics in the region of strong coupling is presented. First, the author deals with developing the calculation of a strong coupling expansion of the generating functional for gauge systems on a lattice with arbitrary sources. An accompanying manual describes the implementation of this calculation on a computer. The next step consists of substituting the expressions for the one-link free energies for a specific gauge group in the result of the previous calculation. This process of substitution, together with the replacement of the sources by a bilinear combination of fermion fields, is described for the group SU(3). More details on the implementation of the substitution scheme on a computer can be found in the accompanying manual. From the effective action thus obtained in terms of meson fields and baryon fields the Green functions of the theory can be derived. As an illustrative application the effective potential determining the vacuum expectation value of the meson field is calculated. (Auth.)
Considering alternative calculations of weight suppression.
Schaumberg, Katherine; Anderson, Lisa M; Reilly, Erin E; Gorrell, Sasha; Anderson, Drew A; Earleywine, Mitch
2016-01-01
Weight suppression (WS)--the difference between an individual's highest adult weight and current weight-relates to eating pathology and weight gain; however, there are several methodological issues associated with its calculation. The current study presents four alternative methods of calculating WS and tests whether these methods differentially relate to maladaptive outcomes. Alternative methods of calculation included: (1) change in BMI units; (2) BMI category change; (3) percent change in weight; and (4) two different uses of regression residuals. A sample of undergraduate students (N=631) completed self-report measures of eating pathology, current and past weight, and teasing. Measures included the Eating Disorder Examination-Questionnaire and the Perceptions of Teasing Scale. Results indicated that components of WS, current weight and highest weight, were strongly related in the present sample. The traditional method of calculating WS was related to eating pathology, binge eating and teasing for both males and females. However, WS indices orthogonal to the highest weight did not correlate with eating pathology and teasing in both males and females; for females, WS indices orthogonal to current weight were also unrelated to eating pathology. Findings suggest that the link between WS and eating pathology is mitigated after accounting for an individual's highest weight. Future research should continue to assess the reliability and clinical utility of this construct and consider using alternative WS calculations. PMID:26643591
Paramedics’ Ability to Perform Drug Calculations
Directory of Open Access Journals (Sweden)
Eastwood, Kathyrn J
2009-11-01
Full Text Available Background: The ability to perform drug calculations accurately is imperative to patient safety. Research into paramedics’ drug calculation abilities was first published in 2000 and for nurses’ abilities the research dates back to the late 1930s. Yet, there have been no studies investigating an undergraduate paramedic student’s ability to perform drug or basic mathematical calculations. The objective of this study was to review the literature and determine the ability of undergraduate and qualified paramedics to perform drug calculations.Methods: A search of the prehospital-related electronic databases was undertaken using the Ovid and EMBASE systems available through the Monash University Library. Databases searched included the Cochrane Central Register of Controlled Trials (CENTRAL, MEDLINE, CINAHL, JSTOR, EMBASE and Google Scholar, from their beginning until the end of August 2009. We reviewed references from articles retrieved.Results: The electronic database search located 1,154 articles for review. Six additional articles were identified from reference lists of retrieved articles. Of these, 59 were considered relevant. After reviewing the 59 articles only three met the inclusion criteria. All articles noted some level of mathematical deficiencies amongst their subjects.Conclusions: This study identified only three articles. Results from these limited studies indicate a significant lack of mathematical proficiency amongst the paramedics sampled. A need exists to identify if undergraduate paramedic students are capable of performing the required drug calculations in a non-clinical setting.[WestJEM. 2009;10:240-243.
Reactor perturbation calculations by Monte Carlo methods
International Nuclear Information System (INIS)
Whilst Monte Carlo methods are useful for reactor calculations involving complicated geometry, it is difficult to apply them to the calculation of perturbation worths because of the large amount of computing time needed to obtain good accuracy. Various ways of overcoming these difficulties are investigated in this report, with the problem of estimating absorbing control rod worths particularly in mind. As a basis for discussion a method of carrying out multigroup reactor calculations by Monte Carlo methods is described. Two methods of estimating a perturbation worth directly, without differencing two quantities of like magnitude, are examined closely but are passed over in favour of a third method based on a correlation technique. This correlation method is described, and demonstrated by a limited range of calculations for absorbing control rods in a fast reactor. In these calculations control rod worths of between 1% and 7% in reactivity are estimated to an accuracy better than 10% (3 standard errors) in about one hour's computing time on the English Electric KDF.9 digital computer. (author)
Epa, V. C.; Thorson, W. R.
1990-09-01
This paper concludes a theoretical study of vibrational dynamics in the bifluoride ion FHF-, which exhibits strongly anharmonic and coupled motions. Two previous papers have described an extended model potential surface for the system, developed a scheme for analysis based on a zero-order adiabatic separation of the proton bending and stretching motions (ν2,ν3) from the slower F-F symmetric-stretch motion (ν1), and presented results of accurate calculations of the adiabatic protonic eigenstates. Here the ν1 motion has been treated, in adiabatic approximation and also including nonadiabatic couplings in close-coupled calculations with up to three protonic states (channels). States of the system involving more than one quantum of protonic excitation (e.g., 2ν2, 2ν3 σg states; 3ν2, ν2+2ν3 πu states; ν3+2ν2, 3ν3 σu states) exhibit strong mixing at avoided crossings of protonic levels, and these effects are discussed in detail. Dipole matrix elements and relative intensities for vibrational transitions have been computed with an electronic dipole moment function based on ab initio calculations for an extended range of geometries. Frequencies, relative IR intensities and other properties of interest are compared with high resolution spectroscopic data for the gas-phase free ion and with the IR absorption spectra of KHF2(s) and NaHF2(s). Errors in the ab initio potential surface yield fundamental frequencies ν2 and ν3 100-250 cm-1 higher than those observed in either the free ion or the crystalline solids, but these differences are consistent and an unambiguous assignment of essentially all transitions in the IR spectrum of KHF2 is made. Calculated relative intensities for stretching mode (ν3, σu symmetry) transitions agree well with those observed in both KHF2 [e.g., bands (ν3+nν1), (ν3+2ν2), (3ν3), etc.] and the free ion (ν3,ν3+ν1). Calculated intensities for bending mode (ν2, πu symmetry) transitions agree well with experiment for the ν2
Numerical inductance calculations based on first principles.
Shatz, Lisa F; Christensen, Craig W
2014-01-01
A method of calculating inductances based on first principles is presented, which has the advantage over the more popular simulators in that fundamental formulas are explicitly used so that a deeper understanding of the inductance calculation is obtained with no need for explicit discretization of the inductor. It also has the advantage over the traditional method of formulas or table lookups in that it can be used for a wider range of configurations. It relies on the use of fast computers with a sophisticated mathematical computing language such as Mathematica to perform the required integration numerically so that the researcher can focus on the physics of the inductance calculation and not on the numerical integration.
Calculation of electric fields in imperfect dielectrics
Energy Technology Data Exchange (ETDEWEB)
Filippov, A.A.
1985-07-01
No existing numerical method of calculating electric fields in kinetical form allows simultaneous consideration of bias current and conductivity current. This article suggests a modification of the method of integral equations allowing computation of the field in imperfect media. The use of the method is said to be more effective than the method of equivalent discharges. The method suggested allows computation of the field while simultaneously considering conductivity current and permeability current. It also allows determination of the frequency characteristics of high voltage apparatus. Furthermore, it can be used to calculate various transient processes if the applied voltage is expanded into a Fourier series and calculations are performed individually for each member of the series.
Calculations of Polar Ozone Loss Rates
Dessler, A. E.; Wu, J.
1999-01-01
We calculate vortex-averaged ozone loss rates at 465-K potential temperature during the Aug.-Sept. time period in the southern hemisphere and Feb.-Mar. time period in the northern hemisphere. Ozone loss rates are calculated two ways. First, from the time series of measurements of 03. Second, from measurements of ClO, from which ozone loss is inferred based on our theories of Cl-catalyzed ozone destruction. Both measurement sets are from the Upper Atmosphere Research Satellite (UARS) Microwave Limb Sounder (MLS) instrument. We find good agreement between vortex-averaged ozone loss rates calculated from these methods. Our analysis provides no support for recent work suggesting that current theories of Cl-catalyzed ozone loss underestimate the observed decrease in polar ozone during the ozone "hole" period.
Challenges in Large Scale Quantum Mechanical Calculations
Ratcliff, Laura E; Huhs, Georg; Deutsch, Thierry; Masella, Michel; Genovese, Luigi
2016-01-01
During the past decades, quantum mechanical methods have undergone an amazing transition from pioneering investigations of experts into a wide range of practical applications, made by a vast community of researchers. First principles calculations of systems containing up to a few hundred atoms have become a standard in many branches of science. The sizes of the systems which can be simulated have increased even further during recent years, and quantum-mechanical calculations of systems up to many thousands of atoms are nowadays possible. This opens up new appealing possibilities, in particular for interdisciplinary work, bridging together communities of different needs and sensibilities. In this review we will present the current status of this topic, and will also give an outlook on the vast multitude of applications, challenges and opportunities stimulated by electronic structure calculations, making this field an important working tool and bringing together researchers of many different domains.
Automated one-loop calculations with GOSAM
Energy Technology Data Exchange (ETDEWEB)
Cullen, Gavin [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Greiner, Nicolas [Illinois Univ., Urbana-Champaign, IL (United States). Dept. of Physics; Max-Planck-Institut fuer Physik, Muenchen (Germany); Heinrich, Gudrun; Reiter, Thomas [Max-Planck-Institut fuer Physik, Muenchen (Germany); Luisoni, Gionata [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomenology; Mastrolia, Pierpaolo [Max-Planck-Institut fuer Physik, Muenchen (Germany); Padua Univ. (Italy). Dipt. di Fisica; Ossola, Giovanni [New York City Univ., NY (United States). New York City College of Technology; New York City Univ., NY (United States). The Graduate School and University Center; Tramontano, Francesco [European Organization for Nuclear Research (CERN), Geneva (Switzerland)
2011-11-15
We present the program package GoSam which is designed for the automated calculation of one-loop amplitudes for multi-particle processes in renormalisable quantum field theories. The amplitudes, which are generated in terms of Feynman diagrams, can be reduced using either D-dimensional integrand-level decomposition or tensor reduction. GoSam can be used to calculate one-loop QCD and/or electroweak corrections to Standard Model processes and offers the flexibility to link model files for theories Beyond the Standard Model. A standard interface to programs calculating real radiation is also implemented. We demonstrate the flexibility of the program by presenting examples of processes with up to six external legs attached to the loop. (orig.)
New tool for standardized collector performance calculations
DEFF Research Database (Denmark)
Perers, Bengt; Kovacs, Peter; Olsson, Marcus;
2011-01-01
A new tool for standardized calculation of solar collector performance has been developed in cooperation between SP Technical Research Institute Sweden, DTU Denmark and SERC Dalarna University. The tool is designed to calculate the annual performance for a number of representative cities in Europe...... on the basis of parameters from collector tests performed according to EN12975, without any intermediate conversions. The main target group for this tool is test institutes and certification bodies that intend to use it for conversion of collector model parameters derived from performance tests, into a more...... user friendly quantity: the annual energy output. The energy output calculated by the tool can be expressed either per square meter or per collector module....
Calculation system analysis for radiation shielding
International Nuclear Information System (INIS)
This work consists of the computational system implementation for nuclear reactor shielding analysis. The system has as objectives to facilitate the installation of the calculation framework, problem set-up, and results analysis. Several computational programmes commonly used for cross-section preparation and radiation transport were chosen for the system. This work represents the capacity necessary for nuclear reactor and particle accelerator shielding design, to aid in nuclear experiments and in the utilization of nuclear techniques that require the radiation field calculation. The system was implemented in PC-DOS environment and consists of the necessary and sufficient programs and data for generation of the cross sections, groups constants, self-shielding factors, activation sources, for the calculation of neutron and gamma-ray fluence, dose rates, and other types of response functions. (author). 11 refs., 8 figs
FURNACE calculations for JET neutron diagnostics
International Nuclear Information System (INIS)
Neutron transport calculations have been performed for the JET-torus, using the two-dimensional toroidal geometry transport code system FURNACE, to predict the response of the time integrated neutron yield monitors on the variation of the plasma conditions. Calculations have been performed for the full aperture D-shaped and circular plasmas, for DD-operation and for DT-operation. For the neutron source distribution a simple model was used based on plasma-plasma interaction. For the torus rotation symmetry around the main torus axis was assumed. Curves have been produced that give the radial plasma shift as function of the ratio of the foil activations measured. It is shown that these curves are sufficiently accurate for application in the DT-phase. For application in the DD-phase, however, the flux of neutrons backscattered from the massive torus needs to be calculated more accurately. (Auth.)
Parallel scalability of Hartree–Fock calculations
Energy Technology Data Exchange (ETDEWEB)
Chow, Edmond, E-mail: echow@cc.gatech.edu; Liu, Xing [School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0765 (United States); Smelyanskiy, Mikhail; Hammond, Jeff R. [Parallel Computing Lab, Intel Corporation, Santa Clara, California 95054-1549 (United States)
2015-03-14
Quantum chemistry is increasingly performed using large cluster computers consisting of multiple interconnected nodes. For a fixed molecular problem, the efficiency of a calculation usually decreases as more nodes are used, due to the cost of communication between the nodes. This paper empirically investigates the parallel scalability of Hartree–Fock calculations. The construction of the Fock matrix and the density matrix calculation are analyzed separately. For the former, we use a parallelization of Fock matrix construction based on a static partitioning of work followed by a work stealing phase. For the latter, we use density matrix purification from the linear scaling methods literature, but without using sparsity. When using large numbers of nodes for moderately sized problems, density matrix computations are network-bandwidth bound, making purification methods potentially faster than eigendecomposition methods.
Resolving resonances in R-matrix calculations
International Nuclear Information System (INIS)
We present a technique to obtain detailed resonance structures from R-matrix calculations of atomic cross sections for both collisional and radiative processes. The resolving resonances (RR) method relies on the QB method of Quigley-Berrington (Quigley L, Berrington K A and Pelan J 1998 Comput. Phys. Commun. 114 225) to find the position and width of resonances directly from the reactance matrix. Then one determines the symmetry parameters of these features and generates an energy mesh whereby fully resolved cross sections are calculated with minimum computational cost. The RR method is illustrated with the calculation of the photoionization cross sections and the unified recombination rate coefficients of Fe XXIV, O VI, and Fe XVII. The RR method reduces numerical errors arising from unresolved R-matrix cross sections in the computation of synthetic bound-free opacities, thermally averaged collision strengths and recombination rate coefficients. (author)
Cosmology calculations almost without general relativity
Jordan, T F
2003-01-01
The Friedmann equation can be derived for a Newtonian universe. Changing mass density to energy density gives exactly the Friedmann equation of general relativity. Accounting for work done by pressure then yields the two Einstein equations that govern the expansion of the universe. Descriptions and explanations of radiation pressure and vacuum pressure are added to complete a basic kit of cosmology tools. It provides a basis for teaching cosmology to undergraduates in a way that quickly equips them to do basic calculations. This is demonstrated with calculations involving: characteristics of the expansion for densities dominated by radiation, matter, or vacuum; the closeness of the density to the critical density; how much vacuum energy compared to matter energy is needed to make the expansion accelerate; and how little is needed to make it stop. Travel time and luninosity distance are calculated in terms of the redshift and the densities of matter and vacuum energy, using a scaled Friedmann equation with the...
Dose calculations for intakes of ore dust
Energy Technology Data Exchange (ETDEWEB)
O`Brien, R.S
1998-08-01
This report describes a methodology for calculating the committed effective dose for mixtures of radionuclides, such as those which occur in natural radioactive ores and dusts. The formulae are derived from first principles, with the use of reasonable assumptions concerning the nature and behaviour of the radionuclide mixtures. The calculations are complicated because these `ores` contain a range of particle sizes, have different degrees of solubility in blood and other body fluids, and also have different biokinetic clearance characteristics from the organs and tissues in the body. The naturally occurring radionuclides also tend to occur in series, i.e. one is produced by the radioactive decay of another `parent` radionuclide. The formulae derived here can be used, in conjunction with a model such as LUDEP, for calculating total dose resulting from inhalation and/or ingestion of a mixture of radionuclides, and also for deriving annual limits on intake and derived air concentrations for these mixtures. 15 refs., 14 tabs., 3 figs.
