WorldWideScience

Sample records for 243am 209bi natw

  1. Repolarization of Negative Muons by Polarized $^{209}$Bi Nuclei

    CERN Document Server

    Kadono, R; Ishikawa, T; Nishiyama, K; Nagamine, K; Yamazaki, T; Bosshard, A; Döbeli, M; van Elmbt, L; Schaad, M; Truöl, P; Bay, A; Perroud, J P; Deutsch, J; Tasiaux, B; Hagn, E

    2016-01-01

    A large $\\mu^-$ polarization was achieved in muonic Bi atoms with the help of the strong hyperfine field in a polarized nuclear target. Using $^{209}$Bi nuclei polarized to ($59\\pm9$)% in ferromagnetic BiMn, we observed a $\\mu$-$e$ decay asymmetry of ($13.1\\pm3.9$)%, which gives $\\mu^-$ polarization per nuclear polarization equal to $-1.07\\pm 0.35$. This value is almost consistent with $-0.792$ calculated for nuclei with spin $I= \\frac{9}{2}$ and a positive magnetic moment under the assumption that the hyperfine interaction becomes effective in the lowest muonic states.

  2. Measurements of neutron cross section of the {sup 243}Am(n,{gamma}){sup 244}Am reaction

    Energy Technology Data Exchange (ETDEWEB)

    Hatsukawa, Yuichi; Shinohara, Nobuo; Hata, Kentaro [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    The effective thermal neutron cross section of {sup 243}Am(n,{gamma}){sup 244}Am reaction was measured by the activation method. Highly-purified {sup 243}Am target was irradiated in an aluminum capsule by using a research reactor JRR-3M. The tentative effective thermal neutron cross sections are 3.92 b, and 84.44 b for the production of {sup 244g}Am and {sup 244m}Am, respectively. (author)

  3. Experimental study of the cross-sections of alpha-particle induced reactions on $^{209}$Bi

    CERN Document Server

    Hermanne, A; Shubin, Yu N; Szucs, Z; Takács, S; Tarkanyi, F; 10.1016/j.apradiso.2005.01.015

    2005-01-01

    alpha -particle-induced nuclear reactions for generation of /sup 211 /At used in therapeutic nuclear medicine and possible contaminants were investigated with the stacked foil activation technique on natural bismuth targets up to E/sub alpha /=39 MeV. Excitation functions are reported for the reactions /sup 209/Bi( alpha ,2n)/sup 211/At, /sup 209/Bi( alpha ,3n)/sup 210/At and /sup 209/Bi( alpha , x)/sup 210/Po. Results obtained from direct alpha -emission measurements and gamma -spectra from decay products are compared and correspond well with earlier literature values. Thick target yields have been deduced from the experimental cross-sections and optimised production pathways for minimal contamination are presented. A comparison with the results of the theoretical model code ALICE-IPPE is discussed.

  4. Measurement and analysis of the $^{243}$Am neutron capture cross section at the n_TOF facility at CERN

    CERN Document Server

    Mendoza, E; Guerrero, C; Berthoumieux, E; Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Balibrea, J; Baumann, P; Becvar, F; Belloni, F; Calvino, F; Calviani, M; Capote, R; Carrapico, C; Carrillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Ferrant†, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; Gonz alez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Isaev, S; Jericha, E; Kappeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Ketlerov, V; Kerveno, M; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lossito, R; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martınez, T; Massimi, C; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O’Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vicente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2014-01-01

    Background:The design of new nuclear reactors and transmutation devices requires to reduce the present neutron cross section uncertainties of minor actinides. Purpose: Reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty. Method: The $^{243}$Am(n,$\\gamma$) cross section has been measured at the n_TOF facility at CERN with a BaF$_{2}$ Total Absorption Calorimeter, in the energy range between 0.7 eV and 2.5 keV. Results: The $^{243}$Am(n,$\\gamma$) cross section has been successfully measured in the mentioned energy range. The resolved resonance region has been extended from 250 eV up to 400 eV. In the unresolved resonance region our results are compatible with one of the two incompatible capture data sets available below 2.5 keV. The data available in EXFOR and in the literature has been used to perform a simple analysis above 2.5 keV. Conclusions: The results of this measurement contribute to reduce the $^{243}$Am(n,$\\gamma$) cross section uncertainty and suggest that this cross section is underestimate...

  5. The influence of impurities for cross section measurement of {sup 241,243}Am(n,f) reactions

    Energy Technology Data Exchange (ETDEWEB)

    Kai, Tetsuya; Kobayashi, Katsuhei; Yamamoto, Shuji; Fujita, Yoshiaki; Kimura, Itsuro; Miyoshi, Mitsuharu; Yamamoto, Hideki [Kyoto Univ. (Japan); Shinohara, Nobuo

    1997-03-01

    The influence of the impurities on the fission cross section measurements for {sup 241}Am and {sup 243}Am has been investigated with the practical results. Following cases have been considered as the influence of impurities; (a) experiments with the {sup 241}Am sample that contains impurities originally, and (b) experiments with the {sup 243}Am sample that contains impurities produced by {alpha}, {beta} decays after the chemical purification. The present study has demonstrated the usefulness of pure samples by the comparison of the experiments using the sample on the market with those using the pure sample processed by the authors. Particularly on the case (b), the correction of the impurity through the periodical measurements was experimentally performed (about 18% around 0.3 eV in 4 weeks after the chemical purification). (author)

  6. Chemical Identification of Dubnium as a Decay Product of Element 115 Produced in the Reaction $\\rm {^{48}Ca}+{^{243}Am}$

    CERN Document Server

    Dmitriev, S N; Utyonkov, V K; Shishkin, S V; Eremin, A V; Lobanov, Yu V; Chepigin, V I; Sokol, E A; Tsyganov, Yu S; Vostokin, G K; Aksenov, N V; Hussonnois, M; Itkis, M G; Aggeler, H W; Schumann, D; Bruchertseifer, H; Eichler, R; Shaughnessy, D A; Wilk, P A; Kenneally, J M; Stoyer, M A; Wild, J F

    2004-01-01

    The results of an experiment designed to identify $^{268}$Db as the terminal isotope in the $\\alpha $-decay chain of element 115 produced via the ${\\rm {^{243}Am}}({\\rm {^{48}Ca}},3n){\\rm {^{288}115}}$ reaction are presented. The $^{243}$Am target was bombarded with a beam dose of $3.4\\cdot 10^{18}$ $^{48}$Ca projectiles at an energy of 247 MeV at the center of the target. The reaction products were collected in the surface layer of a copper catcher block, which was removed with a lathe and then dissolved in concentrated HNO$_{3}$. The group-5 elements were separated by sorption onto Dowex $50{\\times} 8$ cation-exchange resin with subsequent desorption using 1 M HF, which forms anionic fluoride complexes of group-5 elements. The eluent was evaporated onto a 0.4 $\\mu$m thick polyethylene foil that was placed between a pair of semiconductor detectors surrounded by $^{3}$He neutron counters for measurement of $\\alpha$ particles, fission fragments, and neutrons. In the course of the experiment, we observed 15 spo...

  7. Coulomb breakup effects on the elastic cross section of $^6$He+$^{209}$Bi scattering near Coulomb barrier energies

    CERN Document Server

    Matsumoto, T; Iseri, Y; Kamimura, M; Ogata, K; Yahiro, M

    2006-01-01

    We accurately analyze the $^6$He+$^{209}$Bi scattering at 19 and 22.5 MeV near the Coulomb barrier energy, using the continuum-discretized coupled-channels method (CDCC) based on the $n$+$n$+$^4$He+$^{209}$Bi four-body model. The three-body breakup continuum of $^6$He is discretized by diagonalizing the internal Hamiltonian of $^6$He in a space spanned by the Gaussian basis functions. The calculated elastic and total reaction cross sections are in good agreement with the experimental data, while the CDCC calculation based on the di-neutron model of $^6$He, i.e., the $^2n$+$^{4}$He+$^{209}$Bi three-body model, does not reproduce the data.

  8. Hybridization-driven gap in U3Bi4Ni3: a 209Bi NMR/NQR study

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Seung H [Los Alamos National Laboratory

    2009-01-01

    We report {sup 209}Bi nuclear-magnetic-resonance and nuclear-quadrupole-resonance measurements on a single crystal of the Kondo insulator U{sub 3}Bi{sub 4}Ni{sub 3}. The {sup 209}Bi nuclear-spin-lattice relaxation rate (T{sub 1}{sup -1}) shows activated behavior and is well fit by a spin gap of 220 K. The {sup 209}Bi Knight shift (K) exhibits a strong temperature dependence arising from 5f electrons, in which K is negative at high temperatures and increases as the temperature is lowered. Below 50 K, K shows a broad maximum and decreases slightly upon further cooling. Our data provide insight into the evolution of the hyperfine fields in a fully gapped Kondo insulator based on 5f electron hybridization.

  9. Nuclear quadrupole interaction of 243Am3+ in LaCl3 measured via optical spectral-hole burning

    Science.gov (United States)

    Liu, G. K.; Cao, Ruoxin; Beitz, James V.

    1996-02-01

    An optical spectral-hole burning technique has been used to study the nuclear quadrupole splitting in the ground state of 243Am3+ in LaCl3. The observed splitting is consistent with Am3+ ions on an axially symmetric site. The nuclear quadrupole coupling constant P=-75+/-1 MHz for the 7F0 ground state is obtained based on an effective operator Hamiltonian. The crystal-field antishielding effect dominates whereas contributions from the 5f electrons and from the pseudoquadrupole interaction are negligible (P5f/Platt=0.03). The Sternheimer antishielding factor, γ∞=-154, is determined and comparison is made between the actinide ion Am3+ and its rare-earth analogy Eu3+.

  10. Measurement of the {sup 210}Po production induced by thermal neutron capture on {sup 209}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Letourneau, A. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette (France)]. E-mail: aletourneau@cea.fr; Fioni, G. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette (France); Marie, F. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette (France); Ridikas, D. [CEA Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette (France); Mutti, P. [Institut Laue-Langevin, 38000 Grenoble (France)

    2006-03-15

    A measurement of the polonium production in a solid Bi target, placed in a high thermal neutron flux of 2.3 x 10{sup 13} n/cm{sup 2}/s, was performed. Two different activation methods, based on {alpha} and {gamma} spectroscopy, were used to cross check the results. Values of (16.08 {+-} 1.8) mb and (18.4 {+-} 0.9) mb for the {sup 210}Po (i.e. {sup 210gs}Bi) formation cross-section were obtained and a recommended value of (17.9 {+-} 0.8) mb was proposed. Our results are in disagreement with adopted cross-section values in the main nuclear data libraries, namely smaller by 25% for {sup 210gs}Bi. These new values will account for more precise evaluations of {sup 210}Po formation in moderated spallation targets containing {sup 209}Bi.

  11. Measurement of the 243Am capture cross section at the n{sub T}OF facility; Medida de la sección eficaz de captura del 243Am en la instalación n{sub T}OF

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Cembranos, E.

    2014-07-01

    Nuclear data for minor actinides are necessary for improving the design and performance of advanced reactors and transmutation devices for the incineration of radioactive nuclear waste [Sal08, Gon09, Ali04, Ali06]. In particular, the 243Am isotope is relevant since it is the minor actinide which contributes more to the radiotoxicity of the nuclear waste between s3 03 and s3 04 years. In addition, the neutron capture in 243Am is the main gate to the creation of 244Cm and higher mass isotopes. The purpose of the this work is to provide experimental data on the 243Am(n, ) for improving the current evaluations. At present, there is no published neutron capture measurement of 243Am below 250 eV, and all the existing evaluations of the elastic and capture cross sections are based essentially on a single transmission measurement [Sim74]. Above 250 eV there are only a few capture measurements available [Wes85, Wis83], which show discrepancies that make them incompatible. Due to the lack of experimental data on 243Am the standard ENDF-6 format libraries present sizeable di rences between each other...(Author)

  12. Transference of particles in the fusion process of {sup 6}He + {sup 209}Bi; Transferencia de particulas en el proceso de fusion de {sup 6}He + {sup 209}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    In a recent work were reported measurements done to energy which was to the Coulomb barrier for the {sup 6} He + {sup 209} Bi system. The fusion excitation function measured for this system shows a strong enhancement with respect to the predictions of the penetration model of unidimensional barrier at minor energies to the Coulombian barrier. In basis with the results obtained for different degrees of freedom it was determined with the CCDEF code, that the transfer of 2 neutrons of {sup 6} He to binding states to {sup 209} Bi, producing {sup 211} Bi, is the mechanism looked as the best candidate for explain the great enhancement in the fusion excitation function of this system at energies under Coulomb barrier. It is corroborated what was affirmed by others authors about the strength value at 1.5 MeV as a typical value for the transference of two particles between the projectile and the target. (Author)

  13. Neutron capture cross section measurements of $^{238}$U, $^{241}$Am and $^{243}$Am at n_TOF

    CERN Multimedia

    Koehler, P E; Plag, R

    The increase of the world energy demand and the need of low carbon energy sources have triggered the renaissance and/or enhancement of nuclear energy in many countries. Fundamental nuclear physics can contribute in a practical way to the sustainability and safety of the nuclear energy production and the management of the nuclear waste. There exists a series of recent studies which address the most relevant isotopes, decay data, nuclear reaction channels and energy ranges which have to be investigated in more detail for improving the design of different advanced nuclear systems [1] and nuclear fuel cycles [2]. In this proposal, we aim at the measurement of the neutron capture cross sections of $^{238}$U, $^{241}$Am and $^{243}$Am. All three isotopes are listed in the NEA High Priority Request List [37], are recommended for measurements [1] and play an important role in the nuclear energy production and fuel cycle scenarios. The measurements will provide as well valuable nuclear structure data necessary for the...

  14. Preliminary results on ^241,243Am and ^235U (n,γ) cross sections measured at DANCE

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Fowler, M. M.; Bond, E. M.; O'Donnell, J. M.; Reifarth, R.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.; Macri, R. A.; Wu, C.-Y.; Becker, J. A.

    2006-10-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory (LANL) was used for neutron capture cross sections measurements. Its high granularity of 160 BaF2 detectors allows for highly efficient detection of prompt gamma-rays following a neutron capture. DANCE is located on the 20.26 m neutron flight path 14 at the Manuel Lujan Jr. Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). The moderated production target provides neutrons in the 0.02 eV - 500 keV energy range. An analysis of neutron capture measurements on ^241,243Am and ^235U targets will be presented. The experiments were carried out using a customized Parallel-Plate Avalanche Counter (PPAC) detector installed in the center of the DANCE array. The PPAC was used as a fission-tagging detector to separate (n,γ) from (n,fission) events. Preliminary results of (n,γ) cross sections will be presented and compared with the available evaluated data for neutron energies from 0.02 eV to 1 keV. Additional neutron capture measurements with DANCE will be briefly discussed.

  15. Neutron emission cross sections on sup 93 Nb and sup 209 Bi at 20 MeV incident energy

    Energy Technology Data Exchange (ETDEWEB)

    Marcinkowski, A.; Rapaport, J.; Finlay, R.; Aslanoglou, X. (Ohio Univ., Athens, OH (USA)); Kielan, D. (Soltan Inst. for Nuclear Studies, Warsaw (Poland))

    1991-07-29

    Double-differential neutron emission cross sections at 20 MeV incident energy have been studied for monoisotopic samples of {sup 93}Nb and {sup 209}Bi. Time-of-flight spectra were taken at several angles between 15{sup 0} and 153{sup 0} using a beam-swinger spectrometer. The data are averaged over 0.5 MeV energy bins and compared with quantum-mechanical, statistical multistep calculations. (orig.).

  16. Fission fragment angular distributions in proton-induced fission of 209 Bi(p,t and 197 Au(p,f

    Directory of Open Access Journals (Sweden)

    S. S.

    2001-12-01

    Full Text Available   The fission fragment angular distributions have been measured for proton-induced fission of 209Bi and 197Au nuclei using surface barrier detectors at several energies between 25 MeV and 30 MeV. The experimental anisotropies are found to be in agreement with the predictions of the Standard Saddle-Point Statistical Model (SSPSM. The fission cross sections of 209Bi 197Au nuclei were also measured and compared with the previous works.

  17. Neutron-induced fission cross sections of 233U and 243Am in the energy range 0.5 Mev En 20 MeV @ n_TOF

    CERN Document Server

    Belloni, F; Milazzo, P M; Calviani, M; Colonna, N; Mastinu, P; Abbondanno, U; Aerts, G; Álvarez, H; Álvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Audouin, L; Badurek, G; Baumann, P; Becvár, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carrapiço, C; Cennini, P; Chepel, V; Chiaveri, E; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Domingo-Pardo, C; Dridi, W; Duran, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fujii, K; Furman, W; Goncalves, I; González-Romero, E; Gramegna, F; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Jericha, E; Käppeler, F; Kadi, Y; Karadimos, D; Karamanis, D; Kerveno, M; Koehler, P; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marrone, S; Martínez, T; Massimi, C; Mengoni, A; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Savvidis, I; Stephan, C; Tagliente, G; Tain, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vazl, P; Ventura, A; Villamarin, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wiescher, M; Wisshak, K

    2011-01-01

    Neutron-induced fission cross-sections of actinides have been recently measured at the neutron time of flight facility n_TOF at CERN in the frame of a research project involving isotopes relevant for nuclear astrophysics and nuclear technologies. Fission fragments are detected by a gas counter with good discrimination between nuclear fission products and background events. Neutron-induced fission cross-sections of 233U and 243Am were determined relative to 235U. The present paper reports the results obtained at neutron energies between 0.5 and 20 MeV.

  18. Thermal neutron capture cross-section measurements of {sup 243}Am and {sup 242}Pu using the new mini-INCA {alpha}- and {gamma}-spectroscopy station

    Energy Technology Data Exchange (ETDEWEB)

    Marie, F. [DSM/DAPNIA, CEA-Saclay, 91191 Gif sur Yvette (France); Letourneau, A. [DSM/DAPNIA, CEA-Saclay, 91191 Gif sur Yvette (France)]. E-mail: aletourneau@cea.fr; Fioni, G. [DSM/DAPNIA, CEA-Saclay, 91191 Gif sur Yvette (France); Deruelle, O. [DSM/DAPNIA, CEA-Saclay, 91191 Gif sur Yvette (France); Veyssiere, Ch. [DSM/DAPNIA, CEA-Saclay, 91191 Gif sur Yvette (France); Faust, H. [Institut Laue-Langevin, 38000 Grenoble (France); Mutti, P. [Institut Laue-Langevin, 38000 Grenoble (France); AlMahamid, I. [Lawrence Berkeley National Lab., ESH Division, Berkeley, CA 94720 (United States); Muhammad, B. [Lawrence Berkeley National Lab., ESH Division, Berkeley, CA 94720 (United States)

    2006-01-15

    In the framework of the Mini-INCA project, dedicated to the study of Minor Actinide transmutation process in high neutron fluxes, an {alpha}- and {gamma}-spectroscopy station has been developed and installed at the High Flux Reactor of the Laue-Langevin Institut. This set-up allows short irradiations as well as long irradiations in a high quasi-thermal neutron flux and post-irradiation spectroscopy analysis. It is well suited to measure precisely, in reference to {sup 59}Co cross-section, neutron capture cross-sections, for all the actinides, in the thermal energy region. The first measurements using this set-up were done on {sup 243}Am and {sup 242}Pu isotopes. Cross-section values, at E{sub n}=0.025eV, were found to be (81.8+/-3.6)b for {sup 243}Am and (22.5+/-1.1)b for {sup 242}Pu. These values differ from evaluated data libraries by a factor of 9% and 17%, respectively, but are compatible with the most recent measurements, validating by the way the experimental apparatus.

  19. New Results for Elements 115, 117, and 118 Produced in the Reactions 243Am+48Ca and 249BK/249Cf+48Ca

    Science.gov (United States)

    Utyonkov, V. K.; Oganessian, Yu. Ts.; Abdullin, F. Sh.; Alexander, C.; Binder, J.; Boll, R. A.; Dmitriev, S. N.; Ezold, J.; Felker, K.; Gostic, J. M.; Grzywacz, R. K.; Hamilton, J. H.; Henderson, R. A.; Itkis, M. G.; Miernik, K.; Miller, D.; Moody, K. J.; Polyakov, A. N.; Ramayya, A. V.; Roberto, J. B.; Ryabinin, M. A.; Rykaczewski, K. P.; Sagaidak, R. N.; Shaughnessy, D. A.; Shirokovsky, I. V.; Shumeiko, M. V.; Stoyer, M. A.; Stoyer, N. J.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Voinov, A. A.; Vostokin, G. K.

    2014-09-01

    The reactions of 243Am and 249Bk with 48Ca have been reinvestigated to provide new evidence for the discovery of elements 113, 115, and 117. Three isotopes 287-289115 were synthesized in the 243Am+48Ca reactions at five projectile energies, providing excitation functions and α-decay spectra of the produced isotopes. Decay properties of 287,288115 and of all the daughter products agree with the data of the experiment in which these nuclei were synthesized for the first time. The new 289115 events demonstrate the same decay properties as those observed for 289115 populated by a decay of 293117 produced in the 249Bk+48Ca reaction to provide cross-bombardment evidence. Results of recent experiments at the Dubna gas-filled recoil separator aimed at studying production crosssections, excitation functions, and nuclear decay properties for isotopes 293,294117 synthesized in the 249Bk+48Ca reaction at five projectile energies are presented. In addition, a single decay of 294118 was observed from the reaction with 249Cf - a result of the in-growth of 249Cf in the 249Bk target.

  20. Standardization of (166m)Ho and 243Am/239Np by live-timed anti-coincidence counting with extending dead time.

    Science.gov (United States)

    da Silva, C J; Loureiro, J S; Delgado, J U; Poledna, R; Moreira, D S; Iwahara, A; Tauhata, L; da Silva, R L; Lopes, R T

    2012-09-01

    The National Laboratory for Metrology of Ionizing Radiation (LNMRI)/Brazil acquired (166m)Ho and (243)Am/(239)Np solutions from commercial suppliers in order to realize primary standardization and therefore reducing the associated uncertainties. The method used in the standardization was the live-timed 4πβ(LS)-γ(ΝaI(Tl)) anticoincidence counting. The live-timed anticoincidence system is operated since 2006 in LNMRI and is composed of two MTR2 modules donated by Laboratoire National Henri Becquerel (LNE-LNHB)/France. The data acquisition system uses a homemade LabView program and an Excel file for calculus. These systems have been used for primary standardization at LNMRI for many radionuclides and recently took part in the (124)Sb and (177)Lu International Key Comparisons with good performance.

  1. Fission Cross-section Measurements of (233)U, (245)Cm and (241,243)Am at CERN n_TOF Facility

    CERN Document Server

    Calviani, M; Andriamonje, S; Chiaveri, E; Vlachoudis, V; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Alvarez-Velarde, F; Cano-Ott, D; Gonzalez-Romero, E; Guerrero, C; Martinez, T; Villamarin, D; Vicente, M C; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Kadi, Y; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Heil, M; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A

    2011-01-01

    Neutron-induced fission cross-sections of minor actinides have been measured using the n_TOF white neutron source at CERN, Geneva, as part of a large experimental program aiming at collecting new data relevant for nuclear astrophysics and for the design of advanced reactor systems. The measurements at n_TOF take advantage of the innovative features of the n_TOF facility, namely the wide energy range, high instantaneous neutron flux and good energy resolution. Final results on the fission cross-section of 233U, 245Cm and 243Am from thermal to 20 MeV are here reported, together with preliminary results for 241Am. The measurement have been performed with a dedicated Fast Ionization Chamber (FIC), a fission fragment detector with a very high efficiency, relative to the very well known cross-section of 235U, measured simultaneously with the same detector.

  2. Thick target yield measurement of {sup 211}At through the nuclear reaction {sup 209}Bi({alpha}, 2n)

    Energy Technology Data Exchange (ETDEWEB)

    Alfarano, A [Institute for Health and Consumer Protection, IHCP, Joint Research Centre, via E. Fermi 1, 21020 Ispra, Varese (Italy); Abbas, K [Institute for Health and Consumer Protection, IHCP, Joint Research Centre, via E. Fermi 1, 21020 Ispra, Varese (Italy); Holzwarth, U [Institute for Health and Consumer Protection, IHCP, Joint Research Centre, via E. Fermi 1, 21020 Ispra, Varese (Italy); Bonardi, M [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, 20090 Segrate, Milan (Italy); Groppi, F [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, 20090 Segrate, Milan (Italy); Alfassi, Z [Department of Nuclear Engineering, Ben Gurion University, 84105 Beer Sheva (Israel); Menapace, E [ENEA, Applied Physics Division, Bologna (Italy); Gibson, P N [Institute for Health and Consumer Protection, IHCP, Joint Research Centre, via E. Fermi 1, 21020 Ispra, Varese (Italy)

    2006-05-15

    Radionuclide Therapy (RNT) and Radioimmunotherapy (RIT) are potentially of great interest for cancer therapy. In many therapeutic applications alpha emitters should be much more effective than already-approved beta emitters due to the short range and high linear energy transfer of alpha particles. {sup 213}Bi is an important alpha emitter already used in clinical trials but the half-life of this radioisotope is short (46 minutes) and so its use is limited for certain therapies. {sup 211}At is potentially very interesting for medical purposes because of its longer half-life of 7.2 hours, and suitable decay scheme. We have studied the cyclotron-based production of {sup 211}At via the reaction {sup 209}Bi({alpha}, 2n), this production route probably being the most promising in the long term. The energy dependence of thick target yields and the reaction cross sections for the production of {sup 211}At and {sup 210}At were determined and found to be in good agreement with literature. The best energy to produce {sup 211}At is 28-29 MeV. The possible production of the undesired, highly radiotoxic, and long-lived alpha-emitting {sup 210}Po (138.38 days), which is produced from decay of {sup 210}At, is also discussed.

  3. Exploring contributions from incomplete fusion in $^{6,7}$Li+$^{209}$Bi and $^{6,7}$Li+$^{198}$Pt reactions

    CERN Document Server

    Parkar, V V; Kailas, S

    2016-01-01

    We use the breakup absorption model to simultaneously describe the measured cross-sections of the Complete fusion (CF), Incomplete fusion (ICF), and Total fusion (TF) in nuclear reactions induced by weakly bound nuclei $^{6,7}$Li on $^{209}$Bi and $^{198}$Pt targets. The absorption cross-sections are calculated using the Continuum Discretized Coupled Channels (CDCC) method with different choices of short range imaginary potentials to get the ICF, CF and TF cross-sections. It is observed that the cross-sections for deuteron-ICF/deuteron-capture are of similar magnitude as the $\\alpha$-ICF/$\\alpha$-capture, in case of $^{6}$Li projectile, while the cross-sections for triton-ICF/triton-capture is more dominant than $\\alpha$-ICF/$\\alpha$-capture in case of $^{7}$Li projectile. Both these observations are also corroborated by the experimental data. The ratio of ICF to TF cross-sections, which defines the value of fusion suppression factor is found to be in agreement with the data available from the literature. The...

  4. Determination of the neutron resonance parameters for{sup 209}Bi from new capture and transmission measurements at GELINA

    Energy Technology Data Exchange (ETDEWEB)

    Borella, A.; Gunsing, F. [CEA DAPNIA/SPhN, F-91911 Gif-sur-Yvette Cedex (France); Kopecky, S. [EC-JRC-IRMM, Retieseweg 111, B-2440 Geel (Belgium); Mutti, P. [Institut Laue-Langevin, rue Jules Horowitz 6, F-38042 Grenoble (France); Schillebeeckx, P.; Siegler, P.; Wynants, R. [EC-JRC-IRMM, Retieseweg 111, B-2440 Geel (Belgium)

    2006-07-01

    High resolution neutron total and capture cross section measurements have been performed to determine the resonance parameters for {sup 209}Bi + n. The transmission and capture measurements were carried out at the time-of-flight facility GELINA of the IRMM in Geel (Belgium). The transmission measurements were carried out at a 30 m and a 50 m flight path using Li-glass scintillators. The capture measurements were performed at a 30 m and 60 m flight path based on the total energy detection principle. The capture detection system consisted of four C6D6 detectors and a {sup 10}B ionization chamber, which was used to determine the shape of the neutron flux. A special analysis procedure, including a sample dependent pulse height weighting function, was applied to ensure that the efficiency for a neutron capture event was independent from the {gamma}-ray cascade. From a simultaneous resonance shape analysis of the transmission and capture data we deduced the neutron width for 10 resonances and the capture area for 43 resonances up to a neutron energy of 40 keV. The resonance shape analysis was performed with the most recent version of the REFIT code. This latest version includes a direct correction for the neutron sensitivity of the capture detection system and accounts for the influence of the neutron attenuation in the sample on the weighted response. (authors)

  5. Fission cross section calculations for 209Bi target nucleus based on fission reaction models in high energy regions

    Directory of Open Access Journals (Sweden)

    Kaplan Abdullah

    2015-01-01

    Full Text Available Implementation of projects of new generation nuclear power plants requires the solving of material science and technological issues in developing of reactor materials. Melts of heavy metals (Pb, Bi and Pb-Bi due to their nuclear and thermophysical properties, are the candidate coolants for fast reactors and accelerator-driven systems (ADS. In this study, α, γ, p, n and 3He induced fission cross section calculations for 209Bi target nucleus at high-energy regions for (α,f, (γ,f, (p,f, (n,f and (3He,f reactions have been investigated using different fission reaction models. Mamdouh Table, Sierk, Rotating Liquid Drop and Fission Path models of theoretical fission barriers of TALYS 1.6 code have been used for the fission cross section calculations. The calculated results have been compared with the experimental data taken from the EXFOR database. TALYS 1.6 Sierk model calculations exhibit generally good agreement with the experimental measurements for all reactions used in this study.

