WorldWideScience

Sample records for 22q11 deletion syndrome

  1. Proton magnetic resonance spectroscopy in 22q11 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Fabiana da Silva Alves

    Full Text Available OBJECTIVE: People with velo-cardio-facial syndrome or 22q11 deletion syndrome (22q11DS have behavioral, cognitive and psychiatric problems. Approximately 30% of affected individuals develop schizophrenia-like psychosis. Glutamate dysfunction is thought to play a crucial role in schizophrenia. However, it is unknown if and how the glutamate system is altered in 22q11DS. People with 22q11DS are vulnerable for haploinsufficiency of PRODH, a gene that codes for an enzyme converting proline into glutamate. Therefore, it can be hypothesized that glutamatergic abnormalities may be present in 22q11DS. METHOD: We employed proton magnetic resonance spectroscopy ((1H-MRS to quantify glutamate and other neurometabolites in the dorsolateral prefrontal cortex (DLPFC and hippocampus of 22 adults with 22q11DS (22q11DS SCZ+ and without (22q11DS SCZ- schizophrenia and 23 age-matched healthy controls. Also, plasma proline levels were determined in the 22q11DS group. RESULTS: We found significantly increased concentrations of glutamate and myo-inositol in the hippocampal region of 22q11DS SCZ+ compared to 22q11DS SCZ-. There were no significant differences in levels of plasma proline between 22q11DS SCZ+ and 22q11DS SCZ-. There was no relationship between plasma proline and cerebral glutamate in 22q11DS. CONCLUSION: This is the first in vivo(1H-MRS study in 22q11DS. Our results suggest vulnerability of the hippocampus in the psychopathology of 22q11DS SCZ+. Altered hippocampal glutamate and myo-inositol metabolism may partially explain the psychotic symptoms and cognitive impairments seen in this group of patients.

  2. Candidate Genes and the Behavioral Phenotype in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Prasad, Sarah E.; Howley, Sarah; Murphy, Kieran C.

    2008-01-01

    There is an overwhelming evidence that children and adults with 22q11.2 deletion syndrome (22q11.2DS) have a characteristic behavioral phenotype. In particular, there is a growing body of evidence that indicates an unequivocal association between 22q11.2DS and schizophrenia, especially in adulthood. Deletion of 22q11.2 is the third highest risk…

  3. Children with Chromosome 22q11.2 Deletion Syndrome Exhibit Impaired Spatial Working Memory

    Science.gov (United States)

    Wong, Ling M.; Riggins, Tracy; Harvey, Danielle; Cabaral, Margarita; Simon, Tony J.

    2014-01-01

    Individuals with chromosome 22q11.2 deletion syndrome (22q11.2DS) have been shown to have impairments in processing spatiotemporal information. The authors examined whether children with 22q11.2DS exhibit impairments in spatial working memory performance due to these weaknesses, even when controlling for maintenance of attention. Children with…

  4. Cardiac Defects and Results of Cardiac Surgery in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Carotti, Adriano; Digilio, Maria Cristina; Piacentini, Gerardo; Saffirio, Claudia; Di Donato, Roberto M.; Marino, Bruno

    2008-01-01

    Specific types and subtypes of cardiac defects have been described in children with 22q11.2 deletion syndrome as well as in other genetic syndromes. The conotruncal heart defects occurring in patients with 22q11.2 deletion syndrome include tetralogy of Fallot, pulmonary atresia with ventricular septal defect, truncus arteriosus, interrupted aortic…

  5. Behavior and intelligence in children with the 22q11.2-deletion syndrome

    NARCIS (Netherlands)

    Klaassen, P.W.J.

    2015-01-01

    The 22q11 deletion syndrome (22q11DS) is a genetic disorder with an estimated prevalence of 1 in 4000 live births. We found that children with the syndrome have a distinctive behavioral phenotype, characterized by social problems and withdrawn behavior. They also have lower mean intelligence. Althou

  6. Thrombocytopenia and Postpartum Hemorrhage in a Woman with Chromosome 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Deng, Kathy; Nanda, Deepak

    2016-01-01

    Chromosome 22q11.2 deletion syndrome, also known as DiGeorge or velocardiofacial syndrome, is associated with a wide spectrum of phenotypic features. It is known to be associated with severe macrothrombocytopenia. Postpartum hemorrhage is a leading cause of maternal morbidity and mortality globally. Chromosome 22q11.2 deletion syndrome is rare cause of thrombocytopenia that can be a significant risk factor for life-threatening postpartum hemorrhage. We report a case of postpartum hemorrhage in a woman with 22q11.2 deletion syndrome causing severe macrothrombocytopenia. PMID:27366335

  7. Subtypes in 22q11.2 Deletion Syndrome Associated with Behaviour and Neurofacial Morphology

    Science.gov (United States)

    Sinderberry, Brooke; Brown, Scott; Hammond, Peter; Stevens, Angela F.; Schall, Ulrich; Murphy, Declan G. M.; Murphy, Kieran C.; Campbell, Linda E.

    2013-01-01

    22q11.2 deletion syndrome (22q11DS) has a complex phenotype with more than 180 characteristics, including cardiac anomalies, cleft palate, intellectual disabilities, a typical facial morphology, and mental health problems. However, the variable phenotype makes it difficult to predict clinical outcome, such as the high prevalence of psychosis among…

  8. White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia

    NARCIS (Netherlands)

    F. da Silva Alves; N. Schmitz; O. Bloemen; J. van der Meer; J. Meijer; E. Boot; A. Nederveen; L. de Haan; D. Linszen; T. van Amelsvoort

    2011-01-01

    Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measur

  9. White matter abnormalities in adults with 22q11 deletion syndrome with and without schizophrenia.

    Science.gov (United States)

    da Silva Alves, Fabiana; Schmitz, Nicole; Bloemen, Oswald; van der Meer, Johan; Meijer, Julia; Boot, Erik; Nederveen, Aart; de Haan, Lieuwe; Linszen, Don; van Amelsvoort, Therese

    2011-10-01

    Dysfunction of cerebral white matter (WM) is a potential factor underlying the neurobiology of schizophrenia. People with 22q11 deletion syndrome have altered brain morphology and increased risk for schizophrenia, therefore decreased WM integrity may be related to schizophrenia in 22q11DS. We measured fractional anisotropy (FA) and WM volume in 27 adults with 22q11DS with schizophrenia (n=12, 22q11DS SCZ+) and without schizophrenia (n=15, 22q11DS SCZ-), 12 individuals with idiopathic schizophrenia and 31 age-matched healthy controls. We found widespread decreased WM volume in posterior and temporal brain areas and decreased FA in areas of the frontal cortex in the whole 22q11DS group compared to healthy controls. In 22q11DS SCZ+ compromised WM integrity included inferior frontal areas of parietal and occipital lobe. Idiopathic schizophrenia patients showed decreased FA in inferior frontal and insular regions compared to healthy controls. We found no WM alterations in 22q11DS SCZ+ vs. 22q11DS SCZ-. However, there was a negative correlation between FA and PANSS scores (Positive and Negative Symptom Scale) in the whole 22q11DS group in the inferior frontal, cingulate, insular and temporal areas. This is the first study to investigate WM integrity in adults with 22q11DS. Our results suggest that pervasive WM dysfunction is intrinsic to 22q11DS and that psychotic development in adults with 22q11DS involves similar brain areas as seen in schizophrenia in the general population.

  10. Behavior in preschool children with the 22q11.2 deletion syndrome.

    Science.gov (United States)

    Klaassen, Petra; Duijff, Sasja; Swanenburg de Veye, Henriette; Vorstman, Jacob; Beemer, Frits; Sinnema, Gerben

    2013-01-01

    Children with the 22q11.2 deletion syndrome (22q11DS) are at an increased risk of psychiatric problems from pre-adolescence; little is known, however, about behavioral problems at a preschool age and the relationship between speech and behavior in this group. Parents of 90 children (aged 1.42-5.99 years) with 22q11DS filled out the Child Behavior Checklist, documenting behaviors including speech problems. Their profiles were compared with those of a comparison group consisting of 33 children with nonsyndromic orofacial clefts without 22q11DS, since both children with 22q11DS and children with clefts are expected to have speech problems. In the 22q11DS group, data on intelligence was acquired by means of formal tests. Parents of children with 22q11DS reported significantly higher mean scores on withdrawn behavior, affective problems and pervasive developmental problems compared to children with nonsyndromic clefts. Approximately 30% of children with 22q11DS had a score above the 97th percentile on at least one of the behavior subscales, indicating psychopathology. In children with 22q11DS, the reported behavioral problems were not associated with speech problems. Behavioral problems were found in 30% of young children with 22q11DS and were unlikely to be caused by speech problems. Within the 22q11DS group, behavioral problems were not related to the degree of cognitive impairment. This shows that many children with 22q11DS, known to be at an increased risk of psychiatric problems from pre-adolescence, already show behavioral problems before the age of 6 years.

  11. Movement disorders and other motor abnormalities in adults with 22q11.2 deletion syndrome.

    Science.gov (United States)

    Boot, Erik; Butcher, Nancy J; van Amelsvoort, Thérèse A M J; Lang, Anthony E; Marras, Connie; Pondal, Margarita; Andrade, Danielle M; Fung, Wai Lun Alan; Bassett, Anne S

    2015-03-01

    Movement abnormalities are frequently reported in children with 22q11.2 deletion syndrome (22q11.2DS), but knowledge in this area is scarce in the increasing adult population. We report on five individuals illustrative of movement disorders and other motor abnormalities in adults with 22q11.2DS. In addition to an increased susceptibility to neuropsychiatric disorders, seizures, and early-onset Parkinson disease, the underlying brain dysfunction associated with 22q11.2DS may give rise to an increased vulnerability to multiple movement abnormalities, including those influenced by medications. Movement abnormalities may also be secondary to treatable endocrine diseases and congenital musculoskeletal abnormalities. We propose that movement abnormalities may be common in adults with 22q11.2DS and discuss the implications and challenges important to clinical practice.

  12. Prevalence and Nature of Hearing Loss in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Van Eynde, Charlotte; Swillen, Ann; Lambeens, Elien; Verhaert, Nicolas; Desloovere, Christian; Luts, Heleen; Vander Poorten, Vincent; Devriendt, Koenraad; Hens, Greet

    2016-01-01

    Purpose: The purpose of this study was to clarify the prevalence, type, severity, and age-dependency of hearing loss in 22q11.2 deletion syndrome. Method: Extensive audiological measurements were conducted in 40 persons with proven 22q11.2 deletion (aged 6-36 years). Besides air and bone conduction thresholds in the frequency range between 0.125…

  13. Unambiguous molecular detections with multiple genetic approach for the complicated chromosome 22q11 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Lin Lung-Huang

    2009-02-01

    Full Text Available Abstract Background Chromosome 22q11 deletion syndrome (22q11DS causes a developmental disorder during the embryonic stage, usually because of hemizygous deletions. The clinical pictures of patients with 22q11DS vary because of polymorphisms: on average, approximately 93% of affected individuals have a de novo deletion of 22q11, and the rest have inherited the same deletion from a parent. Methods using multiple genetic markers are thus important for the accurate detection of these microdeletions. Methods We studied 12 babies suspected to carry 22q11DS and 18 age-matched healthy controls from unrelated Taiwanese families. We determined genomic variance using microarray-based comparative genomic hybridization (array-CGH, quantitative real-time polymerase chain reaction (qPCR and multiplex ligation-dependent probe amplification (MLPA. Results Changes in genomic copy number were significantly associated with clinical manifestations for the classical criteria of 22q11DS using MPLA and qPCR (p Conclusion Both MLPA and qPCR could produce a clearly defined range of deleted genomic DNA, whereas there must be a deleted genome that is not distinguishable using MLPA. These data demonstrate that such multiple genetic approaches are necessary for the unambiguous molecular detection of these types of complicated genomic syndromes.

  14. Disrupted working memory circuitry and psychotic symptoms in 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    C.A. Montojo

    2014-01-01

    Full Text Available 22q11.2 deletion syndrome (22q11DS is a recurrent genetic mutation that is highly penetrant for psychosis. Behavioral research suggests that 22q11DS patients exhibit a characteristic neurocognitive phenotype that includes differential impairment in spatial working memory (WM. Notably, spatial WM has also been proposed as an endophenotype for idiopathic psychotic disorder, yet little is known about the neurobiological substrates of WM in 22q11DS. In order to investigate the neural systems engaged during spatial WM in 22q11DS patients, we collected functional magnetic resonance imaging (fMRI data while 41 participants (16 22q11DS patients, 25 demographically matched controls performed a spatial capacity WM task that included manipulations of delay length and load level. Relative to controls, 22q11DS patients showed reduced neural activation during task performance in the intraparietal sulcus (IPS and superior frontal sulcus (SFS. In addition, the typical increases in neural activity within spatial WM-relevant regions with greater memory load were not observed in 22q11DS. We further investigated whether neural dysfunction during WM was associated with behavioral WM performance, assessed via the University of Maryland letter–number sequencing (LNS task, and positive psychotic symptoms, assessed via the Structured Interview for Prodromal Syndromes (SIPS, in 22q11DS patients. WM load activity within IPS and SFS was positively correlated with LNS task performance; moreover, WM load activity within IPS was inversely correlated with the severity of unusual thought content and delusional ideas, indicating that decreased recruitment of working memory-associated neural circuitry is associated with more severe positive symptoms. These results suggest that 22q11DS patients show reduced neural recruitment of brain regions critical for spatial WM function, which may be related to characteristic behavioral manifestations of the disorder.

  15. The Neuropsychology of 22q11 Deletion Syndrome. A Neuropsychiatric Study of 100 Individuals

    Science.gov (United States)

    Niklasson, Lena; Gillberg, Christopher

    2010-01-01

    The primary objective of this study was to study the impact of ASD/ADHD on general intellectual ability and profile, executive functions and visuo-motor skills in children and adults with 22q11 deletion syndrome (22q11DS). A secondary aim was to study if gender, age, heart disease, ASD, ADHD or ASD in combination with ADHD had an impact on general…

  16. Practical guidelines for managing adults with 22q11.2 deletion syndrome

    Science.gov (United States)

    Fung, Wai Lun Alan; Butcher, Nancy J.; Costain, Gregory; Andrade, Danielle M.; Boot, Erik; Chow, Eva W.C.; Chung, Brian; Cytrynbaum, Cheryl; Faghfoury, Hanna; Fishman, Leona; García-Miñaúr, Sixto; George, Susan; Lang, Anthony E.; Repetto, Gabriela; Shugar, Andrea; Silversides, Candice; Swillen, Ann; van Amelsvoort, Therese; McDonald-McGinn, Donna M.; Bassett, Anne S.

    2015-01-01

    22q11.2 Deletion syndrome (22q11.2DS) is the most common microdeletion syndrome in humans, estimated to affect up to 1 in 2,000 live births. Major features of this multisystem condition include congenital anomalies, developmental delay, and an array of early- and later-onset medical and psychiatric disorders. Advances in pediatric care ensure a growing population of adults with 22q11.2DS. Informed by an international panel of multidisciplinary experts and a comprehensive review of the existing literature concerning adults, we present the first set of guidelines focused on managing the neuropsychiatric, endocrine, cardiovascular, reproductive, psychosocial, genetic counseling, and other issues that are the focus of attention in adults with 22q11.2DS. We propose practical strategies for the recognition, evaluation, surveillance, and management of the associated morbidities. PMID:25569435

  17. Evans syndrome and antibody deficiency: an atypical presentation of chromosome 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Gloria Colarusso

    2010-06-01

    Full Text Available We report a case of an 8-year-old male patient with Evans syndrome and severe hypogammaglobulinemia, subsequently in whom the 22q11.2 deletion syndrome (22q11.2 DS was diagnosed. No other clinical sign of 22q11.2 DS was present with the exception of slight facial dysmorphism. The case is of particular interest because it suggests the need to research chromosome 22q11.2 deletion in patients who present with autoimmune cytopenia and peculiar facial abnormalities, which could be an atypical presentation of an incomplete form of 22q11.2 DS.

  18. Evans syndrome and antibody deficiency: an atypical presentation of chromosome 22q11.2 deletion syndrome.

    Science.gov (United States)

    Colarusso, Gloria; Gambineri, Eleonora; Lapi, Elisabetta; Casini, Tommaso; Tucci, Fabio; Lippi, Francesca; Azzari, Chiara

    2010-09-06

    We report a case of an 8-year-old male patient with Evans syndrome and severe hypogammaglobulinemia, subsequently in whom the 22q11.2 deletion syndrome (22q11.2 DS) was diagnosed. No other clinical sign of 22q11.2 DS was present with the exception of slight facial dysmorphism. The case is of particular interest because it suggests the need to research chromosome 22q11.2 deletion in patients who present with autoimmune cytopenia and peculiar facial abnormalities, which could be an atypical presentation of an incomplete form of 22q11.2 DS.

  19. Malformations of the middle and inner ear on CT imaging in 22q11 deletion syndrome.

    Science.gov (United States)

    Loos, Elke; Verhaert, Nicolas; Willaert, Annelore; Devriendt, Koenraad; Swillen, Ann; Hermans, Robert; Op de Beeck, Katya; Hens, Greet

    2016-11-01

    The 22q11 deletion syndrome (22q11DS), the most frequent microdeletion syndrome in humans, presents with a large variety of abnormalities. A common abnormality is hearing impairment. The exact pathophysiological explanation of the observed hearing loss remains largely unknown. The aim of this study was to analyze the middle and inner ear malformations as seen on computer tomographic imaging in patients with 22q11DS. We retrospectively reviewed the charts of 11 22q11DS patients who had undergone a CT of the temporal bone in the past. Of the 22 examined ears, two showed an abnormal malleus and incus, 10 presented with a dense stapes superstructure, and three ears had an abnormal orientation of the stapes. With regard to the inner ear, 12 ears showed an incomplete partition type II with a normal vestibular aqueduct. In four ears the vestibule and lateral semicircular canal were composed of a single cavity, in 14 ears the vestibule was too wide, and three ears had a broadened lateral semicircular canal. These findings suggest that malformations of the stapes, cochlea, vestibule, and lateral semicircular canal are frequent in 22q11DS. To our knowledge, the current study involves the largest case series describing middle and inner ear malformations in 22q11DS. © 2016 Wiley Periodicals, Inc.

  20. The Development of Cognitive Control in Children with Chromosome 22q11.2 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Heather M Shapiro

    2014-06-01

    Full Text Available Chromosome 22q11.2 Deletion Syndrome (22q11.2DS is caused by the most common human microdeletion, and it is associated with cognitive impairments across many domains. While impairments in cognitive control have been described in children with 22q11.2DS, the nature and development of these impairments are not clear. Children with 22q11.2DS and typically developing children (TD were tested on four well-validated tasks aimed at measuring specific foundational components of cognitive control: response inhibition, cognitive flexibility, and working memory. Molecular assays were also conducted in order to examine genotype of catechol-O-methyltransferase (COMT, a gene located within the deleted region in 22q11.2DS and hypothesized to play a role in cognitive control. Mixed model regression analyses were used to examine group differences, as well as age-related effects on cognitive control component processes in a cross-sectional analysis. Regression models with COMT genotype were also conducted in order to examine potential effects of the different variants of the gene. Response inhibition, cognitive flexibility, and working memory were impaired in children with 22q11.2DS relative to TD children, even after accounting for global intellectual functioning (as measured by full-scale IQ. When compared with TD individuals, children with 22q11.2DS demonstrated atypical age-related patterns of response inhibition and cognitive flexibility. Both groups demonstrated typical age-related associations with working memory. The results of this cross-sectional analysis suggest a specific aberration in the development of systems mediating response inhibition in a sub-set of children with 22q11.2DS. It will be important to follow up with longitudinal analyses to directly examine these developmental trajectories, and correlate neurocognitive variables with clinical and adaptive outcome measures.

  1. Mapping Cortical Morphology in Youth with Velocardiofacial (22q11.2 Deletion) Syndrome

    Science.gov (United States)

    Kates, Wendy R.; Bansal, Ravi; Fremont, Wanda; Antshel, Kevin M.; Hao, Xuejun; Higgins, Anne Marie; Liu, Jun; Shprintzen, Robert J.; Peterson, Bradley S.

    2011-01-01

    Objective: Velocardiofacial syndrome (VCFS; 22q11.2 deletion syndrome) represents one of the highest known risk factors for schizophrenia. Insofar as up to 30% of individuals with this genetic disorder develop schizophrenia, VCFS constitutes a unique, etiologically homogeneous model for understanding the pathogenesis of schizophrenia. Method:…

  2. Serotonergic, noradrenergic and dopaminergic markers are related to cognitive function in adults with 22q11 deletion syndrome

    NARCIS (Netherlands)

    Evers, L.J.M.; Curfs, L.M.G.; Bakker, J.A.; Boot, E.; da Silva Alves, F.; Abeling, N.; Bierau, J.; Drukker, M.; van Amelsvoort, T.A.M.J.

    2014-01-01

    Patients with 22q11 deletion syndrome (22q11DS) have a high prevalence of psychiatric disorders and intellectual disability. At present the neurobiology underlying psychopathology in 22q11DS is still not understood. In the present study, we analyzed urinary serotonergic, dopaminergic and noradrenerg

  3. Cognitive decline preceding the onset of psychosis in patients with 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Vorstman, Jacob A S; Breetvelt, Elemi J.; Duijff, Sasja N.; Eliez, Stephan; Schneider, Maude; Jalbrzikowski, Maria; Armando, Marco; Vicari, Stefano; Shashi, Vandana; Hooper, Stephen R.; Chow, Eva W C; Fung, Wai Lun Alan; Butcher, Nancy J.; Young, Donald A.; McDonald-McGinn, Donna M.; Vogels, Annick; Van Amelsvoort, Therese; Gothelf, Doron; Weinberger, Ronnie; Weizman, Abraham; Klaassen, Petra W J; Koops, Sanne; Kates, Wendy R.; Antshel, Kevin M.; Simon, Tony J.; Ousley, Opal Y.; Swillen, Ann; Gur, Raquel E.; Bearden, Carrie E.; Kahn, René S.; Bassett, Anne S.; Emanuel, Beverly S.; Zackai, Elaine H.; Kushan, Leila; Fremont, Wanda; Schoch, Kelly; Stoddard, Joel; Cubells, Joseph; Fu, Fiona; Campbell, Linda E.; Fritsch, Rosemarie; Vergaelen, Elfi; Neeleman, Marjolein; Boot, Erik; Debbané, Martin; Philip, Nicole; Green, Tamar; Van DenBree, Marianne B M; Murphy, Declan; Canyelles, Jaume Morey; Arango, Celso; Murphy, Kieran C.; Pontillo, Maria

    2015-01-01

    Importance: Patients with 22q11.2 deletion syndrome (22q11DS) have an elevated (25%) risk of developing schizophrenia. Recent reports have suggested that a subgroup of children with 22q11DS display a substantial decline in cognitive abilities starting at a young age.Objective: To determine whether e

  4. Domain Specific Attentional Impairments in Children with Chromosome 22Q11.2 Deletion Syndrome

    Science.gov (United States)

    Bish, Joel P.; Chiodo, Renee; Mattei, Victoria; Simon, Tony J.

    2007-01-01

    One of the defining cognitive characteristics of the chromosome 22q deletion syndrome (DS22q11.2) is visuospatial processing impairments. The purpose of this study was to investigate and extend the specific attentional profile of children with this disorder using both an object-based attention task and an inhibition of return task. A group of…

  5. Expanding the phenotype of 22q11 deletion syndrome: the MURCS association.

    Science.gov (United States)

    Uliana, Vera; Giordano, Nicola; Caselli, Rossella; Papa, Filomena Tiziana; Ariani, Francesca; Marcocci, Claudio; Gianetti, Elena; Martini, Giuseppe; Papakostas, Panagiotis; Rollo, Fabio; Meloni, Ilaria; Mari, Francesca; Priolo, Manuela; Renieri, Alessandra; Nuti, Ranuccio

    2008-01-01

    The MURCS association [Müllerian Duct aplasia or hypoplasia (M), unilateral renal agenesis (UR) and cervicothoracic somite dysplasia (CS)] manifests itself as Müllerian Duct aplasia or hypoplasia, unilateral renal agenesis and cervicothoracic somite dysplasia. We report on a 22-year-old woman with bicornuate uterus, right renal agenesis, C2-C3 vertebral fusion (MURCS association) and 22q11.2 deletion. Angio-MRI revealed the aberrant origin of arch arteries. Hashimoto thyroiditis, micropolycystic ovaries with a dermoid cyst in the right ovary and mild osteoporosis were also diagnosed. Accurate revision of radiographs enabled us also to identify thoracolumbar and lumbosacral vertebral-differentiation defects. Audiometry and echocardiogram were normal. Bone densitometry showed osteoporosis. As per our evaluation, the patient had short stature, obesity (BMI 30.7) and facial features suggestive of the 22q11 deletion syndrome. Multiplex ligation-dependent probe amplification analysis showed a de-novo 22q11.2 deletion confirmed by array-comparative genomic hybridization analysis. We discuss whether this is a casual association or whether it is an additional syndrome owing to the well known phenotype extensive variability of the 22q11 deletion syndrome.

  6. Metyrosine in psychosis associated with 22q11.2 deletion syndrome: case report.

    Science.gov (United States)

    Carandang, Carlo G; Scholten, Monique C

    2007-02-01

    This report describes the use of metyrosine (Demser) in an adolescent male with psychosis associated with the 22q11.2 deletion syndrome (velocardiofacial syndrome; VCFS), diagnosed by fluorescence in situ hybridization (FISH). He presented with multiple features of 22q11.2 deletion syndrome, including ventricular septal defect, palatal abnormalities, speech and motor delays, attention deficits, mood lability, and psychosis. After a failed trial of an atypical antipsychotic to address the psychosis, metyrosine was initiated, with significant reduction of psychotic symptoms and mood lability. Metyrosine treatment allowed this youth to live at home and to attend school, after months of recurrent psychiatric hospitalizations. The successful treatment of metyrosine for psychosis associated with VCFS represents a first in psychiatry, where a known biochemical abnormality in a psychiatric disorder was corrected by a treatment that targets the biochemical pathway, leading to reduction of psychiatric symptoms and improvement of functioning.

  7. Delayed diagnosis of 22q11.2 deletion syndrome in an adult Chinese lady

    Institute of Scientific and Technical Information of China (English)

    SHEA Yat-fung; LEE Chi-ho; Harinder Gill; CHOW Wing-sun; LAM Yui-ming; LUK Ho-ming; LAM Stephen Tak-sum; CHU Leung-wing

    2012-01-01

    We report a 32 year-old Chinese lady with history of tetralogy of Fallot,presented to us with chest pain due to hypocalcemia secondary to hypoparathyroidism.With her dysmorphic facial features and intellectual disability 22q11.2 deletion was suspected and confirmed by genetic study.Clinicians should consider the diagnosis of DiGeorge syndrome in adult patient with past medical history of congenital heart disease,facial dysmorphism,intellectual disability and primary hypoparathyroidism.

  8. Prodromal and autistic symptoms in schizotypal personality disorder and 22q11.2 deletion syndrome.

    Science.gov (United States)

    Esterberg, Michelle L; Ousley, Opal Y; Cubells, Joseph F; Walker, Elaine F

    2013-02-01

    Despite clear diagnostic distinctions, schizophrenia and autism share symptoms on several dimensions. Recent research has suggested the two disorders overlap in etiology, particularly with respect to inherited and noninherited genetic factors. Studying the relationship between psychotic-like and autistic-like symptoms in risk groups such as 22q11 deletion syndrome (22q11DS) and schizotypal personality disorder (SPD) has the potential to shed light on such etiologic factors; thus, the current study examined prodromal symptoms and autistic features in samples of 22q11DS and SPD subjects using standardized diagnostic measures, including the Structured Interview for Prodromal Symptoms (SIPS) and the Autism Diagnostic Inventory-Revised (ADI-R). Results showed that SPD subjects manifested significantly more severe childhood and current social as well as stereotypic autistic features, as well as more severe positive prodromal symptoms. The two groups did not differ on negative, disorganized, or general prodromal symptoms, but were distinguishable based on correlations between prodromal and autistic features; the relationships between childhood autistic features and current prodromal symptoms were stronger for the SPD group. The results suggest that childhood autistic features are less continuous with subsequent prodromal signs in 22q11DS patients relative to those with SPD, and the findings highlight the importance of studying the overlap in diagnostic phenomenology in groups at risk for developing psychosis and/or autism.

  9. A Longitudinal Examination of the Psychoeducational, Neurocognitive, and Psychiatric Functioning in Children with 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Hooper, Stephen R.; Curtiss, Kathleen; Schoch, Kelly; Keshavan, Matcheri S.; Allen, Andrew; Shashi, Vandana

    2013-01-01

    The present study sought to examine the longitudinal psychoeducational, neurocognitive, and psychiatric outcomes of children and adolescents with chromosome 22q11.2 deletion syndrome (22q11DS), a population with a high incidence of major psychiatric illnesses appearing in late adolescence/early adulthood. Little is known of the developmental…

  10. An interictal schizophrenia-like psychosis in an adult patient with 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Yasutaka Tastuzawa

    2015-01-01

    Full Text Available In addition to causing polymalformative syndrome, 22q11.2 deletion can lead to various neuropsychiatric disorders including mental retardation, psychosis, and epilepsy. However, few reports regarding epilepsy-related psychosis in 22q11.2 deletion syndrome (22q11.2DS exist. We describe the clinical characteristics and course of 22q11.2DS in a Japanese patient with comorbid mild mental retardation, childhood-onset localization-related epilepsy, and adult-onset, interictal schizophrenia-like psychosis. From a diagnostic viewpoint, early detection of impaired intellectual functioning and hyperprolinemia in patients with epilepsy with 22q11.2DS may be helpful in predicting the developmental timing of interictal psychosis. From a therapeutic viewpoint, special attention needs to be paid to phenytoin-induced hypocalcemia in this syndrome.

  11. Speech and language abilities of children with the familial form of 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Rakonjac Marijana

    2016-01-01

    Full Text Available The 22q11.2 Deletion Syndrome (22q11.2DS, which encompasses Shprintzen syndrome, DiGeorge and velocardiofacial syndrome, is the most common microdeletion syndrome in humans with an estimated incidence of approximately 1/4000 per live births. After Down syndrome, it is the second most common genetic syndrome associated with congenital heart malformations. The mode of inheritance of the 22q11.2DS is autosomal dominant. In approximately 72 - 94% of the cases the deletion has occurred de novo, while in 6 to 28% of patients deletion was inherited from a parent. As a part of a multidisciplinary study we examined the speech and language abilities of members of two families with inherited form of 22q11.2DS. The presence of 22q11.2 microdeletion was revealed by fluorescence in situ hybridization (FISH and/or multiplex ligation-dependent probe amplification (MLPA. In one family we detected 1.5 Mb 22q11.2 microdeletion, while in the other family we found 3Mb microdeletion. Patients from both families showed delays in cognitive, socio-emotional, speech and language development. Furthermore, we found considerable variability in the phenotypic characteristics of 22q11.2DS and the degree of speech-language pathology not only between different families with 22q11.2 deletion, but also among members of the same family. In addition, we detected no correlation between the phenotype and the size of 22q11.2 microdeletion.

  12. Altered Brain Structure-Function Relationships Underlie Executive Dysfunction in 22q11.2 Deletion Syndrome.

    Science.gov (United States)

    Jonas, Rachel K; Jalbrzikowski, Maria; Montojo, Caroline A; Patel, Arati; Kushan, Leila; Chow, Carolyn C; Vesagas, Therese; Bearden, Carrie E

    2015-12-01

    22q11.2 deletion syndrome (22q11DS) is a neurogenetic disorder associated with elevated rates of developmental neuropsychiatric disorders and impaired executive function (EF). Disrupted brain structure-function relationships may underlie EF deficits in 22q11DS. We administered the Behavior Rating Inventory of Executive Function (BRIEF) to assess real-world EF in patients with 22q11DS and matched controls (n = 86; age 6-17 years), along with cognitive measures that tap behavioral regulation and metacognition aspects of EF. Using FreeSurfer's whole-brain vertex cortical thickness pipeline, we investigated brain structure-EF relationships in patients with 22q11DS and controls. Behaviorally, patients with 22q11DS were impaired on multiple EF measures. Right orbitofrontal cortical thickness showed a differential relationship between real-world EF in patients with 22q11DS and controls. We also observed a group difference in the relationship between behavioral regulation and metacognition measures with thickness of ventral and dorsolateral prefrontal regions, respectively. Our findings suggest that executive dysfunction characteristic of 22q11DS is underscored by altered prefrontal cortical structure.

  13. Heart defects and other features of the 22q11 distal deletion syndrome

    DEFF Research Database (Denmark)

    Fagerberg, Christina Ringmann; Graakjaer, Jesper; Heinl, Ulrike D

    2013-01-01

    with 22q11 distal deletions, and discuss the possible roles of haploinsufficiency of the MAPK1 gene. We find the most frequent features in 22q11 distal deletion to be developmental delay or learning disability, short stature, microcephalus, premature birth with low birth weight, and congenital heart...... fissures, thin upper lip, and ear tags. Very distal deletions including region LCR22-6 to LCR22-7 encompassing the SMARCB1-gene are associated with an increased risk of malignant rhabdoid tumors....

  14. Intelligence and Visual Motor Integration in 5-Year-Old Children with 22q11-Deletion Syndrome

    Science.gov (United States)

    Duijff, Sasja; Klaassen, Petra; Beemer, Frits; Swanenburg de Veye, Henriette; Vorstman, Jacob; Sinnema, Gerben

    2012-01-01

    The purpose of this study was to explore the relationship between intelligence and visual motor integration skills in 5-year-old children with 22q11-deletion syndrome (22q11DS) (N = 65, 43 females, 22 males; mean age 5.6 years (SD 0.2), range 5.23-5.99 years). Sufficient VMI skills seem a prerequisite for IQ testing. Since problems related to…

  15. An affected core drives network integration deficits of the structural connectome in 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    František Váša

    2016-01-01

    Full Text Available Chromosome 22q11.2 deletion syndrome (22q11DS is a genetic disease known to lead to cerebral structural alterations, which we study using the framework of the macroscopic white-matter connectome. We create weighted connectomes of 44 patients with 22q11DS and 44 healthy controls using diffusion tensor magnetic resonance imaging, and perform a weighted graph theoretical analysis. After confirming global network integration deficits in 22q11DS (previously identified using binary connectomes, we identify the spatial distribution of regions responsible for global deficits. Next, we further characterize the dysconnectivity of the deficient regions in terms of sub-network properties, and investigate their relevance with respect to clinical profiles. We define the subset of regions with decreased nodal integration (evaluated using the closeness centrality measure as the affected core (A-core of the 22q11DS structural connectome. A-core regions are broadly bilaterally symmetric and consist of numerous network hubs — chiefly parietal and frontal cortical, as well as subcortical regions. Using a simulated lesion approach, we demonstrate that these core regions and their connections are particularly important to efficient network communication. Moreover, these regions are generally densely connected, but less so in 22q11DS. These specific disturbances are associated to a rerouting of shortest network paths that circumvent the A-core in 22q11DS, “de-centralizing” the network. Finally, the efficiency and mean connectivity strength of an orbito-frontal/cingulate circuit, included in the affected regions, correlate negatively with the extent of negative symptoms in 22q11DS patients, revealing the clinical relevance of present findings. The identified A-core overlaps numerous regions previously identified as affected in 22q11DS as well as in schizophrenia, which approximately 30–40% of 22q11DS patients develop.

  16. Signature MicroRNA expression patterns identified in humans with 22q11.2 deletion/DiGeorge syndrome.

    Science.gov (United States)

    de la Morena, M Teresa; Eitson, Jennifer L; Dozmorov, Igor M; Belkaya, Serkan; Hoover, Ashley R; Anguiano, Esperanza; Pascual, M Virginia; van Oers, Nicolai S C

    2013-04-01

    Patients with 22q11.2 deletion syndrome have heterogeneous clinical presentations including immunodeficiency, cardiac anomalies, and hypocalcemia. The syndrome arises from hemizygous deletions of up to 3Mb on chromosome 22q11.2, a region that contains 60 genes and 4 microRNAs. MicroRNAs are important post-transcriptional regulators of gene expression, with mutations in several microRNAs causal to specific human diseases. We characterized the microRNA expression patterns in the peripheral blood of patients with 22q11.2 deletion syndrome (n=31) compared to normal controls (n=22). Eighteen microRNAs had a statistically significant differential expression (p<0.05), with miR-185 expressed at 0.4× normal levels. The 22q11.2 deletion syndrome cohort exhibited microRNA expression hyper-variability and group dysregulation. Selected microRNAs distinguished patients with cardiac anomalies, hypocalcemia, and/or low circulating T cell counts. In summary, microRNA profiling of chromosome 22q11.2 deletion syndrome/DiGeorge patients revealed a signature microRNA expression pattern distinct from normal controls with clinical relevance.

  17. Overlapping Numerical Cognition Impairments in Children with Chromosome 22q11.2 Deletion or Turner Syndromes

    Science.gov (United States)

    Simon, T. J.; Takarae, Y.; DeBoer, T.; McDonald-McGinn, D. M.; Zackai, E. H.; Ross, J. L.

    2008-01-01

    Children with one of two genetic disorders (chromosome 22q11.2 deletion syndrome and Turner syndrome) as well typically developing controls, participated in three cognitive processing experiments. Two experiments were designed to test cognitive processes involved in basic aspects numerical cognition. The third was a test of simple manual motor…

  18. Relationship between Reaction Time, Fine Motor Control, and Visual-Spatial Perception on Vigilance and Visual-Motor Tasks in 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Howley, Sarah A.; Prasad, Sarah E.; Pender, Niall P.; Murphy, Kieran C.

    2012-01-01

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and…

  19. Performance on the Modified Card Sorting Test and Its Relation to Psychopathology in Adolescents and Young Adults with 22Q11.2 Deletion Syndrome

    Science.gov (United States)

    Rockers, K.; Ousley, O.; Sutton, T.; Schoenberg, E.; Coleman, K.; Walker, E.; Cubells, J. F.

    2009-01-01

    Background: Approximately one-third of individuals with 22q11.2 deletion syndrome (22q11DS), a common genetic disorder highly associated with intellectual disabilities, may develop schizophrenia, likely preceded by a mild to moderate cognitive decline. Methods: We examined adolescents and young adults with 22q11DS for the presence of executive…

  20. A case of juvenile idiopathic polyarticular arthritis complicated by IgA deficiency in 22q11 deletion syndrome.

    Science.gov (United States)

    Sato, Satoshi; Kawashima, Hisashi; Suzuki, Kazunori; Nagao, Ryuhei; Tsuyuki, Kazumitsu; Hoshika, Akinori

    2011-08-01

    Chronic arthritis may occur in association with antibody deficiency and chromosomal aberrations. This report presents the case of a 6-year-old girl with chromosome 22q11 deletion syndrome and chronic arthritis. The onset of arthritis occurred at 4 years of age. The chronic arthritis course has been the polyarticular type. Neither antinuclear antibody nor rheumatoid factor was detected. Serum IgA was extremely low. She was diagnosed with juvenile idiopathic polyarticular arthritis (JIA) complicated by IgA deficiency in the 22q11 deletion syndrome. There is an increased prevalence of chronic arthritis in association with 22q11 deletion syndrome with IgA deficiency, but the reasons for this association are unknown. This study evaluated the possible correlation between cytokines and the susceptibility to chronic arthritis in the 22q11 deletion syndrome with IgA deficiency. The expression of pro-inflammatory cytokines such as IL-8, IL-6, MIP-1β, and MCP-1 suggests that T and B cells, macrophages and neutrophils modulate joint inflammation by an immune response. And the presence of IL-10 and IL-5 might suggest that the synovitis is associated with JIA and IgA deficiency.

  1. Velo-Cardio-Facial syndrome and DiGeorge sequence with meningomyelocele and deletions of the 22q11 region

    Energy Technology Data Exchange (ETDEWEB)

    Nickel, R.E.; Pillers, D.M.; Merkens, M.; Magenis, R.E.; Zonana, J. [Oregon Health Sciences Univ., Portland, OR (United States); Driscoll, D.A.; Emanuel, B.S. [Univ. of Pennsylvania Medical Center, Philadelphia, PA (United States)

    1994-10-01

    Approximately 5% of children with neural tube defects (NTDs) have a congenital heart defect and/or cleft lip and palate. The cause of isolated meningomyelocele, congenital heart defects, or cleft lip and palate has been largely thought to be multifactorial. However, chromosomal, teratogenic, and single gene causes of combinations of NTDs with congenital heart defects and/or cleft lip and palate have been reported. We report on 3 patients with meningomyelocele, congenital heart defects, and 22q11 deletions. Two of the children had the clinical diagnosis of velo-cardio-facial syndrome (VCFS); both have bifid uvula. The third child had DiGeorge sequence (DGS). The association of NTDs with 22q11 deletion has not been reported previously. An accurate diagnosis of the 22q11 deletion is critical as this micro-deletion and its associated clinical problems is transmitted as an autosomal dominant trait due to the inheritance of the deletion-bearing chromosome. We recommend that all children with NTDs and congenital heart defects, with or without cleft palate, have cytogenetic and molecular studies performed to detect 22q11 deletions. 31 refs., 3 figs.

  2. Decreased DGCR8 expression and miRNA dysregulation in individuals with 22q11.2 deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Chantal Sellier

    Full Text Available Deletion of the 1.5-3 Mb region of chromosome 22 at locus 11.2 gives rise to the chromosome 22q11.2 deletion syndrome (22q11DS, also known as DiGeorge and Velocardiofacial Syndromes. It is the most common micro-deletion disorder in humans and one of the most common multiple malformation syndromes. The syndrome is characterized by a broad phenotype, whose characterization has expanded considerably within the last decade and includes many associated findings such as craniofacial anomalies (40%, conotruncal defects of the heart (CHD; 70-80%, hypocalcemia (20-60%, and a range of neurocognitive anomalies with high risk of schizophrenia, all with a broad phenotypic variability. These phenotypic features are believed to be the result of a change in the copy number or dosage of the genes located in the deleted region. Despite this relatively clear genetic etiology, very little is known about which genes modulate phenotypic variations in humans or if they are due to combinatorial effects of reduced dosage of multiple genes acting in concert. Here, we report on decreased expression levels of genes within the deletion region of chromosome 22, including DGCR8, in peripheral leukocytes derived from individuals with 22q11DS compared to healthy controls. Furthermore, we found dysregulated miRNA expression in individuals with 22q11DS, including miR-150, miR-194 and miR-185. We postulate this to be related to DGCR8 haploinsufficiency as DGCR8 regulates miRNA biogenesis. Importantly we demonstrate that the level of some miRNAs correlates with brain measures, CHD and thyroid abnormalities, suggesting that the dysregulated miRNAs may contribute to these phenotypes and/or represent relevant blood biomarkers of the disease in individuals with 22q11DS.

  3. 22q11.2 deletion syndrome in patients admitted to a cardiac pediatric intensive care unit in Brazil.

    Science.gov (United States)

    Rosa, Rafael F M; Pilla, Carlo B; Pereira, Vera L B; Flores, José A M; Golendziner, Eliete; Koshiyama, Dayane B; Hertz, Michele T; Ricachinevsky, Cláudia P; Roman, Tatiana; Varella-Garcia, Marileila; Paskulin, Giorgio A

    2008-07-01

    The 22q11.2 deletion syndrome (22q11DS) is one of the most recognizable causes of congenital heart defects (CHDs), but the frequency varies in non-selected populations. The purpose of this study was to determine the incidence and clinical features of patients with CHD and 22q11DS admitted to a pediatric cardiology intensive care unit in Brazil. In a prospective study, we evaluated a consecutive series of 207 patients with a CHD following a clinical protocol and cytogenetic analysis by high resolution karyotype and fluorescent in situ hybridization (FISH). 22q11DS was identified in four patients (2%), a frequency similar to studies that evaluated subjects with major CHDs in other countries. Despite this similarity, we believe that the low rate of prenatal identification of CHDs and the limited access of these patients to appropriate diagnosis and care, which occur in our region, could have had an influence on this frequency. It is possible that 22q11DS patients with a severe CHD could have died before having a chance to access a tertiary hospital, leading to an underestimate of its frequency.

  4. Obstructive sleep apnea syndrome in children with 22q11.2 deletion syndrome after operative intervention for velopharyngeal insufficiency

    Directory of Open Access Journals (Sweden)

    David Jeffrey Crockett

    2014-08-01

    Full Text Available Introduction: Surgical treatment of velopharyngeal insufficiency (VPI in 22q11.2 deletion syndrome is often warranted. In this patient population, VPI is characterized by poor palatal elevation and muscular hypotonia with an intact palate. We hypothesize that 22q11.2 deletion patients are at greater risk of obstructive sleep apnea (OSA after surgical correction of VPI, due, in part, to their functional hypotonia, large velopharyngeal gap size, and the need to surgically obstruct the velopharynx. Methods: We performed a retrospective analysis of patients with 22q11.2 deletion syndrome treated at a tertiary pediatric hospital between the years of 2002-2012. The incidence of VPI, need for surgery, post-operative polysomnogram, post-operative VPI assessment, and OSA treatments were evaluated. Results: Forty-three patients (18 males, 25 females, ages 1-14 years fitting the inclusion criteria were identified. Twenty-eight patients were evaluated by speech pathology due to hypernasality. Twenty-one patients had insufficient velopharyngeal function and required surgery. Fifteen underwent pharyngeal flap surgery, three underwent sphincter pharyngoplasty, two underwent Furlow palatoplasty, and one underwent combined sphincter pharyngoplasty with Furlow palatoplasty. Of these, eight had post-operative snoring. Six of these underwent polysomnography. Four patients were found to have OSA based on the results of the polysomnography (average apnea/hypopnea index of 4.9 events/hour, median=5.1, SD=2.1. Two required continuous positive airway pressure (CPAP due to moderate OSA.Conclusion: Surgery is often necessary to correct VPI in patients with 22q11.2 deletion syndrome. Monitoring for OSA should be considered after surgical correction of VPI due to a high occurrence in this population. Furthermore, families should be counseled of the risk of OSA after surgery and the potential need for treatment with CPAP.

  5. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Beverly A. Karpinski

    2014-02-01

    Full Text Available We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS, a common developmental disorder that frequently includes perinatal dysphagia – debilitating feeding, swallowing and nutrition difficulties from birth onward – within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V, glossopharyngeal (IX or vagus (X cranial nerves (CNs that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS.

  6. Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome.

    Science.gov (United States)

    Karpinski, Beverly A; Maynard, Thomas M; Fralish, Matthew S; Nuwayhid, Samer; Zohn, Irene E; Moody, Sally A; LaMantia, Anthony-S

    2014-02-01

    We assessed feeding-related developmental anomalies in the LgDel mouse model of chromosome 22q11 deletion syndrome (22q11DS), a common developmental disorder that frequently includes perinatal dysphagia--debilitating feeding, swallowing and nutrition difficulties from birth onward--within its phenotypic spectrum. LgDel pups gain significantly less weight during the first postnatal weeks, and have several signs of respiratory infections due to food aspiration. Most 22q11 genes are expressed in anlagen of craniofacial and brainstem regions critical for feeding and swallowing, and diminished expression in LgDel embryos apparently compromises development of these regions. Palate and jaw anomalies indicate divergent oro-facial morphogenesis. Altered expression and patterning of hindbrain transcriptional regulators, especially those related to retinoic acid (RA) signaling, prefigures these disruptions. Subsequently, gene expression, axon growth and sensory ganglion formation in the trigeminal (V), glossopharyngeal (IX) or vagus (X) cranial nerves (CNs) that innervate targets essential for feeding, swallowing and digestion are disrupted. Posterior CN IX and X ganglia anomalies primarily reflect diminished dosage of the 22q11DS candidate gene Tbx1. Genetic modification of RA signaling in LgDel embryos rescues the anterior CN V phenotype and returns expression levels or pattern of RA-sensitive genes to those in wild-type embryos. Thus, diminished 22q11 gene dosage, including but not limited to Tbx1, disrupts oro-facial and CN development by modifying RA-modulated anterior-posterior hindbrain differentiation. These disruptions likely contribute to dysphagia in infants and young children with 22q11DS.

  7. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study

    NARCIS (Netherlands)

    L.E. Campbell; E. Daly; F. Toal; A. Stevens; R. Azuma; M. Catani; V. Ng; T. van Amelsvoort; X. Chitnis; W. Cutter; D.G.M. Murphy; K.C. Murphy

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of de

  8. Copy-Number Variation of the Glucose Transporter Gene SLC2A3 and Congenital Heart Defects in the 22q11.2 Deletion Syndrome

    OpenAIRE

    Mlynarski, Elisabeth E.; Sheridan, Molly B.; Xie, Michael; Guo, Tingwei; Racedo, Silvia E.; McDonald-McGinn, Donna M.; Gai, Xiaowu; Chow, Eva W.C.; Vorstman, Jacob; Swillen, Ann; Devriendt, Koen; Breckpot, Jeroen; Digilio, Maria Cristina; Marino, Bruno; Dallapiccola, Bruno

    2015-01-01

    The 22q11.2 deletion syndrome (22q11DS; velocardiofacial/DiGeorge syndrome; VCFS/DGS) is the most common microdeletion syndrome and the phenotypic presentation is highly variable. Approximately 65% of individuals with 22q11DS have a congenital heart defect (CHD), mostly of the conotruncal type, and/or an aortic arch defect. The etiology of this phenotypic variability is not currently known. We hypothesized that copy-number variants (CNVs) outside the 22q11.2 deleted region might increase the ...

  9. Síndrome de deleção 22q11 e cardiopatias congênitas complexas 22q11.2 deletion syndrome and complex congenital heart defects

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano Machado Rosa

    2011-02-01

    Full Text Available OBJETIVO: Verificar a frequência da síndrome de deleção 22q11 (SD22q11 entre pacientes portadores de cardiopatia congênita do tipo complexa. MÉTODOS: A amostra foi constituída por uma coorte prospectiva e consecutiva de pacientes com cardiopatia complexa em sua primeira hospitalização em uma unidade de tratamento intensivo cardiológica de um hospital pediátrico. Para cada paciente foi preenchida uma ficha de avaliação, com coleta de dados clínicos, e realizado o cariótipo de alta resolução e técnica de hibridização in situ fluorescente (FISH com pesquisa de microdeleção 22q11. Os defeitos cardíacos foram classificados por um cardiologista participante do estudo. RESULTADOS: A amostra foi composta de 66 pacientes. Quanto à análise cariotípica, alterações foram observadas em cinco pacientes (7,6%; contudo, nenhum deles apresentava deleção 22q11. A avaliação pela técnica de FISH pôde ser realizada com sucesso em 65 pacientes, sendo que a microdeleção 22q11 foi identificada em dois (3,1%. Dos 66 pacientes com defeitos complexos, 52 eram portadores de malformações do tipo conotruncal, sendo que em 51 a pesquisa para microdeleção 22q11 foi realizada. Os dois pacientes portadores da microdeleção 22q11 fizeram parte deste grupo, representando uma frequência de 3,9%. Eles apresentavam tetralogia de Fallot. CONCLUSÃO: A SD22q11 é uma anormalidade frequente entre pacientes com cardiopatias congênitas complexas e conotruncais. Variações da frequência da SD22q11 entre os estudos parecem estar associadas, principalmente, com a forma adotada para a seleção da amostra e às características da população em análise.OBJECTIVE: Investigate the frequency of 22q11 deletion syndrome among patients with complex congenital heart disease. METHODS: A prospective and consecutive cohort of patients with complex heart defects was evaluated in their first hospitalization at a cardiac intensive care unit of a pediatric

  10. Social Cognition Dysfunction in Adolescents with 22q11.2 Deletion Syndrome (Velo-Cardio-Facial Syndrome): Relationship with Executive Functioning and Social Competence/Functioning

    Science.gov (United States)

    Campbell, L. E.; McCabe, K. L.; Melville, J. L.; Strutt, P. A.; Schall, U.

    2015-01-01

    Background: Social difficulties are often noted among people with intellectual disabilities. Children and adults with 22q.11.2 deletion syndrome (22q11DS) often have poorer social competence as well as poorer performance on measures of executive and social-cognitive skills compared with typically developing young people. However, the relationship…

  11. Chromosome 22q11.2 Deletion Syndrome Presenting as Adult Onset Hypoparathyroidism: Clues to Diagnosis from Dysmorphic Facial Features

    Directory of Open Access Journals (Sweden)

    Sira Korpaisarn

    2013-01-01

    Full Text Available We report a 26-year-old Thai man who presented with hypoparathyroidism in adulthood. He had no history of cardiac disease and recurrent infection. His subtle dysmorphic facial features and mild intellectual impairment were suspected for chromosome 22q11.2 deletion syndrome. The diagnosis was confirmed by fluorescence in situ hybridization, which found microdeletion in 22q11.2 region. The characteristic facial appearance can lead to clinical suspicion of this syndrome. The case report emphasizes that this syndrome is not uncommon and presents as a remarkable variability in the severity and extent of expression. Accurate diagnosis is important for genetic counseling and long-term health supervision by multidisciplinary team.

  12. Negative and paranoid symptoms are associated with negative performance beliefs and social cognition in 22q11.2 deletion syndrome

    OpenAIRE

    Schneider, Maude; Van der Linden, Martial; Menghetti, Sarah; Debbané, Martin; Eliez, Stephan

    2015-01-01

    22q11.2 deletion syndrome (22q11.2DS) is a neurogenetic condition associated with an increased risk of developing schizophrenia. Previous studies have shown that negative symptoms represent the most specific clinical characteristic of psychosis in 22q11.2DS and are strongly associated with outcome. However, the psychological mechanisms associated with these symptoms in this population are poorly understood. In accordance with recent conceptualizations in the field of schizophrenia, the presen...

  13. Intellectual Functioning in Relation to Autism and ADHD Symptomatology in Children and Adolescents with 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Hidding, E.; Swaab, H.; Sonneville, L. M. J.; Engeland, H.; Sijmens-Morcus, M. E. J.; Klaassen, P. W. J.; Duijff, S. N.; Vorstman, J. A. S.

    2015-01-01

    Background: The 22q11.2 deletion syndrome (22q11DS; velo-cardio-facial syndrome) is associated with an increased risk of various disorders, including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). With this study, we aimed to investigate the relation between intellectual functioning and severity of ASD and ADHD…

  14. Intellectual functioning in relation to autism and ADHD symptomatology in children and adolescents with 22q11.2 deletion syndrome

    NARCIS (Netherlands)

    Hidding, E.; Swaab, H.; de Sonneville, L. M. J.; van Engeland, H.; Sijmens-Morcus, M. E. J.; Klaassen, P. W. J.; Duijff, S. N.; Vorstman, J. A. S.

    2015-01-01

    BackgroundThe 22q11.2 deletion syndrome (22q11DS; velo-cardio-facial syndrome) is associated with an increased risk of various disorders, including autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD). With this study, we aimed to investigate the relation between intell

  15. Social Cognitive Training in Adolescents with Chromosome 22q11.2 Deletion Syndrome: Feasibility and Preliminary Effects of the Intervention

    Science.gov (United States)

    Shashi, V.; Harrell, W.; Eack, S.; Sanders, C.; McConkie-Rosell, A.; Keshavan, M. S.; Bonner, M. J.; Schoch, K.; Hooper, S. R.

    2015-01-01

    Background: Children with chromosome 22q11.2 deletion syndrome (22q11DS) often have deficits in social cognition and social skills that contribute to poor adaptive functioning. These deficits may be of relevance to the later occurrence of serious psychiatric illnesses such as schizophrenia. Yet, there are no evidence-based interventions to improve…

  16. Analysis of 22q11.2 deletions by FISH in a series of velocardiofacial syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Ravnan, J.B.; Golabi, M.; Lebo, R.V. [Univ. of California, San Francisco, CA (United States)

    1994-09-01

    Deletions in chromosome 22 band q11.2 have been associated with velocardiofacial (VCF or Shprintzen) syndrome and the DiGeorge anomaly. A study of VCF patients evaluated at the UCSF Medical Center was undertaken to correlate disease phenotype with presence or absence of a deletion. Patients referred for this study had at least two of the following: dysmorphic facial features, frequent ear infections or hearing loss, palate abnormalities, thymic hypoplasia, hypocalcemia, congenital heart defect, hypotonia, and growth or language delay. Fluorescence in situ hybridization (FISH) using the DiGeorge critical region probe N25 was used to classify patients according to the presence or absence of a deletion in 22q11.2, and the results were compared to clinical characteristics. We have completed studies on 58 patients with features of VCF. Twenty-one patients (36%) were found to have a deletion in 22q11.2 by FISH. A retrospective study of archived slides from 14 patients originally studied only by prometaphase GTG banding found six patients had a deletion detected by FISH; of these, only two had a microscopically visible chromosome deletion. Our study of 11 sets of parents of children with the deletion found two clinically affected mothers with the deletion, including one with three of three children clinically affected. A few patients who did not fit the classical VCF description had a 22q11.2 deletion detected by FISH. These included one patient with both cleft lip and palate, and another with developmental delay and typical facial features but no cardiac or palate abnormalities. Both patients with the DiGeorge anomaly as part of VCF had the deletion. On the other hand, a number of patients diagnosed clinically with classical VCF did not have a detectable deletion. This raises the question whether they represent a subset of patients with a defect of 22q11.2 not detected by the N25 probe, or whether they represent a phenocopy of VCF.

  17. Applicability of the nonverbal learning disability paradigm for children with 22q11.2 deletion syndrome.

    Science.gov (United States)

    Schoch, Kelly; Harrell, Waverly; Hooper, Stephen R; Ip, Edward H; Saldana, Santiago; Kwapil, Thomas R; Shashi, Vandana

    2014-01-01

    Chromosome 22qll.2 deletion syndrome (22qllDS) is the most common microdeletion in humans. Nonverbal learning disability (NLD) has been used to describe the strengths and deficits of children with 22q11DS, but the applicability of the label for this population has seldom been systematically evaluated. The goal of the current study was to address how well the NLD diagnosis characterizes children and adolescents with 22q11DS. A total of 74 children and adolescents with 22q11DS were given neurocognitive, socioemotional, and academic assessments to measure aspects of NLD. Of the cohort, 20% met at least 7 of 9 assessed criteria for NLD; 25% showed verbal skills exceeding their nonverbal skills as assessed by an IQ test; and 24% showed the good rote verbal capacity commonly associated with NLD. Hypothesizing that if the entire cohort did not show consistent NLD characteristics, the descriptor might be more accurate for a distinct subgroup, the authors used latent class analysis to divide participants into three subgroups. However, the lines along which the groups broke out were more related to general functioning level than to NLD criteria. All three groups showed a heightened risk for psychiatric illness, highlighting the importance of careful mental health monitoring for all children with 22qllDS.