Benchmarking calculations of excitonic couplings between bacteriochlorophylls
Kenny, Elise P
2015-01-01
Excitonic couplings between (bacterio)chlorophyll molecules are necessary for simulating energy transport in photosynthetic complexes. Many techniques for calculating the couplings are in use, from the simple (but inaccurate) point-dipole approximation to fully quantum-chemical methods. We compared several approximations to determine their range of applicability, noting that the propagation of experimental uncertainties poses a fundamental limit on the achievable accuracy. In particular, the uncertainty in crystallographic coordinates yields an uncertainty of about 20% in the calculated couplings. Because quantum-chemical corrections are smaller than 20% in most biologically relevant cases, their considerable computational cost is rarely justified. We therefore recommend the electrostatic TrEsp method across the entire range of molecular separations and orientations because its cost is minimal and it generally agrees with quantum-chemical calculations to better than the geometric uncertainty. We also caution ...
Multiloop Calculations In Perturbative Quantum Field Theory
Blokland, I R
2004-01-01
This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for proble...
KENO-IV code benchmark calculation, (6)
International Nuclear Information System (INIS)
A series of benchmark tests has been undertaken in JAERI in order to examine the capability of JAERI's criticality safety evaluation system consisting of the Monte Carlo calculation code KENO-IV and the newly developed multigroup constants library MGCL. The present report describes the results of a benchmark test using criticality experiments about Plutonium fuel in various shape. In all, 33 cases of experiments have been calculated for Pu(NO3)4 aqueous solution, Pu metal or PuO2-polystyrene compact in various shape (sphere, cylinder, rectangular parallelepiped). The effective multiplication factors calculated for the 33 cases distribute widely between 0.955 and 1.045 due to wide range of system variables. (author)
Perturbation calculation of thermodynamic density of states.
Brown, G; Schulthess, T C; Nicholson, D M; Eisenbach, M; Stocks, G M
2011-12-01
The density of states g (ε) is frequently used to calculate the temperature-dependent properties of a thermodynamic system. Here a derivation is given for calculating the warped density of states g*(ε) resulting from the addition of a perturbation. The method is validated for a classical Heisenberg model of bcc Fe and the errors in the free energy are shown to be second order in the perturbation. Taking the perturbation to be the difference between a first-principles quantum-mechanical energy and a corresponding classical energy, this method can significantly reduce the computational effort required to calculate g(ε) for quantum systems using the Wang-Landau approach.
Daylight calculations using constant luminance curves
Energy Technology Data Exchange (ETDEWEB)
Betman, E. [CRICYT, Mendoza (Argentina). Laboratorio de Ambiente Humano y Vivienda
2005-02-01
This paper presents a simple method to manually estimate daylight availability and to make daylight calculations using constant luminance curves calculated with local illuminance and irradiance data and the all-weather model for sky luminance distribution developed in the Atmospheric Science Research Center of the University of New York (ARSC) by Richard Perez et al. Work with constant luminance curves has the advantage that daylight calculations include the problem's directionality and preserve the information of the luminous climate of the place. This permits accurate knowledge of the resource and a strong basis to establish conclusions concerning topics related to the energy efficiency and comfort in buildings. The characteristics of the proposed method are compared with the method that uses the daylight factor. (author)
Multiloop calculations in perturbative quantum field theory
Blokland, Ian Richard
This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for problems in a field of particle physics with a very rich history. The third calculation provides an improved prediction for the decay of a top quark. In order to obtain this result, a large class of multiloop integrals has been solved for the first time. Top quark decay is just one member of a family of interesting physical processes to which these new results apply. Since specialized calculational techniques are essential ingredients in all three calculations, they are motivated and explained carefully in this thesis. These techniques, once automated with symbolic computational software, have recently opened avenues of solution to a wide variety of important problems in particle physics.
Willow growing - Methods of calculation and profitability
International Nuclear Information System (INIS)
The calculation method presented here makes it possible to conduct profitability comparisons between annual and perennial crops and in addition take the planning situation into account. The method applied is a modified total step calculation. The difference between a traditional total step calculation and the modified version is the way in which payments and disbursements are taken into account over a period of several years. This is achieved by combining the present value method and the annuity method. The choice of interest rate has great bearing on the result in perennial calculations. The various components influencing the interest rate are analysed and factors relating to the establishment of the interest rate in different situations are described. The risk factor can be an important variable component of the interest rate calculation. Risk is also addressed from an approach in accordance with portfolio theory. The application of the methods sheds light on the profitability of Salix cultivation from the viewpoint of business economics, and also how different factors influence the profitability of Salix cultivation. Aspects studied are harvesting intervals, the importance of yield level, the competitiveness of Salix versus grain cultivation, the influence of income taxes on profitability etc. Methods for evaluation of activities concerning cultivation of a perennial crop are described and also involve the application of nitrogen fertilization to Salix cultivation. Studies have been performed using these methods to look into nitrogen fertilizer profitability in Salix cultivation during the first rotation period. Nitrogen fertilizer profitability has been investigated involving both production functions and cost calculations, taking the year fertilization into consideration. 72 refs., 2 figs., 52 tabs
Numerical calculation of impurity charge state distributions
Energy Technology Data Exchange (ETDEWEB)
Crume, E. C.; Arnurius, D. E.
1977-09-01
The numerical calculation of impurity charge state distributions using the computer program IMPDYN is discussed. The time-dependent corona atomic physics model used in the calculations is reviewed, and general and specific treatments of electron impact ionization and recombination are referenced. The complete program and two examples relating to tokamak plasmas are given on a microfiche so that a user may verify that his version of the program is working properly. In the discussion of the examples, the corona steady-state approximation is shown to have significant defects when the plasma environment, particularly the electron temperature, is changing rapidly.
Radiological Dose Calculations for Fusion Facilities
Energy Technology Data Exchange (ETDEWEB)
Michael L. Abbott; Lee C. Cadwallader; David A. Petti
2003-04-01
This report summarizes the results and rationale for radiological dose calculations for the maximally exposed individual during fusion accident conditions. Early doses per unit activity (Sieverts per TeraBecquerel) are given for 535 magnetic fusion isotopes of interest for several release scenarios. These data can be used for accident assessment calculations to determine if the accident consequences exceed Nuclear Regulatory Commission and Department of Energy evaluation guides. A generalized yearly dose estimate for routine releases, based on 1 Terabecquerel unit releases per radionuclide, has also been performed using averaged site parameters and assumed populations. These routine release data are useful for assessing designs against US Environmental Protection Agency yearly release limits.
Precise calculations of the deuteron quadrupole moment
Energy Technology Data Exchange (ETDEWEB)
Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-06-01
Recently, two calculations of the deuteron quadrupole moment have have given predictions that agree with the measured value to within 1%, resolving a long-standing discrepancy. One of these uses the covariant spectator theory (CST) and the other chiral effective field theory (cEFT). In this talk I will first briefly review the foundations and history of the CST, and then compare these two calculations with emphasis on how the same physical processes are being described using very different language. The comparison of the two methods gives new insights into the dynamics of the low energy NN interaction.
Pumping slots: Coupling impedance calculations and estimates
Energy Technology Data Exchange (ETDEWEB)
Kurennoy, S.
1993-08-01
Coupling impedances of small pumping holes in vacuum-chamber walls have been calculated at low frequencies, i.e., for wavelengths large compared to a typical hole size, in terms of electric and magnetic polarizabilities of the hole. The polarizabilities can be found by solving and electro- or magnetostatic problem and are known analytically for the case of the elliptic shape of the hole in a thin wall. The present paper studies the case of pumping slots. Using results of numerical calculations and analytical approximations of polarizabilities, we give formulae for practically important estimates of slot contribution to low-frequency coupling impedances.
Calculating reliability measures for ordinal data.
Gamsu, C V
1986-11-01
Establishing the reliability of measures taken by judges is important in both clinical and research work. Calculating the statistic of choice, the kappa coefficient, unfortunately is not a particularly quick and simple procedure. Two much-needed practical tools have been developed to overcome these difficulties: a comprehensive and easily understood guide to the manual calculation of the most complex form of the kappa coefficient, weighted kappa for ordinal data, has been written; and a computer program to run under CP/M, PC-DOS and MS-DOS has been developed. With simple modification the program will also run on a Sinclair Spectrum home computer.
Conductance calculations with a wavelet basis set
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Bollinger, Mikkel; Jacobsen, Karsten Wedel
2003-01-01
We present a method based on density functional theory (DFT) for calculating the conductance of a phase-coherent system. The metallic contacts and the central region where the electron scattering occurs, are treated on the same footing taking their full atomic and electronic structure into account....... The linear-response conductance is calculated from the Green's function which is represented in terms of a system-independent basis set containing wavelets with compact support. This allows us to rigorously separate the central region from the contacts and to test for convergence in a systematic way...
Improving on calculation of martensitic phenomenological theory
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Exemplified by the martensitic transformation from DO3 to 18R in Cu-14.2Al-4.3Ni alloy and according to the principle that invariant-habit-plane can be obtained by self-accommodation between variants with twin relationships, and on the basis of displacement vector, volume fractions of two variants with twin relationships in martensitic transformation, habit-plane indexes, and orientation relationships between martensite and austenite after phase transformation can be calculated. Because no additional rotation matrixes are needed to be considered and mirror symmetric operations are used, the calculation process is simple and the results are accurate.
Ammonia synthesis from first principles calculations
DEFF Research Database (Denmark)
Honkala, Johanna Karoliina; Hellman, Anders; Remediakis, Ioannis;
2005-01-01
. When the size distribution of ruthenium particles measured by transmission electron microscopy was used as the [ink between the catalyst material and the theoretical treatment, the calculated rate was within a factor of 3 to 20 of the experimental rate. This offers hope for computer-based methods......The rate of ammonia synthesis over a nanoparticle ruthenium catalyst can be calculated directly on the basis of a quantum chemical treatment of the problem using density functional theory. We compared the results to measured rates over a ruthenium catalyst supported on magnesium aluminum spinet...
CALCULATION OF CONTACT STRESS OF PLASTIC GEARS
Institute of Scientific and Technical Information of China (English)
陈其泰
1995-01-01
A calculation method of contact problem of plastic gears based on three parameter model of viscoelasticity material is presented. In this calculation method, the influence of temperature upon the property of plastics is considered and an iteration process of temperature-elasticity module-friction coefficient is proposed. From the rolling contact problem of two viscoelastic cylinders with parallel axis, a set of normal-tangential contact coupled integral equations is obtained. Through numerical treatment and normal-tangental iteration, the normal contact stress, tangential stress and contact width of plastic gears are acquired.
Molecular transport calculations with Wannier Functions
DEFF Research Database (Denmark)
Thygesen, Kristian Sommer; Jacobsen, Karsten Wedel
2005-01-01
We present a scheme for calculating coherent electron transport in atomic-scale contacts. The method combines a formally exact Green's function formalism with a mean-field description of the electronic structure based on the Kohn-Sham scheme of density functional theory. We use an accurate plane......-wave electronic structure method to calculate the eigenstates which are subsequently transformed into a set of localized Wannier functions (WFs). The WFs provide a highly efficient basis set which at the same time is well suited for analysis due to the chemical information contained in the WFs. The method is...
Local orbitals in electron scattering calculations*
Winstead, Carl L.; McKoy, Vincent
2016-05-01
We examine the use of local orbitals to improve the scaling of calculations that incorporate target polarization in a description of low-energy electron-molecule scattering. After discussing the improved scaling that results, we consider the results of a test calculation that treats scattering from a two-molecule system using both local and delocalized orbitals. Initial results are promising. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.
Calculated molecular properties of polycyclic aromatic hydrocarbons
Energy Technology Data Exchange (ETDEWEB)
Hites, R.A.; Simonsick, W.J. Jr.
1987-01-01
This volume contains a compilation of calculated molecular properties for 272 polycyclic aromatic hydrocarbons (PAH) and monomethylated PAH, listed in sequence according to their increasing molecular weight. The Chemical Abstracts Registry number is also included for easy reference. The molecular properties were calculated using the semiempirical MDCO method with geometric optimization. These parameters include the heats of formation, the frontier orbital energies, the electronic and nuclear energies, the dipole moment, and the net atomic charges on each atom. The shape parameter and the length/breadth ratio from the optimized geometries is also computed.
BEGAFIP. Programming service, development and benchmark calculations
International Nuclear Information System (INIS)
This report summarizes improvements to BEGAFIP (the Swedish equivalent to the Oak Ridge computer code ORIGEN). The improvements are: addition of a subroutine making it possible to calculate neutron sources, exchange of fission yields and branching ratios in the data library to those published by Meek and Rider in 1978. In addition, BENCHMARK-calculations have been made with BEGAFIP as well as with ORIGEN regarding the build-up of actinides for a fuel burnup of 33 MWd/kg U. The results were compared to those arrived upon from the more sophisticated code CASMO. (author)
Relaxation Method For Calculating Quantum Entanglement
Tucci, R R
2001-01-01
In a previous paper, we showed how entanglement of formation can be defined as a minimum of the quantum conditional mutual information (a.k.a. quantum conditional information transmission). In classical information theory, the Arimoto-Blahut method is one of the preferred methods for calculating extrema of mutual information. We present a new method akin to the Arimoto-Blahut method for calculating entanglement of formation. We also present several examples computed with a computer program called Causa Comun that implements the ideas of this paper.
A method for tokamak neutronics calculations
International Nuclear Information System (INIS)
This paper presents a new method for neutron transport calculation in tokamak fusion reactors. The computational procedure is based on the solution of the even-parity transport equation in a toroidal geometry. The angular neutron distribution is treated by even-parity spherical harmonic expansion, while the spatial dependence is approximated by using R-function finite elements that are defined for regions of arbitrary geometric shape. In order to test the method, calculation of a simplified tokamak model is carried out. The results are compared with the results from the literature and for the same order of accuracy a reduction of the number of spatial unknowns is shown. (author)
Calculation methods for compressible turbulent boundary layers
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1976-01-01
Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.
Transmission pipeline calculations and simulations manual
Menon, E Shashi
2014-01-01
Transmission Pipeline Calculations and Simulations Manual is a valuable time- and money-saving tool to quickly pinpoint the essential formulae, equations, and calculations needed for transmission pipeline routing and construction decisions. The manual's three-part treatment starts with gas and petroleum data tables, followed by self-contained chapters concerning applications. Case studies at the end of each chapter provide practical experience for problem solving. Topics in this book include pressure and temperature profile of natural gas pipelines, how to size pipelines for specified f
Ab initio valence calculations in chemistry
Cook, D B
1974-01-01
Ab Initio Valence Calculations in Chemistry describes the theory and practice of ab initio valence calculations in chemistry and applies the ideas to a specific example, linear BeH2. Topics covered include the Schrödinger equation and the orbital approximation to atomic orbitals; molecular orbital and valence bond methods; practical molecular wave functions; and molecular integrals. Open shell systems, molecular symmetry, and localized descriptions of electronic structure are also discussed. This book is comprised of 13 chapters and begins by introducing the reader to the use of the Schrödinge
Necessity of Exact Calculation for Transition Probability
Institute of Scientific and Technical Information of China (English)
LIU Fu-Sui; CHEN Wan-Fang
2003-01-01
This paper shows that exact calculation for transition probability can make some systems deviate fromFermi golden rule seriously. This paper also shows that the corresponding exact calculation of hopping rate inducedby phonons for deuteron in Pd-D system with the many-body electron screening, proposed by Ichimaru, can explainthe experimental fact observed in Pd-D system, and predicts that perfection and low-dimension of Pd lattice are veryimportant for the phonon-induced hopping rate enhancement in Pd-D system.
Calculation of radiative transition probabilities and lifetimes
Zemke, W. T.; Verma, K. K.; Stwalley, W. C.
1982-01-01
Procedures for calculating bound-bound and bound-continuum (free) radiative transition probabilities and radiative lifetimes are summarized. Calculations include rotational dependence and R-dependent electronic transition moments (no Franck-Condon or R-centroid approximation). Detailed comparisons of theoretical results with experimental measurements are made for bound-bound transitions in the A-X systems of LiH and Na2. New bound-free results are presented for LiH. New bound-free results and comparisons with very recent fluorescence experiments are presented for Na2.
Calculated Electron Fluxes at Airplane Altitudes
Schaefer, R K; Stanev, T
1993-01-01
A precision measurement of atmospheric electron fluxes has been performed on a Japanese commercial airliner (Enomoto, {\\it et al.}, 1991). We have performed a monte carlo calculation of the cosmic ray secondary electron fluxes expected in this experiment. The monte carlo uses the hadronic portion of our neutrino flux cascade program combined with the electromagnetic cascade portion of the CERN library program GEANT. Our results give good agreement with the data, provided we boost the overall normalization of the primary cosmic ray flux by 12\\% over the normalization used in the neutrino flux calculation.
Recursive Delay Calculation Unit for Parametric Beamformer
DEFF Research Database (Denmark)
Nikolov, Svetoslav; Jensen, Jørgen Arendt; Tomov, Borislav Gueorguiev
2006-01-01
hardware implementation. One delaycalculation unit (DCU) needs 4 parameters, and all operations can be implemented using fixed-point arithmetics. An N -channel system needs N + 1 DCUs per line - one for the distance from the transmit origin to the image point and N for the distances from the image point to...... each of the receivers. Each DCU recursively calculates the square of the distance between a transducer element and a point on the beamformed line. Then it finds the approximate square root. The distance to point i is used as an initial guess for point i + 1. Using fixed-point calculations with 36-bit...