  6. Study of the di-nuclear system $^{A}$Rb + $^{209}$Bi (Z$_{1}$ + Z$_{2}$ = 120)

    CERN Multimedia

    The exact location of the next spherical shell closures beyond Z = 82, N = 126 is still an open question. According to model predictions shell closures are expected at Z = 114 or 120 or 126 and N = 184. Also experimental data cannot yet give a definite answer. Known nuclei with Z = 114 are too neutron‐deficient with respect to the N = 184 shell and nuclei with Z = 120 and beyond are still unknown. An option for studying reactions of super-heavy systems at Z = 120 and neutron numbers up to 184 becomes possible with the use of $^{209}$Bi targets and neutron‐rich beams. By studying quasi-fission and fusion‐fission reactions, which have significantly larger production cross‐sections than the evaporation residues, a possible influence of shell closures at Z = 120, N = 184 can be explored. Well suitable for such studies will be neutron‐rich rubidium beams at energies of about 5 MeV/u delivered by the HIE‐ISOLDE facility.

  7. Fission of Weakly Prolate 119Sn and Weakly Oblate 209Bi Nuclei Induced by 500 and 672 MeV Negative Pions

    Institute of Scientific and Technical Information of China (English)

    Mukhtar Ahmed Rana; Gul Sher,Shahid Manzoor; M.I.Shahzad

    2011-01-01

    @@ Fission cross-sections of 119Sn and 209Bi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector.Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory(USA).Measurement results are compared with the corresponding calculations using the computer code CEM95.Agreement between measurements and calculations is fairly good for the 209Bi target nuclei whereas it is poor for 119Sn at both investigated energies of 500 and 672 MeV Fission cross-section results of 119Sn and 209Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei.A logarithmic dependence of fission cross-section on Z2/A is observed for the above-mentioned reactions and a critical limit of Z2/A is identified with the value of 30 which divides the curve of of versus Z2/A into two regimes,one with weak dependence and the other with strong dependence.%Fission cross-sections of 119Sn and 20gBi induced by negative pions of two energies 500 and 672 MeV were measured using a CR-39 nuclear track detector. Target-detector stacks were exposed to pion beams at the Brookhaven National Laboratory (USA). Measurement results are compared with the corresponding calculations using the computer code CEM95. Agreement between measurements and calculations is fairly good for the 209Bi target nuclei whereas it is poor for 119Sn at both investigated energies of 500 and 672 MeV. Fission cross-section results of 119Sn and 209Bi are explained using the equilibrium properties of these nuclides including nuclear electric quadrupole moments which determine the shapes of nuclei. A logarithmic dependence of fission cross-section on Z2/A is observed for the above-mentioned reactions and a critical limit of Z2/A is identified with the value of 30 which divides the curve of at versus Z2 /A into two regimes, one with weak dependence and the other with strong

  8. New insights into the 243Am + 48Ca reaction products previously observed in the experiments on elements 113, 115, and 117.

    Science.gov (United States)

    Oganessian, Yu Ts; Abdullin, F Sh; Dmitriev, S N; Gostic, J M; Hamilton, J H; Henderson, R A; Itkis, M G; Moody, K J; Polyakov, A N; Ramayya, A V; Roberto, J B; Rykaczewski, K P; Sagaidak, R N; Shaughnessy, D A; Shirokovsky, I V; Stoyer, M A; Subbotin, V G; Sukhov, A M; Tsyganov, Yu S; Utyonkov, V K; Voinov, A A; Vostokin, G K

    2012-01-13

    Results of a new series of experiments on the study of production cross sections and decay properties of the isotopes of element 115 in the reaction (243)Am+(48)Ca are presented. Twenty-one new decay chains originating from (288)115 were established as the product of the 3n-evaporation channel by measuring the excitation function at three excitation energies of the compound nucleus (291)115. The decay properties of all newly observed nuclei are in full agreement with those we measured in 2003. At the lowest excitation energy E*=33 MeV, for the first time we registered the product of the 2n-evaporation channel, (289)115, which was also observed previously in the reaction (249)Bk+(48)Ca as the daughter nucleus of the decay of (293)117. The maximum cross section for the production of (288)115 is found to be 8.5 pb at E*≈36 MeV.

  9. Determination of Neptunium, Americium and Curium in Spent Nuclear Fuel Samples by Alpha Spectrometry Using {sup 239}Np and {sup 243}Am as a Spike and a Tracer

    Energy Technology Data Exchange (ETDEWEB)

    Jeo, Kih-Soo; Song, Byung-Chul; Kim, Young-Bok; Han, Sun-Ho; Jeon, Young-Shin; Jung, Euo-Chang; Jee, Kwang-Yong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    Determination of actinide elements and fission products in spent nuclear fuels is of importance for a burnup determination and source term evaluation. Especially, the amounts of uranium and plutonium isotopes are used for the evaluation of a burnup credit in spent nuclear fuels. Additionally, other actinides such as Np, Am and Cm in spent nuclear fuel samples is also required for the purposes mentioned above. In this study, {sup 237}Np, {sup 241}Am and {sup 244}Cm were determined by an alpha spectrometry for the source term data for high burnup spent nuclear fuels ranging from 37 to 62.9 GWD/MtU as a burnup. Generally, mass spectrometry has been known as the most powerful method for isotope determinations such as high concentrations of uranium and plutonium. However, in the case of minor actinides such as Np, Am and Cm, alpha spectrometry would be recommended instead. Determination of the transuranic elements in spent nuclear fuel samples is different from that for environmental samples because the amount of each nuclide in the spent fuel samples is higher and the relative ratios between each nuclide are also different from those for environmental samples. So, it is important to select an appropriate tracer and an optimum sample size depending on the nuclides and analytical method. In this study {sup 237}Np was determined by an isotope dilution alpha(gamma) spectrometry using {sup 239}Np as a spike, and {sup 241}Am and curium isotopes were determined by alpha spectrometry using {sup 243}Am as a tracer. The content of each nuclide was compared with that by the Origen-2 code.

  10. Neutron-induced fission cross section of (nat)Pb and (209)Bi from threshold to 1 GeV: An improved parametrization

    CERN Document Server

    Tarrio, D; Audouin, L; Berthier, B; Duran, I; Ferrant, L; Isaev, S; Le Naour, C; Paradela, C; Stephan, C; Trubert, D; Abbondanno, U; Aerts, G; Alvarez-Velarde, F; Andriamonje, S; Andrzejewski, J; Assimakopoulos, P; Badurek, G; Baumann, P; Becvar, F; Belloni, F; Berthoumieux, E; Calvino, F; Calviani, M; Cano-Ott, D; Capote, R; Carrapico, C; Carrillo de Albornoz, A; Cennini, P; Chepel, V; Chiaveri, E; Colonna, N; Cortes, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillmann, I; Dolfini, R; Domingo-Pardo, C; Dridi, W; Eleftheriadis, C; Embid-Segura, M; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Koelbl, H; Fujii, K; Furman, W; Goncalves, I; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martinez, A; Igashira, M; Jericha, E; Kadi, Y; Kappeler, F; Karadimos, D; Karamanis, D; Kerveno, M; Ketlerov, V; Koehler, P; Konovalov, V; Kossionides, E; Krticka, M; Lampoudis, C; Leeb, H; Lederer, C; Lindote, A; Lopes, I; Losito, R; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Martinez, T; Massimi, C; Mastinu, P; Mendoza, E; Mengoni, A; Milazzo, P.M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, H; O'Brien, S; Oshima, M; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Pigni, M.T; Plag, R; Plompen, A; Plukis, A; Poch, A; Praena, J; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, C; Rudolf, G; Rullhusen, P; Salgado, J; Santos, C; Sarchiapone, L; Sarmento, R; Savvidis, I; Tagliente, G; Tain, J.L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarin, D; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2011-01-01

    Neutron-induced fission cross sections for (nat)Pb and (209)Bi were measured with a white-spectrum neutron source at the CERN Neutron Time-of-Flight (n\\_TOF) facility. The experiment, using neutrons from threshold up to 1 GeV, provides the first results for these nuclei above 200 MeV. The cross sections were measured relative to (235)U and (238)U in a dedicated fission chamber with parallel plate avalanche counter detectors. Results are compared with previous experimental data. Upgraded parametrizations of the cross sections are presented, from threshold energy up to 1 GeV. The proposed new sets of fitting parameters improve former results along the whole energy range.

  11. Dynamical decay process of {sup 219,} {sup 220}Ra{sup *} formed in {sup 10,} {sup 11}B+{sup 209}Bi reactions

    Energy Technology Data Exchange (ETDEWEB)

    Sawhney, G.; Sharma, M.K. [Thapar University, School of Physics and Materials Science, Punjab (India)

    2012-05-15

    The excitation functions for both the evaporation residue and fission have been calculated for {sup 10}B +{sup 209}Bi and {sup 11}B+{sup 209}Bi reactions forming compound systems {sup 219,220}Ra{sup *}, using the dynamical cluster-decay model (DCM) with effects of deformations and orientations of the nuclei included in it. In addition to this, the excitation functions for complete fusion (CF) are obtained by summing the fission cross-sections, neutron evaporation and charged particle evaporation residue cross-sections produced through the {alpha}xn and pxn (x = 2, 3, 4) emission channels for the {sup 219}Ra system at various incident centre-of-mass energies. Experimentally the CF cross-sections are suppressed and the observed suppression is attributed to the low binding energy of {sup 10,11}B which breaks up into charged fragments. The reported complete fusion (CF) and incomplete fusion (ICF) excitation functions for the {sup 219}Ra system are found to be nicely fitted by the calculations performed in the framework of DCM, without invoking a significant contribution from quasi-fission. Although DCM has been applied for a number of compound nucleus decay studies in the recent past, the same is being used here in reference to ICF and subsequent decay processes along with the CF process. Interestingly the main contribution to complete fusion cross-section comes from the fission cross-section at higher incident energies, which in DCM is found to consist of an asymmetric fission window, shown to arise due to the deformation and orientation effects of formation and decay fragments. (orig.)

  12. Measurement of the Neutron Capture Cross Sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm with a Total Absorption Calorimeter at n_TOF

    CERN Multimedia

    Beer, H; Wiescher, M; Cox, J; Rapp, W; Embid, M; Dababneh, S

    2002-01-01

    Accurate and reliable neutron capture cross section data for actinides are necessary for the poper design, safety regulation and precise performance assessment of transmutation devices such as Fast Critical Reactors or Accelerator Driven Systems (ADS). The goal of this proposal is the measurement of the neutron capture cross sections of $^{233}$U, $^{237}$Np, $^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm at n_TOF with an accuracy of 5~\\%. $^{233}$U plays an essential role in the Th fuel cycle, which has been proposed as a safer and cleaner alternative to the U fuel cycle. The capture cross sections of $^{237}$Np,$^{240,242}$Pu, $^{241,243}$Am and $^{245}$Cm play a key role in the design and optimization of a strategy for the Nuclear Waste Transmutation. A high accuracy can be achieved at n_TOF in such measurements due to a combination of features unique in the world: high instantaneous neutron fluence and excellent energy resolution of the facility, innovative Data Acquisition System based on flash ADCs and t...

  13. Yield of Radionuclides and Isomers Measured in Fragmentation of the ^{nat}W and ^{186}W (97%) Targets with Protons at 630, 420 and 270 MeV

    CERN Document Server

    Karamian, S A; Chaloun, P; Filossofov, D V; Henzl, V; Henzlova, D; Kalinnikov, V G; Korolev, N A; Lebedev, N A; Novgorodov, A F; Collins, C B; Popescu, I I; Ur, C A

    2004-01-01

    Yields and cross sections of the radioactive nuclide formation have been measured via induced activity gamma-spectra after irradiation of the natural composition W and enriched ^{186)W targets at Dubna synchrocyclotron. Spallation and fission products have been represented among the detected nuclides. The high-spin isomers of Hf and Lu were produced and the isomer-to-ground state ratios could be estimated. The nuclide yields have also been calculated using the LAHET code at 6 values of proton energy in the range from 100 to 800 MeV both for ^{nat)W and for enriched ^{186)W targets. Measured isotope yields are generally in agreement with the calculations, however, the code is incapable to predict the isomer-to-ground state ratios. In experiment, it has been shown that the ^{177m}Lu, ^{178m2}Hf and ^{179m2}Hf high-spin isomers are produced with 2.5 times higher yield in the 97% enriched ^{186)W target as compared to the ^{nat)W target at identical irradiations. This makes significance for the creation of high-a...

  14. Excitation functions of residual nuclei production from 40–2600 MeV proton-irradiated 206,207,208,natPb and 209Bi

    Indian Academy of Sciences (India)

    Yu E Titarenko; V F Batyaev; V M Zhivun; V O Kudryashov; K A Lipatov; A V Ignatyuk; S G Mashnik

    2007-02-01

    The work is aimed at experimental determination of the independent and cumulative yields of radioactive residual nuclei produced in intermediate-energy proton-irradiated thin targets made of highly isotopic enriched and natural lead (206,207,208,natPb) and 209Bi. 5972 radioactive product nuclide yields have been measured in 55 thin targets induced by 0.04, 0.07, 0.10, 0.15, 0.25, 0.6, 0.8, 1.2, 1.4, 1.6 and 2.6 GeV protons extracted from the ITEP U-10 proton synchrotron. The measured data have been compared with data obtained at other laboratories as well as with theoretical simulations by seven codes. We found that the predictive power of the tested codes is different but is satisfactory for most of the nuclides in the spallation region, though none of the codes agree well with the data in the whole mass region of product nuclides and all should be improved further.

  15. Nuclear level densities in 208Bi and 209Po from the neutron spectra in the ( p, n) reactions on 208Pb and 209Bi nuclei

    Science.gov (United States)

    Zhuravlev, B. V.; Lychagin, A. A.; Titarenko, N. N.; Demenkov, V. G.; Trykova, V. I.

    2010-07-01

    The spectra of neutrons from the ( p, n) reactions on the 208Pb and 209Bi nuclei were measured in the proton-energy range 8-11 MeV. These measurements were performed by using a time-of-flight spectrometer of fast neutrons on the basis of the pulsed tandem accelerator EGP-15 of the Institute of Physics and Power Engineering (Obninsk, Russian Federation). A high resolution and stability of the time-of-flight spectrometermade it possible to identify reliably low-lying discrete levels alongwith the continuum section of the neutron spectra. The measured data were analyzed on the basis of the statistical equilibrium and preequilibrium models of nuclear reactions. The respective calculations were performed by using the precise formalism of Hauser-Feshbach statistical theory together with the generalizedmodel of a superfluid nucleus and the back-shifted Fermi gas model for the nuclear-level density. The nuclear-level densities in 208Bi and 209Po were determined along with their energy dependences and model parameters. Our results are discussed together with available experimental data and recommendations of model systematics.

  16. Modes of transference and rupture of the nucleus with neutron halos {sup 6} He on {sup 209} Bi near of the Coulomb barrier; Modos de transferencia y rompimiento del nucleo con halo neutronico {sup 6} He sobre {sup 209} Bi cerca de la barrera de Coulomb

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano C, D

    2003-07-01

    In recent experiments, the fusion of the exotic radioactive nucleus {sup 6} He with {sup 209} Bi has been studied for the first time at energies above and below the Coulomb barrier. A considerable enhancement in the fusion was observed, which implies a reduction of about 25% in the nominal fusion barrier. Some previous theoretical works suggest that this striking effect may be caused by the coupling to neutron transfer channels with a positive Q-value which would lead to a neutron flow and the consequent formation of a neck between the projectile and the target. Later, in the current work, we ran two new experiments on the same reaction using the FN Tandem Van de Graaff (10 MV) accelerator and the dual superconducting TwinSol system, both of them belonging to the University of Notre Dame, USA. This time, the purpose was to study one- and two-neutron transfer and the {sup 6} He projectile breakup at laboratory energies of 14.7, 16.2, 17.9, 19.0 and 22.5 MeV. A strong group of {sup 4} He was observed (with an effective Q-value about .5 MeV) whose integrated cross section results exceptionally high, exceeding the fusion cross section both above and below the barrier. The simultaneously measured elastic scattering angular distribution required high total cross sections so that this yield is confirmed. Preliminary coupled channels calculations sing the computer program called Fresco developed at the University of Surrey (England) suggested that the reaction mechanisms may be better described as a direct nuclear breakup and two-neutron transfer to unbound states in {sup 211} Bi. These calculations predicted also an enhancement in the fusion cross section below the barrier due to the transfer and breakup channel coupling, which strongly suggests that this channel is the 'doorway state' that explains the fusion barrier reduction observed in previous experiments. It was found that the {sup 4} He group fully dominates the total reaction cross section at the

  17. Measurements of delayed neutrons yields and time spectra from 1 GeV protons interacting with thick {sup nat}Pb, {sup 209}Bi and {sup nat}Fe targets

    Energy Technology Data Exchange (ETDEWEB)

    Ridikas, D.; Blideanu, V.; David, J.C.; Dore, D.; Prevost, A. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee, 91- Gif sur Yvette (France); Ledoux, X. [CEA Bruyeres-le-Chatel (CEA/DIF, DPTA/SPN), 91 (France); Barzakh, A.; Fedorov, D.; Moroz, F.; Panteleev, V.; Shcherbakov, O.; Vorobyev, A. [Petersburg Nuclear Physics Institute, Leningrad district (Russian Federation); Plukiene, R.; Plukis, A. [Institute of Physics, Vilnius (Lithuania)

    2008-07-01

    This paper presents the experimental results on the delayed neutrons (DN) yields and time spectra from 1 GeV protons interacting with natural lead, {sup 209}Bi and natural iron targets of variable thicknesses from 5 cm to 55 cm. Both absolute yields and time constants were obtained. In parallel, the MCNPX and PHITS codes were used to predict the DN precursors and construct the theoretical DN tables. Different model parameters are examined and show significant dependence on the choice of the intra-nuclear cascade and fission-evaporation models used. These data and modelling are of great importance for the new generation spallation neutron sources based on liquid metal technologies. Finally, the above experiment allowed the determination of the production cross sections of a number of delayed neutrons precursors as, {sup 87}Br, {sup 88}Br and {sup 17}N. For the 3 targets the emission of delayed neutrons is dominated by light reaction products such as {sup 9}Li and {sup 17}N during decay times from 0 to 20-30 s. In the case of fissile targets after longer decay times the fission fragments such as {sup 88}Br and {sup 87}Br are the major contributors. These results permit the examination of two different reaction mechanisms, namely fission and fragmentation, implemented in high energy transport codes. (authors)

  18. Laser spectroscopy of the ground state hyperfine splittings of $^{209}$Bi$^{82+}$ and $^{209}$Bi$^{80+}$

    CERN Document Server

    Lochmann, Matthias; Geppert, Christopher; Andelkovic, Zoran; Anielski, Denis; Botermann, Benjamin; Bussmann, Michael; Dax, Andreas; Frömmgen, Nadja; Hammen, Michael; Hannen, Volker; Kühl, Thomas; Litvinov, Yuri A; López-Coto, Rubén; Stöhlker, Thomas; Thompson, Richard C; Vollbrecht, Jonas; Volotka, Andrey; Weinheimer, Christian; Wen, Weiqiang; Will, Elisa; Winters, Danyal; Sánchez, Rodolfo; Nörtershäuser, Wilfried

    2014-01-01

    We performed a laser spectroscopic determination of the $2s$ hyperfine structure (HFS) splitting of lithiumlike $^{209}\\text{Bi}^{80+}$ for the first time and repeated the measurement of the $1s$ HFS splitting of hydrogenlike $^{209}\\text{Bi}^{82+}$. Both ion species were subsequently stored in the Experimental Storage Ring at GSI and cooled with an electron cooler at a velocity of $\\approx 0.71\\,c$. Pulsed laser excitation of the M1 HFS-transition was performed in anticollinear and collinear geometry for $^{209}\\text{Bi}^{82+}$ and $^{209}\\text{Bi}^{80+}$, respectively, and observed by fluorescence detection. We obtain $\\Delta E^{(1s)}= 5086.3(11)\\,\\textrm{meV}$ for $^{209}\\text{Bi}^{82+}$ and $\\Delta E^{(2s)}= 797.50(18)\\,\\textrm{meV}$ for $^{209}\\text{Bi}^{80+}$. A specific difference between the two splitting energies can be used to test QED calculations in the strongest static magnetic fields available in the laboratory independent of nuclear structure effects. Our results confirm the large relativistic ...

  19. Residual nuclide formation in 206,207,208,nat-Pb and 209-Bi induced by 0.04-2.6 GeV Protons as well as in 56-Fe induced by 0.3-2.6 GeV Protons

    CERN Document Server

    Titarenko, Yu E; Titarenko, A Yu; Butko, M A; Pavlov, K V; Tikhonov, R S; Florya, S N; Mashnik, S G; Ignatyuk, A V; Gudowski, W

    2007-01-01

    5972 independent and cumulative yields of radioactive residuals nuclei have been measured in 55 thin 206,207,208,nat-Pb and 209-Bi targets irradiated by 0.04, 0.07, 0.10, 0.15, 0.25, 0.6, 0.8, 1.2, 1.4, 1.6, and 2.6 GeV protons. Besides, 219 yields have been measured in 0.3, 0.5, 0.75, 1.0, 1.5, and 2.6 GeV proton-irradiated 56-Fe target. The protons were extracted from the ITEP U-10 synchrotron. The measured data are compared with experimental results obtained elsewhere and with theoretical calculations by LAHET, MCNPX, CEM03, LAQGSM03, CASCADE, CASCADO, and LAHETO codes. The predictive power was found to be different for each of the codes tested, but was satisfactory on the whole in the case of spallation products. At the same time, none of the codes can de-scribe well the product yields throughout the whole product mass range, and all codes must be further improved.

  20. New measurement of neutron capture resonances of 209Bi

    CERN Document Server

    Domingo-Pardo, C; Abbondanno, U; Aerts, G; Alvarez-Pol, H; Alvarez-Velarde, F; Andriamonje, Samuel A; Andrzejewski, J; Assimakopoulos, Panayiotis; Audouin, L; Badurek, G; Baumann, P; Becvar, F; Berthoumieux, E; Calviño, F; Cano-Ott, D; Capote, R; Carrillode Albornoz, A; Cennini, P; Chepel, V; Chiaveri, Enrico; Colonna, N; Cortés, G; Couture, A; Cox, J; Dahlfors, M; David, S; Dillman, I; Dolfini, R; Dridi, W; Durán, I; Eleftheriadis, C; Embid-Segura, M; Ferrant, L; Ferrari, A; Ferreira-Marques, R; Fitzpatrick, L; Frais-Kölbl, H; Fujii, K; Furman, W; Gallino, R; Gonçalves, I; Gonzalez-Romero, E; Goverdovski, A; Gramegna, F; Griesmayer, E; Guerrero, C; Gunsing, F; Haas, B; Haight, R; Heil, M; Herrera-Martínez, A; Igashira, M; Isaev, S; Jericha, E; Kadi, Y; Kappeler, F; Karamanis, D; Karadimos, D; Kerveno, M; Ketlerov, V; Köhler, P; Konovalov, V; Kossionides, E; Krticka, M; Lamboudis, C; Leeb, H; Lindote, A; Lopes, I; Lozano, M; Lukic, S; Marganiec, J; Marques, L; Marrone, S; Mastinu, P; Mengoni, A; Milazzo, P M; Moreau, C; Mosconi, M; Neves, F; Oberhummer, Heinz; Oshima, M; O'Brien, S; Pancin, J; Papachristodoulou, C; Papadopoulos, C; Paradela, C; Patronis, N; Pavlik, A; Pavlopoulos, P; Perrot, L; Plag, R; Plompen, A; Plukis, A; Poch, A; Pretel, C; Quesada, J; Rauscher, T; Reifarth, R; Rosetti, M; Rubbia, Carlo; Rudolf, G; Rullhusen, P; Salgado, J; Sarchiapone, L; Savvidis, I; Stéphan, C; Tagliente, G; Taín, J L; Tassan-Got, L; Tavora, L; Terlizzi, R; Vannini, G; Vaz, P; Ventura, A; Villamarín, D; Vincente, M C; Vlachoudis, V; Vlastou, R; Voss, F; Walter, S; Wendler, H; Wiescher, M; Wisshak, K

    2006-01-01

    The neutron capture cross section of Bi209 has been measured at the CERN n TOF facility by employing the pulse-height-weighting technique. Improvements over previous measurements are mainly because of an optimized detection system, which led to a practically negligible neutron sensitivity. Additional experimental sources of systematic error, such as the electronic threshold in the detectors, summing of gamma-rays, internal electron conversion, and the isomeric state in bismuth, have been taken into account. Gamma-ray absorption effects inside the sample have been corrected by employing a nonpolynomial weighting function. Because Bi209 is the last stable isotope in the reaction path of the stellar s-process, the Maxwellian averaged capture cross section is important for the recycling of the reaction flow by alpha-decays. In the relevant stellar range of thermal energies between kT=5 and 8 keV our new capture rate is about 16% higher than the presently accepted value used for nucleosynthesis calculations. At th...

  1. Electrochemical oxidation of 243Am(III) in nitric acid by a terpyridyl-derivatized electrode

    Energy Technology Data Exchange (ETDEWEB)

    Dares, C. J.; Lapides, A. M.; Mincher, B. J.; Meyer, T. J.

    2015-11-05

    A high surface area, tin-doped indium oxide electrode surface-derivatized with a terpyridine ligand has been applied to the oxidation of trivalent americium to Am(V) and Am(VI) in nitric acid. Potentials as low as 1.8 V vs. the saturated calomel electrode are used, 0.7 V lower than the 2.6 V potential for one-electron oxidation of Am(III) to Am(IV) in 1 M acid. This simple electrochemical procedure provides, for the first time, a method for accessing the higher oxidation states of Am in non-complexing media for developing the coordination chemistries of Am(V) and Am(VI) and, more importantly, for separation of americium from nuclear waste streams.

  2. Measurement of neutron total cross-sections of 209Bi at the Pohang Neutron Facility

    CERN Document Server

    Wang, Tao-Feng; Kim, Guinyun

    2014-01-01

    Measurements of neutron total cross-sections of natural bismuth in the neutron energy region from 0.1 eV to 100 eV have been performed by using the time-of-flight method at the Pohang Neutron Facility, which consists of an electron linear accelerator, a water-cooled tantalum target with a water moderator, and a 12-m-long time-of-flight path. A 6Li-ZnS(Ag) scintillator with a diameter of 12.5 cm and a thickness of 1.6 cm is employed as a neutron detector, and a piece of high purity natural bismuth metallic plates with a thickness of 3 mm is used for the neutron transmission measurement. The present results were compared with the evaluated data from ENDF/B VII.1 and other previous reported experimental data.