  18. Fluorescence in situ hybridization (FISH screening for the 22q11.2 deletion in patients with clinical features of velocardiofacial syndrome but without cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Paula Sandrin-Garcia

    2007-01-01

    Full Text Available The velocardiofacial syndrome (VCFS, a condition associated with 22q11.2 deletions, is characterized by a typical facies, palatal anomalies, learning disabilities, behavioral disturbances and cardiac defects. We investigated the frequency of these chromosomal deletions in 16 individuals with VCFS features who presented no cardiac anomalies, one of the main characteristics of VCFS. Fluorescent in situ hybridization (FISH with the N25 (D22S75; 22q11.2 probe revealed deletions in ten individuals (62%. Therefore, even in the absence of cardiac anomalies testing for the 22q11.2 microdeletions in individuals showing other clinical features of this syndrome is recommended.

  19. Síndrome de deleção 22q11.2: compreendendo o CATCH22 22q11.2 deletion syndrome: catching the CATCH22

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano M. Rosa

    2009-06-01

    Full Text Available OBJETIVO:Realizar uma revisão dos aspectos históricos, epidemiológicos, clínicos, etiológicos e laboratoriais da síndrome de deleção 22q11.2, salientando-se a importância e as dificuldades do seu diagnóstico. FONTES DE DADOS: Pesquisa nas bases de dados Medline, Lilacs e SciELO, além da Internet e capítulos de livros em inglês, acerca de publicações feitas entre 1980 e 2008. Para isso, utilizaram-se os descritores "22q11", "DiGeorge", "Velocardiofacial" e "CATCH22". SÍNTESE DOS DADOS: A síndrome de deleção 22q11.2, também conhecida como síndrome de DiGeorge ou velocardiofacial, foi identificada no começo da década de 1990. A microdeleção 22q11.2 é considerada uma das síndromes de microdeleção genética mais frequentes em seres humanos. Caracteriza-se por um espectro fenotípico bastante amplo, com mais de 180 achados clínicos já descritos do ponto de vista físico e comportamental. Contudo, nenhum achado é patognomônico ou mesmo obrigatório. A maioria dos pacientes apresenta uma deleção pequena, detectada somente por técnicas de genética molecular, como a hibridização in situ fluorescente. Apresenta padrão de herança autossômico dominante, ou seja, indivíduos acometidos apresentam um risco de 50% de transmiti-la a seus filhos. CONCLUSÕES: Pacientes com a síndrome de deleção 22q11.2 frequentemente necessitam, ao longo de suas vidas, de um grande número de intervenções médicas e hospitalizações. O diagnóstico precoce é fundamental para a adequada avaliação e manejo clínico dos indivíduos e seus familiares.OBJECTIVE:To review historical, epidemiological, clinical, etiological and laboratorial aspects of the 22q11.2 deletion syndrome, highlighting the importance of the diagnosis and its difficulties. DATA SOURCES: MedLine, Lilacs e SciELO databases, as well as internet and book chapters written in English, were searched for the period of 1980-2008, with the following descriptors "22q11

  20. Brain and Behavior in Children with 22Q11.2 Deletion Syndrome: A Volumetric and Voxel-Based Morphometry MRI Study

    Science.gov (United States)

    Campbell, Linda E.; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; Van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G. M.; Murphy, Kieran C.

    2006-01-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit hyperactivity disorder…

  1. Atypical cortical connectivity and visuospatial cognitive impairments are related in children with chromosome 22q11.2 deletion syndrome

    Directory of Open Access Journals (Sweden)

    Gee James C

    2008-06-01

    Full Text Available Abstract Background Chromosome 22q11.2 deletion syndrome is one of the most common genetic causes of cognitive impairment and developmental disability yet little is known about the neural bases of those challenges. Here we expand upon our previous neurocognitive studies by specifically investigating the hypothesis that changes in neural connectivity relate to cognitive impairment in children with the disorder. Methods Whole brain analyses of multiple measures computed from diffusion tensor image data acquired from the brains of children with the disorder and typically developing controls. We also correlated diffusion tensor data with performance on a visuospatial cognitive task that taps spatial attention. Results Analyses revealed four common clusters, in the parietal and frontal lobes, that showed complementary patterns of connectivity in children with the deletion and typical controls. We interpreted these results as indicating differences in connective complexity to adjoining cortical regions that are critical to the cognitive functions in which affected children show impairments. Strong, and similarly opposing patterns of correlations between diffusion values in those clusters and spatial attention performance measures considerably strengthened that interpretation. Conclusion Our results suggest that atypical development of connective patterns in the brains of children with chromosome 22q11.2 deletion syndrome indicate a neuropathology that is related to the visuospatial cognitive impairments that are commonly found in affected individuals.

  2. Síndrome de deleção 22q11.2 e cardiopatias congênitas 22q11.2 deletion syndrome and congenital heart defects

    Directory of Open Access Journals (Sweden)

    Rafael Fabiano M. Rosa

    2011-06-01

    the 22q11 deletion syndrome and its as-sociation with congenital heart defects. DATA SOURCES: Medline, Lilacs and SciELO databases were searched from 1980 to 2009 using specific descrip-tors as "22q11", "DiGeorge syndrome", "velocardiofacial syndrome", "congenital heart defects" and "cardiovascular malformations". DATA SYNTHESIS: Heart malformations are the most fre-quent congenital defects at birth and represent an important Public Health problem. The 22q11 deletion syndrome, also called DiGeorge syndrome, velocardiofacial syndrome and CATCH22, stands out as one of the main known causes of congenital heart defects. This is an autosomal dominant genetic disease characterized by a highly variable phenotype, which renders its difficult clinical identification. In addition, the majority of the patients present a microdeletion identified mainly by molecular cytogenetic techniques as fluorescent in situ hybridization, which are rarely available in Brazil. Similarly to other syndromes, 22q11 deletion syndrome is associated to some specific heart defects, espe-cially conotruncal. It is still not clear which patients with congenital heart defect should be screened for 22q11 dele-tion syndrome. CONCLUSIONS: Cardiologists and cardiac surgeons, particu-larly the pediatric ones, must be aware about the features and health care related to 22q11 deletion syndrome. Subjects with the syndrome very often present abnormalities of mul-tiple systems, that could result in difficulties and complica-tions during their clinical and surgical course.

  3. Is theory of mind related to social dysfunction and emotional problems in 22q11.2 deletion syndrome (velo-cardio-facial syndrome)?

    Science.gov (United States)

    Campbell, Linda E; Stevens, Angela F; McCabe, Kathryn; Cruickshank, Lynne; Morris, Robin G; Murphy, Declan G M; Murphy, Kieran C

    2011-06-01

    Social dysfunction is intrinsically involved in severe psychiatric disorders such as depression and psychosis and linked with poor theory of mind. Children with 22q11.2 deletion syndrome (22q11DS, or velo-cardio-facial syndrome) have poor social competence and are also at a particularly high risk of developing mood (40%) and psychotic (up to 30%) disorders in adolescence and young adulthood. However, it is unknown if these problems are associated with theory of mind skills, including underlying social-cognitive and social-perceptual mechanisms. The present cross-sectional study included classic social-cognitive false-belief and mentalising tasks and social-perceptual face processing tasks. The performance of 50 children with 22q11DS was compared with 31 age-matched typically developing sibling controls. Key findings indicated that, while younger children with 22q11DS showed impaired acquisition of social-cognitive skills, older children with 22q11DS were not significantly impaired compared with sibling controls. However, children with 22q11DS were found to have social-perceptual deficits, as demonstrated by difficulties in matching faces on the basis of identity, emotion, facial speech and gaze compared with sibling controls. Furthermore, performance on the tasks was associated with age, language ability and parentally rated social competence and emotional problems. These results are discussed in relation to the importance of a better delineation of social competence in this population.

  4. Relationship between reaction time, fine motor control, and visual-spatial perception on vigilance and visual-motor tasks in 22q11.2 Deletion Syndrome.

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  5. Enhanced Maternal Origin of the 22q11.2 Deletion in Velocardiofacial and DiGeorge Syndromes

    DEFF Research Database (Denmark)

    Delio, Maria; Guo, Tingwei; McDonald-McGinn, Donna M

    2013-01-01

    . Although previous studies exist, each was of small size, and it remains to be determined whether there are parent-of-origin biases for the de novo 22q11.2 deletion. To address this question, we genotyped a total of 389 DNA samples from 22q11DS-affected families. A total of 219 (56%) individuals with 22q11......DS had maternal origin and 170 (44%) had paternal origin of the de novo deletion, which represents a statistically significant bias for maternal origin (p = 0.0151). Combined with many smaller, previous studies, 465 (57%) individuals had maternal origin and 345 (43%) had paternal origin, amounting...... to a ratio of 1.35 or a 35% increase in maternal compared to paternal origin (p = 0.000028). Among 1,892 probands with the de novo 22q11.2 deletion, the average maternal age at time of conception was 29.5, and this is similar to data for the general population in individual countries. Of interest, the female...

  6. Clinical experience with single‐nucleotide polymorphism‐based non‐invasive prenatal screening for 22q11.2 deletion syndrome

    OpenAIRE

    Gross, S. J.; Stosic, M.; McDonald‐McGinn, D. M.; Bassett, A.S.; Norvez, A.; Dhamankar, R.; Kobara, K.; Kirkizlar, E.; Zimmermann, B.; Wayham, N.; Babiarz, J. E.; Ryan, A; Jinnett, K. N.; Demko, Z.; Benn, P.

    2016-01-01

    ABSTRACT Objectives To evaluate the performance of a single‐nucleotide polymorphism (SNP)‐based non‐invasive prenatal test (NIPT) for the detection of fetal 22q11.2 deletion syndrome in clinical practice, assess clinical follow‐up and review patient choices for women with high‐risk results. Methods In this study, 21 948 samples were submitted for screening for 22q11.2 deletion syndrome using a SNP‐based NIPT and subsequently evaluated. Follow‐up was conducted for all cases with a high‐risk re...

  7. Psychiatric Disorders and Intellectual Functioning throughout Development in Velocardiofacial (22q11.2 Deletion) Syndrome

    Science.gov (United States)

    Green, Tamar; Gothelf, Doron; Glaser, Bronwyn; Debbane, Martin; Frisch, Amos; Kotler, Moshe; Weizman, Abraham; Eliez, Stephan

    2009-01-01

    Objective: Velocardiofacial syndrome (VCFS) is associated with cognitive deficits and high rates of schizophrenia and other neuropsychiatric disorders. We report the data from two large cohorts of individuals with VCFS from Israel and Western Europe to characterize the neuropsychiatric phenotype from childhood to adulthood in a large sample.…

  8. The psychiatric and behavioural characteristics of individuals with 22q11.2 deletion syndrome (22q11DS): An Irish population study

    LENUS (Irish Health Repository)

    Prasad, S E

    2011-01-01

    Background: There is a growingbody of evidence which indicates an unequivocal association between 22qllDS and schizophrenia. Deletion of 22qll is recognised as the third highest risk for the development of schizophrenia, with only a greater risk conferred by being the child of 2 parents with schizophrenia or the monozygotic co-twin of an affected individual. The challenge for clinicians and researchers is to identify early vulnerability traits, symptoms or disorders which may be associated with or predict a later emerging psychotic disorder, so that at risk individuals maybe identified, monitored and treated early to improve outcomes. Identification of these early traits or symptoms firstly requires detailed analysis of the behavioural phenotype in individuals with 22qllDS. The current study aims to define the prevalence and correlates of psychiatric disorders in a population cohort of individuals with 22qllDS in Ireland. The data gained from the study will provide the foundation for future longitudinal studies of risk factors of psychosis in 22qllDS. Methods: Forty-five individuals with 22qllDS (mean age = 14.6, SD 8.94) and 27 sibling controls (mean age = 12.2, SD 4.12) participated in the study. The rate of psychiatric and behavioural disorders was investigated through a range of semi-structured interviews and standardised questionnaires. This is the first study to use the Comprehensive Assessment of at Risk Mental State (CAARMS), a tool which has been designed to identify a possible prodromal state. Results: Individuals with 22qllDS had high rates of psychiatric disorders and had significant difficulties with social and school functioning (p < 0.0001) compared to sibling controls. The most frequently occurring were attention deficit hyperactivity disorders (29%, p = 0.001) and anxiety disorders (31%, p = 0.021). Eight individuals (18%) with 22qllDS exhibited subthreshold psychotic symptoms (mean age = 13, SD 2.8, range 7–16 years) and had significantly higher

  9. Schizophrenia Spectrum Disorders in a Danish 22q11.2 Deletion Syndrome Cohort Compared to the Total Danish Population-A Nationwide Register Study

    DEFF Research Database (Denmark)

    Vangkilde, Anders; Olsen, Line; Hoeffding, Louise K

    2016-01-01

    OBJECTIVE: Cross-sectional studies have shown associations between 22q11.2 deletion syndrome and schizophrenia. However, large-scale prospective studies have been lacking. We, therefore, conducted the first large-scale population based study on the risk of being diagnosed with schizophrenia...

  10. A New Account of the Neurocognitive Foundations of Impairments in Space, Time, and Number Processing in Children with Chromosome 22q11.2 Deletion Syndrome

    Science.gov (United States)

    Simon, Tony J.

    2008-01-01

    In this article, I present an updated account that attempts to explain, in cognitive processing and neural terms, the nonverbal intellectual impairments experienced by most children with deletions of chromosome 22q11.2. Specifically, I propose that this genetic syndrome leads to early developmental changes in the structure and function of clearly…

  11. Deleção 22q11.2 em pacientes com defeito cardíaco conotruncal e fenótipo da síndrome da deleção 22q11.2 Deleción 22q11.2 en pacientes con defecto cardiaco conotruncal y fenotipo del síndrome de la deleción 22q11.2 22q11.2 deletion in patients with conotruncal heart defect and del22q syndrome phenotype

    Directory of Open Access Journals (Sweden)

    Sintia Iole Nogueira Belangero

    2009-04-01

    índrome de la delación 22q11.2. MÉTODOS: Se estudiaron a 29 pacientes por medio de citogenética clásica, por hibridación in situ fluorescente (FISH y también por técnicas moleculares. RESULTADOS: El análisis citogenético por medio de bandeo G reveló cariotipo normal en todos los pacientes, con excepción de uno, que presentó cariotipo 47,XX,+idic(22(q11.2. Con la utilización de técnicas moleculares, se observó la deleción en el 25% de los pacientes, todos portadores del fenotipo del síndrome de la deleción 22q11.2. En ningún de los casos, la deleción se heredó de los padres. La frecuencia de la deleción 22q11.2 en el grupo de pacientes portadores del espectro clínico de este síndrome resultó mayor que en el grupo de pacientes con cardiopatía conotruncal aislada. CONCLUSIÓN: La investigación de la presencia de deleción y su correlación con los datos clínicos de los pacientes pueden auxiliar los pacientes y sus familias a tener un mejor aconsejamiento genético, así como un seguimiento clínico más adecuado.BACKGROUND: The 22q11.2 deletion syndrome is the most frequent human microdeletion syndrome. The phenotype is highly variable, being characterized by conotruncal heart defect, facial dysmorphisms, velopharyngeal insufficiency, learning difficulties and mental retardation. OBJECTIVE: The objective of this study was to investigate the frequency of deletion 22q11.2 in a Brazilian sample of individuals with isolated conotruncal heart defect and 22q11.2 deletion syndrome phenotype. METHODS: Twenty-nine patients were studied by classical cytogenetics, by fluorescence in situ hybridization (FISH, and by molecular techniques. RESULTS: Cytogenetic analysis by G-banding revealed a normal karyotype in all patients except one who presented a 47,XX,+idic(22(q11.2 karyotype. Using molecular techniques, a deletion was observed in 25% of the patients, all exhibiting a 22q11.2 deletion syndrome phenotype. In none of the cases the deletion was inherited from

  12. TBX1 mutation identified by exome sequencing in a Japanese family with 22q11.2 deletion syndrome-like craniofacial features and hypocalcemia.

    Directory of Open Access Journals (Sweden)

    Tsutomu Ogata

    Full Text Available BACKGROUND: Although TBX1 mutations have been identified in patients with 22q11.2 deletion syndrome (22q11.2DS-like phenotypes including characteristic craniofacial features, cardiovascular anomalies, hypoparathyroidism, and thymic hypoplasia, the frequency of TBX1 mutations remains rare in deletion-negative patients. Thus, it would be reasonable to perform a comprehensive genetic analysis in deletion-negative patients with 22q11.2DS-like phenotypes. METHODOLOGY/PRINCIPAL FINDINGS: We studied three subjects with craniofacial features and hypocalcemia (group 1, two subjects with craniofacial features alone (group 2, and three subjects with normal phenotype within a single Japanese family. Fluorescence in situ hybridization analysis excluded chromosome 22q11.2 deletion, and genomewide array comparative genomic hybridization analysis revealed no copy number change specific to group 1 or groups 1+2. However, exome sequencing identified a heterozygous TBX1 frameshift mutation (c.1253delA, p.Y418fsX459 specific to groups 1+2, as well as six missense variants and two in-frame microdeletions specific to groups 1+2 and two missense variants specific to group 1. The TBX1 mutation resided at exon 9C and was predicted to produce a non-functional truncated protein missing the nuclear localization signal and most of the transactivation domain. CONCLUSIONS/SIGNIFICANCE: Clinical features in groups 1+2 are well explained by the TBX1 mutation, while the clinical effects of the remaining variants are largely unknown. Thus, the results exemplify the usefulness of exome sequencing in the identification of disease-causing mutations in familial disorders. Furthermore, the results, in conjunction with the previous data, imply that TBX1 isoform C is the biologically essential variant and that TBX1 mutations are associated with a wide phenotypic spectrum, including most of 22q11.2DS phenotypes.

  13. Clinical experience with single‐nucleotide polymorphism‐based non‐invasive prenatal screening for 22q11.2 deletion syndrome

    Science.gov (United States)

    Gross, S. J.; Stosic, M.; McDonald‐McGinn, D. M.; Bassett, A. S.; Norvez, A.; Dhamankar, R.; Kobara, K.; Kirkizlar, E.; Zimmermann, B.; Wayham, N.; Babiarz, J. E.; Ryan, A.; Jinnett, K. N.; Demko, Z.

    2016-01-01

    ABSTRACT Objectives To evaluate the performance of a single‐nucleotide polymorphism (SNP)‐based non‐invasive prenatal test (NIPT) for the detection of fetal 22q11.2 deletion syndrome in clinical practice, assess clinical follow‐up and review patient choices for women with high‐risk results. Methods In this study, 21 948 samples were submitted for screening for 22q11.2 deletion syndrome using a SNP‐based NIPT and subsequently evaluated. Follow‐up was conducted for all cases with a high‐risk result. Results Ninety‐five cases were reported as high risk for fetal 22q11.2 deletion. Diagnostic testing results were available for 61 (64.2%) cases, which confirmed 11 (18.0%) true positives and identified 50 (82.0%) false positives, resulting in a positive predictive value (PPV) of 18.0%. Information regarding invasive testing was available for 84 (88.4%) high‐risk cases: 57.1% (48/84) had invasive testing and 42.9% (36/84) did not. Ultrasound anomalies were present in 81.8% of true‐positive and 18.0% of false‐positive cases. Two additional cases were high risk for a maternal 22q11.2 deletion; one was confirmed by diagnostic testing and one had a positive family history. There were three pregnancy terminations related to screening results of 22q11.2 deletion, two of which were confirmed as true positive by invasive testing. Conclusions Clinical experience with this SNP‐based non‐invasive screening test for 22q11.2 deletion syndrome indicates that these deletions have a frequency of approximately 1 in 1000 in the referral population with most identifiable through this test. Use of this screening method requires the availability of counseling and other management resources for high‐risk pregnancies. © 2015 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd. on behalf of the International Society of Ultrasound in Obstetrics and Gynecology. PMID:26396068

  14. White matter microstructural abnormalities in girls with chromosome 22q11.2 deletion syndrome, Fragile X or Turner syndrome as evidenced by diffusion tensor imaging

    Science.gov (United States)

    Villalon, Julio; Jahanshad, Neda; Beaton, Elliott; Toga, Arthur W.; Thompson, Paul M.; Simon, Tony J.

    2014-01-01

    Children with chromosome 22q11.2 Deletion Syndrome (22q11.2DS), Fragile X Syndrome (FXS), or Turner Syndrome (TS) are considered to belong to distinct genetic groups, as each disorder is caused by separate genetic alterations. Even so, they have similar cognitive and behavioral dysfunctions, particularly in visuospatial and numerical abilities. To assess evidence for common underlying neural microstructural alterations, we set out to determine whether these groups have partially overlapping white matter abnormalities, relative to typically developing controls. We scanned 101 female children between 7 and 14 years old: 25 with 22q11.2DS, 18 with FXS, 17 with TS, and 41 aged-matched controls using diffusion tensor imaging (DTI). Anisotropy and diffusivity measures were calculated and all brain scans were nonlinearly aligned to population and site-specific templates. We performed voxel-based statistical comparisons of the DTI-derived metrics between each disease group and the controls, while adjusting for age. Girls with 22q11.2DS showed lower fractional anisotropy (FA) than controls in the association fibers of the superior and inferior longitudinal fasciculi, the splenium of the corpus callosum, and the corticospinal tract. FA was abnormally lower in girls with FXS in the posterior limbs of the internal capsule, posterior thalami, and precentral gyrus. Girls with TS had lower FA in the inferior longitudinal fasciculus, right internal capsule and left cerebellar peduncle. Partially overlapping neurodevelopmental anomalies were detected in all three neurogenetic disorders. Altered white matter integrity in the superior and inferior longitudinal fasciculi and thalamic to frontal tracts may contribute to the behavioral characteristics of all of these disorders. PMID:23602925

  15. Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia--relationship with COMT Val¹⁰⁸/¹⁵⁸Met polymorphism, gender and symptomatology

    NARCIS (Netherlands)

    E. Boot; J. Booij; N. Abeling; J. Meijer; F. da Silva Alves; J. Zinkstok; F. Baas; D. Linszen; T. van Amelsvoort

    2011-01-01

    22q11 Deletion syndrome (22q11DS) is a major risk factor for schizophrenia. In addition, both conditions are associated with alterations of the dopaminergic system. The catechol-O-methyltransferase (COMT) gene, located within the deleted region, encodes for the enzyme COMT that is important for degr

  16. Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant patterns of resting state EEG microstates: A candidate endophenotype of schizophrenia

    Directory of Open Access Journals (Sweden)

    Miralena I. Tomescu

    2015-09-01

    Full Text Available Schizophrenia is a complex psychiatric disorder and many of the factors contributing to its pathogenesis are poorly understood. In addition, identifying reliable neurophysiological markers would improve diagnosis and early identification of this disease. The 22q11.2 deletion syndrome (22q11DS is one major risk factor for schizophrenia. Here, we show further evidence that deviant temporal dynamics of EEG microstates are a potential neurophysiological marker by showing that the resting state patterns of 22q11DS are similar to those found in schizophrenia patients. The EEG microstates are recurrent topographic distributions of the ongoing scalp potential fields with temporal stability of around 80 ms that are mapping the fast reconfiguration of resting state networks. Five minutes of high-density EEG recordings was analysed from 27 adult chronic schizophrenia patients, 27 adult controls, 30 adolescents with 22q11DS, and 28 adolescent controls. In both patient groups we found increased class C, but decreased class D presence and high transition probabilities towards the class C microstates. Moreover, these aberrant temporal dynamics in the two patient groups were also expressed by perturbations of the long-range dependency of the EEG microstates. These findings point to a deficient function of the salience and attention resting state networks in schizophrenia and 22q11DS as class C and class D microstates were previously associated with these networks, respectively. These findings elucidate similarities between individuals at risk and schizophrenia patients and support the notion that abnormal temporal patterns of EEG microstates might constitute a marker for developing schizophrenia.

  17. Síndrome de deleção 22q11.2 e cardiopatias congênitas 22q11.2 deletion syndrome and congenital heart defects

    OpenAIRE

    Rafael Fabiano M. Rosa; Zen, Paulo Ricardo G.; Carla Graziadio; Giorgio Adriano Paskulin

    2011-01-01

    OBJETIVO: Revisar as características clínicas, etiológicas e diagnósticas da síndrome de deleção 22q11 e sua associação com as cardiopatias congênitas. FONTES DOS DADOS: Foram pesquisados artigos científicos presentes nos portais Medline, Lilacs e SciELO, utilizando-se descritores específicos como "22q11", "DiGeorge syndrome", "velocardiofacial syndrome", "congenital heart defects" e "cardio-vascular malformations". O período adotado para a revisão foi de 1980 a 2009. SÍNTESE DOS DADOS: As ma...

  18. Prevalence of 22q11.2 deletions in 311 Dutch patients with schizophrenia

    NARCIS (Netherlands)

    Hoogendoorn, Mechteld L C; Vorstman, Jacob A S; Jalali, Gholam R; Selten, Jean-Paul; Sinke, Richard J; Emanuel, Beverly S; Kahn, René S

    2008-01-01

    UNLABELLED: The objectives of this study were 1) to examine whether the prevalence of 22q11.2 deletion syndrome (22q11DS) in schizophrenia patients with the Deficit syndrome is higher than the reported approximately 2% for the population of schizophrenia patients as a whole, and 2) to estimate the o

  19. COMT Val(158) met genotype and striatal D(2/3) receptor binding in adults with 22q11 deletion syndrome.

    LENUS (Irish Health Repository)

    Boot, Erik

    2011-09-01

    Although catechol-O-methyltransferase (COMT) activity evidently affects dopamine function in prefrontal cortex, the contribution is assumed less significant in striatum. We studied whether a functional polymorphism in the COMT gene (Val(158) Met) influences striatal D(2\\/3) R binding ratios (D(2\\/3) R BP(ND) ) in 15 adults with 22q11 deletion syndrome and hemizygous for this gene, using single photon emission computed tomography and the selective D(2\\/3) radioligand [(123) I]IBZM. Met hemizygotes had significantly lower mean D(2\\/3) R BPND than Val hemizygotes. These preliminary data suggest that low COMT activity may affect dopamine levels in striatum in humans and this may have implications for understanding the contribution of COMT activity to psychiatric disorders.

  20. Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study.

    Science.gov (United States)

    Campbell, Linda E; Daly, Eileen; Toal, Fiona; Stevens, Angela; Azuma, Rayna; Catani, Marco; Ng, Virginia; van Amelsvoort, Therese; Chitnis, Xavier; Cutter, William; Murphy, Declan G M; Murphy, Kieran C

    2006-05-01

    In people with velo-cardio-facial syndrome [or 22q11.2 deletion syndrome (22qDS)], a single interstitial deletion of chromosome 22q11.2 causes a wide spectrum of cognitive deficits ranging from global learning difficulties to specific cognitive deficits. People with 22qDS are also at high risk of developing attention-deficit/hyperactivity disorder and autism spectrum disorders in childhood, and schizophrenia in adolescence or adult life. However, the neurobiology of 22qDS, and the relationship between abnormalities in brain anatomy and behaviour, is poorly understood. Thus, we studied the neuroanatomy of 22qDS children using fully automated voxel-based morphometry (VBM) and manually traced single region-of-interest (ROI) analysis. Also, we investigated whether those brain regions that differed significantly between groups were related to behavioural differences within children with 22qDS. We compared the brain morphometry of 39 children and adolescents with 22qDS (mean age: 11 years, SD +/-3, IQ = 67, SD +/-10) and 26 sibling controls (mean age: 11 years, SD +/-3, IQ = 102, SD +/-12). Using VBM, we found, after correction for IQ, that individuals with 22qDS compared with controls had a significant reduction in cerebellar grey matter, and white matter reductions in the frontal lobe, cerebellum and internal capsule. Using single ROI analysis, we found that people with 22qDS had a significant (P social behavioural difficulties and grey matter in frontostriatal regions. Thus, subjects with 22qDS have widespread changes in brain anatomy, particularly affecting white matter, basal ganglia and cerebellum. Also, within 22qDS, regionally specific differences in brain development may partially underpin behavioural differences. We suggest that there is preliminary evidence for specific vulnerability of the frontostriatal and cerebellar-cortical networks in 22qDS.

  1. Developmental trajectories of fronto-executive functions in 22q11.2 deletion syndrome: A preliminary study

    LENUS (Irish Health Repository)

    Howley, S A

    2011-01-01

    22qll.2 deletion syndrome (22qllDS) is associated with borderline-mild intellectual disability and specific neurocognitive deficits, particularly in prefrontally-mediated executive functions (EF). There is evidence for white matter abnormalities in frontal cortical regions in 22qllDS, however little is known about the development of EF across the age range. Forty-eight individuals with 22qllDS were divided into 3 age groups: Child (7 male; n = 16; 6–11 years; M (SD) age = 8.4 (1.7); mean FSIQ = 72.9); Adolescent (7 male; n = 15; 12–15 years; M (SD) age = 13.1 (0.8); mean FSIQ = 68.0) and Adult (7 male; n = 17; 16–45 years; M (SD) age = 28.8 (11.5); mean FSIQ = 69.6). Forty healthy controls were also recruited and divided into the same 3 age groups: Child (6 male; 6–11 years, n = 12; M (SD) age = 9.3 (1.7); mean FSIQ = 99.1); Adolescent (6 male; 12–15 years; n = 12; M (SD) age = 13.2 (1.1); mean FSIQ = 100.9) and Adult (6 male; 16–45 years; n = 16; M (SD) age = 28.8 (9.4); mean FSIQ = 109). All participants completed standardised tests of a range of executive functions, specifically working memory, planning, problem-solving, strategy formation, cognitive flexibility and inhibition, and cross-sectional developmental trajectories of each function were constructed. No age-mediated improvements on EF tasks were observed in the 22qllDS groups, with the exception of verbal working memory. The control group exhibited significant age-mediated improvements in working memory, strategy formation and planning efficiency. These findings support the hypothesis that 22qllDS individuals experience atypical development of neuroanatomical regions and networks associated with EF in typical individuals. Future longitudinal work is required to examine intra-individual development of executive and non-executive cognitive processes.

  2. Chromosome 22q11.2 microdeletion in monozygotic twins with discordant phenotype and deletion size

    Directory of Open Access Journals (Sweden)

    Halder Ashutosh

    2012-03-01

    Full Text Available Abstract We report on a pair of male monozygotic twins with 22q11.2 microdeletion, discordant phenotype and discordant deletion size. The second twin had findings suggestive of DiGeorge syndrome, while the first twin had milder anomalies without any cardiac malformation. The second twin had presented with intractable convulsion, cyanosis and cardiovascular failure in the fourth week of life and expired on the sixth week of life, whereas the first twin had some characteristic facial appearance with developmental delay but no other signs of the 22q11.2 microdeletion syndrome including cardiovascular malformation. The fluorescence in situ hybridization (FISH analysis had shown a microdeletion on the chromosome 22q11.2 in both twins. The interphase FISH did not find any evidence for the mosaicism. The genomic DNA microarray analysis, using HumanCytoSNP-12 BeadChip (Illumina, was identical between the twins except different size of deletion of 22q11.2. The zygosity using HumanCytoSNP-12 BeadChip (Illumina microarray analysis suggested monozygosity. This observation indicates that altered size of the deletion may be the underlying etiology for the discordance in phenotype in monozygotic twins. We think early post zygotic events (mitotic non-allelic homologous recombination could have been played a role in the alteration of 22q11.2 deletion size and, thus phenotypic variability in the monozygotic twins.

  3. Síndrome con deleción 22q11 (Síndrome velocardiofacial, reporte de los primeros casos en Costa Rica con diagnóstico citogenético 22q11 Deletion Syndrome (Velo-Cardio-Facial syndrome, report of the first cases in Costa Rica with cytogenetic diagnosis

    Directory of Open Access Journals (Sweden)

    Oscar Porras

    2011-01-01

    Full Text Available El síndrome con deleción 22q11 es una enfermedad autosómica recesiva causada por una microdeleción 22q11.2. En este artículo se reportan los tres primeros casos del síndrome confirmados por citogenética en Costa Rica. El estudio de fluorescencia con hibridización in situ que demostró la microdeleción 22q11.2, se indicó por la sospecha clínica del síndrome, en 2 niños y una niña con malformaciones congénitas conotruncales de corazón. Dos de los casos se encuentran vivos a la fecha cuando se escribió este reporte y uno falleció en el postoperatorio inmediato de la cirugía para corregir la cardiopatía. Al inicio de los síntomas, en los tres casos se documentó falla para progresar y en dos se anotó dismorfismo en referencia a rasgos faciales anormales. En un caso se reportó paladar hendido y en otro pie, bott. A pesar de que la malformación congénita de corazón es el hallazgo clínico que con frecuencia induce al médico a pensar en este síndrome, los trastornos cognitivos y del comportamiento son las manifestaciones fenotípicas más frecuentes.The 22q11 deletion syndrome is an autosomic recessive disease caused by a 22q11 microdeletion. We report the first 3 cases of this syndrome in Costa Rica, confirmed by cytogenetics, in situ fluorescence hybridization showed the 22q11 microdeletion. Due to clinical suspicion it was requested in 2 boys and one girl with congenital conotruncal heart disease. As of today, 2 of the cases are alive and 1 died in the immediate postoperative period of corrective cardiac surgery. When their symptoms began, in the 3 cases failure to thrive was noted and in 2, dimorphism related to abnormal facial features. In 1 case, cleft palate was recorded and, pie bott in another. Although congenital heart disease is a clinical finding that frequently persuades physicians into thinking about this syndrome, the most common phenotypical signs are cognitive and behavioral disorders.

  4. Are 22q11.2 distal deletions associated with math difficulties?

    Science.gov (United States)

    Carvalho, Maria Raquel Santos; Vianna, Gabrielle; Oliveira, Lívia de Fátima Silva; Costa, Annelise Julio; Pinheiro-Chagas, Pedro; Sturzenecker, Rosane; Zen, Paulo Ricardo Gazzola; Rosa, Rafael Fabiano Machado; de Aguiar, Marcos José Burle; Haase, Vitor Geraldi

    2014-09-01

    Approximately 6% of school-aged children have math difficulties (MD). A neurogenetic etiology has been suggested due to the presence of MD in some genetic syndromes such as 22q11.2DS. However, the contribution of 22q11.2DS to the MD phenotype has not yet been investigated. This is the first population-based study measuring the frequency of 22q11.2DS among school children with MD. Children (1,564) were identified in the schools through a screening test for language and math. Of these children, 152 (82 with MD and 70 controls) were selected for intelligence, general neuropsychological, and math cognitive assessments and for 22q11.2 microdeletion screening using MLPA. One child in the MD group had a 22q11.2 deletion spanning the LCR22-4 to LCR22-5 interval. This child was an 11-year-old girl with subtle anomalies, normal intelligence, MD attributable to number sense deficit, and difficulties in social interactions. Only 19 patients have been reported with this deletion. Upon reviewing these reports, we were able to characterize a new syndrome, 22q11.2 DS (LCR22-4 to LCR22-5), characterized by prematurity; pre- and postnatal growth restriction; apparent hypotelorism, short/upslanting palpebral fissures; hypoplastic nasal alae; pointed chin and nose; posteriorly rotated ears; congenital heart defects; skeletal abnormalities; developmental delay, particularly compromising the speech; learning disability (including MD, in one child); intellectual disability; and behavioral problems. These results suggest that 22q11.2 DS (LCR22-4 to LCR22-5) may be one of the genetic causes of MD.

  5. Síndrome de deleção 22q11.2: importância da avaliação clínica e técnica de FISH 22q11.2 deletion syndrome: importance of clinical evaluation and FISH analysis

    Directory of Open Access Journals (Sweden)

    Dayane Bohn Koshiyama

    2009-01-01

    Full Text Available OBJETIVO: A síndrome de deleção 22q11.2 é considerada hoje uma das doenças genéticas mais frequentes em humanos. Caracteriza-se clinicamente por um espectro fenotípico bastante amplo, com mais de 180 achados já descritos, tanto físicos como comportamentais. Contudo, nenhum deles é patognomônico ou mesmo obrigatório, o que acaba dificultando o diagnóstico. Assim, o objetivo do presente estudo foi determinar a prevalência e as características clínicas de pacientes com microdeleção 22q11.2 em uma amostra selecionada de indivíduos com suspeita clínica de síndrome de deleção 22q11.2 e cariótipo normal. MÉTODOS: Uma amostra selecionada de 30 pacientes com suspeita clínica da síndrome de deleção 22q11.2 e cariótipo normal foi avaliada através da aplicação de um protocolo clínico padrão e análise citogenética por meio da técnica de hibridização in situ fluorescente. RESULTADOS: A microdeleção 22q11.2 foi identificada em três pacientes (10%, sendo esta prevalência similar a da maioria dos estudos descritos na literatura que oscila de 4% a 21%. Os pacientes com síndrome de deleção 22q11.2 do nosso trabalho se caracterizaram por um fenótipo variável, com poucos achados clínicos similares, o que foi concordante com a descrição da literatura. CONCLUSÃO: Nossos achados reforçam a ideia de que o diagnóstico clínico da síndrome de deleção 22q11.2 é difícil devido à sua grande variabilidade fenotípica. Assim, uma avaliação clínica detalhada associada a um teste sensível como a hibridização in situ fluorescente, são fundamentais para a identificação destes pacientes.OBJECTIVE: The 22q11.2 deletion syndrome nowadays is considered one of the most often observed genetic diseases in humans. It is clinically characterized by a rather wide phenotypic spectrum, with more than 180 clinical features physical as well as behavioral, already described. However, none is pathognomonic or obligatory which

  6. Low thymic output in the 22q11.2 deletion syndrome measured by CCR9+CD45RA+ T cell counts and T cell receptor rearrangement excision circles

    DEFF Research Database (Denmark)

    Lima, K; Abrahamsen, Gitte Meldgaard; Foelling, I

    2010-01-01

    Thymic hypoplasia is a frequent feature of the 22q11.2 deletion syndrome, but we know little about patients' age-related thymic output and long-term consequences for their immune system. We measured the expression of T cell receptor rearrangement excision circles (TREC) and used flow cytometry...

  7. Dopamine metabolism in adults with 22q11 deletion syndrome, with and without schizophrenia--relationship with COMT Val¹⁰⁸/¹⁵⁸Met polymorphism, gender and symptomatology.

    Science.gov (United States)

    Boot, Erik; Booij, Jan; Abeling, Nico; Meijer, Julia; da Silva Alves, Fabiana; Zinkstok, Janneke; Baas, Frank; Linszen, Don; van Amelsvoort, Thérèse

    2011-07-01

    22q11 Deletion syndrome (22q11DS) is a major risk factor for schizophrenia. In addition, both conditions are associated with alterations of the dopaminergic system. The catechol-O-methyltransferase (COMT) gene, located within the deleted region, encodes for the enzyme COMT that is important for degradation of catecholamines, including dopamine (DA). COMT activity is sexually dimorphic and its gene contains a functional polymorphism, Val¹⁰⁸/¹⁵⁸ Met; the Met allele is associated with lower enzyme activity. We report the first controlled catecholamine study in 22q11DS-related schizophrenia. Twelve adults with 22q11DS with schizophrenia (SCZ+) and 22 adults with 22q11DS without schizophrenia (SCZ-) were genotyped for the COMT Val¹⁰⁸/¹⁵⁸ Met genotype. We assessed dopaminergic markers in urine and plasma. We also correlated these markers with scores on the Positive and Negative Symptom Scale (PANSS). Contrary to our expectations, we found SCZ+ subjects to be more often Val hemizygous and SCZ- subjects more often Met hemizygous. Significant COMT cross gender interactions were found on dopaminergic markers. In SCZ+ subjects there was a negative correlation between prolactin levels and scores on the general psychopathology subscale of the PANSS scores. These findings suggest intriguing, but complex, interactions of the COMT Val¹⁰⁸/¹⁵⁸ Met polymorphism, gender and additional factors on DA metabolism, and its relationship with schizophrenia.

  8. The 22Q11.2 Deletion in Children: High Rate of Autistic Disorders and Early Onset of Psychotic Symptoms

    Science.gov (United States)

    Vorstman, Jacob A. S.; Morcus, Monique E. J.; Duijff, Sasja N.; Klaassen, Petra W. J.; Heineman-de, Josien A.; Beemer, Frits A.; Swaab, Hanna; Kahn, Rene S.; van Engeland, Herman

    2006-01-01

    Objective: To examine psychopathology and influence of intelligence level on psychiatric symptoms in children with the 22q11.2 deletion syndrome (22q11DS). Method: Sixty patients, ages 9 through 18 years, were evaluated. Assessments followed standard protocols, including structured and semistructured interviews of parents, videotaped psychiatric…

  9. C1-2 vertebral anomalies in 22q11.2 microdeletion syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Konen, Osnat; Armstrong, Derek; Padfield, Nancy; Blaser, Susan [Hospital for Sick Children, Diagnostic Imaging, Toronto (Canada); Clarke, Howard [Hospital for Sick Children, Plastic Surgery, Toronto (Canada); Weksberg, Rosanna [Hospital for Sick Children, Clinical and Metabolic Genetics, Toronto (Canada)

    2008-07-15

    Chromosome 22q11.2 microdeletion syndrome (22q11DS) is characterized by cleft palate, cardiac anomalies, characteristic facies, high prevalence of skeletal anomalies and learning disability. To evaluate the prevalence of craniovertebral junction anomalies in children with 22q11DS and compare these findings to those in nonsyndromic children with velopharyngeal insufficiency (VPI). Sequential CT scans performed for presurgical carotid assessment in 76 children (45 children positive for chromosome 22q11.2 deletion and 31 negative for the deletion) with VPI were retrospectively evaluated for assessment of C1-2 anomalies. C1-2 vertebral anomalies, specifically midline C1 defects, uptilted or upswept posterior elements of C2 and fusions of C2-3, were nearly universal in our cohort of 22q11DS patients with VPI. They were strikingly absent in the majority of non-22q11DS patients with VPI. C1-2 vertebral anomalies, particularly those listed above, are important radiographic markers for 22q11DS. (orig.)

  10. Prevalence of 22q11.2 microdeletion syndrome in Iranian patients with cleft palate

    Directory of Open Access Journals (Sweden)

    Narges Nouri

    2016-01-01

    Conclusion: It seems that SMCP or VPI, in addition to one or more another features of 22q11.2 deletions, especially developmental delay, may be good criteria for molecular investigation of 22q11.2 region.

  11. Definition of 5q11.2 Microdeletion Syndrome Reveals Overlap with CHARGE Syndrome and 22q11 Deletion Syndrome Phenotypes

    NARCIS (Netherlands)

    Blok, Charlotte Snijders; Corsten-Janssen, Nicole; FitzPatrick, David R.; Romano, Corrado; Fichera, Marco; Vitello, Girolamo Aurelio; Willemsen, Marjolein H.; Schoots, Jeroen; Pfundt, Rolph; van Ravenswaaij-Arts, Conny M. A.; Hoefsloot, Lies; Kleefstra, Tjitske

    2014-01-01

    Microdeletions of the 5q11.2 region are rare; in literature only two patients with a deletion in this region have been reported so far. In this study, we describe four additional patients and further define this new 5q11.2 microdeletion syndrome. A comparison of the features observed in all six pati

  12. Risk of Psychiatric Disorders Among Individuals With the 22q11.2 Deletion or Duplication

    DEFF Research Database (Denmark)

    Hoeffding, Louise K; Trabjerg, Betina B; Olsen, Line;

    2017-01-01

    Importance: Microdeletions and duplications have been described at the 22q11.2 locus. However, little is known about the clinical and epidemiologic consequences at the population level. Objective: To identify indicators of deletions or duplications at the 22q11.2 locus and estimate the incidence ...

  13. Assessing the Cognitive Translational Potential of a Mouse Model of the 22q11.2 Microdeletion Syndrome

    Science.gov (United States)

    Nilsson, Simon RO.; Fejgin, Kim; Gastambide, Francois; Vogt, Miriam A.; Kent, Brianne A.; Nielsen, Vibeke; Nielsen, Jacob; Gass, Peter; Robbins, Trevor W.; Saksida, Lisa M.; Stensbøl, Tine B.; Tricklebank, Mark D.; Didriksen, Michael; Bussey, Timothy J.

    2016-01-01

    A chromosomal microdeletion at the 22q11.2 locus is associated with extensive cognitive impairments, schizophrenia and other psychopathology in humans. Previous reports indicate that mouse models of the 22q11.2 microdeletion syndrome (22q11.2DS) may model the genetic basis of cognitive deficits relevant for neuropsychiatric disorders such as schizophrenia. To assess the models usefulness for drug discovery, a novel mouse (Df(h22q11)/+) was assessed in an extensive battery of cognitive assays by partners within the NEWMEDS collaboration (Innovative Medicines Initiative Grant Agreement No. 115008). This battery included classic and touchscreen-based paradigms with recognized sensitivity and multiple attempts at reproducing previously published findings in 22q11.2DS mouse models. This work represents one of the most comprehensive reports of cognitive functioning in a transgenic animal model. In accordance with previous reports, there were non-significant trends or marginal impairment in some tasks. However, the Df(h22q11)/+ mouse did not show comprehensive deficits; no robust impairment was observed following more than 17 experiments and 14 behavioral paradigms. Thus – within the current protocols – the 22q11.2DS mouse model fails to mimic the cognitive alterations observed in human 22q11.2 deletion carriers. We suggest that the 22q11.2DS model may induce liability for cognitive dysfunction with additional “hits” being required for phenotypic expression. PMID:27507786

  14. Associations between social cognition, skills, and function and subclinical negative and positive symptoms in 22q11.2 deletion syndrome

    DEFF Research Database (Denmark)

    Vangkilde, A; Jepsen, J R M; Schmock, H

    2016-01-01

    . Association between social impairment and negative and positive symptoms levels was examined in cases only. RESULTS: Subjects with 22q11.2DS were highly impaired in social function, social skills, and social cognition (p ≤ 6.2 × 10(-9)) relative to control peers and presented with more negative (p = 5.8 × 10......-related symptoms. The aims of this study were to conduct a comprehensive investigation of social impairments at three different levels (function, skill, and cognition) and their interrelationship and to determine to what degree the social impairments correlate to subclinical levels of negative and positive...... symptoms, respectively, in a young cohort of 22q11.2DS not diagnosed with schizophrenia. METHODS: The level of social impairment was addressed using questionnaires and objective measures of social functioning (The Adaptive Behavior Assessment System), skills (Social Responsiveness Scale), and cognition...

  15. Velocardiofacial syndrome in father and daughter: What is the mechanism for the deletion 22(q11.2q11.2) in only the daughter?

    Energy Technology Data Exchange (ETDEWEB)

    Magenis, R.E.; Gunter, K.; Toth-Fejel, S. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1994-09-01

    E.G. had marked feeding difficulty noted at birth; the cause was determined to be a paralyzed palate. In 1992 chromosome studies were performed because of the provisional diagnosis of velocardiofacial syndrome, and a small interstitial deletion of chromosome 22 was found. Recently the family was seen in our Genetics Clinic. The father had unusual facial features shared by his daughter, a paralyzed upper lip and a history of repaired Tetralogy of Fallot. His chromosomes appeared normal. FISH studies were performed on the child`s peripheral blood using the ONCOR DiGeorge region probe (D22S75) and the deletion verified. However, the father`s chromosomes were not deleted for the ONCOR probe (D22S75) and probe DO832 sent to us by Peter Scambler. Skin cells were then obtained and no deletion was detected in a total of 66 cells examined using both probes. Several questions arise from these data: does the father have velocardiofacial syndrome? Does he have occult mosaicism? Does he have a molecular deletion not detected by the probes used? And was this deletion somehow {open_quotes}amplified{close_quotes} in his daughter?

  16. Congenital Heart Disease as a Warning Sign for the Diagnosis of the 22q11.2 Deletion

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, Marcília S., E-mail: marcilia.grassi@hc.fm.usp.br; Jacob, Cristina M. A. [Instituto da Criança - HC-FMUSP, São Paulo, SP (Brazil); Kulikowski, Leslie D. [Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Pastorino, Antonio C. [Instituto da Criança - HC-FMUSP, São Paulo, SP (Brazil); Dutra, Roberta L. [Departamento de Patologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP (Brazil); Miura, Nana; Jatene, Marcelo B. [Instituto do Coração - HC-FMUSP, São Paulo, SP (Brazil); Pegler, Stephanie P.; Kim, Chong A.; Carneiro-Sampaio, Magda [Instituto da Criança - HC-FMUSP, São Paulo, SP (Brazil)

    2014-11-15

    To alert for the diagnosis of the 22q11.2 deletion syndrome (22q11.2DS) in patients with congenital heart disease (CHD). To describe the main CHDs, as well as phenotypic, metabolic and immunological findings in a series of 60 patients diagnosed with 22q11.2DS. The study included 60 patients with 22q11.2DS evaluated between 2007 and 2013 (M:F=1.3, age range 14 days to 20 years and 3 months) at a pediatric reference center for primary immunodeficiencies. The diagnosis was established by detection of the 22q11.2 microdeletion using FISH (n = 18) and/or MLPA (n = 42), in association with clinical and laboratory information. Associated CHDs, progression of phenotypic facial features, hypocalcemia and immunological changes were analyzed. CHDs were detected in 77% of the patients and the most frequent type was tetralogy of Fallot (38.3%). Surgical correction of CHD was performed in 34 patients. Craniofacial dysmorphisms were detected in 41 patients: elongated face (60%) and/or elongated nose (53.3%), narrow palpebral fissure (50%), dysplastic, overfolded ears (48.3%), thin lips (41.6%), elongated fingers (38.3%) and short stature (36.6%). Hypocalcemia was detected in 64.2% and decreased parathyroid hormone (PTH) level in 25.9%. Decrease in total lymphocytes, CD4 and CD8 counts were present in 40%, 53.3% and 33.3%, respectively. Hypogammaglobulinemia was detected in one patient and decreased concentrations of immunoglobulin M (IgM) in two other patients. Suspicion for 22q11.2DS should be raised in all patients with CHD associated with hypocalcemia and/or facial dysmorphisms, considering that many of these changes may evolve with age. The 22q11.2 microdeletion should be confirmed by molecular testing in all patients.

  17. Congenital Heart Disease as a Warning Sign for the Diagnosis of the 22q11.2 Deletion

    Directory of Open Access Journals (Sweden)

    Marcília S. Grassi

    2014-11-01

    Full Text Available Background: To alert for the diagnosis of the 22q11.2 deletion syndrome (22q11.2DS in patients with congenital heart disease (CHD. Objective: To describe the main CHDs, as well as phenotypic, metabolic and immunological findings in a series of 60 patients diagnosed with 22q11.2DS. Methods: The study included 60 patients with 22q11.2DS evaluated between 2007 and 2013 (M:F=1.3, age range 14 days to 20 years and 3 months at a pediatric reference center for primary immunodeficiencies. The diagnosis was established by detection of the 22q11.2 microdeletion using FISH (n = 18 and/or MLPA (n = 42, in association with clinical and laboratory information. Associated CHDs, progression of phenotypic facial features, hypocalcemia and immunological changes were analyzed. Results: CHDs were detected in 77% of the patients and the most frequent type was tetralogy of Fallot (38.3%. Surgical correction of CHD was performed in 34 patients. Craniofacial dysmorphisms were detected in 41 patients: elongated face (60% and/or elongated nose (53.3%, narrow palpebral fissure (50%, dysplastic, overfolded ears (48.3%, thin lips (41.6%, elongated fingers (38.3% and short stature (36.6%. Hypocalcemia was detected in 64.2% and decreased parathyroid hormone (PTH level in 25.9%. Decrease in total lymphocytes, CD4 and CD8 counts were present in 40%, 53.3% and 33.3%, respectively. Hypogammaglobulinemia was detected in one patient and decreased concentrations of immunoglobulin M (IgM in two other patients. Conclusion: Suspicion for 22q11.2DS should be raised in all patients with CHD associated with hypocalcemia and/or facial dysmorphisms, considering that many of these changes may evolve with age. The 22q11.2 microdeletion should be confirmed by molecular testing in all patients.

  18. Idiopathic thromobocytopenic purpura in two mothers of children with DiGeorge sequence: A new component manifestation of deletion 22q11?

    Energy Technology Data Exchange (ETDEWEB)

    Levy, A.; Philip, N. [Hopital d`Enfants de la Timone, Marseilles (France); Michel, G. [Hopital d`Enfants de la Timone, Marseilles (France)] [and others

    1997-04-14

    The phenotypic spectrum caused by the microdeletion of chromosome 22q11 region is known to be variable. Nearly all patients with DiGeorge sequence (DGS) and approximately 60% of patients with velocardiofacial syndrome exhibit the deletion. Recent papers have reported various congenital defects in patients with 22q11 deletions. Conversely, some patients have minimal clinical expression. Ten to 25% of parents of patients with DGS exhibit the deletion and are nearly asymptomatic. Two female patients carrying a 22q11 microdeletion and presenting with idiopathic thrombocytopenic purpura are reported. Both had children with typical manifestations of DGS. 12 refs., 4 figs., 1 tab.

  19. SNP Microarray in FISH Negative Clinically Suspected 22q11.2 Microdeletion Syndrome

    Directory of Open Access Journals (Sweden)

    Ashutosh Halder

    2016-01-01

    Full Text Available The present study evaluated the role of SNP microarray in 101 cases of clinically suspected FISH negative (noninformative/normal 22q11.2 microdeletion syndrome. SNP microarray was carried out using 300 K HumanCytoSNP-12 BeadChip array or CytoScan 750 K array. SNP microarray identified 8 cases of 22q11.2 microdeletions and/or microduplications in addition to cases of chromosomal abnormalities and other pathogenic/likely pathogenic CNVs. Clinically suspected specific deletions (22q11.2 were detectable in approximately 8% of cases by SNP microarray, mostly from FISH noninformative cases. This study also identified several LOH/AOH loci with known and well-defined UPD (uniparental disomy disorders. In conclusion, this study suggests more strict clinical criteria for FISH analysis. However, if clinical criteria are few or doubtful, in particular newborn/neonate in intensive care, SNP microarray should be the first screening test to be ordered. FISH is ideal test for detecting mosaicism, screening family members, and prenatal diagnosis in proven families.

  20. Growth in Chilean infants with chromosome 22q11 microdeletion syndrome.

    Science.gov (United States)

    Guzman, Maria Luisa; Delgado, Iris; Lay-Son, Guillermo; Willans, Edward; Puga, Alonso; Repetto, Gabriela M

    2012-11-01

    Chromosome 22q11 microdeletion syndrome has a wide range of clinical manifestations including congenital heart malformations, palatal defects, endocrine abnormalities, immunologic deficits, learning difficulties, and an increased predisposition to psychiatric disease. Short stature and poor weight gain in infancy are common findings and are usually seen in the absence of hormone deficiencies. An increased frequency of obesity has been observed in adolescents and adults. We generated gender-specific growth curves from 0 to 24 months of age, based on 479 length and 475 weight measurements from 138 Chilean patients with 22q11 deletion. Final adult height and weight on 25 individuals were analyzed. The 10th, 50th, and 90th centile-smoothed curves for infants were built using the LMS method and compared with World Health Organization Child Growth Standards. The 50th centile for length in the deleted patients was slightly lower than the 10th centile of WHO standards in boys and girls. The same was observed for weight, although a trend toward a gradual increase near 2 years of age was observed, particularly in boys. Average adult height was 152 cm (ranging from 143 to 162 cm) in females, corresponding to the 10th centiles of WHO standards, and 166 cm for males (160-172 cm), at the 20th centile of WHO standards. A third of the adult females and none of the males had body mass index (BMI) greater than 25. The curves should be useful to monitor growth in infants with 22q11 microdeletion syndrome.

  1. Use of amniocytes for prenatal diagnosis of 22q11.2 microdeletion syndrome: a feasibility study

    Institute of Scientific and Technical Information of China (English)

    LIU Tao; LIU Qing; WANG Yi-xin; YANG Dong; XIN Yi; FANG Zhen; DING Shu-fang; YANG Jie-fu

    2010-01-01

    Background A study of prenatal genetic diagnosis for 22q11.2 mierodeletion, which has a wide phenotypic spectrum that involves almost all organs, is rarely reported in China. This study aimed to explore the prevalence of 22q11.2 microdeletion in congenitally malformed fetuses via the fluorescent in situ hybridization (FISH) technique and to investigate the feasibility of use of amniocytes to diagnose 22q11.2 microdeletion syndrome prenatally.Methods The study enrolled 23 cases of fetal cardiac malformation, as indicated by ultrasound in Beijing Anzhen Hospital and 14 cases of non-cardiac malformation, as determined by type-B ultrasound in Beijing Anzhen Hospital and other hospitals. Amniotic fluid was obtained by amniocentesis before odinopoeia, and the stillborn fetuses of the induced labor were preceded to autopsy. The amniotic fluid of 20 cesarean deliveries during the same period of time was used as a control. The TUPLE1 gene in the amniotic fluid of malformed and normal fetuses was assessed by the FISH method.Results The prevalence rates of the TUPLE1 gene deletion in the amniotic fluid cells from fetuses with cardiac deformations and fetuses without such malformations were 43.5% and 57.1%, respectively. The deletion of TUPLE1 was significantly associated with fetal malformation.Conclusion Chromosome 22q11.2 microdeletion is one of the major factors leading to fetal congenital malformations, and prenatal FISH screening for 22q11.2 microdeletion syndrome is technically feasible using amniocytes.

  2. Predicting Reading Comprehension Academic Achievement in Late Adolescents with Velo-Cardio-Facial (22q11.2 Deletion) Syndrome (VCFS): A Longitudinal Study

    Science.gov (United States)

    Antshel, K.; Hier, B.; Fremont, W.; Faraone, S. V.; Kates, W.

    2014-01-01

    Background: The primary objective of the current study was to examine the childhood predictors of adolescent reading comprehension in velo-cardio-facial syndrome (VCFS). Although much research has focused on mathematics skills among individuals with VCFS, no studies have examined predictors of reading comprehension. Methods: 69 late adolescents…

  3. Neuropsychological, learning and psychosocial profile of primary school aged children with the velo-cardio-facial syndrome (22q11 deletion): evidence for a nonverbal learning disability?

    Science.gov (United States)

    Swillen, A; Vandeputte, L; Cracco, J; Maes, B; Ghesquière, P; Devriendt, K; Fryns, J P

    1999-12-01

    In this exploratory study, the neuropsychological and learning profile of nine primary school age children with velo-cardio-facial syndrome (VCFS) was studied by systematic neuropsychological testing. In five out of nine children, the following profile was found: a VIQ-PIQ discrepancy (in favor of the VIQ), significantly better scores (.05 level) for reading (decoding) and spelling compared to arithmetic, deficient tactile-perceptual skills (difficulties mainly on the left side of the body), weak but not deficient visual-perceptual abilities, deficient visual-spatial skills, extremely poor psychomotor skills (gross motor skills more deficient than fine motor skills), problems with processing of new and complex material, poor visual attention, good auditory memory and relatively good language skills. These findings correspond to the pattern of neuropsychological assets and deficits that has been described for the syndrome of nonverbal learning disabilities (NLD) (Rourke, 1987, 1988, 1989, 1995). The psychosocial profile of all nine children with VCFS also correspond to that of children with NLD. Further studies on the relationship between cognitive function, behavior, psychiatric disorder and abnormalities in brain anatomy in young people with VCFS will be needed. In clinical practice, it is worthwhile exploring in greater depth the neuropsychological functions of children with VCFS to rule out NLD, since they may benefit from specific remediation following the learning principles of the NLD-treatment.

  4. VEGFA polymorphisms and cardiovascular anomalies in 22q11 microdeletion syndrome: a case-control and family-based study.