COVE 2A Benchmarking calculations using NORIA
International Nuclear Information System (INIS)
Six steady-state and six transient benchmarking calculations have been performed, using the finite element code NORIA, to simulate one-dimensional infiltration into Yucca Mountain. These calculations were made to support the code verification (COVE 2A) activity for the Yucca Mountain Site Characterization Project. COVE 2A evaluates the usefulness of numerical codes for analyzing the hydrology of the potential Yucca Mountain site. Numerical solutions for all cases were found to be stable. As expected, the difficulties and computer-time requirements associated with obtaining solutions increased with infiltration rate. 10 refs., 128 figs., 5 tabs
Microscopic optical model calculations and uncertainty estimates
International Nuclear Information System (INIS)
Full text: The optical model is a basic ingredient of almost all reaction calculations. Therefore, a great effort has been devoted to its microscopic determination. Among the various attempts the nuclear matter approach with its various facets works surprisingly well even at low energies about 20 MeV. In the present contribution a comparison of elastic differential and integral cross sections and polarization data with theoretical results is given for structure materials. Possible procedures for assigning uncertainties to calculated observables are discussed. (author)
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The improved form of calculation formula for the activities of the components in binary liquids and solid alloys has been derived based on the free volume theory considering excess entropy and Miedema's model for calculating the formation heat of binary alloys. A calculation method of excess thermodynamic functions for binary alloys, the formulas of integral molar excess properties and partial molar excess properties for solid ordered or disordered binary alloys have been developed. The calculated results are in good agreement with the experimental values.
Deconstructing Calculation Methods, Part 3: Multiplication
Thompson, Ian
2008-01-01
In this third of a series of four articles, the author deconstructs the primary national strategy's approach to written multiplication. The approach to multiplication, as set out on pages 12 to 15 of the primary national strategy's "Guidance paper" "Calculation" (DfES, 2007), is divided into six stages: (1) mental multiplication using…
Witten index calculation in supersymmetric gauge theory
International Nuclear Information System (INIS)
Direct calculation of the Witten index Isub(W) in the SU(2) SUSY Yang-Mills theiory is performed using the periodic boundary conditions. Our result is Isub(W)--1 which disagrees with the Witten's result: Isub(W)=N for the SU(N) gauge group. The principle physical conclusion of SUSY unbreaking in this theory remains intact
Tubular stabilizer bars – calculations and construction
Directory of Open Access Journals (Sweden)
Adam-Markus WITTEK
2011-01-01
Full Text Available The article outlines the calculation methods for tubular stabilizer bars. Modern technological and structural solutions in contemporary cars are reflected also in the construction, selection and manufacturing of tubular stabilizer bars. A proper construction and the selection of parameters influence the strength properties, the weight, durability and reliability as well as the selection of an appropriate production method.
Stabilizer bars: Part 1. Calculations and construction
Directory of Open Access Journals (Sweden)
Adam-Markus WITTEK
2010-01-01
Full Text Available The article outlines the calculation methods for stabilizer bars. Modern technological and structural solutions in contemporary cars are reflected also in the construction and manufacturing of stabilizer bars. A proper construction and the selection of parameters influence the strength properties, the weight, durability and reliability as well as the selection of an appropriate production method.
Paper-and-pencil cosmological calculator
Pilipenko, Sergey V
2013-01-01
The paper-and-pencil calculator is a cosmological nomogram which allows to find relations between redshift, distance, age of the Universe, physical and angular sizes, luminosity and apparent magnitude for the standard cosmological model with parameters from the Planck mission.
24 CFR 3280.811 - Calculations.
2010-04-01
... appliance receptacle circuit (see definition of “Appliance Portable” with Note): e.g. Number of circuits × 1... DEVELOPMENT MANUFACTURED HOME CONSTRUCTION AND SAFETY STANDARDS Electrical Systems § 3280.811 Calculations. (a... motors and heater loads (exhaust fans, air conditioners, electric, gas, or oil heating). Omit smaller...
Calculating uncertainties of safeguards indices: error propagation
International Nuclear Information System (INIS)
Statistical methods play an important role in making references about a MUF, shipper-receiver difference, operator-inspector difference, and other safeguards indices. This session considers the sources and types of measurement errors and treats a specific example to illustrate how the variance of MUF is calculated for the model plant
Using Angle calculations to demonstrate vowel shifts
DEFF Research Database (Denmark)
Fabricius, Anne
2008-01-01
This paper gives an overview of the long-term trends of diachronic changes evident within the short vowel system of RP during the 20th century. more specifically, it focusses on changing juxtapositions of the TRAP, STRUT and LOT, FOOT vowel centroid positions. The paper uses geometric calculation...
Calculation of Kinetic Parameters of TRIGA Reactor
Energy Technology Data Exchange (ETDEWEB)
Snoj, Luka; Kavcic, Andrej; Zerovnik, Gasper; Ravnik, Matjaz [' Jozef Stefan' Institute, Jamova 39, SI-1000 Ljubljana (Slovenia)
2008-10-29
Modern Monte Carlo transport codes in combination of fast computer clusters enable very accurate calculations of the most important reactor kinetic parameters. Such are the effective delayed neutron fraction, {beta}{sub eff}, and mean neutron generation time, {lambda}. We calculated the {beta}{sub eff} and {lambda} for various realistic and hypothetical annular TRIGA Mark II cores with different types and amount of fuel. It can be observed that the effective delayed neutron fraction strongly depends on the number of fuel elements in the core or on the core size. E.g., for 12 wt. % uranium standard fuel with 20 % enrichment, {beta}{sub eff} varies from 0.0080 for a small core (43 fuel rods) to 0.0075 for a full core (90 fuel rods). It is interesting to note that calculated value of {beta}{sub eff} strongly depends also on the delayed neutron nuclear data set used in calculations. The prompt neutron life-time mainly depends on the amount (due to either content or enrichment) of {sup 235}U in the fuel as it is approximately inversely proportional to the average absorption cross-section of the fuel. E.g., it varies from 28 {mu}s for 30 wt. % uranium content fuelled core to 48 {mu}s for 8.5 wt. % uranium content LEU fuelled core. The results are especially important for pulse mode operation and analysis of the pulses. (authors)
Hawking temperature and higher order tunnelling calculations
Chatterjee, Bhramar
2009-01-01
Hawking radiation has recently been explained in terms of tunnelling across the black hole horizon in a Hamilton-Jacobi framework. Higher order calculations using both usual and non-singular coordinates are found to change the tunnelling amplitude, but this change is not a simple alteration of the Hawking temperature.
On the calculation of Mossbauer isomer shift
Filatov, Michael
2007-01-01
A quantum chemical computational scheme for the calculation of isomer shift in Mossbauer spectroscopy is suggested. Within the described scheme, the isomer shift is treated as a derivative of the total electronic energy with respect to the radius of a finite nucleus. The explicit use of a finite nuc
Surface area estimation: pocket calculator v nomogram.
Briars, G L; Bailey, B J
1994-01-01
Three sheets of 10 surface area determinations were completed by 10 subjects using a nomogram and a formula. The formula was faster to calculate, 4.27 v 7.6 minutes for each sheet, and resulted in fewer serious errors (three v 30 errors).
Calculating Free Energies Using Average Force
Darve, Eric; Pohorille, Andrew; DeVincenzi, Donald L. (Technical Monitor)
2001-01-01
A new, general formula that connects the derivatives of the free energy along the selected, generalized coordinates of the system with the instantaneous force acting on these coordinates is derived. The instantaneous force is defined as the force acting on the coordinate of interest so that when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The formula applies to simulations in which the selected coordinates are either unconstrained or constrained to fixed values. It is shown that in the latter case the formula reduces to the expression previously derived by den Otter and Briels. If simulations are carried out without constraining the coordinates of interest, the formula leads to a new method for calculating the free energy changes along these coordinates. This method is tested in two examples - rotation around the C-C bond of 1,2-dichloroethane immersed in water and transfer of fluoromethane across the water-hexane interface. The calculated free energies are compared with those obtained by two commonly used methods. One of them relies on determining the probability density function of finding the system at different values of the selected coordinate and the other requires calculating the average force at discrete locations along this coordinate in a series of constrained simulations. The free energies calculated by these three methods are in excellent agreement. The relative advantages of each method are discussed.
Fast calculation of best focus position
Bezzubik, V.; Belashenkov, N.; Vdovin, G.V.
2015-01-01
New computational technique based on linear-scale differential analysis (LSDA) of digital image is proposed to find the best focus position in digital microscopy by means of defocus estimation in two near-focal positions only. The method is based on the calculation of local gradients of the image on
Complex Kohn calculations on an overset grid
Greenman, Loren; Lucchese, Robert; McCurdy, C. William
2016-05-01
An implentation of the overset grid method for complex Kohn scattering calculations is presented, along with static exchange calculations of electron-molecule scattering for small molecules including methane. The overset grid method uses multiple numerical grids, for instance Finite Element Method - Discrete Variable Representation (FEM-DVR) grids, expanded radially around multiple centers (corresponding to the individual atoms in each molecule as well as the center-of-mass of the molecule). The use of this flexible grid allows the complex angular dependence of the wavefunctions near the atomic centers to be well-described, but also allows scattering wavefunctions that oscillate rapidly at large distances to be accurately represented. Additionally, due to the use of multiple grids (and also grid shells), the method is easily parallelizable. The method has been implemented in ePolyscat, a multipurpose suite of programs for general molecular scattering calculations. It is interfaced with a number of quantum chemistry programs (including MolPro, Gaussian, GAMESS, and Columbus), from which it can read molecular orbitals and wavefunctions obtained using standard computational chemistry methods. The preliminary static exchange calculations serve as a test of the applicability.
Calculating Shocks In Flows At Chemical Equilibrium
Eberhardt, Scott; Palmer, Grant
1988-01-01
Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.
Calculating Traffic based on Road Sensor Data
Bisseling, Rob; Gao, Fengnan; Hafkenscheid, Patrick; Idema, Reijer; Jetka, Tomasz; Guerra Ones, Valia; Sikora, Monika
2014-01-01
Road sensors gather a lot of statistical data about traffic. In this paper, we discuss how a measure for the amount of traffic on the roads can be derived from this data, such that the measure is independent of the number and placement of sensors, and the calculations can be performed quickly for la
Calculation of tubular joints as compound shells
Golovanov, A. I.
A scheme for joining isoparametric finite shell elements with a bend in the middle surface is described. A solution is presented for the problem of the stress-strain state of a T-joint loaded by internal pressure. A refined scheme is proposed for calculating structures of this kind with allowance for the stiffness of the welded joint.
Why Do Calculators Have Rubber Feet?
Heavers, Richard M.
2007-01-01
Our students like using the covers of their TI graphing calculators in an inquiry-based extension of a traditional exercise that challenges their preconceived ideas about friction. Biology major Fiona McGraw (Fig. 1) is obviously excited about the large coefficient of static friction ([mu][subscript s] = 1.3) for the four little rubber feet on her…
Engineering calculations in radiative heat transfer
Gray, W A; Hopkins, D W
1974-01-01
Engineering Calculations in Radiative Heat Transfer is a six-chapter book that first explains the basic principles of thermal radiation and direct radiative transfer. Total exchange of radiation within an enclosure containing an absorbing or non-absorbing medium is then described. Subsequent chapters detail the radiative heat transfer applications and measurement of radiation and temperature.
MODIFIED EQUIPARTITION CALCULATION FOR SUPERNOVA REMNANTS
Energy Technology Data Exchange (ETDEWEB)
Arbutina, B.; Urosevic, D.; Andjelic, M. M.; Pavlovic, M. Z. [Department of Astronomy, Faculty of Mathematics, University of Belgrade, Studentski trg 16, 11000 Belgrade (Serbia); Vukotic, B., E-mail: arbo@math.rs [Astronomical Observatory, Volgina 7, 11060 Belgrade (Serbia)
2012-02-10
Determination of the magnetic field strength in the interstellar medium is one of the more complex tasks of contemporary astrophysics. We can only estimate the order of magnitude of the magnetic field strength by using a few very limited methods. Besides the Zeeman effect and Faraday rotation, the equipartition or minimum-energy calculation is a widespread method for estimating magnetic field strength and energy contained in the magnetic field and cosmic-ray particles by using only the radio synchrotron emission. Despite its approximate character, it remains a useful tool, especially when there are no other data about the magnetic field in a source. In this paper, we give a modified calculation that we think is more appropriate for estimating magnetic field strengths and energetics in supernova remnants (SNRs). We present calculated estimates of the magnetic field strengths for all Galactic SNRs for which the necessary observational data are available. The Web application for calculation of the magnetic field strengths of SNRs is available at http://poincare.matf.bg.ac.rs/{approx}arbo/eqp/.
On nonadiabatic SCF calculations of molecular properties
Fernández, Francisco M.
2009-01-01
We argue that the dynamic extended molecular orbital (DEMO) method may be less accurate than expected because the motion of the center of mass was not properly removed prior to the SCF calculation. Under such conditions the virial theorem is a misleading indication of the accuracy of the wavefunction.
Calculating the Fuzzy Project Network Critical Path
Directory of Open Access Journals (Sweden)
Nasser Shahsavari Pour
2012-04-01
Full Text Available A project network consists of various activities. To determine the length of project time and the amount of the needed sources, the time of project completion must correctly and exactly be calculated, so the critical path is calculated. The activities on this path have no floating. It means that there is no delay on these activities. As a result the calculation of the critical path in a project network has a special importance. In this paper a simple method for calculation the critical path is proposed. Assignment an exact time on any activity in real world is not correct; So the fuzzy and uncertainty theories are used to assigned a length of time on any activities. In the present study the trapezoidal fuzzy numbers are assigned to the length of activity time, and the total time of the project is also a fuzzy number. In addition, to compare the fuzzy numbers, ranking of fuzzy numbers are used. Finally a practical example will show the efficiency of the method.
Reactor performance calculations for water reactors
International Nuclear Information System (INIS)
The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.
IOL Power Calculation after Corneal Refractive Surgery
Directory of Open Access Journals (Sweden)
Maddalena De Bernardo
2014-01-01
Full Text Available Purpose. To describe the different formulas that try to overcome the problem of calculating the intraocular lens (IOL power in patients that underwent corneal refractive surgery (CRS. Methods. A Pubmed literature search review of all published articles, on keyword associated with IOL power calculation and corneal refractive surgery, as well as the reference lists of retrieved articles, was performed. Results. A total of 33 peer reviewed articles dealing with methods that try to overcome the problem of calculating the IOL power in patients that underwent CRS were found. According to the information needed to try to overcome this problem, the methods were divided in two main categories: 18 methods were based on the knowledge of the patient clinical history and 15 methods that do not require such knowledge. The first group was further divided into five subgroups based on the parameters needed to make such calculation. Conclusion. In the light of our findings, to avoid postoperative nasty surprises, we suggest using only those methods that have shown good results in a large number of patients, possibly by averaging the results obtained with these methods.
Net analyte signal calculation for multivariate calibration
Ferre, J.; Faber, N.M.
