WorldWideScience

Sample records for 22q11 deletion syndrome

  1. Proton magnetic resonance spectroscopy in 22q11 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Fabiana da Silva Alves

    Full Text Available OBJECTIVE: People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS. METHOD: We employed proton magnetic resonance spectroscopy ((1H-MRS to quantify glutamate and other neurometabolites in the dorsolateral prefrontal cortex (DLPFC and hippocampus of 22 adults with 22q11DS (22q11DS SCZ+ and without (22q11DS SCZ- schizophrenia and 23 age-matched healthy controls. Also, plasma proline levels were determined in the 22q11DS group. RESULTS: We found significantly increased concentrations of glutamate and myo-inositol in the hippocampal region of 22q11DS SCZ+ compared to 22q11DS SCZ-. There were no significant differences in levels of plasma proline between 22q11DS SCZ+ and 22q11DS SCZ-. There was no relationship between plasma proline and cerebral glutamate in 22q11DS. CONCLUSION: This is the first in vivo(1H-MRS study in 22q11DS. Our results suggest vulnerability of the hippocampus in the psychopathology of 22q11DS SCZ+. Altered hippocampal glutamate and myo-inositol metabolism may partially explain the psychotic symptoms and cognitive impairments seen in this group of patients.

  2. Genetics Home Reference: 22q11.2 deletion syndrome

    Science.gov (United States)

    ... Seattle, Washington Children's Hospital of Philadelphia Cincinnati Children's Hospital Medical Center Disease InfoSearch: 22q11.2 Deletion Syndrome Emory University School of Medicine Genetics Education Materials for School Success (GEMSS) MalaCards: chromosome 22q11. ...

  3. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk…

  4. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    Science.gov (United States)

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  5. Disrupted anatomic networks in the 22q11.2 deletion syndrome.

    Science.gov (United States)

    Schmitt, J Eric; Yi, James; Calkins, Monica E; Ruparel, Kosha; Roalf, David R; Cassidy, Amy; Souders, Margaret C; Satterthwaite, Theodore D; McDonald-McGinn, Donna M; Zackai, Elaine H; Gur, Ruben C; Emanuel, Beverly S; Gur, Raquel E

    2016-01-01

    The 22q11.2 deletion syndrome (22q11DS) is an uncommon genetic disorder with an increased risk of psychosis. Although the neural substrates of psychosis and schizophrenia are not well understood, aberrations in cortical networks represent intriguing potential mechanisms. Investigations of anatomic networks within 22q11DS are sparse. We investigated group differences in anatomic network structure in 48 individuals with 22q11DS and 370 typically developing controls by analyzing covariance patterns in cortical thickness among 68 regions of interest using graph theoretical models. Subjects with 22q11DS had less robust geographic organization relative to the control group, particularly in the occipital and parietal lobes. Multiple global graph theoretical statistics were decreased in 22q11DS. These results are consistent with prior studies demonstrating decreased connectivity in 22q11DS using other neuroimaging methodologies. PMID:27622139

  6. Prodromal Symptoms in Adolescents with 22q11.2 Deletion Syndrome and Schizotypal Personality Disorder

    OpenAIRE

    Shapiro, DI; Cubells, JF; Ousley, OY; Rockers, K; Walker, EF

    2011-01-01

    Adolescents with 22q11.2 Deletion Syndrome (22q11.2DS) and Schizotypal Personality Disorder (SPD) are at increased risk for the development of psychosis based, respectively, on genetic or behavioral factors. Thus both groups would be expected to manifest heightened rates of the prodromal signs that typically precede psychosis. Although there are now standardized procedures for assessing prodromal symptoms, there has been little research on the manifestation of these symptoms in 22q11.2DS pati...

  7. Thrombocytopenia and Postpartum Hemorrhage in a Woman with Chromosome 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Deng, Kathy; Nanda, Deepak

    2016-01-01

    Chromosome 22q11.2 deletion syndrome, also known as DiGeorge or velocardiofacial syndrome, is associated with a wide spectrum of phenotypic features. It is known to be associated with severe macrothrombocytopenia. Postpartum hemorrhage is a leading cause of maternal morbidity and mortality globally. Chromosome 22q11.2 deletion syndrome is rare cause of thrombocytopenia that can be a significant risk factor for life-threatening postpartum hemorrhage. We report a case of postpartum hemorrhage in a woman with 22q11.2 deletion syndrome causing severe macrothrombocytopenia. PMID:27366335

  8. 22q11 Deletion Syndrome and Multiple Complex Developmental Disorder: a case report

    NARCIS (Netherlands)

    V. Scandurra; M.R. Scordo; R. Canitano; E.I. de Bruin

    2013-01-01

    22q11.2 Deletion Syndrome (22q11 DS) is a multisystemic condition that may also include neuropsychiatric disorders. We present a case of a 15-year-old boy that was evaluated for social difficulties, and anxiety with the above genetic abnormality. Clinical features were rather complex as different ne

  9. Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology

    Science.gov (United States)

    Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among…

  10. White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia

    NARCIS (Netherlands)

    F. da Silva Alves; N. Schmitz; O. Bloemen; J. van der Meer; J. Meijer; E. Boot; A. Nederveen; L. de Haan; D. Linszen; T. van Amelsvoort

    2011-01-01

    Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measur

  11. White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia.

    Science.gov (United States)

    da Silva Alves, Fabiana; Schmitz, Nicole; Bloemen, Oswald; van der Meer, Johan; Meijer, Julia; Boot, Erik; Nederveen, Aart; de Haan, Lieuwe; Linszen, Don; van Amelsvoort, Therese

    2011-10-01

    Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measured fractional anisotropy (FA) and WM volume in 27 adults with 22q11DS with schizophrenia (n=12, 22q11DS SCZ+) and without schizophrenia (n=15, 22q11DS SCZ-), 12 individuals with idiopathic schizophrenia and 31 age-matched healthy controls. We found widespread decreased WM volume in posterior and temporal brain areas and decreased FA in areas of the frontal cortex in the whole 22q11DS group compared to healthy controls. In 22q11DS SCZ+ compromised WM integrity included inferior frontal areas of parietal and occipital lobe. Idiopathic schizophrenia patients showed decreased FA in inferior frontal and insular regions compared to healthy controls. We found no WM alterations in 22q11DS SCZ+ vs. 22q11DS SCZ-. However, there was a negative correlation between FA and PANSS scores (Positive and Negative Symptom Scale) in the whole 22q11DS group in the inferior frontal, cingulate, insular and temporal areas. This is the first study to investigate WM integrity in adults with 22q11DS. Our results suggest that pervasive WM dysfunction is intrinsic to 22q11DS and that psychotic development in adults with 22q11DS involves similar brain areas as seen in schizophrenia in the general population.

  12. Behavior in preschool children with the 22q11.2 deletion syndrome.

    Science.gov (United States)

    Klaassen, Petra; Duijff, Sasja; Swanenburg de Veye, Henriette; Vorstman, Jacob; Beemer, Frits; Sinnema, Gerben

    2013-01-01

    Children with the 22q11.2 deletion syndrome (22q11DS) are at an increased risk of psychiatric problems from pre-adolescence; little is known, however, about behavioral problems at a preschool age and the relationship between speech and behavior in this group. Parents of 90 children (aged 1.42-5.99 years) with 22q11DS filled out the Child Behavior Checklist, documenting behaviors including speech problems. Their profiles were compared with those of a comparison group consisting of 33 children with nonsyndromic orofacial clefts without 22q11DS, since both children with 22q11DS and children with clefts are expected to have speech problems. In the 22q11DS group, data on intelligence was acquired by means of formal tests. Parents of children with 22q11DS reported significantly higher mean scores on withdrawn behavior, affective problems and pervasive developmental problems compared to children with nonsyndromic clefts. Approximately 30% of children with 22q11DS had a score above the 97th percentile on at least one of the behavior subscales, indicating psychopathology. In children with 22q11DS, the reported behavioral problems were not associated with speech problems. Behavioral problems were found in 30% of young children with 22q11DS and were unlikely to be caused by speech problems. Within the 22q11DS group, behavioral problems were not related to the degree of cognitive impairment. This shows that many children with 22q11DS, known to be at an increased risk of psychiatric problems from pre-adolescence, already show behavioral problems before the age of 6 years.

  13. Prevalence and Nature of Hearing Loss in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Van Eynde, Charlotte; Swillen, Ann; Lambeens, Elien; Verhaert, Nicolas; Desloovere, Christian; Luts, Heleen; Vander Poorten, Vincent; Devriendt, Koenraad; Hens, Greet

    2016-01-01

    Purpose: The purpose of this study was to clarify the prevalence, type, severity, and age-dependency of hearing loss in 22q11.2 deletion syndrome. Method: Extensive audiological measurements were conducted in 40 persons with proven 22q11.2 deletion (aged 6-36 years). Besides air and bone conduction thresholds in the frequency range between 0.125…

  14. Unambiguous molecular detections with multiple genetic approach for the complicated chromosome 22q11 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Lin Lung-Huang

    2009-02-01

    Full Text Available Abstract Background Chromosome 22q11 deletion syndrome (22q11DS causes a developmental disorder during the embryonic stage, usually because of hemizygous deletions. The clinical pictures of patients with 22q11DS vary because of polymorphisms: on average, approximately 93% of affected individuals have a de novo deletion of 22q11, and the rest have inherited the same deletion from a parent. Methods using multiple genetic markers are thus important for the accurate detection of these microdeletions. Methods We studied 12 babies suspected to carry 22q11DS and 18 age-matched healthy controls from unrelated Taiwanese families. We determined genomic variance using microarray-based comparative genomic hybridization (array-CGH, quantitative real-time polymerase chain reaction (qPCR and multiplex ligation-dependent probe amplification (MLPA. Results Changes in genomic copy number were significantly associated with clinical manifestations for the classical criteria of 22q11DS using MPLA and qPCR (p Conclusion Both MLPA and qPCR could produce a clearly defined range of deleted genomic DNA, whereas there must be a deleted genome that is not distinguishable using MLPA. These data demonstrate that such multiple genetic approaches are necessary for the unambiguous molecular detection of these types of complicated genomic syndromes.

  15. 22q11 deletion syndrome: a review of the neuropsychiatric features and their neurobiological basis

    Directory of Open Access Journals (Sweden)

    Squarcione C

    2013-12-01

    Full Text Available Chiara Squarcione, Maria Chiara Torti, Fabio Di Fabio, Massimo Biondi Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy Abstract: The 22q11.2 deletion syndrome (22q11DS is caused by an autosomal dominant microdeletion of chromosome 22 at the long arm (q 11.2 band. The 22q11DS is among the most clinically variable syndromes, with more than 180 features related with the deletion, and is associated with an increased risk of psychiatric disorders, accounting for up to 1%–2% of schizophrenia cases. In recent years, several genes located on chromosome 22q11 have been linked to schizophrenia, including those encoding catechol-O-methyltransferase and proline dehydrogenase, and the interaction between these and other candidate genes in the deleted region is an important area of research. It has been suggested that haploinsufficiency of some genes within the 22q11.2 region may contribute to the characteristic psychiatric phenotype and cognitive functioning of schizophrenia. Moreover, an extensive literature on neuroimaging shows reductions of the volumes of both gray and white matter, and these findings suggest that this reduction may be predictive of increased risk of prodromal psychotic symptoms in 22q11DS patients. Experimental and standardized cognitive assessments alongside neuroimaging may be important to identify one or more endophenotypes of schizophrenia, as well as a predictive prodrome that can be preventively treated during childhood and adolescence. In this review, we summarize recent data about the 22q11DS, in particular those addressing the neuropsychiatric and cognitive phenotypes associated with the deletion, underlining the recent advances in the studies about the genetic architecture of the syndrome. Keywords: 22q11 deletion syndrome, microdeletion, neuropsychiatric disorders, cognitive impairments

  16. Default mode network connectivity and reciprocal social behavior in 22q11.2 deletion syndrome

    OpenAIRE

    Schreiner, Matthew J.; Karlsgodt, Katherine H; Uddin, Lucina Q.; Chow, Carolyn; Congdon, Eliza; Jalbrzikowski, Maria; Bearden, Carrie E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) is a genetic mutation associated with disorders of cortical connectivity and social dysfunction. However, little is known about the functional connectivity (FC) of the resting brain in 22q11DS and its relationship with social behavior. A seed-based analysis of resting-state functional magnetic resonance imaging data was used to investigate FC associated with the posterior cingulate cortex (PCC), in (26) youth with 22qDS and (51) demographically matched cont...

  17. Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes

    DEFF Research Database (Denmark)

    Delio, Maria; Guo, Tingwei; McDonald-McGinn, Donna M;

    2013-01-01

    Velocardiofacial and DiGeorge syndromes, also known as 22q11.2 deletion syndrome (22q11DS), are congenital-anomaly disorders caused by a de novo hemizygous 22q11.2 deletion mediated by meiotic nonallelic homologous recombination events between low-copy repeats, also known as segmental duplication...

  18. The Neuropsychology of 22q11 Deletion Syndrome. A Neuropsychiatric Study of 100 Individuals

    Science.gov (United States)

    Niklasson, Lena; Gillberg, Christopher

    2010-01-01

    The primary objective of this study was to study the impact of ASD/ADHD on general intellectual ability and profile, executive functions and visuo-motor skills in children and adults with 22q11 deletion syndrome (22q11DS). A secondary aim was to study if gender, age, heart disease, ASD, ADHD or ASD in combination with ADHD had an impact on general…

  19. Exclusion of 22q11 deletion in Noonan syndrome with Tetralogy of Fallot

    Energy Technology Data Exchange (ETDEWEB)

    Digilio, M.C.; Marino, B.; Giannotti, A. [Bambino Gesu Hospital, Rome (Italy); Dallapiccola, B. [Univ. of Tor Vergata, Rome (Italy)]|[Casa Sollievo Sofferenza Hospital, San Giovanni Rotondo (Italy)

    1996-04-24

    We read with interest the report of Robin et al. [1995] published in recent issue of the Journal. The authors described 6 patients with Noonan syndrome (NS) who underwent molecular evaluation for submicroscopic deletion of chromosome band 22q11. None of those patients presented with conotruncal heart defects. Evidence for 22q11 hemizygosity was demonstrated in only one patient. This patient had NS-like manifestations without clinical manifestations of DiGeorge (DG) or velo-cardio-facial (VCF) syndromes. The molecular results obtained in the other 5 patients led the authors to conclude that classical NS is not due to del(22)(q11), even if some patients with del(22)(q11) may present NS-like manifestations. 12 refs., 1 tab.

  20. The Development of Cognitive Control in Children with Chromosome 22q11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Heather M Shapiro

    2014-06-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is caused by the most common human microdeletion, and it is associated with cognitive impairments across many domains. While impairments in cognitive control have been described in children with 22q11.2DS, the nature and development of these impairments are not clear. Children with 22q11.2DS and typically developing children (TD were tested on four well-validated tasks aimed at measuring specific foundational components of cognitive control: response inhibition, cognitive flexibility, and working memory. Molecular assays were also conducted in order to examine genotype of catechol-O-methyltransferase (COMT, a gene located within the deleted region in 22q11.2DS and hypothesized to play a role in cognitive control. Mixed model regression analyses were used to examine group differences, as well as age-related effects on cognitive control component processes in a cross-sectional analysis. Regression models with COMT genotype were also conducted in order to examine potential effects of the different variants of the gene. Response inhibition, cognitive flexibility, and working memory were impaired in children with 22q11.2DS relative to TD children, even after accounting for global intellectual functioning (as measured by full-scale IQ. When compared with TD individuals, children with 22q11.2DS demonstrated atypical age-related patterns of response inhibition and cognitive flexibility. Both groups demonstrated typical age-related associations with working memory. The results of this cross-sectional analysis suggest a specific aberration in the development of systems mediating response inhibition in a sub-set of children with 22q11.2DS. It will be important to follow up with longitudinal analyses to directly examine these developmental trajectories, and correlate neurocognitive variables with clinical and adaptive outcome measures.

  1. Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Vorstman, Jacob A S; Breetvelt, Elemi J.; Duijff, Sasja N.; Eliez, Stephan; Schneider, Maude; Jalbrzikowski, Maria; Armando, Marco; Vicari, Stefano; Shashi, Vandana; Hooper, Stephen R.; Chow, Eva W C; Fung, Wai Lun Alan; Butcher, Nancy J.; Young, Donald A.; McDonald-McGinn, Donna M.; Vogels, Annick; Van Amelsvoort, Therese; Gothelf, Doron; Weinberger, Ronnie; Weizman, Abraham; Klaassen, Petra W J; Koops, Sanne; Kates, Wendy R.; Antshel, Kevin M.; Simon, Tony J.; Ousley, Opal Y.; Swillen, Ann; Gur, Raquel E.; Bearden, Carrie E.; Kahn, René S.; Bassett, Anne S.; Emanuel, Beverly S.; Zackai, Elaine H.; Kushan, Leila; Fremont, Wanda; Schoch, Kelly; Stoddard, Joel; Cubells, Joseph; Fu, Fiona; Campbell, Linda E.; Fritsch, Rosemarie; Vergaelen, Elfi; Neeleman, Marjolein; Boot, Erik; Debbané, Martin; Philip, Nicole; Green, Tamar; Van DenBree, Marianne B M; Murphy, Declan; Canyelles, Jaume Morey; Arango, Celso; Murphy, Kieran C.; Pontillo, Maria

    2015-01-01

    Importance: Patients with 22q11.2 deletion syndrome (22q11DS) have an elevated (25%) risk of developing schizophrenia. Recent reports have suggested that a subgroup of children with 22q11DS display a substantial decline in cognitive abilities starting at a young age.Objective: To determine whether e

  2. Mapping Cortical Morphology in Youth with Velocardiofacial (22q11.2 Deletion) Syndrome

    Science.gov (United States)

    Kates, Wendy R.; Bansal, Ravi; Fremont, Wanda; Antshel, Kevin M.; Hao, Xuejun; Higgins, Anne Marie; Liu, Jun; Shprintzen, Robert J.; Peterson, Bradley S.

    2011-01-01

    Objective: Velocardiofacial syndrome (VCFS; 22q11.2 deletion syndrome) represents one of the highest known risk factors for schizophrenia. Insofar as up to 30% of individuals with this genetic disorder develop schizophrenia, VCFS constitutes a unique, etiologically homogeneous model for understanding the pathogenesis of schizophrenia. Method:…

  3. Neuroimaging correlates of 22q11.2 deletion syndrome: implications for schizophrenia research.

    Science.gov (United States)

    Boot, E; van Amelsvoort, T A M J

    2012-01-01

    22q11.2 Deletion syndrome (22q11DS) is the most common known recurrent copy-number variant disorder. It is also the most common known genetic risk factor for schizophrenia. The greater homogeneity of subjects with schizophrenia in 22q11DS compared with schizophrenia in the wider non-deleted population may help to identify much needed information on neuroanatomical substrates, and neurochemical and neurofunctional mechanisms that may modulate the risk for schizophrenia. Identification of the underlying pathophysiology creates opportunities for developing genotype-specific, biology-based and targeted treatments to prevent, delay or minimize the severity of schizophrenia in both 22q11DS and the wider non-deleted population. This article reviews neuroimaging studies that focused on brain structure and function in this high-risk population, with particular attention to schizophrenia research. We also discuss the evidence on the role of candidate genes within the 22q11.2 region, with particular reference to catechol-O-methyl transferase (COMT) and proline dehydrogenase (PRODH). PMID:23279171

  4. Domain Specific Attentional Impairments in Children with Chromosome 22Q11.2 Deletion Syndrome

    Science.gov (United States)

    Bish, Joel P.; Chiodo, Renee; Mattei, Victoria; Simon, Tony J.

    2007-01-01

    One of the defining cognitive characteristics of the chromosome 22q deletion syndrome (DS22q11.2) is visuospatial processing impairments. The purpose of this study was to investigate and extend the specific attentional profile of children with this disorder using both an object-based attention task and an inhibition of return task. A group of…

  5. Domain specific attentional impairments in children with chromosome 22q11.2 deletion syndrome

    OpenAIRE

    Bish, Joel P.; Chiodo, Renee; Mattei, Victoria; Simon, Tony J.

    2007-01-01

    One of the defining cognitive characteristics of the chromosome 22q deletion syndrome (DS22q11.2) is visuospatial processing impairments. The purpose of this study was to investigate and extend the specific attentional profile of children with this disorder using both an object-based attention task and an inhibition of return task. A group of children with the disorder was compared in these tasks with a group of age-matched typically developing children. The children with DS22q11.2 demonstrat...

  6. Divergent Patterns of Social Cognition Performance in Autism and 22q11.2 Deletion Syndrome (22q11DS)

    Science.gov (United States)

    McCabe, Kathryn L.; Melville, Jessica L.; Rich, Dominique; Strutt, Paul A.; Cooper, Gavin; Loughland, Carmel M.; Schall, Ulrich; Campbell, Linda E.

    2013-01-01

    Individuals with developmental disorders frequently report a range of social cognition deficits including difficulties identifying facial displays of emotion. This study examined the specificity of face emotion processing deficits in adolescents with either autism or 22q11DS compared to typically developing (TD) controls. Two tasks (face emotion…

  7. Metyrosine in psychosis associated with 22q11.2 deletion syndrome: case report.

    Science.gov (United States)

    Carandang, Carlo G; Scholten, Monique C

    2007-02-01

    This report describes the use of metyrosine (Demser) in an adolescent male with psychosis associated with the 22q11.2 deletion syndrome (velocardiofacial syndrome; VCFS), diagnosed by fluorescence in situ hybridization (FISH). He presented with multiple features of 22q11.2 deletion syndrome, including ventricular septal defect, palatal abnormalities, speech and motor delays, attention deficits, mood lability, and psychosis. After a failed trial of an atypical antipsychotic to address the psychosis, metyrosine was initiated, with significant reduction of psychotic symptoms and mood lability. Metyrosine treatment allowed this youth to live at home and to attend school, after months of recurrent psychiatric hospitalizations. The successful treatment of metyrosine for psychosis associated with VCFS represents a first in psychiatry, where a known biochemical abnormality in a psychiatric disorder was corrected by a treatment that targets the biochemical pathway, leading to reduction of psychiatric symptoms and improvement of functioning.

  8. Delayed diagnosis of 22q11.2 deletion syndrome in an adult Chinese lady

    Institute of Scientific and Technical Information of China (English)

    SHEA Yat-fung; LEE Chi-ho; Harinder Gill; CHOW Wing-sun; LAM Yui-ming; LUK Ho-ming; LAM Stephen Tak-sum; CHU Leung-wing

    2012-01-01

    We report a 32 year-old Chinese lady with history of tetralogy of Fallot,presented to us with chest pain due to hypocalcemia secondary to hypoparathyroidism.With her dysmorphic facial features and intellectual disability 22q11.2 deletion was suspected and confirmed by genetic study.Clinicians should consider the diagnosis of DiGeorge syndrome in adult patient with past medical history of congenital heart disease,facial dysmorphism,intellectual disability and primary hypoparathyroidism.

  9. Prodromal and autistic symptoms in schizotypal personality disorder and 22q11.2 deletion syndrome.

    Science.gov (United States)

    Esterberg, Michelle L; Ousley, Opal Y; Cubells, Joseph F; Walker, Elaine F

    2013-02-01

    Despite clear diagnostic distinctions, schizophrenia and autism share symptoms on several dimensions. Recent research has suggested the two disorders overlap in etiology, particularly with respect to inherited and noninherited genetic factors. Studying the relationship between psychotic-like and autistic-like symptoms in risk groups such as 22q11 deletion syndrome (22q11DS) and schizotypal personality disorder (SPD) has the potential to shed light on such etiologic factors; thus, the current study examined prodromal symptoms and autistic features in samples of 22q11DS and SPD subjects using standardized diagnostic measures, including the Structured Interview for Prodromal Symptoms (SIPS) and the Autism Diagnostic Inventory-Revised (ADI-R). Results showed that SPD subjects manifested significantly more severe childhood and current social as well as stereotypic autistic features, as well as more severe positive prodromal symptoms. The two groups did not differ on negative, disorganized, or general prodromal symptoms, but were distinguishable based on correlations between prodromal and autistic features; the relationships between childhood autistic features and current prodromal symptoms were stronger for the SPD group. The results suggest that childhood autistic features are less continuous with subsequent prodromal signs in 22q11DS patients relative to those with SPD, and the findings highlight the importance of studying the overlap in diagnostic phenomenology in groups at risk for developing psychosis and/or autism.

  10. Early-onset Parkinson's Disease Associated with Chromosome 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Oki, Mitsuaki; Hori, Shin-ichiro; Asayama, Shinya; Wate, Reika; Kaneko, Satoshi; Kusaka, Hirofumi

    2016-01-01

    We herein report the case of a 43-year-old man with a 4-year history of resting tremor and akinesia. His resting tremor and rigidity were more prominent on the left side. He also presented retropulsion. His symptoms responded to the administration of levodopa. The patient also had a cleft lip and palate, cavum vergae, and hypoparathyroidism. A chromosome analysis disclosed a hemizygous deletion in 22q11.2, and he was diagnosed with early-onset Parkinson's disease associated with 22q11.2 deletion syndrome. However, the patient lacked autonomic nerve dysfunction, and his cardiac uptake of (123)I-metaiodobenzylguanidine was normal, indicating an underlying pathological mechanism that differed to that of sporadic Parkinson's disease. PMID:26831029

  11. A case report of 22q11 deletion syndrome confirmed by array-CGH method

    Directory of Open Access Journals (Sweden)

    Maryam Sedghi

    2012-01-01

    Full Text Available Velo-cardio-facial syndrome (VCFS is caused by a submicroscopic deletion on the long arm of chromosome 22 and affects approximately 1 in 4000 persons, making it the second most prevalent genetic syndrome after Down syndrome and the most common genetic syndrome associated with cleft palate. Most of the 22q11.2 deletion cases are new occurrences or sporadic; however, in about 10 % of families, the deletion is inherited and other family members are affected or at risk for passing this deletion to their children. This report describes a 1.5 years-old male child with clinical signs of velo-cardio-facial syndrome (VCFS presented with heart defect, soft cleft palate, developmental delay, acrocephaly, seizure, MRI abnormalities and descriptive facial feature, such as hypertelorism. Array-CGH test was done to confirm the diagnosis; the result revealed a 2.6 Mbp deletion in 22q11.2 chromosome that containing TBX1 and COMT genes. Our data suggest that haploinsufficiency of TBX1 gene is probably a major contributor to some of the syndrome characteristic signs, such as heart defect. Because of developmental delay and dysmorphic facial feature were observed in the index′s mother and relatives, inherited autosomal dominant form of VCF is probable, and MLPA (multiplex ligation-dependent probe amplification test should be performed for parents to estimate the recurrent risk in next pregnancy.

  12. The 22q11.2 Deletion Syndrome as a Window into Complex Neuropsychiatric Disorders Over the Lifespan

    OpenAIRE

    Jonas, Rachel K.; Montojo, Caroline A.; Bearden, Carrie E.

    2013-01-01

    Evidence is rapidly accumulating that rare, recurrent copy number variants (CNVs) represent large effect risk factors for neuropsychiatric disorders. 22q11.2 Deletion Syndrome (22q11DS; Velo-Cardio-Facial Syndrome (VCFS) or DiGeorge Syndrome) is the most common known contiguous gene deletion syndrome, and is associated with diverse neuropsychiatric disorders across the lifespan. One of the most intriguing aspects of the syndrome is the variability in clinical and cognitive presentation: child...

  13. Social Skills and Associated Psychopathology in Children with Chromosome 22q11.2 Deletion Syndrome: Implications for Interventions

    Science.gov (United States)

    Shashi, V.; Veerapandiyan, A.; Schoch, K.; Kwapil, T.; Keshavan, M.; Ip, E.; Hooper, S.

    2012-01-01

    Background: Although distinctive neuropsychological impairments have been delineated in children with chromosome 22q11 deletion syndrome (22q11DS), social skills and social cognition remain less well-characterised. Objective: To examine social skills and social cognition and their relationship with neuropsychological function/behaviour and…

  14. A Longitudinal Examination of the Psychoeducational, Neurocognitive, and Psychiatric Functioning in Children with 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Hooper, Stephen R.; Curtiss, Kathleen; Schoch, Kelly; Keshavan, Matcheri S.; Allen, Andrew; Shashi, Vandana

    2013-01-01

    The present study sought to examine the longitudinal psychoeducational, neurocognitive, and psychiatric outcomes of children and adolescents with chromosome 22q11.2 deletion syndrome (22q11DS), a population with a high incidence of major psychiatric illnesses appearing in late adolescence/early adulthood. Little is known of the developmental…

  15. Speech and language abilities of children with the familial form of 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Rakonjac Marijana

    2016-01-01

    Full Text Available The 22q11.2 Deletion Syndrome (22q11.2DS, which encompasses Shprintzen syndrome, DiGeorge and velocardiofacial syndrome, is the most common microdeletion syndrome in humans with an estimated incidence of approximately 1/4000 per live births. After Down syndrome, it is the second most common genetic syndrome associated with congenital heart malformations. The mode of inheritance of the 22q11.2DS is autosomal dominant. In approximately 72 - 94% of the cases the deletion has occurred de novo, while in 6 to 28% of patients deletion was inherited from a parent. As a part of a multidisciplinary study we examined the speech and language abilities of members of two families with inherited form of 22q11.2DS. The presence of 22q11.2 microdeletion was revealed by fluorescence in situ hybridization (FISH and/or multiplex ligation-dependent probe amplification (MLPA. In one family we detected 1.5 Mb 22q11.2 microdeletion, while in the other family we found 3Mb microdeletion. Patients from both families showed delays in cognitive, socio-emotional, speech and language development. Furthermore, we found considerable variability in the phenotypic characteristics of 22q11.2DS and the degree of speech-language pathology not only between different families with 22q11.2 deletion, but also among members of the same family. In addition, we detected no correlation between the phenotype and the size of 22q11.2 microdeletion.

  16. Intelligence and Visual Motor Integration in 5-Year-Old Children with 22q11-Deletion Syndrome

    Science.gov (United States)

    Duijff, Sasja; Klaassen, Petra; Beemer, Frits; Swanenburg de Veye, Henriette; Vorstman, Jacob; Sinnema, Gerben

    2012-01-01

    The purpose of this study was to explore the relationship between intelligence and visual motor integration skills in 5-year-old children with 22q11-deletion syndrome (22q11DS) (N = 65, 43 females, 22 males; mean age 5.6 years (SD 0.2), range 5.23-5.99 years). Sufficient VMI skills seem a prerequisite for IQ testing. Since problems related to…

  17. Associations between prepulse inhibition and executive visual attention in children with the 22q11 deletion syndrome

    OpenAIRE

    Sobin, C; Kiley-Brabeck, K; Karayiorgou, M

    2005-01-01

    The 22q11 deletion syndrome (DS) results in the loss of approximately 30 gene copies and is associated with possible physical anomalies, varied learning disabilities, and a specific cluster of neurocognitive deficits, including primary impairment in working memory, executive visual attention, and sensorimotor processing. Retrospective studies have suggested that children with 22q11DS are at 25 times greater risk of developing schizophrenia, thus specification of early brain network vulnerabil...

  18. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    František Váša

    2016-01-01

    Full Text Available Chromosome 22q11.2 deletion syndrome (22q11DS is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes, we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure as the affected core (A-core of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop.

  19. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome.

    Science.gov (United States)

    de la Morena, M Teresa; Eitson, Jennifer L; Dozmorov, Igor M; Belkaya, Serkan; Hoover, Ashley R; Anguiano, Esperanza; Pascual, M Virginia; van Oers, Nicolai S C

    2013-04-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance.

  20. Individuals with 22q11.2 Deletion Syndrome Are Impaired at Explicit, but Not Implicit, Discrimination of Local Forms Embedded in Global Structures

    Science.gov (United States)

    Giersch, Anne; Glaser, Bronwyn; Pasca, Catherine; Chabloz, Mélanie; Debbané, Martin; Eliez, Stephan

    2014-01-01

    Individuals with 22q11.2 deletion syndrome (22q11.2DS) are impaired at exploring visual information in space; however, not much is known about visual form discrimination in the syndrome. Thirty-five individuals with 22q11.2DS and 41 controls completed a form discrimination task with global forms made up of local elements. Affected individuals…

  1. Parental Communication and Experiences and Knowledge of Adolescent Siblings of Children with 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Okashah, Rebecca; Schoch, Kelly; Hooper, Stephen R; Shashi, Vandana; Callanan, Nancy

    2015-10-01

    22q11.2 deletion syndrome (22q11DS) is the most common microdeletion in humans. There have been few studies assessing the impact of this condition on the family and no previous studies conducted on unaffected siblings of children with 22q11DS. The goal of this study was to determine the frequency, method, and content of information being communicated by parents to unaffected siblings about the condition and to assess unaffected siblings' knowledge of 22q11DS and perceptions of the impact of the condition on their affected sibling and themselves. Families were recruited from several 22q11DS educational and support organizations and asked to complete a single anonymous online survey. Families were eligible to participate if they had one child with 22q11DS and at least one unaffected child between the ages of 12 and 17. Survey questions were developed based on previous literature and authors' expertise with individuals with 22q11DS. Responses to quantitative and qualitative questions were analyzed to calculate frequencies and proportions and to extract themes, respectively. A total of 25 families (defined as a unit of at least one parent, one affected child, and at least one unaffected child) participated in the study. Parents shared genetic information less often as compared to behavioral and medical information. Siblings of children with 22q11DS had both positive and negative experiences in having a brother or sister with this condition. Genetic counselors can use the results of this study to develop anticipatory guidance for parents of children with 22q11DS in talking with their unaffected children about the condition. PMID:25540895

  2. Deficits in microRNA-mediated Cxcr4/Cxcl12 signaling in neurodevelopmental deficits in a 22q11 deletion syndrome mouse model.

    OpenAIRE

    Toritsuka, Michihiro; Kimoto, Sohei; Muraki, Kazue; Landek-Salgado, Melissa A.; Yoshida, Atsuhiro; Yamamoto, Norio; Horiuchi, Yasue; Hiyama, Hideki; Tajinda, Katsunori; Keni, Ni; Illingworth, Elizabeth; Iwamoto, Takashi; Kishimoto, Toshifumi; Sawa, Akira; Tanigaki, Kenji

    2013-01-01

    22q11 deletion syndrome (22q11DS) frequently accompanies psychiatric conditions, some of which are classified as schizophrenia and bipolar disorder in the current diagnostic categorization. However, it remains elusive how the chromosomal microdeletion leads to the mental manifestation at the mechanistic level. Here we show that a 22q11DS mouse model with a deletion of 18 orthologous genes of human 22q11 (Df1/+ mice) has deficits in migration of cortical interneurons and hippocampal dentate pr...

  3. Performance on the Modified Card Sorting Test and Its Relation to Psychopathology in Adolescents and Young Adults with 22Q11.2 Deletion Syndrome

    Science.gov (United States)

    Rockers, K.; Ousley, O.; Sutton, T.; Schoenberg, E.; Coleman, K.; Walker, E.; Cubells, J. F.

    2009-01-01

    Background: Approximately one-third of individuals with 22q11.2 deletion syndrome (22q11DS), a common genetic disorder highly associated with intellectual disabilities, may develop schizophrenia, likely preceded by a mild to moderate cognitive decline. Methods: We examined adolescents and young adults with 22q11DS for the presence of executive…

  4. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    Science.gov (United States)

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  5. The neurocognitive phenotype of the 22q11.2 deletion syndrome: selective deficit in visual-spatial memory.

    Science.gov (United States)

    Bearden, C E; Woodin, M F; Wang, P P; Moss, E; McDonald-McGinn, D; Zackai, E; Emannuel, B; Cannon, T D

    2001-08-01

    The 22q11.2 deletion syndrome (velocardiofacial/DiGeorge syndrome) is associated with a high frequency of learning disabilities. Although previous work has demonstrated that verbal skills are typically better preserved than non-verbal skills on both IQ and academic achievement testing in children with this syndrome, such measures are not sufficiently specific to determine a selective cognitive deficit. As part of an ongoing prospective study of patients with this syndrome, 29 children aged 5-17 with confirmed 22q11.2 deletions were assessed with a comprehensive neuropsychological test battery, including matched tasks of verbal and visuospatial memory. Results indicate that 22q patients displayed a selective deficit in visual-spatial memory, which was mirrored by deficits in arithmetic and general visual-spatial cognition. Further, a dissociation between visual-spatial and object memory was observed, indicating further selectivity of this pattern of deficit, and providing evidence for the dissociability of these components of visual cognition. These results indicate that children with 22q11.2 deletions display a specific neurocognitive phenotype, and suggest that this region of Chromosome 22q11 may harbor a gene or genes relevant to the etiology of nonverbal learning deficits. PMID:11780945

  6. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    Full Text Available Deletion of the 1.5-3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS, also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%, conotruncal defects of the heart (CHD; 70-80%, hypocalcemia (20-60%, and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS.

  7. Mitochondrial Citrate Transporter-dependent Metabolic Signature in the 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Napoli, Eleonora; Tassone, Flora; Wong, Sarah; Angkustsiri, Kathleen; Simon, Tony J; Song, Gyu; Giulivi, Cecilia

    2015-09-18

    The congenital disorder 22q11.2 deletion syndrome (22qDS), characterized by a hemizygous deletion of 1.5-3 Mb on chromosome 22 at locus 11.2, is the most common microdeletion disorder (estimated prevalence of 1 in 4000) and the second risk factor for schizophrenia. Nine of ∼30 genes involved in 22qDS have the potential of disrupting mitochondrial metabolism (COMT, UFD1L, DGCR8, MRPL40, PRODH, SLC25A1, TXNRD2, T10, and ZDHHC8). Deficits in bioenergetics during early postnatal brain development could set the basis for a disrupted neuronal metabolism or synaptic signaling, partly explaining the higher incidence in developmental and behavioral deficits in these individuals. Here, we investigated whether mitochondrial outcomes and metabolites from 22qDS children segregated with the altered dosage of one or several of these mitochondrial genes contributing to 22qDS etiology and/or morbidity. Plasma metabolomics, lymphocytic mitochondrial outcomes, and epigenetics (histone H3 Lys-4 trimethylation and 5-methylcytosine) were evaluated in samples from 11 22qDS children and 13 age- and sex-matched neurotypically developing controls. Metabolite differences between 22qDS children and controls reflected a shift from oxidative phosphorylation to glycolysis (higher lactate/pyruvate ratios) accompanied by an increase in reductive carboxylation of α-ketoglutarate (increased concentrations of 2-hydroxyglutaric acid, cholesterol, and fatty acids). Altered metabolism in 22qDS reflected a critical role for the haploinsufficiency of the mitochondrial citrate transporter SLC25A1, further enhanced by HIF-1α, MYC, and metabolite controls. This comprehensive profiling served to clarify the biochemistry of this disease underlying its broad, complex phenotype. PMID:26221035

  8. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study

    NARCIS (Netherlands)

    L.E. Campbell; E. Daly; F. Toal; A. Stevens; R. Azuma; M. Catani; V. Ng; T. van Amelsvoort; X. Chitnis; W. Cutter; D.G.M. Murphy; K.C. Murphy

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of de

  9. Radial aplasia and chromosome 22q11 deletion.

    Science.gov (United States)

    Digilio, M C; Giannotti, A; Marino, B; Guadagni, A M; Orzalesi, M; Dallapiccola, B

    1997-01-01

    We report on a neonate with deletion 22q11 (del22q11) presenting with facial dysmorphism, ocular coloboma, congenital heart defect, urogenital malformations, and unilateral radial aplasia. This malformation complex includes features frequently occurring in velocardiofacial syndrome as well as findings described in the CHARGE and VACTERL associations. To our knowledge, the present case is the first report of radial aplasia in del22q11. This observation further supports and extends the clinical variability of del22q11. Images PMID:9391893

  10. SDF1-CXCR4 signaling: A new player involved in DiGeorge/22q11-deletion syndrome

    Science.gov (United States)

    Duband, Jean-Loup; Escot, Sophie; Fournier-Thibault, Claire

    2016-01-01

    ABSTRACT The DiGeorge/22q11-deletion syndrome (22q11DS), also known as velocardiofacial syndrome, is a congenital disease causing numerous structural and behavioral disorders, including cardiac outflow tract anomalies, craniofacial dysmorphogenesis, parathyroid and thymus hypoplasia, and mental disorders. It results from a unique chromosomal microdeletion on the 22q11.2 region in which the transcriptional activator TBX1 is decisive for the occurrence of the disease. During embryogenesis, Tbx1 is required for patterning of pharyngeal region giving rise to structures of the face, neck and chest. Genetic and developmental studies demonstrated that the severity and variability of the syndrome are determined by Tbx1 targets involved in pharyngeal neural crest cell migration and survival. Recently, we demonstrated that the chemokine Sdf1/Cxcl12 and its receptor Cxcr4 are genetically downstream of Tbx1 during pharyngeal development and that reduction of CXCR4 signaling results in defects which recapitulate the major morphological anomalies of 22q11DS, supporting the possibility of a pivotal role for the SDF1/CXCR4 axis in its etiology. PMID:27500073

  11. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Beverly A. Karpinski

    2014-02-01

    Full Text Available We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS, a common developmental disorder that frequently includes perinatal dysphagia – debilitating feeding, swallowing and nutrition difficulties from birth onward – within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V, glossopharyngeal (IX or vagus (X cranial nerves (CNs that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS.

  12. Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder

    OpenAIRE

    Maria Jalbrzikowski; Maria T Lazaro; Fuying Gao; Alden Huang; Carolyn Chow; Geschwind, Daniel H.; Giovanni Coppola; Bearden, Carrie E.

    2015-01-01

    Background 22q11.2 Deletion Syndrome (22q11DS) represents one of the greatest known genetic risk factors for the development of psychotic illness, and is also associated with high rates of autistic spectrum disorders (ASD) in childhood. We performed integrated genomic analyses of 22q11DS to identify genes and pathways related to specific phenotypes. Methods We used a high-resolution aCGH array to precisely characterize deletion breakpoints. Using peripheral blood, we examined differential exp...

  13. Congenital Heart Defects and Measures of Fetal Growth in Newborns with Down Syndrome or 22q11.2 Deletion Syndrome

    DEFF Research Database (Denmark)

    Matthiesen, Niels B; Agergaard, Peter; Henriksen, Tine B;

    2016-01-01

    OBJECTIVES: To estimate the association between congenital heart defects (CHD) and indices of fetal growth in Down and 22q11.2 deletion syndromes. STUDY DESIGN: We established 2 Danish nationwide cohorts of newborn singletons with either Down syndrome (n = 670) or 22q11.2 deletion syndrome (n = 155...... syndrome and 22q11.2 deletion syndrome were both associated with lower mean birth weight and head circumference z-scores. We found no association between CHD or CHD severity and indices of fetal growth. In Down syndrome, the association between any CHD and the mean difference in head circumference z...... measures in newborns with Down syndrome or 22q11.2 deletion syndrome. Thus, in certain subtypes of CHD, the contribution of genetic factors to prenatal growth impairment may be more important than circulatory disturbances....

  14. Síndrome de deleção 22q11 e cardiopatias congênitas complexas 22q11.2 deletion syndrome and complex congenital heart defects

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano Machado Rosa

    2011-02-01

    Full Text Available OBJETIVO: Verificar a frequência da síndrome de deleção 22q11 (SD22q11 entre pacientes portadores de cardiopatia congênita do tipo complexa. MÉTODOS: A amostra foi constituída por uma coorte prospectiva e consecutiva de pacientes com cardiopatia complexa em sua primeira hospitalização em uma unidade de tratamento intensivo cardiológica de um hospital pediátrico. Para cada paciente foi preenchida uma ficha de avaliação, com coleta de dados clínicos, e realizado o cariótipo de alta resolução e técnica de hibridização in situ fluorescente (FISH com pesquisa de microdeleção 22q11. Os defeitos cardíacos foram classificados por um cardiologista participante do estudo. RESULTADOS: A amostra foi composta de 66 pacientes. Quanto à análise cariotípica, alterações foram observadas em cinco pacientes (7,6%; contudo, nenhum deles apresentava deleção 22q11. A avaliação pela técnica de FISH pôde ser realizada com sucesso em 65 pacientes, sendo que a microdeleção 22q11 foi identificada em dois (3,1%. Dos 66 pacientes com defeitos complexos, 52 eram portadores de malformações do tipo conotruncal, sendo que em 51 a pesquisa para microdeleção 22q11 foi realizada. Os dois pacientes portadores da microdeleção 22q11 fizeram parte deste grupo, representando uma frequência de 3,9%. Eles apresentavam tetralogia de Fallot. CONCLUSÃO: A SD22q11 é uma anormalidade frequente entre pacientes com cardiopatias congênitas complexas e conotruncais. Variações da frequência da SD22q11 entre os estudos parecem estar associadas, principalmente, com a forma adotada para a seleção da amostra e às características da população em análise.OBJECTIVE: Investigate the frequency of 22q11 deletion syndrome among patients with complex congenital heart disease. METHODS: A prospective and consecutive cohort of patients with complex heart defects was evaluated in their first hospitalization at a cardiac intensive care unit of a pediatric

  15. Deficits in Mental State Attributions in Individuals with 22q11.2 Deletion Syndrome (Velo-Cardio-Facial Syndrome)

    OpenAIRE

    Ho, Jennifer S.; Radoeva, Petya D.; Jalbrzikowski, Maria; Chow, Carolyn; Hopkins, Jessica; Tran, Wen-Ching; Mehta, Ami; Enrique, Nicole; Gilbert, Chelsea; Antshel, Kevin M.; Fremont, Wanda; Kates, Wendy R.; Bearden, Carrie E.

    2012-01-01

    Velo-cardio-facial syndrome (VCFS; 22q11.2 deletion syndrome) results from a genetic mutation that increases risk for Autism Spectrum Disorder (ASD). We compared Theory of Mind (ToM) skills in 63 individuals with VCFS (25% with an ASD diagnosis) and 43 typically-developing controls, and investigated the relationship of ToM to reciprocal social behavior. We administered a video-based task to assess mentalizing at two sites (UCLA and SUNY Upstate Medical University). The videos depicted interac...

  16. Intellectual Functioning in Relation to Autism and ADHD Symptomatology in Children and Adolescents with 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Hidding, E.; Swaab, H.; Sonneville, L. M. J.; Engeland, H.; Sijmens-Morcus, M. E. J.; Klaassen, P. W. J.; Duijff, S. N.; Vorstman, J. A. S.

    2015-01-01

    Background: The 22q11.2 deletion syndrome (22q11DS; velo-cardio-facial syndrome) is associated with an increased risk of various disorders, including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). With this study, we aimed to investigate the relation between intellectual functioning and severity of ASD and ADHD…

  17. Fluorescence in situ hybridization (FISH screening for the 22q11.2 deletion in patients with clinical features of velocardiofacial syndrome but without cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Paula Sandrin-Garcia

    2007-01-01

    Full Text Available The velocardiofacial syndrome (VCFS, a condition associated with 22q11.2 deletions, is characterized by a typical facies, palatal anomalies, learning disabilities, behavioral disturbances and cardiac defects. We investigated the frequency of these chromosomal deletions in 16 individuals with VCFS features who presented no cardiac anomalies, one of the main characteristics of VCFS. Fluorescent in situ hybridization (FISH with the N25 (D22S75; 22q11.2 probe revealed deletions in ten individuals (62%. Therefore, even in the absence of cardiac anomalies testing for the 22q11.2 microdeletions in individuals showing other clinical features of this syndrome is recommended.

  18. A Case of Concurrent Miller-Dieker Syndrome (17p13.3 Deletion) and 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Atwal, Paldeep S; Macmurdo, C

    2015-12-01

    Features of Miller-Dieker syndrome (MDS, 17p13.3 deletion syndrome, LIS1-associated lissencephaly) include classic lissencephaly, microcephaly, cardiac malformations, growth restriction, and characteristic facial changes. Individuals with 22q11.2 deletion syndrome (DiGeorge syndrome or velocardiofacial syndrome) are known to have congenital cardiac malformations (in particular conotruncal defects), palatal abnormalities (especially velopharyngeal insufficiency), hypocalcemia, immune deficiency, learning disabilities, and characteristic facial features. This case report describes phenotypic characteristics of a patient with extremely rare instance of having both MDS and 22q11.2 deletion syndrome that is unique in the medical literature. Prognosis in this concurrent phenotype is poor with our patient suffering from several malformations seen in both conditions and expiring in the neonatal period. PMID:27617133

  19. Is theory of mind related to social dysfunction and emotional problems in 22q11.2 deletion syndrome (velo-cardio-facial syndrome)?

    Science.gov (United States)

    Campbell, Linda E; Stevens, Angela F; McCabe, Kathryn; Cruickshank, Lynne; Morris, Robin G; Murphy, Declan G M; Murphy, Kieran C

    2011-06-01

    Social dysfunction is intrinsically involved in severe psychiatric disorders such as depression and psychosis and linked with poor theory of mind. Children with 22q11.2 deletion syndrome (22q11DS, or velo-cardio-facial syndrome) have poor social competence and are also at a particularly high risk of developing mood (40%) and psychotic (up to 30%) disorders in adolescence and young adulthood. However, it is unknown if these problems are associated with theory of mind skills, including underlying social-cognitive and social-perceptual mechanisms. The present cross-sectional study included classic social-cognitive false-belief and mentalising tasks and social-perceptual face processing tasks. The performance of 50 children with 22q11DS was compared with 31 age-matched typically developing sibling controls. Key findings indicated that, while younger children with 22q11DS showed impaired acquisition of social-cognitive skills, older children with 22q11DS were not significantly impaired compared with sibling controls. However, children with 22q11DS were found to have social-perceptual deficits, as demonstrated by difficulties in matching faces on the basis of identity, emotion, facial speech and gaze compared with sibling controls. Furthermore, performance on the tasks was associated with age, language ability and parentally rated social competence and emotional problems. These results are discussed in relation to the importance of a better delineation of social competence in this population.

  20. Relationship between reaction time, fine motor control, and visual-spatial perception on vigilance and visual-motor tasks in 22q11.2 Deletion Syndrome.

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  1. A cross-sectional study of the development of volitional control of spatial attention in children with chromosome 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Shapiro Heather M

    2012-02-01

    Full Text Available Abstract Background Chromosome 22q11.2 deletion syndrome (22q11.2DS results from a 1.5- to 3-megabase deletion on the long arm of chromosome 22 and occurs in approximately 1 in 4000 live births. Previous studies indicate that children with 22q11.2DS are impaired on tasks involving spatial attention. However, the degree to which these impairments are due to volitionally generated (endogenous or reflexive (exogenous orienting of attention is unclear. Additionally, the efficacy of these component attention processes throughout child development in 22q11.2DS has yet to be examined. Methods Here we compared the performance of a wide age range (7 to 14 years of children with 22q11.2DS to typically developing (TD children on a comprehensive visual cueing paradigm to dissociate the contributions of endogenous and exogenous attentional impairments. Paired and two-sample t-tests were used to compare outcome measures within a group or between groups. Additionally, repeated measures regression models were fit to the data in order to examine effects of age on performance. Results We found that children with 22q11.2DS were impaired on a cueing task with an endogenous cue, but not on the same task with an exogenous cue. Additionally, it was younger children exclusively who were impaired on endogenous cueing when compared to age-matched TD children. Older children with 22q11.2DS performed comparably to age-matched TD peers on the endogenous cueing task. Conclusions These results suggest that endogenous but not exogenous orienting of attention is selectively impaired in children with 22q11.2DS. Additionally, the age effect on cueing in children with 22q11.2DS suggests a possible altered developmental trajectory of endogenous cueing.

  2. Transcriptome Profiling of Peripheral Blood in 22q11.2 Deletion Syndrome Reveals Functional Pathways Related to Psychosis and Autism Spectrum Disorder.

    Directory of Open Access Journals (Sweden)

    Maria Jalbrzikowski

    Full Text Available 22q11.2 Deletion Syndrome (22q11DS represents one of the greatest known genetic risk factors for the development of psychotic illness, and is also associated with high rates of autistic spectrum disorders (ASD in childhood. We performed integrated genomic analyses of 22q11DS to identify genes and pathways related to specific phenotypes.We used a high-resolution aCGH array to precisely characterize deletion breakpoints. Using peripheral blood, we examined differential expression (DE and networks of co-expressed genes related to phenotypic variation within 22q11DS patients. Whole-genome transcriptional profiling was performed using Illumina Human HT-12 microarrays. Data mining techniques were used to validate our results against independent samples of both peripheral blood and brain tissue from idiopathic psychosis and ASD cases.Eighty-five percent of 22q11DS individuals (N = 39 carried the typical 3 Mb deletion, with significant variability in deletion characteristics in the remainder of the sample (N = 7. DE analysis and weighted gene co-expression network analysis (WGCNA identified expression changes related to psychotic symptoms in patients, including a module of co-expressed genes which was associated with psychosis in 22q11DS and involved in pathways associated with transcriptional regulation. This module was enriched for brain-expressed genes, was not related to antipsychotic medication use, and significantly overlapped with transcriptional changes in idiopathic schizophrenia. In 22q11DS-ASD, both DE and WGCNA analyses implicated dysregulation of immune response pathways. The ASD-associated module showed significant overlap with genes previously associated with idiopathic ASD.These findings further support the use of peripheral tissue in the study of major mutational models of diseases affecting the brain, and point towards specific pathways dysregulated in 22q11DS carriers with psychosis and ASD.

  3. A cross-sectional analysis of the development of response inhibition in children with Chromosome 22q11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Heather M Shapiro

    2013-08-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is a neurogenetic disorder that is associated with cognitive impairments and significantly elevated risk for developing schizophrenia. While impairments in response inhibition are central to executive dysfunction in schizophrenia, the nature and development of such impairments in children with 22q11.2DS, a group at high risk for the disorder, are not clear. Here we used a classic Go/No-Go paradigm to quantify proactive (anticipatory stopping and reactive (actual stopping response inhibition in 47 children with 22q11.2DS and 36 typically developing (TD children, all ages 7-14. A cross-sectional design was used to examine age-related associations with response inhibition. When compared with TD individuals, children with 22q11.2DS demonstrated typical proactive response inhibition at all ages. By contrast, reactive response inhibition was impaired in children with 22q11.2DS relative to TD children. While older age predicted better reactive response inhibition in TD children, there was no age-related association with reactive response inhibition in children with 22q11.2DS. Closer examination of individual performance data revealed a wide range of performance abilities in older children with 22q11.2DS; some typical and others highly impaired. The results of this cross-sectional analysis suggest an impaired developmental trajectory of reactive response inhibition in some children with 22q11.2DS that might be related to atypical development of neuroanatomical systems underlying this cognitive process. As part of a larger study, this investigation might help identify risk factors for conversion to schizophrenia and lead to early diagnosis and preventive intervention.

  4. Whole-Genome Sequencing Suggests Schizophrenia Risk Mechanisms in Humans with 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Merico, Daniele; Zarrei, Mehdi; Costain, Gregory; Ogura, Lucas; Alipanahi, Babak; Gazzellone, Matthew J.; Butcher, Nancy J.; Thiruvahindrapuram, Bhooma; Nalpathamkalam, Thomas; Chow, Eva W. C.; Andrade, Danielle M.; Frey, Brendan J.; Marshall, Christian R.; Scherer, Stephen W.; Bassett, Anne S.

    2015-01-01

    Chromosome 22q11.2 microdeletions impart a high but incomplete risk for schizophrenia. Possible mechanisms include genome-wide effects of DGCR8 haploinsufficiency. In a proof-of-principle study to assess the power of this model, we used high-quality, whole-genome sequencing of nine individuals with 22q11.2 deletions and extreme phenotypes (schizophrenia, or no psychotic disorder at age >50 years). The schizophrenia group had a greater burden of rare, damaging variants impacting protein-coding neurofunctional genes, including genes involved in neuron projection (nominal P = 0.02, joint burden of three variant types). Variants in the intact 22q11.2 region were not major contributors. Restricting to genes affected by a DGCR8 mechanism tended to amplify between-group differences. Damaging variants in highly conserved long intergenic noncoding RNA genes also were enriched in the schizophrenia group (nominal P = 0.04). The findings support the 22q11.2 deletion model as a threshold-lowering first hit for schizophrenia risk. If applied to a larger and thus better-powered cohort, this appears to be a promising approach to identify genome-wide rare variants in coding and noncoding sequence that perturb gene networks relevant to idiopathic schizophrenia. Similarly designed studies exploiting genetic models may prove useful to help delineate the genetic architecture of other complex phenotypes. PMID:26384369

  5. The psychiatric and behavioural characteristics of individuals with 22q11.2 deletion syndrome (22q11DS): An Irish population study

    LENUS (Irish Health Repository)

    Prasad, S E

    2011-01-01

    Background: There is a growingbody of evidence which indicates an unequivocal association between 22qllDS and schizophrenia. Deletion of 22qll is recognised as the third highest risk for the development of schizophrenia, with only a greater risk conferred by being the child of 2 parents with schizophrenia or the monozygotic co-twin of an affected individual. The challenge for clinicians and researchers is to identify early vulnerability traits, symptoms or disorders which may be associated with or predict a later emerging psychotic disorder, so that at risk individuals maybe identified, monitored and treated early to improve outcomes. Identification of these early traits or symptoms firstly requires detailed analysis of the behavioural phenotype in individuals with 22qllDS. The current study aims to define the prevalence and correlates of psychiatric disorders in a population cohort of individuals with 22qllDS in Ireland. The data gained from the study will provide the foundation for future longitudinal studies of risk factors of psychosis in 22qllDS. Methods: Forty-five individuals with 22qllDS (mean age = 14.6, SD 8.94) and 27 sibling controls (mean age = 12.2, SD 4.12) participated in the study. The rate of psychiatric and behavioural disorders was investigated through a range of semi-structured interviews and standardised questionnaires. This is the first study to use the Comprehensive Assessment of at Risk Mental State (CAARMS), a tool which has been designed to identify a possible prodromal state. Results: Individuals with 22qllDS had high rates of psychiatric disorders and had significant difficulties with social and school functioning (p < 0.0001) compared to sibling controls. The most frequently occurring were attention deficit hyperactivity disorders (29%, p = 0.001) and anxiety disorders (31%, p = 0.021). Eight individuals (18%) with 22qllDS exhibited subthreshold psychotic symptoms (mean age = 13, SD 2.8, range 7–16 years) and had significantly higher

  6. A New Account of the Neurocognitive Foundations of Impairments in Space, Time, and Number Processing in Children with Chromosome 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Simon, Tony J.

    2008-01-01

    In this article, I present an updated account that attempts to explain, in cognitive processing and neural terms, the nonverbal intellectual impairments experienced by most children with deletions of chromosome 22q11.2. Specifically, I propose that this genetic syndrome leads to early developmental changes in the structure and function of clearly…

  7. Deleção 22q11.2 em pacientes com defeito cardíaco conotruncal e fenótipo da síndrome da deleção 22q11.2 Deleción 22q11.2 en pacientes con defecto cardiaco conotruncal y fenotipo del síndrome de la deleción 22q11.2 22q11.2 deletion in patients with conotruncal heart defect and del22q syndrome phenotype

    Directory of Open Access Journals (Sweden)

    Sintia Iole Nogueira Belangero

    2009-04-01

    índrome de la delación 22q11.2. MÉTODOS: Se estudiaron a 29 pacientes por medio de citogenética clásica, por hibridación in situ fluorescente (FISH y también por técnicas moleculares. RESULTADOS: El análisis citogenético por medio de bandeo G reveló cariotipo normal en todos los pacientes, con excepción de uno, que presentó cariotipo 47,XX,+idic(22(q11.2. Con la utilización de técnicas moleculares, se observó la deleción en el 25% de los pacientes, todos portadores del fenotipo del síndrome de la deleción 22q11.2. En ningún de los casos, la deleción se heredó de los padres. La frecuencia de la deleción 22q11.2 en el grupo de pacientes portadores del espectro clínico de este síndrome resultó mayor que en el grupo de pacientes con cardiopatía conotruncal aislada. CONCLUSIÓN: La investigación de la presencia de deleción y su correlación con los datos clínicos de los pacientes pueden auxiliar los pacientes y sus familias a tener un mejor aconsejamiento genético, así como un seguimiento clínico más adecuado.BACKGROUND: The 22q11.2 deletion syndrome is the most frequent human microdeletion syndrome. The phenotype is highly variable, being characterized by conotruncal heart defect, facial dysmorphisms, velopharyngeal insufficiency, learning difficulties and mental retardation. OBJECTIVE: The objective of this study was to investigate the frequency of deletion 22q11.2 in a Brazilian sample of individuals with isolated conotruncal heart defect and 22q11.2 deletion syndrome phenotype. METHODS: Twenty-nine patients were studied by classical cytogenetics, by fluorescence in situ hybridization (FISH, and by molecular techniques. RESULTS: Cytogenetic analysis by G-banding revealed a normal karyotype in all patients except one who presented a 47,XX,+idic(22(q11.2 karyotype. Using molecular techniques, a deletion was observed in 25% of the patients, all exhibiting a 22q11.2 deletion syndrome phenotype. In none of the cases the deletion was inherited from

  8. Performance on a computerized neurocognitive battery in 22q11.2 deletion syndrome: A comparison between US and Israeli cohorts.

    Science.gov (United States)

    Yi, James J; Weinberger, Ronnie; Moore, Tyler M; Calkins, Monica E; Guri, Yael; McDonald-McGinn, Donna M; Zackai, Elaine H; Emanuel, Beverly S; Gur, Raquel E; Gothelf, Doron; Gur, Ruben C

    2016-07-01

    Increasingly, the effects of copy number variation (CNV) in the genome on brain function and behaviors are recognized as means to elucidate pathophysiology of psychiatric disorders. Such studies require large samples and we characterized the neurocognitive profile of two cohorts of individuals with 22q11.2 deletion syndrome (22q11DS), the most common CNV associated with schizophrenia, in an effort to harmonize phenotyping in multi-site global collaborations. The Penn Computerized Neurocognitive Battery (PCNB) was administered to individuals with 22q11DS in Philadelphia (PHL; n=155, aged 12-40) and Tel Aviv (TLV; n=59, aged 12-36). We examined effect sizes of performance differences between the cohorts and confirmed the factor structure of PCNB performance efficiency in the combined sample based on data from a large comparison community sample. The cohorts performed comparably with notable deficits in executive function, episodic memory and social cognition domains that were previously associated with abnormal neuroimaging findings in 22q11DS. In mixed model analysis, while there was a main effect for site for accuracy (number of correct response) and speed (time to correct response) independently, there were no main site effects for standardized efficiency (average of accuracy and speed). The fit of a structural model was excellent indicating that PCNB tests were related to the targeted cognitive domains. Thus, our results provide preliminary support for the use of the PCNB as an efficient tool for neurocognitive assessment in international 22q11DS collaborations. PMID:27200494

  9. TBX1 mutation identified by exome sequencing in a Japanese family with 22q11.2 deletion syndrome-like craniofacial features and hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Tsutomu Ogata

    Full Text Available BACKGROUND: Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients. Thus, it would be reasonable to perform a comprehensive genetic analysis in deletion-negative patients with 22q11.2DS-like phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We studied three subjects with craniofacial features and hypocalcemia (group 1, two subjects with craniofacial features alone (group 2, and three subjects with normal phenotype within a single Japanese family. Fluorescence in situ hybridization analysis excluded chromosome 22q11.2 deletion, and genomewide array comparative genomic hybridization analysis revealed no copy number change specific to group 1 or groups 1+2. However, exome sequencing identified a heterozygous TBX1 frameshift mutation (c.1253delA, p.Y418fsX459 specific to groups 1+2, as well as six missense variants and two in-frame microdeletions specific to groups 1+2 and two missense variants specific to group 1. The TBX1 mutation resided at exon 9C and was predicted to produce a non-functional truncated protein missing the nuclear localization signal and most of the transactivation domain. CONCLUSIONS/SIGNIFICANCE: Clinical features in groups 1+2 are well explained by the TBX1 mutation, while the clinical effects of the remaining variants are largely unknown. Thus, the results exemplify the usefulness of exome sequencing in the identification of disease-causing mutations in familial disorders. Furthermore, the results, in conjunction with the previous data, imply that TBX1 isoform C is the biologically essential variant and that TBX1 mutations are associated with a wide phenotypic spectrum, including most of 22q11.2DS phenotypes.