    Science.gov (United States)

    Calderón, Juan Francisco; Puga, Alonso R; Guzmán, M Luisa; Astete, Carmen Paz; Arriaza, Marta; Aracena, Mariana; Aravena, Teresa; Sanz, Patricia; Repetto, Gabriela M

    2009-01-01

    Microdeletion 22q11 in humans causes velocardiofacial and DiGeorge syndromes. Most patients share a common 3Mb deletion, but the clinical manifestations are very heterogeneous. Congenital heart disease is present in 50-80% of patients and is a significant cause of morbidity and mortality. The phenotypic variability suggests the presence of modifiers. Polymorphisms in the VEGFA gene, coding for the vascular endothelial growth factor A, have been associated with non-syndromic congenital heart disease, as well as with the presence of cardiovascular anomalies in patients with microdeletion 22q11. We evaluated the association of VEGFA polymorphisms c.-2578C>A (rs699947), c.-1154G>A (rs1570360) and c.-634C>G (rs2010963) with congenital heart disease in Chilean patients with microdeletion 22q11. The study was performed using case-control and family-based association designs. We evaluated 122 patients with microdeletion 22q11 and known anatomy of the heart and great vessels, and their parents. Half the patients had congenital heart disease. We obtained no evidence of association by either method of analysis. Our results provide further evidence of the incomplete penetrance of the cardiovascular phenotype of microdeletion 22ql 1, but do not support association between VEGFA promoter polymorphisms and the presence of congenital heart disease in Chilean patients with this syndrome.

  5. Altered white matter microstructure is associated with social cognition and psychotic symptoms in 22q11.2 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Maria eJalbrzikowski

    2014-11-01

    Full Text Available 22q11.2 Microdeletion Syndrome (22q11DS is a highly penetrant genetic mutation associated with a significantly increased risk for psychosis. Aberrant neurodevelopment may lead to inappropriate neural circuit formation and cerebral dysconnectivity in 22q11DS, which may contribute to symptom development. Here we examined: 1 differences between 22q11DS participants and typically developing controls in diffusion tensor imaging (DTI measures within white matter tracts; 2 whether there is an altered age-related trajectory of white matter pathways in 22q11DS; and 3 relationships between DTI measures, social cognition task performance and positive symptoms of psychosis in 22q11DS and typically developing controls. Sixty-four direction diffusion weighted imaging data were acquired on 65 participants (36 22q11DS, 29 controls. We examined differences between 22q11DS vs. controls in measures of fractional anisotropy (FA, axial (AD and radial diffusivity (RD, using both a voxel-based and region of interest approach. Social cognition domains assessed were: Theory of Mind and emotion recognition. Positive symptoms were assessed using the Structured Interview for Prodromal Syndromes. Compared to typically developing controls, 22q11DS participants showed significantly lower AD and RD in multiple white matter tracts, with effects of greatest magnitude for AD in the superior longitudinal fasciculus. Additionally, 22q11DS participants failed to show typical age-associated changes in FA and RD in the left inferior longitudinal fasciculus. Higher AD in the left inferior fronto-occipital fasciculus and left uncinate fasciculus was associated with better social cognition in 22q11DS and controls. In contrast, greater severity of positive symptoms was associated with lower AD in bilateral regions of the inferior fronto-occipital fasciculus in 22q11DS. White matter microstructure in tracts relevant to social cognition is disrupted in 22q11DS, and may contribute to

  6. Social cognition in 22q11.2 microdeletion syndrome: relevance to psychosis?

    Science.gov (United States)

    Jalbrzikowski, Maria; Carter, Chelsea; Senturk, Damla; Chow, Carolyn; Hopkins, Jessica M; Green, Michael F; Galván, Adriana; Cannon, Tyrone D; Bearden, Carrie E

    2012-12-01

    22q11.2 deletion syndrome (22qDS) represents one of the largest known genetic risk factors for schizophrenia. Approximately 30% of individuals with 22qDS develop psychotic illness in adolescence or young adulthood. Given that deficits in social cognition are increasingly viewed as a central aspect of idiopathic schizophrenia, we sought to investigate abilities in this domain as a predictor of psychotic symptoms in 22qDS participants. We assessed multiple domains of social and non-social cognition in 22qDS youth to: 1) characterize performance across these domains in 22qDS, and identify whether 22qDS participants fail to show expected patterns of age-related improvements on these tasks; and 2) determine whether social cognition better predicts positive and negative symptoms than does non-social cognition. Task domains assessed were: emotion recognition and differentiation, Theory of Mind (ToM), verbal knowledge, visuospatial skills, working memory, and processing speed. Positive and negative symptoms were measured using scores obtained from the Structured Interview for Prodromal Symptoms (SIPS). 22qDS participants (N=31, mean age: 15.9) showed the largest impairment, relative to healthy controls (N=31, mean age: 15.6), on measures of ToM and processing speed. In contrast to controls, 22qDS participants did not show age-related improvements on measures of working memory and verbal knowledge. Notably, ToM performance was the best predictor of positive symptoms in 22qDS, accounting for 39% of the variance in symptom severity. Processing speed emerged as the best predictor of negative symptoms, accounting for 37% of the variance in symptoms. Given that ToM was a robust predictor of positive symptoms in our sample, these findings suggest that social cognition may be a valuable intermediate trait for predicting the development of psychosis.

  7. 22q11 deletion syndrome and urogenital manifestationsA clinicopathological case report and review of the literatureM.Vachette MD*, GE.Grant MD*, J.Bouquet de Joliniere MD.PhD*, M. Jotterand MD** N.Ben Ali MD*, A.Feki MD.PhD * and R.Brugger MD.*Department of gynecology and obstetrics, HFR, Fribourg, Switzerland.** Institute of pathology, CHUV, Lausanne, Switzerland.

    Directory of Open Access Journals (Sweden)

    Jean Bouquet De Jolinière

    2016-11-01

    Full Text Available Background: Deletion in the chromosomal region 22q11 results from the abnormal development of the third and fourth pharyngeal pouches during embryonic life and presents an expansive phenotype with more than 180 clinical features described that involve every organ and system. History and Signs: A 23-year-old African woman presented for the first trimester echography, which revealed an isolated anechoic structure suggesting a ureteral dilatation. The suspicion of a malposition of great arteries in the second trimester indicated an amniocentesis leading to a diagnosis of 22q11 deletion. Outcome: At 32 weeks, the patient was admitted for premature rupture of membranes and gave birth 2 weeks later to a male newborn that presented a respiratory distress syndrome and probably died secondary to a tracheal stenosis. Necropsy revealed typical clinical features of 22q11 deletion associated with left renal agenesis, hypospadias and penile hypoplasia. Conclusions: We report a case of 22q11 deletion syndrome with typical clinical features associated with urogenital manifestations suspected at the first trimester ultrasound.

  8. Extracorporeal membrane oxygenation in children with heart disease and del22q11 syndrome: a review of the Extracorporeal Life Support Organization Registry.

    Science.gov (United States)

    Prodhan, P; Gossett, J M; Rycus, P T; Gupta, P

    2015-11-01

    The study objective was to evaluate outcomes among children with del22q11 (DiGeorge) syndrome supported on ECMO for heart disease. The ELSO registry database was queried to include all children great vessels and interrupted aortic arch and requiring ECMO, from 1998-2011. The outcomes evaluated included mortality, ECMO duration and length of hospital stay in patients with del22q11 syndrome and with no del22q11 syndrome. Eighty-eight ECMO runs occurred in children with del22q11 syndrome while 2694 ECMO runs occurred in children without del22q11 syndrome. For patients with heart defects receiving ECMO, del22q11 syndrome did not confer a significant mortality risk or an increased risk of infectious complications before or while on ECMO support. Neither the duration of ECMO nor mechanical ventilation prior to ECMO deployment were prolonged in patients with del22q11 syndrome compared to the controls.

  9. Persistent gating deficit and increased sensitivity to NMDA receptor antagonism after puberty in a new mouse model of the human 22q11.2 microdeletion syndrome

    DEFF Research Database (Denmark)

    Didriksen, Michael; Fejgin, Kim; Nilsson, Simon R O;

    2016-01-01

    BACKGROUND: The hemizygous 22q11.2 microdeletion is a common copy number variant in humans. The deletion confers high risk for neurodevelopmental disorders, including autism and schizophrenia. Up to 41% of deletion carriers experience psychotic symptoms. METHODS: We present a new mouse model (Df...... displayed increased amplitude of loudness-dependent auditory evoked potentials. Prefrontal cortex and dorsal striatal elevations of the dopamine metabolite DOPAC and increased dorsal striatal expression of the AMPA receptor subunit GluR1 was found. The Df(h22q11)/+ mice did not deviate from wild-type mice...... conditions related to 22q11.2DS it is suggested to expose the Df(h22q11)/+ mice to environmental stressors that may unmask latent psychopathology. CONCLUSION: The Df(h22q11)/+ model will be a valuable tool for increasing our understanding of the etiology of schizophrenia and other psychiatric disorders...

  10. Detecting 22q11.2 deletions by use of multiplex ligation-dependent probe amplification on DNA from neonatal dried blood spot samples

    DEFF Research Database (Denmark)

    Sørensen, Karina M; Agergaard, Peter; Olesen, Charlotte;

    2010-01-01

    of 22q11.2 deletions among certain manifestations, eg, congenital heart disease, on selected Danes, a multiplex ligation-dependant probe amplification (MLPA) analysis was designed. The analysis was planned to be performed on DNA extracted from dried blood spot samples (DBSS) obtained from Guthrie cards...... MLPA design using nine patients diagnosed with the 22q11.2 deletion and 101 controls. All deletions were identified using DNA extracted from DBSS, and no copy number variations were detected in the controls, resulting in a specificity and sensitivity of 100%. It is thereby concluded that the novel MLPA...

  11. Genetics Home Reference: 22q11.2 deletion syndrome

    Science.gov (United States)

    ... increased risk of developing mental illnesses such as schizophrenia , depression, anxiety, and bipolar disorder . Additionally, affected children ... each cell. This region contains 30 to 40 genes, many of which have not been well characterized. ...

  12. Clinical, cytogenetic, and molecular outcomes in a series of 66 patients with Pierre Robin sequence and literature review: 22q11.2 deletion is less common than other chromosomal anomalies.

    Science.gov (United States)

    Gomez-Ospina, Natalia; Bernstein, Jonathan A

    2016-04-01

    Pierre Robin sequence (PRS) is an important craniofacial anomaly that can be seen as an isolated finding or manifestation of multiple syndromes. 22q11.2 deletion and Stickler syndrome are cited as the two most common conditions associated with PRS, but their frequencies are debated. We performed a retrospective study of 66 patients with PRS and reviewed their genetic testing, diagnoses, and clinical findings. The case series is complemented by a comprehensive literature review of the nature and frequency of genetic diagnosis in PRS. In our cohort 65% of patients had associated anomalies; of these, a genetic diagnosis was established in 56%. Stickler syndrome was the most common diagnosis, comprising approximately 11% of all cases, followed by Treacher Collins syndrome (9%). The frequency of 22q11.2 deletion was 1.5%. Chromosome arrays, performed for 72% of idiopathic PRS with associated anomalies, revealed two cases of 18q22→qter deletion, a region not previously reported in association with PRS. A review of the cytogenetic anomalies identified in this population supports an association between the 4q33-qter, 17q24.3, 2q33.1, and 11q23 chromosomal loci and PRS. We found a low frequency of 22q11.2 deletion in PRS, suggesting it is less commonly implicated in this malformation. Our data also indicate a higher frequency of cytogenetic anomalies in PRS patients with associated anomalies, and a potential new link with the 18q22→qter locus. The present findings underscore the utility of chromosomal microarrays in cases of PRS with associated anomalies and suggest that delaying testing for apparently isolated cases should be considered.

  13. A rare association of interrupted aortic arch type C and microdeletion 22q11.2.

    Science.gov (United States)

    Cuturilo, Goran; Drakulic, Danijela; Stevanovic, Milena; Jovanovic, Ida; Djukic, Milan; Miletic-Grkovic, Slobodanka; Atanaskovic-Markovic, Marina

    2008-10-01

    Microdeletion 22q11.2 is associated with a variety of findings, and the most common are cardiac defects. It is very frequently associated with interrupted aortic arch (IAA) type B and very rarely with type A and type C. Here we report the first case of IAA type C associated with 22q11.2 deletion in Serbia and, to the best of our knowledge, the fourth case described worldwide so far. By this report we would like to point out that all patients with IAA type C who have additional features specific for 22q11.2 microdeletion syndrome should be screened for the presence of this deletion.

  14. Cognitive behavioral therapy in 22q11.2 microdeletion with psychotic symptoms: What do we learn from schizophrenia?

    Science.gov (United States)

    Demily, Caroline; Franck, Nicolas

    2016-11-01

    The 22q11.2 deletion syndrome (22q11.2DS) is one of the most common microdeletion syndromes, with a widely underestimated prevalence between 1 per 2000 and 1 per 6000. Since childhood, patients with 22q11.2DS are described as having difficulties to initiate and maintain peer relationships. This lack of social skills has been linked to attention deficits/hyperactivity disorder, anxiety and depression. A high incidence of psychosis and positive symptoms is observed in patients with 22q11.2DS and remains correlated with poor social functioning, anxiety and depressive symptoms. Because 22q11.2DS and schizophrenia share several major clinical features, 22q11.2DS is sometimes considered as a genetic model for schizophrenia. Surprisingly, almost no study suggests the use of cognitive and behavioral therapy (CBT) in this indication. We reviewed what should be learned from schizophrenia to develop specific intervention for 22q11.2DS. In our opinion, the first step of CBT approach in 22q11.2DS with psychotic symptoms is to identify precisely which tools can be used among the already available ones. Cognitive behavioral therapy (CBT) targets integrated disorders, i.e. reasoning biases and behavior disorders. In 22q11.2DS, CBT-targeted behavior disorders may take the form of social avoidance and withdrawal or, in the contrary, a more unusual disinhibition and aggressiveness. In our experience, other negative symptoms observed in 22q11.2DS, such as motivation deficit or anhedonia, may also be reduced by CBT. Controlled trials have been studying the benefits of CBT in schizophrenia and several meta-analyses proved its effectiveness. Therefore, it is legitimate to propose this tool in 22q11.2DS, considering symptoms similarities. Overall, CBT is the most effective psychosocial intervention on psychotic symptoms and remains a relevant complement to pharmacological treatments such as antipsychotics.

  15. Explaining the variable penetrance of CNVs: Parental intelligence modulates expression of intellectual impairment caused by the 22q11.2 deletion.

    Science.gov (United States)

    Klaassen, Petra; Duijff, Sasja; Swanenburg de Veye, Henriëtte; Beemer, Frits; Sinnema, Gerben; Breetvelt, Elemi; Schappin, Renske; Vorstman, Jacob

    2016-09-01

    The role of rare genetic variants, in particular copy number variants (CNVs), in the etiology of neurodevelopmental disorders is becoming increasingly clear. While the list of these disorder-related CNVs continues to lengthen, it has also become clear that in nearly all genetic variants the proportion of carriers who express the associated phenotype is far from 100%. To understand this variable penetrance of CNVs it is important to realize that even the largest CNVs represent only a tiny fraction of the entire genome. Therefore, part of the mechanism underlying the variable penetrance of CNVs is likely the modulatory impact of the rest of the genome. In the present study we used the 22q11DS as a model to examine whether the observed penetrance of intellectual impairment-one of the main phenotypes associated with 22q11DS-is modulated by the intellectual level of their parents, for which we used the parents' highest level of education as a proxy. Our results, based on data observed in 171 children with 22q11DS in the age range of 5-15 years, showed a significant association between estimated parental cognitive level and intelligence in offspring (full scale, verbal and performance IQ), with the largest effect size for verbal IQ. These results suggest that possible mechanisms involved in the variable penetrance observed in CNVs include the impact of genetic background and/or environmental influences. © 2016 Wiley Periodicals, Inc.

  16. Hominoid lineage specific amplification of low-copy repeats on 22q11.2 (LCR22s) associated with velo-cardio-facial/digeorge syndrome.

    Science.gov (United States)

    Babcock, Melanie; Yatsenko, Svetlana; Hopkins, Janet; Brenton, Matthew; Cao, Qing; de Jong, Pieter; Stankiewicz, Pawel; Lupski, James R; Sikela, James M; Morrow, Bernice E

    2007-11-01

    Segmental duplications or low-copy repeats (LCRs) constitute approximately 5% of the sequenced portion of the human genome and are associated with many human congenital anomaly disorders. The low-copy repeats on chromosome 22q11.2 (LCR22s) mediate chromosomal rearrangements resulting in deletions, duplications and translocations. The evolutionary mechanisms leading to LCR22 formation is unknown. Four genes, USP18, BCR, GGTLA and GGT, map adjacent to the LCR22s and pseudogene copies are located within them. It has been hypothesized that gene duplication occurred during primate evolution, followed by recombination events, forming pseudogene copies. We investigated whether gene duplication could be detected in non-human hominoid species. FISH mapping was performed using probes to the four functional gene loci. There was evidence for a single copy in humans but additional copies in hominoid species. We then compared LCR22 copy number using LCR22 FISH probes. Lineage specific LCR22 variation was detected in the hominoid species supporting the hypothesis. To independently validate initial findings, real time PCR, and screening of gorilla BAC library filters were performed. This was compared to array comparative genome hybridization data available. The most striking finding was a dramatic amplification of LCR22s in the gorilla. The LCR22s localized to the telomeric or subtelomeric bands of gorilla chromosomes. The most parsimonious explanation is that the LCR22s became amplified by inter-chromosomal recombination between telomeric bands. In summary, our results are consistent with a lineage specific coupling between gene and LCR22 duplication events. The LCR22s thus serve as an important model for evolution of genome variation.

  17. Behavioral phenotype in children with 22q11DS: agreement between parents and teachers.

    Science.gov (United States)

    Klaassen, Petra W J; Duijff, Sasja N; Sinnema, Gerben; Beemer, Frits A; Swanenburg de Veye, Henriëtte F N; Vorstman, Jacob A S

    2015-03-01

    Patients with the 22q11-deletion syndrome (22q11DS) are at an increased risk of developing schizophrenia. Besides the effects of genetic variation, environmental factors could also be important in modifying the risk of schizophrenia in 22q11DS patients. In particular, previous studies have shown the importance of stress as a precipitating factor of psychosis. An incongruence between the perceived and actual severity of behavioral and cognitive domains could lead caregivers, and even the children themselves, to make demands that are insufficiently adapted to the child's abilities, causing stress and anxiety. Here, we investigate whether such diagnostic discrepancies are indeed present by comparing parent and teacher reports on behavioral concerns in children with 22q11DS. Behavioral questionnaires (CBCL and TRF) were prepared for both parents and teachers of 146 children with 22q11DS. We found that in line with previous reports, internalizing behavior was more frequently reported than externalizing behavior. While the behavioral profiles reported by parents and teachers were remarkably similar, the teachers' ratings were significantly lower (Total problem score p = .002). Age and IQ were not significantly associated with the severity of reported concerns. Our results indicate that indeed a disparity often exists between parents' and teachers' perceptions of the severity of a child's behavioral deficits. This may result in (substantially) different demands and expectations being placed on the child from the two fronts. We speculate that the stress resulting from this lack of cohesion between parents and teachers could precipitate, at least in some 22q11DS children, the emergence of psychosis.

  18. Evaluación citogenética y de pérdida de la heterocigosidad de la región 22q11.2 en pacientes con el Síndrome de DiGeorge = Cytogenetic evaluation and loss of heterozigocity of chromosome 22q11.2 in patients with the DiGeorge syndrome

    OpenAIRE

    Gallego García, Germán Andreo; Trujillo Vargas, Claudia Milena; Garcés Samudio, Carlos Guillermo; Muñeton Peña, Carlos Mario; Orrego Arango, Julio César; Franco Restrepo, José Luis

    2011-01-01

    Objetivo: evaluar la utilidad de la PCR para marcadores microsatélites (PCR-STR) en la región 22q11.2 en el ADN genómico, para identificar microdeleciones en pacientes con síndrome de DiGeorge (SDG). Materiales y Métodos: se hizo un análisis de las historias clínicas de tres niñas con SDG y se investigaron deleciones en el cromosoma 22q11.2 mediante FISH y PCR-STR. Resultados: la FISH logró detectar deleciones en 22q11.2 en dos de las tres pacientes. Por su parte, por medio de la PCR-STR, se ...

  19. An atypical 0.8 Mb inherited duplication of 22q11.2 associated with psychomotor impairment.

    Science.gov (United States)

    Pebrel-Richard, Céline; Kemeny, Stéphan; Gouas, Laetitia; Eymard-Pierre, Eléonore; Blanc, Nathalie; Francannet, Christine; Tchirkov, Andreï; Goumy, Carole; Vago, Philippe

    2012-11-01

    Microduplications 22q11.2 have been recently characterized as a new genomic duplication syndrome showing an extremely variable phenotype ranging from normal or mild learning disability to multiple congenital defects and sharing some overlapping features with DiGeorge/velocardiofacial syndrome (DGS/VCFS), including heart defects, urogenital abnormalities and velopharyngeal insufficiency. We present an atypical and inherited 0.8-Mb duplication at 22q11.2, in the distal segment of the DGS/VCFS syndrome typically deleted region (TDR), in a 3-year-old boy with motor delay, language disorders and mild facial phenotype. This 22q11.2 microduplication was identified by MLPA, designed to detect recurrent microdeletions and microduplications of chromosomal regions frequently involved in mental retardation syndromes and was further characterized by aCGH. The duplicated region encompasses 14 genes, excluding TBX1 but including CRKL, ZNF74, PIK4CA, SNAP29 and PCQAP known to contribute to several aspects of the DGS/VCFS phenotype. To the best of our knowledge, only one case of an isolated duplication in the distal segment of the TDR between chromosome 22-specific low-copy repeats B (LCR22-B) and D (LCR22-D) has been published, but the present report is the first one with a detailed description of physical and developmental features in a patient carrying this kind of atypical 22q11.2 duplication. This case illustrates the importance of reporting unusual 22q11.2 duplications to further evaluate the incidence of these rearrangements in the general population and to improve genotype-phenotype correlations and genetic counseling.

  20. Evaluación citogenética y de pérdida de la heterocigosidad de la región 22q11.2 en pacientes con el Síndrome de DiGeorge = Cytogenetic evaluation and loss of heterozigocity of chromosome 22q11.2 in patients with the DiGeorge syndrome

    Directory of Open Access Journals (Sweden)

    Gallego García, Germán Andreo

    2011-09-01

    Full Text Available Objetivo: evaluar la utilidad de la PCR para marcadores microsatélites (PCR-STR en la región 22q11.2 en el ADN genómico, para identificar microdeleciones en pacientes con síndrome de DiGeorge (SDG. Materiales y Métodos: se hizo un análisis de las historias clínicas de tres niñas con SDG y se investigaron deleciones en el cromosoma 22q11.2 mediante FISH y PCR-STR. Resultados: la FISH logró detectar deleciones en 22q11.2 en dos de las tres pacientes. Por su parte, por medio de la PCR-STR, se logró establecer que la paciente n.º 1 presentaba una deleción de 1,5 Mb proximal al centrómero, la segunda de mayor frecuencia en los pacientes con SDG. La deleción fue de origen paterno. Para caracterizar el defecto molecular en las otras pacientes, sería necesario acoplar estudios de cromatografía a este método, que permitan determinar el tamaño molecular de cada uno de los alelos parentales, o bien, ampliar este análisis con más microsatélites informativos ubicados en la región 22q11.2 para así definir más precisamente el tamaño de la deleción. Conclusiones: la PCR-STR en el ADN genómico es una alternativa para identificar deleciones que afectan microsatélites en la región 22q11.2 a un menor costo que la FISH y con resultados más rápidos; al mismo tiempo permite definir el origen parental y el tamaño de la microdeleción. Esta información es valiosa para identificar los genes asociados con las características clínicas del síndrome.

  1. Genetics Home Reference: 22q11.2 duplication

    Science.gov (United States)

    ... Home Health Conditions 22q11.2 duplication 22q11.2 duplication Enable Javascript to view the expand/collapse boxes. ... PDF Open All Close All Description 22q11.2 duplication is a condition caused by an extra copy ...

  2. Haploinsufficiency of the 22q11.2-microdeletion gene Mrpl40 disrupts short-term synaptic plasticity and working memory through dysregulation of mitochondrial calcium

    Science.gov (United States)

    Devaraju, Prakash; Yu, Jing; Eddins, Donnie; Mellado-Lagarde, Marcia M.; Earls, Laurie R.; Westmoreland, Joby J.; Quarato, Giovanni; Green, Douglas R.; Zakharenko, Stanislav S.

    2016-01-01

    Hemizygous deletion of a 1.5- to 3-megabase region on chromosome 22 causes 22q11.2 deletion syndrome (22q11DS), which constitutes one of the strongest genetic risks for schizophrenia. Mouse models of 22q11DS have abnormal short-term synaptic plasticity (STP) that contributes to working memory deficiencies similar to those in schizophrenia. We screened mutant mice carrying hemizygous deletions of 22q11DS genes and identified haploinsufficiency of Mrpl40 (mitochondrial large ribosomal subunit protein 40) as a contributor to abnormal STP. Two-photon imaging of the genetically encoded fluorescent calcium indicator GCaMP6, expressed in presynaptic cytosol or mitochondria, showed that Mrpl40 haploinsufficiency deregulates STP via impaired calcium extrusion from the mitochondrial matrix through the mitochondrial permeability transition pore. This led to abnormally high cytosolic calcium transients in presynaptic terminals and deficient working memory but did not affect long-term spatial memory. Thus, we propose that mitochondrial calcium deregulation is a novel pathogenic mechanism of cognitive deficiencies in schizophrenia. PMID:27184122

  3. Screening for Mutations in the TBX1 Gene on Chromosome 22q11.2 in Schizophrenia

    Directory of Open Access Journals (Sweden)

    Lieh-Yung Ping

    2016-11-01

    Full Text Available A higher-than-expected frequency of schizophrenia in patients with 22q11.2 deletion syndrome suggests that chromosome 22q11.2 harbors the responsive genes related to the pathophysiology of schizophrenia. The TBX1 gene, which maps to the region on chromosome 22q11.2, plays a vital role in neuronal functions. Haploinsufficiency of the TBX1 gene is associated with schizophrenia endophenotype. This study aimed to investigate whether the TBX1 gene is associated with schizophrenia. We searched for mutations in the TBX1 gene in 652 patients with schizophrenia and 567 control subjects using a re-sequencing method and conducted a reporter gene assay. We identified six SNPs and 25 rare mutations with no association with schizophrenia from Taiwan. Notably, we identified two rare schizophrenia-specific mutations (c.-123G>C and c.-11delC located at 5′ UTR of the TBX1 gene. The reporter gene assay showed that c.-123C significantly decreased promoter activity, while c.-11delC increased promoter activity compared with the wild-type. Our findings suggest that the TBX1 gene is unlikely a major susceptible gene for schizophrenia in an ethnic Chinese population for Taiwan, but a few rare mutations in the TBX1 gene may contribute to the pathogenesis of schizophrenia in some patients.

  4. Comparing the neural bases of self-referential processing in typically developing and 22q11.2 adolescents.

    Science.gov (United States)

    Schneider, Maude; Debbané, Martin; Lagioia, Annalaura; Salomon, Roy; d'Argembeau, Arnaud; Eliez, Stephan

    2012-04-01

    The investigation of self-reflective processing during adolescence is relevant, as this period is characterized by deep reorganization of the self-concept. It may be the case that an atypical development of brain regions underlying self-reflective processing increases the risk for psychological disorders and impaired social functioning. In this study, we investigated the neural bases of self- and other-related processing in typically developing adolescents and youths with 22q11.2 deletion syndrome (22q11DS), a rare neurogenetic condition associated with difficulties in social interactions and increased risk for schizophrenia. The fMRI paradigm consisted in judging if a series of adjectives applied to the participant himself/herself (self), to his/her best friend or to a fictional character (Harry Potter). In control adolescents, we observed that self- and other-related processing elicited strong activation in cortical midline structures (CMS) when contrasted with a semantic baseline condition. 22q11DS exhibited hypoactivation in the CMS and the striatum during the processing of self-related information when compared to the control group. Finally, the hypoactivation in the anterior cingulate cortex was associated with the severity of prodromal positive symptoms of schizophrenia. The findings are discussed in a developmental framework and in light of their implication for the development of schizophrenia in this at-risk population.

  5. Supporting Children with Genetic Syndromes in the Classroom: The Example of 22q Deletion Syndrome

    Science.gov (United States)

    Reilly, Colin; Stedman, Lindsey

    2013-01-01

    An increasing number of children are likely to have a known genetic cause for their special educational needs. One such genetic condition is 22q11.2 deletion syndrome (22qDS), a genetic syndrome associated with early speech and language difficulties, global and specific cognitive impairments, difficulties with attention and difficulties with…

  6. Schizophrenia and chromosomal deletions

    Energy Technology Data Exchange (ETDEWEB)

    Lindsay, E.A.; Baldini, A. [Baylor College of Medicine, Houston, TX (United States); Morris, M. A. [Univ. of Geneva School of Medicine, NY (United States)] [and others

    1995-06-01

    Recent genetic linkage analysis studies have suggested the presence of a schizophrenia locus on the chromosomal region 22q11-q13. Schizophrenia has also been frequently observed in patients affected with velo-cardio-facial syndrome (VCFS), a disorder frequently associated with deletions within 22q11.1. It has been hypothesized that psychosis in VCFS may be due to deletion of the catechol-o-methyl transferase gene. Prompted by these observations, we screened for 22q11 deletions in a population of 100 schizophrenics selected from the Maryland Epidemiological Sample. Our results show that there are schizophrenic patients carrying a deletion of 22q11.1 and a mild VCFS phenotype that might remain unrecognized. These findings should encourage a search for a schizophrenia-susceptibility gene within the deleted region and alert those in clinical practice to the possible presence of a mild VCFS phenotype associated with schizophrenia. 9 refs.

  7. Searching for a Schizophrenia Susceptibility Gene in the 22q11 Region

    Institute of Scientific and Technical Information of China (English)

    LIN XIE; GUI-ZHI JU; SHU-ZHENG LIU; JIE-PING SHI; YA-QIN YU; JUN WEI

    2005-01-01

    Objective To investigate a genetic association for schizophrenia within chromosome 22q11 in a Chinese Han population. Methods The PCR-based restriction fragment length polymorphism (PCR-RFLP) analysis was used to detect three single nucleotide polymorphisms (SNPs), rs165655 (A/G base change) and rs165815 (C/T base change) present in the ARVCF (armadillo repeat gene deletion in velocardiofacial syndrome) locus, and rs756656 (A/C base change) in the LOC128979 (expressed sequence tags, EST) locus, among 100 Chinese family trios consisting of fathers, mothers and affected offspring with schizophrenia. Genotype data were analyzed by using linkage disequilibrium (LD) methods including haplotype relative risk (HRR) analysis, transmission disequilibrium test (TDT) and haplotype transmission analysis. Results The genotype frequency distributions of three SNPs were all in Hardy-Weinberg equilibrium (P>0.05). Both the HRR and the TDT analysis showed that rs165815 was associated with schizophrenia (χ2=6.447, df=1, P=0.011 and χ2=6.313, df=1, P=0.012, respectively), whereas the other two SNPs did not show any allelic association. The haplotype transmission analysis showed a biased transmission for the rs165655-rs165815 haplotype system (χ2=17.224, df=3, P=0.0006) and for the rs756656- rs165655-rs165815 hapoltype system (χ2=20.965, df=7, P=0.0038). Conclusion Either the ARVCF gene itself or a nearby locus may confer susceptibility to schizophrenia in a Chinese Han population.

  8. Graph theory reveals dysconnected hubs in 22q11DS and altered nodal efficiency in patients with hallucinations

    Directory of Open Access Journals (Sweden)

    Marie-Christine eOttet

    2013-09-01

    Full Text Available Schizophrenia is postulated to be the prototypical dysconnection disorder, in which hallucinations are the core symptom. Due to high heterogeneity in methodology across studies and the clinical phenotype, it remains unclear whether the structural brain dysconnection is global or focal and if clinical symptoms result from this dysconnection. In the present work, we attempt to clarify this issue by studying a population considered as a homogeneous genetic sub-type of schizophrenia, namely the 22q11.2 deletion syndrome (22q11.2DS. Cerebral MRIs were acquired for 46 patients and 48 age and gender matched controls (aged 6 to 26, respectively mean age = 15.20 ± 4.53 and 15.28 ± 4.35 years old. Using the Connectome mapper pipeline (connectomics.org that combines structural and diffusion MRI, we created a whole brain network for each individual. The graph theory was used to quantify the global and local properties in the brain network organization for each participant. A global degree loss of 6% was found in patients’ network along with an increased Characteristic Path Length. After identifying and comparing hubs, a significant loss of degree in patients’ hubs was found in 58% of them. Based on Allen’s brain network model for hallucinations, we explored the association between local efficiency and symptom severity. Negative correlations were found in the Broca’s area (p<0.004, the Wernicke area (p<0.023 and a positive correlation was found in the dorsolateral prefrontal cortex (DLPFC (p<0.014. In line with the dysconnection findings in schizophrenia, our results provide preliminary evidence for a targeted alteration in the brain network hubs’organisation in individuals with a genetic risk for schizophrenia. The study of specific disorganization in language, speech and thought regulation networks sharing similar network properties may help to understand their role in the hallucination mechanism.

  9. Characterization of the past and current duplication activities in the human 22q11.2 region

    Directory of Open Access Journals (Sweden)

    Morrow Bernice

    2011-01-01

    Full Text Available Abstract Background Segmental duplications (SDs on 22q11.2 (LCR22, serve as substrates for meiotic non-allelic homologous recombination (NAHR events resulting in several clinically significant genomic disorders. Results To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young Alu SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young AluYs at their breakpoints. Conclusions Our study indicates that AluYs are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and Alu elements.

  10. Síndrome de deleção 22q11.2 e cardiopatias congênitas

    OpenAIRE

    Rafael Fabiano M. Rosa; Zen, Paulo Ricardo G.; Graziadio, Carla; Paskulin,Giorgio Adriano

    2011-01-01

    OBJETIVO: Revisar as características clínicas, etiológicas e diagnósticas da síndrome de deleção 22q11 e sua associação com as cardiopatias congênitas. FONTES DOS DADOS: Foram pesquisados artigos científicos presentes nos portais Medline, Lilacs e SciELO, utilizando-se descritores específicos como "22q11", "DiGeorge syndrome", "velocardiofacial syndrome", "congenital heart defects" e "cardio-vascular malformations". O período adotado para a revisão foi de 1980 a 2009. SÍNTESE DOS DADOS: As ma...

  11. Detection of chromosomal abnormalities and the 22q11 microdeletion in fetuses with congenital heart defects.

    Science.gov (United States)

    Lv, Wei; Wang, Shuyu

    2014-11-01

    Chromosomal abnormalities and the 22q11 microdeletion are implicated in congenital heart defects (CHDs). This study was designed to detect these abnormalities in fetuses and determine the effect of genetic factors on CHD etiology. Between January 2010 and December 2011, 113 fetuses with CHD treated at the Beijing Obstetrics and Gynecology Hospital were investigated, using chromosome karyotyping of either amniotic fluid cell or umbilical cord blood cell samples. Fetuses with a normal result were then investigated for the 22q11 microdeletion by fluorescence in situ hybridization. Of the 113 patients, 12 (10.6%) exhibited chromosomal abnormalities, while 6 (5.3%) of the remaining 101 cases presented with a 22q11 microdeletion. The incidence of chromosomal abnormalities was significantly higher in the group of fetuses presenting with extracardiac malformations in addition to CHD (Pdefects, additional chromosomal analysis is required to detect extracardiac abnormalities. Fetuses with heart defects should also be considered for 22q11 microdeletion detection to evaluate fetal prognosis, particularly prior to surgery.

  12. Molecular Mechanisms and Diagnosis of Chromosome 22q11.2 Rearrangements

    Science.gov (United States)

    Emanuel, Beverly S.

    2008-01-01

    Several recurrent, constitutional genomic disorders are present on chromosome 22q. These include the translocations and deletions associated with DiGeorge and velocardiofacial syndrome and the translocations that give rise to the recurrent t(11;22) supernumerary der(22) syndrome (Emanuel syndrome). The rearrangement breakpoints on 22q cluster…

  13. Loss of heterozygosity on chromosome 10q22-10q23 and 22q 11.2-22q12.1 and p53 gene in primary hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Guang-Neng Zhu; Li Zuo; Qing Zhou; Su-Mei Zhang; Hua-Qing Zhu; Shu-Yu Gui; Yuan Wang

    2004-01-01

    AIM: To analyze loss of heterozygosity (LOH) and homozygous deletion on p53 gene (exon2-3, 4 and 11), chromosome10q22-10q23 and 22q11.2 -22q12.1 in human hepatocellular carcinoma (HCC).METHODS: PCR and PCR-based microsatellite polymorphism analysis techniques were used.RESULTS: LOH was observed at D10S579 (10q22-10q23)in 4 of 20 tumors (20%), at D22S421 (22q11.2-22q12.1) in3 of 20(15%), at TP53.A (p53 gene exon 2-3) in 4 of 20(20%), at TP53.B (p53 gene exon 4) in 6 of 20(30%), and at TP53.G (p53gene exon 11)in 0 of 20(0%). Homozygous deletion was detected at 10q22-10q23(8/20; 40%), 22q11.2-22q12.1(8/20; 40%), p53 gene exon 2-3(0/20;0%), p53gene exon 4(6/20; 30%), and p53gene exon 11(2/20; 10%).CONCLUSION: There might be unidentified tumor suppressor genes on chromosome 10q22-10q23 and 22q11.2-22q12.1 that contribute to the pathogenesis and development of HCC.

  14. Genetic Modifiers of the Physical Malformations in Velo-Cardio-Facial Syndrome/DiGeorge Syndrome

    Science.gov (United States)

    Aggarwal, Vimla S.; Morrow, Bernice E.

    2008-01-01

    Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), the most common micro-deletion disorder in humans, is characterized by craniofacial, parathyroid, and thymic defects as well as cardiac outflow tract malformations. Most patients have a similar hemizygous 3 million base pair deletion on 22q11.2. Studies in mouse have shown that "Tbx1", a…

  15. The role of modern imaging techniques in the diagnosis of malposition of the branch pulmonary arteries and possible association with microdeletion 22q11.2.

    Science.gov (United States)

    Cuturilo, Goran; Drakulic, Danijela; Krstic, Aleksandar; Gradinac, Marija; Ilisic, Tamara; Parezanovic, Vojislav; Milivojevic, Milena; Stevanovic, Milena; Jovanovic, Ida

    2013-04-01

    Malposition of the branch pulmonary arteries is a rare malformation with two forms. In the typical form, pulmonary arteries cross each other as they proceed to their respective lungs. The “lesser form” is characterised by the left pulmonary artery ostium lying directly superior to the ostium of the right pulmonary artery, without crossing of the branch pulmonary arteries. Malposition of the branch pulmonary arteries is often associated with other congenital heart defects and extracardiac anomalies, as well as with 22q11.2 microdeletion. We report three infants with crossed pulmonary arteries and one adolescent with “lesser form” of the malformation. The results suggest that diagnosis of malposition of the branch pulmonary arteries could be challenging if based solely on echocardiography, whereas modern imaging technologies such as contrast computed tomography and magnetic resonance angiography provide reliable establishment of diagnosis. In addition, we performed the first molecular characterisation of the 22q11.2 region among patients with malposition of the branch pulmonary arteries and revealed a 3-megabase deletion in two out of four patients

  16. MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions

    DEFF Research Database (Denmark)

    Kirchhoff, Maria; Bisgaard, Anne-Marie; Bryndorf, Thue;

    2007-01-01

    -Beuren, Prader-Willi, Angelman, Miller-Dieker, Smith-Magenis, and 22q11-deletion syndromes). Patients were initially referred for HR-CGH analysis and MRS-MLPA was performed retrospectively. MRS-MLPA analysis revealed imbalances in 15/258 patients (5.8%). Ten deletions were identified, including deletions of 1p36......, 5q35 (Sotos syndrome), 7q11 (Williams-Beuren syndrome), 17p11 (Smith-Magenis syndrome), 15q11 (Angelman syndrome) and 22q11. Duplications were detected in 5q35, 7q11, 17p13, 17p11 and 22q11. We reviewed another 170 patients referred specifically for MRS-MLPA analysis. Eighty of these patients were...

  17. CHARGE syndrome : a review of the immunological aspects

    NARCIS (Netherlands)

    Wong, Monica Ty; Scholvinck, Elisabeth H.; Lambeck, Annechien Ja; van Ravenswaaij-Arts, Conny Ma

    2015-01-01

    CHARGE syndrome is caused by a dominant variant in the CHD7 gene. Multiple organ systems can be affected because of haploinsufficiency of CHD7 during embryonic development. CHARGE syndrome shares many clinical features with the 22q11.2 deletion syndrome. Immunological abnormalities have been describ

  18. Síndrome de deleção 22q11.2: compreendendo o CATCH22

    OpenAIRE

    Rafael Fabiano M. Rosa; Zen, Paulo Ricardo G.; Roman, Tatiana; Graziadio, Carla; Paskulin,Giorgio Adriano

    2009-01-01

    OBJETIVO:Realizar uma revisão dos aspectos históricos, epidemiológicos, clínicos, etiológicos e laboratoriais da síndrome de deleção 22q11.2, salientando-se a importância e as dificuldades do seu diagnóstico. FONTES DE DADOS: Pesquisa nas bases de dados Medline, Lilacs e SciELO, além da Internet e capítulos de livros em inglês, acerca de publicações feitas entre 1980 e 2008. Para isso, utilizaram-se os descritores "22q11", "DiGeorge", "Velocardiofacial" e "CATCH22". SÍNTESE DOS DADOS: A síndr...

  19. How many breaks do we need to CATCH on 22q11?

    Energy Technology Data Exchange (ETDEWEB)

    Dallapiccola, B.; Pizzuti, A.; Novelli, G. [Univ. of Rome, Rome (Italy)]|[Univ. of Milan (Italy)]|[CSS IRCCS Hospital, San Giovanni Rotondo (Italy)

    1996-07-01

    The major clinical manifestations of DiGeorge syndrome (DGS; MIM 188400), which reflect developmental abnormalities of the 3d and 4th pharyngeal pouch derivatives, include thymus- and parathyroid-gland aplasia or hypoplasia and conotruncal cardiac malformations. The additional dysmorphic facial features, such as hypertelorism, cleft lip and palate, bifid uvula, and small/low-set ears, which are also common, presumably reflect the same defect. The DGS phenotype has been associated with chromosome abnormalities and, sometimes, is the effect of teratogenic agents such as retinoic acid and alcohol. 53 refs., 1 fig.

  20. Estudio de la psicopatología en una población de pacientes con microdeleción 22q11.2

    OpenAIRE

    2016-01-01

    El síndrome de deleción 22q11.2 (22q11.2 DS; OMIM # 188400) es un trastorno genético que puede presentar diversas malformaciones físicas, déficit cognitivo y trastornos psicopatológicos. Los objetivos del estudio han consistido en evaluar el nivel de inteligencia y los trastornos psiquiátricos de los pacientes con este síndrome en la etapa infanto-juvenil y determinar los factores genéticos, clínicos y sociodemográficos asociados. Hemos estudiado el perfil cognitivo y los trastornos psi...

  1. Over-expression of a human chromosome 22q11.2 segment including TXNRD2, COMT and ARVCF developmentally affects incentive learning and working memory in mice.

    Science.gov (United States)

    Suzuki, Go; Harper, Kathryn M; Hiramoto, Takeshi; Funke, Birgit; Lee, MoonSook; Kang, Gina; Buell, Mahalah; Geyer, Mark A; Kucherlapati, Raju; Morrow, Bernice; Männistö, Pekka T; Agatsuma, Soh; Hiroi, Noboru

    2009-10-15

    Duplication of human chromosome 22q11.2 is associated with elevated rates of mental retardation, autism and many other behavioral phenotypes. However, because duplications cover 1.5-6 Mb, the precise manner in which segments of 22q11.2 causally affect behavior is not known in humans. We have now determined the developmental impact of over-expression of an approximately 190 kb segment of human 22q11.2, which includes the genes TXNRD2, COMT and ARVCF, on behaviors in bacterial artificial chromosome (BAC) transgenic (TG) mice. BAC TG mice and wild-type (WT) mice were tested for their cognitive capacities, affect- and stress-related behaviors and motor activity at 1 and 2 months of age. An enzymatic assay determined the impact of BAC over-expression on the activity level of COMT. BAC TG mice approached a rewarded goal faster (i.e. incentive learning), but were impaired in delayed rewarded alternation during development. In contrast, BAC TG and WT mice were indistinguishable in rewarded alternation without delays, spontaneous alternation, prepulse inhibition, social interaction, anxiety-, stress- and fear-related behaviors and motor activity. Compared with WT mice, BAC TG mice had an approximately 2-fold higher level of COMT activity in the prefrontal cortex, striatum and hippocampus. These data suggest that over-expression of this 22q11.2 segment enhances incentive learning and impairs the prolonged maintenance of working memory, but has no apparent effect on working memory per se, affect- and stress-related behaviors or motor capacity. High copy numbers of this 22q11.2 segment might contribute to a highly selective set of phenotypes in learning and cognition during development.

  2. MicroRNA Profiling of Neurons Generated Using Induced Pluripotent Stem Cells Derived from Patients with Schizophrenia and Schizoaffective Disorder, and 22q11.2 Del.

    Directory of Open Access Journals (Sweden)

    Dejian Zhao

    Full Text Available We are using induced pluripotent stem cell (iPSC technology to study neuropsychiatric disorders associated with 22q11.2 microdeletions (del, the most common known schizophrenia (SZ-associated genetic factor. Several genes in the region have been implicated; a promising candidate is DGCR8, which codes for a protein involved in microRNA (miRNA biogenesis. We carried out miRNA expression profiling (miRNA-seq on neurons generated from iPSCs derived from controls and SZ patients with 22q11.2 del. Using thresholds of p<0.01 for nominal significance and 1.5-fold differences in expression, 45 differentially expressed miRNAs were detected (13 lower in SZ and 32 higher. Of these, 6 were significantly down-regulated in patients after correcting for genome wide significance (FDR<0.05, including 4 miRNAs that map to the 22q11.2 del region. In addition, a nominally significant increase in the expression of several miRNAs was found in the 22q11.2 neurons that were previously found to be differentially expressed in autopsy samples and peripheral blood in SZ and autism spectrum disorders (e.g., miR-34, miR-4449, miR-146b-3p, and miR-23a-5p. Pathway and function analysis of predicted mRNA targets of the differentially expressed miRNAs showed enrichment for genes involved in neurological disease and psychological disorders for both up and down regulated miRNAs. Our findings suggest that: i. neurons with 22q11.2 del recapitulate the miRNA expression patterns expected of 22q11.2 haploinsufficiency, ii. differentially expressed miRNAs previously identified using autopsy samples and peripheral cells, both of which have significant methodological problems, are indeed disrupted in neuropsychiatric disorders and likely have an underlying genetic basis.

  3. A new three-way variant t(15;22;17)(q22;q11.2;q21) in acute promyelocytic leukemia.

    Science.gov (United States)

    Kato, Takayasu; Hangaishi, Akira; Ichikawa, Motoshi; Motokura, Toru; Takahashi, Tsuyoshi; Kurokawa, Mineo

    2009-03-01

    Acute promyelocytic leukemia (APL) is characterized by the t(15;17)(q22;q21), which results in the fusion of the promyelocytic leukemia (PML) gene at 15q22 with the retinoic acid alpha-receptor (RARA) at 17q21. We report the case of a 44-year-old man with APL carrying a new complex variant translocation (15;22;17). Karyotypic analysis with G-banding of bone marrow cells revealed t(15;22;17) (q22;q11.2;q21). Fluorescence in situ hybridization with a PML/RARA dual-color DNA probe showed the fusion signals. RT-PCR analysis showed long-form PML/RARA fusion transcripts. A complete remission was attained with a course of conventional chemotherapy with all-trans retinoic acid (ATRA). This is the first report of a new three-way translocation of 22q11 involvement with APL.

  4. Interrupção do arco aórtico tipo B em uma paciente com síndrome de olho de gato Interrupción del arco aórtico tipo B en una paciente con síndrome del ojo de gato Interrupted aortic arch type B in A patient with cat eye syndrome

    Directory of Open Access Journals (Sweden)

    Sintia Iole Nogueira Belangero

    2009-05-01

    Full Text Available Relatamos um caso de paciente com Síndrome do Olho de Gato (Cat Eye Syndrome-CES e interrupção do arco aórtico tipo B, um achado típico na síndrome da deleção 22q11.2. A análise cromossômica e a técnica de hibridização fluorescente in situ (FISH mostraram um cromossomo marcador isodicêntrico supranumerário com bi-satélite derivado do cromossomo 22. O segmento de 22pter a 22q11.2 no cromossomo supranumerário encontrado em nosso paciente não estava em sobreposição com a região deletada em pacientes com a síndrome da deleção 22q11.2. Entretanto, o achado de interrupção do arco aórtico tipo B não é usual na CES, mas é um defeito cardíaco freqüente na síndrome da deleção 22q11.Informamos un caso de paciente con Síndrome de Ojo de Gato (Cat Eye Syndrome-CES e Interrupción del Arco Aórtico tipo B, un hallazgo típico en el síndrome de la deleción 22q11.2. El análisis cromosómico y la técnica de hibridación in situ fluorescente (FISH mostraron un cromosoma marcador isodicéntrico supernumerario bisatelitado derivado del cromosoma 22. El segmento de 22pter a 22q11.2 en el cromosoma supernumerario encontrado en nuestro paciente no estaba en sobreposición con la región deletada en pacientes con el síndrome de la deleción 22q11.2. Con todo, el hallazgo de interrupción del arco aórtico tipo B no es usual en el CES, sino que es un defecto cardíaco frecuente en el síndrome de deleción 22q11.We report a patient with cat eye syndrome and interrupted aortic arch type B, a typical finding in the 22q11.2 deletion syndrome. Chromosomal analysis and fluorescent in situ hybridization (FISH showed a supernumerary bisatellited isodicentric marker chromosome derived from chromosome 22. The segment from 22pter to 22q11.2 in the supernumerary chromosome found in our patient does not overlap with the region deleted in patients with the 22q11.2 deletion syndrome. However, the finding of an interrupted aortic arch type B is

  5. The chromosome 9q subtelomere deletion syndrome

    NARCIS (Netherlands)

    Stewart, D.R.; Kleefstra, T.

    2007-01-01

    The chromosome 9q subtelomere deletion syndrome (9qSTDS) is among the first and most common clinically recognizable syndromes to arise from widespread testing by fluorescent in situ hybridization (FISH) of subtelomere deletions. There are about 50 reported cases worldwide. Affected individuals invar

  6. 1p36 deletion syndrome: an update

    Directory of Open Access Journals (Sweden)

    Jordan VK

    2015-08-01

    Full Text Available Valerie K Jordan,1 Hitisha P Zaveri,2 Daryl A Scott1,2 1Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA; 2Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA Abstract: Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes. Keywords: chromosome 1p36, chromosome deletion, 1p36 deletion syndrome, monosomy 1p36

  7. "FISHed" out the diagnosis: A case of DiGeorge syndrome

    Directory of Open Access Journals (Sweden)

    S Bajaj

    2016-01-01

    Full Text Available Our patient presented with congenital heart disease (CHD: Tetralogy of Fallot, hypocalcemia, hypoparathyroidism, and facial dysmorphisms. Suspecting DiGeorge syndrome (DGS, a fluorescence in situ hybridization (FISH analysis for 22q11.2 deletion was made. The child had a hemizygous deletion in the 22q11.2 region, diagnostic of DGS. Unfortunately, the patient succumbed to the heart disease. DGS is the most common microdeletion syndrome, and probably underrecognized due to the varied manifestations. This case stresses the importance of a detailed physical examination and a high index of suspicion for diagnosing this genetic condition. Timely diagnosis can help manage and monitor these patients better and also offer prenatal diagnosis in the next pregnancy.

  8. Deletion 22q13.3 syndrome

    Directory of Open Access Journals (Sweden)

    Phelan Mary C

    2008-05-01

    Full Text Available Abstract The deletion 22q13.3 syndrome (deletion 22q13 syndrome or Phelan-McDermid syndrome is a chromosome microdeletion syndrome characterized by neonatal hypotonia, global developmental delay, normal to accelerated growth, absent to severely delayed speech, and minor dysmorphic features. The deletion occurs with equal frequency in males and females and has been reported in mosaic and non-mosaic forms. Due to lack of clinical recognition and often insufficient laboratory testing, the syndrome is under-diagnosed and its true incidence remains unknown. Common physical traits include long eye lashes, large or unusual ears, relatively large hands, dysplastic toenails, full brow, dolicocephaly, full cheeks, bulbous nose, and pointed chin. Behavior is autistic-like with decreased perception of pain and habitual chewing or mouthing. The loss of 22q13.3 can result from simple deletion, translocation, ring chromosome formation and less common structural changes affecting the long arm of chromosome 22, specifically the region containing the SHANK3 gene. The diagnosis of deletion 22q13 syndrome should be considered in all cases of hypotonia of unknown etiology and in individuals with absent speech. Although the deletion can sometimes be detected by high resolution chromosome analysis, fluorescence in situ hybridization (FISH or array comparative genomic hybridization (CGH is recommended for confirmation. Differential diagnosis includes syndromes associated with hypotonia, developmental delay, speech delay and/or autistic-like affect (Prader-Willi, Angelman, Williams, Smith-Magenis, Fragile X, Sotos, FG, trichorhinophalangeal and velocardiofacial syndromes, autism spectrum disorders, cerebral palsy. Genetic counseling is recommended and parental laboratory studies should be considered to identify cryptic rearrangements and detect parental mosaicism. Prenatal diagnosis should be offered for future pregnancies in those families with inherited rearrangements

  9. Chromosome 11q13 deletion syndrome

    Science.gov (United States)

    Kim, Yu-Seon; Kim, Gun-Ha; Byeon, Jung Hye; Eun, So-Hee

    2016-01-01

    Chromosome 11q13 deletion syndrome has been previously reported as either otodental syndrome or oculo-oto-dental syndrome. The otodental syndrome is characterized by dental abnormalities and high-frequency sensorineural hearing loss, and by ocular coloboma in some cases. The underlying genetic defect causing otodental syndrome is a hemizygous microdeletion involving the FGF3 gene on chromosome 11q13.3. Recently, a new form of severe deafness, microtia (small ear) and small teeth, without the appearance of eye abnormalities, was also reported. In this report, we describe a 1-year-old girl presenting with ptosis of the left upper eyelid, right auricular deformity, high-arched palate, delayed dentition, simian line on the right hand, microcephaly, and developmental delay. In this patient, we identified a deletion in the chromosome 11q13.2-q13.3 (2.75 Mb) region by using an array-comparative genomic hybridization analysis. The deletion in chromosome 11q13 results in a syndrome characterized by variable clinical manifestations. Some of these manifestations involve craniofacial dysmorphology and require a functional workup for hearing, ophthalmic examinations, and long-term dental care. PMID:28018436

  10. 荧光原位杂交技术产前诊断先天性心脏病22q11.2微缺失应用价值%The application value of fluorescence in situ hybridization in the detection of prenatal congenital heart disease with 22q11.2 microdeletion

    Institute of Scientific and Technical Information of China (English)

    辛毅; 潘晓冬; 刘晴; 丁书芳; 刘陶

    2012-01-01

    Objective; To evaluate clinical value of fluorescence in situ hybridization (FISH) in the di-agnosis of prenatal congenital heart disease with 22ql 1. 2 microdeletion. Methods: Amniotic fluid cells were collected from 70 pregnant women with indications of pathological diagnosis 16 ~ 27 weeks post pregnancy ( Ex-perimental group) and from 30 pregnant women with normal clinical index and cesarean deliveries (Control group).21, 13 chromosomal locus, 18, X, Y centromere and 22qll. 2 microdeletion probes were used respec-tively as FISH on uncultured amniotic fluid cells to inspect abnormality of the chromosome. Meanwhile, amniot-ic fluid cells from each individuals were cultured and conventional karyotype analysis was conducted. Results; 10 cases were detected as abnormal chromosome among the 70 pregnant women with 5 cases of chromosomal aneuploidy and 5 cases of 22qll.2 microdeletion; Meanwhile, karyotype analysis of cultured amniotic fluid cells detected merely 5 cases of chromosomal aneuploidy, which was consistent with FISH result. FISH detected 5 patients with 22qll. 2 microdeletion, which were entirely consistent with imaging findings before induction of labor and fetal autopsy results. Conclusion:FISH can detect 22 qll. 2 microdeletions in patients with congeni-tal heart disease and obviously improve the prenatal diagnostic rate, therefore it has the clinical value of popu-larization as an auxiliary examination items.%目的:探讨荧光原位杂交技术(FISH)检测先天性心脏病22q11.2微缺失产前诊断的临床应用价值.方法:选择70例有高危妊娠指征的孕妇羊水细胞作为病例组,30例临床诊断指征正常、剖宫产分娩的孕妇羊水细胞作为对照组,抽取16~27w孕妇羊水细胞利用21、13染色体位点和18、X、Y染色体着丝粒及22q11.2微缺失3组探针,用FISH技术对未培养羊水细胞进行检测;同时对所有受检者的羊水细胞进行培养,行染色体核型分析.结果:70例病例组FISH

  11. Familial deletion 18p syndrome: case report

    Directory of Open Access Journals (Sweden)

    Lemyre Emmanuelle

    2006-07-01

    Full Text Available Abstract Background Deletion 18p is a frequent deletion syndrome characterized by dysmorphic features, growth deficiencies, and mental retardation with a poorer verbal performance. Until now, five families have been described with limited clinical description. We report transmission of deletion 18p from a mother to her two daughters and review the previous cases. Case presentation The proband is 12 years old and has short stature, dysmorphic features and moderate mental retardation. Her sister is 9 years old and also has short stature and similar dysmorphic features. Her cognitive performance is within the borderline to mild mental retardation range. The mother also presents short stature. Psychological evaluation showed moderate mental retardation. Chromosome analysis from the sisters and their mother revealed the same chromosomal deletion: 46, XX, del(18(p11.2. Previous familial cases were consistent regarding the transmission of mental retardation. Our family differs in this regard with variable cognitive impairment and does not display poorer verbal than non-verbal abilities. An exclusive maternal transmission is observed throughout those families. Women with del(18p are fertile and seem to have a normal miscarriage rate. Conclusion Genetic counseling for these patients should take into account a greater range of cognitive outcome than previously reported.