2003-01-01
A unifying framework for calibration and prediction in multivariate calibration is shown based on the concept of the net analyte signal (NAS). From this perspective, the calibration step can be regarded as the calculation of a net sensitivity vector, whose length is the amount of net signal when the
A note on weighted premium calculation principles
M. Kaluszka; R.J.A. Laeven; A. Okolewski
2012-01-01
A prominent problem in actuarial science is to determine premium calculation principles that satisfy certain criteria. Goovaerts et al. [Goovaerts, M. J., De Vylder, F., Haezendonck, J., 1984. Insurance Premiums: Theory and Applications. North-Holland, Amsterdam, p. 84] establish an optimality-type
Properties and calculations of multi parton processes
International Nuclear Information System (INIS)
Methods are studied and developed to calculate multi-jet final states. Jets are streams of hadrons moving more or less in the same direction, resulting from fragmentation of partons (i.e. quarks and gluons) originating from large angle scattering of partons in proton-antiproton collisions. The study of jets at colliders is a direct test of the QCD description of the strong interactions. Furthermore accurate calculations of multi-jet final states may reveal new and interesting physics hidden in the background of these states. In ch. 2 the parton model is described, the application of perturbative calculations is given and the shortcomings of the approach are given. In ch.'s 3 and 4 the Weyl-van der Waerden spinor calculus, which makes optimal use of the fact that in the calculations all partons are taken massless thus reducing a lot of algebra which is necessary in more conventional spinor calculus, is presented and the recursion relations are applied in the actual calculations of multi-parton matrix elements in ch.'s 5, 6, 7 and 8. The Parke-Taylor conjecture, which gives the matrix element for the scattering of two gluons to an arbitrary number of gluons for special helicity of the gluons, and related conjectures are proven. The validity of the conjecture is important because approximate formulae for multi gluon processes are based upon it. The proof is extended to processes involving a quark pair with or without a vector boson (ch. 5). In ch. 6 the soft gluon behaviour of multi-parton processes is examined. A number of factorization processes are proven for scattering amplitudes with an arbitrary number of gluons. The subject of ch.'s 7 and 8 is the explicit calculation of multi-parton helicity amplitudes. Ch. 8 is concerned with n-gluon scattering, n< B, while in ch. 8 the process involving a vector boson and up to 5 partons is calculated. (H.W.). 97 refs.; 2 figs.; 3 tabs. schemes
Radionuclide release calculations for SAR-08
Energy Technology Data Exchange (ETDEWEB)
Thomson, Gavin; Miller, Alex; Smith, Graham; Jackson, Duncan (Enviros Consulting Ltd, Wolverhampton (United Kingdom))
2008-04-15
Following a review by the Swedish regulatory authorities of the post-closure safety assessment of the SFR 1 disposal facility for low and intermediate waste (L/ILW), SAFE, the SKB has prepared an updated assessment called SAR-08. This report describes the radionuclide release calculations that have been undertaken as part of SAR-08. The information, assumptions and data used in the calculations are reported and the results are presented. The calculations address issues raised in the regulatory review, but also take account of new information including revised inventory data. The scenarios considered include the main case of expected behaviour of the system, with variants; low probability releases, and so-called residual scenarios. Apart from these scenario uncertainties, data uncertainties have been examined using a probabilistic approach. Calculations have been made using the AMBER software. This allows all the component features of the assessment model to be included in one place. AMBER has been previously used to reproduce results the corresponding calculations in the SAFE assessment. It is also used in demonstration of the IAEA's near surface disposal assessment methodology ISAM and has been subject to very substantial verification tests and has been used in verifying other assessment codes. Results are presented as a function of time for the release of radionuclides from the near field, and then from the far field into the biosphere. Radiological impacts of the releases are reported elsewhere. Consideration is given to each radionuclide and to each component part of the repository. The releases from the entire repository are also presented. The peak releases rates are, for most scenarios, due to organic C-14. Other radionuclides which contribute to peak release rates include inorganic C-14, Ni-59 and Ni-63. (author)
Procedures for Calculating Residential Dehumidification Loads
Energy Technology Data Exchange (ETDEWEB)
Winkler, Jon [National Renewable Energy Lab. (NREL), Golden, CO (United States); Booten, Chuck [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-06-01
Residential building codes and voluntary labeling programs are continually increasing the energy efficiency requirements of residential buildings. Improving a building's thermal enclosure and installing energy-efficient appliances and lighting can result in significant reductions in sensible cooling loads leading to smaller air conditioners and shorter cooling seasons. However due to fresh air ventilation requirements and internal gains, latent cooling loads are not reduced by the same proportion. Thus, it's becoming more challenging for conventional cooling equipment to control indoor humidity at part-load cooling conditions and using conventional cooling equipment in a non-conventional building poses the potential risk of high indoor humidity. The objective of this project was to investigate the impact the chosen design condition has on the calculated part-load cooling moisture load, and compare calculated moisture loads and the required dehumidification capacity to whole-building simulations. Procedures for sizing whole-house supplemental dehumidification equipment have yet to be formalized; however minor modifications to current Air-Conditioner Contractors of America (ACCA) Manual J load calculation procedures are appropriate for calculating residential part-load cooling moisture loads. Though ASHRAE 1% DP design conditions are commonly used to determine the dehumidification requirements for commercial buildings, an appropriate DP design condition for residential buildings has not been investigated. Two methods for sizing supplemental dehumidification equipment were developed and tested. The first method closely followed Manual J cooling load calculations; whereas the second method made more conservative assumptions impacting both sensible and latent loads.
Radionuclide release calculations for SAR-08
International Nuclear Information System (INIS)
Following a review by the Swedish regulatory authorities of the post-closure safety assessment of the SFR 1 disposal facility for low and intermediate waste (L/ILW), SAFE, the SKB has prepared an updated assessment called SAR-08. This report describes the radionuclide release calculations that have been undertaken as part of SAR-08. The information, assumptions and data used in the calculations are reported and the results are presented. The calculations address issues raised in the regulatory review, but also take account of new information including revised inventory data. The scenarios considered include the main case of expected behaviour of the system, with variants; low probability releases, and so-called residual scenarios. Apart from these scenario uncertainties, data uncertainties have been examined using a probabilistic approach. Calculations have been made using the AMBER software. This allows all the component features of the assessment model to be included in one place. AMBER has been previously used to reproduce results the corresponding calculations in the SAFE assessment. It is also used in demonstration of the IAEA's near surface disposal assessment methodology ISAM and has been subject to very substantial verification tests and has been used in verifying other assessment codes. Results are presented as a function of time for the release of radionuclides from the near field, and then from the far field into the biosphere. Radiological impacts of the releases are reported elsewhere. Consideration is given to each radionuclide and to each component part of the repository. The releases from the entire repository are also presented. The peak releases rates are, for most scenarios, due to organic C-14. Other radionuclides which contribute to peak release rates include inorganic C-14, Ni-59 and Ni-63. (author)
International Nuclear Information System (INIS)
The aim of this study was to develop a software application that performs calculation shields in radiology room depending on the type of equipment. The calculation will be done by selecting the user, the method proposed in the Guide 5.11, the Report 144 and 147 and also for the methodology given by the Portuguese Health Ministry. (Author)
CANISTER HANDLING FACILITY CRITICALITY SAFETY CALCULATIONS
International Nuclear Information System (INIS)
This design calculation revises and updates the previous criticality evaluation for the canister handling, transfer and staging operations to be performed in the Canister Handling Facility (CHF) documented in BSC [Bechtel SAIC Company] 2004 [DIRS 167614]. The purpose of the calculation is to demonstrate that the handling operations of canisters performed in the CHF meet the nuclear criticality safety design criteria specified in the ''Project Design Criteria (PDC) Document'' (BSC 2004 [DIRS 171599], Section 4.9.2.2), the nuclear facility safety requirement in ''Project Requirements Document'' (Canori and Leitner 2003 [DIRS 166275], p. 4-206), the functional/operational nuclear safety requirement in the ''Project Functional and Operational Requirements'' document (Curry 2004 [DIRS 170557], p. 75), and the functional nuclear criticality safety requirements described in the ''Canister Handling Facility Description Document'' (BSC 2004 [DIRS 168992], Sections 3.1.1.3.4.13 and 3.2.3). Specific scope of work contained in this activity consists of updating the Category 1 and 2 event sequence evaluations as identified in the ''Categorization of Event Sequences for License Application'' (BSC 2004 [DIRS 167268], Section 7). The CHF is limited in throughput capacity to handling sealed U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and high-level radioactive waste (HLW) canisters, defense high-level radioactive waste (DHLW), naval canisters, multicanister overpacks (MCOs), vertical dual-purpose canisters (DPCs), and multipurpose canisters (MPCs) (if and when they become available) (BSC 2004 [DIRS 168992], p. 1-1). It should be noted that the design and safety analyses of the naval canisters are the responsibility of the U.S. Department of the Navy (Naval Nuclear Propulsion Program) and will not be included in this document. In addition, this calculation is valid for the current design of the CHF and may not reflect the ongoing design evolution of the facility
KaKs_Calculator: Calculating Ka and Ks Through Model Selection and Model Averaging
Institute of Scientific and Technical Information of China (English)
Zhang Zhang; Jun Li; Xiao-Qian Zhao; Jun Wang; Gane Ka-Shu Wong; Jun Yu
2006-01-01
KaKs_Calculator is a software package that calculates nonsynonymous (Ka) and synonymous (Ks) substitution rates through model selection and model averaging. Since existing methods for this estimation adopt their specific mutation (substitution) models that consider different evolutionary features, leading to diverse estimates, KaKs_Calculator implements a set of candidate models in a maximum likelihood framework and adopts the Akaike information criterion to measure fitness between models and data, aiming to include as many features as needed for accurately capturing evolutionary information in protein-coding sequences. In addition, several existing methods for calculating Ka and Ks are also incorporated into this software. KaKs_Calculator, including source codes,compiled executables, and documentation, is freely available for academic use at http://evolution.genomics.org.cn/software.htm.
First-principles calculations of novel materials
Sun, Jifeng
Computational material simulation is becoming more and more important as a branch of material science. Depending on the scale of the systems, there are many simulation methods, i.e. first-principles calculation (or ab-initio), molecular dynamics, mesoscale methods and continuum methods. Among them, first-principles calculation, which involves density functional theory (DFT) and based on quantum mechanics, has become to be a reliable tool in condensed matter physics. DFT is a single-electron approximation in solving the many-body problems. Intrinsically speaking, both DFT and ab-initio belong to the first-principles calculation since the theoretical background of ab-initio is Hartree-Fock (HF) approximation and both are aimed at solving the Schrodinger equation of the many-body system using the self-consistent field (SCF) method and calculating the ground state properties. The difference is that DFT introduces parameters either from experiments or from other molecular dynamic (MD) calculations to approximate the expressions of the exchange-correlation terms. The exchange term is accurately calculated but the correlation term is neglected in HF. In this dissertation, DFT based first-principles calculations were performed for all the novel materials and interesting materials introduced. Specifically, the DFT theory together with the rationale behind related properties (e.g. electronic, optical, defect, thermoelectric, magnetic) are introduced in Chapter 2. Starting from Chapter 3 to Chapter 5, several representative materials were studied. In particular, a new semiconducting oxytelluride, Ba2TeO is studied in Chapter 3. Our calculations indicate a direct semiconducting character with a band gap value of 2.43 eV, which agrees well with the optical experiment (˜ 2.93 eV). Moreover, the optical and defects properties of Ba2TeO are also systematically investigated with a view to understanding its potential as an optoelectronic or transparent conducting material. We find
Uncertainty Calculations for NEPTUN Reflood Test
Energy Technology Data Exchange (ETDEWEB)
Hwang, Moon Kyu; Lee, Young Jin; Chung, Bub Dong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)
2006-07-01
The nuclear plant licensing procedure has traditionally been employing so-called Evaluation Model thermal/ hydraulic analyses for the design basis accidents analyses. The evaluation method, however, is considered to be too conservative, resulting in unrealistic predictions in many applications with little information about the physical process during an accident. This is due to the very conservative models selections intended to envelop the related uncertainty. On the other hand, the best-estimate approach is required to specify a range of prediction based on the analysis of the uncertain parameters used in the calculations. In this study, the uncertainty analyses based on the Wilks' formula and extensive number of calculations are performed using MARS code. The NEPTUN Reflood test 5052 is selected as a target problem.
Low-energy calculations for nuclear photodisintegration
Directory of Open Access Journals (Sweden)
Deflorian S.
2016-01-01
Full Text Available In the Standard Solar Model a central role in the nucleosynthesis is played by reactions of the kind XZ1A11+XZ2A22→YZ1+Z2A1+A2+γ${}_{{Z_1}}^{{A_1}}{X_1} + {}_{{Z_2}}^{{A_2}}{X_2} \\to {}_{{Z_1} + {Z_2}}^{{A_1} + {A_2}}Y + \\gamma $, which enter the proton-proton chains. These reactions can also be studied through the inverse photodisintegration reaction. One option is to use the Lorentz Integral Transform approach, which transforms the continuum problem into a bound state-like one. A way to check the reliability of such methods is a direct calculation, for example using the Kohn Variational Principle to obtain the scattering wave function and then directly calculate the response function of the reaction.
A priori calculations for the rotational stabilisation
Directory of Open Access Journals (Sweden)
Iwata Yoritaka
2013-12-01
Full Text Available The synthesis of chemical elements are mostly realised by low-energy heavy-ion reactions. Synthesis of exotic and heavy nuclei as well as that of superheavy nuclei is essential not only to find out the origin and the limit of the chemical elements but also to clarify the historical/chemical evolution of our universe. Despite the life time of exotic nuclei is not so long, those indispensable roles in chemical evolution has been pointed out. Here we are interested in examining the rotational stabilisation. In this paper a priori calculation (before microscopic density functional calculations is carried out for the rotational stabilisation effect in which the balance between the nuclear force, the Coulomb force and the centrifugal force is taken into account.
Integral dependent spin couplings in CI calculations
Iberle, K.; Davidson, E. R.
1982-01-01
Although the number of ways to combine Slater determinants to form spin eigenfunctions increases rapidly with the number of open shells, most of these spin couplings will make only a small contribution to a given state, provided the spin coupling is chosen judiciously. The technique of limiting calculations to the interacting subspace pioneered by Bunge (1970) was employed by Munch and Davidson (1975) to the vanadium atom. The use of an interacting space looses its advantage in more complex cases. However, the problem can always be reduced to only one interacting spin coupling by making the coefficients integral dependent. The present investigation is concerned with the performance of integral dependent interacting couplings, taking into account the results of three test calculations.
Model calculations to formation of salt deposits
International Nuclear Information System (INIS)
The present work is a contribution from the geophysical side and its target is to explain the formation of long stretched salt deposits - salt walls - in a better manner than has been done sofar using model calculations. A few works have already been dedicated to this subject (they are treated in chapter 5). They all have the disadvantage however in not being able to represent the time sequence of the salt deposit generations. Precisely the latter is achieved in this work by including assumed initial interference. The values for the salt wall distance and its growth rate are improved upon. The Schleswig-Holstein salt deposit is taken as example. The model calculations are supported by model experiments. (orig.)
A Methodology for Calculating Radiation Signatures
Energy Technology Data Exchange (ETDEWEB)
Klasky, Marc Louis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wilcox, Trevor [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bathke, Charles G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); James, Michael R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-05-01
A rigorous formalism is presented for calculating radiation signatures from both Special Nuclear Material (SNM) as well as radiological sources. The use of MCNP6 in conjunction with CINDER/ORIGEN is described to allow for the determination of both neutron and photon leakages from objects of interest. In addition, a description of the use of MCNP6 to properly model the background neutron and photon sources is also presented. Examinations of the physics issues encountered in the modeling are investigated so as to allow for guidance in the user discerning the relevant physics to incorporate into general radiation signature calculations. Furthermore, examples are provided to assist in delineating the pertinent physics that must be accounted for. Finally, examples of detector modeling utilizing MCNP are provided along with a discussion on the generation of Receiver Operating Curves, which are the suggested means by which to determine detectability radiation signatures emanating from objects.
Low-energy calculations for nuclear photodisintegration
Deflorian, S.; Efros, V. D.; Leidemann, W.
2016-03-01
In the Standard Solar Model a central role in the nucleosynthesis is played by reactions of the kind {}{Z_1}{A_1}{X_1} + {}{Z_2}{A_2}{X_2} to {}{Z_1 + {Z_2}}{A_1 + {A_2}}Y + γ , which enter the proton-proton chains. These reactions can also be studied through the inverse photodisintegration reaction. One option is to use the Lorentz Integral Transform approach, which transforms the continuum problem into a bound state-like one. A way to check the reliability of such methods is a direct calculation, for example using the Kohn Variational Principle to obtain the scattering wave function and then directly calculate the response function of the reaction.
Calculation of baryon masses in quantum chromodynamics
International Nuclear Information System (INIS)
The polarization operator of quark currents with the baryon quantum numbers is considered in quantum chromodynamics. The non-zero mean vacuum of the field operator products are taken into account. The sum rules are obtained assuming that in the virtuality region approximately 1 GeV, among the mean vacuum values violating the chiral invariance, the most important is . Saturating these sum rules by the lowest baryonic states one is able to calculate the masses of the isobar Δ and nucleon N, Msub(Δ) 1.4 GeV, Msub(N) = 1 GeV, up to 15 % through the known value . The mass splitting in the baryonic decuplet Msub(Σ*) - Msub(Δ) = 125 MeV is calculated in the first order in the current strange quark mass msub(s) = 150 MeV. Certain results for that baryonic resonances have been obtained
Tearing mode stability calculations with pressure flattening
Ham, C J; Cowley, S C; Hastie, R J; Hender, T C; Liu, Y Q
2013-01-01
Calculations of tearing mode stability in tokamaks split conveniently into an external region, where marginally stable ideal MHD is applicable, and a resonant layer around the rational surface where sophisticated kinetic physics is needed. These two regions are coupled by the stability parameter. Pressure and current perturbations localized around the rational surface alter the stability of tearing modes. Equations governing the changes in the external solution and - are derived for arbitrary perturbations in axisymmetric toroidal geometry. The relationship of - with and without pressure flattening is obtained analytically for four pressure flattening functions. Resistive MHD codes do not contain the appropriate layer physics and therefore cannot predict stability directly. They can, however, be used to calculate -. Existing methods (Ham et al. 2012 Plasma Phys. Control. Fusion 54 025009) for extracting - from resistive codes are unsatisfactory when there is a finite pressure gradient at the rational surface ...