  3. Measurement of the 241Am and the 243Am Neutron Capture Cross Sections at the n_TOF Facility at CERN

    CERN Document Server

    Mendoza, E; Guerrero, C; Altstadt, S; Andrzejewski, J; Audouin, L; Barbagallo, M; Bécares, V; Bečvář, F; Belloni, F; Berthoumieux, E; Billowes, J; Boccone, V; Bosnar, D; Brugger, M; Calviani, M; Calviño, F; Carrapiço, C; Cerutti, F; Chiaveri, E; Chin, M; Colonna, N; Cortés, G; Cortés-Giraldo, M A; Diakaki, M; Domingo-Pardo, C; Duran, I; Dressler, R; Dzysiuk, N; Eleftheriadis, C; Ferrari, A; Fraval, K; Ganesan, S; García, A R; Giubrone, G; Gómez-Hornillos, M B; Gonçalves, I F; González-Romero, E; Griesmayer, E; Gunsing, F; Gurusamy, P; Jenkins, D G; Jericha, E; Kadi, Y; Käppeler, F; Karadimos, D; Kivel, N; Koehler, P; Kokkoris, M; Korschinek, G; Krtička, M; Kroll, J; Langer, C; Lederer, C; Leeb, H; Leong, L S; Losito, R; Manousos, A; Marganiec, J; Martínez, T; Mastinu, P F; Mastromarco, M; Massimi, C; Meaze, M; Mengoni, A; Milazzo, P M; Mingrone, F; Mirea, M; Mondelaers, W; Paradela, C; Pavlik, A; Perkowski, J; Pignatari, M; Plompen, A; Praena, J; Quesada, J M; Rauscher, T; Reifarth, R; Riego, A; Roman, F; Rubbia, C; Sarmento, R; Schillebeeckx, P; Schmidt, S; Schumann, D; Tagliente, G; Tain, J L; Tarrío, D; Tassan-Got, L; Tsinganis, A; Valenta, S; Vannini, G; Variale, V; Vaz, P; Ventura, A; Versaci, R; Vermeulen, M J; Vlachoudis, V; Vlastou, R; Wallner, A; Ware, T; Weigand, M; Weiß, C; Wright, T J; Žugec, P

    2014-01-01

    The capture cross sections of Am-241 and Am-243 were measured at the n\\_TOF facility at CERN in the epithermal energy range with a BaF2 Total Absorption Calorimeter. A preliminary analysis of the Am-241 and a complete analysis of the Am-243 measurement, including the data reduction and the resonance analysis, have been performed.

  4. Verification of high-energy transport codes on the basis of activation data

    CERN Document Server

    Titarenko, Yu E; Butko, M A; Dikarev, D V; Florya, S N; Pavlov, K V; Titarenko, A Yu; Tikhonov, R S; Zhivun, V M; Ignatyuk, A V; Mashnik, S G; Boudard, A; Leray, S; David, J -C; Cugnon, J; Mancusi, D; Yariv, Y; Kumawat, H; Nishihara, K; Matsuda, N; Mank, G; Gudowski, W

    2011-01-01

    Nuclide production cross sections measured at ITEP for the targets of nat-Cr, 56-Fe, nat-Ni, 93-Nb, 181-Ta, nat-W, nat-Pb, 209-Bi irradiated by protons with energies from 40 to 2600 MeV were used to estimate the predictive accuracy of several popular high-energy transport codes. A general agreement of the ITEP data with the data obtained by other groups, including the numerous GSI data measured by the inverse kinematics method was found. Simulations of the measured data were performed with the MCNPX (Bertini and ISABEL options), CEM03.02, INCL4.2+ABLA, INCL4.5+ABLA07, PHITS, and CASCADE.07 codes. Deviation factors between the calculated and experimental cross sections have been estimated for each target and for the whole energy range covered by our measurements. Two-dimensional diagrams of deviation factor values were produced for estimating the predictive power of every code for intermediate, not measured masses of nuclei-targets and bombarding energies of protons. Further improvements of all tested here cod...

  5. PRELIMINARY CROSS SECTION AND NU-BAR COVARIANCES FOR WPEC SUBGROUP 26

    Energy Technology Data Exchange (ETDEWEB)

    ROCHMAN,D.

    2007-01-31

    We report preliminary cross section covariances developed for the WPEC Subgroup 26 for 45 out of 52 requested materials. The covariances were produced in 15- and 187-group representations as follows: (1) 36 isotopes ({sup 16}O, {sup 19}F, {sup 23}Na, {sup 27}Al, {sup 28}Si, {sup 52}Cr, {sup 56,56}Fe, {sup 58}Ni, {sup 90,91,92,94}Zr, {sup 166,167,168,170}Er, {sup 206,207,208}Pb, {sup 209}Bi, {sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am, {sup 242,243,244,245}Cm) were evaluated using the BNL-LANL methodology. For the thermal region and the resolved and unresolved resonance regions, the methodology has been based on the Atlas-Kalman approach, in the fast neutron region the Empire-Kalman method has been used; (2) 6 isotopes ({sup 155,156,157,158,160}Gd and {sup 232}Th) were taken from ENDF/B-VII.0; and (3) 3 isotopes ({sup 1}H, {sup 238}U and {sup 239}Pu) were taken from JENDL-3.3. For 6 light nuclei ({sup 4}He, {sup 6,7}Li, {sup 9}Be, {sup 10}B, {sup 12}C), only partial cross section covariance results were obtained, additional work is needed and they do not report the results here. Likewise, the cross section covariances for {sup 235}U, which they recommend to take from JENDL-3.3, will be included once the multigroup processing is successfully completed. Covariances for the average number of neutrons per fission, total {nu}-bar, are provided for 10 actinides identified as priority by SG26. Further work is needed to resolve some of the issues and to produce covariances for the full set of 52 materials.

  6. Determination of cross-section starting from a decay curve composed of two halves lives; Determinacion de la seccion eficaz a partir de una curva de decaimiento compuesta de dos vidas medias

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Q, E.; Aguilera, E.F. [Instituto Nacional de Investigaciones Nucleares, Departamento del Acelerador, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    It is presented a method developed to determine the cross section of 3n channel of the fusion reaction {sup 6} He + {sup 209} Bi which is based in the {alpha} decay curve of residual nucleus, {sup 212} At. (Author)

  7. A Proposed Reaction Channel for the Synthesis of the Superheavy Nucleus Z=109

    Institute of Scientific and Technical Information of China (English)

    WANG Kun; MA Yu-Gang; MA Guo-Liang; WEI Yi-Bin; CAI Xiang-Zhou; CHEN Jin-Gen; GUO Wei; ZHONG Chen; SHEN Wen-Qing

    2004-01-01

    @@ We apply a statistical-evaporation model (HIVAP) to calculate the cross sections of superheavy elements, mainly about actinide targets and compare with some available experimental data. A reaction channel 30Si + 243Am is proposed for the synthesis of the element Z = 109 and the cross section is estimated.

  8. Transition energy and lifetime for the ground state hyperfine splitting of high Z lithium-like ions

    CERN Document Server

    Shabaev, V M; Tupitsyn, I; Yerokhin, V A; Artemiev, A N; Kühl, T; Tomaselli, M; Zherebtsov, O M

    1998-01-01

    The ground state hyperfine splitting values and the transition probabilities between the hyperfine structure components of high Z lithiumlike ions are calculated in the range Z=49-83. The relativistic, nuclear, QED and interelectronic interaction corrections are taken into account. It is found that the Bohr-Weisskopf effect can be eliminated in a combination of the hyperfine splitting values of the hydrogenlike and lithiumlike ions of an isotope. This gives a good possibility for testing the QED effects in a combination of the strong electric and magnetic fields of the heavy nucleus. Using the experimental result for the 1s hyperfine splitting in ^{209}Bi^{82+}, the 2s hyperfine splitting in ^{209}Bi^{80+} is calculated to be \\Delta E=0.7981(2) eV while the contribution derived from QED constitutes 0.0007(1) eV.

  9. Nuclear structure of 216Ra at high spin

    Indian Academy of Sciences (India)

    S Muralithar; G Rodrigues; R P Singh; R K Bhowmik; P Mukherjee; B Sethi; I Mukherjee

    2012-09-01

    High-spin states of 216Ra ( = 88, = 128) have been investigated through 209Bi(10B, 3n) reaction at an incident beam energy of 55 MeV and 209Bi(11B, 4n) reaction at incident beam energies ranging from 65 to 78 MeV. Based on coincidence data, the level scheme for 216Ra has been considerably extended up to $∼ 33\\hbar$ spin and 7.2 MeV excitation energy in the present experiment with placement of 28 new -transitions over what has been reported earlier. Tentative spin-parity assignments are done for the newly proposed levels on the basis of the DCO ratios corresponding to strong gates. Empirical shell model calculations were carried out to provide an understanding of the underlying nuclear structure.

  10. High-energy Neutron-induced Fission Cross Sections of Natural Lead and Bismuth-209

    CERN Document Server

    Tarrio, D; Carrapico, C; Eleftheriadis, C; Leeb, H; Calvino, F; Herrera-Martinez, A; Savvidis, I; Vlachoudis, V; Haas, B; Koehler, P; Vannini, G; Oshima, M; Le Naour, C; Gramegna, F; Wiescher, M; Pigni, M T; Audouin, L; Mengoni, A; Quesada, J; Becvar, F; Plag, R; Cennini, P; Mosconi, M; Rauscher, T; Couture, A; Capote, R; Sarchiapone, L; Vlastou, R; Domingo-Pardo, C; Dillmann, I; Pavlopoulos, P; Karamanis, D; Krticka, M; Jericha, E; Ferrari, A; Martinez, T; Trubert, D; Oberhummer, H; Karadimos, D; Plompen, A; Isaev, S; Terlizzi, R; Cortes, G; Cox, J; Cano-Ott, D; Pretel, C; Colonna, N; Berthoumieux, E; Vaz, P; Heil, M; Lopes, I; Lampoudis, C; Walter, S; Calviani, M; Gonzalez-Romero, E; Embid-Segura, M; Stephan, C; Igashira, M; Papachristodoulou, C; Aerts, G; Tavora, L; Berthier, B; Rudolf, G; Andrzejewski, J; Villamarin, D; Ferreira-Marques, R; Tain, J L; O'Brien, S; Reifarth, R; Kadi, Y; Neves, F; Poch, A; Kerveno, M; Rubbia, C; Lazano, M; Dahlfors, M; Wisshak, K; Salgado, J; Dridi, W; Ventura, A; Andriamonje, S; Assimakopoulos, P; Santos, C; Voss, F; Ferrant, L; Patronis, N; Chiaveri, E; Guerrero, C; Perrot, L; Vicente, M C; Lindote, A; Praena, J; Baumann, P; Kappeler, F; Rullhusen, P; Furman, W; David, S; Marrone, S; Tassan-Got, L; Gunsig, F; Alvarez-Velarde, F; Massimi, C; Mastinu, P; Pancin, J; Papadopoulos, C; Tagliente, G; Haight, R; Chepel, V; Kossionides, E; Badurek, G; Marganiec, J; Lukic, S; Pavlik, A; Goncalves, I; Duran, I; Alvarez, H; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C

    2011-01-01

    The CERN Neutron Time-Of-Flight (n\\_TOF) facility is well suited to measure small neutron-induced fission cross sections, as those of subactinides. The cross section ratios of (nat)Pb and (209)Bi relative to (235)U and (238)U were measured using PPAC detectors. The fragment coincidence method allows to unambiguously identify the fission events. The present experiment provides the first results for neutron-induced fission up to 1 GeV for (nat)Pb and (209)Bi. A good agreement with previous experimental data below 200 MeV is shown. The comparison with proton-induced fission indicates that the limiting regime where neutron-induced and proton-induced fission reach equal cross section is close to 1 GeV.

  11. Influence of the angular momentum on nuclear fission

    Energy Technology Data Exchange (ETDEWEB)

    Tanikawa, Masashi [Tokyo Univ. (Japan). Faculty of Science

    1996-03-01

    The effects of the angular momentum on the mechanism of nuclear fission are studied about the reaction systems of compound nucleus of {sup 210}P and {sup 239}Np by the time-of-flight (TOF) method. The reaction systems in this work are {sup 209}Bi+P, {sup 206}Pb+{alpha}, {sup 206}Po+{alpha}, {sup 198}Pt+{sup 12}C, {sup 238}U+P and {sup 232}Th+{sup 7}Li. Target was prepared by vacuum evaporating of each about 100 {mu}g/cm{sup 2} of {sup 209}Bi, {sup 206}Pb and {sup 198}Pt on 10 {mu}g/cm{sup 2} of carbon film. On compound nucleus {sup 210}Po, {sup 210}Po fissions at Ex=45McV but it fissions after 1 or 2 neutrons emission at higher excited energy (Ex=57 MeV). TKE shows almost the same values except higher value of {sup 209}Bi+P. The decreasing tendency of width of TKE distribution with increasing the angular momentum is found at the first time in this work. The effect of the angular momentum on the fission is small in the case of low angular momentum. On the compound nucleus {sup 239}Np, the effects are shown at the asymmetric fission part of the mass distribution. (S.Y.)

  12. Analysis of the evaluated data discrepancies for minor actinides and development of improved evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Ignatyuk, A. [Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1997-03-01

    The work is directed on a compilation of experimental and evaluated data available for neutron induced reaction cross sections on {sup 237}Np, {sup 241}Am, {sup 242m}Am and {sup 243}Am isotopes, on the analysis of the old data and renormalizations connected with changes of standards and on the comparison of experimental data with theoretical calculation. Main results of the analysis performed by now are presented in this report. (J.P.N.)

  13. Observation of 186mTa

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Unreported tantalum isomer 18mTa has been produced through the reaction 186W(n,p) by irradiation of natW with 14 MeV neutrons. The activity of 186Ta and 186Ta was measured using HPGe detectors and several X-γ as well as γ-γ coincidence arrangements. The 186mTa has been identified by means of measuring known γ rays from 186Ta p-decay. The half-life of 186mTa has been determined to be (1.5±0.1) min.

  14. Excitation functions of the nat-Ta(p,x)178m2Hf and nat-W(p,x)178m2Hf reactions at energies up to 2600 MeV

    CERN Document Server

    Titarenko, Yu E; Pavlov, K V; Titarenko, A Yu; Zhivun, V M; Chauzova, M V; Ignatyuk, A V; Mashnik, S G; Leray, S; Boudard, A; David, J -C; Mancusi, D; Cugnon, J; Yariv, Y; Nishihara, K; Matsuda, N; Kumawat, H; Stankovsky, A Yu

    2015-01-01

    Due to potential level of energy intensity 178m2Hf is an extremely interesting isomer. One possible way to produce this isomer is irradiation of nat-Ta or nat-W samples with high energy protons. Irradiation of nat-Ta and nat-W samples performed for other purposes provides an opportunity to study the corresponding reactions. This paper pre-sents the 178m2Hf independent production cross sections for both targets measured by the gamma-ray spectrometry method. The reaction excitation functions have been obtained for the proton energies from 40 up to 2600 MeV. The experimental results were compared with calculations by various versions of the intranuclear cascade model in the well-known codes: ISABEL, Bertini, INCL4.5+ABLA07, PHITS, CASCADE07 and CEM03.02. The isomer ratio for the nat-Ta(p,x)178m2Hf reaction is evaluated on the basis of the available data.

  15. Nuclear physics research program at the 30 MeV Karaj cyclotron

    Energy Technology Data Exchange (ETDEWEB)

    Noshad, H. E-mail: hnoshad@seai.neda.net.ir; Soheyli, S.; Lamehi-Rachti, M.; Talebi-Taher, A.R.; Aslani, Gh.; Maboudi-Moghaddam, S.; Rahighi, J.; Kakuee, O.R.; Heydari, N

    2002-08-01

    A versatile reaction chamber and its accessories as well as a multiparameter data acquisition system were designed, assembled, and installed in the R and D hall at NRCAM to allow nuclear measurements. The {sup 209}Bi(p,f) and {sup 197}Au(p,f) reaction experiments at E{sub p}=30 MeV were performed. The good agreement between our experimental results as compared with previously published data are presented here to show the reliability of our apparatus. In the case of the bismuth reaction, the fission cross section obtained by using pair spectrometry as well as its associated error have been measured for the first time.

  16. {sup 6}Li breakup and suppression of complete fusion above the Coulomb barrier

    Energy Technology Data Exchange (ETDEWEB)

    Elmahdy, N.A. [Modern Academy for Engineering and Technology, Cairo (Egypt); Denikin, A.S. [Dubna International University, Dubna (Russian Federation); JINR, Flerov Laboratory of Nuclear Reactions, Dubna (Russian Federation); Ismail, M.; Ellithi, A.Y. [Cairo University, Cairo (Egypt)

    2015-05-15

    We study the role of the projectile breakup in the fusion process by example of the {sup 6}Li reactions with the {sup 59}Co, {sup 144}Sm and {sup 209}Bi targets in vicinity of the Coulomb barrier. The coupled channel and distorted wave approaches are employed in order to calculate the complete fusion and the breakup cross sections, respectively. The partial cross sections in both the channels are compared in order to estimate the breakup fraction responsible for the suppression of complete fusion. The calculations are compared with available experimental data. The conclusions and recommendations are made. (orig.)

  17. An empirical fit to estimated neutron emission cross sections from proton induced reactions

    Indian Academy of Sciences (India)

    Moumita Maiti; Maitreyee Nandy; S N Roy; P K Sarkar

    2003-01-01

    Neutron emission cross section for various elements from 9Be to 209Bi have been calculated using the hybrid model code ALICE-91 for proton induced reactions in the energy range 25 MeV to 105 MeV. An empirical expression relating neutron emission cross section to target mass number and incident proton energy has been obtained. The simple expression reduces the computation time significantly. The trend in the variation of neutron emission cross sections with respect to the target mass number and incident proton energy has been discussed within the framework of the model used.

  18. Remark on: the neutron spherical optical-model absorption.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A. B.; Nuclear Engineering Division

    2007-06-30

    The energy-dependent behavior of the absorption term of the spherical neutron optical potential for doubly magic {sup 208}Pb and the neighboring {sup 209}Bi is examined. These considerations suggest a phenomenological model that results in an intuitively attractive energy dependence of the imaginary potential that provides a good description of the observed neutron cross sections and that is qualitatively consistent with theoretical concepts. At the same time it provides an alternative to some of the arbitrary assumptions involved in many conventional optical-model interpretations reported in the literature and reduces the number of the parameters of the model.

  19. Systematics of fission cross sections at the intermediate energy region

    Energy Technology Data Exchange (ETDEWEB)

    Fukahori, Tokio; Chiba, Satoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-03-01

    The systematics was obtained with fitting experimental data for proton induced fission cross sections of Ag, {sup 181}Ta, {sup 197}Au, {sup 206,207,208}Pb, {sup 209}Bi, {sup 232}Th, {sup 233,235,238}U, {sup 237}Np and {sup 239}Pu above 20 MeV. The low energy cross section of actinoid nuclei is omitted from systematics study, since the cross section has a complicated shape and strongly depends on characteristic of nucleus. The fission cross sections calculated by the systematics are in good agreement with experimental data. (author)

  20. Measurement of nuclear cross sections using radioactive beams; Medicion de secciones eficaces nucleares usando haces radiactivos

    Energy Technology Data Exchange (ETDEWEB)

    Lizcano, D.; Aguilera, E.F.; Martinez Q, E. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2000-07-01

    One of the main applications of the production and use of nuclear radioactive beams is the measurement of nuclear cross sections. In this work is used a {sup 6} He nuclear radioactive beam ({beta} emitting with half life 806.7 ms) for the study of the reaction {sup 6} + {sup 209} Bi which could have several products. This investigation was realized in collaboration with the personnel of the Nuclear Structure laboratory at the University of Notre Dame (U.S.A.) and the National institute of Nuclear Research and CONACyT by Mexico. (Author)

  1. Spectroscopy of element 115 decay chains

    Energy Technology Data Exchange (ETDEWEB)

    Rudolph, Dirk [Lund University, Sweden; Forsberg, U. [Lund University, Sweden; Golubev, P. [Lund University, Sweden; Sarmiento, L. G. [Lund University, Sweden; Yakushev, A. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Andersson, L.-L. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Di Nitto, A. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Duehllmann, Ch. E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Gates, J. M. [Lawrence Berkeley National Laboratory (LBNL); Gregorich, K. E. [Lawrence Berkeley National Laboratory (LBNL); Gross, Carl J [ORNL; Hessberger, F. P. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Herzberg, R.-D [University of Liverpool; Khuyagbaatar, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Kratz, J. V. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Rykaczewski, Krzysztof Piotr [ORNL; Schaedel, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Aberg, S. [Lund University, Sweden; Ackermann, D. [GSI-Hemholtzzentrum fur Schwerionenforschung, Darmstadt, Germany; Block, M. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Brand, H. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Carlsson, B. G. [Lund University, Sweden; Cox, D. [University of Liverpool; Derkx, X. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Eberhardt, K. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Even, J. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Fahlander, C. [Lund University, Sweden; Gerl, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Jaeger, E. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kindler, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Krier, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kojouharov, I. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Kurz, N. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Lommel, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Mistry, A. [University of Liverpool; Mokry, C. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Nitsche, H. [Lawrence Berkeley National Laboratory (LBNL); Omtvedt, J. P. [Paul Scherrer Institut, Villigen, Switzerland; Papadakis, P. [University of Liverpool; Ragnarsson, I. [Lund University, Sweden; Runke, J. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Schaffner, H. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Schausten, B. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Thoerle-Pospiech, P. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Torres, T. [Gesellschaft fur Schwerionenforschung (GSI), Germany; Traut, T. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Trautmann, N. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany; Tuerler, A. [Paul Scherrer Institut, Villigen, Switzerland; Ward, A. [University of Liverpool; Ward, D. E. [Lund University, Sweden; Wiehl, N. [Johannes Gutenberg-Universitaet Mainz, Mainz, Germany

    2013-01-01

    A high-resolution a, X-ray and -ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum fu r Schwerionenforschung. Thirty correlated a-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. The data includes first candidates of fingerprinting the decay step Mt --> Bh with characteristic X rays. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  2. Spectroscopic Tools Applied to Element Z = 115 Decay Chains

    Directory of Open Access Journals (Sweden)

    Forsberg U.

    2014-03-01

    Full Text Available Nuclides that are considered to be isotopes of element Z = 115 were produced in the reaction 48Ca + 243Am at the GSI Helmholtzzentrum für Schwerionenforschung Darmstadt. The detector setup TASISpec was used. It was mounted behind the gas-filled separator TASCA. Thirty correlated α-decay chains were found, and the energies of the particles were determined with high precision. Two important spectroscopic aspects of the offline data analysis are discussed in detail: the handling of digitized preamplified signals from the silicon strip detectors, and the energy reconstruction of particles escaping to upstream detectors relying on pixel-by-pixel dead-layer thicknesses.

  3. Neutron induced fission cross section measurements aimed at nuclear technology development

    CERN Document Server

    Belloni, Francesca; Rui, R

    2010-01-01

    Neutron induced fission cross sections of 233U, 238U, 241Am, 243Am and 245Cm in the energy range between 500 keV and 20 MeV obtained at the n_TOF Neutron Time of Flight facility at CERN (Genève) are presented. Fission fragments had been detected by a gas counter with good discrimination between nuclear fission products and background events. A comparison between the extracted cross sections, previous experimental results and evaluated libraries is reported.

  4. Fission cross section calculations of actinides with EMPIRE code

    Energy Technology Data Exchange (ETDEWEB)

    Sin, M.; Oblozinsky, P.; Herman,M.; Capote,R.

    2010-04-30

    The cross sections of the neutron induced reactions on {sup 233,234,236}U, {sup 237}Np, {sup 238,242}Pu, {sup 241,243}Am, {sup 242,246}Cm carried out in the energy range 1 keV-20 MeV with EMPIRE code are presented, emphasizing the fission channel. Beside a consistent, accurate set of evaluations, the paper contains arguments supporting the choice of the reaction models and input parameters. A special attention is paid to the fission parameters and their uncertainties.

  5. Discovery of the New Element Z=117 and Confirmation of 115

    OpenAIRE

    Oganessian Yu.Ts.; Hamilton J.H.; Utyonkov V. K.

    2011-01-01

    The discovery of the new chemical element with atomic number Z=117 is presented. The isotopes 293 117 and 294117 were produced in fusion reactions between 48Ca and 249Bk. The 249Bk was produced in the High Flux Isotope Reactor and chemically separated at Oak Ridge. Decay chains involving eleven new nuclei were identified by means of the Dubna Gas-Filled Recoil Separator. The measured decay properties show a strong rise of stability for superheavy nuclei toward N=184.The reaction 243Am+48Ca wa...

  6. Spectroscopy of element 115 decay chains.

    Science.gov (United States)

    Rudolph, D; Forsberg, U; Golubev, P; Sarmiento, L G; Yakushev, A; Andersson, L-L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Gregorich, K E; Gross, C J; Heßberger, F P; Herzberg, R-D; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Schädel, M; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2013-09-13

    A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  7. Measurement of activation cross-sections for high-energy neutron-induced reactions of Bi and Pb

    Science.gov (United States)

    Zaman, Muhammad; Kim, Guinyun; Kim, Kwangsoo; Naik, Haladhara; Shahid, Muhammad; Lee, Manwoo

    2015-08-01

    The cross-sections for 209Bi(n, 4n)206Bi, 209Bi(n, 5n)205Bi, natPb(n, xn)204mPb, natPb(n, xn)203Pb, natPb(n, xn)202mPb,natPb(n, xn)201Pb, natPb(n, xn)200Pb, natPb(n, αxn)203Hg and natPb(n, p xn)202Tl reactions were determined at the Korean Institute of Radiological and Medical Sciences (KIRAMS), Korea in the neutron energy range of 15.2 to 37.2 MeV. The above cross-sections were obtained by using the activation and off-line γ-ray spectrometric technique. The quasi-monoenergetic neutron used for the above reactions are based on the 9Be(p, n) reaction. Simulations of the spectral flux from the Be target were done using the MCNPX program. The cross-sections were estimated with the TALYS 1.6 code using the default parameter. The data from the present work and literature were compared with the data from the EAF-2010 and the TENDL-2013 libraries, and calculated values of TALYS 1.6 code. It shows that appropriate level density model, the γ-ray strength function, and the spin cut-off parameter are needed to obtain a good agreement between experimental data and theoretical values from TALYS 1.6 code.

  8. NMR Evidence for the Topologically Nontrivial Nature in a Family of Half-Heusler Compounds

    KAUST Repository

    Zhang, Xiaoming

    2016-03-16

    Spin-orbit coupling (SOC) is expected to partly determine the topologically nontrivial electronic structure of heavy half-Heusler ternary compounds. However, to date, attempts to experimentally observe either the strength of SOC or how it modifies the bulk band structure have been unsuccessful. By using bulk-sensitive nuclear magnetic resonance (NMR) spectroscopy combined with first-principles calculations, we reveal that 209Bi NMR isotropic shifts scale with relativity in terms of the strength of SOC and average atomic numbers, indicating strong relativistic effects on NMR parameters. According to first-principles calculations, we further claim that nuclear magnetic shieldings from relativistic p1/2 states and paramagnetic contributions from low-lying unoccupied p3/2 states are both sensitive to the details of band structures tuned by relativity, which explains why the hidden relativistic effects on band structure can be revealed by 209Bi NMR isotropic shifts in topologically nontrivial half-Heusler compounds. Used in complement to surface-sensitive methods, such as angle resolved photon electron spectroscopy and scanning tunneling spectroscopy, NMR can provide valuable information on bulk electronic states.

  9. Simulated nucleon–nucleon and nucleon–nucleus reactions in the frame of the cascade exciton model at high and intermediate energies

    Indian Academy of Sciences (India)

    A Abdel-Hafiez; Shaker El-Shater; M F Zaki

    2015-04-01

    In this study, we have used the cascade exciton model (CEM) to investigate different characteristics of nuclear reactions. Number of nucleon–nucleon collisions in Pb+Pb collisions as a function of impact parameter and rapidity distributions of negative particles from p+Ar and p+Xe interactions at lab = 200 GeV/c have been studied. We could create inclusive spectra of pions for separate charged states from reactions and total neutron multiplicities per primary reaction at 1000 MeV for different thin targets. Also, cross-sections for the reactions 209Bi(p, f) and 209Bi(n, f) were studied. Interactions of 1.0 GeV protons with C, Al, Cu, Sn, and Pb are presented in this study. All the calculated characteristics are compared with other theoretical calculations and compared with the experimental data. CEM shows good agreement with both theoretical and experimental results. In this study, we have used quantum molecular dynamic (QMD) as a theoretical model to compare our results.

  10. Tight-binding theory of NMR shifts in topological insulators Bi2Se3 and Bi2Te3

    Science.gov (United States)

    Boutin, Samuel; Ramírez-Ruiz, Jorge; Garate, Ion

    2016-09-01

    Motivated by recent nuclear magnetic resonance (NMR) experiments, we present a microscopic s p3 tight-binding model calculation of the NMR shifts in bulk Bi2Se3 and Bi2Te3 . We compute the contact, dipolar, orbital and core polarization contributions to the carrier-density-dependent part of the NMR shifts in 209Bi,125Te, and 77Se. The spin-orbit coupling and the layered crystal structure result in a contact Knight shift with strong uniaxial anisotropy. Likewise, because of spin-orbit coupling, dipolar interactions make a significant contribution to the isotropic part of the NMR shift. The contact interaction dominates the isotropic Knight shift in 209Bi NMR, even though the electronic states at the Fermi level have a rather weak s -orbital character. In contrast, the contribution from the contact hyperfine interaction to the NMR shift of 77Se and 125Te is weak compared to the dipolar and orbital shifts therein. In all cases, the orbital shift is at least comparable to the contact and dipolar shifts, while the shift due to core polarization is subdominant (except for Te nuclei located at the inversion centers). By artificially varying the strength of spin-orbit coupling, we evaluate the evolution of the NMR shift across a band inversion but find no clear signature of the topological transition.