  12. Utero-vaginal aplasia (Mayer-Rokitansky-Küster-Hauser syndrome associated with deletions in known DiGeorge or DiGeorge-like loci

    Directory of Open Access Journals (Sweden)

    Odent Sylvie

    2011-03-01

    Full Text Available Abstract Background Mayer-Rokitansky-Küster-Hauser (MRKH syndrome is characterized by congenital aplasia of the uterus and the upper part of the vagina in women showing normal development of secondary sexual characteristics and a normal 46, XX karyotype. The uterovaginal aplasia is either isolated (type I or more frequently associated with other malformations (type II or Müllerian Renal Cervico-thoracic Somite (MURCS association, some of which belong to the malformation spectrum of DiGeorge phenotype (DGS. Its etiology remains poorly understood. Thus the phenotypic manifestations of MRKH and DGS overlap suggesting a possible genetic link. This would potentially have clinical consequences. Methods We searched DiGeorge critical chromosomal regions for chromosomal anomalies in a cohort of 57 subjects with uterovaginal aplasia (55 women and 2 aborted fetuses. For this candidate locus approach, we used a multiplex ligation-dependent probe amplification (MLPA assay based on a kit designed for investigation of the chromosomal regions known to be involved in DGS. The deletions detected were validated by Duplex PCR/liquid chromatography (DP/LC and/or array-CGH analysis. Results We found deletions in four probands within the four chromosomal loci 4q34-qter, 8p23.1, 10p14 and 22q11.2 implicated in almost all cases of DGS syndrome. Conclusion Uterovaginal aplasia appears to be an additional feature of the broad spectrum of the DGS phenotype. The DiGeorge critical chromosomal regions may be candidate loci for a subset of MRKH syndrome (MURCS association individuals. However, the genes mapping at the sites of these deletions involved in uterovaginal anomalies remain to be determined. These findings have consequences for clinical investigations, the care of patients and their relatives, and genetic counseling.

  13. MRI assessment of bronchial compression in absent pulmonary valve syndrome and review of the syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Taragin, Benjamin H.; Berdon, Walter E. [Children' s Hospital of New York, Department of Radiology, New York, NY (United States); Prinz, B. [Children' s Hospital of New York, Department of Cardiology, New York, NY (United States)

    2006-01-01

    Absent pulmonary valve syndrome (APVS) is a rare cardiac malformation with massive pulmonary insufficiency that presents with short-term and long-term respiratory problems secondary to severe bronchial compression from enlarged central and hilar pulmonary arteries. Association with chromosome 22.Q11 deletions and DiGeorge syndrome is common. This historical review illustrates the airway disease with emphasis on assessment of the bronchial compression in patients with persistent respiratory difficulties post-valvular repair. Cases that had MRI for cardiac assessment are used to illustrate the pattern of airway disease. (orig.)

  14. Rare human diseases: 9p deletion syndrome

    Directory of Open Access Journals (Sweden)

    Galagan V.O.

    2014-09-01

    Full Text Available Objective of the study was to review the anamnesis, pheno - and genotype in patients with rare chromosome disorders such as 9p deletion syndrome. Genetic methods of investigation (clinical and genealogical, cytogenetic, FISH- method, paraclinical and instrumental methods of examination were used. Karyotyping was performed by the G-method of differential staining of chromosomes. Only three cases of pathology were diagnosed in the Medical Genetics Center over the last 10 years. By anamnesis data nobody in the probands’ families had bad habits, was exposed to occupational hazards, took part in the elimination of the Chernobyl accident or lived in contaminated areas. Clinical signs of diseases have not been identified in probands’ parents. All probands had trigonocephaly, bilateral epicanthal folds, ocular hypertelorism, downslanting palpebral fissures, long philtrum, flat face and nasal bridge, low set ears with malformed auricles. Two patients of three ones had exophthalmos, contracture of the second and third fingers, abnormal external genitalia. In all three cases there was monosomy of chromosome 9 of critical segment p 24. Normal karyotypes were seen in all parents, so there were three cases of new mutations of 9p deletion syndrome. Retardation of physical, psycho-spech, mental development in proband with or without congenital anomalies requires medical genetic counseling in a specialized institution. Cases of reproductive loss in anamnesis require cytogenetic investigation of fetal membranes and amniotic fluid.

  15. Human endogenous retrovirus family HERV-K(HML-2) RNA transcripts are selectively packaged into retroviral particles produced by the human germ cell tumor line Tera-1 and originate mainly from a provirus on chromosome 22q11.21.

    Science.gov (United States)

    Ruprecht, Klemens; Ferreira, Humberto; Flockerzi, Aline; Wahl, Silke; Sauter, Marlies; Mayer, Jens; Mueller-Lantzsch, Nikolaus

    2008-10-01

    The human germ cell tumor line Tera-1 produces retroviral particles which are encoded by the human endogenous retrovirus family HERV-K(HML-2). We show here, by quantitative reverse transcriptase PCR, that HML-2 gag and env RNA transcripts are selectively packaged into Tera-1 retroviral particles, whereas RNAs from cellular housekeeping genes and from other HERV families (HERV-H and HERV-W) are nonselectively copackaged. Assignment of cloned HML-2 gag and env cDNAs from Tera-1 retroviral particles to individual HML-2 loci in the human genome demonstrated that HML-2 RNA transcripts packaged into Tera-1 retroviral particles originate almost exclusively from an HML-2 provirus on chromosome 22q11.21. Based on relative cloning frequencies, this provirus was the most active among a total of eight transcribed HML-2 loci identified in Tera-1 cells. These data suggest that at least one HML-2 element, that is, the HML-2 provirus on 22q11.21, has retained the capacity for packaging RNA into HML-2-encoded retroviral particles. Given its elevated transcriptional activity and the presence of a full-length Gag open reading frame, the 22q11.21 HML-2 provirus may also significantly contribute to Gag protein and thus particle production in Tera-1 cells. Our findings provide important clues to the generation and biological properties of HML-2-encoded particles. In addition, copackaging of non-HML-2 HERV transcripts in HML-2-encoded particles should inform the debate about endogenous retroviral particles putatively encoded by non-HML-2 HERV families that have previously been described for other human diseases, such as multiple sclerosis.

  16. Caracterização do perfil comportamental e de competência social de indivíduos com a síndrome del22q11.2

    Directory of Open Access Journals (Sweden)

    Gabriela Mello Costa

    2015-08-01

    Full Text Available Resumo:OBJETIVO:caracterizar os problemas comportamentais e de competência social de indivíduos com a síndrome del22q11.2 e compará-los com indivíduos com desenvolvimento típico, segundo informação dos pais.MÉTODOS:participaram desta pesquisa 24 pais de indivíduos de ambos os gêneros, entre seis e 18 anos, sendo 12 indivíduos com a síndrome del22q11.2 (grupo amostral e 12 indivíduos com desenvolvimento típico (grupo controle. Foi aplicado o inventário comportamental "Child Behavior Checklist (CBCL".RESULTADOS:oito dos 12 indivíduos com a síndrome foram classificados como "clínico" nas escalas de comportamento e Problemas Internalizantes; cinco dos 12 indivíduos do grupo amostral foram classificados como "clínico" quanto às escalas de comportamento e Problemas Externalizantes. Nas habilidades de competência social, dez dos 12 indivíduos do grupo amostral foram classificados como "clínico".CONCLUSÃO:indivíduos com diagnóstico da síndrome del22q11.2 apresentaram, segundo opinião dos pais, problemas comportamentais e de competência social, em diferentes graus de comprometimento. Quando realizada a comparação entre os grupos pode-se observar diferenças estatisticamente significantes em variáveis dos comportamentos externalizantes e dos comportamentos internalizantes. Desta forma, concluí-se que o grupo amostral apresenta comportamentos mais alterados quando comparados ao grupo controle.

  17. Síndrome con deleción 22q11 (Síndrome velocardiofacial, reporte de los primeros casos en Costa Rica con diagnóstico citogenético

    Directory of Open Access Journals (Sweden)

    Oscar Porras

    2011-01-01

    Full Text Available El síndrome con deleción 22q11 es una enfermedad autosómica recesiva causada por una microdeleción 22q11.2. En este artículo se reportan los tres primeros casos del síndrome confirmados por citogenética en Costa Rica. El estudio de fluorescencia con hibridización in situ que demostró la microdeleción 22q11.2, se indicó por la sospecha clínica del síndrome, en 2 niños y una niña con malformaciones congénitas conotruncales de corazón. Dos de los casos se encuentran vivos a la fecha cuando se escribió este reporte y uno falleció en el postoperatorio inmediato de la cirugía para corregir la cardiopatía. Al inicio de los síntomas, en los tres casos se documentó falla para progresar y en dos se anotó dismorfismo en referencia a rasgos faciales anormales. En un caso se reportó paladar hendido y en otro pie, bott. A pesar de que la malformación congénita de corazón es el hallazgo clínico que con frecuencia induce al médico a pensar en este síndrome, los trastornos cognitivos y del comportamiento son las manifestaciones fenotípicas más frecuentes.

  18. Coexistence of 9p Deletion Syndrome and Autism Spectrum Disorder

    Science.gov (United States)

    Günes, Serkan; Ekinci, Özalp; Ekinci, Nuran; Toros, Fevziye

    2017-01-01

    Deletion or duplication of the short arm of chromosome 9 may lead to a variety of clinical conditions including craniofacial and limb abnormalities, skeletal malformations, mental retardation, and autism spectrum disorder. Here, we present a case report of 5-year-old boy with 9p deletion syndrome and autism spectrum disorder.

  19. Recurrence and Variability of Germline EPCAM Deletions in Lynch Syndrome

    NARCIS (Netherlands)

    Kuiper, Roland P.; Vissers, Lisenka E. L. M.; Venkatachalam, Ramprasath; Bodmer, Danielle; Hoenselaar, Eveline; Goossens, Monique; Haufe, Aline; Kamping, Eveline; Niessen, Renee C.; Hogervorst, Frans B. L.; Gille, Johan J. P.; Redeker, Bert; Tops, Carli M. J.; van Gijn, Marielle E.; van den Ouweland, Ans M. W.; Rahner, Nils; Steinke, Verena; Kahl, Philip; Holinski-Feder, Elke; Morak, Monika; Kloor, Matthias; Stemmler, Susanne; Betz, Beate; Hutter, Pierre; Bunyan, David J.; Syngal, Sapna; Culver, Julie O.; Graham, Tracy; Chan, Tsun L.; Nagtegaal, Iris D.; van Krieken, J. Han J. M.; Schackert, Hans K.; Hoogerbrugge, Nicoline; van Kessel, Ad Geurts; Ligtenberg, Marjolijn J. L.

    2011-01-01

    Recently, we identified 3' end deletions in the EPCAM gene as a novel cause of Lynch syndrome. These truncating EPCAM deletions cause allele-specific epigenetic silencing of the neighboring DNA mismatch repair gene MSH2 in tissues expressing EPCAM. Here we screened a cohort of unexplained Lynch-like

  20. Genetic Drivers of Kidney Defects in the DiGeorge Syndrome.

    Science.gov (United States)

    Lopez-Rivera, Esther; Liu, Yangfan P; Verbitsky, Miguel; Anderson, Blair R; Capone, Valentina P; Otto, Edgar A; Yan, Zhonghai; Mitrotti, Adele; Martino, Jeremiah; Steers, Nicholas J; Fasel, David A; Vukojevic, Katarina; Deng, Rong; Racedo, Silvia E; Liu, Qingxue; Werth, Max; Westland, Rik; Vivante, Asaf; Makar, Gabriel S; Bodria, Monica; Sampson, Matthew G; Gillies, Christopher E; Vega-Warner, Virginia; Maiorana, Mariarosa; Petrey, Donald S; Honig, Barry; Lozanovski, Vladimir J; Salomon, Rémi; Heidet, Laurence; Carpentier, Wassila; Gaillard, Dominique; Carrea, Alba; Gesualdo, Loreto; Cusi, Daniele; Izzi, Claudia; Scolari, Francesco; van Wijk, Joanna A E; Arapovic, Adela; Saraga-Babic, Mirna; Saraga, Marijan; Kunac, Nenad; Samii, Ali; McDonald-McGinn, Donna M; Crowley, Terrence B; Zackai, Elaine H; Drozdz, Dorota; Miklaszewska, Monika; Tkaczyk, Marcin; Sikora, Przemyslaw; Szczepanska, Maria; Mizerska-Wasiak, Malgorzata; Krzemien, Grazyna; Szmigielska, Agnieszka; Zaniew, Marcin; Darlow, John M; Puri, Prem; Barton, David; Casolari, Emilio; Furth, Susan L; Warady, Bradley A; Gucev, Zoran; Hakonarson, Hakon; Flogelova, Hana; Tasic, Velibor; Latos-Bielenska, Anna; Materna-Kiryluk, Anna; Allegri, Landino; Wong, Craig S; Drummond, Iain A; D'Agati, Vivette; Imamoto, Akira; Barasch, Jonathan M; Hildebrandt, Friedhelm; Kiryluk, Krzysztof; Lifton, Richard P; Morrow, Bernice E; Jeanpierre, Cecile; Papaioannou, Virginia E; Ghiggeri, Gian Marco; Gharavi, Ali G; Katsanis, Nicholas; Sanna-Cherchi, Simone

    2017-02-23

    Background The DiGeorge syndrome, the most common of the microdeletion syndromes, affects multiple organs, including the heart, the nervous system, and the kidney. It is caused by deletions on chromosome 22q11.2; the genetic driver of the kidney defects is unknown. Methods We conducted a genomewide search for structural variants in two cohorts: 2080 patients with congenital kidney and urinary tract anomalies and 22,094 controls. We performed exome and targeted resequencing in samples obtained from 586 additional patients with congenital kidney anomalies. We also carried out functional studies using zebrafish and mice. Results We identified heterozygous deletions of 22q11.2 in 1.1% of the patients with congenital kidney anomalies and in 0.01% of population controls (odds ratio, 81.5; P=4.5×10(-14)). We localized the main drivers of renal disease in the DiGeorge syndrome to a 370-kb region containing nine genes. In zebrafish embryos, an induced loss of function in snap29, aifm3, and crkl resulted in renal defects; the loss of crkl alone was sufficient to induce defects. Five of 586 patients with congenital urinary anomalies had newly identified, heterozygous protein-altering variants, including a premature termination codon, in CRKL. The inactivation of Crkl in the mouse model induced developmental defects similar to those observed in patients with congenital urinary anomalies. Conclusions We identified a recurrent 370-kb deletion at the 22q11.2 locus as a driver of kidney defects in the DiGeorge syndrome and in sporadic congenital kidney and urinary tract anomalies. Of the nine genes at this locus, SNAP29, AIFM3, and CRKL appear to be critical to the phenotype, with haploinsufficiency of CRKL emerging as the main genetic driver. (Funded by the National Institutes of Health and others.).

  1. A 22q11.2 amplification in the region encoding microRNA-650 correlates with the epithelial to mesenchymal transition in breast cancer primary cultures of Mexican patients

    Science.gov (United States)

    Lango-Chavarría, M.; Chimal-Ramírez, G.K.; Ruiz-Tachiquín, M.E.; Espinoza-Sánchez, N.A.; Suárez-Arriaga, M.C.; Fuentes-Pananá, E.M.

    2017-01-01

    Breast cancer ranks first in incidence and mortality in working age women. Cancer initiation and progression relies on accumulation of genetic and epigenetic aberrations that alter cellular processes, among them, epithelial to mesenchymal transition (EMT) denotes particularly aggressive neoplasias given its capacity to invade and metastasize. Several microRNAs (miRNA) have been found able to regulate gene expression at the core of EMT. In this study, the Affymetrix CytoScan HD array was used to analyze three different primary tumor cell isolates from Mexican breast cancer patients. We found an amplification in band 22q11.2 shared by the three samples, in the region that encodes miRNA-650. Overexpression of this miRNA has been associated with downregulation of tumor suppressors ING4 and NDRG2, which have been implicated in cancer progression. Using the Pathway Linker platform the ING4 and NDRG2 interaction networks showed a significant association with signaling pathways commonly deregulated in cancer. Also, several studies support their participation in the EMT. Supporting the latter, we found that the three primary isolates were E-cadherin negative, vimentin positive, presented a cancer stem cell-like phenotype CD44+CD24−/low and were invasive in Transwell invasion assays. This evidence suggests that the gain of region 22q11.2 contributes to trigger EMT. This is the first evidence linking miR-650 and breast cancer. PMID:28101578

  2. Deletions of the elastin gene in Williams Syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, F.; Nickerson, E.; McCaskill, C. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1994-09-01

    To investigate deletions in the elastin gene in patients with Williams Syndrome (WS), we screened 37 patients and their parents for deletions in the elastin gene by both fluorescence in situ hybridization (FISH) using cosmid cELN272 containing the 5{prime} end of the elastin gene and by polymerase chain reaction (PCR) using a primer pair which amplifies intron 17 in the elastin gene, producing a polymorphic amplification product. Thirty-two patients have been investigated by both the FISH and PCR techniques, one patient was studied only by PCR, and 4 patients were studied only by FISH. Overall, 34 of 37 patients (92%) were deleted for the elastin gene. Using the PCR marker, 14 patients were informative and 12 were shown to be deleted [maternal (n=5) and paternal (n=7)]. Using cosmid cELN272, 33 of 36 patients demonstrated a deletion of chromosome 7q11.23. In one family, both the mother and daughter were deleted due to an apparently de novo deletion arising in the mother. Three patients were not deleted using the elastin cosmid; 2 of these patients have classic WS. Another non-deleted patient has the typical facial features and hypercalcemia but normal intelligence. These three patients will be important in delineating the critical region(s) responsible for the facial features, hypercalcemia, mental retardation and supravalvular aortic stenosis (SVAS). There was not an absolute correlation between deletions in elastin and SVAS, although these individuals may be at risk for other cardiovascular complications such as hypertention. Since the majority of WS patients are deleted for a portion of the elastin gene, most likely this marker will be an important diagnostic tool, although more patients will need to be studied. Those patients who are not deleted but clinically have WS will be missed using only this one marker. Expansion of the critical region to other loci and identification of additional markers will be essential for identifying all patients with WS.

  3. Behavioral Phenotype in the 9q Subtelomeric Deletion Syndrome

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Kleefstra, T.; Egger, J.I.M.

    2010-01-01

    The 9q Subtelomeric Deletion Syndrome (9qSTDS) is clinically characterized by mental retardation, childhood hypotonia, and facial dysmorphisms. Haploinsufficiency of the EHMT1 gene has been demonstrated to be responsible for its core phenotype. In a significant number of patients behavioral abnormal

  4. The Danish 22q11 research initiative

    DEFF Research Database (Denmark)

    Schmock, Henriette; Vangkilde, Anders; Larsen, Kit Melissa

    2015-01-01

    Background : Neurodevelopmental brain disorders such as schizophrenia, autism and attention deficit hyperactivity disorder are complex disorders with heterogeneous etiologies. Schizophrenia and autism are difficult to treat and often cause major individual suffering largely owing to our limited.......2, which is one of the genetic anomalies that confer high risk of schizophrenia, autism and attention deficit hyperactivity disorder. Methods/design : The study applies a "cause-to-outcome" strategy to identify pre-morbid pathogenesis and underlying biological disease mechanisms of psychosis...... and secondarily the morbid condition of autism and attention deficit hyperactivity disorder. We use a population based epidemiological design to inform on disease prevalence, environmental risk factors and familial disposition for mental health disorders and a case control study design to map the functional...

  5. [Turner syndrome and monosomy 1p36 deletion syndrome misdiagnosed as thyropenia: report of one case].

    Science.gov (United States)

    Meng, Xubiao; Li, Zhiming; Liu, Tingting; Wen, Zhiming

    2013-12-01

    A 21-year-old woman with a short stature presented with primary amenorrhoea and a 45X karyotype, and comparative genomic hybridization revealed 1p36 deletion and abnormal genes in multiple chromosomes to support the diagnosis of Turner syndrome and monosomy 1p36 deletion syndrome. The main clinical features of this condition include microsomia, poor sexual development, menoschesis, gigantorectum, absence of internal genitalia, sometimes with thyropenia and low intelligence. This disease can be easily diagnosed for its heterogeneous clinical manifestations.

  6. Bone status in genetic syndromes: a review.

    Science.gov (United States)

    Stagi, Stefano; Iurato, Chiara; Lapi, Elisabetta; Cavalli, Loredana; Brandi, Maria Luisa; de Martino, Maurizio

    2015-01-01

    More and more data seem to indicate the presence of an increasing number of syndromes and genetic diseases characterized by impaired bone mass and quality. Meanwhile, the improvement of etiopathogenetic knowledge and the employment of more adequate treatments have generated a significant increase in survival related to these syndromes and diseases. It is thus important to identify and treat bone impairment in these patients in order to assure a better quality of life. This review provides an updated overview of bone pathophysiology and characteristics in patients with Down, Turner, Klinefelter, Marfan, Williams, Prader-Willi, Noonan, and 22q11 deletions syndrome. In addition, some options for the treatment of the bone status impairment in these patients will be briefly discussed.

  7. DiGeorge syndrome with vertebral and rib dysplasia

    Energy Technology Data Exchange (ETDEWEB)

    Puno-Cocuzza, C.; David, K.; Kogekar, N. [Brooklyn Hospital Center, NY (United States)

    1994-09-01

    DiGeorge syndrome results from defect in the development of the third and fourth pharyngeal pouches, and is characterized by conotruncal heart defects, aplasia or hypoplasia of thymus and parathyroid glands resulting in immune deficiency and hypocalcemia. Other associated abnormalities include renal, thyroid and diaphragmatic defects, oral clefting, etc. Etiologically, it is heterogeneous, with a microdeletion of 22q11 present in over 80% of cases. Our patient was born following a pregnancy complicated by insulin dependent gestational diabetes. There was truncus arteriosus type 2, absense of thymic shadow on CXR with severe deficiency of T cell function, and persistent hypocalcemia with low parathormone. Right kidney was absent. Dysplastic ribs including fused and bifid ribs were noted. Hypoplastic vertebrae and hemivertebrae were present through thoracic and lumbar regions. Chromosome analysis was normal, and metaphase FISH analysis with probe N25 representing locus D22S75 did not show any deletion of 22q11.2. The skeletal findings similar to these have not been previously reported in association with DiGeorge syndrome to our knowledge. Vertebral and rib abnormalities are known to occur with pregestational maternal diabetes. Maternal diabetes has also been suggested to be a possible etiology in a very small proportion of DiGeorge syndrome cases. It is possible that these findings occured together on account of gestational maternal diabetes in our case.

  8. Learning about Velocardiofacial Syndrome

    Science.gov (United States)

    ... 22q11.2 deletion are found to have a non-verbal learning disability. When tested, their verbal IQ scores ... From the National Institute on Deafness and Other Communication Disorders (NIDCD) ... Inc. [22q.org] A non-profit organization that was founded by parents in ...

  9. A case of 18p deletion syndrome after blepharoplasty

    Directory of Open Access Journals (Sweden)

    Xu LJ

    2017-01-01

    Full Text Available Li-juan Xu,1 Lv-xian Wu,2 Qing Yuan,3 Zhi-gang Lv,1 Xue-yan Jiang2 1Department of Opthalmology, 2Department of Pediatrics, 3Department of Clinical Laboratory, Jinhua Central Hospital, Jinhua, Zhejiang, People’s Republic of China Objective: The deletion of the short arm of chromosome 18 is thought to be one of the rare chromosomal aberrations. Here, we report a case to review this disease.Case report: The proband is a five-and-a-half-year-old girl who has had phenotypes manifested mainly by ptosis, broad face, broad neck with low posterior hairline, mental retardation, short stature, and other malformations. Chromosomal analysis for her mother showed a normal karyotype. Her father and younger brother were phenotypically normal.Result: Phenotypical features were quite similar throughout other cases and in accordance with the usual phenotype of del(18p suggested within the same cases and among the del(18p cases described. She underwent blepharoplasty, which improved her appearance.Conclusion: 18p deletion syndrome is diagnosed by gene analysis. Plastic surgeries for improving the appearance might be an option for these patients. Keywords: chromosome, deletion, blepharoplasty

  10. 'Deletion rescue' by mitotic 11q uniparental disomy in a family with recurrence of 11q deletion Jacobsen syndrome.

    Science.gov (United States)

    Johnson, J P; Haag, M; Beischel, L; McCann, C; Phillips, S; Tunby, M; Hansen, J; Schwanke, C; Reynolds, J F

    2014-04-01

    We describe a family with recurrent 11q23-qter deletion Jacobsen syndrome in two affected brothers, with unique mosaic deletion 'rescue' through development of uniparental disomy (UPD) in the mother and one of the brothers. Inheritance studies show that the deleted chromosome is of maternal origin in both boys, and microarray shows a break near the ASAM gene. Parental lymphocyte chromosomes were normal. However, the mother is homozygous in lymphocytes for all loci within the deleted region in her sons, and presumably has UPD for this region. In addition, she is mosaic for the 11q deletion seen in her sons at a level of 20-30% in skin fibroblasts. We hypothesize that one of her #11 chromosomes shows fragility, that breakage at 11q23 occurred with telomeric loss in some cells, but 'rescue' from the deletion occurred in most cells by the development of mitotic UPD. She apparently carries the 11q deletion in her germ line resulting in recurrence of the syndrome. The older son is mosaic for the 11q cell line (70-88%, remainder 46,XY), and segmental UPD11 'rescue' apparently also occurred in his cytogenetically normal cells. This is a novel phenomenon restoring disomy to an individual with a chromosomal deletion.

  11. Role of Imaging and Cytogenetics in Evaluation of DiGeorge Syndrome - A Rare Entity in Clinical Practice

    Directory of Open Access Journals (Sweden)

    Rajoo Ramachandran

    2015-01-01

    Full Text Available DiGeorge syndrome is a congenital genetic disorder that affects the endocrine system, mainly the thymus and parathyroid glands. The syndrome produces different symptoms, which vary in severity and character between patients. It manifests with craniofacial dysmorphism and defects in the heart, parathyroid, and thymus. Patients can present with a palatal deformity and nasal speech. This rare entity is caused mainly due to deletion of chromosome 22q11.2. Radiographic evaluation of DiGeorge syndrome is necessary to define aberrant anatomy, evaluate central nervous system, craniofacial abnormalities, musculoskeletal system, and cardiothoracic contents. It also helps in planning surgical procedures and surgical reconstructions. We report a case of DiGeorge syndrome in a 4-month-old neonate and discuss the clinical, imaging, and cytogenetic findings that helped in the diagnosis of this rare entity.

  12. BAC array CGH in patients with Velocardiofacial syndrome-like features reveals genomic aberrations on chromosome region 1q21.1

    Directory of Open Access Journals (Sweden)

    Estivill Xavier

    2009-12-01

    Full Text Available Abstract Background Microdeletion of the chromosome 22q11.2 region is the most common genetic aberration among patients with velocardiofacial syndrome (VCFS but a subset of subjects do not show alterations of this chromosome region. Methods We analyzed 18 patients with VCFS-like features by comparative genomic hybridisation (aCGH array and performed a face-to-face slide hybridization with two different arrays: a whole genome and a chromosome 22-specific BAC array. Putative rearrangements were confirmed by FISH and MLPA assays. Results One patient carried a combination of rearrangements on 1q21.1, consisting in a microduplication of 212 kb and a close microdeletion of 1.15 Mb, previously reported in patients with variable phenotypes, including mental retardation, congenital heart defects (CHD and schizophrenia. While 326 control samples were negative for both 1q21.1 rearrangements, one of 73 patients carried the same 212-kb microduplication, reciprocal to TAR microdeletion syndrome. Also, we detected four copy number variants (CNVs inherited from one parent (a 744-kb duplication on 10q11.22; a 160 kb duplication and deletion on 22q11.21 in two cases; and a gain of 140 kb on 22q13.2, not present in control subjects, raising the potential role of these CNVs in the VCFS-like phenotype. Conclusions Our results confirmed aCGH as a successful strategy in order to characterize additional submicroscopic aberrations in patients with VCF-like features that fail to show alterations in 22q11.2 region. We report a 212-kb microduplication on 1q21.1, detected in two patients, which may contribute to CHD.

  13. SNP-based Microdeletion and Aneuploidy RegisTry (SMART)

    Science.gov (United States)

    2016-04-19

    22q11 Deletion Syndrome; DiGeorge Syndrome; Trisomy 21; Trisomy 18; Trisomy 13; Monosomy X; Sex Chromosome Abnormalities; Cri-du-Chat Syndrome; Angelman Syndrome; Prader-Willi Syndrome; 1p36 Deletion Syndrome

  14. 5q14.3 deletion neurocutaneous syndrome: Contiguous gene syndrome caused by simultaneous deletion of RASA1 and MEF2C: A progressive disease.

    Science.gov (United States)

    Ilari, Rita; Agosta, Guillermo; Bacino, Carlos

    2016-03-01

    We report the case of a young girl who was presented with complex clinical symptoms caused by the deletion of contiguous genes: RASA1 and MEF2C, located on chromosome 5q14.3. Specifically, the diagnosis of her skin disorder and vascular malformations involving central nervous system is consistent with a RASopathy. The child's neurological manifestations are observed in most patients suffering from 5q14.3 by deletion or mutation of the MEF2C gene. A review of the literature allowed us to conclude that the contiguous deletion of genes RASA1 and MEF2C fulfills the criteria for the diagnosis of a Neurocutaneous syndrome as proposed by Carr et al. [2011]. We also assessed the penetrance of RASA1 and clinical manifestations of MEF2C according to the type of deletion. This child described presents the complete symptomatology of both deleted genes. We would also like to highlight the progression of the disorder.

  15. Maladaptive Behavior Differences in Prader-Willi Syndrome Due to Paternal Deletion versus Maternal Uniparental Disomy.

    Science.gov (United States)

    Dykens, Elisabeth M.; King, Bryan H.; Cassidy, Suzanne B.

    1999-01-01

    This study compared maladaptive behavior in 23 people with Prader-Willi syndrome due to paternal deletion and in 23 age- and gender-matched subjects with maternal uniparental disomy. Controlling for IQs, the deletion cases showed significantly higher maladaptive ratings, more symptom-related distress, and more behavior problems. Findings suggest a…

  16. Unbalanced 15;22 translocation in a patient with manifestations of DiGeorge and velocardiofacial syndrome.

    Science.gov (United States)

    Jaquez, M; Driscoll, D A; Li, M; Emanuel, B S; Hernandez, I; Jaquez, F; Lembert, N; Ramirez, J; Matalon, R

    1997-05-01

    We report on an 8-year-old girl with an unbalanced 15;22 translocation and manifestations of DiGeorge syndrome (DGS), velocardiofacial syndrome (VCFS), and other abnormalities. The main manifestations of our patient were feeding difficulties, respiratory infections, short stature, peculiar face with hypertelorism, prominent nose, abnormal ears, microstomia and crowded teeth, short broad neck and shield chest with pectus deformity and widely spaced nipples with abnormal fat distribution, heart defect, scoliosis, asymmetric limb development, abnormal hands and feet, and hyperchromic skin patches. Cytogenetic studies demonstrated a 45,XX,der(15)t(15;22)(p11.2;q11.2), -22 karyotype. Fluorescence in situ hybridization (FISH) studies confirmed loss of the proximal DiGeorge chromosomal region (DGCR). This case adds to the diversity of clinical abnormalities caused by deletions within 22q11.2.

  17. Partial USH2A deletions contribute to Usher syndrome in Denmark

    DEFF Research Database (Denmark)

    Dad, Shzeena; Rendtorff, Nanna Dahl; Kann, Erik;

    2015-01-01

    Usher syndrome is an autosomal recessive disorder characterized by congenital hearing impairment, progressive visual loss owing to retinitis pigmentosa and in some cases vestibular dysfunction. Usher syndrome is divided into three subtypes, USH1, USH2 and USH3. Twelve loci and eleven genes have so...... deletions identified in USH2A. Our results suggest that USH2 is caused by USH2A exon deletions in a small fraction of the patients, whereas deletions or duplications in PCDH15 might be rare in Danish Usher patients.European Journal of Human Genetics advance online publication, 25 March 2015; doi:10...

  18. Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Lachman, H.M.; Papolos, D.F.; Veit, S. [Albert Einstein College of Medicine, Bronx, NY (United States)] [and others

    1996-09-20

    Velo-cardio-facial-syndrome (VCFS) is a common congenital disorder associated with typical facial appearance, cleft palate, cardiac defects, and learning disabilities. The majority of patients have an interstitial deletion on chromosome 22q11. In addition to physical abnormalities, a variety of psychiatric illnesses have been reported in patients with VCFS, including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. The psychiatric manifestations of VCFS could be due to haploinsufficiency of a gene(s) within 22q11. One candidate that has been mapped to this region is catechol-O-methyltransferase (COMT). We recently identified a polymorphism in the COMT gene that leads to a valine{r_arrow}methionine substitution at amino acid 158 of the membrane-bound form of the enzyme. Homozygosity for COMT158{sup met} leads to a 3- to 4-fold reduction in enzymatic activity, compared with homozygotes for COMT158{sup met}. We now report that in a population of patients with VCFS, there is an apparent association between the low-activity allele, COMT158{sup met}, and the development of bipolar spectrum disorder, and in particular, a rapid-cycling form. 33 refs., 3 tabs.

  19. Genetics Home Reference: distal 18q deletion syndrome

    Science.gov (United States)

    ... PDF) Patient Support and Advocacy Resources (7 links) Alexander Graham Bell Association for the Deaf and Hard ... Pliszka SR, Gelfond JA, Hale DE, Cody JD. Mood disorders in individuals with distal 18q deletions. Am ...

  20. Genetics Home Reference: 16p11.2 deletion syndrome

    Science.gov (United States)

    ... These disorders are characterized by impaired communication and socialization skills, as well as delayed development of speech ... although they can pass the condition to their children. Several examples of inherited 16p11.2 deletion have ...

  1. Marfan syndrome with a complex chromosomal rearrangement including deletion of the FBN1 gene

    Directory of Open Access Journals (Sweden)

    Colovati Mileny ES

    2012-01-01

    Full Text Available Abstract Background The majority of Marfan syndrome (MFS cases is caused by mutations in the fibrillin-1 gene (FBN1, mapped to chromosome 15q21.1. Only few reports on deletions including the whole FBN1 gene, detected by molecular cytogenetic techniques, were found in literature. Results We report here on a female patient with clinical symptoms of the MFS spectrum plus craniostenosis, hypothyroidism and intellectual deficiency who presents a 1.9 Mb deletion, including the FBN1 gene and a complex rearrangement with eight breakpoints involving chromosomes 6, 12 and 15. Discussion This is the first report of MFS with a complex chromosome rearrangement involving a deletion of FBN1 and contiguous genes. In addition to the typical clinical findings of the Marfan syndrome due to FBN1 gene haploinsufficiency, the patient presents features which may be due to the other gene deletions and possibly to the complex chromosome rearrangement.

  2. Kearns-Sayre syndrome: different amounts of deleted mitochondrial DNA are present in several autoptic tissues.

    Science.gov (United States)

    Ponzetto, C; Bresolin, N; Bordoni, A; Moggio, M; Meola, G; Bet, L; Prelle, A; Scarlato, G

    1990-05-01

    A population of deleted mitochondrial DNA (mtDNA) was found in different amounts in autoptic muscle, heart, cortex, cerebellum, liver and kidney of a patient who died of Kearn-Sayre Syndrome (KSS). The widespread occurrence of the deletion correlates with the multisystem nature of KSS and supports the hypothesis that this is a genetic disease due to an alteration of mtDNA presumably arising in the oocyte or early embryo.

  3. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: Relevance to ocular dysgenesis and hearing impairment

    Directory of Open Access Journals (Sweden)

    Ritch Robert

    2004-06-01

    Full Text Available Abstract Background Thirty-nine patients have been described with deletions involving chromosome 6p25. However, relatively few of these deletions have had molecular characterization. Common phenotypes of 6p25 deletion syndrome patients include hydrocephalus, hearing loss, and ocular, craniofacial, skeletal, cardiac, and renal malformations. Molecular characterization of deletions can identify genes that are responsible for these phenotypes. Methods We report the clinical phenotype of seven patients with terminal deletions of chromosome 6p25 and compare them to previously reported patients. Molecular characterization of the deletions was performed using polymorphic marker analysis to determine the extents of the deletions in these seven 6p25 deletion syndrome patients. Results Our results, and previous data, show that ocular dysgenesis and hearing impairment are the two most highly penetrant phenotypes of the 6p25 deletion syndrome. While deletion of the forkhead box C1 gene (FOXC1 probably underlies the ocular dysgenesis, no gene in this region is known to be involved in hearing impairment. Conclusions Ocular dysgenesis and hearing impairment are the two most common phenotypes of 6p25 deletion syndrome. We conclude that a locus for dominant hearing loss is present at 6p25 and that this locus is restricted to a region distal to D6S1617. Molecular characterization of more 6p25 deletion patients will aid in refinement of this locus and the identification of a gene involved in dominant hearing loss.

  4. An atypical case of fragile X syndrome caused by a deletion that includes FMRI gene

    Energy Technology Data Exchange (ETDEWEB)

    Quan, F.; Zonana, J.; Gunter, K.; Peterson, K.L.; Magenis, R.E., Popovich, B.W. [Shriners Hospital for Crippled Children, Portland, OR (United States)

    1995-05-01

    Fragile X syndrome is the most common form of inherited mental retardation and results from the transcriptional inactivation of the FMR1 gene. In the vast majority of cases, this is caused by the expansion of an unstable CGG repeat in the first exon of the FMR1 gene. We describe here a phenotypically atypical case of fragile X syndrome, caused by a deletion that includes the entire FMR1 gene and {ge}9.0 Mb of flanking DNA. The proband, RK, was a 6-year-old mentally retarded male with obesity and anal atresia. A diagnosis of fragile X syndrome was established by the failure of RK`s DNA to hybridize to a 558-bp PstI-XhoI fragment (pfxa3) specific for the 5{prime}-end of the FMR1 gene. The analysis of flanking markers in the interval from Xq26.3-q28 indicated a deletion extending from between 160-500 kb distal and 9.0 Mb proximal to the FMR1 gene. High-resolution chromosome banding confirmed a deletion with breakpoints in Xq26.3 and Xq27.3. This deletion was maternally transmitted and arose as a new mutation on the grandpaternal X chromosome. The maternal transmission of the deletion was confirmed by FISH using a 34-kb cosmid (c31.4) containing most of the FMR1 gene. These results indicated that RK carried a deletion of the FMR1 region with the most proximal breakpoint described to date. This patient`s unusual clinical presentation may indicate the presence of genes located in the deleted interval proximal to the FMR1 locus that are able to modify the fragile X syndrome phenotype. 36 refs., 7 figs.

  5. Molecular analyses of 17p11.2 deletions in 62 Smith-Magenis syndrome patients

    Energy Technology Data Exchange (ETDEWEB)

    Juyal, R.C.; Figuera, L.E.; Hauge, X. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1996-05-01

    Smith-Magenis syndrome (SMS) is a clinically recognizable, multiple congenital anomalies/mental retardation syndrome caused by an interstitial deletion involving band p11.2 of chromosome 17. Toward the molecular definition of the interval defining this microdeletion syndrome, 62 unrelated SMS patients in conjunction with 70 available unaffected parents were molecularly analyzed with respect to the presence or absence of 14 loci in the proximal region of the short arm of chromosome 17. A multifaceted approach was used to determine deletion status at the various loci that combined (1) FISH analysis, (2) PCR and Southern analysis of somatic cell hybrids retaining the deleted chromosome 17 from selected patients, and (3) genotype determination of patients for whom a parent(s) was available at four microsatellite marker loci and at four loci with associated RFLPs. The relative order of two novel anonymous markers and a new microsatellite marker was determined in 17p11.2. The results confirmed that the proximal deletion breakpoint in the majority of SMS patients is located between markers D17S58 (EW301) and D17S446 (FG1) within the 17p11.1-17p11.2 region. The common distal breakpoint was mapped between markers cCI17-638, which lies distal to D17S71, and cCI17-498, which lies proximal to the Charcot Marie-Tooth disease type 1A locus. The locus D17S258 was found to be deleted in all 62 patients, and probes from this region can be used for diagnosis of the SMS deletion by FISH. Ten patients demonstrated molecularly distinct deletions; of these, two patients had smaller deletions and will enable the definition of the critical interval for SMS. 49 refs.

  6. Germinal mosaicism for a deletion of the FMR1 gene leading to fragile X syndrome.

    Science.gov (United States)

    Jiraanont, P; Hagerman, R J; Neri, G; Zollino, M; Murdolo, M; Tassone, F

    2016-09-01

    Aberrant CGG trinucleotide amplification within the FMR1 gene, which spans approximately 38 Kb of genomic DNA is almost always what leads to fragile X syndrome (FXS). However, deletions of part or the entire FMR1 gene can also cause FXS. Both CGG amplification-induced silencing and deletions result in the absence of the FMR1 gene product, FMRP. Here, we report a rare case of germinal mosaicism of a deletion encompassing approximately 300 Kb of DNA, which by removing the entire FMR1 gene led to FXS. The male proband, carrying the deletion, presented in clinic with the typical features of FXS. His mother was analyzed by FISH on metaphase chromosomes with cosmid probe c22.3 spanning the FMR1 locus, and she was found not to carry the deletion on 30 analyzed cells from peripheral blood lymphocytes. Prenatal examination of the mother's third pregnancy showed that the male fetus also had the same deletion as the proband. Following this prenatal diagnosis, FISH analysis in the mother was expanded to 400 metaphases from peripheral lymphocytes, and a heterozygous FMR1 deletion was found in three. Although this result could be considered questionable from a diagnostic point of view, it indicates that the deletion is in the ovary's germinal cells.

  7. Prenatal diagnosis of interstitial deletion of 17(p11.2p11.2) (Smith-Magenis Syndrome)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-01-15

    Interstitial deletion of 17p11.2 is associated with Smith-Magenis syndrome. This is a recognizable chromosomal deletion syndrome, characterized by brachycephaly, midface hypoplasia, growth and mental retardation, behavioral problems, and ocular abnormalities. Molecular analysis indicates it is a contiguous gene syndrome. Over 50 patients have been reported since the deletion was first described by Smith et al. [1982]. Cases include one with mosaicism and a familial example. None were prenatally diagnosed. The authors report on the prenatal detection of interstitial deletion of 17p11.2. 11 refs., 1 fig.

  8. Novel features of 3q29 deletion syndrome: Results from the 3q29 registry.

    Science.gov (United States)

    Glassford, Megan R; Rosenfeld, Jill A; Freedman, Alexa A; Zwick, Michael E; Mulle, Jennifer G

    2016-04-01

    3q29 deletion syndrome is caused by a recurrent, typically de novo heterozygous 1.6 Mb deletion, but because incidence of the deletion is rare (1 in 30,000 births) the phenotype is not well described. To characterize the range of phenotypic manifestations associated with 3q29 deletion syndrome, we have developed an online registry (3q29deletion.org) for ascertainment of study subjects and phenotypic data collection via Internet-based survey instruments. We report here on data collected during the first 18 months of registry operation, from 44 patients. This is the largest cohort of 3q29 deletion carriers ever assembled and surveyed in a systematic way. Our data reveal that 28% of registry participants report neuropsychiatric phenotypes, including anxiety disorder, panic attacks, depression, bipolar disorder, and schizophrenia. Other novel findings include a high prevalence (64%) of feeding problems in infancy and reduced weight at birth for 3q29 deletion carriers (average reduction 13.9 oz (394 g), adjusted for gestational age and sex, P = 6.5e-07). We further report on the frequency of heart defects, autism, recurrent ear infections, gastrointestinal phenotypes, and dental phenotypes, among others. We also report on the expected timing of delayed developmental milestones. This is the most comprehensive description of the 3q29 deletion phenotype to date. These results are clinically actionable toward improving patient care for 3q29 deletion carriers, and can guide the expectations of physicians and parents. These data also demonstrate the value of patient-reported outcomes to reveal the full phenotypic spectrum of rare genomic disorders.

  9. Deletion of short arm of chromosome 18, Del(18p syndrome

    Directory of Open Access Journals (Sweden)

    Prashant Babaji

    2014-01-01

    Full Text Available Deletion of the short arm of chromosome 18 is a rare syndrome clinically presenting with variable mental retardation, growth retardation, low height, pectus excavatum, craniofacial malformations including long ear, ptosis, microcephaly and short neck. This case report presents with characteristic features along with rare feature of single nostril.

  10. Behavioral phenotype in the 9q subtelomeric deletion syndrome: a report about two adult patients.

    NARCIS (Netherlands)

    Verhoeven, W.M.A.; Kleefstra, T.; Egger, J.I.

    2010-01-01

    The 9q Subtelomeric Deletion Syndrome (9qSTDS) is clinically characterized by mental retardation, childhood hypotonia, and facial dysmorphisms. Haploinsufficiency of the EHMT1 gene has been demonstrated to be responsible for its core phenotype. In a significant number of patients behavioral abnormal

  11. 22q13.3 Deletion Syndrome : Clinical and Molecular Analysis Using Array CGH

    NARCIS (Netherlands)

    Dhar, S. U.; del Gaudio, D.; German, J. R.; Peters, S. U.; Ou, Z.; Bader, P. I.; Berg, J. S.; Blazo, M.; Brown, C. W.; Graham, B. H.; Grebe, T. A.; Lalani, S.; Irons, M.; Sparagana, S.; Williams, M.; Phillips, J. A.; Beaudet, A. L.; Stankiewicz, P.; Patel, A.; Cheung, S. W.; Sahoo, T.

    2010-01-01

    The 22q13.3 deletion syndrome results from loss of terminal segments of varying sizes at 22qter. Few genotype phenotype correlations have been found but all patients have mental retardation and severe delay, or absence of, expressive speech. We carried out clinical and molecular characterization of

  12. Mutations in CHD7 in patients with CHARGE syndrome cause T-B + natural killer cell + severe combined immune deficiency and may cause Omenn-like syndrome.

    NARCIS (Netherlands)

    Gennery, A.R.; Slatter, M.A.; Rice, J.; Hoefsloot, L.H.; Barge, D.; McLean-Tooke, A.; Montgomery, T.; Goodship, J.A.; Burt, A.D.; Flood, T.J.; Abinun, M.; Cant, A.J.; Johnson, D.

    2008-01-01

    More than 11 genetic causes of severe combined immunodeficiency (SCID) have been identified, affecting development and/or function of T lymphocytes, and sometimes B lymphocytes and natural killer (NK) cells. Deletion of 22q11.2 is associated with immunodeficiency, although less than 1% of cases are

  13. Large contiguous gene deletions in Sjögren-Larsson syndrome.

    Science.gov (United States)

    Engelstad, Holly; Carney, Gael; S'aulis, Dana; Rise, Janae; Sanger, Warren G; Rudd, M Katharine; Richard, Gabriele; Carr, Christopher W; Abdul-Rahman, Omar A; Rizzo, William B

    2011-11-01

    Sjögren-Larsson syndrome (SLS) is an autosomal recessive disorder characterized by ichthyosis, mental retardation, spasticity and mutations in the ALDH3A2 gene for fatty aldehyde dehydrogenase, an enzyme that catalyzes the oxidation of fatty aldehyde to fatty acid. More than 70 mutations have been identified in SLS patients, including small deletions or insertions, missense mutations, splicing defects and complex nucleotide changes. We now describe 2 SLS patients whose disease is caused by large contiguous gene deletions of the ALDH3A2 locus on 17p11.2. The deletions were defined using long distance inverse PCR and microarray-based comparative genomic hybridization. A 24-year-old SLS female was homozygous for a 352-kb deletion involving ALDH3A2 and 4 contiguous genes including ALDH3A1, which codes for the major soluble protein in cornea. Although lacking corneal disease, she showed severe symptoms of SLS with uncommon deterioration in oral motor function and loss of ambulation. The other 19-month-old female patient was a compound heterozygote for a 1.44-Mb contiguous gene deletion and a missense mutation (c.407C>T, P136L) in ALDH3A2. These studies suggest that large gene deletions may account for up to 5% of the mutant alleles in SLS. Geneticists should consider the possibility of compound heterozygosity for large deletions in patients with SLS and other inborn errors of metabolism, which has implications for carrier testing and prenatal diagnosis.

  14. Two novel gross deletions of TSC2 in Malaysian patients with tuberous sclerosis complex and TSC2/PKD1 contiguous deletion syndrome.

    Science.gov (United States)

    Ismail, Nur Farrah Dila; Nik Abdul Malik, Nik Mohd Ariff; Mohseni, Jafar; Rani, Abdulqawee Mahyoob; Hayati, Fatemeh; Salmi, Abdul Razak; Narazah, Mohd Yusof; Zabidi-Hussin, Z A M H; Silawati, Abdul Rashid; Keng, Wee Teik; Ngu, Lock Hock; Sasongko, Teguh Haryo

    2014-05-01

    Tuberous sclerosis complex is an autosomal dominant neurocutaneous disorder affecting multiple organs. Tuberous sclerosis complex is caused by mutation in either one of the two disease-causing genes, TSC1 or TSC2, encoding for hamartin and tuberin, respectively. TSC2/PKD1 contiguous gene deletion syndrome is a very rare condition due to deletion involving both TSC2 and PKD1 genes. Tuberous sclerosis complex cannot be easily diagnosed since there is no pathognomonic feature, although there are consensus diagnostic criteria for that. Mutation analysis is useful and plays important roles. We report here two novel gross deletions of TSC2 gene in Malay patients with tuberous sclerosis complex and TSC2/PKD1 contiguous gene deletion syndrome, respectively.

  15. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    Kristen Dilzell

    2015-01-01

    Full Text Available This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  16. Deletion of 7q33-q35 in a Patient with Intellectual Disability and Dysmorphic Features: Further Characterization of 7q Interstitial Deletion Syndrome.

    Science.gov (United States)

    Dilzell, Kristen; Darcy, Diana; Sum, John; Wallerstein, Robert

    2015-01-01

    This case report concerns a 16-year-old girl with a 9.92 Mb, heterozygous interstitial chromosome deletion at 7q33-q35, identified using array comparative genomic hybridization. The patient has dysmorphic facial features, intellectual disability, recurrent infections, self-injurious behavior, obesity, and recent onset of hemihypertrophy. This patient has overlapping features with previously reported individuals who have similar deletions spanning the 7q32-q36 region. It has been difficult to describe an interstitial 7q deletion syndrome due to variations in the sizes and regions in the few patients reported in the literature. This case contributes to the further characterization of an interstitial distal 7q deletion syndrome.

  17. Fine mapping of the 1p36 deletion syndrome identifies mutation of PRDM16 as a cause of cardiomyopathy

    DEFF Research Database (Denmark)

    Arndt, Anne-Karin; Schafer, Sebastian; Drenckhahn, Jorg-Detlef

    2013-01-01

    Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction...... cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription...... of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM....

  18. Diagnostic yield by supplementing prenatal metaphase karyotyping with MLPA for microdeletion syndromes and subtelomere imbalances

    DEFF Research Database (Denmark)

    Kjaergaard, S; Sundberg, K; Jørgensen, F S;

    2010-01-01

    The aim of the study was to retrospectively assess the relevance of using multiplex ligation-dependent probe amplification (MLPA) for detection of selected microdeletion syndromes (22q11, Prader-Willi/Angelman, Miller-Dieker, Smith-Magenis, 1p-, Williams), the reciprocal microduplication syndromes...

  19. Mitochondrial DNA deletion in a patient with combined features of Leigh and Pearson syndromes

    Energy Technology Data Exchange (ETDEWEB)

    Blok, R.B.; Thorburn, D.R.; Danks, D.M. [Royal Children`s Hospital, Melbourne (Australia)] [and others

    1994-09-01

    We describe a heteroplasmic 4237 bp mitochondrial DNA (mtDNA) deletion in an 11 year old girl who has suffered from progressive illness since birth. She has some features of Leigh syndrome (global developmental delay with regression, brainstem dysfunction and lactic acidosis), together with other features suggestive of Pearson syndrome (history of pancytopenia and failure to thrive). The deletion was present at a level greater than 50% in skeletal muscle, but barely detectable in skin fibroblasts following Southern blot analysis, and only observed in blood following PCR analysis. The deletion spanned nt 9498 to nt 13734, and was flanked by a 12 bp direct repeat. Genes for cytochrome c oxidase subunit III, NADH dehydrogenase subunits 3, 4L, 4 and 5, and tRNAs for glycine, arginine, histidine, serine({sup AGY}) and leucine({sup CUN}) were deleted. Southern blotting also revealed an altered Apa I restriction site which was shown by sequence analysis to be caused by G{r_arrow}A nucleotide substitution at nt 1462 in the 12S rRNA gene. This was presumed to be a polymorphism. No abnormalities of mitochondrial ultrastructure, distribution or of respiratory chain enzyme complexes I-IV in skeletal muscle were observed. Mitochondrial disorders with clinical features overlapping more than one syndrome have been reported previously. This case further demonstrates the difficulty in correlating observed clinical features with a specific mitochondrial DNA mutation.

  20. Genotype/phenotype correlation in women with nonmosaic X chromosome deletions and Turner syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Zinn, A.R. [Univ. of Texas Southwestern Medical School, Dallas, TX (United States)

    1994-09-01

    Turner syndrome is a complex human developmental disorder associated with the absence of the second sex chromosome (monosomy X). Cardinal features of the Turner phenotype include high intrauterine lethality, growth retardation, gonadal failure, and the variable presence of specific somatic abnormalities such as webbed neck, lymphedema, and skeletal abnormalities. Recent observations support the hypothesis that the phenotype associated with monosomy X results from haploid dosage of genes common the X and Y chromosomes that escape X-inactivation ({open_quotes}Turner genes{close_quotes}). Apart from a locus causing short stature that maps to the pseudoautosomal region on the distal short arm, the location of X-linked Turner genes is not known. Karyotype/phenotype correlations in women with partial X deletions have been inconsistent. However, previous studies have focused on sporadic sex chromosome aberrations and may have been confounded by occult mosaicism. In addition, mapping of deletions was limited by the resolution of cytogenetic techniques. I am reexamining genotype/phenotype correlations in partial X monosomy, focusing on a subset of cases in which mosaicism is highly unlikely (e.g., unbalanced X-autosome translocations, familial X deletions), and using molecular techniques to map deletions. I have collected eight cases of nonmosaic X deletions in women with varied manifestations of Turner syndrome. Cytogenetic data suggests that genes responsible for Turner anatomic abnormalities may lie within a critical region of the very proximal portion of the short arm (Xp11). Molecular characterization of the deletions is in progress. Methods include (1) fluorescence in situ hybridization of metaphase spreads from patient-derived cell lines, using cosmid probes that map to known locations on Xp, and (2) sequence tagged site (STS) content mapping of somatic cell hybrids retaining the deleted X chromosomes derived from these cell lines.

  1. Comparison of phenotype in uniparental disomy and deletion Prader-Willi syndrome: Sex specific differences

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, J.; Langlois, S.; Robinson, W.P. [Univ. of British Columbia, Vancouver (Canada)] [and others

    1996-10-16

    Prader-Willi syndrome (PWS) results primarily from either a paternal deletion of 15q11-q13 or maternal uniparental disomy (UPD) 15. Birth parameters and clinical presentation of 79 confirmed UPD cases and 43 deletion patients were compared in order to test whether any manifestations differ between the two groups. There were no major clinical differences between the two classes analyzed as a whole, other than the presence of hypopigmentation predominantly in the deletion group. However, there was a significant bias in sex-ratio (P<.001) limited to the UPD group with a predominance (68%) of males. An equal number of males and females was observed in the deletion group. When analyzed by sex, several significant differences between the UPD and deletion groups were observed. Female UPD patients were found to be less severely affected than female deletion patients in terms of length of gavage feeding and a later onset of hyperphagia. Although these traits are likely to be influenced by external factors, they may reflect a milder presentation of female UPD patients which could explain the observed sex bias by causing under-ascertainment of female UPD. Alternatively, there may be an effect of sex on either early trisomy 15 survival or the probability of somatic loss of a chromosome from a trisomic conceptus. 26 refs., 1 tab.

  2. SNP genotyping to screen for a common deletion in CHARGE Syndrome

    Directory of Open Access Journals (Sweden)

    Molinari Laura M

    2005-02-01

    Full Text Available Abstract Background CHARGE syndrome is a complex of birth defects including coloboma, choanal atresia, ear malformations and deafness, cardiac defects, and growth delay. We have previously hypothesized that CHARGE syndrome could be caused by unidentified genomic microdeletion, but no such deletion was detected using short tandem repeat (STR markers spaced an average of 5 cM apart. Recently, microdeletion at 8q12 locus was reported in two patients with CHARGE, although point mutation in CHD7 on chromosome 8 was the underlying etiology in most of the affected patients. Methods We have extended our previous study by employing a much higher density of SNP markers (3258 with an average spacing of approximately 800 kb. These SNP markers are diallelic and, therefore, have much different properties for detection of deletions than STRs. Results A global error rate estimate was produced based on Mendelian inconsistency. One marker, rs431722 exceeded the expected frequency of inconsistencies, but no deletion could be demonstrated after retesting the 4 inconsistent pedigrees with local flanking markers or by FISH with the corresponding BAC clone. Expected deletion detection (EDD was used to assess the coverage of specific intervals over the genome by deriving the probability of detecting a common loss of heterozygosity event over each genomic interval. This analysis estimated the fraction of unobserved deletions, taking into account the allele frequencies at the SNPs, the known marker spacing and sample size. Conclusions The results of our genotyping indicate that more than 35% of the genome is included in regions with very low probability of a deletion of at least 2 Mb.

  3. Further case of Rubinstein-Taybi syndrome due to a deletion in EP300.

    LENUS (Irish Health Repository)

    Foley, Patricia

    2012-02-01

    Rubinstein-Taybi syndrome (RSTS) is a heterogeneous disorder with approximately 45-55% of patients showing mutations in the CREB binding protein and a further 3% of patients having mutations in EP300. We report a male child with a deletion of exons 3-8 of the EP300 gene who has RSTS. He has a milder skeletal phenotype, a finding that has been described in other cases with EP300 mutations. The mother suffered from pre-eclampsia and HELLP syndrome in the pregnancy. She subsequently developed a mullerian tumor of her cervix 6 years after the birth of her son.

  4. Third case of 8q23.3-q24.13 deletion in a patient with Langer-Giedion syndrome phenotype without TRPS1 gene deletion.

    Science.gov (United States)

    Pereza, Nina; Severinski, Srećko; Ostojić, Saša; Volk, Marija; Maver, Aleš; Dekanić, Kristina Baraba; Kapović, Miljenko; Peterlin, Borut

    2012-03-01

    Langer-Giedion syndrome (LGS) is a contiguous gene syndrome caused by a hemizygous deletion on chromosome 8q23.3-q24.11 involving TRPS1 and EXT1 genes. We report on a girl with LGS phenotype and a 7.5 Mb interstitial deletion at chromosome 8q23.3-q24.13. Array-comparative genomic hybridization (a-CGH) revealed a deletion encompassing only the EXT1 and not the TRPS1 gene. Even though the deletion of TRPS1 and EXT1 genes is responsible for craniofacial and skeletal features of LGS, there have been previous reports of patients with LGS phenotype and 8q24 deletions leaving the TRPS1 gene intact. To our knowledge, this is the third such case. Our patient differs from previously reported LGS patients without TRPS1 gene deletion in that she has the typical LGS facial dysmorphism and skeletal abnormalities. However, the girl is of normal height and has only a mild developmental delay. Additionally, she has dyslalia and premature adrenarche classified as Tanner stage 3 premature pubarche which have not yet been described as features of LGS. We examine the molecular breakpoints and phenotypes of our patient and previously reported cases.