Block Tridiagonal Matrices in Electronic Structure Calculations
DEFF Research Database (Denmark)
Petersen, Dan Erik
is developed and compared to standard Gaussian elimination, where it is shown to be qualitatively quicker for the task of determining the block tridiagonal portion of the Green’s function matrix. The Sweep algorithm is then parallelized via a straightforward approach in order to enable moderate speedup...... and memory distribution. The well known block cyclic reduction algorithm first developed by Gene Golub is then presented and analyzed for further expanding our parallel options, and finally a new hybrid method that combines block cyclic reduction and a form of Schur complement calculation is introduced...... in the Landauer–Büttiker ballistic transport regime. These calculations concentrate on determining the so– called Green’s function matrix, or portions thereof, which is the inverse of a block tridiagonal general complex matrix. To this end, a sequential algorithm based on Gaussian elimination named Sweeps...
Calculated shielding factors for selected European houses
International Nuclear Information System (INIS)
Shielding factors for gamma radiation from activity deposited on structures and ground surfaces have been calculated with the computer model DEPSHIELD for single-family and multi-storey buildings in France, United Kingdom and Denmark. For all three countries it was found that the shielding factors for single-family houses are approximately a factor of 2 - 10 higher that those for buildings with five or more storeys. Away from doors and windows the shielding factors for French, British, and Danish single-family houses are in the range 0.03 - 0.1, 0.06 - 0.4, and 0.07 - 0.3, respectively. The uncertainties of the calculations are discussed and DEPSHIELD-results are compared with other methods as well as with experimental results. (author)
Energy Technology Data Exchange (ETDEWEB)
Gamiz, E.; /CAFPE, Granada /Granada U., Theor. Phys. Astrophys. /Fermilab; DeTar, C.; /Utah U.; El-Khadra, A.X.; /Illinois U., Urbana; Kronfeld, A.S.; /Fermilab; Mackenzie, P.B.; /Fermilab; Simone, J.; /Fermilab
2011-11-01
We report on the status of the Fermilab-MILC calculation of the form factor f{sub +}{sup K}{pi}(q{sup 2} = 0), needed to extract the CKM matrix element |V{sub us}| from experimental data on K semileptonic decays. The HISQ formulation is used in the simulations for the valence quarks, while the sea quarks are simulated with the asqtad action (MILC N{sub f} = 2 + 1 configurations). We discuss the general methodology of the calculation, including the use of twisted boundary conditions to get values of the momentum transfer close to zero and the different techniques applied for the correlators fits. We present initial results for lattice spacings a {approx} 0.12 fm and a {approx} 0.09 fm, and several choices of the light quark masses.
Criticality calculations on BARC parallel processor- ANUPAM
International Nuclear Information System (INIS)
Parallel processing offers an increase in computational speed beyond the technological limitations of single processor systems. BARC has recently developed a parallel processing system (ANUPAM) based Multiple Instruction Multiple Data (MIMD) distributed memory architecture. In the work reported here, the sequential version of Monte Carlo code MONALI is modified to work on the ANUPAM for criticality calculations. The problem of random number generation in a parallel environment is handled using leapfrog technique. The code is modified to use variable number of slave processors. The parallel version of MONALI is used to calculate multiplication factor, fluxes and absorptions in one of the 8x8 fuel assemblies of IAEA BWR benchmark in 69 groups. To compare gain in execution time, the benchmark is also solved on LANDMARK and ND-570 systems (both serial) using the sequential version of the code. Speedup and efficiencies achieved on varying the number of slave processors are encouraging. (author). 5 refs., 1 tab
High-Power Wind Turbine: Performance Calculation
Directory of Open Access Journals (Sweden)
Goldaev Sergey V.
2015-01-01
Full Text Available The paper is devoted to high-power wind turbine performance calculation using Pearson’s chi-squared test the statistical hypothesis on distribution of general totality of air velocities by Weibull-Gnedenko. The distribution parameters are found by numerical solution of transcendental equation with the definition of the gamma function interpolation formula. Values of the operating characteristic of the incomplete gamma function are defined by numerical integration using Weddle’s rule. The comparison of the calculated results using the proposed methodology with those obtained by other authors found significant differences in the values of the sample variance and empirical Pearson. The analysis of the initial and maximum wind speed influence on performance of the high-power wind turbine is done
Isogeometric analysis in electronic structure calculations
Cimrman, Robert; Kolman, Radek; Tůma, Miroslav; Vackář, Jiří
2016-01-01
In electronic structure calculations, various material properties can be obtained by means of computing the total energy of a system as well as derivatives of the total energy w.r.t. atomic positions. The derivatives, also known as Hellman-Feynman forces, require, because of practical computational reasons, the discretized charge density and wave functions having continuous second derivatives in the whole solution domain. We describe an application of isogeometric analysis (IGA), a spline modification of finite element method (FEM), to achieve the required continuity. The novelty of our approach is in employing the technique of B\\'ezier extraction to add the IGA capabilities to our FEM based code for ab-initio calculations of electronic states of non-periodic systems within the density-functional framework, built upon the open source finite element package SfePy. We compare FEM and IGA in benchmark problems and several numerical results are presented.
How to Calculate Molecular Column Density
Mangum, Jeffrey G
2015-01-01
The calculation of the molecular column density from molecular spectral (rotational or ro-vibrational) transition measurements is one of the most basic quantities derived from molecular spectroscopy. Starting from first principles where we describe the basic physics behind the radiative and collisional excitation of molecules and the radiative transfer of their emission, we derive a general expression for the molecular column density. As the calculation of the molecular column density involves a knowledge of the molecular energy level degeneracies, rotational partition functions, dipole moment matrix elements, and line strengths, we include generalized derivations of these molecule-specific quantities. Given that approximations to the column density equation are often useful, we explore the optically thin, optically thick, and low-frequency limits to our derived general molecular column density relation. We also evaluate the limitations of the common assumption that the molecular excitation temperature is con...
Numerical calculations of magnetic properties of nanostructures
Kapitan, Vitalii; Nefedev, Konstantin
2015-01-01
Magnetic force microscopy and scanning tunneling microscopy data could be used to test computer numerical models of magnetism. The elaborated numerical model of a face-centered lattice Ising spins is based on pixel distribution in the image of magnetic nanostructures obtained by using scanning microscope. Monte Carlo simulation of the magnetic structure model allowed defining the temperature dependence of magnetization; calculating magnetic hysteresis curves and distribution of magnetization on the surface of submonolayer and monolayer nanofilms of cobalt, depending on the experimental conditions. Our developed package of supercomputer parallel software destined for a numerical simulation of the magnetic-force experiments and allows obtaining the distribution of magnetization in one-dimensional arrays of nanodots and on their basis. There has been determined interpretation of magneto-force microscopy images of magnetic nanodots states. The results of supercomputer simulations and numerical calculations are in...
Calculated medium energy fission cross sections
International Nuclear Information System (INIS)
An analysis has been made of medium-energy nucleon induced fission of 238U and 237Np using detailed models of fission, based upon the Bohr-Wheeler formalism. Two principal motivations were associated with these calculations. The first was determination of barrier parameters for proton-rich uranium and neptunium isotopes normally not accessible in lower energy reactions. The second was examination of the consistency between (p,f) experimental data versus new (n,f) data that has recently become available. Additionally, preliminary investigations were also made concerning the effect of fission dynamics on calculated fission cross sections at higher energies where neutron emission times may be significantly less than those associated with fission
Process calculations for a moderator detritiation plant
International Nuclear Information System (INIS)
The Savannah River Plant is currently analyzing processes for the removal of tritium from the heavy water used as a moderator in SRP's nuclear reactors. An accompanying paper describes the background and need for this process. A computer-aided design program was used to simulate the distillation section of the detritiation process flowsheet. Simplified calculation techniques were performed to optimize the process parameters. Results obtained are being used to evaluate proposals from various vendors
Bias in Dynamic Monte Carlo Alpha Calculations
Energy Technology Data Exchange (ETDEWEB)
Sweezy, Jeremy Ed [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nolen, Steven Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Adams, Terry R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trahan, Travis John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-02-06
A 1/N bias in the estimate of the neutron time-constant (commonly denoted as α) has been seen in dynamic neutronic calculations performed with MCATK. In this paper we show that the bias is most likely caused by taking the logarithm of a stochastic quantity. We also investigate the known bias due to the particle population control method used in MCATK. We conclude that this bias due to the particle population control method is negligible compared to other sources of bias.
How to Calculate Colourful Cross Sections Efficiently
Energy Technology Data Exchange (ETDEWEB)
Gleisberg, Tanju; Hoeche, Stefan; Krauss, Frank
2008-09-03
Different methods for the calculation of cross sections with many QCD particles are compared. To this end, CSW vertex rules, Berends-Giele recursion and Feynman-diagram based techniques are implemented as well as various methods for the treatment of colours and phase space integration. We find that typically there is only a small window of jet multiplicities, where the CSW technique has efficiencies comparable or better than both of the other two methods.
Calculations of electron screening in muonic atoms
International Nuclear Information System (INIS)
The electron screening in mounic atoms (O, Al, Fe, In, Ho, Au, Th) has been calculated for p3/2, d5/2 and f7/2 levels with nμ=3/2, d5/2 and f7/2 muons up to nμ=30. Screening corrections are also given for electron configurations with holes in the K and L3 shell. (orig.)
How to calculate the CMB spectrum
Callin, Petter
2006-01-01
We present a self-contained description of everything needed to write a program that calculates the CMB power spectrum for the standard model of cosmology (LCDM). This includes the equations used, assumptions and approximations imposed on their solutions, and most importantly the algorithms and programming tricks needed to make the code actually work. The resulting program is compared to CMBFAST and typically agrees to within 0.1% - 0.4%. It includes both helium, reionization, neutrinos and t...
CALCULATION OF KAON ELECTROMAGNETIC FORM FACTOR
Institute of Scientific and Technical Information of China (English)
WANG ZHI-GANG; WAN SHAO-LONG; WANG KE-LIN
2001-01-01
The kaon meson electromagnetic form factor is calculated in the framework of coupled Schwinger-Dyson and Bethe-Salpeter formulation in simplified impulse approximation (dressed vertex) with modified fiat-bottom potential,which is a combination of the flat-bottom potential taking into consideration the infrared and ultraviolet asymptotic behaviours of the effective quark-gluon coupling. All the numerical results give a good fit to experimental values.
Burnup calculation code system COMRAD96
International Nuclear Information System (INIS)
COMRAD was one of the burnup code system developed by JAERI. COMRAD96 is a transfered version of COMRAD to Engineering Work Station. It is divided to several functional modules, 'Cross Section Treatment', 'Generation and Depletion Calculation', and 'Post Process'. It enables us to analyze a burnup problem considering a change of neutron spectrum using UNITBURN. Also it can display the γ Spectrum on a terminal. This report is the general description and user's manual of COMRAD96. (author)
Carbon footprint calculators for public procurement
Mattinen, Maija; Nissinen, Ari
2011-01-01
There is growing interest in public organizations to take into account the climate impacts of the products and services they procure. Furthermore, in Finland a Government ResolutionÂ exists that provides a framework and sets aims for sustainable public procurement. Several municipalities in the Helsinki region together with the Helsinki Region Environmental Services Authority and several expert organizations initiated an EU Life project, JULIA2030, to develop calculators for different sec...
Nuclear Research Center IRT reactor dynamics calculation
International Nuclear Information System (INIS)
The main features of the code DIRT, for dynamical calculations are described in the paper. With the results obtained by the program, an analysis of the dynamic behaviour of the Research Reactor IRT of the Nuclear Research Center (CIN) is performed. Different transitories were considered such as variation of the system reactivity, coolant inlet temperature variation and also variations of the coolant velocity through the reactor core. 3 refs
Calculations in external fields in quantum chromodynamics
International Nuclear Information System (INIS)
The technique of calculation of operator expansion coefficients is reviewed. The main emphasis is put on gluon operators which appear in expansion of n-point functions induced by colourless quark currents. Two convenient schemes are discussed in detail: the abstract operator method and the method based on the Fock-Schwinger gauge for the vacuum gluon field. A large number of instructive examples important from the point of view of physical applications is considered
Calculation of reactor antineutrino spectra in TEXONO
Chen Dong Liang; Mao Ze Pu; Wong, T H
2002-01-01
In the low energy reactor antineutrino physics experiments, either for the researches of antineutrino oscillation and antineutrino reactions, or for the measurement of abnormal magnetic moment of antineutrino, the flux and the spectra of reactor antineutrino must be described accurately. The method of calculation of reactor antineutrino spectra was discussed in detail. Furthermore, based on the actual circumstances of NP2 reactors and the arrangement of detectors, the flux and the spectra of reactor antineutrino in TEXONO were worked out
Prediction and calculation for new energy development
Institute of Scientific and Technical Information of China (English)
Fu Yuhua; Fu Anjie
2008-01-01
Some important questions for new energy development were discussed, such as the prediction and calculation of sea surface temperature, ocean wave, offshore platform price, typhoon track, fn'e status, vibration due to earth-quake, energy price, stock market's trend and so on with the fractal methods ( including the four ones of constant di-mension fractal, variable dimension fractal, complex number dimension fractal and fractal series) and the improved res-caled range analysis (R/S analysis).
Shielding calculations for the antiproton target area
International Nuclear Information System (INIS)
Shielding calculations performed in conjunction with the design of the Fermilab antiproton target hall are summarized. The following radiological considerations were examined: soil activation, residual activity of components, and beam-on radiation. In addition, at the request of the designers, the energy deposition in the proposed graphite beam dump was examined for several targeting conditions in order to qualitatively determine its ability to survive
TINTE. Nuclear calculation theory description report
Energy Technology Data Exchange (ETDEWEB)
Gerwin, H.; Scherer, W.; Lauer, A. [Forschungszentrum Juelich GmbH (DE). Institut fuer Energieforschung (IEF), Sicherheitsforschung und Reaktortechnik (IEF-6); Clifford, I. [Pebble Bed Modular Reactor (Pty) Ltd. (South Africa)
2010-01-15
The Time Dependent Neutronics and Temperatures (TINTE) code system deals with the nuclear and the thermal transient behaviour of the primary circuit of the High-temperature Gas-cooled Reactor (HTGR), taking into consideration the mutual feedback effects in twodimensional axisymmetric geometry. This document contains a complete description of the theoretical basis of the TINTE nuclear calculation, including the equations solved, solution methods and the nuclear data used in the solution. (orig.)
Histidine in Continuum Electrostatics Protonation State Calculations
Couch, Vernon; Stuchebruckhov, Alexei
2011-01-01
A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation betwee...
Calculation of steam-water injector properties
Pavlicek, Petr; Linhart, Jiri
2014-08-01
The topic of this article is a calculation of steam-water injector properties using simplified one dimensional global model. In this case the injector is used as combined mixing heat exchanger and water pump. It mixes steam with water and inject water into an area with a set back-pressure. At the exit only liquid phase is present, which is caused by a shock wave which occurs in highly wet steam.
Calculating Quantum Transports Using Periodic Boundary Conditions
Wang, Lin-Wang
2004-01-01
An efficient new method is presented to calculate the quantum transports using periodic boundary conditions. This new method is based on a method we developed previously, but with an essential change in solving the Schrodinger's equation. As a result of this change, the scattering states can be solved at any given energy. Compared to the previous method, the current method is faster and numerically more stable. The total computational time of the current method is similar to a conventional gr...
Emissivity: A Program for Atomic Emissivity Calculations
Sochi, Taha
2009-01-01
In this article we report the release of a new program for calculating the emissivity of atomic transitions. The program, which can be obtained with its documentation from our website www.scienceware.net, passed various rigorous tests and was used by the author to generate theoretical data and analyze observational data. It is particularly useful for investigating atomic transition lines in astronomical context as the program is capable of generating a huge amount of theoretical data and comp...
Sensitivity of the Heat Transfer Coefficient Calculation
Singer, Sasa
2014-01-01
The purpose of the Liscic/Petrofer probe is to determine the cooling intensity during liquid quenching in laboratory and workshop environments. The surface heat transfer coefficient is calculated by the one-dimensional finite volume method from the smoothed temperature curve, measured at a near-surface point in the probe. Smoothed reference temperature curves for oil and water, based on measurements made by the probe, are used in a series of numerical experiments to investigate the sensitivit...