  11. Note on neutron scattering and the optical model near A = 208. [0. 6 to 1. 0 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, P.; Havel, D.; Smith, A.

    1976-09-01

    Elastic neutron scattering cross sections of /sup 206/Pb, /sup 207/Pb, /sup 208/Pb and /sup 209/Bi are measured at incident neutron energy intervals of approx. 25 keV from 0.6 to 1.0 MeV with resolutions of approx. 25 keV. Optical model parameters are obtained from the energy-averaged experimental results for each of the isotopes. The observed elastic-neutron-scattering distributions and derived parameters for the lead isotopes (doubly magic or neutron holes in the closed shell) tend to differ from those of /sup 209/Bi (doubly closed shell plus a proton). These potentials, derived in the approx. spherical region of A approximately 208, are extrapolated for the analysis of total and scattering cross sections of /sup 238/U introducing only a small N-Z/A dependence and the known deformation of /sup 238/U. Good descriptions of /sup 238/U total cross sections are obtained from a few hundred keV to 10.0 MeV and the prediction of measured scattering distributions in the low MeV region are as suitable as frequently reported with other specially developed potentials.

  12. Accelerator Mass Spectrometry of Actinides in Ground- and Seawater: An Innovative Method Allowing for the Simultaneous Analysis of U, Np, Pu, Am, and Cm Isotopes below ppq Levels.

    Science.gov (United States)

    Quinto, Francesca; Golser, Robin; Lagos, Markus; Plaschke, Markus; Schäfer, Thorsten; Steier, Peter; Geckeis, Horst

    2015-06-02

    (236)U, (237)Np, and Pu isotopes and (243)Am were determined in ground- and seawater samples at levels below ppq (fg/g) with a maximum sample size of 250 g. Such high sensitivity was possible by using accelerator mass spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA) with extreme selectivity and recently improved efficiency and a significantly simplified separation chemistry. The use of nonisotopic tracers was investigated in order to allow for the determination of (237)Np and (243)Am, for which isotopic tracers either are rarely available or suffer from various isobaric mass interferences. In the present study, actinides were concentrated from the sample matrix via iron hydroxide coprecipitation and measured sequentially without previous chemical separation from each other. The analytical method was validated by the analysis of the Reference Material IAEA 443 and was applied to groundwater samples from the Colloid Formation and Migration (CFM) project at the deep underground rock laboratory of the Grimsel Test Site (GTS) and to natural water samples affected solely by global fallout. While the precision of the presented analytical method is somewhat limited by the use of nonisotopic spikes, the sensitivity allows for the determination of ∼10(5) atoms in a sample. This provides, e.g., the capability to study the long-term release and retention of actinide tracers in field experiments as well as the transport of actinides in a variety of environmental systems by tracing contamination from global fallout.

  13. Kilogram-scale purification of americium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Wheelwright, E. J.

    1979-01-01

    Sequential anion and cation exchange processes have been used for the final purification of /sup 241/Am recovered during the reprocessing of aged plutonium metallurgical scrap. Plutonium was removed by absorption of Dowex 1, X-3.5 (30 to 50 mesh) anion exchange resin from 6.5 to 7.5 M HNO/sub 3/ feed solution. Following a water dilution to 0.75 to 1.0 M HNO/sub 3/, americium was absorbed on Dowex 50W, X-8 (50 to 100 mesh) cation exchange resion. Final purification was accomplished by elution of the absorbed band down 3 to 4 successive beds of the same resin, preloaded with Zn/sup 2 +/, with an NH/sub 4/OH buffered chelating agent. The recovery of mixed /sup 241/Am-/sup 243/Am from power reactor reprocessing waste has been demonstrated. Solvent extraction was used to recover a HNO/sub 3/ solution of mixed lanthanides and actinides from waste generated by the reprocessng of 13.5 tons of Shippingport Power Reactor blanket fuel. Sequential cation exchange band-displacement processes were then used to separate americium and curium from the lanthanides and then to separate approx. 60 g of /sup 244/Cm from 1000 g of mixed /sup 241/Am-/sup 243/Am.

  14. EA-MC Neutronic Calculations on IAEA ADS Benchmark 3.2

    Energy Technology Data Exchange (ETDEWEB)

    Dahlfors, Marcus [Uppsala Univ. (Sweden). Dept. of Radiation Sciences; Kadi, Yacine [CERN, Geneva (Switzerland). Emerging Energy Technologies

    2006-01-15

    The neutronics and the transmutation properties of the IAEA ADS benchmark 3.2 setup, the 'Yalina' experiment or ISTC project B-70, have been studied through an extensive amount of 3-D Monte Carlo calculations at CERN. The simulations were performed with the state-of-the-art computer code package EA-MC, developed at CERN. The calculational approach is outlined and the results are presented in accordance with the guidelines given in the benchmark description. A variety of experimental conditions and parameters are examined; three different fuel rod configurations and three types of neutron sources are applied to the system. Reactivity change effects introduced by removal of fuel rods in both central and peripheral positions are also computed. Irradiation samples located in a total of 8 geometrical positions are examined. Calculations of capture reaction rates in {sup 129}I, {sup 237}Np and {sup 243}Am samples and of fission reaction rates in {sup 235}U, {sup 237}Np and {sup 243}Am samples are presented. Simulated neutron flux densities and energy spectra as well as spectral indices inside experimental channels are also given according to benchmark specifications. Two different nuclear data libraries, JAR-95 and JENDL-3.2, are applied for the calculations.

  15. New measurements of excitation functions of 186W(p,x) nuclear reactions up to 65 MeV. Production of a 178W/178mTa generator

    Science.gov (United States)

    Tárkányi, F.; Ditrói, F.; Takács, S.; Hermanne, A.

    2017-01-01

    New experimental excitation functions for proton induced reactions on natW are presented in the 32-65 MeV energy range. The cross-sections for natW(p,xn)186,184m,184g,183, 182m,182g,181Re, natW(p,x)178W, natW(p,x)183,182, 180m, 177,176,175Ta, 175Hf and 177Lu were measured via an activation method by using a stacked-foil irradiation technique and high resolution gamma-ray spectroscopy. The results were compared with predicted values obtained with the nuclear reaction code TALYS (results taken from the TENDL 2014 and TENDL 2015 on-line libraries). Production routes of the medically relevant radionuclides 186Re, the 178W → 178Ta generator and 181W are discussed.

  16. Report on 240Am(n,x) surrogate cross section test measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ressler, J J; Burke, J T; Gostic, J; Bleuel, D; Escher, J E; Henderson, R A; Koglin, J; Reed, T; Scielzo, N D; Stoyer, M A

    2012-02-01

    The main goal of the test measurement was to determine the feasibility of the {sup 243}Am(p,t) reaction as a surrogate for {sup 240}Am(n,f). No data cross section data exists for neutron induced reactions on {sup 240}Am; the half-life of this isotope is only 2.1 days making direct measurements difficult, if not impossible. The 48-hour experiment was conducted using the STARS/LIBERACE experimental facility located at the 88 Inch Cyclotron at Lawrence Berkeley National Laboratory in August 2011. A description of the experiment and results is given. The beam energy was initially chosen to be 39 MeV in order to measure an equivalent neutron energy range from 0 to 20 MeV. However, the proton beam was not stopped in the farady cup and the beam was deposited in the surrounding shielding material. The shielding material was not conductive, and a beam current, needed for proper tuning of the beam as well as experimental monitoring, could not be read. If the {sup 240}Am(n,f) surrogate experiment is to be run at LBNL, simple modifications to the beam collection site will need to be made. The beam energy was reduced to 29 MeV, which was within an energy regime of prior experiments and tuning conditions at STARS/LIBERACE. At this energy, the beam current was successfully tuned and measured. At 29 MeV, data was collected with both the {sup 243}Am and {sup 238}U targets. An example particle identification plot is shown in Fig. 1. The triton-fission coincidence rate for the {sup 243}Am target and {sup 238}U target were measured. Coincidence rates of 0.0233(1) cps and 0.150(6) cps were observed for the {sup 243}Am and {sup 238}U targets, respectively. The difference in count rate is largely attributed to the available target material - the {sup 238}U target contains approximately 7 times more atoms than the {sup 243}Am. A proton beam current of {approx}0.7 nA was used for measurements on both targets. Assuming a full experimental run under similar conditions, an estimate for the

  17. Optimisation study of {alpha}-cyclotron production of At-211/Po-211g for high-LET metabolic radiotherapy purposes

    Energy Technology Data Exchange (ETDEWEB)

    Groppi, F. [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy)]. E-mail: flavia.groppi@mi.infn.it; Bonardi, M.L. [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy); Birattari, C. [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy); Menapace, E. [ENEA, Division for Advanced Physics Technologies, via Don Fiammelli 2, I-40128 Bologna (Italy); Abbas, K. [Institute for Health and Consumer Protection, IHCP, JRC-Ispra, via E. Fermi, I-21020 Varese (Italy); Holzwarth, U. [Institute for Health and Consumer Protection, IHCP, JRC-Ispra, via E. Fermi, I-21020 Varese (Italy); Alfarano, A. [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy); Institute for Health and Consumer Protection, IHCP, JRC-Ispra, via E. Fermi, I-21020 Varese (Italy); Morzenti, S. [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy); Zona, C. [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, I-20090 Segrate, Milan (Italy); Alfassi, Z.B. [Department of Nuclear Engineering, Ben Gurion University of Negev, Beer-Sheva, Il-84105 (Israel)

    2005-12-01

    The production of no-carrier-added (NCA) {alpha}-emitter {sup 211}At/{sup 211g}Po radionuclides for high-LET targeted radiotherapy and immunoradiotherapy, through the {sup 209}Bi({alpha},2n) reaction, together with the required wet radiochemistry and radioanalytical quality controls carried out at LASA is described, through dedicated irradiation experiments at the MC-40 cyclotron of JRC-Ispra. The amount of both the {gamma}-emitter {sup 210}At and its long half-lived {alpha}-emitting daughter {sup 210}Po is optimised and minimised by appropriate choice of energy and energy loss of {alpha} particle beam. The measured excitation functions for production of the main radioisotopic impurity {sup 210}At{yields}{sup 210}Po are compared with theoretical predictions from model calculations performed at ENEA.

  18. Measuring the cross sections of heavy-metal spallation induced by deuterons with energies of 2, 2.94, and 3.5 GeV per nucleon

    Science.gov (United States)

    Artyushenko, M. Yu.; Baldin, A. A.; Berlev, A. I.; Bukhal, O. V.; Voronko, V. A.; Gusak, K. V.; Zhuk, I. V.; Kudashkin, I. V.; Paraipan, M.; Potapenko, A. S.; Safronova, A. A.; Sotnikov, V. V.; Tyutyunnikov, S. I.

    2016-07-01

    The cross sections for the spallation of the heavy-metal nuclei 181Ta, 197Au, 207Pb, 209Bi, 232Th, and 238U induced by relativistic deuterons with energies of 2, 2.94, and 3.5 GeV per nucleon are measured using the deuteron beam from the Nuclotron accelerator of the JINR Laboratory of High Energy Physics in Dubna, Russia. The cross-section measurements employ a combined experimental technique involving the solidstate nuclear-track detectors and the activation gamma spectrometry. Adding our measurements to the database of experimental nuclear data will make it possible to test the computer codes used for selecting the parameters of the ADS-type facilities.

  19. Mechanism of fission of neutron-deficient actinoids nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Sueki, Keisuke; Nakahara, Hiromichi [Tokyo Metropolitan Univ., Hachioji (Japan). Faculty of Science; Tanase, Masakazu; Nagame, Yuichiro; Shinohara, Nobuo; Tsukada, Kazuaki

    1996-01-01

    A heavy ion reaction ({sup 19}F+{sup 209}Bi) is selected. The reaction produces neutron-deficient {sup 228}U which is compound nucleus with a pair of Rb(z=37) and Cs(Z=55). Energy dissipation problem of nucleus was studied by measuring the isotope distribution of two fissile nuclides. Bismuth metal evaporated on aluminium foil was irradiated by {sup 19}F with the incident energy of 105-128 MeV. We concluded from the results that the excess energy of reaction system obtained with increasing the incident energy is consumed by (1) light Rb much more than Cs and (2) about 60% of energy is given to two fission fragments and the rest 40% to the translational kinetic energy or unknown anomalous {gamma}-ray irradiation. (S.Y.)

  20. Excitations of one-valence-proton, one-valence-neutron nucleus {sup 210}Bi from cold-neutron capture

    Energy Technology Data Exchange (ETDEWEB)

    Cieplicka-Oryńczak, N. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Fornal, B.; Szpak, B. [Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland); Leoni, S.; Bottoni, S. [INFN sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Bazzacco, D. [Dipartimento di Fisica e Astronomia dell’Università, I-35131 Padova (Italy); INFN Sezione di Padova, I-35131 Padova (Italy); Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T. [Institute Laue-Langevin, 6, rue Jules Horowitz, 38042 Grenoble Cedex 9 (France); Bocchi, G. [Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); France, G. de [GANIL, Bd. Becquerel, BP 55027, 14076 CAEN Cedex 05 (France); Simpson, G. [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut National Polytechnique de Grenoble, F-38026 Grenoble Cedex (France); Ur, C. [INFN Sezione di Padova, Via F. Marzolo 8, I-35131 Padova (Italy); Urban, W. [Faculty of Physics, University of Warsaw, ul. Hoża 69, 02-681, Warszawa (Poland)

    2015-10-15

    The low-spin structure of one-proton, one-neutron {sup 210}Bi nucleus was investigated in cold-neutron capture reaction on {sup 209}Bi. The γ-coincidence measurements were performed with use of EXILL array consisted of 16 HPGe detectors. The experimental results were compared to shell-model calculations involving valence particles excitations. The {sup 210}Bi nucleus offers the potential to test the effective proton-neutron interactions because most of the states should arise from the proton-neutron excitations. Additionally, it was discovered that a few states should come from the couplings of valence particles to the 3{sup −} octupole vibration in {sup 208}Pb which provides also the possibility of testing the calculations involving the core excitations.

  1. Towards saturation of the electron-capture delayed fission probability: The new isotopes 240Es and 236Bk

    Directory of Open Access Journals (Sweden)

    J. Konki

    2017-01-01

    Full Text Available The new neutron-deficient nuclei 240Es and 236Bk were synthesised at the gas-filled recoil separator RITU. They were identified by their radioactive decay chains starting from 240Es produced in the fusion–evaporation reaction 209Bi(34S,3n240Es. Half-lives of 6(2s and 22−6+13s were obtained for 240Es and 236Bk, respectively. Two groups of α particles with energies Eα=8.19(3MeV and 8.09(3MeV were unambiguously assigned to 240Es. Electron-capture delayed fission branches with probabilities of 0.16(6 and 0.04(2 were measured for 240Es and 236Bk, respectively. These new data show a continuation of the exponential increase of ECDF probabilities in more neutron-deficient isotopes.

  2. Entrance channel effects in superheavy element production

    Science.gov (United States)

    Nasirov, Avazbek; Giardina, Giorgio; Mandaglio, Giuseppe; Muminov, Akhtam

    2016-12-01

    The difference between evaporation residue cross sections measured in the cold (X+208Pb, 209Bi) and hot (48Ca+actinides) fusion reactions can be related to the stage of compound nucleus (CN) formation and/or to the stage of its survival against fission. The cold fusion reactions are favorable in synthesis of the superheavy elements (SHE) with charge numbers Z fusion reactions due to small excitation energy and large fission barrier of the CN formed in these reactions. The strong decrease of the cross sections of the synthesis of the SHE Z = 113 in the cold fusion reactions in comparison with the ones in the hot fusion reactions is the result of the increase of hindrance to the CN formation in the cold fusion reactions. The origin of the intrinsic fusion barrier, B, causing the strong decrease of the probability PCN in the cold fusion is discussed.

  3. Experimental and computer simulation study of radionuclide yields in the ADT materials irradiated with intermediate energy protons

    Energy Technology Data Exchange (ETDEWEB)

    Titarenko, Yu.E.; Shvedov, O.V.; Batyaev, V.F. [Inst. for Theoretical and Experimental Physics, B. Cheremushkinskaya, Moscow (Russian Federation)] [and others

    1998-11-01

    The results of measurements and computer simulations of the yields of residual product nuclei in {sup 209}Bi, {sup 208,207,206,nat}Pb, {sup 65,63}Cu, {sup 59}Co thin targets irradiated by 0.13, 1.2 and 1.5 GeV protons are presented. The yields were measured by direct high-precision {gamma}-spectrometry. The process was monitored by the {sup 27}Al(p,x){sup 24}Na reaction. 801 cross sections are presented and used in comparisons between the reaction yields obtained experimentally and simulated by the HETC, GNASH, LAHET, INUCL, CEM95, CASCADE, NUCLEUS, YIELDX, QMD and ALICE codes. (author)

  4. Improved parametrization of the unified model for alpha decay and alpha capture

    CERN Document Server

    Denisov, V Yu; Sedykh, I Yu

    2015-01-01

    The updated data for the ground-state-to-ground-state alpha-transition half-lives in 401 nuclei and the alpha capture cross sections of 40Ca, 44Ca, 59Co, 208Pb and 209Bi are well described in the framework of the unified model for alpha-decay and alpha-capture. The updated values of the alpha decay half-lives, the binding energies of nuclei, the spins of parent and daughter nuclei, and the surface deformation parameters are used for the reevaluation of the model parameters. The data for the ground-state-to-ground-state alpha-decay half-lives are also well described by the empirical relationships.

  5. Four-body dynamics in 6Li elastic scattering

    CERN Document Server

    Watanabe, Shin; Ogata, Kazuyuki; Yahiro, Masanobu

    2015-01-01

    We analyze 6Li elastic scattering in a wide range of incident energies (Ein), assuming the n + p + alpha + target four-body model and solving the dynamics with the four-body version of the continuum-discretized coupled-channels method (CDCC). Four-body CDCC well reproduces the experimental data with no adjustable parameter for 6Li + 209Bi scattering at Ein = 24-50 MeV and 6Li + 208Pb scattering at Ein = 29-210 MeV. In the wide Ein range, 6Li breakup is significant and provides repulsive corrections to the folding potential. As an interesting property, d breakup is strongly suppressed in 6Li-breakup processes independently of Ein. We investigate what causes the d-breakup suppression.

  6. The Equilibrium and Pre-equilibrium Triton Emission Spectra of Some Target Nuclei for ( n, xt) Reactions up to 45 MeV Energy

    Science.gov (United States)

    Tel, E.; Kaplan, A.; Aydın, A.; Özkorucuklu, S.; Büyükuslu, H.; Yıldırım, G.

    2010-08-01

    Although there have been significant research and development studies on the inertial and magnetic fusion reactor technology, there is still a long way to go to penetrate commercial fusion reactors to the energy market. Tritium self-sufficiency must be maintained for a commercial power plant. For self-sustaining (D-T) fusion driver tritium breeding ratio should be greater than 1.05. So, working out the systematics of ( n,t) reaction cross sections and triton emission differential data are important for the given reaction taking place on various nuclei at different energies. In this study, ( n,xt) reactions for some target nuclei as 16O, 27Al, 59Co and 209Bi have been investigated up to 45 MeV incident neutron energy. In the calculations of the triton emission spectra, the pre-equilibrium and equilibrium effects have been used. The calculated results have been compared with the experimental data taken from the literature.

  7. Photofission cross section and fissility of pre-actinide and intermediate-mass nuclei by 120- and 145-MeV Compton backscattered photons

    Energy Technology Data Exchange (ETDEWEB)

    Terranova, M.L. [Istituto Nazionale di Fisica Nucleare, Rome (Italy); Kezerashvili, G. Ya.; Milov, A.M. [Russian Academy of Sciences, Moscow (Russian Federation). Budker Inst. of Nuclear Physics] [and others

    1997-09-01

    Cross section measurements for photofission induced in {sup 209} Bi, {sup natP}b, {sup 197} Au, {sup nat} Pt, nat{sub w}, {sup 181} Ta, {sup 51} V and {sup nat} Ti by 120- and 145-MeV quasi-monochromatic photon beams have been performed at the ROKK-1M facility (BINP, Novosibirsk). The fission yields have been obtained using Makrofol sheets as solid-state fission track detectors. Nuclear fissility values have been deduced on the basis of Levinger`s modified quasi-deuteron model of photonuclear interaction, and compared with available literature data. The trend of fissility in the 60-145 MeV energy range has been analysed for various target nuclei as function of energy and of parameter Z{sup 2}/A. (author) 30 refs., 6 figs., 4 tabs.

  8. Folding model analysis of the nucleus–nucleus scattering based on Jacobi coordinates

    Indian Academy of Sciences (India)

    F PAKDEL; A A RAJABI; L NICKHAH

    2016-12-01

    This paper presents the results of scattering of $^{16}O+^{209}Bi interaction near the Coulomb barrier. The interaction potential between two nuclei is calculated using the double folding model with the effective nucleon–nucleon (NN) interaction. The calculations of the exchange part of the interaction were assumed to be of finite range and the density dependence of the $NN$ interaction is accounted for. Also the results are compared with thezero-range approximation. All these calculations are done using the wave functions of the two colliding nuclei in place of their density distributions. The wave functions are obtained by the $D$-dimensional wave equationusing the hyper spherical calculations on the basis of Jacobi coordinates. The numerical results for the interaction potential and the differential scattering are in good agreement with the previous works.

  9. On the mixing strength in the two lowest 0- states in 208Pb

    CERN Document Server

    Heusler, A; Hertenberger, R; Krücken, R; Riess, F; Von Brentano, P; Wirth, H F

    2006-01-01

    With a resolution of 3 keV, the two lowest 0- states in 208Pb are identified by measurements of the reaction 207Pb(d, p) with the Muenchen Q3D magnetic spectrograph in a region where the average level spacing is 6 keV. Precise relative spectroscopic factors are determined. Matrix elements of the residual interaction among one-particle one-hole configurations in a two-level scheme are derived for the two lowest 0- states in 208Pb. The off-diagonal mixing strength is determined as 105 +-10(experimental) +-40(systematic) keV. Measurements of the reaction 208Pb(p,p') via isobaric analog resonances in 209Bi support the structure information obtained.

  10. The i11/2 f5/2 and i11/2 p3/2 neutron particle-hole multiplets in 208Pb

    CERN Document Server

    Heusler, A; Graw, G; Hertenberger, R; Jolie, J; Krücken, R; Pietralla, N; Riess, F; Von Brentano, P; Wirth, H F

    2006-01-01

    Inelastic proton scattering via isobaric analog resonances allows to derive rather complete information about neutron particle-hole states. We applied this method to the doubly-magic nucleus 208Pb by measuring angular distributions of 208Pb(p, p') on top of the isobaric analog resonances in 209Bi with the Q3D magnetic spectrograph at M\\"unchen. We identify the six states of the i11/2 f5/2 multiplet and the four states of the i11/2 p3/2 multiplet in the energy range 4.6 MeV < Ex < 5.3 MeV. Firm spin assignments for the ten states are given, some of them new. Additional measurements of the reaction 207Pb(d, p) confirm the fragmented i11/2 p1/2 multiplet.

  11. Entrance channel effects in superheavy element production

    Directory of Open Access Journals (Sweden)

    Nasirov Avazbek

    2016-01-01

    Full Text Available The difference between evaporation residue cross sections measured in the cold (X+208Pb, 209Bi and hot (48Ca+actinides fusion reactions can be related to the stage of compound nucleus (CN formation and/or to the stage of its survival against fission. The cold fusion reactions are favorable in synthesis of the superheavy elements (SHE with charge numbers Z < 112 in comparison with the hot fusion reactions due to small excitation energy and large fission barrier of the CN formed in these reactions. The strong decrease of the cross sections of the synthesis of the SHE Z = 113 in the cold fusion reactions in comparison with the ones in the hot fusion reactions is the result of the increase of hindrance to the CN formation in the cold fusion reactions. The origin of the intrinsic fusion barrier, B*fus, causing the strong decrease of the probability PCN in the cold fusion is discussed.

  12. Measurement of neutron-induced activation cross-sections using spallation source at JINR and neutronic validation of the Dubna code

    Indian Academy of Sciences (India)

    Manish Sharma; V Kumar; H Kumawat; J Adam; V S Barashenkov; S Ganesan; S Golovatiouk; S K Gupta; S Kailas; M I Krivopustov; H S Palsania; V Pronskikh; V M Tsoupko-Sitnikov; N Vladimirova; H Westmeier; W Westmeier

    2007-02-01

    A beam of 1 GeV proton coming from Dubna Nuclotron colliding with a lead target surrounded by 6 cm paraffin produces spallation neutrons. A Th-foil was kept on lead target (neutron spallation source) in a direct stream of neutrons for activation and other samples of 197Au, 209Bi, 59Co, 115In and 181Ta were irradiated by moderated beam of neutrons passing through 6 cm paraffin moderator. The gamma spectra of irradiated samples were analyzed using gamma spectrometry and DEIMOS software to measure the neutron cross-section. For this purpose neutron fluence at the positions of samples is also estimated using PREPRO software. The results of cross-sections for reactions 232Th(, ), 232Th(, 2), 197Au(, ), 197Au(, ), 197Au(, ), 59Co(, ), 59Co(, ), 181Ta(, ) and 181Ta(, ) are given in this paper. Neutronics validation of the Dubna Cascade Code is also done using cross-section data by other experiments.

  13. Investigation of Neutron Spectra and Transmutation of ^{129}I, ^{237}Np and Other Nuclides with 1.5 GeV Protons from the Dubna Nuclotron Using the Electronuclear Setup "Energy plus Transmutation"

    CERN Document Server

    Krivopustov, M I; Balabekyan, A R; Batusov, Yu A; Bielewicz, M; Brandt, R; Chaloun, P; Chultem, D; Dwivedi, K K; Elishev, A F; Fragopoulou, M; Henzl, V; Henzlová, D; Kalinnikov, V G; Kievets, M K; Krása, A; Krizek, F; Kugler, A; Manolopoulou, Metaxia; Mariin, I I; Nourreddine, A; Odoj, R; Pavliouk, A V; Pronskikh, V S; Robotham, H; Siemon, K; Szuta, M; Stegailov, V I; Solnyshkin, A A; Sosnin, A N; Stoulos, S; Tsoupko-Sitnikov, V M; Tumendelger, T; Wojecehowski, A; Wagner, V; Wan, J S; Westmeier, W; Zamani-Valasiadou, M; Kumawat, H; Kumar, V; Zaverioukha, O S; Zhuk, I V

    2004-01-01

    Experiments which are part of the scientific program "Investigations of physical aspects of electronuclear method of energy production and transmutation for radioactive waste of atomic energetics using relativistic beams from the JINR Synchrophasotron/Nuclotron" (project "Energy plus Transmutation") are described. A large lead target surrounded by a four-section uranium blanket with total weight of 206.4 kg natural uranium was irradiated with 1.5 GeV protons from the new cryogenic accelerator Nuclotron. Radiochemical sensors were exposed to the secondary particle fluences inside and on top of the target assembly. Two long-lived radioactive waste of atomic energetics sensors ^{129}I and ^{237}Np (approximately 1 g weight each) and stable nuclides ^{27}Al, ^{59}Co, ^{127}I, ^{139}La, ^{197}Au and ^{209}Bi as well as natural and enriched uranium were used. In addition, various solid state nuclear track detectors and nuclear emulsions were exposed simultaneously. The experimental results confirm the theoretical e...

  14. Structural damage in InGaN induced by MeV heavy ion irradiation

    Science.gov (United States)

    Zhang, L. M.; Fadanelli, R. C.; Hu, P.; Zhao, J. T.; Wang, T. S.; Zhang, C. H.

    2015-08-01

    In0.18Ga0.82N films were irradiated with 4 MeV 84Kr and 8.9 MeV 209Bi ions to various fluences at room temperature. The irradiated films were analyzed by means of Rutherford backscattering/channeling (RBS/C) and high resolution X-ray diffraction (HRXRD). The RBS/C measurements show that under the irradiation conditions, the relative lattice disorder in the films, obtained from the normalized backscattering yield, exhibits a rapid increase in the range from ∼2% to 68%. There is also an increasing lattice expansion of the films with increasing ion fluence, as determined by the HRXRD measurements. At a comparable level of lattice disorder, the Kr irradiation leads to a more pronounced lattice expansion than the Bi irradiation. This may be attributed to a larger portion of the single interstitials in the films produced by the lighter Kr ion irradiation.

