WorldWideScience

Sample records for 241-z building decontamination

  1. Tank 241-Z-361 process and characterization history

    Energy Technology Data Exchange (ETDEWEB)

    Jones, S.A.

    1998-08-06

    An Unreviewed Safety Question (Wagoner, 1997) was declared based on lack of adequate authorization basis for Tank 241-Z-361 in the 200W Area at Hanford. This document is a summary of the history of Tank 241-Z-361 through December 1997. Documents reviewed include engineering files, laboratory notebooks from characterization efforts, waste facility process procedures, supporting documents and interviews of people`s recollections of over twenty years ago. Records of transfers into the tank, past characterization efforts, and speculation were used to estimate the current condition of Tank 241-Z-361 and its contents. Information about the overall waste system as related to the settling tank was included to help in understanding the numbering system and process relationships. The Plutonium Finishing Plant was built in 1948 and began processing plutonium in mid-1949. The Incinerator (232-Z) operated from December 1961 until May 1973. The Plutonium Reclamation Facility (PRF, 236-Z) began operation in May 1964. The Waste Treatment Facility (242-Z) operated from August 1964 until August 1976. Waste from some processes went through transfer lines to 241-Z sump tanks. High salt and organic waste under normal operation were sent to Z-9 or Z-18 cribs. Water from the retention basin may have also passed through this tank. The transfer lines to 241-Z were numbered D-4 to D-6. The 241-Z sump tanks were numbered D-4 through D-8. The D-4, 5, and 8 drains went to the D-6 sump tank. When D-6 tank was full it was transferred to D-7 tank. Prior to transfer to cribs, the D-7 tank contents was sampled. If the plutonium content was analyzed to be more than 10 g per batch, the material was (generally) reprocessed. Below the discard limit, caustic was added and the material was sent to the cribs via the 241-Z-361 settling tank where solids settled out and the liquid overflowed by gravity to the cribs. Waste liquids that passed through the 241-Z-361 settling tank flowed from PFP to ground in

  2. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile

  3. PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSTON GA

    2008-01-15

    Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile

  4. Tank 241-Z-361 vapor sampling and analysis plan

    Energy Technology Data Exchange (ETDEWEB)

    BANNING, D.L.

    1999-02-23

    Tank 241-Z-361 is identified in the Hanford Federal Facility Agreement and Consent Order (commonly referred to as the Tri-Party Agreement), Appendix C, (Ecology et al. 1994) as a unit to be remediated under the authority of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA). As such, the U.S. Environmental Protection Agency will serve as the lead regulatory agency for remediation of this tank under the CERCLA process. At the time this unit was identified as a CERCLA site under the Tri-Party Agreement, it was placed within the 200-ZP-2 Operable Unit. In 1997, The Tri-parties redefined 200 Area Operable Units into waste groupings (Waste Site Grouping for 200 Areas Soils Investigations [DOE-RL 1992 and 1997]). A waste group contains waste sites that share similarities in geological conditions, function, and types of waste received. Tank 241-Z-361 is identified within the CERCLA Plutonium/Organic-rich Process Condensate/Process Waste Group (DOE-RL 1992). The Plutonium/Organic-rich Process Condensate/Process Waste Group has been prioritized for remediation beginning in the year 2004. Results of Tank 216-Z-361 sampling and analysis described in this Sampling and Analysis Plan (SAP) and in the SAP for sludge sampling (to be developed) will determine whether expedited response actions are required before 2004 because of the hazards associated with tank contents. Should data conclude that remediation of this tank should occur earlier than is planned for the other sites in the waste group, it is likely that removal alternatives will be analyzed in a separate Engineering Evaluation/Cost Analysis (EE/CA). Removal actions would proceed after the U.S. Environmental Protection Agency (EPA) signs an Action Memorandum describing the selected removal alternative for Tank 216-Z-361. If the data conclude that there is no immediate threat to human health and the environment from this tank, remedial actions for the tank will be defined in a

  5. Engineering study of the criticality issues associated with Hanford tank 241-Z-361

    Energy Technology Data Exchange (ETDEWEB)

    Lipke, E.J.

    1997-12-22

    Tank 241-Z-361 is associated with the Plutonium Finishing Plant (PFP). Uncertainty about the contents of the tank have led to the declaration of an Unreviewed Safety Question (USQ) and the preparation of a Justification for Continued Operation (JCO) to address flammable gas and other authorization basis issued. A Criticality Safety Team was assembled to review old data, determine its validity, and reevaluate the tank. It was concluded that the tank has a sufficient margin of safety to allow opening, sampling, and other characterizing activities. The team concluded that a criticality in Tank 241-Z-361 was extremely unlikely.

  6. 324 and 325 Building hot cell cleanout program: Decontamination of C-Cell

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Y.B.; Holton, L.K. Jr.

    1989-10-01

    During FY 1989 the decontamination of C-Cell of Hanford's 324 Building was completed as part of the 324 and 325 Building Hot Cell Cleanout Program sponsored by the DOE Nuclear Energy's Surplus Facilities Management Program. The decontamination effort was completed using a series of remote and contact decontamination techniques. Initial radiation readings in C-Cell averaged 50 rad/hr and were reduced remotely to less than 200 mrad/hr using an alkaline foam cleaner followed by a 5000-psi water flush. Contact decontamination was then permissible using ultra high-pressure water, at 36,000 psi, further reducing the average radiation level in the cell to less than 86 mrem/hr. The approach used in decontaminating C-Cell resulted in a savings in radiation exposure of 87% and a cost savings of 39% compared to a hands-on procedure used in A-Cell, 324 Building in 1987. The radiation dose and the costs to achieve a 244-fold reduction in radiation contamination were 1.65 mrem per ft{sup 2} and $96 per ft{sup 2} of cell surface area. 14 figs., 4 tabs.

  7. Decontamination Data - Blister Agents

    Data.gov (United States)

    U.S. Environmental Protection Agency — Decontamination efficacy data for blister agents on various building materials using various decontamination solutions. This dataset is associated with the following...

  8. Destruction of Spores on Building Decontamination Residue in a Commercial Autoclave▿

    OpenAIRE

    Lemieux, P.; Sieber, R; Osborne, A.; Woodard, A.

    2006-01-01

    The U.S. Environmental Protection Agency conducted an experiment to evaluate the effectiveness of a commercial autoclave for treating simulated building decontamination residue (BDR). The BDR was intended to simulate porous materials removed from a building deliberately contaminated with biological agents such as Bacillus anthracis (anthrax) in a terrorist attack. The purpose of the tests was to assess whether the standard operating procedure for a commercial autoclave provided sufficiently r...

  9. Decontamination and decommissioning assessment for the Waste Incineration Facility (Building 232-Z) Hanford Site, [Hanford], WA

    Energy Technology Data Exchange (ETDEWEB)

    Dean, L.N. [Advanced Sciences, Inc., (United States)

    1994-02-01

    Building 232-Z is an element of the Plutonium Finishing Plant (PFP) located in the 200 West Area of the Hanford Site. From 1961 until 1972, plutonium-bearing combustible materials were incinerated in the building. Between 1972 and 1983, following shutdown of the incinerator, the facility was used for waste segregation activities. The facility was placed in retired inactive status in 1984 and classified as a Limited Control Facility pursuant to DOE Order 5480.5, Safety of Nuclear Facilities, and 6430.1A, General Design Criteria. The current plutonium inventory within the building is estimated to be approximately 848 grams, the majority of which is retained within the process hood ventilation system. As a contaminated retired facility, Building 232-Z is included in the DOE Surplus Facility Management Program. The objective of this Decontamination and Decommissioning (D&D) assessment is to remove Building 232-Z, thereby elmininating the radiological and environmental hazards associated with the plutonium inventory within the structure. The steps to accomplish the plan objectives are: (1) identifying the locations of the most significant amounts of plutonium, (2) removing residual plutonium, (3) removing and decontaminating remaining building equipment, (4) dismantling the remaining structure, and (5) closing out the project.

  10. Surface activity and radiation field measurements of the TMI-2 reactor building gross decontamination experiment

    Energy Technology Data Exchange (ETDEWEB)

    McIsaac, C V

    1983-10-01

    Surface samples were collected from concrete and metal surfaces within the Three Mile Island Unit 2 Reactor Building on December 15 and 17, 1981 and again on March 25 and 26, 1982. The Reactor Building was decontaminated by hydrolasing during the period between these dates. The collected samples were analyzed for radionuclide concentration at the Idaho National Engineering Laboratory. The sampling equipment and procedures, and the analysis methods and results are discussed. The measured mean surface concentrations of /sup 137/Cs and /sup 90/Sr on the 305-ft elevation floor before decontamination were, respectively, 3.6 +- 0.9 and 0.17 +- 0.04 ..mu..Ci/cm/sup 2/. Their mean concentrations on the 347-ft elevation floor were about the same. On both elevations, walls were found to be considerably less contaminated than floors. The fractions of the core inventories of /sup 137/Cs, /sup 90/Sr, and /sup 129/I deposited on Reactor Building surfaces prior to decontamination were calculated using their mean concentrations on various types of surfaces. The calculated values for these three nuclides are 3.5 +- 0.4 E-4, 2.4 +- 0.8 E-5, and 5.7 +- 0.5 E-4, respectively. The decontamination operations reduced the /sup 137/Cs surface activity on the 305- and 347-ft elevations by factors of 20 and 13, respectively. The /sup 90/Sr surface activity reduction was the same for both floors, that being a factor of 30. On the whole, decontamination of vertical surfaces was not achieved. Beta and gamma exposure rates that were measured during surface sampling were examined to determine the degree to which they correlated with measured surface activities. The data were fit with power functions of the form y = ax/sup b/. As might be expected, the beta exposure rates showed the best correlation. Of the data sets fit with the power function, the set of December 1981 beta exposure exhibited the least scatter. The coefficient of determination for this set was calculated to be 0.915.

  11. Development of standards for chemical and biological decontamination of buildings and structures affected by terrorism

    Energy Technology Data Exchange (ETDEWEB)

    Lumley, T.C.; Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Hay, A.W.M. [Leeds Univ., Leeds (United Kingdom)

    2006-07-01

    Currently, there are no suitable standards for determining levels of safety when reoccupying a building that has been recommissioned following a biological or chemical attack. For that reason, this study focused on developing clean-up standards for decontaminating buildings and construction materials after acts of terrorism. Several parameters must be assessed when determining the course of action to decontaminate toxic agents and to rehabilitate facilities. First, the hazardous substance must be positively identified along with the degree of contamination and information on likely receptors. Potential exposure route is also a key consideration in the risk assessment process. A key objective of the study was to develop specific guidelines for ascertaining and defining clean. In particular, standards for chemical and biological agents that pose a real or potential risk for use as agents of terrorism will be developed. The selected agents for standards development were ammonia, fentanyl, malathion, mustard gas, potassium cyanide, ricin, sarin, hepatitis A virus, and bacillus anthracis. The standards will be developed by establishing the relationship between the amount of exposure and expected health effects; assessing real and potential risks by identifying individuals at risk and consideration of all exposure routes; and, characterizing the risk to determine the potential for toxicity or infectivity. For non-carcinogens, this was done through the analysis of other known guidelines. Cancer-slope factors will be considered for carcinogens. The standards will be assessed in the laboratory using animal models. The guidelines and standards are intended for first-responders and are scheduled for development by the end of 2006. 15 refs., 3 tabs.

  12. PROPERTIES AND BEHAVIOR OF 238PU RELEVANT TO DECONTAMINATION OF BUILDING 235-F

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, A.; Kane, M.

    2009-11-24

    This report was prepared to document the physical, chemical and radiological properties of plutonium oxide materials that were processed in the Plutonium Fuel Form Facility (PuFF) in building 235-F at the Savannah River Plant (now known as the Savannah River Site) in the late 1970s and early 1980s. An understanding of these properties is needed to support current project planning for the safe and effective decontamination and deactivation (D&D) of PuFF. The PuFF mission was production of heat sources to power Radioisotope Thermoelectric Generators (RTGs) used in space craft. The specification for the PuO{sub 2} used to fabricate the heat sources required that the isotopic content of the plutonium be 83 {+-} 1% Pu-238 due to its high decay heat of 0.57 W/g. The high specific activity of Pu-238 (17.1 Ci/g) due to alpha decay makes this material very difficult to manage. The production process produced micron-sized particles which proved difficult to contain during operations, creating personnel contamination concerns and resulting in the expenditure of significant resources to decontaminate spaces after loss of material containment. This report examines high {sup 238}Pu-content material properties relevant to the D&D of PuFF. These relevant properties are those that contribute to the mobility of the material. Physical properties which produce or maintain small particle size work to increase particle mobility. Early workers with {sup 238}PuO{sub 2} felt that, unlike most small particles, Pu-238 oxide particles would not naturally agglomerate to form larger, less mobile particles. It was thought that the heat generated by the particles would prevent water molecules from binding to the particle surface. Particles covered with bound water tend to agglomerate more easily. However, it is now understood that the self-heating effect is not sufficient to prevent adsorption of water on particle surfaces and thus would not prevent agglomeration of particles. Operational

  13. Development and field testing of a mobile chlorine dioxide generation system for the decontamination of buildings contaminated with Bacillus anthracis

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Joseph P., E-mail: wood.joe@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Homeland Security Research Center, MC-E343-06, Research Triangle Park, NC 27711 (United States); Blair Martin, G., E-mail: martin.blair@epa.gov [U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, MC-E340-C, Research Triangle Park, NC 27711 (United States)

    2009-05-30

    The numerous buildings that became contaminated with Bacillus anthracis (the bacterium causing the disease anthrax) in 2001, and more recent B. anthracis - related events, point to the need to have effective decontamination technologies for buildings contaminated with biological threat agents. The U.S. Government developed a portable chlorine dioxide (ClO{sub 2}) generation system to decontaminate buildings contaminated with B. anthracis spores, and this so-called mobile decontamination trailer (MDT) prototype was tested through a series of three field trials. The first test of the MDT was conducted at Fort McClellan in Anniston, AL. during October 2004. Four test attempts occurred over two weekends; however, a number of system problems resulted in termination of the activity prior to any ClO{sub 2} introduction into the test building. After making several design enhancements and equipment changes, the MDT was subjected to a second test. During this test, extensive leak checks were made using argon and nitrogen in lieu of chlorine gas; each subsystem was checked for functionality, and the MDT was operated for 24 h. This second test demonstrated the MDT flow and control systems functioned satisfactorily, and thus it was decided to proceed to a third, more challenging field trial. In the last field test, ClO{sub 2} was generated and routed directly to the scrubber in a 12-h continuous run. Measurement of ClO{sub 2} levels at the generator outlet showed that the desired production rate was not achieved. Additionally, only one of the two scrubbers performed adequately with regard to maintaining ClO{sub 2} emissions below the limit. Numerous lessons were learned in the field trials of this ClO{sub 2} decontamination technology.

  14. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 2: Technology logic diagram

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. The TLD consists of three fundamentally separate volumes: Vol. 1 (Technology Evaluation), Vol. 2 (Technology Logic Diagram), and Vol. 3 (Technology Evaluation Data Sheets). Volume 2 contains the logic linkages among environmental management goals, environmental problems, and the various technologies that have the potential to solve these problems. Volume 2 has been divided into five sections: Characterization, Decontamination, Dismantlement, Robotics/Automation, and Waste Management. Each section contains logical breakdowns of the Y-12 D and D problems by subject area and identifies technologies that can be reasonably applied to each D and D challenge.

  15. Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4. Volume 1: Technology evaluation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    During World War 11, the Oak Ridge Y-12 Plant was built as part of the Manhattan Project to supply enriched uranium for weapons production. In 1945, Building 9201-4 (Alpha-4) was originally used to house a uranium isotope separation process based on electromagnetic separation technology. With the startup of the Oak Ridge K-25 Site gaseous diffusion plant In 1947, Alpha-4 was placed on standby. In 1953, the uranium enrichment process was removed, and installation of equipment for the Colex process began. The Colex process--which uses a mercury solvent and lithium hydroxide as the lithium feed material-was shut down in 1962 and drained of process materials. Residual Quantities of mercury and lithium hydroxide have remained in the process equipment. Alpha-4 contains more than one-half million ft{sup 2} of floor area; 15,000 tons of process and electrical equipment; and 23,000 tons of insulation, mortar, brick, flooring, handrails, ducts, utilities, burnables, and sludge. Because much of this equipment and construction material is contaminated with elemental mercury, cleanup is necessary. The goal of the Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 is to provide a planning document that relates decontamination and decommissioning and waste management problems at the Alpha-4 building to the technologies that can be used to remediate these problems. The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 builds on the methodology transferred by the U.S. Air Force to the Environmental Management organization with DOE and draws from previous technology logic diagram-efforts: logic diagrams for Hanford, the K-25 Site, and ORNL.

  16. Lessons Learned from Decontamination Experiences

    Energy Technology Data Exchange (ETDEWEB)

    Sorensen, JH

    2000-11-16

    This interim report describes a DOE project currently underway to establish what is known about decontamination of buildings and people and the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  17. Gross decontamination experiment report

    Energy Technology Data Exchange (ETDEWEB)

    Mason, R.; Kinney, K.; Dettorre, J.; Gilbert, V.

    1983-07-01

    A Gross Decontamination Experiment was conducted on various levels and surfaces of the TMI - Unit 2 reactor building in March 1982. The polar crane, D-rings, missile shields, refueling canals, refueling bridges, equipment, and elevations 305' and 347'-6'' were flushed with low pressure water. Additionally, floor surfaces on elevation 305' and floor surfaces and major pieces of equipment on elevation 347'-6'' were sprayed with high pressure water. Selective surfaces were decontaminated with a mechanical scrubber and chemicals. Strippable coating was tested and evaluated on equipment and floor surfaces. The effectiveness, efficiency, and safety of several decontamination techniques were established for the large, complex decontamination effort. Various decontamination equipment was evaluated and its effectiveness was documented. Decontamination training and procedures were documented and evaluated, as were the support system and organization for the experiment.

  18. Systematic Evaluation of the Efficacy of Chlorine Dioxide in Decontamination of Building Interior Surfaces Contaminated with Anthrax Spores▿

    Science.gov (United States)

    Rastogi, Vipin K.; Ryan, Shawn P.; Wallace, Lalena; Smith, Lisa S.; Shah, Saumil S.; Martin, G. Blair

    2010-01-01

    Efficacy of chlorine dioxide (CD) gas generated by two distinct generation systems, Sabre (wet system with gas generated in water) and ClorDiSys (dry system with gas generated in air), was evaluated for inactivation of Bacillus anthracis spores on six building interior surfaces. The six building materials included carpet, acoustic ceiling tile, unpainted cinder block, painted I-beam steel, painted wallboard, and unpainted pinewood. There was no statistically significant difference in the data due to the CD generation technology at a 95% confidence level. Note that a common method of CD gas measurement was used for both wet and dry CD generation types. Doses generated by combinations of different concentrations of CD gas (500, 1,000, 1,500, or 3,000 parts per million of volume [ppmv]) and exposure times (ranging between 0.5 and 12 h) were used to evaluate the relative role of fumigant exposure period and total dose in the decontamination of building surfaces. The results showed that the time required to achieve at least a 6-log reduction in viable spores is clearly a function of the material type on which the spores are inoculated. The wood and cinder block coupons required a longer exposure time to achieve a 6-log reduction. The only material showing a clear statistical difference in rate of decay of viable spores as a function of concentration was cinder block. For all other materials, the profile of spore kill (i.e., change in number of viable spores with exposure time) was not dependent upon fumigant concentration (500 to 3,000 ppmv). The CD dose required for complete spore kill on biological indicators (typically, 1E6 spores of Bacillus atrophaeus on stainless steel) was significantly less than that required for decontamination of most of the building materials tested. PMID:20305025

  19. Environmental decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.; Jernigan, H.C. (eds.)

    1981-02-01

    The record of the proceedings of the workshop on environmental decontamination contains twenty-seven presentations. Emphasis is placed upon soil and surface decontamination, the decommissioning of nuclear facilities, and assessments of instrumentation and equipment used in decontamination. (DLS)

  20. BNL Building 650 lead decontamination and treatment feasibility study. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kalb, P.D.; Cowgill, M.G.; Milian, L.W. [and others

    1995-10-01

    Lead has been used extensively at Brookhaven National Laboratory (BNL) for radiation shielding in numerous reactor, accelerator and other research programs. A large inventory of excess lead (estimated at 410,000 kg) in many shapes and sizes is currently being stored. Due to it`s toxicity, lead and soluble lead compounds are considered hazardous waste by the Environmental Protection Agency. Through use at BNL, some of the lead has become radioactive, either by contamination of the surface or through activation by neutrons or deuterons. This study was conducted at BNL`s Environmental and Waste Technology Center for the BNL Safety and Environmental Protection Division to evaluate feasibility of various treatment options for excess lead currently being stored. The objectives of this effort included investigating potential treatment methods by conducting a review of the literature, developing a means of screening lead waste to determine the radioactive characteristics, examining the feasibility of chemical and physical decontamination technologies, and demonstrating BNL polyethylene macro-encapsulation as a means of treating hazardous or mixed waste lead for disposal. A review and evaluation of the literature indicated that a number of physical and chemical methods are available for decontamination of lead. Many of these techniques have been applied for this purpose with varying degrees of success. Methods that apply mechanical techniques are more appropriate for lead bricks and sheet which contain large smooth surfaces amenable to physical abrasion. Lead wool, turnings, and small irregularly shaped pieces would be treated more effectively by chemical decontamination techniques. Either dry abrasion or wet chemical methods result in production of a secondary mixed waste stream that requires treatment prior to disposal.

  1. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report.

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, E. C.

    1998-11-23

    The Building 594 D&D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 {micro}Ci (175 kBq). The radionuclides of concern were Co{sup 60}, Cs{sup 137}, and Am{sup 241}. The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr).

  2. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  3. Final report of the decontamination and decommissioning of Building 18 at the Grand Junction Projects Office Facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. The soil beneath Building 18 was found to be radiologically contaminated; the building was not contaminated. The soil was remediated in accordance with identified standards. Building 18 and the underlying soil can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  4. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building.

  5. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  6. Alternatives evaluation for the decontamination and decommissioning of buildings 3506 and 3515 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    this is an alternative evaluation document that records the evaluation process and justification for choosing the alternative recommended for the decontamination and decommissioning (D&D) of the 3506 and 3515 buildings at the Oak Ridge National Laboratory (ORNL). The alternatives for the D&D of the two buildings were: (1) no action (continued surveillance and maintenance), (2) decontamination for free release, (3) entombment in place, (4) partial dismantlement, and (5) complete dismantlement. Soil remediation is not included in any of the alternatives. The recommended alternative for the D&D of Building 3506 is partial dismantlement at an estimated cost of $936, 000 in escalated dollars. The cost estimate for complete dismantlement is $1,384,000. The recommended alternative for the D&D of Building 3515 is complete dismantlement at an estimated cost of $3,733,000 in escalated dollars. This alternative is recommended, because the soils below the foundation of the 3515 building are highly contaminated, and removing the foundation in the D&D project results in lower overall worker risk, costs, and improved post-D&D site conditions. A further recommendation is to revise these cost estimates after the conclusion of the ongoing characterization study. The results of the characterization of the two buildings is expected to change some of the assumptions and resolve some of the uncertainties in the development of these estimates.

  7. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  8. Electrokinetic decontamination of concrete

    Energy Technology Data Exchange (ETDEWEB)

    Lomasney, H. [ISOTRON Corp., New Orleans, LA (United States)

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  9. Y-12 Plant decontamination and decommissioning technology logic diagram for Building 9201-4. Volume 3: Technology evaluation data sheets; Part A: Characterization, dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-09-01

    The Y-12 Plant Decontamination and Decommissioning Technology Logic Diagram for Building 9201-4 (TLD) was developed to provide a decision-support tool that relates decontamination and decommissioning (D and D) problems at Bldg. 9201-4 to potential technologies that can remediate these problems. The TLD uses information from the Strategic Roadmap for the Oak Ridge Reservation, the Oak Ridge K-25 Site Technology Logic Diagram, the Oak Ridge National Laboratory Technology Logic Diagram, and a previous Hanford logic diagram. This TLD identifies the research, development, demonstration, testing, and evaluation needed for sufficient development of these technologies to allow for technology transfer and application to D and D and waste management (WM) activities. It is essential that follow-on engineering studies be conducted to build on the output of this project. These studies will begin by selecting the most promising technologies identified in the TLD and by finding an optimum mix of technologies that will provide a socially acceptable balance between cost and risk. This report consists of the characterization and dismantlement data sheets.

  10. Decontamination and protection

    Energy Technology Data Exchange (ETDEWEB)

    Maloney, J.C.; Dhein, E.H.; Morgenthau, M.

    1954-01-01

    Test panels, four ft square, of 14 building materials were mounted on the weather surfaces of two remotely controlled liberty ships and on a stationary barge. One of the ships was protected by a washdown system. All surfaces were contaminated significantly with tenacious fallout. Vertical surfaces facing upwind became equally or more highly contaminated than horizontal or pitched surfaces, probably due to wind currents impacting the tenacious contaminant onto surfaces normal to it. A sequence of hosing and vigorous scrubbing operations resulted in contamination reductions of 40 to 70%, but with reductions on most surfaces being less than 50%. The most effective decontamination method was scrubbing. Under the conditions of this test, painting and joint sealing had little effect while the washdown countermeasure reduced the initial contamination over 90%. It is concluded that contamination from fallout encountered in these tests presents a serious decontamination problem on buildings and paved areas and further development of effective countermeasures is necessary.

  11. US Department of Energy Grand Junction Projects Office Remedial Action Project. Final report of the decontamination and decommissioning of Building 52 at the Grand Junction Projects Office Facility

    Energy Technology Data Exchange (ETDEWEB)

    Krabacher, J.E.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission`s domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Building 52 was found to be radiologically contaminated and was demolished in 1994. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building.

  12. Vibratory finishing as a decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, M.W.; Arrowsmith, H.W.; Allen, R.P.

    1980-10-01

    The major objective of this research is to develop vibratory finishing into a large-scale decontamination technique that can economicaly remove transuranic and other surface contamination from large volumes of waste produced by the operation and decommissioning of retired nuclear facilities. The successful development and widespread application of this decontamination technique would substantially reduce the volume of waste requiring expensive geologic disposal. Other benefits include exposure reduction for decontamination personnel and reduced risk of environmental contamination. Laboratory-scale studies showed that vibratory finishing can rapidly reduce the contamination level of transuranic-contaminated stainless steel and Plexiglas to well below the 10-nCi/g limit. The capability of vibratory finishing as a decontamination process was demonstrated on a large scale. The first decontamination demonstration was conducted at the Hanford N-Reactor, where a vibratory finisher was installed to reduce personnel exposure during the summer outage. Items decontaminated included fuel spacers, process-tube end caps, process-tube inserts, pump parts, ball-channel inspection tools and miscellaneous hand tools. A second demonstration is currently being conducted in the decontamination facility at the Hanford 231-Z Building. During this demonstration, transuranic-contaminated material from decommissioned plutonium facilities is being decontaminated to <10 nCi/g to minimize the volume of material that will require geologic disposal. Items that are being decontaminated include entire glove boxes, process-hood structural material and panels, process tanks, process-tank shields, pumps, valves and hand tools used during the decommissioning work.

  13. Decontamination of hot cells K-1, K-3, M-1, M-3, and A-1, M-Wing, Building 200: Project final report Argonne National Laboratory-East

    Energy Technology Data Exchange (ETDEWEB)

    Cheever, C.L.; Rose, R.W.

    1996-09-01

    The purpose of this project was to remove radioactively contaminated materials and equipment from the hot cells, to decontaminate the hot cells, and to dispose of the radioactive waste. The goal was to reduce stack releases of Rn-220 and to place the hot cells in an emptied, decontaminated condition with less than 10 {micro}Sv/h (1 mrem/h) general radiation background. The following actions were needed: organize and mobilize a decontamination team; prepare decontamination plans and procedures; perform safety analyses to ensure protection of the workers, public, and environment; remotely size-reduce, package, and remove radioactive materials and equipment for waste disposal; remotely decontaminate surfaces to reduce hot cell radiation background levels to allow personnel entries using supplied air and full protective suits; disassemble and package the remaining radioactive materials and equipment using hands-on techniques; decontaminate hot cell surfaces to remove loose radioactive contaminants and to attain a less than 10 {micro}Sv/h (1 mrem/h) general background level; document and dispose of the radioactive and mixed waste; and conduct a final radiological survey.

  14. [Decontamination of chemical and biological warfare agents].

    Science.gov (United States)

    Seto, Yasuo

    2009-01-01

    Chemical and biological warfare agents (CBWA's) are diverse in nature; volatile acute low-molecular-weight toxic compounds, chemical warfare agents (CWA's, gaseous choking and blood agents, volatile nerve gases and blister agents, nonvolatile vomit agents and lacrymators), biological toxins (nonvolatile low-molecular-weight toxins, proteinous toxins) and microbes (bacteria, viruses, rickettsiae). In the consequence management against chemical and biological terrorism, speedy decontamination of victims, facilities and equipment is required for the minimization of the damage. In the present situation, washing victims and contaminated materials with large volumes of water is the basic way, and additionally hypochlorite salt solution is used for decomposition of CWA's. However, it still remains unsolved how to dispose large volumes of waste water, and the decontamination reagents have serious limitation of high toxicity, despoiling nature against the environments, long finishing time and non-durability in effective decontamination. Namely, the existing decontamination system is not effective, nonspecifically affecting the surrounding non-target materials. Therefore, it is the urgent matter to build up the usable decontamination system surpassing the present technologies. The symposiast presents the on-going joint project of research and development of the novel decontamination system against CBWA's, in the purpose of realizing nontoxic, fast, specific, effective and economical terrorism on-site decontamination. The projects consists of (1) establishment of the decontamination evaluation methods and verification of the existing technologies and adaptation of bacterial organophosphorus hydrolase, (2) development of adsorptive elimination technologies using molecular recognition tools, and (4) development of deactivation technologies using photocatalysis.

  15. Chemical surety material decontamination and decommissioning of Los Alamos National Laboratory Chemical Surety Material Laboratory area TA-3, building SM-29, room 4009

    Energy Technology Data Exchange (ETDEWEB)

    Moore, T.E.; Smith, J.M.

    1994-04-01

    From 1982 through 1987, Los Alamos National Laboratory (LANL) performed surety laboratory operations for the U.S. Army Medical Research and Development Command (MRDC). Room 4009 in building SM-29, TA-3, was used as the laboratory for work with the following chemical surety material (CSM) agents: sarin (GB), soman (GD), lewisite (L), and distilled mustard (HD) radio-labelled with H{sup 3} or C{sup 14}. The work was confined to three CSM-certified fume hoods, located in room 4009 (see diagram in Appendix C). The laboratory ceased all active operations during the late 1986 and early 1987 period. From 1987 until 1993 the laboratory was secured and the ventilation system continued to operate. During late 1992, the decision was made to utilize this laboratory space for other operations, thus a decision was made to dismantle and reconfigure this room. LANL sub-contracted Battelle Memorial Institute (BMI) to draw upon the CSM experience of the technical staff from the Hazardous Materials Research Facility (HMRF) to assist in developing a decontamination and decommissioning plan. BMI was subcontracted to devise a CSM safety training course, and a sampling and air monitoring plan for CSM material to ensure personnel safety during all disassembly operations. LANL subcontracted Johnson Controls personnel to perform all disassembly operations. Beginning in early 1993 BMI personnel from the HMRF visited the laboratory to develop both the safety plan and the sample and air monitoring plan. Execution of that plan began in September 1993 and was completed in January 1994.

  16. Decontamination and dismantlement of Plant 7 at Fernald

    Energy Technology Data Exchange (ETDEWEB)

    Albertin, M.; Borgman, T.; Zebick, B.

    1994-11-07

    Decontamination and dismantlement (D&D) tasks have been successfully completed on Plant 7 at the Fernald Environmental Management Project. The seven story facility was radiologically, chemically, and biologically contaminated. The work involved the D&D work beginning with safe shutdown and gross decontamination, and ended with removal of the structural steel. A series of lessons learned were gained which include use of explosives, bidding tactics, safe shutdown, building decontamination and lockdown, use of seam climbers, etc.

  17. Reaction-diffusion models of decontamination

    DEFF Research Database (Denmark)

    Hjorth, Poul G.

    A contaminant, which also contains a polymer is in the form of droplets on a solid surface. It is to be removed by the action of a decontaminant, which is applied in aqueous solution. The contaminant is only sparingly soluble in water, so the reaction mechanism is that it slowly dissolves...... in the aqueous solution and then is oxidized by the decontaminant. The polymer is insoluble in water, and so builds up near the interface, where its presence can impede the transport of contaminant. In these circumstances, Dstl wish to have mathematical models that give an understanding of the process, and can...

  18. Long lasting decontamination foam

    Science.gov (United States)

    Demmer, Ricky L.; Peterman, Dean R.; Tripp, Julia L.; Cooper, David C.; Wright, Karen E.

    2010-12-07

    Compositions and methods for decontaminating surfaces are disclosed. More specifically, compositions and methods for decontamination using a composition capable of generating a long lasting foam are disclosed. Compositions may include a surfactant and gelatin and have a pH of less than about 6. Such compositions may further include affinity-shifting chemicals. Methods may include decontaminating a contaminated surface with a composition or a foam that may include a surfactant and gelatin and have a pH of less than about 6.

  19. PWR decontamination feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Silliman, P.L.

    1978-12-18

    The decontamination work which has been accomplished is reviewed and it is concluded that it is worthwhile to investigate further four methods for decontamination for future demonstration. These are: dilute chemical; single stage strong chemical; redox processes; and redox/chemical in combination. Laboratory work is recommended to define the agents and processes for demonstration and to determine the effect of the solvents on PWR materials. The feasibility of Indian Point 1 for decontamination demonstrations is discussed, and it is shown that the system components of Indian Point 1 are well suited for use in demonstrations.

  20. Anthrax Sampling and Decontamination: Technology Trade-Offs

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Hamachi, Kristina; McWilliams, Jennifer; Sohn, Michael D.

    2008-09-12

    The goal of this project was to answer the following questions concerning response to a future anthrax release (or suspected release) in a building: 1. Based on past experience, what rules of thumb can be determined concerning: (a) the amount of sampling that may be needed to determine the extent of contamination within a given building; (b) what portions of a building should be sampled; (c) the cost per square foot to decontaminate a given type of building using a given method; (d) the time required to prepare for, and perform, decontamination; (e) the effectiveness of a given decontamination method in a given type of building? 2. Based on past experience, what resources will be spent on evaluating the extent of contamination, performing decontamination, and assessing the effectiveness of the decontamination in abuilding of a given type and size? 3. What are the trade-offs between cost, time, and effectiveness for the various sampling plans, sampling methods, and decontamination methods that have been used in the past?

  1. Food decontamination using nanomaterials

    Science.gov (United States)

    The research indicates that nanomaterials including nanoemulsions are promising decontamination media for the reduction of food contaminating pathogens. The inhibitory effect of nanoparticles for pathogens could be due to deactivate cellular enzymes and DNA; disrupting of membrane permeability; and/...

  2. Chemical Decontaminant Testing

    Science.gov (United States)

    2014-10-20

    any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display...Some test methods for efficacy require the use of CWAs and decontaminants. 15. SUBJECT TERMS decontamination; chemical warfare agent; CWA...contaminant in samples from contact samplers , coupons, rinsate, or other samples. MS, GC or LC, FID, FPD, or equivalents. ±15 percent of the mass of

  3. Facility decontamination technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-01

    Purpose of the meeting was to provide a record of experience at nuclear facilities, other than TMI-2, of events and incidents which have required decontamination and dose reduction activities, and to furnish GPU and others involved in the TMI-2 cleanup with the results of that decontamination and dose reduction technology. Separate abstracts were prepared for 24 of the 25 papers; the remaining paper had been previously abstracted. (DLC)

  4. Decontamination Technologies, Task 3, Urban Remediation and Response Project

    Energy Technology Data Exchange (ETDEWEB)

    Heiser,J.; Sullivan, T.

    2009-06-30

    In the aftermath of a Radiological Dispersal Device (RDD, also known as a dirty bomb) it will be necessary to remediate the site including building exteriors and interiors, equipment, pavement, vehicles, personal items etc. Remediation will remove or reduce radioactive contamination from the area using a combination of removing and disposing of many assets (including possible demolition of buildings), decontaminating and returning to service other assets, and fixing in place or leaving in place contamination that is deemed 'acceptable'. The later will require setting acceptable dose standards, which will require negotiation with all involved parties and a balance of risk and cost to benefit. To accomplish the first two, disposal or decontamination, a combination of technologies will be deployed that can be loosely classified as: Decontamination; Equipment removal and size reduction; and Demolition. This report will deal only with the decontamination technologies that will be used to return assets to service or to reduce waste disposal. It will not discuss demolition, size reduction or removal technologies or equipment (e.g., backhoe mounted rams, rock splitter, paving breakers and chipping hammers, etc.). As defined by the DOE (1994), decontamination is removal of radiological contamination from the surfaces of facilities and equipment. Expertise in this field comes primarily from the operation and decommissioning of DOE and commercial nuclear facilities as well as a small amount of ongoing research and development closely related to RDD decontamination. Information related to decontamination of fields, buildings, and public spaces resulting from the Goiania and Chernobyl incidents were also reviewed and provide some meaningful insight into decontamination at major urban areas. In order to proceed with decontamination, the item being processed needs to have an intrinsic value that exceeds the cost of the cleaning and justifies the exposure of any workers

  5. Aquatic Toxicity of the Decontamination Agent: Multipurpose (DAM) decontamination Solution

    Science.gov (United States)

    1994-05-01

    DECONTAMINATION SOLUTION ELETI M.V. Holey •I• E LF- , C.W. Kurnas J •i W.T. Muse B RESEARCH AND TECHNOLOGY DIRECTORATE May 1994 Approved for public release...FUNDING NUMBERS Aquatic Toxicity of the Decontaminating S.O.-2FK4 Agent: Multipurpose (DAM) Decontamination Solution 6. AUTHOR(S) Haley, M.V.; Kurnas

  6. Decontamination: back to basics.

    Science.gov (United States)

    Meredith, Susan J; Sjorgen, Geoff

    2008-07-01

    My invitation from this Journal's Editor, Felicia Cox, to provide a paper for this themed issue, included the sentence 'I was wondering if you or a colleague would like to contribute a back to basics article on the relevant standards and guidelines for decontamination, including what is compliance?'. The reason it is so interesting to me is that the term 'back to basics' implies reverting to a simpler time in life - when by just sticking to the rules, life became easier. However, with decontamination this is not actually true.

  7. INTEGRATED VERTICAL AND OVERHEAD DECONTAMINATION (IVOD) SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    2001-01-01

    The deactivation and decommissioning of 1200 buildings within the U.S. Department of Energy-Office of Environmental Management complex will require the disposition of a large quantity of contaminated concrete and metal surfaces. It has been estimated that 23 million cubic meters of concrete and over 600,000 tons of metal will need disposition. The disposition of such large quantities of material presents difficulties in the area of decontamination and characterization. The final disposition of this large amount of material will take time and money as well as risk to the D&D work force. A single automated system that would decontaminate and characterize surfaces in one step would not only reduce the schedule and decrease cost during D&D operations but would also protect the D&D workers from unnecessary exposures to contaminated surfaces. This report summarizes the activities performed during FY00 and describes the planned activities for FY01. Accomplishments for FY00 include the following: Development and field-testing of characterization system; Completion of Title III design of deployment platform and decontamination unit; In-house testing of deployment platform and decontamination unit; Completion of system integration design; Identification of deployment site; and Completion of test plan document for deployment of IVOD at Rancho Seco nuclear power facility.

  8. [Advances in peroxide-based decontaminating technologies].

    Science.gov (United States)

    Xi, Hai-ling; Zhao, San-ping; Zhou, Wen

    2013-05-01

    With the boosting demand for eco-friendly decontaminants, great achievements in peroxide-based decontaminating technologies have been made in recent years. These technologies have been applied in countering chemical/biological terrorist attacks, dealing with chemical/biological disasters and destructing environmental pollutants. Recent research advances in alpha-nucleophilic/oxidative reaction mechanisms of peroxide-based decontamination against chemical warfare agents were reviewed, and some classical peroxide-based decontaminants such as aqueous decontaminating solution, decontaminating foam, decontaminating emulsions, decontaminating gels, decontaminating vapors, and some newly developed decontaminating media (e.g., peroxide-based self-decontaminating materials and heterogeneous nano-catalytic decontamination systems) were introduced. However, currently available peroxide-based decontaminants still have some deficiencies. For example, their decontamination efficiencies are not as high as those of chlorine-containing decontaminants, and some peroxide-based decontaminants show relatively poor effect against certain agents. More study on the mechanisms of peroxide-based decontaminants and the interfacial interactions in heterogeneous decontamination media is suggested. New catalysts, multifunctional surfactants, self-decontaminating materials and corrosion preventing technologies should be developed before peroxide-based decontaminants really become true "green" decontaminants.

  9. Decontamination and dismantlement of the building 200/205 pneumatic transfer tube at Argonne National Laboratory-East project final report.

    Energy Technology Data Exchange (ETDEWEB)

    Wiese, E. C.

    1998-12-11

    The Building 200/205 Pneumatic Transfer Tube D&D Project was directed toward the following goals: Remove any radioactive and hazardous materials associated with the transfer tube; Survey the transfer tube to identify any external contamination; Remove the transfer tube and package for disposal; Survey the soil and sand surrounding the transfer tube for any contamination; and Backfill the trench in which the tube sat and restore the area to its original condition. These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the buried transfer tube and to allow, upon completion of the project, the removal of this project from the ANL-E action item list. The physical condition of the transfer tube and possible nuclear fuel samples lost in the tube were the primary areas of concern, while the exact location of the transfer tube was of secondary concern. ANL-E health physics technicians collected characterization data from the ends of the Building 200/205 pneumatic transfer tube in January 1998. The characterization surveys identified contamination to a level of 67,000 dpm (1,117 Bq) ({beta}/{gamma}) and 20,000 dpm (333 Bq) {alpha} smearable at the opening.

  10. Development of laser decontamination technique

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Ryuichiro; Fukui, Yasutaka; Tanimoto, Kenichi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2002-06-01

    For decommissioning of nuclear fuel facilities, a laser decontamination technique has been developed. The technique was expected to decontaminate high-level radioactive waste to back ground levels, keep the amount of secondary waste low, and be operated by remote control. In the development, a decontamination experiment was executed. Type and operation mode of the laser oscillator, Type and flow rate of the assist gas, repetition rate of the laser pulse, moving velocity of the laser nozzle and irradiation energy were parameters in the experiment. Hot radioactive waste could be decontaminated to background levels uniformly with optimized parameters, which were determined by comparative evaluation. (author)

  11. Recent developments in collaborative CBRN decontamination science : a retrospective

    Energy Technology Data Exchange (ETDEWEB)

    Yanofsky, N. [Defence Research and Development Canada, Ottawa, ON (Canada); Volchek, K.; Fingas, M. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Filatov, B. [Research Inst. of Hygiene, Toxicology and Occupational Pathology, Volgograd (Russian Federation)

    2006-07-01

    The importance of addressing the risk of chemical, biological and radiological/nuclear (CBRN) attacks was discussed with particular reference to recent developments in Canadian-led decontamination studies as part of the remediation response to a terrorist attack. Research efforts have been supported by government programs such as the CBRN Research and Technology Initiative of Defence Research and Development Canada and the Global Partnership Program of the Department of Foreign Affairs. In 2005, Environment Canada and Defence Research and Development Canada co-organized an international workshop with the Research Institute of Health, Toxicology and Occupational Pathology of Volgograd, Russia. The workshop brought together researchers from Canada, Russia, United States, United Kingdom, Netherlands, Poland and Bulgaria, with the view to eventually develop longer term collaborations. The theme focused on membrane technology and its application in CBRN decontamination. This paper reviewed these collaborative and international research efforts and identified areas in need of future work, such as bioremediation and radio-nuclear remediation. It addressed issues supporting a collaborative international research agenda in decontamination science; membrane filtration as a feasible approach to decontamination waste treatment; and possible areas of CBRN collaboration. It was suggested that the key to successful decontamination requires the creation of computer systems for the initial identification of chemical substances; complete toxicological characterization of the most dangerous agents; regulatory safety standards; quantitative determination of chemical substances; antidotes for most chemical threat agents; universal decontamination agents; and, validation of criteria for decontaminating buildings. The question of who pays for decontamination, be it the private or public sector, was also discussed.

  12. Modification of the Decontamination Facility at the Kruemmel NPP - 13451

    Energy Technology Data Exchange (ETDEWEB)

    Klute, Stefan; Kupke, Peter [Siempelkamp Nukleartechnik GmbH Am Taubenfeld 25/1, 69123 Heidelberg (Germany)

    2013-07-01

    walls are welded gap-free and all rough edges are rounded off. All wetted parts are steel grade 1.4301 or higher. In an extension to the high pressure water decontamination box, 2 ultrasonic ponds and one washing station for small components as provide by new construction. A long pond with 3.25 m length for the decontamination of large components (e.g. turbine blades, pump rotors, driving rods) was installed. For the handling heavy components, a 2 t crane was installed. New construction of a mechanical effluent treatment facility including oil separator was connected to the existing effluent storage tank provided by the customer. One exhaust air filtration system is provided for each decontamination box, with the following requirements. The exhaust air is sent back to the room (recirculated air system). Dry blasting box including raw separator with dust collection in 200 l drum, filter for suspended particles; High pressure water decontamination box and wet area with water separator, pre-separator, filter for suspended particles. Installation of a steel platform at building height +12.85 above the decontamination boxes + 8.50 m for the erection of the high pressure water facilities, the recirculating air filter system, the air compressor and the respiratory air supply unit. The aforementioned components are placed on the steel platform and have been encased in a sound-lowering and accessible manner. New construction of the entire E and C technology for the TU system including modification of the supply lines from the switch gear. All devices are to be operated automatically. Dry blasting box, high pressure water decontamination box and wet area are designed to guarantee a unitary 'exterior view' of the decontamination facility. (authors)

  13. Skin decontamination: principles and perspectives.

    Science.gov (United States)

    Chan, Heidi P; Zhai, Hongbo; Hui, Xiaoying; Maibach, Howard I

    2013-11-01

    Skin decontamination is the primary intervention needed in chemical, biological and radiological exposures, involving immediate removal of the contaminant from the skin performed in the most efficient way. The most readily available decontamination system on a practical basis is washing with soap and water or water only. Timely use of flushing with copious amounts of water may physically remove the contaminant. However, this traditional method may not be completely effective, and contaminants left on the skin after traditional washing procedures can have toxic consequences. This article focuses on the principles and practices of skin decontamination.

  14. Decontamination & decommissioning focus area

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  15. Laser decontamination and decomposition of PCB-containing paint

    Science.gov (United States)

    Anthofer, A.; Kögler, P.; Friedrich, C.; Lippmann, W.; Hurtado, A.

    2017-01-01

    Decontamination of concrete surfaces contaminated with paint containing polychlorinated biphenyls is an elaborate and complex task that must be performed within the scope of nuclear power plant dismantling as well as conventional pollutant cleanup in buildings. The state of the art is mechanical decontamination, which generates dust as well as secondary waste and is both dangerous and physically demanding. Moreover, the ablated PCB-containing paint has to be treated in a separate process step. Laser technology offers a multitude of possibilities for contactless surface treatment with no restoring forces and a high potential for automation. An advanced experimental setup was developed for performing standard laser decontamination investigations on PCB-painted concrete surfaces. As tested with epoxy paints, a high-power diode laser with a laser power of 10 kW in continuous wave (CW) mode was implemented and resulted in decontamination of the concrete surfaces as well as significant PCB decomposition. The experimental results showed PCB removal of 96.8% from the concrete surface and PCB decomposition of 88.8% in the laser decontamination process. Significant PCDD/F formation was thereby avoided. A surface ablation rate of approx. 7.2 m2/h was realized.

  16. Decontamination of VX, GD, and HD on a surface using modified vaporized hydrogen peroxide.

    Science.gov (United States)

    Wagner, George W; Sorrick, David C; Procell, Lawrence R; Brickhouse, Mark D; Mcvey, Iain F; Schwartz, Lewis I

    2007-01-30

    Vaporized hydrogen peroxide (VHP) has proven efficacy for biological decontamination and is a common gaseous sterilant widely used by industry. Regarding chemical warfare agent decontamination, VHP is also effective against HD and VX, but not GD. Simple addition of ammonia gas to VHP affords reactivity toward GD, while maintaining efficacy for HD (and bioagents) and further enhancing efficacy for VX. Thus, modified VHP is a broad-spectrum CB decontaminant suitable for fumigant-type decontamination scenarios, i.e., building, aircraft, and vehicle interiors and sensitive equipment. Finally, as an interesting aside to the current study, commercial ammonia-containing cleaners are also shown to be effective surface decontaminants for GD, but not for VX or HD.

  17. How Clean is Safe? Improving the Effectiveness of Decontamination of Structures and People Following Chemical and Biological Incidents

    Energy Technology Data Exchange (ETDEWEB)

    Vogt (Sorensen), B.M.

    2003-04-03

    This report describes a U.S. Department of Energy, (DOE) Chemical and Biological National Security Program project that sought to establish what is known about decontamination of structures, objects, and people following an exposure to chemical or biological materials. Specifically we sought to identify the procedures and protocols used to determine when and how people or buildings are considered ''clean'' following decontamination. To fulfill this objective, the study systematically examined reported decontamination experiences to determine what procedures and protocols are currently employed for decontamination, the timeframe involved to initiate and complete the decontamination process, how the contaminants were identified, the factors determining when people were (or were not) decontaminated, the problems encountered during the decontamination process, how response efforts of agencies were coordinated, and the perceived social psychological effects on people who were decontaminated or who participated in the decontamination process. Findings and recommendations from the study are intended to aid decision-making and to improve the basis for determining appropriate decontamination protocols for recovery planners and policy makers for responding to chemical and biological events.

  18. DECONTAMINATION TECHNOLOGIES FOR FACILITY REUSE

    Energy Technology Data Exchange (ETDEWEB)

    Bossart, Steven J.; Blair, Danielle M.

    2003-02-27

    As nuclear research and production facilities across the U.S. Department of Energy (DOE) nuclear weapons complex are slated for deactivation and decommissioning (D&D), there is a need to decontaminate some facilities for reuse for another mission or continued use for the same mission. Improved technologies available in the commercial sector and tested by the DOE can help solve the DOE's decontamination problems. Decontamination technologies include mechanical methods, such as shaving, scabbling, and blasting; application of chemicals; biological methods; and electrochemical techniques. Materials to be decontaminated are primarily concrete or metal. Concrete materials include walls, floors, ceilings, bio-shields, and fuel pools. Metallic materials include structural steel, valves, pipes, gloveboxes, reactors, and other equipment. Porous materials such as concrete can be contaminated throughout their structure, although contamination in concrete normally resides in the top quarter-inch below the surface. Metals are normally only contaminated on the surface. Contamination includes a variety of alpha, beta, and gamma-emitting radionuclides and can sometimes include heavy metals and organic contamination regulated by the Resource Conservation and Recovery Act (RCRA). This paper describes several advanced mechanical, chemical, and other methods to decontaminate structures, equipment, and materials.

  19. Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996

    Energy Technology Data Exchange (ETDEWEB)

    None

    1997-05-06

    OAK A271 Rockwell International Hot Laboratory decontamination and dismantlement interim progress report 1987-1996. The Rockwell International Hot Laboratory (RIHL) is one of a number of former nuclear facilities undergoing decontamination and decommissioning (D&D) at the Santa Susana Field Laboratory (SSFL). The RIHL facility is in the later stages of dismantlement, with the final objective of returning the site location to its original natural state. This report documents the decontamination and dismantlement activities performed at the facility over the time period 1988 through 1996. At this time, the support buildings, all equipment associated with the facility, and the entire above-ground structure of the primary facility building (Building 020) have been removed. The basement portion of this building and the outside yard areas (primarily asphalt and soil) are scheduled for D&D activities beginning in 1997.

  20. Public experiences of mass casualty decontamination.

    Science.gov (United States)

    Carter, Holly; Drury, John; Rubin, G James; Williams, Richard; Amlôt, Richard

    2012-09-01

    In this article, we analyze feedback from simulated casualties who took part in field exercises involving mass decontamination, to gain an understanding of how responder communication can affect people's experiences of and compliance with decontamination. We analyzed questionnaire data gathered from 402 volunteers using the framework approach, to provide an insight into the public's experiences of decontamination and how these experiences are shaped by the actions of emergency responders. Factors that affected casualties' experiences of the decontamination process included the need for greater practical information and better communication from responders, and the need for privacy. Results support previous findings from small-scale incidents that involved decontamination in showing that participants wanted better communication from responders during the process of decontamination, including more practical information, and that the failure of responders to communicate effectively with members of the public led to anxiety about the decontamination process. The similarity between the findings from the exercises described in this article and previous research into real incidents involving decontamination suggests that field exercises provide a useful way to examine the effect of responder communication strategies on the public's experiences of decontamination. Future exercises should examine in more detail the effect of various communication strategies on the public's experiences of decontamination. This will facilitate the development of evidence-based communication strategies intended to reduce anxiety about decontamination and increase compliance among members of the public during real-life incidents that involve mass decontamination.

  1. Chemical decontamination technical resources at Los Alamos National Laboratory (2008)

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E [Los Alamos National Laboratory

    2008-01-01

    This document supplies information resources for a person seeking to create planning or pre-planning documents for chemical decontamination operations. A building decontamination plan can be separated into four different sections: Pre-planning, Characterization, Decontamination (Initial response and also complete cleanup), and Clearance. Of the identified Los Alamos resources, they can be matched with these four sections: Pre-planning -- Dave Seidel, EO-EPP, Emergency Planning and Preparedness; David DeCroix and Bruce Letellier, D-3, Computational fluids modeling of structures; Murray E. Moore, RP-2, Aerosol sampling and ventilation engineering. Characterization (this can include development projects) -- Beth Perry, IAT-3, Nuclear Counterterrorism Response (SNIPER database); Fernando Garzon, MPA-11, Sensors and Electrochemical Devices (development); George Havrilla, C-CDE, Chemical Diagnostics and Engineering; Kristen McCabe, B-7, Biosecurity and Public Health. Decontamination -- Adam Stively, EO-ER, Emergency Response; Dina Matz, IHS-IP, Industrial hygiene; Don Hickmott, EES-6, Chemical cleanup. Clearance (validation) -- Larry Ticknor, CCS-6, Statistical Sciences.

  2. Decontamination in a Russian settlement

    DEFF Research Database (Denmark)

    Fogh, C.L.; Andersson, Kasper Grann; Barkovsky, A.N.;

    1999-01-01

    . This paper describes the decontamination work carried out and the results obtained, The roofs of the houses were swept and cleaned by special roof cleaning equipment. The soil around the houses was removed by hand while carefully monitoring the ground for residual contamination, By monitoring the decline...

  3. Technical Improvements to an Absorbing Supergel for Radiological Decontamination in Tropical Environments

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, Michael D. [Argonne National Lab. (ANL), Argonne, IL (United States); Mertz, Carol J. [Argonne National Lab. (ANL), Argonne, IL (United States); Kivenas, Nadia [Argonne National Lab. (ANL), Argonne, IL (United States); demmer, Rick [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-01-01

    Argonne National Laboratory (Argonne) developed a superabsorbing gel-based process (SuperGel) for the decontamination of cesium from concrete and other porous building materials. Here, we report on results that tested the gel decontamination technology on specific concrete and ceramic formulations from a coastal city in Southeast Asia, which may differ significantly from some U.S. sources. Results are given for the evaluation of americium and cesium sequestering agents that are commercially available at a reasonable cost; the evaluation of a new SuperGel formulation that combines the decontamination properties of cesium and americium; the variation of the contamination concentration to determine the effects on the decontamination factors with concrete, tile, and brick samples; and pilot-scale testing (0.02–0.09 m2 or 6–12 in. square coupons).

  4. Restoration projects for decontamination of facilities from chemical, biological and radiological contamination after terrorist actions

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Lumley, T.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch; Payette, P.; Laframboise, D.; Best, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Krishnan, J.; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Winnipeg, MB (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada); Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada)

    2006-07-01

    This paper reviewed studies that identified better decontamination methods for chemical, biological and radiological/nuclear (CBRN) attacks. In particular, it reviewed aspects of 3 projects in which procedures were tested and validated for site restoration. Cleanup targets or standards for decontaminating buildings and materials after a CBRN attack were also developed. The projects were based on physicochemical and toxicological knowledge of potential terrorist agents and selected surface matrices. The projects also involved modeling and assessing environmental and health risks. The first multi-agent project involved gathering information on known procedures for restoration of areas including interiors and exteriors of buildings, contents, parking lots, lawn, and vehicles. Air inside the building was included. The efficacy of some of the proposed concepts was tested. Results included the determination of appropriate surrogates for anthrax and tests of liquid and gaseous biocides on the surrogates. The development of new contamination procedures using peroxyacetic acid were also discussed. The second project involved decontamination tests on CBRN using specially-constructed buildings at the Counter-terrorism Technology Centre at Defence Research and Development Canada in Suffield. The buildings will be contaminated with chemical and biological agents and with short-lived radionuclides. They will be decontaminated using the best-performing technologies known. Information collected will include fate of the contaminant and decontamination products, effectiveness of the restoration methods, cost and duration of cleanup and logistical problems. The third project is aimed at developing cleanup standards for decontaminating buildings and construction materials after a chemical or biological attack. It will create as many as 12 algorithms for the development of 50 standards which will help cleanup personnel and first-responders to gauge whether proposed methods can achieve

  5. Physico-Chemical Dynamics of Nanoparticle Formation during Laser Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, M.D.

    2005-06-01

    Laser-ablation based decontamination is a new and effective approach for simultaneous removal and characterization of contaminants from surfaces (e.g., building interior and exterior walls, ground floors, etc.). The scientific objectives of this research are to: (1) characterize particulate matter generated during the laser-ablation based decontamination, (2) develop a technique for simultaneous cleaning and spectroscopic verification, and (3) develop an empirical model for predicting particle generation for the size range from 10 nm to tens of micrometers. This research project provides fundamental data obtained through a systematic study on the particle generation mechanism, and also provides a working model for prediction of particle generation such that an effective operational strategy can be devised to facilitate worker protection.

  6. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    BANNING, D.L.

    1999-07-29

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  7. 241-Z-361 Sludge Characterization Sampling and Analysis Plan

    Energy Technology Data Exchange (ETDEWEB)

    BANNING, D.L.

    1999-08-05

    This sampling and analysis plan (SAP) identifies the type, quantity, and quality of data needed to support characterization of the sludge that remains in Tank 241-2-361. The procedures described in this SAP are based on the results of the 241-2-361 Sludge Characterization Data Quality Objectives (DQO) (BWHC 1999) process for the tank. The primary objectives of this project are to evaluate the contents of Tank 241-2-361 in order to resolve safety and safeguards issues and to assess alternatives for sludge removal and disposal.

  8. Justification for Continued Operation for Tank 241-Z-361

    Energy Technology Data Exchange (ETDEWEB)

    BOGEN, D.M.

    1999-09-01

    This justification for continued operations (JCO) summarizes analyses performed to better understand and control the potential hazards associated with Tank 241-2-361. This revision to the JCO has been prepared to identify and control the hazards associated with sampling the tank using techniques developed and approved for use in the Tank Waste Remediation System (TWRS) at Hanford.

  9. Pickering emulsions for skin decontamination.

    Science.gov (United States)

    Salerno, Alicia; Bolzinger, Marie-Alexandrine; Rolland, Pauline; Chevalier, Yves; Josse, Denis; Briançon, Stéphanie

    2016-08-01

    This study aimed at developing innovative systems for skin decontamination. Pickering emulsions, i.e. solid-stabilized emulsions, containing silica (S-PE) or Fuller's earth (FE-PE) were formulated. Their efficiency for skin decontamination was evaluated, in vitro, 45min after an exposure to VX, one of the most highly toxic chemical warfare agents. Pickering emulsions were compared to FE (FE-W) and silica (S-W) aqueous suspensions. PE containing an oil with a similar hydrophobicity to VX should promote its extraction. All the formulations reduced significantly the amount of VX quantified on and into the skin compared to the control. Wiping the skin surface with a pad already allowed removing more than half of VX. FE-W was the less efficient (85% of VX removed). The other formulations (FE-PE, S-PE and S-W) resulted in more than 90% of the quantity of VX removed. The charge of particles was the most influential factor. The low pH of formulations containing silica favored electrostatic interactions of VX with particles explaining the better elimination from the skin surface. Formulations containing FE had basic pH, and weak interactions with VX did not improve the skin decontamination. However, these low interactions between VX and FE promote the transfer of VX into the oil droplets in the FE-PE.