  10. Clinical experience with single‐nucleotide polymorphism‐based non‐invasive prenatal screening for 22q11.2 deletion syndrome

    Science.gov (United States)

    Gross, S. J.; Stosic, M.; McDonald‐McGinn, D. M.; Bassett, A. S.; Norvez, A.; Dhamankar, R.; Kobara, K.; Kirkizlar, E.; Zimmermann, B.; Wayham, N.; Babiarz, J. E.; Ryan, A.; Jinnett, K. N.; Demko, Z.

    2016-01-01

    ABSTRACT Objectives To evaluate the performance of a single‐nucleotide polymorphism (SNP)‐based non‐invasive prenatal test (NIPT) for the detection of fetal 22q11.2 deletion syndrome in clinical practice, assess clinical follow‐up and review patient choices for women with high‐risk results. Methods In this study, 21 948 samples were submitted for screening for 22q11.2 deletion syndrome using a SNP‐based NIPT and subsequently evaluated. Follow‐up was conducted for all cases with a high‐risk result. Results Ninety‐five cases were reported as high risk for fetal 22q11.2 deletion. Diagnostic testing results were available for 61 (64.2%) cases, which confirmed 11 (18.0%) true positives and identified 50 (82.0%) false positives, resulting in a positive predictive value (PPV) of 18.0%. Information regarding invasive testing was available for 84 (88.4%) high‐risk cases: 57.1% (48/84) had invasive testing and 42.9% (36/84) did not. Ultrasound anomalies were present in 81.8% of true‐positive and 18.0% of false‐positive cases. Two additional cases were high risk for a maternal 22q11.2 deletion; one was confirmed by diagnostic testing and one had a positive family history. There were three pregnancy terminations related to screening results of 22q11.2 deletion, two of which were confirmed as true positive by invasive testing. Conclusions Clinical experience with this SNP‐based non‐invasive screening test for 22q11.2 deletion syndrome indicates that these deletions have a frequency of approximately 1 in 1000 in the referral population with most identifiable through this test. Use of this screening method requires the availability of counseling and other management resources for high‐risk pregnancies. © 2015 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd. on behalf of the International Society of Ultrasound in Obstetrics and Gynecology. PMID:26396068

  11. Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia--relationship with COMT Val¹⁰⁸/¹⁵⁸Met polymorphism, gender and symptomatology

    NARCIS (Netherlands)

    E. Boot; J. Booij; N. Abeling; J. Meijer; F. da Silva Alves; J. Zinkstok; F. Baas; D. Linszen; T. van Amelsvoort

    2011-01-01

    22q11 Deletion syndrome (22q11DS) is a major risk factor for schizophrenia. In addition, both conditions are associated with alterations of the dopaminergic system. The catechol-O-methyltransferase (COMT) gene, located within the deleted region, encodes for the enzyme COMT that is important for degr

  12. COMT Val(158) met genotype and striatal D(2/3) receptor binding in adults with 22q11 deletion syndrome.

    LENUS (Irish Health Repository)

    Boot, Erik

    2011-09-01

    Although catechol-O-methyltransferase (COMT) activity evidently affects dopamine function in prefrontal cortex, the contribution is assumed less significant in striatum. We studied whether a functional polymorphism in the COMT gene (Val(158) Met) influences striatal D(2\\/3) R binding ratios (D(2\\/3) R BP(ND) ) in 15 adults with 22q11 deletion syndrome and hemizygous for this gene, using single photon emission computed tomography and the selective D(2\\/3) radioligand [(123) I]IBZM. Met hemizygotes had significantly lower mean D(2\\/3) R BPND than Val hemizygotes. These preliminary data suggest that low COMT activity may affect dopamine levels in striatum in humans and this may have implications for understanding the contribution of COMT activity to psychiatric disorders.

  13. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study.

    Science.gov (United States)

    Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G M; Murphy, Kieran C

    2006-05-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit/hyperactivity disorder and autism spectrum disorders in childhood, and schizophrenia in adolescence or adult life. However, the neurobiology of 22qDS, and the relationship between abnormalities in brain anatomy and behaviour, is poorly understood. Thus, we studied the neuroanatomy of 22qDS children using fully automated voxel-based morphometry (VBM) and manually traced single region-of-interest (ROI) analysis. Also, we investigated whether those brain regions that differed significantly between groups were related to behavioural differences within children with 22qDS. We compared the brain morphometry of 39 children and adolescents with 22qDS (mean age: 11 years, SD +/-3, IQ = 67, SD +/-10) and 26 sibling controls (mean age: 11 years, SD +/-3, IQ = 102, SD +/-12). Using VBM, we found, after correction for IQ, that individuals with 22qDS compared with controls had a significant reduction in cerebellar grey matter, and white matter reductions in the frontal lobe, cerebellum and internal capsule. Using single ROI analysis, we found that people with 22qDS had a significant (P social behavioural difficulties and grey matter in frontostriatal regions. Thus, subjects with 22qDS have widespread changes in brain anatomy, particularly affecting white matter, basal ganglia and cerebellum. Also, within 22qDS, regionally specific differences in brain development may partially underpin behavioural differences. We suggest that there is preliminary evidence for specific vulnerability of the frontostriatal and cerebellar-cortical networks in 22qDS.

  14. Developmental trajectories of fronto-executive functions in 22q11.2 deletion syndrome: A preliminary study

    LENUS (Irish Health Repository)

    Howley, S A

    2011-01-01

    22qll.2 deletion syndrome (22qllDS) is associated with borderline-mild intellectual disability and specific neurocognitive deficits, particularly in prefrontally-mediated executive functions (EF). There is evidence for white matter abnormalities in frontal cortical regions in 22qllDS, however little is known about the development of EF across the age range. Forty-eight individuals with 22qllDS were divided into 3 age groups: Child (7 male; n = 16; 6–11 years; M (SD) age = 8.4 (1.7); mean FSIQ = 72.9); Adolescent (7 male; n = 15; 12–15 years; M (SD) age = 13.1 (0.8); mean FSIQ = 68.0) and Adult (7 male; n = 17; 16–45 years; M (SD) age = 28.8 (11.5); mean FSIQ = 69.6). Forty healthy controls were also recruited and divided into the same 3 age groups: Child (6 male; 6–11 years, n = 12; M (SD) age = 9.3 (1.7); mean FSIQ = 99.1); Adolescent (6 male; 12–15 years; n = 12; M (SD) age = 13.2 (1.1); mean FSIQ = 100.9) and Adult (6 male; 16–45 years; n = 16; M (SD) age = 28.8 (9.4); mean FSIQ = 109). All participants completed standardised tests of a range of executive functions, specifically working memory, planning, problem-solving, strategy formation, cognitive flexibility and inhibition, and cross-sectional developmental trajectories of each function were constructed. No age-mediated improvements on EF tasks were observed in the 22qllDS groups, with the exception of verbal working memory. The control group exhibited significant age-mediated improvements in working memory, strategy formation and planning efficiency. These findings support the hypothesis that 22qllDS individuals experience atypical development of neuroanatomical regions and networks associated with EF in typical individuals. Future longitudinal work is required to examine intra-individual development of executive and non-executive cognitive processes.

  15. 22q11-deletionssyndrom

    DEFF Research Database (Denmark)

    Olesen, Charlotte; Agergaard, Peter; Boers, Maria;

    2010-01-01

    22q11 deletion syndrome (formerly named CATCH22, DiGeorge, Velo-Cardio-Facial, Caylor, Kinouchi and Shprintzen syndrome) occurs in approximately 1/2000 to 4000 children. The genetic lesion is remarkably uniform, occurring mainly as 3 or 1.5 MB deletions in the 22q11.2 region. However, the clinical...

  16. Chromosome 22q11.2 microdeletion in monozygotic twins with discordant phenotype and deletion size

    Directory of Open Access Journals (Sweden)

    Halder Ashutosh

    2012-03-01

    Full Text Available Abstract We report on a pair of male monozygotic twins with 22q11.2 microdeletion, discordant phenotype and discordant deletion size. The second twin had findings suggestive of DiGeorge syndrome, while the first twin had milder anomalies without any cardiac malformation. The second twin had presented with intractable convulsion, cyanosis and cardiovascular failure in the fourth week of life and expired on the sixth week of life, whereas the first twin had some characteristic facial appearance with developmental delay but no other signs of the 22q11.2 microdeletion syndrome including cardiovascular malformation. The fluorescence in situ hybridization (FISH analysis had shown a microdeletion on the chromosome 22q11.2 in both twins. The interphase FISH did not find any evidence for the mosaicism. The genomic DNA microarray analysis, using HumanCytoSNP-12 BeadChip (Illumina, was identical between the twins except different size of deletion of 22q11.2. The zygosity using HumanCytoSNP-12 BeadChip (Illumina microarray analysis suggested monozygosity. This observation indicates that altered size of the deletion may be the underlying etiology for the discordance in phenotype in monozygotic twins. We think early post zygotic events (mitotic non-allelic homologous recombination could have been played a role in the alteration of 22q11.2 deletion size and, thus phenotypic variability in the monozygotic twins.

  17. Síndrome con deleción 22q11 (Síndrome velocardiofacial, reporte de los primeros casos en Costa Rica con diagnóstico citogenético 22q11 Deletion Syndrome (Velo-Cardio-Facial syndrome, report of the first cases in Costa Rica with cytogenetic diagnosis

    Directory of Open Access Journals (Sweden)

    Oscar Porras

    2011-01-01

    Full Text Available El síndrome con deleción 22q11 es una enfermedad autosómica recesiva causada por una microdeleción 22q11.2. En este artículo se reportan los tres primeros casos del síndrome confirmados por citogenética en Costa Rica. El estudio de fluorescencia con hibridización in situ que demostró la microdeleción 22q11.2, se indicó por la sospecha clínica del síndrome, en 2 niños y una niña con malformaciones congénitas conotruncales de corazón. Dos de los casos se encuentran vivos a la fecha cuando se escribió este reporte y uno falleció en el postoperatorio inmediato de la cirugía para corregir la cardiopatía. Al inicio de los síntomas, en los tres casos se documentó falla para progresar y en dos se anotó dismorfismo en referencia a rasgos faciales anormales. En un caso se reportó paladar hendido y en otro pie, bott. A pesar de que la malformación congénita de corazón es el hallazgo clínico que con frecuencia induce al médico a pensar en este síndrome, los trastornos cognitivos y del comportamiento son las manifestaciones fenotípicas más frecuentes.The 22q11 deletion syndrome is an autosomic recessive disease caused by a 22q11 microdeletion. We report the first 3 cases of this syndrome in Costa Rica, confirmed by cytogenetics, in situ fluorescence hybridization showed the 22q11 microdeletion. Due to clinical suspicion it was requested in 2 boys and one girl with congenital conotruncal heart disease. As of today, 2 of the cases are alive and 1 died in the immediate postoperative period of corrective cardiac surgery. When their symptoms began, in the 3 cases failure to thrive was noted and in 2, dimorphism related to abnormal facial features. In 1 case, cleft palate was recorded and, pie bott in another. Although congenital heart disease is a clinical finding that frequently persuades physicians into thinking about this syndrome, the most common phenotypical signs are cognitive and behavioral disorders.

  18. Síndrome de deleção 22q11.2: importância da avaliação clínica e técnica de FISH 22q11.2 deletion syndrome: importance of clinical evaluation and FISH analysis

    Directory of Open Access Journals (Sweden)

    Dayane Bohn Koshiyama

    2009-01-01

    Full Text Available OBJETIVO: A síndrome de deleção 22q11.2 é considerada hoje uma das doenças genéticas mais frequentes em humanos. Caracteriza-se clinicamente por um espectro fenotípico bastante amplo, com mais de 180 achados já descritos, tanto físicos como comportamentais. Contudo, nenhum deles é patognomônico ou mesmo obrigatório, o que acaba dificultando o diagnóstico. Assim, o objetivo do presente estudo foi determinar a prevalência e as características clínicas de pacientes com microdeleção 22q11.2 em uma amostra selecionada de indivíduos com suspeita clínica de síndrome de deleção 22q11.2 e cariótipo normal. MÉTODOS: Uma amostra selecionada de 30 pacientes com suspeita clínica da síndrome de deleção 22q11.2 e cariótipo normal foi avaliada através da aplicação de um protocolo clínico padrão e análise citogenética por meio da técnica de hibridização in situ fluorescente. RESULTADOS: A microdeleção 22q11.2 foi identificada em três pacientes (10%, sendo esta prevalência similar a da maioria dos estudos descritos na literatura que oscila de 4% a 21%. Os pacientes com síndrome de deleção 22q11.2 do nosso trabalho se caracterizaram por um fenótipo variável, com poucos achados clínicos similares, o que foi concordante com a descrição da literatura. CONCLUSÃO: Nossos achados reforçam a ideia de que o diagnóstico clínico da síndrome de deleção 22q11.2 é difícil devido à sua grande variabilidade fenotípica. Assim, uma avaliação clínica detalhada associada a um teste sensível como a hibridização in situ fluorescente, são fundamentais para a identificação destes pacientes.OBJECTIVE: The 22q11.2 deletion syndrome nowadays is considered one of the most often observed genetic diseases in humans. It is clinically characterized by a rather wide phenotypic spectrum, with more than 180 clinical features physical as well as behavioral, already described. However, none is pathognomonic or obligatory which

  19. Are 22q11.2 distal deletions associated with math difficulties?

    Science.gov (United States)

    Carvalho, Maria Raquel Santos; Vianna, Gabrielle; Oliveira, Lívia de Fátima Silva; Costa, Annelise Julio; Pinheiro-Chagas, Pedro; Sturzenecker, Rosane; Zen, Paulo Ricardo Gazzola; Rosa, Rafael Fabiano Machado; de Aguiar, Marcos José Burle; Haase, Vitor Geraldi

    2014-09-01

    Approximately 6% of school-aged children have math difficulties (MD). A neurogenetic etiology has been suggested due to the presence of MD in some genetic syndromes such as 22q11.2DS. However, the contribution of 22q11.2DS to the MD phenotype has not yet been investigated. This is the first population-based study measuring the frequency of 22q11.2DS among school children with MD. Children (1,564) were identified in the schools through a screening test for language and math. Of these children, 152 (82 with MD and 70 controls) were selected for intelligence, general neuropsychological, and math cognitive assessments and for 22q11.2 microdeletion screening using MLPA. One child in the MD group had a 22q11.2 deletion spanning the LCR22-4 to LCR22-5 interval. This child was an 11-year-old girl with subtle anomalies, normal intelligence, MD attributable to number sense deficit, and difficulties in social interactions. Only 19 patients have been reported with this deletion. Upon reviewing these reports, we were able to characterize a new syndrome, 22q11.2 DS (LCR22-4 to LCR22-5), characterized by prematurity; pre- and postnatal growth restriction; apparent hypotelorism, short/upslanting palpebral fissures; hypoplastic nasal alae; pointed chin and nose; posteriorly rotated ears; congenital heart defects; skeletal abnormalities; developmental delay, particularly compromising the speech; learning disability (including MD, in one child); intellectual disability; and behavioral problems. These results suggest that 22q11.2 DS (LCR22-4 to LCR22-5) may be one of the genetic causes of MD.

  20. Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia--relationship with COMT Val¹⁰⁸/¹⁵⁸Met polymorphism, gender and symptomatology.

    Science.gov (United States)

    Boot, Erik; Booij, Jan; Abeling, Nico; Meijer, Julia; da Silva Alves, Fabiana; Zinkstok, Janneke; Baas, Frank; Linszen, Don; van Amelsvoort, Thérèse

    2011-07-01

    22q11 Deletion syndrome (22q11DS) is a major risk factor for schizophrenia. In addition, both conditions are associated with alterations of the dopaminergic system. The catechol-O-methyltransferase (COMT) gene, located within the deleted region, encodes for the enzyme COMT that is important for degradation of catecholamines, including dopamine (DA). COMT activity is sexually dimorphic and its gene contains a functional polymorphism, Val¹⁰⁸/¹⁵⁸ Met; the Met allele is associated with lower enzyme activity. We report the first controlled catecholamine study in 22q11DS-related schizophrenia. Twelve adults with 22q11DS with schizophrenia (SCZ+) and 22 adults with 22q11DS without schizophrenia (SCZ-) were genotyped for the COMT Val¹⁰⁸/¹⁵⁸ Met genotype. We assessed dopaminergic markers in urine and plasma. We also correlated these markers with scores on the Positive and Negative Symptom Scale (PANSS). Contrary to our expectations, we found SCZ+ subjects to be more often Val hemizygous and SCZ- subjects more often Met hemizygous. Significant COMT cross gender interactions were found on dopaminergic markers. In SCZ+ subjects there was a negative correlation between prolactin levels and scores on the general psychopathology subscale of the PANSS scores. These findings suggest intriguing, but complex, interactions of the COMT Val¹⁰⁸/¹⁵⁸ Met polymorphism, gender and additional factors on DA metabolism, and its relationship with schizophrenia.

  1. Core Neuropsychological Characteristics of Children and Adolescents with 22q11.2 Deletion

    Science.gov (United States)

    Jacobson, C.; Shearer, J.; Habel, A.; Kane, F.; Tsakanikos, E.; Kravariti, E.

    2010-01-01

    Background: The 22q11.2 deletion syndrome (22qDS) confers high risk for intellectual disability and neuropsychological/academic impairment, although a minority of patients show average intelligence. Intellectual heterogeneity and the high prevalence of psychiatric diagnoses in earlier studies may have obscured the prototypical neuropsychological…

  2. SNP Microarray in FISH Negative Clinically Suspected 22q11.2 Microdeletion Syndrome

    OpenAIRE

    Ashutosh Halder; Manish Jain; Amanpreet Kaur Kalsi

    2016-01-01

    The present study evaluated the role of SNP microarray in 101 cases of clinically suspected FISH negative (noninformative/normal) 22q11.2 microdeletion syndrome. SNP microarray was carried out using 300 K HumanCytoSNP-12 BeadChip array or CytoScan 750 K array. SNP microarray identified 8 cases of 22q11.2 microdeletions and/or microduplications in addition to cases of chromosomal abnormalities and other pathogenic/likely pathogenic CNVs. Clinically suspected specific deletions (22q11.2) were d...

  3. The 22Q11.2 Deletion in Children: High Rate of Autistic Disorders and Early Onset of Psychotic Symptoms

    Science.gov (United States)

    Vorstman, Jacob A. S.; Morcus, Monique E. J.; Duijff, Sasja N.; Klaassen, Petra W. J.; Heineman-de, Josien A.; Beemer, Frits A.; Swaab, Hanna; Kahn, Rene S.; van Engeland, Herman

    2006-01-01

    Objective: To examine psychopathology and influence of intelligence level on psychiatric symptoms in children with the 22q11.2 deletion syndrome (22q11DS). Method: Sixty patients, ages 9 through 18 years, were evaluated. Assessments followed standard protocols, including structured and semistructured interviews of parents, videotaped psychiatric…

  4. C1-2 vertebral anomalies in 22q11.2 microdeletion syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Konen, Osnat; Armstrong, Derek; Padfield, Nancy; Blaser, Susan [Hospital for Sick Children, Diagnostic Imaging, Toronto (Canada); Clarke, Howard [Hospital for Sick Children, Plastic Surgery, Toronto (Canada); Weksberg, Rosanna [Hospital for Sick Children, Clinical and Metabolic Genetics, Toronto (Canada)

    2008-07-15

    Chromosome 22q11.2 microdeletion syndrome (22q11DS) is characterized by cleft palate, cardiac anomalies, characteristic facies, high prevalence of skeletal anomalies and learning disability. To evaluate the prevalence of craniovertebral junction anomalies in children with 22q11DS and compare these findings to those in nonsyndromic children with velopharyngeal insufficiency (VPI). Sequential CT scans performed for presurgical carotid assessment in 76 children (45 children positive for chromosome 22q11.2 deletion and 31 negative for the deletion) with VPI were retrospectively evaluated for assessment of C1-2 anomalies. C1-2 vertebral anomalies, specifically midline C1 defects, uptilted or upswept posterior elements of C2 and fusions of C2-3, were nearly universal in our cohort of 22q11DS patients with VPI. They were strikingly absent in the majority of non-22q11DS patients with VPI. C1-2 vertebral anomalies, particularly those listed above, are important radiographic markers for 22q11DS. (orig.)

  5. Deletions at 22q11.2 in idiopathic Parkinson's disease: a combined analysis of genome-wide association data

    OpenAIRE

    Mok, K. Y.; Sheerin, U.; Simón-Sánchez, J.; Salaka, A.; Chester, L.; Escott-Price, V; Mantripragada, K.; Doherty, K M; Noyce, A. J.; Mencacci, N. E.; Lubbe, S. J.; International Parkinson's Disease Genomics Consortium (IPDGC); Williams-Gray, C. H.; Barker, R. A.; Dijk, K.D. van

    2016-01-01

    Summary Background Parkinson's disease has been reported in a small number of patients with chromosome 22q11.2 deletion syndrome. In this study, we screened a series of large, independent Parkinson's disease case-control studies for deletions at 22q11.2. Methods We used data on deletions spanning the 22q11.2 locus from four independent case-control Parkinson's disease studies (UK Wellcome Trust Case Control Consortium 2, Dutch Parkinson's Disease Genetics Consortium, US National Institute on ...

  6. Definition of 5q11.2 Microdeletion Syndrome Reveals Overlap with CHARGE Syndrome and 22q11 Deletion Syndrome Phenotypes

    NARCIS (Netherlands)

    Blok, Charlotte Snijders; Corsten-Janssen, Nicole; FitzPatrick, David R.; Romano, Corrado; Fichera, Marco; Vitello, Girolamo Aurelio; Willemsen, Marjolein H.; Schoots, Jeroen; Pfundt, Rolph; van Ravenswaaij-Arts, Conny M. A.; Hoefsloot, Lies; Kleefstra, Tjitske

    2014-01-01

    Microdeletions of the 5q11.2 region are rare; in literature only two patients with a deletion in this region have been reported so far. In this study, we describe four additional patients and further define this new 5q11.2 microdeletion syndrome. A comparison of the features observed in all six pati

  7. Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome

    Science.gov (United States)

    Nilsson, Simon RO.; Fejgin, Kim; Gastambide, Francois; Vogt, Miriam A.; Kent, Brianne A.; Nielsen, Vibeke; Nielsen, Jacob; Gass, Peter; Robbins, Trevor W.; Saksida, Lisa M.; Stensbøl, Tine B.; Tricklebank, Mark D.; Didriksen, Michael; Bussey, Timothy J.

    2016-01-01

    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus – within the current protocols – the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional “hits” being required for phenotypic expression. PMID:27507786

  8. Congenital Heart Disease as a Warning Sign for the Diagnosis of the 22q11.2 Deletion

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Marcília S., E-mail: marcilia.grassi@hc.fm.usp.br; Jacob, Cristina M. A. [Instituto da Criança - HC-FMUSP, São Paulo, SP (Brazil); Kulikowski, Leslie D. [Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Pastorino, Antonio C. [Instituto da Criança - HC-FMUSP, São Paulo, SP (Brazil); Dutra, Roberta L. [Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Miura, Nana; Jatene, Marcelo B. [Instituto do Coração - HC-FMUSP, São Paulo, SP (Brazil); Pegler, Stephanie P.; Kim, Chong A.; Carneiro-Sampaio, Magda [Instituto da Criança - HC-FMUSP, São Paulo, SP (Brazil)

    2014-11-15

    To alert for the diagnosis of the 22q11.2 deletion syndrome (22q11.2DS) in patients with congenital heart disease (CHD). To describe the main CHDs, as well as phenotypic, metabolic and immunological findings in a series of 60 patients diagnosed with 22q11.2DS. The study included 60 patients with 22q11.2DS evaluated between 2007 and 2013 (M:F=1.3, age range 14 days to 20 years and 3 months) at a pediatric reference center for primary immunodeficiencies. The diagnosis was established by detection of the 22q11.2 microdeletion using FISH (n = 18) and/or MLPA (n = 42), in association with clinical and laboratory information. Associated CHDs, progression of phenotypic facial features, hypocalcemia and immunological changes were analyzed. CHDs were detected in 77% of the patients and the most frequent type was tetralogy of Fallot (38.3%). Surgical correction of CHD was performed in 34 patients. Craniofacial dysmorphisms were detected in 41 patients: elongated face (60%) and/or elongated nose (53.3%), narrow palpebral fissure (50%), dysplastic, overfolded ears (48.3%), thin lips (41.6%), elongated fingers (38.3%) and short stature (36.6%). Hypocalcemia was detected in 64.2% and decreased parathyroid hormone (PTH) level in 25.9%. Decrease in total lymphocytes, CD4 and CD8 counts were present in 40%, 53.3% and 33.3%, respectively. Hypogammaglobulinemia was detected in one patient and decreased concentrations of immunoglobulin M (IgM) in two other patients. Suspicion for 22q11.2DS should be raised in all patients with CHD associated with hypocalcemia and/or facial dysmorphisms, considering that many of these changes may evolve with age. The 22q11.2 microdeletion should be confirmed by molecular testing in all patients.

  9. Congenital Heart Disease as a Warning Sign for the Diagnosis of the 22q11.2 Deletion

    Directory of Open Access Journals (Sweden)

    Marcília S. Grassi

    2014-11-01

    Full Text Available Background: To alert for the diagnosis of the 22q11.2 deletion syndrome (22q11.2DS in patients with congenital heart disease (CHD. Objective: To describe the main CHDs, as well as phenotypic, metabolic and immunological findings in a series of 60 patients diagnosed with 22q11.2DS. Methods: The study included 60 patients with 22q11.2DS evaluated between 2007 and 2013 (M:F=1.3, age range 14 days to 20 years and 3 months at a pediatric reference center for primary immunodeficiencies. The diagnosis was established by detection of the 22q11.2 microdeletion using FISH (n = 18 and/or MLPA (n = 42, in association with clinical and laboratory information. Associated CHDs, progression of phenotypic facial features, hypocalcemia and immunological changes were analyzed. Results: CHDs were detected in 77% of the patients and the most frequent type was tetralogy of Fallot (38.3%. Surgical correction of CHD was performed in 34 patients. Craniofacial dysmorphisms were detected in 41 patients: elongated face (60% and/or elongated nose (53.3%, narrow palpebral fissure (50%, dysplastic, overfolded ears (48.3%, thin lips (41.6%, elongated fingers (38.3% and short stature (36.6%. Hypocalcemia was detected in 64.2% and decreased parathyroid hormone (PTH level in 25.9%. Decrease in total lymphocytes, CD4 and CD8 counts were present in 40%, 53.3% and 33.3%, respectively. Hypogammaglobulinemia was detected in one patient and decreased concentrations of immunoglobulin M (IgM in two other patients. Conclusion: Suspicion for 22q11.2DS should be raised in all patients with CHD associated with hypocalcemia and/or facial dysmorphisms, considering that many of these changes may evolve with age. The 22q11.2 microdeletion should be confirmed by molecular testing in all patients.

  10. Idiopathic thromobocytopenic purpura in two mothers of children with DiGeorge sequence: A new component manifestation of deletion 22q11?

    Energy Technology Data Exchange (ETDEWEB)

    Levy, A.; Philip, N. [Hopital d`Enfants de la Timone, Marseilles (France); Michel, G. [Hopital d`Enfants de la Timone, Marseilles (France)] [and others

    1997-04-14

    The phenotypic spectrum caused by the microdeletion of chromosome 22q11 region is known to be variable. Nearly all patients with DiGeorge sequence (DGS) and approximately 60% of patients with velocardiofacial syndrome exhibit the deletion. Recent papers have reported various congenital defects in patients with 22q11 deletions. Conversely, some patients have minimal clinical expression. Ten to 25% of parents of patients with DGS exhibit the deletion and are nearly asymptomatic. Two female patients carrying a 22q11 microdeletion and presenting with idiopathic thrombocytopenic purpura are reported. Both had children with typical manifestations of DGS. 12 refs., 4 figs., 1 tab.

  11. Cayler cardiofacial syndrome and del 22q11: Part of the CATCH22 phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Giannotti, A.; Digilio, M.C.; Marino, B. [Bambino Gesu Hospital, Rome (Italy); Mingarelli, R.; Dallapiccola, B. [Tor Vergata Univ., Rome (Italy)

    1994-11-15

    The authors report evidence supporting the hypothesis that del(22)(q11) can be a pathogenetic mechanism for the association between hypoplasia of the depressor anguli oris muscle (DAOM) and conotruncal cardiac malformations. A series of over 180 patients was investigated with deletions of 22q11 with conotruncal defects. About 2/3 of these patients had isolated, nonfamilial cardiac defects. Hemizygosity was searched using the HD7k probe and densitometric analysis. In the patients with molecular evidence of del(22)(q11), hemizygosity was confirmed also using fluorescence in situ hybridization (FISH) with SC11.1 probe. No deletion was found in the parents of hemizygous patients. 16 refs.

  12. Social Cognition in 22q11.2 Microdeletion Syndrome: Relevance to Psychosis

    OpenAIRE

    Jalbrzikowski, Maria; Carter, Chelsea; Senturk, Damla; Chow, Carolyn; Hopkins, Jessica M.; Green, Michael F.; Galván, Adriana; Cannon, Tyrone D.; Bearden, Carrie E.

    2012-01-01

    22q11.2 deletion syndrome (22qDS) represents one of the largest known genetic risk factors for schizophrenia. Approximately 30% of individuals with 22qDS develop psychotic illness in adolescence or young adulthood. Given that deficits in social cognition are increasingly viewed as a central aspect of idiopathic schizophrenia, we sought to investigate abilities in this domain as a predictor of psychotic symptoms in 22qDS participants. We assessed multiple domains of social and non-social cogni...

  13. Use of amniocytes for prenatal diagnosis of 22q11.2 microdeletion syndrome: a feasibility study

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; LIU Qing; WANG Yi-xin; YANG Dong; XIN Yi; FANG Zhen; DING Shu-fang; YANG Jie-fu

    2010-01-01

    Background A study of prenatal genetic diagnosis for 22q11.2 mierodeletion, which has a wide phenotypic spectrum that involves almost all organs, is rarely reported in China. This study aimed to explore the prevalence of 22q11.2 microdeletion in congenitally malformed fetuses via the fluorescent in situ hybridization (FISH) technique and to investigate the feasibility of use of amniocytes to diagnose 22q11.2 microdeletion syndrome prenatally.Methods The study enrolled 23 cases of fetal cardiac malformation, as indicated by ultrasound in Beijing Anzhen Hospital and 14 cases of non-cardiac malformation, as determined by type-B ultrasound in Beijing Anzhen Hospital and other hospitals. Amniotic fluid was obtained by amniocentesis before odinopoeia, and the stillborn fetuses of the induced labor were preceded to autopsy. The amniotic fluid of 20 cesarean deliveries during the same period of time was used as a control. The TUPLE1 gene in the amniotic fluid of malformed and normal fetuses was assessed by the FISH method.Results The prevalence rates of the TUPLE1 gene deletion in the amniotic fluid cells from fetuses with cardiac deformations and fetuses without such malformations were 43.5% and 57.1%, respectively. The deletion of TUPLE1 was significantly associated with fetal malformation.Conclusion Chromosome 22q11.2 microdeletion is one of the major factors leading to fetal congenital malformations, and prenatal FISH screening for 22q11.2 microdeletion syndrome is technically feasible using amniocytes.

  14. Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles

    DEFF Research Database (Denmark)

    Lima, K; Abrahamsen, Gitte Meldgaard; Foelling, I;

    2010-01-01

    -expression of CD3, CD45RA and CCR9 (r=0.84) as well as with the CD4+ and CD8+ T cell subtypes. RTE-related T cell counts also paralleled age-related TREC reductions. CD45RA+ T cells correlated well with absolute counts of CD4+ (r=0.87) and CD8+ (r=0.75) RTE-related T cells. Apart from CD45RA- T cells, all T......Thymic hypoplasia is a frequent feature of the 22q11.2 deletion syndrome, but we know little about patients' age-related thymic output and long-term consequences for their immune system. We measured the expression of T cell receptor rearrangement excision circles (TREC) and used flow cytometry for...... direct subtyping of recent thymic emigrant (RTE)-related T cells in 43 patients (aged 1-54 years; median 9 years) from all over Norway and in age-matched healthy controls. Thymic volumes were estimated by ultrasound in patients. TREC levels correlated well with RTE-related T cells defined by co...

  15. Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Maria eJalbrzikowski

    2014-11-01

    Full Text Available 22q11.2 Microdeletion Syndrome (22q11DS is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: 1 differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI measures within white matter tracts; 2 whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and 3 relationships between DTI measures, social cognition task performance and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls. We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA, axial (AD and radial diffusivity (RD, using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the inferior fronto-occipital fasciculus in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to

  16. Microdeletion 22q11 and oesophageal atresia

    Science.gov (United States)

    Digilio, M. C.; Marino, B.; Bagolan, P.; Giannotti, A.; Dallapiccola, B.

    1999-01-01

    Oesophageal atresia (OA) is a congenital defect associated with additional malformations in 30-70% of the cases. In particular, OA is a component of the VACTERL association. Since some major features of the VACTERL association, including conotruncal heart defect, radial aplasia, and anal atresia, have been found in patients with microdeletion 22q11.2 (del(22q11.2)), we have screened for del(22q11.2) by fluorescent in situ hybridisation (FISH) in 15 syndromic patients with OA. Del(22q11.2) was detected in one of them, presenting with OA, tetralogy of Fallot, anal atresia, neonatal hypocalcaemia, and subtle facial anomalies resembling those of velocardiofacial syndrome. The occurrence of del(22q11.2) in our series of patients with OA is low (1/15), but this chromosomal anomaly should be included among causative factors of malformation complexes with OA. In addition, clinical variability of del(22q11.2) syndrome is further corroborated with inclusion of OA in the list of the findings associated with the deletion.


Keywords: microdeletion 22q11; oesophageal atresia; VACTERL association; velocardiofacial syndrome PMID:10051013

  17. Social cognition in 22q11.2 microdeletion syndrome: relevance to psychosis?

    Science.gov (United States)

    Jalbrzikowski, Maria; Carter, Chelsea; Senturk, Damla; Chow, Carolyn; Hopkins, Jessica M; Green, Michael F; Galván, Adriana; Cannon, Tyrone D; Bearden, Carrie E

    2012-12-01

    22q11.2 deletion syndrome (22qDS) represents one of the largest known genetic risk factors for schizophrenia. Approximately 30% of individuals with 22qDS develop psychotic illness in adolescence or young adulthood. Given that deficits in social cognition are increasingly viewed as a central aspect of idiopathic schizophrenia, we sought to investigate abilities in this domain as a predictor of psychotic symptoms in 22qDS participants. We assessed multiple domains of social and non-social cognition in 22qDS youth to: 1) characterize performance across these domains in 22qDS, and identify whether 22qDS participants fail to show expected patterns of age-related improvements on these tasks; and 2) determine whether social cognition better predicts positive and negative symptoms than does non-social cognition. Task domains assessed were: emotion recognition and differentiation, Theory of Mind (ToM), verbal knowledge, visuospatial skills, working memory, and processing speed. Positive and negative symptoms were measured using scores obtained from the Structured Interview for Prodromal Symptoms (SIPS). 22qDS participants (N=31, mean age: 15.9) showed the largest impairment, relative to healthy controls (N=31, mean age: 15.6), on measures of ToM and processing speed. In contrast to controls, 22qDS participants did not show age-related improvements on measures of working memory and verbal knowledge. Notably, ToM performance was the best predictor of positive symptoms in 22qDS, accounting for 39% of the variance in symptom severity. Processing speed emerged as the best predictor of negative symptoms, accounting for 37% of the variance in symptoms. Given that ToM was a robust predictor of positive symptoms in our sample, these findings suggest that social cognition may be a valuable intermediate trait for predicting the development of psychosis.

  18. Social cognition in 22q11.2 microdeletion syndrome: relevance to psychosis?

    Science.gov (United States)

    Jalbrzikowski, Maria; Carter, Chelsea; Senturk, Damla; Chow, Carolyn; Hopkins, Jessica M; Green, Michael F; Galván, Adriana; Cannon, Tyrone D; Bearden, Carrie E

    2012-12-01

    22q11.2 deletion syndrome (22qDS) represents one of the largest known genetic risk factors for schizophrenia. Approximately 30% of individuals with 22qDS develop psychotic illness in adolescence or young adulthood. Given that deficits in social cognition are increasingly viewed as a central aspect of idiopathic schizophrenia, we sought to investigate abilities in this domain as a predictor of psychotic symptoms in 22qDS participants. We assessed multiple domains of social and non-social cognition in 22qDS youth to: 1) characterize performance across these domains in 22qDS, and identify whether 22qDS participants fail to show expected patterns of age-related improvements on these tasks; and 2) determine whether social cognition better predicts positive and negative symptoms than does non-social cognition. Task domains assessed were: emotion recognition and differentiation, Theory of Mind (ToM), verbal knowledge, visuospatial skills, working memory, and processing speed. Positive and negative symptoms were measured using scores obtained from the Structured Interview for Prodromal Symptoms (SIPS). 22qDS participants (N=31, mean age: 15.9) showed the largest impairment, relative to healthy controls (N=31, mean age: 15.6), on measures of ToM and processing speed. In contrast to controls, 22qDS participants did not show age-related improvements on measures of working memory and verbal knowledge. Notably, ToM performance was the best predictor of positive symptoms in 22qDS, accounting for 39% of the variance in symptom severity. Processing speed emerged as the best predictor of negative symptoms, accounting for 37% of the variance in symptoms. Given that ToM was a robust predictor of positive symptoms in our sample, these findings suggest that social cognition may be a valuable intermediate trait for predicting the development of psychosis. PMID:23122739

  19. Extracorporeal membrane oxygenation in children with heart disease and del22q11 syndrome: a review of the Extracorporeal Life Support Organization Registry.

    Science.gov (United States)

    Prodhan, P; Gossett, J M; Rycus, P T; Gupta, P

    2015-11-01

    The study objective was to evaluate outcomes among children with del22q11 (DiGeorge) syndrome supported on ECMO for heart disease. The ELSO registry database was queried to include all children great vessels and interrupted aortic arch and requiring ECMO, from 1998-2011. The outcomes evaluated included mortality, ECMO duration and length of hospital stay in patients with del22q11 syndrome and with no del22q11 syndrome. Eighty-eight ECMO runs occurred in children with del22q11 syndrome while 2694 ECMO runs occurred in children without del22q11 syndrome. For patients with heart defects receiving ECMO, del22q11 syndrome did not confer a significant mortality risk or an increased risk of infectious complications before or while on ECMO support. Neither the duration of ECMO nor mechanical ventilation prior to ECMO deployment were prolonged in patients with del22q11 syndrome compared to the controls.

  20. Chromosome 22q11.2 deletion may contain a locus for recessive early-onset Parkinson’s disease

    OpenAIRE

    Ogaki, Kotaro; Ross, Owen A.

    2014-01-01

    Recently, it has been reported that carriers of a hemizygous chromosome 22q11.2 deletion may be at increased risk of early-onset Parkinson’s disease. Herein, we propose a hypothesis that it is not the microdeletion per se that is responsible for the phenotype but rather a complete loss of function of a gene within the region due to the combination of the deletion and another mutation on the alternate allele. Thus we propose the deletion may be highlighting a novel locus for ...

  1. Detecting 22q11.2 deletions by use of multiplex ligation-dependent probe amplification on DNA from neonatal dried blood spot samples

    DEFF Research Database (Denmark)

    Sørensen, Karina M; Agergaard, Peter; Olesen, Charlotte;

    2010-01-01

    of 22q11.2 deletions among certain manifestations, eg, congenital heart disease, on selected Danes, a multiplex ligation-dependant probe amplification (MLPA) analysis was designed. The analysis was planned to be performed on DNA extracted from dried blood spot samples (DBSS) obtained from Guthrie cards...... collected during neonatal screening programs. However, the DNA concentration necessary for a standard MLPA analysis (20 ng) could not be attained from DBSS, and a novel MLPA design was developed to permit for analysis on limited amounts of DNA (2 ng). A pilot study is reported here that validates the new...... MLPA design using nine patients diagnosed with the 22q11.2 deletion and 101 controls. All deletions were identified using DNA extracted from DBSS, and no copy number variations were detected in the controls, resulting in a specificity and sensitivity of 100%. It is thereby concluded that the novel MLPA...

  2. Clinical, cytogenetic, and molecular outcomes in a series of 66 patients with Pierre Robin sequence and literature review: 22q11.2 deletion is less common than other chromosomal anomalies.

    Science.gov (United States)

    Gomez-Ospina, Natalia; Bernstein, Jonathan A

    2016-04-01

    Pierre Robin sequence (PRS) is an important craniofacial anomaly that can be seen as an isolated finding or manifestation of multiple syndromes. 22q11.2 deletion and Stickler syndrome are cited as the two most common conditions associated with PRS, but their frequencies are debated. We performed a retrospective study of 66 patients with PRS and reviewed their genetic testing, diagnoses, and clinical findings. The case series is complemented by a comprehensive literature review of the nature and frequency of genetic diagnosis in PRS. In our cohort 65% of patients had associated anomalies; of these, a genetic diagnosis was established in 56%. Stickler syndrome was the most common diagnosis, comprising approximately 11% of all cases, followed by Treacher Collins syndrome (9%). The frequency of 22q11.2 deletion was 1.5%. Chromosome arrays, performed for 72% of idiopathic PRS with associated anomalies, revealed two cases of 18q22→qter deletion, a region not previously reported in association with PRS. A review of the cytogenetic anomalies identified in this population supports an association between the 4q33-qter, 17q24.3, 2q33.1, and 11q23 chromosomal loci and PRS. We found a low frequency of 22q11.2 deletion in PRS, suggesting it is less commonly implicated in this malformation. Our data also indicate a higher frequency of cytogenetic anomalies in PRS patients with associated anomalies, and a potential new link with the 18q22→qter locus. The present findings underscore the utility of chromosomal microarrays in cases of PRS with associated anomalies and suggest that delaying testing for apparently isolated cases should be considered.

  3. 多重连接探针扩增技术在先天性心脏病22q11微缺失/微重复综合征诊断中的应用%Diagnosis of 22q11 deletion and duplication in congenital heart disease by multiplex iigation-dependent probe amplification

    Institute of Scientific and Technical Information of China (English)

    杨月华; 茹彤; 王志群; 胡娅莉; 朱湘玉; 莫绪明; 王东进; 姚金翠; 盛敏; 朱海燕; 李洁

    2009-01-01

    目的 染色体22q11区域基因拷贝数异常是先天性心脏病(CHD)的遗传病因之一,由其引起的CHD预后不良.该研究主要探讨多重连接探针扩增技术用于CHD 22q11微缺失或微重复遗传病因诊断的实用性,并了解22q11微缺失或微重复在CHD中的发生情况.方法 选择25个位于染色体22q11低重复拷贝序列A-H区域内、7个位于其周围(CES、22q13)和16个位于4、8、10、17号染色体上的基因位点共计48个探针组成多重连接探针,对181例外科手术前的CHD儿童和14例严重CHD或包括CHD的多发性畸形胎儿进行了22q11微缺失或微重复的检测,并进行了染色体核型分析.结果 195例患儿中,共检出22q11微缺失者7例(LCR A-D区6例,LCR A-C区1例),22q11微重复1例(LCR B-D区),涉及的CHD类犁包括室间隔缺损、房室间隔缺损、肺动脉狭窄和法洛四联征.同时染色体核型分析还发现了6例异常:1例21q部分缺失[46,XY,21q-],1例嵌合性8-三体[47,XY,+8/46,XY(1:2)],4例21-三体.其中1例21-三体与22q11微重复同时存在.结论 染色体22q11区域高密度多重连接探针检测技术能快速、灵敏、精确定位诊断染色体22q11区域基因拷贝数异常,适合于CHD的遗传学诊断;此外,22q11微缺失或微重复引起的CHD类型多种多样,建议所有CHD患者应常规进行遗传学检测.%Objective To investigate the clinical utility of multiplex ligation-dependent probe amplification ( MLPA) for detecting 22q11 deletion and duplication in congenital heart disease (CHD) cases and to study the incidence of 22q11 deletion and duplicaton in different kinds of CHD. Methods Forty-eight probes of which 25 located in 22q11 low copy number region ( LCR 22s A-H) , 7 in 22q11 surrounding region (CKS, 22q13) and 16 in chromosomes 4,8, 10 and 17 were selected to detect 22q11 deletion and duplication in 181 preoperative children with CHD and 14 fetuses with serious CHD or CHD with multiple malformations. In these

  4. Secondary EWSR1 gene abnormalities in SMARCB1-deficient tumors with 22q11-12 regional deletions: Potential pitfalls in interpreting EWSR1 FISH results.

    Science.gov (United States)

    Huang, Shih-Chiang; Zhang, Lei; Sung, Yun-Shao; Chen, Chun-Liang; Kao, Yu-Chien; Agaram, Narasimhan P; Antonescu, Cristina R

    2016-10-01

    SMARCB1 inactivation occurs in a variety of tumors, being caused by various genetic mechanisms. Since SMARCB1 and EWSR1 genes are located close to each other on chromosome 22, larger SMARCB1 deletions may encompass the EWSR1 locus. Herein, we report four cases with SMARCB1-deletions showing concurrent EWSR1 gene abnormalities by FISH, which lead initially to misinterpretations as EWSR1-rearranged tumors. Our study group included various morphologies: a poorly differentiated chordoma, an extrarenal rhabdoid tumor, a myoepithelial carcinoma, and a proximal-type epithelioid sarcoma. All cases showed loss of SMARCB1 (INI1) by immunohistochemistry (IHC) and displayed characteristic histologic features for the diagnoses. The SMARCB1 FISH revealed homozygous or heterozygous deletions in three and one case, respectively. The co-hybridized EWSR1 probes demonstrated either unbalanced split signals or heterozygous deletion in two cases each. The former suggested bona fide rearrangement, while the latter resembled an unbalanced translocation. However, all the FISH patterns were quite complex and distinct from the simple and uniform split signals seen in typical EWSR1 rearrangements. We conclude that in the context of 22q11-12 regional alterations present in SMARCB1-deleted tumors, simultaneous EWSR1 involvement may be misinterpreted as equivalent to EWSR1 rearrangement. A detailed clinicopathologic correlation and supplementing the EWSR1 FISH assay with complementary methodology is mandatory for correct diagnosis. © 2016 Wiley Periodicals, Inc. PMID:27218413

  5. Research progress on congenital heart disease 22q11.2 microdeletion%先天性心脏畸形22q11.2微缺失研究进展

    Institute of Scientific and Technical Information of China (English)

    梁玥宏; 田卉; 任晨春

    2013-01-01

    Chromosome 22q11.2 deletion syndrome is a common chromosome microdeletion.Its clinical manifestation is complex, comprising congenital heart disease, dysmorphic facial, immunodeficiency, endocrine dysfunction and so on. Microdeletion of 22q11.2 is an important genetic etiology of congenital heart disease. A symmetric recombination of homologous low-copy-repeats(LCRs) in the deletion region causes the deletion of 22q11.2. This article reviewed clinical characteristics, genetic mechanism, key genes and current study methods of 22q11.2 microdeletion in CHD.%22q11.2微缺失是最常见的染色体微缺失疾病,它的临床表现复杂多样,可表现为心脏、颅面、四肢、免疫和内分泌等多系统的异常。22q11.2微缺失是先天性心脏病患者的重要遗传病因。22q11.2微缺失产生的机制是缺失区域内低拷贝重复序列之间的不对称重组。对22q11.2微缺失的临床表现、遗传机制、关键基因以及当前对先心病22q11.2微缺失的研究方法进行综述。

  6. Explaining the variable penetrance of CNVs: Parental intelligence modulates expression of intellectual impairment caused by the 22q11.2 deletion.

    Science.gov (United States)

    Klaassen, Petra; Duijff, Sasja; Swanenburg de Veye, Henriëtte; Beemer, Frits; Sinnema, Gerben; Breetvelt, Elemi; Schappin, Renske; Vorstman, Jacob

    2016-09-01

    The role of rare genetic variants, in particular copy number variants (CNVs), in the etiology of neurodevelopmental disorders is becoming increasingly clear. While the list of these disorder-related CNVs continues to lengthen, it has also become clear that in nearly all genetic variants the proportion of carriers who express the associated phenotype is far from 100%. To understand this variable penetrance of CNVs it is important to realize that even the largest CNVs represent only a tiny fraction of the entire genome. Therefore, part of the mechanism underlying the variable penetrance of CNVs is likely the modulatory impact of the rest of the genome. In the present study we used the 22q11DS as a model to examine whether the observed penetrance of intellectual impairment-one of the main phenotypes associated with 22q11DS-is modulated by the intellectual level of their parents, for which we used the parents' highest level of education as a proxy. Our results, based on data observed in 171 children with 22q11DS in the age range of 5-15 years, showed a significant association between estimated parental cognitive level and intelligence in offspring (full scale, verbal and performance IQ), with the largest effect size for verbal IQ. These results suggest that possible mechanisms involved in the variable penetrance observed in CNVs include the impact of genetic background and/or environmental influences. © 2016 Wiley Periodicals, Inc.

  7. Explaining the variable penetrance of CNVs: Parental intelligence modulates expression of intellectual impairment caused by the 22q11.2 deletion.

    Science.gov (United States)

    Klaassen, Petra; Duijff, Sasja; Swanenburg de Veye, Henriëtte; Beemer, Frits; Sinnema, Gerben; Breetvelt, Elemi; Schappin, Renske; Vorstman, Jacob

    2016-09-01

    The role of rare genetic variants, in particular copy number variants (CNVs), in the etiology of neurodevelopmental disorders is becoming increasingly clear. While the list of these disorder-related CNVs continues to lengthen, it has also become clear that in nearly all genetic variants the proportion of carriers who express the associated phenotype is far from 100%. To understand this variable penetrance of CNVs it is important to realize that even the largest CNVs represent only a tiny fraction of the entire genome. Therefore, part of the mechanism underlying the variable penetrance of CNVs is likely the modulatory impact of the rest of the genome. In the present study we used the 22q11DS as a model to examine whether the observed penetrance of intellectual impairment-one of the main phenotypes associated with 22q11DS-is modulated by the intellectual level of their parents, for which we used the parents' highest level of education as a proxy. Our results, based on data observed in 171 children with 22q11DS in the age range of 5-15 years, showed a significant association between estimated parental cognitive level and intelligence in offspring (full scale, verbal and performance IQ), with the largest effect size for verbal IQ. These results suggest that possible mechanisms involved in the variable penetrance observed in CNVs include the impact of genetic background and/or environmental influences. © 2016 Wiley Periodicals, Inc. PMID:26953189

  8. Behavioral phenotype in children with 22q11DS: agreement between parents and teachers.

    Science.gov (United States)

    Klaassen, Petra W J; Duijff, Sasja N; Sinnema, Gerben; Beemer, Frits A; Swanenburg de Veye, Henriëtte F N; Vorstman, Jacob A S

    2015-03-01

    Patients with the 22q11-deletion syndrome (22q11DS) are at an increased risk of developing schizophrenia. Besides the effects of genetic variation, environmental factors could also be important in modifying the risk of schizophrenia in 22q11DS patients. In particular, previous studies have shown the importance of stress as a precipitating factor of psychosis. An incongruence between the perceived and actual severity of behavioral and cognitive domains could lead caregivers, and even the children themselves, to make demands that are insufficiently adapted to the child's abilities, causing stress and anxiety. Here, we investigate whether such diagnostic discrepancies are indeed present by comparing parent and teacher reports on behavioral concerns in children with 22q11DS. Behavioral questionnaires (CBCL and TRF) were prepared for both parents and teachers of 146 children with 22q11DS. We found that in line with previous reports, internalizing behavior was more frequently reported than externalizing behavior. While the behavioral profiles reported by parents and teachers were remarkably similar, the teachers' ratings were significantly lower (Total problem score p = .002). Age and IQ were not significantly associated with the severity of reported concerns. Our results indicate that indeed a disparity often exists between parents' and teachers' perceptions of the severity of a child's behavioral deficits. This may result in (substantially) different demands and expectations being placed on the child from the two fronts. We speculate that the stress resulting from this lack of cohesion between parents and teachers could precipitate, at least in some 22q11DS children, the emergence of psychosis.

  9. 22q11.2欠失症候群における特徴的顔貌の検討 : 三次元レーザースキャナを用いて

    OpenAIRE

    山村, 幸江; 高山, 幹子; 石井, 哲夫; 寺田, 伸一; YAMAMURA, Yukie; TAKAYAMA, Mikiko; ISHII, Tetsuo; TERADA, Shinichi

    2001-01-01

    The DiGeorge syndrome, velo-cardio-facial syndrome and conotruncal anomaly face syndrome have similar but variable phenotypes and share the deletion of 22q11.2. The 22q11.2 deletion syndrome includes the following facial appearance: widely spaced eyes, narrow eyelids, small mouth, prominent apex nasi, flat and widened nasal dorsum. A diagnosis of this syndrome may be made based solely on facial appearance. However, a more accurate and objective evaluation is necessary as facial appearance lar...

  10. Recurrence risk figures for isolated tetralogy of Fallot after screening for 22q11 microdeletion.

    Science.gov (United States)

    Digilio, M C; Marino, B; Giannotti, A; Toscano, A; Dallapiccola, B

    1997-01-01

    Isolated tetralogy of Fallot (TF) has a multifactorial mode of inheritance in most cases, and recurrence risk rates of 2.5-3% have been attributed to first degree relatives of an affected child. In a subgroup of patients with a strong family history, the transmission of a monogenic trait has been suspected. Microdeletion 22q11 (del(22q11)) can cause TF in the setting of DiGeorge and velocardiofacial syndromes, and has also been related to familial conotruncal cardiac defects. Empirical risk figures in families after exclusion of del(22q11) have never been calculated. We have investigated the overall occurrence of congenital heart defect (CHD) in relatives of 102 patients with isolated non-syndromic TF previously screened for del(22q11). Our results show that the frequency of CHD is 3% in sibs, 0.5% in parents, 0.3% in grandparents, 0.2% in uncles or aunts, and 0.6% in first cousins. The recurrence risk rate for sibs in our series is the same as that previously estimated, indicating that after exclusion of patients with del(22q11) genetic counselling to patients with isolated TF should not be modified. A high concordance rate among our affected sibs has been documented. Gene(s) different from those located on chromosome 22q11 must be involved in causing familial aggregation of non-syndromic TF in these cases. Images PMID:9132487

  11. Comparing the neural bases of self-referential processing in typically developing and 22q11.2 adolescents.

    Science.gov (United States)

    Schneider, Maude; Debbané, Martin; Lagioia, Annalaura; Salomon, Roy; d'Argembeau, Arnaud; Eliez, Stephan

    2012-04-01

    The investigation of self-reflective processing during adolescence is relevant, as this period is characterized by deep reorganization of the self-concept. It may be the case that an atypical development of brain regions underlying self-reflective processing increases the risk for psychological disorders and impaired social functioning. In this study, we investigated the neural bases of self- and other-related processing in typically developing adolescents and youths with 22q11.2 deletion syndrome (22q11DS), a rare neurogenetic condition associated with difficulties in social interactions and increased risk for schizophrenia. The fMRI paradigm consisted in judging if a series of adjectives applied to the participant himself/herself (self), to his/her best friend or to a fictional character (Harry Potter). In control adolescents, we observed that self- and other-related processing elicited strong activation in cortical midline structures (CMS) when contrasted with a semantic baseline condition. 22q11DS exhibited hypoactivation in the CMS and the striatum during the processing of self-related information when compared to the control group. Finally, the hypoactivation in the anterior cingulate cortex was associated with the severity of prodromal positive symptoms of schizophrenia. The findings are discussed in a developmental framework and in light of their implication for the development of schizophrenia in this at-risk population.

  12. ESOPHAGEAL ATRESIA WITH RECURRENT TRACHEOESOPHAGEAL FISTULAS AND MICRODUPLICATION 22q11.23.

    Science.gov (United States)

    Puvabanditsin, S; Garrow, E; February, M; Yen, E; Mehta, R

    2015-01-01

    The microduplication 22q11.2 syndrome has a wide range of clinical manifestations. The phenotype ranges from normal to mental retardation and congenital anomalies. Esophageal atresia/tracheoesophageal fistula (EA/TEF) has recently been linked with the Tbx1 gene mutation located on the long arm of chromosome 22(22q11.21). We report a case with 1.4 Mb 22q11.23 duplication detected by array-CGH. The father of this infant has the same interstitial microduplication but with a normal phenotype. The phenotype seen in our case is type C (3B) esophageal atresia, tracheoesophageal fistula, and ventricular septal defect. Our patient underwent primary repair of OA/TEF malformations, which was later complicated by pneumonia and a recurrent TEF. PMID:26625662

  13. Complexity of a small non-protein coding sequence in chromosomal region 22q11.2: presence of specialized DNA secondary structures and RNA exon/intron motifs

    OpenAIRE

    Delihas, Nicholas

    2015-01-01

    Background DiGeorge Syndrome is a genetic abnormality involving ~3 Mb deletion in human chromosome 22, termed 22q.11.2. To better understand the non-coding regions of 22q.11.2, a small 10,000 bp non-protein-coding sequence close to the DiGeorge Critical Region 6 gene (DGCR6) was chosen for analysis and functional entities as the homologous sequence in the chimpanzee genome could be aligned and used for comparisons. Methods The GenBank database provided genomic sequences. In silico computer pr...

  14. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  15. Searching for a Schizophrenia Susceptibility Gene in the 22q11 Region

    Institute of Scientific and Technical Information of China (English)

    LIN XIE; GUI-ZHI JU; SHU-ZHENG LIU; JIE-PING SHI; YA-QIN YU; JUN WEI

    2005-01-01

    Objective To investigate a genetic association for schizophrenia within chromosome 22q11 in a Chinese Han population. Methods The PCR-based restriction fragment length polymorphism (PCR-RFLP) analysis was used to detect three single nucleotide polymorphisms (SNPs), rs165655 (A/G base change) and rs165815 (C/T base change) present in the ARVCF (armadillo repeat gene deletion in velocardiofacial syndrome) locus, and rs756656 (A/C base change) in the LOC128979 (expressed sequence tags, EST) locus, among 100 Chinese family trios consisting of fathers, mothers and affected offspring with schizophrenia. Genotype data were analyzed by using linkage disequilibrium (LD) methods including haplotype relative risk (HRR) analysis, transmission disequilibrium test (TDT) and haplotype transmission analysis. Results The genotype frequency distributions of three SNPs were all in Hardy-Weinberg equilibrium (P>0.05). Both the HRR and the TDT analysis showed that rs165815 was associated with schizophrenia (χ2=6.447, df=1, P=0.011 and χ2=6.313, df=1, P=0.012, respectively), whereas the other two SNPs did not show any allelic association. The haplotype transmission analysis showed a biased transmission for the rs165655-rs165815 haplotype system (χ2=17.224, df=3, P=0.0006) and for the rs756656- rs165655-rs165815 hapoltype system (χ2=20.965, df=7, P=0.0038). Conclusion Either the ARVCF gene itself or a nearby locus may confer susceptibility to schizophrenia in a Chinese Han population.

  16. Characterization of the past and current duplication activities in the human 22q11.2 region

    Directory of Open Access Journals (Sweden)

    Morrow Bernice

    2011-01-01

    Full Text Available Abstract Background Segmental duplications (SDs on 22q11.2 (LCR22, serve as substrates for meiotic non-allelic homologous recombination (NAHR events resulting in several clinically significant genomic disorders. Results To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young Alu SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young AluYs at their breakpoints. Conclusions Our study indicates that AluYs are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and Alu elements.

  17. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    Science.gov (United States)

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  18. Prevalence of Psychiatric Morbidity and Behavioural Problems in 22q11.2DS: An Irish Population Study

    OpenAIRE

    Prasad, Sarah E

    2010-01-01

    Introduction: This population study examines the prevalence of psychiatric morbidity, behavioural difficulties, autistic and schizotypal features in a sample of individuals with 22q11.2DS and in their sibling controls. Methods: Forty-five individuals with 22q11.2DS and their 27 siblings were recruited and studied. Psychiatric morbidity was assessed by using the parent Diagnostic Interview Schedule for Children (DISC-P), Kiddie SADS-Present and Lifetime Version (K-SADPL) (psychotic su...

  19. Genetic Modifiers of the Physical Malformations in Velo-Cardio-Facial Syndrome/DiGeorge Syndrome

    Science.gov (United States)

    Aggarwal, Vimla S.; Morrow, Bernice E.

    2008-01-01

    Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid, and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that "Tbx1", a…

  20. Novel susceptibility locus at 22q11 for diabetic nephropathy in type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Maija Wessman

    Full Text Available BACKGROUND: Diabetic nephropathy (DN affects about 30% of patients with type 1 diabetes (T1D and contributes to serious morbidity and mortality. So far only the 3q21-q25 region has repeatedly been indicated as a susceptibility region for DN. The aim of this study was to search for new DN susceptibility loci in Finnish, Danish and French T1D families. METHODS AND RESULTS: We performed a genome-wide linkage study using 384 microsatellite markers. A total of 175 T1D families were studied, of which 94 originated from Finland, 46 from Denmark and 35 from France. The whole sample set consisted of 556 individuals including 42 sib-pairs concordant and 84 sib-pairs discordant for DN. Two-point and multi-point non-parametric linkage analyses were performed using the Analyze package and the MERLIN software. A novel DN locus on 22q11 was identified in the joint analysis of the Finnish, Danish and French families by genome-wide multipoint non-parametric linkage analysis using the Kong and Cox linear model (NPL(pairs LOD score 3.58. Nominal or suggestive evidence of linkage to this locus was also detected when the three populations were analyzed separately. Suggestive evidence of linkage was found to six additional loci in the Finnish and French sample sets. CONCLUSIONS: This study identified a novel DN locus at chromosome 22q11 with significant evidence of linkage to DN. Our results suggest that this locus may be of importance in European populations. In addition, this study supports previously indicated DN loci on 3q21-q25 and 19q13.

  1. MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions

    DEFF Research Database (Denmark)

    Kirchhoff, Maria; Bisgaard, Anne-Marie; Bryndorf, Thue;

    2007-01-01

    -Beuren, Prader-Willi, Angelman, Miller-Dieker, Smith-Magenis, and 22q11-deletion syndromes). Patients were initially referred for HR-CGH analysis and MRS-MLPA was performed retrospectively. MRS-MLPA analysis revealed imbalances in 15/258 patients (5.8%). Ten deletions were identified, including deletions of 1p36...

  2. CHARGE syndrome : a review of the immunological aspects

    NARCIS (Netherlands)

    Wong, Monica Ty; Scholvinck, Elisabeth H.; Lambeck, Annechien Ja; van Ravenswaaij-Arts, Conny Ma

    2015-01-01

    CHARGE syndrome is caused by a dominant variant in the CHD7 gene. Multiple organ systems can be affected because of haploinsufficiency of CHD7 during embryonic development. CHARGE syndrome shares many clinical features with the 22q11.2 deletion syndrome. Immunological abnormalities have been describ

  3. The morphology of the sella turcica in velocardiofacial syndrome suggests involvement of a neural crest developmental field

    DEFF Research Database (Denmark)

    Mølsted, Kirsten; Boers, Maria; Kjaer, Inger

    2010-01-01

    We described the morphology of the sella turcica in individuals with velocardiofacial syndrome (VCFS), also known as chromosome 22q11.2 deletion syndrome, and compared the morphology with that of a control group of individuals from the Oslo University Craniofacial Growth Archive. The aim was to m...

  4. 3p deletion syndrome.

    Science.gov (United States)

    Kaur, Anupam; Khetarpal, S

    2013-08-01

    3p deletion is a rare cytogenetic finding. Here we describe a 3 months old male with congenital malformations. His karyotype revealed 3p deletion 46,XY,del(3)(p25-pter). The child had flexion deformity of wrist and elbow which has never been reported before. PMID:24036645

  5. How many breaks do we need to CATCH on 22q11?

    Energy Technology Data Exchange (ETDEWEB)

    Dallapiccola, B.; Pizzuti, A.; Novelli, G. [Univ. of Rome, Rome (Italy)]|[Univ. of Milan (Italy)]|[CSS IRCCS Hospital, San Giovanni Rotondo (Italy)

    1996-07-01

    The major clinical manifestations of DiGeorge syndrome (DGS; MIM 188400), which reflect developmental abnormalities of the 3d and 4th pharyngeal pouch derivatives, include thymus- and parathyroid-gland aplasia or hypoplasia and conotruncal cardiac malformations. The additional dysmorphic facial features, such as hypertelorism, cleft lip and palate, bifid uvula, and small/low-set ears, which are also common, presumably reflect the same defect. The DGS phenotype has been associated with chromosome abnormalities and, sometimes, is the effect of teratogenic agents such as retinoic acid and alcohol. 53 refs., 1 fig.