  5. High proportion of large genomic deletions and a genotype phenotype update in 80 unrelated families with juvenile polyposis syndrome

    DEFF Research Database (Denmark)

    Aretz, S; Stienen, D; Uhlhaas, S;

    2007-01-01

    suspected to have JPS. RESULTS: By direct sequencing of the two genes, point mutations were identified in 30 patients (46% of typical JPS). Using MLPA, large genomic deletions were found in 14% of all patients with typical JPS (six deletions in SMAD4 and three deletions in BMPR1A). Mutation analysis...... polyposis, gastric cancer, and HHT was identified, which should have implications for counselling and surveillance. Histopathological results in hamartomatous polyposis syndromes must be critically interpreted. Udgivelsesdato: 2007-Nov...

  6. First Report of a Single Exon Deletion in TCOF1 Causing Treacher Collins Syndrome.

    Science.gov (United States)

    Beygo, J; Buiting, K; Seland, S; Lüdecke, H-J; Hehr, U; Lich, C; Prager, B; Lohmann, D R; Wieczorek, D

    2012-01-01

    Treacher Collins syndrome (TCS) is a rare craniofacial disorder characterized by facial anomalies and ear defects. TCS is caused by mutations in the TCOF1 gene and follows autosomal dominant inheritance. Recently, mutations in the POLR1D and POLR1C genes have also been identified to cause TCS. However, in a subset of patients no causative mutation could be found yet. Inter- and intrafamilial phenotypic variability is high as is the variety of mainly family-specific mutations identified throughout TCOF1. No obvious correlation between pheno- and genotype could be observed. The majority of described point mutations, small insertions and deletions comprising only a few nucleotides within TCOF1 lead to a premature termination codon. We investigated a cohort of 112 patients with a tentative clinical diagnosis of TCS by multiplex ligation-dependent probe amplification (MLPA) to search for larger deletions not detectable with other methods used. All patients were selected after negative screening for mutations in TCOF1, POLR1D and POLR1C. In 1 patient with an unequivocal clinical diagnosis of TCS, we identified a 3.367 kb deletion. This deletion abolishes exon 3 and is the first described single exon deletion within TCOF1. On RNA level we observed loss of this exon which supposedly leads to haploinsufficiency of TREACLE, the nucleolar phosphoprotein encoded by TCOF1.

  7. Multi-exon deletions of the FBN1 gene in Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Schrijver Iris

    2001-10-01

    Full Text Available Abstract Background Mutations in the fibrillin -1 gene (FBN1 cause Marfan syndrome (MFS, an autosomal dominant multi-system connective tissue disorder. The 200 different mutations reported in the 235 kb, 65 exon-containing gene include only one family with a genomic multi-exon deletion. Methods We used long-range RT-PCR for mutation detection and long-range genomic PCR and DNA sequencing for identification of deletion breakpoints, allele-specific transcript analyses to determine stability of the mutant RNA, and pulse-chase studies to quantitate fibrillin synthesis and extracellular matrix deposition in cultured fibroblasts. Southern blots of genomic DNA were probed with three overlapping fragments covering the FBN1 coding exons Results Two novel multi-exon FBN1 deletions were discovered. Identical nucleotide pentamers were found at or near the intronic breakpoints. In a Case with classic MFS, an in-frame deletion of exons 42 and 43 removed the C-terminal 24 amino acids of the 5th LTBP (8-cysteine domain and the adjacent 25th calcium-binding EGF-like (6-cysteine domain. The mutant mRNA was stable, but fibrillin synthesis and matrix deposition were significantly reduced. A Case with severe childhood-onset MFS has a de novo deletion of exons 44–46 that removed three EGF-like domains. Fibrillin protein synthesis was normal, but matrix deposition was strikingly reduced. No genomic rearrangements were detected by Southern analysis of 18 unrelated MFS samples negative for FBN1 mutation screening. Conclusions Two novel deletion cases expand knowledge of mutational mechanisms and genotype/phenotype correlations of fibrillinopathies. Deletions or mutations affecting an LTBP domain may result in unstable mutant protein cleavage products that interfere with microfibril assembly.

  8. Metopic and sagittal synostosis in Greig cephalopolysyndactyly syndrome: five cases with intragenic mutations or complete deletions of GLI3

    DEFF Research Database (Denmark)

    Hurst, Jane A; Jenkins, Dagan; Vasudevan, Pradeep C;

    2011-01-01

    Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association ...... mutations with metopic synostosis; moreover, the three individuals with complete deletion of GLI3 were previously considered to have Carpenter syndrome, highlighting an important source of diagnostic confusion....

  9. Diagnosis and fine localization of deletion region in Wolf Hirschhorn syndrome patients

    Institute of Scientific and Technical Information of China (English)

    JI Tao-yun; David CHIA; WANG Jing-min; WU Ye; LI Jie; XIAO Jing; JIANG Yu-wu

    2010-01-01

    Background Wolf-Hirschhorn syndrome (WHS) results from the partial deletion of 4p. This study aimed to identify and fine map the chromosome deletion regions of Chinese children with Wolf-Hirschhorn syndrome among the developmental delay/mental retardation (DD/MR) patients.Methods We analyzed the relationship of phenotype and genotype. Inclusion criteria were: moderate to severe DD/MR, no definite perinatal brain injury, and no trauma, toxication, hypoxia, infection of central nervous system; routine karyotyping was normal, no evidence of typical inherited metabolic disorder or specific neurodegenerative disorders from cranial neuro-imaging and blood/urinary metabolic diseases screening; no mutation of FMR1 in male patients, no typical clinical manifestation of Rett syndrome in female patients. Multiplex ligation-dependent probe amplification (MLPA) and Affymetrix genome-wide human SNP array 6.0 assays were applied to accurately define the exact size of subtelomeric aberration region of four WHS patients.Results All four WHS patients presented with severe DD, hypotonia and microcephaly, failure to thrive, 3/4 patients with typical facial features and seizures, 2/4 patients with congenital heart defects and cleft lip/palate, 1/4 patients with other malformations. The length of the deletions ranged from 3.3 Mb to 9.8 Mb. Two of four patients had "classic" WHS, 1/4 patients had "mild"-to-"classic" WHS, and 1/4 patients had "mild" WHS.Conclusions WHS patients in China appear to be consistent with those previously reported. The prevalence of signs and symptoms, distribution of cases between "mild" and "classic" WHS, and the correlation between length of deletion and severity of disease of these patients were all similar to those of the patients from other populations.

  10. Oculo-facio-cardio-dental (OFCD) syndrome: the first Italian case of BCOR and co-occurring OTC gene deletion.

    Science.gov (United States)

    Di Stefano, C; Lombardo, B; Fabbricatore, C; Munno, C; Caliendo, I; Gallo, F; Pastore, L

    2015-04-01

    Oculo-facio-cardio-dental (OFCD) syndrome is a rare genetic disorder affecting ocular, facial, dental and cardiac systems. The syndrome is an X-linked dominant trait and it might be lethal in males. This syndrome is usually caused by mutations in the BCL6 interacting co-repressor gene (BCOR). We described a female child with mild phenotype of oculo-facio-cardio-dental syndrome. Array-comparative genomic hybridization (a-CGH) analysis revealed a de novo heterozygous deletion in the Xp11.4 region of approximately 2.3 Mb, involving BCOR and ornithine carbamoyl-transferase (OTC) genes. The deletion observed was subsequently confirmed by real time PCR. In this study we report a first case with co-occurrence of BCOR and OTC genes completely deleted in OFCD syndrome.

  11. Deletion at chromosome 16p13. 3 as a cause of Rubinstein-Taybi syndrome: Clinical aspects

    Energy Technology Data Exchange (ETDEWEB)

    Hennekam, R.C.M.; Tilanus, M.; Boogaard, M.J.H. van den (State Univ., Utrecht (Netherlands)); Hamel, B.C.J.; Voshart-van Heeren, H.; Mariman, E.C.M.; Beersum, S.E.C. van (University Hospital, Nijmegen (Netherlands)); Breuning, M.H. (Clinical Genetics Center, Rotterdam (Netherlands))

    1993-02-01

    In the accompanying paper, a chromosomal localization of the Rubinstein-Taybi syndrome by cytogenetic investigations with fluorescence in situ hybridization techniques at chromosome 16p13.3 is described. The authors investigated 19 of these patients and their parents (a) to ascertain the parental origin of the chromosome with the deletion in families where such a deletion was detected, (b) to disclose whether uniparental disomy plays a role in etiology, and (c) to compare clinical features in patients with a deletion to those in individuals in whom deletions were not detectable. Molecular studies showed a copy of chromosome 16 from each parent in all 19 patients. Uniparental disomy was also excluded for five other chromosome arms known to be imprinted in mice. None of the probes used for determining the origin of the deleted chromosome proved to be informative. The clinical features were essentially the same in patients with and without visible deletion, with a possible exception for the incidence of microcephaly, angulation of thumbs and halluces, and partial duplication of the halluces. A small deletion at 16p13.3 may be found in some patients with Rubinstein-Taybi syndrome. Cytogenetically undetectable deletions, point mutations, mosaicism, heterogeneity, or phenocopy by a nongenetic cause are the most probable explanations for the absence of cytogenetic or molecular abnormalities in other patients with Rubinstein-Taybi syndrome. 26 refs., 3 tabs., 2 figs.

  12. Social Cognition in Williams Syndrome: Genotype/phenotype Insights from Partial Deletion Patients

    Directory of Open Access Journals (Sweden)

    Annette eKarmiloff-Smith

    2012-05-01

    Full Text Available Identifying genotype-phenotype relations in human social cognition has been enhanced by the study of Williams syndrome (WS. Indeed, individuals with WS present with a particularly strong social drive, and researchers have sought to link deleted genes in the WS Critical Region (WSCR of chromosome 7q11.23 to this unusual social profile. In this paper, we provide details of two case studies of children with partial genetic deletions in the WSCR: an 11-year-old female with a deletion of 24 of the 28 WS genes, and a 14-year-old male who presents with the opposite profile, i.e. the deletion of only 4 genes at the telomeric end of the WSCR. We tested these two children on a large battery of standardised and experimental social perception and social cognition tasks - both implicit and explicit - as well as standardised social questionnaires and general psychometric measures. Our findings reveal a partial WS socio-cognitive profile in the female, contrasted with a more autistic-like profile in the male. We discuss the implications of these findings for genotype/phenotype relations, as well as the advantages and limitations of animal models and of case study approaches.

  13. MECP2 deletions and genotype-phenotype correlation in Rett syndrome.

    Science.gov (United States)

    Scala, Elisa; Longo, Ilaria; Ottimo, Federica; Speciale, Caterina; Sampieri, Katia; Katzaki, Eleni; Artuso, Rosangela; Mencarelli, Maria Antonietta; D'Ambrogio, Tatiana; Vonella, Giuseppina; Zappella, Michele; Hayek, Giuseppe; Battaglia, Agatino; Mari, Francesca; Renieri, Alessandra; Ariani, Francesca

    2007-12-01

    Rett syndrome is a neurodevelopmental disorder that represents one of the most common genetic causes of mental retardation in girls. MECP2 point mutations in exons 2-4 account for about 80% of classic Rett cases and for a lower percentage of variant patients. We investigated the genetic cause in 77 mutation-negative Rett patients (33 classic, 31 variant, and 13 Rett-like cases) by searching missed MECP2 defects. DHPLC analysis of exon 1 and MLPA analysis allowed us to identify the defect in 17 Rett patients: one exon 1 point mutation (c.47_57del) in a classic case and 16 MECP2 large deletions (15/33 classic and 1/31 variant cases). One identical intragenic MECP2 deletion, probably due to gonadal mosaicism, was found in two sisters with discordant phenotype: one classic and one "highly functioning" preserved speech variant. This result indicates that other epigenetic or genetic factors, beside MECP2, may contribute to phenotype modulation. Three out of 16 MECP2 deletions extend to the adjacent centromeric IRAK1 gene. A putative involvement of the hemizygosity of this gene in the ossification process is discussed. Finally, results reported here clearly indicate that MECP2 large deletions are a common cause of classic Rett, and MLPA analysis is mandatory in MECP2-negative patients, especially in those more severely affected (P = 0.044).

  14. Critical region in 2q31.2q32.3 deletion syndrome: Report of two phenotypically distinct patients, one with an additional deletion in Alagille syndrome region

    Directory of Open Access Journals (Sweden)

    Ferreira Susana

    2012-05-01

    Full Text Available Abstract Background Standard cytogenetic analysis has revealed to date more than 30 reported cases presenting interstitial deletions involving region 2q31-q32, but with poorly defined breakpoints. After the postulation of 2q31.2q32.3 deletion as a clinically recognizable disorder, more patients were reported with a critical region proposed and candidate genes pointed out. Results We report two female patients with de novo chromosome 2 cytogenetically visible deletions, one of them with an additional de novo deletion in chromosome 20p12.2p12.3. Patient I presents a 16.8 Mb deletion in 2q31.2q32.3 while patient II presents a smaller deletion of 7 Mb in 2q32.1q32.3, entirely contained within patient I deleted region, and a second 4 Mb deletion in Alagille syndrome region. Patient I clearly manifests symptoms associated with the 2q31.2q32.3 deletion syndrome, like the muscular phenotype and behavioral problems, while patient II phenotype is compatible with the 20p12 deletion since she manifests problems at the cardiac level, without significant dysmorphisms and an apparently normal psychomotor development. Conclusions Whereas Alagille syndrome is a well characterized condition mainly caused by haploinsufficiency of JAG1 gene, with manifestations that can range from slight clinical findings to major symptoms in different domains, the 2q31.2q32.3 deletion syndrome is still being delineated. The occurrence of both imbalances in reported patient II would be expected to cause a more severe phenotype compared to the individual phenotype associated with each imbalance, which is not the case, since there are no manifestations due to the 2q32 deletion. This, together with the fact that patient I deleted region overlaps previously reported cases and patient II deletion is outside this common region, reinforces the existence of a critical region in 2q31.3q32.1, between 181 to 185 Mb, responsible for the clinical phenotype.

  15. A Turkish patient with large 17p11.2 deletion presenting with Smith Magenis syndrome.

    Science.gov (United States)

    Tug, E; Cine, N; Aydin, H

    2011-01-01

    Smith-Magenis syndrome (SMS), which occurs as a result of an interstitial deletion within chromosome 17p11.2-p12, is a disorder that presents itself with minor dysmorphic features, brachydactyly, short stature, hypotonia, delayed speech, cognitive deficits and neurobehavioral problems including sleep disturbances and maladaptive repetitive and self-injurious behavior. We present a girl with full SMS phenotype. G-banding cytogenetic analysis showed normal 46,XX karyotype. Whole-genome array comparative genomic hybridization (CGH) was performed due to the severity of the phenotype and the unusual features present in the patient. An interstitial deletion in 17p11.2-p12, approximately 4.73 Mb in size was determined. Characteristic physical and behavioral phenotype strongly suggested SMS. This, to the best of our knowledge is the first patient with SMS reported in Turkey. We emphasize the need for whole genome analysis in multiple congenital abnormalities/mental retardation disorders with unusual and severe phenotypes.

  16. Large deletions encompassing the TCOF1 and CAMK2A genes are responsible for Treacher Collins syndrome with intellectual disability.

    Science.gov (United States)

    Vincent, Marie; Collet, Corinne; Verloes, Alain; Lambert, Laetitia; Herlin, Christian; Blanchet, Catherine; Sanchez, Elodie; Drunat, Séverine; Vigneron, Jacqueline; Laplanche, Jean-Louis; Puechberty, Jacques; Sarda, Pierre; Geneviève, David

    2014-01-01

    Mandibulofacial dysostosis is part of a clinically and genetically heterogeneous group of disorders of craniofacial development, which lead to malar and mandibular hypoplasia. Treacher Collins syndrome is the major cause of mandibulofacial dysostosis and is due to mutations in the TCOF1 gene. Usually patients with Treacher Collins syndrome do not present with intellectual disability. Recently, the EFTUD2 gene was identified in patients with mandibulofacial dysostosis associated with microcephaly, intellectual disability and esophageal atresia. We report on two patients presenting with mandibulofacial dysostosis characteristic of Treacher Collins syndrome, but associated with unexpected intellectual disability, due to a large deletion encompassing several genes including the TCOF1 gene. We discuss the involvement of the other deleted genes such as CAMK2A or SLC6A7 in the cognitive development delay of the patients reported, and we propose the systematic investigation for 5q32 deletion when intellectual disability is associated with Treacher Collins syndrome.

  17. Contiguous ABCD1 DXS1357E deletion syndrome: report of an autopsy case.

    Science.gov (United States)

    Iwasa, Mitsuaki; Yamagata, Takanori; Mizuguchi, Masashi; Itoh, Masayuki; Matsumoto, Ayumi; Hironaka, Mitsugu; Honda, Ayako; Momoi, Mariko Y; Shimozawa, Nobuyuki

    2013-06-01

    Contiguous ABCD1 DXS1357E deletion syndrome (CADDS) is a contiguous deletion syndrome involving the ABCD1 and DXS1357E/BAP31 genes on Xq28. Although ABCD1 is responsible for X-linked adrenoleukodystrophy (X-ALD), its phenotype differs from that of CADDS, which manifests with many features of Zellweger syndrome (ZS), including severe growth and developmental retardation, liver dysfunction, cholestasis and early infantile death. We report here the fourth case of CADDS, in which a boy had dysmorphic features, including a flat orbital edge, hypoplastic nose, micrognathia, inguinal hernia, micropenis, cryptorchidism and club feet, all of which are shared by ZS. The patient achieved no developmental milestones and died of pneumonia at 8 months. Biochemical studies demonstrated abnormal metabolism of very long chain fatty acids, which was higher than that seen in X-ALD. Immunocytochemistry and Western blot showed the absence of ALD protein (ALDP) despite the presence of other peroxisomal proteins. Pathological studies disclosed a small brain with hypomyelination and secondary hypoxic-ischemic changes. Neuronal heterotopia in the white matter and leptomeningeal glioneuronal heterotopia indicated a neuronal migration disorder. The liver showed fibrosis and cholestasis. The thymus and adrenal glands were hypoplastic. Array comparative genomic hybridization (CGH) analysis suggested that the deletion was a genomic rearrangement in the 90-kb span starting in DXS1357E/BACP31 exon 4 and included ABCD1, PLXNB3, SRPK3, IDH3G and SSR4, ending in PDZD4 exon 8. Thus, the absence of ALDP, when combined with defects in the B-cell antigen receptor associated protein 31 (BAP31) and other factors, severely affects VLCFA metabolism on peroxisomal functions and produces ZS-like pathology.

  18. Exome-first approach identified a novel gloss deletion associated with Lowe syndrome.

    Science.gov (United States)

    Watanabe, Miki; Nakagawa, Ryuji; Kohmoto, Tomohiro; Naruto, Takuya; Suga, Ken-Ichi; Goji, Aya; Horikawa, Hideaki; Masuda, Kiyoshi; Kagami, Shoji; Imoto, Issei

    2016-01-01

    Lowe syndrome (LS) is an X-linked disorder affecting the eyes, nervous system and kidneys, typically caused by missense or nonsense/frameshift OCRL mutations. We report a 6-month-old male clinically suspected to have LS, but without the Fanconi-type renal dysfunction. Using a targeted-exome sequencing-first approach, LS was diagnosed by the identification of a deletion involving 1.7 Mb at Xq25-q26.1, encompassing the entire OCRL gene and neighboring loci.

  19. Treacher Collins syndrome with a de Novo 5-bp deletion in the TCOF1 gene.

    Science.gov (United States)

    Su, Pen-Hua; Chen, Jia-Yu; Chen, Suh-Jen; Yu, Ju-Shan

    2006-06-01

    Treacher Collins syndrome (TCS) is an autosomal dominant disorder of craniofacial development with features including malar hypoplasia, micrognathia, microtia, downward slanting palpebral fissures, lower eyelid coloboma, conductive hearing loss, and cleft palate. TCS is caused by mutations in the TCOF1 gene, which encodes the nuclear phosphoprotein treacle. Here, we describe a 1-day-old male infant with classical TCS presentation. A 5-bp deletion in exon 22 of the TCOF1 gene (3469del ACTCT) was found to cause a premature stop codon. This is the first report of TCOF1 gene mutation in the Taiwanese population.

  20. mtDNA Deletion in an Iranian Infant with Pearson Marrow Syndrome

    Directory of Open Access Journals (Sweden)

    Massoud Houshmand

    2010-03-01

    Full Text Available Background:Pearson syndrome (PS is a rare multisystem mitochondrial disorder of hematopoietic system, characterized by refractory sideroblastic anemia, pancytopenia, exocrine pancreatic insufficiency, and variable neurologic, hepatic, renal, and endocrine failure. Case Presentation:We describe a six-month-old female infant with Pearson marrow syndrome who presented with neurological manifestations. She had several episodes of seizures. Hematopoietic abnormalities were macrocytic anemia and neutropenia. Bone marrow aspiration revealed a cellular marrow with marked vacuolization of erythroid and myeloid precursors. Analysis of mtDNA in peripheral blood showed 8.5 kb deletion that was compatible with the diagnosis of PS. Conclusion:PS should be considered in infants with neurologic diseases, in patients with cytopenias, and also in patients with acidosis or refractory anemia.

  1. Detection of classical 17p11.2 deletions, an atypical deletion and RAI1 alterations in patients with features suggestive of Smith-Magenis syndrome.

    Science.gov (United States)

    Vieira, Gustavo H; Rodriguez, Jayson D; Carmona-Mora, Paulina; Cao, Lei; Gamba, Bruno F; Carvalho, Daniel R; de Rezende Duarte, Andréa; Santos, Suely R; de Souza, Deise H; DuPont, Barbara R; Walz, Katherina; Moretti-Ferreira, Danilo; Srivastava, Anand K

    2012-02-01

    Smith-Magenis syndrome (SMS) is a complex disorder whose clinical features include mild to severe intellectual disability with speech delay, growth failure, brachycephaly, flat midface, short broad hands, and behavioral problems. SMS is typically caused by a large deletion on 17p11.2 that encompasses multiple genes including the retinoic acid induced 1, RAI1, gene or a mutation in the RAI1 gene. Here we have evaluated 30 patients with suspected SMS and identified SMS-associated classical 17p11.2 deletions in six patients, an atypical deletion of ~139 kb that partially deletes the RAI1 gene in one patient, and RAI1 gene nonsynonymous alterations of unknown significance in two unrelated patients. The RAI1 mutant proteins showed no significant alterations in molecular weight, subcellular localization and transcriptional activity. Clinical features of patients with or without 17p11.2 deletions and mutations involving the RAI1 gene were compared to identify phenotypes that may be useful in diagnosing patients with SMS.

  2. Rubinstein-Taybi syndrome caused by submicroscopic deletions within 16p13. 3

    Energy Technology Data Exchange (ETDEWEB)

    Breuning, M.H.; Dauwerse, H.G.; Fugazza, G.; Saris, J.J.; Spruit, L.; Winjnen, H.; Beverstock, G.C.; Ommen, G.J.B. van (Leiden Univ. (Netherlands)); Tommerup, N. (John F. Kennedy Inst., Glostrup (Denmark) Avd. for Medisinsk Genetikk, Oslo (Norway)); Hagen, C.B. van der (John F. Kennedy Inst., Glostrup (Denmark)); Imaizumi, Kiyoshi; Kuroki, Yoshikazu (Kanagawa Children' s Medical Center, Yokohama (Japan)); Boogaard, M.J. van den; Pater, J.M. de; Hennekam, R.C.M. (Clinical Genetics Center, Utrecht (Netherlands)); Mariman, E.C.M.; Hamel, B.C.J. (University Hospital, Nijmegen (Netherlands)); Himmelbauer, H.; Frischauf, A.M. (Imperial Cancer Research Fund Laboratories, London (United Kingdom)); Stallings, R.L. (Los Alamos National Lab., NM (United States))

    1993-02-01

    The Rubinstein-Taybi syndrome (RTS) is a well-defined complex of congenital malformations characterized by facial abnormalities, broad thumbs and big toes, and mental retardation. The breakpoint of two distinct reciprocal translocations occurring in patients with a clinical diagnosis of RTS was located to the same interval on chromosome 16, between the cosmids N2 and RT1, in band 16p13.3. By using two-color fluorescence in situ hybridization, the signal from RT1 was found to be missing from one chromosome 16 in 6 of 24 patients with RTS. The parents of five of these patients did not show a deletion of RT1, indicating a de novo rearrangement. RTS is caused by submicroscopic interstitial deletions within 16p13.3 in approximately 25% of the patients. The detection of microdeletions will allow the objective confirmation of the clinical diagnosis in new patients and provides an excellent tool for the isolation of the gene causally related to the syndrome. 32 refs., 2 figs.

  3. Chromosome 15q24 microdeletion syndrome

    Directory of Open Access Journals (Sweden)

    Magoulas Pilar L

    2012-01-01

    involves a multi-disciplinary approach to care with the primary care physician and clinical geneticist playing a crucial role in providing appropriate screening, surveillance, and care for individuals with this syndrome. At the time of diagnosis, individuals should receive baseline echocardiograms, audiologic, ophthalmologic, and developmental assessments. Growth and feeding should be closely monitored. Other specialists that may be involved in the care of individuals with 15q24 deletion syndrome include immunology, endocrine, orthopedics, neurology, and urology. Chromosome 15q24 microdeletion syndrome should be differentiated from other genetic syndromes, particularly velo-cardio-facial syndrome (22q11.2 deletion syndrome, Prader-Willi syndrome, and Noonan syndrome. These conditions share some phenotypic similarity to 15q24 deletion syndrome yet have characteristic features specific to each of them that allows the clinician to distinguish between them. Molecular genetic testing and/or aCGH will be able to diagnose these conditions in the majority of individuals. Disease name and synonyms Chromosome 15q24 deletion syndrome 15q24 deletion syndrome 15q24 microdeletion syndrome

  4. Phylogenetic analysis of mitochondrial DNA in a patient with Kearns-Sayre syndrome containing a novel 7629-bp deletion.

    Science.gov (United States)

    Montiel-Sosa, Jose Francisco; Herrero, María Dolores; Munoz, Maria de Lourdes; Aguirre-Campa, Luis Enrique; Pérez-Ramírez, Gerardo; García-Ramírez, Rubén; Ruiz-Pesini, Eduardo; Montoya, Julio

    2013-08-01

    Mitochondrial DNA mutations have been associated with different illnesses in humans, such as Kearns-Sayre syndrome (KSS), which is related to deletions of different sizes and positions among patients. Here, we report a Mexican patient with typical features of KSS containing a novel deletion of 7629 bp in size with 85% heteroplasmy, which has not been previously reported. Sequence analysis revealed 3-bp perfect short direct repeats flanking the deletion region, in addition to 7-bp imperfect direct repeats within 9-10 bp. Furthermore, sequencing, alignment and phylogenetic analysis of the hypervariable region revealed that the patient may belong to a founder Native American haplogroup C4c.

  5. Rare Deletions at 16p13.11 Predispose to a Diverse Spectrum of Sporadic Epilepsy Syndromes

    OpenAIRE

    2010-01-01

    PUBLISHED Deletions at 16p13.11 are associated with schizophrenia, mental retardation, and most recently idiopathic generalized epilepsy. To evaluate the role of 16p13.11 deletions, as well as other structural variation, in epilepsy disorders, we used genome-wide screens to identify copy number variation in 3812 patients with a diverse spectrum of epilepsy syndromes and in 1299 neurologically-normal controls. Large deletions (> 100 kb) at 16p13.11 were observed in 23 patients, whereas no c...

  6. 7q11.23 deletions in Williams syndrome arise as a consequence of unequal meiotic crossover

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Z.; Csiszar, K.; Boyd, C.D. [and others

    1996-10-01

    Williams syndrome (WS) is a multisystem disorder characterized by mental retardation, a specific neurobehavioral profile, characteristic facies, infantile hypercalcemia, cardiovascular abnormalities, progressive joint limitation, hermas, and soft skin. Recent studies have shown that hemizygosity at the elastin (ELN) gene locus on chromosome 7q is associated with WS. Furthermore, two FISH studies using cosmid recombinants containing the 5{prime} or the 3{prime} end of the ELN gene revealed deletion of the entire ELN gene in 90%-96% of classical WS cases. However, the size of the 7q11.23 deletions and the mechanism by which these deletions arise are not known. 15 refs., 2 figs., 1 tab.

  7. Reciprocal deletion and duplication of 17p11.2-11.2: Korean patients with Smith-Magenis syndrome and Potocki-Lupski syndrome.

    Science.gov (United States)

    Lee, Cha Gon; Park, Sang-Jin; Yun, Jun-No; Yim, Shin-Young; Sohn, Young Bae

    2012-12-01

    Deletion and duplication of the -3.7-Mb region in 17p11.2 result in two reciprocal syndrome, Smith-Magenis syndrome and Potocki-Lupski syndrome. Smith-Magenis syndrome is a well-known developmental disorder. Potocki-Lupski syndrome has recently been recognized as a microduplication syndrome that is a reciprocal disease of Smith-Magenis syndrome. In this paper, we report on the clinical and cytogenetic features of two Korean patients with Smith-Magenis syndrome and Potocki-Lupski syndrome. Patient 1 (Smith-Magenis syndrome) was a 2.9-yr-old boy who showed mild dysmorphic features, aggressive behavioral problems, and developmental delay. Patient 2 (Potocki-Lupski syndrome), a 17-yr-old boy, had only intellectual disabilities and language developmental delay. We used array comparative genomic hybridization (array CGH) and found a 2.6 Mb-sized deletion and a reciprocal 2.1 Mb-sized duplication involving the 17p11.2. These regions overlapped in a 2.1 Mb size containing 11 common genes, including RAI1 and SREBF.

  8. Prenatal diagnosis of a 7p15-p21 deletion encompassing the TWIST1 gene involved in Saethre-Chotzen syndrome.

    Science.gov (United States)

    Spaggiari, Emmanuel; Aboura, Azzedine; Sinico, Martine; Mabboux, Philippe; Dupont, Céline; Delezoide, Anne-Lise; Guimiot, Fabien

    2012-01-01

    Saethre-Chotzen syndrome is a craniosynostosis syndrome that is rarely diagnosed prenatally. It is caused by cytogenetic deletions or mutations of the TWIST1 gene. We report here a de novo prenatal case with clinically and molecularly well defined Saethre-Chotzen syndrome due to a TWIST1 deletion. This is the first reported case of a deletion encompassing the TWIST1 gene to be diagnosed prenatally. We recommend screening for a deletion of the TWIST1 gene if signs of coronal craniosynostosis with no clear etiology are observed on ultrasound examination.

  9. Arterial Hypertension in a Child with Williams-Beuren Syndrome (7q11.23 Chromosomal Deletion

    Directory of Open Access Journals (Sweden)

    Cristina de Sylos

    2002-08-01

    Full Text Available We report the case of a 7-year-old male child diagnosed with Williams-Beuren syndrome and arterial hypertension refractory to clinical treatment. The diagnosis was confirmed by genetic study. Narrowing of the descending aorta and stenosis of the renal arteries were also diagnosed. Systemic vascular alterations caused by deletion of the elastin gene may occur early in individuals with Williams-Beuren syndrome, leading to the clinical manifestation of systemic arterial hypertension refractory to drug treatment.

  10. 先天性膜性白内障一家系致病基因的遗传分析%Mutation of 22q11.2-q12.1 gene in a family with autosomal dominant congenital membranous cataract

    Institute of Scientific and Technical Information of China (English)

    袁芳; 李飞峰; 刘伟; 刘华; 季健; 马旭

    2009-01-01

    目的 分析一个先天性白内障家系的遗传规律,对其突变基因进行初步研究.方法 选取一先天性膜性白内障家系,对家系成员进行临床检查并采集静脉血.标准饱和酚/氯仿抽提法提取DNA,选取多态性微卫星遗传标记,合成引物,聚合酶链反应,聚丙烯酰胺凝胶电泳,基因分型,等位基因共享分析法对已知候选基因进行排除性定位.结果 该家系为常染色体显性遗传性先天性白内障家系.其致病基因与D22S315联系紧密,重组发生在以D22S303和D22S1167为上下边界的范围内.对该范围内已知的先天性白内障致病基因CRYBB1、CRYBB2、CRYBB3、CRYBA4进行DNA直接测序,未发现突变.结论 该家系致病基因定位于22q11.2~q12.1的2.4 Mbp范围内,其致病基因与已知基因座不同.该范围内可能存在导致先天性膜性白内障的新的致病基因.%Objective Autosomal dominant congenital cataract (ADCC) is a common heredit disease.Some known genes and mutated loci related to ADCC have been found.The present study provides other disease-causing genes in the ADCC family.This study was to identify the genetic defect in four generations of a Chinese family with autosomal dominant congenital membranous cataracts and demonstrate the functional analysis of a candidate gene in the family.MethodsThe family with hereditary cataract was recruited from the Tianjin Medical University Eye Center.The family history was collected and recorded.Clinical and ophthalmologic examinations were performed on 6 affected and 14 unaffected family members and periphery blood samples were collected from all of the subjects for genomic DNA preparation.The members were genotyped with microsatellite markers at loci associated with cataracts.Multiplex polymerase chain reaction (PCR) was carried out with microsatellite markers near to candidated loci related to congenital cataracts.PCR products from each DNA sample were separated on a polyarcylamide gel and

  11. Monoallelic deletion of the microRNA biogenesis gene Dgcr8 produces deficits in the development of excitatory synaptic transmission in the prefrontal cortex

    Directory of Open Access Journals (Sweden)

    Barker Alison J

    2011-04-01

    Full Text Available Abstract Background Neuronal phenotypes associated with hemizygosity of individual genes within the 22q11.2 deletion syndrome locus hold potential towards understanding the pathogenesis of schizophrenia and autism. Included among these genes is Dgcr8, which encodes an RNA-binding protein required for microRNA biogenesis. Dgcr8 haploinsufficient mice (Dgcr8+/- have reduced expression of microRNAs in brain and display cognitive deficits, but how microRNA deficiency affects the development and function of neurons in the cerebral cortex is not fully understood. Results In this study, we show that Dgcr8+/- mice display reduced expression of a subset of microRNAs in the prefrontal cortex, a deficit that emerges over postnatal development. Layer V pyramidal neurons in the medial prefrontal cortex of Dgcr8+/- mice have altered electrical properties, decreased complexity of basal dendrites, and reduced excitatory synaptic transmission. Conclusions These findings demonstrate that precise microRNA expression is critical for the postnatal development of prefrontal cortical circuitry. Similar defects in neuronal maturation resulting from microRNA deficiency could represent endophenotypes of certain neuropsychiatric diseases of developmental onset.

  12. A Five Month Old Girl with Deletion in 5th Chromosome: Cri du Chat Syndrome

    Directory of Open Access Journals (Sweden)

    Tolga Altuğ Şen

    2008-10-01

    Full Text Available This five month-old girl was admitted to our clinic due to failure to thrive. On physical examination, her weight, length and head circumference was below the 3rd percentile, she had blond hair, facial dysmorphism and high arched palate. Pronounced hypotonia and motor retardation was present and high-pitched crying was striking. In echocardiographic examination, secundum type ASD and midtrabecular VSD without any important hemodynamic effect was present. In cranial MRI exmination, dilated 4th ventricles and delayed myelinisation in basal ganglia was detected. By the help of high resolution binding teqhnique, deletion in the short arm of the 5th chromosome was detected and diagnosis of Cri du Chat Syndrome was made. (Journal of Current Pediatrics 2008; 6: 86-8

  13. Familial Angelman syndrome with a crossover in the critical deletion region

    Energy Technology Data Exchange (ETDEWEB)

    Nelen, M.R.; Van der Burgt, C.J.A.M.; Nillesen, W.N.; Smeets, H.J.M. [University Hospital Nijmegen (Netherlands); Vis, A. [Institute for Mentally Handicapped De Winckelsteegh, Nijmegen (Netherlands)

    1994-09-01

    More than two thirds of the patients with Angelman syndrome (AS) carry a deletion or other chromosomal abnormality in the 15q11-13 region. A much less frequent cause (4%) is paternal uniparental disomy of the entire chromosome. In general no abnormalities are detectable in familial cases and an inherited submicroscopic deletion was described only once. Here a familial case of 2 sibs with AS is reported. No major cytogenetic or molecular abnormality was identified, but a recombination event had occurred in the AS critical region. The AS locus, D15S113, D15S10, D15S11, and D15S18 mapped proximal and the GABRB3 gene, D15S97, and GABRA5 gene, and D15S12 distal to the crossover site. This recombination within the AS critical region confirmed the exclusion of GABRB3 as a candidate gene for AS. Other markers and candidate genes can be tested genetically as well for a possible role in AS. 36 refs., 4 figs.

  14. Metopic and sagittal synostosis in Greig cephalopolysyndactyly syndrome: five cases with intragenic mutations or complete deletions of GLI3.

    Science.gov (United States)

    Hurst, Jane A; Jenkins, Dagan; Vasudevan, Pradeep C; Kirchhoff, Maria; Skovby, Flemming; Rieubland, Claudine; Gallati, Sabina; Rittinger, Olaf; Kroisel, Peter M; Johnson, David; Biesecker, Leslie G; Wilkie, Andrew O M

    2011-07-01

    Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association with pre- and post-axial polydactyly and cutaneous syndactyly of hands and feet. Two cases had additional sagittal synostosis. None had a family history of similar features. In all five children, the diagnosis of GCPS was confirmed by molecular analysis of GLI3 (two had intragenic mutations and three had complete gene deletions detected on array comparative genomic hybridisation), thus highlighting the importance of trigonocephaly or overt metopic or sagittal synostosis as a distinct presenting feature of GCPS. These observations confirm and extend a recently proposed association of intragenic GLI3 mutations with metopic synostosis; moreover, the three individuals with complete deletion of GLI3 were previously considered to have Carpenter syndrome, highlighting an important source of diagnostic confusion.

  15. Metopic and sagittal synostosis in Greig cephalopolysyndactyly syndrome: five cases with intragenic mutations or complete deletions of GLI3

    DEFF Research Database (Denmark)

    Hurst, Jane A; Jenkins, Dagan; Vasudevan, Pradeep C;

    2011-01-01

    Greig cephalopolysyndactyly syndrome (GCPS) is a multiple congenital malformation characterised by limb and craniofacial anomalies, caused by heterozygous mutation or deletion of GLI3. We report four boys and a girl who were presented with trigonocephaly due to metopic synostosis, in association ...

  16. Autoimmune lymphoproliferative syndrome in a patient with a new minimal deletion in the death domain of the FAS gene

    NARCIS (Netherlands)

    Gualco, Gabrieta; van den Berg, Anke; Koopmans, Sicco; Bacchi, Livia M.; Carneiro, Siderley S.; Ruiz, Everaldo; Vecchi, Ana Paula; Chan, John K. C.

    2008-01-01

    We present a case of autoimmune lymphoproliferative syndrome (ALPS) caused by a previously undescribed minimal deletion in the death domain of the FAS gene. ALPS is an uncommon disease associated with an impaired Fas-mediated apoptosis. The patient presented with a history of splenomegaly since 4 mo

  17. Inflammatory peeling skin syndrome caused by homozygous genomic deletion in the PSORS1 region encompassing the CDSN gene.

    Science.gov (United States)

    Ishida-Yamamoto, Akemi; Furio, Laetitia; Igawa, Satomi; Honma, Masaru; Tron, Elodie; Malan, Valerie; Murakami, Masamoto; Hovnanian, Alain

    2014-01-01

    Peeling skin syndrome (PSS) type B is a rare recessive genodermatosis characterized by lifelong widespread, reddish peeling of the skin with pruritus. The disease is caused by small-scale mutations in the Corneodesmosin gene (CDSN) leading to premature termination codons. We report for the first time a Japanese case resulting from complete deletion of CDSN. Corneodesmosin was undetectable in the epidermis, and CDSN was unamplifiable by PCR. QMPSF analysis demonstrated deletion of CDSN exons inherited from each parent. Deletion mapping using microsatellite haplotyping, CGH array and PCR analysis established that the genomic deletion spanned 49-72 kb between HCG22 and TCF19, removing CDSN as well as five other genes within the psoriasis susceptibility region 1 (PSORS1) on 6p21.33. This observation widens the spectrum of molecular defects underlying PSS type B and shows that loss of these five genes from the PSORS1 region does not result in an additional cutaneous phenotype.

  18. Neuro-behavioral profile and brain imaging study of the 22q13.3 deletion syndrome in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Philippe, A.; Malan, V.; De Blois, M.C.; Colleaux, L.; Munnich, A. [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Natl Inst Hlth and Med Res, Paris (France); Philippe, A.; De Blois, M.C.; Colleaux, L.; Munnich, A. [HopNecker Enfants Malad, Assistance Publ Hop Paris, Dept Genet, Paris (France); Boddaert, N. [Natl Inst Hlth and Med Res, Mixed Unit Res 0205, Orsay (France); Vaivre-Douret, L.; Robel, L.; Golse, B. [Hop Necker Enfants Malad, Assistance Publ Hop Paris, Dept Psychiat, Paris (France); Vaivre-Douret, L. [Univ Paris 10, Mixed Unit Res S0669, Univ Paris 05, Univ Paris 11, Paris 10 (France); Vaivre-Douret, L. [Assistance Publ Hop Paris, Dept Obstet et Gynaecol, Paris (France); Danon-Boileau, L. [Natl Ctr Sci Res, Mixed Unit Res 7114, Paris (France); Heron, D. [Hop La Pitie Salpetriere, Assistance Publ HopParis, Dept Genet, Paris (France)

    2008-07-01

    The 22q13.3 deletion syndrome (Online Mendelian Inheritance in Man No. 606232) is a neuro-developmental disorder that includes hypotonia, severely impaired development of speech and language, autistic-like behavior, and minor dysmorphic features. Although the number of reported cases is increasing, the 22q13.3 deletion remains under-diagnosed because of failure in recognizing the clinical phenotype and detecting the 22qter deletion by routine chromosome analyses. Our goal is to contribute to the description of the neuro-behavioral phenotype and brain abnormalities of this micro-deletional syndrome. We assessed neuro-motor, sensory, language, communication, and social development and performed cerebral MRI and study of regional cerebral blood flow measured by positron emission tomography in 8 children carrying the 22q13.3 deletion. Despite variability in expression and severity, the children shared a common developmental profile characterized by hypotonia, sleep disorders, and poor response to their environment in early infancy; expressive language deficit contrasting with emergence of social reciprocity from ages similar to 3 to 5 years; sensory processing dysfunction; and neuro-motor disorders. Brain MRI findings were normal or showed a thin or morphologically atypical corpus callosum. Positron emission tomography study detected a localized dysfunction of the left temporal polar lobe and amygdala hypoperfusion. The developmental course of the 22q13.3 deletion syndrome belongs to pervasive developmental disorders but is distinct from autism. An improved description of the natural history of this syndrome should help in recognizing this largely under-diagnosed condition. (authors)

  19. Durable Hematological and Major Cytogenetic Response in a Patient with Isolated 20q Deletion Myelodysplastic Syndrome Treated with Lenalidomide

    Directory of Open Access Journals (Sweden)

    Bagi Jana

    2014-01-01

    Full Text Available Myelodysplastic syndrome (MDS is a clonal bone marrow disorder characterized by ineffective hematopoiesis. It is characterized by peripheral blood cytopenia and significant risk of progression to acute myeloid leukemia result. Deletion of the long arm of chromosome 20 (20q deletion is present in 3–7% of patients with MDS. Lenalidomide is an immunomodulatory agent with antiangiogenic activity. It is FDA approved for the treatment of anemia in patients with low or int-1 risk MDS with chromosome 5q deletion with or without additional cytogenetic abnormalities. Study of lenalidomide in patients with MDS without 5q deletion but other karyotypic abnormalities demonstrated meaningful activity in transfusion dependent patients; however, response of patients with isolated 20q deletion to lenalidomide is not known. We are reporting a patient with 20q deletion MDS treated with lenalidomide after he failed to respond to azacytidine; to our knowledge this is the first report of a patient with isolated 20q deletion treated with lenalidomide.

  20. Saethre-Chotzen syndrome and hyper IgE syndrome in a patient with a novel 11 bp deletion of the TWIST gene.

    Science.gov (United States)

    Boeck, A; Kosan, C; Ciznar, P; Kunz, J

    2001-11-15

    Molecular genetic studies in a seven-year-old boy and his mother demonstrated a novel 11 bp deletion in the TWIST gene (127del11), causing Saethre-Chotzen syndrome. The mother had rather mild signs of the Saethre-Chotzen syndrome; however, her son presented with marked acrocephalosyndactyly type 3, leading to craniotomy at three years. He also had recurrent infections and laboratory findings comparable with the hyper IgE syndrome, a rare primary immunodeficiency disorder. It is likely that the 11bp deletion caused the Saethre-Chotzen syndrome in the patient and his mother, and another, not yet identified genetic defect, seen in the patient but not in the mother, is responsible for the hyper IgE phenotype. A combination of these two congenital conditions has not been described to date.

  1. Multi-disciplinary clinical study of Smith-Magenis syndrome (deletion 17p11.2)

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, F.; Lewis, R.A.; Potocki, L. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1996-03-29

    Smith-Magenis syndrome (SMS) is a multiple congenital anomaly, mental retardation (MCA/MR) syndrome associated with deletion of chromosome 17 band p11.2. As part of a multi-disciplinary clinical, cytogenetic, and molecular approach to SMS, detailed clinical studies including radiographic neurologic, developmental, ophthalmologic, otolaryngologic, and audiologic evaluations were performed on 27 SMS patients. Significant findings include otolaryngologic abnormalities in 94%, eye abnormalities in 85%, sleep abnormalities (especially reduced REM sleep) in 75%, hearing impairment in 68% (approximately 65% conductive and 35% sensorineural), scoliosis in 65% brain abnormalities (predominantly ventriculomegaly) in 52%, cardiac abnormalities in at least 37%, renal anomalies (especially duplication of the collecting system) in 35%, low thyroxine levels in 29%, low immunoglobulin levels in 23%, and forearm abnormalities in 16%. The measured IQ ranged between 20-78, most patients falling in the moderate range of mental retardation at 40-54, although several patients scored in the mild or borderline range. The frequency of these many abnormalities in SMS suggests that patients should be evaluated thoroughly for associated complications both at the time of diagnosis and at least annually thereafter. 42 refs., 2 figs., 3 tabs.

  2. Contribution of Large Genomic Rearrangements in Italian Lynch Syndrome Patients: Characterization of a Novel Alu-Mediated Deletion

    Directory of Open Access Journals (Sweden)

    Francesca Duraturo

    2013-01-01

    Full Text Available Lynch syndrome is associated with germ-line mutations in the DNA mismatch repair (MMR genes, mainly MLH1 and MSH2. Most of the mutations reported in these genes to date are point mutations, small deletions, and insertions. Large genomic rearrangements in the MMR genes predisposing to Lynch syndrome also occur, but the frequency varies depending on the population studied on average from 5 to 20%. The aim of this study was to examine the contribution of large rearrangements in the MLH1 and MSH2 genes in a well-characterised series of 63 unrelated Southern Italian Lynch syndrome patients who were negative for pathogenic point mutations in the MLH1, MSH2, and MSH6 genes. We identified a large novel deletion in the MSH2 gene, including exon 6 in one of the patients analysed (1.6% frequency. This deletion was confirmed and localised by long-range PCR. The breakpoints of this rearrangement were characterised by sequencing. Further analysis of the breakpoints revealed that this rearrangement was a product of Alu-mediated recombination. Our findings identified a novel Alu-mediated rearrangement within MSH2 gene and showed that large deletions or duplications in MLH1 and MSH2 genes are low-frequency mutational events in Southern Italian patients with an inherited predisposition to colon cancer.

  3. Clinical and molecular findings in 39 patients with KBG syndrome caused by deletion or mutation of ANKRD11.

    Science.gov (United States)

    Goldenberg, Alice; Riccardi, Florence; Tessier, Aude; Pfundt, Rolph; Busa, Tiffany; Cacciagli, Pierre; Capri, Yline; Coutton, Charles; Delahaye-Duriez, Andree; Frebourg, Thierry; Gatinois, Vincent; Guerrot, Anne-Marie; Genevieve, David; Lecoquierre, Francois; Jacquette, Aurélia; Khau Van Kien, Philippe; Leheup, Bruno; Marlin, Sandrine; Verloes, Alain; Michaud, Vincent; Nadeau, Gwenael; Mignot, Cyril; Parent, Philippe; Rossi, Massimiliano; Toutain, Annick; Schaefer, Elise; Thauvin-Robinet, Christel; Van Maldergem, Lionel; Thevenon, Julien; Satre, Véronique; Perrin, Laurence; Vincent-Delorme, Catherine; Sorlin, Arthur; Missirian, Chantal; Villard, Laurent; Mancini, Julien; Saugier-Veber, Pascale; Philip, Nicole

    2016-11-01

    KBG syndrome, due to ANKRD11 alteration is characterized by developmental delay, short stature, dysmorphic facial features, and skeletal anomalies. We report a clinical and molecular study of 39 patients affected by KBG syndrome. Among them, 19 were diagnosed after the detection of a 16q24.3 deletion encompassing the ANKRD11 gene by array CGH. In the 20 remaining patients, the clinical suspicion was confirmed by the identification of an ANKRD11 mutation by direct sequencing. We present arguments to modulate the previously reported diagnostic criteria. Macrodontia should no longer be considered a mandatory feature. KBG syndrome is compatible with autonomous life in adulthood. Autism is less frequent than previously reported. We also describe new clinical findings with a potential impact on the follow-up of patients, such as precocious puberty and a case of malignancy. Most deletions remove the 5'end or the entire coding region but never extend toward 16q telomere suggesting that distal 16q deletion could be lethal. Although ANKRD11 appears to be a major gene associated with intellectual disability, KBG syndrome remains under-diagnosed. NGS-based approaches for sequencing will improve the detection of point mutations in this gene. Broad knowledge of the clinical phenotype is essential for a correct interpretation of the molecular results. © 2016 Wiley Periodicals, Inc.

  4. Middle and inner ear malformations in two cases of velocardiofacial syndrome

    OpenAIRE

    Tabith Junior,Alfredo; Haetinger, Rainer Guilherme; Silva,Fernando Leite de Carvalho e; Gudmon, Monica de Castro

    2009-01-01

    Objective: To describe audiometric characteristics and middle and inner ear malformations in two patients with velocardiofacial syndrome. Method: Audiometric evaluation, computerized tomography of the temporal bones and analysis of DNA for multiple markers of 22q11 region were performed in two patients with clinical signs of velocardiofacial syndrome. Results: Conductive hearing loss related to chronic otites media and middle and inner ear malformations were found, the latter with the use of ...

  5. Expanding the ocular phenotype of 14q terminal deletions: A novel presentation of microphthalmia and coloboma in ring 14 syndrome with associated 14q32.31 deletion and review of the literature.

    Science.gov (United States)

    Salter, Claire G; Baralle, Diana; Collinson, Morag N; Self, James E

    2016-04-01

    A variety of ocular anomalies have been described in the rare ring 14 and 14q terminal deletion syndromes, yet the character, prevalence, and extent of these anomalies are not well defined. Identification of these ocular anomalies can be central to providing diagnoses and facilitating optimal individual patient management. We report a child with a 14q32.31 terminal deletion and ring chromosome formation, presenting with severe visual impairment secondary to significant bilateral coloboma and microphthalmia. This patient is compared to previously reported patients with similar ocular findings and deletion sizes to further refine a locus for coloboma in the 14q terminal region. Those with ring formation and linear deletions are compared and the possibility of ring formation affecting the proximal 14q region is discussed. This report highlights the severity of ocular anomalies that can be associated with ring 14 and 14q terminal deletion syndromes and reveals the limited documentation of ocular examination in these two related syndromes. This suggests that many children with these genetic changes do not undergo an ophthalmology examination as part of their clinical assessment, yet it is only when this evaluation becomes routine that the true prevalence and extent of ocular involvement can be defined. This report therefore advocates for a thorough ophthalmological exam in children with ring 14 or 14q terminal deletion syndrome.

  6. Autosomal and X chromosome structural variants are associated with congenital heart defects in Turner syndrome: The NHLBI GenTAC registry.

    Science.gov (United States)

    Prakash, Siddharth K; Bondy, Carolyn A; Maslen, Cheryl L; Silberbach, Michael; Lin, Angela E; Perrone, Laura; Limongelli, Giuseppe; Michelena, Hector I; Bossone, Eduardo; Citro, Rodolfo; Lemaire, Scott A; Body, Simon C; Milewicz, Dianna M

    2016-12-01

    Turner Syndrome (TS) is a developmental disorder caused by partial or complete loss of one sex chromosome. Bicuspid aortic valve and other left-sided congenital heart lesions (LSL), including thoracic aortic aneurysms and acute aortic dissections, are 30-50 times more frequent in TS than in the general population. In 454 TS subjects, we found that LSL are significantly associated with reduced dosage of Xp genes and increased dosage of Xq genes. We also showed that genome-wide copy number variation is increased in TS and identify a common copy number variant (CNV) in chromosome 12p13.31 that is associated with LSL with an odds ratio of 3.7. This CNV contains three protein-coding genes (SLC2A3, SLC2A14, and NANOGP1) and was previously implicated in congenital heart defects in the 22q11 deletion syndrome. In addition, we identified a subset of rare and recurrent CNVs that are also enriched in non-syndromic BAV cases. These observations support our hypothesis that X chromosome and autosomal variants affecting cardiac developmental genes may interact to cause the increased prevalence of LSL in TS. © 2016 Wiley Periodicals, Inc.

  7. Increased frequency of DNA deletions in pink-eyed unstable mice carrying a mutation in the Werner syndrome gene homologue.

    Science.gov (United States)

    Lebel, Michel

    2002-01-01

    Werner syndrome (WS) is a rare autosomal recessive disorder characterized by genomic instability and the premature onset of a number of age-related diseases, including cancers. Accumulating evidence indicates that the WS gene product is involved in resolving aberrant DNA structures that may arise during the process of DNA replication and/or transcription. To estimate the frequency of DNA deletions directly in the skin of mouse embryos, mice with a deletion of part of the murine WRN helicase domain were created. These mutant mice were then crossed to the pink-eyed unstable animals, which have a 70 kb internal duplication at the pink-eyed dilution (p) gene. This report indicates that the frequency of deletion of the duplicated sequence at the p locus is elevated in mice with a mutation in the WRN allele when compared with wild-type mice. In addition, the inhibitor of topoisomerase I camptothecin also increases the frequency of deletion at the p locus. This frequency is even more elevated in WRN mutant mice treated with camptothecin. In contrast, while the inhibition of poly(ADP-ribose) polymerase (PARP) activity by 3-aminobenzamide increases the frequency of DNA deletion, mutant WRN mice are not significantly more sensitive to the inhibition of PARP activity than wild-type animals.

  8. Disruption of the gene Euchromatin Histone Methyl Transferase1 (Eu-HMTase1) is associated with the 9q34 subtelomeric deletion syndrome.

    NARCIS (Netherlands)

    Kleefstra, T.; Smidt, M.; Banning, M.J.G.; Oudakker, A.R.; Esch, H. van; Brouwer, A.P.M. de; Nillesen, W.M.; Sistermans, E.A.; Hamel, B.C.J.; Bruijn, D.R.H. de; Fryns, J.P.; Yntema, H.G.; Brunner, H.G.; Vries, L.B.A. de; Bokhoven, J.H.L.M. van

    2005-01-01

    BACKGROUND: A new syndrome has been recognised following thorough analysis of patients with a terminal submicroscopic subtelomeric deletion of chromosome 9q. These have in common severe mental retardation, hypotonia, brachycephaly, flat face with hypertelorism, synophrys, anteverted nares, thickened

  9. Epilepsy phenotype associated with a chromosome 2q24.3 deletion involving SCN1A: Migrating partial seizures of infancy or atypical Dravet syndrome?

    Science.gov (United States)

    Lim, Byung Chan; Hwang, Hee; Kim, Hunmin; Chae, Jong-Hee; Choi, Jieun; Kim, Ki Joong; Hwang, Yong Seung; Yum, Mi-Sun; Ko, Tae-Sung

    2015-01-01

    The deletion of a sodium channel gene cluster located on chromosome 2q24.3 is associated with variable epilepsy phenotypes, including Dravet syndrome and migrating partial seizures of infancy. Although SCN1A is considered as the major contributor to the epilepsy phenotype, the role of other sodium channel genes that map within this cluster has not been delineated. We presented five new cases with a chromosome 2q24.3 deletion involving SCN1A and investigated their epilepsy phenotype in relation to the extent of the deletion. Three cases with deletion of the whole sodium channel gene cluster (SCN3A, SCN2A, SCN1A, SCN9A, and SCN7A) exhibited a complex epilepsy phenotype that was atypical for Dravet syndrome and suggestive of migrating partial seizures of infancy: early seizure onset (before 2 months of age), severe developmental delay from seizure onset, multifocal interictal spikes, polymorphous focal seizures, and acquired microcephaly. Two cases with partial deletion of SCN1A and SCN9A and whole SCN1A deletion had an epilepsy phenotype of Dravet syndrome. A literature review of cases with chromosome 2q24.3 deletion revealed that, in most Dravet syndrome cases, it does not involve SCN2A and SCN3A, whereas a complex epilepsy phenotype that is shared with migrating partial seizures of infancy was associated with cases of deletion of the whole sodium channel gene cluster.

  10. Subtelomeric deletions of chromosome 6p: molecular and cytogenetic characterization of three new cases with phenotypic overlap with Ritscher-Schinzel (3C) syndrome.

    Science.gov (United States)

    Descipio, Cheryl; Schneider, Lori; Young, Terri L; Wasserman, Nora; Yaeger, Dinah; Lu, Fengmin; Wheeler, Patricia G; Williams, Marc S; Bason, Lynn; Jukofsky, Lori; Menon, Ammini; Geschwindt, Ryan; Chudley, Albert E; Saraiva, Jorge; Schinzel, Albert A G L; Guichet, Agnes; Dobyns, William E; Toutain, Annick; Spinner, Nancy B; Krantz, Ian D

    2005-04-01

    We have identified six children in three families with subtelomeric deletions of 6p25 and a recognizable phenotype consisting of ptosis, posterior embryotoxon, optic nerve abnormalities, mild glaucoma, Dandy-Walker malformation, hydrocephalus, atrial septal defect, patent ductus arteriosus, and mild mental retardation. There is considerable clinical overlap between these children and individuals with the Ritscher-Schinzel (or cranio-cerebello-cardiac (3C)) syndrome (OMIM #220210). Clinical features of 3C syndrome include craniofacial anomalies (macrocephaly, prominent forehead and occiput, foramina parietalia, hypertelorism, down-slanting palpebral fissures, ocular colobomas, depressed nasal bridge, narrow or cleft palate, and low-set ears), cerebellar malformations (variable manifestations of a Dandy-Walker malformation with moderate mental retardation), and cardiac defects (primarily septal defects). Since the original report, over 25 patients with 3C syndrome have been reported. Recessive inheritance has been postulated based on recurrence in siblings born to unaffected parents and parental consanguinity in two familial cases. Molecular and cytogenetic mapping of the 6p deletions in these three families with subtelomeric deletions of chromosome 6p have defined a 1.3 Mb minimally deleted critical region. To determine if 6p deletions are common in 3C syndrome, we analyzed seven unrelated individuals with 3C syndrome for deletions of this region. Three forkhead genes (FOXF1 and FOXQ1 from within the critical region, and FOXC1 proximal to this region) were evaluated as potential candidate disease genes for this disorder. No deletions or disease-causing mutations were identified.