  10. Large-Scale Urban Decontamination; Developments, Historical Examples and Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer

    2007-02-01

    Recent terrorist threats and actual events have lead to a renewed interest in the technical field of large scale, urban environment decontamination. One of the driving forces for this interest is the real potential for the cleanup and removal of radioactive dispersal device (RDD or “dirty bomb”) residues. In response the U. S. Government has spent many millions of dollars investigating RDD contamination and novel decontamination methodologies. Interest in chemical and biological (CB) cleanup has also peaked with the threat of terrorist action like the anthrax attack at the Hart Senate Office Building and with catastrophic natural events such as Hurricane Katrina. The efficiency of cleanup response will be improved with these new developments and a better understanding of the “old reliable” methodologies. Perhaps the most interesting area of investigation for large area decontamination is that of the RDD. While primarily an economic and psychological weapon, the need to cleanup and return valuable or culturally significant resources to the public is nonetheless valid. Several private companies, universities and National Laboratories are currently developing novel RDD cleanup technologies. Because of its longstanding association with radioactive facilities, the U. S. Department of Energy National Laboratories are at the forefront in developing and testing new RDD decontamination methods. However, such cleanup technologies are likely to be fairly task specific; while many different contamination mechanisms, substrate and environmental conditions will make actual application more complicated. Some major efforts have also been made to model potential contamination, to evaluate both old and new decontamination techniques and to assess their readiness for use. Non-radioactive, CB threats each have unique decontamination challenges and recent events have provided some examples. The U. S. Environmental Protection Agency (EPA), as lead agency for these emergency

  11. Mobile worksystems for decontamination and dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, J. [Carnegie Mellon Univ., Pittsburgh, PA (United States); Bares, L.C.; Thompson, B.R. [RedZone Robotics, Inc., Pittsburgh, PA (United States)

    1995-10-01

    Many DOE nuclear facilities have aged beyond their useful lifetimes. They need to be decommissioned in order to be safe for human presence in the short term, to eventually recover valuable materials they contain, and ultimately to be transitioned to alternative uses or green field conditions. Decontamination and dismantlement are broad classes of activities that will enable these changes to occur. Most of these facilities - uranium enrichment plants, weapons assembly plants, research and production reactors, and fuel recycling facilities - are dormant, though periodic inspection, surveillance and maintenance activities within them are on-going. DOE estimates that there are over 5000 buildings that require deactivation to reduce the costs of performing such work with manual labor. In the long term, 1200 buildings will be decommissioned, and millions of metric tons of metal and concrete will have to be recycled or disposed of. The magnitude of the problem calls for new approaches that are far more cost effective than currently available techniques. This paper describes a mobile workstation termed ROSIE, which provides remote work capabilities for D&D activities.

  12. Decontamination of protective clothing against radioactive contamination.

    Science.gov (United States)

    Vošahlíková, I; Otáhal, P

    2014-11-01

    The aim of this study is to describe the experimental results of external surface mechanical decontamination of the studied materials forming selected suits. Seven types of personal protective suits declaring protection against radioactive aerosol contamination in different price ranges were selected for decontamination experiments. The outcome of this study is to compare the efficiency of a double-step decontamination process on various personal protective suits against radioactive contamination. A comparison of the decontamination effectiveness for the same type of suit, but for the different chemical mixtures ((140)La in a water-soluble or in a water-insoluble compound), was performed.

  13. Decontamination of FAST (CPP-666) fuel storage area stainless steel fuel storage racks

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, G.F.

    1993-10-01

    The purpose of this report was to identify and evaluate alternatives for the decontamination of the RSM stainless steel that will be removed from the Idaho Chemical Processing plant (ICPP) fuel storage area (FSA) located in the FAST (CPP-666) building, and to recommend decontamination alternatives for treating this material. Upon the completion of a literature search, the review of the pertinent literature, and based on the review of a variety of chemical, mechanical, and compound (both chemical and mechanical) decontamination techniques, the preliminary results of analyses of FSA critically barrier contaminants, and the data collected during the FSA Reracking project, it was concluded that decontamination and beneficial recycle of the FSA stainless steel produced is technically feasible and likely to be cost effective as compared to burying the material at the RWMC. It is recommended that an organic acid, or commercial product containing an organic acid, be used to decontaminate the FSA stainless steel; however, it is also recommended that other surface decontamination methods be tested in the event that this method proves unsuitable. Among the techniques that should be investigated are mechanical techniques (CO{sub 2} pellet blasting and ultra-high pressure water blasting) and chemical techniques that are compatible with present ICPP waste streams.

  14. Electrochemical decontamination system for actinide processing gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Wedman, D.E.; Lugo, J.L.; Ford, D.K.; Nelson, T.O.; Trujillo, V.L.; Martinez, H.E.

    1998-03-01

    An electrolytic decontamination technology has been developed and successfully demonstrated at Los Alamos National Laboratory (LANL) for the decontamination of actinide processing gloveboxes. The technique decontaminates the interior surfaces of stainless steel gloveboxes utilizing a process similar to electropolishing. The decontamination device is compact and transportable allowing it to be placed entirely within the glovebox line. In this way, decontamination does not require the operator to wear any additional personal protective equipment and there is no need for additional air handling or containment systems. Decontamination prior to glovebox decommissioning reduces the potential for worker exposure and environmental releases during the decommissioning, transport, and size reduction procedures which follow. The goal of this effort is to reduce contamination levels of alpha emitting nuclides for a resultant reduction in waste level category from High Level Transuranic (TRU) to low Specific Activity (LSA, less than or equal 100 nCi/g). This reduction in category results in a 95% reduction in disposal and disposition costs for the decontaminated gloveboxes. The resulting contamination levels following decontamination by this method are generally five orders of magnitude below the LSA specification. Additionally, the sodium sulfate based electrolyte utilized in the process is fully recyclable which results in the minimum of secondary waste. The process bas been implemented on seven gloveboxes within LANL`s Plutonium Facility at Technical Area 55. Of these gloveboxes, two have been discarded as low level waste items and the remaining five have been reused.

  15. Selective decontamination and antibiotic resistance in ICUs

    NARCIS (Netherlands)

    Plantinga, Nienke L.; Bonten, Marc J. M.

    2015-01-01

    Selective digestive decontamination (SDD) and selective oropharyngeal decontamination (SOD) have been associated with reduced mortality and lower ICU-acquired bacteremia and ventilator-associated pneumonia rates in areas with low levels of antibiotic resistance. However, the effect of selective deco

  16. Managing mass casualties and decontamination.

    Science.gov (United States)

    Chilcott, Robert P

    2014-11-01

    Careful planning and regular exercising of capabilities is the key to implementing an effective response following the release of hazardous materials, although ad hoc changes may be inevitable. Critical actions which require immediate implementation at an incident are evacuation, followed by disrobing (removal of clothes) and decontamination. The latter can be achieved through bespoke response facilities or various interim methods which may utilise water or readily available (dry, absorbent) materials. Following transfer to a safe holding area, each casualty's personal details should be recorded to facilitate a health surveillance programme, should it become apparent that the original contaminant has chronic health effects.

  17. Environmental assessment for decontaminating and decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA

    Energy Technology Data Exchange (ETDEWEB)

    1980-12-01

    The Department of Energy has prepared an environmental assessment on the proposed decontamination and decommissioning of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania. Based on the environmental assessment, which is available to the public on request, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969, 42 USC 4321 et seq. Therefore, no environmental impact statement is required. The proposed action is to decontaminate and decommission the Westinghouse Advanced Reactors Division fuel fabrication facilities (the Plutonium Laboratory - Building 7, and the Advanced Fuels Laboratory - Building 8). Decontamination and decommissioning of the facilities would require removal of all process equipment, the associated service lines, and decontamination of the interior surfaces of the buildings so that the empty buildings could be released for unrestricted use. Radioactive waste generated during these activities would be transported in licensed containers by truck for disposal at the Department's facility at Hanford, Washington. Useable non-radioactive materials would be sold as excess material, and non-radioactive waste would be disposed of by burial as sanitary landfill at an approved site.

  18. Deactivation, Decontamination and Decommissioning Project Summaries

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David Shane; Webber, Frank Laverne

    2001-07-01

    This report is a compilation of summary descriptions of Deactivation, Decontamination and Decommissioning, and Surveillance and Maintenance projects planned for inactive facilities and sites at the INEEL from FY-2002 through FY-2010. Deactivations of contaminated facilities will produce safe and stable facilities requiring minimal surveillance and maintenance pending further decontamination and decommissioning. Decontamination and decommissioning actions remove contaminated facilities, thus eliminating long-term surveillance and maintenance. The projects are prioritized based on risk to DOE-ID, the public, and the environment, and the reduction of DOE-ID mortgage costs and liability at the INEEL.

  19. Closure Report for Corrective Action Unit 254: Area 25, R-MAD Decontamination Facility, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. N. Doyle

    2002-02-01

    Corrective Action Unit (CAU) 254 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles) northwest of Las Vegas, Nevada. The site is located within the Reactor Maintenance, Assembly and Disassembly (R-MAD) compound and consists of Building 3126, two outdoor decontamination pads, and surrounding areas within an existing fenced area measuring approximately 50 x 37 meters (160 x 120 feet). The site was used from the early 1960s to the early 1970s as part of the Nuclear Rocket Development Station program to decontaminate test-car hardware and tooling. The site was reactivated in the early 1980s to decontaminate a radiologically contaminated military tank. This Closure Report (CR) describes the closure activities performed to allow un-restricted release of the R-MAD Decontamination Facility.

  20. Radiation decontamination of poultry viscera

    Science.gov (United States)

    Jamdar, S. N.; Harikumar, P.

    2008-04-01

    Application of gamma radiation for decontamination of poultry viscera was examined. Exposure to a dose of 20 kGy rendered the viscera sterile (TVBN), lipid peroxidation (TBARS value), and levels of TCA soluble peptides and proteolytic enzyme] showed that gamma irradiation (20 kGy) followed by storage at 4 °C for 62 days induced no significant change (except lipid peroxidation) in the acceptability of poultry viscera. However, storage at ambient temperature (26 °C) produced enhanced levels of TVBN and TCA soluble products accompanied by higher drip loss. Activities of proteolytic enzymes, except acid protease, did not show any significant change during post-irradiation storage at either temperature.

  1. Radiation decontamination of poultry viscera

    Energy Technology Data Exchange (ETDEWEB)

    Jamdar, S.N. [Food Technology Division, FIPLY, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)], E-mail: snjam2@yahoo.com; Harikumar, P. [Food Technology Division, FIPLY, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2008-04-15

    Application of gamma radiation for decontamination of poultry viscera was examined. Exposure to a dose of 20 kGy rendered the viscera sterile (<1 CFU/10 g tissue), while 5 and 10 kGy reduced the total bacterial count by 4 and 6 log{sub 10} cycles, respectively, eliminating the coliforms to <1 CFU/g of tissue. Analysis of organoleptic and biochemical parameters [proximate composition, total volatile basic nitrogen (TVBN), lipid peroxidation (TBARS value), and levels of TCA soluble peptides and proteolytic enzyme] showed that gamma irradiation (20 kGy) followed by storage at 4 deg. C for 62 days induced no significant change (except lipid peroxidation) in the acceptability of poultry viscera. However, storage at ambient temperature (26 {sup o}C) produced enhanced levels of TVBN and TCA soluble products accompanied by higher drip loss. Activities of proteolytic enzymes, except acid protease, did not show any significant change during post-irradiation storage at either temperature.

  2. Decontamination Efficacy Testing of COTS SteriFx Prodcuts for Mass Personnel and Casualty Decontamination

    Science.gov (United States)

    2011-09-01

    Water‐based decontamination technologies (e.g. soap and water) facilitate removal of the biological agent from skin, but have little effect on the...runoff from personnel decontamination is still biologically hazardous. Spores and bacterial cells will be prepared for the decontamination...of the stimulants will be compared to evaluate the disinfection efficacy of the technology on bacterial cells and spores. The minimum time to reach

  3. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric-pressure plasma technology. Compared to...

  4. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric pressure plasma technology that operates...

  5. Urban Decontamination Experience at Pripyat Ukraine - 13526

    Energy Technology Data Exchange (ETDEWEB)

    Paskevych, Sergiy [Institute for Safety Problems of Nuclear Power Plants, National Academy of Sciences of Ukraine, 36 a Kirova str. Chornobyl, Kiev region, 07200 (Ukraine); Voropay, Dmitry [Federal State Unitary Enterprise ' Russian State Center of Inventory and Registration and Real Estate - Federal Bureau of Technical Inventory' , 37-2 Bernadsky Prospekt, Moscow Russia 119415 (Russian Federation); Schmieman, Eric [Battelle Memorial Institute, PO Box 999 MSIN K6-90, Richland, WA 99352 (United States)

    2013-07-01

    This paper describes the efficiency of radioactive decontamination activities of the urban landscape in the town of Pripyat, Ukraine. Different methods of treatment for various urban infrastructure and different radioactive contaminants are assessed. Long term changes in the radiation condition of decontaminated urban landscapes are evaluated: 1. Decontamination of the urban system requires the simultaneous application of multiple methods including mechanical, chemical, and biological. 2. If a large area has been contaminated, decontamination of local areas of a temporary nature. Over time, there is a repeated contamination of these sites due to wind transport from neighboring areas. 3. Involvement of earth-moving equipment and removal of top soil by industrial method achieves 20-fold reduction in the level of contamination by radioactive substances, but it leads to large amounts of waste (up to 1500 tons per hectare), and leads to the re-contamination of treated areas due to scatter when loading, transport pollutants on the wheels of vehicles, etc.. (authors)

  6. An overview of plutonium-238 decontamination and decommissioning (D and D) projects at Mound

    Energy Technology Data Exchange (ETDEWEB)

    Bond, W.H.; Davis, W.P.; Draper, D.G.; Geichman, J.R.; Harris, J.C.; Jaeger, R.R.; Sohn, R.L.

    1987-01-01

    Mound is currently decontaminating for restricted reuse and/or decommissioning for conditional release four major plutonium-238 contaminated facilities that contained 1700 linear feet of gloveboxes and associated equipment and services. Several thousand linear feet of external underground piping, associated tanks, and contaminated soil are being removed. Two of the facilities contain ongoing operations and will be reused for both radioactive and nonradioactive programs. Two others will be completely demolished and the land area will become available for future DOE building sites. An overview of the successful techniques and equipment used in the decontamination and decommissioning of individual pieces of equipment, gloveboxes, services, laboratories, sections of buildings, entire buildings, and external underground piping, tanks, and soil in a highly populated residential area is described and pictorially presented.

  7. Decontamination tests on cotton materials; Essais de decontamination sur tissus de coton

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, P.; Pelletier, C. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    It is shown that versene gives the best decontamination results on cotton materials soiled by a mixture of fission products. (author) [French] On a montre que le versene donne les meilleurs resultats de decontamination sur des tissus de coton souilles par un melange de produits de fission. (auteur)

  8. Decontamination Efficacy and Skin Toxicity of Two Decontaminants against Bacillus anthracis.

    Science.gov (United States)

    Stratilo, Chad W; Crichton, Melissa K F; Sawyer, Thomas W

    2015-01-01

    Decontamination of bacterial endospores such as Bacillus anthracis has traditionally required the use of harsh or caustic chemicals. The aim of this study was to evaluate the efficacy of a chlorine dioxide decontaminant in killing Bacillus anthracis spores in solution and on a human skin simulant (porcine cadaver skin), compared to that of commonly used sodium hypochlorite or soapy water decontamination procedures. In addition, the relative toxicities of these decontaminants were compared in human skin keratinocyte primary cultures. The chlorine dioxide decontaminant was similarly effective to sodium hypochlorite in reducing spore numbers of Bacillus anthracis Ames in liquid suspension after a 10 minute exposure. After five minutes, the chlorine dioxide product was significantly more efficacious. Decontamination of isolated swine skin contaminated with Bacillus anthracis Sterne with the chlorine dioxide product resulted in no viable spores sampled. The toxicity of the chlorine dioxide decontaminant was up to two orders of magnitude less than that of sodium hypochlorite in human skin keratinocyte cultures. In summary, the chlorine dioxide based decontaminant efficiently killed Bacillus anthracis spores in liquid suspension, as well as on isolated swine skin, and was less toxic than sodium hypochlorite in cultures of human skin keratinocytes.

  9. Reactive skin decontamination lotion (RSDL) for the decontamination of chemical warfare agent (CWA) dermal exposure.

    Science.gov (United States)

    Schwartz, M D; Hurst, C G; Kirk, M A; Reedy, S J D; Braue, E H

    2012-08-01

    Rapid decontamination of the skin is the single most important action to prevent dermal absorption of chemical contaminants in persons exposed to chemical warfare agents (CWA) and toxic industrial chemicals (TICs) as a result of accidental or intentional release. Chemicals on the skin may be removed by mechanical means through the use of dry sorbents or water. Recent interest in decontamination systems which both partition contaminants away from the skin and actively neutralize the chemical has led to the development of several reactive decontamination solutions. This article will review the recently FDA-approved Reactive Skin Decontamination Lotion (RSDL) and will summarize the toxicity and efficacy studies conducted to date. Evidence of RSDL's superior performance against vesicant and organophosphorus chemical warfare agents compared to water, bleach, and dry sorbents, suggests that RSDL may have a role in mass human exposure chemical decontamination in both the military and civilian arenas.

  10. Chemical Warfare Agent Degradation and Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Talmage, Sylvia Smith [ORNL; Watson, Annetta Paule [ORNL; Hauschild, Veronique [U.S. Environmental Protection Agency; Munro, Nancy B [ORNL; King, J. [U.S. Army Environmental Center

    2007-02-01

    The decontamination of chemical warfare agents (CWA) from structures, environmental media, and even personnel has become an area of particular interest in recent years due to increased homeland security concerns. In addition to terrorist attacks, scenarios such as accidental releases of CWA from U.S. stockpile sites or from historic, buried munitions are also subjects for response planning. To facilitate rapid identification of practical and effective decontamination approaches, this paper reviews pathways of CWA degradation by natural means as well as those resulting from deliberately applied solutions and technologies; these pathways and technologies are compared and contrasted. We then review various technologies, both traditional and recent, with some emphasis on decontamination materials used for surfaces that are difficult to clean. Discussion is limited to the major threat CWA, namely sulfur mustard (HD, bis(2-chloroethyl)sulfide), VX (O-ethyl S-(2-diisopropylaminoethyl) methylphosphonothioate), and the G-series nerve agents. The principal G-agents are GA (tabun, ethyl N,N-dimethylphosphoramidocyanidate), GB (sarin, isopropyl methylphosphonofluoridate), and GD (soman, pinacolyl methylphosphonofluoridate). The chemical decontamination pathways of each agent are outlined, with some discussion of intermediate and final degradation product toxicity. In all cases, and regardless of the CWA degradation pathway chosen for decontamination, it will be necessary to collect and analyze pertinent environmental samples during the treatment phase to confirm attainment of clearance levels.

  11. Decontamination and decommissioning surveillance and maintenance report for FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Gunter, David B.; Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01

    The Decontamination and Decommissioning (D D) Program has three distinct phases: (1) surveillance and maintenance (S M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D D is devoted to S M at each of the sites. Our S M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  12. Changes in the decontamination factor of cesium iodide on evaporation of a scrubbing solution in the Filtered Containment Venting System

    Energy Technology Data Exchange (ETDEWEB)

    Na, Young Su; Ha, Kwang Soon; Kim, Sungil; Cho, Song-Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    When the pressure in the containment building approaches a setting value, the FCVS(Filtered Containment Venting System) operates. The amount of steam and gas mixtures generated during a severe accident can be released into the FCVS. Non-condensable gases and fine aerosols can pass a scrubbing solution and the filters in the FCVS vessel. The decontaminated gases are finally discharged from the FCVS to the outside environment. Previous study observed that a scrubbing solution in the FCVS vessel was constantly evaporating owing to high-temperature steam released continuously from the containment building. A scrubbing solution in the FCVS vessel was completely evaporated at about 31 hours after the FCVS operation. Pool evaporation in the FCVS vessel can negatively affect the decontamination feature of the FCVS because it reduces the scrubbing depth for fission products in an aerosol form. This study carefully evaluated the decontamination factor of metal iodide aerosols especially cesium iodide (CsI), on a scrubbing solution in the FCVS. This paper summarizes the calculated results on the decontamination factor of CsI in the FCVS vessel, which was presented at the international OECD-NEA/NUGENIA-SARNET workshop. This study estimated the decontamination factor of CsI on a scrubbing solution in the FCVS. The MELCOR computer code simulated that an SBO occurred in the OPR 1000. The FCVS consists of a cylindrical vessel with a 3 m diameter and 6.5 m height, and it includes a scrubbing solution of 21 tons. Accumulated mass of CsI aerosol was calculated in a scrubbing solution and the atmosphere in the FCVS vessel and the outside environment. In the early FCVS operation, the decontamination factor of CsI aerosol rapidly increased owing to steam condensation in a scrubbing solution. When the temperature of a pool approached its saturation temperature, the decontamination factor of CsI aerosol started to decrease.

  13. Radio-decontamination efficacy and safety studies on optimized decontamination lotion formulation.

    Science.gov (United States)

    Rana, S; Bhatt, S; Dutta, M; Khan, A W; Ali, J; Sultana, S; Kotta, S; Ansari, S H; Sharma, R K

    2012-09-15

    Objective of the present study was to optimize decontamination lotion and to evaluate its relative decontamination efficacy using three radio-isotopes (Technetium-99m, Iodine-131 and Thallium-201) as contaminants with varying length of contaminant exposure (0-1h). Experiments were performed on Sprague Dawley rat's intact skin and human tissue equivalent models. Rat's hair was removed by using depilator after trimming with scissors. Relative decontamination efficacy of the optimized lotion was investigated and compared with water as control. Static counts were recorded before and after decontamination using single photon emission computed tomography (SPECT). Measured decontamination efficacy (DE) values were analyzed using one way ANOVA and Student's t-test (p valueDecontamination efficacy of the lotion was observed to be 90 ± 5%, 80 ± 2% and 85 ± 2%, for the (131)I, (201)Tl and (99m)Tc radio-contaminants respectively on skin. Reduced contaminant removal was recorded for the skin which was cleaned by depilator (50-60%). Skin decontamination was found more efficacious for rat skin decontamination than the human tissue equivalent model. Decontamination efficacy of the lotion against (99m)Tc was recorded 70 ± 15% at 0-1h on the tissue equivalent model. In vitro chelation efficacy of the lotion was also established by using the instant thin layer chromatography-slica gel (ITLC-SG) and >95% of (99m)Tc was recorded. Neither erythema nor edema was scored in the primary skin irritancy test visually observed for two weeks.

  14. DECONTAMINATION AND BENEFICIAL USE OF DREDGED MATERIALS.

    Energy Technology Data Exchange (ETDEWEB)

    STERN, E.A.; LODGE, J.; JONES, K.W.; CLESCERI, N.L.; FENG, H.; DOUGLAS, W.S.

    2000-12-03

    Our group is leading a large-sale demonstration of dredged material decontamination technologies for the New York/New Jersey Harbor. The goal of the project is to assemble a complete system for economic transformation of contaminated dredged material into an environmentally-benign material used in the manufacture of a variety of beneficial use products. This requires the integration of scientific, engineering, business, and policy issues on matters that include basic knowledge of sediment properties, contaminant distribution visualization, sediment toxicity, dredging and dewatering techniques, decontamination technologies, and product manufacturing technologies and marketing. A summary of the present status of the system demonstrations including the use of both existing and new manufacturing facilities is given here. These decontamination systems should serve as a model for use in dredged material management plans of regions other than NY/NJ Harbor, such as Long Island Sound, where new approaches to the handling of contaminated sediments are desirable.

  15. Waste assay and mass balance for the decontamination and volume reduction system at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Gruetzmacher, Kathleen M.; Ferran, Scott G.; Garner, Scott E.; Romero, Mike J.; Christensen, Davis V.; Bustos, Roland M.

    2003-07-01

    The Decontamination and Volume Reduction System (DVRS) operated by the Solid Waste Operations (SWO) Group at Los Alamos National Laboratory (LANL) processes large volume, legacy radioactive waste items. Waste boxes, in sizes varying from 4 ft x 4 ft x 8 ft to 10 ft x 12 ft x 40 ft, are assayed prior to entry into the processing building. Inside the building, the waste items are removed from their container, decontaminated and/or size reduced if necessary, and repackaged for shipment to the Waste Isolation Pilot Plant (WIPP) or on-site low-level waste disposal. The repackaged items and any secondary waste produced (e.g., personal protective equipment) are assayed again at the end of the process and a mass balance is done to determine whether there is any significant hold-up material left in the DVRS building. The DVRS building is currently classed as a radiological facility, with a building limit of 0.52 Ci of Pu239 and Am241, and 0.62 Ci of Pu238, the most common radionuclides processed. This requires tight controls on the flow of nuclear material. The large volume of the initial waste packages, the (relatively) small amounts of radioactive material in them, and the tight ceiling on the building inventory require accurate field measurements of the nuclear material. This paper describes the radioactive waste measurement techniques, the computer modeling used to determine the amount of nuclear material present in a waste package, the building inventory database, and the DVRS process itself. Future plans include raising the limit on the nuclear material inventory allowed in the building to accommodate higher activity waste packages. All DOE sites performing decontamination and decommissioning of radioactive process equipment face challenges related to waste assay and inventory issues. This paper describes an ongoing operation, incorporating lessons learned over the life of the project to date.

  16. Physicians' and nurses' opinions on selective decontamination of the digestive tract and selective oropharyngeal decontamination : a survey

    NARCIS (Netherlands)

    Jongerden, Irene P.; de Smet, Anne Marie G.; Kluytmans, Jan A.; Velde, Leo F. Te; Dennesen, Paul J.; Wesselink, Ronald M.; Bouw, Martijn P.; Spanjersberg, Rob; Bogaers-Hofman, Diana; van der Meer, Nardo J.; de Vries, Jaap W.; Kaasjager, Karin; van Iterson, Mat; Kluge, Georg H.; van der Werf, Tjip S.; Harinck, Hubertus I.; Bindels, Alexander J.; Pickkers, Peter; Bonten, Marc J.

    2010-01-01

    Introduction: Use of selective decontamination of the digestive tract (SDD) and selective oropharyngeal decontamination (SOD) in intensive care patients has been controversial for years. Through regular questionnaires we determined expectations concerning SDD (effectiveness) and experience with SDD

  17. Physicians' and nurses' opinions on selective decontamination of the digestive tract and selective oropharyngeal decontamination: a survey.

    NARCIS (Netherlands)

    Jongerden, I.P.; Smet, A.M. de; Kluytmans, J.A.; Velde, L.F. te; Dennesen, P.J.; Wesselink, R.M.; Bouw, M.P.W.J.M.; Spanjersberg, R.; Bogaers-Hofman, D.; Meer, N.J. van der; Vries, J.W. de; Kaasjager, K.; Iterson, M. van; Kluge, G.H.; Werf, T.S. van der; Harinck, H.I.; Bindels, A.J.; Pickkers, P.; Bonten, M.J.

    2010-01-01

    INTRODUCTION: Use of selective decontamination of the digestive tract (SDD) and selective oropharyngeal decontamination (SOD) in intensive care patients has been controversial for years. Through regular questionnaires we determined expectations concerning SDD (effectiveness) and experience with SDD

  18. Green coffee decontamination by electron beam irradiation

    Science.gov (United States)

    Nemtanu, Monica R.; Brasoveanu, Mirela; Grecu, Maria Nicoleta; Minea, R.

    2005-10-01

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties.

  19. Green coffee decontamination by electron beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Nemtanu, Monica R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania)]. E-mail: monica@infim.ro; Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, RO 77 125, Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor St., P.O. Box MG-36, RO 76 900, Bucharest-Magurele (Romania)

    2005-10-15

    Microbiological load of green coffee is a real problem considering that it is extremely sensitive to contamination. Irradiation is a decontamination method for a lot of foodstuffs, being a feasible, very effective and environment friendly one. Beans and ground green coffee were irradiated with electron beams up to 40 kGy. Microbial load, rheological behavior, electron paramagnetic resonance (EPR) and visible spectroscopy were carried out. The results show that electron beam irradiation of green coffee could decontaminate it without severe changes in its properties.

  20. Persistence of ovine scrapie infectivity in a farm environment following cleaning and decontamination.

    Science.gov (United States)

    Hawkins, Steve A C; Simmons, Hugh A; Gough, Kevin C; Maddison, Ben C

    2015-01-24

    Scrapie of sheep/goats and chronic wasting disease of deer/elk are contagious prion diseases where environmental reservoirs are directly implicated in the transmission of disease. In this study, the effectiveness of recommended scrapie farm decontamination regimens was evaluated by a sheep bioassay using buildings naturally contaminated with scrapie. Pens within a farm building were treated with either 20,000 parts per million free chorine solution for one hour or were treated with the same but were followed by painting and full re-galvanisation or replacement of metalwork within the pen. Scrapie susceptible lambs of the PRNP genotype VRQ/VRQ were reared within these pens and their scrapie status was monitored by recto-anal mucosa-associated lymphoid tissue. All animals became infected over an 18-month period, even in the pen that had been subject to the most stringent decontamination process. These data suggest that recommended current guidelines for the decontamination of farm buildings following outbreaks of scrapie do little to reduce the titre of infectious scrapie material and that environmental recontamination could also be an issue associated with these premises.

  1. Decontamination of cephalosporin-resistant Enterobacteriaceae during selective digestive tract decontamination in intensive care units

    NARCIS (Netherlands)

    Oostdijk, E.A.; Smet, A.M. de; Kesecioglu, J.; Bonten, M.J.; Hoeven, J.G. van der; Pickkers, P.; Sturm, P.D.; Voss, A.

    2012-01-01

    OBJECTIVES: Prevalences of cephalosporin-resistant Enterobacteriaceae are increasing globally, especially in intensive care units (ICUs). The effect of selective digestive tract decontamination (SDD) on the eradication of cephalosporin-resistant Enterobacteriaceae from the intestinal tract is unknow

  2. Decontamination of cephalosporin-resistant Enterobacteriaceae during selective digestive tract decontamination in intensive care units

    NARCIS (Netherlands)

    Oostdijk, Evelien A. N.; de Smet, Anne Marie G. A.; Kesecioglu, Jozef; Bonten, Marc J. M.

    2012-01-01

    Prevalences of cephalosporin-resistant Enterobacteriaceae are increasing globally, especially in intensive care units (ICUs). The effect of selective digestive tract decontamination (SDD) on the eradication of cephalosporin-resistant Enterobacteriaceae from the intestinal tract is unknown. We quanti

  3. A study on dry decontamination using ion exchange polymer

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Ki Jung; Ahn, Byung Gil

    1997-12-01

    Through the project of {sup A} study on dry decontamination using ion exchange polymer{sup ,} the followings were investigated. 1. Highly probable decontamination technologies for the decontamination were investigated. 2. Development of gel type decontamination agent using ion-exchange resin powder (mixed type) as an ion exchanger. 3. Manufacturing of contaminated specimens (5 kinds) with Cs-137 solution and dust / Cs-137 solution. 4. Decontamination performance evaluation of the manufactured agent. 5. Analysis of composition (XRF) and the structure of surface of specimens (optic micrography). (author). 20 refs., 11 figs.

  4. Study on the Decontamination of Radionuclides in Spent Phosphogypsum

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Won, H. J.; Moon, J. K.

    2010-01-15

    The objective of the study is to confirm the possibility of further R and D thru pre-study on the decontamination technology for the safe, high decontamination factor, low waste arising and cost effective removal of radionuclide in spent phosphogypsum. The following contents were studied. 1) Decontamination of Radionuclide in Phosphogypsum - Effect of decontamination chemical formulation on Ra removal - Effect of H{sub 2}O{sub 2} concentration on Ra removal - Effect of Sr concentration on Ra removal 2) Removal of Radionuclide in Liquid Waste from Decontamination of Phosphogypsum - Ra removal by chromate treatment - Ra removal by zeolite and ACF treatment

  5. Solid waste handling and decontamination facility

    Energy Technology Data Exchange (ETDEWEB)

    Lampton, R. E.

    1979-01-01

    The Title 1 design of the decontamination part of the SWH and D facility is underway. Design criteria are listed. A flowsheet is given of the solid waste reduction. The incinerator scrubber is described. Design features of the Gunite Tank Sludge Removal and a schematic of the sluicer, TV camera, and recirculating system are given. 9 figures. (DLC)

  6. 40 CFR 170.250 - Decontamination.

    Science.gov (United States)

    2010-07-01

    ... vehicular access: (i) The soap, single-use towels, clean change of clothing, and water may be at the nearest place of vehicular access. (ii) The handler employer may permit handlers to use clean water from springs... accessible than the water located at the nearest place of vehicular access. (4) Decontamination supplies...

  7. Hand decontamination: nurses' opinions and practices.

    Science.gov (United States)

    Gould, D

    Infection is spread in hospital mainly by hands, making hand decontamination the most important means of preventing dissemination. There is some evidence to suggest that when access to hand-decontaminating agents is poor or the agents available are disliked, hands are washed too seldom, increasing risks of cross-infection. However, little attention has been paid to the use of towels and factors which promote their use, although it is known that damp hands transfer bacteria more readily than dry ones and that hands which become sore through poor drying have higher bacterial counts, contributing to the risk of cross-infection. This paper reports the results of the Nursing Times Hand Drying survey designed to assess nurses' access to hand decontamination agents and towels. The results suggest that the 112 nurses who participated were aware of the need for attention to hand hygiene but that access to both hand-decontaminating agents and paper towels was variable. Forty-one per cent complained of a shortage of soap and although nearly all used paper towels, these were in many cases of poor quality. Such towels were perceived as damaging to hands, leaving them feeling damp and sore. Good-quality, soft, paper towels were much appreciated by respondents in this sample. It is concluded that the quality of paper towels contributes to good infection control practice.

  8. 40 CFR 170.150 - Decontamination.

    Science.gov (United States)

    2010-07-01

    ... water may be at the nearest place of vehicular access. (ii) The agricultural employer may permit workers to use clean water from springs, streams, lakes, or other sources for decontamination at the remote... equipment, soap, clean towels, and a sufficient amount of water so that the workers may wash thoroughly....

  9. Innovative ways of decontaminating nuclear facilities; Innovative Verfahren zur Dekontamination von kerntechnischen Anlagen

    Energy Technology Data Exchange (ETDEWEB)

    Bremmer, Jan; Gentes, Sascha [Univ. Karlsruhe, Inst. fuer Technologie und Management im Baubetrieb (Germany); Ambos, Frank [sat. KERNTECHNIK GmbH, Worms (Germany)

    2009-08-15

    The great variety of surfaces to be decontaminated in a nuclear power plant increases demand for economic solutions and efficient processing systems. The Institute for Technology and Management in Building (TMB) of the University of Karlsruhe (TH) is working on this task in the new professorship of Sascha Gentes and, together with sat Kerntechnik GmbH, developing innovative techniques and tools for surface decontamination. In this effort, sat.Kerntechnik GmbH contributes 50% to the funding of the new professorship at the Karlsruhe Institute of Technology, the merger of the University of Karlsruhe and the Karlsruhe Research Center. The new professorship will extend its work also to various other innovative concepts to be employed not only in demolition but also in maintenance and operation of nuclear facilities. Above and beyond theoretical approaches, practical solutions are in the focus of work. For this reason, new developments are elaborated in close cooperation with the respective users. (orig.)

  10. 300 Area D4 Project 2nd Quarter FY06 Building Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    David S. Smith

    2006-06-26

    This report documents the deactivation, decontamination, decommissioning, and demolition of 16 buildings in the 300 Area of the Hanford Site. The D4 of these facilities included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation as appropriate.

  11. 300 Area D4 Project Fiscal Year 2007 Building Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    R. A. Westberg

    2009-01-15

    This report documents the deactivation, decontamination, decommissioning, and demolition (D4) of twenty buildings in the 300 Area of the Hanford Site. The D4 of these facilties included characterization, engineering, removal of hazardous and radiologically contaminated materials, equipment removal, utility disconnection, deactivation, decontamination, demolition of the structure, and stabilization or removal of the remaining slab and foundation, as appropriate.

  12. Advanced robotics for decontamination and dismantlement

    Energy Technology Data Exchange (ETDEWEB)

    Hamel, W.R.; Haley, D.C.

    1994-06-01

    The decontamination and dismantlement (D&D) robotics technology application area of the US Department of Energy`s Robotics Technology Development Program is explained and described. D&D robotic systems show real promise for the reduction of human exposure to hazards, for improvement of productivity, and for the reduction of secondary waste generation. Current research and development pertaining to automated floor characterization, robotic equipment removal, and special inspection is summarized. Future research directions for these and emerging activities is given.

  13. Lotus LADM Based Self-Decontaminating Surfaces

    Science.gov (United States)

    2007-05-01

    angle on the prepared surfaces was measured with sessile water drops using a lab- designed goniometer at 20℃. The contact angle images were obtained... contact angles up to 178°. We have also developed Light Activated Decontamination Materials, LADM, that produce singlet oxygen. In addition a series of...materials. SELF-CLEANING SURFACES Superhydrophobic surfaces are defined as surfaces upon which water has an apparent contact angle of greater than

  14. Methods of decontaminating surfaces and related compositions

    Energy Technology Data Exchange (ETDEWEB)

    Demmer, Ricky L.; Crosby, Daniel; Norton, Christopher J.

    2016-11-22

    A composition of matter includes water, at least one acid, at least one surfactant, at least one fluoride salt, and ammonium nitrate. A method of decontaminating a surface includes exposing a surface to such a composition and removing the composition from the surface. Other compositions of matter include water, a fatty alcohol ether sulfate, nitrilotriacetic acid, at least one of hydrochloric acid and nitric acid, sodium fluoride, potassium fluoride, ammonium nitrate, and gelatin.

  15. Metallic surfaces decontamination by using laser light

    Energy Technology Data Exchange (ETDEWEB)

    Moggia, Fabrice [AREVA, Back End Business Group, Clean-Up Business Unit, Gif-sur-Yvette (France); Lecardonnel, Xavier [AREVA, Back End Business Group, Clean-Up Business Unit,La Hague (France)

    2013-07-01

    Metal surface cleaning appears to be one of the major priorities for industries especially for nuclear industries. The research and the development of a new technology that is able to meet the actual requirements (i.e. waste volume minimization, liquid effluents and chemicals free process...) seems to be the main commitment. Currently, a wide panel of technologies already exists (e.g. blasting, disk sander, electro-decontamination...) but for some of them, the efficiency is limited (e.g, Dry Ice blasting) and for others, the wastes production (liquid and/or solid) remains an important issue. One answer could be the use of a LASER light process. Since a couple of years, the Clean- Up Business Unit of the AREVA group investigates this decontamination technology. Many tests have been already performed in inactive (i.e. on simulants such as paints, inks, resins, metallic oxides) or active conditions (i.e. pieces covered with a thick metallic oxide layer and metallic pieces covered with grease). The paper will describe the results obtained in term of decontamination efficiency during all our validation process. Metallographic characterizations (i.e. SEM, X-ray scattering) and radiological analysis will be provided. We will also focus our paper on the future deployment of the LASER technology and its commercial use at La Hague reprocessing facility in 2013. (authors)

  16. Biodegradation of concrete intended for their decontamination; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those microorganisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  17. Decontamination techniques of pathogen bacteria in meat and poultry.

    Science.gov (United States)

    Dinçer, A Handan; Baysal, Taner

    2004-01-01

    Means of controlling or even improving the safety of food products is to decontaminate the carcasses or products during or at the end of the production line. The decontamination of meat and poultry can help to reduce human foodborne infections. However, process hygiene to prevent contamination should never be neglected. Some techniques of decontaminating raw meat and poultry meat products are discussed in this review.

  18. New decontamination process using foams containing particles

    Energy Technology Data Exchange (ETDEWEB)

    Guignot, S.; Faure, S. [CEA Marcoule, Lab. des Procedes Avances de Decontamination, 30 (France)

    2008-07-01

    One key point in the dismantling of nuclear facilities is the thorough cleaning of radiation- exposed surfaces on which radioactive deposits have formed. This cleaning step is often achieved by successive liquid rinses with specific solutions containing alkaline, acidic, or even oxidizing species depending on whether the aim is to dissolve greasy deposits (like ter-butylphosphate) or to corrode surfaces on micrometric thicknesses. An alternative process to reduce the amount of chemicals and the volume of the resulting nuclear wastes consists in using the same but foamed solutions (1). Carrying less liquid, the resulting foams still display similar kinetics of dissolution rates and their efficiency is determined by their ability to hold sufficient wetnesses during the time required for the decontamination. Classical foam decontamination process illustrated by foam pulverization or circulation in the 90 turned five years ago into a specific static process using high-lifetime viscosified foam at a steady state. One way to slow down the liquid drainage is to raise liquid viscosity by adding organic viscosifiers like xanthan gum (2). In 2005, new studies started on an innovative process proposed by S. Faure and based on triphasic foams containing particles [3]. The aim is to generate new decontamination foams containing less quantities of organics materials (surfactants and viscosifiers). Silica particles are obviously known to stabilize or destabilize foams (4). In the frame of S. Guignot Ph.D., new fundamental studies are initiated in order to clarify the role of silica solid microparticles in these foams. Our final goal is to determine whether this kind of new foam can be stable for several hours for a decontamination process. The results we will report focus on wet foams used for nuclear decontamination and incorporating fumed silica. The study is conducted on a vertical foam column in a pseudo-free drainage configuration, and aims at investigating the influence of

  19. 40 CFR 761.79 - Decontamination standards and procedures.

    Science.gov (United States)

    2010-07-01

    ... separation, spraying, soaking, wiping, stripping of insulation, scraping, scarification or the use of... separated from regulated waste during decontamination (such as by chopping, shredding, scraping, abrading...

  20. Personal protective equipment and decontamination of adults and children.

    Science.gov (United States)

    Holland, Michael G; Cawthon, David

    2015-02-01

    Accurate identification of the hazardous material is essential for proper care. Efficient hospital security and triage must prevent contaminated victims from entering the emergency department (ED) and causing secondary contamination. The decontamination area should be located outside the ambulance entrance. Decontamination priorities are protection of the health care worker, utilization of Level C personal protective equipment, and proper decontamination of the exposed patient. Decontamination proceeds in a head-to-toe sequence. Run-off water is a hazardous waste. Hospital and Community Management Planning for these emergencies is essential for proper preparation and effective response to the hazardous materials incident.

  1. Polluted soils. Electro-kinetic decontamination seems promising; Sols pollues. Les promesses de la decontamination electrocinetique

    Energy Technology Data Exchange (ETDEWEB)

    Tellier, S.; Astruc, M. [Pau Univ., Lab. de Chimie Analytique Bio-Inorganique et Environnement, UMR 5034 64 (France)

    2000-10-01

    The electro-kinetic treatment of polluted soils is a recent technique. It is particularly well adapted to the decontamination of low permeable media or of difficult species (metals, arsenic, polycyclic aromatic hydrocarbons..). Conditions where classical methods are often inefficient. (O.M.)

  2. Full system decontamination experience in BWR

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, N.; Sugai, K.; Katayouse, N.; Fujimori, A.; Iida, K.; Hayashi, K. [Tokyo Electric Power Company, Tokyo (Japan); Kanasaki, T.; Inami, I. [Toshiba Corporation, Yokohama (Japan); Strohmer, F. [Framatome ANP Gmbh, Eelangen (Germany)

    2002-07-01

    At the Fukushima Daiichi Nuclear Power Station unit 3, unit 2, unit 5 and unit 1 of Tokyo Electric Power Company (TEPCO), the replacement of the core shroud and internals has been conducted since 1997 in this order. The welded core internals in operating BWR plants were replaced to improve stress corrosion cracking (SCC) resistance. At present these units are operating smoothly. The developed technology concept is to restore those internals in open air inside the reactor pressure vessel (RPV). To reduce the radiation dose rate inside the RPV, not only a shielding method was applied to cut the radiation from the irradiated structures but also a chemical decontamination method was applied to dissolve the radioactive crud deposited on the surface by using chemical agents. The calculated decontamination factor (DF) at the RPV bottom reached 35-117. As result, the dose rate decreased to approximately 0.1 mSv/h under water. Before and after the installation of the in-vessel shielding, a mechanical cleaning was extensively applied inside the RPV to remove the residual crud as well as the swarf, chips from cutting. As a result, the dose rate at the RPV bottom decreased to ranging from 0.2 to 0.4 mSv/h in air. A working environment for human access, which was better than expected, was established inside the RPV, resulting in 70, 140, 50 and 70 man-Sv (estimated) saving respectively at unit 3 (1F-3), unit 2(1F-2), unit 5(1F-5) and unit 1(1F-1). All four full system decontamination (FSDs) contributed to the successful realization of the core shroud replacement project under the dry condition in RPV.

  3. Contactless decontamination of hair samples: cannabinoids.

    Science.gov (United States)

    Restolho, José; Barroso, Mário; Saramago, Benilde; Dias, Mário; Afonso, Carlos A M

    2017-02-01

    Room temperature ionic liquids (ILs) have already been shown to provide efficient extraction media for several systems, and to capture volatile compounds, namely opiates. In this work, a novel, contactless, artefact-free extraction procedure for the removal of Δ(9) -tetrahrydrocannabinol (THC) from the surface of human hair is presented. To prepare in vitro cannabinoids-contaminated hair, samples were flushed with hashish smoke for 7 h. The decontamination experiments were carried at 100 °C for 24 h, according to the procedure previously described. Fifty-three ILs were screened and presented decontamination efficiencies ranging from 0 to 96 %. Although the majority of the ILs presented efficiencies above 90%, the 1-ethanol-3-methyl tetrafluoroborate (96%) was chosen for further process optimization. The Design of Experiments results demonstrated that all studied variables were significant for the process and the obtained optimum conditions were: 100 °C, 13 h and 175 mg of IL. In the work of Perrotin-Brunel et al. (J. Mol. Struct. 2011, 987, 67), it is demonstrated that, at 100 °C, full conversion of tetrahydrocannabinolic acid (THCA) into THC is obtained after 60 min. Since our decontamination takes place over 13 h at 100 °C, full conversion of THCA into THC is expected. Additionally, our method was compared with the method proposed by Cairns et al. (Forensic Sci. Int. 2004, 145, 97), through the analysis of 15 in vitro contaminated hair samples. The results demonstrated that with our method a mean extraction efficiency of 11 % higher was obtained. Copyright © 2016 John Wiley & Sons, Ltd.

  4. Development of decontamination, decommissioning and environmental restoration technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Kwon, H. S.; Kim, G. N. and others

    1999-03-01

    Through the project of 'Development of decontamination, decommissioning and environmental restoration technology', the followings were studied. 1. Development of decontamination and repair technology for nuclear fuel cycle facilities 2. Development of dismantling technology 3. Development of environmental restoration technology. (author)

  5. Stability of Decontamination Foam Containing Silica Nanoparticles and Viscosifier

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, In Ho; Jung, Chong Hun; Yoon, Suk Bon; Kim, Chorong; Jung, Jun Young; Park, Sang Yoon; Moon, Jei Kwon; Choi, Wang Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This formulation can significantly decrease the amounts of chemical reagents and secondary waste. The advantage of decontamination foam is its potentially wide application for metallic walls, overhead surfaces, and the elements of complex components and facilities. In addition, foam is a good material for in situ decontamination because it generates low final waste volumes owing to its volume expansion. The application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. The decontamination efficiency can be enhanced by improving the contact time between chemical reagents and a contaminated surface through the addition of surfactants and viscosifiers into the decontamination foam. The objective of this study is to investigate the effect of silica nanoparticles and a viscosifier on the foam stability and the dissolution behaviors of corroded specimens using a non-ionic surfactant. This study showed the effect of viscosifiers and nanoparticles on the foam stability when developing new formulations of decontamination foam. The addition of xanthan gum and the mixture of xanthan gum and silica nanoparticles (M-5) significantly increased the foam stability, compared to the surfactant solution alone. This result indicates that both the viscosifier and nanoparticles have a synergistic effect on the foam stability. As the contact time increased, the dissolution rate increased to become similar to the dissolution that contained decontamination liquid.

  6. The effects of selective decontamination in Dutch Intensive Care Units

    NARCIS (Netherlands)

    Oostdijk, E.A.N.

    2013-01-01

    Infections are an important complication in the treatment of critical ill patients in Intensive Care Units (ICUs) and are associated with increased mortality, morbidity and health care costs. Selective Decontamination of the Digestive Tract (SDD) and Selective Oropharyngeal Decontamination (SOD) are

  7. 41 CFR 101-45.001 - Demilitarization and decontamination.

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Demilitarization and..., ABANDONMENT, OR DESTRUCTION OF PERSONAL PROPERTY § 101-45.001 Demilitarization and decontamination. (a... characteristics, or otherwise making it unfit for further use. (b) Demilitarization or decontamination of...

  8. Microwave-Based Water Decontamination System

    Science.gov (United States)

    Arndt, G. Dickey (Inventor); Byerly, Diane (Inventor); Sognier, Marguerite (Inventor); Dusl, John (Inventor)

    2016-01-01

    A system for decontaminating a medium. The system can include a medium having one or more contaminants disposed therein. The contaminants can be or include bacteria, fungi, parasites, viruses, and combinations thereof. A microwave energy radiation device can be positioned proximate the medium. The microwave energy radiation device can be adapted to generate a signal having a frequency from about 10 GHz to about 100 GHz. The signal can be adapted to kill one or more of the contaminants disposed within the medium while increasing a temperature of the medium by less than about 10 C.

  9. Automated Single Cell Data Decontamination Pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Tennessen, Kristin [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.; Pati, Amrita [Lawrence Berkeley National Lab. (LBNL), Walnut Creek, CA (United States). Dept. of Energy Joint Genome Inst.

    2014-03-21

    Recent technological advancements in single-cell genomics have encouraged the classification and functional assessment of microorganisms from a wide span of the biospheres phylogeny.1,2 Environmental processes of interest to the DOE, such as bioremediation and carbon cycling, can be elucidated through the genomic lens of these unculturable microbes. However, contamination can occur at various stages of the single-cell sequencing process. Contaminated data can lead to wasted time and effort on meaningless analyses, inaccurate or erroneous conclusions, and pollution of public databases. A fully automated decontamination tool is necessary to prevent these instances and increase the throughput of the single-cell sequencing process

  10. Decontamination, decommissioning, and vendor advertorial issue, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2006-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Major articles/reports in this issue include: NPP Krsko revised decommissioning program, by Vladimir Lokner and Ivica Levanat, APO d.o.o., Croatia, and Nadja Zeleznik and Irena Mele, ARAO, Slovenia; Supporting the renaissance, by Marilyn C. Kray, Exelon Nuclear; Outage world an engineer's delight, by Tom Chrisopher, Areva, NP Inc.; Optimizing refueling outages with R and D, by Ross Marcoot, GE Energy; and, A successful project, by Jim Lash, FirstEnergy.

  11. Selective decontamination of the digestive tract and selective oropharyngeal decontamination in intensive care unit patients : a cost-effectiveness analysis

    NARCIS (Netherlands)

    Oostdijk, Evelien A. N.; de Wit, G. A.; Bakker, Marina; de Smet, Anne-Marie; Bonten, M. J. M.

    2013-01-01

    Objective: To determine costs and effects of selective digestive tract decontamination (SDD) and selective oropharyngeal decontamination (SOD) as compared with standard care (ie, no SDD/SOD (SC)) from a healthcare perspective in Dutch Intensive Care Units (ICUs). Design: A post hoc analysis of a pre

  12. Project n.4: local strategies for decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, Ph. [CEA Centre d`Etudes de Fontenay-aux-Roses, 92 (France). Inst. de Protection et de Surete Nucleaire; Ramzaev, V. [Branch of Institute of Radiation Hygiene, Karchovka, Bryandk (Russian Federation); Antsypov, G. [Chernobyl State Committee of the Republic of Belarus, (Belarus); Sobotovich, E. [Institute of Geochemistry, Mineralogy and Ore formation, Kiev (Ukraine); Anisimova, L. [EMERCOM, Moscow (Russian Federation)

    1995-12-31

    The efficiencies of a great number of techniques for decontamination or dose reduction in contaminated areas have been investigated by several teams of E.C. and CIS scientists (ECP4 project). Modelling, laboratory and field experiments, and a return from experience from the area contaminated by the Chernobyl accident allowed to assess radiological efficiencies and requirements for the operation of numerous practical solutions. Then those data were supplemented with data on cost and waste generation in order to elaborate all the information for the optimisation of decontamination strategies. Results are presented for about 70 techniques. However, a technique cannot be compared to another from a generic point of view. Rather it is designed for a specific target and the best technology depends on the objectives. It has been decided to implement decision analyses on case studies and the local conditions and objectives have been investigated. Individual doses ranged from 1 to 5 mSv, with the contrasted contributions of internal and external doses. The desire to restore a normal activity in a partially depopulated settlement and concerns about the recent increase in internal doses were typical incentives for action. The decision aiding analysis illustrated that actions can be usually recommended. Results are outlined. (authors). 23 refs.

  13. Corrective Action Decision Document for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-01

    This Corrective Action Decision Document identifies and rationalizes the US Department of Energy, Nevada Operations Office's selection of a recommended corrective action alternative (CAA) appropriate to facilitate the closure of Corrective Action Unit (CAU) 254, R-MAD Decontamination Facility, under the Federal Facility Agreement and Consent Order. Located in Area 25 at the Nevada Test Site in Nevada, CAU 254 is comprised of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. A corrective action investigation for this CAS as conducted in January 2000 as set forth in the related Corrective Action Investigation Plan. Samples were collected from various media throughout the CAS and sent to an off-site laboratory for analysis. The laboratory results indicated the following: radiation dose rates inside the Decontamination Facility, Building 3126, and in the storage yard exceeded the average general dose rate; scanning and static total surface contamination surveys indicated that portions of the locker and shower room floor, decontamination bay floor, loft floor, east and west decon pads, north and south decontamination bay interior walls, exterior west and south walls, and loft walls were above preliminary action levels (PALs). The investigation-derived contaminants of concern (COCs) included: polychlorinated biphenyls, radionuclides (strontium-90, niobium-94, cesium-137, uranium-234 and -235), total volatile and semivolatile organic compounds, total petroleum hydrocarbons, and total Resource Conservation and Recovery Act (Metals). During the investigation, two corrective action objectives (CAOs) were identified to prevent or mitigate human exposure to COCs. Based on these CAOs, a review of existing data, future use, and current operations at the Nevada Test Site, three CAAs were developed for consideration: Alternative 1 - No Further Action; Alternative 2 - Unrestricted Release Decontamination and Verification Survey; and Alternative 3 - Unrestricted

  14. Long-term decontamination engineering study. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Geuther, W.J.

    1995-04-03

    This report was prepared by Westinghouse Hanford Company (WHC) with technical and cost estimating support from Pacific Northwest Laboratories (PNL) and Parsons Environmental Services, Inc. (Parsons). This engineering study evaluates the requirements and alternatives for decontamination/treatment of contaminated equipment at the Hanford Site. The purpose of this study is to determine the decontamination/treatment strategy that best supports the Hanford Site environmental restoration mission. It describes the potential waste streams requiring treatment or decontamination, develops the alternatives under consideration establishes the criteria for comparison, evaluates the alternatives, and draws conclusions (i.e., the optimum strategy for decontamination). Although two primary alternatives are discussed, this study does identify other alternatives that may warrant additional study. hanford Site solid waste management program activities include storage, special processing, decontamination/treatment, and disposal facilities. This study focuses on the decontamination/treatment processes (e.g., waste decontamination, size reduction, immobilization, and packaging) that support the environmental restoration mission at the Hanford Site.

  15. Planning guidance for nuclear-power-plant decontamination. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Munson, L.F.; Divine, J.R.; Martin, J.B.

    1983-06-01

    Direct and indirect costs of decontamination are considered in the benefit-cost analysis. A generic form of the benefit-cost ratio is evaluated in monetary and nonmonetary terms, and values of dollar per man-rem are cited. Federal and state agencies that may have jurisiction over various aspects of decontamination and waste disposal activities are identified. Methods of decontamination, their general effectiveness, and the advantages and disadvantages of each are outlined. Dilute or concentrated chemical solutions are usually used in-situ to dissolve the contamination layer and a thin layer of the underlying substrate. Electrochemical techniques are generally limited to components but show high decontamination effectiveness with uniform corrosion. Mechanical agents are particularly appropriate for certain out-of-system surfaces and disassembled parts. These processes are catagorized and specific concerns are discussed. The treatment, storage, and disposal or discharge or discharge of liquid, gaseous, and solid wastes generated during the decontamination process are discussed. Radioactive and other hazardous chemical wastes are considered. The monitoring, treatment, and control of radioactive and nonradioactive effluents, from both routine operations and possible accidents, are discussed. Protecting the health and safety of personnel onsite during decontamination is of prime importance and should be considered in each facet of the decontamination process. The radiation protection philosophy of reducing exposure to levels as low as reasonably achievable should be stressed. These issues are discussed.

  16. Comparative analysis of showering protocols for mass-casualty decontamination.

    Science.gov (United States)

    Amlot, Richard; Larner, Joanne; Matar, Hazem; Jones, David R; Carter, Holly; Turner, Elizabeth A; Price, Shirley C; Chilcott, Robert P

    2010-01-01

    A well-established provision for mass-casualty decontamination that incorporates the use of mobile showering units has been developed in the UK. The effectiveness of such decontamination procedures will be critical in minimizing or preventing the contamination of emergency responders and hospital infrastructure. The purpose of this study was to evaluate three empirical strategies designed to optimize existing decontamination procedures: (1) instructions in the form of a pictorial aid prior to decontamination; (2) provision of a washcloth within the showering facility; and (3) an extended showering period. The study was a three-factor, between-participants (or "independent") design with 90 volunteers. The three factors each had two levels: use of washcloths (washcloth/no washcloth), washing instructions (instructions/no instructions), and shower cycle duration (three minutes/six minutes). The effectiveness of these strategies was quantified by whole-body fluorescence imaging following application of a red fluorophore to multiple, discrete areas of the skin. All five showering procedures were relatively effective in removing the fluorophore "contaminant", but the use of a cloth (in the absence of instructions) led to a significant ( appox. 20%) improvement in the effectiveness of decontamination over the standard protocol (p mass-casualty decontamination effectiveness, especially in children, can be optimized by the provision of a washcloth. This simple but effective approach indicates the value of performing controlled volunteer trials for optimizing existing decontamination procedures.

  17. Decontamination and decommissioning activities photobriefing book FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-08

    The Chicago Pile 5 (CP-5) Reactor, the first reactor built on the Argonne National Laboratory-East site, followed a rich history that had begun in 1942 with Enrico Fermi's original pile built under the west stands at the Stagg Field Stadium of The University of Chicago. CP-5 was a 5-megawatt, heavy water-moderated, enriched uranium-fueled reactor used to produce neutrons for scientific research from 1954--79. The reactor was shut down and defueled in 1979, and placed into a lay-up condition pending funding for decontamination and decommissioning (D and D). In 1990, work was initiated on the D and D of the facility in order to alleviate safety and environmental concerns associated with the site due to the deterioration of the building and its associated support systems. A decision was made in early Fiscal Year (FY) 1999 to direct focus and resources to the completion of the CP-5 Reactor D and D Project. An award of contract was made in December 1998 to Duke Engineering and Services (Marlborough, MA), and a D and D crew was on site in March 1999 to begin work, The project is scheduled to be completed in July 2000. The Laboratory has determined that the building housing the CP-5 facility is surplus to the Laboratory's needs and will be a candidate for demolition. In addition to a photographic chronology of FY 1999 activities at the CP-5 Reactor D and D Project, brief descriptions of other FY 1999 activities and of projects planned for the future are provided in this photobriefing book.

  18. Nuclear disaster. Fukushima, hundred years of decontamination; Catastrophe nucleaire: Fukushima, cent ans de decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Dupin, L.

    2011-04-15

    This article gives an overview of what will have to be done on the site of Fukushima to decontaminate and to dismantle it. Based on the experience gained in Three Mile Island and in Chernobyl, experts foresee ten years of work within the reactor cores, thirty years around the plant, sixty years of decontamination within the no man's land area around the plant; and centuries as far as scattered spots are concerned more than hundred kilometres away from the plant. Three radionuclides must be surveyed, but with different half lives: iodine 131 (8 days), caesium 137 (30 years), and plutonium 239 (24000 years). The expertise of French companies (Areva, Assystem, Bouygues and Vinci) in reactor dismantling, dismantling procedure design, and public works (protection arch like in Chernobyl) is briefly evoked, as well as the French approach for post-accident management

  19. Showering effectiveness for human hair decontamination of the nerve agent VX.

    Science.gov (United States)

    Josse, Denis; Wartelle, Julien; Cruz, Catherine

    2015-05-05

    In this work, our goals were to establish whether hair decontamination by showering one hour post-exposure to the highly toxic organophosphate nerve agent VX was effective, whether it required the addition of a detergent to water and, if it could be improved by using the adsorbent Fuller's Earth (FE) or the Reactive Skin Decontamination Lotion (RSDL) 30 min prior to showering. Hair exposure to VX and decontamination was performed by using an in vitro model. Hair showering led to 72% reduction of contamination. Addition of detergent to water slightly increased the decontamination effectiveness. Hair treatment with FE or RSDL improved the decontamination rate. Combination of FE use and showering, which yielded a decontamination factor of 41, was demonstrated to be the most effective hair decontamination procedure. Hair wiping after showering was shown to contribute to hair decontamination. Altogether, our results highlighted the importance of considering hair decontamination as an important part of body surface decontamination protocols.