  6. Deletion 22q13.3 syndrome

    OpenAIRE

    Phelan Mary C

    2008-01-01

    Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome) is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndr...

  7. Estudio de la psicopatología en una población de pacientes con microdeleción 22q11.2

    OpenAIRE

    Robles Sánchez, Fuensanta

    2016-01-01

    El síndrome de deleción 22q11.2 (22q11.2 DS; OMIM # 188400) es un trastorno genético que puede presentar diversas malformaciones físicas, déficit cognitivo y trastornos psicopatológicos. Los objetivos del estudio han consistido en evaluar el nivel de inteligencia y los trastornos psiquiátricos de los pacientes con este síndrome en la etapa infanto-juvenil y determinar los factores genéticos, clínicos y sociodemográficos asociados. Hemos estudiado el perfil cognitivo y los trastornos psi...

  8. The chromosome 9q subtelomere deletion syndrome

    NARCIS (Netherlands)

    Stewart, D.R.; Kleefstra, T.

    2007-01-01

    The chromosome 9q subtelomere deletion syndrome (9qSTDS) is among the first and most common clinically recognizable syndromes to arise from widespread testing by fluorescent in situ hybridization (FISH) of subtelomere deletions. There are about 50 reported cases worldwide. Affected individuals invar

  9. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del.

    Directory of Open Access Journals (Sweden)

    Dejian Zhao

    Full Text Available We are using induced pluripotent stem cell (iPSC technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del, the most common known schizophrenia (SZ-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA biogenesis. We carried out miRNA expression profiling (miRNA-seq on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher. Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05, including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p. Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.

  10. Interrupção do arco aórtico tipo B em uma paciente com síndrome de olho de gato Interrupción del arco aórtico tipo B en una paciente con síndrome del ojo de gato Interrupted aortic arch type B in A patient with cat eye syndrome

    Directory of Open Access Journals (Sweden)

    Sintia Iole Nogueira Belangero

    2009-05-01

    Full Text Available Relatamos um caso de paciente com Síndrome do Olho de Gato (Cat Eye Syndrome-CES e interrupção do arco aórtico tipo B, um achado típico na síndrome da deleção 22q11.2. A análise cromossômica e a técnica de hibridização fluorescente in situ (FISH mostraram um cromossomo marcador isodicêntrico supranumerário com bi-satélite derivado do cromossomo 22. O segmento de 22pter a 22q11.2 no cromossomo supranumerário encontrado em nosso paciente não estava em sobreposição com a região deletada em pacientes com a síndrome da deleção 22q11.2. Entretanto, o achado de interrupção do arco aórtico tipo B não é usual na CES, mas é um defeito cardíaco freqüente na síndrome da deleção 22q11.Informamos un caso de paciente con Síndrome de Ojo de Gato (Cat Eye Syndrome-CES e Interrupción del Arco Aórtico tipo B, un hallazgo típico en el síndrome de la deleción 22q11.2. El análisis cromosómico y la técnica de hibridación in situ fluorescente (FISH mostraron un cromosoma marcador isodicéntrico supernumerario bisatelitado derivado del cromosoma 22. El segmento de 22pter a 22q11.2 en el cromosoma supernumerario encontrado en nuestro paciente no estaba en sobreposición con la región deletada en pacientes con el síndrome de la deleción 22q11.2. Con todo, el hallazgo de interrupción del arco aórtico tipo B no es usual en el CES, sino que es un defecto cardíaco frecuente en el síndrome de deleción 22q11.We report a patient with cat eye syndrome and interrupted aortic arch type B, a typical finding in the 22q11.2 deletion syndrome. Chromosomal analysis and fluorescent in situ hybridization (FISH showed a supernumerary bisatellited isodicentric marker chromosome derived from chromosome 22. The segment from 22pter to 22q11.2 in the supernumerary chromosome found in our patient does not overlap with the region deleted in patients with the 22q11.2 deletion syndrome. However, the finding of an interrupted aortic arch type B is

  11. 1p36 deletion syndrome: an update

    Directory of Open Access Journals (Sweden)

    Jordan VK

    2015-08-01

    Full Text Available Valerie K Jordan,1 Hitisha P Zaveri,2 Daryl A Scott1,2 1Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; 2Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Abstract: Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. Keywords: chromosome 1p36, chromosome deletion, 1p36 deletion syndrome, monosomy 1p36

  12. DiGeorge syndrome associated with solitary median maxillary central incisor.

    Science.gov (United States)

    Yang, Huai-Chih; Shyur, Shyh-Dar; Huang, Li-Hsin; Chang, Yi-Chi; Wen, Da-Chin; Liang, Pei-Hsuan; Lin, Mao-Tsair

    2005-01-01

    DiGeorge syndrome is a primary immunodeficiency disease characterized by dysgenesis of the thymus and parathyroid glands, conotruncal cardiac anomalies, and other dysmorphic features. Although most patients have a common microscopic deletion in chromosome 22q11.2, marked clinical variability exists. A solitary median maxillary central incisor (SMMCI) is a rare dental anomaly which may be an isolated occurrence or associated with congenital nasal airway abnormalities or holoprosencephaly. We report a patient with DiGeorge syndrome who was diagnosed at nearly 1 month of age and was later found to have a solitary median central incisor. Initially, the patient presented with recurrent episodes of respiratory distress attributed to partial airway obstruction, one of the phenotypic features of SMMCI. A fluorescence in situ hybridization study showed a chromosome 22q11.2 deletion. PMID:16252847

  13. Learning about Velocardiofacial Syndrome

    Science.gov (United States)

    ... have communication and social interaction problems such as autism. As adults, these individuals have an increased risk ... nidcd.nih.gov] From the National Institute on Deafness and Other Communication Disorders (NIDCD) 22q11.2 deletion ...

  14. Familial deletion 18p syndrome: case report

    Directory of Open Access Journals (Sweden)

    Lemyre Emmanuelle

    2006-07-01

    Full Text Available Abstract Background Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. Case presentation The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18(p11.2. Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p are fertile and seem to have a normal miscarriage rate. Conclusion Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported.

  15. Rare human diseases: 9p deletion syndrome

    Directory of Open Access Journals (Sweden)

    Galagan V.O.

    2014-09-01

    Full Text Available Objective of the study was to review the anamnesis, pheno - and genotype in patients with rare chromosome disorders such as 9p deletion syndrome. Genetic methods of investigation (clinical and genealogical, cytogenetic, FISH- method, paraclinical and instrumental methods of examination were used. Karyotyping was performed by the G-method of differential staining of chromosomes. Only three cases of pathology were diagnosed in the Medical Genetics Center over the last 10 years. By anamnesis data nobody in the probands’ families had bad habits, was exposed to occupational hazards, took part in the elimination of the Chernobyl accident or lived in contaminated areas. Clinical signs of diseases have not been identified in probands’ parents. All probands had trigonocephaly, bilateral epicanthal folds, ocular hypertelorism, downslanting palpebral fissures, long philtrum, flat face and nasal bridge, low set ears with malformed auricles. Two patients of three ones had exophthalmos, contracture of the second and third fingers, abnormal external genitalia. In all three cases there was monosomy of chromosome 9 of critical segment p 24. Normal karyotypes were seen in all parents, so there were three cases of new mutations of 9p deletion syndrome. Retardation of physical, psycho-spech, mental development in proband with or without congenital anomalies requires medical genetic counseling in a specialized institution. Cases of reproductive loss in anamnesis require cytogenetic investigation of fetal membranes and amniotic fluid.

  16. Gene deletion analysis of a Chinese boy with Xp21 contiguous gene deletion syndrome

    Institute of Scientific and Technical Information of China (English)

    麻宏伟; 姜俊; 王岳平; 王志超; 陈丽英; 松尾雅文

    2004-01-01

    @@ Xp21 contiguous gene deletion syndrome, sometimes called complex glycerol kinase deficiency, is associated with variable size Xp21 deletions that usually include the glycerol kinase gene and span multiple Xp21 disease gene loci in the region. The order of the potentially affected loci are as follows:

  17. Recurrence and Variability of Germline EPCAM Deletions in Lynch Syndrome

    NARCIS (Netherlands)

    Kuiper, Roland P.; Vissers, Lisenka E. L. M.; Venkatachalam, Ramprasath; Bodmer, Danielle; Hoenselaar, Eveline; Goossens, Monique; Haufe, Aline; Kamping, Eveline; Niessen, Renee C.; Hogervorst, Frans B. L.; Gille, Johan J. P.; Redeker, Bert; Tops, Carli M. J.; van Gijn, Marielle E.; van den Ouweland, Ans M. W.; Rahner, Nils; Steinke, Verena; Kahl, Philip; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Stemmler, Susanne; Betz, Beate; Hutter, Pierre; Bunyan, David J.; Syngal, Sapna; Culver, Julie O.; Graham, Tracy; Chan, Tsun L.; Nagtegaal, Iris D.; van Krieken, J. Han J. M.; Schackert, Hans K.; Hoogerbrugge, Nicoline; van Kessel, Ad Geurts; Ligtenberg, Marjolijn J. L.

    2011-01-01

    Recently, we identified 3' end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele-specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch-like

  18. Birth of a child with Down syndrome in a family transmitting an unusual chromosome 22 arising from a translocation between chromosomes 21 and an inverted chromosome 22

    Energy Technology Data Exchange (ETDEWEB)

    Aviv, H.A.; Desposito, F. [UMDNJ-NJ Medical School, Newark, NJ (United States); Lieber, C. [Hackensack Medical Center, NJ (United States)

    1994-09-01

    Chromosomal analysis of a child with Down syndrome resulted in the identification of a family with an unusual translocation and in the definition of the translocation breakpoints. Studies were performed on the child, his siblings, mother, mother`s sister, and grandmother. All of the family members were carriers of the translocation. We performed G-banding, silver stain, C-banding, and hybridization with the following FISH probes (Oncor): {alpha}-satellite 13/21; {beta}-satellite, coatasome 21 and 22, and the probes for chromosome 22 at 22q11 (DiGeorge region) and 22q13.3 (control region). Using the banding techniques and probes, we characterized the karyotype as: 45,XX,-21,-22,+der(22),t(21;22)(22qter{r_arrow}22q11.2::22p13{r_arrow}22q11.2::21q11.2{r_arrow}21qter). The effect of deletion of 21q11.2 and the break of chromosome 22 in the DiGeorge region in this family is not clear. However, the presence of the translocation increases the risk of family members of conceiving children with Down syndrome.

  19. T cell receptor repertoire and function in patients with DiGeorge syndrome and velocardiofacial syndrome

    Science.gov (United States)

    Pierdominici, M; Marziali, M; Giovannetti, A; Oliva, A; Rosso, R; Marino, B; Digilio, M C; Giannotti, A; Novelli, G; Dallapiccola, B; Aiuti, F; Pandolfi, F

    2000-01-01

    DiGeorge syndrome (DGS) and velocardiofacial syndrome (VCFS) are associated with chromosome 22q11.2 deletion. Limited information is available on the T cell receptor (TCR) Vβ repertoire. We therefore investigated TCR Vβ families in lymphocytes isolated from blood and thymic samples of seven patients with DGS and seven patients with VCFS, all with 22q11.2 deletion. We also studied activities related to TCR signalling including in vitro proliferation, anti-CD3-induced protein tyrosine phosphorylation, and susceptibility to apoptosis. Reduced CD3+ T cells were observed in most patients. Spontaneous improvement of T cell numbers was detected in patients, 3 years after the first study. Analysis of CD4+ and CD8+ TCR Vβ repertoire in peripheral and thymic cells showed a normal distribution of populations even if occasional deletions were observed. Lymphoproliferative responses to mitogens were comparable to controls as well as anti-CD3-induced protein tyrosine phosphorylation. Increased anti-CD3-mediated apoptosis was observed in thymic cells. Our data support the idea that in patients surviving the correction of cardiac anomalies, the immune defect appears milder than originally thought, suggesting development of a normal repertoire of mature T cells. PMID:10886249

  20. Evidence for Involvement of GNB1L in Autism

    OpenAIRE

    Chen, Ying-Zhang; Matsushita, Mark; Girirajan, Santhosh; Lisowski, Mark; Sun, Elizabeth; Sul, Youngmee; Bernier, Raphael; Estes, Annette; Dawson, Geraldine; Minshew, Nancy; Shellenberg, Gerard D; Evan E Eichler; Rieder, Mark J.; Deborah A Nickerson; Tsuang, Debby W.

    2011-01-01

    Structural variations in the chromosome 22q11.2 region mediated by nonallelic homologous recombination result in 22q11.2 deletion (del22q11.2) and 22q11.2 duplication (dup22q11.2) syndromes. The majority of del22q11.2 cases have facial and cardiac malformations, immunologic impairments, specific cognitive profile and increased risk for schizophrenia and autism spectrum disorders (ASDs). The phenotype of dup22q11.2 is frequently without physical features but includes the spectrum of neurocogni...

  1. Behavioral Phenotype in the 9q Subtelomeric Deletion Syndrome

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Kleefstra, T.; Egger, J.I.M.

    2010-01-01

    The 9q Subtelomeric Deletion Syndrome (9qSTDS) is clinically characterized by mental retardation, childhood hypotonia, and facial dysmorphisms. Haploinsufficiency of the EHMT1 gene has been demonstrated to be responsible for its core phenotype. In a significant number of patients behavioral abnormal

  2. Dissecting the phenotypes of Dravet syndrome by gene deletion.

    Science.gov (United States)

    Rubinstein, Moran; Han, Sung; Tai, Chao; Westenbroek, Ruth E; Hunker, Avery; Scheuer, Todd; Catterall, William A

    2015-08-01

    Neurological and psychiatric syndromes often have multiple disease traits, yet it is unknown how such multi-faceted deficits arise from single mutations. Haploinsufficiency of the voltage-gated sodium channel Nav1.1 causes Dravet syndrome, an intractable childhood-onset epilepsy with hyperactivity, cognitive deficit, autistic-like behaviours, and premature death. Deletion of Nav1.1 channels selectively impairs excitability of GABAergic interneurons. We studied mice having selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons. In brain slices, these deletions cause increased threshold for action potential generation, impaired action potential firing in trains, and reduced amplification of postsynaptic potentials in those interneurons. Selective deletion of Nav1.1 in parvalbumin- or somatostatin-expressing interneurons increases susceptibility to thermally-induced seizures, which are strikingly prolonged when Nav1.1 is deleted in both interneuron types. Mice with global haploinsufficiency of Nav1.1 display autistic-like behaviours, hyperactivity and cognitive impairment. Haploinsufficiency of Nav1.1 in parvalbumin-expressing interneurons causes autistic-like behaviours, but not hyperactivity, whereas haploinsufficiency in somatostatin-expressing interneurons causes hyperactivity without autistic-like behaviours. Heterozygous deletion in both interneuron types is required to impair long-term spatial memory in context-dependent fear conditioning, without affecting short-term spatial learning or memory. Thus, the multi-faceted phenotypes of Dravet syndrome can be genetically dissected, revealing synergy in causing epilepsy, premature death and deficits in long-term spatial memory, but interneuron-specific effects on hyperactivity and autistic-like behaviours. These results show that multiple disease traits can arise from similar functional deficits in specific interneuron types. PMID:26017580

  3. DiGeorge syndrome with vertebral and rib dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Puno-Cocuzza, C.; David, K.; Kogekar, N. [Brooklyn Hospital Center, NY (United States)

    1994-09-01

    DiGeorge syndrome results from defect in the development of the third and fourth pharyngeal pouches, and is characterized by conotruncal heart defects, aplasia or hypoplasia of thymus and parathyroid glands resulting in immune deficiency and hypocalcemia. Other associated abnormalities include renal, thyroid and diaphragmatic defects, oral clefting, etc. Etiologically, it is heterogeneous, with a microdeletion of 22q11 present in over 80% of cases. Our patient was born following a pregnancy complicated by insulin dependent gestational diabetes. There was truncus arteriosus type 2, absense of thymic shadow on CXR with severe deficiency of T cell function, and persistent hypocalcemia with low parathormone. Right kidney was absent. Dysplastic ribs including fused and bifid ribs were noted. Hypoplastic vertebrae and hemivertebrae were present through thoracic and lumbar regions. Chromosome analysis was normal, and metaphase FISH analysis with probe N25 representing locus D22S75 did not show any deletion of 22q11.2. The skeletal findings similar to these have not been previously reported in association with DiGeorge syndrome to our knowledge. Vertebral and rib abnormalities are known to occur with pregestational maternal diabetes. Maternal diabetes has also been suggested to be a possible etiology in a very small proportion of DiGeorge syndrome cases. It is possible that these findings occured together on account of gestational maternal diabetes in our case.

  4. The 11q Terminal Deletion Disorder Jacobsen Syndrome is a Syndromic Primary Immunodeficiency

    NARCIS (Netherlands)

    V.A.S.H. Dalm (Virgil); G.J.A. Driessen (Gertjan); B.H. Barendregt (Barbara); P.M. van Hagen (Martin); M. van der Burg (Mirjam)

    2015-01-01

    textabstractBackground: Jacobsen syndrome (JS) is a rare contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. Clinical features include physical and mental growth retardation, facial dysmorphism, thrombocytopenia, impaired platelet function and pancytopenia. In case

  5. The Danish 22q11 research initiative

    DEFF Research Database (Denmark)

    Schmock, Henriette; Vangkilde, Anders; Larsen, Kit Melissa;

    2015-01-01

    and secondarily the morbid condition of autism and attention deficit hyperactivity disorder. We use a population based epidemiological design to inform on disease prevalence, environmental risk factors and familial disposition for mental health disorders and a case control study design to map the functional...... from symptomatic therapy of manifest mental illness into early intervention strategies, which may also be applicable to at risk subjects without known etiology. Hopefully new insights into the biological disease mechanisms, which are mandatory for novel drug developments, can improve the outcome...

  6. Deletion involving D15S113 in a mother and son without Angelman syndrome: Refinement of the Angelman syndrome critical deletion region

    Energy Technology Data Exchange (ETDEWEB)

    Michaelis, R.C.; Skinner, S.A.; Lethco, B.A. [Greenwood Genetic Center, SC (United States)] [and others

    1995-01-02

    Deletions of 15q11-q13 typically result in Angelman syndrome when inherited from the mother and Prader-Willi syndrome when inherited from the father. The critical deletion region for Angelman syndrome has recently been restricted by a report of an Angelman syndrome patient with a deletion spanning less than 200 kb around the D15S113 locus. We report here on a mother and son with a deletion of chromosome 15 that includes the D15S113 locus. The son has mild to moderate mental retardation and minor anomalies, while the mother has a borderline intellectual deficit and slightly downslanting palpebral fissures. Neither patient has the seizures, excessive laughter and hand clapping, ataxia or the facial anomalies which are characteristic of Angelman syndrome. The proximal boundary of the deletion in our patients lies between the D15S10 and The D15S113 loci. Our patients do not have Angelman syndrome, despite the deletion of the D15S113 marker. This suggests that the Angelman syndrome critical deletion region is now defined as the overlap between the deletion found in the previously reported Angelman syndrome patient and the region that is intact in our patients. 28 refs., 6 figs.

  7. Role of Imaging and Cytogenetics in Evaluation of DiGeorge Syndrome - A Rare Entity in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Rajoo Ramachandran

    2015-01-01

    Full Text Available DiGeorge syndrome is a congenital genetic disorder that affects the endocrine system, mainly the thymus and parathyroid glands. The syndrome produces different symptoms, which vary in severity and character between patients. It manifests with craniofacial dysmorphism and defects in the heart, parathyroid, and thymus. Patients can present with a palatal deformity and nasal speech. This rare entity is caused mainly due to deletion of chromosome 22q11.2. Radiographic evaluation of DiGeorge syndrome is necessary to define aberrant anatomy, evaluate central nervous system, craniofacial abnormalities, musculoskeletal system, and cardiothoracic contents. It also helps in planning surgical procedures and surgical reconstructions. We report a case of DiGeorge syndrome in a 4-month-old neonate and discuss the clinical, imaging, and cytogenetic findings that helped in the diagnosis of this rare entity.

  8. Novel features of 3q29 deletion syndrome: Results from the 3q29 registry

    OpenAIRE

    Glassford, Megan R.; Jill A. Rosenfeld; Freedman, Alexa A.; Michael E Zwick; ,; Mulle, Jennifer G.

    2016-01-01

    3q29 deletion syndrome is caused by a recurrent, typically de novo heterozygous 1.6 Mb deletion, but because incidence of the deletion is rare (1 in 30,000 births) the phenotype is not well described. To characterize the range of phenotypic manifestations associated with 3q29 deletion syndrome, we have developed an online registry (3q29deletion.org) for ascertainment of study subjects and phenotypic data collection via Internet‐based survey instruments. We report here on data collected during...

  9. SNP-based Microdeletion and Aneuploidy RegisTry (SMART)

    Science.gov (United States)

    2016-04-19

    22q11 Deletion Syndrome; DiGeorge Syndrome; Trisomy 21; Trisomy 18; Trisomy 13; Monosomy X; Sex Chromosome Abnormalities; Cri-du-Chat Syndrome; Angelman Syndrome; Prader-Willi Syndrome; 1p36 Deletion Syndrome

  10. Sequence homology at the breakpoint and clinical phenotype of mitochondrial DNA deletion syndromes.

    Directory of Open Access Journals (Sweden)

    Bekim Sadikovic

    Full Text Available Mitochondrial DNA (mtDNA deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM, progressive external ophthalmoplegia (PEO, and Kearns-Sayre syndrome (KSS, to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (<6 years old showed a diffused pattern of deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41. Only 15% (3/20 of the young patients (<6 years old carry the 5 kb common deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17 exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier

  11. A case of 3p deletion syndrome associated with cerebellar hemangioblastoma.

    Science.gov (United States)

    Suzuki-Muromoto, Sato; Hino-Fukuyo, Naomi; Haginoya, Kazuhiro; Kikuchi, Atsuo; Sato, Hiroki; Sato, Yuko; Nakayama, Tojo; Kubota, Yuki; Kakisaka, Yosuke; Uematsu, Mitsugu; Kumabe, Toshihiro; Md, Shigeo Kure

    2016-02-01

    We described clinical course of a 24-year-old woman with 3p deletion syndrome associated with cerebellar hemangioblastoma at the age of 16 years old. She presented dysmorphic facial features, growth retardation and severe psychomotor retardation associated with 3p deletion syndrome. We identified de novo 3p deletion encompassing p25 by using array-based comparative genomic hybridization, where causative gene of von Hippel-Lindau (VHL) disease located. Surgical therapy for cerebellar hemangioblastoma was performed, and histological examination was consistent in cerebellar hemangioblastoma. She showed no other tumors associated VHL disease till 24 years old. This is the first case report of a patient with 3p deletion syndrome whose cerebellar hemangioblastoma may be associated with VHL disease. Repeat imaging studies were recommended for the patients with 3p deletion syndrome. PMID:26365017

  12. L1CAM whole gene deletion in a child with L1 syndrome.

    Science.gov (United States)

    Chidsey, Brandalyn A; Baldwin, Erin E; Toydemir, Reha; Ahles, Lauren; Hanson, Heather; Stevenson, David A

    2014-06-01

    L1 syndrome is a group of overlapping, X-linked disorders caused by mutations in L1CAM. Clinical phenotypes within L1 syndrome include X-linked hydrocephalus with stenosis of the aqueduct of sylvius (HSAS); mental retardation, adducted thumbs, shuffling gait, and aphasia (MASA) syndrome; spastic paraplegia type 1; and agenesis of the corpus callosum. Over 200 mutations in L1CAM have been reported; however, only a few large gene deletions have been observed. We report on a 4-month-old male with a de novo whole gene deletion of L1CAM presenting with congenital hydrocephalus, aqueductal stenosis, and adducted thumbs. Initial failure of L1CAM gene sequencing suggested the possibility of a whole gene deletion of L1CAM. Further investigation through chromosome microarray analysis showed a 62Kb deletion encompassing the first exon of the PDZD4 gene and the entire L1CAM gene. Investigations into genotype-phenotype correlations have suggested that mutations leading to truncated or absent L1 protein cause more severe forms of L1 syndrome. Based on the presentation of the proband and other reported patients with whole gene deletions, we provide further evidence that L1CAM whole gene deletions result in L1 syndrome with a severe phenotype, deletions of PDZD4 do not cause additional manifestations, and that X-linked nephrogenic diabetes insipidus reported in a subset of patients with large L1CAM deletions results from the loss of AVPR2. PMID:24668863

  13. 5q14.3 deletion neurocutaneous syndrome: Contiguous gene syndrome caused by simultaneous deletion of RASA1 and MEF2C: A progressive disease.

    Science.gov (United States)

    Ilari, Rita; Agosta, Guillermo; Bacino, Carlos

    2016-03-01

    We report the case of a young girl who was presented with complex clinical symptoms caused by the deletion of contiguous genes: RASA1 and MEF2C, located on chromosome 5q14.3. Specifically, the diagnosis of her skin disorder and vascular malformations involving central nervous system is consistent with a RASopathy. The child's neurological manifestations are observed in most patients suffering from 5q14.3 by deletion or mutation of the MEF2C gene. A review of the literature allowed us to conclude that the contiguous deletion of genes RASA1 and MEF2C fulfills the criteria for the diagnosis of a Neurocutaneous syndrome as proposed by Carr et al. [2011]. We also assessed the penetrance of RASA1 and clinical manifestations of MEF2C according to the type of deletion. This child described presents the complete symptomatology of both deleted genes. We would also like to highlight the progression of the disorder.

  14. Molecular cytogenetic detection of chromosome 15 deletions in patients with Prader-Willi and Angelman syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Chadwick, D.E.; Weksberg, R.; Shuman, C. [Hospital for Sick Children, Toronto (Canada)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are clinically distinct genetic disorders involving alterations of chromosome 15q11-q13. Approximately 75% of individuals with PWS and AS have deletions within 15q11-q13 by molecular analysis. We have evaluated fluorescence in situ hybridization (FISH) for the clinical laboratory detection of del(15)(q11q13) using the cosmid probes D15S11 and GABRB3 (ONCOR, Gaithersburg, NY). 4/4 PWS and 1/1 AS patients previously identified as having cytogenetic deletions were deleted for both probes. In a prospectively ascertained series of 54 patient samples referred to rule out either PWS or AS, 8 were deleted for D15S11 and GABRB3. In addition, an atypical deletion patient with PWS was also identified who was found to be deleted for GABRB3 but not D15S11. The SNRPN locus was also deleted in this patient. Only 4 of the 9 patient samples having molecular cytogenetic deletions were clearly deleted by high resolution banding (HRB) analysis. The microscopic and submicroscopic deletions have been confirmed by dinucleotide (CA) repeat analysis. Microsatellite polymorphism analysis was also used to demonstrate that five non-deletion patients in this series had biparental inheritance of chromosome 15, including region q11-q13. Deletions were not detected by either HRB, FISH or microsatellite polymorphism analysis in samples obtained from parents of the deletion patients. Methylation studies of chromosome 15q11-q13 are in progress for this series of PWS and AS families. FISH analysis of chromosome 15q11-q13 in patients with PWS and AS is a rapid, sensitive and reliable method for deletion detection.

  15. Unbalanced 15;22 translocation in a patient with manifestations of DiGeorge and velocardiofacial syndrome.

    Science.gov (United States)

    Jaquez, M; Driscoll, D A; Li, M; Emanuel, B S; Hernandez, I; Jaquez, F; Lembert, N; Ramirez, J; Matalon, R

    1997-05-01

    We report on an 8-year-old girl with an unbalanced 15;22 translocation and manifestations of DiGeorge syndrome (DGS), velocardiofacial syndrome (VCFS), and other abnormalities. The main manifestations of our patient were feeding difficulties, respiratory infections, short stature, peculiar face with hypertelorism, prominent nose, abnormal ears, microstomia and crowded teeth, short broad neck and shield chest with pectus deformity and widely spaced nipples with abnormal fat distribution, heart defect, scoliosis, asymmetric limb development, abnormal hands and feet, and hyperchromic skin patches. Cytogenetic studies demonstrated a 45,XX,der(15)t(15;22)(p11.2;q11.2), -22 karyotype. Fluorescence in situ hybridization (FISH) studies confirmed loss of the proximal DiGeorge chromosomal region (DGCR). This case adds to the diversity of clinical abnormalities caused by deletions within 22q11.2.

  16. Risk of colorectal and endometrial cancers in EPCAM deletion-positive Lynch syndrome : a cohort study

    NARCIS (Netherlands)

    Kempers, Marlies J. E.; Kuiper, Roland P.; Ockeloen, Charlotte W.; Chappuis, Pierre O.; Hutter, Pierre; Rahner, Nils; Schackert, Hans K.; Steinke, Verena; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Buettner, Reinhard; Verwiel, Eugene T. P.; van Krieken, J. Han; Nagtegaal, Iris D.; Goossens, Monique; van der Post, Rachel S.; Niessen, Renee C.; Sijmons, Rolf H.; Kluijt, Irma; Hogervorst, Frans B. L.; Leter, Edward M.; Gille, Johan J. P.; Aalfs, Cora M.; Redeker, Egbert J. W.; Hes, Frederik J.; Tops, Carli M. J.; van Nesselrooij, Bernadette P. M.; van Gijn, Marielle E.; Garcia, Encarna B. Gomez; Eccles, Diana M.; Bunyan, David J.; Syngal, Sapna; Stoffel, Elena M.; Culver, Julie O.; Palomares, Melanie R.; Graham, Tracy; Velsher, Lea; Papp, Janos; Olah, Edith; Chan, Tsun L.; Leung, Suet Y.; van Kessel, Ad Geurts; Kiemeney, Lambertus A. L. M.; Hoogerbrugge, Nicoline; Ligtenberg, Marjolijn J. L.

    2011-01-01

    Background Lynch syndrome is caused by germline mutations in MSH2, MLH1, MSH6, and PMS2 mismatch-repair genes and leads to a high risk of colorectal and endometrial cancer. We previously showed that constitutional 3' end deletions of EPCAM can cause Lynch syndrome through epigenetic silencing of MSH

  17. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lachman, H.M.; Papolos, D.F.; Veit, S. [Albert Einstein College of Medicine, Bronx, NY (United States)] [and others

    1996-09-20

    Velo-cardio-facial-syndrome (VCFS) is a common congenital disorder associated with typical facial appearance, cleft palate, cardiac defects, and learning disabilities. The majority of patients have an interstitial deletion on chromosome 22q11. In addition to physical abnormalities, a variety of psychiatric illnesses have been reported in patients with VCFS, including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. The psychiatric manifestations of VCFS could be due to haploinsufficiency of a gene(s) within 22q11. One candidate that has been mapped to this region is catechol-O-methyltransferase (COMT). We recently identified a polymorphism in the COMT gene that leads to a valine{r_arrow}methionine substitution at amino acid 158 of the membrane-bound form of the enzyme. Homozygosity for COMT158{sup met} leads to a 3- to 4-fold reduction in enzymatic activity, compared with homozygotes for COMT158{sup met}. We now report that in a population of patients with VCFS, there is an apparent association between the low-activity allele, COMT158{sup met}, and the development of bipolar spectrum disorder, and in particular, a rapid-cycling form. 33 refs., 3 tabs.

  18. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  19. Angelman syndrome: Validation of molecular cytogenetic analysis of chromosome 15q11-q13 for deletion detection

    Energy Technology Data Exchange (ETDEWEB)

    White, L.; Knoll, J.H.M. [Harvard Medical School, Boston, MA (United States)

    1995-03-13

    In a series of 18 individuals comprising parents of Angelman syndrome (AS) patients and AS patients with large deletions, microdeletions, and no deletions, we utilized fluorescence in situ hybridization (FISH) with genomic phage clones for loci D15S63 and GABRB3 for deletion detection of chromosome 15q11-q13. Utilization of probes at these loci allows detection of common large deletions and permits discrimination of less common small deletions. In all individuals the molecular cytogenetic data were concordant with the DNA deletion analyses. FISH provides an accurate method of deletion detection for chromosome 15q11-q13. 23 refs., 2 figs., 1 tab.

  20. FISH detection of chromosome 15 deletions in Prader-Willi and Angelman syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Teshima, I.; Chadwick, D.; Chitayat, D. [Hospital for Sick Children and Univ. of Toronto, Ontario (Canada)

    1996-03-29

    We have evaluated fluorescence in situ hybridization (FISH) analysis for the clinical laboratory detection of the 15q11-q13 deletion seen in Prader-Willi syndrome (PWS) and Angelman syndrome (AS) using probes for loci D15S11, SNRPN, D15S10, and GABRB3. In a series of 118 samples from patients referred for PWS or AS, 29 had deletions by FISH analysis. These included two brothers with a paternally transmitted deletion detectable with the probe for SNRPN only. G-banding analysis was less sensitive for deletion detection but useful in demonstrating other cytogenetic alterations in four cases. Methylation and CA-repeat analyses of 15q11-q13 were used to validate the FISH results. Clinical findings of patients with deletions were variable, ranging from newborns with hypotonia as the only presenting feature to children who were classically affected. We conclude that FISH analysis is a rapid and reliable method for detection of deletions within 15q11-q13 and whenever a deletion is found, FISH analysis of parental chromosomes should also be considered. 41 refs., 4 figs., 2 tabs.

  1. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Directory of Open Access Journals (Sweden)

    Ritch Robert

    2004-06-01

    Full Text Available Abstract Background Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. Methods We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. Results Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1 probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. Conclusions Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.

  2. Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Juyal, R.C.; Figuera, L.E.; Hauge, X. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1996-05-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable, multiple congenital anomalies/mental retardation syndrome caused by an interstitial deletion involving band p11.2 of chromosome 17. Toward the molecular definition of the interval defining this microdeletion syndrome, 62 unrelated SMS patients in conjunction with 70 available unaffected parents were molecularly analyzed with respect to the presence or absence of 14 loci in the proximal region of the short arm of chromosome 17. A multifaceted approach was used to determine deletion status at the various loci that combined (1) FISH analysis, (2) PCR and Southern analysis of somatic cell hybrids retaining the deleted chromosome 17 from selected patients, and (3) genotype determination of patients for whom a parent(s) was available at four microsatellite marker loci and at four loci with associated RFLPs. The relative order of two novel anonymous markers and a new microsatellite marker was determined in 17p11.2. The results confirmed that the proximal deletion breakpoint in the majority of SMS patients is located between markers D17S58 (EW301) and D17S446 (FG1) within the 17p11.1-17p11.2 region. The common distal breakpoint was mapped between markers cCI17-638, which lies distal to D17S71, and cCI17-498, which lies proximal to the Charcot Marie-Tooth disease type 1A locus. The locus D17S258 was found to be deleted in all 62 patients, and probes from this region can be used for diagnosis of the SMS deletion by FISH. Ten patients demonstrated molecularly distinct deletions; of these, two patients had smaller deletions and will enable the definition of the critical interval for SMS. 49 refs.

  3. Behavioral phenotype in the 9q subtelomeric deletion syndrome: a report about two adult patients.

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Kleefstra, T.; Egger, J.I.

    2010-01-01

    The 9q Subtelomeric Deletion Syndrome (9qSTDS) is clinically characterized by mental retardation, childhood hypotonia, and facial dysmorphisms. Haploinsufficiency of the EHMT1 gene has been demonstrated to be responsible for its core phenotype. In a significant number of patients behavioral abnormal

  4. Deletion of short arm of chromosome 18, Del(18p syndrome

    Directory of Open Access Journals (Sweden)

    Prashant Babaji

    2014-01-01

    Full Text Available Deletion of the short arm of chromosome 18 is a rare syndrome clinically presenting with variable mental retardation, growth retardation, low height, pectus excavatum, craniofacial malformations including long ear, ptosis, microcephaly and short neck. This case report presents with characteristic features along with rare feature of single nostril.

  5. 22q13.3 Deletion Syndrome : Clinical and Molecular Analysis Using Array CGH

    NARCIS (Netherlands)

    Dhar, S. U.; del Gaudio, D.; German, J. R.; Peters, S. U.; Ou, Z.; Bader, P. I.; Berg, J. S.; Blazo, M.; Brown, C. W.; Graham, B. H.; Grebe, T. A.; Lalani, S.; Irons, M.; Sparagana, S.; Williams, M.; Phillips, J. A.; Beaudet, A. L.; Stankiewicz, P.; Patel, A.; Cheung, S. W.; Sahoo, T.

    2010-01-01

    The 22q13.3 deletion syndrome results from loss of terminal segments of varying sizes at 22qter. Few genotype phenotype correlations have been found but all patients have mental retardation and severe delay, or absence of, expressive speech. We carried out clinical and molecular characterization of

  6. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Kristen Dilzell

    2015-01-01

    Full Text Available This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  7. Genotype/phenotype correlation in women with nonmosaic X chromosome deletions and Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, A.R. [Univ. of Texas Southwestern Medical School, Dallas, TX (United States)

    1994-09-01

    Turner syndrome is a complex human developmental disorder associated with the absence of the second sex chromosome (monosomy X). Cardinal features of the Turner phenotype include high intrauterine lethality, growth retardation, gonadal failure, and the variable presence of specific somatic abnormalities such as webbed neck, lymphedema, and skeletal abnormalities. Recent observations support the hypothesis that the phenotype associated with monosomy X results from haploid dosage of genes common the X and Y chromosomes that escape X-inactivation ({open_quotes}Turner genes{close_quotes}). Apart from a locus causing short stature that maps to the pseudoautosomal region on the distal short arm, the location of X-linked Turner genes is not known. Karyotype/phenotype correlations in women with partial X deletions have been inconsistent. However, previous studies have focused on sporadic sex chromosome aberrations and may have been confounded by occult mosaicism. In addition, mapping of deletions was limited by the resolution of cytogenetic techniques. I am reexamining genotype/phenotype correlations in partial X monosomy, focusing on a subset of cases in which mosaicism is highly unlikely (e.g., unbalanced X-autosome translocations, familial X deletions), and using molecular techniques to map deletions. I have collected eight cases of nonmosaic X deletions in women with varied manifestations of Turner syndrome. Cytogenetic data suggests that genes responsible for Turner anatomic abnormalities may lie within a critical region of the very proximal portion of the short arm (Xp11). Molecular characterization of the deletions is in progress. Methods include (1) fluorescence in situ hybridization of metaphase spreads from patient-derived cell lines, using cosmid probes that map to known locations on Xp, and (2) sequence tagged site (STS) content mapping of somatic cell hybrids retaining the deleted X chromosomes derived from these cell lines.

  8. Diagnostic yield by supplementing prenatal metaphase karyotyping with MLPA for microdeletion syndromes and subtelomere imbalances

    DEFF Research Database (Denmark)

    Kjaergaard, S; Sundberg, K; Jørgensen, F S;

    2010-01-01

    The aim of the study was to retrospectively assess the relevance of using multiplex ligation-dependent probe amplification (MLPA) for detection of selected microdeletion syndromes (22q11, Prader-Willi/Angelman, Miller-Dieker, Smith-Magenis, 1p-, Williams), the reciprocal microduplication syndromes...

  9. Diagnostic yield by supplementing prenatal metaphase karyotyping with MLPA for microdeletion syndromes and subtelomere imbalances

    DEFF Research Database (Denmark)

    Kjaergaard, S; Sundberg, K; Jørgensen, F S;

    2010-01-01

    The aim of the study was to retrospectively assess the relevance of using multiplex ligation-dependent probe amplification (MLPA) for detection of selected microdeletion syndromes (22q11, Prader-Willi/Angelman, Miller-Dieker, Smith-Magenis, 1p-, Williams), the reciprocal microduplication syndrome...

  10. Okamoto syndrome in a girl of Caucasian origin.

    Science.gov (United States)

    Markouri, Margharita; Karpathios, Themistokles; Dinopoulos, Argirios; Attilakos, Achilleas; Fretzayas, Andrew; Bakoula, Chryssa; Kitsiou-Tzeli, Sophia

    2008-12-01

    We report the clinical and genetic evaluation of a 2-year-old Greek female with striking phenotypic similarities to the three previously published cases of Okamoto syndrome. The main features were characteristic facies, cleft palate, generalized hypotonia, severe developmental delay, congenital hydronephrosis, and congenital heart defects. Routine chromosome testing and whole-genome high-resolution comparative genetic hybridization analysis were negative for any gross numerical or structural chromosome aberrations and for microdeletions/duplications of more than 3 million base pairs respectively. Fluorescence in situ hybridization analysis for 22q11.2 deletion and DNA analysis of the protein tyrosine phosphatase, non-receptor type II gene were normal, thus excluding DiGeorge and Noonan syndromes. Our patient did not show most of the cardinal features of Schinzel-Giedion, otopalatodigital, and C-trigonocephaly syndromes. Moreover, in our patient some new malformations were identified: unilateral kidney hypoplasia and severe anal stenosis. The latter was considered as pertinent and is described here to establish a wider clinical spectrum of Okamoto syndrome. At the age of 3 years 6 months the child continues to show severe growth failure and significant global developmental delay. For the practising paediatrician it is prudent to bear Okamoto syndrome in mind, especially in children with learning disability and a pattern of dysmorphic features. PMID:19046188

  11. SNP genotyping to screen for a common deletion in CHARGE Syndrome

    Directory of Open Access Journals (Sweden)

    Molinari Laura M

    2005-02-01

    Full Text Available Abstract Background CHARGE syndrome is a complex of birth defects including coloboma, choanal atresia, ear malformations and deafness, cardiac defects, and growth delay. We have previously hypothesized that CHARGE syndrome could be caused by unidentified genomic microdeletion, but no such deletion was detected using short tandem repeat (STR markers spaced an average of 5 cM apart. Recently, microdeletion at 8q12 locus was reported in two patients with CHARGE, although point mutation in CHD7 on chromosome 8 was the underlying etiology in most of the affected patients. Methods We have extended our previous study by employing a much higher density of SNP markers (3258 with an average spacing of approximately 800 kb. These SNP markers are diallelic and, therefore, have much different properties for detection of deletions than STRs. Results A global error rate estimate was produced based on Mendelian inconsistency. One marker, rs431722 exceeded the expected frequency of inconsistencies, but no deletion could be demonstrated after retesting the 4 inconsistent pedigrees with local flanking markers or by FISH with the corresponding BAC clone. Expected deletion detection (EDD was used to assess the coverage of specific intervals over the genome by deriving the probability of detecting a common loss of heterozygosity event over each genomic interval. This analysis estimated the fraction of unobserved deletions, taking into account the allele frequencies at the SNPs, the known marker spacing and sample size. Conclusions The results of our genotyping indicate that more than 35% of the genome is included in regions with very low probability of a deletion of at least 2 Mb.

  12. Further case of Rubinstein-Taybi syndrome due to a deletion in EP300.

    LENUS (Irish Health Repository)

    Foley, Patricia

    2012-02-01

    Rubinstein-Taybi syndrome (RSTS) is a heterogeneous disorder with approximately 45-55% of patients showing mutations in the CREB binding protein and a further 3% of patients having mutations in EP300. We report a male child with a deletion of exons 3-8 of the EP300 gene who has RSTS. He has a milder skeletal phenotype, a finding that has been described in other cases with EP300 mutations. The mother suffered from pre-eclampsia and HELLP syndrome in the pregnancy. She subsequently developed a mullerian tumor of her cervix 6 years after the birth of her son.

  13. Greig cephalopolysyndactyly syndrome: Altered phenotype of a contiguous gene syndrome by the presence of a chromosomal deletion

    Energy Technology Data Exchange (ETDEWEB)

    Hersh, J.H.; Williams, P.G.; Yen, F.F. [Univ. of Louisville, KY (United States)] [and others

    1994-09-01

    Greig cephalopolysyndactyly syndrome (GCPS) is characterized by craniofacial anomalies, broad thumbs and halluces, polydactyly of the hands and feet, and variable syndactyly. Intellectual abilities are usually normal. Inheritance is in an autosomal dominant fashion. The disorder has been mapped to chromosome 7p13, suggesting that the condition represents a contiguous gene syndrome (CGS). A male infant presented with multiple congenital anomalies, including omphalocele, dysgenesis of the corpus callosum, hydrocephalus, esotropia, broad thumbs and halluces, syndactyly, polydactyly of one foot, hypotonia and developmental delay. A de novo interstitial deletion of chromosome 7p was detected, 46,XY,del(7)(p13p15). Although clinical findings in this case were reminiscent of GCPS, and the chromosomal abnormality included the region assigned to the candidate gene for this syndrome, additional physical abnormalities were present, as well as cognitive deficits. Some of these features have been previously described in patients with chromosomal deletions of 7p. The chromosomal abnormality in our case provides supportive evidence of the gene locus in GCPS, and that GCPS represents a new CGS. However, a larger deletion, extending beyond the limits of the gene, significantly altered the phenotype. Isolation of the gene responsible for GCPS, and identification of additional patients with chromosomal abnormalities in this region of chromosome 7, should help to provide more accurate genotype-phenotype correlations.

  14. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome

    DEFF Research Database (Denmark)

    Aretz, S; Stienen, D; Uhlhaas, S;

    2007-01-01

    suspected to have JPS. RESULTS: By direct sequencing of the two genes, point mutations were identified in 30 patients (46% of typical JPS). Using MLPA, large genomic deletions were found in 14% of all patients with typical JPS (six deletions in SMAD4 and three deletions in BMPR1A). Mutation analysis...... polyposis, gastric cancer, and HHT was identified, which should have implications for counselling and surveillance. Histopathological results in hamartomatous polyposis syndromes must be critically interpreted. Udgivelsesdato: 2007-Nov...

  15. Third case of 8q23.3-q24.13 deletion in a patient with Langer-Giedion syndrome phenotype without TRPS1 gene deletion.

    Science.gov (United States)

    Pereza, Nina; Severinski, Srećko; Ostojić, Saša; Volk, Marija; Maver, Aleš; Dekanić, Kristina Baraba; Kapović, Miljenko; Peterlin, Borut

    2012-03-01

    Langer-Giedion syndrome (LGS) is a contiguous gene syndrome caused by a hemizygous deletion on chromosome 8q23.3-q24.11 involving TRPS1 and EXT1 genes. We report on a girl with LGS phenotype and a 7.5 Mb interstitial deletion at chromosome 8q23.3-q24.13. Array-comparative genomic hybridization (a-CGH) revealed a deletion encompassing only the EXT1 and not the TRPS1 gene. Even though the deletion of TRPS1 and EXT1 genes is responsible for craniofacial and skeletal features of LGS, there have been previous reports of patients with LGS phenotype and 8q24 deletions leaving the TRPS1 gene intact. To our knowledge, this is the third such case. Our patient differs from previously reported LGS patients without TRPS1 gene deletion in that she has the typical LGS facial dysmorphism and skeletal abnormalities. However, the girl is of normal height and has only a mild developmental delay. Additionally, she has dyslalia and premature adrenarche classified as Tanner stage 3 premature pubarche which have not yet been described as features of LGS. We examine the molecular breakpoints and phenotypes of our patient and previously reported cases.

  16. Third case of 8q23.3-q24.13 deletion in a patient with Langer-Giedion syndrome phenotype without TRPS1 gene deletion.

    Science.gov (United States)

    Pereza, Nina; Severinski, Srećko; Ostojić, Saša; Volk, Marija; Maver, Aleš; Dekanić, Kristina Baraba; Kapović, Miljenko; Peterlin, Borut

    2012-03-01

    Langer-Giedion syndrome (LGS) is a contiguous gene syndrome caused by a hemizygous deletion on chromosome 8q23.3-q24.11 involving TRPS1 and EXT1 genes. We report on a girl with LGS phenotype and a 7.5 Mb interstitial deletion at chromosome 8q23.3-q24.13. Array-comparative genomic hybridization (a-CGH) revealed a deletion encompassing only the EXT1 and not the TRPS1 gene. Even though the deletion of TRPS1 and EXT1 genes is responsible for craniofacial and skeletal features of LGS, there have been previous reports of patients with LGS phenotype and 8q24 deletions leaving the TRPS1 gene intact. To our knowledge, this is the third such case. Our patient differs from previously reported LGS patients without TRPS1 gene deletion in that she has the typical LGS facial dysmorphism and skeletal abnormalities. However, the girl is of normal height and has only a mild developmental delay. Additionally, she has dyslalia and premature adrenarche classified as Tanner stage 3 premature pubarche which have not yet been described as features of LGS. We examine the molecular breakpoints and phenotypes of our patient and previously reported cases. PMID:22315192

  17. First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome.

    Science.gov (United States)

    Beygo, J; Buiting, K; Seland, S; Lüdecke, H-J; Hehr, U; Lich, C; Prager, B; Lohmann, D R; Wieczorek, D

    2012-01-01

    Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1.

  18. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  19. Oculo-facio-cardio-dental (OFCD) syndrome: the first Italian case of BCOR and co-occurring OTC gene deletion.

    Science.gov (United States)

    Di Stefano, C; Lombardo, B; Fabbricatore, C; Munno, C; Caliendo, I; Gallo, F; Pastore, L

    2015-04-01

    Oculo-facio-cardio-dental (OFCD) syndrome is a rare genetic disorder affecting ocular, facial, dental and cardiac systems. The syndrome is an X-linked dominant trait and it might be lethal in males. This syndrome is usually caused by mutations in the BCL6 interacting co-repressor gene (BCOR). We described a female child with mild phenotype of oculo-facio-cardio-dental syndrome. Array-comparative genomic hybridization (a-CGH) analysis revealed a de novo heterozygous deletion in the Xp11.4 region of approximately 2.3 Mb, involving BCOR and ornithine carbamoyl-transferase (OTC) genes. The deletion observed was subsequently confirmed by real time PCR. In this study we report a first case with co-occurrence of BCOR and OTC genes completely deleted in OFCD syndrome.

  20. Diagnosis and fine localization of deletion region in Wolf Hirschhorn syndrome patients

    Institute of Scientific and Technical Information of China (English)

    JI Tao-yun; David CHIA; WANG Jing-min; WU Ye; LI Jie; XIAO Jing; JIANG Yu-wu

    2010-01-01

    Background Wolf-Hirschhorn syndrome (WHS) results from the partial deletion of 4p. This study aimed to identify and fine map the chromosome deletion regions of Chinese children with Wolf-Hirschhorn syndrome among the developmental delay/mental retardation (DD/MR) patients.Methods We analyzed the relationship of phenotype and genotype. Inclusion criteria were: moderate to severe DD/MR, no definite perinatal brain injury, and no trauma, toxication, hypoxia, infection of central nervous system; routine karyotyping was normal, no evidence of typical inherited metabolic disorder or specific neurodegenerative disorders from cranial neuro-imaging and blood/urinary metabolic diseases screening; no mutation of FMR1 in male patients, no typical clinical manifestation of Rett syndrome in female patients. Multiplex ligation-dependent probe amplification (MLPA) and Affymetrix genome-wide human SNP array 6.0 assays were applied to accurately define the exact size of subtelomeric aberration region of four WHS patients.Results All four WHS patients presented with severe DD, hypotonia and microcephaly, failure to thrive, 3/4 patients with typical facial features and seizures, 2/4 patients with congenital heart defects and cleft lip/palate, 1/4 patients with other malformations. The length of the deletions ranged from 3.3 Mb to 9.8 Mb. Two of four patients had "classic" WHS, 1/4 patients had "mild"-to-"classic" WHS, and 1/4 patients had "mild" WHS.Conclusions WHS patients in China appear to be consistent with those previously reported. The prevalence of signs and symptoms, distribution of cases between "mild" and "classic" WHS, and the correlation between length of deletion and severity of disease of these patients were all similar to those of the patients from other populations.

  1. Deletion of locus D15S113 in a mother and son without features of Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Michaelis, R.C.; Tarleton, J.C.; Donlon, T.A.; Simensen, R.J. [Greenwood Gneetic Center, SC (United States)] [and others

    1994-09-01

    Deletions of the proximal long arm of chromosome 15 result in Angelman syndrome when inherited from the mother and Prader-Willi syndrome when inherited from the father. The minimal critical deletion region for Angelman syndrome has been reported to include D15S74 (B1.5), D15S10 (TD3-21), and D15S113 (LS6-1). We report a mother and son who have deletions that include D15S113 but who do not have features of Angelman syndrome. D.H. is a 10-year-old white male referred for genetic evaluation due to mental retardation. He has mild to moderate mental retardation and minor dysmorphic features, including downslanting palpebral fissures, prominent nose, broad forehead, small chin, midface hypoplasia, and large ears. His mother (B.S.) has slightly downslanting palpebral fissures and a borderline intellectual deficit. Neither individual has the seizures, excessive laughter, hand clapping, ataxia or facial dysmorphism which are characteristic of Angelman syndrome. The linear order of probes mapping to 15q11-q13 is 15cen-D15S11-D15S13-D15S10-D15S113-GABRB3-D15S12-tel. The proximal border of the deletion in our patients lies between D15S10 and D15S113. The fact that these two individuals do not have Angelman syndrome, despite deletion of D15S113, suggests that the Angelman syndrome critical deletion region should be further refined to exclude the D15S113 locus. In addition, the findings of a more severe intellectual impairment in the son than in the mother suggests that the region immediately telomeric to the critical deletion region for Angelman syndrome may contain imprintable genes that influence intellectual function.

  2. Deletion at chromosome 16p13. 3 as a cause of Rubinstein-Taybi syndrome: Clinical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Hennekam, R.C.M.; Tilanus, M.; Boogaard, M.J.H. van den (State Univ., Utrecht (Netherlands)); Hamel, B.C.J.; Voshart-van Heeren, H.; Mariman, E.C.M.; Beersum, S.E.C. van (University Hospital, Nijmegen (Netherlands)); Breuning, M.H. (Clinical Genetics Center, Rotterdam (Netherlands))

    1993-02-01

    In the accompanying paper, a chromosomal localization of the Rubinstein-Taybi syndrome by cytogenetic investigations with fluorescence in situ hybridization techniques at chromosome 16p13.3 is described. The authors investigated 19 of these patients and their parents (a) to ascertain the parental origin of the chromosome with the deletion in families where such a deletion was detected, (b) to disclose whether uniparental disomy plays a role in etiology, and (c) to compare clinical features in patients with a deletion to those in individuals in whom deletions were not detectable. Molecular studies showed a copy of chromosome 16 from each parent in all 19 patients. Uniparental disomy was also excluded for five other chromosome arms known to be imprinted in mice. None of the probes used for determining the origin of the deleted chromosome proved to be informative. The clinical features were essentially the same in patients with and without visible deletion, with a possible exception for the incidence of microcephaly, angulation of thumbs and halluces, and partial duplication of the halluces. A small deletion at 16p13.3 may be found in some patients with Rubinstein-Taybi syndrome. Cytogenetically undetectable deletions, point mutations, mosaicism, heterogeneity, or phenocopy by a nongenetic cause are the most probable explanations for the absence of cytogenetic or molecular abnormalities in other patients with Rubinstein-Taybi syndrome. 26 refs., 3 tabs., 2 figs.

  3. MECP2 deletions and genotype-phenotype correlation in Rett syndrome.

    Science.gov (United States)

    Scala, Elisa; Longo, Ilaria; Ottimo, Federica; Speciale, Caterina; Sampieri, Katia; Katzaki, Eleni; Artuso, Rosangela; Mencarelli, Maria Antonietta; D'Ambrogio, Tatiana; Vonella, Giuseppina; Zappella, Michele; Hayek, Giuseppe; Battaglia, Agatino; Mari, Francesca; Renieri, Alessandra; Ariani, Francesca

    2007-12-01

    Rett syndrome is a neurodevelopmental disorder that represents one of the most common genetic causes of mental retardation in girls. MECP2 point mutations in exons 2-4 account for about 80% of classic Rett cases and for a lower percentage of variant patients. We investigated the genetic cause in 77 mutation-negative Rett patients (33 classic, 31 variant, and 13 Rett-like cases) by searching missed MECP2 defects. DHPLC analysis of exon 1 and MLPA analysis allowed us to identify the defect in 17 Rett patients: one exon 1 point mutation (c.47_57del) in a classic case and 16 MECP2 large deletions (15/33 classic and 1/31 variant cases). One identical intragenic MECP2 deletion, probably due to gonadal mosaicism, was found in two sisters with discordant phenotype: one classic and one "highly functioning" preserved speech variant. This result indicates that other epigenetic or genetic factors, beside MECP2, may contribute to phenotype modulation. Three out of 16 MECP2 deletions extend to the adjacent centromeric IRAK1 gene. A putative involvement of the hemizygosity of this gene in the ossification process is discussed. Finally, results reported here clearly indicate that MECP2 large deletions are a common cause of classic Rett, and MLPA analysis is mandatory in MECP2-negative patients, especially in those more severely affected (P = 0.044).

  4. Potential Novel Mechanism for Axenfeld-Rieger Syndrome: Deletion of a Distant Region Containing Regulatory Elements of PITX2

    OpenAIRE

    Volkmann, Bethany A.; Zinkevich, Natalya S.; Mustonen, Aki; Schilter, Kala F.; Bosenko, Dmitry V.; Reis, Linda M.; Broeckel, Ulrich; Link, Brian A.; Semina, Elena V.

    2011-01-01

    The authors describe an identification of conserved PITX2 enhancers located within a gene desert upstream of the gene and a deletion of this upstream region in a patient with Axenfeld-Rieger syndrome with no disruption of the PTIX2 coding region. The data suggest a new mechanism of Axenfeld-Rieger syndrome.

  5. Large deletions encompassing the TCOF1 and CAMK2A genes are responsible for Treacher Collins syndrome with intellectual disability.

    Science.gov (United States)

    Vincent, Marie; Collet, Corinne; Verloes, Alain; Lambert, Laetitia; Herlin, Christian; Blanchet, Catherine; Sanchez, Elodie; Drunat, Séverine; Vigneron, Jacqueline; Laplanche, Jean-Louis; Puechberty, Jacques; Sarda, Pierre; Geneviève, David

    2014-01-01

    Mandibulofacial dysostosis is part of a clinically and genetically heterogeneous group of disorders of craniofacial development, which lead to malar and mandibular hypoplasia. Treacher Collins syndrome is the major cause of mandibulofacial dysostosis and is due to mutations in the TCOF1 gene. Usually patients with Treacher Collins syndrome do not present with intellectual disability. Recently, the EFTUD2 gene was identified in patients with mandibulofacial dysostosis associated with microcephaly, intellectual disability and esophageal atresia. We report on two patients presenting with mandibulofacial dysostosis characteristic of Treacher Collins syndrome, but associated with unexpected intellectual disability, due to a large deletion encompassing several genes including the TCOF1 gene. We discuss the involvement of the other deleted genes such as CAMK2A or SLC6A7 in the cognitive development delay of the patients reported, and we propose the systematic investigation for 5q32 deletion when intellectual disability is associated with Treacher Collins syndrome.

  6. Treacher Collins syndrome with a de Novo 5-bp deletion in the TCOF1 gene.

    Science.gov (United States)

    Su, Pen-Hua; Chen, Jia-Yu; Chen, Suh-Jen; Yu, Ju-Shan

    2006-06-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development with features including malar hypoplasia, micrognathia, microtia, downward slanting palpebral fissures, lower eyelid coloboma, conductive hearing loss, and cleft palate. TCS is caused by mutations in the TCOF1 gene, which encodes the nuclear phosphoprotein treacle. Here, we describe a 1-day-old male infant with classical TCS presentation. A 5-bp deletion in exon 22 of the TCOF1 gene (3469del ACTCT) was found to cause a premature stop codon. This is the first report of TCOF1 gene mutation in the Taiwanese population.

  7. Rubinstein-Taybi syndrome caused by submicroscopic deletions within 16p13. 3

    Energy Technology Data Exchange (ETDEWEB)

    Breuning, M.H.; Dauwerse, H.G.; Fugazza, G.; Saris, J.J.; Spruit, L.; Winjnen, H.; Beverstock, G.C.; Ommen, G.J.B. van (Leiden Univ. (Netherlands)); Tommerup, N. (John F. Kennedy Inst., Glostrup (Denmark) Avd. for Medisinsk Genetikk, Oslo (Norway)); Hagen, C.B. van der (John F. Kennedy Inst., Glostrup (Denmark)); Imaizumi, Kiyoshi; Kuroki, Yoshikazu (Kanagawa Children' s Medical Center, Yokohama (Japan)); Boogaard, M.J. van den; Pater, J.M. de; Hennekam, R.C.M. (Clinical Genetics Center, Utrecht (Netherlands)); Mariman, E.C.M.; Hamel, B.C.J. (University Hospital, Nijmegen (Netherlands)); Himmelbauer, H.; Frischauf, A.M. (Imperial Cancer Research Fund Laboratories, London (United Kingdom)); Stallings, R.L. (Los Alamos National Lab., NM (United States))

    1993-02-01

    The Rubinstein-Taybi syndrome (RTS) is a well-defined complex of congenital malformations characterized by facial abnormalities, broad thumbs and big toes, and mental retardation. The breakpoint of two distinct reciprocal translocations occurring in patients with a clinical diagnosis of RTS was located to the same interval on chromosome 16, between the cosmids N2 and RT1, in band 16p13.3. By using two-color fluorescence in situ hybridization, the signal from RT1 was found to be missing from one chromosome 16 in 6 of 24 patients with RTS. The parents of five of these patients did not show a deletion of RT1, indicating a de novo rearrangement. RTS is caused by submicroscopic interstitial deletions within 16p13.3 in approximately 25% of the patients. The detection of microdeletions will allow the objective confirmation of the clinical diagnosis in new patients and provides an excellent tool for the isolation of the gene causally related to the syndrome. 32 refs., 2 figs.

  8. Chromosome 15q24 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Magoulas Pilar L

    2012-01-01

    involves a multi-disciplinary approach to care with the primary care physician and clinical geneticist playing a crucial role in providing appropriate screening, surveillance, and care for individuals with this syndrome. At the time of diagnosis, individuals should receive baseline echocardiograms, audiologic, ophthalmologic, and developmental assessments. Growth and feeding should be closely monitored. Other specialists that may be involved in the care of individuals with 15q24 deletion syndrome include immunology, endocrine, orthopedics, neurology, and urology. Chromosome 15q24 microdeletion syndrome should be differentiated from other genetic syndromes, particularly velo-cardio-facial syndrome (22q11.2 deletion syndrome, Prader-Willi syndrome, and Noonan syndrome. These conditions share some phenotypic similarity to 15q24 deletion syndrome yet have characteristic features specific to each of them that allows the clinician to distinguish between them. Molecular genetic testing and/or aCGH will be able to diagnose these conditions in the majority of individuals. Disease name and synonyms Chromosome 15q24 deletion syndrome 15q24 deletion syndrome 15q24 microdeletion syndrome

  9. Li-Fraumeni-like syndrome associated with a large BRCA1 intragenic deletion

    International Nuclear Information System (INIS)

    Li-Fraumeni (LFS) and Li-Fraumeni-like (LFL) syndromes are associated to germline TP53 mutations, and are characterized by the development of central nervous system tumors, sarcomas, adrenocortical carcinomas, and other early-onset tumors. Due to the high frequency of breast cancer in LFS/LFL families, these syndromes clinically overlap with hereditary breast cancer (HBC). Germline point mutations in BRCA1, BRCA2, and TP53 genes are associated with high risk of breast cancer. Large rearrangements involving these genes are also implicated in the HBC phenotype. We have screened DNA copy number changes by MLPA on BRCA1, BRCA2, and TP53 genes in 23 breast cancer patients with a clinical diagnosis consistent with LFS/LFL; most of these families also met the clinical criteria for other HBC syndromes. We found no DNA copy number alterations in the BRCA2 and TP53 genes, but we detected in one patient a 36.4 Kb BRCA1 microdeletion, confirmed and further mapped by array-CGH, encompassing exons 9–19. Breakpoints sequencing analysis suggests that this rearrangement was mediated by flanking Alu sequences. This is the first description of a germline intragenic BRCA1 deletion in a breast cancer patient with a family history consistent with both LFL and HBC syndromes. Our results show that large rearrangements in these known cancer predisposition genes occur, but are not a frequent cause of cancer susceptibility

  10. Phylogenetic analysis of mitochondrial DNA in a patient with Kearns-Sayre syndrome containing a novel 7629-bp deletion.