Calculation and application of liquidus projection
Institute of Scientific and Technical Information of China (English)
CHEN Shuanglin; CAO Weisheng; YANG Ying; ZHANG Fan; WU Kaisheng; DU Yong; Y.Austin Chang
2006-01-01
Liquidus projection usually refers to a two-dimensional projection of ternary liquidus univariant lines at constant pressure. The algorithms used in Pandat for the calculation of liquidus projection with isothermal lines and invariant reaction equations in a ternary system are presented. These algorithms have been extended to multicomponent liquidus projections and have also been implemented in Pandat. Some examples on ternary and quaternary liquidus projections are presented.
Semiclassical Calculation of Diffractive Parton Densities
Hebecker, A.
1997-01-01
In this talk the relation between the semiclassical approach and the concept of diffractive parton densities is discussed. The proton rest frame calculation is organized in a way that exhibits the hard partonic cross section and the diffractive parton density as the two fundamental ingredients. The latter one is a non-perturbative quantity which, in the present model, is explicitly given by integrals of non-Abelian eikonal factors in the colour background field.
Nucleotide Capacitance Calculation for DNA Sequencing
Lu, Jun-Qiang; Zhang, X.-G.
2008-01-01
Using a first-principles linear response theory, the capacitance of the DNA nucleotides, adenine, cytosine, guanine, and thymine, are calculated. The difference in the capacitance between the nucleotides is studied with respect to conformational distortion. The result suggests that although an alternate current capacitance measurement of a single-stranded DNA chain threaded through a nanogap electrode may not be sufficient to be used as a standalone method for rapid DNA sequencing, the capaci...
Periodontitis and Calculated Risk of Cardiovascular Mortality
Boutouyrie, P.; P. Bouchard; C. Mattout; Bourgeois, D.
2008-01-01
Epidemiological studies have reported associations between periodontitis and vascular disease in Europe. The aim of this multi-centric study was to evaluate the relationship between periodontitis and the calculated risk of cardiovascular death in the French adult population. The survey employed 2144 dentate adult subjects of the First National Periodontal and Systemic Examination Survey (NPASES I). This nationally representative sample was obtained by a quota method. The subjects had a compl...
Transformer Short Circuit Current Calculation and Solutions
Song, Ling
2013-01-01
There are three goals for the thesis. The first one is to introduce types of short-circuits. The second one is to introduce the transformer short-circuit current calculations. And the last one is to find suitable reinforcement methods for the transformers which are running now. Using a comparative approach to analytic research, the advantages and disadvantages of different reinforcement methods can be analyzed. The result shows that the neutral reactor is the best choice to reinforce the S/C ...
Methods for calculating anisotropic transfer cross sections
International Nuclear Information System (INIS)
The Legendre moments of the group transfer cross section, which are widely used in the numerical solution of the transport calculation can be efficiently and accurately constructed from low-order (K = 1--2) successive partial range moments. This is convenient for the generation of group constants. In addition, a technique to obtain group-angle correlation transfer cross section without Legendre expansion is presented. (author)
Covariant method for calculating helicity amplitudes
International Nuclear Information System (INIS)
We present an alternative approach for calculating helicity amplitudes for processes involving both massless and massive fermions. With this method one can easily obtain covariant expressions for the helicity amplitudes. The final expressions involve only four-vector products and are independent of the basis for γ matrices or specific form of the spinors. We use the method to obtain the helicity amplitudes for several processes involving top quark production. copyright 1996 The American Physical Society
Eigenvalue translation method for mode calculations.
Gerck, E; Cruz, C H
1979-05-01
A new method is described for the first few modes calculations in a interferometer that has several advantages over the Allmat subroutine, the Prony method, and the Fox and Li method. In the illustrative results shown for some cases it can be seen that the eigenvalue translation method is typically 100-fold times faster than the usual Fox and Li method and ten times faster than Allmat.
Preconditioned iterations to calculate extreme eigenvalues
Energy Technology Data Exchange (ETDEWEB)
Brand, C.W.; Petrova, S. [Institut fuer Angewandte Mathematik, Leoben (Austria)
1994-12-31
Common iterative algorithms to calculate a few extreme eigenvalues of a large, sparse matrix are Lanczos methods or power iterations. They converge at a rate proportional to the separation of the extreme eigenvalues from the rest of the spectrum. Appropriate preconditioning improves the separation of the eigenvalues. Davidson`s method and its generalizations exploit this fact. The authors examine a preconditioned iteration that resembles a truncated version of Davidson`s method with a different preconditioning strategy.
Automation of 2-loop Amplitude Calculations
Jones, S P
2016-01-01
Some of the tools and techniques that have recently been used to compute Higgs boson pair production at NLO in QCD are discussed. The calculation relies on the use of integral reduction, to reduce the number of integrals which must be computed, and expressing the amplitude in terms of a quasi-finite basis, which simplifies their numeric evaluation. Emphasis is placed on sector decomposition and Quasi-Monte Carlo (QMC) integration which are used to numerically compute the master integrals.
Agriculture-related radiation dose calculations
International Nuclear Information System (INIS)
Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs
Vestibule and Cask Preparation Mechanical Handling Calculation
Energy Technology Data Exchange (ETDEWEB)
N. Ambre
2004-05-26
The scope of this document is to develop the size, operational envelopes, and major requirements of the equipment to be used in the vestibule, cask preparation area, and the crane maintenance area of the Fuel Handling Facility. This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAIC Company L.L.C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Ref. 167124). This correspondence was appended by further correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-01R W12101; TDL No. 04-024'' (Ref. 16875 1). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process.
KENO-IV code benchmark calculation, (4)
International Nuclear Information System (INIS)
A series of benchmark tests has been undertaken in JAERI in order to examine the capability of JAERI's criticality safety evaluation system consisting of the Monte Carlo calculation code KENO-IV and the newly developed multi-group constants library MGCL. The present paper describes the results of a test using criticality experiments about slab-cylinder system of uranium nitrate solution. In all, 128 cases of experiments have been calculated for the slab-cylinder configuration with and without plexiglass reflector, having the various critical parameters such as the number of cylinders and height of the uranium nitrate solution. It is shown among several important results that the code and library gives a fairly good multiplication factor, that is, k sub(eff) -- 1.0 for heavily reflected cases, whereas k sub(eff) -- 0.91 for the unreflected ones. This suggests the necessity of more advanced treatment of the criticality calculation for the system where neutrons can easily leak out during slowing down process. (author)
One dimensional benchmark calculations using diffusion theory
International Nuclear Information System (INIS)
This is a comparative study by using different one dimensional diffusion codes which are available at our Nuclear Engineering Department. Some modifications have been made in the used codes to fit the problems. One of the codes, DIFFUSE, solves the neutron diffusion equation in slab, cylindrical and spherical geometries by using 'Forward elimination- Backward substitution' technique. DIFFUSE code calculates criticality, critical dimensions and critical material concentrations and adjoint fluxes as well. It is used for the space and energy dependent neutron flux distribution. The whole scattering matrix can be used if desired. Normalisation of the relative flux distributions to the reactor power, plotting of the flux distributions and leakage terms for the other two dimensions have been added. Some modifications also have been made for the code output. Two Benchmark problems have been calculated with the modified version and the results are compared with BBD code which is available at our department and uses same techniques of calculation. Agreements are quite good in results such as k-eff and the flux distributions for the two cases studies. (author)
Linear Scaling Quantum Monte Carlo Calculations
Williamson, Andrew
2002-03-01
New developments to the quantum Monte Carlo approach are presented that improve the scaling of the time required to calculate the total energy of a configuration of electronic coordinates from N^3 to nearly linear[1]. The first factor of N is achieved by applying a unitary transform to the set of single particle orbitals used to construct the Slater determinant, creating a set of maximally localized Wannier orbitals. These localized functions are then truncated beyond a given cutoff radius to introduce sparsity into the Slater determinant. The second factor of N is achieved by evaluating the maximally localized Wannier orbitals on a cubic spline grid, which removes the size dependence of the basis set (e.g. plane waves, Gaussians) typically used to expand the orbitals. Application of this method to the calculation of the binding energy of carbon fullerenes and silicon nanostructures will be presented. An extension of the approach to deal with excited states of systems will also be presented in the context of the calculation of the excitonic gap of a variety of systems. This work was performed under the auspices of the U.S. Dept. of Energy at the University of California/LLNL under contract no. W-7405-Eng-48. [1] A.J. Williamson, R.Q. Hood and J.C. Grossman, Phys. Rev. Lett. 87 246406 (2001)
Methods for Calculation of Geogenetic Depth
Institute of Scientific and Technical Information of China (English)
Liu Ruixun; Lü Guxian; Wang Fangzheng; Wei Changshan; Guo Chusun
2004-01-01
Some current methods for the calculation of the geogenetic depth are based on the hydrostatic model, it is induced that the depth in certain underground place is equal to the pressure divided by the specific weight of rock, on the assumption that the rock is hydrostatic and overlain by no other force but gravity. However, most of rock is in a deformation environment and non-hydrostatic state, especially in an orogenic belt, so that the calculated depth may be exaggerated in comparison with the actual depth according to the hydrostatic formula. In the finite slight deformation and elastic model, the relative actual depth value from the 3-axis strain data was obtained with the measurement of strain including that of superimposed tectonic forces but excluding that of time factor for the strain. If some data on the strain speed are obtained, the depth would be more realistically calculated according to the rheological model because the geological body often experiences long-term creep strains.
Calculation of sulfide capacities of multicomponent slags
Pelton, Arthur D.; Eriksson, Gunnar; Romero-Serrano, Antonio
1993-10-01
The Reddy-Blander model for the sulfide capacities of slags has been modified for the case of acid slags and to include A12O3 and TiO2 as components. The model has been extended to calculate a priori sulfide capacities of multicomponent slags, from a knowledge of the thermodynamic activities of the component oxides, with no adjustable parameters. Agreement with measurements is obtained within experimental uncertainty for binary, ternary, and quinary slags involving the components SiO2-Al2O3-TiO2-CaO-MgO-FeO-MnO over wide ranges of composition. The oxide activities used in the computations are calculated from a database of model parameters obtained by optimizing thermodynamic and phase equilibrium data for oxide systems. Sulfur has now been included in this database. A computing system with automatic access to this and other databases has been developed to permit the calculation of the sulfur content of slags in multicomponent slag/metal/gas/solid equilibria.
Accuracy preserving surrogate for neutron transport calculations
International Nuclear Information System (INIS)
Recent advances in reduced order modeling and exact-to-precision generalized perturbation theory are combined in a novel algorithm that constructs a surrogate model for the Boltzmann equation, commonly used in assembly calculations to functionalize the few-group cross-sections in terms of the various assembly types, depletion characteristics, and thermal-hydraulics conditions. First, the algorithm employs reduced order modeling to determine the dominant input parameters, aggregated in the so-called active subspace, using a random sample of first-order derivatives calculated using an adjoint model. Next, exact-to-precision generalized perturbation theory identifies an active subspace for the state solution (i.e., angular flux) and constructs a surrogate model that is parameterized over the active subspace of the input parameters. This approach is shown to significantly reduce computational time needed for the analysis of a large number of model variations, while meeting the user-defined accuracy requirements. Numerical experiments are employed to demonstrate the mechanics and application of the proposed approach to assembly calculations commonly used in reactor physics analysis. (author)
TEA: A Code Calculating Thermochemical Equilibrium Abundances
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature-pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
Uncertainty in peak cooling load calculations
Energy Technology Data Exchange (ETDEWEB)
Dominguez-Munoz, Fernando; Cejudo-Lopez, Jose M.; Carrillo-Andres, Antonio [Grupo de Energetica, ETS Ingenieros Industriales, Universidad de Malaga, Calle Dr. Ortiz Ramos, 29071 Malaga (Spain)
2010-07-15
Peak cooling loads are usually calculated at early stages of the building project, when large uncertainties affect the input data. Uncertainties arise from a variety of sources like the lack of information, random components and the approximate nature of the building mathematical model. Unfortunately, these uncertainties are normally large enough to make the result of the calculation very dependent on starting assumptions about the value of input data. HVAC engineers deal with uncertainties through worst-case scenarios and/or safety factors. In this paper, a new approach is proposed based on stochastic simulation methods. Uncertainty bands are applied to the input data and propagated through the building model in order to determine their impact on the peak cooling load. The result of this calculation is a probability distribution that quantifies the whole range of possible peak loads and the probability of each interval. The stochastic solution is compared with the conventional one, and a global sensitivity analysis is undertaken to identify the most important uncertainties. (author)
Treatment Registration and Nuclide Decay Calculation System
Institute of Scientific and Technical Information of China (English)
WU Jian-guo; XU Bo; CHEN Zhi-jun; ZHOU Ai-qing; WANG Xue-qin; ZHANG Bin; MA Tao; SHEN Jun-jin; LIU Jie; JIN Hai-xia
2008-01-01
Objective:To design a software to do the complicated and multiple calcula-tions automatically in routine internal radionuclide irradiation therapy to avoid mistakes and shorten patients waiting times. Methods:The software is designed on the Microsoft Windows XP operating system. Visual Basic 5.0 and Microsoft Access 2000 are used re-spectively as the programming language and database system here. The data and DBGrid controls and VB data window guide of Visual Basic were used to control access to and Ac-cess database. Results: Not only can the radioactivity of any radionuclide be calculated, but also the administered total iodine dose of therapy for hyperthyroidism or thyroid cancer and the total administered 153 Sm-EDTMP solutions for remedy of bone metastasis of malig-nant tumor can be ciphered out. Conclusion: The work becomes easier, faster, more cor-rect and interesting when the software can make the complicated and multiple calculations automatically. Patients' information, diagnosis and treatment can be recorded for further study.
How Accurately can we Calculate Thermal Systems?
Energy Technology Data Exchange (ETDEWEB)
Cullen, D; Blomquist, R N; Dean, C; Heinrichs, D; Kalugin, M A; Lee, M; Lee, Y; MacFarlan, R; Nagaya, Y; Trkov, A
2004-04-20
I would like to determine how accurately a variety of neutron transport code packages (code and cross section libraries) can calculate simple integral parameters, such as K{sub eff}, for systems that are sensitive to thermal neutron scattering. Since we will only consider theoretical systems, we cannot really determine absolute accuracy compared to any real system. Therefore rather than accuracy, it would be more precise to say that I would like to determine the spread in answers that we obtain from a variety of code packages. This spread should serve as an excellent indicator of how accurately we can really model and calculate such systems today. Hopefully, eventually this will lead to improvements in both our codes and the thermal scattering models that they use in the future. In order to accomplish this I propose a number of extremely simple systems that involve thermal neutron scattering that can be easily modeled and calculated by a variety of neutron transport codes. These are theoretical systems designed to emphasize the effects of thermal scattering, since that is what we are interested in studying. I have attempted to keep these systems very simple, and yet at the same time they include most, if not all, of the important thermal scattering effects encountered in a large, water-moderated, uranium fueled thermal system, i.e., our typical thermal reactors.
TEA: A Code Calculating Thermochemical Equilibrium Abundances
Blecic, Jasmina; Harrington, Joseph; Bowman, M. Oliver
2016-07-01
We present an open-source Thermochemical Equilibrium Abundances (TEA) code that calculates the abundances of gaseous molecular species. The code is based on the methodology of White et al. and Eriksson. It applies Gibbs free-energy minimization using an iterative, Lagrangian optimization scheme. Given elemental abundances, TEA calculates molecular abundances for a particular temperature and pressure or a list of temperature–pressure pairs. We tested the code against the method of Burrows & Sharp, the free thermochemical equilibrium code Chemical Equilibrium with Applications (CEA), and the example given by Burrows & Sharp. Using their thermodynamic data, TEA reproduces their final abundances, but with higher precision. We also applied the TEA abundance calculations to models of several hot-Jupiter exoplanets, producing expected results. TEA is written in Python in a modular format. There is a start guide, a user manual, and a code document in addition to this theory paper. TEA is available under a reproducible-research, open-source license via https://github.com/dzesmin/TEA.
Reflector modelization for neutronic diffusion calculations
International Nuclear Information System (INIS)
For neutron diffusion calculations in nuclear reactors, it is always difficult to modelize the reflector. There exist different ways to describe the neutrons density in non fissile areas like the reflector, each of them presenting some advantages and difficulties. The first part of this work gives a new reflector problem formulation, replacing the complete diffusion calculation of the reflector by boundary conditions using non-local operators, the Poincare-Steklov ones. They can be used for the eigenvectors and eigenvalues diffusion problem stated on reactive core only. This theoretical treatment of non fissile areas leads, in second part, to a new interpretation of response matrix methods and Green functions methods. These two methods are in fact the main numerical techniques used to treat reflector as boundary conditions, and an other point of view is given by the Poincare-Steklov operators. Then some simple physical cases are studied, giving explicit expressions of the Poincare-Steklov operators, and allowing numerical estimates of the reflector behaviour in a whole core-reflector PWR calculation. Finally, numerical results of Green functions for boundary perturbations illustrate the physical non-locality of the boundary operators. (author). 16 refs., 2 annexes
Agriculture-related radiation dose calculations
Energy Technology Data Exchange (ETDEWEB)
Furr, J.M.; Mayberry, J.J.; Waite, D.A.