  20. A Survey and Evaluation of Chemical Warfare Agent-Decontaminants and Decontamination

    Science.gov (United States)

    1984-10-15

    APD) is also an all purpose decontaminant. It consists of 551 (V/V) of monoethanol - amine , 45% (V/V) of 2-hydroxyl-l-propylamine, 25% (Wt/V) of lithium...been conducted. Sawdust, soil, silicone, coal dust, amine or sulfonic acid-containing polymers, organic and inorganic ion-exchange materials, and metal...It is a relatively corrosive superbase which consists of 701 diethylenetri- amine , 28% 2-methoxy ethanol, and 2% sodium hydroxide. The half lives

  1. Skin decontamination of G, V, H L agents by Canadian reactive skin decontaminant lotion

    Energy Technology Data Exchange (ETDEWEB)

    Bide, R.W.; Sawyer, T.W.; DiNinno, V.L.; Armour, S.J.; Risk, D.J.

    1993-05-13

    The Canadian Reactive Skin Decontaminant Lotion (RSDL) is a reactive solution designed to be applied directly to skin for the decontamination and destruction of the classical chemical warfare agents. The solvent of the RSDL is very effective in dissolving liquid agents from the skin surface and the differential solubility of agents in the RSDL and the skin strongly favors retention of agents in the lotion. The active ingredient in the RSDL reacts rapidly and completely with G-agents, V-agents, mustard Lewisite producing relatively nontoxic products. The RSDL will dissolve and destroy agent thickened with acrylate polymers. The lotion is water soluble and readily removed from the skin. Since the RSDL is water soluble, it is active against water soluble agents even at high dilutions. For water insoluble agents, the activity is reduced as the water content rises above abrasive 50% due to insolubility of the agents. Skin and eye irritancy trials indicate that the RSDL is only a mild irritant to the eyes (equivalent to a chlorinated swimming pool) and to abraded skin. Acute toxicity trials showed that large oral and intraperitoneal doses were essentially non-toxic. The RSDL was fielded by the Canadian Forces for the Gulf Conflict. The RSDL may be used in open wounds for short periods. Wound decontamination and irrigation with RSDL diluted 1:1 with isotonic saline was recommended for the Gulf conflict.

  2. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan;

    2011-01-01

    in both food surface and bacteria upon surface decontamination by SonoSteam®. SonoSteam® is a recently developed method of food surface decontamination, which employs steam and ultrasound for effective heat transfer and short treatment times, resulting in significant reduction in surface bacteria. We......Traditionally, the effects and efficiency of food surface decontamination processes, such as chlorine washing, radiation, or heating, have been evaluated by sensoric analysis and colony-forming unit (CFU) counts of surface swabs or carcass rinses. These methods suffice when determining probable...

  3. Decontamination, decommissioning, and vendor advertorial issue, 2008

    Energy Technology Data Exchange (ETDEWEB)

    Agnihotri, Newal (ed.)

    2008-07-15

    The focus of the July-August issue is on Decontamination, decommissioning, and vendor advertorials. Articles and reports in this issue include: D and D technical paper summaries; The role of nuclear power in turbulent times, by Tom Chrisopher, AREVA, NP, Inc.; Enthusiastic about new technologies, by Jack Fuller, GE Hitachi Nuclear Energy; It's important to be good citizens, by Steve Rus, Black and Veatch Corporation; Creating Jobs in the U.S., by Guy E. Chardon, ALSTOM Power; and, and, An enviroment and a community champion, by Tyler Lamberts, Entergy Nuclear Operations, Inc. The Industry Innovations article is titled Best of the best TIP achievement 2008, by Edward Conaway, STP Nuclear Operating Company.

  4. Decontaminating soil organic pollutants with manufactured nanoparticles.

    Science.gov (United States)

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  5. ONLINE MEASUREMENT OF THE PROGRESS OF DECONTAMINATION

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    In order to determine if the sensor technology and the decontamination technology will face problems once integrated, a feasibility study (see Appendix B) was produced in which the effect of motion on the efficiency of a radiation sensor was measured. It was found that the effect is not negligible; however, it is not catastrophic, and if the sensors are properly calibrated, this obstacle can be overcome. During the first year of this project, many important tasks have been accomplished. The search for radiation sensors provided knowledge on the technologies commercially available. This, in turn, allowed for a proper assessment of the properties, limitations, different methods of measurement, and requirements of a large number of sensors. The best possible characterization and data collection instrument and decontamination technologies were chosen using the requirement information in Appendix A. There are technical problems with installing sensors within the blasting head, such as steel shot and dust interference. Therefore, the sensor array is placed so that it will measure the radioactivity after the blasting. Sensors are rather sensitive, and therefore it is not feasible to place the sensor windows in such an abrasive environment. Other factors, such as the need for radiation hardening in extreme cases, and the possible interference of gamma rays with the radio frequency modem, have been considered. These factors are expected to be negligible and can be revisited at the time of prototype production. Factors that need to be addressed are the vibrations of the blasting unit and how to isolate the sensor array from these. In addition, an electromagnetic survey must be performed to ensure there will be no interference with the electronic component that will be integrated. The integration design is shown in section 4.0.

  6. A project to develop restoration methods for buildings and facilities after a terrorist attack

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.F. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). River Road Environmental Technology Centre; Volchek, K.; Hornof, M.; Boudreau, L.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Best, M. [Health Canada, Ottawa, ON (Canada); Garbutt, M.; Krishnan, J.; Wagener, S.; Bernard, K. [Health Canada, Winnipeg, MB (Canada); Cousins, T.; Haslip, D. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2004-07-01

    A multi-agent project was initiated to review site restoration after a terrorist attack. The objective was to acquire and compile information on all known restoration procedures for buildings, exteriors of buildings, their interior contents, and adjacent areas such as parking lots, lawns and vehicles. All procedures were then tested and validated. Restoration procedures included pickup, neutralization, decontamination, removal and final destruction/deposition of the contaminant, cleaning material and contaminated debris resulting from the terrorist act. This research and development project considered chemical, biological and nuclear contamination with the intent to develop methods to decontaminate and restore buildings after a chemical, biological and radiological (CBR) attack. Ideas were collected from work conducted around the world. The efficacy of best candidates was tested along with all selected chemical target items. The project also involved the preparation of procedures for decontamination and restoration. Ultimately, a tradeoff decision basis will be developed to provide information on abandonment and quarantine versus cleanup. The study revealed that there are several technologies that can be used for the decontamination of structures and equipment after acts of terrorism, however, no one technique will work for all contaminants on all surfaces. The selection of a decontamination method depends on the contaminant, the surface being decontaminated and economic, social and health factors. The amount of waste generated by decontamination is a major feasibility factor. 25 refs., 6 tabs.

  7. Steam Generator Group Project. Task 6. Channel head decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.P.; Clark, R.L.; Reece, W.D.

    1984-08-01

    The Steam Generator Group Project utilizes a retired-from-service pressurized-water-reactor steam generator as a test bed and source of specimens for research. An important preparatory step to primary side research activities was reduction of the radiation field in the steam generator channel head. This task report describes the channel head decontamination activities. Though not a programmatic research objective it was judged beneficial to explore the use of dilute reagent chemical decontamination techniques. These techniques presented potential for reduced personnel exposure and reduced secondary radwaste generation, over currently used abrasive blasting techniques. Two techniques with extensive laboratory research and vendors prepared to offer commercial application were tested, one on either side of the channel head. As indicated in the report, both techniques accomplished similar decontamination objectives. Neither technique damaged the generator channel head or tubing materials, as applied. This report provides details of the decontamination operations. Application system and operating conditions are described.

  8. Advance in radioactive decontamination; Avances en descontaminacion radiactiva

    Energy Technology Data Exchange (ETDEWEB)

    Basteris M, J. A. [Universidad Autonoma de Yucatan, Facultad de Medicina, Departamento de Diagnostico por Laboratorio y Gabinete, Av. Cupules No. 232, Col. Garcia Gineres, 97070 Merida, Yucatan (Mexico); Farrera V, R., E-mail: basteris@prodigy.net.m [Hospital de Especialidades de la UMAE, Centro Medico Nacional Ignacio Garcia Tellez, Departamento de Medicina Nuclear, Calle 34 x 41, Exterrenos el Fenix s/n, Col. Industrial, 91750 Merida, Yucatan (Mexico)

    2010-09-15

    The objective of the present work was to determine if the application of the Na hypochlorite has some utility in the radioactive decontamination, in comparison with the water, detergent and alcohol. Several methods were compared for decontaminate the iodine 131 and technetium 99, the work table and the skin it was carried out an initial count with the Geiger Muller. Later on, in a single occasion, the areas were washed with abundant water, alcohol, clothes detergent and sodium hypochlorite (used commercially as domestic bleacher) without diluting. Observing that the percentage in the decrease of the counted radioactivity by the Geiger Muller, decreased in the following way: It was demonstrated that the Na hypochlorite presents the highest index of radioactive decontamination with 100% of effectiveness. The Na hypochlorite is an excellent substance that can be used with effectiveness and efficiency like decontamination element in the accident cases of radioactive contamination in the clinical laboratories of nuclear medicine. (Author)

  9. Biological decontamination of surfaces using guided ionization waves

    Science.gov (United States)

    Jarrige, Julien; Zaepffel, Clement

    2016-09-01

    Atmospheric pressure plasma jets have received an increasing attention these last ten years in various domains, including biomedical applications and decontamination. Among these technologies, guided ionization waves (also called ``plasma bullets'') are very promising because of their ability to produce a highly non-equilibrium plasma. Reactive species can be generated in the open air over a long distance during the propagation of the wave (typically: several cm), while the background gas remains at ambient temperature. A non-thermal plasma system has been developed and tested for the biological decontamination of surfaces. It consists of a dielectric barrier discharge in a helium flow driven by high voltage pulses. The propagation of the ionization wave and the spatial distribution of the species have been characterized by high speed imaging and optical emission spectroscopy. The influence of the discharge parameters on the plasma properties is investigated. Results of decontamination on several bacteria are shown, and the decontamination efficiency is compared with the plasma properties.

  10. Evaluation of Cost and Effectiveness of Decontamination Scenarios on External Radiation Exposure in Fukushima

    Energy Technology Data Exchange (ETDEWEB)

    Yasutaka, T.; Naito, W. [National Institute of Advanced Industrial Science and Technology (Japan)

    2014-07-01

    Despite the enormous cost associated with radiation decontamination, almost no quantitative assessment has been performed on the relationship between the potential reduction in long-term radiation exposure and the costs of the various decontamination strategies considered for the decontamination areas in Fukushima. In order to establish effective and pragmatic decontamination strategies for use in the radiation contaminated areas in Fukushima, a holistic approach for assessing decontamination strategies, their costs, and long-term external radiation doses is needed. The objective of the present study is to evaluate the cost and effectiveness of decontamination scenarios in the decontamination areas in Fukushima in regard to external radiation exposure. The choice of decontamination strategies in the decontamination areas should be based on a comprehensive analysis of multiple attributes such as radiological, economic, and socio-psychological attributes. The cost and effectiveness of the different decontamination strategies is not sole determinant of the decontamination strategies of the special decontamination area but is one of the most important attributes when making the policy decision. In the current study, we focus on radiological and economic attributes in determining decontamination strategies. A geographical information system (GIS) was used to relate the predicted external dose in the affected areas to the number of potential inhabitants and the land use in the areas. A comprehensive review of the costs of various decontamination methods was conducted as part of the analysis. The results indicate that aerial decontamination in the special decontamination areas in Fukushima would be effective for reducing the air dose rate to the target level in a short period of time in some but not all of the areas. In a standard scenario, the analysis of cost suggests that decontamination costs of decontamination in Fukushima was estimated to be up to approximately 5

  11. Decontamination of process equipment using recyclable chelating solvent

    Energy Technology Data Exchange (ETDEWEB)

    Jevec, J.; Lenore, C.; Ulbricht, S. [Babcock & Wilcox, Co., R& DD, Alliance, OH (United States)

    1995-10-01

    The Department of Energy (DOE) is now faced with the task of meeting decontamination and decommissioning obligations at numerous facilities by the year 2019. Due to the tremendous volume of material involved, innovative decontamination technologies are being sought that can reduce the volumes of contaminated waste materials and secondary wastes requiring disposal. This report describes the results of the performance testing of chelates and solvents for the dissolution of uranium.

  12. Reducing Risk of Salmonellosis through Egg Decontamination Processes

    Directory of Open Access Journals (Sweden)

    Thilini Piushani Keerthirathne

    2017-03-01

    Full Text Available Eggs have a high nutritional value and are an important ingredient in many food products. Worldwide foodborne illnesses, such as salmonellosis linked to the consumption of eggs and raw egg products, are a major public health concern. This review focuses on previous studies that have investigated the procedures for the production of microbiologically safe eggs. Studies exploring pasteurization and decontamination methods were investigated. Gamma irradiation, freeze drying, hot air, hot water, infra-red, atmospheric steam, microwave heating and radiofrequency heating are all different decontamination methods currently considered for the production of microbiologically safe eggs. However, each decontamination procedure has different effects on the properties and constituents of the egg. The pasteurization processes are the most widely used and best understood; however, they influence the coagulation, foaming and emulsifying properties of the egg. Future studies are needed to explore combinations of different decontamination methods to produce safe eggs without impacting the protein structure and usability. Currently, eggs which have undergone decontamination processes are primarily used in food prepared for vulnerable populations. However, the development of a decontamination method that does not affect egg properties and functionality could be used in food prepared for the general population to provide greater public health protection.

  13. Reducing Risk of Salmonellosis through Egg Decontamination Processes.

    Science.gov (United States)

    Keerthirathne, Thilini Piushani; Ross, Kirstin; Fallowfield, Howard; Whiley, Harriet

    2017-03-22

    Eggs have a high nutritional value and are an important ingredient in many food products. Worldwide foodborne illnesses, such as salmonellosis linked to the consumption of eggs and raw egg products, are a major public health concern. This review focuses on previous studies that have investigated the procedures for the production of microbiologically safe eggs. Studies exploring pasteurization and decontamination methods were investigated. Gamma irradiation, freeze drying, hot air, hot water, infra-red, atmospheric steam, microwave heating and radiofrequency heating are all different decontamination methods currently considered for the production of microbiologically safe eggs. However, each decontamination procedure has different effects on the properties and constituents of the egg. The pasteurization processes are the most widely used and best understood; however, they influence the coagulation, foaming and emulsifying properties of the egg. Future studies are needed to explore combinations of different decontamination methods to produce safe eggs without impacting the protein structure and usability. Currently, eggs which have undergone decontamination processes are primarily used in food prepared for vulnerable populations. However, the development of a decontamination method that does not affect egg properties and functionality could be used in food prepared for the general population to provide greater public health protection.

  14. A survey of decontamination processes applicable to DOE nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  15. Mobile worksystems for decontamination and decommissioning operations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    This project is an interdisciplinary effort to develop effective mobile worksystems for decontamination and decommissioning (D&D) of facilities within the DOE Nuclear Weapons Complex. These mobile worksystems will be configured to operate within the environmental and logistical constraints of such facilities and to perform a number of work tasks. Our program is designed to produce a mobile worksystem with capabilities and features that are matched to the particular needs of D&D work by evolving the design through a series of technological developments, performance tests and evaluations. The Phase I effort was based on a robot called the Remote Work Vehicle (RWV) that was previously developed by CMU for use in D&D operations at the Three Mile Island Unit 2 Reactor Building basement. During Phase I of this program, the RWV was rehabilitated and upgraded with contemporary control and user interface technologies and used as a testbed for remote D&D operations. We established a close working relationship with the DOE Robotics Technology Development Program (RTDP). In the second phase, we designed and developed a next generation mobile worksystem, called Rosie, and a semi-automatic task space scene analysis system, called Artisan, using guidance from RTDP. Both systems are designed to work with and complement other RTDP D&D technologies to execute selective equipment removal scenarios in which some part of an apparatus is extricated while minimally disturbing the surrounding objects. RTDP has identified selective equipment removal as a timely D&D mission, one that is particularly relevant during the de-activation and de-inventory stages of facility transitioning as a means to reduce the costs and risks associated with subsequent surveillance and monitoring. In the third phase, we tested and demonstrated core capabilities of Rosie and Artisan; we also implemented modifications and enhancements that improve their relevance to DOE`s facility transitioning mission.

  16. Corrective Action Investigation Plan for Corrective Action Unit 254: Area 25 R-MAD Decontamination Facility, Nevada Test Site, Nevada (includes ROTC No. 1, date 01/25/1999)

    Energy Technology Data Exchange (ETDEWEB)

    DOE/NV

    1999-07-29

    This Corrective Action Investigation Plan contains the US Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 254 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 254 consists of Corrective Action Site (CAS) 25-23-06, Decontamination Facility. Located in Area 25 at the Nevada Test Site (NTS), CAU 254 was used between 1963 through 1973 for the decontamination of test-car hardware and tooling used in the Nuclear Rocket Development Station program. The CAS is composed of a fenced area measuring approximately 119 feet by 158 feet that includes Building 3126, an associated aboveground storage tank, a potential underground storage area, two concrete decontamination pads, a generator, two sumps, and a storage yard. Based on site history, the scope of this plan is to resolve the problem statement identified during the Data Quality Objectives process that decontamination activities at this CAU site may have resulted in the release of contaminants of concern (COCs) onto building surfaces, down building drains to associated leachfields, and to soils associated with two concrete decontamination pads located outside the building. Therefore, the scope of the corrective action field investigation will involve soil sampling at biased and random locations in the yard using a direct-push method, scanning and static radiological surveys, and laboratory analyses of all soil/building samples. Historical information provided by former NTS employees indicates that solvents and degreasers may have been used in the decontamination processes; therefore, potential COCs include volatile/semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, asbestos, gamma-emitting radionuclides, plutonium, uranium, and strontium-90. The results of this

  17. Lessons learned at West Valley during facility decontamination for re-use (1982--1988)

    Energy Technology Data Exchange (ETDEWEB)

    Tundo, D.; Gessner, R.F.; Lawrence, R.E.

    1988-11-01

    The primary mission of the West Valley Demonstration Project (WVDP) is to solidify a large volume of high-level liquid waste (2.3 million liters -- 600,000 gallons) produced during reprocessing plant operations and stored in underground tanks. This is to be accomplished through the maximum use of existing facilities. This required a significant effort to remove existing equipment and to decontaminate areas for installation of liquid and cement processing systems in a safe environment while maintaining exposure to workers as low as reasonably achievable. The reprocessing plant occupied a building of about 33,000 m/sup 2/ (350,000 ft/sup 2/). When the WVDP was initiated, approximately 6 percent of the plant area was in a non-contaminated condition where personnel could function without protective clothing or radiological controls. From 1982 to 1988, an additional 64 percent of the plant was cleaned up and much of this converted to low- and high-level waste processing areas. The high-level liquid and resulting low-level liquids are now being treated in these areas using an Integrated Radwaste Treatment System (IRTS). The Project has now focused attention on installation, qualification and operation of a vitrification system which will convert the remaining high-level waste into borosilicate glass logs. The stabilized waste will be sent to a Federal Repository for long-term storage. From 1982 to 1988, about 70 technical reports were dealing with specific tasks and cleanup efforts. This report provides an overview of the decontamination and decommissioning work done in that period. The report emphasizes lessons learned during that effort. Significant advances were made in: remote and contact decontamination technology; personnel protection and training; planning and procedures; and radiological controls. 62 refs., 35 figs., 5 tabs.

  18. Waste Isolation Pilot Plant Salt Decontamination Testing

    Energy Technology Data Exchange (ETDEWEB)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  19. Waste Isolation Pilot Plant Salt Decontamination Testing

    Energy Technology Data Exchange (ETDEWEB)

    Demmer, Ricky Lynn [Idaho National Laboratory; Reese, Stephen Joseph [Idaho National Laboratory

    2015-03-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. Several practical, easily deployable methods of decontaminating WIPP salt, using a surrogate contaminant and americium (241Am), were developed and tested. The effectiveness of the methods is evaluated qualitatively, and to the extent practical, quantitatively. Of the methods tested (dry brushing, vacuum cleaning, water washing, mechanical grinding, strippable coatings, and fixative barriers), the most practical seems to be water washing. Effectiveness is very high, and water washing is easy and rapid to deploy. The amount of wastewater produced (~2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from water washed coupons found no residual removable contamination. Thus, whatever contamination is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  20. Decontamination method for radioactively contaminated material

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Yuichi; Mizuguchi, Hiroshi; Sakai, Hitoshi; Komatsubara, Masaru

    1998-09-02

    Radioactively contaminated materials having surfaces contaminated by radioactive materials are dissolved in molten salts by the effect of chlorine gas. The molten salts are brought into contact with a low melting point metal to reduce only radioactive materials by substitution reaction and recover them into the low melting point metal. Then, a low melting point metal phase and a molten salt phase are separated. The low melting point metal phase is evaporated to separate the radioactive materials from molten metals. On the other hand, other metal ions dissolved in the molten salts are reduced into metals by electrolysis at an anode and separated from the molten salts and served for regeneration. The low melting point metals are reutilized together with contaminated lead, after subjected to decontamination, generated from facilities such as nuclear power plant or lead for disposal. Since almost all materials including the molten salts and the molten metals can be enclosed, the amount of wastes can be reduced. In addition, radiation exposure of operators who handle them can be reduced. (T.M.)

  1. Decontamination and decommissioning of Shippingport commercial reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schreiber, J. [Dept. of Energy, Pittsburgh, PA (United States)

    1989-11-01

    To a certain degree, the decontamination and decommissioning (D and D) of the Shippingport reactor was a joint venture with Duquesne Light Company. The structures that were to be decommissioned were to be removed to at least three feet below grade. Since the land had been leased from Duquesne Light, there was an agreement with them to return the land to them in a radiologically safe condition. The total enclosure volume for the steam and nuclear containment systems was about 1.3 million cubic feet, more than 80% of which was below ground. Engineering plans for the project were started in July of 1980 and the final environmental impact statement (EIS) was published in May of 1982. The plant itself was shut down in October of 1982 for end-of-life testing and defueling. The engineering services portion of the decommissioning plans was completed in September of 1983. DOE moved onto the site and took over from the Navy in September of 1984. Actual physical decommissioning began after about a year of preparation and was completed about 44 months later in July of 1989. This paper describes the main parts of D and D.

  2. Mycotoxins - prevention and decontamination by yeasts.

    Science.gov (United States)

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István

    2015-07-01

    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

  3. A simplified model of decontamination by BWR steam suppression pools

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A.

    1997-05-01

    Phenomena that can decontaminate aerosol-laden gases sparging through steam suppression pools of boiling water reactors during reactor accidents are described. Uncertainties in aerosol properties, aerosol behavior within gas bubbles, and bubble behavior in plumes affect predictions of decontamination by steam suppression pools. Uncertainties in the boundary and initial conditions that are dictated by the progression of severe reactor accidents and that will affect predictions of decontamination by steam suppression pools are discussed. Ten parameters that characterize boundary and initial condition uncertainties, nine parameters that characterize aerosol property and behavior uncertainties, and eleven parameters that characterize uncertainties in the behavior of bubbles in steam suppression pools are identified. Ranges for the values of these parameters and subjective probability distributions for parametric values within the ranges are defined. These uncertain parameters are used in Monte Carlo uncertainty analyses to develop uncertainty distributions for the decontamination that can be achieved by steam suppression pools and the size distribution of aerosols that do emerge from such pools. A simplified model of decontamination by steam suppression pools is developed by correlating features of the uncertainty distributions for total decontamination factor, DF(total), mean size of emerging aerosol particles, d{sub p}, and the standard deviation of the emerging aerosol size distribution, {sigma}, with pool depth, H. Correlations of the median values of the uncertainty distributions are suggested as the best estimate of decontamination by suppression pools. Correlations of the 10 percentile and 90 percentile values of the uncertainty distributions characterize the uncertainty in the best estimates. 295 refs., 121 figs., 113 tabs.

  4. Mass Casualty Decontamination in the United States: An Online Survey of Current Practice.

    Science.gov (United States)

    Power, Sarah; Symons, Charles; Carter, Holly; Jones, Emma; Amlôt, Richard; Larner, Joanne; Matar, Hazem; Chilcott, Robert P

    2016-01-01

    Mass casualty decontamination is a public health intervention that would be employed by emergency responders following a chemical, biological, or radiological incident. The decontamination of large numbers of casualties is currently most often performed with water to remove contaminants from the skin surface. An online survey was conducted to explore US fire departments' decontamination practices and their preparedness for responding to incidents involving mass casualty decontamination. Survey respondents were asked to provide details of various aspects of their decontamination procedures, including expected response times to reach casualties, disrobing procedures, approaches to decontamination, characteristics of the decontamination showering process, provision for special populations, and any actions taken following decontamination. The aim of the survey was to identify any differences in the way in which decontamination guidance is implemented across US states. Results revealed that, in line with current guidance, many US fire departments routinely use the "ladder-pipe system" for conducting rapid, gross decontamination of casualties. The survey revealed significant variability in ladder-pipe construction, such as the position and number of fire hoses used. There was also variability in decontamination characteristics, such as water temperature and water pressure, detergent use, and shower duration. The results presented here provide important insights into the ways in which implementation of decontamination guidance can vary between US states. These inconsistencies are thought to reflect established perceived best practices and local adaptation of response plans to address practical and logistical constraints. These outcomes highlight the need for evidence-based national guidelines for conducting mass casualty decontamination.

  5. MERCURY CONTAMINATED MATERIAL DECONTAMINATION METHODS: INVESTIGATION AND ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    2001-01-01

    Over the years mercury has been recognized as having serious impacts on human health and the environment. This recognition has led to numerous studies that deal with the properties of various mercury forms, the development of methods to quantify and speciate the forms, fate and transport, toxicology studies, and the development of site remediation and decontamination technologies. This report reviews several critical areas that will be used in developing technologies for cleaning mercury from mercury-contaminated surfaces of metals and porous materials found in many DOE facilities. The technologies used for decontamination of water and mixed wastes (solid) are specifically discussed. Many technologies that have recently appeared in the literature are included in the report. Current surface decontamination processes have been reviewed, and the limitations of these technologies for mercury decontamination are discussed. Based on the currently available technologies and the processes published recently in the literature, several processes, including strippable coatings, chemical cleaning with iodine/iodide lixiviant, chemisorbing surface wipes with forager sponge and grafted cotton, and surface/pore fixation through amalgamation or stabilization, have been identified as potential techniques for decontamination of mercury-contaminated metal and porous surfaces. Their potential merits and applicability are discussed. Finally, two processes, strippable coatings and chemical cleaning with iodine/iodide lixiviant, were experimentally investigated in Phase II of this project.

  6. Electrochemical Decontamination of Painted and Heavily Corroded Metals

    Energy Technology Data Exchange (ETDEWEB)

    Marczak, S.; Anderson, J.; Dziewinski, J.

    1998-09-08

    The radioactive metal wastes that are generated from nuclear fuel plants and radiochemical laboratories are mainly contaminated by the surface deposition of radioactive isotopes. There are presently several techniques used in removing surface contamination involving physical and chemical processes. However, there has been very little research done in the area of soiled, heavily oxidized, and painted metals. Researchers at Los Alamos National Laboratory have been developing electrochemical procedures for the decontamination of bare and painted metal objects. These methods have been found to be effective on highly corroded as well as relatively new metals. This study has been successful in decontaminating projectiles and shrapnel excavated during environmental restoration projects after 40+ years of exposure to the elements. Heavily corroded augers used in sampling activities throughout the area were also successfully decontaminated. This process has demonstrated its effectiveness and offers several advantages over the present metal decontamination practices of media blasting and chemical solvents. These advantages include the addition of no toxic or hazardous chemicals, low operating temperature and pressure, and easily scaleable equipment. It is in their future plans to use this process in the decontamination of gloveboxes destined for disposal as TRU waste.

  7. Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data

    Directory of Open Access Journals (Sweden)

    Richard Amlôt

    2012-10-01

    Full Text Available In the event of a large-scale chemical release in the UK decontamination of ambulant casualties would be undertaken by the Fire and Rescue Service (FRS. The aim of this study was to track the movement of volunteer casualties at two mass decontamination field exercises using passive Radio Frequency Identification tags and detection mats that were placed at pre-defined locations. The exercise data were then used to inform a computer model of the FRS component of the mass decontamination process. Having removed all clothing and having showered, the re-dressing (termed re-robing of casualties was found to be a bottleneck in the mass decontamination process during both exercises. Computer simulations showed that increasing the capacity of each lane of the re-robe section to accommodate 10 rather than five casualties would be optimal in general, but that a capacity of 15 might be required to accommodate vulnerable individuals. If the duration of the shower was decreased from three minutes to one minute then a per lane re-robe capacity of 20 might be necessary to maximise the throughput of casualties. In conclusion, one practical enhancement to the FRS response may be to provide at least one additional re-robe section per mass decontamination unit.

  8. Distribution of radioactive Cesium in trees and effect of decontamination of forest contaminated by the Fukushima nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, K.; Funaki, H.; Tokizawa, T.; Nakayama, S. [Fukushima Environmental Safety Center, Headquarters of Fukushima Partnership Operations, Japan Atomic Energy Agency, Fukushima (Japan)

    2013-07-01

    In decontamination pilot projects conducted by Japan Atomic Energy Agency (JAEA), many different techniques were tested to determine their applicability to remediate areas evacuated after the Fukushima Daiichi nuclear accident following the Great Tohoku earthquake and tsunami of March 11, 2011. In addition to buildings, roads and farmland, the forest adjacent to living areas was one of the main decontamination targets. The projects evaluated the radioactive contamination of trees and the effectiveness of decontaminating a highly contaminated evergreen forest. This forest was located 1.3 km southwest of the Fukushima Daiichi Nuclear Power Plant and is dominated by Japanese cedar trees and fir trees. As the first step, three Japanese cedar trees and three fir trees were cut down and the distributions of radioactive cesium (Cs) were measured in each. The total concentrations of {sup 134}Cs and {sup 137}Cs in the leaves and branches were about 1 MBq/kg for both cedar and fir trees, and were appreciably higher than in the bark for cedar. The concentrations in the outer part of the trunks (under the bark) were lower, on the order of 10 kBq/kg, and those in the core of the trunks were lower than 1 kBq/kg for both kinds of trees. The observation that the Cs concentrations are higher in the outer part of trees, is compatible with the assumption that radio-Cs was mostly adsorbed on the surface of trees and partly penetrated into the trunks through the bark. Evolution of air dose rates in a 100 x 60 m pasture adjacent to the forest was monitored during decontamination of the forest and of the pasture itself. The dose rates in the pasture decreased drastically after stripping contaminated topsoil from the pasture and decreased slightly more after stripping contaminated topsoil of the forest floor and pruning the trees. Cutting down and removing 84 trees in the outermost area (10- m width) of the forest also slightly decreased these dose rates. After decontamination, the

  9. Decontamination and decommissioning surveillance and maintenance report for FY 1991. Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    Burwinkle, T. W.; Cannon, T. R.; Ford, M. K.; Holder, Jr., L.; Clotfelter, O. K.; Faulkner, R. L.; Smith, D. L.; Wooten, H. O.

    1991-12-01

    The Decontamination and Decommissioning (D&D) Program has three distinct phases: (1) surveillance and maintenance (S&M); (2) decontamination and removal of hazardous materials and equipment (which DOE Headquarters in Washington, D.C., calls Phase I of remediation); and (3) decommissioning and ultimate disposal, regulatory compliance monitoring, and property transfer (which DOE Headquarters calls Phase II of remediation). A large part of D&D is devoted to S&M at each of the sites. Our S&M activities, which are performed on facilities awaiting decommissioning, are designed to minimize potential hazards to human health and the environment by: ensuring adequate containment of residual radioactive and hazardous materials; and, providing physical safety and security controls to minimize potential hazards to on-site personnel and the general public. Typically, we classify maintenance activities as either routine or special (major repairs). Routine maintenance includes such activities as painting, cleaning, vegetation control, minor structural repairs, filter changes, and building system(s) checks. Special maintenance includes Occupational Safety and Health Act facility upgrades, roof repairs, and equipment overhaul. Surveillance activities include inspections, radiological measurements, reporting, records maintenance, and security (as required) for controlling and monitoring access to facilities. This report summarizes out FY 1991 S&M activities for the Tennessee plant sites, which include the K-25 Site, the Gas Centrifuge facilities, ORNL, and the Y-12 Plant.

  10. Ecological effects of selective decontamination on resistant gram-negative bacterial colonization.

    NARCIS (Netherlands)

    Oostdijk, E.A.; Smet, A.M. de; Blok, H.E.; Thieme Groen, E.S.; Asselt, G.J. van; Benus, R.F.; Bernards, S.A.; Frenay, I.H.; Jansz, A.R.; Jongh, B.M. de; Kaan, J.A.; Leverstein-van Hall, M.A.; Mascini, E.M.; Pauw, W.; Sturm, P.D.J.; Thijsen, S.F.; Kluytmans, J.A.; Bonten, M.J.

    2010-01-01

    RATIONALE: Selective digestive tract decontamination (SDD) and selective oropharyngeal decontamination (SOD) eradicate gram-negative bacteria (GNB) from the intestinal and respiratory tract in intensive care unit (ICU) patients, but their effect on antibiotic resistance remains controversial. OBJECT

  11. Selective decontamination of the oropharynx and the digestive tract in ICU patients

    NARCIS (Netherlands)

    de Smet, A.M.G.A.

    2009-01-01

    Background: Selective Digestive tract Decontamination (SDD) and Selective Oropharyngeal Decontamination (SOD) are effective infection prevention measures in intensive care patients, but reported effects on patient outcome are conflicting and the effects on infections and respiratory tract colonizati

  12. Ecological Effects of Selective Decontamination on Resistant Gram-negative Bacterial Colonization

    NARCIS (Netherlands)

    Oostdijk, Evelien A. N.; de Smet, Anne Marie G. A.; Blok, Hetty E. M.; Groen, Emily S. Thieme; van Asselt, Gerard J.; Benus, Robin F. J.; Bernards, Sandra A. T.; Frenay, Ine H. M. E.; Jansz, Arjan R.; de Jongh, Bartelt M.; Kaan, Jan A.; Leverstein-van Hall, Maurine A.; Mascini, Ellen M.; Pauw, Wouter; Sturm, Patrick D. J.; Thijsen, Steven F. T.; Kluytmans, Jan A. J. W.; Bonten, Marc J. M.

    2010-01-01

    Rationale: Selective digestive tract decontamination (SDD) and selective oropharyngeal decontamination (SOD) eradicate gram-negative bacteria (GNB) from the intestinal and respiratory tract in intensive care unit (ICU) patients, but their effect on antibiotic resistance remains controversial. Object

  13. Decontamination Systems Information and Reseach Program

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Echol E

    1998-04-01

    The following paragraphs comprise the research efforts during the first quarter of 1998 (January 1 - March 31). These tasks have been granted a continuation from the 1997 work and will all end in June 1998. This report represents the last technical quarterly report deliverable for the WVU Cooperative Agreement - Decontamination Systems Information and Research Program. Final reports for all of the 1997 projects will be submitted afterwards as one document. During this period, groundwater extraction operations were completed on Task 1.6 - Pilot Scale Demonstration of TCE Flushing Through PVDs at the DOE/RMI Extrusion Plant. The data have been evaluated and graphs are presented. The plot of TCE Concentration versus Time shows that the up-gradient groundwater monitoring well produced consistent levels of TCE contamination. A similar trend was observed for the down-gradient wells via grab samples tested. Groundwater samples from the PVD test pad Zone of Influence showed consistent reductions in TCE concentrations with respect to time. In addition, a natural pulse frequency is evident which will have a significant impact on the efficiency of the contaminant removal under natural groundwater advection/diffusion processes. The relationships between the PVD Extraction Flow Rate versus Cumulative Time shows a clear trend in flow rate. Consistent values between 20 to 30 g.p.m. at the beginning of the extraction duration, to less than 10 g.p.m. by the end of the extraction cycle are observed. As evidenced by the aquifer's diminishing recharge levels, the PVD extraction is affecting the response of the aquifer's natural attenuation capability. Progress was also marked on the Injection and Circulation of Potable Water Through PVDs task. Data reduction from this sequence of testing is ongoing. Work planned for next quarter includes completing the Injection / Extraction of potable water task and beginning the Surfactant Injection and removal task.

  14. Facility Decontamination and Decommissioning Program Surveillance and Maintenance Plan, Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Poderis, Reed J. [NSTec; King, Rebecca A. [NSTec

    2013-09-30

    This Surveillance and Maintenance (S&M) Plan describes the activities performed between deactivation and final decommissioning of the following facilities located on the Nevada National Security Site, as documented in the Federal Facility Agreement and Consent Order under the Industrial Sites program as decontamination and decommissioning sites: ? Engine Maintenance, Assembly, and Disassembly (EMAD) Facility: o EMAD Building (Building 25-3900) o Locomotive Storage Shed (Building 25-3901) ? Test Cell C (TCC) Facility: o Equipment Building (Building 25-3220) o Motor Drive Building (Building 25-3230) o Pump Shop (Building 25-3231) o Cryogenic Lab (Building 25-3232) o Ancillary Structures (e.g., dewars, water tower, piping, tanks) These facilities have been declared excess and are in various stages of deactivation (low-risk, long-term stewardship disposition state). This S&M Plan establishes and implements a solid, cost-effective, and balanced S&M program consistent with federal, state, and regulatory requirements. A graded approach is used to plan and conduct S&M activities. The goal is to maintain the facilities in a safe condition in a cost-effective manner until their final end state is achieved. This plan accomplishes the following: ? Establishes S&M objectives and framework ? Identifies programmatic guidance for S&M activities to be conducted by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) ? Provides present facility condition information and identifies hazards ? Identifies facility-specific S&M activities to be performed and their frequency ? Identifies regulatory drivers, NNSA/NFO policies and procedures, and best management practices that necessitate implementation of S&M activities ? Provides criteria and frequencies for revisions and updates ? Establishes the process for identifying and dispositioning a condition that has not been previously identified or

  15. 300 Area D4 Project Fiscal Year 2009 Building Completion Report

    Energy Technology Data Exchange (ETDEWEB)

    B. J. Skwarek

    2010-01-27

    This report summarizes the deactivation, decontamination, decommissioning, and demolition activities of seven facilities in the 300 Area of the Hanford Site in fiscal year 2009. The D4 of these facilities included characterization; engineering; removal of hazardous and radiologically contaminated materials; equipment removal; utility disconnection; deactivation, decontamination, demolition of the structure; and stabilization or removal of slabs and foundations. This report also summarizes the nine below-grade slabs/foundations removed in FY09 of buildings demolished in previous fiscal years.

  16. Decomposition Technology Development of Organic Component in a Decontamination Waste Solution

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chong Hun; Oh, W. Z.; Won, H. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2007-11-15

    Through the project of 'Decomposition Technology Development of Organic Component in a Decontamination Waste Solution', the followings were studied. 1. Investigation of decontamination characteristics of chemical decontamination process 2. Analysis of COD, ferrous ion concentration, hydrogen peroxide concentration 3. Decomposition tests of hardly decomposable organic compounds 4. Improvement of organic acid decomposition process by ultrasonic wave and UV light 5. Optimization of decomposition process using a surrogate decontamination waste solution.

  17. A Rapid and Inexpensive Bioassay to Evaluate the Decontamination of Organophosphates

    Science.gov (United States)

    2012-01-01

    anydrolase (a hydrolyzing enzyme ), and decon- taminating foam with hydrogen peroxide. Much of the research required to quantify CWA decontamination re...household cleaners as potential decontaminating agents, but only 5% bleach was effective at improving survival of insects on steel plates treated...required to obtain nearly complete decontamination of malathion. The bioassay was also used to screen common household cleaners as potential decontaminating

  18. Criteria for the evaluation of a dilute decontamination demonstration

    Energy Technology Data Exchange (ETDEWEB)

    FitzPatrick, V.F.; Divine, J.R.; Hoenes, G.R.; Munson, L.F.; Card, C.J.

    1981-12-01

    This document provides the prerequisite technical information required to evaluate and/or develop a project to demonstrate the dilute chemical decontamination of the primary coolant system of light water reactors. The document focuses on five key areas: the basis for establishing programmatic prerequisites and the key decision points that are required for proposal evaluation and/or RFP (Request for Proposal) issuance; a technical review of the state-of-the-art to identify the potential impacts of a reactor's primary-system decontamination on typical BWR and PWR plants; a discussion of the licensing, recertification, fuel warranty, and institutional considerations and processes; a preliminary identification and development of the selection criteria for the reactor and the decontamination process; and a preliminary identification of further research and development that might be required.

  19. Systems analysis of decontamination options for civilian vehicles.

    Energy Technology Data Exchange (ETDEWEB)

    Foltz, Greg W.; Hoette, Trisha Marie

    2010-11-01

    The objective of this project, which was supported by the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) Chemical and Biological Division (CBD), was to investigate options for the decontamination of the exteriors and interiors of vehicles in the civilian setting in order to restore those vehicles to normal use following the release of a highly toxic chemical. The decontamination of vehicles is especially challenging because they often contain sensitive electronic equipment, multiple materials some of which strongly adsorb chemical agents, and in the case of aircraft, have very rigid material compatibility requirements (i.e., they cannot be exposed to reagents that may cause even minor corrosion). A systems analysis approach was taken examine existing and future civilian vehicle decontamination capabilities.

  20. Testing and evaluation of electrokinetic decontamination of concrete

    Energy Technology Data Exchange (ETDEWEB)

    DePaoli, D.W.; Harris, M.T.; Ally, M.R. [Oak Ridge National Lab., TN (United States). Chemical Technology Div.] [and others

    1996-10-01

    The goals and objectives of the technical task plan (TTP) are to (1) describe the nature and extent of concrete contamination within the Department of Energy (DOE) complex and emerging and commercial technologies applicable to these problems; (2) to match technologies to the concrete problems and recommend up to four demonstrations; (3) to initiate recommended demonstrations; and (4) to continue investigation and evaluation of the application of electrokinetic decontamination processes to concrete. This document presents findings of experimental and theoretical studies of the electrokinetic decontamination (EK) process and their implications for field demonstrations. This effort is an extension of the work performed under TTP 142005, ``Electroosmotic Concrete Decontamination. The goals of this task were to determine the applicability of EK for treating contaminated concrete and, if warranted, to evaluate EK as a potential technology for demonstration. 62 refs.

  1. Biophysical Evaluation of Food Decontamination Effects on Tissue and Bacteria

    DEFF Research Database (Denmark)

    Andersen, Ann Zahle; Duelund, Lars; Brewer, Jonathan R.

    2011-01-01

    Traditionally, the effects and efficiency of food surface decontamination processes, such as chlorine washing, radiation, or heating, have been evaluated by sensoric analysis and colony-forming unit (CFU) counts of surface swabs or carcass rinses. These methods suffice when determining probable...... consumer responses or meeting legislative contamination limits. However, in the often very costly, optimization process of a new method, more quantitative and unbiased results are invaluable. In this study, we employed a biophysical approach for the investigation of qualitative and quantitative changes...... in both food surface and bacteria upon surface decontamination by SonoSteam®. SonoSteam® is a recently developed method of food surface decontamination, which employs steam and ultrasound for effective heat transfer and short treatment times, resulting in significant reduction in surface bacteria. We...

  2. Decontamination Options for Drinking Water Contaminated with Bacillus anthracis Spores

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E; Burklund, A

    2010-02-16

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination options for use in a contaminated drinking water supply. The parameters were: (1) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus); (2) spore concentration in suspension (10{sup 2} to 10{sup 6} spores/ml); (3) chemical characteristics of decontaminant [sodium dicholor-s-triazinetrione dihydrate (Dichlor), hydrogen peroxide, potassium peroxymonosulfate (Oxone), sodium hypochlorite, and VirkonS{reg_sign}]; (4) decontaminant concentration (0.01% to 5%); and (5) decontaminant exposure time (10 min to 24 hr). Results from 162 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5%, and Dichlor and sodium hypochlorite at a concentration of 2%, were effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting EPA's biocide standard of greater than a 6 log kill after a 10-minute exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS{reg_sign} and Oxone were less effective decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for biocides. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  3. Electron beam irradiation for biological decontamination of Spirulina platensis

    Energy Technology Data Exchange (ETDEWEB)

    Brasoveanu, Mirela [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania)]. E-mail: mirela@infim.ro; Nemtanu, Monica [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Minea, R. [National Institute for Lasers, Plasma and Radiation Physics, Department of Electron Accelerators, 409 Atomistilor Street, P.O. Box MG-36, RO 76 900 Bucharest-Magurele (Romania); Grecu, Maria Nicoleta [National Institute for Materials Physics, Bucharest-Magurele (Romania); Mazilu, Elena [Hofigal SA (Romania); Radulescu, Nora [Hofigal SA (Romania)

    2005-10-15

    The Cyanobacterium Spirulina is commercialized for its use in health foods and for therapeutic purposes due to its valuable constituents particularly proteins and vitamins. The aim of the paper is to study the Spirulina platensis behaviour when it is electron beam irradiated for biological decontamination. Microbial load, antioxidant activity, enzymatic inhibition, electron spin resonance (ESR) and UV-Vis spectra were measured for doses up to 80 kGy. The results were correlated with doses in order to find where decontamination is efficient, keeping the Spirulina qualities.

  4. Physicochemical characteristics of PFC surfactants for dry decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Jin; Lee, Chi Woo [Korea University, Seoul (Korea)

    2001-04-01

    Even the trace amount of the used nuclear fuels of high radioactivity are hazardous to the earth and humans. Perfluorocarbons and perfluorocarbon surfactants are emerging to be efficient chemicals in the dry decontamination process of the used fuels of high radioactivity. The theme was undertaken to increase the knowledge on perfluorocarbon surfactants to develop the perfluorocarbon system in the dry decontamination process in Korea. Several cationic and anionic pfc surfactants were synthesized. Effects of pfc surfactants on electrochemical etching of silicon were investigated to form porous silicons. Forces were measured between silicon surfaces and AFM tip in the absence and presence of pfc surfactants. 7 refs., 10 figs. (Author)

  5. A mass casualty incident involving children and chemical decontamination.

    Science.gov (United States)

    Timm, Nathan; Reeves, Scott

    2007-01-01

    Mass casualty incidents involving contaminated children are a rare but ever-present possibility. In this article we outline one such event that resulted in 53 pediatric patients and 3 adults presenting to the emergency department of a children's hospital for decontamination and treatment. We pay special attention to the training that allowed this responses to occur. We also outline the institutional response with emphasis on incident command, communication, and resource utilization. Specific lessons learned are explored in detail. Finally, we set forth a series of recommendations to assist other institutions should they be called upon to care for and decontaminate pediatric patients.

  6. Economies of capacity use in decontamination of pig carcasses

    DEFF Research Database (Denmark)

    Jensen, Jørgen Dejgård; Lawson, Lartey Godwin; Lund, Mogens

    2013-01-01

    This article analyzes the economies of capacity use regarding hot water decontamination to reduce postslaughter risk of pathogens in meat, taking interfarm heterogeneities of Salmonella risk and costs of transportation into account, using Denmark as a case study. If risk reduction goals are stated...... at the processing plant level, then the exploitation of the favorable cost-effectiveness properties of hot water slaughtering requires fairly ambitious risk reduction goals and thus high use of decontamination capacity. If instead risk reduction goals are formulated for the sector as a whole, the cost...

  7. Decontamination and Decommissioned Small Nuclear AIP Hybrid Systems Submarines

    Directory of Open Access Journals (Sweden)

    Guangya Liu

    2013-11-01

    Full Text Available Being equipped with small reactor AIP is the trend of conventional submarine power in 21st century as well as a real power revolution in conventional submarine. Thus, the quantity of small reactor AIP Submarines is on the increase, and its decommissioning and decontamination will also become a significant international issue. However, decommissioning the small reactor AIP submarines is not only a problem that appears beyond the lifetime of the small reactor nuclear devices, but the problem involving the entire process of design, construction, running and closure. In the paper, the problem is explored based on the conception and the feasible decommissioning and decontamination means are supplied to choose from.

  8. Concrete decontamination by Electro-Hydraulic Scabbling (EHS)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-11-01

    EHS is being developed for decontaminating concrete structures from radionuclides, organic substances, and hazardous metals. EHS involves the generation of powerful shock waves and intense cavitation by a strong pulsed electric discharge in a water layer at the concrete surface; high impulse pressure results in stresses which crack and peel off a concrete layer of controllable thickness. Scabbling produces contaminated debris of relatively small volume which can be easily removed, leaving clean bulk concrete. Objective of Phase I was to prove the technical feasibility of EH for controlled scabbling and decontamination of concrete. Phase I is complete.

  9. A Method for Image Decontamination Based on Partial Differential Equation

    Directory of Open Access Journals (Sweden)

    Hou Junping

    2015-01-01

    Full Text Available This paper will introduce the method to apply partial differential equations for the decontamination processing of images. It will establish continuous partial differential mathematical models for image information and use specific solving methods to conduct decontamination processing to images during the process of solving partial differential equations, such as image noise reduction, image denoising and image segmentation. This paper will study the uniqueness of solution for the partial differential equations and the monotonicity that functional constrain has on multipliers by making analysis of the ROF model in the partial differential mathematical model.

  10. Decontamination properties of bentonite in rats irradiated contaminated with radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kossakowski, S.; Dziura, A. [National Veterinary Research Institute, Pulawy (Poland)

    1994-12-31

    Decontamination properties of bentonite were examined in rats irradiated with 154.5 mC/kg and contaminated with 13.83 kBq of Cs-137. The rats were fed a granulated LSM diet supplemented with 10% bentonite for 1, 3 and 5 days and were examined radiometrically for Cs-137 concentration in the small intestine, liver, kidneys, lung, spleen, heart, muscles, tongue, blood, brain, testicles and prostate. The findings revealed that the highest decontamination efficacy in the rats contaminated 1 and 5 days postirradiation was achieved after three-day administration of bentonite. (author). 16 refs, 2 tabs.

  11. Definition of a concrete bio-decontamination process in nuclear substructures; Biodegradation de matrices cimentaires en vue de leur decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Jestin, A

    2005-05-15

    The decontamination of sub-structural materials represents a stake of high-importance because of the high volume generated. It is agreed then to propose efficient and effective processes. The process of bio-decontamination of the hydraulic binders leans on the mechanisms of biodegradation of concretes, phenomenon characterized in the 40's by an indirect attack of the material by acids stem from the microbial metabolism: sulphuric acid (produced by Thiobacillus), nitric acid (produced by Nitrosomonas and Nitrobacter) and organic acids (produced by fungi). The principle of the bio-decontamination process is to apply those micro-organisms on the surface of the contaminated material, in order to damage its surface and to retrieve the radionuclides. One of the multiple approaches of the process is the use of a bio-gel that makes possible the micro-organisms application. (author)

  12. WVU cooperative agreement, decontamination systems information and research program, deployment support leading to implementation

    Energy Technology Data Exchange (ETDEWEB)

    Cook, E.E.

    1996-12-31

    This program at West Virginia University is a Cooperative Agreement that focuses on R&D associated with hazardous waste remediation problems existing at DOE, Corps of Engineers, and private sector sites. The Agreement builds on a unique combination of resources coupling university researchers with DOE sponsored small businesses, leading toward field tests and large scale technology demonstrations of environmental technologies. Most of the Agreement`s projects are categorized in the Technology Maturity Levels under Gates 3-Advanced Development, Gate 4-Engineering Development, and Gate 5-Demonstration. The program includes a diversity of projects: subsurface contaminants; mixed wastes; mixed wastes/efficient separations; mixed wastes/characterization, monitoring, and sensor technologies; and decontamination and decommissioning/efficient separations.

  13. Modelling of the hydrodynamic behaviour of a decontamination foam; Modelisation du comportement hydrodynamique d'une mousse de decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Faury, M.; Fournel, B. [CEA Cadarache, Dept. d' Entreposage et de Stockage des Dechets, 13 - Saint-Paul-lez-Durance (France)

    2001-07-01

    Decontamination of large components of nuclear power plants (refrigerants, vapor generators, effluents storage tanks...) produces an important volume of secondary effluents. The use of decontamination foams is an alternative allowing a significant diminution of this volume (about of a factor ten). The aim of this work is to propose models which could be applied by an industrialist in order to anticipate the behaviour of a foam flowing out in a component of any geometry and simplifying then the pre-study steps. (O.M.)

  14. Results of chemical decontamination of DOE`s uranium-enrichment scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, R.G.

    1997-02-01

    The CORPEX{reg_sign} Nuclear Decontamination Processes were used to decontaminate representative scrap metal specimens obtained from the existing scrap metal piles located at the Department of Energy (DOE) Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. In September 1995, under contract to Lockheed Martin Energy Systems, MELE Associates, Inc. performed the on-site decontamination demonstration. The decontamination demonstration proved that significant amounts of the existing DOE scrap metal can be decontaminated to levels where the scrap metal could be economically released by DOE for beneficial reuse. This simple and environmentally friendly process can be used as an alternative, or in addition to, smelting radiologically contaminated scrap metal.

  15. Pesticides water decontamination in oxygen-limited conditions.

    Science.gov (United States)

    Suciu, Nicoleta Alina; Ferrari, Federico; Vasileiadis, Sotirios; Merli, Annalisa; Capri, Ettore; Trevisan, Marco

    2013-01-01

    This study was undertaken to develop a laboratory bioreactor, with a functioning principle similar with that of biobed systems but working in oxygen-limited conditions, suitable for decontaminating wastewater mixtures with pesticides. The system is composed by two cylindrical plastic containers. The first one, where the pesticides solution is collected, is open, whereas the second one, where the biomass is disposed, is closed. The pesticides solution was pumped at the biomass surface and subsequently recollected and disposed in the first container. Four pesticides with different physical-chemical characteristics were tested. The results obtained showed a relatively good capacity of the developed prototype to decontaminate waste water containing the mixture of pesticides. The time of the experiment, the number of cycles that the solution made in the system and the environmental temperature have a significantly influence for the decontamination of acetochlor and chlorpyrifos whereas for the decontamination of terbuthylazine and metalaxyl no significant influence was observed. Even if the present prototype could represent a valid solution to manage the water pesticides residues in a farm and to increase the confidence of bystanders and residents, the practical difficulties when replacing the biomass could represent a limit of the system.

  16. Radiation decontamination of dry food ingredients and processing aids

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, J.

    1984-01-01

    Radiation decontamination of dry ingredients, herbs and enzyme preparations is a technically feasible, economically viable and safe physical process. The procedure is direct, simple, requires no additives and is highly efficient. Its dose requirement is moderate. Radiation doses of 3-10 kGy (0.3-1 mrad) have proved sufficient to reduce the viable counts to a satisfactory level. Ionising radiations do not cause any significant rise in temperature. The flavour, texture or other important technological or sensory properties of most ingredients are not influenced at radiation doses necessary for satisfactory decontamination, and radiation obviates the chemical residue problem. The microflora surviving radiation decontamination of dry ingredients are more susceptible to subsequent antimicrobial treatments. Recontamination can be prevented as the product can be irradiated in its final packaging. Irradiation could be carried out in commercial containers and would result in considerable savings of energy and labour as compared to alternative decontamination techniques. Radiation processing of these commodities is an established technology in several countries and more clearances on irradiated foods are expected to be granted in the near future.

  17. Decontamination of tried-in orthodontic molar bands.

    Science.gov (United States)

    Fulford, M R; Ireland, A J; Main, B G

    2003-12-01

    Molar bands are commonly used to retain orthodontic attachments on posterior teeth and due to the variation in the size of such teeth, it is usually necessary to 'try in' several bands before the correct one is selected. A possible concern with re-using such bands is the lack of cross-infection control, even following autoclaving, due to the presence of one or more small bore lumen (the archwire and headgear tubes). The aim of this experiment was, therefore, to determine whether such bands could be successfully decontaminated so that they could be re-used without a cross-infection risk. Two hundred orthodontic molar bands that had previously been tried in patients' mouths, but not cemented into place, were tested. Each band was decontaminated using an enzymatic cleaner/disinfectant and then sterilized using either a downward displacement (n = 100) or a vacuum cycle autoclave (n = 100). Following autoclaving each band was inoculated into brain heart infusion culture broth and incubated at 37 degrees C for 5 days. None of the decontaminated bands exhibited growth after 5 days. It would appear that, using this methodology, there is little risk of a cross-infection hazard occurring with the re-use of previously tried-in and decontaminated molar bands.

  18. Fundamental study of cesium decontamination from soil by superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp; Nishijima, Shigehiro

    2013-11-15

    Highlights: •The method for the soil decontamination by the superconducting magnet is proposed. •Cesium ion can be absorbed by Prussian blue in potassium iodide wash fluid. •It is possible to recover Cs{sup +} ion-adsorbing Prussian blue with a high rate by HGMS. •It is expected that HGMS can be applied to the actual soil decontamination. -- Abstract: The radioactive substances have been spread out all over the surrounding area of Fukushima Daiichi Nuclear Power Plant caused by the accident in March 2011. Decontamination and volume reduction of radioactive substances, especially cesium ion, are desired issue. This study proposed a decontamination method of the soil by the magnetic separation using superconducting magnet. Cesium ion was adsorbed by Prussian blue in the potassium iodide solution. We succeeded in separating selectively the cesium ion-adsorbed Prussian blue out of the liquid phase by high gradient magnetic separation. High recovery ratio of the Prussian blue was achieved by this method.

  19. Pulse lavage washing in decontamination of allografts improves safety.

    Science.gov (United States)

    Hirn, M; Laitinen, M; Vuento, R

    2003-01-01

    We analyzed the bacterial contamination rate of 140 femoral head allografts after rinsing the allografts in different decontamination solutions. Bacterial screening methods and cleansing effect of antibiotics (cefuroxime and rifampicin) and pulse lavage were compared. Swabbing and taking small pieces of bone for culture were the screening methods used. Both methods proved to be quite unreliable. Approximately one-fourth of the results were false negative. Culturing small pieces of bone gave the most accurate and reliable results and, therefore, can be recommended as a bacterial screening method. The use of antibiotics in allograft decontamination is controversial. In prophylactic use antibiotics include risks of allergic reactions and resistant development and our results in the present study show that antibiotics do not improve the decontamination any better than low-pressure pulse lavage with sterile saline solution. Therefore, pulse lavage with sterile saline solution can be recommended for allograft decontamination. Our results demonstrate that it decreases bacterial bioburden as effectively as the antibiotics without persisting the disadvantages.

  20. Ultrasonic decontamination of prototype fast breeder reactor fuel pins.

    Science.gov (United States)

    Kumar, Aniruddha; Bhatt, R B; Behere, P G; Afzal, Mohd

    2014-04-01

    Fuel pin decontamination is the process of removing particulates of radioactive material from its exterior surface. It is an important process step in nuclear fuel fabrication. It assumes more significance with plutonium bearing fuel known to be highly radio-toxic owing to its relatively longer biological half life and shorter radiological half life. Release of even minute quantity of plutonium oxide powder in the atmosphere during its handling can cause alarming air borne activity and may pose a severe health hazard to personnel working in the vicinity. Decontamination of fuel pins post pellet loading operation is thus mandatory before they are removed from the glove box for further processing and assembly. This paper describes the setting up of ultrasonic decontamination process, installed inside a custom built fume-hood in the production line, comprising of a cleaning tank with transducers, heaters, pin handling device and water filtration system and its application in cleaning of fuel pins for prototype fast breeder reactor. The cleaning process yielded a typical decontamination efficiency of more than 99%.

  1. Selective digestive decontamination in patients in intensive care

    NARCIS (Netherlands)

    Bonten, MJM; Kullberg, BJ; Girbes, ARJ; Hoepelman, IM; Hustinx, W; van der Meer, JWM; Speelman, P; Stobberingh, EE; Verbrugh, HA; Verhoef, J; Zwaveling, JH

    2000-01-01

    Selective digestive decontamination (SDD) is the most extensively studied method for the prevention of infection in patients in intensive care units (ICUs). Despite 27 prospective randomized studies and six meta-analyses, routine use of SDD is still controversial. In this review, we summarize the av

  2. Disinfectants used for environmental disinfection and new room decontamination technology.

    Science.gov (United States)

    Rutala, William A; Weber, David J

    2013-05-01

    Environmental contamination plays an important role in the transmission of several key health care-associated pathogens. Effective and thorough cleaning/disinfecting of the patient environment is essential. Room decontamination units (such as ultraviolet-C and hydrogen peroxide systems) aid in reducing environmental contamination after terminal room cleaning and disinfection.