    Science.gov (United States)

    Montiel-Sosa, Jose Francisco; Herrero, María Dolores; Munoz, Maria de Lourdes; Aguirre-Campa, Luis Enrique; Pérez-Ramírez, Gerardo; García-Ramírez, Rubén; Ruiz-Pesini, Eduardo; Montoya, Julio

    2013-08-01

    Mitochondrial DNA mutations have been associated with different illnesses in humans, such as Kearns-Sayre syndrome (KSS), which is related to deletions of different sizes and positions among patients. Here, we report a Mexican patient with typical features of KSS containing a novel deletion of 7629 bp in size with 85% heteroplasmy, which has not been previously reported. Sequence analysis revealed 3-bp perfect short direct repeats flanking the deletion region, in addition to 7-bp imperfect direct repeats within 9-10 bp. Furthermore, sequencing, alignment and phylogenetic analysis of the hypervariable region revealed that the patient may belong to a founder Native American haplogroup C4c.

  11. Deletion 2q37 syndrome: Cognitive-behavioral trajectories and autistic features related to breakpoint and deletion size.

    Science.gov (United States)

    Fisch, Gene S; Falk, Rena E; Carey, John C; Imitola, Jaime; Sederberg, Maria; Caravalho, Karen S; South, Sarah

    2016-09-01

    Subtelomeric deletions have been reported in ∼2.5% of individuals with developmental disabilities. Subtelomeric deletion 2q37 has been detected in many individuals diagnosed with intellectual disabilities (ID) and autism spectrum disorders (ASD). Previously, genotype-phenotype correspondences were examined for their relationship to breakpoints 37.1, 37.2, or 37.3. Our purpose was to ascertain whether there were phenotypic differences at these breakpoints, elucidate the cognitive-behavioral phenotype in del2q37, and examine the genotype-phenotype association in the deletion with respect to cognitive-behavioral profiles and ASD. We administered a comprehensive cognitive-behavioral battery to nine children diagnosed with del 2q37, ages 3.9-17.75 years. ID for five tested with the Stanford-Binet (4th Edition) (SBFE) ranged from severe to mild [IQ Range: 36-59]. Adaptive behavior scores from the Vineland Adaptive Behavior Scale (VABS) were much below adequate levels (DQ Range: floor value ["19"] to 55). Autism scores from the Child Autism Rating Scale (CARS) ranged from 22 [non-autistic] to 56 [extremely autistic]; 5/8 [63%] children received scores on the autism spectrum. Participants with the largest deletions, 10.1 and 9.5 Mb, attained the highest IQ and DQ scores while those with the smallest deletions, 7.9 and 6.6 Mb, made the lowest IQ and DQ scores. No association between deletion breakpoint and phenotype were found. Assessment of the various deleted regions suggested histone deacetylase 4 gene (HDAC4) was a likely candidate gene for ASD in our sample. However, two earlier reports found no association between HDAC4 haploinsufficiency and ASD. © 2016 Wiley Periodicals, Inc.

  12. Atypical Rett syndrome with selective FOXG1 deletion detected by comparative genomic hybridization: case report and review of literature

    OpenAIRE

    Jacob, Francois Dominique; Ramaswamy, Vijay; Andersen, John; Bolduc, Francois V.

    2009-01-01

    Rett syndrome is a severe neurodegenerative disorder characterized by acquired microcephaly, communication dysfunction, psychomotor regression, seizures and stereotypical hand movements. Mutations in methyl CpG binding protein 2 (MECP2) are identified in most patients with classic Rett syndrome. Genetic studies in patients with a Rett variant have expanded the spectrum of underlying genetic etiologies. Recently, a deletion encompassing several genes in the long arm of chromosome 14 has been a...

  13. Molecular characterization of two proximal deletion breakpoint regions in both Prader-Willi and Angelman syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Christian, S.L.; Huang, B.; Ledbetter, D.H. [National Institutes of Health, Bethesda, MD (United States)] [and others

    1995-07-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are distinct mental retardation syndromes caused by paternal and maternal deficiencies, respectively, in chromosome 15q11{minus}q13. Approximately 70% of these patients have a large deletion of {approximately}4 Mb extending from D15S9 (ML34) through D15S12 (IR10A). To further characterize the deletion breakpoints proximal to D15S9, three new polymorphic microsatellite markers were developed that showed observed heterozygosities of 60%-87%. D15S541 and D15S542 were isolated for YAC A124A3 containing the D15S18 (IR39) locus. D15S543 was isolated from a cosmid cloned from the proximal right end of YAC 254B5 containing the D15S9 (ML34) locus. Gene-centromere mapping of these markers, using a panel of ovarian teratomas of known meiotic origin, extended the genetic map of chromosome 15 by 2-3 cM toward the centromere. Analysis of the more proximal S541/S542 markers on 53 Prader-Willi and 33 Angelman deletion patients indicated two classes of patients: 44% (35/80) of the informative patients were deleted for these markers (class I), while 56% (45/80) were not deleted (class II), with no difference between PWS and AS. In contrast, D15S543 was deleted in all informative patients (13/48) or showed the presence of a single allele (in 35/48 patients), suggesting that this marker is deleted in the majority of PWS and AS cases. These results confirm the presence of two common proximal deletion breakpoint regions in both Prader-Willi and Angelman syndromes and are consistent with the same deletion mechanism being responsible for paternal and maternal deletions. One breakpoint region lies between D15S541/S542 and D15S543, with an additional breakpoint region being proximal to D15S541/S542. 46 refs., 2 figs., 3 tabs.

  14. Familial Angelman syndrome with a crossover in the critical deletion region

    Energy Technology Data Exchange (ETDEWEB)

    Nelen, M.R.; Van der Burgt, C.J.A.M.; Nillesen, W.N.; Smeets, H.J.M. [University Hospital Nijmegen (Netherlands); Vis, A. [Institute for Mentally Handicapped De Winckelsteegh, Nijmegen (Netherlands)

    1994-09-01

    More than two thirds of the patients with Angelman syndrome (AS) carry a deletion or other chromosomal abnormality in the 15q11-13 region. A much less frequent cause (4%) is paternal uniparental disomy of the entire chromosome. In general no abnormalities are detectable in familial cases and an inherited submicroscopic deletion was described only once. Here a familial case of 2 sibs with AS is reported. No major cytogenetic or molecular abnormality was identified, but a recombination event had occurred in the AS critical region. The AS locus, D15S113, D15S10, D15S11, and D15S18 mapped proximal and the GABRB3 gene, D15S97, and GABRA5 gene, and D15S12 distal to the crossover site. This recombination within the AS critical region confirmed the exclusion of GABRB3 as a candidate gene for AS. Other markers and candidate genes can be tested genetically as well for a possible role in AS. 36 refs., 4 figs.

  15. Metopic and sagittal synostosis in Greig cephalopolysyndactyly syndrome: five cases with intragenic mutations or complete deletions of GLI3

    DEFF Research Database (Denmark)

    Hurst, Jane A; Jenkins, Dagan; Vasudevan, Pradeep C;

    2011-01-01

    Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association...

  16. Autoimmune lymphoproliferative syndrome in a patient with a new minimal deletion in the death domain of the FAS gene

    NARCIS (Netherlands)

    Gualco, Gabrieta; van den Berg, Anke; Koopmans, Sicco; Bacchi, Livia M.; Carneiro, Siderley S.; Ruiz, Everaldo; Vecchi, Ana Paula; Chan, John K. C.

    2008-01-01

    We present a case of autoimmune lymphoproliferative syndrome (ALPS) caused by a previously undescribed minimal deletion in the death domain of the FAS gene. ALPS is an uncommon disease associated with an impaired Fas-mediated apoptosis. The patient presented with a history of splenomegaly since 4 mo

  17. Neuro-behavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, A.; Malan, V.; De Blois, M.C.; Colleaux, L.; Munnich, A. [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Natl Inst Hlth and Med Res, Paris (France); Philippe, A.; De Blois, M.C.; Colleaux, L.; Munnich, A. [HopNecker Enfants Malad, Assistance Publ Hop Paris, Dept Genet, Paris (France); Boddaert, N. [Natl Inst Hlth and Med Res, Mixed Unit Res 0205, Orsay (France); Vaivre-Douret, L.; Robel, L.; Golse, B. [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Dept Psychiat, Paris (France); Vaivre-Douret, L. [Univ Paris 10, Mixed Unit Res S0669, Univ Paris 05, Univ Paris 11, Paris 10 (France); Vaivre-Douret, L. [Assistance Publ Hop Paris, Dept Obstet et Gynaecol, Paris (France); Danon-Boileau, L. [Natl Ctr Sci Res, Mixed Unit Res 7114, Paris (France); Heron, D. [Hop La Pitie Salpetriere, Assistance Publ HopParis, Dept Genet, Paris (France)

    2008-07-01

    The 22q13.3 deletion syndrome (Online Mendelian Inheritance in Man No. 606232) is a neuro-developmental disorder that includes hypotonia, severely impaired development of speech and language, autistic-like behavior, and minor dysmorphic features. Although the number of reported cases is increasing, the 22q13.3 deletion remains under-diagnosed because of failure in recognizing the clinical phenotype and detecting the 22qter deletion by routine chromosome analyses. Our goal is to contribute to the description of the neuro-behavioral phenotype and brain abnormalities of this micro-deletional syndrome. We assessed neuro-motor, sensory, language, communication, and social development and performed cerebral MRI and study of regional cerebral blood flow measured by positron emission tomography in 8 children carrying the 22q13.3 deletion. Despite variability in expression and severity, the children shared a common developmental profile characterized by hypotonia, sleep disorders, and poor response to their environment in early infancy; expressive language deficit contrasting with emergence of social reciprocity from ages similar to 3 to 5 years; sensory processing dysfunction; and neuro-motor disorders. Brain MRI findings were normal or showed a thin or morphologically atypical corpus callosum. Positron emission tomography study detected a localized dysfunction of the left temporal polar lobe and amygdala hypoperfusion. The developmental course of the 22q13.3 deletion syndrome belongs to pervasive developmental disorders but is distinct from autism. An improved description of the natural history of this syndrome should help in recognizing this largely under-diagnosed condition. (authors)

  18. Neuro-behavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood

    International Nuclear Information System (INIS)

    The 22q13.3 deletion syndrome (Online Mendelian Inheritance in Man No. 606232) is a neuro-developmental disorder that includes hypotonia, severely impaired development of speech and language, autistic-like behavior, and minor dysmorphic features. Although the number of reported cases is increasing, the 22q13.3 deletion remains under-diagnosed because of failure in recognizing the clinical phenotype and detecting the 22qter deletion by routine chromosome analyses. Our goal is to contribute to the description of the neuro-behavioral phenotype and brain abnormalities of this micro-deletional syndrome. We assessed neuro-motor, sensory, language, communication, and social development and performed cerebral MRI and study of regional cerebral blood flow measured by positron emission tomography in 8 children carrying the 22q13.3 deletion. Despite variability in expression and severity, the children shared a common developmental profile characterized by hypotonia, sleep disorders, and poor response to their environment in early infancy; expressive language deficit contrasting with emergence of social reciprocity from ages similar to 3 to 5 years; sensory processing dysfunction; and neuro-motor disorders. Brain MRI findings were normal or showed a thin or morphologically atypical corpus callosum. Positron emission tomography study detected a localized dysfunction of the left temporal polar lobe and amygdala hypoperfusion. The developmental course of the 22q13.3 deletion syndrome belongs to pervasive developmental disorders but is distinct from autism. An improved description of the natural history of this syndrome should help in recognizing this largely under-diagnosed condition. (authors)

  19. Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Barker Alison J

    2011-04-01

    Full Text Available Abstract Background Neuronal phenotypes associated with hemizygosity of individual genes within the 22q11.2 deletion syndrome locus hold potential towards understanding the pathogenesis of schizophrenia and autism. Included among these genes is Dgcr8, which encodes an RNA-binding protein required for microRNA biogenesis. Dgcr8 haploinsufficient mice (Dgcr8+/- have reduced expression of microRNAs in brain and display cognitive deficits, but how microRNA deficiency affects the development and function of neurons in the cerebral cortex is not fully understood. Results In this study, we show that Dgcr8+/- mice display reduced expression of a subset of microRNAs in the prefrontal cortex, a deficit that emerges over postnatal development. Layer V pyramidal neurons in the medial prefrontal cortex of Dgcr8+/- mice have altered electrical properties, decreased complexity of basal dendrites, and reduced excitatory synaptic transmission. Conclusions These findings demonstrate that precise microRNA expression is critical for the postnatal development of prefrontal cortical circuitry. Similar defects in neuronal maturation resulting from microRNA deficiency could represent endophenotypes of certain neuropsychiatric diseases of developmental onset.

  20. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2)

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, F.; Lewis, R.A.; Potocki, L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1996-03-29

    Smith-Magenis syndrome (SMS) is a multiple congenital anomaly, mental retardation (MCA/MR) syndrome associated with deletion of chromosome 17 band p11.2. As part of a multi-disciplinary clinical, cytogenetic, and molecular approach to SMS, detailed clinical studies including radiographic neurologic, developmental, ophthalmologic, otolaryngologic, and audiologic evaluations were performed on 27 SMS patients. Significant findings include otolaryngologic abnormalities in 94%, eye abnormalities in 85%, sleep abnormalities (especially reduced REM sleep) in 75%, hearing impairment in 68% (approximately 65% conductive and 35% sensorineural), scoliosis in 65% brain abnormalities (predominantly ventriculomegaly) in 52%, cardiac abnormalities in at least 37%, renal anomalies (especially duplication of the collecting system) in 35%, low thyroxine levels in 29%, low immunoglobulin levels in 23%, and forearm abnormalities in 16%. The measured IQ ranged between 20-78, most patients falling in the moderate range of mental retardation at 40-54, although several patients scored in the mild or borderline range. The frequency of these many abnormalities in SMS suggests that patients should be evaluated thoroughly for associated complications both at the time of diagnosis and at least annually thereafter. 42 refs., 2 figs., 3 tabs.

  1. Disease: H01004 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available cations for 22q11 deletion syndrome. Proc Natl Acad Sci U S A 103:7729-34 (2006) ... ...Scambler PJ, Lindsay E Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: impli

  2. Molecular definition of the chromosome 7 deletion in Williams syndrome and parent-of-origin effects on growth

    Energy Technology Data Exchange (ETDEWEB)

    Perez Jurado, L.A.; Peoples, R.; Francke, U. [Stanford Univ. School of Medicine, CA (United States)] [and others

    1996-10-01

    Williams syndrome (WS) is a developmental disorder with variable phenotypic expression associated, in most cases, with a hemizygous deletion of part of chromosomal band 7q11.23 that includes the elastin gene (ELN). We have investigated the frequency and size of the deletions, determined the parental origin, and correlated the molecular results with the clinical findings in 65 WS patients. Hemizygosity at the ELN locus was established by typing of two intragenic polymorphisms, quantitative Southern analysis, and/or FISH. Polymorphic markers covering the deletion and flanking regions were ordered by a combination of genetic and physical mapping. Genotyping of WS patients and available parents for 13 polymorphisms revealed that of 65 clinically defined WS patients, 61 (94%) had a deletion of the ELN locus and were also hemizygous (or non-informative) at loci D7S489B, D7S2476, D7S613, D7S2472, and D7S1870. None of the four patients without ELN deletion was hemizygous at any of the polymorphic loci studied. All patients were heterozygous (or noninformative) for centromeric (D7S1816, D7S1483, and D7S653) and telomeric (D7S489A, D7S675, and D7S669) flanking loci. The genetic distance between the most-centromeric deleted locus, D7S489B, and the most-telomeric one, D7S1870, is 2 cM. The breakpoints cluster at {approximately}1 cM to either side of ELN. In 39 families informative for parental origin, all deletions were de novo, and 18 were paternally and 21 maternally derived. Comparison of clinical data, collected in a standardized quantifiable format, revealed significantly more severe growth retardation and microcephaly in the maternal deletion group. An imprinted locus, silent on the paternal chromosome and contributing to statural growth, may be affected by the deletion. 53 refs., 5 figs., 2 tabs.

  3. Contribution of Large Genomic Rearrangements in Italian Lynch Syndrome Patients: Characterization of a Novel Alu-Mediated Deletion

    Directory of Open Access Journals (Sweden)

    Francesca Duraturo

    2013-01-01

    Full Text Available Lynch syndrome is associated with germ-line mutations in the DNA mismatch repair (MMR genes, mainly MLH1 and MSH2. Most of the mutations reported in these genes to date are point mutations, small deletions, and insertions. Large genomic rearrangements in the MMR genes predisposing to Lynch syndrome also occur, but the frequency varies depending on the population studied on average from 5 to 20%. The aim of this study was to examine the contribution of large rearrangements in the MLH1 and MSH2 genes in a well-characterised series of 63 unrelated Southern Italian Lynch syndrome patients who were negative for pathogenic point mutations in the MLH1, MSH2, and MSH6 genes. We identified a large novel deletion in the MSH2 gene, including exon 6 in one of the patients analysed (1.6% frequency. This deletion was confirmed and localised by long-range PCR. The breakpoints of this rearrangement were characterised by sequencing. Further analysis of the breakpoints revealed that this rearrangement was a product of Alu-mediated recombination. Our findings identified a novel Alu-mediated rearrangement within MSH2 gene and showed that large deletions or duplications in MLH1 and MSH2 genes are low-frequency mutational events in Southern Italian patients with an inherited predisposition to colon cancer.

  4. 先天性膜性白内障一家系致病基因的遗传分析%Mutation of 22q11.2-q12.1 gene in a family with autosomal dominant congenital membranous cataract

    Institute of Scientific and Technical Information of China (English)

    袁芳; 李飞峰; 刘伟; 刘华; 季健; 马旭

    2009-01-01

    目的 分析一个先天性白内障家系的遗传规律,对其突变基因进行初步研究.方法 选取一先天性膜性白内障家系,对家系成员进行临床检查并采集静脉血.标准饱和酚/氯仿抽提法提取DNA,选取多态性微卫星遗传标记,合成引物,聚合酶链反应,聚丙烯酰胺凝胶电泳,基因分型,等位基因共享分析法对已知候选基因进行排除性定位.结果 该家系为常染色体显性遗传性先天性白内障家系.其致病基因与D22S315联系紧密,重组发生在以D22S303和D22S1167为上下边界的范围内.对该范围内已知的先天性白内障致病基因CRYBB1、CRYBB2、CRYBB3、CRYBA4进行DNA直接测序,未发现突变.结论 该家系致病基因定位于22q11.2~q12.1的2.4 Mbp范围内,其致病基因与已知基因座不同.该范围内可能存在导致先天性膜性白内障的新的致病基因.%Objective Autosomal dominant congenital cataract (ADCC) is a common heredit disease.Some known genes and mutated loci related to ADCC have been found.The present study provides other disease-causing genes in the ADCC family.This study was to identify the genetic defect in four generations of a Chinese family with autosomal dominant congenital membranous cataracts and demonstrate the functional analysis of a candidate gene in the family.MethodsThe family with hereditary cataract was recruited from the Tianjin Medical University Eye Center.The family history was collected and recorded.Clinical and ophthalmologic examinations were performed on 6 affected and 14 unaffected family members and periphery blood samples were collected from all of the subjects for genomic DNA preparation.The members were genotyped with microsatellite markers at loci associated with cataracts.Multiplex polymerase chain reaction (PCR) was carried out with microsatellite markers near to candidated loci related to congenital cataracts.PCR products from each DNA sample were separated on a polyarcylamide gel and

  5. Constitutional and somatic deletions of the Williams-Beuren syndrome critical region in Non-Hodgkin Lymphoma

    OpenAIRE

    Guenat, David; Quentin, Samuel; Rizzari, Carmelo; Lundin, Catarina; Coliva, Tiziana; Edery, Patrick; Fryssira, Helen; Bermont, Laurent; Ferrand, Christophe; Soulier, Jean; Borg, Christophe; Rohrlich, Pierre-Simon

    2014-01-01

    Here, we report and investigate the genomic alterations of two novel cases of Non-Hodgkin Lymphoma (NHL) in children with Williams-Beuren syndrome (WBS), a multisystem disorder caused by 7q11.23 hemizygous deletion. Additionally, we report the case of a child with NHL and a somatic 7q11.23 deletion. Although the WBS critical region has not yet been identified as a susceptibility locus in NHL, it harbors a number of genes involved in DNA repair. The high proportion of pediatric NHL reported in...

  6. Detection of an atypical 7q11.23 deletion in Williams syndrome patients which does not include the STX1A and FZD3 genes

    Science.gov (United States)

    Botta, A; Novelli, G; Mari, A; Novelli, A; Sabani, M; Korenberg, J; Osborne, L; Digilio, M; Giannotti, A; Dallapiccola, B

    1999-01-01

    We present two patients with the full Williams syndrome (WS) phenotype carrying a smaller deletion than typically observed. The deleted region spans from the elastin gene to marker D7S1870. This observation narrows the minimal region of deletion in WS and suggests that the syntaxin 1A and frizzled genes are not responsible for the major features of this developmental disorder and provides important insight into understanding the genotype-phenotype correlation in WS.


Keywords: Williams syndrome; elastin; syntaxin; frizzled PMID:10874638

  7. Deletion 17p11.2 (Smith-Magenis syndrome) is relatively common among patients having mental retardation and myopia

    Energy Technology Data Exchange (ETDEWEB)

    Finucane, B.; Jaeger, E.R. [Elwyn, Inc. PA (United States); Freitag, S.K. [Jefferson Medical College, Philadelphia, PA (United States)

    1994-09-01

    We recently reported the finding of moderate to severe myopia in 6 of 10 patients with Smith-Magenis syndrome (SMS). To investigate the prevalence of SMS among mentally retarded people having myopia, we surveyed a cohort of patients residing at a facility for individuals with mental retardation (MR). Of 547 institutionalized individuals with MR, 72 (13.2%) had moderate to high myopia defined as a visual acuity of minus 3 diopters or more. It should be noted that our institution does not specifically select for people with visual impairment; rather, the facility serves people with a primary diagnosis of MR. Sixty-five of 72 (90.3%) myopic individuals identified were available for cytogenetic analysis. Seventeen (26.2%) of these patients had trisomy 21. Down syndrome (DS) is well known to be associated with eye abnormalities, including myopia. Of 48 individuals with moderate to high myopia not having DS, 5 (10.4%) were shown to have deletions of 17p11.2. This is a high prevalence considering the relative rarity of SMS. By contrast, in a randomized sample of 48 patients without significant myopia at the same facility, we found no individuals with deletion 17p11.2. We conclude that the diagnosis of SMS should be considered in any non-Down syndrome individual having MR and myopia, and that ophthalmologists serving people with MR should be made aware of this deletion syndrome. Furthermore, our results suggest that significant numbers of people having SMS could be identified through selective institutional screening of patients having a combination of MR and moderate to severe myopia.

  8. Cornelia de Lange syndrome caused by heterozygous deletions of chromosome 8q24: comments on the article by Pereza et al. [2012].

    Science.gov (United States)

    Pereza, Nina; Severinski, Srećko; Ostojić, Saša; Volk, Marija; Maver, Aleš; Dekanić, Kristina Baraba; Kapović, Miljenko; Peterlin, Borut

    2015-06-01

    In the March issue of the Journal in 2012, we reported on a girl with Langer-Giedion syndrome (LGS) phenotype and a 7.5 Mb interstitial deletion at 8q23.3q24.13, encompassing the EXT1, but not the TRPS1 gene. Recent discoveries have shown that heterozygous intragenic mutations or contiguous gene deletions including the RAD21 gene, which is located downstream of the TRPS1 gene, are the cause of Cornelia de Lange syndrome-4. Considering that the interstitial deletion in our patient included the RAD21 and 30 other RefSeq genes, we would like to suggest a revision of the diagnosis reported in our previous paper and compare our patient to other reported patients with Cornelia de Lange syndrome-4 caused by heterozygous deletions of chromosome 8q24. © 2015 Wiley Periodicals, Inc. PMID:25899858

  9. Otitis media in a new mouse model for CHARGE syndrome with a deletion in the Chd7 gene.

    Directory of Open Access Journals (Sweden)

    Cong Tian

    Full Text Available Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome.

  10. Constitutional and somatic deletions of the Williams-Beuren syndrome critical region in non-Hodgkin lymphoma.

    Science.gov (United States)

    Guenat, David; Quentin, Samuel; Rizzari, Carmelo; Lundin, Catarina; Coliva, Tiziana; Edery, Patrick; Fryssira, Helen; Bermont, Laurent; Ferrand, Christophe; Soulier, Jean; Borg, Christophe; Rohrlich, Pierre-Simon

    2014-01-01

    Here, we report and investigate the genomic alterations of two novel cases of Non-Hodgkin Lymphoma (NHL) in children with Williams-Beuren syndrome (WBS), a multisystem disorder caused by 7q11.23 hemizygous deletion. Additionally, we report the case of a child with NHL and a somatic 7q11.23 deletion. Although the WBS critical region has not yet been identified as a susceptibility locus in NHL, it harbors a number of genes involved in DNA repair. The high proportion of pediatric NHL reported in WBS is intriguing. Therefore, the role of haploinsufficiency of genes located at 7q11.23 in lymphomagenesis deserves to be investigated. PMID:25388916

  11. Thrombocytopenia-absent radius (TAR) syndrome: a clinical genetic series of 14 further cases. impact of the associated 1q21.1 deletion on the genetic counselling.

    Science.gov (United States)

    Houeijeh, Ali; Andrieux, Joris; Saugier-Veber, Pascale; David, Albert; Goldenberg, Alice; Bonneau, Dominique; Fouassier, Marc; Journel, Hubert; Martinovic, Jelana; Escande, Fabienne; Devisme, Louise; Bisiaux, Sophie; Chaffiotte, Caroline; Baux, Mathilde; Kerckaert, Jean-Pierre; Holder-Espinasse, Muriel; Manouvrier-Hanu, Sylvie

    2011-01-01

    Thrombocytopenia-absent radius Syndrome (TAR) is a rare congenital malformation syndrome of complicated transmission. 1q21.1 deletion is necessary but not sufficient for its expression. We report the result of a French multicentric clinical study, and we emphasized on the role of the associated 1q21.1 deletion in the diagnosis and the genetic counselling of our patients. We gathered information on 14 patients presenting with TAR syndrome and referred for genetic counselling in six different university hospitals (8 foetuses, 1 child and 5 adults). Clinical or pathology details, as well as skeletal X-rays were analyzed. Genetic studies were performed by Array-CGH, and Quantitative Multiplex PCR. We demonstrated the very variable phenotypes of TAR syndrome. Female:male ratio was ∼2:1. All patients presented with bilateral radial aplasia/hypoplasia with preserved thumbs. Phocomelia and lower limb anomalies were present in 28% of the cases. We reported the first case of cystic hygroma on affected foetus. 1q21.1 deletions ranging from 330 to 1100 kb were identified in all affected patients. Most of them were inherited from one healthy parent (80%). The identification of a 1q21.1 deletion allowed confirmation of TAR syndrome diagnosis, particularly in foetuses and in atypical phenotypes. Additionally, it allowed accurate genetic counselling, especially when it occurred de novo. These findings allowed discussing the diagnostic criteria and management towards TAR syndrome.

  12. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency.

    Science.gov (United States)

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D J

    2016-01-01

    Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

  13. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    OpenAIRE

    Lobaccaro, J M; Lumbroso, S.; Poujol, Nicolas; Georget, V.; Brinkmann, Albert; Malpuech, Georges; Sultan, C.

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for a predictive frameshift in the open reading frame and introduction of a premature stop codon at position 783 instead of 919. The deletion was reproduced in androgen receptor wildtype cDNA and tran...

  14. Phenotypic and genetic characterization of a family carrying two Xq21.1-21.3 interstitial deletions associated with syndromic hearing loss

    OpenAIRE

    Iossa, Sandra; Costa, Valerio; Corvino, Virginia; Auletta, Gennaro; Barruffo, Luigi; Cappellani, Stefania; Ceglia, Carlo; Cennamo, Giovanni; d’Adamo, Adamo Pio; D’Amico, Alessandra; Di Paolo, Nilde; Forte, Raimondo; Gasparini, Paolo; Laria, Carla; Lombardo, Barbara

    2015-01-01

    Background Sensorineural hearing impairment is a common pathological manifestation in patients affected by X-linked intellectual disability. A few cases of interstitial deletions at Xq21 with several different phenotypic characteristics have been described, but to date, a complete molecular characterization of the deletions harboring disease-causing genes is still missing. Thus, the aim of this study is to realize a detailed clinical and molecular analysis of a family affected by syndromic X-...

  15. Bicuspid aortic valve and aortic coarctation are linked to deletion of the X chromosome short arm in Turner syndrome

    Science.gov (United States)

    Bondy, Carolyn; Bakalov, Vladimir K; Cheng, Clara; Olivieri, Laura; Rosing, Douglas R; Arai, Andrew E

    2013-01-01

    Background Congenital heart disease (CHD) is a cardinal feature of X chromosome monosomy, or Turner syndrome (TS). Haploinsufficiency for gene(s) located on Xp have been implicated in the short stature characteristic of the syndrome, but the chromosomal region related to the CHD phenotype has not been established. Design We used cardiac MRI to diagnose cardiovascular abnormalities in four non-mosaic karyotype groups based on 50-metaphase analyses: 45,X (n=152); 46,X,del(Xp) (n=15); 46,X,del(Xq) (n=4); and 46,X,i(Xq) (n=14) from peripheral blood cells. Results Bicuspid aortic valves (BAV) were found in 52/152 (34%) 45,X study subjects and aortic coarctation (COA) in 19/152 (12.5%). Isolated anomalous pulmonary veins (APV) were detected in 15/152 (10%) for the 45,X study group, and this defect was not correlated with the presence of BAV or COA. BAVs were present in 28.6% of subjects with Xp deletions and COA in 6.7%. APV were not found in subjects with Xp deletions. The most distal break associated with the BAV/COA trait was at cytologic band Xp11.4 and ChrX:41,500 000. One of 14 subjects (7%) with the 46,X,i(Xq) karyotype had a BAV and no cases of COA or APV were found in this group. No cardiovascular defects were found among four patients with Xq deletions. Conclusions The high prevalence of BAV and COA in subjects missing only the X chromosome short arm indicates that haploinsufficiency for Xp genes contributes to abnormal aortic valve and aortic arch development in TS. PMID:23825392

  16. Chromosome Deletion of 14q32.33 Detected by Array Comparative Genomic Hybridization in a Patient with Features of Dubowitz Syndrome

    Directory of Open Access Journals (Sweden)

    Diana C. Darcy

    2011-01-01

    Full Text Available We report a 4-year-old girl of Mexican origins with a clinical diagnosis of Dubowitz syndrome who carries a de novo terminal deletion at the 14q32.33 locus identified by array comparative genomic hybridization (aCGH. Dubowitz syndrome is a rare condition characterized by a constellation of features including growth retardation, short stature, microcephaly, micrognathia, eczema, telecanthus, blepharophimosis, ptosis, epicanthal folds, broad nasal bridge, round-tipped nose, mild to moderate developmental delay, and high-pitched hoarse voice. This syndrome is thought to be autosomal recessive; however, the etiology has not been determined. This is the first report of this deletion in association with this phenotype; it is possible that this deletion may be causal for a Dubowitz phenocopy.

  17. Alu-mediated deletion of SOX10 regulatory elements in Waardenburg syndrome type 4

    OpenAIRE

    Bondurand, Nadége; Fouquet, Virginie; Baral, Viviane; Lecerf, Laure; Loundon, Natalie; Goossens, Michel; Duriez, Benedicte; Labrune, Philippe; Pingault, Veronique

    2012-01-01

    Waardenburg syndrome type 4 (WS4) is a rare neural crest disorder defined by the combination of Waardenburg syndrome (sensorineural hearing loss and pigmentation defects) and Hirschsprung disease (intestinal aganglionosis). Three genes are known to be involved in this syndrome, that is, EDN3 (endothelin-3), EDNRB (endothelin receptor type B), and SOX10. However, 15–35% of WS4 remains unexplained at the molecular level, suggesting that other genes could be involved and/or that mutations within...

  18. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome.

    NARCIS (Netherlands)

    Reeuwijk, J. van; Grewal, P.K.; Salih, M.A.; Beltran Valero de Bernabe, D.; McLaughlan, J.M.; Michielse, C.B.; Herrmann, R.; Hewitt, J.E.; Steinbrecher, A.; Seidahmed, M.Z.; Shaheed, M.M.; Abomelha, A.; Brunner, H.G.; Bokhoven, J.H.L.M. van; Voit, T.

    2007-01-01

    Intragenic homozygous deletions in the Large gene are associated with a severe neuromuscular phenotype in the myodystrophy (myd) mouse. These mutations result in a virtual lack of glycosylation of alpha-dystroglycan. Compound heterozygous LARGE mutations have been reported in a single human patient,

  19. 7号染色体臂间倒位伴Turner综合征家系分析%Analysis of Pericentric Inversion of Chromosome 7 Associated with Turner Syndrome in Family

    Institute of Scientific and Technical Information of China (English)

    江静; 王伟; 傅曼芬; 孙文鑫; 陈凤生; 王德芬

    2006-01-01

    目的 研究7号染色体臂间倒位的遗传机制.方法 患儿及父母作染色体检查,并对患儿的家系进行调查.结果 患儿的染色体核型为46,XX,inv(7)(p22q11)/45,X,inv(7)(p22q11),其中46,XX,inv(7)(p22q11),85%,45,X,inv(7)(p22q11),15%.父亲的核型为46,XY,inv(7)(p22q11),母亲的染色体正常,患儿的母亲第1胎为3月自然流产,家系中其它成员均无流产史,母系成员中身材均偏矮小.结论 染色体臂间倒位能引起流产和畸胎,应作产前诊断.%Objective: To investigate the genetic mechanism of pericentric inversion of chromosome 7. Methods: The patient and her parents were chromosome karyotype analysed. Results: Cytogenetic evaluation by G banding a pericentric inversion of chromosome 7 and mosaic Turner syndrome, 45, XO/46, XX, inv (7) ( p22q11 ). The position of the centromeres was identified by the CBG technique. One hundred metaphases were counted with 45, XO, inv (7) in 15% and 46, XX, inv (7)in 85%. A family study revealed the same abnormal inversion in her father while the mother was normal . But her mother had short stature . Her father's karyotype was 46, XY, inv(7 ) ( p22q11 ). The inversion was paternal. This mother with miscarriage for her first pregnancy at 12 weeks gestation may be related to the consequence of unbalanced gamete. Conclusion: Amniocytic cytogenetic examinate should be indispensable for prenatal diagnosis and terminating pregnancy is suggested when the foetus is found with unbalanced inversion karyotype.

  20. A designated centre for people with disabilities operated by Redwood Extended Care Facility Ltd, Meath

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  1. A designated centre for people with disabilities operated by Irish Society for Autism - Wexford

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  2. LIN7A depletion disrupts cerebral cortex development, contributing to intellectual disability in 12q21-deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Ayumi Matsumoto

    Full Text Available Interstitial deletion of 12q21 has been reported in four cases, which share several common clinical features, including intellectual disability (ID, low-set ears, and minor cardiac abnormalities. Comparative genomic hybridization (CGH analysis using the Agilent Human Genome CGH 180K array was performed with the genomic DNA from a two-year-old Japanese boy with these symptoms, as well as hypoplasia of the corpus callosum. Consequently, a 14 Mb deletion at 12q21.2-q21.33 (nt. 77 203 574-91 264 613 bp, which includes 72 genes, was detected. Of these, we focused on LIN7A, which encodes a scaffold protein that is important for synaptic function, as a possible responsible gene for ID, and we analyzed its role in cerebral cortex development. Western blotting analyses revealed that Lin-7A is expressed on embryonic day (E 13.5, and gradually increases in the mouse brain during the embryonic stage. Biochemical fractionation resulted in the enrichment of Lin-7A in the presynaptic fraction. Suppression of Lin-7A expression by RNAi, using in utero electroporation on E14.5, delayed neuronal migration on postnatal day (P 2, and Lin-7A-deficient neurons remained in the lower zone of the cortical plate and the intermediate zone. In addition, when Lin-7A was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed; development of these neurons was disrupted such that one half did not extend into the contralateral hemisphere after leaving the corpus callosum. Taken together, LIN7A is a candidate gene responsible for 12q21-deletion syndrome, and abnormal neuronal migration and interhemispheric axon development may contribute to ID and corpus callosum hypoplasia, respectively.

  3. Array-based FMR1 sequencing and deletion analysis in patients with a fragile X syndrome-like phenotype.

    Directory of Open Access Journals (Sweden)

    Stephen C Collins

    Full Text Available BACKGROUND: Fragile X syndrome (FXS is caused by loss of function mutations in the FMR1 gene. Trinucleotide CGG-repeat expansions, resulting in FMR1 gene silencing, are the most common mutations observed at this locus. Even though the repeat expansion mutation is a functional null mutation, few conventional mutations have been identified at this locus, largely due to the clinical laboratory focus on the repeat tract. METHODOLOGY/PRINCIPAL FINDINGS: To more thoroughly evaluate the frequency of conventional mutations in FXS-like patients, we used an array-based method to sequence FMR1 in 51 unrelated males exhibiting several features characteristic of FXS but with normal CGG-repeat tracts of FMR1. One patient was identified with a deletion in FMR1, but none of the patients were found to have other conventional mutations. CONCLUSIONS/SIGNIFICANCE: These data suggest that missense mutations in FMR1 are not a common cause of the FXS phenotype in patients who have normal-length CGG-repeat tracts. However, screening for small deletions of FMR1 may be of clinically utility.

  4. Two patients with duplication of 17p11.2: The reciprocal of the Smith-Magenis syndrome deletion?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A. [Greenwood Genetic Center, SC (United States)]|[Clemson Univ., SC (United States); Phelan, M.C.; Rogers, R.C. [Greenwood Genetic Center, SC (United States)] [and others

    1996-05-17

    J.M. and H.G. are two unrelated male patients with developmental delay. Cytogenetic analysis detected a duplication of 17p11.2 in both patients. The extent of the duplicated region was determined using single copy DNA probes: cen-D17S58-D17S29-D17S258-D17S71-D17S445-D17S122-tel. Four of the six markers, D17S29, D17S258, D17S71, and D17S445, were duplicated by dosage analysis. Fluorescent in situ hybridization (FISH) analysis of H.G., using cosmids for locus D17S29, confirmed the duplication in 17p11.2. Because the deletion that causes the Smith-Magenis syndrome involves the same region of 17p11.2 as the duplication in these patients, the mechanism may be similar to that proposed for the reciprocal deletion/ duplication event observed in Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and Charcot-Marie-Tooth Type 1A disease (CMT1A). 30 refs., 3 figs., 1 tab.

  5. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    NARCIS (Netherlands)

    J.M. Lobaccaro; S. Lumbroso; N. Poujol (Nicolas); V. Georget; A.O. Brinkmann (Albert); G. Malpuech (Georges); C. Sultan

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for

  6. Abnormal response to the anorexic effect of GHS-R inhibitors and exenatide in male Snord116 deletion mouse model for Prader-Willi Syndrome

    Science.gov (United States)

    Prader-Willi syndrome (PWS) is a genetic disease characterized by persistent hunger and hyperphagia. The lack of the Snord116 small nucleolar RNA cluster has been identified as the major contributor to PWS symptoms. The Snord116 deletion (Snord116del) mouse model manifested a subset of PWS symptoms ...

  7. Ventricular tachycardia in a Brugada syndrome patient caused by a novel deletion in SCN5A

    DEFF Research Database (Denmark)

    Tfelt-Hansen, J; Jespersen, T; Hofman-Bang, J;

    2009-01-01

    The aim of the present study was to identify the molecular mechanism behind ventricular tachycardia in a patient with Brugada syndrome. Arrhythmias in patients with Brugada syndrome often occur during sleep. However, a 28-year-old man with no previously documented arrhythmia or syncope who...... experienced shortness of breath and chest pain during agitation is described. An electrocardiogram revealed monomorphic ventricular tachycardia; after he was converted to nodal rhythm, he spontaneously went into sinus rhythm, and showed classic Brugada changes with coved ST elevation in leads V(1) to V(2......-cell patch clamp experiments using human embryonic kidney 293 cells transfected with the mutated SCN5A, no current could be recorded. Hence, the results suggest that the patient suffered from haploinsufficiency of Na(v)1.5, and that this mutation was the cause of his Brugada syndrome....

  8. A new microduplication syndrome encompassing the region of the Miller-Dieker (17p13 deletion) syndrome

    DEFF Research Database (Denmark)

    Roos, L; Jønch, A E; Kjaergaard, S;

    2009-01-01

    BACKGROUND: The use of array comparative genome hybridisation (CGH) analyses for investigation of children with mental retardation has led to the identification of a growing number of new microdeletion and microduplication syndromes, some of which have become clinically well characterised and som...

  9. High frequency of BTG1 deletions in acute lymphoblastic leukemia in children with down syndrome

    DEFF Research Database (Denmark)

    Lundin, Catarina; Hjorth, Lars; Behrendtz, Mikael;

    2012-01-01

    Previous cytogenetic studies of myeloid and acute lymphoblastic leukemias in children with Down syndrome (ML-DS and DS-ALL) have revealed significant differences in abnormality patterns between such cases and acute leukemias in general. Also, certain molecular genetic aberrations characterize DS...

  10. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Salem, Ikhlass Haj [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  11. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    International Nuclear Information System (INIS)

    Highlights: → We reported a patient with Wolfram syndrome and dilated cardiomyopathy. → We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). → Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. → The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  12. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4.

    OpenAIRE

    Bondurand, Nadège; Dastot-Le Moal, Florence; Stanchina, Laure; Collot, Nathalie; Baral, Viviane; Marlin, Sandrine; Attie-Bitach, Tania; Giurgea, Irina; Skopinski, Laurent; Reardon, William; Toutain, Annick; Sarda, Pierre; Echaieb, Anis; Lackmy-Port-Lis, Marilyn; Touraine, Renaud

    2007-01-01

    International audience Waardenburg syndrome (WS) is an auditory-pigmentary disorder that exhibits varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair and skin. Depending on additional symptoms, WS is classified into four subtypes, WS1-WS4. Absence of additional features characterizes WS2. The association of facial dysmorphic features defines WS1 and WS3, whereas the association with Hirschsprung disease (aganglionic megacolon) characterizes WS4, also ca...

  13. UBE2A deficiency syndrome: a report of two unrelated cases with large Xq24 deletions encompassing UBE2A gene.

    Science.gov (United States)

    Thunstrom, Sofia; Sodermark, Liv; Ivarsson, Liz; Samuelsson, Lena; Stefanova, Margarita

    2015-01-01

    Intragenic mutations of the UBE2A gene, as well as larger deletions of Xq24 encompassing UBE2A have in recent years been associated with a syndromic form of X-linked intellectual disability called UBE2A deficiency syndrome or X-linked intellectual disability type Nascimento (OMIM#300860). Common clinical features in these patients include moderate to severe intellectual disability (ID), heart defects, dysmorphic features such as high forehead, synophrys, prominent supraorbital ridges, almond-shaped and deep-set eyes, wide mouth, myxedematous appearance, hirsutism, onychodystrophy, and genital anomalies. This study investigates clinical and molecular data of two unrelated, affected males with chromosome Xq24 deletions encompassing UBE2A. Both have been followed from birth until two years of age. A review of the previously published patients with deletions encompassing UBE2A is provided. Besides the common features, the two boys show anomalies not previously described, such as retinal coloboma, esophageal atresia with esophageal fistula, long fingers, camptodactyly, clinodactyly, and long broad toes. Analyses of the phenotype-genotype correlations suggest considerable prevalence of heart defects in the group of patients with larger deletions of Xq24 in comparison to the patients having intragenic UBE2A mutations. However, further studies are needed in order to establish statistically reliable phenotype-genotype correlations of this syndrome. PMID:25287747

  14. Fine mapping of chromosome 10q deletions in mycosis fungoides and sezary syndrome: identification of two discrete regions of deletion at 10q23.33-24.1 and 10q24.33-25.1.

    Science.gov (United States)

    Wain, E Mary; Mitchell, Tracey J; Russell-Jones, Robin; Whittaker, Sean J

    2005-02-01

    Previous cytogenetic studies in mycosis fungoides (MF) and Sezary syndrome (SS) have identified a large and poorly defined area of chromosomal deletion on chromosome 10q. We report an extensive fine-mapping allelotyping study using 19 microsatellite markers in the region 10q22.3-10q26.13. Allelic loss was identified by loss of heterozygosity analysis in 26 of 60 (43%) cases: 15 of 45 (33%) with MF and 11 of 15 (73%) with SS. MF and SS samples showed similar patterns of allelic loss with the identification of two discrete regions of deletion which were mutually exclusive in all but two cases. Within the first region of deletion at 10q23.33-10q24.1, around microsatellite marker D10S185 (2.77 Mb), 23 genes were identified, including three (KIF11, HHEX, and HELLS) with functions that, if dysregulated, could be critical in MF and SS. The second region of deletion, 10q24.33-10q25.1, around microsatellite marker D10S530 (3.92 Mb), encodes 11 genes, the majority of which have poorly identified functions. This extensive allelotyping study provides the basis for future highly selective candidate gene analyses.

  15. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes

    Science.gov (United States)

    Arbogast, Thomas; Ouagazzal, Abdel-Mouttalib; Chevalier, Claire; Kopanitsa, Maksym; Afinowi, Nurudeen; Migliavacca, Eugenia; Cowling, Belinda S.; Birling, Marie-Christine; Champy, Marie-France; Reymond, Alexandre; Herault, Yann

    2016-01-01

    The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice. PMID:26872257

  16. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2016-02-01

    Full Text Available The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+ or a duplication (Dup/+ of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.

  17. Partial deletion of TCF4 in three generation family with non-syndromic intellectual disability, without features of Pitt-Hopkins syndrome.

    Science.gov (United States)

    Kharbanda, Mira; Kannike, Kaja; Lampe, Anne; Berg, Jonathan; Timmusk, Tõnis; Sepp, Mari

    2016-06-01

    Mutations in TCF4 (basic helix-loop-helix transcription factor 4), a gene with complex organization and multiple transcription initiation sites, are usually associated with Pitt-Hopkins syndrome (PTHS). However, a translocation encompassing the 5' end of TCF4 and several point mutations have been linked to non-syndromic intellectual disability (NSID). Here we describe a family with autosomal dominantly inherited NSID in seven relatives with a partial deletion of TCF4, disrupting the 5' end of the gene, predicted to result in the reduction of the number of mRNAs that can be produced by alternative transcription initiation. Functional studies indicate that it leads to reduced levels of transcripts coding for TCF4 protein isoforms with a nuclear localization signal, which may be relevant to the phenotype. The findings in our family support the notion that the position of the mutation in TCF4 is relevant to the phenotype, with those mutations in the 5' region, cassette exons and regions not affecting the important functional domains being linked to NSID rather than PTHS. We suggest that screening for mutations in TCF4 could be considered in the investigation of NSID. PMID:27132474

  18. A large deletion/insertion-induced frameshift mutation of the androgen receptor gene in a family with a familial complete androgen insensitivity syndrome.

    Science.gov (United States)

    Cong, Peikuan; Ye, Yinghui; Wang, Yue; Lu, Lingping; Yong, Jing; Yu, Ping; Joseph, Kimani Kagunda; Jin, Fan; Qi, Ming

    2012-06-01

    Androgen insensitivity syndrome (AIS) is an X-linked recessive genetic disorder with a normal 46, XY karyotype caused by abnormality of the androgen receptor (AR) gene. One Chinese family consisting of the proband and 5 other members with complete androgen insensitivity syndrome (CAIS) was investigated. Mutation analysis by DNA sequencing on all 8 exons and flanking intron regions of the AR gene revealed a unique large deletion/insertion mutation in the family. A 287 bp deletion and 77 bp insertion (c.933_1219delins77) mutation at codon 312 resulted in a frameshift which caused a premature stop (p.Phe312Aspfs*7) of polypeptide formation. The proband's mother and grandmother were heterozygous for the mutant allele. The proband's father, uncle and grandfather have the normal allele. From the pedigree constructed from mutational analysis of the family, it is revealed that the probably pathogenic mutation comes from the maternal side.

  19. Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.

    Science.gov (United States)

    Näf, Ernst; Laubscher, Dominik; Hopfer, Helmut; Streit, Markus; Matyas, Gabor

    2016-01-01

    Germline mutation of the FLCN gene causes Birt-Hogg-Dubé syndrome (BHD), a rare autosomal dominant condition characterized by skin fibrofolliculomas, lung cysts, spontaneous pneumothorax and renal tumours. We identified a hitherto unreported pathogenic FLCN frameshift deletion c.563delT (p.Phe188Serfs*35) in a family of a 46-year-old woman presented with macrohematuria due to bilateral chromophobe renal carcinomas. A heritable renal cancer was suspected due to the bilaterality of the tumour and as the father of this woman had suffered from renal cancer. Initially, however, BHD was overlooked by the medical team despite the highly suggestive clinical presentation. We assume that BHD is underdiagnosed, at least partially, due to low awareness of this variable condition and to insufficient use of appropriate genetic testing. Our study indicates that BHD and FLCN testing should be routinely considered in patients with positive family or personal history of renal tumours. In addition, we demonstrate how patients and their families can play a driving role in initiating genetic diagnosis, presymptomatic testing of at-risk relatives, targeted disease management, and genetic counselling of rare diseases such as BHD.

  20. Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.

    Science.gov (United States)

    Näf, Ernst; Laubscher, Dominik; Hopfer, Helmut; Streit, Markus; Matyas, Gabor

    2016-01-01

    Germline mutation of the FLCN gene causes Birt-Hogg-Dubé syndrome (BHD), a rare autosomal dominant condition characterized by skin fibrofolliculomas, lung cysts, spontaneous pneumothorax and renal tumours. We identified a hitherto unreported pathogenic FLCN frameshift deletion c.563delT (p.Phe188Serfs*35) in a family of a 46-year-old woman presented with macrohematuria due to bilateral chromophobe renal carcinomas. A heritable renal cancer was suspected due to the bilaterality of the tumour and as the father of this woman had suffered from renal cancer. Initially, however, BHD was overlooked by the medical team despite the highly suggestive clinical presentation. We assume that BHD is underdiagnosed, at least partially, due to low awareness of this variable condition and to insufficient use of appropriate genetic testing. Our study indicates that BHD and FLCN testing should be routinely considered in patients with positive family or personal history of renal tumours. In addition, we demonstrate how patients and their families can play a driving role in initiating genetic diagnosis, presymptomatic testing of at-risk relatives, targeted disease management, and genetic counselling of rare diseases such as BHD. PMID:26342594

  1. Deletion of Wiskott-Aldrich syndrome protein triggers Rac2 activity and increased cross-presentation by dendritic cells.

    Science.gov (United States)

    Baptista, Marisa A P; Keszei, Marton; Oliveira, Mariana; Sunahara, Karen K S; Andersson, John; Dahlberg, Carin I M; Worth, Austen J; Liedén, Agne; Kuo, I-Chun; Wallin, Robert P A; Snapper, Scott B; Eidsmo, Liv; Scheynius, Annika; Karlsson, Mikael C I; Bouma, Gerben; Burns, Siobhan O; Forsell, Mattias N E; Thrasher, Adrian J; Nylén, Susanne; Westerberg, Lisa S

    2016-01-01

    Wiskott-Aldrich syndrome (WAS) is caused by loss-of-function mutations in the WASp gene. Decreased cellular responses in WASp-deficient cells have been interpreted to mean that WASp directly regulates these responses in WASp-sufficient cells. Here, we identify an exception to this concept and show that WASp-deficient dendritic cells have increased activation of Rac2 that support cross-presentation to CD8(+) T cells. Using two different skin pathology models, WASp-deficient mice show an accumulation of dendritic cells in the skin and increased expansion of IFNγ-producing CD8(+) T cells in the draining lymph node and spleen. Specific deletion of WASp in dendritic cells leads to marked expansion of CD8(+) T cells at the expense of CD4(+) T cells. WASp-deficient dendritic cells induce increased cross-presentation to CD8(+) T cells by activating Rac2 that maintains a near neutral pH of phagosomes. Our data reveals an intricate balance between activation of WASp and Rac2 signalling pathways in dendritic cells. PMID:27425374

  2. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions.

    Science.gov (United States)

    Fregeau, Brieana; Kim, Bum Jun; Hernández-García, Andrés; Jordan, Valerie K; Cho, Megan T; Schnur, Rhonda E; Monaghan, Kristin G; Juusola, Jane; Rosenfeld, Jill A; Bhoj, Elizabeth; Zackai, Elaine H; Sacharow, Stephanie; Barañano, Kristin; Bosch, Daniëlle G M; de Vries, Bert B A; Lindstrom, Kristin; Schroeder, Audrey; James, Philip; Kulch, Peggy; Lalani, Seema R; van Haelst, Mieke M; van Gassen, Koen L I; van Binsbergen, Ellen; Barkovich, A James; Scott, Daryl A; Sherr, Elliott H

    2016-05-01

    Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions. PMID:27087320

  3. A deletion in FOXN1 is associated with a syndrome characterized by congenital hypotrichosis and short life expectancy in Birman cats.

    Directory of Open Access Journals (Sweden)

    Marie Abitbol

    Full Text Available An autosomal recessive syndrome characterized by congenital hypotrichosis and short life expectancy has been described in the Birman cat breed (Felis silvestris catus. We hypothesized that a FOXN1 (forkhead box N1 loss-of-function allele, associated with the nude phenotype in humans, mice and rats, may account for the syndrome observed in Birman cats. To the best of our knowledge, spontaneous mutations in FOXN1 have never been described in non-human, non-rodent mammalian species. We identified a recessive c.1030_1033delCTGT deletion in FOXN1 in Birman cats. This 4-bp deletion was associated with the syndrome when present in two copies. Percentage of healthy carriers in our French panel of genotyped Birman cats was estimated to be 3.2%. The deletion led to a frameshift and a premature stop codon at position 547 in the protein. In silico, the truncated FOXN1 protein was predicted to lack the activation domain and critical parts of the forkhead DNA binding domain, both involved in the interaction between FOXN1 and its targets, a mandatory step to promote normal hair and thymic epithelial development. Our results enlarge the panel of recessive FOXN1 loss-of-function alleles described in mammals. A DNA test is available; it will help owners avoid matings at risk and should prevent the dissemination of this morbid mutation in domestic felines.

  4. A child with an inherited 0.31 Mb microdeletion of chromosome 14q32.33: further delineation of a critical region for the 14q32 deletion syndrome.

    Science.gov (United States)

    Holder, J Lloyd; Lotze, Timothy E; Bacino, Carlos; Cheung, Sau-Wai

    2012-08-01

    Chromosome 14q32.3 deletions are uncommon, with most described patients harboring a ring chromosome 14. Only 15 deletions have been described not associated with ring formation or other complex chromosomal rearrangements. Here, we describe a child with the smallest deletion of chromosome 14q32.3 reported in the literature. This child's deletion encompasses at most 0.305 Mb and six genes including NUDT14, BRF1, BTBD6, PACS2, MTA1, and TEX22. He has similar clinical findings, including mild facial dysmorphisms and intellectual disability, as other individuals with much larger deletions of the terminus of the long arm of chromosome 14. This suggests that the genes deleted in our patient contribute to the 14q32 deletion syndrome.

  5. Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for Lavender Foal Syndrome.

    Directory of Open Access Journals (Sweden)

    Samantha A Brooks

    2010-04-01

    Full Text Available Lavender Foal Syndrome (LFS is a lethal inherited disease of horses with a suspected autosomal recessive mode of inheritance. LFS has been primarily diagnosed in a subgroup of the Arabian breed, the Egyptian Arabian horse. The condition is characterized by multiple neurological abnormalities and a dilute coat color. Candidate genes based on comparative phenotypes in mice and humans include the ras-associated protein RAB27a (RAB27A and myosin Va (MYO5A. Here we report mapping of the locus responsible for LFS using a small set of 36 horses segregating for LFS. These horses were genotyped using a newly available single nucleotide polymorphism (SNP chip containing 56,402 discriminatory elements. The whole genome scan identified an associated region containing these two functional candidate genes. Exon sequencing of the MYO5A gene from an affected foal revealed a single base deletion in exon 30 that changes the reading frame and introduces a premature stop codon. A PCR-based Restriction Fragment Length Polymorphism (PCR-RFLP assay was designed and used to investigate the frequency of the mutant gene. All affected horses tested were homozygous for this mutation. Heterozygous carriers were detected in high frequency in families segregating for this trait, and the frequency of carriers in unrelated Egyptian Arabians was 10.3%. The mapping and discovery of the LFS mutation represents the first successful use of whole-genome SNP scanning in the horse for any trait. The RFLP assay can be used to assist breeders in avoiding carrier-to-carrier matings and thus in preventing the birth of affected foals.

  6. Chromosome breakage in Prader-Willi and Angelman syndrome deletions may involve recombination between a repeat at the proximal and distal breakpoints

    Energy Technology Data Exchange (ETDEWEB)

    Amos-Landgraf J.; Nicholls, R.D. [Case Western Reserve Univ., Cleveland, OH (United States); Gottlieb, W. [Univ. of Florida, Gainesville, FL (United States)] [and others

    1994-09-01

    Prader-Willi (PWS) and Angelman (AS) syndromes most commonly arise from large deletions of 15q11-q13. Deletions in PWS are paternal in origin, while those in AS are maternal in origin, clearly demonstrating genomic imprinting in these clinically distinct neurobehavioural disorders. In at least 90% of PWS and AS deletion patients, the same 4 Mb region within 15q11-q13 is deleted with breakpoints clustering in single YAC clones at the proximal and distal ends. To study the mechanism of chromosome breakage in PWS and AS, we have previously isolated 25 independent clones from these three YACs using Alu-vector PCR. Four clones were selected that appear to detect a low copy repeat that is located in the proximal and distal breakpoint regions of chromosome 15q11-q13. Three clones detect the same 4 HindIII bands in genomic DNA, all from 15q11-q13, with differing intensities for the probes located at the proximal or distal breakpoints region, respectively. This suggests that these probes detect related members of a low-copy repeat at either location. Moreover, the 254RL2 probe detects a novel HindIII band in two unrelated PWS deletion patients, suggesting that this may represent a breakpoint fragment, with recombination occurring within a similar interval in both patients. A fourth clone, 318RL3 detects 5 bands in HindIII-digested genomic DNA, all from 15q11-q13. This YAC endclone itself is not deleted in PWS and AS deletion patients, as seen by an invariant strong band. Two other strong bands are variably intact or deleted in different PWS or AS deletion patients, suggesting a relationship of this sequence to the breakpoints. Moreover, PCR using 318RL3 primers from the distal 93C9 YAC led to the isolation of a related clone with 96% identity, demonstrating the existence of a low-copy repeat with members close to the proximal and distal breakpoints. Taken together, our data suggest a complex, low-copy repeat with members at both the proximal and distal boundaries.

  7. Novel susceptibility locus at 22q11 for diabetic nephropathy in type 1 diabetes

    DEFF Research Database (Denmark)

    Wessman, Maija; Forsblom, Carol; Kaunisto, Mari A;

    2011-01-01

    Diabetic nephropathy (DN) affects about 30% of patients with type 1 diabetes (T1D) and contributes to serious morbidity and mortality. So far only the 3q21-q25 region has repeatedly been indicated as a susceptibility region for DN. The aim of this study was to search for new DN susceptibility loci...

  8. A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region

    Directory of Open Access Journals (Sweden)

    McInnes L

    2010-03-01

    Full Text Available Abstract Background The 15q24 microdeletion syndrome has been recently described as a recurrent, submicroscopic genomic imbalance found in individuals with intellectual disability, typical facial appearance, hypotonia, and digital and genital abnormalities. Gene dosage abnormalities, including copy number variations (CNVs, have been identified in a significant fraction of individuals with autism spectrum disorders (ASDs. In this study we surveyed two ASD cohorts for 15q24 abnormalities to assess the frequency of genomic imbalances in this interval. Methods We screened 173 unrelated subjects with ASD from the Central Valley of Costa Rica and 1336 subjects with ASD from 785 independent families registered with the Autism Genetic Resource Exchange (AGRE for CNVs across 15q24 using oligonucleotide arrays. Rearrangements were confirmed by array comparative genomic hybridization and quantitative PCR. Results Among the patients from Costa Rica, an atypical de novo deletion of 3.06 Mb in 15q23-q24.1 was detected in a boy with autism sharing many features with the other 13 subjects with the 15q24 microdeletion syndrome described to date. He exhibited intellectual disability, constant smiling, characteristic facial features (high anterior hairline, broad medial eyebrows, epicanthal folds, hypertelorism, full lower lip and protuberant, posteriorly rotated ears, single palmar crease, toe syndactyly and congenital nystagmus. The deletion breakpoints are atypical and lie outside previously characterized low copy repeats (69,838-72,897 Mb. Genotyping data revealed that the deletion had occurred in the paternal chromosome. Among the AGRE families, no large 15q24 deletions were observed. Conclusions From the current and previous studies, deletions in the 15q24 region represent rare causes of ASDs with an estimated frequency of 0.1 to 0.2% in individuals ascertained for ASDs, although the proportion might be higher in sporadic cases. These rates compare with a

  9. Deletions of Yq11 associated with short stature and the Turner syndrome. Tentative mapping of a region associated with specific Turner stigmata to proximal interval 5.

    Energy Technology Data Exchange (ETDEWEB)

    McElreavey, K.; Barbaux, S.; Vilain, E. [Immunogenetique Humaine 25 rue du Dr. Roux, Paris (France)] [and others

    1994-09-01

    Turner syndrome is a complex human phenotype, commonly associated with a 45,X karyotype. Mapping the Turner phenotype is difficult since hidden mosaicisms, partial monosomy and complex rearrangements are present in many affected individuals. In addition, attempts to map the genes involved to the X chromosome have failed to yield a consistent localisation. An alternative approach to map and identify Turner genes is to study XY individuals, with sex chromosome abnormalities, who present with or without characteristic Turner stigmata. We report the analysis of 4 individuals with terminal deletions of Yq. The individuals were azoospermic males without phenotypic abnormalities (2 cases) and azoospermic males presenting with a specific subset of Turner stigmata (2 cases). Breakpoints in each of the cytogenetically detectable Yq deletions were mapped by Southern analysis and Y chromosome-specific sequence tagged sites (STS). Correlation between the patients phenotypes and the extent of their deletion indicate a critical region associated with specific Turner stigmata (cubitus valgus, shield chest, short fourth metacarpals) and growth retardation at Yq at proximal interval 5. These data provide evidence that the somatic features of the Turner syndrome are most likely caused by haploinsufficiency of genes at several loci.

  10. A Rare Recurrent 4q25 Proximal Deletion Not Involving the PITX2 Gene: A Genomic Disorder Distinct from Axenfeld-Rieger Syndrome.