  11. The morphology of the sella turcica in velocardiofacial syndrome suggests involvement of a neural crest developmental field.

    Science.gov (United States)

    Mølsted, Kirsten; Boers, Maria; Kjaer, Inger

    2010-06-01

    We described the morphology of the sella turcica in individuals with velocardiofacial syndrome (VCFS), also known as chromosome 22q11.2 deletion syndrome, and compared the morphology with that of a control group of individuals from the Oslo University Craniofacial Growth Archive. The aim was to measure the cranial base angles in individuals with VCFS and, if possible, to discover the developmental field that may be involved in the condition. The study included 33 patients with VCFS from the Copenhagen Cleft Palate Center, Denmark. The genotype was confirmed by fluorescence in situ hybridization. The morphology of the sella turcica was described and measurements of the cranial base angles were performed on lateral cephalometric radiographs. The VCFS individuals had larger deviations in the morphology of the sella turcica compared to individuals from the Oslo University Craniofacial Growth archive. The deviations were mostly in the posterior part of the dorsum sellae. Individuals with VCFS had increased cranial base angles. The results of this study combined with the information in the literature on the main defects in VCFS (palatal abnormalities, cardiac anomalies, thymic hypoplasia or aplasia, hypothyroidism, and posterior brain abnormality), suggest involvement of a specific developmental field.

  12. Phenotypic and Molecular Convergence of 2q23.1 Deletion Syndrome with Other Neurodevelopmental Syndromes Associated with Autism Spectrum Disorder

    Directory of Open Access Journals (Sweden)

    Sureni V. Mullegama

    2015-04-01

    Full Text Available Roughly 20% of autism spectrum disorders (ASD are syndromic with a well-established genetic cause. Studying the genes involved can provide insight into the molecular and cellular mechanisms of ASD. 2q23.1 deletion syndrome (causative gene, MBD5 is a recently identified genetic neurodevelopmental disorder associated with ASD. Mutations in MBD5 have been found in ASD cohorts. In this study, we provide a phenotypic update on the prevalent features of 2q23.1 deletion syndrome, which include severe intellectual disability, seizures, significant speech impairment, sleep disturbance, and autistic-like behavioral problems. Next, we examined the phenotypic, molecular, and network/pathway relationships between nine neurodevelopmental disorders associated with ASD: 2q23.1 deletion Rett, Angelman, Pitt-Hopkins, 2q23.1 duplication, 5q14.3 deletion, Kleefstra, Kabuki make-up, and Smith-Magenis syndromes. We show phenotypic overlaps consisting of intellectual disability, speech delay, seizures, sleep disturbance, hypotonia, and autistic-like behaviors. Molecularly, MBD5 possibly regulates the expression of UBE3A, TCF4, MEF2C, EHMT1 and RAI1. Network analysis reveals that there could be indirect protein interactions, further implicating function for these genes in common pathways. Further, we show that when MBD5 and RAI1 are haploinsufficient, they perturb several common pathways that are linked to neuronal and behavioral development. These findings support further investigations into the molecular and pathway relationships among genes linked to neurodevelopmental disorders and ASD, which will hopefully lead to common points of regulation that may be targeted toward therapeutic intervention.

  13. A novel and de novo deletion in the OCRL1 gene associated with a severe form of Lowe syndrome.

    Science.gov (United States)

    Peces, Ramón; Peces, Carlos; de Sousa, Erika; Vega, Cristina; Selgas, Rafael; Nevado, Julián

    2013-12-01

    The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder. The mutation of the gene OCRL1 localized at Xq26.1, coding for the enzyme phosphatidylinositol (4,5) bisphosphate (PIP2P) 5-phosphatase, is responsible for the phenotypic characteristics of the disease. We report a 22-year-old male with a severe form of OCRL syndrome, diagnosed on the basis of congenital cataracts, severe psychomotor and cognitive deficits, and renal tubular dysfunction without Fanconi syndrome. The patient presented low molecular weight proteinuria, nephrocalcinosis, nephrolithiasis, rickets, and growth retardation and developed progressive renal failure. Genetic analysis showed a novel and de novo deletion of exons 10-13 in the OCRL1 gene.

  14. Deletion 17p11.2 (Smith-Magenis syndrome) is relatively common among patients having mental retardation and myopia

    Energy Technology Data Exchange (ETDEWEB)

    Finucane, B.; Jaeger, E.R. [Elwyn, Inc. PA (United States); Freitag, S.K. [Jefferson Medical College, Philadelphia, PA (United States)

    1994-09-01

    We recently reported the finding of moderate to severe myopia in 6 of 10 patients with Smith-Magenis syndrome (SMS). To investigate the prevalence of SMS among mentally retarded people having myopia, we surveyed a cohort of patients residing at a facility for individuals with mental retardation (MR). Of 547 institutionalized individuals with MR, 72 (13.2%) had moderate to high myopia defined as a visual acuity of minus 3 diopters or more. It should be noted that our institution does not specifically select for people with visual impairment; rather, the facility serves people with a primary diagnosis of MR. Sixty-five of 72 (90.3%) myopic individuals identified were available for cytogenetic analysis. Seventeen (26.2%) of these patients had trisomy 21. Down syndrome (DS) is well known to be associated with eye abnormalities, including myopia. Of 48 individuals with moderate to high myopia not having DS, 5 (10.4%) were shown to have deletions of 17p11.2. This is a high prevalence considering the relative rarity of SMS. By contrast, in a randomized sample of 48 patients without significant myopia at the same facility, we found no individuals with deletion 17p11.2. We conclude that the diagnosis of SMS should be considered in any non-Down syndrome individual having MR and myopia, and that ophthalmologists serving people with MR should be made aware of this deletion syndrome. Furthermore, our results suggest that significant numbers of people having SMS could be identified through selective institutional screening of patients having a combination of MR and moderate to severe myopia.

  15. Increased risk for developmental delay in Saethre-Chotzen syndrome is associated with TWIST deletions: an improved strategy for TWIST mutation screening.

    Science.gov (United States)

    Cai, Juanliang; Goodman, Barbara K; Patel, Ankita S; Mulliken, John B; Van Maldergem, Lionel; Hoganson, George E; Paznekas, William A; Ben-Neriah, Ziva; Sheffer, Ruth; Cunningham, Michael L; Daentl, Donna L; Jabs, Ethylin Wang

    2003-12-01

    The majority of patients with Saethre-Chotzen syndrome have mutations in the TWIST gene, which codes for a basic helix-loop-helix transcription factor. Of the genetic alterations identified in TWIST, nonsense mutations, frameshifts secondary to small deletions or insertions, and large deletions implicate haploinsufficiency as the pathogenic mechanism. We identified three novel intragenic mutations and six deletions in our patients by using a new strategy to screen for TWIST mutations. We used polymerase chain reaction (PCR) amplification with subsequent sequencing to identify point mutations and small insertions or deletions in the coding region, and real-time PCR-based gene dosage analysis to identify large deletions encompassing the gene, with confirmation by microsatellite and fluorescence in situ hybridization (FISH) analyses. The size of the deletions can also be analyzed by using the gene dosage assay with "PCR walking" across the critical region. In 55 patients with features of Saethre-Chotzen syndrome, 11% were detected to have deletions by real-time gene dosage analysis. Two patients had a translocation or inversion at least 260 kb 3' of the gene, suggesting they had position-effect mutations. Of the 37 patients with classic features of Saethre-Chotzen syndrome, the overall detection rate for TWIST mutations was 68%. The risk for developmental delay in patients with deletions involving the TWIST gene is approximately 90% or eight times more common than in patients with intragenic mutations.

  16. Clinical manifestations of the deletion of Down syndrome critical region including DYRK1A and KCNJ6.

    Science.gov (United States)

    Yamamoto, Toshiyuki; Shimojima, Keiko; Nishizawa, Tsutomu; Matsuo, Mari; Ito, Masahiro; Imai, Katsumi

    2011-01-01

    A relatively small region of human chromosome 21 (Hsa21) is considered to play a major role in Down syndrome (DS) phenotypes, and the concept of a Down syndrome critical region (DSCR) has been proposed. The goal of the phenotype-genotype correlation study is to discover which genes are responsible for each DS phenotype. Loss of the genomic copy numbers of Hsa21 can give us important suggestion to understand the functions of the involved genes. Genomic copy number aberrations were analyzed by micro-array-based comparative genomic hybridization (aCGH) in 300 patients with developmental delay. Partial deletions of Hsa21 were identified in three patients with developmental delay, epilepsy, microcephaly, and distinctive manifestations. Two of the patients had mosaic deletions of 21q22-qter including a part of DSCR; one of whom whose mosaic ratio was higher than the other showed more severe brain morphogenic abnormality with colpocephaly, which was similar to the previously reported patients having pure deletions of 21q22-qter, indicating the critical region for cortical dysplasia at this region. The remaining patient had the smallest microdeletion with 480 kb in DSCR including DYRK1A and KCNJ6. Although we could not identify any nucleotide alteration in DYRK1A and KCNJ6 in our cohort study for 150 patients with mental retardation with/without epilepsy, this study underscores the clinical importance of DSCR not only for DS but also for developmental disorders.

  17. Smith-Magenis syndrome deletion: A case with equivocal cytogenetic findings resolved by fluorescence in situ hybridization

    Energy Technology Data Exchange (ETDEWEB)

    Juyal, R.C.; Patel, P.I.; Greenberg, F. [Baylor College of Medicine, Houston, TX (United States)] [and others

    1995-09-11

    The availability of markers for the 17p11.2 region has enabled the diagnosis of Smith-Magenis syndrome (SMS) by fluorescence in situ hybridization (FISH). SMS is typically associated with a discernible deletion of band 17p11.2 upon cytogenetic analysis at a resolution of 400-550 bands. We present a case that illustrates the importance of using FISH to confirm a cytogenetic diagnosis of del(17)(p11.2). Four independent cytogenetic analyses were performed with different conclusions. Results of low resolution analyses of amniocytes and peripheral blood lymphocytes were apparently normal, while high resolution analyses of peripheral blood samples in two laboratories indicated mosaicism for del(17)(p11.2). FISH clearly demonstrated a 17p deletion on one chromosome of all peripheral blood cells analyzed and ruled out mosaicism unambiguously. The deletion was undetectable by flow cytometric quantitation of chromosomal DNA content, suggesting that it is less than 2 Mb. We conclude that FISH should be used to detect the SMS deletion when routine chromosome analysis fails to detect it and to verify mosaicism. 23 refs., 3 figs., 1 tab.

  18. Otitis media in a new mouse model for CHARGE syndrome with a deletion in the Chd7 gene.

    Directory of Open Access Journals (Sweden)

    Cong Tian

    Full Text Available Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome.

  19. Developmental phenotype in Phelan-McDermid (22q13.3 deletion) syndrome : a systematic and prospective study in 34 children

    NARCIS (Netherlands)

    Zwanenburg, Renée J; Ruiter, Selma A J; van den Heuvel, Edwin R; Flapper, Boudien C T; Van Ravenswaaij-Arts, Conny M A

    2016-01-01

    Background: Phelan- McDermid syndrome (PMS) or 22q13.3 deletion syndrome is characterized by global developmental delay, cognitive deficits, and behaviour in the autism spectrum. Knowledge about developmental and behavioural characteristics of this rare chromosomal disorder is still limited despite

  20. Stroke-like Presentation Following Febrile Seizure in a Patient with 1q43q44 Deletion Syndrome

    Directory of Open Access Journals (Sweden)

    J. Elliott eRobinson

    2016-05-01

    Full Text Available Hemiconvulsion-hemiplegia-epilepsy syndrome (HHE is a rare outcome of prolonged hemiconvulsion that is followed by diffuse unilateral hemispheric edema, hemiplegia, and ultimately hemiatrophy of the affected hemisphere and epilepsy. Here we describe the case of a 3-year old male with a 1;3 translocation leading to a terminal 1q43q44 deletion and a terminal 3p26.1p26.3 duplication that developed HHE after a prolonged febrile seizure and discuss the pathogenesis of HHE in the context of the patient’s complex genetic background.

  1. Immunodeficiency in DiGeorge Syndrome and Options for Treating Cases with Complete Athymia

    OpenAIRE

    Davies, E. Graham

    2013-01-01

    The commonest association of thymic stromal deficiency resulting in T-cell immunodeficiency is the DiGeorge syndrome (DGS). This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete ...

  2. Immunodeficiency in DiGeorge syndrome and options for treating cases with complete athymia.

    OpenAIRE

    Graham Davies, E

    2013-01-01

    The commonest association of thymic stromal deficiency resulting in T cell immunodeficiency is the DiGeorge syndrome (DGS). This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete ...

  3. Kenny-Caffey syndrome: an Arab variant?

    Science.gov (United States)

    Sabry, M A; Farag, T I; Shaltout, A A; Zaki, M; Al-Mazidi, Z; Abulhassan, S J; Al-Torki, N; Quishawi, A; Al Awadi, S A

    1999-01-01

    We describe 2 unrelated Bedouin girls who met the criteria for the diagnosis of Kenny-Caffey syndrome. The girls had some unusual features--microcephaly and psychomotor retardation--that distinguish the Kenny-Caffey syndrome profile in Arab children from the classical Kenny-Caffey syndrome phenotype characterized by macrocephaly and normal intelligence. The 2 girls did not harbor the 22q11 microdeletion (the hallmark of the DiGeorge cluster of diseases) that we previously reported in another Bedouin family with the Kenny-Caffey syndrome (Sabry et al. J Med Genet 1998: 35(1): 31-36). This indicates considerable genetic heterogeneity for this syndrome. We also review previously reported 44 Arab/Bedouin patients with the same profile of hypoparathyroidism, short stature, seizures, mental retardation and microcephaly. Our results suggest that these patients represent an Arab variant of Kenny-Caffey syndrome with characteristic microcephaly and psychomotor retardation. We suggest that all patients with Kenny-Caffey syndrome should be investigated for the 22q11 microdeletion. Other possible genetic causes for the Kenny-Caffey syndrome or its Arab variant include chromosome 10p abnormalities.

  4. Problem Behaviors Associated with Deletion Prader-Willi, Smith-Magenis, and Cri Du Chat Syndromes.

    Science.gov (United States)

    Clarke, David J.; Boer, Harm

    1998-01-01

    Problem behaviors of 38 individuals with Cri-du-Chat syndrome, 55 individuals with Prader Willi syndrome, and 21 individuals with Smith-Magenis syndrome were investigated. All three disorders were Associated with greater ratings of problem behaviors (besides eating abnormalities and sleep abnormalities) than comparison groups. (Author/CR)

  5. Overexpression of KLC2 due to a homozygous deletion in the non-coding region causes SPOAN syndrome.

    Science.gov (United States)

    Melo, Uirá S; Macedo-Souza, Lucia I; Figueiredo, Thalita; Muotri, Alysson R; Gleeson, Joseph G; Coux, Gabriela; Armas, Pablo; Calcaterra, Nora B; Kitajima, João P; Amorim, Simone; Olávio, Thiago R; Griesi-Oliveira, Karina; Coatti, Giuliana C; Rocha, Clarissa R R; Martins-Pinheiro, Marinalva; Menck, Carlos F M; Zaki, Maha S; Kok, Fernando; Zatz, Mayana; Santos, Silvana

    2015-12-15

    SPOAN syndrome is a neurodegenerative disorder mainly characterized by spastic paraplegia, optic atrophy and neuropathy (SPOAN). Affected patients are wheelchair bound after 15 years old, with progressive joint contractures and spine deformities. SPOAN patients also have sub normal vision secondary to apparently non-progressive congenital optic atrophy. A potential causative gene was mapped at 11q13 ten years ago. Here we performed next-generation sequencing in SPOAN-derived samples. While whole-exome sequencing failed to identify the causative mutation, whole-genome sequencing allowed to detect a homozygous 216-bp deletion (chr11.hg19:g.66,024,557_66,024,773del) located at the non-coding upstream region of the KLC2 gene. Expression assays performed with patient's fibroblasts and motor neurons derived from SPOAN patients showed KLC2 overexpression. Luciferase assay in constructs with 216-bp deletion confirmed the overexpression of gene reporter, varying from 48 to 74%, as compared with wild-type. Knockdown and overexpression of klc2 in Danio rerio revealed mild to severe curly-tail phenotype, which is suggestive of a neuromuscular disorder. Overexpression of a gene caused by a small deletion in the non-coding region is a novel mechanism, which to the best of our knowledge, was never reported before in a recessive condition. Although the molecular mechanism of KLC2 up-regulation still remains to be uncovered, such example adds to the importance of non-coding regions in human pathology.

  6. An atypical 7q11.23 deletion in a normal IQ Williams–Beuren syndrome patient

    Science.gov (United States)

    Ferrero, Giovanni Battista; Howald, Cédric; Micale, Lucia; Biamino, Elisa; Augello, Bartolomeo; Fusco, Carmela; Turturo, Maria Giuseppina; Forzano, Serena; Reymond, Alexandre; Merla, Giuseppe

    2010-01-01

    Williams–Beuren syndrome (WBS; OMIM no. 194050) is a multisystemic neurodevelopmental disorder caused by a hemizygous deletion of 1.55 Mb on chromosome 7q11.23 spanning 28 genes. Haploinsufficiency of the ELN gene was shown to be responsible for supravalvular aortic stenosis and generalized arteriopathy, whereas LIMK1, CLIP2, GTF2IRD1 and GTF2I genes were suggested to be linked to the specific cognitive profile and craniofacial features. These insights for genotype–phenotype correlations came from the molecular and clinical analysis of patients with atypical deletions and mice models. Here we report a patient showing mild WBS physical phenotype and normal IQ, who carries a shorter 1 Mb atypical deletion. This rearrangement does not include the GTF2IRD1 and GTF2I genes and only partially the BAZ1B gene. Our results are consistent with the hypothesis that hemizygosity of the GTF2IRD1 and GTF2I genes might be involved in the facial dysmorphisms and in the specific motor and cognitive deficits observed in WBS patients. PMID:19568270

  7. An atypical 7q11.23 deletion in a normal IQ Williams-Beuren syndrome patient.

    Science.gov (United States)

    Ferrero, Giovanni Battista; Howald, Cédric; Micale, Lucia; Biamino, Elisa; Augello, Bartolomeo; Fusco, Carmela; Turturo, Maria Giuseppina; Forzano, Serena; Reymond, Alexandre; Merla, Giuseppe

    2010-01-01

    Williams-Beuren syndrome (WBS; OMIM no. 194050) is a multisystemic neurodevelopmental disorder caused by a hemizygous deletion of 1.55 Mb on chromosome 7q11.23 spanning 28 genes. Haploinsufficiency of the ELN gene was shown to be responsible for supravalvular aortic stenosis and generalized arteriopathy, whereas LIMK1, CLIP2, GTF2IRD1 and GTF2I genes were suggested to be linked to the specific cognitive profile and craniofacial features. These insights for genotype-phenotype correlations came from the molecular and clinical analysis of patients with atypical deletions and mice models. Here we report a patient showing mild WBS physical phenotype and normal IQ, who carries a shorter 1 Mb atypical deletion. This rearrangement does not include the GTF2IRD1 and GTF2I genes and only partially the BAZ1B gene. Our results are consistent with the hypothesis that hemizygosity of the GTF2IRD1 and GTF2I genes might be involved in the facial dysmorphisms and in the specific motor and cognitive deficits observed in WBS patients.

  8. Delineation of the phenotype associated with 7q36.1q36.2 deletion: long QT syndrome, renal hypoplasia and mental retardation.

    Science.gov (United States)

    Caselli, Rossella; Mencarelli, Maria Antonietta; Papa, Filomena Tiziana; Ariani, Francesca; Longo, Ilaria; Meloni, Ilaria; Vonella, Giuseppina; Acampa, Maurizio; Auteri, Alberto; Vicari, Stefano; Orsi, Alessandra; Hayek, Giuseppe; Renieri, Alessandra; Mari, Francesca

    2008-05-01

    Terminal deletions of the long arm of chromosome 7 are well known and are frequently associated with hypotelorism or holoprosencephaly due to the involvement of the SHH gene located in 7q36.3. These deletions are easily detectable with routine subtelomeric MLPA analysis. Deletions affecting a more proximal part of 7q36, namely bands 7q36.1q36.2 are less common, and may be missed by subtelomeric MLPA analysis. We report a 9-year-old girl with a 5.27 Mb deletion in 7q36.1q36.2, and compare her to literature patients proposing a phenotype characterized by mental retardation, unusual facial features, renal hypoplasia and long QT syndrome due to loss of the KCNH2 gene. These characteristics are sufficiently distinct that the syndrome may be diagnosed on clinical grounds.

  9. Nephrogenic diabetes insipidus in a patient with L1 syndrome: a new report of a contiguous gene deletion syndrome including L1CAM and AVPR2.

    Science.gov (United States)

    Knops, Noël B B; Bos, Krista K; Kerstjens, Mieke; van Dael, Karin; Vos, Yvonne J

    2008-07-15

    We report on an infant boy with congenital hydrocephalus due to L1 syndrome and polyuria due to diabetes insipidus. We initially believed his excessive urine loss was from central diabetes insipidus and that the cerebral malformation caused a secondary insufficient pituitary vasopressin release. However, he failed to respond to treatment with a vasopressin analogue, which pointed to nephrogenic diabetes insipidus (NDI). L1 syndrome and X-linked NDI are distinct clinical disorders caused by mutations in the L1CAM and AVPR2 genes, respectively, located in adjacent positions in Xq28. In this boy we found a deletion of 61,577 basepairs encompassing the entire L1CAM and AVPR2 genes and extending into intron 7 of the ARHGAP4 gene. To our knowledge this is the first description of a patient with a deletion of these three genes. He is the second patient to be described with L1 syndrome and NDI. During follow-up he manifested complications from the hydrocephalus and NDI including global developmental delay and growth failure with low IGF-1 and hypothyroidism.

  10. Atypical Association of Angelman Syndrome and Klinefelter Syndrome in a Boy with 47,XXY Karyotype and Deletion 15q11.2-q13

    Directory of Open Access Journals (Sweden)

    Javier Sánchez

    2014-01-01

    Full Text Available Angelman syndrome (AS, OMIM 105830 is a neurogenetic disorder with firm clinical diagnostic guidelines, characterized by severe developmental delay and speech impairment, balanced and behavioral disturbance as well as microcephaly, seizures, and a characteristic electroencephalogram (EEG. The majority of AS cases (70% are caused by a 15q11.2-q13 deletion on the maternally derived chromosome. The frequency of AS has been estimated to be between 1/10000 and 1/20000. Klinefelter syndrome (KS occurs due to the presence of an extra X chromosome (karyotype 47,XXY. The main features in KS are small testes, hypergonadotropic hypogonadism, gynecomastia, learning difficulties, and infertility. We present what is, to our knowledge, the first case of a patient with both KS and AS due to a 15q11.2-q13 deletion on the maternally derived chromosome and an extra X chromosome of paternal origin. He showed dysmorphic features, axial hypotonia, and delayed acquisition of motor skills. Early diagnosis is essential for optimal treatment of AS children; this is one of the earliest diagnosed cases of AS probably due to the presence of two syndromes. Clinical findings in this patient here described may be helpful to identify any other cases and to evaluate recurrence risks in these families.

  11. 1p13.2 deletion displays clinical features overlapping Noonan syndrome, likely related to NRAS gene haploinsufficiency.

    Science.gov (United States)

    Linhares, Natália Duarte; Freire, Maíra Cristina Menezes; Cardenas, Raony Guimarães Corrêa do Carmo Lisboa; Pena, Heloisa Barbosa; Lachlan, Katherine; Dallapiccola, Bruno; Bacino, Carlos; Delobel, Bruno; James, Paul; Thuresson, Ann-Charlotte; Annerén, Göran; Pena, Sérgio D J

    2016-01-01

    Deletion-induced hemizygosity may unmask deleterious autosomal recessive variants and be a cause of the phenotypic variability observed in microdeletion syndromes. We performed complete exome sequencing (WES) analysis to examine this possibility in a patient with 1p13.2 microdeletion. Since the patient displayed clinical features suggestive of Noonan Syndrome (NS), we also used WES to rule out the presence of pathogenic variants in any of the genes associated with the different types of NS. We concluded that the clinical findings could be attributed solely to the 1p13.2 haploinsufficiency. Retrospective analysis of other nine reported patients with 1p13.2 microdeletions showed that six of them also presented some characteristics of NS. In all these cases, the deleted segment included the NRAS gene. Gain-of-function mutations of NRAS gene are causally related to NS type 6. Thus, it is conceivable that NRAS haploinsufficiency and gain-of-function mutations may have similar clinical consequences. The same phenomenon has been described for two other genes belonging to the Ras/MAPK pathway: MAP2K2 and SHOC2. In conclusion, we here report genotype-phenotype correlations in patients with chromosome 1p13.2 microdeletions and we propose that NRAS may be a critical gene for the NS characteristics in the patients.

  12. Thrombocytopenia-absent radius (TAR) syndrome: a clinical genetic series of 14 further cases. impact of the associated 1q21.1 deletion on the genetic counselling.

    Science.gov (United States)

    Houeijeh, Ali; Andrieux, Joris; Saugier-Veber, Pascale; David, Albert; Goldenberg, Alice; Bonneau, Dominique; Fouassier, Marc; Journel, Hubert; Martinovic, Jelana; Escande, Fabienne; Devisme, Louise; Bisiaux, Sophie; Chaffiotte, Caroline; Baux, Mathilde; Kerckaert, Jean-Pierre; Holder-Espinasse, Muriel; Manouvrier-Hanu, Sylvie

    2011-01-01

    Thrombocytopenia-absent radius Syndrome (TAR) is a rare congenital malformation syndrome of complicated transmission. 1q21.1 deletion is necessary but not sufficient for its expression. We report the result of a French multicentric clinical study, and we emphasized on the role of the associated 1q21.1 deletion in the diagnosis and the genetic counselling of our patients. We gathered information on 14 patients presenting with TAR syndrome and referred for genetic counselling in six different university hospitals (8 foetuses, 1 child and 5 adults). Clinical or pathology details, as well as skeletal X-rays were analyzed. Genetic studies were performed by Array-CGH, and Quantitative Multiplex PCR. We demonstrated the very variable phenotypes of TAR syndrome. Female:male ratio was ∼2:1. All patients presented with bilateral radial aplasia/hypoplasia with preserved thumbs. Phocomelia and lower limb anomalies were present in 28% of the cases. We reported the first case of cystic hygroma on affected foetus. 1q21.1 deletions ranging from 330 to 1100 kb were identified in all affected patients. Most of them were inherited from one healthy parent (80%). The identification of a 1q21.1 deletion allowed confirmation of TAR syndrome diagnosis, particularly in foetuses and in atypical phenotypes. Additionally, it allowed accurate genetic counselling, especially when it occurred de novo. These findings allowed discussing the diagnostic criteria and management towards TAR syndrome.

  13. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    OpenAIRE

    Lobaccaro, J.M.; Lumbroso, S.; Poujol, Nicolas; Georget, V.; Brinkmann, Albert; Malpuech, Georges; Sultan, C.

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for a predictive frameshift in the open reading frame and introduction of a premature stop codon at position 783 instead of 919. The deletion was reproduced in androgen receptor wildtype cDNA and tran...

  14. Bicuspid aortic valve and aortic coarctation are linked to deletion of the X chromosome short arm in Turner syndrome

    Science.gov (United States)

    Bondy, Carolyn; Bakalov, Vladimir K; Cheng, Clara; Olivieri, Laura; Rosing, Douglas R; Arai, Andrew E

    2013-01-01

    Background Congenital heart disease (CHD) is a cardinal feature of X chromosome monosomy, or Turner syndrome (TS). Haploinsufficiency for gene(s) located on Xp have been implicated in the short stature characteristic of the syndrome, but the chromosomal region related to the CHD phenotype has not been established. Design We used cardiac MRI to diagnose cardiovascular abnormalities in four non-mosaic karyotype groups based on 50-metaphase analyses: 45,X (n=152); 46,X,del(Xp) (n=15); 46,X,del(Xq) (n=4); and 46,X,i(Xq) (n=14) from peripheral blood cells. Results Bicuspid aortic valves (BAV) were found in 52/152 (34%) 45,X study subjects and aortic coarctation (COA) in 19/152 (12.5%). Isolated anomalous pulmonary veins (APV) were detected in 15/152 (10%) for the 45,X study group, and this defect was not correlated with the presence of BAV or COA. BAVs were present in 28.6% of subjects with Xp deletions and COA in 6.7%. APV were not found in subjects with Xp deletions. The most distal break associated with the BAV/COA trait was at cytologic band Xp11.4 and ChrX:41,500 000. One of 14 subjects (7%) with the 46,X,i(Xq) karyotype had a BAV and no cases of COA or APV were found in this group. No cardiovascular defects were found among four patients with Xq deletions. Conclusions The high prevalence of BAV and COA in subjects missing only the X chromosome short arm indicates that haploinsufficiency for Xp genes contributes to abnormal aortic valve and aortic arch development in TS. PMID:23825392

  15. RAI1 point mutations, CAG repeat variation, and SNP analysis in non-deletion Smith-Magenis syndrome.

    Science.gov (United States)

    Bi, Weimin; Saifi, G Mustafa; Girirajan, Santhosh; Shi, Xin; Szomju, Barbara; Firth, Helen; Magenis, R Ellen; Potocki, Lorraine; Elsea, Sarah H; Lupski, James R

    2006-11-15

    Smith-Magenis syndrome (SMS) is a multiple congenital anomalies/mental retardation disorder characterized by distinct craniofacial features and neurobehavioral abnormalities usually associated with an interstitial deletion in 17p11.2. Heterozygous point mutations in the retinoic acid induced 1 gene (RAI1) have been reported in nine SMS patients without a deletion detectable by fluorescent in situ hybridization (FISH), implicating RAI1 haploinsufficiency as the cause of the major clinical features in SMS. All of the reported point mutations are unique and de novo. RAI1 contains a polymorphic CAG repeat and encodes a plant homeo domain (PHD) zinc finger-containing transcriptional regulator. We report a novel RAI1 frameshift mutation, c.3103delC, in a non-deletion patient with many SMS features. The deletion of a single cytosine occurs in a heptameric C-tract (CCCCCCC), the longest mononucleotide repeat in the RAI1 coding region. Interestingly, we had previously reported a frameshift mutation, c.3103insC, in the same mononucleotide repeat. Furthermore, all five single base frameshift mutations preferentially occurred in polyC but not polyG tracts. We also investigated the distribution of the polymorphic CAG repeats in both the normal population and the SMS patients as one potential molecular mechanism for variability of clinical expression. In this limited data set, there was no significant association between the length of CAG repeats and the SMS phenotype. However, we identified a 5-year-old girl with an apparent SMS phenotype who was a compound heterozygote for an RAI1 missense mutation inherited from her father and a polyglutamine repeat of 18 copies, representing the largest known CAG repeat in this gene, inherited from her mother.

  16. Chromosome deletion of 14q32.33 detected by array comparative genomic hybridization in a patient with features of dubowitz syndrome.

    Science.gov (United States)

    Darcy, Diana C; Rosenthal, Scott; Wallerstein, Robert J

    2011-01-01

    We report a 4-year-old girl of Mexican origins with a clinical diagnosis of Dubowitz syndrome who carries a de novo terminal deletion at the 14q32.33 locus identified by array comparative genomic hybridization (aCGH). Dubowitz syndrome is a rare condition characterized by a constellation of features including growth retardation, short stature, microcephaly, micrognathia, eczema, telecanthus, blepharophimosis, ptosis, epicanthal folds, broad nasal bridge, round-tipped nose, mild to moderate developmental delay, and high-pitched hoarse voice. This syndrome is thought to be autosomal recessive; however, the etiology has not been determined. This is the first report of this deletion in association with this phenotype; it is possible that this deletion may be causal for a Dubowitz phenocopy.

  17. Chromosome Deletion of 14q32.33 Detected by Array Comparative Genomic Hybridization in a Patient with Features of Dubowitz Syndrome

    Directory of Open Access Journals (Sweden)

    Diana C. Darcy

    2011-01-01

    Full Text Available We report a 4-year-old girl of Mexican origins with a clinical diagnosis of Dubowitz syndrome who carries a de novo terminal deletion at the 14q32.33 locus identified by array comparative genomic hybridization (aCGH. Dubowitz syndrome is a rare condition characterized by a constellation of features including growth retardation, short stature, microcephaly, micrognathia, eczema, telecanthus, blepharophimosis, ptosis, epicanthal folds, broad nasal bridge, round-tipped nose, mild to moderate developmental delay, and high-pitched hoarse voice. This syndrome is thought to be autosomal recessive; however, the etiology has not been determined. This is the first report of this deletion in association with this phenotype; it is possible that this deletion may be causal for a Dubowitz phenocopy.

  18. A rare case of trisomy 11q23.3-11q25 and trisomy 22q11.1-22q11.21.

    Science.gov (United States)

    Zou, P-S; Li, H-F; Chen, L-S; Ma, M; Chen, X-H; Xue, D; Cao, D-H

    2016-05-09

    Partial duplication of the long arm of chromosome 11 and the partial trisomy of 22q are uncommon karyotypic abnormalities. Here, we report the case of a 6-year-old girl who showed partial trisomy of 11q and 22q, as a result of a maternal balanced reciprocal translocation (11;22), and exhibited dysmorphic features, severe intellectual disability, brain malformations, and speech delay related to this unique chromosomal abnormality. Array comparative genomic hybridization (array CGH) revealed a gain in copy number on the long arm of chromosome 11, spanning at least 18.22 Mb. Additionally, there was a gain in copy number on the long arm of chromosome 22, spanning at least 3.46 Mb. FISH analysis using a chromosome 11 short arm telomere probe (11p14.2), a chromosome 11 long arm telomere probe (11q24.3), and a chromosome 22 long arm telomere probe (22q13.33) confirmed the origin of the marker chromosome. It has been confirmed by the State Key Laboratory of Medical Genetics of China that this is the first reported instance of the karyotype 47,XX, +der(22)t(11;22)(q23.3;q11.1)mat in the world. Our study reports an additional case that can be used to further characterize and delineate the clinical ramifications of partial trisomy of 11q and 22q.

  19. 7号染色体臂间倒位伴Turner综合征家系分析%Analysis of Pericentric Inversion of Chromosome 7 Associated with Turner Syndrome in Family

    Institute of Scientific and Technical Information of China (English)

    江静; 王伟; 傅曼芬; 孙文鑫; 陈凤生; 王德芬

    2006-01-01

    目的 研究7号染色体臂间倒位的遗传机制.方法 患儿及父母作染色体检查,并对患儿的家系进行调查.结果 患儿的染色体核型为46,XX,inv(7)(p22q11)/45,X,inv(7)(p22q11),其中46,XX,inv(7)(p22q11),85%,45,X,inv(7)(p22q11),15%.父亲的核型为46,XY,inv(7)(p22q11),母亲的染色体正常,患儿的母亲第1胎为3月自然流产,家系中其它成员均无流产史,母系成员中身材均偏矮小.结论 染色体臂间倒位能引起流产和畸胎,应作产前诊断.%Objective: To investigate the genetic mechanism of pericentric inversion of chromosome 7. Methods: The patient and her parents were chromosome karyotype analysed. Results: Cytogenetic evaluation by G banding a pericentric inversion of chromosome 7 and mosaic Turner syndrome, 45, XO/46, XX, inv (7) ( p22q11 ). The position of the centromeres was identified by the CBG technique. One hundred metaphases were counted with 45, XO, inv (7) in 15% and 46, XX, inv (7)in 85%. A family study revealed the same abnormal inversion in her father while the mother was normal . But her mother had short stature . Her father's karyotype was 46, XY, inv(7 ) ( p22q11 ). The inversion was paternal. This mother with miscarriage for her first pregnancy at 12 weeks gestation may be related to the consequence of unbalanced gamete. Conclusion: Amniocytic cytogenetic examinate should be indispensable for prenatal diagnosis and terminating pregnancy is suggested when the foetus is found with unbalanced inversion karyotype.

  20. Intragenic deletion in the LARGE gene causes Walker-Warburg syndrome.

    NARCIS (Netherlands)

    Reeuwijk, J. van; Grewal, P.K.; Salih, M.A.; Beltran Valero de Bernabe, D.; McLaughlan, J.M.; Michielse, C.B.; Herrmann, R.; Hewitt, J.E.; Steinbrecher, A.; Seidahmed, M.Z.; Shaheed, M.M.; Abomelha, A.; Brunner, H.G.; Bokhoven, J.H.L.M. van; Voit, T.

    2007-01-01

    Intragenic homozygous deletions in the Large gene are associated with a severe neuromuscular phenotype in the myodystrophy (myd) mouse. These mutations result in a virtual lack of glycosylation of alpha-dystroglycan. Compound heterozygous LARGE mutations have been reported in a single human patient,

  1. Killiney Grove Nursing Home, Killiney Hill Road, Killiney, Co. Dublin.

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  2. A designated centre for people with disabilities operated by Gheel Autism Services, Dublin 3

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  3. A designated centre for people with disabilities operated by Redwood Extended Care Facility Ltd, Meath

    LENUS (Irish Health Repository)

    Howley, Sarah A

    2012-10-15

    22q11.2 Deletion Syndrome (22q11DS) is a common microdeletion disorder associated with mild to moderate intellectual disability and specific neurocognitive deficits, particularly in visual-motor and attentional abilities. Currently there is evidence that the visual-motor profile of 22q11DS is not entirely mediated by intellectual disability and that these individuals have specific deficits in visual-motor integration. However, the extent to which attentional deficits, such as vigilance, influence impairments on visual motor tasks in 22q11DS is unclear. This study examines visual-motor abilities and reaction time using a range of standardised tests in 35 children with 22q11DS, 26 age-matched typically developing (TD) sibling controls and 17 low-IQ community controls. Statistically significant deficits were observed in the 22q11DS group compared to both low-IQ and TD control groups on a timed fine motor control and accuracy task. The 22q11DS group performed significantly better than the low-IQ control group on an untimed drawing task and were equivalent to the TD control group on point accuracy and simple reaction time tests. Results suggest that visual motor deficits in 22q11DS are primarily attributable to deficits in psychomotor speed which becomes apparent when tasks are timed versus untimed. Moreover, the integration of visual and motor information may be intact and, indeed, represent a relative strength in 22q11DS when there are no time constraints imposed. While this may have significant implications for cognitive remediation strategies for children with 22q11DS, the relationship between reaction time, visual reasoning, cognitive complexity, fine motor speed and accuracy, and graphomotor ability on visual-motor tasks is still unclear.

  4. LIN7A depletion disrupts cerebral cortex development, contributing to intellectual disability in 12q21-deletion syndrome.

    Directory of Open Access Journals (Sweden)

    Ayumi Matsumoto

    Full Text Available Interstitial deletion of 12q21 has been reported in four cases, which share several common clinical features, including intellectual disability (ID, low-set ears, and minor cardiac abnormalities. Comparative genomic hybridization (CGH analysis using the Agilent Human Genome CGH 180K array was performed with the genomic DNA from a two-year-old Japanese boy with these symptoms, as well as hypoplasia of the corpus callosum. Consequently, a 14 Mb deletion at 12q21.2-q21.33 (nt. 77 203 574-91 264 613 bp, which includes 72 genes, was detected. Of these, we focused on LIN7A, which encodes a scaffold protein that is important for synaptic function, as a possible responsible gene for ID, and we analyzed its role in cerebral cortex development. Western blotting analyses revealed that Lin-7A is expressed on embryonic day (E 13.5, and gradually increases in the mouse brain during the embryonic stage. Biochemical fractionation resulted in the enrichment of Lin-7A in the presynaptic fraction. Suppression of Lin-7A expression by RNAi, using in utero electroporation on E14.5, delayed neuronal migration on postnatal day (P 2, and Lin-7A-deficient neurons remained in the lower zone of the cortical plate and the intermediate zone. In addition, when Lin-7A was silenced in cortical neurons in one hemisphere, axonal growth in the contralateral hemisphere was delayed; development of these neurons was disrupted such that one half did not extend into the contralateral hemisphere after leaving the corpus callosum. Taken together, LIN7A is a candidate gene responsible for 12q21-deletion syndrome, and abnormal neuronal migration and interhemispheric axon development may contribute to ID and corpus callosum hypoplasia, respectively.

  5. Isochromosome 15q of maternal origin in two Prader-Willi syndrome patients previously diagnosed erroneously as cytogenetic deletions

    Energy Technology Data Exchange (ETDEWEB)

    Saitoh, Shinji; Niikawa, Norio [Nagasaki Univ. School of Medicine (Japan); Mutirangura, A.; Kuwano, A.; Ledbetter, D.H. [Baylor College of Medicine, Houston, TX (United States)

    1994-03-01

    Since a previous report on two Prader-Willi syndrome (PWS) patients with t(15q;15q) was erroneous, the authors report new data and a corrected interpretation. Reexamination of the parental origin of their t(15q;15q) using polymorphic DNA markers that are mapped to various regions of 15q documented no molecular deletions at the 15q11-q13 region in either patient. Both patients were homozygous at all loci examined and their haplotypes on 15q coincided with one of those in their respective mothers. These results indicate that the presumed t(15q;15q) in each patient was actually an isochromosome 15q producing maternal uniparental disomy, consistent with genomic imprinting at the PWS locus. 30 refs., 1 fig., 3 tabs.

  6. Two patients with duplication of 17p11.2: The reciprocal of the Smith-Magenis syndrome deletion?

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A. [Greenwood Genetic Center, SC (United States)]|[Clemson Univ., SC (United States); Phelan, M.C.; Rogers, R.C. [Greenwood Genetic Center, SC (United States)] [and others

    1996-05-17

    J.M. and H.G. are two unrelated male patients with developmental delay. Cytogenetic analysis detected a duplication of 17p11.2 in both patients. The extent of the duplicated region was determined using single copy DNA probes: cen-D17S58-D17S29-D17S258-D17S71-D17S445-D17S122-tel. Four of the six markers, D17S29, D17S258, D17S71, and D17S445, were duplicated by dosage analysis. Fluorescent in situ hybridization (FISH) analysis of H.G., using cosmids for locus D17S29, confirmed the duplication in 17p11.2. Because the deletion that causes the Smith-Magenis syndrome involves the same region of 17p11.2 as the duplication in these patients, the mechanism may be similar to that proposed for the reciprocal deletion/ duplication event observed in Hereditary Neuropathy with Liability to Pressure Palsies (HNPP) and Charcot-Marie-Tooth Type 1A disease (CMT1A). 30 refs., 3 figs., 1 tab.

  7. Array-based FMR1 sequencing and deletion analysis in patients with a fragile X syndrome-like phenotype.

    Directory of Open Access Journals (Sweden)

    Stephen C Collins

    Full Text Available BACKGROUND: Fragile X syndrome (FXS is caused by loss of function mutations in the FMR1 gene. Trinucleotide CGG-repeat expansions, resulting in FMR1 gene silencing, are the most common mutations observed at this locus. Even though the repeat expansion mutation is a functional null mutation, few conventional mutations have been identified at this locus, largely due to the clinical laboratory focus on the repeat tract. METHODOLOGY/PRINCIPAL FINDINGS: To more thoroughly evaluate the frequency of conventional mutations in FXS-like patients, we used an array-based method to sequence FMR1 in 51 unrelated males exhibiting several features characteristic of FXS but with normal CGG-repeat tracts of FMR1. One patient was identified with a deletion in FMR1, but none of the patients were found to have other conventional mutations. CONCLUSIONS/SIGNIFICANCE: These data suggest that missense mutations in FMR1 are not a common cause of the FXS phenotype in patients who have normal-length CGG-repeat tracts. However, screening for small deletions of FMR1 may be of clinically utility.

  8. Lenalidomide for the Treatment of Low- or Intermediate-1-Risk Myelodysplastic Syndromes Associated with Deletion 5q Cytogenetic Abnormality: An Evidence Review of the NICE Submission from Celgene

    NARCIS (Netherlands)

    H.M. Sluimer-Blommestein (Hedwig); N. Armstrong (Nigel); S. Ryder; S. Deshpande (Sohan); G. Worthy (Gill); C. Noake; R. Riemsma; J. Kleijnen (Jos); J.L. Severens (Hans); M.J. Al (Maiwenn)

    2016-01-01

    textabstractThe National Institute for Health and Care Excellence (NICE) invited the manufacturer of lenalidomide (Celgene) to submit evidence of the clinical and cost effectiveness of the drug for treating adults with myelodysplastic syndromes (MDS) associated with deletion 5q cytogenetic abnormali

  9. Complete androgen insensitivity syndrome due to a new frameshift deletion in exon 4 of the androgen receptor gene: Functional analysis of the mutant receptor

    NARCIS (Netherlands)

    J.M. Lobaccaro; S. Lumbroso; N. Poujol (Nicolas); V. Georget; A.O. Brinkmann (Albert); G. Malpuech (Georges); C. Sultan

    1995-01-01

    textabstractWe studied the androgen receptor gene in a large kindred with complete androgen insensitivity syndrome and negative receptor-binding activity, single-strand conformation polymorphism (SSCP) analysis and sequencing identified a 13 base pair deletion within exon 4. This was responsible for

  10. Altered ultrasonic vocalization and impaired learning and memory in Angelman syndrome mouse model with a large maternal deletion from Ube3a to Gabrb3.

    Directory of Open Access Journals (Sweden)

    Yong-Hui Jiang

    Full Text Available Angelman syndrome (AS is a neurobehavioral disorder associated with mental retardation, absence of language development, characteristic electroencephalography (EEG abnormalities and epilepsy, happy disposition, movement or balance disorders, and autistic behaviors. The molecular defects underlying AS are heterogeneous, including large maternal deletions of chromosome 15q11-q13 (70%, paternal uniparental disomy (UPD of chromosome 15 (5%, imprinting mutations (rare, and mutations in the E6-AP ubiquitin ligase gene UBE3A (15%. Although patients with UBE3A mutations have a wide spectrum of neurological phenotypes, their features are usually milder than AS patients with deletions of 15q11-q13. Using a chromosomal engineering strategy, we generated mutant mice with a 1.6-Mb chromosomal deletion from Ube3a to Gabrb3, which inactivated the Ube3a and Gabrb3 genes and deleted the Atp10a gene. Homozygous deletion mutant mice died in the perinatal period due to a cleft palate resulting from the null mutation in Gabrb3 gene. Mice with a maternal deletion (m-/p+ were viable and did not have any obvious developmental defects. Expression analysis of the maternal and paternal deletion mice confirmed that the Ube3a gene is maternally expressed in brain, and showed that the Atp10a and Gabrb3 genes are biallelically expressed in all brain sub-regions studied. Maternal (m-/p+, but not paternal (m+/p-, deletion mice had increased spontaneous seizure activity and abnormal EEG. Extensive behavioral analyses revealed significant impairment in motor function, learning and memory tasks, and anxiety-related measures assayed in the light-dark box in maternal deletion but not paternal deletion mice. Ultrasonic vocalization (USV recording in newborns revealed that maternal deletion pups emitted significantly more USVs than wild-type littermates. The increased USV in maternal deletion mice suggests abnormal signaling behavior between mothers and pups that may reflect abnormal

  11. High frequency of BTG1 deletions in acute lymphoblastic leukemia in children with down syndrome

    DEFF Research Database (Denmark)

    Lundin, Catarina; Hjorth, Lars; Behrendtz, Mikael;

    2012-01-01

    Previous cytogenetic studies of myeloid and acute lymphoblastic leukemias in children with Down syndrome (ML-DS and DS-ALL) have revealed significant differences in abnormality patterns between such cases and acute leukemias in general. Also, certain molecular genetic aberrations characterize DS...

  12. A new microduplication syndrome encompassing the region of the Miller-Dieker (17p13 deletion) syndrome

    DEFF Research Database (Denmark)

    Roos, L; Jønch, A E; Kjaergaard, S;

    2009-01-01

    BACKGROUND: The use of array comparative genome hybridisation (CGH) analyses for investigation of children with mental retardation has led to the identification of a growing number of new microdeletion and microduplication syndromes, some of which have become clinically well characterised and som...

  13. The mitochondrial ND1 m.3337G>A mutation associated to multiple mitochondrial DNA deletions in a patient with Wolfram syndrome and cardiomyopathy

    Energy Technology Data Exchange (ETDEWEB)

    Mezghani, Najla [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Mnif, Mouna [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Mkaouar-Rebai, Emna, E-mail: emna_mkaouar@mail2world.com [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Kallel, Nozha [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Salem, Ikhlass Haj [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia); Charfi, Nadia; Abid, Mohamed [Service d' endocrinologie, C.H.U. Habib Bourguiba de Sfax (Tunisia); Fakhfakh, Faiza [Laboratoire de Genetique Moleculaire Humaine, Faculte de Medecine de Sfax, Universite de Sfax (Tunisia)

    2011-07-29

    Highlights: {yields} We reported a patient with Wolfram syndrome and dilated cardiomyopathy. {yields} We detected the ND1 mitochondrial m.3337G>A mutation in 3 tested tissues (blood leukocytes, buccal mucosa and skeletal muscle). {yields} Long-range PCR amplification revealed the presence of multiple mitochondrial deletions in the skeletal muscle. {yields} The deletions remove several tRNA and protein-coding genes. -- Abstract: Wolfram syndrome (WFS) is a rare hereditary disorder also known as DIDMOAD (diabetes insipidus, diabetes mellitus, optic atrophy, and deafness). It is a heterogeneous disease and full characterization of all clinical and biological features of this disorder is difficult. The wide spectrum of clinical expression, affecting several organs and tissues, and the similarity in phenotype between patients with Wolfram syndrome and those with certain types of respiratory chain diseases suggests mitochondrial DNA (mtDNA) involvement in Wolfram syndrome patients. We report a Tunisian patient with clinical features of moderate Wolfram syndrome including diabetes, dilated cardiomyopathy and neurological complications. The results showed the presence of the mitochondrial ND1 m.3337G>A mutation in almost homoplasmic form in 3 tested tissues of the proband (blood leukocytes, buccal mucosa and skeletal muscle). In addition, the long-range PCR amplifications revealed the presence of multiple deletions of the mitochondrial DNA extracted from the patient's skeletal muscle removing several tRNA and protein-coding genes. Our study reported a Tunisian patient with clinical features of moderate Wolfram syndrome associated with cardiomyopathy, in whom we detected the ND1 m.3337G>A mutation with mitochondrial multiple deletions.

  14. A 590 kb deletion caused by non-allelic homologous recombination between two LINE-1 elements in a patient with mesomelia-synostosis syndrome.

    Science.gov (United States)

    Kohmoto, Tomohiro; Naruto, Takuya; Watanabe, Miki; Fujita, Yuji; Ujiro, Sae; Okamoto, Nana; Horikawa, Hideaki; Masuda, Kiyoshi; Imoto, Issei

    2017-04-01

    Mesomelia-synostoses syndrome (MSS) is a rare, autosomal-dominant, syndromal osteochondrodysplasia characterized by mesomelic limb shortening, acral synostoses, and multiple congenital malformations due to a non-recurrent deletion at 8q13 that always encompasses two coding-genes, SULF1 and SLCO5A1. To date, five unrelated patients have been reported worldwide, and MMS was previously proposed to not be a genomic disorder associated with deletions recurring from non-allelic homologous recombination (NAHR) in at least two analyzed cases. We conducted targeted gene panel sequencing and subsequent array-based copy number analysis in an 11-year-old undiagnosed Japanese female patient with multiple congenital anomalies that included mesomelic limb shortening and detected a novel 590 Kb deletion at 8q13 encompassing the same gene set as reported previously, resulting in the diagnosis of MSS. Breakpoint sequences of the deleted region in our case demonstrated the first LINE-1s (L1s)-mediated unequal NAHR event utilizing two distant L1 elements as homology substrates in this disease, which may represent a novel causative mechanism of the 8q13 deletion, expanding the range of mechanisms involved in the chromosomal rearrangements responsible for MSS.

  15. Fine mapping of chromosome 10q deletions in mycosis fungoides and sezary syndrome: identification of two discrete regions of deletion at 10q23.33-24.1 and 10q24.33-25.1.

    Science.gov (United States)

    Wain, E Mary; Mitchell, Tracey J; Russell-Jones, Robin; Whittaker, Sean J

    2005-02-01

    Previous cytogenetic studies in mycosis fungoides (MF) and Sezary syndrome (SS) have identified a large and poorly defined area of chromosomal deletion on chromosome 10q. We report an extensive fine-mapping allelotyping study using 19 microsatellite markers in the region 10q22.3-10q26.13. Allelic loss was identified by loss of heterozygosity analysis in 26 of 60 (43%) cases: 15 of 45 (33%) with MF and 11 of 15 (73%) with SS. MF and SS samples showed similar patterns of allelic loss with the identification of two discrete regions of deletion which were mutually exclusive in all but two cases. Within the first region of deletion at 10q23.33-10q24.1, around microsatellite marker D10S185 (2.77 Mb), 23 genes were identified, including three (KIF11, HHEX, and HELLS) with functions that, if dysregulated, could be critical in MF and SS. The second region of deletion, 10q24.33-10q25.1, around microsatellite marker D10S530 (3.92 Mb), encodes 11 genes, the majority of which have poorly identified functions. This extensive allelotyping study provides the basis for future highly selective candidate gene analyses.

  16. Emergence of porcine reproductive and respiratory syndrome virus deletion mutants: Correlation with the porcine antibody response to a hypervariable site in the ORF 3 structural glycoprotein

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Bøtner, Anette; Toft, P.;

    2000-01-01

    By using porcine immune sera to select a library of phage-displayed random peptides. we identified an antigenic sequence (RKASLSTS) in the C-terminus of the ORF 3 structural glycoprotein of European-type porcine reproductive and respiratory syndrome virus (PRRSV). Through the use of overlapping....... These distinctions suggested that deletion mutants were a hitherto unrecognized subtype of European-type PRRSV. Currently, deletion mutants appear to be outcompeting nondeleted viruses in the field, highlighting the importance of the porcine antibody response against the minor structural glycoproteins of European...

  17. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes

    Science.gov (United States)

    Arbogast, Thomas; Ouagazzal, Abdel-Mouttalib; Chevalier, Claire; Kopanitsa, Maksym; Afinowi, Nurudeen; Migliavacca, Eugenia; Cowling, Belinda S.; Birling, Marie-Christine; Champy, Marie-France; Reymond, Alexandre; Herault, Yann

    2016-01-01

    The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice. PMID:26872257

  18. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

    Science.gov (United States)

    Arbogast, Thomas; Ouagazzal, Abdel-Mouttalib; Chevalier, Claire; Kopanitsa, Maksym; Afinowi, Nurudeen; Migliavacca, Eugenia; Cowling, Belinda S; Birling, Marie-Christine; Champy, Marie-France; Reymond, Alexandre; Herault, Yann

    2016-02-01

    The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+) or a duplication (Dup/+) of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.

  19. Reciprocal Effects on Neurocognitive and Metabolic Phenotypes in Mouse Models of 16p11.2 Deletion and Duplication Syndromes.

    Directory of Open Access Journals (Sweden)

    Thomas Arbogast

    2016-02-01

    Full Text Available The 16p11.2 600 kb BP4-BP5 deletion and duplication syndromes have been associated with developmental delay; autism spectrum disorders; and reciprocal effects on the body mass index, head circumference and brain volumes. Here, we explored these relationships using novel engineered mouse models carrying a deletion (Del/+ or a duplication (Dup/+ of the Sult1a1-Spn region homologous to the human 16p11.2 BP4-BP5 locus. On a C57BL/6N inbred genetic background, Del/+ mice exhibited reduced weight and impaired adipogenesis, hyperactivity, repetitive behaviors, and recognition memory deficits. In contrast, Dup/+ mice showed largely opposite phenotypes. On a F1 C57BL/6N × C3B hybrid genetic background, we also observed alterations in social interaction in the Del/+ and the Dup/+ animals, with other robust phenotypes affecting recognition memory and weight. To explore the dosage effect of the 16p11.2 genes on metabolism, Del/+ and Dup/+ models were challenged with high fat and high sugar diet, which revealed opposite energy imbalance. Transcriptomic analysis revealed that the majority of the genes located in the Sult1a1-Spn region were sensitive to dosage with a major effect on several pathways associated with neurocognitive and metabolic phenotypes. Whereas the behavioral consequence of the 16p11 region genetic dosage was similar in mice and humans with activity and memory alterations, the metabolic defects were opposite: adult Del/+ mice are lean in comparison to the human obese phenotype and the Dup/+ mice are overweight in comparison to the human underweight phenotype. Together, these data indicate that the dosage imbalance at the 16p11.2 locus perturbs the expression of modifiers outside the CNV that can modulate the penetrance, expressivity and direction of effects in both humans and mice.

  20. Deletion of UBE3A in brothers with Angelman syndrome at the breakpoint with an inversion at 15q11.2.

    Science.gov (United States)

    Kuroda, Yukiko; Ohashi, Ikuko; Saito, Toshiyuki; Nagai, Jun-Ichi; Ida, Kazumi; Naruto, Takuya; Wada, Takahito; Kurosawa, Kenji

    2014-11-01

    Angelman syndrome (AS) is characterized by severe intellectual disability with ataxia, epilepsy, and behavioral uniqueness. The underlining molecular deficit is the absence of the maternal copy of the imprinted UBE3A gene due to maternal deletions, which is observed in 70-75% of cases, and can be detected using fluorescent in situ hybridization (FISH) of the UBE3A region. Only a few familial AS cases have been reported with a complete deletion of UBE3A. Here, we report on siblings with AS caused by a microdeletion of 15q11.2-q12 encompassing UBE3A at the breakpoint of an inversion at 15q11.2 and 15q26.1. Karyotyping revealed an inversion of 15q, and FISH revealed the deletion of the UBE3A region. Array comparative genomic hybridization (CGH) demonstrated a 467 kb deletion at 15q11.2-q12, encompassing only UBE3A, SNORD115, and PAR1, and a 53 kb deletion at 15q26.1, encompassing a part of SLCO3A1. Their mother had a normal karyotype and array CGH detected no deletion of 15q11.2-q12, so we assumed gonadal mosaicism. This report describes a rare type of familial AS detected using the D15S10 FISH test.