  15. Fusion reaction around the Coulomb barrier with neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Atsushi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-07-01

    Two fusion reactions with neutron-rich nuclei are reported in this work. On the first reaction: {sup 9,10,11}Be+{sup 209}Bi, the fusion cross sections around the coulomb barrier were measured by determing {alpha} disintegration from compound nucleus Fr. In the field of 10-100 mb, the same total fusion cross sections were obtained. The phenomenon {sup 11}Be(neutron halo nucleus) alone increased and decreased was not observed. The fusion cross sections of {sup 27,29,31}Al+{sup 197}Au system were determined by using 130 kcps and 30 kcps of beam strength of {sup 29,31}Al, respectively. The value of {sup 27}Al was reproduced by calculation, but that of {sup 29}Al increased around barrier which could not be explained by CCDEF calculation. (S.Y.)

  16. Decay studies of a long lived high spin isomer of /sup 210/Bi

    Energy Technology Data Exchange (ETDEWEB)

    Tuggle, D.G.

    1976-08-01

    A source of approximately 30 ..mu..g of pure (> 90%) /sup 210m/Bi (J..pi.. = 9-) was prepared by irradiating /sup 209/Bi in a nuclear reactor. After chemical separations to remove /sup 210/Po from the irradiated bismuth sample were completed, the /sup 210/Bi was electromagnetically separated from the /sup 209/Bi by a series of two isotope separations to create the source mentioned above. This source was then used to conduct alpha, conversion electron, gamma, gamma-gamma coincidence, and alpha-gamma coincidence spectroscopic studies of the decay of /sup 210m/Bi. The partial half life for the alpha decay of /sup 210m/Bi was measured as 3.0 x 10/sup 6/ yr. A lower limit of 10/sup 13/ years was set for the partial half life for the decay of /sup 210m/Bi to /sup 210/Po. Alpha decay of /sup 210m/Bi to 8 excited states of /sup 206/Tl was observed. A lower limit of 10/sup -4/% was set for the branching ratio of the parity forbidden alpha decay of /sup 210/Bi to the /sup 206/Ti ground state. Theoretical decay rates for the alpha decays of /sup 210m/Bi, /sup 210/Bi, /sup 211/Po, and /sup 211m/Po were calculated using the method developed by Hans Mang. A comparison of the calculated and experimentally measured alpha decay rates of /sup 210m/Bi showed good agreement for the relative alpha decay rates.

  17. Swift-heavy ion irradiation-induced latent tracks in few- and mono-layer MoS{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hang; Zhang, Shengxia [Chinese Academy of Sciences (CAS), Institute of Modern Physics, Lanzhou (China); University of Chinese Academy of Sciences, Beijing (China); Sun, Youmei; Zhai, Pengfei; Yao, Huijun; Zeng, Jian; Duan, Jinglai; Hou, Mingdong; Liu, Jie [Chinese Academy of Sciences (CAS), Institute of Modern Physics, Lanzhou (China); Khan, Maaz [Chinese Academy of Sciences (CAS), Institute of Modern Physics, Lanzhou (China); PINSTECH, Nanomaterials Research Group, Physics Division, Nilore, Islamabad (Pakistan)

    2016-04-15

    The latent tracks in mono- and few-layer molybdenum disulfide (MoS{sub 2}) induced by {sup 209}Bi ions with energies of 0.45-1.23 GeV were characterized by atomic force microscopy (AFM). The hillock-like latent tracks were observed on the surface of irradiated monolayer MoS{sub 2}. The diameter of the hillock after deconvolution procedure is 15.8± 1.7 nm and the height is 1.0±0.3 nm. Hillock-like tracks are induced by energy transfer from energetic {sup 209}Bi ions to electron system of MoS{sub 2}, resulting in the ionization and excitation and then the displacement of target atoms. Since Raman spectroscopy is sensitive to damages induced by swift-heavy ion irradiation, the in-plane E{sub 2g}{sup 1} mode (∝385 cm{sup -1}) and the out-of-plane A{sub 1g} mode (∝408 cm{sup -1}) of MoS{sub 2} were investigated. With increasing ion fluence, the A{sub 1g} peak shifts to higher frequencies, and the intensity ratio between A{sub 1g} and E{sub 2g}{sup 1} peak increases. Besides, the A{sub 1g} peak narrows. The evolution of the structural and vibrational properties of MoS{sub 2} with fluence is discussed. It can be concluded that the blue shift and narrowing of A{sub 1g} peak in irradiated MoS{sub 2} is due to the adsorption of oxygen molecules at latent tracks. With decreasing thickness of MoS{sub 2}, the irradiation resistance decreases. (orig.)

  18. Neutron capture reactions at DANCE

    Science.gov (United States)

    Bredeweg, T. A.

    2008-05-01

    The Detector for Advanced Neutron Capture Experiments (DANCE) is a 4π BaF2 array consisting of 160 active detector elements. The primary purpose of the array is to perform neutron capture cross section measurements on small (>~100 μg) and/or radioactive (DANCE we have performed neutron capture cross section measurements on a wide array of medium to heavy mass nuclides. Measurements to date include neutron capture cross sections on 241,243Am, neutron capture and neutron-induced fission cross sections and capture-to-fission ratio (α = σγ/σf) for 235U using a new fission-tagging detector as well as neutron capture cross sections for several astrophysics branch-point nuclei. Results from several of these measurements will be presented along with a discussion of additional physics information that can be extracted from the DANCE data.

  19. Delayed neutron spectra and their uncertainties in fission product summation calculations

    Energy Technology Data Exchange (ETDEWEB)

    Miyazono, T.; Sagisaka, M.; Ohta, H.; Oyamatsu, K.; Tamaki, M. [Nagoya Univ. (Japan)

    1997-03-01

    Uncertainties in delayed neutron summation calculations are evaluated with ENDF/B-VI for 50 fissioning systems. As the first step, uncertainty calculations are performed for the aggregate delayed neutron activity with the same approximate method as proposed previously for the decay heat uncertainty analyses. Typical uncertainty values are about 6-14% for {sup 238}U(F) and about 13-23% for {sup 243}Am(F) at cooling times 0.1-100 (s). These values are typically 2-3 times larger than those in decay heat at the same cooling times. For aggregate delayed neutron spectra, the uncertainties would be larger than those for the delayed neutron activity because much more information about the nuclear structure is still necessary. (author)

  20. Measurement of fission cross section with pure Am-243 sample using lead slowing-down spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Katsuhei; Yamamoto, Shuji; Kai, T.; Fujita, Yoshiaki; Yamamoto, Hideki; Kimura, Itsuro [Kyoto Univ. (Japan); Shinohara, Nobuo

    1997-03-01

    By making use of back-to-back type double fission chambers and a lead slowing-down spectrometer coupled to an electron linear accelerator, the fission cross section for the {sup 243}Am(n,f) reaction has been measured relative to that for the {sup 235}U(n,f) reaction in the energy range from 0.1 eV to 10 keV. The measured result was compared with the evaluated nuclear data appeared in ENDF/B-VI and JENDL-3.2, whose evaluated data were broadened by the energy resolution function of the spectrometer. General agreement was seen between the evaluated data and the measurement except that the ENDF/B-VI data were lower in the range from 15 to 60 eV and that the JENDL-3.2 data seemed to be lower above 100 eV. (author)

  1. Three sources and three components of success in detection of ultra-rare alpha decays at the Dubna Gas-Filled Recoil separator

    CERN Document Server

    Tsyganov, Y S

    2015-01-01

    General philosophy of procedure of detecting rare events in the recent experiments with 48Ca projectile at the Dubna Gas-Filled Recoil Separator(DGFRS) aimed to the synthesis of superheavy elements (SHE) has been reviewed. Specific instruments and methods are under consideration. Some historical sources of the successful experiments for Z=112-118 are considered too. Special attention is paid to application of method of active correlations in heavy-ion induced complete fusion nuclear reactions. Example of application in Z=115 experiment is presented. Brief description of the 243Am + 48Ca -> 291-x115+xn experiment is presented too. Some attention is paid to the role of chemical experiments in discoveries of SHEs. The DGFRS detection/monitoring system is presented in full firstly.

  2. Determination of the first ionization potential of actinides by resonance ionization mass spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Koehler, S. [Institut fuer Kernchemie Universitaet Mainz, Mainz (Germany); Albus, F. [Institu fuer Physik, Universitaet Mainz, Mainz (Germany); Dibenberger, R.; Erdmann, N.; Funk, H. [Institut fuer Kernchemiess Universitaet Mainz, Mainz (Germany); Hasse, H. [Institut fuer Physik, Universitaet Mainz, Mainz (Germany); Herrmann, G. [Institut fuer Kernchemiess Universitaet Mainz, Mainz (Germany); Huber, G.; Kluge, H.; Nunnemann, M.; Passler, G. [Institut fuer Physik, Universitaet Mainz, Mainz (Germany); Rao, P.M. [Bhabha Atomic Research Centre Bombay (India); Riegel, J.; Trautmann, N. [Institut fuer Kernchemie Universitaet Mainz, Mainz (Germany); Urban, F. [Institut fuer Physik, Universitaet Mainz, Mainz (Germany)

    1995-04-01

    Resonance ionization mass spectroscopy (RIMS) is used for the precise determination of the first ionization potential of transuranium elements. The first ionization potentials (IP) of americium and curium have been measured for the first time to IP{sub {ital Am}}=5.9738(2) and IP{sub {ital Cm}}=5.9913(8) eV, respectively, using only 10{sup 12} atoms of {sup 243}Am and {sup 248}Cm. The same technique was applied to thorium, neptunium, and plutonium yielding IP{sub T{sub H}}=6.3067(2), IP{sub N{sub P}}=6.2655(2), and IP{sub {ital Pu}}=6.0257(8) eV. The good agreement of our results with the literature data proves the precision of the method which was additionally confirmed by the analysis of Rydberg seris of americium measured by RIMS. {copyright}American Institute of Physics 1995

  3. Preparation of Metallic Isotope 26Mg

    Institute of Scientific and Technical Information of China (English)

    WuXiaolei; ZhangFuming; GanZaiguo; GuoJunsheng; QinZhi

    2003-01-01

    Some special isotope material is usually used in nuclear experiments. It can be served as ion beam or target. When new superheavy nuclide 265Bh (Z=107) is synthesized, a reaction of 243Am target with 26Mg ion beamis selected to produce new isotope 265Bh. The preparation and production of this rare and extremely expensive isotope 26 Mg used for ion beam substance will be a key problem in synthesizing experiment of 265Bh. Theavailable chemical form of isotope 26Mg in commercial product usually is oxide or other compound, which are not required in our experiment. They need to be transformed to metal form as a proper working substance in ion source.

  4. Determination of Five Heavy Metals (Cu, Pb, As, Cd, Hg) in Folium Microcotis by Microwave Digestion with Inductively Coupled Plasma Mass Spectrometry%微波消解/ICP-MS法测定布渣叶中5种重金属的含量

    Institute of Scientific and Technical Information of China (English)

    卢鹏; 陈浩桉; 隆颖; 杨立伟; 叶文才; 江仁望

    2011-01-01

    Objective To assay the contents of 5 heavy metals of copper(Cu) , arsenic 1 (As) , cadmium(Cd), hydrargyrum (Hg), plumbum (Pb) in Folium Microcotis by microwave digestion with inductively coupled plasma mass spectrometry(ICP-MS). Methods With germanium(72Ge) , indium(115In) and bismuth(209Bi) as the internal standard substance, the contents of the 5 heavy metals of Cu, Pb, Hg, As and Cd were detected with ICP-MS simultaneously after the samples of Folium Microcotis was treated by microwave digestion. The national standard substance of orange leaves(GBW10020) was used to estimate the accuracy of method. Results For all of the analyzed heavy metals, the correlation coefficient of the calibration curves was over 0.9990, RSD were in the range of 1.1 %~11.6 %, and the recovery rates of the procedure were 97.9 %~108.9 %. Conclusion This method is accurate, convenient, and rapid with high sensitivity, and can be applied to assay the five heavy metals of Cu, Cd, Hg, Pb, As in Folium Microcotis.%目的 采用微波消解电感耦合等离子体质谱(ICP- MS)法测定布渣叶药材中铜(Cu)、铅(Pb)、汞(Hg)、砷(As)、镉(Cd)五种重金属的含量.方法布渣叶经微波消解后,以锗(72Ge)、铟(115In)、铋(209Bi)作为内标物质,用ICP- MS法同时测定样品中Cu、Pb、Hg、As、Cd五种重金属元素的含量.用国家一级标准物质柑橘叶(GBW 10020)评价方法的准确性.结果对于所测元素,校准曲线相关系数r>0.9990回收率为97.9%~108.9%,RSD值在1.1%~11.6%.结论该方法简便、快速、灵敏度高,适合于布渣叶中五种重金属的含量测定.

  5. Application of a gamma spectroscopy system to the measurement of neutron cross sections necessary to the development of nuclear energy; Mise au point d'un systeme de spectroscopie pour mesurer des sections efficaces neutroniques applicables a un possible developpement du nucleaire comme source d'energie

    Energy Technology Data Exchange (ETDEWEB)

    Deruelle, O

    2002-09-01

    This work concerns the development of nuclear energy and nuclear waste management in particular. Two parts of this study can be distinguished. In the first part (theoretical), a thorium-plutonium fuel based on MOX and dedicated for PWR was investigated in order to transmute plutonium in a potentially low waste fuel cycle. It was shown that this type of fuel is not regenerative but could be used for a transition to the industrial thorium fuel cycle without building new reactors. Thanks to moderated neutron spectra and high loaded actinide mass in the core, U-233 is quickly created ({approx}300 kg/y) for a loss of about {approx}1200 kg of fissile plutonium. In the second part (experimental), we have developed and built a new reaction chamber to measure neutron cross sections of actinides by alpha-gamma spectroscopy. This experimental device (in principle transportable) was commissioned in the high flux reactor of ILL Grenoble. Neutron flux was measured by gamma spectroscopy of irradiated Al and Co samples and was found to be of the order of 6,0. 10{sup 14} n.cm{sup -2}.s{sup -1} (4%). By the irradiation of 11{mu}g of Am-243 and Pu-242, corresponding capture cross sections were measured in the thermal neutron flux at 50 deg C. These are the results: {sup 243}Am(n,{gamma}) {sup 244fond.}Am = 4,72{+-}1,42b; {sup 243}Am(n,{gamma}) {sup 244total}Am = 74,8{+-}3,25b; {sup 242}Pu (n,{gamma}){sup 243}Pu = 22,7{+-}1,09b. Uncertainties of the measurements are mostly due to the determination of the neutron flux, efficiency of the electronics and ambiguities related to the definition of the area under {alpha}-{gamma} spectra. Although our measured cross sections deviate (by 10-30%) from the corresponding values widely used in evaluated data libraries such as ENDF, JEF and JENDL, in this work we have demonstrated the feasibility and principle of our experimental method. Furthermore, the value for the 243-americium capture cross-section is in very good agreement with the last two

  6. RAPID DETERMINATION OF ACTINIDES IN URINE BY INDUCTIVELY-COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY: A HYBRID APPROACH

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.; Jones, V.

    2009-05-27

    A new rapid separation method that allows separation and preconcentration of actinides in urine samples was developed for the measurement of longer lived actinides by inductively coupled plasma mass spectrometry (ICP-MS) and short-lived actinides by alpha spectrometry; a hybrid approach. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration, if required, is performed using a streamlined calcium phosphate precipitation. Similar technology has been applied to separate actinides prior to measurement by alpha spectrometry, but this new method has been developed with elution reagents now compatible with ICP-MS as well. Purified solutions are split between ICP-MS and alpha spectrometry so that long- and short-lived actinide isotopes can be measured successfully. The method allows for simultaneous extraction of 24 samples (including QC samples) in less than 3 h. Simultaneous sample preparation can offer significant time savings over sequential sample preparation. For example, sequential sample preparation of 24 samples taking just 15 min each requires 6 h to complete. The simplicity and speed of this new method makes it attractive for radiological emergency response. If preconcentration is applied, the method is applicable to larger sample aliquots for occupational exposures as well. The chemical recoveries are typically greater than 90%, in contrast to other reported methods using flow injection separation techniques for urine samples where plutonium yields were 70-80%. This method allows measurement of both long-lived and short-lived actinide isotopes. 239Pu, 242Pu, 237Np, 243Am, 234U, 235U and 238U were measured by ICP-MS, while 236Pu, 238Pu, 239Pu, 241Am, 243Am and 244Cm were measured by alpha spectrometry. The method can also be adapted so that the separation of uranium isotopes for assay is not required, if uranium assay by direct dilution of the urine sample is preferred instead

  7. Toward Direct Reaction-in-Flight Measurements

    Science.gov (United States)

    Wilhelmy, Jerry; Bredeweg, Todd; Fowler, Malcolm; Gooden, Matthew; Hayes, Anna; Rusev, Gencho; Caggiano, Joseph; Hatarik, Robert; Henry, Eugene; Tonchev, Anton; Yeaman, Charles; Bhike, Megha; Krishichayan, Krishi; Tornow, Werner

    2016-03-01

    At the National Ignition Facility (NIF) neutrons having energies greater than the equilibrium 14.1 MeV value can be produced via Reaction-in-Flight (RIF) interactions between plasma atoms and upscattered D or T ions. The yield and spectrum of these RIF produced neutrons carry information on the plasma properties as well as information on the stopping power of ions under plasma conditions. At NIF the yield of these RIF neutrons is predicted to be 4-7 orders of magnitude below the peak 14 MeV neutron yield. The current generation of neutron time of flight (nTOF) instrumentation has so far been incapable of detecting these low-yield neutrons primarily due to high photon backgrounds. To date, information on RIF neutrons has been obtained in integral activation experiments using reactions with high energy thresholds such as 169Tm(n,3n)167Tm and 209Bi(n,4n) 206Bi. Initial experiments to selectively suppress photon backgrounds have been performed at TUNL using pulsed monoenergetic neutron beams of 14.9, 18.5, 24.2, and 28.5 MeV impinging on a Bibenzyl scintillator. By placing 5 cm of Pb before the scintillator we were able to selectively suppress the photons from the flash occurring at the production target and enhance the n/_signal by ~6 times.

  8. Experimental studies of highly charged ions in a Penning trap for the measurement of electron magnetic moments by double-resonance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Lindenfels, David-Friedrich von

    2015-11-18

    A precise measurement of bound-electron g factors in highly charged ions provides stringent tests for state-of-the-art theoretical calculations, such as relativistic electron-correlation, bound-state QED, and higher-order Zeeman effects. We excite the fine-structure transition of boronlike argon ({sup 40}Ar{sup 13+}) with laser radiation and probe microwave transitions between Zeeman sub-levels in the magnetic field of a Penning trap. From this laser-microwave double-resonance technique the g factor can be determined on a ppb level of accuracy in our apparatus. We have built a novel 'half-open' Penning trap with high fluorescence-detection efficiency and an integrated electron-beam ion source for production of highly charged ions from gas, injected through a cryogenic valve. In the future, heavier ions shall be captured from the HITRAP facility at GSI and the method shall be applied to hyperfine-structure transitions of hydrogenlike bismuth ({sup 209}Bi{sup 82+}) in order to measure electronic and nuclear magnetic moments. This thesis presents experimental developments as well as production, cooling, transport, and long-term storage of highly charged argon ions.

  9. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    Science.gov (United States)

    Lu, W.; Li, J. Y.; Kang, L.; Liu, H. P.; Li, H.; Li, J. D.; Sun, L. T.; Ma, X. W.

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H+, 40Ar8+, 129Xe30+, 209Bi33+, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  10. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Lu, W., E-mail: luwang@impcas.ac.cn [Institute of Modern Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, J. Y.; Kang, L.; Liu, H. P.; Li, H.; Li, J. D.; Sun, L. T.; Ma, X. W. [Institute of Modern Physics, CAS, Lanzhou 730000 (China)

    2014-02-15

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36 000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H{sup +}, {sup 40}Ar{sup 8+}, {sup 129}Xe{sup 30+}, {sup 209}Bi{sup 33+}, etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  11. Domain structure and magnetic resonance studies of ferroelastic BiVO4 revisited

    Science.gov (United States)

    Choh, Sung Ho; Jang, Min Su

    2016-04-01

    Bismuth vanadate (BiVO4) is a ferroelastic material undergoing a reversible second order phase transition at 528 K(T c) between the tetragonal and monoclinic structure. There have been experimental studies on the incommensurate domain wall (W‧) which reported different orientation angles. In order to clarify this we have tried to calculate it numerically in terms of lattice constants above and below T c by employing the theory of Sapriel, and obtained it to be either 35.9° or 54.1°. It also turns out that the shear strain (S 21) in the ferroelastic phase depends on the crystal growing condition. The remaining internal stress appears to be responsible for the formation of W‧ wall. The host atom nuclear magnetic resonance and the S-state impurity electron magnetic resonance are also reviewed. The nuclear electric quadrupole interaction of 51V and 209Bi in BiVO4 was evaluated in terms of the point charge model based on the crystal structure. The result of electric field gradient tensor turns out to be reasonable with experimental values. The zero-field splitting tensor of Mn2+, Fe3+ and Gd3+ are also compared, and the deduced local environment of these ions in the host are confirmed. Finally the second-order phase transition according to the Landau’s framework is found in this crystal from the temperature dependence of magnetic resonance parameters. Supported by The National Academy of Sciences, Republic of Korea (2014) through SHC.

  12. Importance of lifetime effects in breakup and suppression of complete fusion in reactions of weakly bound nuclei

    CERN Document Server

    Cook, K J; Luong, D H; Kalkal, Sunil; Dasgupta, M; Hinde, D J

    2016-01-01

    Complete fusion cross sections in collisions of light, weakly bound nuclei and high Z targets show above-barrier suppression of complete fusion. This has been interpreted as resulting from breakup of the weakly bound nucleus prior to reaching the fusion barrier, reducing the probability of complete fusion. This paper investigates how these conclusions are affected by lifetimes of the resonant states that are populated prior to breakup. If the mean life of a populated resonance is much longer than the fusion timescale, then its breakup cannot suppress complete fusion. For short-lived resonances, the situation is more complex. This work includes the mean life of the short-lived 2+ resonance in 8Be in classical dynamical model calculations to determine its effect on energy and angular correlations of the breakup fragments and on predictions of fusion suppression. Coincidence measurements of breakup fragments produced in reactions of 9Be with 144Sm, 168Er, 186W, 196Pt, 208Pb and 209Bi at energies below the barrie...

  13. Observation of electric quadrupole X-ray transitions in muonic thallium, lead and bismuth

    CERN Document Server

    Schneuwly, H; Engfer, R; Jahnke, U; Kankeleit, E; Lindenberger, K H; Pearce, R M; Petitjean, C; Schellenberg, L; Schröder, W U; Walter, H K; Zehnder, A

    1972-01-01

    Electric quadrupole X-ray transitions (5g to 3d, 4f to 2p, and 3d to 1s) have been observed in muonic Tl, Pb and Bi. From the 3 to 1 transitions, energy splittings of the n=3 levels were deduced. From a comparison of the relative intensities of E1 and E2 transitions the population ratios 5g/5f, 4f/4d, and 3d/3p were deduced. These ratios are well reproduced by a cascade calculation assuming a statistical initial population at n=20, including K, L and M shell conversion. In the case of /sup 205/Tl discrepancies between the experimental and the calculated 3d-1s/3p-is intensity ratio can be explained by nuclear excitation. From the 3p/sub 3/2/ to 1s/sub 1/2/ intensity in /sup 209 /Bi one can deduce the ratio of the radiationless to the X-ray transition width and give limits for prompt neutron emission from the 3d level. (23 refs).

  14. Production of α-particle emitting 211At using 45 MeV α-beam

    Science.gov (United States)

    Kim, Gyehong; Chun, Kwonsoo; Park, Sung Ho; Kim, Byungil

    2014-06-01

    Among the α-particle emitting radionuclides, 211At is considered to be a promising radionuclide for targeted cancer therapy due to its decay properties. The range of alpha particles produced by the decay of 211At are less than 70 µm in water with a linear energy transfer between 100 and 130 keV µm-1, which are about the maximum relative biological effectiveness for heavy ions. It is important to note that at the present time, only a few of cyclotrons routinely produce 211At. The direct production method is based on the nuclear reactions 209Bi(α,2n)211At. Production of the radionuclide 211At was carried out using the MC-50 cyclotron at the Korea Institute of Radiological and Medical Sciences (KIRAMS). To ensure high beam current, the α-beam was extracted with an initial energy of 45 MeV, which was degraded to obtain the appropriate α-beam energy. The calculations of beam energy degradation were performed utilizing the MCNPX. Alumina-baked targets were prepared by heating the bismuth metal powder onto a circular cavity in a furnace. When using an Eα, av of 29.17 MeV, the very small contribution of 210At confirms the right choice of the irradiation energy to obtain a pure production of 211At isotope.

  15. Search for the two-phonon octupole vibrational state in {sup 208}Pb

    Energy Technology Data Exchange (ETDEWEB)

    Blumenthal, D.J.; Henning, W.; Janssens, R.V.F. [and others

    1995-08-01

    We performed an experiment to search for the two-phonon octupole vibrational state in {sup 208}Pb. Thick targets of {sup 208}Pb, {sup 209}Bi, {sup 58,64}Ni, and {sup 160}Gd were bombarded with 1305 MeV beams of were bombard {sup 208}Pb supplied by ATLAS. Gamma rays were detected using the Argonne-Notre Dame BGO gamma-ray facility, consisting of 12 Compton-suppressed germanium detectors surrounding an array of 50 BGO scintillators. We identified some 30 known gamma rays from {sup 208}Pb in the spectra gated by the 5{sup -} {yields} 3{sup -} and 3{sup -} {yields} 0{sup +} transitions in {sup 208}Pb. In addition, after unfolding these spectra for Compton response, we observed broad coincident structures in the energy region expected for the 2-phonon states. Furthermore, we confirmed the placement of a 2485 keV line observed previously in {sup 207}Pb and find no evidence consistent with the placement of this line in {sup 208}Pb. We are currently in the process of investigating the origin of the broadened lines observed in the spectra, extracting the excitation probability of states in {sup 208}Pb, and determining the relative probability of mutual excitation and neutron transfer in this reaction. An additional experiment is also being performed to collect much higher statistics germanium-germanium coincidence data for the thick {sup 208}Pb target.

  16. Study of $\\overline{p}$-Nucleus Interaction with a High Resolution Magnetic Spectrometer

    CERN Multimedia

    2002-01-01

    This experiment uses the high resolution, large solid angle and large momentum acceptance magnetic spectrometer SPES~II to study the interaction between @* and complex nuclei in the following experiments: \\\\ \\\\ \\item 1)~~~~A(@*, @*)A. Angular distribution of @* elastically scattered from |1|2C, |4|0Ca and |2|0|8Pb. \\item 2)~~~~A(@*, @*')A*. Excitation energy spectra and some angular distributions of @* inelastically scattered from |1|2C, |4|0Ca and |2|0|8Pb up to an excitation energy of &prop.~100~MeV. \\item 3)~~~~A(@*, p)A^z^-^1 (@*). Excitation energy spectra for knock out reaction on |6Li, |1|2C, |6|3Cu and |2|0|9Bi at several angles. \\end{enumerate}\\\\ \\\\ Any beam momentum between 300 MeV/c and 800 MeV/c will be suitable for this experiment. In order to vary the effect of strong absorption of @* by nuclei, elastic and inelastic scattering will be performed at two or three different @* momenta (depending on the way LEAR will be operated) down to 300~MeV/c.

  17. Study on target spallation reaction cross sections induced by high energy neutrons and heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Takashi [Tohoku Univ., Sendai (Japan). Cyclotron and Radioisotope Center

    1996-03-01

    The target spallation reaction cross sections of neutrons and heavy ions which have not been observed are determined in this paper. The object of this work is to make clear the differences between the spallation reaction cross section of neutron and that of proton by comparing the obtained value of neutron with the known value of proton. To this end, the quasi monochromatic neutron field of 20{approx}50 MeV was developed in 4 cyclotrons, INS, CYRIC, TIARA and RIKEN. The nuclear spallation reaction cross sections of C, Al and Bi were measured in the above field and the distribution of nuclear spallation reaction products in Cu determined by C ion beam of HIMAC. {sup 12}C(n,2n){sup 11}C reaction cross section shows the maximum value of about 20 mb at near 40{approx}50 MeV and then the value gradually decreased to 10 mb. The cross sections of {sup 209}Bi(n,Xn) are shown. The distribution of {sup 61}Cu is lower at the entrance and higher in the depth. (S.Y.)