    Science.gov (United States)

    Heithaus, Jennifer L; Twyman, Kimberly A; Batanian, Jacqueline R

    2016-07-01

    Haploinsufficient microdeletions within chromosome 4q25 are often associated with Axenfeld-Rieger syndrome. A de novo 4q25 deletion, 675 kb proximal to PITX2, has previously been reported once in an adult patient. The patient did not have Axenfeld-Rieger anomaly, but instead had intellectual disability and a complex behavioral phenotype with withdrawn, stereotypic, and ritualistic behavior. Array comparative genome hybridization demonstrated a smaller, overlapping 4q25 deletion in a 2-year-old patient and his mother, both having significant phenotypic overlap with the initially reported patient. All 3 patients have distinct facial features (including mild hypotelorism and subtle mandibular asymmetry), developmental delay, and complex behavioral difficulties. A genotype-phenotype correlation narrows the shared phenotype to a common COL25A1 gene aberration and proposes that the concurrent EGF gene loss has a significant impact on the phenotypic severity. Overall, our patients provide data to support the existence of a novel 4q25 proximal deletion syndrome. PMID:27587989

  11. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated island in the Miller-Dieker chromosome region

    International Nuclear Information System (INIS)

    The Miller-Dieker syndrome (MDS), composed of characteristic facial abnormalities and a severe neuronal migration disorder affecting the cerebral cortex, is caused by visible or submicroscopic deletions of chromosome band 17p13. Twelve anonymous DNA markers were tested against a panel of somatic cell hybrids containing 17p deletions from seven MDS patients. All patients, including three with normal karyotypes, are deleted for a variable set of 5-12 markers. Two highly polymorphic VNTR (variable number of tandem repeats) probes, YNZ22 and YNH37, are codeleted in all patients tested and make molecular diagnosis for this disorder feasible. By pulsed-field gel electrophoresis, YNZ22 and YNH37 were shown to be within 30 kilobases (kb) of each other. Cosmid clones containing both VNTR sequences were identified, and restriction mapping showed them to be 100 kb were completely deleted in all patients, providing a minimum estimate of the size of the MDS critical region. A hypomethylated island and evolutionarily conserved sequences were identified within this 100-kb region, indications of the presence of one or more expressed sequences potentially involved in the pathophysiology of this disorder. The conserved sequences were mapped to mouse chromosome 11 by using mouse-rat somatic cell hybrids, extending the remarkable homology between human chromosome 17 and mouse chromosome 11 by 30 centimorgans, into the 17p telomere region

  12. Two families with isolated cat cry without the cri-du-chat syndrome phenotype have an inherited 5p15.3 deletion: Delineation of the larynx malformation region

    Energy Technology Data Exchange (ETDEWEB)

    Gersh, M.; Overhauser, J. [Thomas Jefferson Univ., Philadelphia, PA (United States); Pasztor, L.M. [Children`s Mercy Hospital, Kansas City, MO (United States)] [and others

    1994-09-01

    The cri-du-chat syndrome is a contiguous gene syndrome that results from a deletion of the short arm of chromosome 5 (5p). Patients present with a cat-like cry at birth that is usually considered diagnostic of this syndrome. Additional features of the syndrome include failure to thrive, microcephaly, hypertelorism, epicanthal folds, hypotonia, and severe mental retardation. We report on two families in which the patients with 5p deletions have only the characteristic cat-like cry with normal to mildly delayed development. One family has three children with varying levels of developmental delay and a deletion of 5p15.3 that was inherited from the father. The second family has a mother and daughter both presenting with a cat-like cry and normal intelligence. A de novo deletion in a patient with isolated cat cry and mild developmental delay was also identified. The precise locations of the deletions in each family were determined by fluorescent in situ hybridization using lambda phage, cosmids, and YAC clones. Cryptic translocations and mosaicism were not detected in the parents transmitting the deletion. All of the deletion breakpoints map distal to the previously defined cri-du-chat critical region. A YAC contig has been constructed for the chromosomal region implicated in the larynx malformation. DNA clones mapping in this region will be useful diagnostic tools for delineating 5p deletions that result in the typical features of cri-du-chat syndrome with deletions that result in the isolated cat-like cry feature which is associated with a better prognosis.

  13. A 725 kb deletion at 22q13.1 chromosomal region including SOX10 gene in a boy with a neurologic variant of Waardenburg syndrome type 2.

    Science.gov (United States)

    Siomou, Elisavet; Manolakos, Emmanouil; Petersen, Michael; Thomaidis, Loretta; Gyftodimou, Yolanda; Orru, Sandro; Papoulidis, Ioannis

    2012-11-01

    Waardenburg syndrome (WS) is a rare (1/40,000) autosomal dominant disorder resulting from melanocyte defects, with varying combinations of sensorineural hearing loss and abnormal pigmentation of the hair, skin, and inner ear. WS is classified into four clinical subtypes (WS1-S4). Six genes have been identified to be associated with the different subtypes of WS, among which SOX10, which is localized within the region 22q13.1. Lately it has been suggested that whole SOX10 gene deletions can be encountered when testing for WS. In this study we report a case of a 13-year-old boy with a unique de novo 725 kb deletion within the 22q13.1 chromosomal region, including the SOX10 gene and presenting clinical features of a neurologic variant of WS2. PMID:22842075

  14. Deletion of the steroid-binding domain of the human androgen receptor gene in one family with complete androgen insensitivity syndrome: Evidence for further genetic heterogeneity in this syndrome

    International Nuclear Information System (INIS)

    The cloning of a cDNA for the human androgen receptor gene has resulted in the availability for cDNA probes that span various parts of the gene, including the entire steroid-binding domain and part of the DNA-binding domain, as well as part of the 5' region of the gene. The radiolabeled probes were used to screen for androgen receptor mutations on Southern blots prepared by restriction endonuclease digestion of genomic DNA from human subjects with complete androgen insensitivity syndrome (AIS). In this investigation, the authors considered only patients presenting complete AIS and with the androgen receptor (-) form as the most probably subjects to show a gene deletion. One subject from each of six unrelated families with the receptor (-) form of complete AIS and 10 normal subjects were studied. In the 10 normal subjects and in 5 of the 6 patients, identical DNA restriction fragment patterns were observed with EcoRI and BamHI. Analysis of other members of this family confirmed the apparent gene deletion. The data provide direct proof that complete AIS in some families can result from a deletion of the androgen receptor structural gene. However, other families do not demonstrate such a deletion, suggesting that point mutations may also result in the receptor (-) form of complete AIS, adding further to the genetic heterogeneity of this syndrome

  15. Differential splicing of human androgen receptor pre-mRNA in X-linked reifenstein syndrome, because of a deletion involving a putative branch site

    Energy Technology Data Exchange (ETDEWEB)

    Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de; Brinkmann, A.O.; Degenhart, H.J.; Trapman, J. (Erasmus Univ., Rotterdam (Netherlands))

    1994-04-01

    The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-point sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.

  16. A 3.7 Mb Deletion Encompassing ZEB2 Causes a Novel Polled and Multisystemic Syndrome in the Progeny of a Somatic Mosaic Bull

    Science.gov (United States)

    Capitan, Aurélien; Allais-Bonnet, Aurélie; Pinton, Alain; Marquant-Le Guienne, Brigitte; Le Bourhis, Daniel; Grohs, Cécile; Bouet, Stéphan; Clément, Laëtitia; Salas-Cortes, Laura; Venot, Eric; Chaffaux, Stéphane; Weiss, Bernard; Delpeuch, Arnaud; Noé, Guy; Rossignol, Marie-Noëlle; Barbey, Sarah; Dozias, Dominique; Cobo, Emilie; Barasc, Harmonie; Auguste, Aurélie; Pannetier, Maëlle; Deloche, Marie-Christine; Lhuilier, Emeline; Bouchez, Olivier; Esquerré, Diane; Salin, Gérald; Klopp, Christophe; Donnadieu, Cécile; Chantry-Darmon, Céline; Hayes, Hélène; Gallard, Yves; Ponsart, Claire; Boichard, Didier; Pailhoux, Eric

    2012-01-01

    Polled and Multisystemic Syndrome (PMS) is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns), facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation. PMID:23152852

  17. Autism spectrum disorders and hyperactive/impulsive behaviors in Japanese patients with Prader–Willi syndrome: A comparison between maternal uniparental disomy and deletion cases

    OpenAIRE

    Ogata, Hiroyuki; Ihara, Hiroshi; Murakami, Nobuyuki; Gito, Masao; Kido, Yasuhiro; Nagai, Toshiro

    2014-01-01

    This study aims to compare maternal uniparental disomy 15 (mUPD) and a paternal deletion of 15q11-13 (DEL) of Prader–Willi syndrome (PWS) in regard to autism spectrum disorders (ASD). Forty-five Japanese individuals with PWS were recruited from a single recruitment center. The participants consisted of 22 children (aged from 6 to 12) and 23 adolescents (aged from 13 to 19). Six children and seven adolescents were confirmed as having mUPD. Sixteen children and 16 adolescents were confirmed as ...

  18. Arachnomelia syndrome in Simmental cattle is caused by a homozygous 2-bp deletion in the molybdenum cofactor synthesis step 1 gene (MOCS1

    Directory of Open Access Journals (Sweden)

    Semmer Jördis

    2011-01-01

    Full Text Available Abstract Background Arachnomelia syndrome is an autosomal recessive inherited disease in cattle. Affected calves die around birth and show malformations of the skeleton mainly affecting the legs, the spinal column and the skull. A number of arachnomelia syndrome affected Simmental calves were recently detected by a surveillance system of anomalies with a peak of more than 120 recorded cases in the year 2006. The causative mutation was previously mapped to a 9 cM-region on bovine chromosome 23. We herein report the fine-mapping and identification of the gene causing arachnomelia syndrome in Simmental cattle. Results By using a dense set of markers, the arachnomelia syndrome linked region could be refined to 1.5 cM harbouring three protein coding genes. Comparative sequencing of these genes revealed a two-bp-deletion in the bovine MOCS1 gene resulting in a frame-shift and a premature termination codon. We genotyped affected calves and their ancestors and found that all affected were homozygous for the deletion whereas all carriers were heterozygous. Furthermore, cattle from the same population, but not directly related to known carriers mostly showed the wild type genotype. Conclusions MOCS1 encodes two proteins that are involved in the first synthesis step of molybdenum cofactor. A non functional sulfite-oxydase, one of the enzymes requiring molybdenum cofactor, leads to a similar pathology in Brown Swiss cattle. In combination the perfect association of the mutation with the phenotype and the obvious disruption of protein translation provide strong evidence for the causality of the MOCS1 mutation. Our results are the first example for an oligogenic lethal inherited disease in cattle. Furthermore, they show the potential involvement of sulfite metabolism in aberrant bone development.

  19. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome.

    Science.gov (United States)

    Han, Joan C; Thurm, Audrey; Golden Williams, Christine; Joseph, Lisa A; Zein, Wadih M; Brooks, Brian P; Butman, John A; Brady, Sheila M; Fuhr, Shannon R; Hicks, Melanie D; Huey, Amanda E; Hanish, Alyson E; Danley, Kristen M; Raygada, Margarita J; Rennert, Owen M; Martinowich, Keri; Sharp, Stephen J; Tsao, Jack W; Swedo, Susan E

    2013-01-01

    In animal studies, brain-derived neurotrophic factor (BDNF) is an important regulator of central nervous system development and synaptic plasticity. WAGR (Wilms tumour, Aniridia, Genitourinary anomalies, and mental Retardation) syndrome is caused by 11p13 deletions of variable size near the BDNF locus and can serve as a model for studying human BDNF haploinsufficiency (+/-). We hypothesized that BDNF+/- would be associated with more severe cognitive impairment in subjects with WAGR syndrome. Twenty-eight subjects with WAGR syndrome (6-28 years), 12 subjects with isolated aniridia due to PAX6 mutations/microdeletions (7-54 years), and 20 healthy controls (4-32 years) received neurocognitive assessments. Deletion boundaries for the subjects in the WAGR group were determined by high-resolution oligonucleotide array comparative genomic hybridization. Within the WAGR group, BDNF+/- subjects (n = 15), compared with BDNF intact (+/+) subjects (n = 13), had lower adaptive behaviour (p = .02), reduced cognitive functioning (p = .04), higher levels of reported historical (p = .02) and current (p = .02) social impairment, and higher percentage meeting cut-off score for autism (p = .047) on Autism Diagnostic Interview-Revised. These differences remained nominally significant after adjusting for visual acuity. Using diagnostic measures and clinical judgement, 3 subjects (2 BDNF+/- and 1 BDNF+/+) in the WAGR group (10.7%) were classified with autism spectrum disorder. A comparison group of visually impaired subjects with isolated aniridia had cognitive functioning comparable to that of healthy controls. In summary, among subjects with WAGR syndrome, BDNF+/- subjects had a mean Vineland Adaptive Behaviour Compose score that was 14-points lower and a mean intelligence quotient (IQ) that was 20-points lower than BDNF+/+ subjects. Our findings support the hypothesis that BDNF plays an important role in human neurocognitive development.

  20. A novel silent deletion, an insertion mutation and a nonsense mutation in the TCOF1 gene found in two Chinese cases of Treacher Collins syndrome.

    Science.gov (United States)

    Wang, Yan; Yin, Xiao-Juan; Han, Tao; Peng, Wei; Wu, Hong-Lin; Liu, Xin; Feng, Zhi-Chun

    2014-12-01

    Treacher Collins syndrome (TCS) is the most common and well-known craniofacial disorder caused by mutations in the genes involved in pre-rRNA transcription, which include the TCOF1 gene. This study explored the role of TCOF1 mutations in Chinese patients with TCS. Mutational analysis of the TCOF1 gene was performed in three patients using polymerase chain reaction and direct sequencing. Among these three patients, two additional TCOF1 variations, a novel 18 bp deletion and a novel 1 bp insertion mutation, were found in patient 1, together with a novel nonsense mutation (p.Ser476X) and a previously reported 4 bp deletion (c.1872_1875delTGAG) in other patients. Pedigree analysis allowed for prediction of the character of the mutation, which was either pathological or not. The 18 bp deletion of six amino acids, Ser-Asp-Ser-Glu-Glu-Glu (798*803), which was located in the CKII phosphorylation site of treacle, seemed relatively benign for TCS. By contrast, another novel mutation of c.1072_1073insC (p.Gln358ProfsX23) was a frameshift mutation and expected to result in a premature stop codon. This study provides insights into the functional domain of treacle and illustrates the importance of clinical and family TCS screening for the interpretation of novel sequence alterations.

  1. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  2. Molecular cytogenetic determination of a deletion/duplication of 1q that results in a trisomy 18 syndrome-like phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Mewar, R.; Harrison, W.; Weaver, D.D.; Palmer, C.; Davee, M.A.; Overhauser, J.

    1994-08-15

    We report on an infant who presented at birth with some characteristics of trisomy 18 syndrome, including low birth weight, facial abnormalities, overlapping fingers, and congenital heart defects. On chromosome analysis, no additional chromosome 18 was observed and both chromosome 18 homologues appeared normal. However, a small piece of chromosomal material of unknown origin was detected at the tip of the long arm of chromosome 1. Fluorescence in situ hybridization (FISH) using whole chromosome 18 painting probes disclosed no additional hybridization at the telomere of 1q, suggesting that the material was derived from another chromosome. Further chromosome painting experiments suggested that the telomeric addition was of chromosome 1 origin. To identify subchromosomal regions involved in the rearrangement, additional FISH analyses were performed using single copy and repetitive DNA probes mapping different portions of chromosome 1. The analyses showed that probes mapping to 1q34-43 were duplicated in the derivative chromosome 1. In addition, a DNA probe mapping to 1q44 was found to be deleted from the derivative chromosome 1. Our composite analysis suggests that a deletion and a duplication of chromosome 1q can result in some of the clinical findings usually associated with trisomy 16 syndrome. These results demonstrate the usefulness of FISH analysis when karyotype analysis is not consistent with the clinical description. 23 refs., 3 figs., 2 tabs.

  3. A syndromic form of Pierre Robin sequence is caused by 5q23 deletions encompassing FBN2 and PHAX.

    Science.gov (United States)

    Ansari, Morad; Rainger, Jacqueline K; Murray, Jennie E; Hanson, Isabel; Firth, Helen V; Mehendale, Felicity; Amiel, Jeanne; Gordon, Christopher T; Percesepe, Antonio; Mazzanti, Laura; Fryer, Alan; Ferrari, Paola; Devriendt, Koenraad; Temple, I Karen; FitzPatrick, David R

    2014-10-01

    Pierre Robin sequence (PRS) is an aetiologically distinct subgroup of cleft palate. We aimed to define the critical genomic interval from five different 5q22-5q31 deletions associated with PRS or PRS-associated features and assess each gene within the region as a candidate for the PRS component of the phenotype. Clinical array-based comparative genome hybridisation (aCGH) data were used to define a 2.08 Mb minimum region of overlap among four de novo deletions and one mother-son inherited deletion associated with at least one component of PRS. Commonly associated anomalies were talipes equinovarus (TEV), finger contractures and crumpled ear helices. Expression analysis of the orthologous genes within the PRS critical region in embryonic mice showed that the strongest candidate genes were FBN2 and PHAX. Targeted aCGH of the critical region and sequencing of these genes in a cohort of 25 PRS patients revealed no plausible disease-causing mutations. In conclusion, deletion of ∼2 Mb on 5q23 region causes a clinically recognisable subtype of PRS. Haploinsufficiency for FBN2 accounts for the digital and auricular features. A possible critical region for TEV is distinct and telomeric to the PRS region. The molecular basis of PRS in these cases remains undetermined but haploinsufficiency for PHAX is a plausible mechanism.

  4. A novel homozygous 10 nucleotide deletion in BBS10 causes Bardet-Biedl syndrome in a Pakistani family

    NARCIS (Netherlands)

    Agha, Z.; Iqbal, Z.; Azam, M.; Hoefsloot, L.H.; Bokhoven, J.H.L.M. van; Qamar, R.

    2013-01-01

    Bardet-Biedl Syndrome is a multisystem autosomal recessive disorder characterized by central obesity, polydactyly, hypogonadism, learning difficulties, rod-cone dystrophy and renal dysplasia. Bardet-Biedl Syndrome has a prevalence rate ranging from 1 in 100,000 to 1 in 160,000 births although there

  5. Longitudinal Follow-up of Autism Spectrum Features and Sensory Behaviors in Angelman Syndrome by Deletion Class

    Science.gov (United States)

    Peters, Sarika U.; Horowitz, Lucia; Barbieri-Welge, Rene; Taylor, Julie Lounds; Hundley, Rachel J.

    2012-01-01

    Background: Angelman syndrome (AS) is a neurogenetic disorder characterized by severe intellectual disability, lack of speech, and low threshold for laughter; it is considered a "syndromic" form of autism spectrum disorder (ASD). Previous studies have indicated overlap of ASD and AS, primarily in individuals with larger (approximately 6 Mb) Class…

  6. Familial co-segregation of Coffin-Lowry syndrome inherited from the mother and autosomal dominant Waardenburg type IV syndrome due to deletion of EDNRB inherited from the father.

    Science.gov (United States)

    Loupe, Jacob; Sampath, Srirangan; Lacassie, Yves

    2014-10-01

    We report an African-American family that was identified after the proposita was referred for diagnostic evaluation at 4½ months with a history of Hirschsprung and dysmorphic features typical of Waardenburg syndrome (WS). Family evaluation revealed that the father had heterochromidia irides and hypertelorism supporting the clinical diagnosis of WS; however, examination of the mother revealed characteristic facial and digital features of Coffin-Lowry syndrome (CLS). Molecular testing of the mother identified a novel 2 bp deletion (c.865_866delCA) in codon 289 of RPS6KA3 leading to a frame-shift and premature termination of translation 5 codons downstream (NM_004586.2:p.Gln289ValfsX5). This deletion also was identified in the proposita and her three sisters with a clinical suspicion of CLS, all of whom as carriers for this X-linked disorder had very subtle manifestations. The molecular confirmation of WS type 4 (Shah-Waardenburg; WS4) was not as straightforward. To evaluate WS types 1-4, multiple sequential molecular tests were requested, including Sanger sequencing of all exons, and deletion/duplication analysis using MLPA for PAX3, MITF, SOX10, EDN3 and EDNRB. Although sequencing did not identify any disease causing variants, MLPA identified a heterozygous deletion of the entire EDNRB in the father. This deletion was also found in the proposita and the oldest child. Since the heterozygous deletion was the only change identified in EDNRB, this family represents one of the few cases of an autosomal dominant inheritance of WS4 involving the endothelin pathway. Altogether, clinical evaluation of the family revealed one child to be positive for WS4 and two positive for CLS, while two children were positive for both diseases simultaneously (including the proposita) while another pair test negative for either disease. This kinship is an example of the coincidence of two conditions co-segregating in one family, with variable phenotypes requiring molecular testing to

  7. Conotruncal heart defect/microphthalmia syndrome: delineation of an autosomal recessive syndrome.

    Science.gov (United States)

    Digilio, M C; Marino, B; Giannotti, A; Dallapiccola, B

    1997-01-01

    We report on three sibs born to healthy parents, one livebirth and two terminated pregnancies, presenting with a malformation complex characterised by conotruncal heart defect (CTHD), microphthalmia, genital anomalies, and facial dysmorphism. The recurrence of the association of CTHD, particularly truncus arteriosus, and microphthalmia in sibs has previously been reported in rare instances, but a correlation between the single descriptions has never been noted. CTHDs are included among the cardiac malformations characteristically associated with the group of syndromes caused by the microdeletion of chromosome 22q11, but no detectable hemizygosity has been found in our family. An autosomal recessive gene seems to be involved in syndromic patients with the combination of CTHD and microphthalmia. The map location of this gene is at present unknown, but autosomal recessive inheritance must be considered in genetic counselling of families with children presenting with this malformation complex. PMID:9391888

  8. Cytogenetic follow-up by karyotyping and fluorescence in situ hybridization: implications for monitoring patients with myelodysplastic syndrome and deletion 5q treated with lenalidomide

    Science.gov (United States)

    Göhring, Gudrun; Giagounidis, Aristoteles; Büsche, Guntram; Hofmann, Winfried; Kreipe, Hans Heinrich; Fenaux, Pierre; Hellström-Lindberg, Eva; Schlegelberger, Brigitte

    2011-01-01

    In patients with low and intermediate risk myelodysplastic syndrome and deletion 5q (del(5q)) treated with lenalidomide, monitoring of cytogenetic response is mandatory, since patients without cytogenetic response have a significantly increased risk of progression. Therefore, we have reviewed cytogenetic data of 302 patients. Patients were analyzed by karyotyping and fluorescence in situ hybridization. In 85 patients, del(5q) was only detected by karyotyping. In 8 patients undergoing karyotypic evolution, the del(5q) and additional chromosomal aberrations were only detected by karyotyping. In 3 patients, del(5q) was only detected by fluorescence in situ hybridization, but not by karyotyping due to a low number of metaphases. Karyotyping was significantly more sensitive than fluorescence in situ hybridization in detecting the del(5q) clone. In conclusion, to optimize therapy control of myelodysplastic syndrome patients with del(5q) treated with lenalidomide and to identify cytogenetic non-response or progression as early as possible, fluorescence in situ hybridization alone is inadequate for evaluation. Karyotyping must be performed to optimally evaluate response. (clinicaltrials.gov identifier: NCT01099267 and NCT00179621) PMID:21109690

  9. Association between insertion/deletion polymorphism in angiotensin-converting enzyme gene and acute lung injury/acute respiratory distress syndrome: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Matsuda Akihisa

    2012-08-01

    Full Text Available Abstract Background A previous meta-analysis reported a positive association between an insertion/deletion (I/D polymorphism in the angiotensin-converting enzyme gene (ACE and the risk of acute lung injury (ALI/acute respiratory distress syndrome (ARDS. Here, we updated this meta-analysis and additionally assessed the association of this polymorphism with ALI/ARDS mortality. Methods We searched electronic databases through October 2011 for the terms “angiotensin-converting enzyme gene”, “acute lung injury”, and “acute respiratory distress syndrome,” and reviewed all studies that reported the relationship of the I/D polymorphism in ACE with ALI/ARDS in humans. Seven studies met the inclusion criteria, comprising 532 ALI/ARDS patients, 3032 healthy controls, and 1432 patients without ALI/ARDS. We used three genetic models: the allele, dominant, and recessive models. Results The ACE I/D polymorphism was not associated with susceptibility to ALI/ARDS for any genetic model. However, the ACE I/D polymorphism was associated with the mortality risk of ALI/ARDS in Asian subjects ( Pallele Pdominant = 0.001, Precessive = 0.002. This finding remained significant after correction for multiple comparisons. Conclusions There is a possible association between the ACE I/D polymorphism genotype and the mortality risk of ALI/ARDS in Asians.

  10. Deletions and rearrangements of the H19/IGF2 enhancer region in patients with Silver-Russell syndrome and growth retardation

    DEFF Research Database (Denmark)

    Grønskov, Karen; Poole, Rebecca L; Hahnemann, Johanne M D;

    2011-01-01

    Silver-Russell syndrome (SRS) is characterised by prenatal and postnatal growth retardation, dysmorphic facial features, and body asymmetry. In 35-60% of SRS cases the paternally methylated imprinting control region (ICR) upstream of the H19 gene (H19-ICR) is hypomethylated, leading to downregula......Silver-Russell syndrome (SRS) is characterised by prenatal and postnatal growth retardation, dysmorphic facial features, and body asymmetry. In 35-60% of SRS cases the paternally methylated imprinting control region (ICR) upstream of the H19 gene (H19-ICR) is hypomethylated, leading...... with paternally derived deletions, and one with a balanced translocation of inferred paternal origin. They all have a breakpoint within the H19/IGF2 enhancer region. One proband has severe growth retardation, the others have SRS. This is the first report of paternally derived structural chromosomal mutations...... in 11p15 causing SRS. These cases define a novel aetiology of the growth retardation in SRS, namely, dissociation of IGF2 from its enhancers....

  11. High frequency of COH1 intragenic deletions and duplications detected by MLPA in patients with Cohen syndrome.

    OpenAIRE

    Renieri, Alessandra; Parri, Veronica; Katzaki, Eleni; Uliana, Vera; Scionti, Francesca; Tita, Rossella; Longo, Ilaria; Boschloo, Renske; Vijzelaar, Raymon; Selicorni, Angelo; Brancati, Francesco; Dallapiccola, Bruno; Zelante, Leopoldo; Hamel, Christian P.; Sarda, Pierre

    2010-01-01

    Abstract Cohen syndrome is a rare clinically variable autosomal recessive disorder characterized by mental retardation, postnatal microcephaly, facial dysmorphisms, ocular abnormalities, and intermittent neutropenia. Mutations in the COH1 gene have been found in patients from different ethnic origins. However, a high percentage of patients has only one or no mutated allele. In order to investigate whether COH1 copy number changes account for missed mutations, we used multiplex liga...

  12. Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3Al) allele produces ehlers-danlos syndrome type IV in the heterozygous offspring

    Energy Technology Data Exchange (ETDEWEB)

    McGookey Milewicz, D.; Witz, A.M.; Byers, P.H. (Univ of Washington, Seattle (United States)); Smith, A.C.M.; Manchester, D.K.; Waldstein, G. (Children' s Hospital, Denver, CO (United States))

    1993-07-01

    Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutation in the type III collagen gene (COL3A1). The authors studied the structure of the COL3A1 gene of an individual with EDS type IV and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1, while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father, approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction. At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred during his early embryonic development prior to lineage allocation. These findings suggest that at least some of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic crossing-over, and that they thus have a risk for recurrence when observed de novo. 71 refs., 4 figs., 2 tabs.

  13. Genetic mapping of putative Chrna7 and Luzp2 neuronal transcriptional enhancers due to impact of a transgene-insertion and 6.8 Mb deletion in a mouse model of Prader-Willi and Angelman syndromes

    Directory of Open Access Journals (Sweden)

    Longnecker Richard

    2005-11-01

    Full Text Available Abstract Background Prader-Willi and Angelman syndrome (PWS and AS patients typically have an ~5 Mb deletion of human chromosome 15q11-q13, of opposite parental origin. A mouse model of PWS and AS has a transgenic insertion-deletion (TgPWS/TgAS of chromosome 7B/C subsequent to paternal or maternal inheritance, respectively. In this study, we define the deletion endpoints and examine the impact on expression of flanking genes. Results Using molecular and cytological methods we demonstrate that 13 imprinted and 11 non-imprinted genes are included in the TgPWS/TgAS deletion. Normal expression levels were found in TgPWS brain for genes extending 9.1- or 5.6-Mb centromeric or telomeric of the deletion, respectively. Our molecular cytological studies map the proximal deletion breakpoint between the Luzp2 and Siglec-H loci, and we show that overall mRNA levels of Luzp2 in TgPWS and TgAS brain are significantly reduced by 17%. Intriguingly, 5' Chrna7 shows 1.7-fold decreased levels in TgPWS and TgAS brain whereas there is a ≥15-fold increase in expression in neonatal liver and spleen of these mouse models. By isolating a Chrna7-Tg fusion transcript from TgAS mice, we mapped the telomeric deletion breakpoint in Chrna7 intron 4. Conclusion Based on the extent of the deletion, TgPWS/TgAS mice are models for PWS/AS class I deletions. Other than for the first gene promoters immediately outside the deletion, since genes extending 5.6–9.1 Mb away from each end of the deletion show normal expression levels in TgPWS brain, this indicates that the transgene array does not induce silencing and there are no additional linked rearrangements. Using gene expression, non-coding conserved sequence (NCCS and synteny data, we have genetically mapped a putative Luzp2 neuronal enhancer responsible for ~33% of allelic transcriptional activity. The Chrna7 results are explained by hypothesizing loss of an essential neuronal transcriptional enhancer required for ~80% of

  14. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: Correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Toft, P.;

    2000-01-01

    deletion mutants at this ORF 3/4 site. Phylogenetic analysis showed the presence of a highly accurate ORF 3 molecular clock, according to which deletion mutants and nondeleted viruses evolved at differing speeds. Furthermore, deletion mutants and nondeleted viruses evolved as separate lineages...

  15. Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype.

    Science.gov (United States)

    Williamson, Sarah L; Ellaway, Carolyn J; Peters, Greg B; Pelka, Gregory J; Tam, Patrick P L; Christodoulou, John

    2015-09-01

    Rett syndrome (RTT), a neurodevelopmental disorder that predominantly affects females, is primarily caused by variants in MECP2. Variants in other genes such as CDKL5 and FOXG1 are usually associated with individuals who manifest distinct phenotypes that may overlap with RTT. Individuals with phenotypes suggestive of RTT are typically screened for variants in MECP2 and then subsequently the other genes dependent on the specific phenotype. Even with this screening strategy, there are individuals in whom no causative variant can be identified, suggesting that there are other novel genes that contribute to the RTT phenotype. Here we report a de novo deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in identical twins with a RTT-like phenotype. We also demonstrate the reduced expression of Ptpn4 in a Mecp2 null mouse model of RTT, as well as the activation of the PTPN4 promoter by MeCP2. Our findings suggest that PTPN4 should be considered for addition to the growing list of genes that warrant screening in individuals with a RTT-like phenotype.

  16. Novel homozygous deletion of segmental KAL1 and entire STS cause Kallmann syndrome and X-linked ichthyosis in a Chinese family.

    Science.gov (United States)

    Xu, H; Li, Z; Wang, T; Wang, S; Liu, J; Wang, D W

    2015-12-01

    Kallmann syndrome (KS) is a genetically heterogeneous disease characterised by hypogonadotrophic hypogonadism in association with anosmia or hyposmia. This condition affects 1 in 10 000 men and 1 in 50,000 women. Defects in seventeen genes including KAL1 gene contribute to the molecular basis of KS. We report the clinical characteristics, molecular causes and treatment outcome of two Chinese brothers with KS and X-linked ichthyosis. The phenotypes of the patients were characterised by bilateral cryptorchidism, unilateral renal agenesis in one patient but normal kidney development in another. The patients had low serum testosterone, follicle-stimulating hormone and luteinising hormone levels and a blunt response to the gonadotrophin-releasing hormone stimulation test. After human chorionic gonadotrophin treatment, the serum testosterone levels were normalized, and the pubic hair, penis length and testicular volumes were greatly improved in both of the patients. The two affected siblings had the same novel deletion at Xp22.3 including exons 9-14 of KAL1 gene and entire STS gene. Our study broadens the mutation spectrum in the KAL1 gene associated with KS and facilitates the genetic diagnosis and counselling for KS. PMID:25597551

  17. A novel deletion-frameshift mutation in the S1 region of HERG gene in a Chinese family with long QT syndrome

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; ZHANG Ping; LI Xue-bin; WU Cun-cao; GUO Ji-hong

    2013-01-01

    Background The congenital Long QT syndrome (LQTS) is a hereditary cardiac channelopathy that is characterized by a prolonged QT interval,syncope,ventricular arrhythmias,and sudden death.The chromosome 7-linked type 2 congenital LQTS (LQT2) is caused by gene mutations in the human ether-a-go-go-related gene (HERG).Methods A Chinese family diagnosed with LQTS were screened for KCNQ1,HERG and SCN5A,using polymerase chain reaction (PCR),direct sequencing,and clong sequencing.We also investigated the mRNA expression of the HERG gene.Results We identified a novel i414fs+98X mutation in the HERG gene.The deletion mutation of 14-bp in the first transmembrane segment (S1) introduced premature termination codons (PTCs) at the end of exon 6.This mutation would result in a serious phenotype if the truncated proteins co-assembled with normal subunit to form the defective channels.But only the proband was symptomatic.Conclusions We found that the mRNA level of the HERG gene was significantly lower in 1414fs+98X carriers than in noncarriers.We found a novel 1414fs+98X mutation.The mRNA level supports that NMD mechanism might regulate the novel mutation.

  18. 160 kb deletion in ISPD unmasking a recessive mutation in a patient with Walker-Warburg syndrome.

    Science.gov (United States)

    Czeschik, Johanna Christina; Hehr, Ute; Hartmann, Britta; Lüdecke, Hermann-Josef; Rosenbaum, Thorsten; Schweiger, Bernd; Wieczorek, Dagmar

    2013-12-01

    Walker-Warburg syndrome (WWS) is a severe muscular dystrophy with eye and brain malformations. On a molecular level, WWS is a disorder of the O-linked glycosylation of α-dystroglycan and therefore referred to as one of the dystroglycanopathies. The disease family of muscular dystrophy-dystroglycanopathy (MDDG) contains a spectrum of severe to mild disorders, designated as MDDG type A to C. WWS, as the most severe manifestation, corresponds to MDDG type A. Defects in the genes POMT1, POMT2, POMGNT1, FKTN, FKRP, LARGE, GTDC2, G3GALNT2, GMPPB, B3GNT1, TMEM5 and COL4A1 and ISPD have been described as causal for several types of MDDG including WWS, but can only be confirmed in about 60-70% of the clinically diagnosed individuals. The proteins encoded by these genes are involved in the posttranslational modification of α-dystroglycan. Mutations in POMT1, POMT2, POMGNT1, FKTN, FKRP, LARGE, GMPPB, TMEM5 and COL4A1 and ISPD lead to a wide spectrum of phenotypes of congenital muscular dystrophies with or without eye and brain abnormalities. Patients with WWS frequently demonstrate a complete lack of psychomotor development, severe eye malformations, cobblestone lissencephaly and a hypoplastic cerebellum and brainstem, seizures, hydrocephalus and poor prognosis. Here, we present a boy with WWS who showed compound heterozygous changes in ISPD and discuss the clinical and radiological phenotype and the molecular genetic findings, including a novel pathogenic mutation in ISPD. PMID:24120487

  19. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    Science.gov (United States)

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour. PMID:25725334

  20. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    Science.gov (United States)

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour.

  1. Lenalidomide for the Treatment of Low- or Intermediate-1-Risk Myelodysplastic Syndromes Associated with Deletion 5q Cytogenetic Abnormality: An Evidence Review of the NICE Submission from Celgene.

    Science.gov (United States)

    Blommestein, Hedwig M; Armstrong, Nigel; Ryder, Steve; Deshpande, Sohan; Worthy, Gill; Noake, Caro; Riemsma, Rob; Kleijnen, Jos; Severens, Johan L; Al, Maiwenn J

    2016-01-01

    The National Institute for Health and Care Excellence (NICE) invited the manufacturer of lenalidomide (Celgene) to submit evidence of the clinical and cost effectiveness of the drug for treating adults with myelodysplastic syndromes (MDS) associated with deletion 5q cytogenetic abnormality, as part of the Institute's single technology appraisal (STA) process. Kleijnen Systematic Reviews Ltd (KSR), in collaboration with Erasmus University Rotterdam, was commissioned to act as the Evidence Review Group (ERG). This paper describes the company's submission, the ERG review, and the NICE's subsequent decisions. The ERG reviewed the evidence for clinical and cost effectiveness of the technology, as submitted by the manufacturer to the NICE. The ERG searched for relevant additional evidence and validated the manufacturer's decision analytic model to examine the robustness of the cost-effectiveness results. Clinical effectiveness was obtained from a three-arm, European, randomized, phase III trial among red blood cell (RBC) transfusion-dependent patients with low-/intermediate-1-risk del5q31 MDS. The primary endpoint was RBC independence for ≥26 weeks, and was reached by a higher proportion of patients in the lenalidomide 10 and 5 mg groups compared with placebo (56.1 and 42.6 vs 5.9 %, respectively; both p submitted a Patient Access Scheme (PAS) that provided lenalidomide free of charge for patients who remained on treatment after 26 cycles. This PAS improved the ICER to £25,300, although the AC considered the proportion of patients who received treatment beyond 26 cycles, and hence the ICER, to be uncertain. Nevertheless, the AC accepted a commitment from the manufacturer to publish, once available, data on the proportion of patients eligible for the PAS, and believed this provided reassurance that lenalidomide was a cost-effective treatment for low- or intermediate-1-risk MDS patients. PMID:26314282

  2. Chemotherapy refractory testicular germ cell tumor is associated with a variant in Armadillo Repeat gene deleted in Velco-Cardio-Facial syndrome (ARVCF

    Directory of Open Access Journals (Sweden)

    Chunkit eFung

    2012-12-01

    Full Text Available Introduction: There is evidence that inherited genetic variation affects both testicular germ cell tumor (TGCT treatment outcome and risks of late-complications arising from cisplatin-based chemotherapy. Using a candidate gene approach, we examined associations of three genes involved in the cisplatin metabolism pathway, GSTP1, COMT, and TPMT, with TGCT outcome and cisplatin-induced neurotoxicity. Material and Methods: Our study population includes a subset of patients (n=137 from a genome-wide association study at the University of Pennsylvania that evaluates inherited genetic susceptibility to TGCT. All patients in our study had at least one course of cisplatin-based chemotherapy with at least one year of follow up. A total of 90 markers in GSTP1, COMT and TPMT and their adjacent genomic regions (± 20 kb were analyzed for associations with refractory TGCT after first course of chemotherapy, progression-free survival (PFS, overall survival (OS, peripheral neuropathy, and ototoxicity. Results: After adjustment for multiple comparisons, one SNP, rs2073743, in the flanking region (± 20 kb of COMT was associated with refractory TGCT after initial chemotherapy. This SNP lies within the intron region of the Armadillo Repeat gene deleted in Velco-Cardio-Facial syndrome (ARVCF. The G allele of rs2073743 predisposed patients to refractory disease with a relative risk of 2.6 (95% CI 1.1, 6.3; P=0.03. Assuming recessive inheritance, patients with the GG genotype had 22.7 times higher risk (95% CI 3.3, 155.8; P=0.04 of developing refractory disease when compared to those with the GC or CC genotypes. We found no association of our candidate genes with peripheral neuropathy, ototoxicity, PFS and OS. Discussion: This is the first study to suggest that germline genetic variants of ARVCF may affect TGCT outcome. The result of this study is hypothesis generating and should be validated in future studies.

  3. An unusual N-terminal deletion of the laminin alpha3a isoform leads to the chronic granulation tissue disorder laryngo-onycho-cutaneous syndrome.

    Science.gov (United States)

    McLean, W H Irwin; Irvine, Alan D; Hamill, Kevin J; Whittock, Neil V; Coleman-Campbell, Carrie M; Mellerio, Jemima E; Ashton, Gabrielle S; Dopping-Hepenstal, Patricia J H; Eady, Robin A J; Jamil, Tanvir; Phillips, Roderic J; Shabbir, S Ghulam; Haroon, Tahir S; Khurshid, Khawar; Moore, Jonathan E; Page, Brian; Darling, Jonathan; Atherton, David J; Van Steensel, Maurice A M; Munro, Colin S; Smith, Frances J D; McGrath, John A; Phillips, Rodney J

    2003-09-15

    Laryngo-onycho-cutaneous (LOC or Shabbir) syndrome (OMIM 245660) is an autosomal recessive epithelial disorder confined to the Punjabi Muslim population. The condition is characterized by cutaneous erosions, nail dystrophy and exuberant vascular granulation tissue in certain epithelia, especially conjunctiva and larynx. Genome-wide homozygosity mapping localized the gene to a 2 Mb region on chromosome 18q11.2 with an LOD score of 19.8 at theta=0. This region includes the laminin alpha3 gene (LAMA3), in which loss-of-expression mutations cause the lethal skin blistering disorder Herlitz junctional epidermolysis bullosa. Detailed investigation showed that this gene possesses a further 38 exons (76 exons in total) spanning 318 kb of genomic DNA, and encodes three distinct proteins, designated laminin alpha3a, alpha3b1 and alpha3b2. The causative mutation in 15 families was a frameshift mutation 151insG predicting a stop codon 7 bp downstream in an exon that is specific to laminin alpha3a. This protein is secreted only by the basal keratinocytes of stratified epithelia, implying that LOC is caused by dysfunction of keratinocyte-mesenchymal communication. Surprisingly, the 151insG mutation does not result in nonsense-mediated mRNA decay due to rescue of the transcript by an alternative translation start site 6 exons downstream. The resultant N-terminal deletion of laminin alpha3a was confirmed by immunoprecipitation of secreted proteins from LOC keratinocytes. These studies show that the laminin alpha3a N-terminal domain is a key regulator of the granulation tissue response, with important implications not only in LOC but in a range of other clinical conditions associated with abnormal wound healing. PMID:12915477

  4. Interstitial duplication of proximal 22q: Phenotypic overlap with cat eye syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, J.H.M.; Asamoah, A.; Wagstaff, J. [Children`s Hospital, Boston, MA (United States)] [and others

    1995-01-16

    We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosome 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome. 17 refs., 3 figs., 1 tab.

  5. Ehlers-Danlos Syndrome type IV: a multi-exon deletion in one of the two COL3A1 alleles affecting structure, stability, and processing of type III procollagen

    Energy Technology Data Exchange (ETDEWEB)

    Superti-Furga, A.; Gugler, E.; Gitzelmann, R.; Steinmann, B.

    1988-05-05

    The authors have studied a patient with severe, dominantly inherited Ehlers-Danlos syndrome type IV. The results indicate that this patient carries a deletion of 3.3 kilobase pairs in the triple helical coding domain of one of the two alleles for the pro-..cap alpha..-chains of type III collagen (COL3A1). His cultured skin fibroblasts contain equal amounts of normal length mRNA and of mRNA shortened by approximately 600 bases, and synthesize both normal and shortened pro-..cap alpha..1(III)-chains. In procollagen molecules containing one or more shortened chains, a triple helix is formed with a length of only about 780 amino acids. The mutant procollagen molecules have decreased thermal stability, are less efficiently secreted, and are not processed as their normal counterpart. The deletion in this family is the first mutation to be described in COL3A1.

  6. Deletion of 11q12.3-11q13.1 in a patient with intellectual disability and childhood facial features resembling Cornelia de Lange syndrome

    DEFF Research Database (Denmark)

    Boyle, Martine Isabel; Jespersgaard, Cathrine; Nazaryan, Lusine;

    2015-01-01

    Deletions within 11q12.3-11q13.1 are very rare and to date only two cases have been described in the literature. In this study we describe a 23-year-old male patient with intellectual disability, behavioral problems, dysmorphic features, dysphagia, gastroesophageal reflux and skeletal abnormalities......), but a 1.6Mb deletion at chromosome region 11q12.3-11q13.1 was detected by chromosome microarray. The deletion contains several genes including PPP2R5B, which has been associated with intellectual disability and overgrowth; NRXN2, which has been associated with intellectual disability and autism spectrum...

  7. Maternal Cell free DNA based screening for fetal microdeletion and the importance of careful diagnostic follow up

    OpenAIRE

    Yatsenko, Svetlana A.; Peters, David; Saller, Devereux; Chu, Tianjiao; Clemens, Michelle; Rajkovic, Aleksandar

    2015-01-01

    Background Noninvasive prenatal screening (NIPS) by next-generation sequencing of cell free DNA (cfDNA) in maternal plasma is used to screen for common aneuploidies such as trisomy 21, in high risk pregnancies. NIPS can identify fetal genomic microdeletions, however sensitivity and specificity have not been systematically evaluated. Commercial companies have begun to offer expanded panels including screening for common microdeletion syndromes such as 22q11.2 deletion (DiGeorge syndrome) witho...

  8. FGFR2 exon IIIa and IIIc mutations in Crouzon, Jackson-Weiss, and Pfeiffer syndromes: Evidence for missense changes, insertions, and a deletion due to alternative RNA splicing

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, G.A.; Przylepa, K.A.; Scott, A.F. [Johns Hopkins Hospital, Baltimore, MD (United States)] [and others

    1996-03-01

    Fibroblast growth factor receptor 2 (FGFR2) mutations have been associated with the craniosynostotic conditions Crouzon, Jackson-Weiss, and Pfeiffer syndromes. Previously, mutations were described in the exons IIIa and IIIc, which form the extracellular, third immunoglobulin-like domain (IgM) and adjacent linker regions, both of which are normally involved in ligand binding. For all three conditions, mutations were found in exon IIIc. Only in Crouzon syndrome were mutations identified in exon IIIa. In this study, 39 cases with one of these three conditions were screened for exon IIIa or IIIc mutations. Eleven mutations are reported in 17 unrelated cases. Mutations in exon IIIa are identified for not only Crouzon but also Jackson-Weiss and Pfeiffer syndromes. Four mutations in either exon IIIa or exon IIIc reported only in Crouzon syndrome are present also in one of the other two syndromes. Two insertions, one in exon IIIa in a Crouzon syndrome patient and the other in exon IIIc in a Pfeiffer syndrome patient, were observed. The latter mutation has the same alternative RNA splicing effect as a reported synonymous mutation for Crouzon syndrome. A missense mutation was detected in one Pfeiffer syndrome family in which two members had craniosynostosis without limb anomalies. The inter- and intrafamilial variability in expression of FGFR2 mutations suggests that these three syndromes, presumed to be clinically distinct, are instead representative of a spectrum of related craniosynostotic and digital disorders. 16 refs., 3 figs., 1 tab.

  9. Ring Chromosome 9 and Chromosome 9p Deletion Syndrome in a Patient Associated with Developmental Delay: A Case Report and Review of the Literature.

    Science.gov (United States)

    Sivasankaran, Aswini; Kanakavalli, Murthy K; Anuradha, Deenadayalu; Samuel, Chandra R; Kandukuri, Lakshmi R

    2016-01-01

    Ring chromosomes have been described for all human chromosomes and are typically associated with physical and/or mental abnormalities resulting from a deletion of the terminal ends of both chromosome arms. This report describes the presence of a ring chromosome 9 in a 2-year-old male child associated with developmental delay. The proband manifested a severe phenotype comprising facial dysmorphism, congenital heart defects, and seizures. The child also exhibited multiple cell lines with mosaic patterns of double rings, a dicentric ring and loss of the ring associated with mitotic instability and dynamic tissue-specific mosaicism. His karyotype was 46,XY,r(9)(p22q34)[89]/46,XY,dic r(9; 9)(p22q34;p22q34)[6]/45, XY,-9[4]/47,XY,r(9),+r(9)[1]. However, the karyotypes of his parents and elder brother were normal. FISH using mBAND probe and subtelomeric probes specific for p and q arms for chromosome 9 showed no deletion in any of the regions. Chromosomal microarray analysis led to the identification of a heterozygous deletion of 15.7 Mb from 9p22.3 to 9p24.3. The probable role of the deleted genes in the manifestation of the phenotype of the proband is discussed.

  10. 17q12 deletion and duplication syndrome in Denmark-A clinical cohort of 38 patients and review of the literature

    DEFF Research Database (Denmark)

    Rasmussen, Maria; Vestergaard, Else Marie; Graakjaer, Jesper;

    2016-01-01

    deletions and 26 phenotyped patients with 17q12 duplications. The total cohort includes 19 index patients and 19 family members. We also reviewed the literature in order to further improve the basis for the counseling. We emphasize that renal disease, learning disability, behavioral abnormalities, epilepsy...

  11. Velo-cardio-facial syndrome and psychotic disorders: Implications for psychiatric genetics

    Energy Technology Data Exchange (ETDEWEB)

    Chow, W.C.; Bassett, A.S.; Weksberg, R. [Univ. of Toronto, Ontario (Canada)

    1994-06-15

    Psychiatric disorders have been reported in over 10% of patients with velo-cardio-facial syndrome (VCFS) in long-term follow-up. To further explore the behavioral and psychiatric findings associated with VCFS in adulthood, detailed clinical histories of two patients - one with VCFS who developed a psychotic illness, and one with schizophrenia who was found to have dysmorphological features associated with VCFS - are described in the current report. The observed overlap of physical and psychiatric symptoms in these two patients suggests that VCFS and psychotic disorders may share a pathogenetic mechanism. This could be consistent with a contiguous gene model for VCFS and psychosis, suggesting chromosome 22q11 as a possible candidate region for genetic studies of schizophrenia. 26 refs., 2 tabs.

  12. One case of chromosome 16 p11 . 2 deletion syndrome and literature review%16 p11.2缺失综合征1例并文献复习

    Institute of Scientific and Technical Information of China (English)

    葛婷; 崔云; 肖咏梅; 陆燕芬; 张育才; 张婷

    2014-01-01

    Objective To enhance the understanding of clinical characteristics,diagnosis,follow-up and genetic testing of chromosome 16p11. 2 deletion syndrome. Methods The clinical manifestations,laboratory testing,diagnosis,follow-up,and genetic testing of one case with chromosome 16p11. 2 deletion syndrome were reviewed,analyzed and summarized. Meanwhile,relevant literatures of chromosome 16p11. 2 deletion syndrome were reviewed in this article. Results ①A 2-month-and-13-day boy with 20-day fever,cough,and diarrhea was admitted to our hospital. Deformity of six fingers in right palm and scoliosis was found. The total peripheral blood lymphocytes and lymphocyte subsets were lower than the reference levels. Chest X-ray indicated that the sternum shape was abnormal and T9-T12 vertebral bodies were hemivertebrae deformity. The patient was improved with a hyperactive and exciting performance after anti-infection therapy. Follow up after releasing indicated that the count of peripheral blood lymphocytes was improved,however,WBC,N and CD4+ T cells remained low levels. The boy was diagnosed as epilepsy at 5 months old and improved after treatment with anti-epileptic drugs. A deletion of 0. 545 4 Mb in chromosome 16p11. 2 was identified by chromosome chip detection technology and confirmed by high-density oligonucleotide comparative genomic hybridization( CGH)Microarray. The genes located in this deleted region included SPN,QRRT,Cl6orf54,KIF22,MAZ,SEZ6L2,CDIPT,ASPHDl,KCTDl3, TMEM2l9,TAOK2,DOC2A,TBX6. The results of Chromosome chip detection were normal in his parents. Thus,this boy was finally diagnosed as chromosome 16p11. 2 deletion syndrome. ②1 387cases were reported by 95 published articles related with chromosome 16p11. 2 deletion syndrome,involving the nervous system(547,39. 7%),endocrine system(371,26. 9%),growth and skeletal abnormalities(84,6. 1%),urinary and digestive system(10,0. 7%),cardiovascular system(4,0. 3%),immune function(1,0. 07%). The different size of the

  13. Severe Psychomotor Delay in a Severe Presentation of Cat-Eye Syndrome

    Directory of Open Access Journals (Sweden)

    Guillaume Jedraszak

    2015-01-01

    Full Text Available Cat-eye syndrome is a rare genetic syndrome of chromosomal origin. Individuals with cat-eye syndrome are characterized by the presence of preauricular pits and/or tags, anal atresia, and iris coloboma. Many reported cases also presented with variable congenital anomalies and intellectual disability. Most patients diagnosed with CES carry a small supernumerary bisatellited marker chromosome, resulting in partial tetrasomy of 22p-22q11.21. There are two types of small supernumerary marker chromosome, depending on the breakpoint site. In a very small proportion of cases, other cytogenetic anomalies are reportedly associated with the cat-eye syndrome phenotype. Here, we report a patient with cat-eye syndrome caused by a type 1 small supernumerary marker chromosome. The phenotype was atypical and included a severe developmental delay. The use of array comparative genomic hybridization ruled out the involvement of another chromosomal imbalance in the neurological phenotype. In the literature, only a few patients with cat-eye syndrome present with a severe developmental delay, and all of the latter carried an atypical partial trisomy 22 or an uncharacterized small supernumerary marker chromosome. Hence, this is the first report of a severe neurological phenotype in cat-eye syndrome with a typical type 1 small supernumerary marker chromosome. Our observation clearly complicates prognostic assessment, particularly when cat-eye syndrome is diagnosed prenatally.

  14. Prader-Willi syndrome - type 1 deletion, a consequence of an unbalanced translocation of chromosomes 13 and 15, easily to be mixed up with a Robertsonian translocation

    OpenAIRE

    Sheth, Frenny; Liehr, Thomas; Shah, Krati; Sheth, Jayesh

    2015-01-01

    Background Prader-Willi syndrome, due to microdeletion of proximal 15q, is a well-known cause of syndromic obesity. Case characteristics A couple with history of repeated first trimester abortions had a son with balanced Robertsonian translocation of chromosomes 13 and 15 according to cytogenetic banding technique. Results Chromosomal analysis for the couple was performed. A balanced translocation involving BP1-BP3 region of proximal 15q was observed in the father. Discussion Investigations o...

  15. Rare mutations of FGFR2 causing Apert syndrome : identification of the first partial gene deletion, and an Alu element insertion from a new subfamily

    NARCIS (Netherlands)

    Bochukova, E.G.; Roscioli, T.; Hedges, D.J.; Taylor, I.B.; Johnson, D.; David, D.J.; Deininger, P.L.; Wilkie, A.O.

    2009-01-01

    Apert syndrome (AS) is a severe disorder, characterized by craniosynostosis and complex syndactyly of the hands and feet. Two heterozygous gain-of-function substitutions (Ser252Trp and Pro253Arg) in exon IIIa of fibroblast growth factor receptor 2 (FGFR2) are responsible for >98% of cases. Here we d

  16. Deletion of the Toll-Like Receptor 5 Gene Per Se Does Not Determine the Gut Microbiome Profile That Induces Metabolic Syndrome: Environment Trumps Genotype.

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    Full Text Available Over the past decade, emerging evidence has linked alterations in the gut microbial composition to a wide range of diseases including obesity, type 2 diabetes, and cardiovascular disease. Toll-like receptors (TLRs are the major mediators for the interactions between gut microbiota and host innate immune system, which is involved in the localization and structuring of host gut microbiota. A previous study found that TLR5 deficient mice (TLR5KO1 had altered gut microbial composition which led to the development of metabolic syndrome including hyperlipidemia, hypertension, insulin resistance and increased adiposity. In the current study, a second TLR5-deficient mouse model was studied (TLR5KO2. TLR5 deficient mice did not manifest metabolic abnormalities related to the metabolic syndrome compared with littermate controls maintained on normal chow or after feeding a high fat diet. Analysis of the gut microbial composition of littermate TLR5KO2 and wild type mice revealed no significant difference in the overall microbiota structure between genotypes. However, the TLR5KO2 microbiota was distinctly different from that previously reported for TLR5KO1 mice with metabolic syndrome. We conclude that an altered composition of the microbiota in a given environment can result in metabolic syndrome, but it is not a consequence of TLR5 deficiency per se.

  17. Drayer's syndrome of mental retardation, microcephaly, short stature and absent phalanges is caused by a recurrent deletion of chromosome 15(q26.2 -> qter)

    NARCIS (Netherlands)

    Rump, P.; Dijkhuizen, T.; Sikkema-Raddatz, B.; Lemmink, H. H.; Vos, Y. J.; Verheij, J. B. G. M.; van Ravenswaaij, C. M. A.

    2008-01-01

    We reevaluated a unique family with two sibs who had a presumed autosomal recessively inherited syndrome characterized by mental retardation, microcephaly, short stature and absent phalanges. This family was originally described by Drayer et al. in 1977. Using modern molecular techniques, we demonst

  18. Deleted in Breast Cancer 1 Limits Adipose Tissue Fat Accumulation and Plays a Key Role in the Development of Metabolic Syndrome Phenotype

    NARCIS (Netherlands)

    Escande, Carlos; Nin, Veronica; Pirtskhalava, Tamar; Chini, Claudia C. S.; Tchkonia, Tamar; Kirkland, James L.; Chini, Eduardo N.

    2015-01-01

    Obesity is often regarded as the primary cause of metabolic syndrome. However, many lines of evidence suggest that obesity may develop as a protective mechanism against tissue damage during caloric surplus and that it is only when the maximum fat accumulation capacity is reached and fatty acid spill

  19. Deletion of the Toll-Like Receptor 5 Gene Per Se Does Not Determine the Gut Microbiome Profile That Induces Metabolic Syndrome: Environment Trumps Genotype.

    Science.gov (United States)

    Zhang, Wei; Hartmann, Riley; Tun, Hein Min; Elson, Charles O; Khafipour, Ehsan; Garvey, W Timothy

    2016-01-01

    Over the past decade, emerging evidence has linked alterations in the gut microbial composition to a wide range of diseases including obesity, type 2 diabetes, and cardiovascular disease. Toll-like receptors (TLRs) are the major mediators for the interactions between gut microbiota and host innate immune system, which is involved in the localization and structuring of host gut microbiota. A previous study found that TLR5 deficient mice (TLR5KO1) had altered gut microbial composition which led to the development of metabolic syndrome including hyperlipidemia, hypertension, insulin resistance and increased adiposity. In the current study, a second TLR5-deficient mouse model was studied (TLR5KO2). TLR5 deficient mice did not manifest metabolic abnormalities related to the metabolic syndrome compared with littermate controls maintained on normal chow or after feeding a high fat diet. Analysis of the gut microbial composition of littermate TLR5KO2 and wild type mice revealed no significant difference in the overall microbiota structure between genotypes. However, the TLR5KO2 microbiota was distinctly different from that previously reported for TLR5KO1 mice with metabolic syndrome. We conclude that an altered composition of the microbiota in a given environment can result in metabolic syndrome, but it is not a consequence of TLR5 deficiency per se.

  20. The putative imprinted locus D15S9 within the common deletion region for the Prader-Willi and Angelman syndromes encodes two overlapping mRNAs transcribed from opposite strands

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, C.C.; Driscoll, D.J. [Univ. of Florida, Gainesville, FL (United States); Saitoh, S. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others

    1994-09-01

    Prader-Willi syndrome is typically caused by a deletion of paternal 15q11-q13, or maternal uniparental disomy (UPD) of chromosome 15, while Angelman syndrome is caused by a maternal deletion or paternal UPD of the same region. Therefore, these two clinically distinct neurobehavioral syndromes result from differential expression of imprinted genes within 15q11-q13. A 3.1 kb cDNA, DN34, from the D15S9 locus within 15q11-q13 was isolated from a human fetal brain library. We showed previously that DN34 probe detects a DNA methylation imprint and therefore may represent a candidate imprinted gene. Isolation of genomic clones and DNA sequencing demonstrated that the gene segment encoding the partial cDNA DN34 was split by a 2 kb intron, but did not encode a substantial open reading frame (ORF). Preliminary analysis of expression by RT-PCR suggests that this gene is expressed in fetal but not in tested tissue types from the adult, and thus its imprinting status has not been possible to assess at present. Surprisingly, we found an ORF on the antisense strand of the DN34 cDNA. This ORF encodes a putative polypeptide of 505 amino acid residues containing a RING C{sub 3}HC{sub 4} zinc-finger motif and other features of nuclear proteins. Subsequent characterization of this gene, ZNF127, and a mouse homolog, demonstrated expression of 3.2 kb transcript from all tested fetal and adult tissues. Transcripts initiate from within a CpG-island, shown to be differentially methylated on parental alleles in the human. Interestingly, functional imprinting of the mouse homolog was subsequently demonstrated in an F{sub 1} cross by analyzing a VNTR polymorphism in the mRNA. The ZNF127 gene is intronless, has significant overlap with the DN34 gene on the antisense strand, and a 1 kb 3{prime} end within the 2 kb DN34 intron.

  1. Exonic Deletions in AUTS2 Cause a Syndromic Form of Intellectual Disability and Suggest a Critical Role for the C Terminus

    OpenAIRE

    Beunders, Gea; Voorhoeve, Els; Golzio, Christelle; Pardo, Luba M.; Rosenfeld, Jill A.; Talkowski, Michael E.; Simonic, Ingrid; Lionel, Anath C.; Vergult, Sarah; Pyatt, Robert E.; van de Kamp, Jiddeke; Nieuwint, Aggie; Weiss, Marjan M.; Rizzu, Patrizia; Verwer, Lucilla E.N.I.

    2013-01-01

    Genomic rearrangements involving AUTS2 (7q11.22) are associated with autism and intellectual disability (ID), although evidence for causality is limited. By combining the results of diagnostic testing of 49,684 individuals, we identified 24 microdeletions that affect at least one exon of AUTS2, as well as one translocation and one inversion each with a breakpoint within the AUTS2 locus. Comparison of 17 well-characterized individuals enabled identification of a variable syndromic phenotype in...

  2. 特纳综合征合并1p36缺失综合征误诊为甲减1例报告%Turner syndrome and monosomy 1p36 deletion syndrome misdiagnosed as thyropenia:report of one case

    Institute of Scientific and Technical Information of China (English)

    蒙绪标; 李智明; 刘婷婷; 闻智鸣

    2013-01-01

    1例身材矮小、原发性闭经就诊的女性患者进行染色体核型分析为45X核型,用微阵列比较基因组杂交技术扫描基因发现1p36缺如,并在多个染色体上基因有异常,临床主要表现为身材矮小、女性第二性征缺如、原发闭经、直肠扩张、内生殖器缺如,伴有甲状腺功能减退,智力一般等特征。容易被临床某一种表现而误诊,需要高度关注。%A 21-year-old woman with a short stature presented with primary amenorrhoea and a 45X karyotype, and comparative genomic hybridization revealed 1p36 deletion and abnormal genes in multiple chromosomes to support the diagnosis of Turner syndrome and monosomy 1p36 deletion syndrome. The main clinical features of this condition include microsomia, poor sexual development, menoschesis, gigantorectum, absence of internal genitalia, sometimes with thyropenia and low intelligence. This disease can be easily diagnosed for its heterogeneous clinical manifestations.

  3. Conditional deletion of cytochrome p450 reductase in osteoprogenitor cells affects long bone and skull development in mice recapitulating antley-bixler syndrome: role of a redox enzyme in development.

    Directory of Open Access Journals (Sweden)

    Satya P Panda

    Full Text Available NADPH-cytochrome P450 oxidoreductase (POR is the primary electron donor for cytochromes P450, dehydrocholesterol reductase, heme oxygenase, and squalene monooxygenase. Human patients with specific mutations in POR exhibit severe developmental malformations including disordered steroidogenesis, sexual ambiguities and various bone defects, similar to those seen in patients with Antley-Bixler syndrome (ABS. To probe the role of POR during bone development, we generated a conditional knockout mouse (CKO by cross breeding Por (lox/lox and Dermo1 Cre mice. CKO mice were smaller than their littermate controls and exhibited significant craniofacial and long bone abnormalities. Differential staining of the CKO mice skull bases shows premature fusion of the sphenooccipital and basioccipital-exoccipital synchondroses. Class III malocclusion was noted in adult knockout mice with an unusual overgrowth of the lower incisors. Shorter long bones were observed along with a reduction in the bone volume fraction, measured by microCT, in the Por-deleted mice compared to age- and sex-matched littermate controls. Concerted up- or down-regulation of proteins in the FGF signaling pathway observed by immunohistochemistry in the tibia samples of CKO mice compared to wild type controls shows a decrease in the FGF signaling pathway. To our knowledge, this is the first report of a mouse model that recapitulates both skull and long bone defects upon Por deletion, offering an approach to study the sequelae of POR mutations. This unique model demonstrates that P450 metabolism in bone itself is potentially important for proper bone development, and that an apparent link exists between the POR and FGF signaling pathways, begging the question of how an oxidation-reduction flavoprotein affects developmental and cellular signaling processes.

  4. EPHA4 haploinsufficiency is responsible for the short stature of a patient with 2q35-q36.2 deletion and Waardenburg syndrome

    OpenAIRE

    Li, Chuan; Chen, Rongyu; Fan, Xin; Luo, Jingsi; Qian, Jiale; Wang, Jin; Xie, Bobo; Shen, Yiping; Chen, Shaoke

    2015-01-01

    Background: Waardenburg syndrome type I (WS1), an auditory-pigmentary genetic disorder, is caused by heterozygous loss-of-function mutations in PAX3. Abnormal physical signs such as dystopia canthorum, patchy hypopigmentation and sensorineural hearing loss are common, but short stature is not associated with WS1. Case presentation: We reported a 4-year and 6 month-old boy with a rare combination of WS1 and severe short stature (83.5 cm (−5.8SD)). His facial features include dystopia canthorum...