  3. Improved Logistics for Chemical and Biologics Decontamination for Deployed Military

    Science.gov (United States)

    2012-07-01

    electrophilic phosphate nerve agents and other cholinesterase inhibitors as well as mustards and related blister agents, chloroformates, phosgene, methyl...agents and decontamination processes in support of delisting waste streams at the uU.S. Army Dugway proving ground, Utah” (Environmental Assessment

  4. Use of selective digestive tract decontamination in European intensive cares

    DEFF Research Database (Denmark)

    Reis Miranda, D; Citerio, G; Perner, A

    2015-01-01

    BACKGROUND: Several studies have shown that the use of selective digestive tract decontamination (SDD) reduces mortality. However, fear for increasing multi drug resistance might prevent wide acceptance. A survey was performed among the units registered in the European Registry for Intensive Care...

  5. The Ultimate Hacker: SETI Signals May Need to Be Decontaminated

    Science.gov (United States)

    Carrigan, Richard A., Jr.

    2004-06-01

    Biological contamination from space is a remote but recognized possibility. SETI signals might also contain harmful information. Some argue that a SETI signal could not contaminate a terrestrial computer because the idiosyncratic computer logic and code constitute an impenetrable firewall. Suggestions are given below on how to probe these arguments and decontaminate SETI signals.

  6. Reactivity of Dual-Use Decontaminants with Chemical Warfare Agents

    Science.gov (United States)

    2016-07-01

    Analytical Reference Material grade HD, pinacolyl methyl phosphonofluoridate (soman or GD), and O- ethyl S-(2-diisopropylaminoethyl) methyl...concentrate Benzyl alcohol, ethanolamine, polyethylene glycol trimethylnonyl ether , decyl(sulfophenoxy)benzene- sulfonic acid, disodium salt, water...monohexyl ether , ammonium hydroxide, Water Readily available mixture of solvent chemistries in a basic pH Table 3. Preparation of Decontaminant

  7. Decontamination Processes for Restorative Operations and as a Precursor to Decommissioning: A Literature Review

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, J. L.; Divine, J. R.

    1981-05-01

    Pacific Northwest Laboratory (PNL) conducted an comprehensive literature review of actual reactor decontamination processes that are currently available. In general, any decontamination process should be based on the following criteria: effectiveness, efficiency, safety, and waste production. The information that was collected and analyzed has been divided into three major categories of decontamination: chemical, mechanical, and electrochemical. Chemical methods can be further classified as either low-concentration, singlestep processes or high-concentration, single- or multistep processes. Numerous chemical decontamination methods are detailed. Mechanical decontamination methods are usually restricted to the removal of a contaminated surface layer, whlch limits their versatility; several mechanical decontamination methods are described. Electrochemical decontamination. is both fast and easily controlled, and numerous processes that have been used in industry for many years are discussed. Information obtained from this work is tabulated in Appendix A for easy access, and a bibliography and a glossary have been provided.

  8. Fighting Ebola through Novel Spore Decontamination Technologies for the Military

    Directory of Open Access Journals (Sweden)

    Christopher J. Doona

    2015-08-01

    Full Text Available AbstractRecently, global public health organizations such as Doctors without Borders (MSF, the World Health Organization (WHO, Public Health Canada, National Institutes of Health (NIH, and the U.S. government developed and deployed Field Decontamination Kits (FDKs, a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned. The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2 produced from a patented invention developed by researchers at the US Army – Natick Soldier RD&E Center (NSRDEC and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established nonthermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers

  9. Nonacid meat decontamination technologies: model studies and commercial applications.

    Science.gov (United States)

    Sofos, J N; Smith, G C

    1998-11-10

    Increased consumer awareness and concern about microbial foodborne diseases has resulted in intensified efforts to reduce contamination of raw meat, as evidenced by new meat and poultry inspection regulations being implemented in the United States. In addition to requiring operation of meat and poultry slaughtering and processing plants under the principles of the hazard analysis critical control point (HACCP) system, the new regulations have established microbiological testing criteria for Escherichia coli and Salmonella, as a means of evaluating plant performance. These developments have renewed and intensified interest in the development and commercial application of meat and poultry decontamination procedures. Technologies developed and evaluated for decontamination include live animal cleaning/washing, chemical dehairing, carcass knife-trimming to remove physical contaminants, steam/hot water-vacuuming for spot-cleaning/decontamination of carcasses, spray washing/rinsing of carcasses with water of low or high pressures and temperatures or chemical solutions, and exposure of carcass sides to pressurized steam. Under appropriate conditions, the technologies applied to carcasses may reduce mean microbiological counts by approximately one-three log colony forming units (cfu)/cm2, and some of them have been approved and are employed in commercial applications (i.e., steam-vacuuming; carcass spray-washing with water, chlorine, organic acid or trisodium phosphate solutions; hot water deluging/spraying/rinsing, and pressurized steam). The contribution of these decontamination technologies to the enhancement of food safety will be determined over the long term, as surveillance data on microbial foodborne illness are collected. This review examines carcass decontamination technologies, other than organic acids, with emphasis placed on recent advances and commercial applications.

  10. Treatability studies for decontamination of Melton Valley Storage Tank supernate

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W.D.; Fowler, V.L.; Perona, J.J.; McTaggart, D.R.

    1992-08-01

    Liquid low-level waste, primarily nitric acid contaminated with radionuclides and minor concentrations of organics and heavy metals, is neutralized with sodium hydroxide, concentrated by evaporation, and stored for processing and disposal. The evaporator concentrate separates into sludge and supernate phases upon cooling. The supernate is 4 to 5 mol/L sodium nitrate contaminated with soluble radionuclides, principally {sup 137}Cs, {sup 90}Sr, and {sup 14}C, while the sludge consists of precipitated carbonates and hydroxides of metals and transuranic elements. Methods for treatment and disposal of this waste are being developed. In studies to determine the feasibility of removing {sup 137}Cs from the supernates before solidification campaigns, batch sorption measurements were made from four simulated supernate solutions with four different samples of potassium hexacyanocobalt ferrate (KCCF). Cesium decontamination factors of 1 to 8 were obtained with different KCCF batches from a highly-salted supernate at pH 13. Decontamination factors as high as 50 were measured from supernates with lower salt content and pH, in fact, the pH had a greater effect than the solution composition on the decontamination factors. The decontamination factors were highest after 1 to 2 d of mixing and decreased with longer mixing times due to decomposition of the KCCF in the alkaline solution. The decontamination factors decreased with settling time and were lower for the same total contact time (mixing + settling) for the longer mixing times, indicating more rapid KCCF decomposition during mixing than during settling. There was no stratification of cesium in the tubes as the KCCF decomposed.

  11. Decontamination Systems Information and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Echol E; Beatty, Tia Maria

    1998-07-01

    The following paragraphs comprise the research efforts during the second quarter of 1998 (April 1 - June 30.) These tasks have been granted a continuation until the end of August 1998. This report represents the last technical quarterly report deliverable for the WVU Cooperative Agreement - Decontamination Systems Information and Research Program. Final draft technical reports will be the next submission. During this period, work was completed on the Injection and Circulation of Potable Water Through PVDs on Task 1.6 - Pilot Scale Demonstration of TCE Flushing Through PVDs at the DOE/RMI Extrusion Plant. The data has been evaluated and representative graphs are presented. The plot of Cumulative Injected Volume vs. Cumulative Week Time show the ability to consistently inject through the two center PVDs at a rate of approximately ten (10) gallons per hour. This injection rate was achieved under a static head that varied from five (5) feet to three (3) feet. The plot of Extracted Flow Rate vs. Cumulative Week Time compares the extraction rate with and without the injection of water. The injection operation was continuous for eight hour periods while the extraction operation was executed over a pulsing schedule. Extraction rates as high as forty-five (45) gallons per hour were achieved in conjunction with injection (a 350% increase over no injection.) The retrieved TCE in the liquid phase varied to a considerable degree depending on the pulsing scheme, indicating a significant amount of stripping (volatilization) took place during the extraction process. A field experiment was conducted to confirm this. A liquid sample was obtained using the same vacuum system used in the pad operation and a second liquid sample was taken by a bailer. Analyzation of TCE concentration showed 99.5% volatilization when the vacuum system was used for extraction. This was also confirmed by data from the air monitoring program which indicated that 92%-99% of the retrieved TCE was being

  12. Fighting Ebola with novel spore decontamination technologies for the military

    Science.gov (United States)

    Doona, Christopher J.; Feeherry, Florence E.; Kustin, Kenneth; Olinger, Gene G.; Setlow, Peter; Malkin, Alexander J.; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC’s novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  13. Fighting Ebola with novel spore decontamination technologies for the military.

    Science.gov (United States)

    Doona, Christopher J; Feeherry, Florence E; Kustin, Kenneth; Olinger, Gene G; Setlow, Peter; Malkin, Alexander J; Leighton, Terrance

    2015-01-01

    Recently, global public health organizations such as Doctors without Borders (MSF), the World Health Organization (WHO), Public Health Canada, National Institutes of Health (NIH), and the U.S. government developed and deployed Field Decontamination Kits (FDKs), a novel, lightweight, compact, reusable decontamination technology to sterilize Ebola-contaminated medical devices at remote clinical sites lacking infra-structure in crisis-stricken regions of West Africa (medical waste materials are placed in bags and burned). The basis for effectuating sterilization with FDKs is chlorine dioxide (ClO2) produced from a patented invention developed by researchers at the US Army Natick Soldier RD&E Center (NSRDEC) and commercialized as a dry mixed-chemical for bacterial spore decontamination. In fact, the NSRDEC research scientists developed an ensemble of ClO2 technologies designed for different applications in decontaminating fresh produce; food contact and handling surfaces; personal protective equipment; textiles used in clothing, uniforms, tents, and shelters; graywater recycling; airplanes; surgical instruments; and hard surfaces in latrines, laundries, and deployable medical facilities. These examples demonstrate the far-reaching impact, adaptability, and versatility of these innovative technologies. We present herein the unique attributes of NSRDEC's novel decontamination technologies and a Case Study of the development of FDKs that were deployed in West Africa by international public health organizations to sterilize Ebola-contaminated medical equipment. FDKs use bacterial spores as indicators of sterility. We review the properties and structures of spores and the mechanisms of bacterial spore inactivation by ClO2. We also review mechanisms of bacterial spore inactivation by novel, emerging, and established non-thermal technologies for food preservation, such as high pressure processing, irradiation, cold plasma, and chemical sanitizers, using an array of Bacillus

  14. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan.

    Science.gov (United States)

    Yasutaka, Tetsuo; Naito, Wataru

    2016-01-01

    Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53-5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55-2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed.

  15. The impact of skin decontamination on the time window for effective treatment of percutaneous VX exposure.

    Science.gov (United States)

    Joosen, M J A; van den Berg, R M; de Jong, A L; van der Schans, M J; Noort, D; Langenberg, J P

    2017-04-01

    The main goal of the present study was to obtain insight into depot formation and penetration following percutaneous VX poisoning, in order to identify an appropriate decontamination window that can enhance or support medical countermeasures. The study was executed in two phases, using the hairless guinea pig as an animal model. In the first phase the effect of various decontamination regimens on levels of free VX in skin and plasma were studied as well as on blood cholinesterase levels. Animals were exposed to 0.5 mg/kg VX and were not decontaminated (control), decontaminated with RSDL once at 15 or 90 min after exposure or three times at 15, 25 and 35 (10-min interval) or 15, 45 and 75 min after exposure (30-min interval). There was no significant effect of any of the decontamination regimens on the 6-h survival rate of the animals. However, all animals that had been decontaminated 15 min after exposure, showed a survival rate of more than 90%, compared to 50-60% in animals that were not decontaminated or decontaminated at 90 min after exposure. In the second phase of the study, hairless guinea pigs were exposed to 1 mg/kg VX on the shoulder, followed either by decontamination with RSDL (10 min interval), conventional treatment on indication of clinical signs or a combination thereof. It appeared that a thorough, repeated decontamination alone could not save the majority of the animals. A 100% survival rate was observed in the group that received a combination of decontamination and treatment. In conclusion, the effects of VX exposure could be influenced by various RSDL decontamination regimens. The results in freely moving animals showed that skin decontamination, although not fully effective in removing all VX from the skin and skin depot is crucial to support pharmacological intervention.

  16. Chemical and biological warfare: Protection, decontamination, and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The bibliography contains citations concerning the means to defend against chemical and biological agents used in military operations, and to eliminate the effects of such agents on personnel, equipment, and grounds. Protection is accomplished through protective clothing and masks, and in buildings and shelters through filtration. Elimination of effects includes decontamination and removal of the agents from clothing, equipment, buildings, grounds, and water, using chemical deactivation, incineration, and controlled disposal of material in injection wells and ocean dumping. Other Published Searches in this series cover chemical warfare detection; defoliants; general studies; biochemistry and therapy; and biology, chemistry, and toxicology associated with chemical warfare agents.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  17. Chemical and biological warfare: Protection, decontamination, and disposal. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    The bibliography contains citations concerning the means to defend against chemical and biological agents used in military operations, and to eliminate the effects of such agents on personnel, equipment, and grounds. Protection is accomplished through protective clothing and masks, and in buildings and shelters through filtration. Elimination of effects includes decontamination and removal of the agents from clothing, equipment, buildings, grounds, and water, using chemical deactivation, incineration, and controlled disposal of material in injection wells and ocean dumping. Other Published Searches in this series cover chemical warfare detection; defoliants; general studies; biochemistry and therapy; and biology, chemistry, and toxicology associated with chemical warfare agents. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  18. Fixed-Price Subcontracting for Decontamination and Decommissioning of Small Facilities at Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Harper, M. A.; Julius, J. F. K.; McKenna, M. K.

    2002-02-26

    Abandoned facilities were decontaminated and decommissioned in preparation for final remediation of Solid Waste Storage Area (SWSA) 4 at Oak Ridge National Laboratory. The facilities varied in age from approximately 5 years to more than 40 years, with radiological conditions ranging from clean to highly contaminated with fission products. A fixed-price subcontract (FPSC) was awarded by the U.S. Department of Energy's (DOE's) Environmental Management (EM) Management and Integration (M&I) contractor for decontamination and decommissioning (D&D) of these facilities. Included in the FPSC scope were the following: preparation of pre-D&D regulatory documentation; demolition of surface structures to slab; stabilization of below-grade structures; waste management and disposal; and preparation of post-D&D regulatory documentation. Using stand-off techniques to the extent possible, building structures and ancillary equipment were prepared for demolition and demolished. A fixative coating system was used in conjunction with continuous water misting to control airborne contamination. Demolition waste consisted of two major streams: clean construction and demolition waste and low-level (radioactive) waste. The debris was size-reduced and packaged, again via remote means. At all times during the D&D, personnel safety, environmental compliance, and as low as reasonably achievable exposure considerations were paramount. Upon completion of D&D activities, each site was inspected and accepted by the M&I contractor. This project is a success story for fixed-price subcontracting of D&D work under DOE's M&I arrangement.

  19. A Nanosecond Pulsed Plasma Brush for Surface Decontamination

    Science.gov (United States)

    Neuber, Johanna; Malik, Muhammad; Song, Shutong; Jiang, Chunqi

    2015-11-01

    This work optimizes a non-thermal, atmospheric pressure plasma brush for surface decontamination. The generated plasma plumes with a maximum length of 2 cm are arranged in a 5 cm long, brush-like array. The plasma was generated in ambient air with plasma chamber at a rate varying between 1 to 7 SLPM. Optimization of the cold plasma brush for surface decontamination was tested in a study of the plasma inactivation of two common pathogens, Staphylococcus aureus and Acinetobacter baumannii. Laminate surfaces inoculated with over-night cultured bacteria were subject to the plasma treatment for varying water concentrations in He, flow rates and discharge voltages. It was found that increasing the water content of the feed gas greatly enhanced the bactericidal effect. Emission spectroscopy was performed to identify the reactive plasma species that contribute to this variation. Additional affiliation: Frank Reidy Research Center for Bioelectrics

  20. Cefuroxime, rifampicin and pulse lavage in decontamination of allograft bone.

    Science.gov (United States)

    Hirn, M; Laitinen, M; Pirkkalainen, S; Vuento, R

    2004-03-01

    The risk of bacterial infection through allogenic bone transplantation is one of the major problems facing tissue banks. Different screening methods and decontamination procedures are being used to achieve a safe surgical result. The purpose of this study was to investigate the contamination rate in fresh frozen bone allografts after treating them with different decontamination methods. The allografts were contaminated by rubbing on the operating theatre floor for 60 min, after which they were rinsed either with sterile physiological saline, cefuroxime or rifampicin solution or they were washed with low-pressure pulse lavage of sterile physiological saline. Our findings show that low-pressure pulse lavage with sterile saline solution is very effective in removing bacteria from bone allograft, when compared with the antibiotic solutions tested.

  1. Biofilm mediated decontamination of pollutants from the environment

    Directory of Open Access Journals (Sweden)

    Arindam Mitra

    2016-01-01

    Full Text Available In this review, we highlight beneficial use of microbial biofilms in remediation of environmental pollutants by bioremediation. Bioremediation is an environment friendly, cost effective, sustainable technology that utilizes microbes to decontaminate and degrade a wide variety of pollutants into less harmful products. Relative to free-floating planktonic cells, microbes existing in biofilm mode are advantageous for bioremediation because of greater tolerance to pollutants, environmental stress and ability to degrade varied harsh pollutants via diverse catabolic pathways. In biofilm mode, microbes are immobilized in a self-synthesized matrix which offers protection from stress, contaminants and predatory protozoa. Contaminants ranging from heavy metals, petroleum, explosives, pesticides have been remediated using microbial consortia of biofilms. In the industry, biofilm based bioremediation is used to decontaminate polluted soil and groundwater. Here we discuss conventional and newer strategies utilizing biofilms in environmental remediation.

  2. Dental unit water lines decontamination with the aid of nanotechnology

    Directory of Open Access Journals (Sweden)

    Rashmi Paramashivaiah

    2016-01-01

    Conclusions: Biofilm formation in DUWLs is inevitable with the subsequent release of part of microbiota into the otherwise sterile dental settings. These consequences can be quite serious on clinicians and dental patients. Though conventional measures in water decontamination have been partly successful, the quest for more foolproof methods has led to the use of latest technology, i.e., nanotechnology. The most practical option has to be chosen based on the ease of their usage.

  3. Dental unit water lines decontamination with the aid of nanotechnology

    OpenAIRE

    Rashmi Paramashivaiah; M. L. V. Prabhuji; Roopalakshmi Narayanan

    2016-01-01

    Aim: This article reviews the issue of dental unit waterline (DUWL) contamination which affects all the clinical and hospital settings. The contaminating microorganisms commonly isolated from these settings and the most pathogenic among them have serious consequences. Over the years several measures are inculcated for decontamination of water, their advantages and shortcomings have been addressed. Options using nanotechnology which are available in the market are described briefly. Materi...

  4. Radiation survey and decontamination of cape Arza from depleted uranium

    Directory of Open Access Journals (Sweden)

    Vukotić Perko

    2003-01-01

    Full Text Available In the action of NATO A-10 airplanes in 1999, the cape Arza, Serbia and Montenegro was contaminated by depleted uranium. The clean-up operations were undertaken at the site, and 242 uranium projectiles and their 49 larger fragments were removed from the cape. That is about 85% of the total number of projectiles by which Arza was contaminated. Here are described details of the applied procedures and results of the soil radioactivity measurements after decontamination.

  5. DECONTAMINATION/DESTRUCTION TECHNOLOGY DEMONSTRATION FOR ORGANICS IN TRANSURANIC WASTE

    Energy Technology Data Exchange (ETDEWEB)

    Chris Jones; Javier Del Campo; Patrick Nevins; Stuart Legg

    2002-08-01

    The United States Department of Energy's Savannah River Site has approximately 5000 55-gallon drums of {sup 238}Pu contaminated waste in interim storage. These may not be shipped to WIPP in TRUPACT-II containers due to the high rate of hydrogen production resulting from the radiolysis of the organic content of the drums. In order to circumvent this problem, the {sup 238}Pu needs to be separated from the organics--either by mineralization of the latter or by decontamination by a chemical separation. We have conducted ''cold'' optimization trials and surrogate tests in which a combination of a mediated electrochemical oxidation process (SILVER II{trademark}) and ultrasonic mixing have been used to decontaminate the surrogate waste materials. The surrogate wastes were impregnated with copper oxalate for plutonium dioxide. Our process combines both mineralization of reactive components (such cellulose, rubber, and oil) and surface decontamination of less reactive materials such as polyethylene, polystyrene and polyvinylchloride. By using this combination of SILVER II and ultrasonic mixing, we have achieved 100% current efficiency for the destruction of the reactive components. We have demonstrated that: The degree of decontamination achieved would be adequate to meet both WIPP waste acceptance criteria and TRUPACT II packaging and shipping requirements; The system can maintain near absolute containment of the surrogate radionuclides; Only minimal pre-treatment (coarse shredding) and minimal waste sorting are required; The system requires minimal off gas control processes and monitoring instrumentation; The laboratory trials have developed information that can be used for scale-up purposes; The process does not produce dioxins and furans; Disposal routes for secondary process arisings have already been demonstrated in other programs. Based on the results from Phase 1, the recommendation is to proceed to Phase 2 and use the equipment at Savannah

  6. Post-Decontamination Vapor Sampling and Analytical Test Methods

    Science.gov (United States)

    2015-08-12

    surfaces, tools , and waste must be easily decontaminable. Must have certified fume hoods for the containment of toxic chemicals. All exhaust air...this TOP, including Gaussian plume17, computational fluid dynamics (CFD)18, Second Order Integrated PUFF (SCIPUFF, L-3 Titan Corporation, Princeton...Puff (SCIPUFF) Version 2.2, ARAP Report 729, L-3 Titan Corporation, Princeton, New Jersey, 2006. 20. Chang, J. C., Franzese, P., Chayantrakom, K

  7. Decontamination Technologies for Emerging CBRNE Agents: Scoping Study

    Science.gov (United States)

    2014-05-01

    persistent organic pollutants . For ENPs, the vulnerability was determined to be extreme for Al/Fe2O3, Al/CuO, Al/ammonium perchlorate and high for Al...materials. For sensitive equipment materials, the efficiency ranged from 41.9% to 100.0%. For plastic keyboards, diazinon was the easiest OP compound...trials to identify, optimize and demonstrate advanced decontamination technologies; 2) investigate the persistence of target agents on different

  8. Recommendations and Proposed Strategic Plan: Water Sector Decontamination Priorities

    Science.gov (United States)

    2008-10-01

    representing the GCC and SCC on this working group, we would like to thank you for the opportunity to serve as leaders of this esteemed group of professionals...revolving fund-type initiative, self insurance, regional pooling, stratification of funding based on risk) Provide utilities with a resource to...SECTOR DECONTAMINATION ISSUES − Residential uses (e.g., toilet, washing, showering, cooling, pet consumption, cooking) − Business uses (e.g., with

  9. Uranium Enrichment: Analysis of Decontamination and Decommissioning Scenarios

    Science.gov (United States)

    1991-11-01

    from a September 1991 report entitled Preliminary Cost Estimate Decontamination & Decommissioning of the Gaseous Diffusion Plants , prepared for DOE by...DOE) three aging uranium enrichment plants . These plants are located in Oak Ridge, Tennessee; Paducah , Kentucky; and Portsmouth, Ohio. On October 16... Diffusion Plants Assessment of Costs for Remedial Actions. This report was prepared for DOE by Martin Marietta Energy Systems, DOE’s management and

  10. Decontamination effectiveness of bentonite after a single administration of radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kossakowski, S.; Dziura, A. [National Veterinary Research Institute, Pulawy (Poland)

    1992-12-31

    Decontamination effectiveness of bentonite was investigated in male Wistar rats contaminated intragastrically with Cs 137. The contaminated animals were fed a granulated LSM diet with 10% addition of bentonite for 1, 3 and 5 days after the contamination. The results revealed that rats fed bentonite showed a significant decrease in the radioactivity in examined organs and tissues as early as one day after the contamination, which was intensified with the feeding period. (author). 28 refs, 1 tab.

  11. Decontamination efficacy of three commercial-off-the-shelf (COTS sporicidal disinfectants on medium-sized panels contaminated with surrogate spores of Bacillus anthracis.

    Directory of Open Access Journals (Sweden)

    Jason M Edmonds

    Full Text Available In the event of a wide area release and contamination of a biological agent in an outdoor environment and to building exteriors, decontamination is likely to consume the Nation's remediation capacity, requiring years to cleanup, and leading to incalculable economic losses. This is in part due to scant body of efficacy data on surface areas larger than those studied in a typical laboratory (5×10-cm, resulting in low confidence for operational considerations in sampling and quantitative measurements of prospective technologies recruited in effective cleanup and restoration response. In addition to well-documented fumigation-based cleanup efforts, agencies responsible for mitigation of contaminated sites are exploring alternative methods for decontamination including combinations of disposal of contaminated items, source reduction by vacuuming, mechanical scrubbing, and low-technology alternatives such as pH-adjusted bleach pressure wash. If proven effective, a pressure wash-based removal of Bacillus anthracis spores from building surfaces with readily available equipment will significantly increase the readiness of Federal agencies to meet the daunting challenge of restoration and cleanup effort following a wide-area biological release. In this inter-agency study, the efficacy of commercial-of-the-shelf sporicidal disinfectants applied using backpack sprayers was evaluated in decontamination of spores on the surfaces of medium-sized (∼1.2 m2 panels of steel, pressure-treated (PT lumber, and brick veneer. Of the three disinfectants, pH-amended bleach, Peridox, and CASCAD evaluated; CASCAD was found to be the most effective in decontamination of spores from all three panel surface types.

  12. Decontamination of mass casualties--re-evaluating existing dogma.

    Science.gov (United States)

    Levitin, Howard W; Siegelson, Henry J; Dickinson, Stanley; Halpern, Pinchas; Haraguchi, Yoshikura; Nocera, Anthony; Turineck, David

    2003-01-01

    The events of 11 September 2001 became the catalyst for many to shift their disaster preparedness efforts towards mass-casualty incidents. Emergency responders, healthcare workers, emergency managers, and public health officials worldwide are being tasked to improve their readiness by acquiring equipment, providing training and implementing policy, especially in the area of mass-casualty decontamination. Accomplishing each of these tasks requires good information, which is lacking. Management of the incident scene and the approach to victim care varies throughout the world and is based more on dogma than scientific data. In order to plan effectively for and to manage a chemical, mass-casualty event, we must critically assess the criteria upon which we base our response. This paper reviews current standards surrounding the response to a release of hazardous materials that results in massive numbers of exposed human survivors. In addition, a significant effort is made to prepare an international perspective on this response. Preparations for the 24-hour threat of exposure of a community to hazardous material are a community responsibility for first-responders and the hospital. Preparations for a mass-casualty event related to a terrorist attack are a governmental responsibility. Reshaping response protocols and decontamination needs on the differences between vapor and liquid chemical threats can enable local responders to effectively manage a chemical attack resulting in mass casualties. Ensuring that hospitals have adequate resources and training to mount an effective decontamination response in a rapid manner is essential.

  13. Cold Atmospheric Plasma Technology for Decontamination of Space Equipment

    Science.gov (United States)

    Thomas, Hubertus; Rettberg, Petra; Shimizu, Tetsuji; Thoma, Markus; Morfill, Gregor; Zimmermann, Julia; Müller, Meike; Semenov, Igor

    2016-07-01

    Cold atmospheric plasma (CAP) technology is very fast and effective in inactivation of all kinds of pathogens. It is used in hygiene and especially in medicine, since the plasma treatment can be applied to sensitive surfaces, like skin, too. In a first study to use CAP for the decontamination of space equipment we could show its potential as a quite promising alternative to the standard "dry heat" and H2O2 methods [Shimizu et al. Planetary and Space Science, 90, 60-71. (2014)]. In a follow-on study we continue the investigations to reach high application level of the technology. First, we redesign the actual setup to a plasma-gas circulation system, increasing the effectivity of inactivation and the sustainability. Additionally, we want to learn more about the plasma chemistry processes involved in the inactivation. Therefore, we perform detailed plasma and gas measurements and compare them to numerical simulations. The latter will finally be used to scale the decontamination system to sizes useful also for larger space equipment. Typical materials relevant for space equipment will be tested and investigated on surface material changes due to the plasma treatment. Additionally, it is planned to use electronic boards and compare their functionality before and after the CAP expose. We will give an overview on the status of the plasma decontamination project funded by the Bavarian Ministry of Economics.

  14. Decontamination and decommissioning of the Mayaguez (Puerto Rico) facility

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, P.K.; Freemerman, R.L. [Bechtel National, Inc., Oak Ridge, TN (United States)

    1989-11-01

    On February 6, 1987 the US Department of Energy (DOE) awarded the final phase of the decontamination and decommissioning of the nuclear and reactor facilities at the Center for Energy and Environmental Research (CEER), in Mayaguez, Puerto Rico. Bechtel National, Inc., was made the decontamination and decommissioning (D and D) contractor. The goal of the project was to enable DOE to proceed with release of the CEER facility for use by the University of Puerto Rico, who was the operator. This presentation describes that project and lesson learned during its progress. The CEER facility was established in 1957 as the Puerto Rico Nuclear Center, a part of the Atoms for Peace Program. It was a nuclear training and research institution with emphasis on the needs of Latin America. It originally consisted of a 1-megawatt Materials Testing Reactor (MTR), support facilities and research laboratories. After eleven years of operation the MTR was shutdown and defueled. A 2-megawatt TRIGA reactor was installed in 1972 and operated until 1976, when it woo was shutdown. Other radioactive facilities at the center included a 10-watt homogeneous L-77 training reactor, a natural uranium graphite-moderated subcritical assembly, a 200KV particle accelerator, and a 15,000 Ci Co-60 irradiation facility. Support facilities included radiochemistry laboratories, counting rooms and two hot cells. As the emphasis shifted to non-nuclear energy technology a name change resulted in the CEER designation, and plans were started for the decontamination and decommissioning effort.

  15. Application of a novel decontamination process using gaseous ozone

    Energy Technology Data Exchange (ETDEWEB)

    Moat, J.; Shone, J.; Upton, M. [Manchester Univ., School of Medecine, Manchester (United Kingdom). Medical Microbiology, Translation Medicine; Cargill, J. [Old Medical School, Leeds (United Kingdom). Dept. of Microbiology

    2009-08-15

    Hospital surfaces that are touched regularly by staff carry bacterial spores and pathogens. Environmental disinfection of health care facilities is an important aspect of infection control. This paper presented a recent innovation aimed at improving hospital hygiene and decontamination of laboratory equipment. The vapour- and gas-based treatment was developed to penetrate rooms or soft furnishings and reach places inaccessible by conventional approaches. Surfaces seeded with a range of vegetative cells and spores of bacteria of clinical relevance were decontaminated using the ozone-based treatment. The efficiency of the approach for room sanitization was also evaluated. A quenching agent was used to rapidly reduce ozone concentrations to safe levels allowing treatment times of less than 1 h for most of the organisms tested. Bacteria was seeded onto agar plates and solid surfaces. Reductions in bacterial load of greater than 3 log values were then recorded for a number of organisms including Escherichia coli and methicillin-resistant Staphylococcus aureus. Application of the process in a 30 m{sup 3} room showed similar reductions in viable counts for these organisms and for Clostridium difficile spores. It was concluded that ozone-based decontamination of healthcare environments could prove to be a highly cost-effective intervention. 35 refs., 1 tab., 3 figs.

  16. Atmospheric Pressure Plasma Jet for Chem/Bio Warfare Decontamination

    Science.gov (United States)

    Herrmann, Hans W.; Henins, Ivars; Park, Jaeyoung; Selwyn, Gary S.

    1999-11-01

    Atmospheric Pressure Plasma Jet (APPJ) technology may provide a much needed method of CBW decontamination which, unlike traditional decon methods, is dry and nondestructive to sensitive equipment and materials. The APPJ discharge uses a high-flow feedgas consisting primarily of an inert carrier gas, such as He, and a small amount of a reactive additive, such as O2, which flows between capacitively-coupled electrodes powered at 13.56 MHz. The plasma generates highly reactive metastable and atomic species of oxygen which are then directed onto a contaminated surface. The reactive effluent of the APPJ has been shown to effectively neutralize VX nerve agent as well as simulants for anthrax and mustard blister agent. Research efforts are now being directed towards reducing He consumption and increasing the allowable stand-off distance. Recent results demonstrate that by replacing the O2 reactive additive with CO2, ozone formation is greatly reduced. This has the result of extending the lifetime of atomic oxygen by an order of magnitude or more. A recirculating APP Decon Chamber which combines heat, vacuum, forced convection and reactivity is currently being developed for enhanced decontamination of sensitive equipment. Several techniques are also being evaluated for use in an APP Decon Jet for decontamination of items which cannot be placed inside a chamber.

  17. Irradiation as a decontamination processing for rice paper sheet

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Michel M.; Thomaz, Fernanda S.; Fanaro, Gustavo B.; Duarte, Renato C.; Aquino, Simone; Villavicencio, Anna Lucia C.H. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: villavic@ipen.br; Correa, Benedito [Universidade de Sao Paulo USP, SP (Brazil). Inst. de Ciencias Biomedicas. Dept. de Micologia]. E-mail: correabe@usp.br

    2007-07-01

    Starch is one of the most important plant products to man. The major sources of this compound for man's use are the cereals, but roots and tubers are also important. The starch industry comes in recent years growing and perfecting it self, leading to the necessity products with specific characteristics that take care the requirements of the market, it makes possible through processing raw material, still seldom explored. Rice paper sheet is an edible product derived from potatoes and rice, being commonly used to cover cakes, pies, and sweets in confectioner's shop. A microbiological control is necessary to give a high quality and to guarantee the security of this food. Irradiation would be a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. The aim of this study was to investigate the best dose used as a decontamination method as well as discover the most prevalent fungi found in this product and changes on physical properties. Samples of rice paper sheet were irradiated with 2.5, 5.0 and 10.0 kGy using a {sup 60}Co irradiator. Irradiation appeared as a safe alternative as a decontamination method without adverse effects on the physical properties in the final products. (author)

  18. Decontamination Methods Used for Dental Burs – A Comparative Study

    Science.gov (United States)

    Hugar, Deepa; Hugar, Santosh; Ranjan, Shashi; Kadani, Megha

    2014-01-01

    Aims and Objectives: Infection control and modes of sterilizations are the key factors to avoid cross transmission of infection in the field of dentistry. Transmission of disease or infection is noted with improper sterilization of reused instruments. Dental burs are the most important tool in any endodontic or conservative procedures of teeth involving tooth contouring, restorative filling procedures and endodontic procedures. Hence, the present study is undertaken to assess the efficacy of different methods of sterilization or decontamination which are routinely used in dental clinics. Materials and Methods: For the present study 96 round diamond burs were selected and divided into 6 groups. These burs were used for the access cavity preparation to get contamination and subjected for bacteriological culture. After getting base line date burs were subjected to manual scrubbing, hot air oven, glass bead sterilizer, ultrasonic cleaner and autoclave to get post decontamination data. Results: The study revealed that mean colony forming units/ml of Streptococcus mutans decreased maximum for autoclave with 80% reduction, for Lactobacilli 76% reduction and for Candida albicans maximum reduction seen for glass bead sterilizer with 74%. Conclusion: Findings of our study revealed that none of the methods used were found to be absolutely efficacious in the decontamination of dental burs. However, among the experimental groups used in the present study, autoclave was found to be the relatively best method. PMID:25121062

  19. Compatibility and Decontamination of High-Density Polyethylene Exposed to Sulfur Mustard

    Science.gov (United States)

    2014-05-01

    and taken through the entire decontamination procedure. ***For coupons 11–20, the water temperature was ~65 oC when added. In all subsequent trials...the water temperature was ~ 95 oC. NA, not applicable. 11 Table 3. Decontamination Data–Pretreated Coupons Coupon Name and Number...COMPATIBILITY AND DECONTAMINATION OF HIGH-DENSITY POLYETHYLENE EXPOSED TO SULFUR MUSTARD ECBC-TR-1235

  20. Proceedings of the workshop on transite decontamination dismantlement and recycle/disposal

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-31

    On February 3--4, 1993, a workshop was conducted to examine issues associated with the decontamination, dismantlement, and recycle/disposal of transite located at the US Department of Energy Fernald site near Cincinnati, OH. The Fernald Environmental Management Project (FEMP) is a Superfund Site currently undergoing remediation. A major objective of the workshop was to assess the state-of-the-art of transite remediation, and generate concepts that could be useful to the Fernald Environmental Restoration Management Co. (FERMCO) for remediation of transite. Transite is a building material consisting of asbestos fiber and cement and may be radioactively contaminated as a result of past uranium processing operations at the FEMP. Many of the 100 buildings within the former uranium production area were constructed of transite siding and roofing and consequently, over 180,000 m{sup 2} of transite must be disposed or recycled. Thirty-six participants representing industry, academia, and government institutions such as the EPA and DOE assembled at the workshop to present their experience with transite, describe work in progress, and address the issues involved in remediating transite.

  1. Water decontamination of chemical skin/eye splashes: a critical review.

    Science.gov (United States)

    Hall, Alan H; Maibach, Howard I

    2006-01-01

    Skin/eye chemical splashes are a significant workplace problem. Initial water decontamination is usually recommended, but there are few well-conducted experimental animal and human studies of efficacy. An extensive review of the literature and other available information sources was performed to define the scope of the problem and critically review the evidence for water decontamination efficacy. Although water decontamination can decrease the severity of chemical skin/eye burns, it cannot completely prevent them. An ideal replacement decontamination solution would be sterile, nontoxic, chelating, polyvalent, amphoteric, and slightly hypertonic to retard skin or corneal penetration of the chemical.

  2. RSDL decontamination of human skin contaminated with the nerve agent VX.

    Science.gov (United States)

    Thors, L; Lindberg, S; Johansson, S; Koch, B; Koch, M; Hägglund, L; Bucht, A

    2017-03-05

    Dermal exposure to low volatile organophosphorus compounds (OPC) may lead to penetration through the skin and uptake in the blood circulation. Skin decontamination of toxic OPCs, such as pesticides and chemical warfare nerve agents, might therefore be crucial for mitigating the systemic toxicity following dermal exposure. Reactive skin decontamination lotion (RSDL) has been shown to reduce toxic effects in animals dermally exposed to the nerve agent VX. In the present study, an in vitro flow-through diffusion cell was utilized to evaluate the efficacy of RSDL for decontamination of VX exposed to human epidermis. In particular, the impact of timing in the initiation of decontamination and agent dilution in water was studied. The impact of the lipophilic properties of VX in the RSDL decontamination was additionally addressed by comparing chemical degradation in RSDL and decontamination efficacy between the VX and the hydrophilic OPC triethyl phosphonoacetate (TEPA). The epidermal membrane was exposed to 20, 75 or 90% OPC diluted in deionized water and the decontamination was initiated 5, 10, 30, 60 or 120min post-exposure. Early decontamination of VX with RSDL, initiated 5-10min after skin exposure, was very effective. Delayed decontamination initiated 30-60min post-exposure was less effective but still the amount of penetrated agent was significantly reduced, while further delayed start of decontamination to 120min resulted in very low efficacy. Comparing RSDL decontamination of VX with that of TEPA showed that the decontamination efficacy at high agent concentrations was higher for VX. The degradation mechanism of VX and TEPA during decontamination was dissected by (31)P NMR spectroscopy of the OPCs following reactions with RSDL and its three nucleophile components. The degradation rate was clearly associated with the high pH of the specific solution investigated; i.e. increased pH resulted in a more rapid degradation. In addition, the solubility of the OPC in RSDL

  3. Decontamination and decommissioning technology tree and the current status of the technologies

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Won, H.J.; Kim, G.N.; Lee, K.W.; Chol, W.K.; Jung, C.H.; Kim, C.J.; Kim, S.H.; Kwon, S.O.; Chung, C.M

    2001-03-01

    A technology tree diagram was developed on the basis of the necessary technologies applicable to the decontamination and decommissioning of nuclear facilities. The technology tree diagram is consist of 6 main areas such as characterization, decontamination, decommissioning and remote technology, radwaste management, site restoration, and decommissioning plan and engineering. Characterization is divided into 4 regions such as sampling and data collection, general characterization, chemical analysis and radiological analysis. Decontamination is also divided into 4 regions such as chemical decontamination, mechanical decontamination, the other decontamination technologies and new decontamination technologies. Decommissioning and remote technology area is divided into 4 regions such as cutting techniques, decommissioning technologies, new developing technologies and remote technologies. Radwaste management area is divided into 5 regions such as solid waste treatment, sludge treatment, liquid waste treatment, gas waste treatment and thermal treatment. Site restoration area is divided into 3 regions such as the evaluation of site contamination, soil decontamination and ground water decontamination. Finally, permission, decommissioning process, cost evaluation, quality assurance and the estimation of radionuclide inventory were mentioned in the decommissioning plan and engineering area. The estimated items for each technology are applicable domestic D and D facilities, D and D problem area and contamination/requirement, classification of D and D technology, similar technology, principle and overview of technology, status, science technology needs, implementation needs, reference and contact point.

  4. Comparison of selected skin decontaminant products and regimens against VX in domestic swine.

    Science.gov (United States)

    Bjarnason, S; Mikler, J; Hill, I; Tenn, C; Garrett, M; Caddy, N; Sawyer, T W

    2008-03-01

    An anesthetized domestic swine model was used to compare the efficacy and cross-contamination potential of selected skin decontaminant products and regimens against the chemical warfare agent, VX. Animals topically exposed to 2x, 3x or 5x LD(50) VX showed typical signs of organophosphate nerve agent poisoning, including miosis, salivation, mastication, dysrhythmias, and respiratory distress prior to death. Animals were exposed to 5x LD(50) VX and then decontaminated 45 min later with the reactive skin decontamination lotion (RSDL), Fuller's earth (FE), 0.5% hypochlorite, or soapy water. Survival was 100% when the reactive skin decontamination lotion or FE was utilized, although 50% of Fuller's earth-decontaminated animals exhibited serious signs of VX poisoning. Decontamination of VX-treated animals with 0.5% hypochlorite was less effective but also increased survival. Soapy water was ineffective in preventing lethality. Blood cholinesterase levels were not predictive of clinical outcome in decontaminated animals. The potential of "decontaminated" VX in open wounds to cause poisoning was assessed by vigorously mixing 5x LD(50) VX with the test decontaminants for 5 min and then placing the mixture onto a full-thickness skin wound. Soapy water was ineffective in preventing lethality. Although treatment with dry Fuller's earth prevented death and all signs of organophosphate poisoning, a significant proportion of treated animals decontaminated with Fuller's earth in aqueous suspension exhibited serious signs of organophosphate poisoning, suggesting that live agent may be desorbed from Fuller's earth when it is exposed to a liquid environment. Animals treated with reactive skin decontamination lotion or 0.5% hypochlorite-VX mixtures showed no signs of organophosphate poisoning during the 6- h test period.

  5. RIVER CORRIDOR BUILDINGS 324 & 327 CLEANUP

    Energy Technology Data Exchange (ETDEWEB)

    BAZZELL, K.D.; SMITH, B.A.

    2006-02-09

    A major challenge in the recently awarded River Corridor Closure (RCC) Contract at the U.S. Department of Energy's (DOE) Hanford Site is decontaminating and demolishing (D&D) facilities in the 300 Area. Located along the banks of the Columbia River about one mile north of Richland, Washington, the 2.5 km{sup 2} (1 mi{sup 2})300 Area comprises only a small part of the 1517 km{sup 2} (586 mi{sup 2}) Hanford Site. However, with more than 300 facilities ranging from clean to highly contaminated, D&D of those facilities represents a major challenge for Washington Closure Hanford (WCH), which manages the new RCC Project for DOE's Richland Operations Office (RL). A complicating factor for this work is the continued use of nearly a dozen facilities by the DOE's Pacific Northwest National Laboratory (PNNL). Most of the buildings will not be released to WCH until at least 2009--four years into the seven-year, $1.9 billion RCC Contract. The challenge will be to deactivate, decommission, decontaminate and demolish (D4) highly contaminated buildings, such as 324 and 327, without interrupting PNNL's operations in adjacent facilities. This paper focuses on the challenges associated with the D4 of the 324 Building and the 327 Building.

  6. Building Materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Building Materials Sub-council of CCPIT is the other sub-council in construction field. CCPIT Building Materials Sub-council (CCPITBM), as well as CCOIC Build-ing Materials Chamber of Commerce, is au-thorized by CCPIT and state administration of building materials industry in 1992. CCPITBM is a sub-organization of CCPIT and CCOIC.

  7. Decontamination of liquid radioactive waste by thorium phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Rousselle, J.; Grandjean, S.; Dacheux, N.; Genet, M

    2004-07-01

    In the field of the complete reexamination of the chemistry of thorium phosphate and of the improvement of the homogeneity of Thorium Phosphate Diphosphate (TPD, Th{sub 4}(PO{sub 4}){sub 4}P{sub 2}O{sub 7}) prepared at high temperature, several crystallized compounds were prepared as initial powdered precursors. Due to the very low solubility products associated to these phases, their use in the field of the efficient decontamination of high-level radioactive liquid waste containing actinides (An) was carefully considered. Two main processes (called 'oxalate' and 'hydrothermal' chemical routes) were developed through a new concept combining the decontamination of liquid waste and the immobilization of the actinides in a ceramic matrix (TPD). In phosphoric media ('hydrothermal route'), the key-precursor was the Thorium Phosphate Hydrogen Phosphate hydrate (Th{sub 2}(PO{sub 4}){sub 2}(HPO{sub 4}). H{sub 2}O, TPHP, solubility product log(K{sub S,0}{sup 0}) {approx} - 67). The replacement of thorium by other tetravalent actinides (U, Np, Pu) in the structure, leading to the preparation of Th{sub 2-x/2}An{sub x/2}(PO{sub 4}){sub 2}(HPO{sub 4}). H{sub 2}O solid solutions, was examined. A second method was also considered in parallel to illustrate this concept using the more well-known precipitation of oxalate as the initial decontamination step. For this method, the final transformation to single phase TPD containing actinides was purchased by heating a mixture of phosphate ions with the oxalate precipitate at high temperature. (authors)

  8. Guide on the use of low energy electron beams for microbiological decontamination of surfaces

    DEFF Research Database (Denmark)

    Miller, Arne; Helt-Hansen, Jakob; Gondim, Ondina

    This Guide describes the validation and routine monitoring of microbiological decontamination of surfaces by low energy electron beams (100-200 keV). The Guide is mainly based on experience gained in connection with installation of electron beam systems for surface decontamination of pre...

  9. For whom should we use selective decontamination of the digestive tract?

    NARCIS (Netherlands)

    de Smet, Anne Marie G. A.; Bonten, Marc J. M.; Kluytmans, Jan A. J. W.

    2012-01-01

    Purpose of review This review discusses the relevant studies on selective decontamination of the digestive tract (SDD) published between 2009 and mid-2011. Recent findings In a multicenter cluster-randomized cross-over study in the Netherlands, SDD and selective oropharyngeal decontamination (SOD) w

  10. Decontamination and Management of Human Remains Following Incidents of Hazardous Chemical Release

    Energy Technology Data Exchange (ETDEWEB)

    Hauschild, Veronique [U.S. Army Public Health Command; Watson, Annetta Paule [ORNL; Bock, Robert Eldon [ORNL

    2012-01-01

    Abstract Objective: To provide specific procedural guidance and resources for identification, assessment, control, and mitigation of compounds that may contaminate human remains resulting from chemical attack or release. Design: A detailed technical, policy, and regulatory review is summarized. Setting: Guidance is suitable for civilian or military settings where human remains potentially contaminated with hazardous chemicals may be present. Settings would include sites of transportation accidents, natural disasters, terrorist or military operations, mortuary affairs or medical examiner processing and decontamination points, and similar. Patients, Participants: While recommended procedures have not been validated with actual human remains, guidance has been developed from data characterizing controlled experiments with fabrics, materiel, and laboratory animals. Main Outcome Measure(s): Presentation of logic and specific procedures for remains management, protection and decontamination of mortuary affairs personnel, as well as decision criteria for determining when remains are sufficiently decontaminated so as to pose no chemical health hazard. Results: Established procedures and existing equipment/materiel available for decontamination and verification provide appropriate and reasonable means to mitigate chemical hazards from remains. Extensive characterization of issues related to remains decontamination indicates that supra-lethal concentrations of liquid chemical warfare agent VX may prove difficult to decontaminate and verify in a timely fashion. Specialized personnel can and should be called upon to assist with monitoring necessary to clear decontaminated remains for transport and processing. Conclusions: Once appropriate decontamination and verification have been accomplished, normal procedures for remains processing and transport to the decedent s family and the continental United States can be followed.

  11. A State of the Art Report on the Case Study of Hot Cell Decontamination and Refurbishment

    Energy Technology Data Exchange (ETDEWEB)

    Won, H. J.; Jung, C. H.; Moon, J. K.; Park, G. I.; Song, K. C

    2008-08-15

    As the increase of the operation age of the domestic high radiation facilities such as IMEF, PIEF and DFDF, the necessity of decontamination and refurbishment of hot cells in these facilities is also increased. In the near future, the possibilities of refurbishment of hot cells in compliance with the new regulations, the reuse of hot cells for the other purposes and the decommissioning of the facilities also exist. To prepare against the decontamination and refurbishment of hot cells, the reports on the refurbishment, decommissioning and decontamination experiences of hot cells in USA, Japan, France, Belgium and Great Britain were investigated. ANL of USA performed the project on the decontamination of hot cells. The purpose of the project was to practically eliminate the radioactive emissions of Rn-220 to the environment and to restore the hot cells to an empty restricted use condition. The five hot cells were emptied and decontaminated for restricted use. Chemical processing facility in JAEA of Japan was used for the reprocessing study of spent fuels, hot cells in CPF were refurbished from 1995 for the tests of the newly developed reprocessing process. In a first stage, decommissioning and decontamination were fully performed by the remote operation Then, decommissioning and decontamination were performed manually. By the newly developed process, they reported that the radiation exposure of workers were satisfactorily reduced. In the other countries, they also make an effort for the refurbishment and decontamination of hot cells and it is inferred that they accumulate experiences in these fields.

  12. Percutaneous toxicity and decontamination of soman, VX, and paraoxon in rats using detergents.

    Science.gov (United States)

    Misík, Jan; Pavliková, Růžena; Kuča, Kamil

    2013-06-01

    Highly toxic organophosphorus compounds (OPs) were originally developed for warfare or as agricultural pesticides. Today, OPs represent a serious threat to military personnel and civilians. This study investigates the in vivo decontamination of male Wistar rats percutaneously exposed to paraoxon and two potent nerve agents--soman (GD) and VX. Four commercial detergents were tested as decontaminants--Neodekont(TM), Argos(TM), Dermogel(TM), and FloraFree(TM). Decontamination performed 2 min after exposure resulted in a higher survival rate in comparison with non-decontaminated controls. The decontamination effectiveness was expressed as protective ratio (PR, median lethal dose of agent in decontaminated animals divided by the median lethal dose of agent in untreated animals). The highest decontamination effectiveness was consistently achieved with Argos(TM) (PR=2.3 to 64.8), followed by Dermogel(TM) (PR=2.4 to 46.1). Neodekont(TM) and FloraFree(TM) provided the lowest decontamination effectiveness, equivalent to distilled water (PR=1.0 to 43.2).

  13. 40 CFR 265.114 - Disposal or decontamination of equipment, structures and soils.

    Science.gov (United States)

    2010-07-01

    ... equipment, structures and soils. 265.114 Section 265.114 Protection of Environment ENVIRONMENTAL PROTECTION... decontamination of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soil must be properly disposed of, or decontaminated unless specified otherwise...

  14. Improved Technologies for Decontamination of Crated Large Metal Objects

    Energy Technology Data Exchange (ETDEWEB)

    McFee, J.; Barbour, K.; Stallings, E.

    2003-02-25

    The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) has been identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. DOE must dispose of hundreds of gloveboxes from Rocky Flats Environmental Technology Site (RFETS), Los Alamos National Laboratory (LANL), and other DOE sites. This paper reports on the results of four technology demonstrations on decontamination of plutonium contaminated gloveboxes with each technology compared to a common baseline technology, wipedown with nitric acid.

  15. Unit for air decontamination; Unidad para descontaminacion de aire

    Energy Technology Data Exchange (ETDEWEB)

    Mariano H, E

    1991-02-15

    To fulfill the applicable requirements of safety to the ventilation systems in nuclear facilities, it is necessary to make a cleaning of the air that hurtles to the atmosphere. For that which was designed and it manufactured an unit for decontamination of the air for the Pilot plant of production of Nuclear Fuel that this built one with national parts, uses Hepa national filters and the design can adapt for different dimensions of filters, also can be added a lodging for a prefilter or to adopt two Hepa filters. (Author)

  16. [Biological decontamination of the imprints obtained from different dental materials].

    Science.gov (United States)

    Brekhlichuk, P P; Petrov, V O; Bati, V V; Levchuk, O B; Boĭko, N V

    2013-01-01

    Microbiological contamination of the imprints made of alginate ("Ypeen") and silicone material ("Speedex") with and without the correction supplement has been investigated. Streptococcus and Staphylococcus have been estimated to be the most survivable species on the imprint surface, however their concentration differ depending on the type of imprints' material. The strains resistant to antibiotics dominated among all the isolated microorganisms. Bacterial preparations based on Bacillus - Biosporin and Subalin and some extracts of edible plants, fruits and berries can be used in dentistry for the decontamination of imprints obtained by the use of different materials.

  17. [Detection of enzyme activity in decontaminated spices in industrial use].

    Science.gov (United States)

    Müller, R; Theobald, R

    1995-03-01

    A range of decontaminated species of industrial use have been examined for their enzymes (catalase, peroxidase, amylase, lipase activity). The genuine enzymes remain fully active in irradiated spices, whereas the microbial load is clearly reduced. In contrast steam treated spices no longer demonstrate enzyme activities. Steam treatment offers e.g. black pepper without lipase activity, which can no longer cause fat deterioration. Low microbial load in combination with clearly detectable enzyme activity in spices is an indication for irradiation, whereas, reduced microbial contamination combined with enzyme inactivation indicate steam treatment of raw material.

  18. Advanced technologies for decontamination and conversion of scrap metal

    Energy Technology Data Exchange (ETDEWEB)

    Muth, T.R.; Shasteen, K.E.; Liby, A.L. [Manufacturing Sciences Corp., Oak Ridge, TN (United States)] [and others

    1995-10-01

    The Department of Energy (DOE) accumulated large quantities of radioactive scrap metal (RSM) through historic maintenance activities. The Decontamination and Decommissioning (D&D) of major sites formerly engaged in production of nuclear materials and manufacture of nuclear weapons will generate additional quantities of RSM, as much as 3 million tons of such metal according to a recent study. The recycling of RSM is quickly becoming appreciated as a key strategy in DOE`s cleanup of contaminated sites and facilities. The work described here has focused on recycle of the concentrated and high-value contaminated scrap metal resource that will arise from cleanup of DOE`s gaseous diffusion plants.

  19. Japan, one year after. In Fukushima, a decontamination by forced march; Japon, un an apres. A Fukushima, une decontamination a marche forcee

    Energy Technology Data Exchange (ETDEWEB)

    Leglu, D.; Mulot, R.; Khalathari, A.; Lafon, B.; Stanley, T.; Linton, M.

    2012-03-15

    In a first part, the author describes how people living in the contaminated area around Fukushima try to deal with the difficult and almost impossible decontamination of their houses, gardens, schools, and so on. The destruction of forests is planned as they concentrate radioactivity. Thousands of inhabitants must wear dosimeters. An article comments the caesium activity measurements. Several data and figures are presented: evacuation areas, radioactive emissions and releases, doses received by emergency personnel, size of areas to be decontaminated, impact on the Japanese energy sector, contamination rates for soils and seawater, decontamination and dismantling costs, health impacts. An article proposes an overview of the different methods which are implemented and tested by the Japanese for large scale decontamination

  20. Development of high-level radioactive waste treatment and conversion technologies 'Dry decontamination technology development for highly radioactive contaminants'

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K. W.; Won, H. J.; Jung, C. J.; Choi, W. K.; Kim, G. N.; Moon, J. K

    2001-04-01

    The followings were studied through the project entitled 'Dry Decontamination Technology Development for Highly Radioactive Contaminants'. 1.Contaminant Characteristics Analysis of Domestic Nuclear Fuel Cycle Projects(NFCP) and Applicability Study of the Unit Dry-Decontamination Techniques A. Classification of contaminated equipments and characteristics analysis of contaminants B. Applicability study of the unit dry-decontamination techniques 2.Performance Evaluation of Unit Dry Decontamination Technique A. PFC decontamination technique B. CO2 decontamination technique C. Plasma decontamination technique 3.Development of Residual Radiation Assessment Methodology for High Radioactive Facility Decontamination A. Development of radioactive nuclide diffusion model on highly radioactive facility structure B. Obtainment of the procedure for assessment of residual radiation dose 4.Establishment of the Design Concept of Dry Decontamination Process Equipment Applicable to Highly Radioactive Contaminants 5.TRIGA soil unit decontamination technology development A. Development of soil washing and flushing technologies B. Development of electrokinetic soil decontamination technology.

  1. Decontamination Workshop for Emergency Responding Personnel "How Clean is Clean Enough" 12-14 September 2007

    Science.gov (United States)

    2008-09-01

    Successful integration in DNC • Avoiding Tokyo ECBC Decontamination Worluhop Incident Management Incident Command Controls Decontamination & Patient...2004 DNC , as well as the annual Marathon, Fourth of July celebration, and First Night, the large crowds heighten the risk of terrorist actions...Evacuation Routes During 2004 DNC ECBC Decontamination Workshop In Summary. EMS Protection Issues Access to Those Affected Availability to Tx

  2. Development of Novel Decontamination Techniques for Chemical Agents (GB, VX, HD) Contaminated Facilities. Phase 1. Identification and Evaluation of Novel Decontamination Concepts. Volume 2

    Science.gov (United States)

    1983-02-01

    composition reaction the effect will be probably smal I. 4.2.2 Removal or Reaction of Contaminant from Surface Complete decontamination of all surfaces is...spallIng and descaling . 1.2 Origination of Idea Used in the decontamination of nuclear facilities ond described in deta’l in the Decommissioning Handbook...for RD. 1.4 Variations of Idea Various application methods could be used including sprays, foams, gels , creams, etc. Inclusion of an additive might make

  3. Chemical, biological, radiological, and nuclear decontamination: Recent trends and future perspective

    Directory of Open Access Journals (Sweden)

    Vinod Kumar

    2010-01-01

    Full Text Available Chemical, biological, radiological, and nuclear (CBRN decontamination is the removal of CBRN material from equipment or humans. The objective of the decontamination is to reduce radiation burden, salvage equipment, and materials, remove loose CBRN contaminants, and fix the remaining in place in preparation for protective storage or permanent disposal work activities. Decontamination may be carried out using chemical, electrochemical, and mechanical means. Like materials, humans may also be contaminated with CBRN contamination. Changes in cellular function can occur at lower radiation doses and exposure to chemicals. At high dose, cell death may take place. Therefore, decontamination of humans at the time of emergency while generating bare minimum waste is an enormous task requiring dedication of large number of personnel and large amount of time. General principles of CBRN decontamination are discussed in this review with emphasis on radiodecontamination.

  4. Development and application of ozone chemical decontamination for nuclear power station

    Energy Technology Data Exchange (ETDEWEB)

    Enda, Masami; Yaita, Yumi; Inami, Ichiro; Sakai, Hitoshi [Toshiba Corp. (Japan). Power systems and Services Company; Nakagami, Motoyori; Kani, Kazuhiro [Chubu Electric Power Co. Inc., Nagoya (Japan)

    2003-03-01

    By focusing to use gaseous ozone for an oxidant under aiming to further reduce amounts of the secondary wastes, ozone chemical decontamination technique was developed. Here were described results of investigation on a process applying ozone to oxidation process for chemical decontamination and of application to decontamination of contaminated machine. As a result carrying out the contaminated machine, it was found that , 1) temperature of ozone water processing at solution test of chromium oxide using ozone water was selected to 80 centigrade, 2) ozone concentration of ozone water using for decontamination test of metal test pieces polluted by radioactive materials was more than 1 ppm, and 3) ion-exchange resins consumed by decontamination agents could be regenerated by using a third of amounts of permanganic acid. (G.K.)