  18. Systematics of photopion reaction yields at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, Hiroshi [Kanazawa Univ. (Japan). Faculty of Science

    1996-03-01

    Our development in radiochemical measurements of photopion yields from complex nuclei ranging from {sup 7}Li to {sup 209}Bi at intermediate energies is reviewed. It has been found from systematized yields with respect to photon-energies, types of photopion reaction and target masses that (1) photons responsible for the ({gamma}, {pi}{sup +}), ({gamma}, {pi}{sup -}) and ({gamma}, {pi}{sup -}xn) reactions upto x=9 are mostly of energies lower than 400 MeV but higher than 140 MeV (pion rest mass), (2) ({gamma}, {pi}{sup +}) and ({gamma}, {pi}{sup -}) yields are independent of target mass (A{sub t}) heavier than A{sub t}{approx}30, and the yield ratio of Y({gamma}, {pi}{sup -})/Y({gamma}, {pi}{sup +}) is 5-6 irrespective of photon energies concerned, and (3) the yield variations of ({gamma}, {pi}{sup -}xn) reactions are well expressed as functions of (N/Z) of targets and neutron multiplicity. These findings appear to imply requirements of new concepts on neutron density distributions and photonuclear processes in complex nuclei. (author)

  19. Determination of Heavy Metals Content in Five Kinds of Chinese Medicinal Material by ICP - MS%ICP-MS法测定5种中药材中4种重金属的含量

    Institute of Scientific and Technical Information of China (English)

    贾薇; 江滨; 曾元儿

    2009-01-01

    目的 建立电感耦合等离子体质谱(ICP-MS)法测定5种中药材中铜(Cu)、砷(As)、镉(Cd)、铅(Pb)等重金属含量的方法 .方法 样品经微波消解,以锗(72Ge)、铟(115In)、铋(209Bi)为内标,采用ICP-MS法同时测定上述4种元素的含量.结果 对于各测定元素,标准曲线的相关系数r=0.9995~0.9997,回收率为92.3%~108.0%,RSD值在2.4%~5.8%.结论 该方法 简便、快速、准确,可用于中药材中这4种重金属元素的含量测定.

  20. Study of 207Tl126 Produced in Deep-Inelastic Reactions

    Directory of Open Access Journals (Sweden)

    Wilson E.

    2014-03-01

    Full Text Available Deep-inelastic collisions of a 208Pb beam on a 208Pb target were performed using the ATLAS accelerator at Argonne National Laboratory. The Gammasphere detector array was used for the detection of prompt and delayed gamma-rays of the reaction products.207Tl is one proton away from the 208Pb doubly-magic nucleus. Its low-energy level structure is dominated by the single proton-hole states πs1/2−1, πd3/2−1 and πh11/2−1. The 11/2− state is isomeric with T1/2 = 1.33(11 s. The reaction partner of 207Tl is 209Bi, which has arelatively well established level scheme compared to 207Tl. Cross-coincidences between these two nuclei were used to confirm or establish levels above the 11/2− isomeric state in 207Tl. These states are obtained via breaking of the neutron core. Angular correlation analysis was performed on known transitions in 208Pb, proving the applicability of this method for multipolarity assignment.

  1. The Karlsruhe Astrophysical Database of Nucleosynthesis in Stars Project - Status and Prospects

    CERN Document Server

    Dillmann, Iris; Fülöp, Zsolt; Plag, Ralf; Käppeler, Franz; Rauscher, Thomas

    2014-01-01

    The KADoNiS (Karlsruhe Astrophysical Database of Nucleosynthesis in Stars) project is an astrophysical online database for cross sections relevant for nucleosynthesis in the $s$ process and the $\\gamma$ process. The $s$-process database (www.kadonis.org) was started in 2005 and is presently facing its 4th update (KADoNiS v1.0). The $\\gamma$-process database (KADoNiS-p, www.kadonis.org/pprocess) was recently revised and re-launched in March 2013. Both databases are compilations for experimental cross sections with relevance to heavy ion nucleosynthesis. For the $s$ process recommended Maxwellian averaged cross sections for $kT$= 5-100~keV are given for more than 360 isotopes between $^{1}$H and $^{210}$Bi. For the $\\gamma$-process database all available experimental data from $(p,\\gamma), (p,n), (p,\\alpha), (\\alpha,\\gamma), (\\alpha,n)$, and $(\\alpha,p)$ reactions between $^{70}$Ge and $^{209}$Bi in or close to the respective Gamow window were collected and can be compared to theoretical predictions. The aim of...

  2. Studies on Neutron, Photon (Bremsstrahlung and Proton Induced Fission of Actinides and Pre-Actinides

    Directory of Open Access Journals (Sweden)

    H. Naik

    2015-08-01

    Full Text Available We present the yields of various fission products determined in the reactor neutron, 3.7-18.1 MeV quasi-mono energetic neutron, 8-80 MeV bremsstrahlung and 20-45 MeV proton induced fission of 232Th and 238U using radiochemical and off-line beta or gamma ray counting. The yields of the fission products in the bremsstrahlung induced fission natPb and 209Bi with 50- 70 MeV and 2.5 GeV based on off-line gamma ray spectrometric technique were also presented. From the yields of fission products, the mass chains yields were obtained using charge distribution correction. From the mass yield distribution, the peak-to-valley (P/V ratio was obtained. The role of excitation energy on the peak-to-valley ratio and fine structure such as effect of shell closure proximity and even-odd effect of mass yield distribution were examined. The higher yields of the fission products around A=133-134, 138-140 and 143-144 and their complementary products explained from the nuclear structure effect and role of standard I and II mode of asymmetric fission. In the neutron, photon (bremsstrahlung and proton induced fission, the asymmetric mass distribution for actinides (Th, U and symmetric distribution for pre-actinides (Pb, Bi were explained from different type of potential fission barrier

  3. Operation of Lanzhou all permanent electron cyclotron resonance ion source No. 2 on 320 kV platform with highly charged ions.

    Science.gov (United States)

    Lu, W; Li, J Y; Kang, L; Liu, H P; Li, H; Li, J D; Sun, L T; Ma, X W

    2014-02-01

    The 320 kV platform for multi-discipline research with highly charged ions is a heavy ion beam acceleration instrument developed by Institute of Modern Physics, which is dedicated to basic scientific researches such as plasma, atom, material physics, and astrophysics, etc. The platform has delivered ion beams of 400 species for 36,000 h. The average operation time is around 5000 h/year. With the beams provided by the platform, lots of outstanding progresses were made in various research fields. The ion source of the platform is an all-permanent magnet electron cyclotron resonance ion source, LAPECR2 (Lanzhou All Permanent ECR ion source No. 2). The maximum axial magnetic fields are 1.28 T at injection and 1.07 T at extraction, and the radial magnetic field is up to 1.21 T at the inner wall of the plasma chamber. The ion source is capable to produce low, medium, and high charge state gaseous and metallic ion beams, such as H(+), (40)Ar(8+), (129)Xe(30+), (209)Bi(33+), etc. This paper will present the latest result of LAPECR2 and the routine operation status for the high voltage platform.

  4. The theory of the Bohr-Weisskopf effect in the hyperfine structure

    CERN Document Server

    Karpeshin, F F

    2015-01-01

    For twenty years research into the anomalies in the HF spectra was going in a wrong direction by fighting the related Bohr-Weisskopf effect. As a way out, the model-independent way is proposed of estimating the nuclear radii from the hyper-fine splitting. The way is based on analogy of HFS to internal conversion coefficients, and the Bohr-Weisskopf effect - to the anomalies in the internal conversion coefficients. This makes transparent It is shown that the parameters which can be extracted from the data are the even nuclear moments of the magnetization distribution. The radii $R_2$ and (for the first time) $R_4$ are thus obtained by analysis of the experimental HFS for the H- and Li-like ions of $^{209}$Bi. The critical prediction of the HFS for the $2p_{1/2}$ state is discussed. The moments may be determined in this way only if the higher QED effects are properly taken into account. Therefore, this set of the parameters form a basis of a strict QED test. Experimental prospects are discussed, aimed at retrie...

  5. Approaching complete low-spin spectroscopy of 210Bi with a cold-neutron capture reaction

    Science.gov (United States)

    Cieplicka-Oryńczak, N.; Fornal, B.; Leoni, S.; Bazzacco, D.; Blanc, A.; Bocchi, G.; Bottoni, S.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Szpak, B.; Ur, C.; Urban, W.

    2016-05-01

    The low-spin structure of the 210Bi nucleus was investigated in the neutron capture experiment 209Bi(n ,γ )210Bi performed at ILL Grenoble at the PF1B cold-neutron facility. By using the EXILL multidetector array, consisting of 46 high-purity germanium crystals, and γ γ -coincidence technique, 64 primary γ rays were observed (40 new) and a total number of 70 discrete states (33 new) were located below the neutron binding energy in 210Bi. The analysis of the angular correlations of γ rays provided information about transitions multipolarities, which made it possible to confirm most of the previously known spin-parity assignments and helped establish new ones. The obtained experimental results were compared to shell-model calculations involving one-valence-proton, one-valence-neutron excitations outside the 208Pb core. It has been found that while up to the energy of ˜2 MeV each state observed in 210Bi has its calculated counterpart; at higher excitation energies some levels cannot be described by the valence particle couplings. These states may arise from couplings of valence particles to the 3- octupole phonon of the doubly magic 208Pb core and may serve as a testing ground for models which describe single particle-phonon excitations.

  6. Multipolarity of the 2-→1- , ground-state transition in 210Bi via multivariable angular correlation analysis

    Science.gov (United States)

    Cieplicka-Oryńczak, N.; Szpak, B.; Leoni, S.; Fornal, B.; Bazzacco, D.; Blanc, A.; Bocchi, G.; Bottoni, S.; de France, G.; Jentschel, M.; Köster, U.; Mutti, P.; Simpson, G.; Soldner, T.; Ur, C.; Urban, W.

    2016-07-01

    The multipolarity of the main transition leading to the ground state in 210Bi was investigated using the angular correlations of γ rays. The analyzed γ -coincidence data were obtained from the 209Bi(n ,γ )210Bi experiment performed at Institut Laue-Langevin Grenoble at the PF1B cold-neutron facility. The EXILL (EXOGAM at the ILL) multidetector array, consisting of 16 high-purity germanium detectors, was used to detect γ transitions. The mixing ratio of the 320-keV γ ray was defined by minimizing a multivariable χΣ2 function constructed from the coefficients of angular correlation functions for seven pairs of strong transitions in 210Bi. As a result, the almost pure M 1 multipolarity of the 320-keV γ ray was obtained, with an E 2 admixture of less than 0.6% only (95% confidence limit). Based on this multipolarity the neutron-capture cross section leading to the ground state in 210Bi, that decays in turn to radiotoxic 210Po, was determined to be within the limits 21.3(9) and 21.5(9) mb. This result is important for nuclear reactor applications.

  7. Classical simulations of heavy-ion fusion reactions and weakly-bound projectile breakup reactions

    Indian Academy of Sciences (India)

    S S Godre

    2014-05-01

    Heavy-ion collision simulations in various classical models are discussed. Heavy-ion reactions with spherical and deformed nuclei are simulated in a classical rigid-body dynamics (CRBD) model which takes into account the reorientation of the deformed projectile. It is found that the barrier parameters depend not only on the initial orientations of the deformed nucleus, but also on the collision energy and the moment of inertia of the deformed nucleus. Maximum reorientation effect occurs at near- and below-barrier energies for light deformed nuclei. Calculated fusion crosssections for 24Mg + 208Pb reaction are compared with a static-barrier-penetration model (SBPM) calculation to see the effect of reorientation. Heavy-ion reactions are also simulated in a 3-stage classical molecular dynamics (3S-CMD) model in which the rigid-body constraints are relaxed when the two nuclei are close to the barrier thus, taking into account all the rotational and vibrational degrees of freedom in the same calculation. This model is extended to simulate heavy-ion reactions such as 6Li + 209Bi involving the weakly-bound projectile considered as a weakly-bound cluster of deuteron and 4He nuclei, thus, simulating a 3-body system in 3S-CMD model. All the essential features of breakup reactions, such as complete fusion, incomplete fusion, no-capture breakup and scattering are demonstrated.

  8. A model for explaining fusion suppression using the classical trajectory method

    Science.gov (United States)

    Phookan, C. K.; Kalita, K.

    2013-12-01

    A two-dimensional classical trajectory model is used to explain the projectile breakup and above-barrier fusion suppression for the reactions 6Li+209Bi, 6Li+152Sm and 6Li+144Sm. To obtain the initial conditions of the equations of motion, a simplified model of the 6Li nucleus has been developed. Numerical solutions of the equations lead to the classification of orbits into breakup and no-breakup trajectories. The breakup fraction is studied as a function of the impact parameter. Using quantum mechanical arguments, the cut-off impact parameter for fusion is determined by proposing a sharp cut-off model which assumes that there is an angular momentum limit to fusion. We introduce a simple formula for the explanation of fusion suppression, according to which fusion suppression is given by the average of the breakup fractions evaluated at impact parameters ranging from head-on collision up to the cut-off impact parameter. We find that there is excellent agreement between the experimental fusion cross section (σexp) and the calculated fusion cross section (σcal) for the systems studied.

  9. Astatine-211: production and availability.

    Science.gov (United States)

    Zalutsky, Michael R; Pruszynski, Marek

    2011-07-01

    The 7.2-h half life radiohalogen (211)At offers many potential advantages for targeted α-particle therapy; however, its use for this purpose is constrained by its limited availability. Astatine-211 can be produced in reasonable yield from natural bismuth targets via the (209)Bi(α,2n)(211)At nuclear reaction utilizing straightforward methods. There is some debate as to the best incident α-particle energy for maximizing 211At production while minimizing production of (210)At, which is problematic because of its 138.4-day half life α-particle emitting daughter, (210)Po. The intrinsic cost for producing (211)At is reasonably modest and comparable to that of commercially available (123)I. The major impediment to (211)At availability is attributed to the need for a medium energy α-particle beam for its production. On the other hand, there are about 30 cyclotrons in the world that have the beam characteristics required for (211)At production.

  10. Nuclear reactions with radioactive and stable beams (Part I); Reacciones nucleares con haces radiactivos y estables (Parte I)

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-12-15

    At the present time there is a great interest at world level in experiments, with accelerated nuclei of short half life. The dispersion, fusion, transfer and break processes in the interaction of weakly light projectiles bounded with targets of Z great its have been object of intense recent investigation, at world level. Our group, in collaboration with the University of Notre Dame, it has measured and analyzed these processes for weakly bound systems as: {sup 6}He + {sup 209}Bi, {sup 8}Li + {sup 208}Pb, {sup 10}Be + {sup 208}Pb. On the other hand a research line that has wakened up great interest, it is that of studies of resonant reactions using the Inverse Kinematics technique with thick targets. The use of this technique allows to measure an entire excitation function with a single bombardment. Our group has carried out, in the ININ, preliminary bombardments for the system {sup 12}C + {sup 4}He. This allowed to establish the feasibility of implementing this technique in our Laboratory. The application of this and other techniques to different systems like {sup 18}O + {sup 4}He, {sup 12}C + {sup 12}C, {sup 12}C + {sup 16}O, {sup 16}O + {sup 16}O, it opens the possibility to measure the fusion of these systems at very low energy and to deepen in the knowledge of the nuclear structure and the nuclear astrophysics. In this technical report, the activities carried out by our group during 2004 are described.(Author)

  11. Production cross sections of the superheavy nucleus 117 based on the dinuclear system model

    Institute of Scientific and Technical Information of China (English)

    ZHAO Wei-Juan; ZHANG Yong-Qi; WANG Hua-Lei; SONG Li-Tao; LI Lu-Lu

    2010-01-01

    Within the framework of the dinuclear system model,the capture of two colliding nuclei,and the formation and de-excitation process of a compound nucleus are described by using an empirical coupled channel model,solving the master equation numerically and the statistical evaporation model,respectively.In the process of heavy-ion capture and fusion to synthesize superheavy nuclei,the barrier distribution func-tion is introduced and averaging collision orientations are considered.Based on this model,the production cross sections of the cold fusion system 76-82Se+209Bi and the hot fusion systems 55Mn+238U,51V-+244Pu,59 Co+232 Th,48 Ca+247-249 Bk and 45 Sc+246-248 Cm are calculated.The isotopic dependence of the largest production cross sections is analyzed briefly,and the optimal projectile-target combination and excitation energy of the ln-4n evaporation channels are proposed.It is shown that the hot fusion systems 48Ca+247 249Bk in the3n evaporation channels and 45Sc+248Cm in the 2n-4n channels are optimal for synthesizing the superheavy element 117.

  12. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. Progress report, September 1, 1991--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1992-12-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A {approx_equal} 182 region, structure of {sup 182}Hg and {sup 182}Au at high spin, a highly deformed band in {sup 136}Pm and the anomalous h{sub 11/2} proton crossing in the A{approximately}135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier {alpha} particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative {sup 209}Bi + {sup 136}Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4{pi} channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  13. Investigations of nuclear structure and nuclear reactions induced by complex projectiles. [Dept. of Chemistry, Washington Univ. , St. Louis, Mo

    Energy Technology Data Exchange (ETDEWEB)

    Sarantites, D.G.

    1992-01-01

    The research program described touches five areas of nuclear physics: nuclear structure studies at high spin (hyperdeformation in the mass A [approx equal] 182 region, structure of [sup 182]Hg and [sup 182]Au at high spin, a highly deformed band in [sup 136]Pm and the anomalous h[sub 11/2] proton crossing in the A[approximately]135 superdeformed region), studies at the interface between structure and reactions (population of entry states in heavy-ion fusion reactions, nuclear structure effects in proton evaporation spectra, nuclear structure- dependent entry state population by total spectroscopy, entrance channel effects in fusion near the barrier, lifetimes of subbarrier [alpha] particles by the atomic clock method), production and study of hot nuclei (the statistical model evaporation code EVAP, statistical emission of deuterons and tritons from highly excited compound nuclei, heavy-fragment emission as a probe of the thermal properties of highly excited compound nuclei, use of incoming-wave boundary condition transmission coefficients in the statistical model: implications in the particle evaporation spectra, study of transparency in the optical model), reaction mechanism studies (binary character of highly dissipative [sup 209]Bi + [sup 136]Xe collisions at E/A=28.2 MeV), and development and use of novel techniques and instrumentation in these areas of research (including a 4[pi] channel selection device, a novel x-ray detector, and a simple channel-selecting detector).

  14. Analytic one-electron properties at the 4-component relativistic coupled cluster level with inclusion of spin-orbit coupling

    Science.gov (United States)

    Shee, Avijit; Visscher, Lucas; Saue, Trond

    2016-11-01

    We present a formulation and implementation of the calculation of (orbital-unrelaxed) expectation values at the 4-component relativistic coupled cluster level with spin-orbit coupling included from the start. The Lagrangian-based analytical energy derivative technique constitutes the basic theoretical framework of this work. The key algorithms for single reference relativistic coupled cluster have been implemented using routines for general tensor contractions of up to rank-2 tensors in which the direct product decomposition scheme is employed to benefit from double group symmetry. As a sample application, we study the electric field gradient at the bismuth nucleus in the BiX (X = N, P) series of molecules, where the effect of spin-orbit coupling is substantial. Our results clearly indicate that the current reference value for the nuclear quadrupole moment of 209Bi needs revision. We also have applied our method to the calculation of the parity violating energy shift of chiral molecules. The latter property is strictly zero in the absence of spin-orbit coupling. For the H2X2 (X = O,S,Se,Te) series of molecules the effect of correlation is found to be quite small.

  15. Measurement of cross-sections of fission reactions induced by neutrons on actinides from the thorium cycle at n-TOF facility; Mesures de sections efficaces de fission induite par neutrons sur des actinides du cycle du thorium a n-TOF

    Energy Technology Data Exchange (ETDEWEB)

    Ferrant, L

    2005-09-01

    In the frame of innovating energy source system studies, thorium fuel cycle reactors are considered. Neutron induced fission cross section on such cycle involved actinides play a role in scenario studies. To feed them, data bases are built with experimental results and nuclear models. For some nuclei, they are not complete or in disagreement. In order to complete these data bases, we have built an original set up, consisting in an alternation of PPACs (Parallel Plate Avalanche Chamber) and ultra - thin targets, which we installed on n-TOF facility. We describe detectors, set up, and the particular care brought to target making and characterization. Fission products in coincidence are detected with precise time measurement and localization with delay line read out method. We contributed, within the n-TOF collaboration, to the CERN brand new intense spallation neutron source characterization, based on time of flight measurement, and we describe its characteristics and performances. We were able to measure such actinide fission cross sections as {sup 232}Th, {sup 234}U, {sup 233}U, {sup 237}Np, {sup 209}Bi, and {sup nat}Pb relative to {sup 235}U et {sup 238}U standards, using an innovative acquisition system. We took advantage of the lame accessible energy field, from 0.7 eV to 1 GeV, combined with the excellent energy resolution in this field. Data treatment and analysis advancement are described to enlighten performance and limits of the obtained results. (author)

  16. Neutron capture and neutron-induced fission experiments on americium isotopes with DANCE

    Science.gov (United States)

    Jandel, M.; Bredeweg, T. A.; Stoyer, M. A.; Wu, C. Y.; Fowler, M. M.; Becker, J. A.; Bond, E. M.; Couture, A.; Haight, R. C.; Haslett, R. J.; Henderson, R. A.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Ullmann, J. L.; Vieira, D. J.; Wilhelmy, J. B.; Wouters, J. M.

    2009-01-01

    Neutron capture cross section data on Am isotopes were measured using the Detector for Advanced Neutron Capture Experiments (DANCE) at Los Alamos National Laboratory. The neutron capture cross section was determined for 241Am for neutron energies between thermal and 320 keV. Preliminary results were also obtained for 243Am for neutron energies between 10 eV and 250 keV. The results on concurrent neutron-induced fission and neutron-capture measurements on 242mAm will be presented where the fission events were actively triggered during the experiments. In these experiments, a Parallel-Plate Avalanche Counter (PPAC) detector that surrounds the target located in the center of the DANCE array was used as a fission-tagging detector to separate (n,γ) events from (n,f) events. The first direct observation of neutron capture on 242mAm in the resonance region in between 2 and 9 eV of the neutron energy was obtained.

  17. Measurement of fission cross-section of actinides at n_TOF for advanced nuclear reactors

    CERN Document Server

    Calviani, Marco; Montagnoli, G; Mastinu, P

    2009-01-01

    The subject of this thesis is the determination of high accuracy neutron-induced fission cross-sections of various isotopes - all of which radioactive - of interest for emerging nuclear technologies. The measurements had been performed at the CERN neutron time-of-flight facility n TOF. In particular, in this work, fission cross-sections on 233U, the main fissile isotope of the Th/U fuel cycle, and on the minor actinides 241Am, 243Am and 245Cm have been analyzed. Data on these isotopes are requested for the feasibility study of innovative nuclear systems (ADS and Generation IV reactors) currently being considered for energy production and radioactive waste transmutation. The measurements have been performed with a high performance Fast Ionization Chamber (FIC), in conjunction with an innovative data acquisition system based on Flash-ADCs. The first step in the analysis has been the reconstruction of the digitized signals, in order to extract the information required for the discrimination between fission fragm...

  18. Behavior of actinides in the Integral Fast Reactor fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Courtney, J.C. [Louisiana State Univ., Baton Rouge, LA (United States). Nuclear Science Center; Lineberry, M.J. [Argonne National Lab., Idaho Falls, ID (United States). Technology Development Div.

    1994-06-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for ten day exposure in the Experimental Breeder Reactor-2 which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction-rates and neutron spectra. These experimental data increase the authors` confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  19. Review and Assessment of Neutron Cross Section and Nubar Covariances for Advanced Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    Maslov,V.M.; Oblozinsky, P.; Herman, M.

    2008-12-01

    In January 2007, the National Nuclear Data Center (NNDC) produced a set of preliminary neutron covariance data for the international project 'Nuclear Data Needs for Advanced Reactor Systems'. The project was sponsored by the OECD Nuclear Energy Agency (NEA), Paris, under the Subgroup 26 of the International Working Party on Evaluation Cooperation (WPEC). These preliminary covariances are described in two recent BNL reports. The NNDC used a simplified version of the method developed by BNL and LANL that combines the recent Atlas of Neutron Resonances, the nuclear reaction model code EMPIRE and the Bayesian code KALMAN with the experimental data used as guidance. There are numerous issues involved in these estimates of covariances and it was decided to perform an independent review and assessment of these results so that better covariances can be produced for the revised version in future. Reviewed and assessed are uncertainties for fission, capture, elastic scattering, inelastic scattering and (n,2n) cross sections as well as prompt nubars for 15 minor actinides ({sup 233,234,236}U, {sup 237}Np, {sup 238,240,241,242}Pu, {sup 241,242m,243}Am and {sup 242,243,244,245}Cm) and 4 major actinides ({sup 232}Th, {sup 235,238}U and {sup 239}Pu). We examined available evaluations, performed comparison with experimental data, taken into account uncertainties in model parameterization and made use state-of-the-art nuclear reaction theory to produce the uncertainty assessment.

  20. VERTICAL MIGRATION OF RADIONUCLIDES IN THE VICINITY OF THE CHERNOBYL CONFINEMENT SHELTER

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.; Marra, J.

    2011-10-01

    Studies on vertical migration of Chernobyl-origin radionuclides in the 5-km zone of the Chernobyl Nuclear Power Plant (ChNPP) in the area of the Red Forest experimental site were completed. Measurements were made by gamma spectrometric methods using high purity germanium (HPGe) detectors with beryllium windows. Alpha-emitting isotopes of plutonium were determined by the measurement of the x-rays from their uranium progeny. The presence of {sup 60}Co, {sup 134,137}Cs, {sup 154,155}Eu, and {sup 241}Am in all soil layers down to a depth of 30 cm was observed. The presence of {sup 137}Cs and {sup 241}Am were noted in the area containing automorphous soils to a depth of 60 cm. In addition, the upper soil layers at the test site were found to contain {sup 243}Am and {sup 243}Cm. Over the past ten years, the {sup 241}Am/{sup 137}Cs ratio in soil at the experimental site has increased by a factor of 3.4, nearly twice as much as would be predicted based solely on radioactive decay. This may be due to 'fresh' fallout emanating from the ChNPP Confinement Shelter.

  1. Results of The Excreta Bioassay Quality Control Program For April 1, 2010 Through March 31, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cheryl L.

    2012-07-19

    A total of 76 urine samples and 10 spiked fecal samples were submitted during the report period (April 1, 2010 through March 31, 2011) to GEL Laboratories, LLC in South Carolina by the Hanford Internal Dosimetry Program (IDP) to check the accuracy, precision, and detection levels of their analyses. Urine analyses for 14C, Sr, for 238Pu, 239Pu, 241Am, 243Am, 235U, 238U, 238U-mass and fecal analyses for 241Am, 238Pu and 239Pu were tested this year. The number of QC urine samples submitted during the report period represented 1.1% of the total samples submitted. In addition to the samples provided by IDP, GEL was also required to conduct their own QC program, and submit the results of analyses to IDP. About 31% of the analyses processed by GEL during the first year of contract 112512 were quality control samples. GEL tested the performance of 23 radioisotopes, all of which met or exceeded the specifications in the Statement of Work within statistical uncertainty except the slightly elevated relative bias for 243,244Cm (Table 4).

  2. Estimated (n,f) cross sections for 236,236m237,238-Np, 237,237m-Pu, and 240,241,242,242m,243,244,244m-Am isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Younes, W; Becker, J; Britt, H

    2004-01-16

    Neutron-induced fission cross sections on targets of {sup 236,236m,237,238}Np, {sup 237,237m}Pu, and {sup 240,241,242,242m,243,244,244m}Am have been estimated for incident neutron energies of up to 6 MeV, using the ''surrogate'' technique and the ({sup 3}He,df) and ({sup 3}He,tf) reactions on stable targets to measure fission probabilities. In isotopes where low-lying isomeric states are known to exist, the (n,f) cross section on the corresponding isomeric targets has been estimated, using the surrogate technique. For targets of {sup 237}Np, {sup 241}Am, {sup 242m}Am, {sup 243}Am, measurements of the (n,f) cross section exist, and comparison with the surrogate-method results suggests that the (n,f) cross sections estimated by the surrogate technique are reliable to within 10% for incident neutron energies E{sub n}{approx}>2 MeV. Tabulated values of the estimated (n,f) cross sections are given in an appendix.