1987-10-01
Estimates of radiation dose to the public must be made at each stage in the identification and qualification process leading to siting a high-level nuclear waste repository. Specifically considering the ingestion pathway, this paper examines questions of reliability and adequacy of dose calculations in relation to five stages of data availability (geologic province, region, area, location, and mass balance) and three methods of calculation (population, population/food production, and food production driven). Calculations were done using the model PABLM with data for the Permian and Palo Duro Basins and the Deaf Smith County area. Extra effort expended in gathering agricultural data at succeeding environmental characterization levels does not appear justified, since dose estimates do not differ greatly; that effort would be better spent determining usage of food types that contribute most to the total dose; and that consumption rate and the air dispersion factor are critical to assessment of radiation dose via the ingestion pathway. 17 refs., 9 figs., 32 tabs.
Monte Carlo method application to shielding calculations
International Nuclear Information System (INIS)
CANDU spent fuel discharged from the reactor core contains Pu, so it must be stressed in two directions: tracing for the fuel reactivity in order to prevent critical mass formation and personnel protection during the spent fuel manipulation. The basic tasks accomplished by the shielding calculations in a nuclear safety analysis consist in dose rates calculations in order to prevent any risks both for personnel protection and impact on the environment during the spent fuel manipulation, transport and storage. To perform photon dose rates calculations the Monte Carlo MORSE-SGC code incorporated in SAS4 sequence from SCALE system was used. The paper objective was to obtain the photon dose rates to the spent fuel transport cask wall, both in radial and axial directions. As source of radiation one spent CANDU fuel bundle was used. All the geometrical and material data related to the transport cask were considered according to the shipping cask type B model, whose prototype has been realized and tested in the Institute for Nuclear Research Pitesti. (authors)
Bedload transport calculations for steep streams
Rickenmann, D.; Turowski, J. M.; Nitsche, M.; Badoux, A.; Raymond, M.
2011-12-01
Due to large flow resistance, bedload transport calculations for steep streams often result in a clear overestimation of observed bedload. This contribution discusses the importance of introducing a proper partitioning of flow resistance for bedload transport calculations for steep streams. Several approaches to account for additional flow resistance were tested. They were used with the same reference bedload transport equation, and the predictions were then compared with bedload observations for a number of mountain streams. To this end, we measured the streambed parameters required for these calculations for flood events in 7 mountain rivers and torrents and for long-term discharge and bedload data of 6 torrents. The streams have channel slopes from 2 to 19 %, catchment areas from 0.5 to 170 km2, and are all located in the Swiss Alps. Some approaches give better predictions for rougher streams and for the extreme flood events than for less rough streams and for the long-term data from the torrents (Nitsche et al., 2011). An example for this prediction pattern is the approach of Yager et al. (2007) which is the one mostly based on physical principles for flow resistance calculations. This approach requires additional field measurements regarding the key roughness parameters. On the other hand considering all the bedload data, the empirical approach of Rickenmann and Recking (2011) appears to give the best overall predictions. This approach has the advantage to be easy to apply. Further bedload transport calculations were made for steep streams upstream of water intakes in the Swiss Alps where information is available on both discharge and annual sediment yield. If no correction for high flow resistance is made, calculated bedload transport rates with many equations tend to result in elevated bedload concentrations which are expected for debris flood or debris flow conditions. Some observations from the widespread flood events of August 2005 in Switzerland
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan [1] that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large scale computer simulation. We started out by calculating the nucleon form factors ₋ electromagnetic [2], axial-vector [3], π NN [4], and scalar [5] form factors, the quark spin contribution [6] to the proton spin, the strangeness magnetic moment [7], the quark orbital angular momentum [8], the quark momentum fraction [9], and the quark and glue decomposition of the proton momentum and angular momentum [10]. These first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations [11, 12]. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors [13], charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant fD_{s} [14], the
Detailed Burnup Calculations for Testing Nuclear Data
Leszczynski, F.
2005-05-01
A general method (MCQ) has been developed by introducing a microscopic burnup scheme that uses the Monte Carlo calculated fluxes and microscopic reaction rates of a complex system and a depletion code for burnup calculations as a basis for solving nuclide material balance equations for each spatial region in which the system is divided. Continuous energy-dependent cross-section libraries and full 3D geometry of the system can be input for the calculations. The resulting predictions for the system at successive burnup time steps are thus based on a calculation route where both geometry and cross sections are accurately represented, without geometry simplifications and with continuous energy data, providing an independent approach for benchmarking other methods and nuclear data of actinides, fission products, and other burnable absorbers. The main advantage of this method over the classical deterministic methods currently used is that the MCQ System is a direct 3D method without the limitations and errors introduced on the homogenization of geometry and condensation of energy of deterministic methods. The Monte Carlo and burnup codes adopted until now are the widely used MCNP and ORIGEN codes, but other codes can be used also. For using this method, there is need of a well-known set of nuclear data for isotopes involved in burnup chains, including burnable poisons, fission products, and actinides. For fixing the data to be included in this set, a study of the present status of nuclear data is performed, as part of the development of the MCQ method. This study begins with a review of the available cross-section data of isotopes involved in burnup chains for power and research nuclear reactors. The main data needs for burnup calculations are neutron cross sections, decay constants, branching ratios, fission energy, and yields. The present work includes results of selected experimental benchmarks and conclusions about the sensitivity of different sets of cross
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei; Draper, Terrence
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan [1] that \\understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out rst-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large scale computer simulation. We started out by calculating the nucleon form factors { electromagnetic [2], axial-vector [3], NN [4], and scalar [5] form factors, the quark spin contribution [6] to the proton spin, the strangeness magnetic moment [7], the quark orbital angular momentum [8], the quark momentum fraction [9], and the quark and glue decomposition of the proton momentum and angular momentum [10]. These rst round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical e ects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge con gurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations [11, 12]. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at 300 MeV and obtained the strange form factors [13], charm and strange quark masses, the charmonium spectrum and the Ds meson decay constant fDs [14], the strangeness and charmness [15], the
42 CFR 102.82 - Calculation of death benefits.
2010-10-01
... 42 Public Health 1 2010-10-01 2010-10-01 false Calculation of death benefits. 102.82 Section 102... COMPENSATION PROGRAM Calculation and Payment of Benefits § 102.82 Calculation of death benefits. (a) Definitions. For purposes of this section: (1) Alternative calculation means the calculation used...
42 CFR 403.254 - Calculation of premiums.
2010-10-01
... 42 Public Health 2 2010-10-01 2010-10-01 false Calculation of premiums. 403.254 Section 403.254... Ratio Provisions § 403.254 Calculation of premiums. (a) General provisions. To calculate the amount of “premiums”, calculate the present value on the initial calculation date of expected earned premiums for...
Concrete Spent Fuel Cask Criticality Calculation
International Nuclear Information System (INIS)
A preliminary analysis of the concrete cask for the intermediate dry storage of the spent fuel of NPP Krsko should include an estimation of the effective multiplication factor. Assuming 16x16 fuel elements, 4.3% initial enrichment, 45 GWd/tU burnup and 10 years cooling time, a concrete spent fuel capacity of 10 spent fuel assemblies is proposed. Fuel assemblies are placed inside inner cavity in a 'basket' - a boron (1%) doped steel structure. Heavy concrete (25% Fe), 45 cm thick, is enclosed in a carbon steel shell. There is also a stainless steel (SS304) lining of the storage cavity. Isotope inventory of the spent fuel after a 10 years cooling time is calculated using ORIGEN-S functional module of the SCALE-4.2 code package. The effective multiplication factor keff of dry (helium filled) and wet (water filled) cask for fresh and used fuel is calculated using CSAS4 Monte Carlo method based control module of the same SCALE-4.2 code package. The obtained results of keff of the dry cask for fresh and spent fuel are well below the required 0.95 value, but those for the water filled cask are above this value. Therefore, several additional calculations of the keff varying the thickness of a boral basket structure which had replaced the stainless steel one were done. It turned out that at least a 1.5 cm thick boral wall was needed to meet the required 0.95 value for keff. (author)
Numerical precision calculations for LHC physics
Energy Technology Data Exchange (ETDEWEB)
Reuschle, Christian Andreas
2013-02-05
In this thesis I present aspects of QCD calculations, which are related to the fully numerical evaluation of next-to-leading order (NLO) QCD amplitudes, especially of the one-loop contributions, and the efficient computation of associated collider observables. Two interrelated topics have thereby been of concern to the thesis at hand, which give rise to two major parts. One large part is focused on the general group-theoretical behavior of one-loop QCD amplitudes, with respect to the underlying SU(N{sub c}) theory, in order to correctly and efficiently handle the color degrees of freedom in QCD one-loop amplitudes. To this end a new method is introduced that can be used in order to express color-ordered partial one-loop amplitudes with multiple quark-antiquark pairs as shuffle sums over cyclically ordered primitive one-loop amplitudes. The other large part is focused on the local subtraction of divergences off the one-loop integrands of primitive one-loop amplitudes. A method for local UV renormalization has thereby been developed, which uses local UV counterterms and efficient recursive routines. Together with suitable virtual soft and collinear subtraction terms, the subtraction method is extended to the virtual contributions in the calculations of NLO observables, which enables the fully numerical evaluation of the one-loop integrals in the virtual contributions. The method has been successfully applied to the calculation of jet rates in electron-positron annihilation to NLO accuracy in the large-N{sub c} limit.
Electrical Conductivity Calculations from the Purgatorio Code
Energy Technology Data Exchange (ETDEWEB)
Hansen, S B; Isaacs, W A; Sterne, P A; Wilson, B G; Sonnad, V; Young, D A
2006-01-09
The Purgatorio code [Wilson et al., JQSRT 99, 658-679 (2006)] is a new implementation of the Inferno model describing a spherically symmetric average atom embedded in a uniform plasma. Bound and continuum electrons are treated using a fully relativistic quantum mechanical description, giving the electron-thermal contribution to the equation of state (EOS). The free-electron density of states can also be used to calculate scattering cross sections for electron transport. Using the extended Ziman formulation, electrical conductivities are then obtained by convolving these transport cross sections with externally-imposed ion-ion structure factors.
Calculation of some properties of the vacuum
Wang, Z. G.
2002-01-01
In this article, we calculate the dressed quark propagator with the flat bottom potential in the framework of the rain-bow Schwinger-Dyson equation, which is determined by mean field approximation of the global colour model lagrangian. The dressed quark propagator exhibits a dynamical symmetry breaking phenomenon and gives a constituent quark mass about 392 MeV, which is close to the value of commonly used constituent quark mass in the chiral quark model. Then based on the dressed quark propa...
Systematic Calculations of Total Atomic Binding Energies
International Nuclear Information System (INIS)
We have calculated total atomic binding energies of 3- to 91-electron ions of all atoms with Z=3 to 118, in the Dirac-Fock model, for applications to atomic mass determination from highly-charged ions. In this process we have determined the ground-state configuration of many ions for which it was not known. We also provide total electronic correlation including Breit correlation for iso-electronic series of beryllium, neon, magnesium and argon, using the multiconfiguration Dirac-Fock approach.
Faddeev calculations of πD scattering
International Nuclear Information System (INIS)
The present status of the Faddeev calculations of πD scattering is summarized, with emphasis on what has been learned about common approximation methods (for π-nucleus as well as πD). Some space is devoted to a discussion of the theoretical work which remains, including a suggestion of co-operation between theorists on a ''homework'' problem. Finally, examples of the interesting phenomena are given which one hopes to investigate through good πD experiments. Suggestions are made as to which experiments would be most useful
A Lattice Calculation of Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent [Univ. of Southern Denmark, Odense (Denmark). CP3-Origins; Univ. of Southern Denmark, Odense (Denmark). Danish IAS; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Hadjiyiannakou, Kyriakos [Cyprus Univ. Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2015-04-15
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using N{sub f}=2+1+1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
Casamayou, Alexandre; Cohen, Nathann; Connan, Guillaume; Dumont, Thierry; Fousse, Laurent; Maltey, Francois; Meulien, Matthias; Mezzarobba, Marc; Pernet, Clément; Thiéry, Nicolas M.; Zimmermann, Paul
2013-01-01
Sage est un logiciel libre de calcul mathématique s'appuyant sur le langage de programmation Python. Ses auteurs, une communauté internationale de centaines d'enseignants et de chercheurs, se sont donné pour mission de fournir une alternative viable aux logiciels Magma, Maple, Mathematica et Matlab. Sage fait appel pour cela à de multiples logiciels libres existants, comme GAP, Maxima, PARI et diverses bibliothèques scientifiques pour Python, auxquels il ajoute des milliers de nouvelles fonct...
Parallel solutions of correlation dimension calculation
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
The calculation of correlation dimension is a key problem of the fractals. The standard algorithm requires O(N2) computations. The previous improvement methods endeavor to sequentially reduce redundant computation on condition that there are many different dimensional phase spaces, whose application area and performance improvement degree are limited. This paper presents two fast parallel algorithms: O(N2/p + logp) time p processors PRAM algorithm and O(N2/p) time p processors LARPBS algorithm. Analysis and results of numeric computation indicate that the speedup of parallel algorithms relative to sequence algorithms is efficient. Compared with the PRAM algorithm, The LARPBS algorithm is practical, optimally scalable and cost optimal.
Aztec arithmetic: positional notation and area calculation.
Harvey, H R; Williams, B J
1980-10-31
Texcocan-Aztec peoples in the Valley of Mexico used both picture symbols and lines and dots for numerical notation. Decipherment and analysis of mid-16th-century native pictorial land documents from the Texcocan region indicate that the line-and-dot system incorporated a symbol for zero and used position to ascribe values. Positional line-and-dot notation was used to record areas of agricultural fields, and analysis of the documentary data suggests that areas were calculated arithmetically. These findings demonstrate that neither positional notation nor the zero were unique to the Maya area, and they imply an equally sophisticated mathematical development among the Aztecs. PMID:17841389
A Lattice Calculation of Parton Distributions
Alexandrou, Constantia; Drach, Vincent; Garcia-Ramos, Elena; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2015-01-01
We report on our exploratory study for the direct evaluation of the parton distribution functions from lattice QCD, based on a recently proposed new approach. We present encouraging results using Nf = 2 + 1 + 1 twisted mass fermions with a pion mass of about 370 MeV. The focus of this work is a detailed description of the computation, including the lattice calculation, the matching to an infinite momentum and the nucleon mass correction. In addition, we test the effect of gauge link smearing in the operator to estimate the influence of the Wilson line renormalization, which is yet to be done.
Total Routhian surface calculation for 127I
International Nuclear Information System (INIS)
The Total Routhian Surface (TRS) calculation is a very useful and well known way to understand the rotational motion of the atomic nuclei theoretically. The evolution of the deformations during the process of nuclear rotation can be studied theoretically under the framework of TRS. The quadrupole and triaxial deformation play crucial roles in the rotational properties of nuclei. The TRS formalism was developed mainly based on the macroscopic-microscopic model. The aim of the present work is to study the positive parity yrast rotational structure of 127I in terms of deformation, under the framework of macroscopic-microscopic model
Row charge cratering calculations. [Feasibility studies
Energy Technology Data Exchange (ETDEWEB)
Miller, L.W.; Matuska, W.
1978-06-01
Two-dimensional calculations have been done to determine the feasibility of constructing deep canals with nuclear explosives subject to the limitation in the proposed PNE Treaty. The conditions under which a series of explosives set in a row can be approximated by a cylindrical line source have been determined. Using this result, the possibility of lifting 250 m of overburden with 150-kt charges spaced at 50-m intervals has been investigated. This study shows that for a variety of equations of state for the geological medium, there appears little possibility that such an excavation can be accomplished.
Random Pulse Train Spectrum Calculation Unleashed
Stepanov, Sander; Venetsanopoulos, Anastasios
2015-01-01
For the first time the problem of the full solution for the calculation of the power spectrum density of the random pulse train is solved. This well known problem led to a mistaken publication in the past and even its partial solution was considered worthy of publication in a textbook. The little known solution for only the continues random pulse train spectrum is explained by examples and is extended to cover each signal having a discrete spectrum, too. A developed approach is used to derive...
On the Calculation of Formal Concept Stability
Directory of Open Access Journals (Sweden)
Hui-lai Zhi
2014-01-01
Full Text Available The idea of stability has been used in many applications. However, computing stability is still a challenge and the best algorithms known so far have algorithmic complexity quadratic to the size of the lattice. To improve the effectiveness, a critical term is introduced in this paper, that is, minimal generator, which serves as the minimal set that makes a concept stable when deleting some objects from the extent. Moreover, by irreducible elements, minimal generator is derived. Finally, based on inclusion-exclusion principle and minimal generator, formulas for the calculation of concept stability are proposed.