  5. Effectiveness of three decontamination treatments against influenza virus applied to filtering facepiece respirators.

    Science.gov (United States)

    Lore, Michael B; Heimbuch, Brian K; Brown, Teanne L; Wander, Joseph D; Hinrichs, Steven H

    2012-01-01

    Filtering facepiece respirators (FFRs) are recommended for use as precautions against airborne pathogenic microorganisms; however, during pandemics demand for FFRs may far exceed availability. Reuse of FFRs following decontamination has been proposed but few reported studies have addressed the feasibility. Concerns regarding biocidal efficacy, respirator performance post decontamination, decontamination cost, and user safety have impeded adoption of reuse measures. This study examined the effectiveness of three energetic decontamination methods [ultraviolet germicidal irradiation (UVGI), microwave-generated steam, and moist heat] on two National Institute for Occupational Safety and Health-certified N95 FFRs (3M models 1860s and 1870) contaminated with H5N1. An aerosol settling chamber was used to apply virus-laden droplets to FFRs in a method designed to simulate respiratory deposition of droplets onto surfaces. When FFRs were examined post decontamination by viral culture, all three decontamination methods were effective, reducing virus load by > 4 log median tissue culture infective dose. Analysis of treated FFRs using a quantitative molecular amplification assay (quantitative real-time polymerase chain reaction) indicated that UVGI decontamination resulted in lower levels of detectable viral RNA than the other two methods. Filter performance was evaluated before and after decontamination using a 1% NaCl aerosol. As all FFRs displayed <5% penetration by 300-nm particles, no profound reduction in filtration performance was caused in the FFRs tested by exposure to virus and subsequent decontamination by the methods used. These findings indicate that, when properly implemented, these methods effectively decontaminate H5N1 on the two FFR models tested and do not drastically affect their filtering function; however, other considerations may influence decisions to reuse FFRs.

  6. CO{sub 2} pellet blasting literature search and decontamination scoping tests report

    Energy Technology Data Exchange (ETDEWEB)

    Archibald, K.E.

    1993-12-01

    Past decontamination and solvent recovery activities at the Idaho Chemical Processing Plant (ICPP) have resulted in the accumulation of 1.5 million gallons of radioactively contaminated sodium-bearing liquid waste. Future decontamination activities at the ICPP could result in the production of 5 million gallons or more of sodium-bearing waste using current decontamination techniques. Chemical decontamination flushes have provided a satisfactory level of decontamination. However, this method generates large amounts of sodium-bearing secondary waste. Steam jet cleaning has also been used with a great deal of success but cannot be used on concrete or soft materials. With the curtailment of reprocessing at the ICPP, the focus of decontamination is shifting from maintenance for continued operation of the facilities to decommissioning. Treatment of sodium-bearing waste is a particularly difficult problem due to the high content of alkali metals in the sodium-bearing liquid waste. It requires a very large volume of cold chemical additive for calcination. In addition, the sodium content of the sodium-bearing waste exceeds the limit that can be incorporated into vitrified waste without the addition of glass-forming compounds (primarily silicon) to produce an acceptable immobilized waste form. The primary initiatives of the Decontamination Development Program is the development of methods to eliminate/minimize the use of sodium-bearing decontamination chemicals and to minimize all liquid decontamination wastes. One method chosen for cold scoping studies during FY-93 was CO{sub 2} pellet blasting. CO{sub 2} pellet blasting has been used extensively by commercial industries for general cleaning. However, using this method for decontamination of nuclear materials is a fairly new concept. The following report discusses the research and scoping tests completed on CO{sub 2} pellet blasting.

  7. Decontamination of control rod housing from Palisades Nuclear Power Station.

    Energy Technology Data Exchange (ETDEWEB)

    Kaminski, M.D.; Nunez, L.; Purohit, A.

    1999-05-03

    Argonne National Laboratory has developed a novel decontamination solvent for removing oxide scales formed on ferrous metals typical of nuclear reactor piping. The decontamination process is based on the properties of the diphosphonic acids (specifically 1-hydroxyethane-1,1-diphosphonic acid or HEDPA) coupled with strong reducing-agents (e.g., sodium formaldehyde sulfoxylate, SFS, and hydroxylamine nitrate, HAN). To study this solvent further, ANL has solicited actual stainless steel piping material that has been recently removed from an operating nuclear reactor. On March 3, 1999 ANL received segments of control rod housing from Consumers Energy's Palisades Nuclear Plant (Covert, MI) containing radioactive contamination from both neutron activation and surface scale deposits. Palisades Power plant is a PWR type nuclear generating plant. A total of eight segments were received. These segments were from control rod housing that was in service for about 6.5 years. Of the eight pieces that were received two were chosen for our experimentation--small pieces labeled Piece A and Piece B. The wetted surfaces (with the reactor's pressurized water coolant/moderator) of the pieces were covered with as a scale that is best characterized visually as a smooth, shiny, adherent, and black/brown in color type oxide covering. This tenacious oxide could not be scratched or removed except by aggressive mechanical means (e.g., filing, cutting).

  8. Potential of Biological Agents in Decontamination of Agricultural Soil

    Science.gov (United States)

    Javaid, Muhammad Kashif; Ashiq, Mehrban; Tahir, Muhammad

    2016-01-01

    Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation. PMID:27293964

  9. Potential of Biological Agents in Decontamination of Agricultural Soil

    Directory of Open Access Journals (Sweden)

    Muhammad Kashif Javaid

    2016-01-01

    Full Text Available Pesticides are widely used for the control of weeds, diseases, and pests of cultivated plants all over the world, mainly since the period after the Second World War. The use of pesticides is very extensive to control harm of pests all over the globe. Persistent nature of most of the synthetic pesticides causes serious environmental concerns. Decontamination of these hazardous chemicals is very essential. This review paper elaborates the potential of various biological agents in decontamination of agricultural soils. The agricultural crop fields are contaminated by the periodic applications of pesticides. Biodegradation is an ecofriendly, cost-effective, highly efficient approach compared to the physical and chemical methods which are expensive as well as unfriendly towards environment. Biodegradation is sensitive to the concentration levels of hydrogen peroxide and nitrogen along with microbial community, temperature, and pH changes. Experimental work for optimum conditions at lab scale can provide very fruitful results about specific bacterial, fungal strains. This study revealed an upper hand of bioremediation over physicochemical approaches. Further studies should be carried out to understand mechanisms of biotransformation.

  10. Decontamination and decommissioning project for the nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. (and others)

    2007-02-15

    The final goal of this project is to complete the decommissioning of the Korean Research Reactor no.1 and no. 2(KRR-1 and 2) and uranium conversion plant safely and successfully. The goal of this project in 2006 is to complete the decontamination of the inside reactor hall of the KRR-2 which will be operating as a temporary storage for the radioactive waste until the construction and operation of the national repository site. Also the decommissioning work of the KRR-1 and auxiliary facilities is being progress. As the compaction of decommissioning project is near at hand, a computer information system was developed for a systematically control and preserve a technical experience and decommissioning data for the future reuse. The nuclear facility decommissioning, which is the first challenge in Korea, is being closed to the final stages. We completed the decommissioning of all the bio-shielding concrete for KRR-2 in 2005 and carried out the decontamination and waste material grouping of the roof, wall and bottom of the reactor hall of the KRR-2. The decommissioning for nuclear facility were demanded the high technology, remote control equipment and radioactivity analysis. So developed equipment and experience will be applied at the decommissioning for new nuclear facility in the future.

  11. A solar powered handheld plasma source for microbial decontamination applications

    Science.gov (United States)

    Ni, Y.; Lynch, M. J.; Modic, M.; Whalley, R. D.; Walsh, J. L.

    2016-09-01

    A fully portable atmospheric pressure air plasma system is reported to be suitable for the microbial decontamination of both surfaces and liquids. The device operates in quiescent air, and includes an integrated battery which is charged from a solar cell and weighs less than 750 g, making it highly amenable for a wide variety of applications beyond the laboratory. Using particle imaging velocimetry to visualise air flows around the device, the geometric configuration of the plasma generating electrodes was enhanced to induce a gas flow on the order of 0.5 m s-1 directed towards a sample placed downstream, thus improving the transport of plasma generated reactive species to the sample. The microbial decontamination efficiency of the system was assessed using potable water samples inoculated with common waterborne organisms Escherichia coli and Pseudomonas fluorescens. The reduction in the number of microorganisms was found to be in the range of 2-8 log and was strongly dependent on the plasma generation conditions.

  12. Tritium contamination and decontamination of sealing oil for vacuum pump

    Energy Technology Data Exchange (ETDEWEB)

    Takeishi, T.; Kotoh, K.; Kawabata, Y.; Tanaka, J.I. [Faculty of Engineering, Kyushu University, Nishi-ku, Fukuoka (Japan); Kawamura, S.; Iwata, M. [ATOX Co. Ltd, Technoly Development Center, Kashiwa, Chiba (Japan)

    2015-03-15

    The existence of tritium-contaminated oils from vacuum pumps used in tritium facilities, is becoming an important issue since there is no disposal way for tritiated waste oils. On recovery of tritiated water vapor in gas streams, it is well-known that the isotope exchange reaction between the gas phase and the liquid phase occurs effectively at room temperature. We have carried out experiments using bubbles to examine the tritium contamination and decontamination of a volume of rotary-vacuum-pump oil. The contamination of the pump oil was made by bubbling tritiated water vapor and tritiated hydrogen gas into the oil. Subsequently the decontamination was processed by bubbling pure water vapor and dry argon gas into the tritiated oil. Results show that the water vapor bubbling was more effective than dry argon gas. The experiment also shows that the water vapor bubbling in an oil bottle can remove and transfer tritium efficiently from the tritiated oil into another water-bubbling bottle.

  13. Mechanical decontamination tests in areas affected by the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Roed, J.; Andersson, K.G.; Barkovsky, A.N.; Fogh, C.L.; Mishine, A.S.; Olsen, S.K.; Ponamarjov, A.V.; Prip, H.; Ramzaev, V.P.; Vorobiev, B.F

    1998-08-01

    Decontamination was carried out around three houses in Novo Bobovichi, Russia, in the summer of 1997. It was demonstrated that significant reductions in the dose rate both indoor (DRF = 0.27) and outdoor (DRF = 0.17) can be achieved when a careful cleaning is undertaken. This report describes the decontamination work carried out and the results obtained. The roof of one of the houses was replaced with a new roof. This reduced the Chernobyl related dose rate by 10% at the ground floor and by 27% at the first floor. The soil around the houses was removed by a bobcat, while carefully monitoring the ground for residual contamination with handheld dose meters. By monitoring the decline in the dose rate during the different stages of the work the dose reducing effect of each action has been estimated. This report also describes a test of a skim-and-burial plough developed especially for treatment of contaminated land. In the appendices of the report the measurement data is available for further analysis. (au) 24 tabs., 75 ills., 33 refs.

  14. Test report for cesium powder and pellets inner container decontamination method determination test

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, D.L.

    1998-08-17

    This report documents the decontamination method determination testing that was performed on three cesium powder and pellets inner container test specimens The test specimens were provided by B and W Hanford Company (BVMC). The tests were conducted by the Numatec Hanford Company (NHC), in the 305 Building. Photographic evidence was also provided by NHC. The Test Plan and Test Report were provided by Waste Management Federal Services, Inc., Northwest Operations. Witnesses to testing included a test engineer, a BC project engineer, and a BC Quality Assurance (QA) representative. The Test Plan was modified with the mutual decision of the test engineer, the BWHC project engineer, and the BVMC QA representative. The results of this decision were written in red (permanent type) ink on the official copy of the test procedure, Due to the extent of the changes, a summary of the test results are provided in Section 3.0 of this Test Report. In addition, a copy of the official copy field documentation obtained during testing is included in Appendix A. The original Test Plan (HNF-2945) will be revised to indicate that extensive changes were required in the field during testing, however, the test documentation will stand as is (i.e., it will not be retyped, text shaded, etc.) due to the inclusion of the test parameters and results into this Test Report.

  15. Decontamination of Surfaces by Ultrasonics; La decontamination des surfaces par l'emploi des ultra-sons

    Energy Technology Data Exchange (ETDEWEB)

    Cerre, P.; Mestre, E.; Kerdelleau, J. de [Commissariat a l' Energie Atomique. Centre d' Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette (France)

    1962-07-01

    A study was made of factors such as frequency, intensity, and time in the case of steel and of cotton cloth contaminated by fission products. Results show that the method is only of value in the case of steel and that it is necessary to operate at an optimum frequency of 80 khz and with an intensity of at least 4 W/cm{sup 2}. The difficulty of proposing a valid explanation for the decontamination mechanism is discussed. (authors) [French] Apres un examen des donnees theoriques du probleme, les auteurs font une etude systematique des facteurs frequence, intensite et temps dans le cas de l'acier et des tissus de coton contamines par des produits de fission. Ils montrent que la methode n'est interessante que pour l'acier qu'il faut operer a la frequence optimale de 80 kHz avec une intensite d'au moins 4 W/cm{sup 2}. Ils concluent en insistant sur la difficulte de proposer une explication valable pour le mecanisme de decontamination. (auteurs)

  16. Efficacy of liquid and foam decontamination technologies for chemical warfare agents on indoor surfaces.

    Science.gov (United States)

    Love, Adam H; Bailey, Christopher G; Hanna, M Leslie; Hok, Saphon; Vu, Alex K; Reutter, Dennis J; Raber, Ellen

    2011-11-30

    Bench-scale testing was used to evaluate the efficacy of four decontamination formulations on typical indoor surfaces following exposure to the liquid chemical warfare agents sarin (GB), soman (GD), sulfur mustard (HD), and VX. Residual surface contamination on coupons was periodically measured for up to 24h after applying one of four selected decontamination technologies [0.5% bleach solution with trisodium phosphate, Allen Vanguard Surface Decontamination Foam (SDF™), U.S. military Decon Green™, and Modec Inc. and EnviroFoam Technologies Sandia Decontamination Foam (DF-200)]. All decontamination technologies tested, except for the bleach solution, performed well on nonporous and nonpermeable glass and stainless-steel surfaces. However, chemical agent residual contamination typically remained on porous and permeable surfaces, especially for the more persistent agents, HD and VX. Solvent-based Decon Green™ performed better than aqueous-based bleach or foams on polymeric surfaces, possibly because the solvent is able to penetrate the polymer matrix. Bleach and foams out-performed Decon Green for penetrating the highly polar concrete surface. Results suggest that the different characteristics needed for an ideal and universal decontamination technology may be incompatible in a single formulation and a strategy for decontaminating a complex facility will require a range of technologies.

  17. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone.

    Directory of Open Access Journals (Sweden)

    Daniel Youkee

    Full Text Available Evidence to inform decontamination practices at Ebola holding units (EHUs and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks.

  18. Assessment of Environmental Contamination and Environmental Decontamination Practices within an Ebola Holding Unit, Freetown, Sierra Leone.

    Science.gov (United States)

    Youkee, Daniel; Brown, Colin S; Lilburn, Paul; Shetty, Nandini; Brooks, Tim; Simpson, Andrew; Bentley, Neil; Lado, Marta; Kamara, Thaim B; Walker, Naomi F; Johnson, Oliver

    2015-01-01

    Evidence to inform decontamination practices at Ebola holding units (EHUs) and treatment centres is lacking. We conducted an audit of decontamination procedures inside Connaught Hospital EHU in Freetown, Sierra Leone, by assessing environmental swab specimens for evidence of contamination with Ebola virus by RT-PCR. Swabs were collected following discharge of Ebola Virus Disease (EVD) patients before and after routine decontamination. Prior to decontamination, Ebola virus RNA was detected within a limited area at all bedside sites tested, but not at any sites distant to the bedside. Following decontamination, few areas contained detectable Ebola virus RNA. In areas beneath the bed there was evidence of transfer of Ebola virus material during cleaning. Retraining of cleaning staff reduced evidence of environmental contamination after decontamination. Current decontamination procedures appear to be effective in eradicating persistence of viral RNA. This study supports the use of viral swabs to assess Ebola viral contamination within the clinical setting. We recommend that regular refresher training of cleaning staff and audit of environmental contamination become standard practice at all Ebola care facilities during EVD outbreaks.

  19. Innovative surface decontamination using a manipulator-deployed laser system

    Energy Technology Data Exchange (ETDEWEB)

    Bremmer, J.; Gentes, S. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Technology and Management in Construction Technology and Management for the Decommissioning of Nuclear Facilities; Littwin, R.; Hurtado, A.; Lippmann, W. [Dresden Univ. of Technology (TUD) (Germany). Chair of Hydrogen Technology and Nuclear Power Engineering

    2010-05-15

    The successful decommissioning and dismantlement of nuclear facilities requires a great number and variety of processes and actions. These include, inter alia, the qualified decontamination of surfaces. The associated tasks are manifold, ranging from simple cleaning to complete surface ablation. The latter is particularly challenging due to the multitude of surfaces in nuclear facilities which, to complicate things further, are made of the most diverse materials. Consequently, besides pure surfaces of concrete, plaster or masonry, it is also necessary to ablate coatings such as protective paints. These can be found both on mineral and metallic constructional components. A crucial factor in surface decontamination work is the effectiveness and economic efficiency of the methods used. The same applies to the avoidance of cross contamination and secondary waste. Only few of the currently available processes fully meet all these criteria and are suited for this kind of task. Due to the increasing number of decommissioning projects in Germany and the small number of processes available to accomplish them, there is a rising demand for suitable and efficient decommissioning systems. An innovative system for manipulator-controlled laser ablation of surfaces that fully meets these criteria is currently being developed under the research project MANOLA (manipulatorgesteuerter Abtrag von Oberflaechen durch Lasertechnologie = manipulator-controlled laser ablation of surfaces), a joint project of the Chair of Hydrogen Technology and Power Engineering of the Dresden University of Technology and the Chair of Technology and Management of the Decommissioning of Nuclear Facilities at the Karlsruhe Institute of Technology (KIT), funded by the German Federal Ministry of Education and Research (BMBF). The objective of this research project is to ablate contaminated surfaces by means of a manipulator-deployed laser head. It was shown by numerous experiments in the preceding research

  20. Decontamination Experiments on Intact Pig Skin Contaminated with Beta-Gamma- Emitting Nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Edvardsson, K.A.; Hagsgaard, S. [AB Atomenergi, Nykoeping (Sweden); Swensson, A. [Dept. of Occupational Medicine, Karolinska Sjukhuset, Stockholm (Sweden)

    1966-11-15

    A number of decontamination experiments have been performed on intact pig skin. In most of the experiments NaI-131 in water solution has been utilized because this nuclide is widely used within the Studsvik research establishment, is easy to detect and relatively harmless, and is practical to use in these experiments. Among the {beta} {gamma}-nuclides studied 1-131 has furthermore proved to be the one most difficult to remove from the skin. The following conclusions and recommendations regarding the decontamination of skin are therefore valid primarily for iodine in the form of Nal, but are probably also applicable to many other {beta} {gamma}-nuclides. a) A prolonged interval between contamination and decontamination has a negative effect on the result of the decontamination. Therefore start decontamination as soon as possible after the contamination. b) Soap and water has proved to be the most suitable decontamination agent. A number of other agents have appeared to be harmful to the skin. Therefore, first of all use only soap and water in connection with gentle rubbing. c) No clear connection between the temperature of the water for washing and the result of the decontamination has been demonstrated. d) Skin not degreased before the contamination seems to be somewhat easier to decontaminate than degreased skin, particularly if the activity has been on the skin for a long time. Therefore do not remove the sebum of the skin when engaged on radioactive work involving contamination risks. e) Irrigation of the contaminated surface with a solution containing the corresponding inactive ions or ordinary water in large quantities may considerably decrease the skin contamination. f) In radioactive work of long duration involving high risks of contamination prophylactic measures in the form of a protective substance ('invisible glove'), type Kerodex, may make decontamination easier.

  1. The restoration project : decontamination of facilities from chemical, biological and radiological contamination after terrorist action

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Volchek, K.; Thouin, G.; Harrison, S.; Kuang, W. [Environment Canada, Ottawa, ON (Canada). Emergencies Science Div; Velicogna, D.; Hornof, M.; Punt, M. [SAIC Canada, Ottawa, ON (Canada); Payette, P.; Duncan, L.; Best, M.; Krishnan; Wagener, S.; Bernard, K.; Majcher, M. [Public Health Agency of Canada, Ottawa, ON (Canada); Cousins, T.; Jones, T. [Defence Research and Development Canada, Ottawa, ON (Canada)

    2005-07-01

    Bioterrorism poses a real threat to the public health and national security, and the restoration of affected facilities after a chemical, biological or radiological attack is a major concern. This paper reviewed aspects of a project conducted to collect information, test and validate procedures for site restoration after a terrorist attack. The project began with a review of existing technology and then examined new technologies. Restoration included pickup, neutralization, decontamination, removal and final destruction and deposition of contaminants as well as cleaning and neutralization of material and contaminated waste from decontamination. The project was also intended to test existing concepts and develop new ideas. Laboratory scale experiments consisted of testing, using standard laboratory techniques. Radiation decontamination consisted of removal and concentration of the radioisotopes from removal fluid. General restoration guidelines were provided, as well as details of factors considered important in specific applications, including growth conditions and phases of microorganisms in biological decontamination, or the presence of inhibitors or scavengers in chemical decontamination. Various agents were proposed that were considered to have broad spectrum capability. Test surrogates for anthrax were discussed. The feasibility of enhanced oxidation processes was examined in relation to the destruction of organophosphorus, organochlorine and carbamate pesticides. The goal was to identify a process for the treatment of surfaces contaminated with pesticides. Tests included removal from carpet, porous ceiling tile, steel plates, and floor tiles. General radiation contamination procedures and techniques were reviewed, as well as radiological decontamination waste treatment. It was concluded that there is no single decontamination technique applicable for all contaminants, and decontamination methods depend on economic, social and health factors. The amount of

  2. The pharmacological activity of medical herbs after microbiological decontamination by irradiation

    Science.gov (United States)

    Owczarczyk, H. B.; Migdał, W.; K ȩdzia, B.

    2000-03-01

    In the Institute of Nuclear Chemistry and Technology research on microbiological decontamination of medicinal herbs by irradiation has been carried out since 1996. It was shown that using ionizing radiation (a dose of 10 kGy) can obtain satisfactory results of microbiological decontamination of these products. The content of essential biologically active substances such as essential oils, flavonoids, glycosides, anthocyans, antra-compounds, poliphenoloacids, triterpene saponins, oleanosides and plants mucus did not change significantly after irradiation. Pharmacological activity of medicinal herbs has been found satisfactory after microbiological decontamination by irradiation.

  3. [Efficacy of selective digestive decontamination (SDD) for severe acute pancreatitis].

    Science.gov (United States)

    Kitamura, Nobuya; Hirano, Takeshi; Moriguchi, Takeshi; Hirasawa, Hiroyuki; Ohtani, Shunsuke

    2004-11-01

    Bacterial translocation (BT) is involved in the development of pancreatic infection in severe acute pancreatitis (SAP) and influences the prognosis. We should suppress BT to prevent pancreatic infection and improve survival rate. Selective digestive decontamination (SDD) is rational treatment. We should aim at effective SDD, ensuring the following 4 points: (1) enteral antimicrobials, in combination with, (2) parenteral antibiotics given immediately on admission, (3) hand hygiene, (4) surveillance cultures of throat and rectum. Starting enteral feeding as soon as possible and avoiding long-term SDD is useful for maintaining the defenses of the intestinal mucosa and preventing emergence of resistant bacteria. We used glutamine and dietary fiber besides SDD and were able to reduce pancreatic infection.

  4. Electromagnetic mixed waste processing system for asbestos decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Kasevich, R.S. [KAI Technologies, Inc., Portsmouth, NH (United States); Vaux, W.G. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Nocito, T. [Ohio DSI Corp., New York (United States)

    1995-10-01

    DOE sites contain a broad spectrum of asbestos materials (cloth, pipe lagging, sprayed insulation and other substances) which are contaminated with a combination of hazardous and radioactive wastes due to its use during the development of the U.S. nuclear weapons complex. These wastes consist of cutting oils, lubricants, solvents, PCB`s, heavy metals and radioactive contaminants. The radioactive contaminants are the activation, decay and fission products of DOE operations. The asbestos must be converted by removing and separating the hazardous and radioactive materials to prevent the formation of mixed wastes and to allow for both sanitary disposal and effective decontamination. Currently, no technology exists that can meet these sanitary and other objectives.

  5. Composition suitable for decontaminating a porous surface contaminated with cesium

    Science.gov (United States)

    Kaminski, Michael D.; Finck, Martha R.; Mertz, Carol J.

    2010-06-15

    A method of decontaminating porous surfaces contaminated with water soluble radionuclides by contacting the contaminated porous surfaces with an ionic solution capable of solubilizing radionuclides present in the porous surfaces followed by contacting the solubilized radionuclides with a gel containing a radionuclide chelator to bind the radionuclides to the gel, and physically removing the gel from the porous surfaces. A dry mix is also disclosed of a cross-linked ionic polymer salt, a linear ionic polymer salt, a radionuclide chelator, and a gel formation controller present in the range of from 0% to about 40% by weight of the dry mix, wherein the ionic polymer salts are granular and the non cross-linked ionic polymer salt is present as a minor constituent.

  6. OIL DECONTAMINATION OF BOTTOM SEDIMENTS EXPERIMENTAL WORK RESULTS

    Directory of Open Access Journals (Sweden)

    Lushnikov Sergey V.

    2006-08-01

    Full Text Available This article presents the results of experimental work during 2004-2005 on oil decontamination of bottom sediments of Lake Schuchye, situated in the Komi Republic (Northern Russia. The cause of thecontamination were huge oil spills occurred after a series of accidental ruptures on the Harjaga-Usinsk and Vozej-Usinsk oil-pipe lines in 1994. Flotation technology was used for the cleaning of bottom sediments.157 tons of crude oil were removed during the course of 2-year experimental work from an area of 4,1 ha.The content of aliphatic and alicyclic oil hydrocarbons was reduced from 53,3 g/kg to 2,2 g/kg, on average.Hydrobiological investigations revealed that bottom sediments started to be inhabited by benthos organisms, dominantly Oligochaeta. Besides Oligochaeta, Chironomidae maggots and Bivalvia were detected. Theappearance of Macrozoobenthos organisms can serve as a bioindicator of water quality.

  7. Cold atmospheric plasma - A new technology for spacecraft component decontamination

    Science.gov (United States)

    Shimizu, Satoshi; Barczyk, Simon; Rettberg, Petra; Shimizu, Tetsuji; Klaempfl, Tobias; Zimmermann, Julia L.; Hoeschen, Till; Linsmeier, Christian; Weber, Peter; Morfill, Gregor E.; Thomas, Hubertus M.

    2014-01-01

    Cold atmospheric plasma (CAP) based on the Surface Micro-Discharge (SMD) technology was investigated for inactivation of different bacteria and endospores. The used technique was developed to serve as an alternative method for the decontamination of spacecraft components based on the COSPAR planetary protection policy where currently the dry heat microbial reduction method is the only applicable way to satisfy the required demands. However it is known, that dry heat can thermally damage sophisticated components installed on the device. Therefore, the development of a low temperature sterilization system is one of the high priority issues for upcoming space missions in the extraterrestrial field. In the study presented here, the vegetative bacteria Escherichia coli and Deinococcus radiodurans and several types of bacterial endospores - including Bacillus atrophaeus, Bacillus safensis, Bacillus megaterium, Bacillus megaterium 2c1 and Bacillus thuringiensis E24 - were inactivated by exposing them indirectly i.e. only to the reactive gases produced by the SMD electrode at room temperature. The results showed a 5 log inactivation for E. coli after 10 min of exposure. In contrast D. radiodurans proved to be more resistant resulting in a reduction of 3 log after exposure of 30 min. More than 6 log reductions were achieved for B. safensis, B. megaterium and B. megaterium 2c1 after 90 min of exposure. Furthermore the applicability of the used CAP system for spacecraft decontamination according to the planetary protection policy was investigated. This included also the investigation of the inactivation homogeneity by the plasma gas, the control of the temperature at the area of interest, the measurement of the O3 density in the treatment region and the detailed investigation of the effects of the exposure on different materials.

  8. Hair decontamination procedure prior to multi-class pesticide analysis.

    Science.gov (United States)

    Duca, Radu-Corneliu; Hardy, Emilie; Salquèbre, Guillaume; Appenzeller, Brice M R

    2014-06-01

    Although increasing interest is being observed in hair analysis for the biomonitoring of human exposure to pesticides, some limitations still have to be addressed for optimum use of this matrix in that specific context. One main possible issue concerns the need to differentiate chemicals biologically incorporated into hair from those externally deposited on hair surface from contaminated air or dust. The present study focuses on the development of a washing procedure for the decontamination of hair before analysis of pesticides from different chemical classes. For this purpose, three different procedures of artificial contamination (with silica, cellulose, and aqueous solution) were used to simulate pesticides deposition on hair surface. Several washing solvents (four organic: acetone, dichloromethane, methanol, acetonitrile; and four aqueous: water, phosphate buffer, shampoo, sodium dodecylsulfate) were evaluated for their capacity to remove artificially deposited pesticides from hair surface. The most effective washing solvents were sodium dodecylsulfate and methanol for aqueous and organic solvents, respectively. Moreover, after a first washing with sodium dodecylsulfate or methanol, the majority of externally deposited pesticides was removed and a steady-state was reached since significantly lower amounts were removed by additional second and third washings. Finally, the effectiveness of a decontamination procedure comprising washing with sodium dodecylsulfate and methanol was successively demonstrated. In parallel, it was determined that the final procedure did not affect the chemicals biologically incorporated, as hair strands naturally containing pesticides were used. Such a procedure appears to remove in one-shot the fraction of chemicals located on hair surface and does not require repeated washing steps.

  9. Contaminated concrete: Occurrence and emerging technologies for DOE decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, K.S.; Wilson-Nichols, M.J. [Oak Ridge National Lab., Grand Junction, CO (United States); Morris, M.I. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D&D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are {sup 137}Cs, {sup 238}U (and it daughters), and {sup 60}Co, followed closely by {sup 90}Sr and tritium, which account for {minus}30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope.

  10. Confirmatory/release survey of the property at 71 Pearce Avenue (Former EAD Building) in Tonawanda, New York

    Energy Technology Data Exchange (ETDEWEB)

    Salame-Alfie, A.; Alibozek, R. [New York Dept. of Health, Albany, NY (United States)

    1995-12-31

    EAD Metallurgical, Inc., operated a facility in Tonawanda, New York, in which it utilized Americium 241 (Am-241) for the production of foil sources for use in smoke detectors. EAD was in operation between 1977 and 1983. By 1983, the company started losing money, and decided to relocate to Mexico. Before closing down its Tonawanda operation, however, it was required by the New York State Department of Labor (DOL) to decontaminate its facility to limits specified by DOL. No records of discharges to the sewer system were kept during this decontamination effort. Unsuccessful decontamination efforts by several EAD employees and contractors left the building contaminated, in particular the concrete floors and walls. To determine the scope of work for the decontamination project, staff from the New York State Departments of Health (DOH) and Environmental Conservation (DEC) conducted a Characterization Survey of the facility in 1993. This survey identified contamination levels of Am-241 in excess of release limits throughout the building, in the soil outside the facility, in pipes for sewage and interior drainage, and in an 8 x 8 x 11 foot sump pit in the building. DOH issued a request for proposals in early 1994 for the decontamination and subsequent decommissioning of the former EAD building, and NES/IES Inc. (NES) was awarded the contract to perform the remediation. DOH`s assignment was to provide an on-site presence to insure the completion of all agreed upon tasks, according to the terms of the contract and work plans submitted by NES. Additionally, the DOH staff acted as a liaison between NES, DOH, DEC and DOL central offices to review, comment and approve all changes or modifications to NES`s approach to the decontamination efforts. The assigned staff was also responsible for conducting confirmatory sampling and surveys of all areas deemed releasable to DOL and DEC criteria by NES.

  11. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    IBACOS researched the constructability and viability issues of using high performance windows as one component of a larger approach to building houses that achieve the Building America 70% energy savings target.

  12. Selective oropharyngeal decontamination versus selective digestive decontamination in critically ill patients: a meta-analysis of randomized controlled trials

    Directory of Open Access Journals (Sweden)

    Zhao D

    2015-07-01

    Full Text Available Di Zhao,1,* Jian Song,2,* Xuan Gao,3 Fei Gao,4 Yupeng Wu,2 Yingying Lu,5 Kai Hou1 1Department of Neurosurgery, The First Hospital of Hebei Medical University, 2Department of Neurosurgery, 3Department of Neurology, The Second Hospital of Hebei Medical University, 4Hebei Provincial Procurement Centers for Medical Drugs and Devices, 5Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang People’s Republic of China *These authors contributed equally to this work Background: Selective digestive decontamination (SDD and selective oropharyngeal decontamination (SOD are associated with reduced mortality and infection rates among patients in intensive care units (ICUs; however, whether SOD has a superior effect than SDD remains uncertain. Hence, we conducted a meta-analysis of randomized controlled trials (RCTs to compare SOD with SDD in terms of clinical outcomes and antimicrobial resistance rates in patients who were critically ill. Methods: RCTs published in PubMed, Embase, and Web of Science were systematically reviewed to compare the effects of SOD and SDD in patients who were critically ill. Outcomes included day-28 mortality, length of ICU stay, length of hospital stay, duration of mechanical ventilation, ICU-acquired bacteremia, and prevalence of antibiotic-resistant Gram-negative bacteria. Results were expressed as risk ratio (RR with 95% confidence intervals (CIs, and weighted mean differences (WMDs with 95% CIs. Pooled estimates were performed using a fixed-effects model or random-effects model, depending on the heterogeneity among studies. Results: A total of four RCTs involving 23,822 patients met the inclusion criteria and were included in this meta-analysis. Among patients whose admitting specialty was surgery, cardiothoracic surgery (57.3% and neurosurgery (29.7% were the two main types of surgery being performed. Pooled results showed that SOD had similar effects as SDD in day-28 mortality (RR =1

  13. Solar building

    OpenAIRE

    Zhang, Luxin

    2014-01-01

    In my thesis I describe the utilization of solar energy and solar energy with building integration. In introduction it is also mentioned how the solar building works, trying to make more people understand and accept the solar building. The thesis introduces different types of solar heat collectors. I compared the difference two operation modes of solar water heating system and created examples of solar water system selection. I also introduced other solar building applications. It is conv...

  14. Assessing microbial decontamination of indoor air with particular focus on human pathogenic viruses.

    Science.gov (United States)

    Duchaine, Caroline

    2016-09-01

    Transmission of bacterial, fungal, and viral pathogens is of primary importance in public and occupational health and infection control. Although several standardized protocols have been proposed to target microbes on fomites through surface decontamination, use of microbicidal agents, and cleaning processes, only limited guidance is available on microbial decontamination of indoor air to reduce the risk of pathogen transmission between individuals. This article reviews the salient aspects of airborne transmission of infectious agents, exposure assessment, in vitro assessment of microbicidal agents, and processes for air decontamination for infection prevention and control. Laboratory-scale testing (eg, rotating chambers, wind tunnels) and promising field-scale methodologies to decontaminate indoor air are also presented. The potential of bacteriophages as potential surrogates for the study of airborne human pathogenic viruses is also discussed.

  15. Oral decontamination with chlorhexidine reduces the incidence of ventilator-associated pneumonia.

    NARCIS (Netherlands)

    Koeman, M.; Ven, A.J.A.M. van der; Hak, E.; Joore, H.C.; Kaasjager, K.A.; Smet, A.G. de; Ramsay, G.; Dormans, T.P.J.; Aarts, L.P.H.J.; Bel, E.E. de; Hustinx, W.; Tweel, I. van de; Hoepelman, A.M.; Bonten, M.J.M.

    2006-01-01

    RATIONALE: Ventilator-associated pneumonia (VAP) is the most frequently occurring nosocomial infection associated with increased morbidity and mortality. Although oral decontamination with antibiotics reduces incidences of VAP, it is not recommended because of potential selection of antibiotic-resis

  16. A DECONTAMINATION PROCESS FOR METAL SCRAPS FROM THE DECOMMISSIONING OF TRR

    Energy Technology Data Exchange (ETDEWEB)

    Wei, T.Y.; Gan, J.S.; Lin, K.M.; Chung, Z.J.

    2003-02-27

    A decontamination facility including surface condition categorizing, blasting, chemical/electrochemical cleaning, very low radioactivity measuring, and melting, is being established at INER. The facility will go into operation by the end of 2004. The main purpose is to clean the dismantled metal wastes from the decommissioning of Taiwan Research Reactor (TRR). The pilot test shows that over 70% of low level metal waste can be decontaminated to very low activity and can be categorized as BRC (below regulatory concern) waste. All the chemical decontamination technologies applied are developed by INER. In order to reduce the secondary wastes, chemical reagents will be regenerated several times with a selective precipitation method. The exhausted chemical reagent will be solidified with INER's patented process. The total secondary waste is estimated about 0.1-0.3 wt.% of the original waste. This decontamination process is accessed to be economic and feasible.

  17. Mass Casualty Decontamination in a Chemical or Radiological/ Nuclear Incident: Further Guiding Principles

    Science.gov (United States)

    Carter, Holly; Amlôt, Richard; Williams, Richard; Rubin, G. James; Drury, John

    2016-01-01

    This short report presents a response to an article written by Cibulsky et al. (2016). The paper by Cibulsky et al. presents a useful and timely overview of the evidence surrounding the technical and operational aspects of mass casualty decontamination. It identifies three priority targets for future research, the third of which is how casualties' needs can be met in ways that best support compliance with and effectiveness of casualty decontamination. While further investigation into behavioural, communication and privacy issues during mass decontamination is warranted, there is now a substantial body of research in this area which is not considered in detail in the succinct summary provided by Cibulsky et al. (2016). In this short report, we summarise the available evidence around likely public behaviour during mass decontamination, effective communication strategies, and potential issues resulting from a lack of privacy. Our intention is to help further focus the research needs in this area and highlight topics on which more research is needed.

  18. Change in tensile properties of neoprene and nitrile gloves after repeated exposures to acetone and thermal decontamination.

    Science.gov (United States)

    Gao, Pengfei; Tomasovic, Beth

    2005-11-01

    This study investigated the change in tensile properties of neoprene and nitrile gloves after repeated cycles of exposure to acetone, followed by thermal decontamination. The glove was exposed to acetone (outer surface in contact with chemical), subjected to thermal decontamination, and tested for the tensile strength and the ultimate elongation. Thermal decontamination was carried out inside an oven for 16 hours at 100 degrees C. The exposure/decontamination procedure was repeated for a maximum of 10 cycles. For neoprene versus acetone, the mean tensile strength consistently decreased after each exposure/decontamination cycle. Multiple comparisons indicated that the mean tensile strengths between the new swatches and each exposure/decontamination group were significantly different (p 0.05). The mean tensile strength for the new swatches was 37.1 MPa and the mean tensile strength after nine exposure/decontamination cycles was 36.0 MPa, with a loss less than 3%. The largest single cycle loss for ultimate elongation occurred during the first exposure/decontamination cycle for both glove materials. In our previous study, decisions regarding the effectiveness of the decontamination process were based on having no discernible change in the breakthrough time and steady-state permeation rate. The results of this study indicate that the effectiveness of the decontamination process cannot be based on permeation parameters alone but must also take into account the change in physical properties.

  19. Mesoporous binary metal oxide nanocomposites: Synthesis, characterization and decontamination of sulfur mustard

    Energy Technology Data Exchange (ETDEWEB)

    Praveen Kumar, J., E-mail: praveenjella10@gmail.com; Prasad, G.K.; Ramacharyulu, P.V.R.K.; Singh, Beer; Gopi, T.; Krishna, R.

    2016-04-15

    Mesoporous MnO{sub 2}–ZnO, Fe{sub 2}O{sub 3}–ZnO, NiO–ZnO, and CeO{sub 2}–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard. They were synthesized by precipitation pyrolysis method and characterized by means of transmission electron microscopy, scanning electron microscopy coupled with energy dispersive analysis of X rays, X ray diffraction, and nitrogen adsorption techniques. The transmission electron microscopy and nitrogen adsorption data indicated the presence of pores with diameter ranging from 10 to 70 nm in the binary metal oxide nanocomposites and these materials exhibited surface area values in the range of 76–134 m{sup 2}/g. These binary metal oxide nanocomposites demonstrated large decontamination efficiencies against sulfur mustard when compared to their single component metal oxide nanoparticles. The binary metal oxide nanocomposites effectively decontaminated sulfur mustard into relatively non toxic products such as chloro ethyl vinyl sulfide, divinyl sulfide, 1,4-oxathiane, etc. The promising decontamination properties of binary metal oxide nanocomposites against sulfur mustard were attributed to the basic sites, Lewis acid sites, and the presence of these sites was confirmed by CO{sub 2} and NH{sub 3} temperature programmed desorption. - Graphical abstract: Mesoporous MnO{sub 2}–ZnO, Fe{sub 2}O{sub 3}–ZnO, NiO–ZnO, and CeO{sub 2}–ZnO binary metal oxide nanocomposites were studied as sorbent decontaminants against sulfur mustard. - Highlights: • Binary metal oxide nanocomposites were synthesized by co-precipitation method. • They were studied as sorbent decontaminants against sulfur mustard. • They decontaminated sulfur mustard into non toxic products. • MnO{sub 2}–ZnO and CeO{sub 2}–ZnO nanocomposites showed greater decontamination efficiency.

  20. A decontamination system for chemical weapons agents using a liquid solution on a solid sorbent

    Energy Technology Data Exchange (ETDEWEB)

    Waysbort, Daniel [Israel Institute for Biological Research, PO Box 19, Ness-Ziona 74100 (Israel); McGarvey, David J. [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)], E-mail: david.mcgarvey@us.army.mil; Creasy, William R.; Morrissey, Kevin M.; Hendrickson, David M. [SAIC, P.O. Box 68, Gunpowder Branch, Aberdeen Proving Ground, MD 21010 (United States); Durst, H. Dupont [R and T Directorate, Edgewood Chemical and Biological Center (ECBC), Aberdeen Proving Ground-Edgewood Area, MD 21010 (United States)

    2009-01-30

    A decontamination system for chemical warfare agents was developed and tested that combines a liquid decontamination reagent solution with solid sorbent particles. The components have fewer safety and environmental concerns than traditional chlorine bleach-based products or highly caustic solutions. The liquid solution, based on Decon Green{sup TM}, has hydrogen peroxide and a carbonate buffer as active ingredients. The best solid sorbents were found to be a copolymer of ethylene glycol dimethacrylate and n-lauryl methacrylate (Polytrap 6603 Adsorber); or an allyl methacrylate cross-linked polymer (Poly-Pore E200 Adsorber). These solids are human and environmentally friendly and are commonly used in cosmetics. The decontaminant system was tested for reactivity with pinacolyl methylphosphonofluoridate (Soman, GD), bis(2-chloroethyl)sulfide (Mustard, HD), and S-(2-diisopropylaminoethyl) O-ethyl methylphosphonothioate (VX) by using NMR Spectroscopy. Molybdate ion (MoO{sub 4}{sup -2}) was added to the decontaminant to catalyze the oxidation of HD. The molybdate ion provided a color change from pink to white when the oxidizing capacity of the system was exhausted. The decontaminant was effective for ratios of agent to decontaminant of up to 1:50 for VX (t{sub 1/2} {<=} 4 min), 1:10 for HD (t{sub 1/2} < 2 min with molybdate), and 1:10 for GD (t{sub 1/2} < 2 min). The vapor concentrations of GD above the dry sorbent and the sorbent with decontamination solution were measured to show that the sorbent decreased the vapor concentration of GD. The E200 sorbent had the additional advantage of absorbing aqueous decontamination solution without the addition of an organic co-solvent such as isopropanol, but the rate depended strongly on mixing for HD.

  1. An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications.

    Directory of Open Access Journals (Sweden)

    Sophie Champlot

    Full Text Available BACKGROUND: PCR amplification of minute quantities of degraded DNA for ancient DNA research, forensic analyses, wildlife studies and ultrasensitive diagnostics is often hampered by contamination problems. The extent of these problems is inversely related to DNA concentration and target fragment size and concern (i sample contamination, (ii laboratory surface contamination, (iii carry-over contamination, and (iv contamination of reagents. METHODOLOGY/PRINCIPAL FINDINGS: Here we performed a quantitative evaluation of current decontamination methods for these last three sources of contamination, and developed a new procedure to eliminate contaminating DNA contained in PCR reagents. We observed that most current decontamination methods are either not efficient enough to degrade short contaminating DNA molecules, rendered inefficient by the reagents themselves, or interfere with the PCR when used at doses high enough to eliminate these molecules. We also show that efficient reagent decontamination can be achieved by using a combination of treatments adapted to different reagent categories. Our procedure involves γ- and UV-irradiation and treatment with a mutant recombinant heat-labile double-strand specific DNase from the Antarctic shrimp Pandalus borealis. Optimal performance of these treatments is achieved in narrow experimental conditions that have been precisely analyzed and defined herein. CONCLUSIONS/SIGNIFICANCE: There is not a single decontamination method valid for all possible contamination sources occurring in PCR reagents and in the molecular biology laboratory and most common decontamination methods are not efficient enough to decontaminate short DNA fragments of low concentration. We developed a versatile multistrategy decontamination procedure for PCR reagents. We demonstrate that this procedure allows efficient reagent decontamination while preserving the efficiency of PCR amplification of minute quantities of DNA.

  2. Timing of decontamination and treatment in case of percutaneous VX poisoning: a mini review.

    Science.gov (United States)

    Joosen, Marloes J A; van der Schans, Marcel J; Kuijpers, Willem C; van Helden, Herman P M; Noort, Daan

    2013-03-25

    Low volatile organophosphorous nerve agents such as VX, will most likely enter the body via the skin. The pharmacokinetics of drugs such as oximes, atropine and diazepam, are not aligned with the variable and persistent toxicokinetics of the agent. Repeated administration of these drugs showed to improve treatment efficacy compared to a single injection treatment. Because of the effectiveness of continuous treatment, it was investigated to what extent a subchronic pretreatment with carbamate (pyridostigmine or physostigmine combined with either procyclidine or scopolamine) would protect against percutaneous VX exposure. Inclusion of scopolamine in the pretreatment prevented seizures in all animals, but none of the pretreatments affected survival time or the onset time of cholinergic signs. These results indicate that percutaneous poisoning with VX requires additional conventional treatment in addition to the current pretreatment regimen. Decontamination of VX-exposed skin is one of the most important countermeasures to mitigate the effects of the exposure. To evaluate the window of opportunity for decontamination, the fielded skin decontaminant Reactive Skin Decontaminant Lotion (RSDL) was tested at different times in hairless guinea pigs percutaneously challenged with 4× LD50 VX in IPA. The results showed that RSDL decontamination at 15 min after exposure could not prevent progressive blood cholinesterase inhibition and therefore would still require additional treatment. A similar decontamination regimen with RSDL at 90 min showed that it still might effectively increase the time window of opportunity for treatment. In conclusion, the delay in absorption presents a window of opportunity for decontamination and treatment. The continuous release of VX from the skin presents a significant challenge for efficacious therapy, which should ideally consist of thorough decontamination and continuous treatment.

  3. Decontamination of biological agents from drinking water infrastructure: a literature review and summary.

    Science.gov (United States)

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of biological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some biological agents, but data gaps remain. Data on bacterial spore persistence on common water infrastructure materials such as iron and cement-mortar lined iron show that spores can be persistent for weeks after contamination. Decontamination data show that common disinfectants such as free chlorine have limited effectiveness. Decontamination results with germinant and alternate disinfectants such as chlorine dioxide are more promising. Persistence and decontamination data were collected on vegetative bacteria, such as coliforms, Legionella and Salmonella. Vegetative bacteria are less persistent than spores and more susceptible to disinfection, but the surfaces and water quality conditions in many studies were only marginally related to drinking water systems. However, results of real-world case studies on accidental contamination of water systems with E. coli and Salmonella contamination show that flushing and chlorination can help return a water system to service. Some viral persistence data were found, but decontamination data were lacking. Future research suggestions focus on expanding the available biological persistence data to other common infrastructure materials. Further exploration of non-traditional drinking water disinfectants is recommended for future studies.

  4. Effect of surface modification of silica nanoparticles on foam stability in decontamination foam

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, In-Ho; Jung, Chong-Hun; Kim, Chorong; Yang, Han-Beom; Choi, Mansoo; Moon, Jei-Kwon; Choi, Wang-Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Decontamination foam is a non-stable, two-phase fluid with aqueous and gas phases representing not more than 10% and 90% of the total volume, respectively. This formulation can significantly decrease the amounts of chemical reagents and secondary waste. The advantage of decontamination foam is its potentially wide application for metallic walls, overhead surfaces, and the elements of complex components and facilities. In addition, the application of foam allows for remote decontamination processing using only an injection nozzle and the equipment to generate the decontamination foam, which reduces operator exposure to high radioactivity. Solid colloidal particles increase the foam stability in the foam formulation. These particles can be specifically hydrophobized for optimal adsorption at the liquid/gas interface, which creates armor for the bubbles and prevents coalescence by reducing the internal gas transfer. Conversely, hydrophilic particles remain confined in the liquid phase, and to enhance the foam stability. In this study, we aimed to modify the surface of silica nanoparticles with dichlorodimethylsilane (DCDMS) reagents using methods proposed in previous literatures. We plan to investigate further the influence pH and the concentration of chemical reagent in decontamination foam system. In future studies, decontamination tests will be conducted on a surface contaminated with radionuclides such as cesium and cobalt.

  5. Conversion of transuranic waste to low level waste by decontamination: a technical and economic evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.P.; Hazelton, R.F.

    1984-12-01

    A study was conducted to evaluate the technical and economic feasibility of using in-situ decontamination techniques to convert glove boxes and other large TRU-contaminated components directly into LLW. The results of the technical evaluation indicate that in-situ decontamination of these types of components to non-TRU levels is technically feasible. Applicable decontamination techniques include electropolishing, hand scrubbing, chemical washes/sprays, strippable coatings and Freon spray-cleaning. The removal of contamination from crevices and other holdup areas remains a problem, but may be solved through further advances in decontamination technology. Also, the increase in the allowable maximum TRU level from 10 nCi/g to 100 nCi/g as defined in DOE Order 5820.2 reduces the removal requirement and facilitates measurement of the remaining quantities. The major emphasis of the study was on a cost/benefit evaluation that included a review and update of previous analyses and evaluations of TRU-waste volume reduction and conversion options. The results of the economic evaluation show, for the assumptions used, that there is a definite cost incentive to size reduce large components, and that decontamination of sectioned material has become cost competitive with the size reduction options. In-situ decontamination appears to be the lowest cost option when based on routine-type operations conducted by well-trained and properly equipped personnel. 16 references, 1 figure, 7 tables.

  6. Off-site consequences of radiological accidents: methods, costs and schedules for decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Tawil, J.J.; Bold, F.C.; Harrer, B.J.; Currie, J.W.

    1985-08-01

    This report documents a data base and a computer program for conducting a decontamination analysis of a large, radiologically contaminated area. The data base, which was compiled largely through interviews with knowledgeable persons both in the public and private sectors, consists of the costs, physical inputs, rates and contaminant removal efficiencies of a large number of decontamination procedures. The computer program utilizes this data base along with information specific to the contaminated site to provide detailed information that includes the least costly method for effectively decontaminating each surface at the site, various types of property losses associated with the contamination, the time at which each subarea within the site should be decontaminated to minimize these property losses, the quantity of various types of labor and equipment necessary to complete the decontamination, dose to radiation workers, the costs for surveying and monitoring activities, and the disposal costs associated with radiological waste generated during cleanup. The program and data base are demonstrated with a decontamination analysis of a hypothetical site. 39 refs., 24 figs., 155 tabs.

  7. Hairy skin exposure to VX in vitro: effectiveness of delayed decontamination.

    Science.gov (United States)

    Rolland, P; Bolzinger, M-A; Cruz, C; Josse, D; Briançon, S

    2013-02-01

    The chemical warfare agents such as VX represent a threat for both military and civilians, which involves an immediate need of effective decontamination systems. Since human scalp is usually unprotected compared to other body regions covered with clothes, it could be a preferential site of exposure in case of terrorist acts. The purpose of this study was to determine if skin decontamination could be efficient when performed more than 1h after exposure. In addition, the impact of hairs in skin contamination was investigated. By using in vitro skin models, we demonstrated that about 75% of the applied quantity of VX was recovered on the skin surface 2h after skin exposition, which means that it is worth decontaminating even if contamination occurred 2h before. The stratum corneum reservoir for VX was quickly established and persistent. In addition, the presence of hairs modified the percutaneous penetration of the nerve agent by binding of VX to hairs. Hair shaft has thus to be taken into account in the decontamination process. Reactive Skin Decontamination Lotion (RSDL) and Fuller's Earth (FE) were active in the skin decontamination 45min post-exposure, but RSDL was more efficient in reducing the amount of VX either in the skin or in the hair.

  8. Self-Decontaminating Fibrous Materials Reactive toward Chemical Threats.

    Science.gov (United States)

    Bromberg, Lev; Su, Xiao; Martis, Vladimir; Zhang, Yunfei; Hatton, T Alan

    2016-07-13

    Polymers that possess highly nucleophilic pyrrolidinopyridine (Pyr) and primary amino (vinylamine, VAm) groups were prepared by free-radical copolymerization of N,N-diallylpyridin-4-amine (DAAP) and N-vinylformamide (NVF) followed by acidic hydrolysis of NVF into VAm. The resulting poly(DAAP-co-VAm-co-NVF) copolymers were water-soluble and reacted with water-dispersible polyurethane possessing a high content of unreacted isocyanate groups. Spray-coating of the nylon-cotton (NYCO), rayon, and poly(p-phenylene terephthalamide) (Kevlar 119) fibers pretreated with phosphoric acid resulted in covalent bonding of the polyurethane with the hydroxyl groups on the fiber surface. A second spray-coating of aqueous solutions of poly(DAAP-co-VAm-co-NVF) on the polyurethane-coated fiber enabled formation of urea linkages between unreacted isocyanate groups of the polyurethane layer and the amino groups of poly(DAAP-co-VAm-co-NVF). Fibers with poly(DAAP-co-VAm-co-NVF) attached were compared with fibers modified by adsorption of water-insoluble poly(butadiene-co-pyrrolidinopyridine) (polyBPP) in terms of the stability against polymer leaching in aqueous washing applications. While the fibers modified by attachment of poly(DAAP-co-VAm-co-NVF) exhibited negligible polymer leaching, over 65% of adsorbed polyBPP detached and leached from the fibers within 7 days. Rayon fibers modified by poly(DAAP-co-VAm-co-NVF) were tested for sorption of dimethyl methylphosphonate (DMMP) in the presence of moisture using dynamic vapor sorption technique. Capability of the fibers modified with poly(DAAP-co-VAm-co-NVF) to facilitate hydrolysis of the sorbed DMMP in the presence of moisture was uncovered. The self-decontaminating property of the modified fibers against chemical threats was tested using a CWA simulant diisopropylfluorophosphate (DFP) in aqueous media at pH 8.7. Fibers modified with poly(DAAP-co-VAm-co-NVF) facilitated hydrolysis of DFP with the half-lives up to an order of magnitude

  9. Bioremediation of {sup 60}Co from simulated spent decontamination solutions

    Energy Technology Data Exchange (ETDEWEB)

    Rashmi, K.; Naga Sowjanya, T.; Maruthi Mohan, P.; Balaji, V.; Venkateswaran, G

    2004-07-26

    Bioremediation of {sup 60}Co from simulated spent decontamination solutions by utilizing different biomass of (Neurospora crassa, Trichoderma viridae, Mucor recemosus, Rhizopus chinensis, Penicillium citrinum, Aspergillus niger and, Aspergillus flavus) fungi is reported. Various fungal species were screened to evaluate their potential for removing cobalt from very low concentrations (0.03-0.16 {mu}M) in presence of a high background of iron (9.33 mM) and nickel (0.93 mM) complexed with EDTA (10.3 mM). The different fungal isolates employed in this study showed a pickup of cobalt in the range 8-500 ng/g of dry biomass. The [Fe]/[Co] and [Ni]/[Co] ratios in the solutions before and after exposure to the fungi were also determined. At micromolar level the cobalt pickup by many fungi especially the mutants of N. crassa is seen to be proportional to the initial cobalt concentration taken in the solution. However, R. chinensis exhibits a low but iron concentration dependent cobalt pickup. Prior saturating the fungi with excess of iron during their growth showed the presence of selective cobalt pickup sites. The existence of cobalt specific sorption sites is shown by a model experiment with R. chinensis wherein at a constant cobalt concentration (0.034 {mu}M) and varying iron concentrations so as to yield [Fe/Co]{sub initial} ratios in solution of 10, 100, 1000 and 287 000 have all yielded a definite Co pickup capacity in the range 8-47 ng/g. The presence of Cr(III)EDTA (3 mM) in solution along with complexed Fe and Ni has not influenced the cobalt removal. The significant feature of this study is that even when cobalt is present in trace level (sub-micromolar) in a matrix of high concentration (millimolar levels) of iron, nickel and chromium, a situation typically encountered in spent decontamination solutions arising from stainless steel based primary systems of nuclear reactors, a number of fungi studied in this work showed a good sensitivity for cobalt pickup.

  10. Universal Oxidation for CBW Decontamination: L-Gel System Development and Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Raber, E.; McGuire, R.; Hoffman, M.; Alcaraz, A.; Shepley, D.; Elliot, J.; Krauter, P.; Garcia, E.

    2000-12-16

    The general philosophy of this work is to develop an integrated set of decontamination methods and tools that will work on the major CBW threat agents. The work includes some near term techniques that can be demonstrated within a year and implemented soon thereafter as well as longer term research objectives. It is recognized that there is a balance between somewhat less effective methods which can be demonstrated quickly and more effective ones which may require a much longer time to fruition. The optimum goal of this study is to find a single decontamination system for chemical and biological agents which is non-toxic, non-corrosive, and easily deployable. One of the goals is to have decontamination systems that might be used by first responders as well as more complete systems to be used by specialized decontamination teams. Therefore, the overall project goal is to develop better decontamination methods that can be quickly implemented by these organizations. This includes early demonstrations and field work with companies or other government agencies who can identify implementation concerns and needs. The approach taken in this work is somewhat different than the standard military approach to decontamination. In a battlefield scenario, it is critical to decontaminate to a useful level in a very short time so the soldiers can continue their mission. In a domestic, urban scenario, time is of less consequence but collateral damage and recertification (public perception and stakeholder acceptance) are of much greater importance. The specific objective of the LLNL work to date has been to evaluate various oxidizer systems as reagents to allow for detoxification and/or degradation to non-toxic environmentally acceptable components rather than necessitate complete destruction. Detoxification requires less reagent material than total oxidation, thereby reducing the logistic burden for a decontamination team. Since we also wanted to maximize the contact time between the

  11. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Atlanta, GA (United States)

    2006-07-15

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO{sub 2} - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and

  12. The first chemical decontamination system for decommissioning in italy 'Phadec Technology' in Caorso

    Energy Technology Data Exchange (ETDEWEB)

    Benvenuto, F.; Lupu, M.; Mazzoni, C.; Orlandi, S.; Ricci, C. [Nuclear System Engineering Department, Ansaldo Nucleare S.p.A., Corso Perrone 25, 16161 Genova (Italy)

    2010-07-01

    The PHADEC Process (Phosphoric Acid Decontamination Process) is designed for surface decontamination of steel scrap using phosphoric acid. It has been successfully installed at Caorso NPP (Piacenza, Italy) at the end of 2008. The decontamination of steel scrap is done by removing the radioactivity localized in a few micron thickness from the surface with an electro-polishing (Stainless Steel) or acid pickling (Carbon Steel) treatment in basins filled with 40%-Phosphoric Acid that is regenerated and recycled for reuse. (authors)

  13. The state of the art on the dry decontamination technologies applicable to highly radioactive contaminants and their needs for the national nuclear fuel cycle developent

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Won Zin; Lee, K.W.; Won, H.J.; Jung, C.H.; Chol, W.K.; Kim, G.N.; Moon, J.K

    2000-12-01

    This report is intended to establish their needs to support the dry decontamination activities applicable to highly radioactive contaminants based on the requirement of technologies development suggested from the national nuclear fuel cycle projects, such as DUPIC, advanced spent fuel management and long-lived radionuclides conversion. The technology needs associated with decontamination addressed the requirements associated with the efficiency of decontamination technology, the reduction of secondary wastes, applicabilities and the remote operation. And also, Characterization and decontamination technologies for various contaminants are reviewed and analysed. Based on the assessment, Unit dry decontamination processes are selected and the schematic flow diagram for decontamination of highly radioactive contaminants.