  3. Results of the Experiment on Chemical Identification of Db as a Decay Product of Element 115

    CERN Document Server

    Dmitriev, S N; Utyonkov, V K; Shishkin, S V; Eremin, A V; Lobanov, Yu V; Tsyganov, Yu S; Chepigin, V I; Sokol, E A; Vostokin, G K; Aksenov, N V; Hussonnois, M; Itkis, M G; Aggeler, H W; Schumann, D; Bruchertseifer, H; Eichler, R; Shaughnessy, D A; Wilk, P A; Kenneally, J M; Stoyer, M A; Wild, J F

    2004-01-01

    For the first time the chemical identification of Db as the terminal isotope of the decay element 115 produced via the $^{243}{\\text{Am}}(^{48}{\\text{Ca}},3n)^{288}115$ reaction was realized. The experiment was performed on the U400 cyclotron of FLNR, JINR. The $^{243}$Am target was bombarded with a beam dose of $3.4\\cdot 10^{18}$ $^{48}$Ca projectiles at an energy of 247 MeV in the center of the target. The reaction products were collected in the surface of a copper catcher block, which was removed with a lathe and then dissolved in concentrated HNO$_3$. The group 5 elements were separated by sorption onto Dowex 50$\\times$8 cation-exchange resin with subsequent desorption using 1M HF, which forms anionic fluoride complexes of group 5 elements. The eluant was evaporated onto 0.4 $\\mu$m thick polyethylene foils which were placed between a pair of semiconductor detectors surrounded by $^3$He neutron counters for measurement of $\\alpha$ particles, fission fragments and neutrons. Over the course of the experiment...

  4. Results of the Excreta Bioassay Quality Control Program for April 1, 2009 through March 31, 2010

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, Cheryl L.

    2012-07-19

    A total of 58 urine samples and 10 fecal samples were submitted during the report period (April 1, 2009 through March 31, 2010) to General Engineering Laboratories, South Carolina by the Hanford Internal Dosimetry Program (IDP) to check the accuracy, precision, and detection levels of their analyses. Urine analyses for Sr, 238Pu, 239Pu, 241Am, 243Am 235U, 238U, elemental uranium and fecal analyses for 241Am, 238Pu and 239Pu were tested this year as well as four tissue samples for 238Pu, 239Pu, 241Am and 241Pu. The number of QC urine samples submitted during the report period represented 1.3% of the total samples submitted. In addition to the samples provided by IDP, GEL was also required to conduct their own QC program, and submit the results of analyses to IDP. About 33% of the analyses processed by GEL during the third year of this contract were quality control samples. GEL tested the performance of 21 radioisotopes, all of which met or exceeded the specifications in the Statement of Work within statistical uncertainty (Table 4).

  5. Gamma and electron spectroscopy of transfermium isotopes at Dubna: Results and plans

    Indian Academy of Sciences (India)

    A Yeremin; O Malyshev; A Popeko; A Lopez-Martens; K Hauschild; O Dorvaux; S Saro; D Pantelica; S Mullin

    2010-07-01

    Detailed spectroscopic information of excited nuclear states in deformed transfermium nuclei is scarce. Most of the information available today has been obtained from investigations of fine-structure -decay. Although decay gives access to hindrance factors and lifetimes which are strongly correlated to shell/subshell closures and the presence of isomers, only the combined use of and conversion electron spectroscopy allows the precise determination of excitation energy, spin and parity of nuclear levels. In the years 2004–2009 using the GABRIELA set-up [Hauschild et al, Nucl. Instrum. Methods A560, 388 (2006)] at the focal plane of VASSILISSA separator [Malyshev et al, Nucl. Instrum. Methods A440, 86 (2000); A516, 529 (2004)] experiments with the aim of and electron spectroscopy of the isotopes from Fm to Lr, formed by complete fusion reactions with accelerated heavy ions were performed. In the following, the pre- liminary results of decay studies using - and - coincidences at the focal plane of the VASSILISSA recoil separator are presented. Accumulated experience allowed us to perform ion optical calculations and to design the new experimental set-up, which will collect the base and best parameters of the existing separators and complex detector systems used at the focal planes of these installations. In the near future it is planned to study neutron-rich isotopes of the Rf–Sg in the `hot’ fusion reactions with 22Ne incident projectiles and 242Pu, 243Am and 248Cm targets.

  6. Study of the properties of the superheavy nuclei Z = 117 produced in the 249Bk + 48Ca reaction

    Science.gov (United States)

    Oganessian, Yu. Ts.; Abdullin, F. Sh.; Alexander, C.; Binder, J.; Boll, R. A.; Dmitriev, S. N.; Ezold, J.; Felker, K.; Gostic, J. M.; Grzywacz, R. K.; Hamilton, J. H.; Henderson, R. A.; Itkis, M. G.; Miernik, K.; Miller, D.; Moody, K. J.; Polyakov, A. N.; Ramayya, A. V.; Roberto, J. B.; Ryabinin, M. A.; Rykaczewski, K. P.; Sagaidak, R. N.; Shaughnessy, D. A.; Shirokovsky, I. V.; Shumeiko, M. V.; Stoyer, M. A.; Stoyer, N. J.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu. S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.

    2014-03-01

    The reaction of 249Bk with 48Ca have been reinvestigated to provide new evidence for the discovery of element 117 on a larger number of events. The experiments were performed at five projectile energies and with a total beam dose of 48Ca of about 4.6×1019. Two isotopes 293,294117 were synthesized in the 249Bk+48Ca reaction, providing excitation functions and α-decay spectra of the produced isotopes that establishes these nuclei to be the products of the 4n- and 3n-evaporation channels, respectively. Decay properties of 293,294117 and of all the daughter products agree with the data of the experiment in which these nuclei were synthesized for the first time in 2010. The new 289115 events, populated by α decay of 293117, demonstrate the same decay properties as those observed for 289115 produced in the 243Am(48Ca,2n) reaction thus providing crossbombardment evidence. In addition, a single decay of 294118 was observed from the reaction with 249Cf - a result of the in-growth of 249Cf in the 249Bk target.

  7. Study of the properties of the superheavy nuclei Z = 117 produced in the 249Bk + 48Ca reaction

    Directory of Open Access Journals (Sweden)

    Oganessian Yu. Ts.

    2014-03-01

    Full Text Available The reaction of 249Bk with 48Ca have been reinvestigated to provide new evidence for the discovery of element 117 on a larger number of events. The experiments were performed at five projectile energies and with a total beam dose of 48Ca of about 4.6×1019. Two isotopes 293,294117 were synthesized in the 249Bk+48Ca reaction, providing excitation functions and α-decay spectra of the produced isotopes that establishes these nuclei to be the products of the 4n- and 3n-evaporation channels, respectively. Decay properties of 293,294117 and of all the daughter products agree with the data of the experiment in which these nuclei were synthesized for the first time in 2010. The new 289115 events, populated by α decay of 293117, demonstrate the same decay properties as those observed for 289115 produced in the 243Am(48Ca,2n reaction thus providing crossbombardment evidence. In addition, a single decay of 294118 was observed from the reaction with 249Cf – a result of the in-growth of 249Cf in the 249Bk target.

  8. Extension and validation of the TRANSURANUS burn-up model for helium production in high burn-up LWR fuels

    Science.gov (United States)

    Botazzoli, Pietro; Luzzi, Lelio; Brémier, Stephane; Schubert, Arndt; Van Uffelen, Paul; Walker, Clive T.; Haeck, Wim; Goll, Wolfgang

    2011-12-01

    The TRANSURANUS burn-up model (TUBRNP) calculates the local concentration of the actinides, the main fission products, and 4He as a function of the radial position across a fuel rod. In this paper, the improvements in the helium production model as well as the extensions in the simulation of 238-242Pu, 241Am, 243Am and 242-245Cm isotopes are described. Experimental data used for the extended validation include new EPMA measurements of the local concentrations of Nd and Pu and recent SIMS measurements of the radial distributions of Pu, Am and Cm isotopes, both in a 3.5% enriched commercial PWR UO 2 fuel with a burn-up of 80 and 65 MWd/kgHM, respectively. Good agreement has been found between TUBRNP and the experimental data. The analysis has been complemented by detailed neutron transport calculations (VESTA code), and also revealed the need to update the branching ratio for the 241Am(n,γ) 242mAm reaction in typical PWR conditions.

  9. A laser system for the spectroscopy on highly charged ions, tellurium molecules, and Rydberg states of rubidium atoms; Ein Lasersystem zur Spektroskopie von hochgeladenen Ionen, Tellurmolekuelen und Rubidium-Rydberg-Zustaenden

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Sebastian

    2014-08-15

    Optical measuring methods allow the detection and identification of the atomic structure with extraordinary precision. Deviations to theoretical predictions can indicate unknown physical effects. Therefore, precise measurements on the atomic structure continue to be of large relevance. In this work, a laser system for precision spectroscopy on Bismuth ({sup 209}Bi{sup 82+}), Tellurium ({sup 130}Te{sub 2}) and Rydberg states of Rubidium ({sup 85}Rb) has been built and characterized. Spectroscopic measurements on Tellurium and Rubidium have been achieved with this setup. The system consists of a two-stage frequency doubled diode laser, stabilized via a cavity and an RF-offsetlock to arbitrary wavelengths with absolute high stability. The setup of the laser system will be presented and the systematic error caused by the refractive index of air inside the transfer cavity will be discussed. A stability of better then 6.14 MHz at 244 nm is obtained for planned experiments on the ground state hyperfine splitting of {sup 209}Bi{sup 82+}. This will allow an increase in precision of more then four orders of magnitude for this measurement. Further increase in precision can be achieved by using an evacuated cavity. The obtained stability is measured by comparison of the laser frequency to absorption lines of Tellurium ({sup 130}Te{sub 2}). Eight reference lines, known from literature, spanning the region from 613720.717 GHz to 616803.545 GHz have been measured. The frequency measurements of three lines, coinciding with the emission spectrum of an argon-ion-laser, show deviations with respect to the published frequencies. Further inconsistencies in literature are cleared. Part of this work is also the precise measurement of 843 Doppler-free {sup 130}Te{sub 2} reference lines spanning the frequency range from 613881.150 GHz to 616614.258 GHz at a precision of better then 4 MHz for most lines. Additionally, measurements on electromagnetically induced transparency (EIT) using

  10. Influence of complex impurity centres on radiation damage in wide-gap metal oxides

    Energy Technology Data Exchange (ETDEWEB)

    Lushchik, A., E-mail: aleksandr.lushchik@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Lushchik, Ch. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Popov, A.I. [Institute of Solid State Physics, University of Latvia, Kengaraga 8, Riga LV-1063 (Latvia); Schwartz, K. [GSI Helmholtzzentrum für Schwerionenforschung (GSI), Planckstr. 1, 64291 Darmstadt (Germany); Shablonin, E.; Vasil’chenko, E. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-05-01

    Different mechanisms of radiation damage of wide-gap metal oxides as well as a dual influence of impurity ions on the efficiency of radiation damage have been considered on the example of binary ionic MgO and complex ionic–covalent Lu{sub 3}Al{sub 5}O{sub 12} single crystals. Particular emphasis has been placed on irradiation with ∼2 GeV heavy ions ({sup 197}Au, {sup 209}Bi, {sup 238}U, fluence of 10{sup 12} ions/cm{sup 2}) providing extremely high density of electronic excitations within ion tracks. Besides knock-out mechanism for Frenkel pair formation, the additional mechanism through the collapse of mobile discrete breathers at certain lattice places (e.g., complex impurity centres) leads to the creation of complex defects that involve a large number of host atoms. The experimental manifestations of the radiation creation of intrinsic and impurity antisite defects (Lu|{sub Al} or Ce|{sub Al} – a heavy ion in a wrong cation site) have been detected in LuAG and LuAG:Ce{sup 3+} single crystals. Light doping of LuAG causes a small enhancement of radiation resistance, while pair impurity centres (for instance, Ce|{sub Lu}–Ce|{sub Al} or Cr{sup 3+}–Cr{sup 3+} in MgO) are formed with a rise of impurity concentration. These complex impurity centres as well as radiation-induced intrinsic antisite defects (Lu|{sub Al} strongly interacting with Lu in a regular site) tentatively serve as the places for breathers collapse, thus decreasing the material resistance against dense irradiation.

  11. Complete identification of states in 208Pb below Ex=6.2 MeV

    Science.gov (United States)

    Heusler, A.; Jolos, R. V.; Faestermann, T.; Hertenberger, R.; Wirth, H.-F.; von Brentano, P.

    2016-05-01

    The Q3D magnetic spectrograph at the Maier-Leibnitz-Laboratorium of the Ludwig-Maximilians-Universität München and the Technische Universität München (Garching, Germany), was used to study the 208Pb(p ,p' ) , 206,207,208Pb (d,p), and 208Pb(d ,d' ) reactions. One hundred fifty-one states at Ex<6.20 MeV in 208Pb are identified and spin and parity assigned. Four states are newly identified and new spins and/or parities are assigned to 25 states. Tentative spin assignments are done to five states at 5.90 209Bi with two-particle-one-hole structure are discovered at Eres=17.6 MeV . The excitation energies of 70 states with unnatural parity at Ex<6.20 MeV are found to agree within about 200 keV with one-particle-one-hole configurations predicted by the extended schematic shell model. In contrast, the excitation energies of about 20 natural parity states are more than 0.5 MeV lower than predicted, demonstrating the residual interaction among the configurations to be much larger for natural parity than for unnatural parity.

  12. Range and etching behaviour of swift heavy ions in polymers

    Science.gov (United States)

    Singh, Lakhwant; Singh, Mohan; Samra, Kawaljeet Singh; Singh, Ravinder

    Aliphatic (CR-39) and aromatic (Lexan polycarbonate) polymers have been irradiated with a variety of heavy ions such as 58Ni, 93Nb, 132Xe, 139La, 197Au, 208Pb, 209Bi, and 238U having energy ranges of 5.60-8.00 MeV/n in order to study the range and etching kinetics of heavy ion tracksE The ion fluence (range ˜104-105 ions/cm2) was kept low to avoid the overlapping of etched tracks. The measured values of maximum etched track length were corrected due to bulk etching and over etching to obtain the actual range. The experimental results of range profiles were compared with those obtained by the most used procedures employed in obtaining range and stopping power. The range values of present ions have been computed using the semiempirical codes (SRIM-98, SRIM-2003.26, and LISE++:0-[Hub90]) in order to check their accuracy. The merits and demerits of the adopted formulations have been highlighted in the present work. It is observed that the range of heavy ions is greater in aromatic polymers (Lexan polycarbonate) as compared to the aliphatic polymers (CR-39) irradiated with similar ions having same incident energies. The SRIM-98 and SRIM2003.26 codes don't show any significant trend in deviations, however, LISE++:0-[Hub90] code provides overall good agreement with the experimental values. The ratio of track etch rate (along projectile trajectory) to the bulk etch rate has also been studied as a function of energy loss of heavy ions in these polymers.

  13. Nuclear spin dependent atomic parity violation, nuclear anapole moments, and the hadronic axial neutral current

    Energy Technology Data Exchange (ETDEWEB)

    Bouchiat, C.; Piketty, C.A. (Ecole Normale Superieure, 75 - Paris (France). Lab. de Physique Theorique)

    1991-01-01

    Left-right symmetries in atomic transitions, depending upon the nuclear spin, could be a source of information on the neutral hadronic axial current. We show that the relevant electroweak parameter can be extracted from experiment by measuring hyperfine component ratios which do not involve the knowledge of the atomic wave function. In the standard electroweak model, the parity violating electron-nucleus interaction associated with the hadronic axial neutral current is accidently suppressed and, as a consequence, dominated by the electron interaction with the nuclear anapole moment, which describes the effect of the parity violating nuclear forces on the nucleus electromagnetic current. One of our objectives was to identify the various physical mechanisms which determine the size of the nuclear anapole moments. As an important step, we have established a simple relation between the anapole moment and the nuclear spin magnetization. From this relation it follows that the computation of the anapole moment can be reduced to that of one-body operators. The basic tool is a unitary transformation W which eliminates the one-body parity violating potential from the nuclear hamiltonian. A particular attention was paid to nuclear correlation effects. They are treated semi-empirically in the independent pair approximation. The nuclear anapole moments of {sup 85}Rb, {sup 133}Cs, and {sup 209}Bi have been evaluated for three sets of parity violating meson-nucleon coupling constants, taking into account configuration mixing effects in a semi-empirical way. We suggest a possible strategy to disentangle the axial neutral current from the anapole moment contribution. (orig.).

  14. Resonant Raman spectroscopy study of swift heavy ion irradiated MoS2

    Science.gov (United States)

    Guo, Hang; Sun, Youmei; Zhai, Pengfei; Zeng, Jian; Zhang, Shengxia; Hu, Peipei; Yao, Huijun; Duan, Jinglai; Hou, Mingdong; Liu, Jie

    2016-08-01

    Molybdenum disulphide (MoS2) crystal samples were irradiated by swift heavy ions (209Bi and 56Fe). Hillock-like latent tracks were observed on the surface of irradiated MoS2 by atomic force microscopy. The modifications of properties of irradiated MoS2 were investigated by resonant Raman spectroscopy and ultraviolet-visible spectroscopy (UV-Vis). A new peak (E1u2, ∼385.7 cm-1) occurs near the in-plane E2g1 peak (∼383.7 cm-1) after irradiation. The two peaks shift towards lower frequency and broaden due to structural defects and stress with increasing fluence. When irradiated with high fluence, two other new peaks appear at ∼ 190 and ∼ 230 cm-1. The peak at ∼230 cm-1 is disorder-induced LA(M) mode. The presence of this mode indicates defects induced by irradiation. The feature at ∼460 cm-1 is composed of 2LA(M) (∼458 cm-1) and A2u (∼466 cm-1) mode. With increasing fluence, the integrated intensity ratio between 2LA(M) and A2u increases. The relative enhancement of 2LA(M) mode is in agreement with the appearance of LA(M) mode, which both demonstrate structural disorder in irradiated MoS2. The ∼423-cm-1 peak shifts toward lower frequency due to the decrease in exciton energy of MoS2, and this was demonstrated by the results of UV-Vis spectra. The decrease in exciton energy could be due to introduction of defect levels into band gap.

  15. ANDI-03: a genetic algorithm tool for the analysis of activation detector data to unfold high-energy neutron spectra.

    Science.gov (United States)

    Mukherjee, Bhaskar

    2004-01-01

    The thresholds of (n,xn) reactions in various activation detectors are commonly used to unfold the neutron spectra covering a broad energy span, i.e. from thermal to several hundreds of MeV. The saturation activities of the daughter nuclides (i.e. reaction products) serve as the input data of specific spectra unfolding codes, such as SAND-II and LOUHI-83. However, most spectra unfolding codes, including the above, require an a priori (guess) spectrum to starting up the unfolding procedure of an unknown spectrum. The accuracy and exactness of the resulting spectrum primarily depends on the subjectively chosen guess spectrum. On the other hand, the Genetic Algorithm (GA)-based spectra unfolding technique ANDI-03 (Activation-detector Neutron DIfferentiation) presented in this report does not require a specific starting parameter. The GA is a robust problem-solving tool, which emulates the Darwinian Theory of Evolution prevailing in the realm of biological world and is ideally suited to optimise complex objective functions globally in a large multidimensional solution space. The activation data of the 27Al(n,alpha)24Na, 116In(n,gamma)116mIn, 12C(n,2n)11C and 209Bi(n,xn)(210-x)Bi reactions recorded at the high-energy neutron field of the ISIS Spallation source (Rutherford Appleton Laboratory, UK) was obtained from literature and by applying the ANDI-03 GA tool, these data were used to unfold the neutron spectra. The total neutron fluence derived from the neutron spectrum unfolded using GA technique (ANDI-03) agreed within +/-6.9% (at shield top level) and +/-27.2% (behind a 60 cm thick concrete shield) with the same unfolded with the SAND-II code.

  16. Simultaneous photon and neutron interrogation using an electron accelerator in order to quantify actinides in encapsulated radioactive wastes; Double interrogation simultanee neutrons et photons utilisant un accelerateur d'electrons pour la caracterisation separee des actinides dans les dechets radioactifs enrobes

    Energy Technology Data Exchange (ETDEWEB)

    Jallu, F

    1999-09-24

    Measuring out alpha emitters, such as ({sup 234,235,236,238}U {sup 238,239,240,242,}2{sup 44P}u, {sup 237}Np {sup 241,243}Am...), in solid radioactive waste, allows us to quantify the alpha activity in a drum and then to classify it. The SIMPHONIE (SIMultaneous PHOton and Neutron Interrogation Experiment) method, developed in this Ph.D. work, combines both the Active Neutron Interrogation and the Induced Photofission Interrogation techniques simultaneously. Its purpose is to quantify in only one measurement, fissile ({sup 235}U, {sup 239,241}Pu...) and fertile ({sup 236,238}U, {sup 238,240}Pu...) elements separately. In the first chapter of this Ph.D. report, we present the principle of the Radioactive Waste Management in France. The second chapter deals with the physical properties of neutron fission and of photofission. These two nuclear reactions are the basis of the SIMPHONIE method. Moreover, one of our purposes was to develop the ELEPHANT (ELEctron PHoton And Neutron Transport) code in view to simulate the electron, photon and neutron transport, including the ({gamma}, n), ({gamma}, 2n) and ({gamma}, f) photonuclear reactions that are not taken into account in the MCNP4 (Monte Carlo N-Particle) code. The simulation codes developed and used in this work are detailed in the third chapter. Finally, the fourth chapter gives the experimental results of SIMPHONIE obtained by using the DGA/ETCA electron linear accelerators located at Arcueil, France. Fissile ({sup 235}U, {sup 239}Pu) and fertile ({sup 238}U) samples were studied. Furthermore, comparisons between experimental results and calculated data of photoneutron production in tungsten, copper, praseodymium and beryllium by using an electron LINear Accelerator (LINAC) are given. This allows us to evaluate the validity degree of the ELEPHANT code, and finally the feasibility of the SIMPHONIE method. (author)

  17. Highly enriched isotope samples of uranium and transuranium elements for scientific investigation

    Science.gov (United States)

    Vesnovskii, Stanislav P.; Polynov, Vladimir N.; Danilin, Lev. D.

    1992-02-01

    The paper describes the production of highly enriched isotopes of uranium, plutonium, americium and curium by electromagnetic separation for scientific and applied researches in physics, chemistry, geology, medicine, biology and other fields. Using the equipment described, the isotopes are produced in quantities sufficient to set up nuclear physical experiments, to produce nuclear reference materials and standard sources for calibration of radiometrical and mass spectrometrical equipment, in radionuclide metrology, etc. For the following isotopes the indicated degrees of isotopic enrichment were achieved: 233U - 99.97%; 235U - 99.97%; 236U - 98.0%; 238U - 99.997%; 238Pu - 99.6%; 239Pu - 99.9977%; 240Pu - 99.9-100%; 241Pu - 96.998%; 242Pu - 97.8-99.96%; 244Pu - 96.7%; 241Am - 99.6%; 242Am - 73.6%; 243Am - 99.2-99.94%; 243Cm - 99.99%; 245Cm - 99.998%; 246Cm - 99.8%; 247Cm - 90%; 248Cm - 97%. Methods for preparing layers of highly enriched isotopes on various substances are presented: - electrochemical deposition of transuranic elements from aqueous-organic and organic media and vacuum spraying: - the method of foil and coating formation via compounds in the vapour phase; - the method of fabrication of layers of transuranic elements on superthin (1-2 μm) metal substrates with additional isolating polymer-metal coatings (0.2-0.4 μm), that substantially decrease material transfer from the active layer and increase safety of product handling.

  18. Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uebeyli, Mustafa E-mail: mubeyli@gazi.edu.tr

    2004-12-01

    Significant amounts of nuclear wastes consisting of plutonium, minor actinides and long lived fission products are produced during the operation of commercial nuclear power plants. Therefore, the destruction of these wastes is very important with respect to public health, environment and also the future of nuclear energy. In this study, transmutation of minor actinides (MAs) discharged from LMFBR spent fuel in a high power density fusion reactor has been investigated under a neutron wall load of 10 MW/m{sup 2} for an operation period of 10 years. Also, the effect of MA percentage on the transmutation has been examined. The fuel zone, containing MAs as spheres cladded with W-5Re, has been located behind the first wall to utilize the high neutron flux for transmutation effectively. Helium at 40 atm has been used as an energy carrier. At the end of the operation period, the total burning and transmutation are greater than the total buildups in all investigated cases, and very high burnups (420-470 GWd/tHM) are reached, depending on the MA content. The total transmutation rate values are 906 and 979 kg/GW{sub th} year at startup and decrease to 140 and 178 kg/GW{sub th} year at the end of the operation for fuel with 10% and 20% MA, respectively. Over an operation period of 10 years, the effective half lives decrease from 2.38, 2.21 and 3.08 years to 1.95, 1.80 and 2.59 years for {sup 237}Np, {sup 241}Am and {sup 243}Am, respectively. Total atomic densities decrease exponentially during the operation period. The reductions in the total atomic densities with respect to the initial ones are 79%, 81%, 82%, 83%, 85% and 86% for 10%, 12%, 14%, 16%, 18% and 20% MAs, respectively.

  19. Production and decay of the heaviest odd-Z nuclei in the 249Bk + 48Ca reaction

    Science.gov (United States)

    Oganessian, Yu Ts; Abdullin, F. Sh; Alexander, C.; Binder, J.; Boll, R. A.; Dmitriev, S. N.; Ezold, J.; Felker, K.; Gostic, J. M.; Grzywacz, R. K.; Hamilton, J. H.; Henderson, R. A.; Itkis, M. G.; Miernik, K.; Miller, D.; Moody, K. J.; Polyakov, A. N.; Ramayya, A. V.; Roberto, J. B.; Ryabinin, M. A.; Rykaczewski, K. P.; Sagaidak, R. N.; Shaughnessy, D. A.; Shirokovsky, I. V.; Shumeiko, M. V.; Stoyer, M. A.; Stoyer, N. J.; Subbotin, V. G.; Sukhov, A. M.; Tsyganov, Yu S.; Utyonkov, V. K.; Voinov, A. A.; Vostokin, G. K.

    2015-02-01

    The reaction of 249Bk with 48Ca has been investigated with an aim of synthesizing and studying the decay properties of isotopes of the new element 117. The experiments were performed at five projectile energies (in two runs, in 2009-2010 and 2012) and with a total beam dose of 48Ca ions of about 9x1019 The experiments yielded data on a-decay characteristics and excitation functions of the produced nuclei that establish these to be 293117 and 294117 - the products of the 4n- and 3n-evaporation channels, respectively. In total, we have observed 20 decay chains of Z=117 nuclides. The cross sections were measured to be 1.1 pb for the 3n and 2.4 pb for the 4n-reaction channel. The new 289115 events, populated by α decay of 117, demonstrate the same decay properties as those observed for 115 produced in the 243Am(48Ca,2n) reaction thus providing cross-bombardment evidence. In addition, a single decay of 294118 was observed from the reaction with 249Cf - a result of the in-growth of 249Cf in the 249Bk target. The observed decay chain of 294118 is in good agreement with decay properties obtained in 2002-2005 in the experiments with the reaction 249Cf(48Ca,3n)294118. The energies and half-lives of the odd-Z isotopes observed in the 117 decay chains together with the results obtained for lower-Z superheavy nuclei demonstrate enhancement of nuclear stability with increasing neutron number towards the predicted new magic number N=184.

  20. New Insights Into the Discoveries of Elements 113, 115 and 117

    Science.gov (United States)

    Oganessian, Yuri; Abdullin, Farid; Dmitriev, Sergey; Itkis, Mikhail; Polyakov, Alexandr; Sagaidak, Roman; Shirokovsky, Igor; Subbotin, Vladimir; Sukhov, Alexandr; Tsyganov, Yuri; Utyonkov, Vladimir; Voinov, Alexey; Vostokin, Grigory; Gostic, Julie; Henderson, Roger; Moody, Kenton; Shaughnessy, Dawn; Stoyer, Mark; Stoyer, Nancy; Hamilton, Joseph; Ramayya, Akunuri; Roberto, James; Rykaczewski, Krzysztof

    2013-06-01

    The discovery of new higher Z elements and the determination of their decay properties provide important insights into our understandings of the behaviour of nuclear matter under extreme conditions of high Z and important tests of the prediction of an island of stability around N=184 and high Z (114 or even 120-126). The synthesis of odd-Z superheavy nuclei provides more detailed information than even-Z nuclei about the nuclear structure of these nuclides because of their longer decay chains as a result of strong fission hindrance caused by the unpaired nucleons. For the first time the Z=115 nuclei and their odd-Z decay products including Z=113 isotopes were observed in 2003 [1,2]. Three decay chains of 288115 284113 280Rg ...268Db and one decay chain of 287115 283113 279Rg ...267Db were discovered in the 243Am(48Ca,3-4n) complete-fusion reaction. In 2006 two decay chains of the lighter isotope 282113 were synthesized in the 237Np(48Ca,3n) reaction [3]. The discovery of element 117 [4,5] has been reported using the 249Bk+48Ca reaction; five decay chains of 293117 289115 ...281Rg and one chain of the heaviest isotope 294117 290115 ...270Db were observed in 2009-2010. A relatively high stability of all these odd-Z activities is caused by the influence of presumably spherical nuclear shells at Z=114-126 and N=184. The sequential a decays of the isotopes 282113, 287,288115 and 294117 lead to 266-270Db (N=161-165) that are already located in the vicinity of deformed nuclear shells at Z=108 and N=162...