  5. A De Novo Deletion in the Regulators of Complement Activation Cluster Producing a Hybrid Complement Factor H/Complement Factor H-Related 3 Gene in Atypical Hemolytic Uremic Syndrome.

    Science.gov (United States)

    Challis, Rachel C; Araujo, Geisilaine S R; Wong, Edwin K S; Anderson, Holly E; Awan, Atif; Dorman, Anthony M; Waldron, Mary; Wilson, Valerie; Brocklebank, Vicky; Strain, Lisa; Morgan, B Paul; Harris, Claire L; Marchbank, Kevin J; Goodship, Timothy H J; Kavanagh, David

    2016-06-01

    The regulators of complement activation cluster at chromosome 1q32 contains the complement factor H (CFH) and five complement factor H-related (CFHR) genes. This area of the genome arose from several large genomic duplications, and these low-copy repeats can cause genome instability in this region. Genomic disorders affecting these genes have been described in atypical hemolytic uremic syndrome, arising commonly through nonallelic homologous recombination. We describe a novel CFH/CFHR3 hybrid gene secondary to a de novo 6.3-kb deletion that arose through microhomology-mediated end joining rather than nonallelic homologous recombination. We confirmed a transcript from this hybrid gene and showed a secreted protein product that lacks the recognition domain of factor H and exhibits impaired cell surface complement regulation. The fact that the formation of this hybrid gene arose as a de novo event suggests that this cluster is a dynamic area of the genome in which additional genomic disorders may arise. PMID:26490391

  6. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B;

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  7. Effectiveness of multiplex ligation-dependent probe amplification assay used for detecting deletion of Prader-Willi syndrome%应用多重连接探针扩增法简便高效检测Prader-Willi综合征的基因缺失

    Institute of Scientific and Technical Information of China (English)

    Hong SHAO; Va LIP; Bai-Lin WU

    2005-01-01

    Objective: Prader-Willi syndrome (PWS) is characterized by severe hypotonia and feeding difficulties in early infancy, followed by excessive eating and gradual development of morbid obesity in later infancy or early childhood. Patients with PWS are often too young to manifest sufficient features or have atypical findings, making genetic testing important to confirm the diagnosis of PWS. Approximately 99% of patients with PWS have a diagnostic abnormality in the parent-specific methylation imprint within the Prader-Willi critical region (PWCR) at chromosome 15q11.2-q12. Of them, 70% have a paternal deletion; 25% have a maternal uniparental disomy (UPD); and <5% have a mutation in the imprinting center. Methods: Current techniques can identify a diagnostic abnormality, such as paternal deletion or maternal UPD for most of patients with PWS, but they are labor-intensive and cost-expensive. Multiplex ligation-dependent probe amplification (MLPA) is a novel, simple, and cost-effective technique for analysis of relative quantification in a single assay, which has recently been applied for the detection of genomic deletions, duplications, and amplifications in a variety of genes. Results: Six out of 20 patients referred for genetic diagnosis of PWS were found to have a deletion by MLPA, confirmed by FISH and DNA methylation analysis with 100% concordance. Conclusion: MLPA's high sensitivity and specificity for deletion detection is the same as FISH or Southern blot based analysis. Additional collaborative effort for developing and validating the complete MLPA-PWS assay, for not only detecting deletion but also identifying methylation abnormality, is on going.

  8. Epidemiology and Health-Related Quality of Life in Hypoparathyroidism in Norway

    Science.gov (United States)

    Løvås, Kristian; Debowska, Aleksandra; Eriksen, Erik F.; Evang, Johan A.; Fossum, Christian; Fougner, Kristian J.; Holte, Synnøve E.; Lima, Kari; Moe, Ragnar B.; Myhre, Anne Grethe; Kemp, E. Helen; Nedrebø, Bjørn G.; Svartberg, Johan; Husebye, Eystein S.

    2016-01-01

    Objective: The epidemiology of hypoparathyroidism (HP) is largely unknown. We aimed to determine prevalence, etiologies, health related quality of life (HRQOL) and treatment pattern of HP. Methods: Patients with HP and 22q11 deletion syndrome (DiGeorge syndrome) were identified in electronic hospital registries. All identified patients were invited to participate in a survey. Among patients who responded, HRQOL was determined by Short Form 36 and Hospital Anxiety and Depression scale. Autoantibodies were measured and candidate genes (CaSR, AIRE, GATA3, and 22q11-deletion) were sequenced for classification of etiology. Results: We identified 522 patients (511 alive) and estimated overall prevalence at 102 per million divided among postsurgical HP (64 per million), nonsurgical HP (30 per million), and pseudo-HP (8 per million). Nonsurgical HP comprised autosomal dominant hypocalcemia (21%), autoimmune polyendocrine syndrome type 1 (17%), DiGeorge/22q11 deletion syndrome (15%), idiopathic HP (44%), and others (4%). Among the 283 respondents (median age, 53 years [range, 9–89], 75% females), seven formerly classified as idiopathic were reclassified after genetic and immunological analyses, whereas 26 (37% of nonsurgical HP) remained idiopathic. Most were treated with vitamin D (94%) and calcium (70%), and 10 received PTH. HP patients scored significantly worse than the normative population on Short Form 36 and Hospital Anxiety and Depression scale; patients with postsurgical scored worse than those with nonsurgical HP and pseudo-HP, especially on physical health. Conclusions: We found higher prevalence of nonsurgical HP in Norway than reported elsewhere. Genetic testing and autoimmunity screening of idiopathic HP identified a specific cause in 21%. Further research is necessary to unravel the causes of idiopathic HP and to improve the reduced HRQOL reported by HP patients. PMID:27186861

  9. Characterization of a lymphoblastoid line deleted for lambda immunoglobulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Hough, C.A., White, B.N., Holden, J.A. [Queen`s Univ., Ontario (Canada)

    1995-04-01

    While characterizing the cat eye syndrome (CES) supernumerary chromosome for the presence of {lambda} immunoglobulin gene region sequences, a lymphoblastoid cell line from one CES patient was identified in which there was selection of cells deleted from some IGLC and IGLV genes. Two distinct deletions, one on each chromosome 22, were identified, presumably arising from independent somatic recombination events occurring during B-lymphocyte differentiation. The extent of the deleted regions was determined using probes from the various IGLV subgroups and they each covered at least 82 kilobases. The precise definition of the deletions was not possible because of conservation of some restriction sites in the IGLV region. The cell line was used to map putative IGLV genes within the recombinant phage {lambda}V{lambda}135 to the distal part of the IGLV gene region. 35 refs., 4 figs.

  10. PAX3 gene deletion detected by microarray analysis in a girl with hearing loss

    OpenAIRE

    Drozniewska, Malgorzata; Haus, Olga

    2014-01-01

    Deletions of the PAX3 gene have been rarely reported in the literature. Mutations of this gene are a common cause of Waardenburg syndrome type 1 and 3. We report a 16 year old female presenting hearing loss and normal intellectual development, without major features of Waardenburg syndrome type 1, and without family history of the syndrome. Her phenotype, however, overlaps with features of craniofacial-deafness-hand syndrome. Microarray analysis showed ~862 kb de novo deletion at 2q36.1 inclu...

  11. Action simulation in hallucination-prone adolescents

    Directory of Open Access Journals (Sweden)

    Tarik eDahoun

    2013-07-01

    Full Text Available Theoretical and empirical accounts suggest that impairments in self-other discrimination processes are likely to promote the expression of hallucinations. However, our understanding of such processes during adolescence is still at an early stage. The present study thus aims 1 to delineate the neural correlates sustaining mental simulation of actions involving self-performed actions (first-person perspective; 1PP and other-performed actions (third-person perspective; 3PP during adolescence 2 to identify atypical activation patterns during 1PP/3PP mental simulation of actions in hallucination-prone adolescents 3 to examine whether differential risk for schizophrenia (clinical vs genetic is also associated with differential impairments in the 1PP/3PP mental simulation of actions during adolescence. Twenty-two typically developing controls (Control group; 6 females, twelve hallucination-prone adolescents (AH group; 7 females and thirteen adolescents with 22q11.2 Deletion Syndrome (22q11.2DS group; 4 females were included in the study. During the fMRI task, subjects were presented with a cue (self-other priming cues indicating to perform the task using either a first person perspective (you-1PP or a third person perspective (friend-3PP and then they were asked to mentally simulate actions based on the type of cue. Our results indicated that atypical patterns of cerebral activation, particularly in the key areas of self-other distinction, were found in both groups at risk for auditory hallucinations (AH and 22q11.2DS. More precisely, adolescents in the AH and 22q11.2DS groups presented decreased activations in the parieto-occipital region BA19 during 3PP. This study characterizes the neural correlates of mental imagery for actions during adolescence, and suggests that a differential risk for hallucination-proneness (clinical vs. genetic is associated to similar patterns of atypical activations in key areas sustaining self-other discrimination

  12. 3q27.3 microdeletional syndrome

    DEFF Research Database (Denmark)

    Thevenon, Julien; Callier, Patrick; Poquet, Hélène;

    2014-01-01

    BACKGROUND: Since the advent of array-CGH, numerous new microdeletional syndromes have been delineated while others remain to be described. Although 3q29 subtelomeric deletion is a well-described syndrome, there is no report on 3q interstitial deletions. METHODS: We report for the first time seve...

  13. Long interspersed nuclear element-1 (LINE1)-mediated deletion of EVC, EVC2, C4orf6, and STK32B in Ellis-van Creveld syndrome with borderline intelligence.

    Science.gov (United States)

    Temtamy, Samia A; Aglan, Mona S; Valencia, Maria; Cocchi, Guido; Pacheco, Maria; Ashour, Adel M; Amr, Khalda S; Helmy, Sanaa M H; El-Gammal, Mona A; Wright, Michael; Lapunzina, Pablo; Goodship, Judith A; Ruiz-Perez, Victor L

    2008-07-01

    Previous work has shown Ellis-van Creveld (EvC) patients with mutations either in both alleles of EVC or in both alleles of EVC2. We now report affected individuals with the two genes inactivated on each allele. In a consanguineous pedigree diagnosed with EvC and borderline intelligence, we detected a 520-kb homozygous deletion comprising EVC, EVC2, C4orf6, and STK32B, caused by recombination between long interspersed nuclear element-1 (LINE-1 or L1) elements. Patients homozygous for the deletion are deficient in EVC and EVC2 and have no increase in the severity of the EvC typical features. Similarly deletion carriers demonstrate absence of digenic inheritance in EvC. Further, the phenotype of these patients suggests that the EVC-STK32B deletion also leads to mild mental retardation and reveals that loss of the novel genes C4orf6 and STK32B causes at most mild mental deficit. In an EvC compound heterozygote of different ethnic origin we identified the same LINE-to-LINE rearrangement due to a different recombination event. These findings highlight the importance of L1 repetitive sequences in human genome architecture and disease.

  14. Edit Distance with Block Deletions

    OpenAIRE

    Dana Shapira; Storer, James A.

    2011-01-01

    Several variants of the edit distance problem with block deletions are considered. Polynomial time optimal algorithms are presented for the edit distance with block deletions allowing character insertions and character moves, but without block moves. We show that the edit distance with block moves and block deletions is NP-complete (Nondeterministic Polynomial time problems in which any given solution to such problem can be verified in polynomial time, and any NP problem can be converted into...

  15. Phenotypic and molecular characterization of 19q12q13.1 deletions: a report of five patients.

    Science.gov (United States)

    Chowdhury, Shimul; Bandholz, Anne M; Parkash, Sandhya; Dyack, Sarah; Rideout, Andrea L; Leppig, Kathleen A; Thiese, Heidi; Wheeler, Patricia G; Tsang, Marilyn; Ballif, Blake C; Shaffer, Lisa G; Torchia, Beth S; Ellison, Jay W; Rosenfeld, Jill A

    2014-01-01

    A syndrome associated with 19q13.11 microdeletions has been proposed based on seven previous cases that displayed developmental delay, intellectual disability, speech disturbances, pre- and post-natal growth retardation, microcephaly, ectodermal dysplasia, and genital malformations in males. A 324-kb critical region was previously identified as the smallest region of overlap (SRO) for this syndrome. To further characterize this microdeletion syndrome, we present five patients with deletions within 19q12q13.12 identified using a whole-genome oligonucleotide microarray. Patients 1 and 2 possess deletions overlapping the SRO, and Patients 3-5 have deletions proximal to the SRO. Patients 1 and 2 share significant phenotypic overlap with previously reported cases, providing further definition of the 19q13.11 microdeletion syndrome phenotype, including the first presentation of ectrodactyly in the syndrome. Patients 3-5, whose features include developmental delay, growth retardation, and feeding problems, support the presence of dosage-sensitive genes outside the SRO that may contribute to the abnormal phenotypes observed in this syndrome. Multiple genotype-phenotype correlations outside the SRO are explored, including further validation of the deletion of WTIP as a candidate for male hypospadias observed in this syndrome. We postulate that unique patient-specific deletions within 19q12q13.1 may explain the phenotypic variability observed in this emerging contiguous gene deletion syndrome. PMID:24243649

  16. A case of duplication of 13q32-->qter and deletion of 18p11.32-->pter with mild phenotype: Patau syndrome and duplications of 13q revisited.

    OpenAIRE

    Helali, N; Iafolla, A K; Kahler, S G; Qumsiyeh, M B

    1996-01-01

    A mild clinical phenotype is described in a patient with duplication of 13q32-->qter and a small deletion of 18p11.32-->pter. The 8 year old white male presented with psychomotor retardation, tethered cord, soft, fleshy ears, and normal facial features except for thin lips. The karyotype was found to be 46, XY, der(18)t(13;18) (q32;p11.32) pat confirmed by fluorescence in situ hybridisation (FISH). A review of earlier studies showed that features of trisomy 13 are found in cases of duplicatio...

  17. A novel description of a syndrome consisting of 7q21.3 deletion including DYNC1I1 with preserved DLX5/6 without ectrodactyly: a case report

    OpenAIRE

    Ramos-Zaldívar, Héctor M.; Martínez-Irías, Daniel G.; Espinoza-Moreno, Nelson A.; Napky-Rajo, José S.; Bueso-Aguilar, Tulio A.; Reyes-Perdomo, Karla G.; Montes-Gambarelli, Jimena A.; Euceda, Isis M.; Ponce-Barahona, Aldo F.; Gámez-Fernández, Carlos A.; Moncada-Arita, Wilberg A.; Palomo-Bermúdez, Victoria A.; Jiménez-Faraj, Julia E.; Hernández-Padilla, Amanda G.; Olivera, Denys A.

    2016-01-01

    Background Chromosomal region 7q21.3 comprises approximately 5.2 mega base pairs that include genes DLX5/6, SHFM1, and DYNC1I1 associated with split hand/split foot malformation 1. So far, there are reports of eight families with deletion of DYNC1I1 and preserved DLX5/6 associated with ectrodactyly. From these families, only three patients did not present ectrodactyly and, unlike our patient, no other cases have been described as having craniofacial dysmorphology, mitral valve prolapse, kypho...

  18. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Martinelli, Diego [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Dionisi-Vici, Carlo [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Nobili, Valerio [Gastroenterology and Liver Unit, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Francalanci, Paola; Boldrini, Renata; Callea, Francesco [Dept. Pathology, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Santorelli, Filippo Maria [UOC Neurogenetica e Malattie Neuromuscolari, Fondazione Stella Maris, Pisa (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  19. Jacobsen syndrome

    Directory of Open Access Journals (Sweden)

    Grossfeld Paul

    2009-03-01

    Full Text Available Abstract Jacobsen syndrome is a MCA/MR contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. To date, over 200 cases have been reported. The prevalence has been estimated at 1/100,000 births, with a female/male ratio 2:1. The most common clinical features include pre- and postnatal physical growth retardation, psychomotor retardation, and characteristic facial dysmorphism (skull deformities, hypertelorism, ptosis, coloboma, downslanting palpebral fissures, epicanthal folds, broad nasal bridge, short nose, v-shaped mouth, small ears, low set posteriorly rotated ears. Abnormal platelet function, thrombocytopenia or pancytopenia are usually present at birth. Patients commonly have malformations of the heart, kidney, gastrointestinal tract, genitalia, central nervous system and skeleton. Ocular, hearing, immunological and hormonal problems may be also present. The deletion size ranges from ~7 to 20 Mb, with the proximal breakpoint within or telomeric to subband 11q23.3 and the deletion extending usually to the telomere. The deletion is de novo in 85% of reported cases, and in 15% of cases it results from an unbalanced segregation of a familial balanced translocation or from other chromosome rearrangements. In a minority of cases the breakpoint is at the FRA11B fragile site. Diagnosis is based on clinical findings (intellectual deficit, facial dysmorphic features and thrombocytopenia and confirmed by cytogenetics analysis. Differential diagnoses include Turner and Noonan syndromes, and acquired thrombocytopenia due to sepsis. Prenatal diagnosis of 11q deletion is possible by amniocentesis or chorionic villus sampling and cytogenetic analysis. Management is multi-disciplinary and requires evaluation by general pediatrician, pediatric cardiologist, neurologist, ophthalmologist. Auditory tests, blood tests, endocrine and immunological assessment and follow-up should be offered to all patients. Cardiac malformations can be

  20. Correlation between chromosome deletion and phenotypes in two cases of ring chromosome 6 syndrome%二例环6号染色体综合征病例染色体缺失片段及其与临床表型的关系

    Institute of Scientific and Technical Information of China (English)

    付杰; 王松涛; 潘虹; 马京梅; 于丽; 杨慧霞

    2014-01-01

    Objective To understand the correlation between chromosome deletion and the phenotypes in cases of ring chromosome 6 syndrome.Methods Two cases of ring chromosome 6 syndrome persented to the Peking University First Hospital in 2013 were studied.Case 1 was a fetus diagnosed as having ring chromosome 6 with karyotype 46,XY,r (6) [14]/46,XY,r (6; 6) [1]/45,XY,-6[15] from a pregnant woman who received prenatal examination because of high risk found in serum screening for Down's syndrome at 21 +1 weeks of gestation.Case 2 was an eight-month-old female infant with growth retardation and congenital facial anomaly,whose karyotype was 46,XX,r (6) /47,XX,r (6) × 2/46,XX,r (6; 6) /45,XX,-6.Multiplex ligation-dependent probe amplification and array-based comparative genomic hybridization were used to detect the location of chromosome telomeric loss and its size,and the correlation between chromosome deletion and the phenotypes was analyzed by reviewing related literatures.Results Case 1 was confirmed to have short-arm terminal deletions on 6p25.3-25.2 (2.42 Mb) which mainly included DUSP22,IRF4,EXOC2,FOXC1,FOXF2 and FOXQ genes,and long-arm terminal deletions on 6q26-27 (7.84 Mb) mainly included PARK2,PACRG,LOC28596 and RPS6KA2 genes.Case 2 had short-arm terminal deletions on 6p25.3-25.1 (5.44 Mb) which included DUSP22,IRF4,EXOC2,FOXC1,FOXF2,FOXQ and SERPINB6 genes,and long-arm terminal deletions on 6q27 (0.16 Mb) which included PSMB1,TBP and PDCD2 genes.Except for the growth retardation,the common feature of "ring syndrome",in both cases,cerebellum hypoplasia was observed in case 1,and microcephaly and esotropia were observed in case 2.Conclusions The difference of phenotypes in patients with a ring chromosome 6 is closely associated with the location and size of the deletion in chromosome 6.%目的 探讨环6号染色体综合征病例染色体缺失片段和定位于其中的基因与临床表型的关系. 方法 2013年就诊于北京大学第一医院的2例环6号染色

  1. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    DEFF Research Database (Denmark)

    Vega, H; Trainer, A H; Gordillo, M;

    2010-01-01

    Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be truncating mu...

  2. ATLAS DQ2 DELETION SERVICE

    CERN Document Server

    Oleynik, D; The ATLAS collaboration; Garonne, V; Campana, S

    2012-01-01

    ATLAS DQ2 Deletion service is a sub system of the ATLAS Distributed Data Management (DDM) project DQ2. DDM DQ2 responsible for the replication, access and bookkeeping of ATLAS data across more than 130 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. Responsibility of ATLAS DQ2 Deletion service is serving deletion requests on the grid by interacting with grid middleware and the DQ2 catalogues. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this talk special attention is paid to the technical details, which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Also specialty of database backend implementation will be described. Special section will be devote to the deletion monitoring service that allows operators a detailed view of the working system.

  3. ATLAS DQ2 Deletion Service

    CERN Document Server

    OLEYNIK, D; The ATLAS collaboration; GARONNE, V; CAMPANA, S

    2012-01-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 deletion service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogs to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service (peaking at more than 4 millions files deleted per day), accomplished without overloading either site storage, catalogs or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  4. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era

    Directory of Open Access Journals (Sweden)

    Costain G

    2012-02-01

    Full Text Available Gregory Costain1,2, Anne S Bassett1–41Clinical Genetics Research Program, Centre for Addiction and Mental Health, 2Institute of Medical Science, University of Toronto, 3Division of Cardiology, Department of Medicine and Department of Psychiatry, University Health Network, 4Department of Psychiatry, University of Toronto, Toronto, Ontario, CanadaAbstract: Schizophrenia is a complex neuropsychiatric disease with documented clinical and genetic heterogeneity, and evidence for neurodevelopmental origins. Driven by new genetic technologies and advances in molecular medicine, there has recently been concrete progress in understanding some of the specific genetic causes of this serious psychiatric illness. In particular, several large rare structural variants have been convincingly associated with schizophrenia, in targeted studies over two decades with respect to 22q11.2 microdeletions, and more recently in large-scale, genome-wide case-control studies. These advances promise to help many families afflicted with this disease. In this review, we critically appraise recent developments in the field of schizophrenia genetics through the lens of immediate clinical applicability. Much work remains in translating the recent surge of genetic research discoveries into the clinic. The epidemiology and basic genetic parameters (such as penetrance and expression of most genomic disorders associated with schizophrenia are not yet well characterized. To date, 22q11.2 deletion syndrome is the only established genetic subtype of schizophrenia of proven clinical relevance. We use this well-established association as a model to chart the pathway for translating emerging genetic discoveries into clinical practice. We also propose new directions for research involving general genetic risk prediction and counseling in schizophrenia.Keywords: schizophrenia, genetics, 22q11 deletion syndrome, copy number variation, genetic counseling, genetic predisposition to disease

  5. Evidence for a distinct region causing a cat-like cry in patients with 5p deletions

    Energy Technology Data Exchange (ETDEWEB)

    Gersh, M.; Goodart, S.A.; Overhauser, J. [Thomas Jefferson Univ., Philadelphia, PA (United States)] [and others

    1995-06-01

    The cri-du-chat syndrome is a contiguous gene syndrome that results from a deletion of the short arm of chromosome 5 (5p). Patients present with a cat-like cry at birth, which is usually considered diagnostic of this syndrome. Additional features of the syndrome include failure to thrive, microcephaly, hypertelorism, epicanthal folds, hypotonia, and severe mental retardation. We report on four families in which patients with 5p deletions have only the characteristic cat-like cry, with normal to mildly delayed development. The precise locations of the deletions in each family were determined by FISH using lambda phage and cosmic clones. All of the deletion breakpoints map distal to a chromosomal region that is implicated with the facial features and severe mental and developmental delay in the cri-du-chat syndrome. DNA clones mapping in the chromosomal region associated with the cat-like cry feature will be useful diagnostic tools. They will allow for the distinction between 5p deletions that will result in the severe delay observed in most cri-du-chat syndrome patients and those deletions that result in the isolated cat-like cry feature, which is associated with a better prognosis. 19 refs., 5 figs., 1 tab.

  6. A novel mitochondrial DNA deletion in a patient with Kearns-Sayre syndrome: a late-onset of the fatal cardiac conduction deficit and cardiomyopathy accompanying long-term rGH treatment

    OpenAIRE

    Obara-Moszynska, Monika; Maceluch, Jaroslaw; Bobkowski, Waldemar; Baszko, Artur; Jaremba, Oskar; Krawczynski, Maciej R; Niedziela, Marek

    2013-01-01

    Background Kearns-Sayre Syndrome (KSS) is a multisystem disorder caused by a dysfunction of the oxidative phosphorylation system within mitochondria. Mitochondrial DNA (mtDNA) rearrangements are a key molecular feature of this disease, which manifest a broad phenotypic spectrum. Case presentation Here, we present a boy with KSS whose symptoms included cardiac conduction deficit, cardiomyopathy and growth hormone (GH) deficiency. The patient showed typical symptoms for KSS from early childhood...

  7. Deletion of chromosome 21 in a girl with congenital hypothyroidism and mild mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    Ahlbom, B.E.; Anneren, G. [Univ. Hospital, Uppsala (Sweden); Sidenvall, R. [Central Hospital of Hudiksvall (Sweden)

    1996-08-23

    We report on a girl with a large interstitial deletion of the long arm of chromosome 21 and with mild mental retardation, congenital hypothyroidism, and hyperopia. The deletion [del(21)(q11.1-q22.1)] extends molecularly from marker D21S215 to D21S213. The distal breakpoint is not clearly defined but is situated between markers D21S213 and IFNAR. This patient has the largest deletion of chromosome 21 known without having severe mental retardation or malformations. The deletion does not involve the {open_quotes}Down syndrome chromosome{close_quotes} region, the region of chromosome 21 which in trisomy causes most of the manifestations of Down syndrome. Apparently, the proximal part of the long arm of chromosome 21 does not include genes that are responsible for severe clinical effects in the event of either deletion or duplication, since several reported patients with either trisomy or deletion of this region have mild phenotypic abnormalities. Congenital hypothyroidism is much more common in Down syndrome than in the average population. Thus, the congenital hypothyroidism of the present patient might indicate that there is one or several genes on the proximal part of chromosome 21, which might be of importance for the thyroid function. 24 refs., 4 figs., 2 tabs.

  8. Integration-free T cell-derived human induced pluripotent stem cells (iPSCs) from a patient with lymphedema-distichiasis syndrome (LDS) carrying an insertion-deletion complex mutation in the FOXC2 gene.

    Science.gov (United States)

    Itoh, Munenari; Kawagoe, Shiho; Okano, Hirotaka James; Nakagawa, Hidemi

    2016-05-01

    Expanded human T cells from a Japanese male with lymphedema-distichiasis syndrome (LDS) were used to generate integration-free induced pluripotent stem cells (iPSCs) by exogenous expression of four reprogramming factors, OCT3/4, SOX2, cMYC, KLF4, using Sendai virus vector (SeVdp). The authenticity of established iPSC line, LDS-iPSC8, was confirmed by the expression of stem cell markers and the differentiation capability into three germ layers. LDS-iPSC8 may be a useful cell resource for the establishment of in vitro LDS modeling and the study for vascular and lymph vessel development. PMID:27346194

  9. A novel acquired cryptic three-way translocation t(2;11;5)(p21.3;q13.5;q23.2) with a submicroscopic deletion at 11p14.3 in an adult with hypereosinophilic syndrome.

    Science.gov (United States)

    Kjeldsen, Eigil

    2015-08-01

    Hypereosinophilic syndrome (HES) is a clinically and pathologically heterogeneous disease entity. It is characterized by persistent eosinophilia and organ damage after excluding other causes. Clonal eosinophilia is distinguished from idiopathic eosinophilia by the presence of histologic, cytogenetic, or molecular evidence of an underlying malignancy. There are two distinct subcategories of clonal eosinophilia: chronic eosinophilic leukemia, not otherwise specified and myeloid/lymphoid neoplasms with eosinophilia and mutations involving platelet-derived growth factor receptor α/β or fibroblast growth factor receptor 1. More than 50% of HES are without knowledge of underlying pathogenic molecular pathways. Here we examined a HES patient by oligo-based aCGH analysis and molecular cytogenetic methods. Examination for the common eosinophilia-related cytogenetic abnormalities involving the genes PDGFRA, PDGFRB, and FGFR1 together with BCR-ABL fusion gene was negative. Cytogenetic analysis and multi-color FISH analysis revealed a novel cryptic three-way translocation t(2;11;5)(p21.3;q13.5;q23.2). By oaCGH analysis we could not find any copy number changes related to the cytogenetic breakpoints but instead detected a 0.9Mb submicroscopic deletion at 11p14.3. The deleted region involved the 5'-upstream sequences and exons 1-4 of the LUZP2 gene, which encodes a leucine zipper protein. Analysis of surrogate germ-line cells revealed a normal result showing that the detected chromosomal aberrations were acquired. This is the first report on a HES patient associated with a novel complex three-way translocation t(2;11;5)(p21.3;q13.5;q23.2) and a submicroscopic deletion in chromosome band 11p14.3. The study also demonstrates the benefits of oligo-based aCGH analysis in detecting hidden disease related chromosomal abnormalities. The present findings provide additional clues to unravel important molecular pathways in HES to obtain the full spectrum of acquired chromosomal and

  10. A common cognitive, psychiatric, and dysmorphic phenotype in carriers of NRXN1 deletion.

    Science.gov (United States)

    Viñas-Jornet, Marina; Esteba-Castillo, Susanna; Gabau, Elisabeth; Ribas-Vidal, Núria; Baena, Neus; San, Joan; Ruiz, Anna; Coll, Maria Dolors; Novell, Ramon; Guitart, Miriam

    2014-11-01

    Deletions in the 2p16.3 region that includes the neurexin (NRXN1) gene are associated with intellectual disability and various psychiatric disorders, in particular, autism and schizophrenia. We present three unrelated patients, two adults and one child, in whom we identified an intragenic 2p16.3 deletion within the NRXN1 gene using an oligonucleotide comparative genomic hybridization array. The three patients presented dual diagnosis that consisted of mild intellectual disability and autism and bipolar disorder. Also, they all shared a dysmorphic phenotype characterized by a long face, deep set eyes, and prominent premaxilla. Genetic analysis of family members showed two inherited deletions. A comprehensive neuropsychological examination of the 2p16.3 deletion carriers revealed the same phenotype, characterized by anxiety disorder, borderline intelligence, and dysexecutive syndrome. The cognitive pattern of dysexecutive syndrome with poor working memory and reduced attention switching, mental flexibility, and verbal fluency was the same than those of the adult probands. We suggest that in addition to intellectual disability and psychiatric disease, NRXN1 deletion is a risk factor for a characteristic cognitive and dysmorphic profile. The new cognitive phenotype found in the 2p16.3 deletion carriers suggests that 2p16.3 deletions might have a wide variable expressivity instead of incomplete penetrance.

  11. ATLAS DQ2 Deletion Service

    CERN Document Server

    OLEYNIK, D; The ATLAS collaboration; GARONNE, V; CAMPANA, S

    2012-01-01

    The ATLAS Distributed Data Management project DQ2 is responsible for the replication, access and bookkeeping of ATLAS data across more than 100 distributed grid sites. It also enforces data management policies decided on by the collaboration and defined in the ATLAS computing model. The DQ2 Deletion Service is one of the most important DDM services. This distributed service interacts with 3rd party grid middleware and the DQ2 catalogues to serve data deletion requests on the grid. Furthermore, it also takes care of retry strategies, check-pointing transactions, load management and fault tolerance. In this paper special attention is paid to the technical details which are used to achieve the high performance of service, accomplished without overloading either site storage, catalogues or other DQ2 components. Special attention is also paid to the deletion monitoring service that allows operators a detailed view of the working system.

  12. Angelman Syndrome and Epilepsy

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2006-02-01

    Full Text Available Twenty-six patients with Angelman syndrome (AS, of which 19 had 15ql 1-13 maternal deletion, were studied and followed at the University of San Paulo, Brazil, with particular reference to the prevalence and type of epilepsy and its response to antiepileptic drugs.

  13. Angelman Syndrome: Genetic Mechanisms and Relationship to Prader-Willi Syndrome.

    Science.gov (United States)

    Smith, Arabella

    1994-01-01

    Research points to two distinct regions within the Prader-Willi chromosome region: one for Prader Willi syndrome and one for Angelman syndrome. Genetic mechanisms in Angelman syndrome are complex, and at present, three mechanisms are recognized: maternal deletion, paternal uniparental disomy, and a nondeleted nondisomic form. (Author/JDD)

  14. TUPLE1 gene deletions role in the pathogenesis of congenital heart disease%TUPLE1基因缺失在先天性心脏病发病机制中作用的研究

    Institute of Scientific and Technical Information of China (English)

    孙晓燕; 王云英; 瓮占平; 吕慧玲; 吴晓峰; 纪向虹

    2013-01-01

    目的 探讨TUPLE1基因缺失在先天性心脏病发病机制中的作用.方法 应用荧光原位杂交(FISH)技术,对36例经产前超声诊断为先天性心脏畸形胎儿的脐带血进行22q11微缺失的检测,同时对20例正常新生儿脐带血进行22q11微缺失的检测.结果 36例先天性心脏畸形脐血标本诊断为22q11微缺失的有17例,其中法洛氏四联症3例,其他14例,合并胎儿躯体变形及胎儿生长受限的14例,颈项半透明厚度增加3例;20例正常新生儿脐血标本未检测到22q11微缺失.综合型先天性心脏病16例,单一型先天性心脏病1例.男性胎儿9例,女性胎儿8例.结论 TUPLE1位点缺失是导致先天性心脏畸形的重要病因;22q11微缺失患者中的心血管畸形类型多样.%Objective: Discusses the TUPLE1 gene flaw in the congenital heart disease pathogenesis function. Methods; Application of fluorescence in situ hybridization (FISH) techniques on 36 cases of prenatal ultrasound diagnosis of congenital cardiac malformations in fetal umbilical cord blood for 22q11 micro - missing detection, while on 20 healthy neonate umbilical cord blood for 22q11 micro - missing detection. Results; 36 cases with congenital heart abnormalities diagnosis of 22q11 micro - cord blood specimens missing of 17 cases, 3 cases of tetralogy of fallot and 14 other cases, merging of fetal body deformation and 14 cases of fetal growth restriction , increase in neck translucent thickness 3 cases; 20 patients with 22q11 normal umbilical cord blood sample not detected micro - missing. Integrated type of congenital heart disease in 16 cases, a single type of congenital heart disease in 1 cases. Male fetuses in 9 cases, 8 cases of female fetuses. Conclusion; TUPLE1 point loss is the cause is important cause of congenital heart malformations; micro - missing in patients with 22q11 diverse types of cardiovascular malformations.

  15. Sotos syndrome

    Directory of Open Access Journals (Sweden)

    Cormier-Daire Valérie

    2007-09-01

    Full Text Available Abstract Sotos syndrome is an overgrowth condition characterized by cardinal features including excessive growth during childhood, macrocephaly, distinctive facial gestalt and various degrees of learning difficulty, and associated with variable minor features. The exact prevalence remains unknown but hundreds of cases have been reported. The diagnosis is usually suspected after birth because of excessive height and occipitofrontal circumference (OFC, advanced bone age, neonatal complications including hypotonia and feeding difficulties, and facial gestalt. Other inconstant clinical abnormalities include scoliosis, cardiac and genitourinary anomalies, seizures and brisk deep tendon reflexes. Variable delays in cognitive and motor development are also observed. The syndrome may also be associated with an increased risk of tumors. Mutations and deletions of the NSD1 gene (located at chromosome 5q35 and coding for a histone methyltransferase implicated in transcriptional regulation are responsible for more than 75% of cases. FISH analysis, MLPA or multiplex quantitative PCR allow the detection of total/partial NSD1 deletions, and direct sequencing allows detection of NSD1 mutations. The large majority of NSD1 abnormalities occur de novo and there are very few familial cases. Although most cases are sporadic, several reports of autosomal dominant inheritance have been described. Germline mosaicism has never been reported and the recurrence risk for normal parents is very low (

  16. PAX3 gene deletion detected by microarray analysis in a girl with hearing loss.

    Science.gov (United States)

    Drozniewska, Malgorzata; Haus, Olga

    2014-01-01

    Deletions of the PAX3 gene have been rarely reported in the literature. Mutations of this gene are a common cause of Waardenburg syndrome type 1 and 3. We report a 16 year old female presenting hearing loss and normal intellectual development, without major features of Waardenburg syndrome type 1, and without family history of the syndrome. Her phenotype, however, overlaps with features of craniofacial-deafness-hand syndrome. Microarray analysis showed ~862 kb de novo deletion at 2q36.1 including PAX3. The above findings suggest that the rearrangement found in our patient appeared de novo and with high probability is a cause of her phenotype. PMID:24839464

  17. Molecular and clinical characterization of patients with overlapping 10p deletions.

    Science.gov (United States)

    Lindstrand, Anna; Malmgren, Helena; Verri, Annapia; Benetti, Elisa; Eriksson, Maud; Nordgren, Ann; Anderlid, Britt-Marie; Golovleva, Irina; Schoumans, Jacqueline; Blennow, Elisabeth

    2010-05-01

    Chromosome 10p terminal deletions have been associated with DiGeorge phenotype, and within the same genomic region haploinsufficiency of GATA3 causes the HDR syndrome (hypoparathyroidism, sensorineural deafness, renal dysplasia). We have performed detailed molecular analysis of four patients with partial overlapping 10p deletions by using FISH-mapping, array-CGH, and custom-designed high-resolution oligonucleotide array. All four patients had mental retardation and speech impairment and three of them showed variable signs of HDR syndrome. In addition, two patients had autistic behaviors and had similar dysmorphic features giving them a striking physical resemblance. A review of the literature identified 10 previously published cases with similar 10p deletions and reliable molecular or molecular cytogenetic mapping data. The combined information of present and previous cases suggests that partial deletions of 10p14-p15 represent a syndrome with a distinct and more severe phenotype than previously assumed. The main characteristics include severe mental retardation, language impairment, autistic behavior, and characteristic clinical features. A critical region involved in mental retardation and speech impairment is defined within 1.6 Mb in 10p15.3. In addition, deletion of 4.3 Mb within 10p14 is associated with autism and characteristic clinical findings. PMID:20425828

  18. 76 FR 22680 - Procurement List; Deletions

    Science.gov (United States)

    2011-04-22

    ... INFORMATION: Deletions On 2/25/2011 (76 FR 10571), the Committee for Purchase From People Who Are Blind or... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Deletions from the Procurement List. SUMMARY:...

  19. Outcomes in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with isolated deletion 5q treated with lenalidomide: a subset analysis from the MDS-004 study

    Science.gov (United States)

    Giagounidis, Aristoteles; Mufti, Ghulam J; Mittelman, Moshe; Sanz, Guillermo; Platzbecker, Uwe; Muus, Petra; Selleslag, Dominik; Beyne-Rauzy, Odile; te Boekhorst, Peter; del Cañizo, Consuelo; Guerci-Bresler, Agnès; Nilsson, Lars; Lübbert, Michael; Quesnel, Bruno; Ganser, Arnold; Bowen, David; Schlegelberger, Brigitte; Göhring, Gudrun; Fu, Tommy; Benettaib, Bouchra; Hellström-Lindberg, Eva; Fenaux, Pierre

    2014-01-01

    Objective A subset analysis of the randomised, phase 3, MDS-004 study to evaluate outcomes in patients with International Prognostic Scoring System (IPSS)-defined Low-/Intermediate (Int)-1-risk myelodysplastic syndromes (MDS) with isolated del(5q). Methods Patients received lenalidomide 10 mg/d (days 1–21; n = 47) or 5 mg/d (days 1–28; n = 43) on 28-d cycles or placebo (n = 45). From the placebo and lenalidomide 5 mg groups, 84% and 58% of patients, respectively, crossed over to lenalidomide 5 or 10 mg at 16 wk, respectively. Results Rates of red blood cell-transfusion independence (RBC-TI) ≥182 d were higher in the lenalidomide 10 mg (57.4%; P < 0.0001) and 5 mg (37.2%; P = 0.0001) groups vs. placebo (2.2%). Cytogenetic response rates (major + minor responses) were 56.8% (P < 0.0001), 23.1% (P = 0.0299) and 0%, respectively. Two-year cumulative risk of acute myeloid leukaemia progression was 12.6%, 17.4% and 16.7% in the lenalidomide 10 mg, 5 mg, and placebo groups, respectively. In a 6-month landmark analysis, overall survival was longer in lenalidomide-treated patients with RBC-TI ≥182 d vs. non-responders (P = 0.0072). The most common grade 3–4 adverse event was myelosuppression. Conclusions These data support the clinical benefits and acceptable safety profile of lenalidomide in transfusion-dependent patients with IPSS-defined Low-/Int-1-risk MDS with isolated del(5q). PMID:24813620

  20. 14q12 Microdeletion syndrome and congenital variant of Rett syndrome.

    NARCIS (Netherlands)

    Mencarelli, M.A.; Kleefstra, T.; Katzaki, E.; Papa, F.T.; Cohen, M.; Pfundt, R.P.; Ariani, F.; Meloni, I.; Mari, F.; Renieri, A.

    2009-01-01

    Only two patients with 14q12 deletion have been reported to date. Here, we describe an additional patient with a similar deletion in order to improve the clinical delineation of this new microdeletion syndrome. The emerging phenotype is characterized by a Rett-like clinical course with an almost nor

  1. A novel 3q29 deletion associated with autism, intellectual disability, psychiatric disorders, and obesity.

    Science.gov (United States)

    Biamino, Elisa; Di Gregorio, Eleonora; Belligni, Elga Fabia; Keller, Roberto; Riberi, Evelise; Gandione, Marina; Calcia, Alessandro; Mancini, Cecilia; Giorgio, Elisa; Cavalieri, Simona; Pappi, Patrizia; Talarico, Flavia; Fea, Antonio M; De Rubeis, Silvia; Cirillo Silengo, Margherita; Ferrero, Giovanni Battista; Brusco, Alfredo

    2016-03-01

    Copy number variation (CNV) has been associated with a variety of neuropsychiatric disorders, including intellectual disability/developmental delay (ID/DD), autism spectrum disorder (ASD), and schizophrenia (SCZ). Often, individuals carrying the same pathogenic CNV display high clinical variability. By array-CGH analysis, we identified a novel familial 3q29 deletion (1.36 Mb), centromeric to the 3q29 deletion region, which manifests with variable expressivity. The deletion was identified in a 3-year-old girl diagnosed with ID/DD and autism and segregated in six family members, all affected by severe psychiatric disorders including schizophrenia, major depression, anxiety disorder, and personality disorder. All individuals carrying the deletion were overweight or obese, and anomalies compatible with optic atrophy were observed in three out of four cases examined. Amongst the 10 genes encompassed by the deletion, the haploinsufficiency of Optic Atrophy 1 (OPA1), associated with autosomal dominant optic atrophy, is likely responsible for the ophthalmological anomalies. We hypothesize that the haploinsufficiency of ATPase type 13A4 (ATP13A4) and/or Hairy/Enhancer of Split Drosophila homolog 1 (HES1) contribute to the neuropsychiatric phenotype, while HES1 deletion might underlie the overweight/obesity. In conclusion, we propose a novel contiguous gene syndrome due to a proximal 3q29 deletion variably associated with autism, ID/DD, psychiatric traits and overweight/obesity. PMID:26620927

  2. Familial cryptic translocation in Angelman syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Weyerts, L.K.; Wiley, J.E.; Loud, K.M. [ECU School of Medicine, Greenville, NC (United States)] [and others

    1994-09-01

    The majority of patients with Angelman syndrome have been shown to have a cytogenetic or molecular deletion on the maternally derived chromosome 15. We report on a case of Angelman syndrome in which this deletion occurs as an unbalanced cryptic translocation involving chromosomes 14 and 15. The proband was diagnosed clinically as having Angelman syndrome. Multiple cytogenetic studies were done without detecting any deletion. When DNA probes (Oncor) specific for the Prader Willi/Angelman locus became available, the patient was restudied and found to be deleted for {open_quotes}region A{close_quotes} (D15S11) but not for {open_quotes}region B{close_quotes} (GABRB3). No other abnormality was detected. The proband`s mother was then studied. The chromosome 15 marker probe and D15S11 were detected on different chromosomes. Using alpha-satellite probes, a cryptic 14;15 translocation was uncovered. This balanced translocation was also found to be carried by the sister of the proband. This case, along with a case presented at the 1993 ASHG meeting, illustrates the need for using acrocentric probes when studying Angelman syndrome patients. The proband was studied using additional probes specific for this region and found to be deleted for SNRPN but not for D15S10. The breakpoint of the translocation in this patient delineates the smallest deletion of the Angelman syndrome region reported to date and therefore may represent the specific gene involved.

  3. Tbx1 regulates brain vascularization.

    Science.gov (United States)

    Cioffi, Sara; Martucciello, Stefania; Fulcoli, Filomena Gabriella; Bilio, Marchesa; Ferrentino, Rosa; Nusco, Edoardo; Illingworth, Elizabeth

    2014-01-01

    The transcription factor TBX1 is the major gene involved in 22q11.2 deletion syndrome (22q11.2DS). Using mouse models of these diseases, we have previously shown that TBX1 activates VEGFR3 in endothelial cells (EC), and that this interaction is critical for the development of the lymphatic vasculature. In this study, we show that TBX1 regulates brain angiogenesis. Using loss-of-function genetics and molecular approaches, we show that TBX1 regulates the VEGFR3 and DLL4 genes in brain ECs. In mice, loss of TBX1 causes global brain vascular defects, comprising brain vessel hyperplasia, enhanced angiogenic sprouting and vessel network disorganization. This phenotype is recapitulated in EC-specific Tbx1 conditional mutants and in an EC-only 3-dimensional cell culture system (matrigel), indicating that the brain vascular phenotype is cell autonomous. Furthermore, EC-specific conditional Tbx1 mutants have poorly perfused brain vessels and brain hypoxia, indicating that the expanded vascular network is functionally impaired. In EC-matrigel cultures, a Notch1 agonist is able to partially rescue microtubule hyperbranching induced by TBX1 knockdown. Thus, we have identified a novel transcriptional regulator of angiogenesis that exerts its effect in brain by negatively regulating angiogenesis through the DLL4/Notch1-VEGFR3 regulatory axis. Given the similarity of the phenotypic consequences of TBX1 mutation in humans and mice, this unexpected role of TBX1 in murine brain vascularization should stimulate clinicians to search for brain microvascular anomalies in 22q11.2DS patients and to evaluate whether some of the anatomical and functional brain anomalies in patients may have a microvascular origin. PMID:23945394

  4. Autism in Angelman Syndrome: An Exploration of Comorbidity

    Science.gov (United States)

    Trillingsgaard, Anegen; Ostergaard, John R.

    2004-01-01

    The aim was to explore the comorbidity between Angelman syndrome and autism spectrum disorders (ASDs). Identification of autism in children with Angelman syndrome presents a diagnostic challenge. In the present study, 16 children with Angelman syndrome, all with a 15q11-13 deletion, were examined for ASDs. Thirteen children with Angelman syndrome…

  5. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid.

  6. Deletion analysis of two tandemly arranged virulence genes in myxoma virus, M11L and myxoma growth factor.

    OpenAIRE

    Opgenorth, A; Graham, K.; N. Nation; Strayer, D; McFadden, G

    1992-01-01

    Myxoma virus (MYX) is a leporipoxvirus of rabbits that induces a lethal syndrome characterized by disseminated tumorlike lesions, generalized immunosuppression, and secondary gram-negative bacterial infection. A MYX deletion mutant (vMYX-GF- delta M11L) was constructed to remove the entire myxoma growth factor (MGF) coding sequence and that for the C-terminal five amino acids of the partially overlapping upstream gene, M11L. Unexpectedly, this deletion completely abrogates the capacity of MYX...

  7. Behavioral Profiles in Phelan-McDermid Syndrome: Focus on Mental Health

    Science.gov (United States)

    Shaw, Steven R.; Rahman, Amira; Sharma, Akanksha

    2011-01-01

    Phelan-McDermid syndrome (PMS) is a multiple congenital anomalies and intellectual disabilities syndrome associated with a deletion of chromosome 22 terminal band 13.3. The deletion is associated with severe intellectual disabilities, absent or delayed speech, behavior problems, and autism. The objective of this study was to provide a detailed…

  8. Phenotype-genotype discordance in congenital malformations with communication disorders resembling trisomy 18 (Edwards syndrome)

    OpenAIRE

    Pruszewicz, Antoni; Wiskirska-Woźnica, Bożena; Wojnowski, Waldemar; Czerniejewska, Hanna; Jackowska, Joanna; Jarmuż, Małgorzata; Szyfter, Krzysztof; Leszczyńska, Małgorzata

    2014-01-01

    Patient: Female, 6 Final Diagnosis: Phenotype-genotype discordance in congenital malformations with communication disorders resembling trisomy 18 (Edwards syndrome) Symptoms: — Medication: — Clinical Procedure: — Specialty: Otolaryngology Objective: Congenital defects Background: Communication process disorders are very frequent in rare cases of chromosomal aberrations (deletions, insertions, and trisomies) such as Down syndrome (trisomy 21), Turner syndrome, Edwards syndrome (trisomy 18), or...

  9. Gene Deletion by Synthesis in Yeast.

    Science.gov (United States)

    Kim, Jinsil; Kim, Dong-Uk; Hoe, Kwang-Lae

    2017-01-01

    Targeted gene deletion is a useful tool for understanding the function of a gene and its protein product. We have developed an efficient and robust gene deletion approach in yeast that employs oligonucleotide-based gene synthesis. This approach requires a deletion cassette composed of three modules: a central 1397-bp KanMX4 selection marker module and two 366-bp gene-specific flanking modules. The invariable KanMX4 module can be used in combination with different pairs of flanking modules targeting different genes. The two flanking modules consist of both sequences unique to each cassette (chromosomal homologous regions and barcodes) and those common to all deletion constructs (artificial linkers and restriction enzyme sites). Oligonucleotides for each module and junction regions are designed using the BatchBlock2Oligo program and are synthesized on a 96-well basis. The oligonucleotides are ligated into a single deletion cassette by ligase chain reaction, which is then amplified through two rounds of nested PCR to obtain sufficient quantities for yeast transformation. After removal of the artificial linkers, the deletion cassettes are transformed into wild-type diploid fission yeast SP286 cells. Verification of correct clone and gene deletion is achieved by performing check PCR and tetrad analysis. This method with proven effectiveness, as evidenced by a high success rate of gene deletion, can be potentially applicable to create systematic gene deletion libraries in a variety of yeast species. PMID:27671940

  10. Clinical comparison of 10q26 overlapping deletions: delineating the critical region for urogenital anomalies.

    Science.gov (United States)

    Vera-Carbonell, Ascensión; López-González, Vanesa; Bafalliu, Juan Antonio; Ballesta-Martínez, María J; Fernández, Asunción; Guillén-Navarro, Encarna; López-Expósito, Isabel

    2015-04-01

    The 10q26 deletion syndrome is a clinically heterogeneous disorder. The most common phenotypic characteristics include pre- and/or postnatal growth retardation, microcephaly, developmental delay/intellectual disability and a facial appearance consisting of a broad nasal bridge with a prominent nose, low-set malformed ears, strabismus, and a thin vermilion of the upper lip. In addition, limb and cardiac anomalies as well as urogenital anomalies are occasionally observed. In this report, we describe three unrelated females with 10q26 terminal deletions who shared clinical features of the syndrome, including urogenital defects. Cytogenetic studies showed an apparently de novo isolated deletion of the long arm of chromosome 10, with breakpoints in 10q26.1, and subsequent oligo array-CGH analysis confirmed the terminal location and defined the size of the overlapping deletions as ∼ 13.46, ∼ 9.31 and ∼ 9.17 Mb. We compared the phenotypic characteristics of the present patients with others reported to have isolated deletions and we suggest that small 10q26.2 terminal deletions may be associated with growth retardation, developmental delay/intellectual disability, craniofacial features and external genital anomalies whereas longer terminal deletions affecting the 10q26.12 and/or 10q26.13 regions may be responsible for renal/urinary tract anomalies. We propose that the haploinsufficiency of one or several genes located in the 10q26.12-q26.13 region may contribute to the renal or urinary tract pathogenesis and we highlight the importance of FGFR2 and probably of CTBP2 as candidate genes. PMID:25655674

  11. Cri-du-chat syndrome

    NARCIS (Netherlands)

    Didden, H.C.M.; Curfs, L.M.G

    2013-01-01

    Cri-du-chat syndrome is a genetic disease resulting from a deletion occurring on the short arm of chromosome 5 (5p-). The incidence ranges from 1:15 000 to 1:50 000 live-born infants. Its main clinical features are a high-pitched monochromatic cry, microcephaly, broad nasal bridge, epicanthal folds,

  12. Whole Xp Deletion in a Girl with Mental Retardation, Epilepsy, and Biochemical Features of OTC Deficiency

    OpenAIRE

    Joost, K.; Tammur, P.; Teek, R.; Žilina, O.; Peters, M; Kreile, M.; Lace, B.; Žordania, R.; Talvik, I.; Õunap, K.

    2011-01-01

    Background: Females with a total or partial deletion of the short arm of the X chromosome have variable features of Turner syndrome, but mental retardation (MR) rarely occurs. The haploinsufficiency of deleted genes that escape X-inactivation may explain the occurrence of MR and autism. Ornithine transcarbamylase (OTC) deficiency is the most common urea cycle disorder and is inherited in an X-linked semi-dominant trait, and the OTC gene maps to Xp21. Methods: We report on a girl with MR, epil...

  13. Prenatal Diagnosis of WAGR Syndrome

    Directory of Open Access Journals (Sweden)

    Berrin Tezcan

    2015-01-01

    Full Text Available Wilm’s tumour, aniridia, genitourinary abnormalities, and mental retardation (WAGR syndrome is a rare genetic disorder with an estimated prevalence of 1 in 500,000 to 1 million. It is a contiguous gene syndrome due to deletion at chromosome 11p13 in a region containing WT1 and PAX6 genes. Children with WAGR syndrome mostly present in the newborn/infancy period with sporadic aniridia. The genotypic defects in WAGR syndrome have been well established. However, antenatal ultrasonographic presentation of this syndrome has never been reported. Prenatal diagnosis of this condition is possible in some cases with careful ultrasound examination of classical and nonclassical manifestations of this syndrome. The key point for this rare diagnosis was the decision to perform chromosomal microarray analysis after antenatal diagnosis of absent corpus callosum and absent cavum septum pellucidum, as this finding mandates search for potentially associated genetic disorders. We report a case of WAGR syndrome diagnosed prenatally at 29-week gestation. The diagnosis of the anomaly was based on two- and three-dimensional ultrasound as well as fetal MRI scan and microarray analysis. The ultrasonographic findings included borderline ventriculomegaly, absent corpus callosum, and absent cavum septum pellucidum. Cytogenetic results from the amniotic fluid confirmed WAGR syndrome. Parental karyotype was normal, with no evidence of copy number change, deletion, or rearrangement of this region of chromosome 11.

  14. Mosaic 18q21.2 deletions including the TCF4 gene: a clinical report.

    Science.gov (United States)

    Rossi, Massimiliano; Labalme, Audrey; Cordier, Marie-Pierre; Till, Marianne; Blanchard, Gaëlle; Dubois, Remi; Guibaud, Laurent; Heissat, Sophie; Javouhey, Etienne; Lachaux, Alain; Mure, Pierre-Yves; Ville, Dorothée; Edery, Patrick; Sanlaville, Damien

    2012-12-01

    Pitt-Hopkins syndrome (PTHS) is characterized by distinctive facial dysmorphism, profound intellectual disability, and the possible occurrence of epilepsy and breathing anomalies. It is caused by haploinsufficiency of the TCF4 gene. No significant difference in clinical severity has been reported to date between PTHS patients carrying 18q21 deletions including the TCF4 gene, and those harboring TCF4 point mutations, suggesting a lack of genotype/phenotype correlation. Moreover, the size of 18q21 deletions including the TCF4 gene does not appear to have a significant effect on the phenotypic severity, suggesting that TCF4 haploinsufficiency is the most important prognostic factor in 18q deletions. We describe two unrelated patients presenting with clinical features reminiscent of PTHS and carrying mosaic interstitial 18q21 deletions characterized by array comparative genomic hybridization. One of the patients presented the lowest level of mosaic 18q21 deletion reported to date (5-10%). Our report and a review of the literature show that the mosaic status does not appear to have a significant effect on the clinical severity of 18q21 deletions, which are associated with a poor neurological outcome, whereas a mosaic TCF4 point mutation can result in a significantly milder phenotype. Malformations of internal organs are currently considered to be rare in PTHS. The patients described here had visceral anomalies, suggesting that a full morphological assessment, including heart and abdominal ultrasound scans, should be performed systematically in PTHS patients. PMID:23165966

  15. Characterisation of the Angelman syndrome critical region

    Energy Technology Data Exchange (ETDEWEB)

    Gilbert, H.L.; Buxton, J.; Chan, C.T.J. [Univ. of London (United Kingdom)] [and others

    1994-09-01

    Angelman syndrome (AS) and Prader-Willi syndrome (PWS) are distinct neurogenetic disorders associated with a deletion of 15q11-13, a region subject to genomic imprinting. The chromosomal deletions are either maternal (AS) or paternal (PWS) in origin. The AS critical region was previously defined by an inherited deletion of approximately 1.5 Mb, encompassing TD3-21, LS6-1 and GABRB3. An individual with classical AS has been identified whose deletion includes LS6-1 but not TD3-21 or GABRB3. Both maternal and paternal methylation patterns at ZNF127, PW71B and SNRPN are present, suggesting that the AS gene itself is a disrupted, rather than imprinting sequences, as proposed recently for some familial cases. Initially, the deletion was detected by (CA)n repeat analysis. Cosmids derived from a 260 kb LS6-1 YAC were then used to confirm the deletion by fluorescence in-situ hybridization (FISH). Neither end cosmid from the YAC is deleted, suggesting that the AS critical region is less than 200 kb. Fragments isolated from the cosmids which span the deletion were used to further delineate the AS critical region by Southern blot analysis. Single copy genomic fragments within this region were then used to search for differential parental methylation patterns and potential coding sequences. We have used cosmids from the region in exon-trapping experiments. Using this combination of approaches, we aim to identify candidate genes for AS.

  16. Familial deletion of 18p associated with Turner like clinical features

    Energy Technology Data Exchange (ETDEWEB)

    Say, B.; Gopal Rao, V.V.N.; Harris, S. [H.A. Chapman Institute of Medical Genetics, Tulsa, OK (United States)] [and others

    1994-09-01

    The authors report the first occurrence to our knowledge of a familial deletion of the short arm of chromosome 18 in a mother and daughter. The proband is an 18-year-old female referred for chromosomal analysis because of mental retardation and short stature. She is the only offspring. Her birth weight was 3 pounds 10 ounces (below 5th percentile). As a child, she had delayed milestones. Her IQ is 69 and she is in classes for the educable mentally handicapped. Her height is 145.6 cm and weight 38.7 kg (both below 5th percentile). Physical examination revealed a low nuchal hairline. She has myopia. Chromosome analysis from peripheral blood lymphocytes revealed a 46,XX,del(18)(p11.21) karyotype. Since some of the same clinical features are also seen in the mother including short stature (157 cm), mental retardation, ocular problems like cataracts, exotropia and refractive error, chromosome analysis was performed which showed the same 46,XX,del(18)(p11.21) karyotype. A familial case like this has great implications in genetic counseling. Since the syndrome is not associated with sterility, the recurrence risk for the offspring is 50%. Patients with deletion (18p) syndrome are reported to have findings suggestive of Turner syndrome with varying degrees of mental retardation. We recommend that in patients with such clinical features associated with mental retardation, normal menstrual history and/or fertility, the possibility of deletion (18p) syndrome be considered.

  17. Genetics Home Reference: 16p11.2 deletion syndrome

    Science.gov (United States)

    ... Additional Information & Resources MedlinePlus (3 links) Health Topic: Autism Spectrum Disorder Health Topic: Developmental Disabilities Health Topic: Speech and Communication Disorders Genetic and Rare Diseases Information ...

  18. Genetics Home Reference: 22q13.3 deletion syndrome

    Science.gov (United States)

    ... National Institute on Deafness and Other Communication Disorders: Autism and Communication National Institute on Deafness and Other Communication Disorders: Speech and Language Developmental Milestones Educational Resources (9 links) ...

  19. 13Q DELETIONS IN LYMPHOID MALIGNANCIES

    NARCIS (Netherlands)

    HERMANSON, M; GRANDER, D; MERUP, M; WU, XS; HEYMAN, M; RASOOL, O; JULIUSSON, G; GAHRTON, G; DETLOFSSON, R; NIKIFOROVA, N; BUYS, C; SODERHALL, S; YANKOVSKY, N; ZABAROVSKY, E; EINHORN, S

    1995-01-01

    Previous studies have indicated that a candidate tumor suppressor gene resides telomeric of the RB1 gene at 13q14, a region that is commonly deleted in B-cell chronic lymphocytic leukemia (B-CLL). In this study, we have evaluated the frequency and minimal region of overlap for 13q deletions in malig

  20. 78 FR 56679 - Procurement List; Deletions

    Science.gov (United States)

    2013-09-13

    ... 8/2/2013 (78 FR 46927-46928), the Committee for Purchase From People Who Are Blind or Severely... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Deletions from the Procurement List. SUMMARY:...

  1. Seven gene deletions in seven days

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Lennen, Rebecca; Herrgard, Markus;

    2015-01-01

    enables growth at 37 °C, thereby facilitating removal of integrated antibiotic cassettes and deletion of additional genes in the same day. Phosphorothioated primers were demonstrated to enable simultaneous deletions during one round of electroporation. Utilizing these methods, we constructed strains...

  2. Age-and gender-dependent obesity in individuals with 16p11.2 deletion

    Institute of Scientific and Technical Information of China (English)

    Yongguo Yu; Haitao Zhu; David T. Miller; James F. Gusella; Orah S. Platt; Bai-Lin Wu; Yiping Shen

    2011-01-01

    Recurrent genomic imbalances at 16p11.2 are genetic risk factors of variable penetrance for developmental delay and autism.Recently,16p11.2 (chr16:29.5 Mb-30.1 Mb) deletion has also been detected in individuals with early-onset severe obesity.The penetrance of 16p11.2deletion as a genetic risk factor for obesity is unknown.We evaluated the growth and body mass characteristics of 28 individuals with 16p11.2(chr16:29.5 Mb-30.1 Mb) deletion originally ascertained for their developmental disorders by reviewing their medical records.We found that nine individuals could be classilied as obese and six as overweight.These individuals generally had early feeding and growth difficulties,and started to gain excessive weight around 5-6 years of age.Thirteen out of the 18 deletion carriers aged 5 years and older (72%) were overweight or obese,whereas only two of 10 deletion carriers (20%) younger than five were overweight or obese.Males exhibited more severe obesity than females.Thus,the obesity phenotype of 16p11.2 deletion carriers is of juvenile onset,exhibited an age.and gender-dependent penetrance.16p11.2 deletion appears to predispose individuals to juvenile onset obesity and in this case are similar to the well-described Prader-Willi syndrome (PWS).Early detection of this deletion will provide opportunity to prevent obesity.

  3. Beals Syndrome

    Science.gov (United States)

    ... Boards & Staff Annual Report & Financials Contact Us Donate Marfan & Related Disorders What is Marfan Syndrome? What are ... the syndrome. How does Beals syndrome compare with Marfan syndrome? People with Beals syndrome have many of ...

  4. Functional Polymorphisms in PRODH Are Associated with Risk and Protection for Schizophrenia and Fronto-Striatal Structure and Function

    Science.gov (United States)

    Kempf, Lucas; Nicodemus, Kristin K.; Kolachana, Bhaskar; Vakkalanka, Radhakrishna; Verchinski, Beth A.; Egan, Michael F.; Straub, Richard E.; Mattay, Venkata A.; Callicott, Joseph H.; Weinberger, Daniel R.; Meyer-Lindenberg, Andreas

    2008-01-01

    PRODH, encoding proline oxidase (POX), has been associated with schizophrenia through linkage, association, and the 22q11 deletion syndrome (Velo-Cardio-Facial syndrome). Here, we show in a family-based sample that functional polymorphisms in PRODH are associated with schizophrenia, with protective and risk alleles having opposite effects on POX activity. Using a multimodal imaging genetics approach, we demonstrate that haplotypes constructed from these risk and protective functional polymorphisms have dissociable correlations with structure, function, and connectivity of striatum and prefrontal cortex, impacting critical circuitry implicated in the pathophysiology of schizophrenia. Specifically, the schizophrenia risk haplotype was associated with decreased striatal volume and increased striatal-frontal functional connectivity, while the protective haplotype was associated with decreased striatal-frontal functional connectivity. Our findings suggest a role for functional genetic variation in POX on neostriatal-frontal circuits mediating risk and protection for schizophrenia. PMID:18989458

  5. Functional polymorphisms in PRODH are associated with risk and protection for schizophrenia and fronto-striatal structure and function.