  14. Laboratory Building.

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  15. Laboratory Building

    Energy Technology Data Exchange (ETDEWEB)

    Herrera, Joshua M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  16. Practical means for decontamination 9 years after a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Roed, J.; Andersson, K.G.; Prip, H. [eds.

    1995-12-01

    Nine years after the Chernobyl accident, the contamination problems of the most severely affected areas remain unsolved. As a consequence of this, large previously inhabited areas and areas of farmland now lie deserted. An international group of scientists funded by the EU European Collaboration Programme (ECP/4) has investigated in practice a great number of feasible means to solve the current problems. The basic results of this work group are presented in this report that was prepared in a format which facilitates an intercomparison (cost-benefit analysis) of the individual examined techniques for decontamination or dose reduction in various different types of environmental scenarios. Each file containing information on a method or procedure was created by the persons and institutes responsible for the practical trial. Although the long period that has elapsed since the contamination took place has added to the difficulties in removing the radioactive matter, it could be concluded that many of the methods are still capable of reducing the dose level substantially. (au).

  17. DECONTAMINATING AND PROCESSING DREDGED MATERIAL FOR BENEFICIAL USE

    Energy Technology Data Exchange (ETDEWEB)

    CLESCERI,N.L.; STERN,E.A.; FENG,H.; JONES,K.W.

    2000-07-01

    Management of contaminated dredged material is a major problem in the Port of New York and New Jersey. One component of an overall management plan can be the application of a decontamination technology followed by creation of a product suitable for beneficial use. This concept is the focus of a project now being carried out by the US Environmental Protection Agency-Region 2, the US Army Corps of Engineers-New York District, the US Department of Energy-Brookhaven National Laboratory, and regional university groups that have included Rensselaer Polytechnic Institute, Rutgers University, New Jersey Institute of Technology, and Stevens Institute of Technology. The project has gone through phased testing of commercial technologies at the bench scale (15 liters) and pilot scale (1.5--500 m{sup 3}) levels. Several technologies are now going forward to large-scale demonstrations that are intended to treat from 23,000 to 60,000 m{sup 3}. Selections of the technologies were made based on the effectiveness of the treatment process, evaluation of the possible beneficial use of the treated materials, and other factors. Major elements of the project are summarized here.

  18. [Decontamination and antidotes in acute cases of poisoning].

    Science.gov (United States)

    Kupferschmidt, Hugo; Züst, Ariane; Rauber-Lüthy, Christine

    2009-05-01

    In acute poisoning the maintenance or reconstitution of vital functions is the first and most critical action. All subsequent therapies and the prognosis depend on the identification of the causative agent and on information about substance-specific toxicity. Despite incomplete evidence the concept of harm reduction by decreased absorption of the toxicants and by shortening the course of illness is consistent with toxicokinetic-dynamic principles and is therefore still used by clinical toxicologists. All these treatment options have to be seen within the context of the prognosis and the time course of an individual case of poisoning. Treatment options of gastrointestinal decontamination are (in decreasing order of importance) single-dose activated charcoal, whole bowel irritation, and gastric lavage. Induced emesis by ipecac syrup is not practiced anymore. Enhanced elimination techniques are multiple-dose activated charcoal, urine alkalinization, and extracorporeal techniques such as hemodialysis and hemoperfusion. Enhanced elimination is only beneficial in toxicants with long half-life. Antidotes are directed against specific agents and therefore may be used only in a limited number of cases. The procurement of specific antidotes, often hardly available and not approved, is facilitated if the supply is organized in a transparent and standardized manner.

  19. Irradiation disinfestation and decontamination of Iranian dates and pistachio nuts

    Science.gov (United States)

    Zare, Z.; Sayhoon, M.; Maghsoudi, V.

    1993-07-01

    Decontamination and disinfestation effect of gamma radiation on microflora of dates and artificially infested packed dates (Mazafaty, Zard and Sayer variety) with Tribolium Confusum, Oryzaephilus Surinamensis and Ephestia Cautella in different stages studied. Treatment with 0.75 kGy dose of gamma radiation leads to complete and satisfactory insect disinfestation of dates during a storage period of 9, 20 and 35 days. This study shows that microbiological quality of Mazafaty dates can be significantly improved when they have received a gamma radiation dose of 2.5 kGy. Finally the sugar content of irradiated and unirradiated samples have compared. In this study, we have also used gamma radiation treatment for the control of microbial spoilage of pistachio nuts caused by toxigenic Aspergillus Flavus. The first sequence involved, the freshly harvested pistachio nuts inoculated with A. Flavus spores and exposed to radiation treatment, then retention of samples in a environmental chamber, set at temperature of 15-20 C at 75-80% relative humidity and stored for six months. In the second sequence during the storage period the changes in protein, lipid content of pistachio nuts have analyzed.

  20. Pulmonary decontamination for photodynamic inactivation with extracorporeal illumination

    Science.gov (United States)

    Geralde, Mariana C.; Leite, Ilaiáli S.; Inada, Natalia M.; Grecco, Clóvis; Medeiros, Alexandra I.; Kurachi, Cristina; Bagnato, Vanderlei S.

    2014-03-01

    Infectious pneumonia is a major cause of morbidity and mortality, despite advances in diagnostics and therapeutics in pulmonary infections. One of the major difficulties associated with the infection comes from the high rate of antibiotic resistant microorganisms, claiming for the use of alternative techniques with high efficiency and low cost. The photodynamic inactivation (PDI) is emerging as one of the great possibilities in this area, once its action is oxidative, not allowing microorganism develops resistance against the treatment. PDI for decontamination pulmonary has potential for treatment or creating better conditions for the action of antibiotics. In this study, we are developing a device to implement PDI for the treatment of lung diseases with extracorporeal illumination. To validate our theory, we performed measurements in liquid phantom to simulate light penetration in biological tissues at various fluency rates, the temperature was monitored in a body of hairless mice and the measurements of light transmittance in this same animal model. A diode laser emitting at 810 nm in continuous mode was used. Our results show 70% of leakage at 0.5 mm of thickness in phantom model. The mouse body temperature variation was 5.4 °C and was observed light transmittance through its chest. These results are suggesting the possible application of the extracorporeal illumination using infrared light source. Based on these findings, further studies about photodynamic inactivation will be performed in animal model using indocyanine green and bacteriochlorin as photosensitizers. The pulmonary infection will be induced with Streptococcus pneumoniae and Klebsiella pneumoniae.

  1. Decontamination of drinking water by direct heating in solar panels.

    Science.gov (United States)

    Fjendbo Jørgensen, A J; Nøhr, K; Sørensen, H; Boisen, F

    1998-09-01

    A device was developed for direct heating of water by solar radiation in a flow-through system of copper pipes. An adjustable thermostat valve prevents water below the chosen temperature from being withdrawn. The results show that it is possible to eliminate coliform and thermotolerant coliform bacteria from naturally contaminated river water by heating to temperatures of 65 degrees C or above. Artificial additions of Salmonella typhimurium, Streptococcus faecalis and Escherichia coli to contaminated river water were also inactivated after heating to 65 degrees C and above. The total viable count could be reduced by a factor of 1000. The heat-resistant bacteria isolated from the Mlalakuva River (Tanzania) were spore-forming bacteria which exhibited greater heat resistance than commonly used test bacteria originating from countries with colder climates. To provide a good safety margin it is recommended that an outlet water temperature of 75 degrees C be used. At that temperature the daily production was about 501 of decontaminated water per m2 of solar panel, an amount that could be doubled by using a heat exchanger to recycle the heat.

  2. Protocol for seaweed decontamination to isolate unialgal cultures

    Directory of Open Access Journals (Sweden)

    Daniela R. P. Fernandes

    2011-04-01

    Full Text Available Decontamination protocols in seaweeds are essential tools for ecophysiological studies in laboratory cultures. These protocols consist of a set of procedures and physical and chemical treatments that must be adjusted for each species. Thus, the effects of explant size and of combinations of physical treatments (brushing and cutting and chemical treatments (sodium hypochlorite, detergent, seawater, distilled water, germanium dioxide on the process of obtaining unialgal culture of two pigmentar morphos of Hypnea musciformis were investigated. It was found that thallus segments 50 mm in length, when transported from the field to the laboratory, remained healthier and were less susceptible to epiphytes than those 7 mm in length. The collected material had surfaces contaminated by diatoms, which were weakly attached, as well as surface contamination caused by strongly attached Sahlingia subintegra. The most efficient combination of physical and chemical treatments was explant brushing, cutting and washing with detergent. This combination eliminated the contamination by S. subintegra, but not all of the diatom contamination. The population of the latter was reduced by using physical treatment and by washing with detergent and distilled water and then exterminated by using germanium dioxide (0.003 mg/L. Employing this protocol, unialgal cultures of H. musciformis could be established in approximately eight to ten weeks.

  3. Concrete decontamination by electro-hydraulic scabbling (EHS). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Contamination of concrete structures by radionuclides, hazardous metals and organic substances (including PCB`s) occurs at many DOE sites. The contamination of concrete structures (walls, floors, ceilings, etc.) varies in type, concentration, and especially depth of penetration into the concrete. In many instances, only the surface layer of concrete is contaminated, up to a depth of one inch, according to estimates provided in the R and D ID document. Then, removal of the concrete surface layer (scabbling) is considered to be the most effective decontamination method. Textron Systems Corp. (TSC) has developed a scabbling concept based on electro-mechanical phenomena accompanying strong electric pulses generated by applying high voltage at the concrete/water interface. Depending on the conditions, the electric discharge may occur either through a waste layer or through the concrete body itself. This report describes the development, testing, and results of this electro-mechanical process. Phase 1 demonstrated the feasibility of the process for the controlled removal of a thin layer of contaminated concrete. Phase 2 designed, fabricated, and tested an integrated subscale unit. This was tested at Fernald. In Phase 3, the scabbling unit was reconfigured to increase its power and processing rate. Technology transfer to an engineering contracting company is continuing.

  4. Development of Novel Decontamination Techniques for Chemical Agents (GB, VX, HD) Contaminated Facilities. Phase II. Laboratory Evaluation of Novel Agent Decontamination Concepts

    Science.gov (United States)

    1985-06-21

    Frijlink, C., "Degradation of S-2-di-isopropyla- minoethyl O-ethyl Methylphosphonothioate in Soil:Sulphur Containing Products", Pestic . Science, 8, 510-514...Soil:Phosphorus Containing Products", Pestic . Science, 7, 355-362 (1976). 586 ............ APPENDIX VIII SUBTASK 10. JACADS DECONTAMINANT DATA BASE 587

  5. Evaluation of microwave steam bags for the decontamination of filtering facepiece respirators.

    Directory of Open Access Journals (Sweden)

    Edward M Fisher

    Full Text Available Reusing filtering facepiece respirators (FFRs has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens.

  6. Evaluation of microwave steam bags for the decontamination of filtering facepiece respirators.

    Science.gov (United States)

    Fisher, Edward M; Williams, Jessica L; Shaffer, Ronald E

    2011-04-15

    Reusing filtering facepiece respirators (FFRs) has been suggested as a strategy to conserve available supplies for home and healthcare environments during an influenza pandemic. For reuse to be possible, used FFRs must be decontaminated before redonning to reduce the risk of virus transmission; however, there are no approved methods for FFR decontamination. An effective method must reduce the microbial threat, maintain the function of the FFR, and present no residual chemical hazard. The method should be readily available, inexpensive and easily implemented by healthcare workers and the general public. Many of the general decontamination protocols used in healthcare and home settings are unable to address all of the desired qualities of an efficient FFR decontamination protocol. The goal of this study is to evaluate the use of two commercially available steam bags, marketed to the public for disinfecting infant feeding equipment, for FFR decontamination. The FFRs were decontaminated with microwave generated steam following the manufacturers' instructions then evaluated for water absorption and filtration efficiency for up to three steam exposures. Water absorption of the FFR was found to be model specific as FFRs constructed with hydrophilic materials absorbed more water. The steam had little effect on FFR performance as filtration efficiency of the treated FFRs remained above 95%. The decontamination efficacy of the steam bag was assessed using bacteriophage MS2 as a surrogate for a pathogenic virus. The tested steam bags were found to be 99.9% effective for inactivating MS2 on FFRs; however, more research is required to determine the effectiveness against respiratory pathogens.

  7. Self-care Decontamination within a Chemical Exposure Mass-casualty Incident.

    Science.gov (United States)

    Monteith, Raymond G; Pearce, Laurie D R

    2015-06-01

    Growing awareness and concern for the increasing frequency of incidents involving hazardous materials (HazMat) across a broad spectrum of contaminants from chemical, biological, radiological, and nuclear (CBRN) sources indicates a clear need to refine the capability to respond successfully to mass-casualty contamination incidents. Best results for decontamination from a chemical agent will be achieved if done within minutes following exposure, and delays in decontamination will increase the length of time a casualty is in contact with the contaminate. The findings presented in this report indicate that casualties involved in a HazMat/CBRN mass-casualty incident (MCI) in a typical community would not receive sufficient on-scene care because of operational delays that are integral to a standard HazMat/CBRN first response. This delay in response will mean that casualty care will shift away from the incident scene into already over-tasked health care facilities as casualties seek aid on their own. The self-care decontamination protocols recommended here present a viable option to ensure decontamination is completed in the field, at the incident scene, and that casualties are cared for more quickly and less traumatically than they would be otherwise. Introducing self-care decontamination procedures as a standard first response within the response community will improve the level of care significantly and provide essential, self-care decontamination to casualties. The process involves three distinct stages which should not be delayed; these are summarized by the acronym MADE: Move/Assist, Disrobe/Decontaminate, Evaluate/Evacuate.

  8. Building Languages

    Science.gov (United States)

    ... Training Manually Coded English (MCE) Natural Gestures Speech Speech Reading (Lip Reading) Even though American Sign Language (ASL) is not a building block, it is sometimes used together with one or more building blocks. Close Information For... Media Policy Makers File Formats Help: How do I view ...

  9. Evaluation of the biological efficacy of hydrogen peroxide vapour decontamination in wards of an Australian hospital.

    Science.gov (United States)

    Chan, H-T; White, P; Sheorey, H; Cocks, J; Waters, M-J

    2011-10-01

    This study assessed the efficacy of a 'dry' hydrogen peroxide vapour decontamination in an Australian hospital via a two-armed study. The in vivo arm examined the baseline bacterial counts in high-touch zones within wards and evaluated the efficacy of cleaning with a neutral detergent followed by either hydrogen peroxide vapour decontamination, or a manual terminal clean with bleach or Det-Sol 500. The in vitro arm examined the efficacy of hydrogen peroxide vapour decontamination on a variety of different surfaces commonly found in the wards of an Australian hospital, deliberately seeded with a known concentration of vancomycin-resistant enterococci (VRE). All bacterial counts were evaluated by a protocol of contact plate method. In the in vivo arm, 33.3% of the high-touch areas assessed had aerobic bacterial count below the detection limit (i.e. no bacteria recoverable) post hydrogen peroxide decontamination, and in all circumstances the highest microbial density was ≤3 cfu/cm(2), while in the in vitro arm there was at least a reduction in bacterial load by a factor of 10 at all surfaces investigated. These results showed that dry hydrogen peroxide vapour room decontamination is highly effective on a range of surfaces, although the cleanliness data obtained by these methods cannot be easily compared among the different surfaces as recovery of organisms is affected by the nature of the surface.

  10. Next Generation Non-particulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Ramkumar, S S; Love, A; Sata, U R; Koester, C J; Smith, W J; Keating, G A; Hobbs, L; Cox, S B; Lagna, W M; Kendall, R J

    2008-05-01

    New, non-particulate decontamination materials promise to reduce both military and civilian casualties by enabling individuals to decontaminate themselves and their equipment within minutes of exposure to chemical warfare agents or other toxic materials. One of the most promising new materials has been developed using a needlepunching nonwoven process to construct a novel and non-particulate composite fabric of multiple layers, including an inner layer of activated carbon fabric, which is well-suited for the decontamination of both personnel and equipment. This paper describes the development of a composite nonwoven pad and compares efficacy test results for this pad with results from testing other decontamination systems. The efficacy of the dry nonwoven fabric pad was demonstrated specifically for decontamination of the chemical warfare blister agent bis(2-chloroethyl)sulfide (H or sulfur mustard). GC/MS results indicate that the composite fabric was capable of significantly reducing the vapor hazard from mustard liquid absorbed into the nonwoven dry fabric pad. The mustard adsorption efficiency of the nonwoven pad was significantly higher than particulate activated carbon (p=0.041) and was similar to the currently fielded US military M291 kit (p=0.952). The nonwoven pad has several advantages over other materials, especially its non-particulate, yet flexible, construction. This composite fabric was also shown to be chemically compatible with potential toxic and hazardous liquids, which span a range of hydrophilic and hydrophobic chemicals, including a concentrated acid, an organic solvent and a mild oxidant, bleach.

  11. Study on magnetic separation for decontamination of cesium contaminated soil by using superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, Susumu, E-mail: igarashi@qb.see.eng.osaka-u.ac.jp; Nomura, Naoki; Mishima, Fumihito; Akiyama, Yoko, E-mail: yoko-ak@see.eng.osaka-u.ac.jp

    2014-09-15

    Highlights: • The method for the soil decontamination by the superconducting magnet is proposed. • Magnetic separation of clay minerals was performed by HGMS. • Soil separation ratio was evaluated by quantitative analysis using XRD. • It is expected that HGMS can be applied to the actual soil decontamination. - Abstract: The accident of Fukushima Daiichi nuclear power plant caused the diffusion of radioactive cesium over the wide area. We examined the possibility of applying magnetic separation method using the superconducting magnet, which can process a large amount of the soil in high speed, to the soil decontamination and volume reduction of the radioactive cesium contaminated soil. Clay minerals are classified as 2:1 and 1:1 types by the difference of their layer structures, and these types of minerals are respectively paramagnetic and diamagnetic including some exception. It is known that most of the radioactive cesium is strongly adsorbed on the clay, especially on 2:1 type clay minerals. It is expected that the method which can separate only 2:1 type clay minerals selectively from the mixture clay minerals can enormously contribute to the volume reduction of the contaminated soil. In this study, the components in the clay before and after separation were evaluated to estimate the magnetic separation efficiency by using X-ray diffraction. From the results, the decontamination efficiency and the volume reduction ratio were estimated in order to examine the appropriate separation conditions for the practical decontamination of the soil.

  12. An electrochemical and high-speed imaging study of micropore decontamination by acoustic bubble entrapment.

    Science.gov (United States)

    Offin, Douglas G; Birkin, Peter R; Leighton, Timothy G

    2014-03-14

    Electrochemical and high-speed imaging techniques are used to study the abilities of ultrasonically-activated bubbles to clean out micropores. Cylindrical pores with dimensions (diameter × depth) of 500 μm × 400 μm (aspect ratio 0.8), 125 μm × 350 μm (aspect ratio 2.8) and 50 μm × 200 μm (aspect ratio 4.0) are fabricated in glass substrates. Each pore is contaminated by filling it with an electrochemically inactive blocking organic material (thickened methyl salicylate) before the substrate is placed in a solution containing an electroactive species (Fe(CN)6(3-)). An electrode is fabricated at the base of each pore and the Faradaic current is used to monitor the decontamination as a function of time. For the largest pore, decontamination driven by ultrasound (generated by a horn type transducer) and bulk fluid flow are compared. It is shown that ultrasound is much more effective than flow alone, and that bulk fluid flow at the rates used cannot decontaminate the pore completely, but that ultrasound can. In the case of the 125 μm pore, high-speed imaging is used to elucidate the cleaning mechanisms involved in ultrasonic decontamination and reveals that acoustic bubble entrapment is a key feature. The smallest pore is used to explore the limits of decontamination and it is found that ultrasound is still effective at this size under the conditions employed.

  13. Analysis of the application of decontamination technologies to radioactive metal waste minimization using expert systems

    Energy Technology Data Exchange (ETDEWEB)

    Bayrakal, S.

    1993-09-30

    Radioactive metal waste makes up a significant portion of the waste currently being sent for disposal. Recovery of this metal as a valuable resource is possible through the use of decontamination technologies. Through the development and use of expert systems a comparison can be made of laser decontamination, a technology currently under development at Ames Laboratory, with currently available decontamination technologies for applicability to the types of metal waste being generated and the effectiveness of these versus simply disposing of the waste. These technologies can be technically and economically evaluated by the use of expert systems techniques to provide a waste management decision making tool that generates, given an identified metal waste, waste management recommendations. The user enters waste characteristic information as input and the system then recommends decontamination technologies, determines residual contamination levels and possible waste management strategies, carries out a cost analysis and then ranks, according to cost, the possibilities for management of the waste. The expert system was developed using information from literature and personnel experienced in the use of decontamination technologies and requires validation by human experts and assignment of confidence factors to the knowledge represented within.

  14. Detection and decontamination of residual energetics from ordnance and explosives scrap.

    Science.gov (United States)

    Jung, Carina M; Newcombe, David A; Crawford, Don L; Crawford, Ronald L

    2004-02-01

    Extensive manufacturing of explosives in the last century has resulted in widespread contamination of soils and waters. Decommissioning and cleanup of these materials has also led to concerns about the explosive hazards associated with residual energetics still present on the surfaces of ordnance and explosives scrap. Typically, open burning or detonation is used to decontaminate ordinance and explosive scrap. Here the use of an anaerobic microbiological system applied as a bioslurry to decontaminate energetics from the surfaces of metal scrap is described. Decontamination of model metal scrap artificially contaminated with 2,4,6-trinitrotoluene and of decommissioned mortar rounds still containing explosives residue was examined. A portable ion mobility spectrometer was employed for the detection of residual explosives residues on the surfaces of the scrap. The mixed microbial populations of the bioslurries effectively decontaminated both the scrap and the mortar rounds. Use of the ion mobility spectrometer was an extremely sensitive field screening method for assessing decontamination and is a method by which minimally trained personnel can declare scrap clean with a high level of certainty.

  15. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder

    Directory of Open Access Journals (Sweden)

    Lovisa eEliasson

    2015-09-01

    Full Text Available There is currently a need in developing new decontamination technologies for spices due to limitations of existing technologies, mainly regarding their effects on spices’ sensory quality. In the search of new decontamination solutions, it is of interest to compare different technologies, to provide the industry with knowledge for taking decisions concerning appropriate decontamination technologies for spices. The present study compares infrared and microwave decontamination of naturally contaminated paprika powder after adjustment of water activity to 0.88. Infrared respectively microwave heating was applied to quickly heat up paprika powder to 98°C, after which the paprika sample was transferred to a conventional oven set at 98°C to keep the temperature constant during a holding time up to 20 min. In the present experimental set-up microwave treatment at 98°C for 20 min resulted in a reduction of 4.8 log units of the total number of mesophilic bacteria, while the infrared treatment showed a 1 log unit lower reduction for the corresponding temperature and treatment time. Microwave and infrared heating created different temperature profiles and moisture distribution within the paprika sample during the heating up part of the process, which is likely to have influenced the decontamination efficiency. The results of this study are used to discuss the difficulties in comparing two thermal technologies on equal conditions due to differences in their heating mechanisms.

  16. All-Weather Hydrogen Peroxide-Based Decontamination of CBRN Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, George W. [U.S. Army Edgewood Chemical Biological Center (ECBC), Aberdeen Proving Ground, MD (United States); Procell, Lawrence R. [U.S. Army Edgewood Chemical Biological Center (ECBC), Aberdeen Proving Ground, MD (United States); Sorrick, David C. [U.S. Army Edgewood Chemical Biological Center (ECBC), Aberdeen Proving Ground, MD (United States); Lawson, Glenn E. [Naval Surface Warfare Center (NSWC), Dahlgren, VA (United States); Wells, Claire M. [Naval Surface Warfare Center (NSWC), Dahlgren, VA (United States); Reynolds, Charles M. [U.S. Army Cold Regions Research and Engineering Lab. (CRREL), Hanover, NH (United States); Ringelberg, D. B. [U.S. Army Cold Regions Research and Engineering Lab. (CRREL), Hanover, NH (United States); Foley, Karen L. [U.S. Army Cold Regions Research and Engineering Lab. (CRREL), Hanover, NH (United States); Lumetta, Gregg J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Blanchard, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2010-03-11

    A hydrogen peroxide-based decontaminant, Decon Green, is efficacious for the decontamination of chemical agents VX (S-2-(diisopropylamino)ethyl O-ethyl methylphosphonothioate), GD (Soman, pinacolyl methylphosphonofluoridate), and HD (mustard, bis(2-chloroethyl) sulfide); the biological agent anthrax (Bacillus anthracis); and radiological isotopes Cs-137 and Co-60; thus demonstrating the ability of this decontamination approach to ameliorate the aftermath of all three types of weapons of mass destruction (WMD). Reaction mechanisms afforded for the chemical agents are discussed as are rationales for the enhanced removal efficacy of recalcitrant 60Co on certain surfaces. Decontaminants of this nature can be deployed, and are effective, at very low temperatures (-32 °C), as shown for studies done with VX and HD simulants, without the need for external heat sources. Finally, the efficacy of a lower-logistics, dry decontaminant powder concentrate (utilizing the solid active-oxygen compounds peracetyl borate and Peroxydone) which can be reconstituted with water in the field prior to use, is presented.

  17. Selective decontamination of the oral and digestive tract in surgical versus non-surgical patients in intensive care in a cluster-randomized trial.

    NARCIS (Netherlands)

    Melsen, W.G.; Smet, A.M. de; Kluytmans, J.A.; Bonten, M.J.; Pickkers, P.

    2012-01-01

    BACKGROUND: Selective digestive decontamination (SDD) and selective oropharyngeal decontamination (SOD) are effective in improving survival in patients under intensive care. In this study possible differential effects in surgical and non-surgical patients were investigated. METHODS: This was a post

  18. Controlled iodine release from polyurethane sponges for water decontamination.

    Science.gov (United States)

    Aviv, Oren; Laout, Natalia; Ratner, Stanislav; Harik, Oshrat; Kunduru, Konda Reddy; Domb, Abraham J

    2013-12-28

    Iodinated polyurethane (IPU) sponges were prepared by immersing sponges in aqueous/organic solutions of iodine or exposing sponges to iodine vapors. Iodine was readily adsorbed into the polymers up to 100% (w/w). The adsorption of iodine on the surface was characterized by XPS and SEM analyses. The iodine loaded IPU sponges were coated with ethylene vinyl acetate (EVA), in order to release iodine in a controlled rate for water decontamination combined with active carbon cartridge, which adsorbs the iodine residues after the microbial inactivation. The EVA coated IPU were incorporated in a water purifier and tested for iodine release to water and for microbial inactivation efficiency according to WQA certification program against P231/EPA for 250l, using 25l a day with flow rate of 6-8min/1l. The antimicrobial activity was also studied against Escherichia coli and MS2 phage. Bacterial results exceeded the minimal requirement for bacterial removal of 6log reduction throughout the entire lifespan. At any testing point, no bacteria was detected in the outlet achieving more than 7.1 to more than 8log reduction as calculated upon the inlet concentration. Virus surrogate, MS2, reduction results varied from 4.11log reduction under tap water, and 5.11log reduction under basic water (pH9) to 1.32 for acidic water (pH5). Controlled and stable iodine release was observed with the EVA coated IPU sponges and was effective in deactivating the bacteria and virus present in the contaminated water and thus, these iodinated PU systems could be used in water purification to provide safe drinking water. These sponges may find applications as disinfectants in medicine.

  19. External decontamination of wild leeches with hypochloric acid

    Directory of Open Access Journals (Sweden)

    Tuncer Serdar

    2004-08-01

    External decontamination of wild leeches with 12.5 ppm hypochloric acid enables bacterial suppression without causing negative effects on leech sucking function and life.

  20. Decontamination and Decommissioning Project for the Nuclear Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. H.; Paik, S. T.; Park, S. W. and others

    2006-02-15

    The final goal of this project is to complete safely and successfully the decommissioning of the Korean Research Reactor no.1 (KRR-1) and the Korean Research Reactor no.2 (KRR-2), and uranium conversion plant (UCP). The dismantling of the reactor hall of the KRR-2 was planned to complete till the end of 2004, but it was delayed because of a few unexpected factors such as the development of a remotely operated equipment for dismantling of the highly radioactive parts of the beam port tubes. In 2005, the dismantling of the bio-shielding concrete structure of the KRR-2 was finished and the hall can be used as a temporary storage space for the radioactive waste generated during the decommissioning of the KRR-1 and KRR-2. The cutting experience of the shielding concrete by diamond wire saw and the drilling experience by a core boring machine will be applied to another nuclear facility dismantling. An effective management tool of the decommissioning projects, named DECOMIS, was developed and the data from the decommissioning projects were gathered. This system provided many information on the daily D and D works, waste generation, radiation dose, etc., so an effective management of the decommissioning projects is expected from next year. The operation experience of the uranium conversion plant as a nuclear fuel cycle facility was much contributed to the localization of nuclear fuels for both HWR and PWR. It was shut down in 1993 and a program for its decontamination and dismantling was launched in 2001 to remove all the contaminated equipment and to achieve the environment restoration. The decommissioning project is expected to contribute to the development of the D and D technologies for the other domestic fuel cycle facilities and the settlement of the new criteria for decommissioning of the fuel cycle related facilities.

  1. Plutonium Decontamination Using CBI Decon Gel 1101 in Highly Contaminated and Unique Areas at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Fischer, R P; Thoet, M M; O' Neill, M; Edgington, G

    2008-06-09

    A highly contaminated glove-box at LLNL containing plutonium was decontaminated using a strippable decontamination gel. 6 x 12 inch quadrants were mapped out on each of the surfaces. The gel was applied to various surfaces inside the glove-box and was allowed to cure. The radioactivity in each quadrant was measured using a LLNL Blue Alpha meter with a 1.5 inch standoff distance. The results showed decontamination factors of 130 and 210 on cast steel and Lexan{reg_sign} surfaces respectively after several applications. The gel also absorbed more than 91% of the radiation emitted from the surfaces during gel curing. The removed strippable film was analyzed by neutron multiplicity counting and gamma spectroscopy, yielding relative mass information and radioisotopic composition respectively.

  2. Decontamination of chemical agents from drinking water infrastructure: a literature review and summary.

    Science.gov (United States)

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of chemical contamination on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some chemical contaminants, but important data gaps remain. In general, data on chemical persistence on drinking water infrastructure is available for inorganics such as arsenic and mercury, as well as select organics such as petroleum products, pesticides and rodenticides. Data specific to chemical warfare agents and pharmaceuticals was not found and data on toxins is scant. Future research suggestions focus on expanding the available chemical persistence data to other common drinking water infrastructure materials. Decontaminating agents that successfully removed persistent contamination from one infrastructure material should be used in further studies. Methods for sampling or extracting chemical agents from water infrastructure surfaces are needed.

  3. Decontamination of paint-coated concrete in nuclear plants using laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton; Lippmann, Wolfgang; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Technology

    2013-07-01

    A review of the state of the art shows the technical novelty of the combined project. The development of an all-in-one process for treatment hazard chemical contamination on concrete structures with online monitoring method reduces the laborious mechanic decontamination and post-treatment. For safe experimental investigations, a three-barrier-system was constructed and can be used for tests with - first - epoxy paint in order to analyze and optimize the process. Simulation models help to formulate a mathematic scheme of the decontamination process by laser technology. The goal is a decontamination system with an online analyzing system of the flue gas for a mobile and extensive component in nuclear and conventional decommission. (orig.)

  4. Polychlorinated biphenyl (PCB) decontamination kinetics in lactating goats (Capra hircus) following a contaminated corn silage exposure.

    Science.gov (United States)

    Fournier, Agnès; Rychen, Guido; Marchand, Philippe; Toussaint, Hervé; Le Bizec, Bruno; Feidt, Cyril

    2013-07-24

    This study aimed to determine the kinetics of contamination and decontamination of PCBs and PCDD/Fs in milk of lactating goats. Four goats were fed during 39 days with corn silage collected in an area accidentally contaminated and then with uncontaminated silage during 20 days. Concentrations of DL-PCBs + PCDD/Fs in milk exceeded rapidly (<15 days) the European limit value and approached steady state after 5 weeks. The decontamination kinetics in milk included first a rapid elimination phase (<10 days) followed by a slower elimination phase of 33, 51, and 59 days for DL-PCBs, NDL-PCBs, and PCDD/Fs, respectively. Therefore, in lactating goats, PCBs and PCDD/Fs contaminated forage raises concerns in terms of food safety. The study also indicates that a decontamination process of lactating animals remains feasible; 20 days was considered to be sufficient to obtain a DL-PCBs + PCDD/Fs level in milk below the regulatory value.

  5. Safety analysis report for packaging (onsite) decontaminated equipment self-container

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, W.M.

    1998-09-29

    The purpose of this Safety Analysis Report for Packaging (SARP) is to demonstrate that specific decontaminated equipment can be safely used as its own self-container. As a Decontaminated Equipment Self-Container (also referred to as a self-container), no other packaging, such as a burial box, would be required to transport the equipment onsite. The self-container will consist of a piece of equipment or apparatus which has all readily removable interior contamination removed, all of its external openings sealed, and all external surfaces decontaminated to less than 2000 dpm/100 cm for gamma-emitting radionuclides and less than 220 dpm/100 CM2 for alpha-emitting radionuclides.

  6. Effect of presilanization filler decontamination on aesthetics and degradation resistance of resin composites.

    Science.gov (United States)

    Yoshida, Yasuhiro; Shirai, Kenichi; Shintani, Hideaki; Okazaki, Masayuki; Suzuki, Kazuomi; Van Meerbeek, Bart

    2002-12-01

    Filler-matrix coupling determines, to a large extent, the mechanical strength and clinical longevity of dental composites. The aim of this study was to examine how far a methodology to decontaminate filler prior to silanization may improve aesthetic performance in addition to physico-mechanical properties such as degradation resistance. It was reported that filler particles are surrounded and wrapped by a film that consists of multiple layers of silane molecules. X-ray photoelectron spectroscopy, however, revealed that silanization of filler particles largely depended upon siloxane bridge (Si-O-Si) formation between the silica surface and the silane molecule rather than on intermolecular bonding between adjacent silane molecules. In this study, we showed that filler decontamination resulted in a higher translucency, thereby providing a better aesthetic potential. In addition, experimental composites produced following presilanization decontamination of filler revealed a higher Vickers hardness value and a diametral tensile strength that was resistant to degradation by thermo-cycling.

  7. A state of the art report on the decontamination technology for dry ice blasting

    Energy Technology Data Exchange (ETDEWEB)

    Shin, J. M.; Kim, K. H.; Park, J. J.; Lee, H. H.; Yang, M. S.; Nam, S. H.; Kim, M. J

    2000-05-01

    DUPIC fuel fabrication process is a dry processing technology to manufacture CANDU compatible fuel through a direct reprocessing fabrication process from spent PWR fuel. DUPIC fuel fabrication process consists of the slitting of the spent PWR fuel rods, OREOX processing, homogeneous mixing, pelletizing and sintering. All these processes should be conducted by remote means in a M6 hot cell at IMEF. Since DUPIC fuel fabrication process includes powder handling process of highly radioactive spent fuel, decontamination of highly radioactive particulates from all types of surfaces such as DUPIC fuel manufacturing equipment, hot cell floor, tools is very important to improve the safety of hot cell and reduce the dose exposure to operator, This report describes various technologies for dry ice blasting. It provides the fundamentals of dry ice blasting decontamination and technical review of dry ice blasting on the radioactive decontamination.

  8. Inhibiting Inosine Hydrolase and Alanine Racemase to Enhance the Germination of Bacillus anthracis Sterne Spores: Potential Spore Decontamination Strategies

    Science.gov (United States)

    2015-06-19

    2015): << Inhibiting inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores: potential spore...inosine hydrolase and alanine racemase to enhance the germination of Bacillus anthracis Sterne spores potential spore decontamination strategies 5a...EASIER, SAFER, and CHEAPER Inducing spore germination should make resulting bacteria much more susceptible to decontamination methods and will be

  9. Differences detected in vivo between samples of aflatoxin-contaminated peanut meal, following decontamination by two ammonia-based processes

    NARCIS (Netherlands)

    Neal, G.E.; Judah, D.J.; Garthew, P.; Verma, A.; Latour, I.; Weir, L.; Coker, R.D.; Nagler, M.J.; Hoogenboom, L.A.P.

    2001-01-01

    A sample of peanut meal, highly contaminated with aflatoxins, has been subjected to decontamination by two commercial ammonia-based processes. The original contaminated and the two decontaminated meals were fed to rats for 90 days. No lesions associated with aflatoxin-induced hepatocarcinogenesis we

  10. Prevention of infection in children with acute leukaemia - No major difference between total and selective bowel decontamination

    NARCIS (Netherlands)

    Muis, N; Kamps, WA

    1996-01-01

    To evaluate the effect of total bowel decontamination (TD) and selective bowel decontamination (SD) in a non-protective environment clinical and laboratory data of children treated for acute leukaemia between 1983 and 1991 were analysed retrospectively. From 1983 until 1989 34 patients [18 acute non

  11. Thermal Stability Studies of Candidate Decontamination Agents for Hanford’s Plutonium Finishing Plant Plutonium-Contaminated Gloveboxes

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, Randall D.; Cooper, Thurman D.; Jones, Susan A.; Ewalt, John R.; Compton, James A.; Trent, Donald S.; Edwards, Matthew K.; Kozelisky, Anne E.; Scott, Paul A.; Minette, Michael J.

    2005-09-29

    This report provides the results of PNNL's and Fluor's studies of the thermal stabilities of potential wastes arising from decontamination of Hanford's Plutonium Finishing Plant's plutonium contaminated gloveboxes. The candidate wastes arising from the decontamination technologies ceric nitrate/nitric acid, RadPro, Glygel, and Aspigel.

  12. Cold-air atmospheric pressure plasma against Clostridium difficile spores: a potential alternative for the decontamination of hospital inanimate surfaces.

    Science.gov (United States)

    Claro, Tânia; Cahill, Orla J; O'Connor, Niall; Daniels, Stephen; Humphreys, Hilary

    2015-06-01

    Clostridium difficile spores survive for months on environmental surfaces and are highly resistant to decontamination. We evaluated the effect of cold-air plasma against C. difficile spores. The single-jet had no effect while the multi-jet achieved 2-3 log10 reductions in spore counts and may augment traditional decontamination.

  13. Building Inclusion

    NARCIS (Netherlands)

    Jeanet Kullberg; Isik Kulu-Glasgow

    2009-01-01

    The social inclusion of immigrants and ethnic minorities is a central issue in many European countries. Governments face challenges in ensuring housing for immigrants, delivering public services, promoting neighbourhood coexistence and addressing residential segregation. The Building Inclusion proje

  14. Decontamination options for Bacillus anthracis-contaminated drinking water determined from spore surrogate studies.

    Science.gov (United States)

    Raber, Ellen; Burklund, Alison

    2010-10-01

    Five parameters were evaluated with surrogates of Bacillus anthracis spores to determine effective decontamination alternatives for use in a contaminated drinking water supply. The parameters were as follows: (i) type of Bacillus spore surrogate (B. thuringiensis or B. atrophaeus), (ii) spore concentration in suspension (10(2) and 10(6) spores/ml), (iii) chemical characteristics of the decontaminant (sodium dichloro-S-triazinetrione dihydrate [Dichlor], hydrogen peroxide, potassium peroxymonosulfate [Oxone], sodium hypochlorite, and VirkonS), (iv) decontaminant concentration (0.01% to 5%), and (v) exposure time to decontaminant (10 min to 1 h). Results from 138 suspension tests with appropriate controls are reported. Hydrogen peroxide at a concentration of 5% and Dichlor or sodium hypochlorite at a concentration of 2% were highly effective at spore inactivation regardless of spore type tested, spore exposure time, or spore concentration evaluated. This is the first reported study of Dichlor as an effective decontaminant for B. anthracis spore surrogates. Dichlor's desirable characteristics of high oxidation potential, high level of free chlorine, and a more neutral pH than that of other oxidizers evaluated appear to make it an excellent alternative. All three oxidizers were effective against B. atrophaeus spores in meeting the EPA biocide standard of greater than a 6-log kill after a 10-min exposure time and at lower concentrations than typically reported for biocide use. Solutions of 5% VirkonS and Oxone were less effective as decontaminants than other options evaluated in this study and did not meet the EPA's efficacy standard for a biocide, although they were found to be as effective for concentrations of 10(2) spores/ml. Differences in methods and procedures reported by other investigators make quantitative comparisons among studies difficult.

  15. Integrating microbial decontamination with organic acids in HACCP programmes for muscle foods: prospects and controversies.

    Science.gov (United States)

    Smulders, F J; Greer, G G

    1998-11-10

    A considerable literature reports the antibacterial efficacy of dilute solutions of organic acids (lactic, acetic). With carcasses an overall reduction in surface contaminants of 1.5 log cycles can be expected. Carcass decontamination may not improve the safety of the resultant meat, but laboratory trials confirm that acid decontamination of subprimal and retail cuts is more efficacious. An advantage over many other intervention strategies is that residual antimicrobial activity is demonstrable over extended periods of storage. These studies have also shown that some meatborne pathogens are particularly sensitive to organic acids (i.e., Yersinia enterocolitica) while others are resistant (i.e., E. coli O157:H7). Dilute solutions of organic acids (1 to 3%) are generally without effect on the desirable sensory properties of meat when used as a carcass decontaminant. However, dependent on treatment conditions, lactic and acetic acid can produce adverse sensory changes when applied directly to meat cuts, with irreversible changes in appearance being a frequent occurrence. It is speculated that organic acid decontamination will be implemented in American abattoirs in an effort to meet specified performance standards for pathogen reduction as part of an overall HACCP program. In contrast, the EU advocates that strictly controlled processing hygiene is sufficient to ensure the safety of the product. Additional research is necessary to establish a set of treatment conditions that may permit a practicable reduction in bacterial contamination throughout the processing chain with a measurable effect on safety and storage life, without imposing any change in sensory properties. It will also be necessary to develop standard, objective measures to assess HACCP and the efficacy of decontamination procedures. Without such commercial studies controversy on the practicality of acid decontamination will persist.

  16. In vivo decontamination of the nerve agent VX using the domestic swine model.

    Science.gov (United States)

    Misik, Jan; Pavlik, Michal; Novotny, Ladislav; Pavlikova, Ruzena; Chilcott, Robert P; Cabal, Jiri; Kuca, Kamil

    2012-11-01

    The purpose of this in vivo study was to assess a new, putatively optimised method for mass casualty decontamination ("ORCHIDS protocol") for effectiveness in removing the chemical warfare agent VX from the skin of anaesthetised, domestic white pigs. ORCHIDS protocol consists of a 1.5-minute shower with a mild detergent (Argos™) supplemented by physical removal. A standard method of wet decontamination was used for comparison. Experimental animals were divided into four groups (A-D). Two groups were exposed to a supra-lethal percutaneous dose (5 × LD(50); 300 μg kg(-1)) of VX for 1 h prior to decontamination with either the ORCHIDS (C) or standard protocol (D). A third (B, positive control) group was exposed but not subject to decontamination. Blank controls (A) received anaesthesia and the corresponding dose of normal saline instead of VX. Observations of the clinical signs of intoxication were supplemented by measurements of whole blood cholinesterase (ChE) performed on samples of arterial blood acquired at 30-minute intervals for the duration of the study (up to 6 h). Untreated (B) animals displayed typical cholinergic signs consistent with VX intoxication (local fasciculation, mastication, salivation, pilo-erection and motor convulsions) and died 165-240 min post exposure. All animals in both decontamination treatment groups (C, D) survived the duration of the study and exhibited less severe signs of cholinergic poisoning. Thus, both the standard and ORCHIDS protocol were demonstrably effective against exposure to the potent nerve agent VX, even after a delay of 1 h. A critical advantage of the ORCHIDS protocol is the relatively short shower duration (1½ min compared to 3 min). In practice, this could substantially improve the rate at which individuals could be decontaminated by emergency responders following exposure to toxic materials such as chemical warfare agents.

  17. Sustainable Buildings

    DEFF Research Database (Denmark)

    Tommerup, Henrik M.; Elle, Morten

    The scientific community agrees that: all countries must drastically and rapidly reduce their CO2 emissions and that energy efficient houses play a decisive role in this. The general attitude at the workshop on Sustainable Buildings was that we face large and serious climate change problems...... that need urgent action. The built environment is an obvious area to put effort into because of the large and cost-effective energy saving potential and potential for Renewable Energy-based supply systems for buildings....

  18. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    CERN Document Server

    Lumia, M E

    2002-01-01

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  19. Research and development for decontamination system of spent resin in Hanbit Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Gi Hong [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2015-12-15

    When reactor coolant leaks occur due to cracks of a steam generator tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000-7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In

  20. The effect of ionizing radiation on microbiological decontamination of medical herbs and biologically active compounds

    Science.gov (United States)

    Migdal, W.; Owczarczyk, B.; Kedzia, B.; Holderna-Kedzia, E.; Segiet-Kujawa, E.

    1998-06-01

    Several thousand tons of medical herbs are produced annually by pharmaceutical industry in Poland. This product should be of highest quality and microbial purity. Recently, chemical methods of decontamination are recognized as less safe, thus irradiation technique was chosen to replace them in use. In the Institute of Nuclear Chemistry and Technology the national program on the application of irradiation to the decontamination of medical herbs is in progress now. The purpose of the program is to elaborate, on the basis of research work, the facility standards and technological instructions indispensable for the practice of radiation technology.

  1. A comparative study for radiological decontamination of laboratory fume hood materials.

    Science.gov (United States)

    Thomas, Elizabeth; Sweet, Lucas; MacFarlan, Paul; McNamara, Bruce; Kerschner, Harrison

    2012-08-01

    The efficacy for radiological decontamination of the laboratory standard fume hood as constructed of stainless steel, compared to that of powder-coated carbon steel is described. While the chemical inertness of powder-coated surfaces is good, faced with everyday abrasion, aggressive inorganic solutions and vapors, and penetrating organics commonly employed in government laboratory fume hoods, radiological decontamination of powder-coated steel surfaces was found to be similar to those made of stainless steel for easily solubilized or digestible radionuclides. Plutonium was difficult to remove from stainless steel and powder-coated surfaces, especially after prolonged contact times.

  2. Rapid hospital room decontamination using ultraviolet (UV) light with a nanostructured UV-reflective wall coating.

    Science.gov (United States)

    Rutala, William A; Gergen, Maria F; Tande, Brian M; Weber, David J

    2013-05-01

    We tested the ability of an ultraviolet C (UV-C)-reflective wall coating to reduce the time necessary to decontaminate a room using a UV-C-emitting device (Tru-D SmartUVC). The reflective wall coating provided the following time reductions for decontamination: for methicillin-resistant Staphylococcus aureus, from 25 minutes 13 seconds to 5 minutes 3 seconds ([Formula: see text]), and for Clostridium difficile spores, from 43 minutes 42 seconds to 9 minutes 24 seconds ([Formula: see text]).

  3. Water soluble decontamination coating for Defense Waste Processing Facility (DWPF) canisters

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.L.

    1986-12-17

    Water soluble sodium borate glass coating was successfully codeveloped by Clemson University (Dr. H.G. Lefort) and Du Pont as an alternative decontamination process to frit slurry blasting of Defense Waste Processing Facility (DWPF) canisters. Slurry blasting requires transport of abrasive slurries, might cause galling by entrapped frit particles, and could result in frit slurry freezeup in pumps and retention basins. Contamination can be removed from precoated canisters with a gentle hot water rinse. Glass waste spilled on a coated canister will spall off spontaneously during canister cooling. A glass coating appears to prevent transfer of contamination to the Canister Decontamination Cell (CDC) guides and cradle. 1 ref., 5 tabs.

  4. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  5. Effect of different technological processes on the decontamination of meat contaminated with radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kossakowski, S.; Dziura, A. [National Veterinary Research Institute, Pulawy (Poland)

    1993-12-31

    The decontamination effect of curing along with the determination of the radioactivities of brine and salt concentrations in pork and mutton contaminated with Cs-137 were examined. The obtained results showed that curing pork and mutton in 5 and 10% brine, respectively, for 7 d proved to be the best method if effectiveness and the concentration of salt in cured meat were taken into consideration. The decontamination effectiveness of curing was 78.7 and 80.3%, respectively. (author). 8 refs, 3 tabs.

  6. Laboratory Evaluation of the Clean Earth Technologies Decontamination Solutions for Chemical and Biological Agents

    Science.gov (United States)

    2008-01-01

    about a 6-hr shelf - life before simulant decontamination efficacy begins to decline. The purpose of this test was to evaluate two CET decontamination...Store in a sealed beaker 2) PeridoxTM stock - Dilute (1: 10) CET in water 3) Titrant - 0.1 N sodium thiosulfate 4) Potassium iodide crystals...Procedure: To 50 mL of water in a beaker, add 1 mL of dilute CET followed by 2.5 mL of acid solution, and then 0.6 g of potassium iodide crystals. Titrate

  7. Progress in decontamination by halophilic microorganisms in saline wastewater and soil.

    Science.gov (United States)

    Zhuang, Xuliang; Han, Zhen; Bai, Zhihui; Zhuang, Guoqiang; Shim, Hojae

    2010-05-01

    Environments with high-salt concentrations are often populated by dense microbial communities. Halophilic microorganisms can be isolated from different saline environments and different strains even belonging to the same genus have various applications. Wastewater and soil rich in both organic matter and salt are difficult to treat using conventional microorganisms typically found in wastewater treatment and soil bioremediation facilities. Studies on decontaminative capabilities and decontamination pathways of organic contaminants (i.e., aromatic compounds benzoate, cinnamate, 3-phenylpropionate, 4-hydroxybenzoic acid), heavy metals (i.e., tellurium, vanadium), and nutrients in the biological treatment of saline wastewater and soil by halophilic microorganisms are discussed in this review.

  8. Our Buildings, Ourselves.

    Science.gov (United States)

    Roodman, David Malin; Lenssen, Nicholas

    1994-01-01

    Reviews in detail environmental impacts associated with buildings. Discusses building construction, internal environments, building life spans, building materials, protection from climate, and amenities. (LZ)

  9. Fiscal years 1993 and 1994 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Decontamination and Decommissioning Projects Department

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    This photobriefing book describes the ongoing decontamination and decommissioning projects at the Argonne National Laboratory (ANL)-East Site near Lemont, Illinois. The book is broken down into three sections: introduction, project descriptions, and summary. The introduction elates the history and mission of the Decontamination and Decommissioning (D and D) Projects Department at ANL-East. The second section describes the active ANL-East D and D projects, giving a project history and detailing fiscal year (FY) 1993 and FY 1994 accomplishments and FY 1995 goals. The final section summarizes the goals of the D and D Projects Department and the current program status. The D/D projects include the Experimental Boiling Water Reactor, Chicago Pile-5 Reactor, that cells, and plutonium gloveboxes. 73 figs.

  10. Comparison of the efficiency of several methods of surface decontamination; comparaison de l'efficacite de quelques procedes de decontamination surfacique

    Energy Technology Data Exchange (ETDEWEB)

    Duigou, A.; Fattahi, M. [Subatech, Ecole des Mines de Nantes, 44 (France); Fazileabasse, J. [Electricite de France (EDF R and D), Dept. Simulation et Traitement de l' Information pour l' Exploitation des Systemes de Production, 78 - Chatou (France)

    2009-07-15

    The study of surface decontamination of radioactive waste packages is an important project for EDF in the context of decommissioning. This study has two objectives: firstly, to reduce dosimetry due to the control of non-contaminated area of radioactive waste packages and secondly to ensure the non-contamination of surface parcels as they are sent to their final destination (treatment site and/or storage). This serves to avoid the suspension and the filling of labile activity in the transport of packages that could lead to locally exceeding the regulatory surface contamination threshold. For that purpose, a bibliographical study of the methods of decontaminations proposed in the literature was made. This study allowed seeing if techniques could answer the chosen criteria. Techniques seeming to be able to answer the requirements were then tested to estimate their efficiency. The bibliographical study and the tries of qualification showed that a method seemed more adapted than the others to our problem.

  11. Impact of Decontamination Therapy on Ultrasound Visualization of Ingested Pills

    Directory of Open Access Journals (Sweden)

    Jason Bothwell

    2014-03-01

    Full Text Available Introduction: Acute toxic ingestion is a common cause of morbidity and mortality. Emergency physicians (EP caring for overdose (OD patients are often required to make critical decisions with incomplete information. Point of care ultrasound (POCUS may have a role in assisting EPs manage OD patients. We evaluated the impact of different liquid adjuncts used for gastric decontamination on examiners’ ability to identify the presence of tablets using POCUS, and assessed examiners’ ability to quantify the numbers of tablets in a simulated massive OD. Methods: This prospective, blinded, pilot study was performed at an academic emergency department. Study participants were volunteer resident and staff EPs trained in POCUS. Five non-transparent, sealed bags were prepared with the following contents: 1 liter (L of water, 1 L of water with 50 regular aspirin (ASA tablets, 1 L of water with 50 enteric-coated aspirin tablets (ECA, 1 L of polyethylene glycol (PEG with 50 ECA, and 1 L of activated charcoal (AC with 50 ECA. After performing POCUS on each of the bags using a 10-5 MHz linear array transducer, participants completed a standardized questionnaire composed of the following questions: (1 Were pills present? YES/NO; (2 If tablets were identified, estimate the number (1-10, 11-25, >25. We used a single test on proportions using the binomial distribution to determine if the number of EPs who identified tablets differed from 50% chance. For those tablets identified in the different solutions, another test on proportions was used to determine whether the type of solution made a difference. Since 3 options were available, we used a probability of 33.3%. Results: Thirty-seven EPs completed the study. All (37/37 EP’s correctly identified the absence of tablets in the bag containing only water, and the presence of ECA in the bags containing water and PEG. For Part 2 of the study, most participants - 25/37 (67.5% using water, 23/37 (62.1% using PEG, and

  12. DQO Summary Report for 324 and 327 Building Hot Cells D4 Project Waste Characterization

    Energy Technology Data Exchange (ETDEWEB)

    T.A. Lee

    2006-02-06

    This data quality objective (DQO) summary report provides the results of the DQO process conducted for waste characterization activities for the 324 and 327 Building hot cells decommission, deactivate, decontaminate, and demolish activities. This DQO summary report addresses the systems and processes related to the hot cells, air locks, vaults, tanks, piping, basins, air plenums, air ducts, filters, an adjacent elements that have high dose rates, high contamination levels, and/or suspect transuranic waste, which will require nonstandard D4 techniques.

  13. Development of Novel Decontamination Techniques for Chemical Agents (GB, VX, HD) Contaminated Facilities. Phase I. Identification and Evaluation of Novel Decontamination Concepts. Volume 1

    Science.gov (United States)

    1983-02-01

    evaluation were the use of hot gases, :: "vapor circulation and chemical methods, using either monoethanol amine , ¶’ n-octyl-pyridinium aldoxime bromide...ntambor) Chemical Agents Decontamination Concepts Thermal Oximes GB Installation Restoration Facilities Amines VX Structures Concrete Abrasive Ammonia...steam, ammonia, oximes and amines either alone or in series. ** V- nil- -- m- 4’- t. -U °.% INSp 119CURIlY CLASSIFICATION OF THIS PAGElfW~on Date

  14. The release of lindane from contaminated building materials.

    Science.gov (United States)

    Volchek, Konstantin; Thouin, Geneviève; Kuang, Wenxing; Li, Ken; Tezel, F Handan; Brown, Carl E

    2014-10-01

    The release of the organochlorine pesticide lindane (γ-hexachlorocyclohexane) from several types of contaminated building materials was studied to assess inhalation hazard and decontamination requirements in response to accidental and/or intentional spills. The materials included glass, polypropylene carpet, latex-painted drywall, ceramic tiles, vinyl floor tiles, and gypsum ceiling tiles. For each surface concentration, an equilibrium concentration was determined in the vapour phase of the surrounding air. Vapor concentrations depended upon initial surface concentration, temperature, and type of building material. A time-weighted average (TWA) concentration in the air was used to quantify the health risk associated with the inhalation of lindane vapors. Transformation products of lindane, namely α-hexachlorocyclohexane and pentachlorocyclohexene, were detected in the vapour phase at both temperatures and for all of the test materials. Their formation was greater on glass and ceramic tiles, compared to other building materials. An empiric Sips isotherm model was employed to approximate experimental results and to estimate the release of lindane and its transformation products. This helped determine the extent of decontamination required to reduce the surface concentrations of lindane to the levels corresponding to vapor concentrations below TWA.

  15. An Applied Study on the Decontamination and Decommissioning of Hot Cell Facilities in the United States and Comparison with the Studsvik Facility for Solid and Liquid Waste

    Energy Technology Data Exchange (ETDEWEB)

    Varley, Geoff; Rusch, Chris [NAC International, Atlanta, GA (United States)

    2006-07-15

    This report presents the plans, processes and results of the decontamination and decommissioning of the Hot Cell Facility in Building 23 at the General Atomics Torrey Pines Mesa Facility (HCF) and compares the program and cost of decommissioning HCF with the Swedish cost estimate for decontamination and decommissioning of the HM hot cell and wastes treatment facility at Studsvik in Sweden. The HCF had three main hot cells and was licensed to: Receive, handle and ship radioactive materials; Remotely handle, examine and store irradiated fuel materials; Extract tritium (engineering scale); Support new reactor production development; Develop, fabricate and inspect UO{sub 2} - BeO fuel materials. The HM facility in Studsvik was constructed to handle and package medium-active solid and liquid wastes, prior to disposal. Central to the facility is a conventional hot cell including three work stations, serviced by master slave manipulators. Other parts of the facility include holding tanks for liquid wastes and slurries, a centrifuge room, as well as an encapsulation station where drummed wastes can be encapsulated in cement, offices, laboratories and workshops and so on, as well as building and cell ventilation systems. Decontamination and decommissioning of the HCF took place during 1993 through 2001. The objective was to obtain regulatory release of the site so that it could be used on an unrestricted basis. Based on data from extensive hazardous and radiological materials characterization, GA evaluated four decommissioning options and selected dismantling as the only option that would satisfy the decommissioning objective. The decontamination and decommissioning scope included the following actions. 1. Remove the legacy waste that consisted of radioactive wastes stored at the HCF consisting of 21,434 kg of irradiated fuel material (IFM) that was owned by the US DoE and store the waste in temporary storage set up at the GA site. 2. Actual Decontamination and

  16. Competence Building

    DEFF Research Database (Denmark)

    Borrás, Susana; Edquist, Charles

    on the one hand, and the real world of innovation policy-making on the other, typically not speaking to each other. With this purpose in mind, this paper discusses the role of competences and competence-building in the innovation process from a perspective of innovation systems; it examines how governments...... and public agencies in different countries and different times have actually approached the issue of building, maintaining and using competences in their innovation systems; it examines what are the critical and most important issues at stake from the point of view of innovation policy, looking particularly...

  17. An attemp to use a pulsed CO2 laser for decontamination of radioactive metal surfaces

    Directory of Open Access Journals (Sweden)

    MILAN S. TRTICA

    2000-06-01

    Full Text Available There is a growing interest in laser radioactive decontamination of metal surfaces. It offers advantages over conventional methods: improved safety, reduction of secondary waste, reduced waste volume, acceptable cost. The main mechanism of cleaning by lasers is ablation. A pulsed TEA CO2 laser was used in this work for surface cleaning in order to show that ablation of metal surfaces is possible even at relatively low pulse energies, and to suggest that it could be competitive with other lasers because of much higher energy efficiencies. A brief theoretical analysis was made before the experiments. The laser beam was focused using a KBr-lens onto a surface contaminated with 137Cs (b-, t1/2 = 30.17 y. Three different metals were used: stainless steel, copper and aluminium. The ablated material was pumped out in an air atmosphere and transferred to a filter. The presence of activity on the filter was shown by a germanium detector-multichannel analyzer. The activity levels were measured by a GM counter. The calculated decontamination factors and collection factors showed that ablation occurs with a relatively high efficiency of decontamination. This investigation suggests that decontamination using a CO2 laser should be seriously considered.

  18. Health care worker protection in mass casualty respiratory failure: infection control, decontamination, and personal protective equipment.

    Science.gov (United States)

    Daugherty, Elizabeth L

    2008-02-01

    Maintenance of a safe and stable health care infrastructure is critical to an effective mass casualty disaster response. Both secondary contamination during chemical disasters and hospital-associated infections during epidemic illness can pose substantial threats to achieving this goal. Understanding basic principles of decontamination and infection control during responses to chemical and biologic disasters can help minimize the risks to patients and health care workers. Effective decontamination following toxic chemical exposure should include both removal of contaminated clothing and decontamination of the victim's skin. Wet decontamination is the most feasible strategy in a mass casualty situation and should be performed promptly by trained personnel. In the event of an epidemic, infection prevention and control measures are based on essential principles of hand hygiene and standard precautions. Expanded precautions should be instituted as needed to target contact, droplet, and airborne routes of infectious disease transmission. Specific equipment and measures for critical care delivery may serve to decrease risk to health care workers in the event of an epidemic. Their use should be considered in developing comprehensive disaster response plans.