Rooftop Unit Comparison Calculator User Manual
Energy Technology Data Exchange (ETDEWEB)
Miller, James D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2015-04-30
This document serves as a user manual for the Packaged rooftop air conditioners and heat pump units comparison calculator (RTUCC) and is an aggregation of the calculator’s website documentation. Content ranges from new-user guide material like the “Quick Start” to the more technical/algorithmic descriptions of the “Methods Pages.” There is also a section listing all the context-help topics that support the features on the “Controls” page. The appendix has a discussion of the EnergyPlus runs that supported the development of the building-response models.
Calculations in fundamental physics mechanics and heat
Heddle, T
2013-01-01
Calculations in Fundamental Physics, Volume I: Mechanics and Heat focuses on the mechanisms of heat. The manuscript first discusses motion, including parabolic, angular, and rectilinear motions, relative velocity, acceleration of gravity, and non-uniform acceleration. The book then discusses combinations of forces, such as polygons and resolution, friction, center of gravity, shearing force, and bending moment. The text looks at force and acceleration, energy and power, and machines. Considerations include momentum, horizontal or vertical motion, work and energy, pulley systems, gears and chai
Speed mathematics secrets skills for quick calculation
Handley, Bill
2011-01-01
Using this book will improve your understanding of math and haveyou performing like a genius!People who excel at mathematics use better strategies than the restof us; they are not necessarily more intelligent.Speed Mathematics teaches simple methods that will enable you tomake lightning calculations in your head-including multiplication,division, addition, and subtraction, as well as working withfractions, squaring numbers, and extracting square and cube roots.Here's just one example of this revolutionary approach to basicmathematics:96 x 97 =Subtract each number from 100.96 x 97 =4 3Subtract
Simulation: More accurate calculations; Simulation: Gerechter Rechnen
Energy Technology Data Exchange (ETDEWEB)
Abrecht, S. [Paradigma Ritter Energie- und Umwelttechnik GmbH (Germany)
2003-07-28
Calculations of solar collector capacities require time-consuming measurements and simulations. According to the author, the standard methods provide inaccurate results for tube collectors with a second heat transfer. This applies to the stationary method but even more so to the quasi-dynamic method. [German] Die Bestimmung der Ertragskraft von Sonnenkollektoren erfordert aufwaendiges Messen und Simulieren. Wird die Norm allen Kollektortypen gleichermasssen gerecht? Nein, sagt Entwicklungsingenieur Stefan Abrecht. Das stationaere Verfahren, aber noch mehr das quasi-dynamische Verfahren benachteiligt Roehrenkollektoren mit einem zweiten Waermeuebergang. (orig.)
Inductance calculations working formulas and tables
Grover, Frederick W
2009-01-01
This authoritative compilation of formulas and tables simplifies the design of inductors for electrical engineers. It features a single simple formula for virtually every type of inductor, together with tables from which essential numerical factors may be interpolated. Although compiled in the 1940s, before calculators and computers, this book provides fundamental equations that professionals and practitioners can use to produce algorithms for computer programs and spreadsheets.Starting with a survey of general principles, it explains circuits with straight filaments; parallel elements of equa
Methods for calculating radiation attenuation in shields
International Nuclear Information System (INIS)
In recent years the development of high-speed digital computers of large capacity has revolutionized the field of reactor shield design. For compact special-purpose reactor shields, Monte-Carlo codes in two- and three dimensional geometries are now available for the proper treatment of both the neutron and gamma- ray problems. Furthermore, techniques are being developed for the theoretical optimization of minimum-weight shield configurations for this type of reactor system. In the design of land-based power reactors, on the other hand, there is a strong incentive to reduce the capital cost of the plant, and economic considerations are also relevant to reactors designed for merchant ship propulsion. In this context simple methods are needed which are economic in their data input and computing time requirements and which, at the same time, are sufficiently accurate for design work. In general the computing time required for Monte-Carlo calculations in complex geometry is excessive for routine design calculations and the capacity of the present codes is inadequate for the proper treatment of large reactor shield systems in three dimensions. In these circumstances a wide range of simpler techniques are currently being employed for design calculations. The methods of calculation for neutrons in reactor shields fall naturally into four categories: Multigroup diffusion theory; Multigroup diffusion with removal sources; Transport codes; and Monte Carlo methods. In spite of the numerous Monte- Carlo techniques which are available for penetration and back scattering, serious problems are still encountered in practice with the scattering of gamma rays from walls of buildings which contain critical facilities and also concrete-lined discharge shafts containing irradiated fuel elements. The considerable volume of data in the unclassified literature on the solution of problems of this type in civil defence work appears not to have been evaluated for reactor shield design. In
Motor Torque Calculations For Electric Vehicle
Directory of Open Access Journals (Sweden)
Saurabh Chauhan
2015-08-01
Full Text Available Abstract It is estimated that 25 of the total cars across the world will run on electricity by 2025. An important component that is an integral part of all electric vehicles is the motor. The amount of torque that the driving motor delivers is what plays a decisive role in determining the speed acceleration and performance of an electric vehicle. The following work aims at simplifying the calculations required to decide the capacity of the motor that should be used to drive a vehicle of particular specifications.
A Lattice Calculation of Parton Distributions
Alexandrou, Constantia; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2016-01-01
We present results for the $x$ dependence of the unpolarized, helicity, and transversity isovector quark distributions in the proton using lattice QCD, employing the method of quasi-distributions proposed by Ji in 2013. Compared to a previous calculation by us, the errors are reduced by a factor of about 2.5. Moreover, we present our first results for the polarized sector of the proton, which indicate an asymmetry in the proton sea in favor of the $u$ antiquarks for the case of helicity distributions, and an asymmetry in favor of the $d$ antiquarks for the case of transversity distributions.
Equilibrium calculations for helical axis stellarators
International Nuclear Information System (INIS)
An average method based on a vacuum flux coordinate system is presented. This average method permits the study of helical axis stellarators with toroidally dominated shifts. An ordering is introduced, and to lowest order the toroidally averaged equilibrium equations are reduced to a Grad-Shafranov equation. Also, to lowest order, a Poisson-type equation is obtained for the toroidally varying corrections to the equilibium. By including these corrections, systems that are toroidally dominated, but with significant helical distortion to the equilibrium, may be studied. Numerical solutions of the average method equations are shown to agree well with three-dimensional calculations
Using reciprocity in Boundary Element Calculations
DEFF Research Database (Denmark)
Juhl, Peter Møller; Cutanda Henriquez, Vicente
2010-01-01
as the reciprocal radiation problem. The present paper concerns the situation of having a point source (which is reciprocal to a point receiver) at or near a discretized boundary element surface. The accuracy of the original and the reciprocal problem is compared in a test case for which an analytical solution......The concept of reciprocity is widely used in both theoretical and experimental work. In Boundary Element calculations reciprocity is sometimes employed in the solution of computationally expensive scattering problems, which sometimes can be more efficiently dealt with when formulated...
Configurational space continuity and free energy calculations
Tian, Pu
2016-01-01
Free energy is arguably the most importance function(al) for understanding of molecular systems. A number of rigorous and approximate free energy calculation/estimation methods have been developed over many decades. One important issue, the continuity of an interested macrostate (or path) in configurational space, has not been well articulated, however. As a matter of fact, some important special cases have been intensively discussed. In this perspective, I discuss the relevance of configurational space continuity in development of more efficient and reliable next generation free energy methodologies.
Calculated Bulk Properties of the Actinide Metals
DEFF Research Database (Denmark)
Skriver, Hans Lomholt; Andersen, O. K.; Johansson, B.
1978-01-01
Self-consistent relativistic calculations of the electronic properties for seven actinides (Ac-Am) have been performed using the linear muffin-tin orbitals method within the atomic-sphere approximation. Exchange and correlation were included in the local spin-density scheme. The theory explains t...... the variation of the atomic volume and the bulk modulus through the 5f series in terms of an increasing 5f binding up to plutonium followed by a sudden localisation (through complete spin polarisation) in americium...
Calculation of thermal noise in grating reflectors
Heinert, Daniel; Friedrich, Daniel; Hild, Stefan; Kley, Ernst-Bernhard; Leavey, Sean; Martin, Iain W; Nawrodt, Ronny; Tünnermann, Andreas; Vyatchanin, Sergey P; Yamamoto, Kazuhiro
2013-01-01
Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflective structures exists. In this work we present a theoretical calculation of a grating reflector's noise. We further apply it to a proposed 3rd generation gravitational wave detector. Depending on the grating geometry, the grating material and the temperature we obtain a thermal noise decrease by up to a factor of ten compared to conventional dielectric mirrors. Thus the use of grating reflectors can substantially improve the noise performance in metrological applications.
Benchmark calculations for fusion blanket development
International Nuclear Information System (INIS)
Benchmark problems representing the leading fusion blanket concepts are presented. Benchmark calculations for self-cooled Li17Pb83 and helium-cooled blankets were performed. Multigroup data libraries generated from ENDF/B-IV and V files using the NJOY and AMPX processing codes with different weighting functions were used. The sensitivity of the tritium breeding ratio to group structure and weighting spectrum increases as the thickness and Li enrichment decrease with up to 20% discrepancies for thin natural Li17Pb83 blankets. (author)
Model potential calculations of lithium transitions.
Caves, T. C.; Dalgarno, A.
1972-01-01
Semi-empirical potentials are constructed that have eigenvalues close in magnitude to the binding energies of the valence electron in lithium. The potentials include the long range polarization force between the electron and the core. The corresponding eigenfunctions are used to calculate dynamic polarizabilities, discrete oscillator strengths, photoionization cross sections and radiative recombination coefficients. A consistent application of the theory imposes a modification on the transition operator, but its effects are small for lithium. The method presented can be regarded as a numerical generalization of the widely used Coulomb approximation.
Recent calculational work at Department of Reactor Physics CTH
International Nuclear Information System (INIS)
Short presentations are given on various ANISN calculations, on studies of the Xe reactivity effect, on some Monte Carlo calculations, and on benchmark calculations of eigenvalues to the Boltzmann transport equation. (author)
International Nuclear Information System (INIS)
In this paper we present the results of our calculations of the OECD NEA benchmark on generation-IV advanced sodium-cooled fast reactor (SFR) concepts. The aim of this benchmark is to study the core design features, moreover the feedback and transient behaviour of four SFR concepts. At the present state, static global neutronic parameters, e.g. keff, effective delayed neutron fraction, Doppler constant, sodium void worth, control rod worth, power distribution; and burnup were calculated for both the beginning and the end of cycle. In the benchmark definition, the following core descriptions were specified: two large cores (3600 MW thermal power) with carbide and oxide fuel, and two medium cores (1000 MW thermal power) with metal and oxide fuel. The calculations were performed by using the ECCO module of the ERANOS code system at the subassembly level, and with the KIKO3DMG code at the core level. The former code produced the assembly homogenized cross sections applying 1968 group collision probability calculations; the latter one determined the core multiplication factor, the radial power distribution using a 3D nodal diffusion method in 9 energy groups. We examined the effects of increasing the energy groups to 17 in the core calculation. The reflector and shield assembly homogenization methodology was also tested: a “homogeneous region model” was compared with a “concentric cylindrical core” calculation. The breeding ratio was also determined for the beginning of cycle. (author)
Accurate radiative transfer calculations for layered media.
Selden, Adrian C
2016-07-01
Simple yet accurate results for radiative transfer in layered media with discontinuous refractive index are obtained by the method of K-integrals. These are certain weighted integrals applied to the angular intensity distribution at the refracting boundaries. The radiative intensity is expressed as the sum of the asymptotic angular intensity distribution valid in the depth of the scattering medium and a transient term valid near the boundary. Integrated boundary equations are obtained, yielding simple linear equations for the intensity coefficients, enabling the angular emission intensity and the diffuse reflectance (albedo) and transmittance of the scattering layer to be calculated without solving the radiative transfer equation directly. Examples are given of half-space, slab, interface, and double-layer calculations, and extensions to multilayer systems are indicated. The K-integral method is orders of magnitude more accurate than diffusion theory and can be applied to layered scattering media with a wide range of scattering albedos, with potential applications to biomedical and ocean optics. PMID:27409700
Reactive Flow Calculation Near a Free Boundary
Partom, Yehuda
2007-12-01
In reactive flow calculations of detonation in a rod, an unreacted or slow reacting layer is formed at the boundary, affecting the diameter effect outcome. We investigate the origin of this boundary layer, and propose a simple and practical way to eliminate it. We show that it is an artifact of the finite rise time of the shock, caused by artificial viscosity. When the shock reaches a boundary cell, it is released right away, so that pressure and temperature there only reach a fraction of their shock levels, and the reaction rate is slow. We propose to remedy this artifact by delaying the boundary motion for a short while (about 40 ns for a 10 cells per mm mesh) after arrival of the shock. In this way boundary cells can reach the appropriate pressure and temperature and react at the appropriate rate. In the paper we show how this remedy works. We compute detonation in a rod with different values of the boundary motion delay, compare the breakout curve from the far end with data from the literature, and obtain good agreement. This finite rise time effect near a low impedance boundary plays a role also in calculations of corner turning situations. But there the detonation borders with a dead zone, and the boundary contour is not known in advance.
Statistical Issues for Calculating Reentry Hazards
Matney, Mark; Bacon, John
2016-01-01
A number of statistical tools have been developed over the years for assessing the risk of reentering object to human populations. These tools make use of the characteristics (e.g., mass, shape, size) of debris that are predicted by aerothermal models to survive reentry. This information, combined with information on the expected ground path of the reentry, is used to compute the probability that one or more of the surviving debris might hit a person on the ground and cause one or more casualties. The statistical portion of this analysis relies on a number of assumptions about how the debris footprint and the human population are distributed in latitude and longitude, and how to use that information to arrive at realistic risk numbers. This inevitably involves assumptions that simplify the problem and make it tractable, but it is often difficult to test the accuracy and applicability of these assumptions. This paper builds on previous IAASS work to re-examine many of these theoretical assumptions, including the mathematical basis for the hazard calculations, and outlining the conditions under which the simplifying assumptions hold. This study also employs empirical and theoretical information to test these assumptions, and makes recommendations how to improve the accuracy of these calculations in the future.
Calculation of the CIPW norm: New formulas
Indian Academy of Sciences (India)
Kamal L Pruseth
2009-02-01
A completely new set of formulas,based on matrix algebra,has been suggested for the calculation of the CIPW norm for igneous rocks to achieve highly consistent and accurate norms.The suggested sequence of derivation of the normative minerals greatly deviates from the sequence followed in the classical scheme.The formulas are presented in a form convenient for error-free implementation in computer programs.Accurate formulas along with the use of variable molecular weights for CaO and FeO;corrected formula weights for apatite,pyrite and ﬂuorite;and suggested measures to avoid signiﬁcant rounding off errors to achieve absolute match between the sum of the input weights of the oxides and the sum of the weights of the estimated normative minerals.Using an analogous procedure for determining the oxidation ratios of igneous rocks as used in the SINCLAS system of Ver ma et al (2002,2003),the suggested calculation scheme exactly reproduces their results except for apatite for reasons explained in the text,but with a superior match between the totals for about 11,200 analyses representing rocks of a wide range of composition.
Lattice calculation of nonleptonic charm decays
International Nuclear Information System (INIS)
The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order Gf in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D → Kπ, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin 1/2 channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation
Electron mobility calculation for graphene on substrates
Energy Technology Data Exchange (ETDEWEB)
Hirai, Hideki; Ogawa, Matsuto [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Tsuchiya, Hideaki, E-mail: tsuchiya@eedept.kobe-u.ac.jp [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, 1-1, Rokko-dai, Nada-ku, Kobe 657-8501 (Japan); Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Kamakura, Yoshinari; Mori, Nobuya [Japan Science and Technology Agency, CREST, Chiyoda, Tokyo 102-0075 (Japan); Division of Electrical, Electronic and Information Engineering, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)
2014-08-28
By a semiclassical Monte Carlo method, the electron mobility in graphene is calculated for three different substrates: SiO{sub 2}, HfO{sub 2}, and hexagonal boron nitride (h-BN). The calculations account for polar and non-polar surface optical phonon (OP) scatterings induced by the substrates and charged impurity (CI) scattering, in addition to intrinsic phonon scattering in pristine graphene. It is found that HfO{sub 2} is unsuitable as a substrate, because the surface OP scattering of the substrate significantly degrades the electron mobility. The mobility on the SiO{sub 2} and h-BN substrates decreases due to CI scattering. However, the mobility on the h-BN substrate exhibits a high electron mobility of 170 000 cm{sup 2}/(V·s) for electron densities less than 10{sup 12 }cm{sup −2}. Therefore, h-BN should be an appealing substrate for graphene devices, as confirmed experimentally.