    Directory of Open Access Journals (Sweden)

    Lucas Kempf

    2008-11-01

    Full Text Available PRODH, encoding proline oxidase (POX, has been associated with schizophrenia through linkage, association, and the 22q11 deletion syndrome (Velo-Cardio-Facial syndrome. Here, we show in a family-based sample that functional polymorphisms in PRODH are associated with schizophrenia, with protective and risk alleles having opposite effects on POX activity. Using a multimodal imaging genetics approach, we demonstrate that haplotypes constructed from these risk and protective functional polymorphisms have dissociable correlations with structure, function, and connectivity of striatum and prefrontal cortex, impacting critical circuitry implicated in the pathophysiology of schizophrenia. Specifically, the schizophrenia risk haplotype was associated with decreased striatal volume and increased striatal-frontal functional connectivity, while the protective haplotype was associated with decreased striatal-frontal functional connectivity. Our findings suggest a role for functional genetic variation in POX on neostriatal-frontal circuits mediating risk and protection for schizophrenia.

  6. Neuropsychological profiles of patients with 2q37.3 deletion associated with developmental dyspraxia.

    Science.gov (United States)

    Ogura, Kaeko; Takeshita, Kenzo; Arakawa, Chikako; Shimojima, Keiko; Yamamoto, Toshiyuki

    2014-12-01

    Patients with 2q37 deletions manifest brachydactyly mental retardation syndrome (BDMR). Recent advances in human molecular research have revealed that alterations in the histone deacetylase 4 gene (HDAC4) are responsible for the clinical manifestations of BDMR. Here, we report two male patients with 2q37.3 deletions. One of the patients showed a typical BDMR phenotype, and HDAC4 was included in the deletion region. HDAC4 was preserved in the other patient, and he showed a normal intelligence level with the delayed learning of complex motor skills. Detailed neuropsychological examinations revealed similar neuropsychological profiles in these two patients (visuo-spatial dyspraxia) that suggested developmental dyspraxia. These observations suggested that some other candidate genes for neuronal development exist in the telomeric region of HDAC4. PMID:25329715

  7. Microarray based analysis of an inherited terminal 3p26.3 deletion, containing only the CHL1 gene, from a normal father to his two affected children

    Directory of Open Access Journals (Sweden)

    Lerone Margherita

    2011-04-01

    Full Text Available Abstract Background terminal deletions of the distal portion of the short arm of chromosome 3 cause a rare contiguous gene disorder characterized by growth retardation, developmental delay, mental retardation, dysmorphisms, microcephaly and ptosis. The phenotype of individuals with deletions varies from normal to severe. It was suggested that a 1,5 Mb minimal terminal deletion including the two genes CRBN and CNTN4 is sufficient to cause the syndrome. In addition the CHL1 gene, mapping at 3p26.3 distally to CRBN and CNTN4, was proposed as candidate gene for a non specific mental retardation because of its high level of expression in the brain. Methods and Results we describe two affected siblings in which array-CGH analysis disclosed an identical discontinuous terminal 3p26.3 deletion spanning less than 1 Mb. The deletion was transmitted from their normal father and included only the CHL1 gene. The two brothers present microcephaly, light mental retardation, learning and language difficulties but not the typical phenotype manifestations described in 3p- syndrome. Conclusion a terminal 3p26.3 deletion including only the CHL1 gene is a very rare finding previously reported only in one family. The phenotype of the affected individuals in the two families is very similar and the deletion has been inherited from an apparently normal parent. As already described for others recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance.

  8. Brief Report: Peculiar Evolution of Autistic Behaviors in Two Unrelated Children with Brachidactyly-Mental Retardation Syndrome

    Science.gov (United States)

    Mazzone, Luigi; Vassena, Lia; Ruta, Liliana; Mugno, Diego; Galesi, Ornella; Fichera, Marco

    2012-01-01

    Brachidactyly-Mental Retardation (BDMR) Syndrome (MIM 600430) is associated with terminal deletions at chromosome 2q37 and a limited number of studies also reported an association between 2q37 [right arrow] qter deletion and autism. Herein we describe two cases of autism in unrelated children with BDMR Syndrome, showing physical, cognitive,…

  9. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  10. Double deletion of melanocortin 4 receptors and SAPAP3 corrects compulsive behavior and obesity in mice

    OpenAIRE

    Xu, Pin; Grueter, Brad A.; Britt, Jeremiah K; McDaniel, Latisha; Huntington, Paula J.; Hodge, Rachel; Tran, Stephanie; Mason, Brittany L.; Lee, Charlotte; Vong, Linh; Lowell, Bradford B.; Malenka, Robert C.; Lutter, Michael; Pieper, Andrew A.

    2013-01-01

    Compulsive behavior is a debilitating clinical feature of many forms of neuropsychiatric disease, including Tourette syndrome, obsessive-compulsive spectrum disorders, eating disorders, and autism. Although several studies link striatal dysfunction to compulsivity, the pathophysiology remains poorly understood. Here, we show that both constitutive and induced genetic deletion of the gene encoding the melanocortin 4 receptor (MC4R), as well as pharmacologic inhibition of MC4R signaling, normal...

  11. Auriculotemporal Syndrome (Frey Syndrome).

    Science.gov (United States)

    Motz, Kevin M; Kim, Young J

    2016-04-01

    Frey syndrome is a common sequela of parotidectomy, and although it is not frequently manifested clinically, it can cause significant morbidity for those affected. Frey syndrome results from synkinetic autonomic reinnervation by transected postganglionic parasympathetic nerve fiber within the parotid gland to the overlying sweat glands of the skin. Many surgical techniques have been proposed to prevent the development of Frey syndrome. For those who develop clinical symptoms of Frey syndrome, objective testing can be performed with a Minor starch-iodine test. Some of the current methods to prevent and treat symptomatic Frey syndrome are reviewed. PMID:26902982

  12. Encephalopathy and bilateral cataract in a boy with an interstitial deletion of Xp22 comprising the CDKL5 and NHS genes.

    Science.gov (United States)

    Van Esch, Hilde; Jansen, Anna; Bauters, Marijke; Froyen, Guy; Fryns, Jean-Pierre

    2007-02-15

    We describe a male patient with a deletion at Xp22, detected by high resolution X-array CGH. The clinical phenotype present in this infant boy, consists of severe encephalopathy, congenital cataracts and tetralogy of Fallot and can be attributed to the deletion of the genes within the interval. Among these deleted genes are the gene for Nance-Horan syndrome and the cyclin-dependent kinase-like 5 gene (CDKL5), responsible for the early seizure variant of Rett syndrome. This is the first description of a male patient with a deletion of these genes, showing the involvement of CDKL5 in severe epileptic encephalopathy in males. Moreover it illustrates the added value of high resolution array-CGH in molecular diagnosis of mental retardation-multiple congenital anomaly cases.

  13. 15q11-13缺失型Angelman综合征17例遗传学诊断及临床特点%Genetic and clinical study on 17 cases of Angelman syndrome with deletion of 15q11-13

    Institute of Scientific and Technical Information of China (English)

    白晋丽; 宋昉; 邹丽萍; 杨欣英; 瞿宇晋; 王立文; 杨艳玲; 金煜伟; 王红

    2010-01-01

    目的 对临床诊断的Angelman综合征(AS)患儿进行遗传学诊断和临床特点分析.方法 利用MS-PCR、STR家系连锁分析和染色体核型分析,对17例临床诊断AS的患儿(其中男7例,女10例,年龄8个月~5岁)进行遗传学诊断.依据国际诊断标准,分析15q11-13缺失型AS患儿的相关表型特点.结果 (1)17例确诊为15q11-13缺失型AS.(2)患儿出生情况无明显异常.所有的患儿均有不同程度的运动和语言发育迟缓,以语言发育落后更为显著,并伴有特征性的快乐行为.(3)AS的经常性表现:癫癎(15例),异常脑电图(14例),发生率约80%~90%,只有35%的患儿(6例)存在小头畸形.(4)与AS较为关联的表现:平枕/枕骨凹陷(12例),下颌突出(10例),宽嘴和齿缝稀疏(13例),频繁流口水(8例),过多的嘴部动作(9例),肤色及发色浅淡(13例),运动时屈曲手臂(9例),睡眠障碍(9例)等,发生率47%~77%.>2岁年龄组患儿的AS相关性表现的发生率均高于≤2岁年龄组患儿.结论 联合应用MS-PCR、STR连锁分析和染色体核型分析,确诊17例患儿为15q11-13缺失型AS.我国15q11-13缺失型AS患儿的临床表现与国际诊断标准基本一致,惟小头畸形比率低于白种人,可能存在人种表型差异.随着年龄的增长AS相关性表现更为明显.%Objective Angelman syndrome (AS) is a neurodevelopmental genetic disorder that maps to 15q11-13. The primary phenotypes are attributable to loss of expression of imprinted UBE3A gene within this region which can arise by means of a number of mechanisms. The purpose of this study was to make a genetic diagnosis and to analyze the clinical features in suspected patients with AS. Method A total of 17 cases were diagnosed clinically as AS including 7 males and 10 females. The age at the time of diagnosis ranged from 8 months to 5 years. Genetic diagnosis was made by methylation-specific PCR ( MS-PCR), linkage analysis by short tandem repeat (STR) and chromosome

  14. Behavioral Features of Williams Beuren Syndrome Compared to Fragile X Syndrome and Subjects with Intellectual Disability without Defined Etiology

    Science.gov (United States)

    Perez-Garcia, D.; Granero, R.; Gallastegui, F.; Perez-Jurado, L. A.; Brun-Gasca, C.

    2011-01-01

    Williams-Beuren syndrome (WBS) is a genetically determined neurodevelopmental disorder caused by a heterozygous deletion of 26-28 genes on chromosome band 7q11.23. During the past few years, researchers and clinicians have significantly contributed to define the phenotype of the syndrome, including its cognitive and behavioral aspects. However, it…

  15. A Physical Map, Including a BAC/PAC Clone Contig, of the Williams-Beuren Syndrome–Deletion Region at 7q11.23

    OpenAIRE

    Peoples, Risa; Franke, Yvonne; Wang, Yu-Ker; Pérez-Jurado, Luis; Paperna, Tamar; Cisco, Michael; Francke, Uta

    2000-01-01

    Williams-Beuren syndrome (WBS) is a developmental disorder caused by haploinsufficiency for genes in a 2-cM region of chromosome band 7q11.23. With the exception of vascular stenoses due to deletion of the elastin gene, the various features of WBS have not yet been attributed to specific genes. Although ⩾16 genes have been identified within the WBS deletion, completion of a physical map of the region has been difficult because of the large duplicated regions flanking the deletion. We present ...

  16. 18p- syndrome: Presentation of two cases with alobar holoprosencenphaly

    Directory of Open Access Journals (Sweden)

    Harry Mauricio Pachajoa

    2011-01-01

    Full Text Available Introduction: The syndrome by deletion of the short arm of chromosome 18 is an infrequent syndrome, and its phenotypical variability makes it difficult to recognize. Its most frequently observed clinical characteristics include mental retardation, growth retardation, craniofacial malformations, including long ears, microcephaly and short neck; other less frequent associated malformations include holoprosencephaly. Case report: We present two patients with deletion of the short arm of chromosome 18, one presented a de novo mutation and the other was produced by a balanced translocation 6p/18p of maternal origin. Both patients presented alobar holoprosencephaly and cebocephaly, low-frequency clinical characteristics in this syndrome. Discussion: alobar holoprosencephaly is a malformation appearing in 10% of patients with deletion of the short arm of chromosome 18; we review the probable physiopathology of holoprosencephaly in this syndrome.

  17. Molecular and clinical study of 61 Angelman syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Shinji; Harada, Naoki; Jinno, Yoshihiro; Niikawa, Norio [Nagasaki Univ. School of Medicine (Japan); Imaizumi, Kiyoshi; Kuroki, Yoshikazu; Fukushima; Yoshimitsu; Sugimoto, Tateo; Renedo, Monica

    1994-08-15

    We analyzed 61 Angelman syndrome (AS) patients by cytogenetic and molecular techniques. On the basis of molecular findings, the patients were classified into the following 4 groups: familial cases without deletion, familial cases with submicroscopic deletion, sporadic cases with deletion, and sporadic cases without deletion. Among 53 sporadic cases, 37 (70%) had molecular deletion, which commonly extended from D15S9 to D15S12, although not all deletions were identical. Of 8 familial cases, 3 sibs from one family had a molecular deletion involving only 2 loci, D15S10 and GABRB3, which define the critical region for AS phenotypes. The parental origin of deletion, both in sporadic and familial cases, was exclusively maternal and consistent with a genomic imprinting hypothesis. Among sporadic and familial cases without deletion, no uniparental disomy was found and most of them were shown to inherit chromosomes 15 from both parents (biparental inheritance). A discrepancy between cytogenetic and molecular deletion was observed in 14 (26%) of 53 patients in whom cytogenetic analysis could be performed. Ten (43%) of 23 patients with a normal karyotype showed a molecular deletion, and 4 (13%) of 30 patients with cytogenetic deletion, del(15) (q11q13), showed no molecular deletion. Most clinical manifestations, including neurological signs and facial characteristics, were not distinct in each group except for hypopigmentation of skin or hair. Familial cases with submicroscopic deletion were not associated with hypopigmentation. These findings suggested that a gene for hypopigmentation is located outside the critical region of AS and is not imprinted. 37 refs., 2 figs., 4 tabs.

  18. Large Genomic Deletions in CACNA1A Cause Episodic Ataxia Type 2

    Directory of Open Access Journals (Sweden)

    Jijun eWan

    2011-09-01

    Full Text Available Episodic ataxia (EA syndromes are heritable diseases characterized by dramatic episodes of imbalance and incoordination. Episodic ataxia type 2 (EA2, the most common and the best characterized subtype, is caused by mostly nonsense, splice site, small indel and sometimes missense mutations in CACNA1A. Direct sequencing of CACNA1A fails to identify mutations in some patients with EA2-like features, possibly due to incomplete interrogation of CACNA1A or defects in other EA genes not yet defined. Previous reports described genomic deletions between 4-40kb in EA2. In 47 subjects with EA (26 with EA2-like features who tested negative for mutations in the known EA genes, we used Multiplex Ligation-dependent Probe Amplification (MLPA to analyze CACNA1A for exonic copy number variations. Breakpoints were further defined by long-range PCR. We identified distinct multi-exonic deletions in three probands with classic EA2-like features: episodes of prolonged vertigo and ataxia triggered by stress and fatigue, interictal nystagmus, with onset during infancy or early childhood. The breakpoints in all three probands are located in Alu sequences, indicating errors in homologous recombination of Alu sequences as the underlying mechanism. The smallest deletion spanned exons 39 and 40, while the largest deletion spanned 200kb, missing all but the first three exons. One deletion involving exons 39 through 47 arose spontaneously. The search for mutations in CACNA1A appears most fruitful in EA patients with interictal nystagmus and onset early in life. The finding of large heterozygous deletions suggests haploinsufficiency as a possible pathomechanism of EA2.

  19. Frequent deletions of JARID2 in leukemic transformation of chronic myeloid malignancies.

    Science.gov (United States)

    Puda, Ana; Milosevic, Jelena D; Berg, Tiina; Klampfl, Thorsten; Harutyunyan, Ashot S; Gisslinger, Bettina; Rumi, Elisa; Pietra, Daniela; Malcovati, Luca; Elena, Chiara; Doubek, Michael; Steurer, Michael; Tosic, Natasa; Pavlovic, Sonja; Guglielmelli, Paola; Pieri, Lisa; Vannucchi, Alessandro M; Gisslinger, Heinz; Cazzola, Mario; Kralovics, Robert

    2012-03-01

    Chronic myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) have an inherent tendency to progress to acute myeloid leukemia (AML). Using high-resolution SNP microarrays, we studied a total of 517 MPN and MDS patients in different disease stages, including 77 AML cases with previous history of MPN (N = 46) or MDS (N = 31). Frequent chromosomal deletions of variable sizes were detected, allowing the mapping of putative tumor suppressor genes involved in the leukemic transformation process. We detected frequent deletions on the short arm of chromosome 6 (del6p). The common deleted region on 6p mapped to a 1.1-Mb region and contained only the JARID2 gene--member of the polycomb repressive complex 2 (PRC2). When we compared the frequency of del6p between chronic and leukemic phase, we observed a strong association of del6p with leukemic transformation (P = 0.0033). Subsequently, analysis of deletion profiles of other PRC2 members revealed frequent losses of genes such as EZH2, AEBP2, and SUZ12; however, the deletions targeting these genes were large. We also identified two patients with homozygous losses of JARID2 and AEBP2. We observed frequent codeletion of AEBP2 and ETV6, and similarly, SUZ12 and NF1. Using next generation exome sequencing of 40 patients, we identified only one somatic mutation in the PRC2 complex member SUZ12. As the frequency of point mutations in PRC2 members was found to be low, deletions were the main type of lesions targeting PRC2 complex members. Our study suggests an essential role of the PRC2 complex in the leukemic transformation of chronic myeloid disorders. PMID:22190018

  20. Cleft Lip/Palate, Short Stature, and Developmental Delay in a Boy with a 5.6-Mb Interstitial Deletion Involving 10p15.3p14

    Science.gov (United States)

    Gamba, Bruno F.; Rosenberg, Carla; Costa, Silvia; Richieri-Costa, Antonio; Ribeiro-Bicudo, Lucilene A.

    2015-01-01

    The chromosome interval 10p15.3p14 harbors about a dozen genes. This region has been implicated in a few well-known human phenotypes, namely HDR syndrome (hypoparathyroidism, sensorineural deafness, and renal dysplasia) and DGS2 (DiGeorge syndrome 2), but a number of variable phenotypes have also been reported. Cleft lip/palate seems to be a very unusual finding within the clinical spectrum of patients with this deletion. Here, we report a male child born with short stature, cleft lip/palate, and feeding problems who was found to have a 5.6-Mb deletion at 10p15.3p14. PMID:25852446

  1. Lynch Syndrome: An Updated Review

    Directory of Open Access Journals (Sweden)

    Rishabh Sehgal

    2014-06-01

    Full Text Available Lynch syndrome is one of the most common cancer susceptibility syndromes. Individuals with Lynch syndrome have a 50%–70% lifetime risk of colorectal cancer, 40%–60% risk of endometrial cancer, and increased risks of several other malignancies. It is caused by germline mutations in the DNA mismatch repair genes MLH1, MSH2, MSH6 or PMS2. In a subset of patients, Lynch syndrome is caused by 3' end deletions of the EPCAM gene, which can lead to epigenetic silencing of the closely linked MSH2. Relying solely on age and family history based criteria inaccurately identifies eligibility for Lynch syndrome screening or testing in 25%–70% of cases. There has been a steady increase in Lynch syndrome tumor screening programs since 2000 and institutions are rapidly adopting a universal screening approach to identify the patients that would benefit from genetic counseling and germline testing. These include microsatellite instability testing and/or immunohistochemical testing to identify tumor mismatch repair deficiencies. However, universal screening is not standard across institutions. Furthermore, variation exists regarding the optimum method for tracking and disclosing results. In this review, we summarize traditional screening criteria for Lynch syndrome, and discuss universal screening methods. International guidelines are necessary to standardize Lynch syndrome high-risk clinics.

  2. NAHR-mediated copy-number variants in a clinical population: mechanistic insights into both genomic disorders and Mendelizing traits.

    Science.gov (United States)

    Dittwald, Piotr; Gambin, Tomasz; Szafranski, Przemyslaw; Li, Jian; Amato, Stephen; Divon, Michael Y; Rodríguez Rojas, Lisa Ximena; Elton, Lindsay E; Scott, Daryl A; Schaaf, Christian P; Torres-Martinez, Wilfredo; Stevens, Abby K; Rosenfeld, Jill A; Agadi, Satish; Francis, David; Kang, Sung-Hae L; Breman, Amy; Lalani, Seema R; Bacino, Carlos A; Bi, Weimin; Milosavljevic, Aleksandar; Beaudet, Arthur L; Patel, Ankita; Shaw, Chad A; Lupski, James R; Gambin, Anna; Cheung, Sau Wai; Stankiewicz, Pawel

    2013-09-01

    We delineated and analyzed directly oriented paralogous low-copy repeats (DP-LCRs) in the most recent version of the human haploid reference genome. The computationally defined DP-LCRs were cross-referenced with our chromosomal microarray analysis (CMA) database of 25,144 patients subjected to genome-wide assays. This computationally guided approach to the empirically derived large data set allowed us to investigate genomic rearrangement relative frequencies and identify new loci for recurrent nonallelic homologous recombination (NAHR)-mediated copy-number variants (CNVs). The most commonly observed recurrent CNVs were NPHP1 duplications (233), CHRNA7 duplications (175), and 22q11.21 deletions (DiGeorge/velocardiofacial syndrome, 166). In the ∼25% of CMA cases for which parental studies were available, we identified 190 de novo recurrent CNVs. In this group, the most frequently observed events were deletions of 22q11.21 (48), 16p11.2 (autism, 34), and 7q11.23 (Williams-Beuren syndrome, 11). Several features of DP-LCRs, including length, distance between NAHR substrate elements, DNA sequence identity (fraction matching), GC content, and concentration of the homologous recombination (HR) hot spot motif 5'-CCNCCNTNNCCNC-3', correlate with the frequencies of the recurrent CNVs events. Four novel adjacent DP-LCR-flanked and NAHR-prone regions, involving 2q12.2q13, were elucidated in association with novel genomic disorders. Our study quantitates genome architectural features responsible for NAHR-mediated genomic instability and further elucidates the role of NAHR in human disease.

  3. High proportion of 22q13 deletions and SHANK3 mutations in Chinese patients with intellectual disability.

    Directory of Open Access Journals (Sweden)

    Xiaohong Gong

    Full Text Available Intellectual disability (ID is a heterogeneous disorder caused by chromosomal abnormalities, monogenic factors and environmental factors. 22q13 deletion syndrome is a genetic disorder characterized by severe ID. Although the frequency of 22q13 deletions in ID is unclear, it is believed to be largely underestimated. To address this issue, we used Affymetrix Human SNP 6.0 array to detect the 22q13 deletions in 234 Chinese unexplained ID patients and 103 controls. After the Quality Control (QC test of raw data, 22q13 deletions were found in four out of 230 cases (1.7%, while absent in parents of the cases and 101 controls. A review of genome-wide microarray studies in ID was performed and the frequency of 22q13 deletions from the literatures was 0.24%, much lower than our report. The overlapping region shared by all 4 cases encompasses the gene SHANK3. A heterozygous de novo nonsense mutation Y1015X of SHANK3 was identified in one ID patient. Cortical neurons were prepared from embryonic mice and were transfected with a control plasmid, shank3 wild-type (WT or mutant plasmids. Overexpression of the Y1015 mutant in neurons significantly affected neurite outgrowth compared with shank3 WT. These findings suggest that 22q13 deletions may be a more frequent cause for Chinese ID patients than previously thought, and the SHANK3 gene is involved in the neurite development.

  4. A 54 Mb 11qter duplication and 0.9 Mb 1q44 deletion in a child with laryngomalacia and agenesis of corpus callosum

    Directory of Open Access Journals (Sweden)

    Lall Meena

    2011-09-01

    Full Text Available Abstract Background Partial Trisomy 11q syndrome (or Duplication 11q has defined clinical features and is documented as a rare syndrome by National Organization of Rare Disorders (NORD. Deletion 1q44 (or Monosomy 1q44 is a well-defined syndrome, but there is controversy about the genes lying in 1q44 region, responsible for agenesis of the corpus callosum. We report a female child with the rare Partial Trisomy 11q syndrome and Deletion 1q44 syndrome. The genomic imbalance in the proband was used for molecular characterization of the critical genes in 1q44 region for agenesis of corpus callosum. Some genes in 11q14q25 may be responsible for laryngomalacia. Results We report a female child with dysmorphic features, microcephaly, growth retardation, seizures, acyanotic heart disease, and hand and foot deformities. She had agenesis of corpus callosum, laryngomalacia, anterior ectopic anus, esophageal reflux and respiratory distress. Chromosome analysis revealed a derivative chromosome 1. Her karyotype was 46,XX,der(1t(1;11(q44;q14pat. The mother had a normal karyotype and the karyotype of the father was 46,XY,t(1;11(q44;q14. SNP array analysis showed that the proband had a 54 Mb duplication of 11q14q25 and a 0.9 Mb deletion of the submicroscopic subtelomeric 1q44 region. Fluorescence Insitu Hybridisation confirmed the duplication of 11qter and deletion of 1qter. Conclusion Laryngomalacia or obstruction of the upper airway is the outcome of increased dosage of some genes due to Partial Trisomy 11q Syndrome. In association with other phenotypic features, agenesis of corpus callosum appears to be a landmark phenotype for Deletion 1q44 syndrome, the critical genes lying proximal to SMYD3 in 1q44 region.

  5. Focal segmental glomerulosclerosis in patients with complete deletion of one WT1 allele.

    Science.gov (United States)

    Iijima, Kazumoto; Someya, Tomonosuke; Ito, Shuichi; Nozu, Kandai; Nakanishi, Koichi; Matsuoka, Kentaro; Ohashi, Hirofumi; Nagata, Michio; Kamei, Koichi; Sasaki, Satoshi

    2012-06-01

    The renal prognosis of patients with Wilms' tumor, aniridia, genitourinary anomalies, and mental retardation syndrome (WAGR) is poor. However, the renal histology and its mechanisms are not well understood. We performed renal biopsies in 3 patients with WAGR syndrome who had heavy proteinuria. The complete deletion of one WT1 allele was detected in each patient by constitutional chromosomal deletion at 11p13 using G-banding, high-resolution G-banding, and fluorescence in situ hybridization. The patients exhibited proteinuria at the ages of 6, 10, and 6 years and were diagnosed as having focal segmental glomerulosclerosis (FSGS) at the ages of 7, 16 and 19 years, respectively. They exhibited normal or mildly declined renal function at the time of biopsy. Re-examination of a nephrectomized kidney from 1 patient revealed that some glomeruli showed segmental sclerosis, although he did not have proteinuria at the time of nephrectomy. The other 2 patients did not develop Wilms' tumor and thus did not undergo nephrectomy, chemotherapy, or radiotherapy, thereby eliminating any effect of these therapies on the renal histology. In conclusion, complete deletion of one WT1 allele may induce the development of FSGS. Our findings suggest that haploinsufficiency of the WT1 could be responsible for the development of FSGS.

  6. Genetics Home Reference: Potocki-Shaffer syndrome

    Science.gov (United States)

    ... Romeike BF, Wuyts W. Proximal chromosome 11p contiguous gene deletion syndrome phenotype: case report and review of the literature. Clin Neuropathol. 2007 Jan-Feb;26(1):1-11. Review. Citation on PubMed Swarr DT, Bloom D, Lewis RA, Elenberg E, Friedman EM, Glotzbach C, Wissman ...

  7. Nature and Nurture: Williams Syndrome across Cultures

    Science.gov (United States)

    Zitzer-Comfort, Carol; Doyle, Teresa; Masataka, Nobuo; Korenberg, Julie; Bellugi, Ursula

    2007-01-01

    This study is concerned with ways in which children with Williams syndrome (WS), a rare neurodevelopmental disorder arising from a hemizygous deletion in chromosome band 7q11.23 including the gene for elastin (ELN) and approximately 20 surrounding genes, are affected by social mores of vastly differing cultures: the United States and Japan. WS…

  8. Bi Syndrome (Arthralgia Syndrome)

    Institute of Scientific and Technical Information of China (English)

    ZHANG En-qin

    2010-01-01

    @@ The word 'Bi' (痹) in Chinese means an obstruction.Bi Syndrome refers the syndrome characterized by the obstruction of qi and blood in the meridians due to the invasion of external pathogenic wind, cold and dampness, manifested as soreness, pain, numbness,heavy sensation, swelling of joints and limbs, limitation of movements and so on.

  9. Is 1p36 deletion associated with anterior body wall defects?

    Science.gov (United States)

    Çöllü, Medis; Yüksel, Şirin; Şirin, Başak Kumbasar; Abbasoğlu, Latif; Alanay, Yasemin

    2016-07-01

    Epispadias and exstrophy of the cloaca, also known as OEIS complex (omphalocele, exstrophy, imperforate anus, spinal defects), respectively constitute the most benign and severe ends of the bladder exstrophy-epispadias complex (BEEC) spectrum. In 2009, El-Hattab et al. reported the first patient with OEIS complex associated with a chromosome 1p36 deletion. Here we report a second patient with 1p36 deletion who also has classic bladder exstrophy, supporting the possible role of genes in this region in the development of BEEC. The absence of omphalocele and imperforate anus in our patient places him toward classic bladder exstrophy while presence of spina bifida and the absence of coccyx suggest an overlap with OEIS complex. An additional differential diagnosis is the pentalogy of Cantrell in our patient as he also has a diaphragmatic hernia and an incomplete sternum. This is the second observation of a ventral midline birth defect in association with 1p36 deletion syndrome, following El-Hattab et al.'s report [2009]. The three genes (NOCL2, DVL1, and MMP23B) discussed as possible candidates are also among the deleted ones in our patient, supporting the possible role of these genes in BEEC spectrum. © 2016 Wiley Periodicals, Inc. PMID:27144803

  10. 77 FR 68737 - Procurement List, Proposed Deletions

    Science.gov (United States)

    2012-11-16

    ... From the Federal Register Online via the Government Publishing Office COMMITTEE FOR PURCHASE FROM... Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement... Must Be Received On or Before: 12/17/2012. ADDRESSES: Committee for Purchase From People Who Are...

  11. 78 FR 65618 - Procurement List; Proposed Deletions

    Science.gov (United States)

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office COMMITTEE FOR PURCHASE FROM... Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed Deletions from the Procurement... Received on or Before: 12/2/2013. ADDRESSES: Committee for Purchase From People Who Are Blind or...

  12. Union-Find with Constant Time Deletions

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Thorup, Mikkel; Gørtz, Inge Li;

    2014-01-01

    operations performed, and α_M/N_(n) is a functional inverse of Ackermann’s function. They left open the question whether delete operations can be implemented more efficiently than find operations, for example, in o(log n) worst-case time. We resolve this open problem by presenting a relatively simple...

  13. Deletion of GPIHBP1 causing severe chylomicronemia.

    Science.gov (United States)

    Rios, Jonathan J; Shastry, Savitha; Jasso, Juan; Hauser, Natalie; Garg, Abhimanyu; Bensadoun, André; Cohen, Jonathan C; Hobbs, Helen H

    2012-05-01

    Lipoprotein lipase (LPL) is a hydrolase that cleaves circulating triglycerides to release fatty acids to the surrounding tissues. The enzyme is synthesized in parenchymal cells and is transported to its site of action on the capillary endothelium by glycophosphatidylinositol (GPI)-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). Inactivating mutations in LPL; in its cofactor, apolipoprotein (Apo) C2; or in GPIHBP1 cause severe hypertriglyceridemia. Here we describe an individual with complete deficiency of GPIHBP1. The proband was an Asian Indian boy who had severe chylomicronemia at 2 months of age. Array-based copy-number analysis of his genomic DNA revealed homozygosity for a 17.5-kb deletion that included GPIHBP1. A 44-year-old aunt with a history of hypertriglyceridemia and pancreatitis was also homozygous for the deletion. A bolus of intravenously administered heparin caused a rapid increase in circulating LPL and decreased plasma triglyceride levels in control individuals but not in two GPIHBP1-deficient patients. Thus, short-term treatment with heparin failed to attenuate the hypertriglyceridemia in patients with GPIHBP1 deficiency. The increasing resolution of copy number microarrays and their widespread adoption for routine cytogenetic analysis is likely to reveal a greater role for submicroscopic deletions in Mendelian conditions. We describe the first neonate with complete GPIHBP1 deficiency due to homozygosity for a deletion of GPIHBP1. PMID:22008945

  14. Wolf-Hirschhorn syndrome: A case demonstrated by a cytogenetic study

    Directory of Open Access Journals (Sweden)

    Yamini S Pokale

    2012-01-01

    Full Text Available We present a case with a 4p terminal deletion, evidenced in GTG-banded chromosome study. Phenotypic signs described in the classical Wolf-Hirschhorn syndrome were found on clinical examination of our patient.

  15. Insertion and deletion processes in recent human history.

    Directory of Open Access Journals (Sweden)

    Per Sjödin

    Full Text Available BACKGROUND: Although insertions and deletions (indels account for a sizable portion of genetic changes within and among species, they have received little attention because they are difficult to type, are alignment dependent and their underlying mutational process is poorly understood. A fundamental question in this respect is whether insertions and deletions are governed by similar or different processes and, if so, what these differences are. METHODOLOGY/PRINCIPAL FINDINGS: We use published resequencing data from Seattle SNPs and NIEHS human polymorphism databases to construct a genomewide data set of short polymorphic insertions and deletions in the human genome (n = 6228. We contrast these patterns of polymorphism with insertions and deletions fixed in the same regions since the divergence of human and chimpanzee (n = 10,546. The macaque genome is used to resolve all indels into insertions and deletions. We find that the ratio of deletions to insertions is greater within humans than between human and chimpanzee. Deletions segregate at lower frequency in humans, providing evidence for deletions being under stronger purifying selection than insertions. The insertion and deletion rates correlate with several genomic features and we find evidence that both insertions and deletions are associated with point mutations. Finally, we find no evidence for a direct effect of the local recombination rate on the insertion and deletion rate. CONCLUSIONS/SIGNIFICANCE: Our data strongly suggest that deletions are more deleterious than insertions but that insertions and deletions are otherwise generally governed by the same genomic factors.

  16. Marfan Syndrome

    Science.gov (United States)

    Marfan syndrome is a disorder that affects connective tissue. Connective tissues are proteins that support skin, bones, ... fibrillin. A problem with the fibrillin gene causes Marfan syndrome. Marfan syndrome can be mild to severe, ...

  17. The Greig cephalopolysyndactyly syndrome

    Directory of Open Access Journals (Sweden)

    Biesecker Leslie G

    2008-04-01

    Full Text Available Abstract The Greig cephalopolysyndactyly syndrome (GCPS is a pleiotropic, multiple congenital anomaly syndrome. It is rare, but precise estimates of incidence are difficult to determine, as ascertainment is erratic (estimated range 1–9/1,000,000. The primary findings include hypertelorism, macrocephaly with frontal bossing, and polysyndactyly. The polydactyly is most commonly preaxial of the feet and postaxial in the hands, with variable cutaneous syndactyly, but the limb findings vary significantly. Other low frequency findings include central nervous system (CNS anomalies, hernias, and cognitive impairment. GCPS is caused by loss of function mutations in the GLI3 transcription factor gene and is inherited in an autosomal dominant pattern. The disorder is allelic to the Pallister-Hall syndrome and one form of the acrocallosal syndrome. Clinical diagnosis is challenging because the findings of GCPS are relatively non-specific, and no specific and sensitive clinical have been delineated. For this reason, we have proposed a combined clinical-molecular definition for the syndrome. A presumptive diagnosis of GCPS can be made if the patient has the classic triad of preaxial polydactyly with cutaneous syndactyly of at least one limb, hypertelorism, and macrocephaly. Patients with a phenotype consistent with GCPS (but which may not manifest all three attributes listed above and a GLI3 mutation may be diagnosed definitively with GCPS. In addition, persons with a GCPS-consistent phenotype who are related to a definitively diagnosed family member in a pattern consistent with autosomal dominant inheritance may be diagnosed definitively as well. Antenatal molecular diagnosis is technically straightforward to perform. Differential diagnoses include preaxial polydactyly type 4, the GCPS contiguous gene syndrome, acrocallosal syndrome, Gorlin syndrome, Carpenter syndrome, and Teebi syndrome. Treatment of the disorder is symptomatic, with plastic or

  18. Hearing loss, coloboma and left ventricular enlargement in a boy with an interstitial 10q26 deletion.

    Science.gov (United States)

    Ramos, Maria; Wilkens, Alisha; Krantz, Ian D; Wu, Yaning

    2016-06-01

    Distal deletion of the long arm of chromosome 10 with breakpoints mapped at 10q26 is a well-recognized contiguous genomic disorder. A wide spectrum of clinical findings is seen in affected individuals and the common clinical features include craniofacial dysmorphia, developmental delay, intellectual disability, hypotonia, cardiovascular defects, and urogenital malformations. We report herein on a male patient with a 5.5 Mb interstitial deletion of 10q26.11q2613 and compare his clinical presentation to previously reported cases. Apart from characteristic phenotypes seen in 10q26 deletion syndrome, he presents with colobomas and left ventricle enlargement. These are cardiovascular and ophthalmological findings that have not been described in prior cases. © 2016 Wiley Periodicals, Inc. PMID:27125467

  19. Mowat-Wilson syndrome.

    Science.gov (United States)

    Garavelli, Livia; Mainardi, Paola Cerruti

    2007-01-01

    Mowat-Wilson syndrome (MWS) is a multiple congenital anomaly syndrome characterized by a distinct facial phenotype (high forehead, frontal bossing, large eyebrows, medially flaring and sparse in the middle part, hypertelorism, deep set but large eyes, large and uplifted ear lobes, with a central depression, saddle nose with prominent rounded nasal tip, prominent columella, open mouth, with M-shaped upper lip, frequent smiling, and a prominent but narrow and triangular pointed chin), moderate-to-severe intellectual deficiency, epilepsy and variable congenital malformations including Hirschsprung disease (HSCR), genitourinary anomalies (in particular hypospadias in males), congenital heart defects, agenesis of the corpus callosum and eye anomalies. The prevalence of MWS is currently unknown, but 171 patients have been reported so far. It seems probable that MWS is under-diagnosed, particularly in patients without HSCR. MWS is caused by heterozygous mutations or deletions in the Zinc finger E-box-binding homeobox 2 gene, ZEB2, previously called ZFHX1B (SIP1). To date, over 100 deletions/mutations have been reported in patients with a typical phenotype; they are frequently whole gene deletions or truncating mutations, suggesting that haploinsufficiency is the main pathological mechanism. Studies of genotype-phenotype analysis show that facial gestalt and delayed psychomotor development are constant clinical features, while the frequent and severe congenital malformations are variable. In a small number of patients, unusual mutations can lead to an atypical phenotype. The facial phenotype is particularly important for the initial clinical diagnosis and provides the hallmark warranting ZEB2 mutational analysis, even in the absence of HSCR. The majority of MWS cases reported so far were sporadic, therefore the recurrence risk is low. Nevertheless, rare cases of sibling recurrence have been observed. Congenital malformations and seizures require precocious clinical

  20. Mowat-Wilson syndrome

    Directory of Open Access Journals (Sweden)

    Mainardi Paola

    2007-10-01

    Full Text Available Abstract Mowat-Wilson syndrome (MWS is a multiple congenital anomaly syndrome characterized by a distinct facial phenotype (high forehead, frontal bossing, large eyebrows, medially flaring and sparse in the middle part, hypertelorism, deep set but large eyes, large and uplifted ear lobes, with a central depression, saddle nose with prominent rounded nasal tip, prominent columella, open mouth, with M-shaped upper lip, frequent smiling, and a prominent but narrow and triangular pointed chin, moderate-to-severe intellectual deficiency, epilepsy and variable congenital malformations including Hirschsprung disease (HSCR, genitourinary anomalies (in particular hypospadias in males, congenital heart defects, agenesis of the corpus callosum and eye anomalies. The prevalence of MWS is currently unknown, but 171 patients have been reported so far. It seems probable that MWS is under-diagnosed, particularly in patients without HSCR. MWS is caused by heterozygous mutations or deletions in the Zinc finger E-box-binding homeobox 2 gene, ZEB2, previously called ZFHX1B (SIP1. To date, over 100 deletions/mutations have been reported in patients with a typical phenotype; they are frequently whole gene deletions or truncating mutations, suggesting that haploinsufficiency is the main pathological mechanism. Studies of genotype-phenotype analysis show that facial gestalt and delayed psychomotor development are constant clinical features, while the frequent and severe congenital malformations are variable. In a small number of patients, unusual mutations can lead to an atypical phenotype. The facial phenotype is particularly important for the initial clinical diagnosis and provides the hallmark warranting ZEB2 mutational analysis, even in the absence of HSCR. The majority of MWS cases reported so far were sporadic, therefore the recurrence risk is low. Nevertheless, rare cases of sibling recurrence have been observed. Congenital malformations and seizures require

  1. Fetal ventriculomegaly due to familial submicroscopic terminal 6q deletions

    DEFF Research Database (Denmark)

    Wadt, Karin; Jensen, Lisa Neerup; Bjerglund, Lise;

    2012-01-01

    Submicroscopic terminal 6q deletions are rare. We report on two familial submicroscopic terminal 6q deletions ascertained because of prenatally detected isolated ventriculomegaly and further delineate the variable prenatal and postnatal phenotype. We review published cases of......Submicroscopic terminal 6q deletions are rare. We report on two familial submicroscopic terminal 6q deletions ascertained because of prenatally detected isolated ventriculomegaly and further delineate the variable prenatal and postnatal phenotype. We review published cases of...

  2. Orbital deletion procedure and its applications

    Institute of Scientific and Technical Information of China (English)

    莫亦荣; 林梦海; 吴玮; 张乾二

    1999-01-01

    The orbital deletion procedure is introduced, which is suited to quantitatively investigating the electronic delocalization effiect in earboeations and boranes. While the routine, ab initio molecular orbital methods can generate wavefunetions for real systems where all electrons are delocalized, the present orbital deletion procedure can generate wavefunctions for hypothetical reference molecules where electronic delocalization effect is deactivated. The latter wavefunetion normlly corresponds In the most stable resonance structure in terms of the resonance theory. By comparing and analyzing the delocalized and the localized wavefunetions, one can obtain a quantitative and instinct pieture to show how electronic deloealizalion inside a molecule affects the molecular structure, energy as well as other physical properties. Two examples are detailedly discussed. The first is related to the hypercoujugation of alkyl groups in carbocations and a comparison of the order of stability of carbocations is made, T

  3. An environment-mediated quantum deleter

    CERN Document Server

    Srikanth, R; Banerjee, Subhashish

    2006-01-01

    Environment-induced decoherence presents a great challenge to realizing a quantum computer. We point out the somewhat surprising fact that decoherence can be useful, indeed necessary, for practical quantum computation, in particular, for the effective erasure of quantum memory in order to initialize the state of the quantum computer. The essential point behind the deleter is that the environment, by means of a dissipative interaction, furnishes a contractive map towards a pure state. We present a specific example of an amplitude damping channel provided by a two-level system's interaction with its environment in the weak Born-Markov approximation. This is contrasted with a purely dephasing, non-dissipative channel provided by a two-level system's interaction with its environment by means of a quantum nondemolition interaction. We point out that currently used state preparation techniques, for example using optical pumping, essentially perform as quantum deleters.

  4. Rac1 deletion causes thymic atrophy.

    Science.gov (United States)

    Hunziker, Lukas; Benitah, Salvador Aznar; Aznar Benitah, Salvador; Braun, Kristin M; Jensen, Kim; McNulty, Katrina; Butler, Colin; Potton, Elspeth; Nye, Emma; Boyd, Richard; Laurent, Geoff; Glogauer, Michael; Wright, Nick A; Watt, Fiona M; Janes, Sam M

    2011-04-29

    The thymic stroma supports T lymphocyte development and consists of an epithelium maintained by thymic epithelial progenitors. The molecular pathways that govern epithelial homeostasis are poorly understood. Here we demonstrate that deletion of Rac1 in Keratin 5/Keratin 14 expressing embryonic and adult thymic epithelial cells leads to loss of the thymic epithelial compartment. Rac1 deletion led to an increase in c-Myc expression and a generalized increase in apoptosis associated with a decrease in thymic epithelial proliferation. Our results suggest Rac1 maintains the epithelial population, and equilibrium between Rac1 and c-Myc may control proliferation, apoptosis and maturation of the thymic epithelial compartment. Understanding thymic epithelial maintenance is a step toward the dual goals of in vitro thymic epithelial cell culture and T cell differentiation, and the clinical repair of thymic damage from graft-versus-host-disease, chemotherapy or irradiation.

  5. Rac1 deletion causes thymic atrophy.

    Directory of Open Access Journals (Sweden)

    Lukas Hunziker

    Full Text Available The thymic stroma supports T lymphocyte development and consists of an epithelium maintained by thymic epithelial progenitors. The molecular pathways that govern epithelial homeostasis are poorly understood. Here we demonstrate that deletion of Rac1 in Keratin 5/Keratin 14 expressing embryonic and adult thymic epithelial cells leads to loss of the thymic epithelial compartment. Rac1 deletion led to an increase in c-Myc expression and a generalized increase in apoptosis associated with a decrease in thymic epithelial proliferation. Our results suggest Rac1 maintains the epithelial population, and equilibrium between Rac1 and c-Myc may control proliferation, apoptosis and maturation of the thymic epithelial compartment. Understanding thymic epithelial maintenance is a step toward the dual goals of in vitro thymic epithelial cell culture and T cell differentiation, and the clinical repair of thymic damage from graft-versus-host-disease, chemotherapy or irradiation.

  6. Cryptic 13q34 and 4q35.2 Deletions in an Italian Family.

    Science.gov (United States)

    Riccardi, Federica; Rivolta, Gianna F; Uliana, Vera; Grati, Francesca R; La Starza, Roberta; Marcato, Livia; Di Perna, Caterina; Quintavalle, Gabriele; Garavelli, Livia; Rosato, Simonetta; Sammarelli, Gabriella; Neri, Tauro M; Tagliaferri, Annarita; Martorana, Davide

    2015-01-01

    Variations of DNA sequences in the human genome range from large, microscopically visible chromosome anomalies to single nucleotide changes. Submicroscopic genomic copy number variations, i.e. chromosomal imbalances which are undetectable by conventional cytogenetic analysis, play an intriguing clinical role. In this study, we describe the clinical consequences of the concurrent presence of an interstitial deletion in 13q34 and a terminal deletion in 4q35.2 in an Italian family. The index patient, a 19-year-old male, as well as his 12-year-old sister are carriers of both deletions, one of maternal and the other of paternal origin. The phenotype includes language delay, multiorgan involvement and bleeding diathesis with mild deficiency of factors X and VII. In the sister, the concomitant presence of Noonan syndrome may partly explain the clinical symptoms. The deleted region on chromosome 13 involves several genes (ATP11A, MCF2L, F7, F10, PROZ, PCID2, CUL4A, and LAMP1); some of these seem to play a role in the proband's phenotype. The terminal deletion in 4q35.2 contains other OMIM genes (FRG1, FRG2 and DBET); moreover, the 4q region is reported as a susceptibility locus for Crohn's disease, diagnosed in the proband's father. To our knowledge, this is the first report of a family with these 2 submicroscopic copy number changes. We tried to relate the clinical phenotype of the proband and his family to the molecular function of the involved genes. PMID:26645620

  7. Secure Deletion of Data from SSD

    Directory of Open Access Journals (Sweden)

    Akli Fundo

    2014-08-01

    Full Text Available The deletion of data from storage is an important component on data security. The deletion of entire disc or special files is well-known on hard drives, but this is quite different on SSDs, because they have a different architecture inside, and the main problem is if they serve the same methods like hard drives for data deletion or erasing. The built-in operations are used to do this on SSDs. The purpose of this review is to analyses some methods which are proposed to erase data form SSDs and their results too, to see which of them offers the best choice. In general we will see that the techniques of erasing data from entire disc from hard drives can be used also on SSDs, but there’s a problem with bugs. On the other hand, we cannot use the same techniques of erasing a file from hard drives and SSDs. To make this possible, there are required changes in FTL layer, which is responsible for mapping between logic addresses and physical addresses.

  8. Deletions of a differentially methylated CpG island at SNRPN define a putative imprinting control region

    Energy Technology Data Exchange (ETDEWEB)

    Sutcliffe, J.S.,; Nakao, M.; Beaudet, A.L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    Prader-Willi syndrome (PWS) and Angelman syndrome (AS) are associated with paternal and maternal deficiencies, respectively, of gene expression within human chromosome 15q11-q13, and are caused by deletion, uniparental disomy, or other mutations. Four transcripts designated PAR-5, PAR-7, PAR-1 and PAR-4 were isolated and localized to a region within 300 kb telomeric to the gene encoding small nuclear ribonucleoprotein-associated polypeptide N (SNRPN). Analysis of the transcripts in cultured fibroblasts and lymphoblasts from deletion patients demonstrated that SNRPN, PAR-5 and PAR-1 are expressed exclusively from the paternal chromosome, defining an imprinted domain that spans at least 200 kb. All three imprinted transcripts were absent in cells from three PWS patients (one pair of sibs and one sporadic case) with small deletions that involve a differentially methylated CpG island containing a previously undescribed 5{prime} untranslated exon ({alpha}) of SNRPN. Methylation of the CpG island is specific for the maternal chromosome consistent with paternal expression of the imprinted domain. One deletion, which is benign when maternally transmitted, extends upstream <30 kb from the CpG island, and is associated with altered methylation centromeric to SNRPN, and loss of transcription telomeric to SNRPN, implying the presence of an imprinting control region around the CpG island containing exon {alpha}.

  9. A deletion in the gene encoding sphingomyelin phosphodiesterase 3 (Smpd3) results in osteogenesis and dentinogenesis imperfecta in the mouse.

    Science.gov (United States)

    Aubin, Isabelle; Adams, Carolyn P; Opsahl, Sibylle; Septier, Dominique; Bishop, Colin E; Auge, Nathalie; Salvayre, Robert; Negre-Salvayre, Anne; Goldberg, Michel; Guénet, Jean-Louis; Poirier, Christophe

    2005-08-01

    The mouse mutation fragilitas ossium (fro) leads to a syndrome of severe osteogenesis and dentinogenesis imperfecta with no detectable collagen defect. Positional cloning of the locus identified a deletion in the gene encoding neutral sphingomyelin phosphodiesterase 3 (Smpd3) that led to complete loss of enzymatic activity. Our knowledge of SMPD3 function is consistent with the pathology observed in mutant mice and provides new insight into human pathologies.

  10. Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant

    OpenAIRE

    Griese Matthias; Hartl Dominik; Weiss Christel; Gassler Nikolaus; Helmke Burkhard M; Renner Marcus; End Caroline; Müller Hanna; Hafner Mathias; Poustka Annemarie; Mollenhauer Jan; Poeschl Johannes

    2007-01-01

    Abstract Background Deleted in Malignant Brain Tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neonates by modulating surfactant function. Methods DMBT1 expression was studied by immunohistochemistry and mRNA in situ hybridization in post-mortem lungs of preterm and full-term neonates with ...

  11. FLCN intragenic deletions in Chinese familial primary spontaneous pneumothorax.

    Science.gov (United States)

    Ding, Yibing; Zhu, Chengchu; Zou, Wei; Ma, Dehua; Min, Haiyan; Chen, Baofu; Ye, Minhua; Pan, Yanqing; Cao, Lei; Wan, Yueming; Zhang, Wenwen; Meng, Lulu; Mei, Yuna; Yang, Chi; Chen, Shilin; Gao, Qian; Yi, Long

    2015-05-01

    Primary spontaneous pneumothorax (PSP) is a significant clinical problem, affecting tens of thousands patients annually. Germline mutations in the FLCN gene have been implicated in etiology of familial PSP (FPSP). Most of the currently identified FLCN mutations are small indels or point mutations that detected by Sanger sequencing. The aim of this study was to determine large FLCN deletions in PSP families that having no FLCN sequence-mutations. Multiplex ligation-dependent probe amplification (MLPA) assays and breakpoint analyses were used to detect and characterize the deletions. Three heterozygous FLCN intragenic deletions were identified in nine unrelated Chinese families including the exons 1-3 deletion in two families, the exons 9-14 deletion in five families and the exon 14 deletion in two families. All deletion breakpoints are located in Alu repeats. A 5.5 Mb disease haplotype shared in the five families with exons 9-14 deletion may date the appearance of this deletion back to approximately 16 generations ago. Evidences for founder effects of the other two deletions were also observed. This report documents the first identification of founder mutations in FLCN, as well as expands mutation spectrum of the gene. Our findings strengthen the view that MLPA analysis for intragenic deletions/duplications, as an important genetic testing complementary to DNA sequencing, should be used for clinical molecular diagnosis in FPSP.

  12. A novel deletion in 2q24.1q24.2 in a girl with mental retardation and generalized hypotonia: a case report

    Directory of Open Access Journals (Sweden)

    Palumbo Orazio

    2012-01-01

    Full Text Available Abstract Background Chromosomal imbalances, recognized as the major cause of mental retardation, are often due to submicroscopic deletions or duplications not evidenced by conventional cytogenetic methods. To date, interstitial deletion of long arm of chromosome 2 have been reported for more than 100 cases, although studies reporting small interstitial deletions involving the 2q24.1q24.2 region are rare. With the widespread clinical use of comparative genomic hybridization chromosomal microarray technology, several cryptic chromosome imbalances have outlined new genotype-phenotype correlations and isolated a number of distinctive clinical conditions. Results here we report on a girl with mental retardation and generalized hypotonia. A genome-wide screen for copy number variations (CNVs using single nucleotide polymorphisms (SNPs array revealed a 7.5 Mb interstitial deletion of chromosome region 2q24.1q24.2 encompassing 59 genes, which was absent in parents. The gene content analysis of the deleted region and review of the literature revealed the presence of some genes that may be indicated as good candidate in generating the main clinical features of the patient. Discussion the present case represents a further patient described in the literature with an interstitial deletion of chromosome 2q24.1q24.2. Our patient shares some clinical features with the previously reported patients carriers of overlapping 2q24 deletion. Although more cases are needed to delineate the full-blown phenotype of 2q24.1q24.2 deletion syndrome, published data and present observation suggest that hemizygosity of this region results in a clinically recognizable phenotype. Considering these clinical and cytogenetic similarities, we suggest the existence of an emerging syndrome associated to 2q24.1q24.2 region.

  13. FISH analysis in Prader-Willi and Angelman syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Bettio, D.; Rizzi, N.; Giardino, D. [Centro Auxologico Italiano, Milan (Italy)] [and others

    1995-03-27

    We report on a combined high resolution cytogenetic and fluorescent in situ hybridization study (FISH) on 15 Prader-Willi syndrome (PWS) and 14 Angelman syndrome (AS) patients. High resolution banding showed a microdeletion in the 15q11-q13 region in 7 out of 15 PWS patients, and FISH analysis of the D15S11 and SNRPN cosmids demonstrated absence of the critical region in three additional cases. Likewise 8 out of 14 AS patients were found to be deleted with FISH, using the GABRB3 specific cosmid, whereas only 4 of them had a cytogenetically detectable deletion. 19 refs., 3 figs., 1 tab.

  14. Chimeric negative regulation of p14ARF and TBX1 by a t(9;22) translocation associated with melanoma, deafness, and DNA repair deficiency.

    Science.gov (United States)

    Tan, Xiaohui; Anzick, Sarah L; Khan, Sikandar G; Ueda, Takahiro; Stone, Gary; Digiovanna, John J; Tamura, Deborah; Wattendorf, Daniel; Busch, David; Brewer, Carmen C; Zalewski, Christopher; Butman, John A; Griffith, Andrew J; Meltzer, Paul S; Kraemer, Kenneth H

    2013-09-01

    Melanoma is the most deadly form of skin cancer and DiGeorge syndrome (DGS) is the most frequent interstitial deletion syndrome. We characterized a novel balanced t(9;22)(p21;q11.2) translocation in a patient with melanoma, DNA repair deficiency, and features of DGS including deafness and malformed inner ears. Using chromosome sorting, we located the 9p21 breakpoint in CDKN2A intron 1. This resulted in underexpression of the tumor suppressor p14 alternate reading frame (p14ARF); the reduced DNA repair was corrected by transfection with p14ARF. Ultraviolet radiation-type p14ARF mutations in his melanoma implicated p14ARF in its pathogenesis. The 22q11.2 breakpoint was located in a palindromic AT-rich repeat (PATRR22). We identified a new gene, FAM230A, that contains PATRR22 within an intron. The 22q11.2 breakpoint was located 800 kb centromeric to TBX1, which is required for inner ear development. TBX1 expression was greatly reduced. The translocation resulted in a chimeric transcript encoding portions of p14ARF and FAM230A. Inhibition of chimeric p14ARF-FAM230A expression increased p14ARF and TBX1 expression and improved DNA repair. Expression of the chimera in normal cells produced dominant negative inhibition of p14ARF. Similar chimeric mRNAs may mediate haploinsufficiency in DGS or dominant negative inhibition of other genes such as those involved in melanoma.

  15. Automatic Airway Deletion in Pulmonary Segmentation

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; ZHUANG Tian-ge

    2005-01-01

    A method of removing the airway from pulmonary segmentation image was proposed. This method firstly segments the image into several separate regions based on the optimum threshold and morphological operator,and then each region is labeled and noted with its mean grayscale. Therefore, most of the non-lung regions can be removed according to the tissue's Hounsfield units (HU) and the imaging modality. Finally, the airway region is recognized and deleted automatically through using the priori information of its HU and size. This proposed method is tested using several clinical images, yielding satisfying results.

  16. Secure Deletion on Log-structured File Systems

    CERN Document Server

    Reardon, Joel; Capkun, Srdjan; Basin, David

    2011-01-01

    We address the problem of secure data deletion on log-structured file systems. We focus on the YAFFS file system, widely used on Android smartphones. We show that these systems provide no temporal guarantees on data deletion and that deleted data still persists for nearly 44 hours with average phone use and indefinitely if the phone is not used after the deletion. Furthermore, we show that file overwriting and encryption, methods commonly used for secure deletion on block-structured file systems, do not ensure data deletion in log-structured file systems. We propose three mechanisms for secure deletion on log-structured file systems. Purging is a user-level mechanism that guarantees secure deletion at the cost of negligible device wear. Ballooning is a user-level mechanism that runs continuously and gives probabilistic improvements to secure deletion. Zero overwriting is a kernel-level mechanism that guarantees immediate secure deletion without device wear. We implement these mechanisms on Nexus One smartphon...

  17. Detection of mitochondrial DNA deletion by a modified PCR method

    Institute of Scientific and Technical Information of China (English)

    汪振诚; 王学敏; 缪明永; 章卫平; 焦炳华; 倪庆桂

    2003-01-01

    Objective: To develop a simple and efficient method for detecting small populations of mitochondrial DNA deletion. Methods: Peripheral blood cell DNA was obtained from a victim who was accidently exposed to a 60Co radiation source 11 years ago. Using the DNA as template, PCR was performed to generate multiple products including true deletions and artifacts. The full length product was recovered and used as template of secondary PCR. The suspicious deletion product of mtDNA could be confirmed if it was only yielded by first PCR. Using either original primers or their nested primers, the suspicious deletion product was amplified and authenticated as true deletion product. The template was recovered and determined to be a deletion by sequencing directly. Results: A new mtDNA deletion, spanning 889 bp from nt11688 to nt12576, was detected in the peripheral blood cells of the victim. Conclusion: The new PCR-based method is more efficient in detecting small populations of mtDNA deletion than other routine methods. MtDNA deletion is found in the victim, suggesting there is relationship between the deletion and phenotypes of the disease.

  18. A human laterality disorder associated with a homozygous WDR16 deletion.

    Science.gov (United States)

    Ta-Shma, Asaf; Perles, Zeev; Yaacov, Barak; Werner, Marion; Frumkin, Ayala; Rein, Azaria J J T; Elpeleg, Orly

    2015-09-01

    The laterality in the embryo is determined by left-right asymmetric gene expression driven by the flow of extraembryonic fluid, which is maintained by the rotary movement of monocilia on the nodal cells. Defects manifest by abnormal formation and arrangement of visceral organs. The genetic etiology of defects not associated with primary ciliary dyskinesia is largely unknown. In this study, we investigated the cause of situs anomalies, including heterotaxy syndrome and situs inversus totalis, in a consanguineous family. Whole-exome analysis revealed a homozygous deleterious deletion in the WDR16 gene, which segregated with the phenotype. WDR16 protein was previously proposed to play a role in cilia-related signal transduction processes; the rat Wdr16 protein was shown to be confined to cilia-possessing tissues and severe hydrocephalus was observed in the wdr16 gene knockdown zebrafish. The phenotype associated with the homozygous deletion in our patients suggests a role for WDR16 in human laterality patterning. Exome analysis is a valuable tool for molecular investigation even in cases of large deletions. PMID:25469542

  19. Barth syndrome

    Directory of Open Access Journals (Sweden)

    Clarke Sarah LN

    2013-02-01

    Full Text Available Abstract First described in 1983, Barth syndrome (BTHS is widely regarded as a rare X-linked genetic disease characterised by cardiomyopathy (CM, skeletal myopathy, growth delay, neutropenia and increased urinary excretion of 3-methylglutaconic acid (3-MGCA. Fewer than 200 living males are known worldwide, but evidence is accumulating that the disorder is substantially under-diagnosed. Clinical features include variable combinations of the following wide spectrum: dilated cardiomyopathy (DCM, hypertrophic cardiomyopathy (HCM, endocardial fibroelastosis (EFE, left ventricular non-compaction (LVNC, ventricular arrhythmia, sudden cardiac death, prolonged QTc interval, delayed motor milestones, proximal myopathy, lethargy and fatigue, neutropenia (absent to severe; persistent, intermittent or perfectly cyclical, compensatory monocytosis, recurrent bacterial infection, hypoglycaemia, lactic acidosis, growth and pubertal delay, feeding problems, failure to thrive, episodic diarrhoea, characteristic facies, and X-linked family history. Historically regarded as a cardiac disease, BTHS is now considered a multi-system disorder which may be first seen by many different specialists or generalists. Phenotypic breadth and variability present a major challenge to the diagnostician: some children with BTHS have never been neutropenic, whereas others lack increased 3-MGCA and a minority has occult or absent CM. Furthermore, BTHS was first described in 2010 as an unrecognised cause of fetal death. Disabling mutations or deletions of the tafazzin (TAZ gene, located at Xq28, cause the disorder by reducing remodeling of cardiolipin, a principal phospholipid of the inner mitochondrial membrane. A definitive biochemical test, based on detecting abnormal ratios of different cardiolipin species, was first described in 2008. Key areas of differential diagnosis include metabolic and viral cardiomyopathies, mitochondrial diseases, and many causes of neutropenia and

  20. Hypereosinophilic syndromes

    Directory of Open Access Journals (Sweden)

    Goldman Michel

    2007-09-01

    Full Text Available Abstract Hypereosinophilic syndromes (HES constitute a rare and heterogeneous group of disorders, defined as persistent and marked blood eosinophilia (> 1.5 × 109/L for more than six consecutive months associated with evidence of eosinophil-induced organ damage, where other causes of hypereosinophilia such as allergic, parasitic, and malignant disorders have been excluded. Prevalence is unknown. HES occur most frequently in young to middle-aged patients, but may concern any age group. Male predominance (4–9:1 ratio has been reported in historic series but this is likely to reflect the quasi-exclusive male distribution of a sporadic hematopoietic stem cell mutation found in a recently characterized disease variant. Target-organ damage mediated by eosinophils is highly variable among patients, with involvement of skin, heart, lungs, and central and peripheral nervous systems in more than 50% of cases. Other frequently observed complications include hepato- and/or splenomegaly, eosinophilic gastroenteritis, and coagulation disorders. Recent advances in underlying pathogenesis have established that hypereosinophilia may be due either to primitive involvement of myeloid cells, essentially due to occurrence of an interstitial chromosomal deletion on 4q12 leading to creation of the FIP1L1-PDGFRA fusion gene (F/P+ variant, or to increased interleukin (IL-5 production by a clonally expanded T cell population (lymphocytic variant, most frequently characterized by a CD3-CD4+ phenotype. Diagnosis of HES relies on observation of persistent and marked hypereosinophilia responsible for target-organ damage, and exclusion of underlying causes of hypereosinophilia, including allergic and parasitic disorders, solid and hematological malignancies, Churg-Strauss disease, and HTLV infection. Once these criteria are fulfilled, further testing for eventual pathogenic classification is warranted using appropriate cytogenetic and functional approaches. Therapeutic

  1. Deletion of ultraconserved elements yields viable mice

    Energy Technology Data Exchange (ETDEWEB)

    Ahituv, Nadav; Zhu, Yiwen; Visel, Axel; Holt, Amy; Afzal, Veena; Pennacchio, Len A.; Rubin, Edward M.