  1. Array based characterization of a terminal deletion involving chromosome subband 15q26.2: an emerging syndrome associated with growth retardation, cardiac defects and developmental delay

    Directory of Open Access Journals (Sweden)

    Björkhem Gudrun

    2008-01-01

    Full Text Available Abstract Background Subtelomeric regions are gene rich and deletions in these chromosomal segments have been demonstrated to account for approximately 2.5% of patients displaying mental retardation with or without association of dysmorphic features. However, cases that report de novo terminal deletions on chromosome arm 15q are rare. Methods In this study we present the first example of a detailed molecular genetic mapping of a de novo deletion in involving 15q26.2-qter, caused by the formation of a dicentric chromosome 15, using metaphase FISH and tiling resolution (32 k genome-wide array-based comparative genomic hybridization (CGH. Results After an initial characterization of the dicentric chromosome by metaphase FISH, array CGH analysis mapped the terminal deletion to encompass a 6.48 megabase (Mb region, ranging from 93.86–100.34 Mb on chromosome 15. Conclusion In conclusion, we present an additional case to the growing family of reported cases with 15q26-deletion, thoroughly characterized at the molecular cytogenetic level. In the deleted regions, four candidate genes responsible for the phenotype of the patient could be delineated: IGFR1, MEF2A, CHSY1, and TM2D3. Further characterization of additional patients harboring similar 15q-aberrations might hopefully in the future lead to the description of a clear cut clinically recognizable syndrome.

  2. [Lenalidomide treatment in myelodysplastic syndrome with 5q deletion--Czech MDS group experience].

    Science.gov (United States)

    Jonášová, Anna; Červinek, Libor; Bělohlávková, Petra; Čermák, Jaroslav; Beličková, Monika; Rohoň, Petr; Černá, Olga; Hochová, Ivana; Šišková, Magda; Kačmářová, Karla; Janoušová, Eva

    2015-12-01

    Myelodysplastic syndrome (MDS) is a common hematological disease in patients over sixty. Despite intensive research, the therapy of this heterogeneous blood disease is complicated. In recent years, two new therapeutic approaches have been proposed: immunomodulation and demethylation therapy. Immunomodulation therapy with lenalidomide represents a meaningful advance in the treatment of anemic patients, specifically those with 5q- aberrations. As much as 60-70% of patients respond and achieve transfusion independence. We present the initial lenalidomide experience of the Czech MDS group. We analyze Czech MDS register data of 34 (31 female; 3 male; median age 69 years) chronically transfused low risk MDS patients with 5q- aberration treated by lenalidomide. Twenty-seven (79.4%) patients were diagnosed with 5q- syndrome, 5 patients with refractory anemia with multilineage dysplasia, 1 patient with refractory anemia with excess of blasts 1, and 1 patient with myelodysplastic/myeloproliferative unclassified. Response, as represented by achieving complete transfusion independence, was achieved in 91% of patients. A true 5q- syndrome diagnosis in most our patients may be responsible for such a high response rate. Complete cytogenetic response was reached in 15% of patients and partial cytogenetic response in 67%, within a median time of 12 months. TP53 mutation was detected in 15% (3 from 18 tested) and 2 of these patients progressed to higher grade MDS. The majority of patients tolerated lenalidomide very well. Based on this albeit small study, we present our findings of high lenalidomide efficacy as well as the basic principles and problems of lenalidomide therapy.

  3. Delineation of a contiguous gene syndrome with multiple exostoses, enlarged parietal foramina, craniofacial dysostosis, and mental retardation, caused by deletions on the short arm of chromosome 11

    Energy Technology Data Exchange (ETDEWEB)

    Bartsch, O.; Werner, W.; Hinkel, G.K. [Univ. Hospital Dresden (Germany); Van Hul, W.; Willems, P.J. [Univ. of Antwerp (Belgium)] [and others

    1996-04-01

    A contiguous gene syndrome due to deletions of the proximal short arm of chromosome 11 is described in eight patients belonging to four families. The main clinical features are multiple exostoses, enlarged parietal foramina, craniofacial dysostosis, and mental retardation. The patients have cytogenetic and/or molecular deletions of chromosome 11p11-p13. These deletions are located between the centromere and D11S914 in a region of {approximately}20 cM. The present study confirms the presence of a multiple exostoses gene on chromosome 11p. Furthermore, it suggests that the gene for isolated foramina parietalia permagna and genes associated with craniofacial dysostosis and mental retardation reside in the same chromosomal region. 31 refs., 5 figs., 1 tab.

  4. Analysis of the efficacy of lenalidomide in patients with intermediate-1 risk myelodysplastic syndrome without 5q deletion.

    Science.gov (United States)

    Yang, Yan; Gao, Sujun; Fan, Hongqiong; Lin, Hai; Li, Wei; Wang, Juan

    2013-09-01

    The aim of this study was to evaluate the efficacy and adverse effects of lenalidomide in the treatment of intermediate-1 risk non-5q deletion [non-del (5q)] myelodysplastic syndrome (MDS). A total of 30 patients with MDS were classified through G-banding chromosome karyotype analysis and fluorescence in situ hybridization (FISH). According to the International Prognostic Scoring System scores, among the 30 patients, 23 and seven cases had scores of 0.5 and 1.0, respectively. Lenalidomide (Revlimid(®)), 10 mg/day) was administered for 21 days every 28 days. All 30 cases were treated with lenalidomide for at least three cycles, including 20 cases with four cycles. The patients did not require erythropoietin, cyclosporine or iron chelation treatments. Statistical analysis was performed using SPSS statistical software version 13.0, and comparisons among groups were conducted using a t-test. The efficacy of lenalidomide was demonstrated in patients with intermediate-1 risk non-del (5q) MDS. Peripheral blood cell counts were improved following treatment, and absolute neutrophil, haemoglobin and platelet counts increased following 2-4 cycles of treatment. All patients became stable having undergone three cycles of treatment; however, 17 patients with chromosomal abnormalities had no cytogenetic response to the treatment, as confirmed through the FISH test. Patients with intermediate-1 risk non-del (5q) MDS treated with lenalidomide did not achieve complete haematological remission, although they demonstrated haematological improvement.

  5. Hypoventilation in REM sleep in a case of 17p11.2 deletion (Smith-Magenis syndrome).

    Science.gov (United States)

    Leoni, Chiara; Cesarini, Laura; Dittoni, Serena; Battaglia, Domenica; Novelli, Antonio; Bernardini, Laura; Losurdo, Anna; Vollono, Catello; Testani, Elisa; Della Marca, Giacomo; Zampino, Giuseppe

    2010-03-01

    We describe a 2-year-old baby affected by Smith-Magenis syndrome (SMS), due to 17p11.2 deletion, who presented repeated episodes of hemoglobin desaturation during REM sleep. The boy, aged 14 months, presented a phenotype characterized by psychomotor delay, right posterior plagiocephaly, telecanthus, strabismus, upslanting palpebral fissures, broad hypoplastic nasal bridge, short philtrum, deep ring shaped skin creases around the limbs, proximal syndactyly, bilateral hypoacusia. Polysomnographic (PSG) recording showed episodes of REM-related hypoventilation (hemoglobin desaturations without apneas or hypopneas). Sleep disorders are present in almost all the cases of SMS, but very few reports describe the sleep-related respiratory patterns. The finding of REM hypoventilation in SMS does not allow an unequivocal interpretation. It could reflect a subclinical restrictive respiratory impairment or, alternatively, an impairment of central respiratory control during REM sleep. In SMS children, respiratory abnormalities during sleep, and in particular during REM sleep, may cause sleep disruption, reduction of time spent in REM sleep, and daytime sleepiness. We therefore suggest that some sleep abnormalities described in SMS could be consequent to Sleep Disordered Breathing, and in particular to REM hypoventilation. Sleep studies in SMS should include the recording of respiratory parameters.

  6. Birt-Hogg-Dubé syndrome: novel FLCN frameshift deletion in daughter and father with renal cell carcinomas.

    Science.gov (United States)

    Näf, Ernst; Laubscher, Dominik; Hopfer, Helmut; Streit, Markus; Matyas, Gabor

    2016-01-01

    Germline mutation of the FLCN gene causes Birt-Hogg-Dubé syndrome (BHD), a rare autosomal dominant condition characterized by skin fibrofolliculomas, lung cysts, spontaneous pneumothorax and renal tumours. We identified a hitherto unreported pathogenic FLCN frameshift deletion c.563delT (p.Phe188Serfs*35) in a family of a 46-year-old woman presented with macrohematuria due to bilateral chromophobe renal carcinomas. A heritable renal cancer was suspected due to the bilaterality of the tumour and as the father of this woman had suffered from renal cancer. Initially, however, BHD was overlooked by the medical team despite the highly suggestive clinical presentation. We assume that BHD is underdiagnosed, at least partially, due to low awareness of this variable condition and to insufficient use of appropriate genetic testing. Our study indicates that BHD and FLCN testing should be routinely considered in patients with positive family or personal history of renal tumours. In addition, we demonstrate how patients and their families can play a driving role in initiating genetic diagnosis, presymptomatic testing of at-risk relatives, targeted disease management, and genetic counselling of rare diseases such as BHD.

  7. Novel susceptibility locus at 22q11 for diabetic nephropathy in type 1 diabetes

    DEFF Research Database (Denmark)

    Wessman, Maija; Forsblom, Carol; Kaunisto, Mari A

    2011-01-01

    Diabetic nephropathy (DN) affects about 30% of patients with type 1 diabetes (T1D) and contributes to serious morbidity and mortality. So far only the 3q21-q25 region has repeatedly been indicated as a susceptibility region for DN. The aim of this study was to search for new DN susceptibility loci...

  8. A large deletion/insertion-induced frameshift mutation of the androgen receptor gene in a family with a familial complete androgen insensitivity syndrome.

    Science.gov (United States)

    Cong, Peikuan; Ye, Yinghui; Wang, Yue; Lu, Lingping; Yong, Jing; Yu, Ping; Joseph, Kimani Kagunda; Jin, Fan; Qi, Ming

    2012-06-01

    Androgen insensitivity syndrome (AIS) is an X-linked recessive genetic disorder with a normal 46, XY karyotype caused by abnormality of the androgen receptor (AR) gene. One Chinese family consisting of the proband and 5 other members with complete androgen insensitivity syndrome (CAIS) was investigated. Mutation analysis by DNA sequencing on all 8 exons and flanking intron regions of the AR gene revealed a unique large deletion/insertion mutation in the family. A 287 bp deletion and 77 bp insertion (c.933_1219delins77) mutation at codon 312 resulted in a frameshift which caused a premature stop (p.Phe312Aspfs*7) of polypeptide formation. The proband's mother and grandmother were heterozygous for the mutant allele. The proband's father, uncle and grandfather have the normal allele. From the pedigree constructed from mutational analysis of the family, it is revealed that the probably pathogenic mutation comes from the maternal side.

  9. Opposing phenotypes in mice with Smith-Magenis deletion and Potocki-Lupski duplication syndromes suggest gene dosage effects on fluid consumption behavior.

    Science.gov (United States)

    Heck, Detlef H; Gu, Wenli; Cao, Ying; Qi, Shuhua; Lacaria, Melanie; Lupski, James R

    2012-11-01

    A quantitative long-term fluid consumption and fluid-licking assay was performed in two mouse models with either an ∼2 Mb genomic deletion, Df(11)17, or the reciprocal duplication copy number variation (CNV), Dp(11)17, analogous to the human genomic rearrangements causing either Smith-Magenis syndrome [SMS; OMIM #182290] or Potocki-Lupski syndrome [PTLS; OMIM #610883], respectively. Both mouse strains display distinct quantitative alterations in fluid consumption compared to their wild-type littermates; several of these changes are diametrically opposing between the two chromosome engineered mouse models. Mice with duplication versus deletion showed longer versus shorter intervals between visits to the waterspout, generated more versus less licks per visit and had higher versus lower variability in the number of licks per lick-burst as compared to their respective wild-type littermates. These findings suggest that copy number variation can affect long-term fluid consumption behavior in mice. Other behavioral differences were unique for either the duplication or deletion mutants; the deletion CNV resulted in increased variability of the licking rhythm, and the duplication CNV resulted in a significant slowing of the licking rhythm. Our findings document a readily quantitated complex behavioral response that can be directly and reciprocally influenced by a gene dosage effect.

  10. The refinement of the critical region for the 2q31.2q32.3 deletion syndrome indicates candidate genes for mental retardation and speech impairment.

    Science.gov (United States)

    Cocchella, Alessandro; Malacarne, Michela; Forzano, Francesca; Marciano, Carmela; Pierluigi, Mauro; Perroni, Lucia; Faravelli, Francesca; Di Maria, Emilio

    2010-10-05

    Current literature provides more than 30 patients with interstitial deletions in chromosome 2q31q33. Only a few of them were studied using high-resolution methods. Among these, two patients had presented with a particular consistence of some clinical features associated to a deletion between bands q31.2 and q32.3 of chromosome 2. This clinical pattern, labeled as "2q31.2q32.3 syndrome," consists of multiple dysmorphisms, developmental delay, mental retardation and behavioural disturbances. We report an adult female patient with a 4.4 Mb deletion in the 2q31.2q32.3 region, showing facial dysmorphisms, mental retardation and absence of speech. The region overlaps with the deletion found in the two cases previously reported. The critical region points to a few genes, namely NEUROD1, ZNF804A, PDE1A, and ITGA4, which are good candidates to explain the cognitive and behavioural phenotype, as well as the severe speech impairment associated with the 2q31.2q32.3 deletion.

  11. A child with an inherited 0.31 Mb microdeletion of chromosome 14q32.33: further delineation of a critical region for the 14q32 deletion syndrome.

    Science.gov (United States)

    Holder, J Lloyd; Lotze, Timothy E; Bacino, Carlos; Cheung, Sau-Wai

    2012-08-01

    Chromosome 14q32.3 deletions are uncommon, with most described patients harboring a ring chromosome 14. Only 15 deletions have been described not associated with ring formation or other complex chromosomal rearrangements. Here, we describe a child with the smallest deletion of chromosome 14q32.3 reported in the literature. This child's deletion encompasses at most 0.305 Mb and six genes including NUDT14, BRF1, BTBD6, PACS2, MTA1, and TEX22. He has similar clinical findings, including mild facial dysmorphisms and intellectual disability, as other individuals with much larger deletions of the terminus of the long arm of chromosome 14. This suggests that the genes deleted in our patient contribute to the 14q32 deletion syndrome.

  12. Submicroscopic deletions of 11q24-25 in individuals without Jacobsen syndrome: re-examination of the critical region by high-resolution array-CGH

    Directory of Open Access Journals (Sweden)

    VanAllen Margot I

    2008-11-01

    Full Text Available Abstract Background Jacobsen syndrome is a rare contiguous gene disorder that results from a terminal deletion of the long arm of chromosome 11. It is typically characterized by intellectual disability, a variety of physical anomalies and a distinctive facial appearance. The 11q deletion has traditionally been identified by routine chromosome analysis. Array-based comparative genomic hybridization (array-CGH has offered new opportunities to identify and refine chromosomal abnormalities in regions known to be associated with clinical syndromes. Results Using the 1 Mb BAC array (Spectral Genomics, we screened 70 chromosomally normal children with idiopathic intellectual disability (ID and congenital abnormalities, and identified five cases with submicroscopic abnormalities believed to contribute to their phenotypes. Here, we provide detailed molecular cytogenetic descriptions and clinical presentation of two unrelated subjects with de novo submicroscopic deletions within chromosome bands 11q24-25. In subject 1 the chromosome rearrangement consisted of a 6.18 Mb deletion (from 128.25–134.43 Mb and an adjacent 5.04 Mb duplication (from 123.15–128.19 Mb, while in subject 2, a 4.74 Mb interstitial deletion was found (from 124.29–129.03 Mb. Higher resolution array analysis (385 K Nimblegen was used to refine all breakpoints. Deletions of the 11q24-25 region are known to be associated with Jacobsen syndrome (JBS: OMIM 147791. However, neither of the subjects had the typical features of JBS (trigonocephaly, platelet disorder, heart abnormalities. Both subjects had ID, dysmorphic features and additional phenotypic abnormalities: subject 1 had a kidney abnormality, bilateral preauricular pits, pectus excavatum, mild to moderate conductive hearing loss and behavioral concerns; subject 2 had macrocephaly, an abnormal MRI with delayed myelination, fifth finger shortening and squaring of all fingertips, and sensorineural hearing loss. Conclusion Two

  13. Syndromic mental retardation with thrombocytopenia due to 21q22.11q22.12 deletion: Report of three patients.

    Science.gov (United States)

    Katzaki, Eleni; Morin, Gilles; Pollazzon, Marzia; Papa, Filomena Tiziana; Buoni, Sabrina; Hayek, Joussef; Andrieux, Joris; Lecerf, Laure; Popovici, Cornel; Receveur, Aline; Mathieu-Dramard, Michèle; Renieri, Alessandra; Mari, Francesca; Philip, Nicole

    2010-07-01

    During the last few years, an increasing number of microdeletion/microduplication syndromes have been delineated. This rapid evolution is mainly due to the availability of microarray technology as a routine diagnostic tool. Microdeletions of the 21q22.11q22.12 region encompassing the RUNX1 gene have been reported in nine patients presenting with syndromic thrombocytopenia and mental retardation. RUNX1 gene is responsible for an autosomal dominant platelet disorder with predisposition to acute myelogenous leukemia. We report on three novel patients with an overlapping "de novo" interstitial deletion involving the band 21q22 characterized by array-CGH. All our patients presented with severe developmental delay, dysmorphic features, behavioral problems, and thrombocytopenia. Comparing the clinical features of our patients with the overlapping ones already reported two potential phenotypes related to 21q22 microdeletion including RUNX1 were highlighted: thrombocytopenia with +/- mild dysmorphic features and syndromic thrombocytopenia with growth and developmental delay.

  14. A large-scale survey of the novel 15q24 microdeletion syndrome in autism spectrum disorders identifies an atypical deletion that narrows the critical region

    Directory of Open Access Journals (Sweden)

    McInnes L

    2010-03-01

    Full Text Available Abstract Background The 15q24 microdeletion syndrome has been recently described as a recurrent, submicroscopic genomic imbalance found in individuals with intellectual disability, typical facial appearance, hypotonia, and digital and genital abnormalities. Gene dosage abnormalities, including copy number variations (CNVs, have been identified in a significant fraction of individuals with autism spectrum disorders (ASDs. In this study we surveyed two ASD cohorts for 15q24 abnormalities to assess the frequency of genomic imbalances in this interval. Methods We screened 173 unrelated subjects with ASD from the Central Valley of Costa Rica and 1336 subjects with ASD from 785 independent families registered with the Autism Genetic Resource Exchange (AGRE for CNVs across 15q24 using oligonucleotide arrays. Rearrangements were confirmed by array comparative genomic hybridization and quantitative PCR. Results Among the patients from Costa Rica, an atypical de novo deletion of 3.06 Mb in 15q23-q24.1 was detected in a boy with autism sharing many features with the other 13 subjects with the 15q24 microdeletion syndrome described to date. He exhibited intellectual disability, constant smiling, characteristic facial features (high anterior hairline, broad medial eyebrows, epicanthal folds, hypertelorism, full lower lip and protuberant, posteriorly rotated ears, single palmar crease, toe syndactyly and congenital nystagmus. The deletion breakpoints are atypical and lie outside previously characterized low copy repeats (69,838-72,897 Mb. Genotyping data revealed that the deletion had occurred in the paternal chromosome. Among the AGRE families, no large 15q24 deletions were observed. Conclusions From the current and previous studies, deletions in the 15q24 region represent rare causes of ASDs with an estimated frequency of 0.1 to 0.2% in individuals ascertained for ASDs, although the proportion might be higher in sporadic cases. These rates compare with a

  15. Mapping genetically controlled neural circuits of social behavior and visuo-motor integration by a preliminary examination of atypical deletions with Williams syndrome.

    Science.gov (United States)

    Hoeft, Fumiko; Dai, Li; Haas, Brian W; Sheau, Kristen; Mimura, Masaru; Mills, Debra; Galaburda, Albert; Bellugi, Ursula; Korenberg, Julie R; Reiss, Allan L

    2014-01-01

    In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome) consisting of three different patterns of deletions, compared to typical WS and typically developing (TD) individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1) GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2) the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3) the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain.

  16. Mapping genetically controlled neural circuits of social behavior and visuo-motor integration by a preliminary examination of atypical deletions with Williams syndrome.

    Directory of Open Access Journals (Sweden)

    Fumiko Hoeft

    Full Text Available In this study of eight rare atypical deletion cases with Williams-Beuren syndrome (WS; also known as 7q11.23 deletion syndrome consisting of three different patterns of deletions, compared to typical WS and typically developing (TD individuals, we show preliminary evidence of dissociable genetic contributions to brain structure and human cognition. Univariate and multivariate pattern classification results of morphometric brain patterns complemented by behavior implicate a possible role for the chromosomal region that includes: 1 GTF2I/GTF2IRD1 in visuo-spatial/motor integration, intraparietal as well as overall gray matter structures, 2 the region spanning ABHD11 through RFC2 including LIMK1, in social cognition, in particular approachability, as well as orbitofrontal, amygdala and fusiform anatomy, and 3 the regions including STX1A, and/or CYLN2 in overall white matter structure. This knowledge contributes to our understanding of the role of genetics on human brain structure, cognition and pathophysiology of altered cognition in WS. The current study builds on ongoing research designed to characterize the impact of multiple genes, gene-gene interactions and changes in gene expression on the human brain.

  17. Deletions of Yq11 associated with short stature and the Turner syndrome. Tentative mapping of a region associated with specific Turner stigmata to proximal interval 5.

    Energy Technology Data Exchange (ETDEWEB)

    McElreavey, K.; Barbaux, S.; Vilain, E. [Immunogenetique Humaine 25 rue du Dr. Roux, Paris (France)] [and others

    1994-09-01

    Turner syndrome is a complex human phenotype, commonly associated with a 45,X karyotype. Mapping the Turner phenotype is difficult since hidden mosaicisms, partial monosomy and complex rearrangements are present in many affected individuals. In addition, attempts to map the genes involved to the X chromosome have failed to yield a consistent localisation. An alternative approach to map and identify Turner genes is to study XY individuals, with sex chromosome abnormalities, who present with or without characteristic Turner stigmata. We report the analysis of 4 individuals with terminal deletions of Yq. The individuals were azoospermic males without phenotypic abnormalities (2 cases) and azoospermic males presenting with a specific subset of Turner stigmata (2 cases). Breakpoints in each of the cytogenetically detectable Yq deletions were mapped by Southern analysis and Y chromosome-specific sequence tagged sites (STS). Correlation between the patients phenotypes and the extent of their deletion indicate a critical region associated with specific Turner stigmata (cubitus valgus, shield chest, short fourth metacarpals) and growth retardation at Yq at proximal interval 5. These data provide evidence that the somatic features of the Turner syndrome are most likely caused by haploinsufficiency of genes at several loci.

  18. Review of disrupted sleep patterns in Smith-Magenis syndrome and normal melatonin secretion in a patient with an atypical interstitial 17p11.2 deletion.

    Science.gov (United States)

    Boudreau, Eilis A; Johnson, Kyle P; Jackman, Angela R; Blancato, Jan; Huizing, Marjan; Bendavid, Claude; Jones, Marypat; Chandrasekharappa, Settara C; Lewy, Alfred J; Smith, Ann C M; Magenis, R Ellen

    2009-07-01

    Smith-Magenis syndrome (SMS) is a disorder characterized by multiple congenital anomalies and behavior problems, including abnormal sleep patterns. It is most commonly due to a 3.5 Mb interstitial deletion of chromosome 17 band p11.2. Secretion of melatonin, a hormone produced by the pineal gland, is the body's signal for nighttime darkness. Published reports of 24-hr melatonin secretion patterns in two independent SMS cohorts (US and France) document an inverted endogenous melatonin pattern in virtually all cases (96%), suggesting that this finding is pathognomic for the syndrome. We report on a woman with SMS due to an atypical large proximal deletion ( approximately 6Mb; cenTNFRSFproteinB) of chromosome band (17)(p11.2p11.2) who presents with typical sleep disturbances but a normal pattern of melatonin secretion. We further describe a melatonin light suppression test in this patient. This is the second reported patient with a normal endogenous melatonin rhythm in SMS associated with an atypical large deletion. These two patients are significant because they suggest that the sleep disturbances in SMS cannot be solely attributed to the abnormal diurnal melatonin secretion versus the normal nocturnal pattern.

  19. Identification of Nine New RAI1-Truncating Mutations in Smith-Magenis Syndrome Patients without 17p11.2 Deletions.

    Science.gov (United States)

    Dubourg, C; Bonnet-Brilhault, F; Toutain, A; Mignot, C; Jacquette, A; Dieux, A; Gérard, M; Beaumont-Epinette, M-P; Julia, S; Isidor, B; Rossi, M; Odent, S; Bendavid, C; Barthélémy, C; Verloes, A; David, V

    2014-02-01

    Smith-Magenis syndrome (SMS) is an intellectual disability syndrome with sleep disturbance, self-injurious behaviors and dysmorphic features. It is estimated to occur in 1/25,000 births, and in 90% of cases it is associated with interstitial deletions of chromosome 17p11.2. RAI1 (retinoic acid induced 1; OMIM 607642) mutations are the second most frequent molecular etiology, with this gene being located in the SMS locus at 17p11.2. Here, we report 9 new RAI1-truncating mutations in nonrelated individuals referred for molecular analysis due to a possible SMS diagnosis. None of these patients carried a 17p11.2 deletion. The 9 mutations include 2 nonsense mutations and 7 heterozygous frameshift mutations leading to protein truncation. All mutations map in exon 3 of RAI1 which codes for more than 98% of the protein. RAI1 regulates gene transcription, and its targets are themselves involved in transcriptional regulation, cell growth and cell cycle regulation, bone and skeletal development, lipid and glucide metabolisms, neurological development, behavioral functions, and circadian activity. We report the clinical features of the patients carrying these deleterious mutations in comparison with those of patients carrying 17p11.2 deletions.

  20. Molecular dissection of a contiguous gene syndrome: Frequent submicroscopic deletions, evolutionarily conserved sequences, and a hypomethylated island in the Miller-Dieker chromosome region

    Energy Technology Data Exchange (ETDEWEB)

    Ledbetter, D.H.; Ledbetter, S.A.; vanTuinen, P.; Summers, K.M.; Robinson, T.J.; Nakamura, Yusuke; Wolff, R.; White, R.; Barker, D.F.; Wallace, M.R.; Collins, F.S.; Dobyns, W.B. (Baylor College of Medicine, Houston, TX (USA))

    1989-07-01

    The Miller-Dieker syndrome (MDS), composed of characteristic facial abnormalities and a severe neuronal migration disorder affecting the cerebral cortex, is caused by visible or submicroscopic deletions of chromosome band 17p13. Twelve anonymous DNA markers were tested against a panel of somatic cell hybrids containing 17p deletions from seven MDS patients. All patients, including three with normal karyotypes, are deleted for a variable set of 5-12 markers. Two highly polymorphic VNTR (variable number of tandem repeats) probes, YNZ22 and YNH37, are codeleted in all patients tested and make molecular diagnosis for this disorder feasible. By pulsed-field gel electrophoresis, YNZ22 and YNH37 were shown to be within 30 kilobases (kb) of each other. Cosmid clones containing both VNTR sequences were identified, and restriction mapping showed them to be <15 kb apart. Three overlapping cosmids spanning >100 kb were completely deleted in all patients, providing a minimum estimate of the size of the MDS critical region. A hypomethylated island and evolutionarily conserved sequences were identified within this 100-kb region, indications of the presence of one or more expressed sequences potentially involved in the pathophysiology of this disorder. The conserved sequences were mapped to mouse chromosome 11 by using mouse-rat somatic cell hybrids, extending the remarkable homology between human chromosome 17 and mouse chromosome 11 by 30 centimorgans, into the 17p telomere region.

  1. 荧光原位杂交技术在先天性心脏病产前诊断中的应用%Application of FISH in the prenatal diagnosis of congenital heart disease

    Institute of Scientific and Technical Information of China (English)

    赵婧; 黄湘; 李红艳; 梁少霞

    2015-01-01

    目的:探讨采用荧光原位杂交技术(FISH)检查法对先天性心脏病胎儿进行染色体22q11微缺失产前诊断的临床应用。方法应用常规染色体核型分析及 FISH 检查法,对2012年3月至2014年10月中山市博爱医院收治的52例疑似妊娠22q11微缺失胎儿的孕妇进行产前22q11微缺失检查并跟踪随访。结果所有胎儿染色体核型分析均无异常,FISH 检查结果显示3例呈阳性。结论染色体核型分析无法检测22q11微缺失综合征,因此对有22q11微缺失先天性心脏病风险的胎儿产前诊断应用 FISH 检查法,可提高检测的准确性。%Objective To investigate the detection of 22q11 micro‐deletion by FISH in the prenatal diagnosis of congenital heart disease .Methods 52 pregnant women admitted to Boai Hospital of Zhongshan City during March 2012 to October 2014 who were suspected pregnancy 22q11 micro‐deletion fetuses were received conventional chro‐mosome karyotyping and FISH test for prenatal diagnosis about 22q11 micro‐deletion ,then were followed up . Results None of the karyotype analysis results showed abnormal ,while there were 3 positive cases tested by FISH . Conclusion Karyotype analysis cannot detect 22q11 micro‐deletion syndrome ,hence FISH should be used in the pre‐natal diagnosis for fetuses with the risk of congenital heart disease caused by 22q11 micro‐deletion ,which can improve the accuracy of detection .

  2. Rhabdoid tumor predisposition syndrome caused by SMARCB1 constitutional deletion: prenatal detection of new case of recurrence in siblings due to gonadal mosaicism.

    Science.gov (United States)

    Gigante, Laura; Paganini, Irene; Frontali, Marina; Ciabattoni, Serena; Sangiuolo, Federica Carla; Papi, Laura

    2016-01-01

    Rhabdoid tumors are aggressive malignancies that show loss-of-function mutations of SMARCB1 gene, a member of the SWI/SNF chromatin-remodeling complex controlling gene transcription. One-third of patients affected by rhabdoid tumor harbor a germ-line mutation of SMARCB1 defining a rhabdoid tumor predisposition syndrome. The occurrence of a second somatic mutation determines the development of neoplasia in a two-hit model. Most germ-line mutations occur de novo, and few cases of recurrence in a sibship have been described. Here we report on a new Italian family with recurrence of SMARCB1 germ-line deletion in two siblings due to gonadal mosaicism. The deletion was identified in the 9-month-old proband with malignant rhabdoid tumor of the right kidney and disseminated metastases. Testing of both parents confirmed the de novo origin of the mutation, but recurrence was then detected prenatally in a new pregnancy. This is the sixth family with malignant rhabdoid tumor predisposition syndrome with the recurrence of the same germ-line SMARCB1 mutation in the sibship but not in healthy parents, suggesting that gonadal mosaicism is a less rare event than supposed. The clinical outcome in our patient confirms previous data of poorer outcome in patients with rhabdoid tumor predisposition syndrome.

  3. Loss of Wnt5a disrupts second heart field cell deployment and may contribute to OFT malformations in DiGeorge syndrome.

    Science.gov (United States)

    Sinha, Tanvi; Li, Ding; Théveniau-Ruissy, Magali; Hutson, Mary R; Kelly, Robert G; Wang, Jianbo

    2015-03-15

    Outflow tract (OFT) malformation accounts for ∼30% of human congenital heart defects and manifests frequently in TBX1 haplo-insufficiency associated DiGeorge (22q11.2 deletion) syndrome. OFT myocardium originates from second heart field (SHF) progenitors in the pharyngeal and splanchnic mesoderm (SpM), but how these progenitors are deployed to the OFT is unclear. We find that SHF progenitors in the SpM gradually gain epithelial character and are deployed to the OFT as a cohesive sheet. Wnt5a, a non-canonical Wnt, is expressed specifically in the caudal SpM and may regulate oriented cell intercalation to incorporate SHF progenitors into an epithelial-like sheet, thereby generating the pushing force to deploy SHF cells rostrally into the OFT. Using enhancer trap and Cre transgenes, our lineage tracing experiments show that in Wnt5a null mice, SHF progenitors are trapped in the SpM and fail to be deployed to the OFT efficiently, resulting in a reduction in the inferior OFT myocardial wall and its derivative, subpulmonary myocardium. Concomitantly, the superior OFT and subaortic myocardium are expanded. Finally, in chick embryos, blocking the Wnt5a function in the caudal SpM perturbs polarized elongation of SHF progenitors, and compromises their deployment to the OFT. Collectively, our results highlight a critical role for Wnt5a in deploying SHF progenitors from the SpM to the OFT. Given that Wnt5a is a putative transcriptional target of Tbx1, and the similar reduction of subpulmonary myocardium in Tbx1 mutant mice, our results suggest that perturbing Wnt5a-mediated SHF deployment may be an important pathogenic mechanism contributing to OFT malformations in DiGeorge syndrome.

  4. Differential splicing of human androgen receptor pre-mRNA in X-linked reifenstein syndrome, because of a deletion involving a putative branch site

    Energy Technology Data Exchange (ETDEWEB)

    Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de; Brinkmann, A.O.; Degenhart, H.J.; Trapman, J. (Erasmus Univ., Rotterdam (Netherlands))

    1994-04-01

    The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-point sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.

  5. Nonrecurrent PMP22-RAI1 contiguous gene deletions arise from replication-based mechanisms and result in Smith-Magenis syndrome with evident peripheral neuropathy.

    Science.gov (United States)

    Yuan, Bo; Neira, Juanita; Gu, Shen; Harel, Tamar; Liu, Pengfei; Briceño, Ignacio; Elsea, Sarah H; Gómez, Alberto; Potocki, Lorraine; Lupski, James R

    2016-10-01

    Hereditary neuropathy with liability to pressure palsies (HNPP) and Smith-Magenis syndrome (SMS) are genomic disorders associated with deletion copy number variants involving chromosome 17p12 and 17p11.2, respectively. Nonallelic homologous recombination (NAHR)-mediated recurrent deletions are responsible for the majority of HNPP and SMS cases; the rearrangement products encompass the key dosage-sensitive genes PMP22 and RAI1, respectively, and result in haploinsufficiency for these genes. Less frequently, nonrecurrent genomic rearrangements occur at this locus. Contiguous gene duplications encompassing both PMP22 and RAI1, i.e., PMP22-RAI1 duplications, have been investigated, and replication-based mechanisms rather than NAHR have been proposed for these rearrangements. In the current study, we report molecular and clinical characterizations of six subjects with the reciprocal phenomenon of deletions spanning both genes, i.e., PMP22-RAI1 deletions. Molecular studies utilizing high-resolution array comparative genomic hybridization and breakpoint junction sequencing identified mutational signatures that were suggestive of replication-based mechanisms. Systematic clinical studies revealed features consistent with SMS, including features of intellectual disability, speech and gross motor delays, behavioral problems and ocular abnormalities. Five out of six subjects presented clinical signs and/or objective electrophysiologic studies of peripheral neuropathy. Clinical profiling may improve the clinical management of this unique group of subjects, as the peripheral neuropathy can be more severe or of earlier onset as compared to SMS patients having the common recurrent deletion. Moreover, the current study, in combination with the previous report of PMP22-RAI1 duplications, contributes to the understanding of rare complex phenotypes involving multiple dosage-sensitive genes from a genetic mechanistic standpoint.

  6. A 3.7 Mb deletion encompassing ZEB2 causes a novel polled and multisystemic syndrome in the progeny of a somatic mosaic bull.

    Directory of Open Access Journals (Sweden)

    Aurélien Capitan

    Full Text Available Polled and Multisystemic Syndrome (PMS is a novel developmental disorder occurring in the progeny of a single bull. Its clinical spectrum includes polledness (complete agenesis of horns, facial dysmorphism, growth delay, chronic diarrhea, premature ovarian failure, and variable neurological and cardiac anomalies. PMS is also characterized by a deviation of the sex-ratio, suggesting male lethality during pregnancy. Using Mendelian error mapping and whole-genome sequencing, we identified a 3.7 Mb deletion on the paternal bovine chromosome 2 encompassing ARHGAP15, GTDC1 and ZEB2 genes. We then produced control and affected 90-day old fetuses to characterize this syndrome by histological and expression analyses. Compared to wild type individuals, affected animals showed a decreased expression of the three deleted genes. Based on a comparison with human Mowat-Wilson syndrome, we suggest that deletion of ZEB2, is responsible for most of the effects of the mutation. Finally sperm-FISH, embryo genotyping and analysis of reproduction records confirmed somatic mosaicism in the founder bull and male-specific lethality during the first third of gestation. In conclusion, we identified a novel locus involved in bovid horn ontogenesis and suggest that epithelial-to-mesenchymal transition plays a critical role in horn bud differentiation. We also provide new insights into the pathogenicity of ZEB2 loss of heterozygosity in bovine and humans and describe the first case of male-specific lethality associated with an autosomal locus in a non-murine mammalian species. This result sets PMS as a unique model to study sex-specific gene expression/regulation.

  7. Association of brain-derived neurotrophic factor (BDNF) haploinsufficiency with lower adaptive behaviour and reduced cognitive functioning in WAGR/11p13 deletion syndrome.

    Science.gov (United States)

    Han, Joan C; Thurm, Audrey; Golden Williams, Christine; Joseph, Lisa A; Zein, Wadih M; Brooks, Brian P; Butman, John A; Brady, Sheila M; Fuhr, Shannon R; Hicks, Melanie D; Huey, Amanda E; Hanish, Alyson E; Danley, Kristen M; Raygada, Margarita J; Rennert, Owen M; Martinowich, Keri; Sharp, Stephen J; Tsao, Jack W; Swedo, Susan E

    2013-01-01

    In animal studies, brain-derived neurotrophic factor (BDNF) is an important regulator of central nervous system development and synaptic plasticity. WAGR (Wilms tumour, Aniridia, Genitourinary anomalies, and mental Retardation) syndrome is caused by 11p13 deletions of variable size near the BDNF locus and can serve as a model for studying human BDNF haploinsufficiency (+/-). We hypothesized that BDNF+/- would be associated with more severe cognitive impairment in subjects with WAGR syndrome. Twenty-eight subjects with WAGR syndrome (6-28 years), 12 subjects with isolated aniridia due to PAX6 mutations/microdeletions (7-54 years), and 20 healthy controls (4-32 years) received neurocognitive assessments. Deletion boundaries for the subjects in the WAGR group were determined by high-resolution oligonucleotide array comparative genomic hybridization. Within the WAGR group, BDNF+/- subjects (n = 15), compared with BDNF intact (+/+) subjects (n = 13), had lower adaptive behaviour (p = .02), reduced cognitive functioning (p = .04), higher levels of reported historical (p = .02) and current (p = .02) social impairment, and higher percentage meeting cut-off score for autism (p = .047) on Autism Diagnostic Interview-Revised. These differences remained nominally significant after adjusting for visual acuity. Using diagnostic measures and clinical judgement, 3 subjects (2 BDNF+/- and 1 BDNF+/+) in the WAGR group (10.7%) were classified with autism spectrum disorder. A comparison group of visually impaired subjects with isolated aniridia had cognitive functioning comparable to that of healthy controls. In summary, among subjects with WAGR syndrome, BDNF+/- subjects had a mean Vineland Adaptive Behaviour Compose score that was 14-points lower and a mean intelligence quotient (IQ) that was 20-points lower than BDNF+/+ subjects. Our findings support the hypothesis that BDNF plays an important role in human neurocognitive development.

  8. A molecular deletion of distal chromosome 4p in two families with a satellited chromosome 4 lacking the Wolf-Hirschhorn syndrome phenotype.

    Science.gov (United States)

    Estabrooks, L L; Lamb, A N; Kirkman, H N; Callanan, N P; Rao, K W

    1992-11-01

    We report two families with a satellited chromosome 4 short arm (4ps). Satellites and stalks normally occur on the short arms of acrocentric chromosomes; however, the literature cites several reports of satellited nonacrocentric chromosomes, which presumably result from a translocation with an acrocentric chromosome. This is the first report of 4ps chromosomes. Our families are remarkable in that both unaffected and affected individuals carry the 4ps chromosome. The phenotypes observed in affected individuals, although dissimilar, were sufficient to encourage a search for a deletion of chromosome 4p. By Southern blot analysis and fluorescence in situ hybridization, a deletion of material mapping approximately 150 kb from chromosome 4pter was discovered. This deletion is notable because it does not result in the Wolf-Hirschhorn syndrome and can result in an apparently normal phenotype. We speculate that homology between subterminal repeat sequences on 4p and sequences on the acrocentric short arms may explain the origin of the rearrangement and that position effect may play a role in the expression of the abnormal phenotype.

  9. A novel silent deletion, an insertion mutation and a nonsense mutation in the TCOF1 gene found in two Chinese cases of Treacher Collins syndrome.

    Science.gov (United States)

    Wang, Yan; Yin, Xiao-Juan; Han, Tao; Peng, Wei; Wu, Hong-Lin; Liu, Xin; Feng, Zhi-Chun

    2014-12-01

    Treacher Collins syndrome (TCS) is the most common and well-known craniofacial disorder caused by mutations in the genes involved in pre-rRNA transcription, which include the TCOF1 gene. This study explored the role of TCOF1 mutations in Chinese patients with TCS. Mutational analysis of the TCOF1 gene was performed in three patients using polymerase chain reaction and direct sequencing. Among these three patients, two additional TCOF1 variations, a novel 18 bp deletion and a novel 1 bp insertion mutation, were found in patient 1, together with a novel nonsense mutation (p.Ser476X) and a previously reported 4 bp deletion (c.1872_1875delTGAG) in other patients. Pedigree analysis allowed for prediction of the character of the mutation, which was either pathological or not. The 18 bp deletion of six amino acids, Ser-Asp-Ser-Glu-Glu-Glu (798*803), which was located in the CKII phosphorylation site of treacle, seemed relatively benign for TCS. By contrast, another novel mutation of c.1072_1073insC (p.Gln358ProfsX23) was a frameshift mutation and expected to result in a premature stop codon. This study provides insights into the functional domain of treacle and illustrates the importance of clinical and family TCS screening for the interpretation of novel sequence alterations.

  10. A novel mitochondrial DNA deletion in a patient with Pearson syndrome and neonatal diabetes mellitus provides insight into disease etiology, severity and progression.

    Science.gov (United States)

    Chen, Xin-Yu; Zhao, Si-Yu; Wang, Yan; Wang, Dong; Dong, Chang-Hu; Yang, Ying; Wang, Zhi-Hua; Wu, Yuan-Ming

    2016-07-01

    Pearson syndrome (PS) is a rare, mitochondrial DNA (mtDNA) deletion disorder mainly affecting hematopoietic system and exocrine pancreas in early infancy, which is characterized by multi-organ involvement, variable manifestations and poor prognosis. Since the clinical complexity and uncertain outcome of PS, the ability to early diagnose and anticipate disease progression is of great clinical importance. We described a patient with severe anemia and hyperglycinemia at birth was diagnosed with neonatal diabetes mellitus, and later with PS. Genetic testing revealed that a novel mtDNA deletion existed in various non-invasive tissues from the patient. The disease course was monitored by mtDNA deletion heteroplasmy and mtDNA/nucleus DNA genome ratio in different tissues and at different time points, showing a potential genotype-phenotype correlation. Our findings suggest that for patient suspected for PS, it may be therapeutically important to first perform detailed mtDNA analysis on non-invasive tissues at the initial diagnosis and during disease progression.

  11. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs) and/or possible chromosome 5p chromothripsis.

    Science.gov (United States)

    Gu, Heng; Jiang, Jian-hui; Li, Jian-ying; Zhang, Ya-nan; Dong, Xing-sheng; Huang, Yang-yu; Son, Xin-ming; Lu, Xinyan; Chen, Zheng

    2013-01-01

    Cri-du-Chat syndrome (MIM 123450) is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs), diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5)(p13.3p15.33) spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5) (q23;p14.1p15.31),ins(21;5)(q21;p13.3p14.1),ins(21;5)(q21;p15.31p15.33),inv(7)(p22q32)dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5) identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5). Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

  12. A familial Cri-du-Chat/5p deletion syndrome resulted from rare maternal complex chromosomal rearrangements (CCRs and/or possible chromosome 5p chromothripsis.

    Directory of Open Access Journals (Sweden)

    Heng Gu

    Full Text Available Cri-du-Chat syndrome (MIM 123450 is a chromosomal syndrome characterized by the characteristic features, including cat-like cry and chromosome 5p deletions. We report a family with five individuals showing chromosomal rearrangements involving 5p, resulting from rare maternal complex chromosomal rearrangements (CCRs, diagnosed post- and pre-natally by comprehensive molecular and cytogenetic analyses. Two probands, including a 4½-year-old brother and his 2½-year- old sister, showed no diagnostic cat cry during infancy, but presented with developmental delay, dysmorphic and autistic features. Both patients had an interstitial deletion del(5(p13.3p15.33 spanning ≈ 26.22 Mb. The phenotypically normal mother had de novo CCRs involving 11 breakpoints and three chromosomes: ins(11;5 (q23;p14.1p15.31,ins(21;5(q21;p13.3p14.1,ins(21;5(q21;p15.31p15.33,inv(7(p22q32dn. In addition to these two children, she had three first-trimester miscarriages, two terminations due to the identification of the 5p deletion and one delivery of a phenotypically normal daughter. The unaffected daughter had the maternal ins(11;5 identified prenatally and an identical maternal allele haplotype of 5p. Array CGH did not detect any copy number changes in the mother, and revealed three interstitial deletions within 5p15.33-p13.3, in the unaffected daughter, likely products of the maternal insertions ins(21;5. Chromothripsis has been recently reported as a mechanism drives germline CCRs in pediatric patients with congenital defects. We postulate that the unique CCRs in the phenotypically normal mother could resulted from chromosome 5p chromothripsis, that further resulted in the interstitial 5p deletions in the unaffected daughter. Further high resolution sequencing based analysis is needed to determine whether chromothripsis is also present as a germline structural variation in phenotypically normal individuals in this family.

  13. Molecular cytogenetic determination of a deletion/duplication of 1q that results in a trisomy 18 syndrome-like phenotype

    Energy Technology Data Exchange (ETDEWEB)

    Mewar, R.; Harrison, W.; Weaver, D.D.; Palmer, C.; Davee, M.A.; Overhauser, J.

    1994-08-15

    We report on an infant who presented at birth with some characteristics of trisomy 18 syndrome, including low birth weight, facial abnormalities, overlapping fingers, and congenital heart defects. On chromosome analysis, no additional chromosome 18 was observed and both chromosome 18 homologues appeared normal. However, a small piece of chromosomal material of unknown origin was detected at the tip of the long arm of chromosome 1. Fluorescence in situ hybridization (FISH) using whole chromosome 18 painting probes disclosed no additional hybridization at the telomere of 1q, suggesting that the material was derived from another chromosome. Further chromosome painting experiments suggested that the telomeric addition was of chromosome 1 origin. To identify subchromosomal regions involved in the rearrangement, additional FISH analyses were performed using single copy and repetitive DNA probes mapping different portions of chromosome 1. The analyses showed that probes mapping to 1q34-43 were duplicated in the derivative chromosome 1. In addition, a DNA probe mapping to 1q44 was found to be deleted from the derivative chromosome 1. Our composite analysis suggests that a deletion and a duplication of chromosome 1q can result in some of the clinical findings usually associated with trisomy 16 syndrome. These results demonstrate the usefulness of FISH analysis when karyotype analysis is not consistent with the clinical description. 23 refs., 3 figs., 2 tabs.

  14. Molecular analysis of the Retinoic Acid Induced 1 gene (RAI1) in patients with suspected Smith-Magenis syndrome without the 17p11.2 deletion.

    Science.gov (United States)

    Vilboux, Thierry; Ciccone, Carla; Blancato, Jan K; Cox, Gerald F; Deshpande, Charu; Introne, Wendy J; Gahl, William A; Smith, Ann C M; Huizing, Marjan

    2011-01-01

    Smith-Magenis syndrome (SMS) is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1) is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion), were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.

  15. Molecular analysis of the Retinoic Acid Induced 1 gene (RAI1 in patients with suspected Smith-Magenis syndrome without the 17p11.2 deletion.

    Directory of Open Access Journals (Sweden)

    Thierry Vilboux

    Full Text Available Smith-Magenis syndrome (SMS is a complex neurobehavioral disorder characterized by multiple congenital anomalies. The syndrome is primarily ascribed to a ∼3.7 Mb de novo deletion on chromosome 17p11.2. Haploinsufficiency of multiple genes likely underlies the complex clinical phenotype. RAI1 (Retinoic Acid Induced 1 is recognized as a major gene involved in the SMS phenotype. Extensive genetic and clinical analyses of 36 patients with SMS-like features, but without the 17p11.2 microdeletion, yielded 10 patients with RAI1 variants, including 4 with de novo deleterious mutations, and 6 with novel missense variants, 5 of which were familial. Haplotype analysis showed two major RAI1 haplotypes in our primarily Caucasian cohort; the novel RAI1 variants did not occur in a preferred haplotype. RNA analysis revealed that RAI1 mRNA expression was significantly decreased in cells of patients with the common 17p11.2 deletion, as well as in those with de novo RAI1 variants. Expression levels varied in patients with familial RAI1 variants and in non-17p11.2 deleted patients without identified RAI1 defects. No correlation between SNP haplotype and RAI1 expression was found. Two clinical features, ocular abnormalities and polyembolokoilomania (object insertion, were significantly correlated with decreased RAI1 expression. While not significantly correlated, the presence of hearing loss, seizures, hoarse voice, childhood onset of obesity and specific behavioral aspects and the absence of immunologic abnormalities and cardiovascular or renal structural anomalies, appeared to be specific for the de novo RAI1 subgroup. Recognition of the combination of these features will assist in referral for RAI1 analysis of patients with SMS-like features without detectable microdeletion of 17p11.2. Moreover, RAI1 expression emerged as a genetic target for development of therapeutic interventions for SMS.

  16. Frontonasal dysplasia, callosal agenesis, basal encephalocele, and eye anomalies syndrome with a partial 21q22.3 deletion.

    Science.gov (United States)

    Guion-Almeida, Maria Leine; Richieri-Costa, Antonio; Jehee, Fernanda Sarquis; Passos-Bueno, Maria Rita Santos; Zechi-Ceide, Roseli Maria

    2012-07-01

    We describe a girl with a phenotype characterized by frontonasal dysplasia, callosal agenesis, basal encephalocele, and eye anomalies who presents a 46,XX,r(21) karyotype. Array-comparative genomic hybridization using the Afflymetrix 100K DNA oligoarray set showed an interstitial deletion 21q22.3 of approximately 219 kb. Conventional karyotype of both parents was normal, and it was not possible to perform the molecular studies. In this report we raise the hypothesis that the deleted genes located at 21q22.3 could account to the phenotype.

  17. High level of full-length cereblon mRNA in lower risk myelodysplastic syndrome with isolated 5q deletion is implicated in the efficacy of lenalidomide.

    Science.gov (United States)

    Jonasova, Anna; Bokorova, Radka; Polak, Jaroslav; Vostry, Martin; Kostecka, Arnost; Hajkova, Hana; Neuwirtova, Radana; Siskova, Magda; Sponerova, Dana; Cermak, Jaroslav; Mikulenkova, Dana; Cervinek, Libor; Brezinova, Jana; Michalova, Kyra; Fuchs, Ota

    2015-07-01

    Downregulation of cereblon (CRBN) gene expression is associated with resistance to the immunomodulatory drug lenalidomide and poor survival outcomes in multiple myeloma (MM) patients. However, the importance of CRBN gene expression in patients with myelodysplastic syndrome (MDS) and its impact on lenalidomide therapy are not clear. In this study, we evaluate cereblon expression in mononuclear cells isolated from bone marrow [23 lower risk MDS patients with isolated 5q deletion (5q-), 37 lower risk MDS patients with chromosome 5 without the deletion of long arms (non-5q-), and 24 healthy controls] and from peripheral blood (38 patients with 5q-, 52 non-5q- patients and 25 healthy controls) to gain insight into, firstly, the role of cereblon in lower risk MDS patients with or without 5q deletion and, secondly, into the mechanisms of lenalidomide action. Patients with 5q- lower risk MDS have the highest levels of CRBN mRNA in comparison with both lower risk MDS without the deletion of long arms of chromosome 5 and healthy controls. CRBN gene expression was measured using the quantitative TaqMan real-time PCR. High levels of CRBN mRNA were detected in all lenalidomide responders during the course of therapy. A significant decrease of the CRBN mRNA level during lenalidomide treatment is associated with loss of response to treatment and disease progression. These results suggest that, similar to the treatment of MM, high levels of full-length CRBN mRNA in lower risk 5q- patients are necessary for the efficacy of lenalidomide.

  18. A syndromic form of Pierre Robin sequence is caused by 5q23 deletions encompassing FBN2 and PHAX.

    Science.gov (United States)

    Ansari, Morad; Rainger, Jacqueline K; Murray, Jennie E; Hanson, Isabel; Firth, Helen V; Mehendale, Felicity; Amiel, Jeanne; Gordon, Christopher T; Percesepe, Antonio; Mazzanti, Laura; Fryer, Alan; Ferrari, Paola; Devriendt, Koenraad; Temple, I Karen; FitzPatrick, David R

    2014-10-01

    Pierre Robin sequence (PRS) is an aetiologically distinct subgroup of cleft palate. We aimed to define the critical genomic interval from five different 5q22-5q31 deletions associated with PRS or PRS-associated features and assess each gene within the region as a candidate for the PRS component of the phenotype. Clinical array-based comparative genome hybridisation (aCGH) data were used to define a 2.08 Mb minimum region of overlap among four de novo deletions and one mother-son inherited deletion associated with at least one component of PRS. Commonly associated anomalies were talipes equinovarus (TEV), finger contractures and crumpled ear helices. Expression analysis of the orthologous genes within the PRS critical region in embryonic mice showed that the strongest candidate genes were FBN2 and PHAX. Targeted aCGH of the critical region and sequencing of these genes in a cohort of 25 PRS patients revealed no plausible disease-causing mutations. In conclusion, deletion of ∼2 Mb on 5q23 region causes a clinically recognisable subtype of PRS. Haploinsufficiency for FBN2 accounts for the digital and auricular features. A possible critical region for TEV is distinct and telomeric to the PRS region. The molecular basis of PRS in these cases remains undetermined but haploinsufficiency for PHAX is a plausible mechanism.

  19. Lynch syndrome-associated extracolonic tumors are rare in two extended families with the same EPCAM deletion

    NARCIS (Netherlands)

    Lynch, H.T.; Riegert-Johnson, D.L.; Snyder, C.; Lynch, J.F.; Hagenkord, J.; Boland, C.R.; Rhees, J.; Thibodeau, S.N.; Boardman, L.A.; Davies, J.; Kuiper, R.P.; Hoogerbrugge, N.; Ligtenberg, M.J.L.

    2011-01-01

    OBJECTIVES: The Lynch syndrome (LS) is an inherited cancer syndrome showing a preponderance of colorectal cancer (CRC) in context with endometrial cancer and several other extracolonic cancers, which is due to pathogenic mutations in the mismatch repair (MMR) genes, MLH1, MSH2, MSH6, and PMS2. Some

  20. A novel deletion mutation in proteoglycan-4 underlies camptodactyly-arthropathy-coxa-vara-pericarditis syndrome in a consanguineous pakistani family

    NARCIS (Netherlands)

    Basit, S.; Iqbal, Z.; Umicevic-Mirkov, M.; Kamran Ul-Hassan Naqvi, S.; Coenen, M.J.H.; Ansar, M.; Bokhoven, J.H.L.M. van; Ahmad, W.

    2011-01-01

    BACKGROUND AND AIMS: Camptodactyly-arthropathy-coxa-vara-pericarditis (CACP) syndrome is an autosomal recessive condition that mostly affects joints and tendons but can also affect the pericardium, which is a surface surrounding the heart. CACP syndrome is caused by mutations in a secreted proteogly

  1. Intragenic deletions affecting two alternative transcripts of the IMMP2L gene in patients with Tourette syndrome

    DEFF Research Database (Denmark)

    Bertelsen, Birgitte; Melchior, Linea; Jensen, Lars R;

    2014-01-01

    Tourette syndrome is a neurodevelopmental disorder characterized by multiple motor and vocal tics, and the disorder is often accompanied by comorbidities such as attention-deficit hyperactivity-disorder and obsessive compulsive disorder. Tourette syndrome has a complex etiology, but the underlying...

  2. A novel homozygous 10 nucleotide deletion in BBS10 causes Bardet-Biedl syndrome in a Pakistani family

    NARCIS (Netherlands)

    Agha, Z.; Iqbal, Z.; Azam, M.; Hoefsloot, L.H.; Bokhoven, J.H.L.M. van; Qamar, R.

    2013-01-01

    Bardet-Biedl Syndrome is a multisystem autosomal recessive disorder characterized by central obesity, polydactyly, hypogonadism, learning difficulties, rod-cone dystrophy and renal dysplasia. Bardet-Biedl Syndrome has a prevalence rate ranging from 1 in 100,000 to 1 in 160,000 births although there

  3. Chromosome 18q22.2-->qter deletion and a congenital anomaly syndrome with multiple vertebral segmentation defects.

    OpenAIRE

    Dowton, S B; Hing, A V; Sheen-Kaniecki, V; Watson, M. S.

    1997-01-01

    Multiple vertebral segmentation defects occur in a group of conditions variably associated with anomalies of other organ systems. This report describes a female child in whom a deletion of chromosome 18 (18q22.2-->qter) is associated with congenital anomalies including multiple vertebral segmentation defects resembling sporadic spondylocostal dysplasia. The child also has unilateral renal agenesis and unilateral fibular aplasia. The association of severe multiple vertebral segmentation defect...

  4. Tis7 deletion reduces survival and induces intestinal anastomotic inflammation and obstruction in high-fat diet-fed mice with short bowel syndrome.

    Science.gov (United States)

    Garcia, Amy M; Wakeman, Derek; Lu, Jianyun; Rowley, Christopher; Geisman, Taylor; Butler, Catherine; Bala, Shashi; Swietlicki, Elzbieta A; Warner, Brad W; Levin, Marc S; Rubin, Deborah C

    2014-09-15

    Effective therapies are limited for patients with parenteral nutrition-dependent short bowel syndrome. We previously showed that intestinal expression of the transcriptional coregulator tetradecanoyl phorbol acetate-induced sequence 7 (tis7) is markedly increased during the adaptive response following massive small bowel resection and tis7 plays a role in normal gut lipid metabolism. Here, we further explore the functional implications of tis7 deletion in intestinal lipid metabolism and the adaptive response following small bowel resection. Intestinal tis7 transgenic (tis7(tg)), tis7(-/-), and wild-type (WT) littermates were subjected to 50% small bowel resection. Mice were fed a control or a high-saturated-fat (42% energy) diet for 21 days. Survival, body weight recovery, lipid absorption, mucosal lipid analysis, and the morphometric adaptive response were analyzed. Quantitative real-time PCR was performed to identify tis7 downstream gene targets. Postresection survival was markedly reduced in high-fat, but not control, diet-fed tis7(-/-) mice. Decreased survival was associated with anastomotic inflammation and intestinal obstruction postresection. High-fat, but not control, diet-fed tis7(-/-) mice had increased intestinal IL-6 expression. Intestinal lipid trafficking was altered in tis7(-/-) compared with WT mice postresection. In contrast, high-fat diet-fed tis7(tg) mice had improved survival postresection compared with WT littermates. High-fat diet feeding in the setting of tis7 deletion resulted in postresection anastomotic inflammation and small bowel obstruction. Tolerance of a calorie-rich, high-fat diet postresection may require tis7 and its target genes. The presence of luminal fat in the setting of tis7 deletion promotes an intestinal inflammatory response postresection.