  1. Measurement of cross sections for the scattering of neutrons in the energy range from 2 MeV to 4 MeV with the {sup 15}N(p,n) reaction as neutron source; Messung von Wirkungsquerschnitten fuer die Streuung von Neutronen im Energiebereich von 2 MeV bis 4 MeV mit der {sup 15}N(p,n)-Reaktion als Neutronenquelle

    Energy Technology Data Exchange (ETDEWEB)

    Poenitz, Erik

    2010-04-26

    In future nuclear facilities, the materials lead and bismuth can play a more important role than in today's nuclear reactors. Reliable cross section data are required for the design of those facilities. In particular the neutron transport in the lead spallation target of an Accelerator-Driven Subcritical Reactor strongly depends on the inelastic neutron scattering cross sections in the energy region from 0.5 MeV to 6 MeV. In the recent 20 years, elastic and inelastic neutron scattering cross sections were measured with high precision for a variety of elements at the PTB time-of-flight spectrometer. The D(d,n) reaction was primarily used for the production of neutrons. Because of the Q value of the reaction and the available deuteron energies, neutrons in the energy range from 6 MeV to 16 MeV can be produced. For the cross section measurement at lower energies, however, another neutron producing reaction is required. The {sup 15}N(p,n){sup 15}O reaction was chosen, as it allows the production of monoenergetic neutrons with up to 5.7MeV energy. In this work, the {sup 15}N(p,n) reaction was studied with focus on the suitability as a source for monoenergetic neutrons in scattering experiments. This includes the measurement of differential cross sections for the neutron producing reaction and the choice of optimum target conditions. Differential elastic and inelastic neutron scattering cross sections were measured for lead at four energies in the region from 2 MeV to 4 MeV incident neutron energy using the time-of-flight technique. A lead sample with natural isotopic composition was used. NE213 liquid scintillation detectors with well-known detection efficiencies were used for the detection of the scattered neutrons. Angle-integrated cross sections were determined by a Legendre polynomial expansion using least-squares methods. Additionally, measurements were carried out for isotopically pure {sup 209}Bi and {sup 181}Ta samples at 4 MeV incident neutron energy

  2. Nuclear reactions with radioactive and stable beams (Part II); Reacciones nucleares con haces radiactivos y estables (Parte II)

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera R, E.F.; Martinez Q, E.; Gomez C, A.; Lizcano, D. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2005-12-15

    At the present time there is a great interest at world level in experiments, with accelerated nuclei of short half life. The dispersion, fusion, transfer and break processes in the interaction of weakly light projectiles bounded with targets of Z great its have been object of intense recent investigation, at world level. Our group, in collaboration with the University of Notre Dame, it has measured and analyzed these processes for weakly bound systems as: {sup 6}He + {sup 209}Bi, {sup 8}Li + {sup 208}Pb, {sup 10}Be + {sup 208}Pb. On the other hand a research line that has wakened up great interest, it is that of studies of resonant reactions using the Inverse Kinematics technique with thick targets. The use of this technique allows to measure an entire excitation function with a single bombardment. Our group has carried out, in the ININ, preliminary bombardments for the system {sup 12}C + {sup 4}He. This allowed to establish the feasibility of implementing this technique in our Laboratory. The application of this and other techniques to different systems like {sup 18}O + {sup 4}He, {sup 12}C + {sup 12}C, {sup 12}C + {sup 16}O, {sup 16}O + {sup 16}O, it opens the possibility to measure the fusion of these systems at very low energy and to deepen in the knowledge of the nuclear structure and the nuclear astrophysics. In this technical report, the activities carried out by our group during the second stage of this project, considered for 2005 are described. Also in that year, our group carries out a research stay in the University of Notre Dame, during this stay, the angular distribution of the projectiles of {sup 8}B dispersed in an enriched target of {sup 58}Ni was measured. The same as in the previous experiments, in this occasion it was also possible to measure those angular distributions of the projectiles of {sup 7}Be and {sup 6}Li dispersed in this same target. In this same one our stay group participates in other three experiments proposed by collaborators of

  3. Influence of projectile neutron number on cross section in cold fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Dragojevic, Irena; Dragojevic, I.; Gregorich, K.E.; Dullmann, Ch.E.; Folden III, C.M.; Garcia, M.A.; Gates, J.M.; Nelson, S.L.; Sudowe, R.; Nitsche, H.

    2007-09-01

    Elements 107-112 [1,2] have been discovered in reactions between {sup 208}Pb or {sup 209}Bi targets and projectiles ranging from {sup 54}Cr through {sup 70}Zn. In such reactions, the compound nucleus can be formed at excitation energies as low as {approx}12 MeV, thus this type of reaction has been referred to as 'cold fusion'. The study of cold fusion reactions is an indispensable approach to gaining a better understanding of heavy element formation and decay. A theoretical model that successfully predicts not only the magnitudes of cold fusion cross sections, but also the shapes of excitation functions and the cross section ratios between various reaction pairs was recently developed by Swiatecki, Siwek-Wilczynska, and Wilczynski [3,4]. This theoretical model, also referred to as Fusion by Diffusion, has been the guide in all of our cold fusion studies. One particularly interesting aspect of this model is the large predicted difference in cross sections between projectiles differing by two neutrons. The projectile pair where this difference is predicted to be largest is {sup 48}Ti and {sup 50}Ti. To test and extend this model, {sup 208}Pb({sup 48}Ti,n){sup 255}Rf and {sup 208}Pb({sup 50}Ti,n){sup 257}Rf excitation functions were recently measured at the Lawrence Berkeley National Laboratory's (LBNL) 88-Inch Cyclotron utilizing the Berkeley Gas-filled Separator (BGS). The {sup 50}Ti reaction was carried out with thin lead targets ({approx}100 {micro}g/cm{sup 2}), and the {sup 48}Ti reaction with both thin and thick targets ({approx}470 {micro}g/cm{sup 2}). In addition to this reaction pair, reactions with projectile pairs {sup 52}Cr and {sup 54}Cr [5], {sup 56}Fe and {sup 58}Fe [6], and {sup 62}Ni [7] and {sup 64}Ni [8] will be discussed and compared to the Fusion by Diffusion predictions. The model predictions show a very good agreement with the data.

  4. Cold Fusion Production and Decay of Neutron-Deficient Isotopes of Dubnium and Development of Extraction Systems for Group V Elements

    Energy Technology Data Exchange (ETDEWEB)

    Gates, Jacklyn M. [Univ. of California, Berkeley, CA (United States)

    2008-07-31

    Excitation functions for the 1n and 2n exit channels of the 208Pb(51V,xn)259-xDb reaction were measured. A maximum cross section of the 1n exit channel of 2070$+1100\\atop{-760}$ pb was measured at an excitation energy of 16.0 ± 1.8 MeV. For the 2n exit channel, a maximum cross section of 1660$+450\\atop{-370}$ pb was measured at 22.0 ± 1.8 MeV excitation energy. The 1n excitation function for the 209Bi(50Ti,n)258Db reaction was remeasured, resulting in a cross section of 5480$+1730\\atop{-1370}$ pb at an excitation energy of 16.0 ± 1.6 MeV. Differences in cross section maxima are discussed in terms of the fusion probability below the barrier. The extraction of niobium (Nb) and tantalum (Ta) from hydrochloric acid and mixed hydrochloric acid/lithium chloride media by bis(2-ethylhexyl) hydrogen phosphate (HDEHP) and bis(2-ethylhexyl) hydrogen phosphite (BEHP) was studied. The goal of the experiments was to find a system that demonstrates selectivity among the members of group five of the Periodic Table and is also suitable for the study of dubnium (Db, Z = 105). Experiments with niobium and tantalum were performed with carrier (10-6 M), carrier free (10-10 M) and trace (10-16 M) concentrations of metal using hydrochloric acid solution with concentrations ranging from 1 - 11 M. The extraction of niobium and tantalum from mixed hydrochloric acid/lithium chloride media by HDEHP and BEHP as a function of hydrogen ion (H+) concentration was also investigated. The data obtained are used as the basis to discuss the speciation of niobium and tantalum under the conditions studied and to evaluate possible extraction mechanisms. The 74Se(18O,p3n)88gNb excitation function was measured to determine the best energy for producing the 88Nb used in chemistry experiments. A maximum cross section of 495 +- 5 mb was observed at an 18O energy of 74.0 Me

  5. Updating and extending the IRDF-2002 dosimetry library

    Energy Technology Data Exchange (ETDEWEB)

    Capote, R. [International Atomic Energy Agency, NAPC-Nuclear Data Section, Vienna (Austria); Zolotarev, K.I.; Pronyaev, V.G. [Inst. of Physics and Power Engineering, Obninsk, Kaluga Region (Russian Federation); Trkov, A. [Jozef Stefan Inst., Ljubljana (Slovenia)

    2011-07-01

    The International Reactor Dosimetry File (IRDF)-2002 released in 2004 by the IAEA (see http://www-nds.iaea.org/irdf2002/) contains cross-section data and corresponding uncertainties for 66 dosimetry reactions. New cross-section evaluations have become available recently that re-define some of these dosimetry reactions including: (1) high-fidelity evaluation work undertaken by one of the authors (KIZ); (2) evaluations from the US ENDF/B-VII.0 and candidate evaluations from the US ENDF/B-VII.1 libraries that cover reactions within the International Evaluation of Neutron Cross-Section Standards; (3) European JEFF3.1 library; and (4) Japanese JENDL-4.0 library. Additional high-threshold reactions not included in IRDF-2002 (e.g., {sup 59C}o(n,3n) and {sup 209}Bi(n,3n)) have been also evaluated to characterize higher-energy neutron fields. Overall, 37 new evaluations of dosimetry reactions have been assessed and intercomparisons made with integral measurements in reference neutron fields to determine whether they should be adopted to update and improve IRDF-2002. Benchmark calculations performed for newly evaluated reactions using the ENDF/B-VII.0 {sup 235}U thermal fission and {sup 252}Cf spontaneous fission neutron spectra show that calculated integral cross sections exhibit improved agreement with evaluated experimental data when compared with the equivalent data from the IRDF-2002 library. Data inconsistencies or deficiencies of new evaluations have been identified for {sup 63}Cu(n,2n), {sup 60}Ni(n,p) {sup 60m+g}Co, {sup 55}Mn(n,{gamma}), and {sup 232}Th(n,f) reactions. Compared with IRDF-2002, the upper neutron energy boundary was formally increased from the actual maximum energy of typically 20 MeV up to 60 MeV by using the TENDL-2010 cross sections and covariance matrices. This extension would allow the updated IRDF library to be also used in fusion dosimetry applications. Uncertainties in the cross sections for all new evaluations are given in the form of

  6. Trace metal analysis in arctic aerosols by an inductively coupled plasma-time of flight-mass spectrometer combined with an inductively heated vaporizer

    Energy Technology Data Exchange (ETDEWEB)

    Luedke, Christian [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany)]. E-mail: luedke@ansci.de; Skole, Jochen [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Taubner, Kerstin [ISAS - Institute for Analytical Sciences, Department Berlin, Albert-Einstein-Str. 9, 12489 Berlin (Germany); Kriews, Michael [Alfred Wegener Institute for Polar- and Marine Research, Am Handelshafen 12, 27570 Bremerhaven (Germany)

    2005-11-15

    Two newly developed instruments were combined to analyze the trace metal content in size separated arctic aerosols during the measurement campaign ASTAR 2004 (Arctic Study of Tropospheric Aerosols, Clouds and Radiation 2004) at Spitsbergen in May-June 2004. The aim of this extensive aerosol measurement campaign was to obtain a database for model-calculations of arctic aerosol, which play an important role in the global climate change. The ASTAR project was centered on two aircraft measurement campaigns, scheduled from 2004 to 2005, addressing both aerosol and cloud measurements, combined with ground-based and satellite observations. In the present paper one example for the analysis of ground-based aerosol particles is described. The sampling of aerosol particles was performed in a well-known manner by impaction of the particles on cleaned graphite targets. By means of a cascade impactor eight size classes between 0.35 and 16.6 {mu}m aerodynamic diameters were separated. To analyze the metal content in the aerosol particles the targets were rapidly heated up to 2700 deg. C in an inductively heated vaporizer system (IHVS). An argon flow transports the vaporized sample material into the inductively coupled plasma (ICP) used as ionization source for the time of flight-mass spectrometer (TOF-MS). The simultaneous extraction of the ions from the plasma, as realized in the TOF instrument, allows to obtain the full mass spectrum of the sample during the vaporization pulse without any limitation in the number of elements detected. With optimized experimental parameters the element content in arctic aerosol particles was determined in a mass range between {sup 7}Li and {sup 209}Bi. Comparing the size distribution of the elemental content of the aerosol particles, two different meteorological situations were verified. For calibration acidified reference solutions were placed on the cleaned target inside the IHVS. The limits of detection (LOD) for the element mass on the

  7. A bismuth activation counter for high sensitivity pulsed 14 MeV neutrons

    Science.gov (United States)

    Burns, E. J. T.; Thacher, P. D.; Hassig, G. J.; Decker, R. D.; Romero, J. A.; Barrett, K. P.

    2011-08-01

    We have built a fast neutron bismuth activation counter that measures activation counts from pulsed 14-MeV neutron generators for incident neutron fluences between 30 and 300 neutrons/cm2 at 15.2 cm (6 in.). The activation counter consists of a large bismuth germanate (BGO) detector surrounded by a bismuth metal shield in front of and concentric with the cylindrical detector housing. The 14 MeV neutrons activate the 2.6-millisecond (ms) isomer in the shield and the detector by the reaction 209Bi (n,2nγ) 208mBi. The use of millisecond isomers and activation counting times minimizes the background from other activated materials and the environment. In addition to activation, the bismuth metal shields against other outside radiation sources. We have tested the bismuth activation counter, simultaneously, with two data acquisition systems (DASs) and both give similar results. The two-dimensional (2D) DAS and three dimensional (3D) DAS both consist of pulse height analysis (PHA) systems that can be used to discriminate against gamma radiations below 300 keV photon energy, so that the detector can be used strictly as a counter. If the counting time is restricted to less than 25 ms after the neutron pulse, there are less than 10 counts of background for single pulse operation in all our operational environments tested so far. High-fluence neutron generator operations are restricted by large dead times and pulse height saturation. When we operate our 3D DAS PHA system in list mode acquisition (LIST), real-time corrections to dead time or live time can be made on the scale of 1 ms time windows or dwell times. The live time correction is consistent with nonparalyzable models for dead time of 1.0±0.2 μs for our 3D DAS and 1.5±0.3 μs for our 2D DAS dominated by our fixed time width analog to digital converters (ADCs). With the same solid angle, we have shown that the bismuth activation counter has a factor of 4 increase in sensitivity over our lead activation counter

  8. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A. [Los Alamos National Laboratory (LANL); Macfarlane, R E [Los Alamos National Laboratory (LANL); Mosteller, R D [Los Alamos National Laboratory (LANL); Kiedrowski, B C [Los Alamos National Laboratory (LANL); Frankle, S C [Los Alamos National Laboratory (LANL); Chadwick, M. B. [Los Alamos National Laboratory (LANL); Mcknight, R D [Argonne National Laboratory (ANL); Lell, R M [Argonne National Laboratory (ANL); Palmiotti, G [Idaho National Laboratory (INL); Hiruta, h [Idaho National Laboratory (INL); Herman, Micheal W [Brookhaven National Laboratory (BNL); Arcilla, r [Brookhaven National Laboratory (BNL); Mughabghab, S F [Brookhaven National Laboratory (BNL); Sublet, J C [Culham Science Center, Abington, UK; Trkov, A. [Jozef Stefan Institute, Slovenia; Trumbull, T H [Knolls Atomic Power Laboratory; Dunn, Michael E [ORNL

    2011-01-01

    The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [1]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unrnoderated and uranium reflected (235)U and (239)Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as (236)U; (238,242)Pu and (241,243)Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical

  9. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kahler, A.C.; Herman, M.; Kahler,A.C.; MacFarlane,R.E.; Mosteller,R.D.; Kiedrowski,B.C.; Frankle,S.C.; Chadwick,M.B.; McKnight,R.D.; Lell,R.M.; Palmiotti,G.; Hiruta,H.; Herman,M.; Arcilla,R.; Mughabghab,S.F.; Sublet,J.C.; Trkov,A.; Trumbull,T.H.; Dunn,M.

    2011-12-01

    confirmed for selected actinide reaction rates such as {sup 236}U, {sup 238,242}Pu and {sup 241,243}Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues and a decreasing trend in calculated eigenvalue for {sup 233}U fueled systems as a function of Above-Thermal Fission Fraction remain. The comprehensive nature of this critical benchmark suite and the generally accurate calculated eigenvalues obtained with ENDF/B-VII.1 neutron cross sections support the conclusion that this is the most accurate general purpose ENDF/B cross section library yet released to the technical community.

  10. 266Bh的α衰变性质研究%Alpha-decay Properties of 266Bh

    Institute of Scientific and Technical Information of China (English)

    秦芝; 杨维凡; 甘再国; 范红梅; 郭俊盛; 徐瑚珊; 肖国青; 吴晓蕾; 丁华杰; 吴王锁; 黄文学; 雷祥国; 徐岩冰; 袁晓华; 郭斌

    2006-01-01

    报道了利用兰州重离子研究装置提供的26Mg重离子束流轰击243Am靶产生和鉴别已知超重核素266Bh的实验结果.利用转轮收集探测装置依靠母子核遗传关系通过观测Bh同位素与其子核Db和Lr之间的α-α关联事件来鉴别266Bh. 实验中观测到266Bh的α能量为(9.03 ± 0.08) MeV, 与日本理化学研究所在合成113号元素中第一个衰变链中观测到266Bh的α能量为9.07 MeV相近. 266Bh的半衰期为0.66+0.59-0.26 s, 从实验得到的Qα也符合Z=107的Qα随中子数变化的系统性.%The isotope of 266Bh was produced and identified definitely in bombardments of 243Am target with 162 MeV 26Mg ions at HIRFL. Identification was made by observation of correlated α-particle decays between the Bh isotopes and their Db and Lr daughters using a rotating wheel system. The measured α energy for 266Bh is (9.03±0.08) MeV, and this value close to the 9.07 MeV for 266Bh observed in the first chain of element 113 at RIKEN. The half-life of 266Bh is 0.66+0.59 -0.26 s. The Qα value derived from this experiment fits well into the general trend in a "Qα-N systematics" for the isotopes with Z = 107.

  11. Phytoremediation: role of terrestrial plants and aquatic macrophytes in the remediation of radionuclides and heavy metal contaminated soil and water.

    Science.gov (United States)

    Sharma, Sunita; Singh, Bikram; Manchanda, V K

    2015-01-01

    Nuclear power reactors are operating in 31 countries around the world. Along with reactor operations, activities like mining, fuel fabrication, fuel reprocessing and military operations are the major contributors to the nuclear waste. The presence of a large number of fission products along with multiple oxidation state long-lived radionuclides such as neptunium ((237)Np), plutonium ((239)Pu), americium ((241/243)Am) and curium ((245)Cm) make the waste streams a potential radiological threat to the environment. Commonly high concentrations of cesium ((137)Cs) and strontium ((90)Sr) are found in a nuclear waste. These radionuclides are capable enough to produce potential health threat due to their long half-lives and effortless translocation into the human body. Besides the radionuclides, heavy metal contamination is also a serious issue. Heavy metals occur naturally in the earth crust and in low concentration, are also essential for the metabolism of living beings. Bioaccumulation of these heavy metals causes hazardous effects. These pollutants enter the human body directly via contaminated drinking water or through the food chain. This issue has drawn the attention of scientists throughout the world to device eco-friendly treatments to remediate the soil and water resources. Various physical and chemical treatments are being applied to clean the waste, but these techniques are quite expensive, complicated and comprise various side effects. One of the promising techniques, which has been pursued vigorously to overcome these demerits, is phytoremediation. The process is very effective, eco-friendly, easy and affordable. This technique utilizes the plants and its associated microbes to decontaminate the low and moderately contaminated sites efficiently. Many plant species are successfully used for remediation of contaminated soil and water systems. Remediation of these systems turns into a serious problem due to various anthropogenic activities that have

  12. Influences of different environmental parameters on the sorption of trivalent metal ions on bentonite: batch sorption, fluorescence, EXAFS and EPR studies.

    Science.gov (United States)

    Verma, P K; Pathak, P N; Mohapatra, P K; Godbole, S V; Kadam, R M; Veligzhanin, A A; Zubavichus, Y V; Kalmykov, S N

    2014-04-01

    The presence of long-lived radionuclides in natural aquatic systems is of great environmental concern in view of their possible migration into biospheres of mankind. Trivalent actinides such as (241/243)Am can contribute a great deal to radioactivity for several thousand years. This migration is significantly influenced by various factors such as pH, complexing ions present in aquatic environments, and the sorption of species involving radionuclides by sediments around water bodies. Clay minerals such as bentonite are known to be highly efficient in radionuclide retention and hence are suitable candidates for backfill materials. This study presents experimental results on the interaction of Eu(iii) and Gd(iii) (chemical analogs of Am(iii) and Cm(iii)) with bentonite clay under varying experimental conditions of contact time, pH, and the presence of complexing anions such as humic acid (HA) and citric acid (cit). The sorption of HA on bentonite decreased with increasing the pH from 2 to 8, which was attributed to electrostatic interactions between HA and the bentonite surfaces. The sorption of Eu(iii) on bentonite colloids showed marginal variation with pH (>95%). However, a decrease in Eu(iii) sorption was observed in the presence of HA beyond pH 5 due to the increased aqueous complexation of Eu(iii) with deprotonated HA in the aqueous phase. The complexation of Eu(iii) with citrate ions was studied using Time Resolved Laser induced Fluorescence Spectroscopy (TRLFS) to explain the sorption data. Extended X-ray absorption fine structure (EXAFS) and electron paramagnetic resonance (EPR) investigations were carried out to understand the local chemical environment surrounding Eu(iii) and Gd(iii) (EPR probe) sorbed on bentonite under different experimental conditions. Surface complexation modelling shows the predominant formation of ≡XOEu(+2) (silanol) up to pH < 7, and beyond which ≡YOEu(OH)(+) (aluminol) is responsible for the quantitative sorption of Eu(iii) onto

  13. ENDF/B-VII.1 Neutron Cross Section Data Testing with Critical Assembly Benchmarks and Reactor Experiments

    Science.gov (United States)

    Kahler, A. C.; MacFarlane, R. E.; Mosteller, R. D.; Kiedrowski, B. C.; Frankle, S. C.; Chadwick, M. B.; McKnight, R. D.; Lell, R. M.; Palmiotti, G.; Hiruta, H.; Herman, M.; Arcilla, R.; Mughabghab, S. F.; Sublet, J. C.; Trkov, A.; Trumbull, T. H.; Dunn, M.

    2011-12-01

    actinide reaction rates such as 236U, 238,242Pu and 241,243Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues and a decreasing trend in calculated eigenvalue for 233U fueled systems as a function of Above-Thermal Fission Fraction remain. The comprehensive nature of this critical benchmark suite and the generally accurate calculated eigenvalues obtained with ENDF/B-VII.1 neutron cross sections support the conclusion that this is the most accurate general purpose ENDF/B cross section library yet released to the technical community.

  14. Gamma-Ray Library and Uncertainty Analysis: Passively Emitted Gamma Rays Used in Safeguards Technology

    Energy Technology Data Exchange (ETDEWEB)

    Parker, W

    2009-09-18

    streams can be especially challenging to identify. The super cooled detectors have a marked improvement in energy resolution, allowing the possibility of deconvolution of mixtures of gamma rays that was unavailable with high purity germanium detectors. Isotopic analysis codes require libraries of gamma rays. In certain situations, isotope identification can be made in the field, sometimes with a short turnaround time, depending on the choice of detector and software analysis package. Sodium iodide and high purity germanium detectors have been successfully used in field scenarios. The newer super cooled detectors offer dramatically increased resolution, but they have lower efficiency and so can require longer collection times. The different peak shapes require software development for the specific detector type and field application. Libraries can be tailored to specific scenarios; by eliminating isotopes that are certainly not present, the analysis time may be shortened and the accuracy may be increased. The intent of this project was to create one accurate library of gamma rays emitted from isotopes of interest to be used as a reliable reference in safeguards work. All simulation and spectroscopy analysis codes can draw upon this best library to improve accuracy and cross-code consistency. Modeling codes may include MCNP and COG. Gamma-ray spectroscopy analysis codes may include MGA, MGAU, U235 and FRAM. The intent is to give developers and users the tools to use in nuclear energy safeguards work. In this project, the library created was limited to a selection of actinide isotopes of immediate interest to reactor technology. These isotopes included {sup 234-238}U, {sup 237}Np, {sup 238-242}Pu, {sup 241,243}Am and {sup 244}Cm. These isotopes were examined, and the best of gamma-ray data, including line energies and relative strengths were selected.

  15. Table of radionuclides (Vol. 5 - A = 22 to 244)

    Energy Technology Data Exchange (ETDEWEB)

    Be, M.M.; Chiste, V.; Dulieu, C.; Mougeot, X.; Browne, E.; Chechev, V.; Kuzmenko, N.; Kondev, F.; Luca, A.; Galan, M.; Arinc, A.; Huang, X.

    2010-07-01

    have agreed on the methodologies to be used and the CD-ROM included with this monograph contains the evaluators' comments for each radionuclide in addition to the data tables included in the monograph. This volume includes the evaluation of the following radionuclides: {sup 22}Na, {sup 40}K, {sup 75}Se, {sup 124}Sb, {sup 207}Bi, {sup 211}Bi, {sup 217}At, {sup 222}Ra, {sup 225}Ac, {sup 228}Ra, {sup 231}Th, {sup 232}Th, {sup 233}Th, {sup 233}Pa, {sup 234}Th, {sup 235}U, {sup 237}U, {sup 238}Pu, {sup 240}Pu, {sup 241}Am, {sup 242}Pu, {sup 242}Am, {sup 243}Am, {sup 244}Am, {sup 244}Am{sup m}. Primary recommended data comprise half-lives, decay modes, X-rays, gamma-rays, electron emissions, alpha -and beta- particle transitions and emissions, and their uncertainties

  16. Transmutation of radioactive nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Toor, A; Buck, R

    2000-03-15

    Lack of a safe disposal method for radioactive nuclear waste (RNW) is a problem of staggering proportion and impact. A typical LWR fission reactor will produce the following RNW in one year: minor actinides (i.e. {sup 237}Np, {sup 242-243}Am, {sup 243-245}Cm) {approx}40 kg, long-lived fission products (i.e, {sup 99}Tc, {sup 93}Zr, {sup 129}I, {sup 135}Cs) {approx}80 kg, short lived fission products (e.g. {sup 137}Cs, {sup 90}Sr) {approx}50kg and plutonium {approx}280 kg. The total RNW produced by France and Canada amounts to hundreds of metric tonnes per year. Obtaining a uniform policy dealing with RNW has been blocked by the desire on one hand to harvest the energy stored in plutonium to benefit society and on the other hand the need to assure that the stockpile of plutonium will not be channeled into future nuclear weapons. In the meantime, the quantity and handling of these materials represents a potential health hazard to the world's population and particularly to people in the vicinity of temporary storage facilities. In the U.S., societal awareness of the hazards associated with RNW has effectively delayed development of U.S. nuclear fission reactors during the past decade. As a result the U.S. does not benefit from the large investment of resources in this industry. Reluctance to employ nuclear energy has compelled our society to rely increasingly on non-reusable alternative energy sources; coal, oil, and natural gas. That decision has compounded other unresolved global problems such as air pollution, acid rain, and global warming. Relying on these energy sources to meet our increasing energy demands has led the U.S. to increase its reliance on foreign oil; a policy that is disadvantageous to our economy and our national security. RNW can be simplistically thought of as being composed of two principal components: (1) actinides with half lives up to 10{sup 6} years and (2) the broad class of fission fragments with typical half lives of a few hundred