    2007-07-15

    Ultraconserved elements have been suggested to retainextended perfect sequence identity between the human, mouse, and ratgenomes due to essential functional properties. To investigate thenecessities of these elements in vivo, we removed four non-codingultraconserved elements (ranging in length from 222 to 731 base pairs)from the mouse genome. To maximize the likelihood of observing aphenotype, we chose to delete elements that function as enhancers in amouse transgenic assay and that are near genes that exhibit markedphenotypes both when completely inactivated in the mouse as well as whentheir expression is altered due to other genomic modifications.Remarkably, all four resulting lines of mice lacking these ultraconservedelements were viable and fertile, and failed to reveal any criticalabnormalities when assayed for a variety of phenotypes including growth,longevity, pathology and metabolism. In addition more targeted screens,informed by the abnormalities observed in mice where genes in proximityto the investigated elements had been altered, also failed to revealnotable abnormalities. These results, while not inclusive of all thepossible phenotypic impact of the deleted sequences, indicate thatextreme sequence constraint does not necessarily reflect crucialfunctions required for viability.

  2. A novel heterozygous deletion in the EVC2 gene causes Weyers acrofacial dysostosis.

    Science.gov (United States)

    Ye, Xiaoqian; Song, Guangtai; Fan, Mingwen; Shi, Lisong; Jabs, Ethylin Wang; Huang, Shangzhi; Guo, Ruiqiang; Bian, Zhuan

    2006-03-01

    Weyers acrofacial dysostosis (MIM 193530) is an autosomal dominant disorder clinically characterized by mild short stature, postaxial polydactyly, nail dystrophy and dysplastic teeth. Ellis-van Creveld syndrome (EvC, MIM 225500) is an autosomal recessive disorder with a similar, but more severe phenotype. Mutations in the EVC have been identified in both syndromes. However, the EVC mutations only occur in a small proportion of EvC patients. Recently, mutations in a new gene, EVC2, were found to be associated with other EvC cases. The EVC and EVC2 are located close to each other in a head-to-head configuration and may be functionally related. In this study, we report identification of a novel heterozygous deletion in the EVC2 that is responsible for autosomal dominant Weyers acrofacial dysostosis in a large Chinese family. This constitutes the first report of Weyers acrofacial dysostosis caused by this gene. Hence, the spectrum of malformation syndromes due to EVC2 mutations is further extended. Our data provides conclusive evidence that Weyers acrofacial dysostosis and EvC syndrome are allelic and genetically heterogeneous conditions.

  3. A molecular and clinical study of Larsen syndrome caused by mutations in FLNB

    NARCIS (Netherlands)

    Bicknell, Louise S.; Farrington-Rock, Claire; Shafeghati, Yousef; Rump, Patrick; Alanay, Yasemin; Alembik, Yves; Al-Madani, Navid; Firth, Helen; Karimi-Nejad, Mohammad Hassan; Kim, Chong Ae; Leask, Kathryn; Maisenbacher, Melissa; Moran, Ellen; Pappas, John G.; Prontera, Paolo; de Ravel, Thomy; Fryns, Jean-Pierre; Sweeney, Elizabeth; Fryer, Alan; Unger, Sheila; Wilson, L. C.; Lachman, Ralph S.; Rimoin, David L.; Cohn, Daniel H.; Krakow, Deborah; Robertson, Stephen P.

    2007-01-01

    Background: Larsen syndrome is an autosomal dominant osteochondrodysplasia characterised by large-joint dislocations and craniofacial anomalies. Recently, Larsen syndrome was shown to be caused by missense mutations or small inframe deletions in FLNB, encoding the cytoskeletal protein filamin B. To

  4. Two male patients with ring Y : definition of an interval in Yq contributing to Turner syndrome

    NARCIS (Netherlands)

    Tzancheva, M; Kaneva, R; Kumanov, P; Williams, G; Tyler-Smith, C

    1999-01-01

    Turner syndrome is thought to result from the haploinsufficiency of genes on the sex chromosomes, but these genes have not been identified yet. We describe two males with deleted ring Y chromosomes, one (TS) with full Turner syndrome and one (DM) without. TS has short stature, skeletal anomalies, ly

  5. Congenital Diaphragmatic Hernia in a Case of Patau Syndrome: A Rare Association

    Directory of Open Access Journals (Sweden)

    A Jain

    2015-03-01

    Full Text Available Congenital DiaphragmaticHernia (CDH occurs in 5-10% associated with chromosomal abnormalities like, Pallister Killian syndrome, Trisomy 18, and certain deletions. Association of CDH with trisomy 13 (Patau syndromes is very rare. Here, we report such an unusual association, where surgical repair was done, but eventually the case succumbed as a result of multiple fatal co-morbidities.

  6. Congenital Diaphragmatic Hernia in a Case of Patau Syndrome: A Rare Association

    OpenAIRE

    Jain, A.; Kumar, P.; Jindal, A; YK, Sarin

    2015-01-01

    Congenital DiaphragmaticHernia (CDH) occurs in 5-10% associated with chromosomal abnormalities like, Pallister Killian syndrome, Trisomy 18, and certain deletions. Association of CDH with trisomy 13 (Patau syndromes) is very rare. Here, we report such an unusual association, where surgical repair was done, but eventually the case succumbed as a result of multiple fatal co-morbidities.

  7. Congenital diaphragmatic hernia in a case of patau syndrome: a rare association.

    Science.gov (United States)

    A, Jain; P, Kumar; A, Jindal; Yk, Sarin

    2015-01-01

    Congenital diaphragmatic hernia (CDH) occurs in 5-10% associated with chromosomal abnormalities like, Pallister Killian syndrome, Trisomy 18, and certain deletions.. Association of CDH with trisomy 13 (Patau syndromes) is very rare. Here, we report such an unusual association, where surgical repair was done, but eventually the case succumbed as a result of multiple fatal co-morbidities. PMID:26034714

  8. Further patient with Angelman syndrome due to paternal disomy of chromosome 15 and a milder phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Gillessen-Kaesbach, G.; Passarge, E.; Horsthemke, B. [Institut fuer Humangenetik, Essen (Germany)

    1995-04-10

    This {open_quotes}Letter to the Editor{close_quotes} decribes a patient with Angelman syndrome due to paternal uniparental disomy of chromosome 15 and a milder phenotype compared to Angelman syndrome patients with a 15q deletion. 10 refs., 1 fig.

  9. Are there ethnic differences in deletions in the dystrophin gene?

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.; Verma, I.C. [All India Inst. of Medical Sciences, New Delhi (India)

    1997-01-20

    We studied 160 cases of Duchenne muscular dystrophy (DMD) drawn from all parts of India, using multiplex PCR of 27 exons. Of these, 103 (64.4%) showed intragenic deletions. Most (69.7%) of the deletions involved exons 45-51. The phenotype of cases with deletion of single exons did not differ significantly from those with deletion of multiple exons. The distribution of deletions in studies from different countries was variable, but this was accounted for either by the small number of cases studied, or by fewer exons analyzed. It is concluded that there is likely to be no ethnic difference with respect to deletions in the DMD gene. 38 refs., 2 figs., 3 tabs.

  10. Turner Syndrome

    Science.gov (United States)

    Turner syndrome is a genetic disorder that affects a girl's development. The cause is a missing or incomplete ... t work properly. Other physical features typical of Turner syndrome are Short, "webbed" neck with folds of skin ...

  11. Cushing's Syndrome

    Science.gov (United States)

    Cushing's syndrome is a hormonal disorder. The cause is long-term exposure to too much cortisol, a hormone ... cause your body to make too much cortisol. Cushing's syndrome is rare. Some symptoms are Upper body obesity ...

  12. Cushing's Syndrome

    Science.gov (United States)

    ... Cushing's syndrome, also called hypercortisolism , is a rare endocrine disorder caused by chronic exposure of the body's tissues ... removing the tumor while minimizing the chance of endocrine deficiency or long-term ... for Cushing's Syndrome Clinical Trials ...

  13. Turner Syndrome

    Science.gov (United States)

    Turner syndrome is a genetic disorder that affects a girl's development. The cause is a missing or ... t work properly. Other physical features typical of Turner syndrome are Short, "webbed" neck with folds of ...

  14. Analysis of partial AZFc deletions in Malaysian infertile male subjects.

    Science.gov (United States)

    Almeamar, Hussein Ali; Ramachandran, Vasudevan; Ismail, Patimah; Nadkarni, Prashan; Fawzi, Nora

    2013-04-01

    Complete deletions in the AZF (a, b, and c) sub-regions of the Y-chromosome have been shown to contribute to unexplained male infertility. However, the role of partial AZFc deletions in male infertility remains to be verified. Three types of partial AZFc deletions have been identified. They are gr/gr, b1/b3, and b2/b3 deletions. A recent meta-analysis showed that ethnic and geographical factors might contribute to the association of partial AZFc deletions with male infertility. This study analyzed the association of partial AZFc deletions in Malaysian infertile males. Fifty two oligozoospermic infertile males and 63 fertile controls were recruited to this study. Screening for partial AZFc deletions was done using the two sequence-tagged sites approach (SY1291 and SY1191) which were analyzed using both the conventional PCR gel-electrophoresis and the high resolution melt, HRM method. Gr/gr deletions were found in 11.53% of the cases and 9.52% of the controls (p = 0.725). A B2/b3 deletion was found in one of the cases (p = 0.269). No B1/b3 deletions were identified in this study. The results of HRM analysis were consistent with those obtained using the conventional PCR gel-electrophoresis method. The HRM analysis was highly repeatable (95% limit of agreement was -0.0879 to 0.0871 for SY1191 melting temperature readings). In conclusion, our study showed that partial AZFc deletions were not associated with male infertility in Malaysian subjects. HRM analysis was a reliable, repeatable, fast, cost-effective, and semi-automated method which can be used for screening of partial AZFc deletions. PMID:23231020

  15. A deletion map of the WAGR region on chromosome 11.

    OpenAIRE

    Gessler, M; Thomas, G H; Couillin, P; Junien, C; McGillivray, B C; Hayden, M; Jaschek, G.; Bruns, G. A.

    1989-01-01

    The WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) region has been assigned to chromosome 11p13 on the basis of overlapping constitutional deletions found in affected individuals. We have utilized 31 DNA probes which map to the WAGR deletion region, together with six reference loci and 13 WAGR-related deletions, to subdivide this area into 16 intervals. Specific intervals have been correlated with phenotypic features, leading to the identification of individual ...

  16. National Down Syndrome Society

    Science.gov (United States)

    ... info@ndss.org Down Syndrome What Is Down Syndrome? Down Syndrome Facts Myths & Truths Preferred Language Guide Q& ... More » Follow us Down Syndrome What Is Down Syndrome? Down Syndrome Facts Myths & Truths Preferred Language Guide Q& ...

  17. Learning about Marfan Syndrome

    Science.gov (United States)

    ... genetic terms used on this page Learning About Marfan Syndrome What is Marfan syndrome? What are the ... Syndrome Additional Resources for Marfan Syndrome What is Marfan syndrome? Marfan syndrome is one of the most ...

  18. Headbobber: a combined morphogenetic and cochleosaccular mouse model to study 10qter deletions in human deafness.

    Science.gov (United States)

    Buniello, Annalisa; Hardisty-Hughes, Rachel E; Pass, Johanna C; Bober, Eva; Smith, Richard J; Steel, Karen P

    2013-01-01

    deletion syndrome.

  19. Novel mutations in BCOR in three patients with oculo-facio-cardio-dental syndrome, but none in Lenz microphthalmia syndrome.

    Science.gov (United States)

    Horn, Denise; Chyrek, Magdalena; Kleier, Saskia; Lüttgen, Sabine; Bolz, Hanno; Hinkel, Georg-Klaus; Korenke, Georg Christoph; Riess, Angelika; Schell-Apacik, Can; Tinschert, Sigrid; Wieczorek, Dagmar; Gillessen-Kaesbach, Gabriele; Kutsche, Kerstin

    2005-05-01

    Oculo-facio-cardio-dental (OFCD) syndrome is a rare X-linked dominant condition with male lethality characterized by microphthalmia, congenital cataracts, facial dysmorphic features, congenital heart defects, and dental anomalies. Mutations in BCOR (BCL6 co-repressor) located in Xp11.4 have been described to cause OFCD syndrome. Lenz microphthalmia syndrome is inherited in an X-linked recessive pattern comprising microphthalmia/anophthalmia, mental retardation, malformed ears, digital, skeletal, and urogenital anomalies (synonym: microphthalmia with associated anomalies (MAA)). One locus for MAA has been mapped to Xq27-q28. Nonetheless, linkage and subsequent mutation analysis revealed a single missense mutation (p.P85L) in BCOR in a large family with presumed Lenz microphthalmia syndrome (MAA2). We describe novel mutations in BCOR in three patients with OFCD syndrome, two small deletions (c.2488_2489delAG and c.3286delG) and a submicroscopic deletion of about 60 kb encompassing at least BCOR exons 2-15. No BCOR mutation was detected in eight patients with Lenz microphthalmia syndrome. Our data confirm that BCOR is the causative gene for OFCD syndrome; however, the failure to identify any mutation in patients with Lenz microphthalmia syndrome together with the oligosymptomatic phenotype in the reported MAA2 patients suggest that BCOR is not the major gene for this syndrome.

  20. On fixed-parameter algorithms for Split Vertex Deletion

    OpenAIRE

    CYGAN, Marek; Pilipczuk, Marcin

    2012-01-01

    In the Split Vertex Deletion problem, given a graph G and an integer k, we ask whether one can delete k vertices from the graph G to obtain a split graph (i.e., a graph, whose vertex set can be partitioned into two sets: one inducing a clique and the second one inducing an independent set). In this paper we study fixed-parameter algorithms for Split Vertex Deletion parameterized by k: we show that, up to a factor quasipolynomial in k and polynomial in n, the Split Vertex Deletion problem can ...

  1. Recurrent Achalasia in a Child with Williams-Beuren Syndrome

    OpenAIRE

    Pereza, Nina; Barbarić, Irena; Ostojić, Saša; Čače, Neven; Kapović, Miljenko

    2011-01-01

    Williams-Beuren syndrome is a multysistem genetic disorder caused by the 1.6Mb hemizygous deletion involving the elastin gene in the region q11.23 of chromosome 7. The phenotype of Williams-Beuren syndrome is extremelly variable but the most common findings include cardiovascular disease, distinctive facies, mental retardation, a specific congitive profile, endocrine abnormalities, growth retardation and connective tissue abnormalities. Although gastrointestinal difficulties are o...

  2. MEN1 Syndrome and Hibernoma: An Uncommonly Recognised Association?

    Directory of Open Access Journals (Sweden)

    Venus Hedayati

    2014-01-01

    Full Text Available MEN1 syndrome is known to classically result in parathyroid, pituitary, and pancreatic islet cell tumours. However, the potential association of MEN1 syndrome with hibernoma, a benign tumour with differentiation towards brown fat, is far less well known, despite their genetic profile both being linked to deletion of the MEN1 gene. Herein, we describe a case with its key radiological and pathological findings.

  3. Dumping Syndrome

    Science.gov (United States)

    ... Disease Organizations​​ (PDF, 341 KB)​​​​​ Alternate Language URL Dumping Syndrome Page Content On this page: What is ... Nutrition Points to Remember Clinical Trials What is dumping syndrome? Dumping syndrome occurs when food, especially sugar, ...

  4. Angelman Syndrome: A Case Report.

    Science.gov (United States)

    Ashrafzadeh, Farah; Sadrnabavi, Arianeh; Akhondian, Javad; Beiraghi Toosi, Mehran; Mohammadi, Mohammadhassan; Hassanpour, Kazem

    2016-01-01

    Objective Angelman syndrome (AS) is a neurodevelopmental disorder presented by jerky movement, speech delay and cognitive disability epilepsy as well as dysmorphic features. It occurs due to an expression deletion in 15q11-q13 chromosome. In this article, we present an eight yr boy referred to Pediatrics Neurologic Clinic Mashhad, Iran for speech delay. He had abnormal behavior ataxia unusual laughing facial expression intellectual disability and mandibular prognathism. Metabolic screening tests and brain MRI were normal. Genetic analysis was pathognomonic for AS. PMID:27247589

  5. An association of 19p13.2 microdeletions with Malan syndrome and Chiari malformation.

    Science.gov (United States)

    Shimojima, Keiko; Okamoto, Nobuhiko; Tamasaki, Akiko; Sangu, Noriko; Shimada, Shino; Yamamoto, Toshiyuki

    2015-04-01

    Patients with microdeletions in the 19p13.2 chromosomal region show developmental delays, overgrowth, and distinctive features with big head appearances. These manifestations are now recognized as Sotos syndrome-like features (Sotos syndrome 2) or Malan syndrome. We identified three female patients with 19p13.2 deletions involving NFIX, a gene responsible for Malan syndrome. We compared the genotypic and phenotypic data of these patients with those of the patients previously reported. The most of the clinical features were found to overlap; however, Chiari malformation type I was observed in two of the three patients evaluated in this study. Because Chiari malformation type I has never been reported in the patients with NSD1-related Sotos syndrome, this finding indicates the possible role of 19p13.2 deletion in patients with mimicking features of Sotos syndrome but have negative NSD1 testing results.

  6. Refeeding syndrome.

    Science.gov (United States)

    Fernández López, M T; López Otero, M J; Alvarez Vázquez, P; Arias Delgado, J; Varela Correa, J J

    2009-01-01

    Refeeding syndrome is a complex syndrome that occurs as a result of reintroducing nutrition (oral, enteral or parenteral) to patients who are starved or malnourished. Patients can develop fluid-balance abnormalities, electrolyte disorders (hypophosphataemia, hypokalaemia and hypomagnesaemia), abnormal glucose metabolism and certain vitamin deficiencies. Refeeding syndrome encompasses abnormalities affecting multiple organ systems, including neurological, pulmonary, cardiac, neuromuscular and haematological functions. Pathogenic mechanisms involved in the refeeding syndrome and clinical manifestations have been reviewed. We provide suggestions for the prevention and treatment of refeeding syndrome. The most important steps are to identify patients at risk, reintroduce nutrition cautiously and correct electrolyte and vitamin deficiencies properly.

  7. Mapping of chromosome 20 for loss of heterozygosity in childhood ALL reveals a 1,000-kb deletion in one patient.

    Science.gov (United States)

    Couque, N; Chambon-Pautas, C; Cavé, H; Bardet, V; Duval, M; Vilmer, E; Grandchamp, B

    1999-12-01

    The long arm of chromosome 20 displays recurrent loss of heterozygosity (LOH) for microsatellite markers in blast cells from children with acute lymphoblastic leukemia. To further characterize the region of deletion and to precisely establish its frequency, we searched for LOH in 103 children with ALL using polymorphic markers in the previously described region of interest, namely between D20S101 and D20S887. LOH was detected in nine patients (ie with a frequency of 8.7%). Interestingly, in one patient, a small deletion was found, flanked proximally by D20S850 and distally by M201, a dinucleotide repeat identified from chromosome 20 sequences. The distance between these two markers is approximately 1000 kb. The occurrence of non-random deletions of the long arm of chromosome 20 has previously been observed in myeloid malignancies (myeloproliferative disorders and myelodysplastic syndromes) in 5-10% of patients. The small deletion in our patient is located within the common region of deletion of myeloproliferative disorders suggesting that a tumor suppressor gene may be the common target of the deletions in various types of hematological malignancies.

  8. 16p11.2 Deletion mice display cognitive deficits in touchscreen learning and novelty recognition tasks

    Science.gov (United States)

    Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/−) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2+/− mice, confirming previous findings. A similarly robust deficit in object location memory was discovered in +/−, indicating impaired spatial novelty recognition. Generalizability of novelty recognition deficits in +/− mice extended to preference for social novelty. Robust learning deficits and cognitive inflexibility were detected using Bussey–Saksida touchscreen operant chambers. During acquisition of pairwise visual discrimination, +/− mice required significantly more training trials to reach criterion than wild-type littermates (+/+), and made more errors and correction errors than +/+. In the reversal phase, all +/+ reached criterion, whereas most +/− failed to reach criterion by the 30-d cutoff. Contextual and cued fear conditioning were normal in +/−. These cognitive phenotypes may be relevant to some aspects of cognitive impairments in humans with 16p11.2 deletion, and support the use of 16p11.2+/− mice as a model system for discovering treatments for cognitive impairments in 16p11.2 deletion syndrome. PMID:26572653

  9. Supernumerary inv dup (15) in a patient with Angelman syndome and a deletion of 15q11-q13

    Energy Technology Data Exchange (ETDEWEB)

    Spinner, N.B.; Zackai, E. [Children`s Hospital of Philadelphia, PA (United States); Knoll, J.H.M. [Harvard Medical School, Boston, MA (United States)] [and others

    1995-05-22

    We have studied a patient with Angelman syndrome (AS) and a 47,XY,+inv dup(15) (pter{r_arrow}q11::q11{r_arrow}pter) karyotype. Molecular cytogenetic studies demonstrated that one of the apparently normal 15s was deleted at loci D15S9, GABRB3, and D15S12. There were no additional copies of these loci on the inv dup(15). The inv dup(15) contained only the pericentromeric sequence D15Z1. Quantitative DNA analysis confirmed these findings and documented a standard large deletion of sequences from 15q11-q13, as usually seen in patients with AS. DNA methylation testing at D15S63 showed a deletion of the maternally derived chromosome. AS in this patient can be explained by the absence of DNA sequences from chromosome 15q11-q13 on one of the apparently cytogenetically normal 15s, and not by the presence of an inv dup(15). This is the fourth patient with an inv dup(15) and AS or Prader Willi syndrome, who has been studied at the molecular level. In all cases an additional alteration of chromosome 15 was identified, which was hypothesized to be the cause of the disease. Patients with inv dup(15)s may be at increased risk for other chromosome abnormalities involving 15q11-q13. 29 refs., 3 figs.

  10. Prader-Willi, Angelman, and 15q11-q13 Duplication Syndromes.

    Science.gov (United States)

    Kalsner, Louisa; Chamberlain, Stormy J

    2015-06-01

    Three distinct neurodevelopmental disorders arise primarily from deletions or duplications that occur at the 15q11-q13 locus: Prader-Willi syndrome, Angelman syndrome, and 15q11-q13 duplication syndrome. Each of these disorders results from the loss of function or overexpression of at least 1 imprinted gene. This article discusses the clinical background, genetic cause, diagnostic strategy, and management of each of these 3 disorders. PMID:26022164

  11. Neurodevelopmental outcome in Angelman syndrome: Genotype-phenotype correlations

    DEFF Research Database (Denmark)

    Mertz, Line Granild Bie; Thaulov, Per; Trillingsgaard, Anegen;

    2014-01-01

    Angelman syndrome (AS) is a neurogenetic disorder characterized by intellectual disability, developmental delay, lack of speech, and epileptic seizures. Previous studies have indicated that children with AS due to 15q11.2-q13 deletions have a more severe developmental delay and present more often...

  12. Environmental Influences on the Behavioral Phenotype of Angelman Syndrome

    Science.gov (United States)

    Horsler, Kate; Oliver, Chris

    2006-01-01

    Using observational methods, we examined the social influences on laughing and smiling behavior in children with Angelman syndrome by systematically manipulating aspects of social interaction. Seven boys and 4 girls who were between 4 and 11 years of age and who had a confirmed maternal deletion of chromosome 15q11-q13 completed the study. Each…

  13. Genetically Dissecting Cortical Neurons Involved in Epilepsy in Angelman Syndrome.

    Science.gov (United States)

    Santini, Emanuela; Klann, Eric

    2016-04-01

    Epilepsy in Angelman Syndrome is thought to originate from an imbalance between local excitatory-inhibitory circuits that results in a generalized hyperexcitability. In this issue of Neuron, Judson et al. (2016) demonstrate that selective maternal deletion of Ube3a in cortical GABAergic neurons causes circuit hyperexcitability, increased seizure severity, and EEG abnormalities. PMID:27054611

  14. Mitochondrial DNA deletions in patients with chronic suppurative otitis media.

    Science.gov (United States)

    Tatar, Arzu; Tasdemir, Sener; Sahin, Ibrahim; Bozoglu, Ceyda; Erdem, Haktan Bagis; Yoruk, Ozgur; Tatar, Abdulgani

    2016-09-01

    The aim of this study was to investigate the 4977 and 7400 bp deletions of mitochondrial DNA in patients with chronic suppurative otitis media and to indicate the possible association of mitochondrial DNA deletions with chronic suppurative otitis media. Thirty-six patients with chronic suppurative otitis media were randomly selected to assess the mitochondrial DNA deletions. Tympanomastoidectomy was applied for the treatment of chronic suppurative otitis media, and the curettage materials including middle ear tissues were collected. The 4977 and 7400 bp deletion regions and two control regions of mitochondrial DNA were assessed by using the four pair primers. DNA was extracted from middle ear tissues and peripheral blood samples of the patients, and then polymerase chain reactions (PCRs) were performed. PCR products were separated in 2 % agarose gel. Seventeen of 36 patients had the heterozygote 4977 bp deletion in the middle ear tissue but not in peripheral blood. There wasn't any patient who had the 7400 bp deletion in mtDNA of their middle ear tissue or peripheral blood tissue. The patients with the 4977 bp deletion had a longer duration of chronic suppurative otitis media and a higher level of hearing loss than the others (p media and the reactive oxygen species can cause the mitochondrial DNA deletions and this may be a predisposing factor to sensorineural hearing loss in chronic suppurative otitis media. An antioxidant drug as a scavenger agent may be used in long-term chronic suppurative otitis media.

  15. 44 CFR 5.27 - Deletion of identifying details.

    Science.gov (United States)

    2010-10-01

    ... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Deletion of identifying details. 5.27 Section 5.27 Emergency Management and Assistance FEDERAL EMERGENCY MANAGEMENT AGENCY..., FEMA may delete identifying details when making available or publishing an opinion, statement of...

  16. Linguistic and Psychomotor Development in Children with Chromosome 14 Deletions

    Science.gov (United States)

    Zampini, Laura; D'Odorico, Laura; Zanchi, Paola; Zollino, Marcella; Neri, Giovanni

    2012-01-01

    The present study focussed on a specific type of rare genetic condition: chromosome 14 deletions. Children with this genetic condition often show developmental delays and brain and neurological problems, although the type and severity of symptoms varies depending on the size and location of the deleted genetic material. The specific aim of the…

  17. Molecular mimicry and clonal deletion: A fresh look.

    Science.gov (United States)

    Rose, Noel R

    2015-06-21

    In this article, I trace the historic background of clonal deletion and molecular mimicry, two major pillars underlying our present understanding of autoimmunity and autoimmune disease. Clonal deletion originated as a critical element of the clonal selection theory of antibody formation in order to explain tolerance of self. If we did have complete clonal deletion, there would be major voids, the infamous "black holes", in our immune repertoire. For comprehensive, protective adaptive immunity, full deletion is necessarily a rare event. Molecular mimicry, the sharing of epitopes among self and non-self antigens, is extraordinary common and provides the evidence that complete deletion of self-reactive clones is rare. If molecular mimicry were not common, protective adaptive immunity could not be all-encompassing. By taking a fresh look at these two processes together we can envision their evolutionary basis and understand the need for regulatory devices to prevent molecular mimicry from progressing to autoimmune disease. PMID:25172771

  18. Ku80-deleted cells are defective at base excision repair

    Energy Technology Data Exchange (ETDEWEB)

    Li, Han [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain); Marple, Teresa [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Hasty, Paul, E-mail: hastye@uthscsa.edu [The University of Texas Health Science Center at San Antonio, The Institute of Biotechnology, The Department of Molecular Medicine, 15355 Lambda Drive, San Antonio, TX 78245-3207 (United States); Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029 (Spain)

    2013-05-15

    Graphical abstract: - Highlights: • Ku80-deleted cells are hypersensitive to ROS and alkylating agents. • Cells deleted for Ku80, but not Ku70 or Lig4, have reduced BER capacity. • OGG1 rescues hypersensitivity to H{sub 2}O{sub 2} and paraquat in Ku80-mutant cells. • Cells deleted for Ku80, but not Lig4, are defective at repairing AP sites. • Cells deleted for Ku80, but not Lig4 or Brca2 exon 27, exhibit increased PAR. - Abstract: Ku80 forms a heterodimer with Ku70, called Ku, that repairs DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. As a consequence of deleting NHEJ, Ku80-mutant cells are hypersensitive to agents that cause DNA DSBs like ionizing radiation. Here we show that Ku80 deletion also decreased resistance to ROS and alkylating agents that typically cause base lesions and single-strand breaks (SSBs). This is unusual since base excision repair (BER), not NHEJ, typically repairs these types of lesions. However, we show that deletion of another NHEJ protein, DNA ligase IV (Lig4), did not cause hypersensitivity to these agents. In addition, the ROS and alkylating agents did not induce γ-H2AX foci that are diagnostic of DSBs. Furthermore, deletion of Ku80, but not Lig4 or Ku70, reduced BER capacity. Ku80 deletion also impaired BER at the initial lesion recognition/strand scission step; thus, involvement of a DSB is unlikely. Therefore, our data suggests that Ku80 deletion impairs BER via a mechanism that does not repair DSBs.

  19. A 3 Mb deletion in 14q12 causes severe mental retardation, mild facial dysmorphisms and Rett-like features.

    Science.gov (United States)

    Papa, Filomena Tiziana; Mencarelli, Maria Antonietta; Caselli, Rossella; Katzaki, Eleni; Sampieri, Katia; Meloni, Ilaria; Ariani, Francesca; Longo, Ilaria; Maggio, Angela; Balestri, Paolo; Grosso, Salvatore; Farnetani, Maria Angela; Berardi, Rosario; Mari, Francesca; Renieri, Alessandra

    2008-08-01

    The present report describes a 7-year-old girl with a de novo 3 Mb interstitial deletion of chromosome 14q12, identified by oligo array-CGH. The region is gene poor and contains only five genes two of them, FOXG1B and PRKD1 being deleted also in a previously reported case with a very similar phenotype. Both patients present prominent metopic suture, epicanthic folds, bulbous nasal tip, tented upper lip, everted lower lip and large ears and a clinical course like Rett syndrome, including normal perinatal period, postnatal microcephaly, seizures, and severe mental retardation. FOXG1B (forkhead box G1B) is a very intriguing candidate gene since it is known to promote neuronal progenitor proliferation and to suppress premature neurogenesis and its disruption is reported in a patient with postnatal microcephaly, corpus callosum agenesis, seizures, and severe mental retardation.

  20. Anal atresia, coloboma, microphthalmia, and nasal skin tag in a female patient with 3.5 Mb deletion of 3q26 encompassing SOX2.

    Science.gov (United States)

    Salem, Nabeel J M; Hempel, Maja; Heiliger, Katrin-Janine; Hosie, Stuart; Meitinger, Thomas; Oexle, Konrad

    2013-06-01

    A full term female newborn presented with prominent forehead, bilateral microphthalmia, iris coloboma and cataract, wide intercanthal distance, large, low-set and protruding ears, skin tag at the left nasal nostril, imperforate anus with rectovestibular fistula, and postnatal growth delay with brachymicrocephaly. A marker chromosome was not detectable and the copy number of 22q11 was normal. However, array CGH revealed a 3.5 Mb microdeletion of chromosome region 3q26.32-3q26.33 (chr. 3: 178,598,162-182,114,483; hg19) which comprised the SOX2 gene. While SOX2 haploinsufficiency is known to cause microphthalmia and coloboma, it has not been described before in patients with anal atresia.

  1. Submikroskopiske kromosomforandringer disponerer til epilepsi

    DEFF Research Database (Denmark)

    Møller, Rikke Steensbjerre; Hjalgrim, Helle

    2011-01-01

    variants predisposing to common IGE syndromes remain elusive. Identification of recurrent microdeletions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 as rare but significant risk factors for IGE has provided new insights into the complex genetic predisposition of common epilepsies....

  2. Fungal ABC transporter deletion and localization analysis.

    Science.gov (United States)

    Kovalchuk, Andriy; Weber, Stefan S; Nijland, Jeroen G; Bovenberg, Roel A L; Driessen, Arnold J M

    2012-01-01

    Fungal cells are highly complex as their metabolism is compartmentalized harboring various types of subcellular organelles that are bordered by one or more membranes. Knowledge about the intracellular localization of transporter proteins is often required for the understanding of their biological function. Among different approaches available, the localization analysis based on the expression of GFP fusions is commonly used as a relatively fast and cost-efficient method that allows visualization of proteins of interest in both live and fixed cells. In addition, inactivation of transporter genes is an important tool to resolve their specific function. Here we provide a detailed protocol for the deletion and localization analysis of ABC transporters in the filamentous fungus Penicillium chrysogenum. It includes construction of expression plasmids, their transformation into fungal strains, cultivation of transformants, microscopy analysis, as well as additional protocols on staining of fungal cells with organelle-specific dyes like Hoechst 33342, MitoTracker DeepRed, and FM4-64. PMID:22183644

  3. Waardenburg syndrome.

    OpenAIRE

    Read, A P; Newton, V E

    1997-01-01

    Auditory-pigmentary syndromes are caused by physical absence of melanocytes from the skin, hair, eyes, or the stria vascularis of the cochlea. Dominantly inherited examples with patchy depigmentation are usually labelled Waardenburg syndrome (WS). Type I WS, characterised by dystopia canthorum, is caused by loss of function mutations in the PAX3 gene. Type III WS (Klein-Waardenburg syndrome, with abnormalities of the arms) is an extreme presentation of type I; some but not all patients are ho...

  4. Metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Gogia Atul

    2006-02-01

    Full Text Available The Metabolic syndrome is a widely prevalent and multi-factorial disorder. The syndrome has been given several names, including- the metabolic syndrome, the insulin resistance syndrome, the plurimetabolic syndrome, and the deadly quartet. With the formulation of NCEP/ATP III guidelines, some uniformity and standardization has occurred in the definition of metabolic syndrome and has been very useful for epidemiological purposes. The mechanisms underlying the metabolic syndrome are not fully known; however resistance to insulin stimulated glucose uptake seems to modify biochemical responses in a way that predisposes to metabolic risk factors. The clinical relevance of the metabolic syndrome is related to its role in the development of cardiovascular disease. Management of the metabolic syndrome involves patient-education and intervention at various levels. Weight reduction is one of the main stays of treatment. In this article we comprehensively discuss this syndrome- the epidemiology, pathogenesis, clinical relevance and management. The need to do a comprehensive review of this particular syndrome has arisen in view of the ever increasing incidence of this entitiy. Soon, metabolic syndrome will overtake cigarette smoking as the number one risk factor for heart disease among the US population. Hardly any issue of any primary care medical journal can be opened without encountering an article on type 2 diabetes, dyslipidemia or hypertension. It is rare to see type 2 diabetes, dyslipidemia, obesity or hypertension in isolation. Insulin resistance and resulting hyperinsulinemia have been implicated in the development of glucose intolerance (and progression to type 2 diabetes, hypertriglyceridemia, hypertension, polycystic ovary yndrome, hypercoagulability and vascular inflammation, as well as the eventual development of atherosclerotic cardiovascular disease manifested as myocardial infarction, stroke and myriad end organ diseases. Conversely

  5. Revesz syndrome

    Directory of Open Access Journals (Sweden)

    Dayane Cristine Issaho

    2015-04-01

    Full Text Available Revesz syndrome is a rare variant of dyskeratosis congenita and is characterized by bilateral exudative retinopathy, alterations in the anterior ocular segment, intrauterine growth retardation, fine sparse hair, reticulate skin pigmentation, bone marrow failure, cerebral calcification, cerebellar hypoplasia and psychomotor retardation. Few patients with this syndrome have been reported, and significant clinical variations exist among patients. This report describes the first Brazilian case of Revesz syndrome and its ocular and clinical features.

  6. Sweet Syndrome

    OpenAIRE

    Kasapçopur, Özgür; Sever, Lale; Çalışkan, Salim; Kodakoğlu, Ramazan; Mat, Cem; Kaner, Gültekin; Arısoy, Nil

    1996-01-01

    Sweet syndrome is a vasculitis characterized with fever leucocytosis neutrophilia and dermal neutrophilic infiltration In children Sweet syndrome usually occurs with secondary to infection and in adults to malignancy We report a Sweet syndrome in a five years old girl with respiratory infections otitis dactylitis long lasting fever and cutaneous rash A neutrophilic dermal infiltration is noted in cutaneous biopsy These signs have disappeared with corticosteroid treatment In conclusion Sweet s...

  7. Brugada syndrome

    Directory of Open Access Journals (Sweden)

    Bockeria O.L.

    2015-03-01

    Full Text Available Brugada syndrome is characterized by sudden death associated with one of several ECG patterns including incomplete right bundle-branch block and ST-segment elevation in the anterior precordial leads. According to the ECG patterns there are three types of Brugada syndrome. Brugada syndrome is genetically determined and has an autosomal dominant pattern of transmission in about 50% of familial cases. Nowadays implantation of cardioverter-defibrillator is the only proven method of sudden cardiac death prevention.

  8. Mowat-Wilson syndrome in a Moroccan consanguineous family

    Directory of Open Access Journals (Sweden)

    Ratbi Ilham

    2007-01-01

    Full Text Available Mowat-Wilson syndrome is a mental retardation-multiple congenital anomaly syndrome characterized by a typical facies, developmental delay, epilepsy, and variable congenital malformations, including Hirschsprung disease, urogenital anomalies, congenital heart disease, and agenesis of the corpus callosum. This disorder is sporadic and is caused by heterozygous mutations or deletions of the ZFHX1B gene located in the 2q22 region. We report here the first Moroccan patient, born to consanguineous parents, with Mowat-Wilson syndrome, due to a de novo, unreported mutation of the ZFHX1B gene.

  9. Marfan Syndrome (For Teens)

    Science.gov (United States)

    ... How Can I Help a Friend Who Cuts? Marfan Syndrome KidsHealth > For Teens > Marfan Syndrome Print A ... a genetic disorder called Marfan syndrome. What Is Marfan Syndrome? Marfan syndrome is named after Antoine Marfan, ...

  10. What Is Down Syndrome?

    Science.gov (United States)

    ... NDSS Home » Down Syndrome » What Is Down Syndrome? What Is Down Syndrome? In every cell in the ... chromosome 21 causes the characteristics of Down syndrome. What Causes Down Syndrome? Regardless of the type of ...

  11. Validating the Rett Syndrome Gross Motor Scale.

    Science.gov (United States)

    Downs, Jenny; Stahlhut, Michelle; Wong, Kingsley; Syhler, Birgit; Bisgaard, Anne-Marie; Jacoby, Peter; Leonard, Helen

    2016-01-01

    Rett syndrome is a pervasive neurodevelopmental disorder associated with a pathogenic mutation on the MECP2 gene. Impaired movement is a fundamental component and the Rett Syndrome Gross Motor Scale was developed to measure gross motor abilities in this population. The current study investigated the validity and reliability of the Rett Syndrome Gross Motor Scale. Video data showing gross motor abilities supplemented with parent report data was collected for 255 girls and women registered with the Australian Rett Syndrome Database, and the factor structure and relationships between motor scores, age and genotype were investigated. Clinical assessment scores for 38 girls and women with Rett syndrome who attended the Danish Center for Rett Syndrome were used to assess consistency of measurement. Principal components analysis enabled the calculation of three factor scores: Sitting, Standing and Walking, and Challenge. Motor scores were poorer with increasing age and those with the p.Arg133Cys, p.Arg294* or p.Arg306Cys mutation achieved higher scores than those with a large deletion. The repeatability of clinical assessment was excellent (intraclass correlation coefficient for total score 0.99, 95% CI 0.93-0.98). The standard error of measurement for the total score was 2 points and we would be 95% confident that a change 4 points in the 45-point scale would be greater than within-subject measurement error. The Rett Syndrome Gross Motor Scale could be an appropriate measure of gross motor skills in clinical practice and clinical trials.

  12. Ectrodactyly and proximal/intermediate interstitial deletion 7q

    Energy Technology Data Exchange (ETDEWEB)

    McElveen, C.; Carvajal, M.V.; Moscatello, D. [Louisiana State Univ. Medical Center, New Orleans, LA (United States)] [and others

    1995-03-13

    We report on an individual with severe mental retardation, seizures, microcephaly, unusual face, scoliosis, and cleft feet and cleft right hand. The chromosomal study showed a proximal interstitial deletion 7q (q11.23q22). From our review of the literature, 11 patients have been reported with ectrodactyly (split hand/split foot malformation) and proximal/intermediate interstitial deletions or rearrangements of 7q. The critical segment for ectrodactyly seems to be located between 7q21.2 and 7q22.1. This malformation is present in 41% of the patients whose deletion involves the critical segment. 37 refs., 3 figs., 1 tab.

  13. The Meckel-Gruber Syndrome Gene, MKS3, Is Mutated in Joubert Syndrome

    OpenAIRE

    Baala, Lekbir; Romano, Stéphane; Khaddour, Rana; Saunier, Sophie; Smith, Ursula M.; Audollent, Sophie; Ozilou, Catherine; Faivre, Laurence; Laurent, Nicole; Foliguet, Bernard; Munnich, Arnold; Lyonnet, Stanislas; Salomon, Rémi; Encha-Razavi, Férechté; Gubler, Marie-Claire

    2006-01-01

    Joubert syndrome (JS) is an autosomal recessive disorder characterized by cerebellar vermis hypoplasia associated with hypotonia, developmental delay, abnormal respiratory patterns, and abnormal eye movements. The association of retinal dystrophy and renal anomalies defines JS type B. JS is a genetically heterogeneous condition with mutations in two genes, AHI1 and CEP290, identified to date. In addition, NPHP1 deletions identical to those that cause juvenile nephronophthisis have been identi...

  14. Heme oxygenase-1 deletion affects stress erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Yu-An Cao

    Full Text Available BACKGROUND: Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1 deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis. METHODOLOGY/PRINCIPAL FINDINGS: We used a transplant model to induce stress conditions. In irradiated recipients that received hmox(+/- or hmox(+/+ bone marrow cells, we evaluated (i the erythrocyte parameters in the peripheral blood; (ii the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii the patterns of histological iron staining; and (iv the number of Mac-1(+-cells expressing TNF-α. In the spleens of mice that received hmox(+/- cells, we show (i decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii increases in the insoluble iron levels and decreases in the soluble iron levels; (iii increased numbers of Mac-1(+-cells expressing TNF-α; and (iv decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations. CONCLUSIONS/SIGNIFICANCE: As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.

  15. Exonic deletion of OPHN1 resulting in seizures, intellectual disability, and brain malformations

    Directory of Open Access Journals (Sweden)

    Larson A

    2014-07-01

    Full Text Available Austin Larson,1 Jamie LeRoux,2 Ellen Roy Elias11Department of Pediatrics, University of Colorado Denver Anschutz Medical Campus, Aurora, CO, USA; 2Colorado Genetics Laboratory, Denver, CO, USAAbstract: We report the case of a 9-year-old boy with autism, intellectual disability, and complex partial seizures as well as cerebellar vermian hypoplasia, caudate nucleus hypoplasia, and ventriculomegaly. He was found to have a deletion within the oligophrenin 1 gene (OPHN1, affecting exons 2–5. OPHN1 mutations result in a rare but well-characterized syndrome of neuroanatomical anomalies, epilepsy, and intellectual disability. This is a novel mutation in OPHN1 that adds to the spectrum of pathogenic variants of the gene. Additionally, the case illustrates the significant benefit that patients and families can derive from a definitive genetic diagnosis, even in the absence of direct therapeutic interventions.Keywords: X-linked intellectual disability, autism, cerebellar hypoplasia, chromosomal microarray, oligophrenin 1

  16. Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Ravinder K. Gupta, Ritu Gupta, Sunil Dutt Sharma

    2006-10-01

    Full Text Available Turner Syndrome is one of the important chromosomal disorders characterised by loss (total or part ofsex chromosome. The manifestations being peripheral edema, short stature, extra skin fold, webbing ofneck, renal and cardiovascular anomalies, sexual infantilism, learning disability etc. We present here aone month female baby who had classical features of Turner Syndrome. The karyotape analysis wasconsistent with the diagnosis.

  17. Antiphospholipid syndrome

    DEFF Research Database (Denmark)

    Cervera, Ricard; Piette, Jean-Charles; Font, Josep;

    2002-01-01

    To analyze the clinical and immunologic manifestations of antiphospholipid syndrome (APS) in a large cohort of patients and to define patterns of disease expression.......To analyze the clinical and immunologic manifestations of antiphospholipid syndrome (APS) in a large cohort of patients and to define patterns of disease expression....

  18. Myelodysplastic Syndromes

    Science.gov (United States)

    ... your body, the white blood cells that fight infections, and the platelets that help with blood clotting. If you have a myelodysplastic syndrome, the stem cells do not mature into healthy blood cells. ... anemia, or easy bleeding. Myelodysplastic syndromes often do ...

  19. Bloom's Syndrome

    Science.gov (United States)

    ... Niemann-Pick Disease, Type A Spinal Muscular Atrophy Tay-Sachs Disease Usher Syndrome, Type 1F and Type III ... Niemann-Pick Disease, Type A Spinal Muscular Atrophy Tay-Sachs Disease Usher Syndrome, Type 1F and Type III ...

  20. Poland syndrome

    Directory of Open Access Journals (Sweden)

    Chandra Madhur Sharma

    2014-01-01

    Full Text Available Poland′s syndrome is a rare congenital condition, characterized by the absence of the sternal or breastbone portion of the pectoralis major muscle, which may be associated with the absence of nearby musculoskeletal structures. We hereby report an 8-year-old boy with typical features of Poland syndrome, the first documented case from Uttar Pradesh, India.

  1. Franceschetti syndrome

    Directory of Open Access Journals (Sweden)

    Vikrant Kasat

    2011-01-01

    Full Text Available Franceschetti syndrome is an autosomal dominant disorder of craniofacial development with variable expressivity. It is commonly known as Treacher Collins syndrome (TCS. It is named after E. Treacher Collins who described the essential components of the condition. It affects both genders equally. This article reports a case of TCS in an 18-year-old female.

  2. Turner Syndrome

    Directory of Open Access Journals (Sweden)

    Akcan AB.

    2013-06-01

    Full Text Available Turner syndrome is an important cause of short stature in girls and primer amenorrhea in young women that is usually caused by loss of part or all of an X chromosome. This topic will review the clinical manifestations, diagnosis and management of Turner syndrome.

  3. Proteus syndrome

    Directory of Open Access Journals (Sweden)

    George Renu

    1993-01-01

    Full Text Available A case of proteus syndrome in a 20 year old male is repoted. Hemihypertrophy, asymmetric megalodactyly, linear epidermal naevus, naevus flammeus, angiokeratoma, lymphangioma circumscriptum, thickening of the palms and soles, scoliosis and varicose veins were present. There are only few reports of these cases in adults. The syndrome has not been reported from India.

  4. Burnout Syndrome

    OpenAIRE

    Panova, Gordana; Panov, Nenad; Stojanov, H; Sumanov, Gorgi; Panova, Blagica; Stojanovski, Angel; Nikolovska, Lence; Jovevska, Svetlana; Trajanovski, D; Asanova, D

    2013-01-01

    Introduction: Increasing work responsibilities, allocation of duties, loss of energy and motivation in everyday activities, emotional exhaustion, lack of time for themselves, insuffi cient time for rest and recreation, dissatisfaction in private life. All these symptoms can be cause of Burnout Syndrome. Aim: To see the importance of this syndrome, the consequences of job dissatisfaction, the environment, family and expression in drastic chan...

  5. Noonan Syndrome

    Directory of Open Access Journals (Sweden)

    Sanjeev K. Digra, Deep Aman Singh, Vikram Gupta, Ghanshyam Saini

    2004-10-01

    Full Text Available We report a 11 year old boy and his father both Noonan’s. Noonan syndrome occurs in 1 out of 2000live births. Short stature, webbing of neck, pectus carinatum or pectus excavatum, hypertelorismcubitus valgus, epicanthus, downward slanted palpebral fissures, ptosis, microganthia and earabnormalities are the common features of Noonan syndrome.

  6. Detection of deletion mutations of FBN1 in two patients with Marfan syndrome using next generation sequencing (NGS) and multiplex ligation-dependent probe amplification (MLPA) technique%NGS和MLPA技术检测2例马凡综合征患者FBN1基因缺失突变

    Institute of Scientific and Technical Information of China (English)

    卢鑫鑫; 黄肖利; 王韧; 陈喜军; 饶慧英; 吴文冰; 丘丽萍; 黄毅; 伍严安

    2015-01-01

    目的 对2例马凡综合征(Marfan's syndrome,MFS)患者的原纤维蛋白-1基因(FBN1)进行突变检测.方法 提取患者的外周血全基因组DNA,用第二代测序技术(NGS)和多重连接探针扩增技术(MLPA)对FBN1进行突变筛查,对这2种方法提示有拷贝数异常的外显子进行PCR和DNA Sanger测序以证实突变.结果 NGS和MLPA技术检测均显示1例患者有18号外显子缺失突变,另1例患者其56号外显子有缺失突变.经PCR和Sanger测序证实前者18号外显子及其两侧翼区有大片段缺失c.2114-2357_2167+747de13158bp,后者第56号外显子及其内含子有9 bp的缺失突变c.6864_c.6871+1delCTGTGTAGG.结论 NGS和MLPA技术有助于筛查基因组缺失突变,但仍需借助Sanger测序等方法验证.

  7. Fluorescent in situ hybridization for evaluation of Prader-Willi and Angelman syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Wenger, S.L.; Cummins, J.H. [Univ. of Pittsburgh, PA (United States)

    1995-07-17

    We have found fluorescence in situ hybridization (FISH) results more reliavle than high resolution chromosome analysis for the diagnosis of Prader-Willi (PWS) or Angelman syndromes (AS). Specifically, we have found success in the detection of 15q11q13 deletions among 55 cases. Our study suggests that FISH analysis using PWS/AS probes can facilitate diagnostic evaluation of these cases for deletions. 2 refs., 1 tab.

  8. Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration.

    Science.gov (United States)

    Schulz, Alexander; Büttner, Robert; Toledo, Andrea; Baader, Stephan L; von Maltzahn, Julia; Irintchev, Andrey; Bauer, Reinhard; Morrison, Helen

    2016-01-01

    In contrast to axons of the central nervous system (CNS), axons of the peripheral nervous system (PNS) show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2), has recently been shown to have RhoA regulatory functions in PNS neurons-in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery. PMID:27467574

  9. 7q36 deletion and 9p22 duplication: effects of a double imbalance

    Directory of Open Access Journals (Sweden)

    Pelegrino Karla de

    2013-01-01

    Full Text Available Abstract The etiology of mental retardation/developmental delay (MRDD remains a challenge to geneticists and clinicians and can be correlated to environmental and genetic factors. Chromosomal aberrations are common causes of moderate to severe mental retardation and may represent 10% of these occurrences. Here we report the case of a boy with development delay, hypoplasia of corpus callosum, microcephaly, muscular hypotonia, and facial dysmorphisms. A deletion of 7q36.1 → 36.3 and duplication of 9p22.3 → 23 was detected as a result of an unbalanced translocation of paternal origin. Breakpoint delimitation was achieved with array comparative genomic hybridization assay. Additional multiplex ligation dependent probe amplification (MLPA analyzes confirmed one copy loss of 7q36.3 region and one copy gain of 9p24.3 region. Patient resultant phenotype is consistent with the already described findings for both 7q deletion and 9p duplication syndromes.

  10. Neuron-Specific Deletion of the Nf2 Tumor Suppressor Impairs Functional Nerve Regeneration

    Science.gov (United States)

    Schulz, Alexander; Büttner, Robert; Toledo, Andrea; Baader, Stephan L.; von Maltzahn, Julia; Irintchev, Andrey; Bauer, Reinhard; Morrison, Helen

    2016-01-01

    In contrast to axons of the central nervous system (CNS), axons of the peripheral nervous system (PNS) show better, but still incomplete and often slow regeneration following injury. The tumor suppressor protein merlin, mutated in the hereditary tumor syndrome Neurofibromatosis type 2 (NF2), has recently been shown to have RhoA regulatory functions in PNS neurons—in addition to its well-characterized, growth-inhibitory activity in Schwann cells. Here we report that the conditional knockout of merlin in PNS neurons leads to impaired functional recovery of mice following sciatic nerve crush injury, in a gene-dosage dependent manner. Gross anatomical or electrophysiological alterations of sciatic nerves could not be detected. However, correlating with attenuated RhoA activation due to merlin deletion, ultrastructural analysis of nerve samples indicated enhanced sprouting of axons with reduced caliber size and increased myelination compared to wildtype animals. We conclude that deletion of the tumor suppressor merlin in the neuronal compartment of peripheral nerves results in compromised functional regeneration after injury. This mechanism could explain the clinical observation that NF2 patients suffer from higher incidences of slowly recovering facial nerve paralysis after vestibular schwannoma surgery. PMID:27467574

  11. Familial glucocorticoid resistance caused by a splice site deletion in the human glucocorticoid receptor gene

    Energy Technology Data Exchange (ETDEWEB)

    Karl, M.; Lamberts, S.W.J.; Detera-Wadleigh, S.D.; Encio, I.J.; Stratakis, C.A.; Hurley, D.M.; Accili, D.; Chrousos, G.P. (National Institutes of Health, Bethesda, MD (United States) Erasmus Univ. of Rotterdam (Netherlands))

    1993-03-01

    The clinical syndrome of generalized, compensated glucocorticoid resistance is characterized by increased cortisol secretion without clinical evidence of hyper- or hypocortisolism, and manifestations of androgen and/or mineralocorticoid excess. This condition results from partial failure of the glucocorticoid receptor (GR) to modulate transcription of its target genes. The authors studied the molecular mechanisms of this syndrome in a Dutch kindred, whose affected members had hypercortisolism and approximately half of normal GRs, and whose proband was a young woman with manifestations of hyperandrogenism. Using the polymerase chain reaction to amplify and sequence each of the nine exons of the GR gene [alpha], along with their 5[prime]- and 3[prime]-flanking regions, the authors identified a 4-base deletion at the 3[prime]-boundary of exon 6 in one GR allele ([Delta][sub 4]), which removed a donor splice site in all three affected members studied. In contrast, the sequence of exon 6 in the two unaffected siblings was normal. A single nucleotide substitution causing an amino acid substitution in the amino terminal domain of the GR (asparagine to serine, codon 363) was also discovered in exon 2 of the other allele (G[sub 1220]) in the proband, in one of her affected brothers and in her unaffected sister. This deletion in the glucocorticoid receptor gene was associated with the expression of only one allele and a decrease of GR protein by 50% in affected members of this glucocorticoid resistant family. The mutation identified in exon 2 did not segregate with the disease and appears to be of no functional significance. The presence of the null allele was apparently compensated for by increased cortisol production at the expense of concurrent hyperandrogenism. 40 refs., 3 figs.

  12. 78 FR 63967 - Procurement List; Proposed Addition and Deletions

    Science.gov (United States)

    2013-10-25

    ...: Social Vocational Services, Inc.--Deleted, San Jose, CA Contracting Activity: DEPT OF THE ARMY, W40M NATL... Sustainment Systems, Natick, MA NPA: ReadyOne Industries (ROI), Inc., El Paso, TX Contracting Activity:...

  13. Recurrent deletions of IKZF1 in pediatric acute myeloid leukemia

    OpenAIRE

    de Rooij, Jasmijn D.E.; Beuling, Eva; Marry M van den Heuvel-Eibrink; Obulkasim, Askar; Baruchel, André; Trka, Jan; Reinhardt, Dirk; Sonneveld, Edwin; Gibson, Brenda E.S.; Pieters, Rob; Zimmermann, Martin; Zwaan, C. Michel; Fornerod, Maarten

    2015-01-01

    IKAROS family zinc finger 1/IKZF1 is a transcription factor important in lymphoid differentiation, and a known tumor suppressor in acute lymphoid leukemia. Recent studies suggest that IKZF1 is also involved in myeloid differentiation. To investigate whether IKZF1 deletions also play a role in pediatric acute myeloid leukemia, we screened a panel of pediatric acute myeloid leukemia samples for deletions of the IKZF1 locus using multiplex ligation-dependent probe amplification and for mutations...

  14. Construction of Deletion-knockout Mutant Fowlpox Virus (FWPV)

    OpenAIRE

    Laidlaw, Stephen M.; Skinner, Michael A.

    2014-01-01

    The construction of deletion-knockout poxviruses is a useful approach to determining the function of specific virus genes. This protocol is an adaptation of the transient dominant knockout selection protocol published by Falkner and Moss (1990) for use with vaccinia virus. The protocol makes use of the dominant selectable marker Escherichia coli guanine phosphoribosyltransferase (gpt) gene (Mulligan and Berg, 1981), under the control of an early/late poxvirus promoter. The deletion viruses th...

  15. Bilateral hand amyotrophy with PMP-22 gene deletion.

    Science.gov (United States)

    Gochard, A; Guennoc, A M; Praline, J; Malinge, M C; de Toffol, B; Corcia, P

    2007-01-01

    Hereditary neuropathy with liability to pressure palsies (HNPP) phenotypes are heterogeneous. We report the case of a 52-year-old woman without medical history, who complained of bilateral hand weakness suggestive first of a motor neuron disorder. The presence of a diffuse predominant distal demyelinating neuropathy suggested a deletion of PMP-22 gene, which was confirmed by genetic analysis. This case report underlines a novel phenotype related to the deletion of PMP-22 gene.

  16. Insertion and Deletion Processes in Recent Human History

    OpenAIRE

    Per Sjödin; Thomas Bataillon; Schierup, Mikkel H.

    2010-01-01

    BACKGROUND: Although insertions and deletions (indels) account for a sizable portion of genetic changes within and among species, they have received little attention because they are difficult to type, are alignment dependent and their underlying mutational process is poorly understood. A fundamental question in this respect is whether insertions and deletions are governed by similar or different processes and, if so, what these differences are. METHODOLOGY/PRINCIPAL FINDINGS: We use publishe...

  17. Crossed pulmonary arteries: a report on 20 cases with an emphasis on the clinical features and the genetic and cardiac abnormalities.

    Science.gov (United States)

    Babaoğlu, Kadir; Altun, Gürkan; Binnetoğlu, Köksal; Dönmez, Muhammed; Kayabey, Özlem; Anık, Yonca

    2013-01-01

    Crossed pulmonary arteries (CPAs) are a rare abnormality in which the ostium of the left pulmonary artery originates superior to the right pulmonary artery and to its right. Recognition of this rare pathology is important because it generally is accompanied by other congenital heart defects, extracardiac anomalies, and certain genetic problems. To date, only a few cases have been reported, and most of these cases have been associated with complex cardiac abnormalities. The authors detected 20 cases of CPA between June 2009 and November 2012 through their increasing awareness of this anomaly. Approximately 9,250 echocardiograms were performed during this period, and all of them also were checked for this anomaly. This report describes 20 cases of this CPA, with an emphasis on the clinical features and the genetic and cardiac abnormalities. The patients ranged in age from 1 day to 13 years at the time of the initial diagnosis. Four patients had complex cardiac pathologies such as tetralogy of Fallot, truncus arteriosus, transposition of the great arteries, and complete atrioventricular septal defect. Of the 20 patients, 11 had ventricular septal defects, and 12 had atrial septal defects. Pulmonary artery stenosis was detected in 12 (55 %) of the 20 patients. Aortic arch abnormalities such as interrupted aortic arch, right aortic arch, and coarctation of the aorta were detected in six patients. One patient had a left persistent superior vena cava. In 45 % of the cases, an associated genetic syndrome (DiGeorge-, Noonan-, Holt-Oram syndromes, vertebral, anal, cardiac, tracheal, esophageal, renal, limb anomalies [VACTERL] anomalies) was present. These syndromes were diagnosed based on their clinical features. Karyotype and fluorescent in situ hybridization (FISH) analyses for a 22q11 deletion were performed for 11 patients, with 10 patients found to have normal karyotype and FISH results. Only one patient had a 22q11 deletion. Six patients underwent successful operations

  18. Prenatal diagnosis of a fetus with unbalanced translocation (4;13)(p16;q32) with overlapping features of Patau and Wolf-Hirschhorn syndromes.

    Science.gov (United States)

    Tapper, Jill K; Zhang, Shuliu; Harirah, Hassan M; Panova, Neli I; Merryman, Linda S; Hawkins, Judy C; Lockhart, Lillian H; Gei, Alfredo B; Velagaleti, Gopalrao V N

    2002-01-01

    Wolf-Hirschhorn syndrome (WHS) and Patau syndrome are two of the most severe conditions resulting from chromosome abnormalities. WHS is caused by a deletion of 4p16, while Patau syndrome is caused by trisomy for some or all regions of chromosome 13. Though the etiologies of these syndromes differ, they share several features including pre- and postnatal growth retardation, microcephaly, cleft lip and palate, and cardiac anomalies. We present here a female fetus with deletion of 4p16 --> pter and duplication of 13q32 --> qter due to unbalanced segregation of t(4;13)(p16;q32) in the father. She displayed overlapping features of both of these syndromes on ultrasound. To the best of our knowledge, this is the first report of a fetus with both partial trisomy 13 and deletion of 4p16, the critical region for WHS. PMID:12393964

  19. 14q13.1-21.1 deletion encompassing the HPE8 locus in an adolescent with intellectual disability and bilateral microphthalmia, but without holoprosencephaly.

    Science.gov (United States)

    Piccione, Maria; Serra, Gregorio; Consiglio, Valeria; Di Fiore, Antonella; Cavani, Simona; Grasso, Marina; Malacarne, Michela; Pierluigi, Mauro; Viaggi, Chiara; Corsello, Giovanni

    2012-06-01

    Interstitial deletions involving 14q13.1q21.1 are rare. In the literature at least 10 cases involving this region have been described and all patients showed a phenotype within the holoprosencephaly (HPE) spectrum. Previous studies suggested the HPE8 region as a candidate locus for HPE at 14q13. We report an adolescent with a 14q13.1q21.1 deletion encompassing the HPE8 region associated with intellectual disability (ID), bilateral microphthalmia, and coloboma, without cerebral anomalies typical of HPE. Except for ocular defects (i.e., microphthalmia, coloboma) consistent with HPE-type anomalies, the minor facial dysmorphia was not suggestive for HPE and the absence of cerebral anomalies should rule out this diagnosis. The deletion of the potential HPE candidate genes NPAS3, EAPP, SNX6, and TULIP1, raises doubts about their pathologic role in determining HPE. It is likely that deletions of HPE genes are not sufficient to cause HPE, and that multiple genetic, chromosomal, and environmental factors interact to determine the variable clinical expression of HPE. This is the first case of a 14q deletion encompassing the HPE8 locus with the only features consistent with HPE-type anomalies affecting the ocular system (i.e., microphthalmia, coloboma), and without cerebral anomalies specific for HPE. The inclusion of potential HPE candidate genes in the deletion raises the question whether this patient is affected by a less severe form of HPE (HPE microform), or whether he has a new ID/MCA deletion syndrome.

  20. Fast detection of deletion breakpoints using quantitative PCR

    Directory of Open Access Journals (Sweden)

    Gulshara Abildinova

    2016-01-01

    Full Text Available Abstract The routine detection of large and medium copy number variants (CNVs is well established. Hemizygotic deletions or duplications in the large Duchenne muscular dystrophy DMD gene responsible for Duchenne and Becker muscular dystrophies are routinely identified using multiple ligation probe amplification and array-based comparative genomic hybridization. These methods only map deleted or duplicated exons, without providing the exact location of breakpoints. Commonly used methods for the detection of CNV breakpoints include long-range PCR and primer walking, their success being limited by the deletion size, GC content and presence of DNA repeats. Here, we present a strategy for detecting the breakpoints of medium and large CNVs regardless of their size. The hemizygous deletion of exons 45-50 in the DMD gene and the large autosomal heterozygous PARK2 deletion were used to demonstrate the workflow that relies on real-time quantitative PCR to narrow down the deletion region and Sanger sequencing for breakpoint confirmation. The strategy is fast, reliable and cost-efficient, making it amenable to widespread use in genetic laboratories.