  19. Assessment of decontamination methods as pretreatment of silanization of composite glass fillers.

    Science.gov (United States)

    Shirai, K; Yoshida, Y; Nakayama, Y; Fujitani, M; Shintani, H; Wakasa, K; Okazaki, M; Snauwaert, J; Van Meerbeek, B

    2000-01-01

    In terms of mechanical properties and durability, the surface of glass fillers should be decontaminated in order to optimize the silanization process for the production of resin composites. The objective of this study was to evaluate the decontamination efficiency of 18 cleaning methods on glass fillers as pretreatment of silane coupling. X-ray photoelectron spectroscopy revealed that SiO(2) boiled with a 5% sodium peroxodisulfate aqueous solution for 15 min, followed by ultrasonic rinsing with acetone for 30 min was most effective among all the decontamination methods investigated. In addition, nano-indentation measurements on SiO(2) treated by the above-mentioned method revealed that the surface was not significantly weakened as compared to untreated SiO(2). The results of this study should lead to an improved filler-matrix coupling and thus contribute to the development of better wear and fatigue-resistant composites. Therefore, sodium peroxodisulfate is proposed as a presilanization filler decontamination step in the production process of resin composites.

  20. In vivo laser scanning microscopic investigation of the decontamination of hazardous substances from the human skin

    Science.gov (United States)

    Lademann, J.; Patzelt, A.; Schanzer, S.; Richter, H.; Gross, I.; Menting, K. H.; Frazier, L.; Sterry, W.; Antoniou, C.

    2010-12-01

    The stimulation of the penetration of topically applied substances into the skin is a topic of intensive dermatological and pharmacological research. In this context, it was found that in addition to the intercellular penetration, the follicular penetration also represents an efficient penetration pathway. The hair follicles act as a long-term reservoir for topically applied substances. They are surrounded by all important target structures, such as blood capillaries, stem and dendritic cells. Therefore, the hair follicles, as well as the skin, need to be protected from hazardous substances. The traditional method of decontamination after respective accidental contacts consists of an intensive washing of the skin. However, during this mechanical procedure, the substances can be pushed even deeper into the hair follicles. In the present study, absorbent materials were applied to remove a fluorescent model substance from the skin without inducing mechanical stress. The results were compared to the decontamination effects obtained by intensive washing. Investigations were performed by means of in vivo laser scanning microscopy (LSM). The comparison revealed that decontamination with absorbent materials is more effective than decontamination with washing processes.

  1. Decontamination of radiological agents from drinking water infrastructure: a literature review and summary.

    Science.gov (United States)

    Szabo, Jeff; Minamyer, Scott

    2014-11-01

    This report summarizes the current state of knowledge on the persistence of radiological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some important radiological agents (cesium, strontium and cobalt), but important data gaps remain. Although some targeted experiments have been published on cesium, strontium and cobalt persistence on drinking water infrastructure, most of the data comes from nuclear clean-up sites. Furthermore, the studies focused on drinking water systems use non-radioactive surrogates. Non-radioactive cobalt was shown to be persistent on iron due to oxidation with free chlorine in drinking water and precipitation on the iron surface. Decontamination with acidification was an effective removal method. Strontium persistence on iron was transient in tap water, but adherence to cement-mortar has been demonstrated and should be further explored. Cesium persistence on iron water infrastructure was observed when flow was stagnant, but not with water flow present. Future research suggestions focus on expanding the available cesium, strontium and cobalt persistence data to other common infrastructure materials, specifically cement-mortar. Further exploration chelating agents and low pH treatment is recommended for future decontamination studies.

  2. Decontamination and dismantling at the CEA; L'assainissement et le demantelement au CEA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    This document presents the dismantling policy at the CEA (French Research Center on the atomic energy), the financing of the decontamination and the dismantling, the regulatory framework, the knowledge and the technology developed at the CEA, the radiation protection, the environment monitoring and the installations. (A.L.B.)

  3. Impact of digestive and oropharyngeal decontamination on the intestinal microbiota in ICU patients

    NARCIS (Netherlands)

    Benus, Robin F.; Harmsen, Hermie J.; Welling, Gjalt W.; Spanjersberg, Rob; Zijlstra, Jan G.; Degener, John E.; van der Werf, Tjip S.

    2010-01-01

    Selective digestive microbial decontamination (SDD) is hypothesized to benefit patients in intensive care (ICU) by suppressing Gram-negative potential pathogens from the colon without affecting the anaerobic intestinal microbiota. The purpose of this study was to provide more insight to the effects

  4. Progress on Fuel Receiving and Storage Decontamination Work at the West Valley Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Jablonski, J. F.; Al-Daouk, A. M.; Moore, H. R.

    2003-02-25

    The West Valley Demonstration Project (WVDP) removed the last of its spent nuclear fuel assemblies from an on-site storage pool last year and is now decontaminating its Fuel Receiving and Storage (FRS) Facility. The decontamination project will reduce the long-lived curie inventory, associated radiological hazards, and the operational costs associated with the maintenance of this facility. Workers at the WVDP conducted the first phase of the FRS decontamination project in late 2001 by removing 149 canisters that previously contained spent fuel assemblies from the pool. Removal of the canisters from the pool paved the way for nuclear divers to begin removing canister storage racks and other miscellaneous material from the FRS pool in February 2002. This was only the third time in the history of the WVDP that nuclear divers were used to perform underwater work. After decontaminating the pool, it will be drained slowly until all of the water is removed. The water will be processed through an ion exchanger to remove radioactive contaminants as it is being drained, and a fixative will be applied to the walls above the water surface to secure residual contamination.

  5. Intestinal Decontamination of Multidrug-resistant Klebsiella pneumoniae After Recurrent Infections in an Immunocompromised Host

    Science.gov (United States)

    Kronman, Matthew P.; Zerr, Danielle M.; Qin, Xuan; Englund, Janet; Cornell, Cathy; Sanders, Jean E.; Myers, Jeffrey; Rayar, Jaipreet; Berry, Jessica E.; Adler, Amanda L.; Weissman, Scott J.

    2014-01-01

    Multidrug-resistant (MDR) Enterobacteriaceae infections are associated with increased morbidity. We describe a 20-year-old hematopoietic cell transplantation recipient with recurrent MDR Klebsiella pneumoniae infection, prolonged intestinal colonization, and subsequent intestinal decontamination. Further study should evaluate stool surveillance, molecular typing, and fecal microbiota transplantation for patients with intestinal MDR Enterobacteriaceae carriage. PMID:25041704

  6. [Less ventilator-associated pneumonia after oral decontamination with chlorhexidine; a randomised trial

    NARCIS (Netherlands)

    Koeman, M.; Ven, A.J.A.M. van der; Hak, E.; Joore, J.C.; Kaasjager, H.A.; Smet, AM de; Ramsay, G.; Dormans, T.P.J.; Aarts, L.P.H.J.; Bel, E.E. de; Hustinx, W.N.; Tweel, I. van de; Hoepelman, I.M.; Bonten, M.J.M.

    2008-01-01

    OBJECTIVE: To determine the effect of oral decontamination with either chlorhexidine (CHX, 2%) or the combination chlorhexidine-colistin (CHX-COL, 2%-2%) on the frequency and the time to onset of ventilator-associated pneumonia in Intensive Care patients. DESIGN: Double blind, placebo-controlled, mu

  7. Selective digestive tract decontamination decreases time on ventilator in Guillain-Barre syndrome

    NARCIS (Netherlands)

    Eyssen, M.E.; Doorn, P.A. van; Jacobs, B.C.; Steyerberg, E.W.; Voort, P.H. van der; Zandstra, D.F.; Horn, J.; Spronk, P.E.; Hoedemaekers, C.W.E.; Bakker, J.; Jagt, M. van der

    2011-01-01

    BACKGROUND: Ventilator-associated pneumonia (VAP) occurs in more than half of mechanically ventilated patients with Guillain-Barre syndrome (GBS) and is associated with prolonged mechanical ventilation (MV). We investigated the impact of selective decontamination of the digestive tract (SDD), an int

  8. Use of selective digestive tract decontamination in european intensive cares : The ifs and whys

    NARCIS (Netherlands)

    Miranda, D. Reis; Citerio, G.; Perner, A.; Dimopoulos, G.; Torres, A.; Hoes, A.; Beale, R.; De Smet, A. M.; Kesecioglu, J.

    2015-01-01

    Background. Several studies have shown that the use of selective digestive tract decontamination (SDD) reduces mortality. However, fear for increasing multidrug resistance might prevent wide acceptance. A survey was performed among the units registered in the European Registry for Intensive Care (ER

  9. Cost effectiveness of selective decontamination of the digestive tract in liver transplant patients

    NARCIS (Netherlands)

    van Enckevort, PJ; Zwaveling, JH; Bottema, JT; Maring, JK; Klompmaker, IJ; Slooff, MJH; TenVergert, EM

    2001-01-01

    Objective: To assess the cost effectiveness of selective decontamination of the digestive tract (SDD) in liver transplant patients. Design: Randomised, placebo-controlled, double-blind trial with an integrated economic evaluation. Setting: Two university hospitals in The Netherlands. Cost effectiven

  10. Use of selective digestive tract decontamination in European intensive cares : the ifs and whys

    NARCIS (Netherlands)

    Miranda, D. Reis; Citerio, G.; Perner, A.; Dimopoulos, G.; Torres, A.; Hoes, A.; Beale, R.; De Smet, A. M.; Kesecioglu, J.

    2015-01-01

    Background. Several studies have shown that the use of selective digestive tract decontamination (SDD) reduces mortality. However, fear for increasing multidrug resistance might prevent wide acceptance. A survey was performed among the units registered in the European Registry for Intensive Care (ER

  11. Probiotics versus antibiotic decontamination of the digestive tract: infection and mortality

    NARCIS (Netherlands)

    G.J. Oudhuis (Guy); D.C. Bergmans (Tom); T. Dormans (Tom); J-H. Zwaveling (Jan-Harm); A.G. Kessels (Alphons); M.H. Prins (Martin); E.E. Stobberingh (Ellen); A. Verbon (Annelies)

    2010-01-01

    textabstractPurpose: Selective decontamination of the digestive tract (SDD) has been shown to decrease the infection rate and mortality in intensive care units (ICUs); Lactobacillus plantarum 299/299v plus fibre (LAB) has been used for infection prevention and does not harbour the potential disadvan

  12. Effectiveness of improved hydrogen peroxide in decontaminating privacy curtains contaminated with multidrug-resistant pathogens.

    Science.gov (United States)

    Rutala, William A; Gergen, Maria F; Sickbert-Bennett, Emily E; Williams, David A; Weber, David J

    2014-04-01

    We tested the ability of an improved hydrogen peroxide solution to decontaminate privacy curtains in inpatient and outpatient areas. The microbial contamination of the curtains was assessed before and after the curtains were sprayed with improved hydrogen peroxide. The disinfectant reduced the microbial load on the privacy curtains by 96.8% in 37 patient rooms.

  13. Health surveillance of personnel engaged in decontamination of depleted uranium contaminated regions

    Energy Technology Data Exchange (ETDEWEB)

    Djurovic, B. [Military Medical Academy, Radiological Protection Dept., Belgrade, Serbia and Montenegro (Yugoslavia); Spasic-Jokic, V. [ESLA Accelerator Installation, Lab. of Physics, VINCA Institute of Nuclear Sciences, Belgrade, Serbia and Montenegro (Yugoslavia); Fortuna, D.; Milenkovic, M. [NBH Military Educational Center, Krusevac, Serbia and Montenegro (Yugoslavia)

    2006-07-01

    After the NATO actions against Serbia and Montenegro, 112 locations were highly contaminated with depleted uranium-112 locations in Kosovo, 7 in the south of Serbia and 1 in Montenegro. Contaminated regions were marked, isolated and some of them decontaminated. In this paper we present the health surveillance protocol created for personnel engaged in decontamination of contaminated regions of Pljackovica and Bratoselce. They were examined and selected before decontamination and only healthy professionals (36 and 28) were engaged. Examination included: general clinical assessment, complete blood count with differential white blood cells; biochemical analysis of blood and urine, specifically renal and liver functions tests, cytogenetic tests (chromosomal aberration and micronucleus test), and laser fluorometry of 24-h urine sample and gamma spectrometry of the same if the levels were elevated. After the decontamination in the first group no clinical or biochemical changes were found, but in 3 of 36 were found unstable chromosomal aberrations. In the second group, in 3 of 28 were found unstable chromosomal aberrations and in 3 of them laser fluorometry analysis showed elevated levels of uranium (>3 {mu}g/l in two, and >5 {mu}g/l in one of them). Gamma spectrometry showed that it was not depleted, but naturally occurring uranium. Additionally performed analysis showed they were from the same village which is in the zone of highly elevated uranium level in ground and water. Three months later no chromosomal changes were found. (authors)

  14. Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers

    Science.gov (United States)

    2007-11-02

    in converting electric energy to thermal energy for the decon applications. Other conductive materials, such as polythiophenes , polypyrroles, carbon...Development of Novel Alternative Technologies for Decontamination of Warfare Agents: Electric Heating with Intrinsically Conductive Polymers...Joule)-heating with conducting polymers. The basic concept is that electrically conducting polymers, such as polyaniline, can be used as coatings or

  15. Evaluation of antimicrobial efficacy of Aloe vera and its effectiveness in decontaminating gutta percha cones

    Directory of Open Access Journals (Sweden)

    Prakash P Athiban

    2012-01-01

    Results: The zones of inhibition on the agar plate were measured as 24mm,21mm and 24mm respectively. The broth remained clear even after 48 hours of incubation. Conclusion: We conclude that Aloe vera is indeed effective as a GP decontaminant and it holds a promising future as a medium for storage of GP cones.

  16. Decontamination factor of the commercial detergents for the skin (part 3)

    Energy Technology Data Exchange (ETDEWEB)

    Miyabe, Kenjiro; Takasaki, Koji [Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Yasunaka, Hideo; Izumi, Yuichi [Japan Environment Research Corporation, Tokyo (Japan)

    2000-08-01

    The commercial detergents, which are cleansing cream, shampoo, neutral detergent, etc., were examined in order to select the body cleaners that are substitutes for the titanium dioxide paste. JNC entrusted Japan Environment Research Corporation Limited with these examinations since 1997. In 1997 and 1998, the commercial detergents were examined for Ce-144, Cs-137 and Ru-106. In 1999, 22 detergents were examined for Co-60 from the result of the past examinations. In this examination, the radioactive solution of Co-60 was dropped on the pig-skin samples. These samples were washed with each detergent after 5 minutes and 40 minutes. The decontamination factors of detergents were estimated by the radioactive ratio of the samples before and after washing. As a result of this examination, the decontamination factors for Co-60 was the same as the decontamination factors for Ce-144 and Cs-137, and 11 detergents were nominated as the cleaner that have the decontamination factor more than that of titanium dioxide paste. (author)

  17. Decontamination of Chemical/Biological Warfare (CBW) Agents Using an Atmospheric Pressure Plasma Jet (APPJ)

    Science.gov (United States)

    Herrmann, Hans W.

    1998-11-01

    The atmospheric pressure plasma jet (APPJ) is a non-thermal, high pressure, uniform glow discharge that produces a high velocity effluent stream of highly reactive chemical species. The discharge operates on a feedstock gas (e.g. He/O_2/H_2O) which flows between an outer, grounded, cylindrical electrode and an inner, coaxial electrode powered at 13.56 MHz RF. While passing through the plasma, the feedgas becomes excited, dissociated or ionized by electron impact. Once the gas exits the discharge volume, ions and electrons are rapidly lost by recombination, but the fast-flowing effluent still contains metastables (e.g. O2*, He*) and radicals (e.g. O, OH). These reactive species have been shown to be effective neutralizers of surrogates for anthrax spores, mustard blister agent and VX nerve gas. Unlike conventional, wet decontamination methods, the plasma effluent does not cause corrosion of most surfaces and does not damage wiring, electronics, nor most plastics. This makes it highly suitable for decontamination of high value sensitive equipment such as is found in vehicle interiors (i.e. tanks, planes...) for which there is currently no good decontamination technique. Furthermore, the reactive species rapidly degrade into harmless products leaving no lingering residue or harmful byproducts. Physics of the APPJ will be discussed and results of surface decontamination experiments using simulant and actual CBW agents will be presented.

  18. Development of chlorine dioxide releasing film and its application in decontaminating fresh produce

    Science.gov (United States)

    A feasibility study was conducted to develop chlorine dioxide releasing packaging films for decontaminating fresh produce. Sodium chlorite and citric acid powder were incorporated into polylactic acid (PLA) polymer. Films made with different amount of PLA (100 & 300 mg), percentage of reactant (5-60...

  19. Stainless steel crowns reuse and decontamination techniques: A survey among Indian pediatric dentists

    Directory of Open Access Journals (Sweden)

    K Farhin

    2013-01-01

    Full Text Available Objective: To determine the pattern and extent of stainless steel crown (SSC reuse following try-in and the methods employed for their decontamination among Indian pediatric dentists. Study Design: Questionnaires were delivered personally to 100 pediatric dentists selected randomly across India. Questionnaire was divided into three subsections. The first section assessed demographics to determine the sample population characteristics. The second section dealt with the pattern of SSCs use and reuse following size determination. The third section inquired into general cross infection control procedures including cleaning, sterilization, and training to assess the general level of compliance. Data analysis involved descriptive analysis using SPSS 16.0 software. Results: The majority of respondents (98.92% routinely reused the crowns after they had been tried in the patient. Only one respondent (1.08% discarded the crowns after try-in. Autoclave (25% was the most common method employed for the decontamination of tried-in SSCs among the respondents. Conclusion: The majority of the participating pediatric dentists are reusing SSCs following try-in during crown selection. However, great diversity exists in the methods employed for the decontamination of the same. This demands for more research to provide guidelines into the most effective method of decontamination.

  20. Biosafety and containment plan & design for direct sampling of operating effluent decontamination tanks

    Science.gov (United States)

    Currently, Southeast Poultry Research Laboratory (SEPRL) uses an effluent decontamination system (EDS) that serves as an enhancement, or extra barrier for biocontainment. Wastewater effluent from (A)BSL-3E and (A)BSL-2E laboratories is collected in tanks for thermal inactivation (180°F for 30 minut...

  1. Evaluation of an automated room decontamination device using aerosolized peracetic acid.

    Science.gov (United States)

    Mana, Thriveen S C; Sitzlar, Brett; Cadnum, Jennifer L; Jencson, Annette L; Koganti, Sreelatha; Donskey, Curtis J

    2017-03-01

    Because manual cleaning is often suboptimal, there is increasing interest in use of automated devices for room decontamination. We demonstrated that an ultrasonic room fogging system that generates submicron droplets of peracetic acid and hydrogen peroxide eliminated Clostridium difficile spores and vegetative pathogens from exposed carriers in hospital rooms and adjacent bathrooms.

  2. SELECTIVE INTESTINAL DECONTAMINATION FOR PREVENTION OF WOUND COLONIZATION IN SEVERELY BURNED PATIENTS - A RETROSPECTIVE ANALYSIS

    NARCIS (Netherlands)

    MANSON, WL; KLASEN, HJ; SAUER, EW; OLIEMAN, A

    1992-01-01

    In this study the effect of selective intestinal decontamination of the digestive tract (SDD) on wound colonization was investigated. Ninety-one patients with at least 25 per cent total burned surface area (TBSA) were included in this study. All patients received oral polymyxin. In 63 patients oral

  3. Gaseous decontamination treatments of food and food environments and emerging technologies

    Science.gov (United States)

    The use of gaseous sanitation treatments for decontamination of foods and food processing facilities show promise. Gases can penetrate into crevices and niches in foods and in facilities where entrapped microbes could be missed by conventional techniques of cleaning and sanitization. Many of these...

  4. Evidence based decontamination protocols for the removal of external Δ9-tetrahydrocannabinol (THC) from contaminated hair

    NARCIS (Netherlands)

    Duvivier, W.F.; Peeters, R.J.; Beek, van T.A.; Nielen, M.W.F.

    2016-01-01

    External contamination can cause false positive results in forensic hair testing for drugs of abuse and is therefore a major concern when hair evidence is used in court. Current literature about decontamination strategies is mainly focused on external cocaine contamination and no consensus on the be

  5. 40 CFR 264.114 - Disposal or decontamination of equipment, structures and soils.

    Science.gov (United States)

    2010-07-01

    ... equipment, structures and soils. 264.114 Section 264.114 Protection of Environment ENVIRONMENTAL PROTECTION... of equipment, structures and soils. During the partial and final closure periods, all contaminated equipment, structures and soils must be properly disposed of or decontaminated unless otherwise specified...

  6. Building Procurement

    DEFF Research Database (Denmark)

    Andersson, Niclas

    2007-01-01

    despite this excellent book, the knowledge, expertise, well-articulated argument and collection of recent research efforts that are provided by the three authors will help to make project success less elusive. The book constitutes a thorough and comprehensive investigation of building procurement, which......, which gives the book a challenging contribution to the existing body of knowledge....

  7. Building Sandcastles

    DEFF Research Database (Denmark)

    Jensen, Steffen Moltrup Ernø; Korsgaard, Steffen; Shumar, Wes

    of entrepreneurship education. Our theoretical and methodological approach builds on Actor-Network Theory. The empirical settings of our study consist of two entrepreneurship courses which differ in terms of temporal extension and physical setting. Data is collected using observation and interview techniques. Our...

  8. Building Partnerships.

    Science.gov (United States)

    Kisner, Mary J.; And Others

    1997-01-01

    Defines school-business partnerships and reviews changes in such partnerships over the past 25 years. Provides steps to building effective partnerships for school-to-work activities: review the school's mission; select partners that will bring strength to the relationship; set clearly defined, realistic goals; maintain the partnership; and…

  9. Civilian First Responder Decontamination Equipment Characteristics Survey Results

    Science.gov (United States)

    2010-01-01

    Establishment of refuge area prior to decon to explain procedures and separation sexes , non- ambulatory and immediately life threatening victims. 2...enclosed and separate dressing areas for sexes 4. Think outside the box, use of empty building such as vacant gyms , prison facilities, industrial...decon facilities to separate male from female. Use of a squad/ gym room like concept to improve throughput. Segregate non ambulatory from ambulatory

  10. Decision Analysis Science Modeling for Application and Fielding Selection Applied to Concrete Decontamination Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Ebadian, M.A. Ross, T.L.

    1998-01-01

    Concrete surfaces contaminated with radionuclides present a significant challenge during the decontamination and decommissioning (D and D) process. As structures undergo D and D, coating layers and/or surface layers of the concrete containing the contaminants must be removed for disposal in such a way as to present little to no risk to human health or the environment. The selection of a concrete decontamination technology that is safe, efficient, and cost-effective is critical to the successful D and D of contaminated sites. To support U.S. Department of Energy (DOE) Environmental Management objectives and to assist DOE site managers in the selection of the best-suited concrete floor decontamination technology(s) for a given site, two innovative and three baseline technologies have been assessed under standard, non-nuclear conditions at the Hemispheric Center for Environmental Technology (HCET) at Florida International University (FIU). The innovative technologies assessed include the Pegasus Coating Removal System and Textron's Electro-Hydraulic Scabbling System. The three baseline technologies assessed include: the Wheelabrator Blastrac model 1-15D, the NELCO Porta Shot Blast{trademark} model GPx-1O-18 HO Rider, and the NELCO Porta Shot Blast{trademark} model EC-7-2. These decontamination technology assessments provide directly comparable performance data that have previously been available for only a limited number of technologies under restrictive site-specific constraints. Some of the performance data collected during these technology assessments include: removal capability, production rate, removal gap, primary and secondary waste volumes, and operation and maintenance requirements. The performance data generated by this project is intended to assist DOE site managers in the selection of the safest, most efficient, and cost-effective decontamination technologies to accomplish their remediation objectives.

  11. Decontamination of Metal Ions in Soil by Supercritical CO{sub 2} Extraction with Catecholamine Ligand

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jihye; Kim, Hakwon; Park, Kwangheon [Kyunghee University, Yongin (Korea, Republic of)

    2015-10-15

    The role of fuel cladding and reactor vessels is to help prevent the leakage of radioactive materials, including the fission products. However, if these shielding materials are damaged by a severe disaster such as the Fukushima Accident, radioactive materials could leak outside of a power plant site. Indeed, after the Fukushima Accident, radioactive materials have been detected in air and water samples. The air and water pollution lead to soil pollution, which is particularly difficult to decontaminate, as soil pollution has several types that vary according to the characteristics of a pollutant or its area. The existing decontamination methods generate a secondary waste owing to use of chemical toxicity solvents. It is also disadvantageous due to the additional cost of handling them. Therefore, new effective decontamination methods that reduce the use of toxicity solvents are necessary. For example, using supercritical CO{sub 2} has been studied as a new decontamination method. This study examines the method of decontaminating metallic ions inside of the soil using supercritical CO{sub 2} and a catecholamine compound. This study examined the effects of extracting metallic ions inside the soil using supercritical CO{sub 2} and catecholamine as the ligand. Based on these results, it is evident that when only the extraction agent was used, there was no extraction effect and that only when the ligand, co-ligand, and additive were used together was there an extraction effect. Following this, the optimal extraction-agent ratio was confirmed using varying amounts of extraction agents. The most effective extraction ratio of ligand to co-ligand was 1:2 in E-9 when 0.3 ml of H{sub 2}O were added.

  12. Comparison of different decontaminant delivery methods for sterilizing unoccupied commercial airliner cabins

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Chen, Qingyan [National Air Transport Center of Excellence for Research in the Intermodal Transport Environment (RITE), School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47905 (United States)

    2010-09-15

    Effective decontamination is crucial if an airliner cabin is contaminated by biological contaminants, such as infectious disease viruses or intentionally released biological agents. This study used computational fluid dynamics (CFD) method as a tool and vaporized hydrogen peroxide (VHP) as an exemplary decontaminant and Geobacillus stearothermophilus spores as a simulant contaminant to investigate three VHP delivery methods for sterilizing two different airliner cabins. The CFD first determined the airflow and the transient distributions of the contaminant and decontaminant in cabins. Auxiliary equations were implemented into the CFD model for evaluating efficacy of the sterilization process. The improved CFD model was validated by the measured airflow and simulated contaminant distributions obtained from a cabin mockup and the measured efficacy data from the literature. The three decontaminant delivery methods were (1) to supply the mixed VHP and air through the environmental control system of a cabin, (2) to send mixed VHP and air through a front door and to extract them from a back door of a cabin, and (3) to send directly VHP to a cabin and enhance the mixing with air in the cabin by fans. The two air cabins studied were a single-aisle and a twin-aisle airliner one. The results show that the second decontaminant delivery method (displacement method) was the best because the VHP distributions in the cabins were most uniform, the sterilization time was moderate, and the corrosion risk was low. The method displaced the existing air by the air/disinfectant solution, rather than dispersive mixing as the other two methods. (author)

  13. Environmental assessment for the decommissioning and decontamination of contaminated facilities at the Laboratory for Energy-Related Health Research University of California, Davis

    Energy Technology Data Exchange (ETDEWEB)

    1992-09-01

    The Laboratory for Energy-Related Health Research (LEHR) was established in 1958 at its present location by the Atomic Energy Commission. Research at LEHR originally focused on the health effects from chronic exposures to radionuclides, primarily strontium 90 and radium 226, using beagles to simulate radiation effects on humans. In 1988, pursuant to a memorandum of agreement between the US Department of Energy (DOE) and the University of California, DOE`s Office of Energy Research decided to close out the research program, shut down LEHR, and turn the facilities and site over to the University of California, Davis (UCD) after remediation. The decontamination and decommissioning (D&D) of LEHR will be managed by the San Francisco Operations Office (SF) under DOE`s Environmental Restoration Program. This environmental assessment (EA) addresses the D&D of four site buildings and a tank trailer, and the removal of the on-site cobalt 60 (Co-60) source. Future activities at the site will include D&D of the Imhoff building and the outdoor dog pens, and may include remediation of underground tanks, and the landfill and radioactive disposal trenches. The remaining buildings on the LEHR site are not contaminated. The environmental impacts of the future activities cannot be determined at this time because the extent of contamination has not yet been ascertained. The impacts of these future activities (including the cumulative impacts of the future activities and those addressed in this EA) will be addressed in future National Environmental Policy Act (NEPA) documentation.

  14. Building Letters

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Cabinet是种十分吸引人却很简单的衬线字体,是由一名匿名字体设计师专门为Building Letters最新的资金筹集活动所设计的。这个Building Letters包中包含一个CDROM,有32种字体,以及一本专门设计的杂志和两张由Eboy和Emigre所设计的海报。字体光盘样例是由世界顶级的字体设计师们设计的.

  15. Building Bridges

    DEFF Research Database (Denmark)

    The report Building Bridges adresses the questions why, how and for whom academic audience research has public value, from the different points of view of the four working groups in the COST Action IS0906 Transforming Audiences, Transforming Societies – “New Media Genres, Media Literacy and Trust...... in the Media”, “Audience Interactivity and Participation”, “The Role of Media and ICT Use for Evolving Social Relationships” and “Audience Transformations and Social Integration”. Building Bridges is the result of an ongoing dialogue between the Action and non-academic stakeholders in the field of audience...... Belgrade), Leo Pekkala (Finnish Centre for Media Education and Audiovisual Media/MEKU), Julie Uldam (Network on Civic Engagement and Social Innovation) and Gabriella Velics (Community Media Forum Europe)....

  16. Building economics

    DEFF Research Database (Denmark)

    Pedersen, D.O.(red.)

    Publikationen er på engelsk. Den omfatter alle indlæg på det fjerde internationale symposium om byggeøkonomi, der blev arrangeret af SBI for det internationale byggeforskningsråd CIB. De fem bind omhandler: Methods of Economic Evaluation, Design Optimization, Ressource Utilization, The Building...... Market og Economics and Technological Forecasting in Construction. Et indledende bind bringer statusrapporter for de fem forskningsområder, og det sidste bind sammenfatter debatten på symposiet....

  17. Development of a test system to evaluate procedures for decontamination of respirators containing viral droplets.

    Science.gov (United States)

    Vo, Evanly; Rengasamy, Samy; Shaffer, Ronald

    2009-12-01

    The aim of this study was to develop a test system to evaluate the effectiveness of procedures for decontamination of respirators contaminated with viral droplets. MS2 coliphage was used as a surrogate for pathogenic viruses. A viral droplet test system was constructed, and the size distribution of viral droplets loaded directly onto respirators was characterized using an aerodynamic particle sizer. The sizes ranged from 0.5 to 15 mum, and the sizes of the majority of the droplets were the range from 0.74 to 3.5 mum. The results also showed that the droplet test system generated similar droplet concentrations (particle counts) at different respirator locations. The test system was validated by studying the relative efficiencies of decontamination of sodium hypochlorite (bleach) and UV irradiation with droplets containing MS2 virus on filtering facepiece respirators. It was hypothesized that more potent decontamination treatments would result in corresponding larger decreases in the number of viable viruses recovered from the respirators. Sodium hypochlorite doses of 2.75 to 5.50 mg/liter with a 10-min decontamination period resulted in approximately 3- to 4-log reductions in the level of MS2 coliphage. When higher sodium hypochlorite doses (> or =8.25 mg/liter) were used with the same contact time that was used for the dilute solutions containing 2.75 to 5.50 mg/liter, all MS2 was inactivated. For UV decontamination at a wavelength of 254 nm, an approximately 3-log reduction in the level of MS2 virus was achieved with dose of 4.32 J/cm(2) (3 h of contact time with a UV intensity of 0.4 mW/cm(2)), while with higher doses of UV irradiation (> or =7.20 J/cm(2); UV intensity, 0.4 mW/cm(2); contact times, > or =5 h), all MS2 was inactivated. These findings may lead to development of a standard method to test decontamination of respirators challenged by viral droplets.

  18. Germinant-enhanced decontamination of Bacillus spores adhered to iron and cement-mortar drinking water infrastructures.

    Science.gov (United States)

    Szabo, Jeffrey G; Muhammad, Nur; Heckman, Lee; Rice, Eugene W; Hall, John

    2012-04-01

    Germination was evaluated as an enhancement to decontamination methods for removing Bacillus spores from drinking water infrastructure. Germinating spores before chlorinating cement mortar or flushing corroded iron was more effective than chlorinating or flushing alone.

  19. Delisting toxicity evaluation of HTH and oxone(trade name) decontaminated VX. Final report, July 1989-March 1990

    Energy Technology Data Exchange (ETDEWEB)

    Manthei, J.H.; Heitkamp, D.H.; Buettner, L.C.; Lawrence-Beckett, E.M.; Samuel, J.B.

    1992-07-01

    The acute percutaneous (bare skin) LD50 was determined for EA 2192 in the rabbit. Also established were the effective doses (ED50s) for the major toxic signs observed. Dermal, Department of Transportation (DOT), tests with rabbits indicated that VX/HTH decontaminated waste is a Class B poison after being aged only 24 hr following initiation of the decontamination procedure. The same reaction, when allowed to age through about 2 half-lives (28-30 days), was no longer a Class B poison and was nonhazardous by Code of Maryland Regulations (COMAR) toxicity criteria. The DOT tests with OXONE decontaminated/neutralized VX showed this solution to be less than a Class B poison by all three routes of administration (rat oral, rat inhalation, and rabbit dermal) after only 24-hr aging and a nonhazardous material by COMAR toxicity criteria.... vx, Rat, Half-life, ED50, EA 2192, Rabbit, COMAR, Decontaminated/Neutralized, HTH, OXONE, LD50.

  20. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  1. Selective decontamination of the digestive tract to prevent postoperative infection : A randomized placebo-controlled trial in liver transplant patients

    NARCIS (Netherlands)

    Zwaveling, JH; Maring, JK; Klompmaker, IJ; Haagsma, EB; Bottema, JT; Winter, Heinrich L.J.; van Enckevort, PJ; TenVergert, EM; Metselaar, HJ; Bruining, HA; Slooff, MJH

    2002-01-01

    Objective., To determine the efficacy of selective decontamination of the digestive tract (SDD) in patients undergoing elective transplantation of the liver. Design: Randomized, double-blind, placebo-controlled study. Setting. Two academic teaching hospitals. Patients. Adult patients undergoing elec

  2. Analysis on the Current Status of Chemical Decontamination Technology of Steam Generators in the Oversea Nuclear Power Plants (NPPs)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Taebin; Kim, Sukhoon; Kim, Juyoul; Kim, Juyub; Lee, Seunghee [FNC Technology Co. Ltd., Yongin (Korea, Republic of)

    2015-10-15

    The steam generators in Hanbit Unit 3 and 4 are scheduled to be replaced in 2018 and 2019, respectively. Nevertheless, the wastes from the dismantled steam generators are currently just on-site stored in the NPP because there are no disposal measures for the waste and lack of the decontamination techniques for large-sized metallic equipment. In contrast, in the oversea NPPs, there are many practical cases of chemical decontamination not only for oversized components in the NPPs such as reactor pressure vessel and steam generator, but also for major pipes. Chemical decontamination technique is more effective in decontaminating the components with complicated shape compared with mechanical one. Moreover, a high decontamination factor can be obtained by using strong solvent, and thereby most of radionuclides can be removed. Due to these advantages, the chemical decontamination has been used most frequently for operation of decontaminating the large-sized equipment. In this study, an analysis on the current status of chemical decontamination technique used for the steam generators of the foreign commercial NPPs was performed. In this study, the three major chemical decontamination processes were reviewed, which are applied to the decommissioning process of the steam generators in the commercial NPPs of the United States, Germany, and Belgium. The three processes have the different features in aspect of solvent, while those are based in common on the oxidation and reduction between the target metal surface and solvents. In addition, they have the same goals for improving the decontamination efficiency and decreasing the amount of the secondary waste generation. Based on the analysis results on component sub-processes and major advantages and disadvantages of each process, Table 2 shows the key fundamental technologies for decontamination of the steam generator in Korea and the major considerations in the development process of each technology. It is necessary to prepare

  3. Decontamination tests in the recreational areas affected by the Chernobyl accident: efficiency of decontamination and long-term stability of the effects

    DEFF Research Database (Denmark)

    Ramzaev, V.; Barkovsky, A.; Mishine, A.;

    2013-01-01

    The paper provides a review of the decontamination tests and the follow up monitoring program conducted by the Russian and Danish researchers in two recreational areas in the period 1995–2003. The recreational areas Novie Bobovichi and Muravinka consisted of sets of wooden and brick summer houses...... of the Fukushima accident....... in forest-grassland surroundings. The sites are located on the territory of the Bryansk region (Russia) at a distance of about 180 km north-east of the Chernobyl Nuclear Power Plant. Before intervention began, the inventory of 137Cs in soil was determined at a level of 1000 kBq m-2. The collaborative...

  4. MYCELIUM BUILDING

    OpenAIRE

    Jondelius, Olof

    2015-01-01

    This work is looking in to what possibilites and restrictions comes with using mycelium as a building material for a small house. It includes reasoning around solutions for some of the problems and presenting some ideas of how to use some of the materials properties in your favor. A general background of why we need to start look in to alternative materials for all petroleum materials are presented. Det här arbetet har varit inriktat på att se vilka möjligheter samt begränsningar det skul...

  5. The use of laser therapy for dental implant surface decontamination: a narrative review of in vitro studies.

    Science.gov (United States)

    Kamel, Marina Salah; Khosa, Amardeep; Tawse-Smith, Andrew; Leichter, Jonathan

    2014-11-01

    The aim of this narrative review was to critically evaluate in vitro studies assessing the efficacy of lasers in the bacterial decontamination of titanium implant surfaces. The MEDLINE, Web of Knowledge and Embase electronic databases were used to search for articles relating to the use of lasers in the bacterial decontamination of titanium specimen surfaces using predetermined search statements. Clinical studies, case reports, case series, review articles and animal models were excluded. Study selection was carried out independently and then cross-checked by two authors through abstract viewing. Eighteen articles were selected for full-text analysis. Erbium-doped yttrium-aluminium-garnet lasers had a wide range of powers capable of inducing bacterial decontamination. While carbon dioxide and gallium-aluminium-arsenide diode lasers demonstrated the ability to produce bacterial decontamination, the bacterial sensitivity to each varied depending on the species involved. There is no concensus on the laser type or settings that are optimal for bacterial decontamination of titanium implant surfaces as studies employ various test specimens, contamination methodologies, irradiation settings and protocols, and outcome measures resulting in limited study comparability. More investigations are required to provide guidelines for the use of laser therapy in the decontamination of implant surfaces.

  6. Decontamination of a drinking water pipeline system contaminated with adenovirus and Escherichia coli utilizing peracetic acid and chlorine.

    Science.gov (United States)

    Kauppinen, Ari; Ikonen, Jenni; Pursiainen, Anna; Pitkänen, Tarja; Miettinen, Ilkka T

    2012-09-01

    A contaminated drinking water distribution network can be responsible for major outbreaks of infections. In this study, two chemical decontaminants, peracetic acid (PAA) and chlorine, were used to test how a laboratory-scale pipeline system can be cleaned after simultaneous contamination with human adenovirus 40 (AdV40) and Escherichia coli. In addition, the effect of the decontaminants on biofilms was followed as heterotrophic plate counts (HPC) and total cell counts (TCC). Real-time quantitative polymerase chain reaction (qPCR) was used to determine AdV40 and plate counting was used to enumerate E. coli. PAA and chlorine proved to be effective decontaminants since they decreased the levels of AdV40 and E. coli to below method detection limits in both water and biofilms. However, without decontamination, AdV40 remained present in the pipelines for up to 4 days. In contrast, the concentration of cultivable E. coli decreased rapidly in the control pipelines, implying that E. coli may be an inadequate indicator for the presence of viral pathogens. Biofilms responded to the decontaminants by decreased HPCs while TCC remained stable. This indicates that the mechanism of pipeline decontamination by chlorine and PAA is inactivation rather than physical removal of microbes.

  7. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    Science.gov (United States)

    Fumagalli, F.; Kylián, O.; Amato, L.; Hanuš, J.; Rossi, F.

    2012-04-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water vapour plasma process are discussed for practical applications in medical devices decontamination.

  8. Decontamination systems information and research program. Quarterly report, January 1996--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-04-01

    West Virginia University (WVU) and the US Department of Energy, Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement in August 1992 titled {open_quotes}Decontamination Systems Information and Research Programs{close_quotes} (DOE Instrument No.: DE-FC21-92MC29467). Requirements stipulated by the Agreement require WVU to submit quarterly Technical Progress reports. This report contains the efforts of the research projects comprising the Agreement for the 1st calendar quarter of 1996. For the period January 1 through December 31, 1996 twelve projects have been selected for funding, and the Kanawha Valley will continue under a no-cost extension. Three new projects have also been added to the program. This document describes these projects involving decontamination, decommissioning and remedial action issues and technologies.

  9. Chemical burns revisited: What is the most appropriate method of decontamination?

    Science.gov (United States)

    Tan, Teresa; Wong, David S Y

    2015-06-01

    The purpose of this study is to investigate the efficacy of decontamination by immediate surgical debridement in the acute management of chemical burns as compared to conventional dilutional approaches by irrigation or wetting. A retrospective review of the medical records of patients admitted to the Burns Centre of the Prince of Wales Hospital, Hong Kong, between 2001 and 2012, was performed. The time to recovery as reflected by the hospital stay for patients who had received immediate debridement, continuous irrigation, and wet packs was calculated and compared. A total of 99 patients were admitted for chemical burns (3.3% of total admissions). There were three mortalities. Immediate surgical debridement failed to achieve a faster recovery than irrigation or wet packs. Continuous water irrigation was better than wet packs in achieving earlier recovery. Continuous water irrigation remains the most preferred method of decontamination in acute chemical burn management.

  10. A method for microbial decontamination ofAcanthamoeba cultures using the peritoneal cavity of mice

    Institute of Scientific and Technical Information of China (English)

    Rodrigo Gurgel-Gonalves; Patrcia Albuquerque; Csar Augusto Cuba-Cuba

    2015-01-01

    Objective:To evaluate whether the inoculation of contaminated cultures in the peritoneal cavity of mice could implement decontamination ofAcanthamoeba cultures. Methods: Suspensions ofAcanthamoeba,Acanthamoeba polyphagaATCC30461, or Acanthamoeba spp. isolated from soil (UnB13 strain) were inoculated in the peritoneal cavity of Swiss mice (n = 24). After 1, 6, 12, or 24 h of exposure the peritoneal cavity was washed and assessed for the presence of bacteria, fungi, andAcanthamoeba. Results: After 1 h of intraperitoneal inoculation at least 97% of the bacteria and 96% of the fungi (P Conclusions: Our data demonstrated that this technique has great potential for decontamination ofAcanthamoeba cultures in a short period of time.

  11. DECISION ANALYSIS AND TECHNOLOGY ASSESSMENTS FOR METAL AND MASONRY DECONTAMINATION TECHNOLOGIES

    Energy Technology Data Exchange (ETDEWEB)

    M.A. Ebadian, Ph.D.

    1999-01-01

    The purpose of this investigation was to conduct a comparative analysis of innovative technologies for the non-aggressive removal of coatings from metal and masonry surfaces and the aggressive removal of one-quarter to one-inch thickness of surface from structural masonry. The technologies tested should be capable of being used in nuclear facilities. Innovative decontamination technologies are being evaluated under standard, non-nuclear conditions at the FIU-HCET technology assessment site in Miami, Florida. This study is being performed to support the OST, the Deactivation and Decommissioning (D&D) Focus Area, and the environmental restoration of DOE facilities throughout the DOE complex by providing objective evaluations of currently available decontamination technologies.

  12. An evaluation of selected methods for the decontamination of cattle hides prior to skinning.

    Science.gov (United States)

    Small, A; Wells-Burr, B; Buncic, S

    2005-02-01

    The effectiveness of different decontamination treatments in reducing microbial loads on cattle hides was assessed. The 10-s hide treatments were conducted using a wet-and-dry vacuum cleaner filled with one of the liquids (heated to 50 °C) indicated below, followed or not by 10-min drying in the air. Also, the hide was clipped, followed or not by 10-s singeing using a hand-held blowtorch. Before and after each decontamination treatment, the hide was sampled (100 cm(2) areas) by a sponge-swabbing method to compare the total viable counts of bacteria (TVC). The largest bacterial reduction (Psanitizer solution (10% Betane Plus) resulted in significant reductions of 1.80 (Pefficacy of these treatments in the reduction of specific pathogens under commercial conditions.

  13. Effectiveness of different chemical agents in rapid decontamination of gutta-percha cones

    Directory of Open Access Journals (Sweden)

    Cardoso Celso Luíz

    2000-01-01

    Full Text Available The effectiveness of seven disinfectant compounds used in dentistry for a rapid decontamination of 32 gutta-percha cones adhered with Staphylococcus aureus, Enterococcus faecalis, Escherichia coli strains or Bacillus subtilis spores was compared. Cones were treated with 2% glutaraldehyde, 1% sodium hypochlorite, 70% ethyl alcohol, 1% and 0.3% iodine alcohol, 2% chlorhexidine, 6% hydrogen peroxide, and 10% polyvinylpyrrolidone-iodine, for 1, 5, 10, and 15 minutes. After treatment, each cone was transferred to thioglycollate broth and incubated at 37ºC for 7 days. The products were bactericidal after 1 to 5 minutes and, with exception of ethyl alcohol and iodine-alcohol, sporicidal after 1 to 15 minutes of exposure. Results suggest that chlorhexidine, sodium hypochlorite, polyvinylpyrrolidone-iodine, hydrogen peroxide, and glutaraldehyde were the most effective products in the decontamination of gutta-percha cones.

  14. Separation of technetium and rare earth metals for co-decontamination process

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Catherine; Martin, Leigh

    2015-05-01

    Poster. In the US there are several technologies under consideration for the separation of the useful components in used nuclear fuel. One such process is the co-decontamination process to separate U, Np and Pu in a single step and produce a Np/ Pu and a U product stream. Although the behavior of the actinide elements is reasonably well defined in this system, the same is not true for the fission products, mainly Zr, Mo, Ru and Tc. As these elements are cationic and anionic they may interact with each other to extract in a manner not predicted by empirical models such as AMUSE. This poster presentation will discuss the initial results of batch contact testing under flowsheet conditions and as a function of varying acidity and flowsheet conditions to optimize recovery of Tc and minimize extraction of Mo, Zr and Ru with the goal of developing a better understanding of the behavior of these elements in the co-decontamination process.

  15. Effects of decontamination at varying contamination levels of Campylobacter jejuni on broiler meat

    DEFF Research Database (Denmark)

    Boysen, Louise; Wechter, Naja Strandby; Rosenquist, Hanne

    2013-01-01

    When assessing effects of decontamination techniques on counts of Campylobacter spp. on broiler meat, it is essential that the results reflect the variations that may exist. Decontamination studies often use high inoculation levels (107 to 108 cfu) and one or few strains of Campylobacter jejuni...... difference in reductions was found for initial concentrations ranging from 103 to 107 cfu per sample. The mean log reductions obtained by all techniques were strongly dependent on the strain tested. The results reveal that reductions obtained with high inoculation levels of C. jejuni (107 cfu....../sample) or single or few strains of the species (or both) should not be interpreted as a generic result for the species. If inoculation studies cannot be replaced by investigations of naturally contaminated meat, we advise using a mixture of strains found in the production environment at levels as close as possible...

  16. Decontamination effectiveness of ferric ferrocyanide and ammonium-ferric-cyano-ferrate in rats contaminated with radiocaesium

    Energy Technology Data Exchange (ETDEWEB)

    Kossakowski, S.; Dziura, A.; Grosicki, A. (Veterinary Research Inst., Pulawy (Poland). Lab. of Radiological Protection and Isotopic Investigations)

    1991-01-01

    The experiment was performed on 115 Wistar rats divided into 3 groups: I - the controls, which were administered i.g. with 14 kBq per rat with Cs-137 and the radioactivities of internal organs and muscles 16 samples were measured on days 1, 3 and 7; II - treated with ferric ferrocyanide (FF) or ammonium-ferric-cyano-ferrate (AFCF) on day 1 after the Cs-137 administration and therefore they followed the same procedure as the controls; III - treated with FF or AFCF 2-fold/day for 5 days and the organ radioactivities were measured on day 7. The results indicated that FF and AFCF increased the biological elimination of Cs-137, especially on days 1-3. The decontamination effectiveness of AFCF was higher than that of FF. The repeated treatment increased the decontamination effectiveness. (orig.).

  17. Influence of radiocesium transfer and decontamination on ambient dose in Japanese forest environment

    Science.gov (United States)

    Kato, Hiroaki; Onda, Yuichi

    2016-04-01

    This study investigated the effect of post-depositional migration of radiocesium and decontamination on ambient dose rate in Japanese forest environment following the Fukushima Dai-ichi Nuclear Power Plant accident. We measured cesium-137 deposition from canopy to forest floor in association with rainfall and litterfall in two coniferous stands (plantation of Japanese cedar) and a deciduous broad-leaved forest stand (oak with red pine). We also measured temporal evolution of ambient dose rate at different height in each forest site. Radiocesium inventory balance in each forest component (e.g., canopy, litter and mineral soil layer) were established to determine causes of the measured changes of ambient dose rate in three forest sites. Furthermore, we assessed influence of forest decontamination (removal of organic layer of forest floor) on spatial pattern of radiocesium at the forest floor and reduction of ambient dose rate.

  18. Effectiveness of Three Decontamination Treatments Against Influenza Virus Applied to Filtering Facepiece Respirators

    Science.gov (United States)

    2010-10-01

    filtering facepiece respirators contami­ nated with H1N1 aerosols and droplets. Am J Infect Control; 39: 1-9. Rutten IM. (2007) Handbook of nonwoven ... filter media . Oxford. UK: Butterworth-Heinemann. Jeng DK. Kaczmarek KA. Woodworth AG. et al. ( 1987) Mech­ anism of microwave sterilization in the dry...AFRL-RX-TY-TP-2010-0080 EFFECTIVENESS OF THREE DECONTAMINATION TREATMENTS AGAINST INFLUENZA VIRUS APPLIED TO FILTERING FACEPIECE RESPIRATORS

  19. Major Defense Acquisition Program (MDAP) Trail Boss Overview and Joint Strike Fighter Decontamination Shelter System

    Science.gov (United States)

    2011-11-01

    Individual Protection Joint Project Manager  Individual Protection 3 JAN 11 Joint Project Manager  Chemical Biological Medical Systems ( Biosurveillance ...Trail Boss) Joint Project Manager  Chemical Biological Medical Systems ( Biosurveillance  Trail Boss) • ra oss      Decontamination  Joint Project

  20. Evaluation of CC2 as a Decontaminant in Various Hydrophilic and Lipophilic Formulations Against Sulphur Mustard

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    To evaluate CC2 (N, N' -dichloro-bis [2, 4, 6-trichlorophenyl] urea) in various hydrophilic and lipophilic formulations as a personnel decontaminant for sulphur mustard (SM). Methods Twenty percent of CC2 was prepared as a suspension or ointment with various chemical agents and its stability was evaluated by active chlorine assay. The efficacy was evaluated in mice by recording the mortality after applying 29 LD50 of SM (LD50 =8.1 mg/kg dermally) and decontaminating it after 2 min with 200 mg of the formulation.Studies were also carried out with 10% and 20% CC2 in acacia and hydroxypropyl cellulose,and the suspensions were stored in polyethylene containers. The stability of the suspensions was evaluated by active chlorine assay. The efficacy was evaluated by recording the mortality after applying 29 LD50 of SM in mice and 12 LD50 of SM in rats (LD50 = 2.4 mg/kg dermally), and decontaminating it with the formulations. LD50 by different routes and primary skin irritation test of CC2 were also carried out. Results CC2 reacted with peanut oil and neem oil, and was unstable in povidone iodine and Fuller's earth. Good stability was achieved with petroleum jelly, honey, polyvinyl pyrrolidone, calamine lotion, acacia and hydroxypropyl cellulose. Though CC2 was stable in lipophilic formulations, it did not protect the animals. The hydrophilic formulations particularly acacia and hydroxypropyl cellulose gave very good protection and was stable in the polyethylene containers for a period of 1 year. The efficacy of 20% CC2 was better than 10% CC2. The oral and dermal LD50 of CC2 was found to be above 5.0 g/kg. CC2 was also found to be nonirritant.Conclusion Twenty percent of CC2 in hydroxypropyl cellulose is better with respect to stability, efficacy and ease of decontamination. CC2 is also a safe chemical.

  1. Development of a Portable Sensitive Equipment Decontamination System. Volume 2: Activated Carbon Fiber Wipe

    Science.gov (United States)

    2010-05-01

    decontamination capability. Two carbon layers are sandwiched between a protective layer of nylon and a barrier layer of Tyvek ®, to prevent carbon...essential to transfer contaminant that had been removed from a surface, through the non -adsorbent contact layer, into the ACF layer(s) of a wiper. For a...for protection of inner carbon layers against shedding 2. ACF layer 1 - a micro-porous knitted fabric 3. ACF Layer 2 - a meso-porous woven fabric 4

  2. Development of a Safe and Effective Skin Decontamination System: Demonstration and Validation

    Science.gov (United States)

    1987-02-01

    The material ultimately selected for use in the final prototypes was E.I. duPont’s Tyvek polyolefin non - woven fabric, known for durability and toughness...Each kit contains six applications of decontamination material in individual flexible, peelable, heat-sealed packets. Each packet contains a non - woven ...carrier pad is I a non - woven polyester fiberfill material. The open web nature of this material allows for a high loading of powder. The powder easily sifts

  3. Using of Photochemical H2O2/UVC Decontamination Cell for Heavily Polluted Waters

    OpenAIRE

    Žebrák, R.; Mašín, P.; Klusoň, P. (Petr); Krystyník, P. (Pavel)

    2014-01-01

    The presented contribution focuses on the complex study of the pilot-scale photochemical H2O2/UVC system arranged as the ex-situ decontamination cell for heavily polluted waters (contamination with organic substances. The method principle comprises the rational decomposition of hydrogen peroxide induced by UV-C (254 nm). The produced OH radicals are very efficient oxidation species enabling the direct destruction of wide spectrum of organic compounds (polyaromatic hydrocarbons, chlorinat...

  4. Development of LC/MS Methods to be used in Decontamination Research with CW Agents

    Science.gov (United States)

    2010-06-01

    NH4Ac ammonium acetate QQQ triple quadrupole (or tandem quadruple) MS %RSD percent relative standard deviation RSDL reactive skin decontaminant... techniques for the components of interest; measurement and compensation techniques for any ion suppression/enhancement; selection of an appropriate...specific and sensitive technique , allowing samples to be analysed with minimal sample preparation. As such, the technique is a good fit for the timely

  5. Decontamination of toothbrushes used by children with special needs: microbiological analysis

    Directory of Open Access Journals (Sweden)

    Ana Cláudia Rodrigues Chibinski

    2011-04-01

    Full Text Available Introduction: Children with special needs generally present poor oral hygiene, consequently, their toothbrushes become highly infected, acting as a reservoir for dissemination of different pathogens. Objective: To evaluate the contamination and decontamination of toothbrushes used by children with special needs. Material and methods: Toothbrushes were retrieved from 30 children after 30 days of use, stored in tubes containing nutrient agar and incubated for 24 h (37ºC. After, 100 µl of the dilutions (1:10 and 1:100 were plated on MacConkey agar (Gram negative bacteria, Mitis Salivarius agar (Streptococcus spp., and Saboroud agar (Candida spp. and incubated (37ºC, 48 h. The toothbrushes were randomly divided into 3 groups for decontamination procedures using 0.12% chlorhexidine (GC; 1% sodium hypochlorite (GH and distilled water (GA - control. The solutions were sprayed 6 times onto the bristles and the toothbrushes were submitted to microbiological analysis. Statistical analysis used non-parametric tests (Fisher’s exact and Wilcoxon (α = 0.05. Results: The initial microbiological analysis showed a bacterial growth in all samples. Microorganisms levels higher than ≥ 300 x 103 CFU/mL were detected in 80% of the samples for Streptococcus spp.; 60% for Gram negative bacteria e 47% for Candida spp. After decontamination, there was significant reduction for GC when considering turbidity (p = 0.04 and at the levels of Gram negative bacteria (p = 0.04 and Candida spp. (p = 0.005. For GH e GA, the decontamination procedures were not significant. Conclusion: Chlorhexidine solution was the only agent effective against Gram negative bacteria and Candida spp. None of the solutions tested was effective against Streptococcus spp.

  6. Vaporous Decontamination Methods: Potential Uses and Research Priorities for Chemical and Biological Contamination Control

    Science.gov (United States)

    2006-06-01

    resistant to commonly used disinfectants and require the use of chemical sterilants† to effectively decontaminate exposed areas. Since anthrax...all micro-organisms present, including B agents. † Sterilants and disinfectants differ only in their potency; disinfectants have relatively low...of H2O2 [10]. Currently there is no reported data on the use of O3-VHP against B or C agents. DSTO-GD-0465 6 The U.K. based BIOQUELL

  7. Decontamination of chemical warfare sulfur mustard agent simulant by ZnO nanoparticles

    Science.gov (United States)

    Sadeghi, Meysam; Yekta, Sina; Ghaedi, Hamed

    2016-07-01

    In this study, zinc oxide nanoparticles (ZnO NPs) have been surveyed to decontaminate the chloroethyl phenyl sulfide as a sulfur mustard agent simulant. Prior to the reaction, ZnO NPs were successfully prepared through sol-gel method in the absence and presence of polyvinyl alcohol (PVA). PVA was utilized as a capping agent to control the agglomeration of the nanoparticles. The formation, morphology, elemental component, and crystalline size of nanoscale ZnO were certified and characterized by SEM/EDX, XRD, and FT-IR techniques. The decontamination (adsorption and destruction) was tracked by the GC-FID analysis, in which the effects of polarity of the media, such as isopropanol, acetone and n-hexane, reaction time intervals from 1 up to 18 h, and different temperatures, including 25, 35, 45, and 55 °C, on the catalytic/decontaminative capability of the surface of ZnO NPs/PVA were investigated and discussed, respectively. Results demonstrated that maximum decontamination (100 %) occurred in n-hexane solvent at 55 °C after 1 h. On the other hand, the obtained results for the acetone and isopropanol solvents were lower than expected. GC-MS chromatograms confirmed the formation of hydroxyl ethyl phenyl sulfide and phenyl vinyl sulfide as the destruction reaction products. Furthermore, these chromatograms proved the role of hydrolysis and elimination mechanisms on the catalyst considering its surface Bronsted and Lewis acid sites. A non-polar solvent aids material transfer to the reactive surface acid sites without blocking these sites.

  8. Evaluation of a Biological Pathogen Decontamination Protocol for Animal Feed Mills.

    Science.gov (United States)

    Huss, Anne R; Cochrane, Roger A; Deliephan, Aiswariya; Stark, Charles R; Jones, Cassandra K

    2015-09-01

    Animal feed and ingredients are potential vectors of pathogenic bacteria. Contaminated ingredients can contaminate facility equipment, leading to cross-contamination of other products. This experiment was conducted to evaluate a standardized protocol for decontamination of an animal feed manufacturing facility using Enterococcus faecium (ATCC 31282) as an indicator. A pelleted swine diet inoculated with E. faecium was manufactured, and environmental samples (swabs, replicate organism detection and counting plates, and air samples) were collected (i) before inoculation (baseline data), (ii) after production of inoculated feed, (iii) after physical removal of organic material using pressurized air, (iv) after application of a chemical sanitizer containing a quaternary ammonium-glutaraldehyde blend, (v) after application of a chemical sanitizer containing sodium hypochlorite, (vi) after facility heat-up to 60 8 C for 24 h, (vii) for 48 h, and (viii) for 72 h. Air samples collected outside the facility confirmed pathogen containment; E. faecium levels were equal to or lower than baseline levels at each sample location. The decontamination step and its associated interactions were the only variables that affected E. faecium incidence (P 0.22). After production of the inoculated diet, 85.7% of environmental samples were positive for E. faecium. Physical cleaning of equipment had no effect on contamination (P = 0.32). Chemical cleaning with a quaternary ammonium-glutaraldehyde blend and sodium hypochlorite each significantly reduced E. faecium contamination (P < 0.0001) to 28.6 and 2.4% of tested surfaces, respectively. All samples were negative for E. faecium after 48 h of heating. Both wet chemical cleaning and facility heating but not physical cleaning resulted in substantial E. faecium decontamination. These results confirmed both successful containment and decontamination of biological pathogens in the tested pilot-scale feed mill.

  9. Decontamination effectiveness of bentonite after repeated alimentary contamination of rats with radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kossakowski, S.; Dziura, A. [National Veterinary Research Institute, Pulawy (Poland)

    1994-12-31

    The decontamination effectiveness of bentonite given as a 10% supplement to feed during 28-day contamination with Cs-137 (1.37 kBq/day) and for 21 after its cessation was studied in rats. The concentration of Cs-137 was determined in the gastrointestinal tract, internal organs, muscles and skin. The administration of bentonite decreased the organ radioactivity by 81% during radiocesium contamination and by 93.3% after its cessation. (author). 13 refs, 2 tabs.

  10. Decontamination effectiveness of bentonite in sheep and pigs contaminated with a single dose of radiocesium

    Energy Technology Data Exchange (ETDEWEB)

    Kossakowski, S.; Dziura, A. [National Veterinary Research Institute, Pulawy (Poland)

    1994-12-31

    The effect of bentonite originating from Polish geological deposits on radiocesium absorption and relation in sheep and pigs was examined. It was found that 10% addition of bentonite (w/w) one day after radiocesium administration decreased significantly the concentration of Cs-137 in the organs examined. The decontamination effectiveness of bentonite in pigs was lower than that in sheep. (author). 14 refs, 2 tabs.

  11. Transport and Reactivity of Decontaminants to Provide Hazard Mitigation of Chemical Warfare Agents from Materials

    Science.gov (United States)

    2016-06-01

    Liquids through Polymer Membranes .5. Neoprene, Styrene Butadiene Rubber , Ethylene Propylene Diene Terpolymer, and Natural - Rubber Versus Hydrocarbons...Membranes .2. Neoprene, SBR, EPDM, NBR, and Natural - Rubber Versus Normal-Alkanes. J. Appl. Polym. Sci. 1991, 42 (8), 2329–2336. 24. Harogoppad, S.B...highly absorptive (e.g., tire rubber ). Absorptive materials are often more challenging to decontaminate because of the reduced accessibility of the

  12. Studies of the Suitability of Fowlpox as Decontamination and Thermal Stability Simulant for Variola Major

    Science.gov (United States)

    2009-01-01

    a decontamination simulant. Inactivation kinetics studies showed that fowlpox behaved similarly to variola major when treated with 0.1% iodine and 5.7...benzalkonium chloride, but differed in its response to 0.05% iodine and 0.3% polyethyleneglycol nonylphenyl ether and 40% ethanol. Thermal inactivation...Another gene shows similar homology to a protein found in yeast, human, tomato and fruit fly. Secondly, the fowlpox genome contains host range genes

  13. Evidence based decontamination protocols for the removal of external Δ9-tetrahydrocannabinol (THC) from contaminated hair.

    Science.gov (United States)

    Duvivier, Wilco F; Peeters, Ruth J P; van Beek, Teris A; Nielen, Michel W F

    2016-02-01

    External contamination can cause false positive results in forensic hair testing for drugs of abuse and is therefore a major concern when hair evidence is used in court. Current literature about decontamination strategies is mainly focused on external cocaine contamination and no consensus on the best decontamination procedure for hair samples containing cannabinoids has been reached so far. In this study, different protocols with solvents, both organic as well as aqueous, were tested on blank and drug user hair for their performance on removing external cannabis contamination originating from either smoke or indirect contact with cannabis plant material. Smoke contamination was mimicked by exposing hair samples to smoke from a cannabis cigarette and indirect contact contamination by handling hair with cannabis contaminated gloves or hands. Δ9-tetrahydrocannabinol (THC) levels in the hair samples and wash solvents were determined using liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. Aqueous surfactant solutions removed more THC contamination compared to water, but much less than organic solvents. Methanol, dichloromethane and chloroform were most efficient in removing THC contamination. Due to its lower environmental impact, methanol was chosen as the preferred decontamination solvent. After testing of different sequential wash steps on externally contaminated blank hair, three protocols performed equally well, removing all normal level and more than 99% of unrealistically high levels of external cannabis contamination. Thorough testing on cannabis users' hair, both as such and after deliberate contamination, showed that using these protocols all contamination could be washed from the hair while no incorporated THC was removed from truly positive samples. The present study provides detailed scientific evidence in support of the recommendations of the Society of Hair Testing: a protocol using a single methanol wash followed by a single aqueous

  14. Immobilization of Russian VX skin depots by localized cooling: implications for decontamination and medical countermeasures.

    Science.gov (United States)

    Mikler, J; Tenn, C; Worek, F; Reiter, G; Thiermann, H; Garrett, M; Bohnert, S; Sawyer, T W

    2011-09-25

    The chemical weapon nerve agent known as Russian VX (VR) is a potent organophosphorus (OP) compound that is much less studied than its VX analogue with respect to toxicity, as well as to the effectiveness of several known countermeasures against it. An anaesthetized domestic swine model was utilized to assess several approaches in mitigating its toxicity, including the utility of cooling VR treated skin to increase the therapeutic window for treatment. The 6h LD₅₀ for VR topically applied on the ear was 100 μg/kg. Treatment of VR exposed animals (5 × LD₅₀) with pralidoxime (2PAM) very poorly regenerated inhibited blood cholinesterase activity, but was partially effective in preventing signs of OP poisoning and increasing survival. In contrast, treatment with the Hagedorn oxime HI-6 reactivated cholinesterase, eliminated all signs of poisoning and prevented death. Decontamination with the Reactive Skin Decontaminant Lotion (RSDL) 15 min after VR exposure was completely effective in preventing death. Cooling of the VR exposure sites for 2 or 6h prevented signs of OP poisoning and death during the cooling period. However, these animals died very quickly after the cessation of cooling, unless they were treated with oxime or decontaminated with RSDL. Blood analyses showed that cooling of agent exposure sites delayed the entry of VR into the bloodstream. Medical treatment with HI-6 and to a lesser extent 2PAM, or decontamination with RSDL are effective in protecting against the toxic effects of cutaneous exposure to VR. Immobilizing this agent (and related compounds) within the dermal reservoir by cooling the exposure sites, dramatically increases the therapeutic window in which these medical countermeasures are effective.

  15. Improving distillation method and device of tritiated water analysis for ultra high decontamination efficiency.

    Science.gov (United States)

    Fang, Hsin-Fa; Wang, Chu-Fang; Lin, Chien-Kung

    2015-12-01

    It is important that monitoring environmental tritiated water for understanding the contamination dispersion of the nuclear facilities. Tritium is a pure beta radionuclide which is usually measured by Liquid Scintillation Counting (LSC). The average energy of tritum beta is only 5.658 keV that makes the LSC counting of tritium easily be interfered by the beta emitted by other radionuclides. Environmental tritiated water samples usually need to be decontaminated by distillation for reducing the interference. After Fukushima Nucleaer Accident, the highest gross beta concentration of groundwater samples obtained around Fukushima Daiichi Nuclear Power Station is over 1,000,000 Bq/l. There is a need for a distillation with ultra-high decontamination efficiency for environmental tritiated water analysis. This study is intended to improve the heating temperature control for better sub-boiling distillation control and modify the height of the container of the air cooling distillation device for better fractional distillation effect. The DF of Cs-137 of the distillation may reach 450,000 which is far better than the prior study. The average loss rate of the improved method and device is about 2.6% which is better than the bias value listed in the ASTM D4107-08. It is proven that the modified air cooling distillation device can provide an easy-handling, water-saving, low cost and effective way of purifying water samples for higher beta radionuclides contaminated water samples which need ultra-high decontamination treatment.

  16. Decontamination and decarburization of stainless and carbon steel by melt refining

    Energy Technology Data Exchange (ETDEWEB)

    Mizia, R.E.; Worcester, S.A.; Twidwell, L.G.; Webber, D.; Paolini, D.J.; Weldon, T.A.

    1996-09-05

    With many nuclear reactors and facilities being decommissioned in the next ten to twenty years the concern for handling and storing Radioactive Scrap Metal (RSM) is growing. Upon direction of the DOE Office of Environmental Restoration and Waste Management, Lockheed Idaho Technology Company (LITCO) is developing technologies for the conditioning of spent fuels and high-level wastes for interim storage and repository acceptance, including the recycling of Radioactive Scrap Metals (RSM) for beneficial reuse with the DOE complex. In February 1993, Montana Tech of the University of Montana was contracted to develop and demonstrate technologies for the decontamination of stainless steel RSM. The general objectives of the Montana Tech research program included conducting a literature survey, performing laboratory scale melt refining experiments to optimize decontaminating slag compositions, performing an analysis of preferred melting techniques, coordinating pilot scale and commercial scale demonstrations, and producing sufficient quantities of surrogate-containing material for all of the laboratory, pilot and commercial scale test programs. Later on, the program was expanded to include decontamination of carbon steel RSM. Each research program has been completed, and results are presented in this report.

  17. Klebsiella Pneumoniae sepsis deteriorated by uncontrolled underlying disease in a decontamination worker in Fukushima, Japan

    Science.gov (United States)

    Sawano, Toyoaki; Tsubokura, Masaharu; Leppold, Claire; Ozaki, Akihiko; Fujioka, Sho; Nemoto, Tsuyoshi; Kato, Shigeaki; Oikawa, Tomoyoshi; Kanazawa, Yukio

    2016-01-01

    Objectives: Patients with underlying conditions are at a higher risk of developing sepsis, a systematic response to infection, which has a high mortality rate. After the March 2011 Fukushima Daiichi nuclear power plant accident, there has been an influx of migrant decontamination workers; however, little is known about their health status. Case: A Japanese 55-year-old male decontamination worker, who had several underlying diseases, was transferred to our hospital in cardiopulmonary arrest. He had a history of diabetes mellitus and hypertension and a past history of tuberculosis. Control of underlying conditions was poor, with HbA1c of 13.8% at presentation. He was diagnosed with pneumonia-induced bacteremia and sepsis due to Klebsiella pneumoniae. Although spontaneous circulation returned in emergency room, he died a day after admission. Conclusion: The poor control of underlying diseases seen in this patient could have been influenced by his recent job transfer and engagement in decontamination work and additionally related to his socioeconomic status (SES). This case highlights the need for further research to elucidate the underlying diseases, working conditions, and SES of this population. PMID:27108638

  18. Skin decontamination of mustards and organophosphates: comparative efficiency of RSDL and Fuller's earth in domestic swine.

    Science.gov (United States)

    Taysse, L; Daulon, S; Delamanche, S; Bellier, B; Breton, P

    2007-02-01

    Research in skin decontamination and therapy of chemical warfare agents has been a difficult problem due to the simultaneous requirement of rapid action and non-aggressive behaviour. The aim of this study was to compare the performance of two decontaminating systems: the Canadian Reactive Skin Decontaminant Lotion (RSDL) and the Fuller's Earth (FE). The experiment was conducted with domestic swine, as a good model for extrapolation to human skin. RSDL and FE were tested against sulphur mustard (SM), a powerful vesicant, and VX, a potent and persistent cholinesterase inhibitor. When used 5 min after contamination, the results clearly showed that both systems were active against SM (10.1 mg/cm(2)) and VX (0.06 mg/cm(2)). The potency of the RSDL/sponge was statistically better than FE against skin injury induced by SM, observed 3 days post-exposure. RSDL was rather more efficient than FE in reducing the formation of perinuclear vacuoles and inflammation processes in the epidermis and dermis. Against a severe inhibition (67%) of plasmatic cholinesterases induced by VX poisoning, the potencies of the RSDL/sponge and FE were similar. Both systems completely prevented cholinesterase inhibition, which indirectly indicates a prevention of toxic absorption through the skin.

  19. Radiological decontamination strippable coatings using PVA and PVP based core-shell polymeric scintillation materials

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Ho Sang; Seo, Bum Kyoung; Lee, Kune Woo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    Strippable coatings are innovative technologies for decontamination that effectively reduce loose contamination. These coatings are polymer mixtures, such as water-based organic polymers that are applied to a surface by paintbrush, roller or spray applicator. In this study, the core-shell composite polymer for decontamination from the surface contamination was synthesized by the method of emulsion polymerization and blends of polymers. The strippable polymer emulsion is composed of the poly(styrene-ethyl acrylate) [poly(St-EA)] composite polymer, poly(vinyl alcohol) (PVA) and polyvinylpyrrolidone (PVP). The morphology of the composite emulsion particle was core-shell structure, with polystyrene (PS) as the core and poly(ethyl acrylate) (PEA) as the shell. Core-shell polymers of styrene (St)/ethyl acrylate (EA) pair were prepared by sequential emulsion polymerization in the presence of sodium dodecyl sulfate (SDS) as an emulsifier using ammonium persulfate (APS) as an initiator. Related tests and analysis confirmed the success in synthesis of composite polymer. The products are characterized by FT-IR spectroscopy, TGA that were used, respectively, to show the structure, the thermal stability of the prepared polymer. Two-phase particles with a core-shell structure were obtained in experiments where the estimated glass transition temperature and the morphologies of emulsion particles. Decontamination factors (DF) of the strippable polymeric emulsion were evaluated with the polymer blend contents

  20. Studies of the Suitability of Fowlpox as a Decontamination and Thermal Stability Simulant for Variola Major

    Directory of Open Access Journals (Sweden)

    Amanda E. Chambers

    2009-01-01

    Full Text Available Variola major, the causative agent of smallpox, has been eradicated from nature. However, stocks still exist; thus, there is a need for relevant decontamination studies, preferably with nonpathogenic simulants. Previous studies have shown a similarity in response of vaccinia virus and variola major to various decontaminants and thermal inactivation. This study compared vaccinia and fowlpox viruses under similar conditions, using disinfectants and temperatures for which variola major data already existed. Most disinfectants showed similar efficacy against vaccinia and fowlpox, suggesting the utility of fowlpox as a decontamination simulant. Inactivation kinetics studies showed that fowlpox behaved similarly to variola major when treated with 0.1% iodine and 5.7% polyethyleneglycol nonylphenyl ether, 0.025% sodium hypochlorite, 0.05% sodium hypochlorite, and 0.1% cetyltrimethylammonium chloride and 0.05% benzalkonium chloride, but differed in its response to 0.05% iodine and 0.3% polyethyleneglycol nonylphenyl ether and 40% ethanol. Thermal inactivation studies demonstrated that fowlpox is a suitable thermal simulant for variola major between 40∘C and 55∘C.

  1. Application of gamma irradiation in ginseng for both photodegradation of pesticide pentachloronitrobenzene and microbial decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Hsiao-Wei [Department of Food Science and Biotechnology, National Chung Hsing University, 250, Kuo Kuang Road, Taichung 402, Taiwan (China); Hsieh, Ming-Fa [Department of Biomedical Engineering, Chung Yuan Christian University, 200, Chung Pei Road, Chungli 320, Taiwan (China); Wang, Ya-Ting; Chung, Hsiao-Ping [Nuclear Science and Technology Development Center, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Hsieh, Po-Chow; Lin, I-Hsin [Committee on Chinese Medicine and Pharmacy, Department of Health, Executive Yuan, Taipei 104, Taiwan (China); Chou, Fong-In, E-mail: fichou@mx.nthu.edu.tw [Nuclear Science and Technology Development Center, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan (China); Institute of Nuclear Engineering and Science, National Tsing Hua University, 101 Section 2, Kuang Fu Road, Hsinchu 300, Taiwan (China)

    2010-04-15

    This study investigates the feasibility of using gamma irradiation for photodegradation of a common residual fungicide, pentachloronitrobenzene (PCNB), in ginseng, and for microbial decontamination. American ginseng, Panax quinquefolius, was subjected to gamma irradiation. PCNB residues were analyzed by gas chromatography with electron capture detection and mass spectrometry. Eighty percent of PCNB (100 ppm) in a methanol aqueous solution was degraded by 5 kGy irradiation, and the primary degradation product was pentachloroaniline. Furthermore, contaminated PCNB (3.7 ppm) in ginseng were reduced to 0.2 ppm after 20 kGy irradiation. The IC{sub 50} for treatment of Sclerotium rolfsii with 20 kGy irradiated PCNB was about 2.7 times higher than that for treatment with unirradiated PCNB. The survival rate of mouse fibroblast L929 cells treated with 20 kGy irradiated PCNB was about 12.9% higher than that of L929 cells treated with unirradiated PCNB. Additionally, after 20 kGy irradiation, less than 5% reduction of contents of ginsenoside Rb1 and Re were observed, and amounts of ginsenosides Rc, Rd, and Rg1 were not reduced significantly. The minimal gamma dose for microbial decontamination was 10 kGy. Therefore, gamma irradiation can be used for both PCNB photodegradation and microbial decontamination of ginseng without obvious loses of ginsenoside contents.

  2. CHALLENGES IN SOURCE TERM MODELING OF DECONTAMINATION AND DECOMMISSIONING WASTES.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.

    2006-08-01

    Development of real-time predictive modeling to identify the dispersion and/or source(s) of airborne weapons of mass destruction including chemical, biological, radiological, and nuclear material in urban environments is needed to improve response to potential releases of these materials via either terrorist or accidental means. These models will also prove useful in defining airborne pollution dispersion in urban environments for pollution management/abatement programs. Predicting gas flow in an urban setting on a scale of less than a few kilometers is a complicated and challenging task due to the irregular flow paths that occur along streets and alleys and around buildings of different sizes and shapes, i.e., ''urban canyons''. In addition, air exchange between the outside and buildings and subway areas further complicate the situation. Transport models that are used to predict dispersion of WMD/CBRN materials or to back track the source of the release require high-density data and need defensible parameterizations of urban processes. Errors in the data or any of the parameter inputs or assumptions will lead to misidentification of the airborne spread or source release location(s). The need for these models to provide output in a real-time fashion if they are to be useful for emergency response provides another challenge. To improve the ability of New York City's (NYC's) emergency management teams and first response personnel to protect the public during releases of hazardous materials, the New York City Urban Dispersion Program (UDP) has been initiated. This is a four year research program being conducted from 2004 through 2007. This paper will discuss ground level and subway Perfluorocarbon tracer (PFT) release studies conducted in New York City. The studies released multiple tracers to study ground level and vertical transport of contaminants. This paper will discuss the results from these tests and how these results can be used

  3. Existing buildings

    DEFF Research Database (Denmark)

    Gram-Hanssen, Kirsten

    2014-01-01

    their homes. These policy measures include building regulations, energy tax and different types of incentives and information dissemination. The conclusion calls for new and innovative policy measures to cope with the realities of renovations of owner-occupied houses and how energy efficiency improvement......This paper deals with the energy consumption of existing owner-occupied detached houses and the question of how they can be energy renovated. Data on the age of the Danish housing stock, and its energy consumption is presented. Research on the potential for energy reductions in the Danish housing...... sector is discussed, and it is shown that there is a huge potential for reductions. It is a well-known problem that even if there are relevant technical means and even if it is economically feasible, the majority of house owners do not energy renovate their homes. This paper intends to address what can...

  4. Integrating Responsive Building Elements in Buildings

    DEFF Research Database (Denmark)

    Haase, Matthias; Amato, Alex; Heiselberg, Per

    2006-01-01

    There is a global need for a more sustainable building development. About 50% of energy is used in buildings indicating that buildings provide a considerable potential for operational energy savings. Studies were conducted with the following objectives: to perform a state-of-the-art review...... energy strategies to develop guidelines and procedures for estimation of environmental performance of responsive building elements and integrated building concepts This paper introduces the ideas of this collaborative work and discusses its usefulness for Hong Kong and China. Special focus was put...... of responsive building elements, of integrated building concepts and of environmental performance assessment methods to improve and optimize responsive building elements to develop and optimize new building concepts with integration of responsive building elements, HVAC-systems as well as natural and renewable...

  5. In vitro skin permeation and decontamination of the organophosphorus pesticide paraoxon under various physical conditions--evidence for a wash-in effect.

    Science.gov (United States)

    Misik, Jan; Pavlikova, Ruzena; Josse, Denis; Cabal, Jiri; Kuca, Kamil

    2012-09-01

    Misuse of various chemicals, such as chemical warfare agents, industrial chemicals or pesticides during warfare or terrorists attacks requires adequate protection. Thus, development and evaluation of novel decontamination dispositives and techniques are needed. In this study, in vitro permeation and decontamination of a potentially hazardous compound paraoxon, an active metabolite of organophosphorus pesticide parathion, was investigated. Skin permeation and decontamination experiments were carried out in modified Franz diffusion cells. Pig skin was used as a human skin model. Commercially produced detergent-based washing solutions FloraFree(™) and ArgosTM were used as decontamination means. The experiments were done under "warm", "cold", "dry" and "wet" skin conditions in order to determine an effect of various physical conditions on skin permeation of paraoxon and on a subsequent decontamination process. There was no significant difference in skin permeation of paraoxon under warm, cold and dry conditions, whereas wet conditions provided significantly higher permeation rates. In the selected conditions, decontamination treatments performed 1 h after a skin exposure did not decrease the agent volume that permeated through the skin. An exception were wet skin conditions with non-significant decontamination efficacy 18 and 28% for the FloraFree(™) and Argos(™) treatment, respectively. In contrast, the skin permeation of paraoxon under warm, cold and dry conditions increased up to 60-290% following decontamination compared to non-decontaminated controls. This has previously been described as a skin wash-in effect.

  6. Evaluation of the Efficacy of Methyl Bromide in the Decontamination of Building and Interior Materials Contaminated with Bacillus anthracis Spores

    Data.gov (United States)

    U.S. Environmental Protection Agency — Spreadsheets containing data for recovery of spores from different materials. Data on the fumigation parameters are also included. This dataset is associated with...

  7. Building energy analysis tool

    Science.gov (United States)

    Brackney, Larry; Parker, Andrew; Long, Nicholas; Metzger, Ian; Dean, Jesse; Lisell, Lars

    2016-04-12

    A building energy analysis system includes a building component library configured to store a plurality of building components, a modeling tool configured to access the building component library and create a building model of a building under analysis using building spatial data and using selected building components of the plurality of building components stored in the building component library, a building analysis engine configured to operate the building model and generate a baseline energy model of the building under analysis and further configured to apply one or more energy conservation measures to the baseline energy model in order to generate one or more corresponding optimized energy models, and a recommendation tool configured to assess the one or more optimized energy models against the baseline energy model and generate recommendations for substitute building components or modifications.

  8. Level 3 Baseline Risk Assessment for Building 3515 at Oak Ridge National Lab., Oak Ridge, TN

    Energy Technology Data Exchange (ETDEWEB)

    Wollert, D.A.; Cretella, F.M.; Golden, K.M. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1995-08-01

    The baseline risk assessment for the Fission Product Pilot Plant (Building 3515) at the Oak Ridge National laboratory (ORNL) provides the Decontamination and Decommissioning (D&D) Program at ORNL and Building 3515 project managers with information concerning the results of the Level 3 baseline risk assessment performed for this building. The document was prepared under Work Breakdown Structure 1.4.12.6.2.01 (Activity Data Sheet 3701, Facilities D&D) and includes information on the potential long-term impacts to human health and the environment if no action is taken to remediate Building 3515. Information provided in this document forms the basis for the development of remedial alternatives and the no-action risk portion of the Engineering Evaluation/Cost Analysis report.

  9. Building America

    Energy Technology Data Exchange (ETDEWEB)

    Brad Oberg

    2010-12-31

    Builders generally use a 'spec and purchase' business management system (BMS) when implementing energy efficiency. A BMS is the overall operational and organizational systems and strategies that a builder uses to set up and run its company. This type of BMS treats building performance as a simple technology swap (e.g. a tank water heater to a tankless water heater) and typically compartmentalizes energy efficiency within one or two groups in the organization (e.g. purchasing and construction). While certain tools, such as details, checklists, and scopes of work, can assist builders in managing the quality of the construction of higher performance homes, they do nothing to address the underlying operational strategies and issues related to change management that builders face when they make high performance homes a core part of their mission. To achieve the systems integration necessary for attaining 40% + levels of energy efficiency, while capturing the cost tradeoffs, builders must use a 'systems approach' BMS, rather than a 'spec and purchase' BMS. The following attributes are inherent in a systems approach BMS; they are also generally seen in quality management systems (QMS), such as the National Housing Quality Certification program: Cultural and corporate alignment, Clear intent for quality and performance, Increased collaboration across internal and external teams, Better communication practices and systems, Disciplined approach to quality control, Measurement and verification of performance, Continuous feedback and improvement, and Whole house integrated design and specification.

  10. Effective responder communication improves efficiency and psychological outcomes in a mass decontamination field experiment: implications for public behaviour in the event of a chemical incident.

    Science.gov (United States)

    Carter, Holly; Drury, John; Amlôt, Richard; Rubin, G James; Williams, Richard

    2014-01-01

    The risk of incidents involving mass decontamination in response to a chemical, biological, radiological, or nuclear release has increased in recent years, due to technological advances, and the willingness of terrorists to use unconventional weapons. Planning for such incidents has focused on the technical issues involved, rather than on psychosocial concerns. This paper presents a novel experimental study, examining the effect of three different responder communication strategies on public experiences and behaviour during a mass decontamination field experiment. Specifically, the research examined the impact of social identity processes on the relationship between effective responder communication, and relevant outcome variables (e.g. public compliance, public anxiety, and co-operative public behaviour). All participants (n = 111) were asked to visualise that they had been involved in an incident involving mass decontamination, before undergoing the decontamination process, and receiving one of three different communication strategies: 1) 'Theory-based communication': Health-focused explanations about decontamination, and sufficient practical information; 2) 'Standard practice communication': No health-focused explanations about decontamination, sufficient practical information; 3) 'Brief communication': No health-focused explanations about decontamination, insufficient practical information. Four types of data were collected: timings of the decontamination process; observational data; and quantitative and qualitative self-report data. The communication strategy which resulted in the most efficient progression of participants through the decontamination process, as well as the fewest observations of non-compliance and confusion, was that which included both health-focused explanations about decontamination and sufficient practical information. Further, this strategy resulted in increased perceptions of responder legitimacy and increased identification with

  11. Non-communicable diseases in decontamination workers in areas affected by the Fukushima nuclear disaster: a retrospective observational study

    Science.gov (United States)

    Sawano, Toyoaki; Ozaki, Akihiko; Leppold, Claire; Nomura, Shuhei; Shimada, Yuki; Tsukada, Manabu; Nemoto, Tsuyoshi; Kato, Shigeaki; Kanazawa, Yukio; Ohira, Hiromichi

    2016-01-01

    Objectives To assess the prevalence of non-communicable diseases (NCDs), and whether NCDs were treated or not, among hospitalised decontamination workers who moved to radio-contaminated areas after Japan's 2011 Fukushima Daiichi Nuclear Power Plant disaster. Methods We retrospectively extracted records of decontamination workers admitted to Minamisoma Municipal General Hospital between 1 June 2012 and 31 August 2015, from hospital records. We investigated the incidence of underlying NCDs such as hypertension, dyslipidaemia and diabetes among the decontamination workers, and their treatment status, in addition to the reasons for their hospital admission. Results A total of 113 decontamination workers were admitted to the hospital (112 male patients, median age of 54 years (age range: 18–69 years)). In terms of the demographics of underlying NCDs in this population, 57 of 72 hypertensive patients (79.2%), 37 of 45 dyslipidaemic patients (82.2%) and 18 of 27 hyperglycaemic patients (66.7%) had not been treated for their NCDs before admission to the hospital. Conclusions A high burden of underlying NCDs was found in hospitalised decontamination workers in Fukushima. Managing underlying diseases such as hypertension, hyperlipidaemia and diabetes mellitus is essential among this population. PMID:27974372

  12. Plan for fully decontaminating and decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick, Revision 3

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    The project scope of work included the complete decontamination and decommissioning (D and D) of the Westinghouse ARD Fuel Laboratories at the Cheswick Site in the shortest possible time. This has been accomplished in the following four phases: (1) preparation of documents and necessary paperwork; packaging and shipping of all special nuclear materials in an acceptable form to a reprocessing agency; (2) decontamination of all facilities, glove boxes and equipment; loading of generated waste into bins, barrels and strong wooden boxes; (3) shipping of all bins, barrels and boxes containing waste to the designated burial site; removal of all utility services from the laboratories; (4) final survey of remaining facilities and certification for nonrestricted use; preparation of final report. This volume contains the following 3 attachments: (1) Plan for Fully Decontamination and Decommissioning of the Westinghouse Advanced Reactors Division Fuel Laboratories at Cheswick; (2) Environmental Assessment for Decontamination and Decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA; and (3) WARD-386, Quality Assurance Program Description for Decontamination and Decommissioning Activities.

  13. ASSESSMENTOF BETA PARTICLE FLUX FROM SURFACE CONTAMINATION AS A RELATIVE INDICATOR FOR RADIONUCLIDE DISTRIBUTION ON EXTERNAL SURFACES OF A MULTI-STORY BUILDING IN PRIPYAT

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.

    2009-11-17

    How would we recover if a Radiological Dispersion Device (e.g., dirty bomb) or Improvised Nuclear Device were to detonate in a large city? In order to assess the feasibility of remediation following such an event, several issues would have to be considered, including the levels and characteristics of the radioactive contamination, the availability of the required resources to accomplish decontamination, and the planned future use of the city's structures and buildings. Presently little is known about the distribution, redistribution, and migration of radionuclides in an urban environment. However, Pripyat, a city substantially contaminated by the Chernobyl Nuclear Power Plant accident, may provide some answers. The main objective of this study was to determine the radionuclide distribution on a Pripyat multi-story building, which had not been previously decontaminated and therefore could reflect the initial fallout and its further natural redistribution on external surfaces. The 7-story building selected was surveyed from the ground floor to the roof on horizontal and vertical surfaces along seven ground-to-roof transections. Some of the results from this study indicate that the upper floors of the building had higher contamination levels than the lower floors. The authors consequently recommend that existing decontamination procedures for tall structures be re-examined and modified accordingly.

  14. [Survey of methods of cleaning, decontamination, disinfection and sterilization in dental health services in tropical areas].

    Science.gov (United States)

    Clapeau, G; Decroix, B; Bakayoko-Ly, R; Varenne, B; Dosso-Hien, D; Decroix, M O

    1997-01-01

    The International Aid for Ontology (IAO) carried out this survey of hygiene in the dental health services of 5 French-speaking African countries in 1994, in association with the Faculty of Pharmaceutical and Biological Sciences of Paris. This study received support from the World Health Organization (WHO), the French Ministry for Cooperation and the European Community and the Ivory Coast Oral and Dental Hygiene and Health Committee (CIHSBD). Twenty-nine dental services from Benin (3), Burkina Faso (6), Ivory Coast (12), Mali (5), Niger (3) participated in this survey which gives an insight into the daily hygiene routines of these services. The cleaning, decontamination, disinfection and sterilization procedures for premises, dental equipment, instruments, hands and disposable items were investigated. No individual protocols are reported. Bench tops were cleaned or disinfected daily in 73% of centers and floors were cleaned or disinfected daily in 59% of centers. Walls were cleaned once per week in 44% of the centers. Hands were always washed between patients, with 68% of dental surgeons using only solid or liquid cleansing soaps and the others using antiseptic or disinfectant solutions. The dentist's chair was cleaned or disinfected daily in 68% of centers, mostly with soap (43%) or diluted bleach (23%). Vacuum equipment was cleaned with soap (50%) or diluted bleach (57%), with some surgeries using a combination of the two. Hand pieces and turbines were cleaned and disinfected after each use with alcohol (35%) or diluted bleach (26%) and were sterilized in 9% of centers. Instruments were sterilized with a Poupinel (63%), unspecified sterilizer (26%), autoclave (7%) or low temperature disinfection procedure (4%). Instruments were regularly sterilized in all centers. Single-use disposable items were often reused: 88% of centers reused gloves, 64% anesthetic cartridges and 32% disposable needles. This survey demonstrates that dentists do attempt to achieve appropriate

  15. Agricultural pathogen decontamination technology-reducing the threat of infectious agent spread.

    Energy Technology Data Exchange (ETDEWEB)

    Betty, Rita G.; Bieker, Jill Marie; Tucker, Mark David

    2005-10-01

    Outbreaks of infectious agricultural diseases, whether natural occurring or introduced intentionally, could have catastrophic impacts on the U.S. economy. Examples of such agricultural pathogens include foot and mouth disease (FMD), avian influenza (AI), citrus canker, wheat and soy rust, etc. Current approaches to mitigate the spread of agricultural pathogens include quarantine, development of vaccines for animal diseases, and development of pathogen resistant crop strains in the case of plant diseases. None of these approaches is rapid, and none address the potential persistence of the pathogen in the environment, which could lead to further spread of the agent and damage after quarantine is lifted. Pathogen spread in agricultural environments commonly occurs via transfer on agricultural equipment (transportation trailers, tractors, trucks, combines, etc.), having components made from a broad range of materials (galvanized and painted steel, rubber tires, glass and Plexiglas shields, etc), and under conditions of heavy organic load (mud, soil, feces, litter, etc). A key element of stemming the spread of an outbreak is to ensure complete inactivation of the pathogens in the agricultural environment and on the equipment used in those environments. Through the combination of enhanced agricultural pathogen decontamination chemistry and a validated inactivation verification methodology, important technologies for incorporation as components of a robust response capability will be enabled. Because of the potentially devastating economic impact that could result from the spread of infectious agricultural diseases, the proposed capability components will promote critical infrastructure protection and greater border and food supply security. We investigated and developed agricultural pathogen decontamination technologies to reduce the threat of infectious-agent spread, and thus enhance agricultural biosecurity. Specifically, enhanced detergency versions of the patented

  16. Decontamination of Bacillus subtilis var. niger spores on selected surfaces by chlorine dioxide gas*

    Science.gov (United States)

    Li, Yan-ju; Zhu, Neng; Jia, Hai-quan; Wu, Jin-hui; Yi, Ying; Qi, Jian-cheng

    2012-01-01

    Objective: Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories. In this study, some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS), painted steel (PS), polyvinyl chlorid (PVC), polyurethane (PU), glass (GS), and cotton cloth (CC)] by CD gas. The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy. Methods: Material coupons (1.2 cm diameter of SS, PS, and PU; 1.0 cm×1.0 cm for PVC, GS, and CC) were contaminated with 10 μl of Bacillus subtilis var. niger (ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h. The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min. Results: The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio, v/v) for 3 h] were in the range of from 1.80 to 6.64. Statistically significant differences were found in decontamination efficacies on test material coupons of SS, PS, PU, and CC between with and without a 1-h prehumidification treatment. With the extraction method, there were no statistically significant differences in the recovery ratios between the porous and non-porous materials. Conclusions: The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination. PMID:22467366

  17. Low-Temperature Decontamination with Hydrogen Peroxide or Chlorine Dioxide for Space Applications

    Science.gov (United States)

    Macken, S.; Giri, K.; Walker, J. T.; Bennett, A. M.

    2012-01-01

    The currently used microbial decontamination method for spacecraft and components uses dry-heat microbial reduction at temperatures of >110°C for extended periods to prevent the contamination of extraplanetary destinations. This process is effective and reproducible, but it is also long and costly and precludes the use of heat-labile materials. The need for an alternative to dry-heat microbial reduction has been identified by space agencies. Investigations assessing the biological efficacy of two gaseous decontamination technologies, vapor hydrogen peroxide (Steris) and chlorine dioxide (ClorDiSys), were undertaken in a 20-m3 exposure chamber. Five spore-forming Bacillus spp. were exposed on stainless steel coupons to vaporized hydrogen peroxide and chlorine dioxide gas. Exposure for 20 min to vapor hydrogen peroxide resulted in 6- and 5-log reductions in the recovery of Bacillus atrophaeus and Geobacillus stearothermophilus, respectively. However, in comparison, chlorine dioxide required an exposure period of 60 min to reduce both B. atrophaeus and G. stearothermophilus by 5 logs. Of the three other Bacillus spp. tested, Bacillus thuringiensis proved the most resistant to hydrogen peroxide and chlorine dioxide with D values of 175.4 s and 6.6 h, respectively. Both low-temperature decontamination technologies proved effective at reducing the Bacillus spp. tested within the exposure ranges by over 5 logs, with the exception of B. thuringiensis, which was more resistant to both technologies. These results indicate that a review of the indicator organism choice and loading could provide a more appropriate and realistic challenge for the sterilization procedures used in the space industry. PMID:22492450

  18. Decontamination of Bacillus subtilis var.niger spores on selected surfaces by chlorine dioxide gas

    Institute of Scientific and Technical Information of China (English)

    Yan-ju LI; Neng ZHU; Hai-quan JIA; Jin-hui WU; Ying YI; Jian-cheng QI

    2012-01-01

    Objective:Chlorine dioxide (CD) gas has been used as a fumigant in the disinfection of biosafety laboratories.In this study,some experiments were conducted to assess the inactivation of spores inoculated on six materials [stainless steel (SS),painted steel (PS),polyvinyl chlorid (PVC),polyurethane (PU),glass (GS),and cotton cloth (CC)] by CD gas.The main aims of the study were to determine the sporicidal efficacy of CD gas and the effect of prehumidification before decontamination on sporicidal efficacy.Methods:Material coupons (1.2 cm diameter of SS,PS,and PU; 1.0 cm×1.0 cm for PVC,GS,and CC) were contaminated with 10 μl of Bacillus subtilis var.niger(ATCC 9372) spore suspension in mixed organic burden and then dried in a biosafety cabinet for 12 h.The spores were recovered by soaking the coupons in 5 ml of extraction liquid for 1 h and then vortexing the liquid for 1 min.Results:The log reductions in spore numbers on inoculated test materials exposed to CD gas [0.080% (volume ratio,v/v) for 3 h]were in the range of from 1.80 to 6.64.Statistically significant differences were found in decontamination efficacies on test material coupons of SS,PS,PU,and CC between with and without a 1-h prehumidification treatment.With the extraction method,there were no statistically significant differences in the recovery ratios between the porous and non-porous materials.Conclusions:The results reported from this study could provide information for developing decontamination technology based on CD gas for targeting surface microbial contamination.

  19. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions.

    Science.gov (United States)

    Tunsu, Cristian; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-01

    With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent's concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I2/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5M I2/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe4BTBP showed good removal of mercury, with an extraction efficiency of 97.5 ± 0.7% being achieved in a single stage. Better removal of mercury was achieved in a single stage using the extractants Cyanex 302 and Cyanex 923 in kerosene, respectively.

  20. Disinfection methods used in decontamination of bottles used for feeding powdered infant formula.

    Science.gov (United States)

    Redmond, Elizabeth; Griffith, Christopher J

    2009-01-01

    Infant susceptibility and the risks posed by infections associated with bottle-fed powdered infant formula (PIF) have received increased attention in recent years. Intrinsic contamination of PIF with pathogens has been reported and extrinsic contamination can be introduced from the handler or the environment during reconstitution. Recommended disinfection advice and bottle decontamination have changed in recent years and the aim of this study was to validate the efficacy of four current disinfection methods using bottles that had contained reconstituted PIF spiked with either a representative mixed bacterial culture or specific pathogens. Initially, bottles (n = 6) of reconstituted formula were spiked with 10(5) cfu/ml representative mixed culture. For subsequent experiments, reconstituted formula was spiked with either 10(2) and 10(4) cfu/ml of Enterobacter sakazakii (Cronobacter), Bacillus cereus and Staphylococcus aureus. Before disinfection, bottles were cleaned according to recommended guidelines. Disinfection procedures tested included a hypochlorite-based chemical solution and three heat-based methods. Bottles were sampled in four sites. Before cleaning and disinfection, the inner screw cap and inner-teat were the most heavily contaminated sites with 1.6-7.4 x 10(3) cfu/per-area-sampled; the bottle interior was more contaminated overall with 1.2 x 10(4) cfu/per-area-sampled. After disinfection, adherence to recommended procedures (combined with good hygiene) enabled effective decontamination to be achieved using all methods. Small differences in disinfection ability were not significant (p > 0.05). Cumulatively, 800 sites were sampled and no B. cereus or E. sakazakii were isolated. S. aureus was isolated from 0.1% of sites with one site exceeding 1 cfu/ml. Findings indicate the potential for bottle contamination and that strict adherence to four currently used methods allowed effective decontamination. This highlights the importance of effective consumer

  1. Application of epifluorescence scanning for monitoring the efficacy of protein removal by RF gas-plasma decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Baxter, Helen C; Richardson, Patricia R; Campbell, Gaynor A; Jones, Anita C; Baxter, Robert L [School of Chemistry, Joseph Black Chemistry Building, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ (United Kingdom); Kovalev, Valeri I; Maier, Robert; Barton, James S [School of Engineering and Physical Science, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); DeLarge, Greg [Plasma Etch Inc, 3522 Arrowhead Drive, Carson City, NV 89706 (United States); Casey, Mark [Sterile Services Department, Royal Infirmary of Edinburgh, Edinburgh EH16 4AS (United Kingdom)], E-mail: r.baxter@ed.ac.uk

    2009-11-15

    The development of methods for measuring the efficiency of gas-plasma decontamination has lagged far behind application. An approach to measuring the efficiency of protein removal from solid surfaces using fluorescein-labelled bovine serum albumin and epifluorescence scanning (EFSCAN) is described. A method for fluorescently labelling proteins, which are adsorbed and denatured on metal surfaces, has been developed. Both approaches have been used to evaluate the efficiency of radio frequency (RF) gas-plasma decontamination protocols. Examples with 'real' surgical instruments demonstrate that an argon-oxygen RF gas-plasma treatment can routinely reduce the protein load by about three orders of magnitude beyond that achieved by current decontamination methods.

  2. Microbial decontamination by low dose gamma irradiation and its impact on the physico-chemical quality of peppermint (Mentha piperita)

    Energy Technology Data Exchange (ETDEWEB)

    Machhour, Hasna [Valorization of the Agro-Ressources and Food Chemistry, Department of Chemistry, Cadi Ayyad University, B.P. 2390, Marrakesh 40000 (Morocco); Laboratory of Biotechnology, Protection and Valorization of the Vegetable Resources, Cadi Ayyad University, B.P 2390, Marrakesh 40000 (Morocco); El Hadrami, Ismail [Laboratory of Biotechnology, Protection and Valorization of the Vegetable Resources, Cadi Ayyad University, B.P 2390, Marrakesh 40000 (Morocco); Imziln, Boujamaa [Laboratory of Biology and Biotechnology of Microorganisms, Environmental Microbiology and Toxicology Team ((mu)BioToxE, Department of Biology), Cadi Ayyad University, P.O. Box no. 2390, Marrakech 40000 (Morocco); Mouhib, Mohamed [Institut National de la Recherche Agronomique (INRA), Centre Regional de la Recherche Agronomique de Tanger, Unite de Recherche sur les Techniques Nucleaires, l' Environnement et la Qualite (URTNEQ), 78 Boulevard Sidi Mohamed Ben Abdellah, Tanger 90000 (Morocco); Mahrouz, Mostafa, E-mail: mahrouz10@yahoo.f [Valorization of the Agro-Ressources and Food Chemistry, Department of Chemistry, Cadi Ayyad University, B.P. 2390, Marrakesh 40000 (Morocco)

    2011-04-15

    Peppermint was inoculated with Escherichia coli and its decontamination was carried out by gamma irradiation at low irradiation doses (0.5, 1.0 and 2.66 kGy). The efficiency of this decontamination method was evaluated and its impact on the quality parameters of peppermint, such as the color and ash content, as well as the effect on fingerprint components such as phenols and essential oils, was studied. Gas chromatography coupled to mass spectrometry (GC/MS) and High Performance Liquid Chromatography (HPLC) were used to characterize essential oils and phenolic compounds, respectively. The results indicated a complete decontamination of peppermint after the low dose gamma irradiation without a significant loss in quality attributes.

  3. Microbial decontamination by low dose gamma irradiation and its impact on the physico-chemical quality of peppermint (Mentha piperita)

    Science.gov (United States)

    Machhour, Hasna; El Hadrami, Ismail; Imziln, Boujamaa; Mouhib, Mohamed; Mahrouz, Mostafa

    2011-04-01

    Peppermint was inoculated with Escherichia coli and its decontamination was carried out by gamma irradiation at low irradiation doses (0.5, 1.0 and 2.66 kGy). The efficiency of this decontamination method was evaluated and its impact on the quality parameters of peppermint, such as the color and ash content, as well as the effect on fingerprint components such as phenols and essential oils, was studied. Gas chromatography coupled to mass spectrometry (GC/MS) and High Performance Liquid Chromatography (HPLC) were used to characterize essential oils and phenolic compounds, respectively. The results indicated a complete decontamination of peppermint after the low dose gamma irradiation without a significant loss in quality attributes.

  4. Returning perchlorate-contaminated fume hood systems to service. Part II. Disassembly, decontamination, disposal, and analytical procedures.

    Science.gov (United States)

    Bader, M; Phillips, C C; Mueller, T R; Underwood, W S; Whitson, S D

    1999-06-01

    Part I presented work leading up to and including a pilot study for remediation of laboratory fume hood systems contaminated with residues from processes that used fuming perchloric acid. Since publication of Part I, three incidents involving explosions and fires related to perchlorates have come to the attention of the authors. Experience has been gained through decontamination/remediation of 41 additional systems. This article expands on previous one and includes (1) administrative details that need to be addressed before and during the execution of the decontamination itself, (2) a seven-step procedure for decontamination-remediation/disposal, (3) some precautions associated with the use of methylene blue as a diagnostic tool for perchlorates, and-specific electrode to augment or replace the methylene blue test.

  5. Evaluation of absorbent materials for use as ad hoc dry decontaminants during mass casualty incidents as part of the UK’s Initial Operational Response (IOR)

    Science.gov (United States)

    Kassouf, Nick; Syed, Sara; Larner, Joanne; Amlôt, Richard

    2017-01-01

    The UK’s Initial Operational Response (IOR) is a revised process for the medical management of mass casualties potentially contaminated with hazardous materials. A critical element of the IOR is the introduction of immediate, on-scene disrobing and decontamination of casualties to limit the adverse health effects of exposure. Ad hoc cleansing of the skin with dry absorbent materials has previously been identified as a potential means of facilitating emergency decontamination. The purpose of this study was to evaluate the in vitro oil and water absorbency of a range of materials commonly found in the domestic and clinical environments and to determine the effectiveness of a small, but representative selection of such materials in skin decontamination, using an established ex vivo model. Five contaminants were used in the study: methyl salicylate, parathion, diethyl malonate, phorate and potassium cyanide. In vitro measurements of water and oil absorbency did not correlate with ex vivo measurements of skin decontamination. When measured ex vivo, dry decontamination was consistently more effective than a standard wet decontamination method (“rinse-wipe-rinse”) for removing liquid contaminants. However, dry decontamination was ineffective against particulate contamination. Collectively, these data confirm that absorbent materials such as wound dressings and tissue paper provide an effective, generic capability for emergency removal of liquid contaminants from the skin surface, but that wet decontamination should be used for non-liquid contaminants. PMID:28152053

  6. Evaluation of absorbent materials for use as ad hoc dry decontaminants during mass casualty incidents as part of the UK's Initial Operational Response (IOR).

    Science.gov (United States)

    Kassouf, Nick; Syed, Sara; Larner, Joanne; Amlôt, Richard; Chilcott, Robert P

    2017-01-01

    The UK's Initial Operational Response (IOR) is a revised process for the medical management of mass casualties potentially contaminated with hazardous materials. A critical element of the IOR is the introduction of immediate, on-scene disrobing and decontamination of casualties to limit the adverse health effects of exposure. Ad hoc cleansing of the skin with dry absorbent materials has previously been identified as a potential means of facilitating emergency decontamination. The purpose of this study was to evaluate the in vitro oil and water absorbency of a range of materials commonly found in the domestic and clinical environments and to determine the effectiveness of a small, but representative selection of such materials in skin decontamination, using an established ex vivo model. Five contaminants were used in the study: methyl salicylate, parathion, diethyl malonate, phorate and potassium cyanide. In vitro measurements of water and oil absorbency did not correlate with ex vivo measurements of skin decontamination. When measured ex vivo, dry decontamination was consistently more effective than a standard wet decontamination method ("rinse-wipe-rinse") for removing liquid contaminants. However, dry decontamination was ineffective against particulate contamination. Collectively, these data confirm that absorbent materials such as wound dressings and tissue paper provide an effective, generic capability for emergency removal of liquid contaminants from the skin surface, but that wet decontamination should be used for non-liquid contaminants.

  7. Low pressure water vapour plasma treatment of surfaces for biomolecules decontamination.

    OpenAIRE

    Fumagalli, F; Kylian, O; Amato, Letizia; Hanus, J; Rossi, F.

    2012-01-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) fro...

  8. Development of Bicarbonate-Activated Peroxide as a Chemical and Biological Warfare Agent Decontaminant

    Science.gov (United States)

    2006-06-30

    Peroxide (HOO-) 7.8 29 26.7 ± 0.2 t-Butyl hydroperoxide ((CH3)3COO-) 7.8 9.7 39 Cumene hydroperoxide ((C6H6)C(CH3)2OO-) 7.8 9.3 22 All reactions run with...peroxymonocarbonate ion (HCO4-) as the oxidant in the catalytic oxidation reactions . For perhydrolytic cleavage of organophosphates the peroxycarbonate dianion...solubility and reaction rates for applications in chemical warfare agent decontamination. -O *C O O OH -O *C OH O HO *C OH O *CO2 HO2 - H2OHO *C O O OH pKa

  9. Overview of NORM and activities by a NORM licensed permanent decontamination and waste processing facility

    Energy Technology Data Exchange (ETDEWEB)

    Mirro, G.A. [Growth Resources, Inc., Lafayette, LA (United States)

    1997-02-01

    This paper presents an overview of issues related to handling NORM materials, and provides a description of a facility designed for the processing of NORM contaminated equipment. With regard to handling NORM materials the author discusses sources of NORM, problems, regulations and disposal options, potential hazards, safety equipment, and issues related to personnel protection. For the facility, the author discusses: description of the permanent facility; the operations of the facility; the license it has for handling specific radioactive material; operating and safety procedures; decontamination facilities on site; NORM waste processing capabilities; and offsite NORM services which are available.

  10. Decontamination of objects in a sealed container by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Schultz-Jensen, Nadja; Kusano, Yukihiro

    2011-01-01

    The decontamination of objects (food) in a sealed container by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua, is used....... The ambient atmosphere was air at atmospheric pressure. A plasma is generated inside the bag forming ozone from the oxygen. The maximum ozone concentration in the bag was found to be 140 ppm. A log 6 reduction of L. innocua is obtained after 15 min of exposure time. The temperature of the slides after...

  11. Decontamination of a rotating cutting tool during operation by means of atmospheric pressure plasmas

    DEFF Research Database (Denmark)

    Leipold, Frank; Kusano, Yukihiro; Hansen, F.

    2010-01-01

    The decontamination of a rotating cutting tool used for slicing in the meat industry by means of atmospheric pressure plasmas is investigated. The target is Listeria monocytogenes, a bacterium which causes listeriosis and can be found in plants and food. The non-pathogenic species, Listeria innocua......, is used for the experiments. A rotating knife was inoculated with L. innocua. The surface of the rotating knife was partly exposed to an atmospheric pressure dielectric barrier discharge operated in air, where the knife itself served as a ground electrode. The rotation of the knife ensures a treatment...

  12. Development of a Complimentary Low Temperature Decontamination Technique for Spacecraft Materials

    Science.gov (United States)

    Pottage, Thomas; Bennett, Allan; Walker, James; Fowler, Chantal; Weber, Christina; Rohr, Thomas; Kminek, Gerhard

    Dry heat microbial reduction (DHMR) is one of the current processes used to ensure that the microbial burden of a spacecraft lander meets the predetermined levels set out within the COSPAR policy regarding planetary protection. DHMR involves heating the craft or compo-nents to approximately 110-125C for over 6-30hrs, and was previously used to decontaminate the entire Viking lander spacecraft and parts of almost all other spacecrafts sent to Mars after-wards. This process, whilst proving effective and reproducible is not compatible with the some highly sensitive sensor and electronic components of a modern spacecraft. For these components an alternative method for low temperature decontamination needs to be identified. The Health Protection Agency, UK, investigated three gaseous decontamination technologies in a project funded by European Space Agency. These technologies consisted of two hydrogen peroxide technologies (Vapour Hydrogen Peroxide, Steris Inc. and Hydrogen Peroxide Vapour, Bioquell Ltd.) and one chlorine dioxide (ClorDiSys) system. The technologies were chosen after a comprehensive literature study identified them as the most suitable technologies for the decontamination process. An environmental chamber (20m3 ) was used as the test chamber to expose two commercially available biological indicators, three naturally occurring organisms chosen by ESA and a range of spacecraft materials to each of the technologies. The commercial biological indicators, Bacil-lus atrophaeus and Geobacillus sterothermophilus, were exposed to 3 varying concentrations of each of the technologies in order to attempt to achieve a 6-log reduction in recoverable organ-isms. After these results were obtained the most efficacious cycle was chosen for each technology and the naturally occurring organisms and materials to be tested were exposed to three cy-cles. Whilst the microbial enumeration was completed at the HPA, material compatibility was undertaken at ESTEC and residue

  13. Efficacy of alkaline washing for the decontamination of orange fruit surfaces inoculated with Escherichia coli.

    Science.gov (United States)

    Pao, S; Davis, C L; Kelsey, D F

    2000-07-01

    The effectiveness of washing treatments to decontaminate orange fruit surfaces inoculated with Escherichia coli was evaluated. Washing on roller brushes with fruit cleaners or sanitizers followed by potable water rinse reduced E. coli by 1.9 to 3.5 log cycles. Prewetting fruit for 30 s before washing provided no significant benefit in most cases. Additional sanitizing treatments either with chlorine or acid sanitizers did not enhance the results of alkaline washing. In general, high pH washing solutions (pH 11.8) applied with an adequate spray volume effectively reduced the surface contamination of fruit that lowered the microbial load of fresh juice as well.

  14. Task 21 - Development of Systems Engineering Applications for Decontamination and Decommissioning Activities

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, T.A.

    1998-11-01

    The objectives of this task are to: Develop a model (paper) to estimate the cost and waste generation of cleanup within the Environmental Management (EM) complex; Identify technologies applicable to decontamination and decommissioning (D and D) operations within the EM complex; Develop a database of facility information as linked to project baseline summaries (PBSs). The above objectives are carried out through the following four subtasks: Subtask 1--D and D Model Development, Subtask 2--Technology List; Subtask 3--Facility Database, and Subtask 4--Incorporation into a User Model.

  15. Decontamination systems information and research program. Quarterly report, April--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    West Virginia University (WVU) and the US Department of Energy Morgantown Energy Technology Center (DOE/METC) entered into a Cooperative Agreement on August 29, 1992 titled `Decontamination Systems Information and Research Programs`. Requirements stipulated by the Agreement require WVU to submit Technical Progress reports on a quarterly basis. This report contains the efforts of the fourteen research projects comprising the Agreement for the period April 1 to June 30, 1995. During this period three new projects have been funded by the Agreement. These projects are: (1) WERC National Design Contest, (2) Graduate Interns to the Interagency Environmental Technology Office under the National Science and Technology Council, and (3) WV High Tech Consortium.

  16. Investigations regarding the wet decontamination of fluorescent lamp waste using iodine in potassium iodide solutions

    Energy Technology Data Exchange (ETDEWEB)

    Tunsu, Cristian, E-mail: tunsu@chalmers.se; Ekberg, Christian; Foreman, Mark; Retegan, Teodora

    2015-02-15

    Highlights: • A wet-based decontamination process for fluorescent lamp waste is proposed. • Mercury can be leached using iodine in potassium iodide solution. • The efficiency of the process increases with an increase in leachant concentration. • Selective leaching of mercury from rare earth elements is achieved. • Mercury is furthered recovered using ion exchange, reduction or solvent extraction. - Abstract: With the rising popularity of fluorescent lighting, simple and efficient methods for the decontamination of discarded lamps are needed. Due to their mercury content end-of-life fluorescent lamps are classified as hazardous waste, requiring special treatment for disposal. A simple wet-based decontamination process is required, especially for streams where thermal desorption, a commonly used but energy demanding method, cannot be applied. In this study the potential of a wet-based process using iodine in potassium iodide solution was studied for the recovery of mercury from fluorescent lamp waste. The influence of the leaching agent’s concentration and solid/liquid ratio on the decontamination efficiency was investigated. The leaching behaviour of mercury was studied over time, as well as its recovery from the obtained leachates by means of anion exchange, reduction, and solvent extraction. Dissolution of more than 90% of the contained mercury was achieved using 0.025/0.05 M I{sub 2}/KI solution at 21 °C for two hours. The efficiency of the process increased with an increase in leachant concentration. 97.3 ± 0.6% of the mercury contained was dissolved at 21 °C, in two hours, using a 0.25/0.5 M I{sub 2}/KI solution and a solid to liquid ratio of 10% w/v. Iodine and mercury can be efficiently removed from the leachates using Dowex 1X8 anion exchange resin or reducing agents such as sodium hydrosulphite, allowing the disposal of the obtained solution as non-hazardous industrial wastewater. The extractant CyMe{sub 4}BTBP showed good removal of mercury

  17. Polyoxometalate-based Catalysts for Toxic Compound Decontamination and Solar Energy Conversion

    Science.gov (United States)

    Guo, Weiwei

    Polyoxometalates (POMs) have been attracting interest from researchers in the fields of Inorganic Chemistry, Physical Chemistry, Biomolecular Chemistry, etc. Their unique structures and properties render them versatile and facilitate applications in medicine, magnetism, electrochemistry, photochemistry and catalysis. In particular, toxic compound (chemical warfare agents (CWAs) and toxic industrial compounds (TICs)) decontamination and solar energy conversion by POM-based materials have becoming promising and important research areas that deserve much attention. The focus of this thesis is to explore the structural features of POMs, to develop POM-based materials and to investigate their applications in toxic compound decontamination and solar energy conversion. The first part of this thesis gives a general introduction on the history, structures, properties and applications of POMs. The second part reports the synthesis, structures, and reactivity of different types of POMs in the destruction of TICs and CWAs. Three tetra-n-butylammonium (TBA) salts of polyvanadotungstates, [n-Bu4N]6[ PW9V3], [n-Bu4N] 5H2PW8V4O40 (PW 8V4), [n-Bu4N]4H 5PW6V6O40· 20H2O (PW6V6) are discussed in detail. These vanadium-substituted Keggin type POMs show effective activity for the aerobic oxidation of formaldehyde (a major TIC and human-environment carcingen) to formic acid under ambient conditions. Moreover, two types of POMs have also been developed for the removal of CWAs and/or their simulants. Specifically, a layered manganese(IV)-containing heteropolyvanadate with a 1:14 Stoichiometry, K4Li2[MnV14O40]˙21H2 O has been prepared. Its catalytic activity for oxidative removal of 2-chloroethyl ethyl sulfide (a mustard simulant) is discussed. The second type of POM developed for decontamination of CWAs and their simulants is the new one-dimensional polymeric polyniobate (P-PONb), K12[Ti 2O2][GeNb12O40]˙19H2O (KGeNb). The complex has been applied to the decontamination of a wide range

  18. Exploratory Use of Microaerosol Decontamination Technology (PAEROSOL) in Enclosed, Unoccupied Hospital Setting

    Energy Technology Data Exchange (ETDEWEB)

    Rainina, Evguenia I.; McCune, D. E.; Luna, Maria L.; Cook, J. E.; Soltis, Michele A.; Demons, Samandra T.; Godoy-Kain, Patricia; Weston, J. H.

    2012-05-31

    The goal of this study was to validate the previously observed high biological kill performance of PAEROSOL, a semi-dry, micro-aerosol decontamination technology, against common HAI in a non-human subject trial within a hospital setting of Madigan Army Medical Center (MAMC) on Joint Base Lewis-McChord in Tacoma, Washington. In addition to validating the disinfecting efficacy of PAEROSOL, the objectives of the trial included a demonstration of PAEROSOL environmental safety, (i.e., impact to hospital interior materials and electronic equipment exposed during testing) and PAEROSOL parameters optimization for future deployment.

  19. Removal of biological stains from aqueous solution using a flow-through decontamination procedure.

    Science.gov (United States)

    Lunn, G; Klausmeyer, P J; Sansone, E B

    1994-01-01

    Chromatography columns filled with Amberlite XAD-16 were used to decontaminate, using a continuous flow-through procedure, aqueous solutions of the following biological stains: acridine orange, alcian blue 8GX, alizarin red S, azure A, azure B, brilliant blue G, brilliant blue R, Congo red, cresyl violet acetate, crystal violet, eosin B, eosin Y, erythrosin B, ethidium bromide, Giemsa stain, Janus green B, methylene blue, neutral red, nigrosin, orcein, propidium iodide, rose Bengal, safranine O, toluidine blue O, and trypan blue. Adsorption was most efficient for stains of lower molecular weight (removing stains from aqueous solution.

  20. BUILDING 341 Seismic Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Halle, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-15

    The Seismic Evaluation of Building 341 located at Lawrence Livermore National Laboratory in Livermore, California has been completed. The subject building consists of a main building, Increment 1, and two smaller additions; Increments 2 and 3.