  5. Recovery of viable porcine reproductive and respiratory syndrome virus from an infectious clone containing a partial deletion within the Nsp2-encoding region.

    Science.gov (United States)

    Ran, Z G; Chen, X Y; Guo, X; Ge, X N; Yoon, K J; Yang, H C

    2008-01-01

    Non-structural protein 2 (Nsp2) of porcine reproductive and respiratory syndrome virus (PRRSV) is the most variable region and postulated to play an important role in cell and tissue tropism of PRRSV. To investigate the role of Nsp2 in the viability and growth of PRRSV in cells in vitro, two cDNA clones were constructed containing a deletion of 63 consecutive nucleotides (pWSK-DCBAd63) or 117 nucleotides (pWSK-DCBAd117) within the Nsp2-encoding region of PRRSV (BJ-4). The clone pWSK-DCBAd63 was infectious and produced viable recombinant virus, whereas clone pWSK-DCBAd117 could not be rescued. The rescued virus was able to induce CPE typical of PRRSV on MARC-145 cells and was stably propagated during sequential in vitro cell passages, like the virus recovered from the full-length cDNA clone of PRRSV BJ-4. In comparison to the parental virus (BJ-4) and the virus recovered from the full-length cDNA clone of the BJ-4 strain, the rescued virus from pWSK-DCBAd63 exhibited enhanced growth kinetics, reaching the peak progeny virus titer by 48 h postinfection. These observations suggest that the Nsp2-encoding region is necessary for productive virus infection, and partial deletion does not influence the viability and propagation of PRRSV in cell culture, which may provide a way to insert a foreign gene into the viral genome as a marker for differentiation.

  6. Chromosome 18q22.2-->qter deletion and a congenital anomaly syndrome with multiple vertebral segmentation defects.

    Science.gov (United States)

    Dowton, S B; Hing, A V; Sheen-Kaniecki, V; Watson, M S

    1997-05-01

    Multiple vertebral segmentation defects occur in a group of conditions variably associated with anomalies of other organ systems. This report describes a female child in whom a deletion of chromosome 18 (18q22.2-->qter) is associated with congenital anomalies including multiple vertebral segmentation defects resembling sporadic spondylocostal dysplasia. The child also has unilateral renal agenesis and unilateral fibular aplasia. The association of severe multiple vertebral segmentation defects with 18q- in this patient suggests the possibility that a gene important for somite formation or vertebral differentiation maps to this segment of chromosome 18.

  7. Deletion (2)(q37)

    Energy Technology Data Exchange (ETDEWEB)

    Stratton, R.F.; Tolworthy, J.A.; Young, R.S. [South Texas Genetics Center, San Antonio, TX (United States)

    1994-06-01

    We report on a 5-month-old girl with widely spaced nipples, redundant nuchal skin, coarctation of the aorta, anal atresia with distal fistula, postnatal growth retardation, hypotonia, and sparse scalp hair. Initial clinical assessment suggested the diagnosis of Ullrich-Turner syndrome. Chromosome analysis showed a 46,XX,del(2)(q37) karyotype in peripheral lymphocytes. We compare her findings to those of other reported patients with terminal deletions of 2q. 8 refs., 2 figs., 1 tab.

  8. Saethre-Chotzen syndrome with severe developmental delay associated with deletion of chromosomic region 7p15 --> pter.

    Science.gov (United States)

    Touliatou, V; Mavrou, A; Kolialexi, A; Kanavakis, E; Kitsiou-Tzeli, S

    2007-01-01

    Saethre-Chotzen syndrome represents one of the most common types of craniosynostosis inherited as an autosomal dominant disorder while sporadic cases have also been reported. It is characterized by high penetrance and variable expressivity, leading to difficulties in clinical diagnosis. Some patients, who exhibit most of the diagnostic criteria of Saethre-Chotzen syndrome, have structural abnormalities of chromosome 7. The case of a 4 year old boy with notable dysmorphic features compatible with Saethre-Chotzen syndrome and severe developmental delay is described. Conventional and molecular cytogenetic analysis of peripheral blood samples from the patient and his parents revealed partial monosomy of chromosomal region 7p15 --> pter de novo. The TWIST gene, located on chromosome 7p21.1, is thought to be a negative transcriptional regulator involved in osteoblast differentiation and maturation and it is thought that haploinsufficiency of the gene can cause the disorder. The diagnosis of Saethre-Chotzen syndrome and the identification of the chromosomal abnormality in the patient facilitated genetic counseling of the family.

  9. Deletion of PREPL, a gene encoding a putative serine oligopeptidase, in patients with hypotonia-cystinuria syndrome

    NARCIS (Netherlands)

    Jaeken, J.; Martens, K.; Francois, I.; Eyskens, F.; Lecointre, C.; Derua, R.; Meulemans, S.; Slootstra, J.W.; Waelkens, E.; Zegher, de F.; Creemers, J.W.M.; Matthijs, G.

    2006-01-01

    In 11 patients with a recessive congenital disorder, which we refer to as ¿the hypotonia-cystinuria syndrome,¿ microdeletion of part of the SLC3A1 and PREPL genes on chromosome 2p21 was found. Patients present with generalized hypotonia at birth, nephrolithiasis, growth hormone deficiency, minor fac

  10. Study of two patients with craniosynostosis and deletions of 11q: One with features of Saethre-Chotzen syndrome and the other with concomitant partial trisomy 4q

    Energy Technology Data Exchange (ETDEWEB)

    Morsey, S. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Kennedy-Krieger Institute, Baltimore, MD (United States); Lewanda, A.F. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States)]|[Children`s National Medical Center, Washington, DC (United States); Reid, C.S. [Cooper Hospitsl/Univ. Medical Center, Camden, NJ (United States)

    1994-09-01

    Partial monosomy 11q is associated with metopic craniosynostosis and trigonocephaly. Prominant features in the over 30 reported cases include downslanting palpebral fissures, epicanthal folds, hypertelorism, ptosis, wide/depressed nasal bridge, low set malformed ears, downturned mouth, micro/retrognathia, digital and cardiac anomalies and psychomotor retardation. We evaluated two patients referred for abnormal head shape. The first carried a diagnosis of Saethre-Chotzen syndrome due to brachycephaly, facial asymmetry, ptosis, cupped ears, sundactyly of 2nd and 3rd digits, developmental delay, and VSD. Karyotype revealed 46,XY,del(11)(q24.1{yields}qter). No abnormality was noted of chromosome 7p, where the Saethre-Chotzen syndrome locus has been mapped. This suggests genetic heterogeneity for this condition. The second patient had no prior diagnosis. He had trigonocephaly, bilateral cryptorchidism and inguinal hernias. He also had hypotelorism, epicanthal folds, synophrys, posteriorly rotated ears, horizontal crease below his lower lip, unilateral single palmar crease, mild soft tissue syndactyly and a shawl scrotum. His karyotype of 46,XY,-11,+der(11)t(4;11)(q31.3;q25) revealed both partial 11q monosomy and partial 4q trisomy (the latter associated with cryptorchidism, horizontal chin crease and single palmar crease). Deletions of 11q appear to produce a wide spectrum of defects, which may even mimic other known craniosynostotic conditions. Study of these patients may lead to the identification of new genes involved in craniofacial morphogenesis.

  11. Cytogenetic follow-up by karyotyping and fluorescence in situ hybridization: implications for monitoring patients with myelodysplastic syndrome and deletion 5q treated with lenalidomide

    Science.gov (United States)

    Göhring, Gudrun; Giagounidis, Aristoteles; Büsche, Guntram; Hofmann, Winfried; Kreipe, Hans Heinrich; Fenaux, Pierre; Hellström-Lindberg, Eva; Schlegelberger, Brigitte

    2011-01-01

    In patients with low and intermediate risk myelodysplastic syndrome and deletion 5q (del(5q)) treated with lenalidomide, monitoring of cytogenetic response is mandatory, since patients without cytogenetic response have a significantly increased risk of progression. Therefore, we have reviewed cytogenetic data of 302 patients. Patients were analyzed by karyotyping and fluorescence in situ hybridization. In 85 patients, del(5q) was only detected by karyotyping. In 8 patients undergoing karyotypic evolution, the del(5q) and additional chromosomal aberrations were only detected by karyotyping. In 3 patients, del(5q) was only detected by fluorescence in situ hybridization, but not by karyotyping due to a low number of metaphases. Karyotyping was significantly more sensitive than fluorescence in situ hybridization in detecting the del(5q) clone. In conclusion, to optimize therapy control of myelodysplastic syndrome patients with del(5q) treated with lenalidomide and to identify cytogenetic non-response or progression as early as possible, fluorescence in situ hybridization alone is inadequate for evaluation. Karyotyping must be performed to optimally evaluate response. (clinicaltrials.gov identifier: NCT01099267 and NCT00179621) PMID:21109690

  12. Association between insertion/deletion polymorphism in angiotensin-converting enzyme gene and acute lung injury/acute respiratory distress syndrome: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Matsuda Akihisa

    2012-08-01

    Full Text Available Abstract Background A previous meta-analysis reported a positive association between an insertion/deletion (I/D polymorphism in the angiotensin-converting enzyme gene (ACE and the risk of acute lung injury (ALI/acute respiratory distress syndrome (ARDS. Here, we updated this meta-analysis and additionally assessed the association of this polymorphism with ALI/ARDS mortality. Methods We searched electronic databases through October 2011 for the terms “angiotensin-converting enzyme gene”, “acute lung injury”, and “acute respiratory distress syndrome,” and reviewed all studies that reported the relationship of the I/D polymorphism in ACE with ALI/ARDS in humans. Seven studies met the inclusion criteria, comprising 532 ALI/ARDS patients, 3032 healthy controls, and 1432 patients without ALI/ARDS. We used three genetic models: the allele, dominant, and recessive models. Results The ACE I/D polymorphism was not associated with susceptibility to ALI/ARDS for any genetic model. However, the ACE I/D polymorphism was associated with the mortality risk of ALI/ARDS in Asian subjects ( Pallele Pdominant = 0.001, Precessive = 0.002. This finding remained significant after correction for multiple comparisons. Conclusions There is a possible association between the ACE I/D polymorphism genotype and the mortality risk of ALI/ARDS in Asians.

  13. LPAC syndrome associated with deletion of the full exon 4 in a ABCB4 genetic mutation in a patient with hepatitis C

    Directory of Open Access Journals (Sweden)

    Blanca Fombuena

    2014-12-01

    Full Text Available Low-phospholipid-associated cholelithiasis syndrome (LPAC is associated with ABCB4 genetic mutation. ABCB4 encodes MDR3 protein, involved in biliary phosphatidylcholine excretion. Higher prevalence in women, biliary symptoms in young adults and ursodesoxycholic acid (UDCA response are the main features. We report the case of a 48-year-old man with hepatitis C, genotype 1b, fibrosis F3, null responder to Peg-IFNα2b/ribavirin and nephritic colic. In 2011 he developed jaundice, pruritus and epigastric pain. He showed increased serum levels of AST, ALT, GGT, bilirubin and alpha-fetoprotein, and viral load (14,600,000IU/mL. Pancreatic-CT, endoscopic ultrasonography and echo-Doppler showed non-cirrhotic chronic liver disease. The episode resolved spontaneously and one year later he suffered a similar episode. UDCA was started with excellent response. An immunohistochemistry study and sequencing of ABCB4 did not find alteration. MLPA® technique detected heterozygous deletion of the full exon 4 confirming LPAC syndrome diagnosis.

  14. LPAC syndrome associated with deletion of the full exon 4 in a ABCB4 genetic mutation in a patient with hepatitis C.

    Science.gov (United States)

    Fombuena, Blanca; Ampuero, Javier; Álvarez, Luis; Aparcero, Reyes; Llorca, Rocío; Millán, Raquel; Pastor, Helena; Andueza, Sara; Barbu, Veronique; Romero-Gómez, Manuel

    2014-12-01

    Low-phospholipid-associated cholelithiasis syndrome (LPAC) is associated with ABCB4 genetic mutation. ABCB4 encodes MDR3 protein, involved in biliary phosphatidylcholine excretion.Higher prevalence in women, biliary symptoms in young adults and ursodesoxycholic acid (UDCA) response are the main features. We report the case of a 48-year-old man with hepatitis C, genotype 1b, fibrosis F3, null responder to Peg-IFN-alpha-2b/ribavirin and nephritic colic. In 2011 he developed jaundice, pruritus and epigastric pain.He showed increased serum levels of AST, ALT, GGT, bilirubin and alpha-fetoprotein, and viral load (14,600,000 IU/mL). Pancreatic- CT, endoscopic ultrasonography and echo-Doppler showed noncirrhotic chronic liver disease. The episode resolved spontaneously and one year later he suffered a similar episode. UDCA was started with excellent response. An immunohistochemistry study and sequencing of ABCB4 did not find alteration. MLPA® technique detected heterozygous deletion of the full exon 4 confirming LPAC syndrome diagnosis.

  15. SNPs and real-time quantitative PCR method for constitutional allelic copy number determination, the VPREB1 marker case

    Directory of Open Access Journals (Sweden)

    Costa Elena

    2011-05-01

    Full Text Available Abstract Background 22q11.2 microdeletion is responsible for the DiGeorge Syndrome, characterized by heart defects, psychiatric disorders, endocrine and immune alterations and a 1 in 4000 live birth prevalence. Real-time quantitative PCR (qPCR approaches for allelic copy number determination have recently been investigated in 22q11.2 microdeletions detection. The qPCR method was performed for 22q11.2 microdeletions detection as a first-level screening approach in a genetically unknown series of patients with congenital heart defects. A technical issue related to the VPREB1 qPCR marker was pointed out. Methods A set of 100 unrelated Italian patients with congenital heart defects were tested for 22q11.2 microdeletions by a qPCR method using six different markers. Fluorescence In Situ Hybridization technique (FISH was used for confirmation. Results qPCR identified six patients harbouring the 22q11.2 microdeletion, confirmed by FISH. The VPREB1 gene marker presented with a pattern consistent with hemideletion in one 3 Mb deleted patient, suggestive for a long distal deletion, and in additional five non-deleted patients. The long distal 22q11.2 deletion was not confirmed by Comparative Genomic Hybridization. Indeed, the VPREB1 gene marker generated false positive results in association with the rs1320 G/A SNP, a polymorphism localized within the VPREB1 marker reverse primer sequence. Patients heterozygous for rs1320 SNP, showed a qPCR profile consistent with the presence of a hemideletion. Conclusions Though the qPCR technique showed advantages as a screening approach in terms of cost and time, the VPREB1 marker case revealed that single nucleotide polymorphisms can interfere with qPCR data generating erroneous allelic copy number interpretations.

  16. Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3Al) allele produces ehlers-danlos syndrome type IV in the heterozygous offspring

    Energy Technology Data Exchange (ETDEWEB)

    McGookey Milewicz, D.; Witz, A.M.; Byers, P.H. (Univ of Washington, Seattle (United States)); Smith, A.C.M.; Manchester, D.K.; Waldstein, G. (Children' s Hospital, Denver, CO (United States))

    1993-07-01

    Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutation in the type III collagen gene (COL3A1). The authors studied the structure of the COL3A1 gene of an individual with EDS type IV and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1, while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father, approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction. At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred during his early embryonic development prior to lineage allocation. These findings suggest that at least some of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic crossing-over, and that they thus have a risk for recurrence when observed de novo. 71 refs., 4 figs., 2 tabs.

  17. Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3A1) allele produces Ehlers-Danlos syndrome type IV in the heterozygous offspring.

    Science.gov (United States)

    Milewicz, D M; Witz, A M; Smith, A C; Manchester, D K; Waldstein, G; Byers, P H

    1993-01-01

    Ehlers-Danlos syndrome (EDS) type IV is a dominantly inherited disorder that results from mutations in the type III collagen gene (COL3A1). We studied the structure of the COL3A1 gene of an individual with EDS type IV and that of her phenotypically normal parents. The proband was heterozygous for a 2-kb deletion in COL3A1, while her father was mosaic for the same deletion in somatic and germ cells. In fibroblasts from the father, approximately two-fifths of the COL3A1 alleles carried the deletion, but only 10% of the COL3A1 alleles in white blood cells were of the mutant species. The deletion in the mutant allele extended from intron 7 into intron 11. There was a 12-bp direct repeat in intron 7 and intron 11, the latter about 60 bp 5' to the junction. At the breakpoint there was a duplication of 10 bp from intron 11 separated by an insertion of 4 bp contained within the duplicated sequence. The father was mosaic for the deletion so that the gene rearrangement occurred during his early embryonic development prior to lineage allocation. These findings suggest that at least some of the deletions seen in human genes may occur during replication, rather than as a consequence of meiotic crossing-over, and that they thus have a risk for recurrence when observed de novo. Images Figure 1 Figure 2 Figure 3 PMID:8317500

  18. System-based proteomic and metabonomic analysis of the Df(16)A+/− mouse identifies potential miR-185 targets and molecular pathway alterations

    Science.gov (United States)

    Wesseling, H; Xu, B; Want, E J; Holmes, E; Guest, P C; Karayiorgou, M; Gogos, J A; Bahn, S

    2017-01-01

    Deletions on chromosome 22q11.2 are a strong genetic risk factor for development of schizophrenia and cognitive dysfunction. We employed shotgun liquid chromatography–mass spectrometry (LC-MS) proteomic and metabonomic profiling approaches on prefrontal cortex (PFC) and hippocampal (HPC) tissue from Df(16)A+/− mice, a model of the 22q11.2 deletion syndrome. Proteomic results were compared with previous transcriptomic profiling studies of the same brain regions. The aim was to investigate how the combined effect of the 22q11.2 deletion and the corresponding miRNA dysregulation affects the cell biology at the systems level. The proteomic brain profiling analysis revealed PFC and HPC changes in various molecular pathways associated with chromatin remodelling and RNA transcription, indicative of an epigenetic component of the 22q11.2DS. Further, alterations in glycolysis/gluconeogenesis, mitochondrial function and lipid biosynthesis were identified. Metabonomic profiling substantiated the proteomic findings by identifying changes in 22q11.2 deletion syndrome (22q11.2DS)-related pathways, such as changes in ceramide phosphoethanolamines, sphingomyelin, carnitines, tyrosine derivates and panthothenic acid. The proteomic findings were confirmed using selected reaction monitoring mass spectrometry, validating decreased levels of several proteins encoded on 22q11.2, increased levels of the computationally predicted putative miR-185 targets UDP-N-acetylglucosamine-peptide N-acetylglucosaminyltransferase 110 kDa subunit (OGT1) and kinesin heavy chain isoform 5A and alterations in the non-miR-185 targets serine/threonine-protein phosphatase 2B catalytic subunit gamma isoform, neurofilament light chain and vesicular glutamate transporter 1. Furthermore, alterations in the proteins associated with mammalian target of rapamycin signalling were detected in the PFC and with glutamatergic signalling in the hippocampus. Based on the proteomic and metabonomic findings, we were

  19. Genetic and biochemical study of dual hereditary jaundice: Dubin-Johnson and Gilbert's syndromes. Haplotyping and founder effect of deletion in ABCC2.

    Science.gov (United States)

    Slachtova, Lenka; Seda, Ondrej; Behunova, Jana; Mistrik, Martin; Martasek, Pavel

    2016-05-01

    Dual hereditary jaundice, a combination of Dubin-Johnson and Gilbert's syndromes, is a rare clinical entity resulting from the compound defects of bilirubin conjugation and transport. We aimed to study the hereditary jaundice in 56 members from seven seemingly unrelated Roma families, to find the causal genetic defect and to estimate its origin in Roma population. On the basis of biochemical results of total and conjugated serum bilirubin and clinical observations, ABCC2 gene, TATA box and phenobarbital enhancer (PBREM) of UGT1A1 gene were analyzed by sequencing, RFLP and fragment analysis. We found a novel variant c.1013_1014delTG in the eighth exon of ABCC2 gene in 17 individuals in homozygous state. Dual defect NG_011798.1:c.[1013_1014delTG]; NG_002601.2:g.[175492_175493insTA] in homozygous state was found in four subjects. Biochemical analyses of porphyrins and coproporphyrin isomers in urine performed by HPLC showed inverted ratio of excreted coproporphyrin, with the predominance of coproporphyrin I (up to 100%), typical for patients with Dubin-Johnson syndrome. Pursuant cultural and social specifics of the population led us to suspect a founder effect; therefore, we performed a haplotype study using genotyping data from Affymetrix Genome-Wide Human SNP Array 6.0. As a result, we detected a common 86 kbp haplotype encompassing promoter and part of the ABCC2 coding region among all families, and estimated the age of the ancestral variant to 178-185 years. In this study, we found a novel deletion in ABCC2 gene, described genetic and biochemical features of dual hereditary jaundice and confirmed the existence of founder effect and common haplotype among seven Roma families.

  20. Developmental delay and facial dysmorphism in a child with an 8.9 Mb de novo interstitial deletion of 3q25.1-q25.32: Genotype-phenotype correlations of chromosome 3q25 deletion syndrome.

    Science.gov (United States)

    Moortgat, Stephanie; Verellen-Dumoulin, Christine; Maystadt, Isabelle; Parmentier, Benoit; Grisart, Bernard; Hennecker, Jean-Luc; Destree, Anne

    2011-01-01

    Interstitial deletions of the long arm of chromosome 3 are rare and detailed genotype-phenotype correlations are not well established. We report on the clinical, cytogenetic and molecular findings of a 5-year-old patient with a de novo interstitial deletion from 3q25.1 to 3q25.32. Clinical features include relative microcephaly, developmental delay and facial dysmorphism with a coarse face, ptosis, synophrys, epicanthic folds, broad nasal bridge, long philtrum, large mouth with full lips, dysplastic and low-set ears. Revealed by conventional banding techniques, the deleted region of 8.9 Mb was confirmed by fluorescent in situ hybridization (FISH) analyses and array comparative genomic hybridization (array-CGH). To our knowledge, this is the smallest interstitial deletion reported in the 3q25 region. The phenotype of our patient is compared with the 10 previously reported cases implicating the 3q25 region.

  1. A novel deletion-frameshift mutation in the S1 region of HERG gene in a Chinese family with long QT syndrome

    Institute of Scientific and Technical Information of China (English)

    GAO Ying; ZHANG Ping; LI Xue-bin; WU Cun-cao; GUO Ji-hong

    2013-01-01

    Background The congenital Long QT syndrome (LQTS) is a hereditary cardiac channelopathy that is characterized by a prolonged QT interval,syncope,ventricular arrhythmias,and sudden death.The chromosome 7-linked type 2 congenital LQTS (LQT2) is caused by gene mutations in the human ether-a-go-go-related gene (HERG).Methods A Chinese family diagnosed with LQTS were screened for KCNQ1,HERG and SCN5A,using polymerase chain reaction (PCR),direct sequencing,and clong sequencing.We also investigated the mRNA expression of the HERG gene.Results We identified a novel i414fs+98X mutation in the HERG gene.The deletion mutation of 14-bp in the first transmembrane segment (S1) introduced premature termination codons (PTCs) at the end of exon 6.This mutation would result in a serious phenotype if the truncated proteins co-assembled with normal subunit to form the defective channels.But only the proband was symptomatic.Conclusions We found that the mRNA level of the HERG gene was significantly lower in 1414fs+98X carriers than in noncarriers.We found a novel 1414fs+98X mutation.The mRNA level supports that NMD mechanism might regulate the novel mutation.

  2. Multivariate time-dependent comparison of the impact of lenalidomide in lower-risk myelodysplastic syndromes with chromosome 5q deletion.

    Science.gov (United States)

    Sánchez-García, Joaquín; Del Cañizo, Consuelo; Lorenzo, Ignacio; Nomdedeu, Benet; Luño, Elisa; de Paz, Raquel; Xicoy, Blanca; Valcárcel, David; Brunet, Salut; Marco-Betes, Victor; García-Pintos, Marta; Osorio, Santiago; Tormo, Mar; Bailén, Alicia; Cerveró, Carlos; Ramos, Fernando; Diez-Campelo, María; Such, Esperanza; Arrizabalaga, Beatriz; Azaceta, Gemma; Bargay, Joan; Arilla, María J; Falantes, José; Serrano-López, Josefina; Sanz, Guillermo F

    2014-07-01

    The impact of lenalidomide treatment on long-term outcomes of patients with lower risk myelodysplastic syndromes (MDS) and chromosome 5q deletion (del(5q)) is unclear. This study used time-dependent multivariate methodology to analyse the influence of lenalidomide therapy on overall survival (OS) and acute myeloblastic leukaemia (AML) progression in 215 patients with International Prognostic Scoring System (IPSS) low or intermediate-1 risk and del(5q). There were significant differences in several relevant characteristics at presentation between patients receiving (n = 86) or not receiving lenalidomide (n = 129). The 5-year time-dependent probabilities of OS and progression to AML were 62% and 31% for patients receiving lenalidomide and 42% and 25% for patients not receiving lenalidomide; differences were not statistically significant in multivariate analysis that included all variables independently associated with those outcomes (OS, P = 0·45; risk of AML, P = 0·31, respectively). Achievement of RBC transfusion independency (P = 0·069) or cytogenetic response (P = 0·021) after lenalidomide was associated with longer OS in multivariate analysis. These data clearly show that response to lenalidomide results in a substantial clinical benefit in lower risk MDS patients with del(5q). Lenalidomide treatment does not appear to increase AML risk in this population of patients.

  3. Deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in twins with a Rett syndrome-like phenotype.

    Science.gov (United States)

    Williamson, Sarah L; Ellaway, Carolyn J; Peters, Greg B; Pelka, Gregory J; Tam, Patrick P L; Christodoulou, John

    2015-09-01

    Rett syndrome (RTT), a neurodevelopmental disorder that predominantly affects females, is primarily caused by variants in MECP2. Variants in other genes such as CDKL5 and FOXG1 are usually associated with individuals who manifest distinct phenotypes that may overlap with RTT. Individuals with phenotypes suggestive of RTT are typically screened for variants in MECP2 and then subsequently the other genes dependent on the specific phenotype. Even with this screening strategy, there are individuals in whom no causative variant can be identified, suggesting that there are other novel genes that contribute to the RTT phenotype. Here we report a de novo deletion of protein tyrosine phosphatase, non-receptor type 4 (PTPN4) in identical twins with a RTT-like phenotype. We also demonstrate the reduced expression of Ptpn4 in a Mecp2 null mouse model of RTT, as well as the activation of the PTPN4 promoter by MeCP2. Our findings suggest that PTPN4 should be considered for addition to the growing list of genes that warrant screening in individuals with a RTT-like phenotype.

  4. The hand in Smith-Magenis syndrome (deletion 17p11.2): evaluation by metacarpophalangeal pattern profile analysis

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, Alan E. [Department of Diagnostic Imaging, Texas Children' s Hospital, 6621 Fannin Street, MC2-2521, Houston, TX 77030 (United States); Potocki, Lorraine [Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children' s Hospital, 6621 Fannin Street, CC-1560, Houston, TX 77030 (United States); Poznanski, Andrew K. [Department of Radiology, Children' s Memorial Hospital and Northwestern University School of Medicine, 2300 Children' s Plaza, Chicago, IL 60614 (United States); Lupski, James R. [Department of Molecular and Human Genetics, Baylor College of Medicine and Texas Children' s Hospital, 1 Baylor Plaza, Room 604B, Houston, TX 77030 (United States)

    2003-03-01

    Brachydactyly has been described on physical examination in patients with Smith-Magenis syndrome (SMS). Metacarpophalangeal pattern profile analysis (MCPPPA), a method of graphic depiction of the relative size of the bones of the hand, has been used to objectively evaluate radiographs of the hand in patients with SMS in two small series: a single case and a study of four patients. This technique has confirmed brachydactyly and has suggested conflicting MCPPPA results. The purpose of our study was to evaluate the hand by MCPPPA in a large series of patients with SMS.Patients and methods We measured the bones of the hand and performed MCPPPA in 29 confirmed cases of SMS. Our results in 29 patients demonstrated a different MCPPPA in patients with SMS than previously reported. The analysis confirmed brachydactyly and the previously described trend of more pronounced shortening of the distal bones relative to the more proximal bones, but also demonstrated a previously undescribed pattern: relative enlargement of the proximal phalanx of the thumb and middle phalanx of the fifth finger. However, statistical analysis suggested that the pattern was not highly characteristic. MCPPPA of 29 patients with SMS demonstrates a pattern different than previously reported, but not highly characteristic. (orig.)

  5. An association screen of myelin-related genes implicates the chromosome 22q11 PIK4CA gene in schizophrenia

    NARCIS (Netherlands)

    Jungerius, B. J.; Hoogendoorn, M. L. C.; Bakker, S. C.; van't Slot, R.; Bardoel, A. F.; Ophoff, R. A.; Wijmenga, C.; Kahn, R. S.; Sinke, R. J.

    2008-01-01

    Several lines of evidence, including expression analyses, brain imaging and genetic studies suggest that the integrity of myelin is disturbed in schizophrenia patients. In this study, we first reconstructed a pathway of 138 myelin-related genes, all involved in myelin structure, composition, develop

  6. Middle and inner ear malformations in two cases of velocardiofacial syndrome

    Directory of Open Access Journals (Sweden)

    Tabith Junior, Alfredo

    2009-03-01

    Full Text Available Objective: To describe audiometric characteristics and middle and inner ear malformations in two patients with velocardiofacial syndrome. Method: Audiometric evaluation, computerized tomography of the temporal bones and analysis of DNA for multiple markers of 22q11 region were performed in two patients with clinical signs of velocardiofacial syndrome. Results: Conductive hearing loss related to chronic otites media and middle and inner ear malformations were found, the latter with the use of reformations based on multislice acquisitions on of the computerized tomography of the temporal bones. Conclusion: We consider it to be highly important to carry out a thorough evaluation and monitoring of the hearing evolution, as well as the occurrence of symptoms related to the vestibular function in patients with velocardiofacial syndrome. From the radiological point of view, attention should be given to the use of high quality techniques for the tomographic study of temporal bones.

  7. Deletion of the Wolfram syndrome-related gene Wfs1 results in increased sensitivity to ethanol in female mice.

    Science.gov (United States)

    Raud, Sirli; Reimets, Riin; Loomets, Maarja; Sütt, Silva; Altpere, Alina; Visnapuu, Tanel; Innos, Jürgen; Luuk, Hendrik; Plaas, Mario; Volke, Vallo; Vasar, Eero

    2015-08-01

    Wolfram syndrome, induced by mutation in WFS1 gene, increases risk of developing mood disorders in humans. In mice, Wfs1 deficiency cause higher anxiety-like behaviour and increased response to anxiolytic-like effect of diazepam, a GABAA receptor agonist. As GABAergic system is also target for ethanol, we analysed its anxiolytic-like and sedative properties in Wfs1-deficient mice using elevated plus-maze test and tests measuring locomotor activity and coordination, respectively. Additionally loss of righting reflex test was conducted to study sedative/hypnotic properties of ethanol, ketamine and pentobarbital. To evaluate pharmacokinetics of ethanol in mice enzymatic colour test was used. Finally, gene expression of alpha subunits of GABAA receptors following ethanol treatment was studied by real-time-PCR. Compared to wild-types, Wfs1-deficient mice were more sensitive to ethanol-induced anxiolytic-like effect, but less responsive to impairment of motor coordination. Ethanol and pentobarbital, but not ketamine, caused longer duration of hypnosis in Wfs1-deficient mice. The expression of Gabra2 subunit at 30 minutes after ethanol injection was significantly increased in the frontal cortex of Wfs1-deficient mice as compared to respective vehicle-treated mice. For the temporal lobe, similar change in Gabra2 mRNA occurred at 60 minutes after ethanol treatment in Wfs1-deficient mice. No changes were detected in Gabra1 and Gabra3 mRNA following ethanol treatment. Taken together, increased anxiolytic-like effect of ethanol in Wfs1-deficient mice is probably related to altered Gabra2 gene expression. Increased anti-anxiety effect of GABAA receptor agonists in the present work and earlier studies (Luuk et al., 2009) further suggests importance of Wfs1 gene in the regulation of emotional behaviour.

  8. Lenalidomide: a review of its use in patients with transfusion-dependent anaemia due to low- or intermediate-1-risk myelodysplastic syndrome associated with 5q chromosome deletion.

    Science.gov (United States)

    Syed, Yahiya Y; Scott, Lesley J

    2013-07-01

    Lenalidomide (Revlimid(®)), a thalidomide analogue, is an orally administered second generation immunomodulator with anti-angiogenic, antineoplastic, anti-inflammatory and pro-erythropoietic properties. It is approved for the treatment of patients with transfusion-dependent anaemia due to International Prognostic Scoring System low- or intermediate-1-risk myelodysplastic syndrome (MDS) associated with either chromosome 5q deletion [del(5q)] with or without additional cytogenetic abnormalities (US, Japan and Switzerland etc.), or with an isolated del(5q) cytogenetic abnormality when other therapeutic options are insufficient or inadequate (EU) [featured indication]. In a randomized, double-blind, multicentre, registrational trial (MDS-004; n = 205) in this patient population, a significantly higher proportion of lenalidomide recipients than placebo recipients achieved red blood cell transfusion independence for ≥26 consecutive weeks (primary endpoint for efficacy) and cytogenetic responses. The erythroid response to lenalidomide was accompanied by an increase in the haemoglobin levels. These efficacy outcomes are generally consistent with those seen in an earlier noncomparative registrational trial (MDS-003; n = 148). In MDS-004, lenalidomide also significantly improved health-related quality of life compared with placebo at 12 weeks. Retrospective analyses that compared outcomes between lenalidomide-treated patients with low- or intermediate-1-risk del(5q) MDS and multicentre registry cohorts showed that lenalidomide treatment did not appear to increase the risk of progression to acute myeloid leukaemia. Lenalidomide had a manageable safety profile in the registrational trials, with ≤20 % of patients discontinuing treatment because of adverse events. The most common adverse events (incidence ≥20 %) occurring in lenalidomide recipients were thrombocytopenia and neutropenia, which were generally managed by dosage reductions and/or interruptions, and

  9. [Distribution of abnormal cell clone with deletion of chromosome 20q in marrow cell lineages and apoptosis cells in myelodysplastic syndrome].

    Science.gov (United States)

    Qin, Ling; Wang, Chun; Qin, You-Wen; Xie, Kuang-Cheng; Yan, Shi-Ke; Gao, Yan-Rong; Wang, Xiao-Rui; Zhao, Chu-Xian

    2008-06-01

    This study was aimed to investigate the distribution of abnormal clone in marrow cell lineages and apoptosis cells in myelodysplastic syndrome (MDS) with deletion of chromosome 20q. Monoclonal antibodies recognizing myeloid precursors (CD15), erythroid precursors (GPA), T cells (CD3(+)CD56(-)CD16(-)), B cells (CD19), NK cells (CD3(-)CD56(+)CD16(+)) were used to sort bone marrow cells in a MDS patient with del (20q) by fluorescence activated cell sorting (FACS). Annexin V-FITC and PI were used to sort bone marrow Annexin V(+)PI(-) and Annexin V(-)PI(-) cells by FACS. The sorted positive cells were detected by interphase dual-color fluorescence in situ hybridization (D-FISH) using a LSI D20S108 probe (Spectrum Orange) and a Telvysion TM 20p probe (Spectrum Green). FACS and FISH analysis were also performed on the samples from 4 cases with normal karyotype. The results showed that the proportions of MDS clone in the myeloid and erythroid precursors were 70.50% and 93.33% respectively, in the RAEB-1 patient with del (20q) and were obviously higher than that in control group (5.39% and 6.17%). The proportions of abnormal clone in T, B and NK cells were 3.23%, 4.32% and 5.77% respectively and were less than that in control group (5.76%, 4.85%, 6.36%). The percentage of apoptotic cells in the bone marrow nucleated cells was 16.09%. The proportions of MDS clone in Annexin V(+)PI(-) and Annexin V(-)PI(-) cells were 32.48% and 70.11%, respectively. It is concluded that most myeloid and erythroid precursors are originated from the abnormal clone in MDS with del (20q). A little part of apoptotic cells are derived from the abnormal clone.

  10. Autism spectrum disorders and hyperactive/impulsive behaviors in Japanese patients with Prader-Willi syndrome: a comparison between maternal uniparental disomy and deletion cases.

    Science.gov (United States)

    Ogata, Hiroyuki; Ihara, Hiroshi; Murakami, Nobuyuki; Gito, Masao; Kido, Yasuhiro; Nagai, Toshiro

    2014-09-01

    This study aims to compare maternal uniparental disomy 15 (mUPD) and a paternal deletion of 15q11-13 (DEL) of Prader-Willi syndrome (PWS) in regard to autism spectrum disorders (ASD). Forty-five Japanese individuals with PWS were recruited from a single recruitment center. The participants consisted of 22 children (aged from 6 to 12) and 23 adolescents (aged from 13 to 19). Six children and seven adolescents were confirmed as having mUPD. Sixteen children and 16 adolescents were confirmed as having DEL. Under blindness to the participants' genotypes, a single psychologist carried out behavioral and psychological assessments, including the Wechsler Intelligence Scales, Pervasive Developmental Disorders Autism Society Japan Rating Scale (PARS), and ADHD-Rating Scale-IV (ADHD-RS-IV). Two comparisons were made: one between mUPD and DEL children and another between mUPD and DEL adolescents. In children, no significant differences were found between mUPD and DEL participants in terms of autistic (PARS childhood, P = 0.657) and impulsive behaviors (ADHD-RS-IV hyperactive/impulsive, P = 0.275). In adolescents, mUPD patients showed significantly more autistic symptomatology (PARS adolescent, P = 0.027) and significantly more impulsive behavior (ADHD-RS-IV hyperactive/impulsive, P = 0.01) than DEL patients. Our findings about Japanese PWS patients were consistent with previous researches from western countries not focused on Asian patients, indicating that mUPD cases would be more prone to ASD than DEL cases, regardless of ethnoregional differences. In addition, our data suggested that the behavioral difference between mUPD and DEL cases in terms of autistic and impulsive symptoms tend to be unrecognizable in their childhood.

  11. Chemotherapy refractory testicular germ cell tumor is associated with a variant in Armadillo Repeat gene deleted in Velco-Cardio-Facial syndrome (ARVCF

    Directory of Open Access Journals (Sweden)

    Chunkit eFung

    2012-12-01

    Full Text Available Introduction: There is evidence that inherited genetic variation affects both testicular germ cell tumor (TGCT treatment outcome and risks of late-complications arising from cisplatin-based chemotherapy. Using a candidate gene approach, we examined associations of three genes involved in the cisplatin metabolism pathway, GSTP1, COMT, and TPMT, with TGCT outcome and cisplatin-induced neurotoxicity. Material and Methods: Our study population includes a subset of patients (n=137 from a genome-wide association study at the University of Pennsylvania that evaluates inherited genetic susceptibility to TGCT. All patients in our study had at least one course of cisplatin-based chemotherapy with at least one year of follow up. A total of 90 markers in GSTP1, COMT and TPMT and their adjacent genomic regions (± 20 kb were analyzed for associations with refractory TGCT after first course of chemotherapy, progression-free survival (PFS, overall survival (OS, peripheral neuropathy, and ototoxicity. Results: After adjustment for multiple comparisons, one SNP, rs2073743, in the flanking region (± 20 kb of COMT was associated with refractory TGCT after initial chemotherapy. This SNP lies within the intron region of the Armadillo Repeat gene deleted in Velco-Cardio-Facial syndrome (ARVCF. The G allele of rs2073743 predisposed patients to refractory disease with a relative risk of 2.6 (95% CI 1.1, 6.3; P=0.03. Assuming recessive inheritance, patients with the GG genotype had 22.7 times higher risk (95% CI 3.3, 155.8; P=0.04 of developing refractory disease when compared to those with the GC or CC genotypes. We found no association of our candidate genes with peripheral neuropathy, ototoxicity, PFS and OS. Discussion: This is the first study to suggest that germline genetic variants of ARVCF may affect TGCT outcome. The result of this study is hypothesis generating and should be validated in future studies.

  12. A de novo 2q35-q36.1 deletion incorporating IHH in a Chinese boy (47,XYY) with syndactyly, type III Waardenburg syndrome, and congenital heart disease.

    Science.gov (United States)

    Wang, D; Ren, G F; Zhang, H Z; Yi, C Y; Peng, Z J

    2016-12-02

    Reports of terminal and interstitial deletions of the long arm of chromosome 2 are rare in the literature. Here, we present a case report concerning a Chinese boy with a 47,XYY karyotype and a de novo deletion comprising approximately 5 Mb between 2q35 and q36.1, along with syndactyly, type III Waardenburg syndrome, and congenital heart disease. High-resolution chromosome analysis to detect copy number variations was carried out using an Affymetrix microarray platform, and the genes affected by the patient's deletion, including IHH, were determined. However, no copy number changes were observed in his healthy parents. The present case exhibited novel syndactyly features, broadening the spectrum of clinical findings observed in individuals with 2q interstitial deletions. Our data, together with previous observations, suggest that IHH haploinsufficiency is the principal pathogenic factor in the syndactyly phenotype in this study, and that different types of variations at the IHH locus may cause divergent disease phenotypes. This is the first report of the involvement of IHH haploinsufficiency in syndactyly phenotype.

  13. Interstitial duplication of proximal 22q: Phenotypic overlap with cat eye syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Knoll, J.H.M.; Asamoah, A.; Wagstaff, J. [Children`s Hospital, Boston, MA (United States)] [and others

    1995-01-16

    We describe a child with downslanting palpebral fissures, preauricular malfunctions, congenital heart defect (total anomalous pulmonary venous return), unilateral absence of a kidney, and developmental delay with an apparent interstitial duplication of proximal 22q. Fluorescent in situ hybridization (FISH) analysis showed duplication of the IGLC locus, and C-banding of the duplicated region was negative. The duplication appears to involve 22q11.2-q12. Although the child has neither colobomas nor microphthalmia, he shows phenotypic overlap with with the cat eye syndrome, which is caused by a supernumerary bisatellited chromosome arising from inverted duplication of the short arm and proximal long arm of chromosome 22. Further molecular studies of this patient should help to define the regions responsible for the manifestations of cat eye syndrome. 17 refs., 3 figs., 1 tab.

  14. Williams综合征临床诊断和基因缺失的研究%Clinical features and gene deletions of Williams syndrome

    Institute of Scientific and Technical Information of China (English)

    梁瑛; 周爱卿; 王世雄; 胡琴

    2001-01-01

    Objective Supravalvular aortic stenosis (SVAS) is a type of leftventricular outflow obstruction. It occurs in three settings: Williams syndrome (WS), autosomal dominant familial cases, and sporadic cases. Most patients with SVAS have WS. WS is a developmental disorder affecting multiple organ systems, involving the vascular, connective tissue, and central nervous systems. This study aimed at discussing the criteria of WS in China by evaluating the clinical features and detecting gene deletions in children clinically diagnosed to have SVAS. Method Twenty-six children (17 males and 9 females) with SVAS who presented to the Xinhua Hospital affiliated to Shanghai Second Medical University and Shanghai Children′s Medical Center between November 1997 and December 1999 were enrolled. These children were followed-up for a median duration of 6.3 (range 1.1 to 19.5) years. Diagnosis of SVAS and non-SVAS congenital heart diseases was based on physical examination, echocardiography, cardiac catheterization and angiography. Mostly the clinical features of WS in these children were assessed according to Lowery′s WS phenotype scoring system, which included typical facial features, mental retardation /developmental delay, SVAS, non-SVAS congenital heart disease, inguinal hernia, and hypercalcemia. All the children also underwent an evaluation of minor medical problems of WS, involving WS personality, weight, head circumference, voice, and ocular, auditory, gastrointestinal, genitourinary, and musculoskeletal organ systems. Fluorescent in situ hybridizations (FISH) were used to detect the microdeletions of elastin (ELN) gene and LIM kinase 1 (LIMK1) gene in all the children. Result Nineteen children, whose WS phenotype scoring was more than 4, showed the gene microdeletions. Children whose scoring was equal to 4 (n=3) or less than 4 (n=4) did not demonstrate deletions. Conclusion These data indicated that WS could be diagnosed in children with SVAS whose Lowery′s scoring was

  15. Deletion of 11q12.3-11q13.1 in a patient with intellectual disability and childhood facial features resembling Cornelia de Lange syndrome

    DEFF Research Database (Denmark)

    Boyle, Martine Isabel; Jespersgaard, Cathrine; Nazaryan, Lusine;

    2015-01-01

    Deletions within 11q12.3-11q13.1 are very rare and to date only two cases have been described in the literature. In this study we describe a 23-year-old male patient with intellectual disability, behavioral problems, dysmorphic features, dysphagia, gastroesophageal reflux and skeletal abnormalities......), but a 1.6Mb deletion at chromosome region 11q12.3-11q13.1 was detected by chromosome microarray. The deletion contains several genes including PPP2R5B, which has been associated with intellectual disability and overgrowth; NRXN2, which has been associated with intellectual disability and autism spectrum...

  16. One case of 2q37 deletion syndrome: clinical and genetic diagnosis%2q37缺失综合征患儿的临床及分子细胞遗传学诊断一例

    Institute of Scientific and Technical Information of China (English)

    耿茜; 谢建生; 吴维青; 罗福薇; 陈武斌

    2013-01-01

    Objective To diagnose a new born baby with 2q37 deletion syndrome by comprehensive use of cytogenetic and molecular techniques and to investigate the phenotype characteristics and applicability of array-comparative genomic hybridization (array-CGH) and multiplex ligation-dependent probe amplification (MLPA) for detection of this syndrome.Method Following conventional chromosome preparation,G banded karyotyping was performed.Genomic DNA was extracted using standard procedures,which were then analyzed by array-CGH and MLPA.Result The patient presented with a typical face,special fist posture and congenital heart disease in 2q37 deletion syndrome.A 4.709 Mb deletion at 2q37.3(chr2:237,967,852-242,677,269.NCBI36/hg18,including genes from COL6A3 toPDCD1) was detected by array-CGH.The results of MLPA and G banded karyotyping confirmed the existence of this deletion.Conclusion 2q37.3 deletion was determined to be the cryptic cause of this case.2q37 deletion syndrome has some clinically recognizable characteristics.And array-CGH is a powerful technique for the accurate diagnosis and genotype-phenotype correlation study of this syndrome.%目的 综合应用细胞及分子遗传学技术检测1例新生儿病例,以明确诊断,并结合文献资料对2q37缺失综合征的临床特点及遗传学诊断技术进行探讨.方法 常规外周血淋巴细胞培养制片及G显带核型分析;常规提取外周血基因组DNA,进行微阵列比较基因组杂交(array comparative genomic hybridization,array-CGH)及多重连接依赖探针扩增(multiplex ligation-dependent probe amplification,MLPA)分析.结果 患儿具有面部畸形、手部特殊握拳姿势及先天性心脏病等2q37缺失综合征的表型特征,array-CGH分析发现患儿2q37.3区存在4.7096 Mb的微缺失,包含COL6A3至PDCD1基因;MLPA及核型分析均验证了这一结果.结论 患儿为2q37缺失综合征,该综合征具有临床可辨识性,array-CGH技术对2q37缺失综合征诊断及遗

  17. A Novel Aberrant Splice Site Mutation in RAB23 Leads to an Eight Nucleotide Deletion in the mRNA and Is Responsible for Carpenter Syndrome in a Consanguineous Emirati Family.

    Science.gov (United States)

    Ben-Salem, S; Begum, M A; Ali, B R; Al-Gazali, L

    2013-01-01

    Carpenter syndrome is caused by mutations in the RAB23 gene that encodes a small GTPase of the Rab subfamily of proteins. Rab proteins are known to be involved in the regulation of cellular trafficking and signal transduction. Currently, only few mutations in RAB23 have been reported in patients with Carpenter syndrome. In this paper, we report the clinical features, molecular and functional analysis of 2 children from an Emirati consanguineous family with this syndrome. The affected children exhibit the typical features including craniosynostosis, typical facial appearance, polysyndactyly, and obesity. Molecular analysis of the RAB23 gene revealed a homozygous mutation affecting the first nucleotide of the acceptor splice site of exon 5 (c.482-1G>A). This mutation affects the authentic mRNA splicing and activates a cryptic acceptor site within exon 5. Thus, the erroneous splicing results in an eight nucleotide deletion, followed by a frameshift and premature termination codon at position 161 (p.V161fsX3). Due to the loss of the C-terminally prenylatable cysteine residue, the truncated protein will probably fail to associate with the target cellular membranes due to the absence of the necessary lipid modification. The p.V161fsX3 extends the spectrum of RAB23 mutations and points to the crucial role of prenylation in the pathogenesis of Carpenter syndrome within this family.

  18. Molecular analysis of two patients with a duplicated 17p11.2 indicates that this entity may be the reciprocal of the deletion seen in Smith-Magenis syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Brown, A.; Schwartz, C.; Rogers, R.C. [Greenwood Genetic Center, SC (United States)] [and others

    1994-09-01

    J.M. and H.G. are two unrelated patients that presented at an early age with developmental delay and failure to thrive. Clinical features specific to J.M. include unusual facies, global developmental delay, and clinodactyly of the fifth toe. A cytogenetic analysis of H.G. was performed on amniocytes obtained due to a low MSAFP conducted as part of a routine screening. In both J.M. and H.G., a duplication of chromosome 17p11.2 was discovered. The extent of the duplicated region was determined using single copy DNA probes: cen-D17S58-D17S29-D17S258-D17S71-D17S445-tel. All of the markers were found to be duplicated by dosage analysis except for D17S58. FISH analysis of H.G., using the Smith-Magenis diagnostic probe obtained from ONCOR, also detected a duplication in 17p11.2. The chromosome containing the duplication could be the result of unequal crossing over due to a misalignment of the two chromosomes during meiosis I. It has been shown that the markers deleted in Smith-Magenis syndrome (SMS) patients are the same as those markers duplicated in J.M. and H.G. Therefore, the chromosomal duplication in 17p11.2 observed in these two patients could be the reciprocal of the chromosomal deletion seen in Smith-Magenis syndrome patients. Interestingly, a similar reciprocal duplication/deletion event is observed for CMT1A and HNPP (hereditary neuropathy with liability to pressure palsies) just distal to the SMS region.

  19. Lenalidomide for the Treatment of Low- or Intermediate-1-Risk Myelodysplastic Syndromes Associated with Deletion 5q Cytogenetic Abnormality: An Evidence Review of the NICE Submission from Celgene.

    Science.gov (United States)

    Blommestein, Hedwig M; Armstrong, Nigel; Ryder, Steve; Deshpande, Sohan; Worthy, Gill; Noake, Caro; Riemsma, Rob; Kleijnen, Jos; Severens, Johan L; Al, Maiwenn J

    2016-01-01

    The National Institute for Health and Care Excellence (NICE) invited the manufacturer of lenalidomide (Celgene) to submit evidence of the clinical and cost effectiveness of the drug for treating adults with myelodysplastic syndromes (MDS) associated with deletion 5q cytogenetic abnormality, as part of the Institute's single technology appraisal (STA) process. Kleijnen Systematic Reviews Ltd (KSR), in collaboration with Erasmus University Rotterdam, was commissioned to act as the Evidence Review Group (ERG). This paper describes the company's submission, the ERG review, and the NICE's subsequent decisions. The ERG reviewed the evidence for clinical and cost effectiveness of the technology, as submitted by the manufacturer to the NICE. The ERG searched for relevant additional evidence and validated the manufacturer's decision analytic model to examine the robustness of the cost-effectiveness results. Clinical effectiveness was obtained from a three-arm, European, randomized, phase III trial among red blood cell (RBC) transfusion-dependent patients with low-/intermediate-1-risk del5q31 MDS. The primary endpoint was RBC independence for ≥26 weeks, and was reached by a higher proportion of patients in the lenalidomide 10 and 5 mg groups compared with placebo (56.1 and 42.6 vs 5.9 %, respectively; both p < 0.001). The option of dose adjustments after 16 weeks due to dose-limiting toxicities or lack of response made long-term effectiveness estimates unreliable, e.g. overall survival (OS). The de novo model of the manufacturer included a Markov state-transition cost-utility model implemented in Microsoft Excel. The base-case incremental cost-effectiveness ratio (ICER) of the manufacturer was £56,965. The ERG assessment indicated that the modeling structure represented the course of the disease; however, a few errors were identified and some of the input parameters were challenged. In response to the appraisal documentation, the company revised the economic model

  20. Immunodeficiency in DiGeorge syndrome and options for treating cases with complete athymia.

    Directory of Open Access Journals (Sweden)

    E Graham Davies

    2013-10-01

    Full Text Available The commonest association of thymic stromal deficiency resulting in T cell immunodeficiency is the DiGeorge syndrome (DGS. This results from abnormal development of the third and fourth pharyngeal arches and is most commonly associated with a microdeletion at chromosome 22q11 though other genetic and non-genetic causes have been described. The immunological competence of affected individuals is highly variable, ranging from normal to a severe combined immunodeficiency when there is complete athymia. In the most severe group, correction of the immunodeficiency can be achieved using thymus allografting which can enable thymopoeisis in the absence of donor-recipient matching at the major histocompatibility loci. This review focusses on the causes of DGS, the immunological features of the disorder and the approaches to correction of the immunodeficiency including the use of thymus transplantation.

  1. Velo-cardio-facial syndrome and psychotic disorders: Implications for psychiatric genetics

    Energy Technology Data Exchange (ETDEWEB)

    Chow, W.C.; Bassett, A.S.; Weksberg, R. [Univ. of Toronto, Ontario (Canada)

    1994-06-15

    Psychiatric disorders have been reported in over 10% of patients with velo-cardio-facial syndrome (VCFS) in long-term follow-up. To further explore the behavioral and psychiatric findings associated with VCFS in adulthood, detailed clinical histories of two patients - one with VCFS who developed a psychotic illness, and one with schizophrenia who was found to have dysmorphological features associated with VCFS - are described in the current report. The observed overlap of physical and psychiatric symptoms in these two patients suggests that VCFS and psychotic disorders may share a pathogenetic mechanism. This could be consistent with a contiguous gene model for VCFS and psychosis, suggesting chromosome 22q11 as a possible candidate region for genetic studies of schizophrenia. 26 refs., 2 tabs.

  2. Ring Chromosome 9 and Chromosome 9p Deletion Syndrome in a Patient Associated with Developmental Delay: A Case Report and Review of the Literature.

    Science.gov (United States)

    Sivasankaran, Aswini; Kanakavalli, Murthy K; Anuradha, Deenadayalu; Samuel, Chandra R; Kandukuri, Lakshmi R

    2016-01-01

    Ring chromosomes have been described for all human chromosomes and are typically associated with physical and/or mental abnormalities resulting from a deletion of the terminal ends of both chromosome arms. This report describes the presence of a ring chromosome 9 in a 2-year-old male child associated with developmental delay. The proband manifested a severe phenotype comprising facial dysmorphism, congenital heart defects, and seizures. The child also exhibited multiple cell lines with mosaic patterns of double rings, a dicentric ring and loss of the ring associated with mitotic instability and dynamic tissue-specific mosaicism. His karyotype was 46,XY,r(9)(p22q34)[89]/46,XY,dic r(9; 9)(p22q34;p22q34)[6]/45, XY,-9[4]/47,XY,r(9),+r(9)[1]. However, the karyotypes of his parents and elder brother were normal. FISH using mBAND probe and subtelomeric probes specific for p and q arms for chromosome 9 showed no deletion in any of the regions. Chromosomal microarray analysis led to the identification of a heterozygous deletion of 15.7 Mb from 9p22.3 to 9p24.3. The probable role of the deleted genes in the manifestation of the phenotype of the proband is discussed.

  3. 17q12 deletion and duplication syndrome in Denmark-A clinical cohort of 38 patients and review of the literature

    DEFF Research Database (Denmark)

    Rasmussen, Maria; Vestergaard, Else Marie; Graakjaer, Jesper

    2016-01-01

    deletions and 26 phenotyped patients with 17q12 duplications. The total cohort includes 19 index patients and 19 family members. We also reviewed the literature in order to further improve the basis for the counseling. We emphasize that renal disease, learning disability, behavioral abnormalities, epilepsy......, and duodenal atresia. Delayed language development, learning disability, kidney involvement, and eye dysmorphism and strabismus were the most consistently shared features among patients with 17q12 deletion. Patients with 17q12 duplications were characterized by an extremely wide phenotypic spectrum, including...... a variable degree of learning disabilities, delayed language development, delayed motor milestones, and a broad range of psychiatric and neurological features. This patient group also included adults achieving an academic degree. Assessing index patients and non-index patients separately, our observations...

  4. One case of chromosome 16 p11 . 2 deletion syndrome and literature review%16 p11.2缺失综合征1例并文献复习

    Institute of Scientific and Technical Information of China (English)

    葛婷; 崔云; 肖咏梅; 陆燕芬; 张育才; 张婷

    2014-01-01

    Objective To enhance the understanding of clinical characteristics,diagnosis,follow-up and genetic testing of chromosome 16p11. 2 deletion syndrome. Methods The clinical manifestations,laboratory testing,diagnosis,follow-up,and genetic testing of one case with chromosome 16p11. 2 deletion syndrome were reviewed,analyzed and summarized. Meanwhile,relevant literatures of chromosome 16p11. 2 deletion syndrome were reviewed in this article. Results ①A 2-month-and-13-day boy with 20-day fever,cough,and diarrhea was admitted to our hospital. Deformity of six fingers in right palm and scoliosis was found. The total peripheral blood lymphocytes and lymphocyte subsets were lower than the reference levels. Chest X-ray indicated that the sternum shape was abnormal and T9-T12 vertebral bodies were hemivertebrae deformity. The patient was improved with a hyperactive and exciting performance after anti-infection therapy. Follow up after releasing indicated that the count of peripheral blood lymphocytes was improved,however,WBC,N and CD4+ T cells remained low levels. The boy was diagnosed as epilepsy at 5 months old and improved after treatment with anti-epileptic drugs. A deletion of 0. 545 4 Mb in chromosome 16p11. 2 was identified by chromosome chip detection technology and confirmed by high-density oligonucleotide comparative genomic hybridization( CGH)Microarray. The genes located in this deleted region included SPN,QRRT,Cl6orf54,KIF22,MAZ,SEZ6L2,CDIPT,ASPHDl,KCTDl3, TMEM2l9,TAOK2,DOC2A,TBX6. The results of Chromosome chip detection were normal in his parents. Thus,this boy was finally diagnosed as chromosome 16p11. 2 deletion syndrome. ②1 387cases were reported by 95 published articles related with chromosome 16p11. 2 deletion syndrome,involving the nervous system(547,39. 7%),endocrine system(371,26. 9%),growth and skeletal abnormalities(84,6. 1%),urinary and digestive system(10,0. 7%),cardiovascular system(4,0. 3%),immune function(1,0. 07%). The different size of the

  5. Deletion of JAM-C, a candidate gene for heart defects in Jacobsen syndrome, results in a normal cardiac phenotype in mice.

    Science.gov (United States)

    Ye, Maoqing; Hamzeh, Rabih; Geddis, Amy; Varki, Nissi; Perryman, M Benjamin; Grossfeld, Paul

    2009-07-01

    The 11q terminal deletion disorder (11q-) is a rare chromosomal disorder caused by a deletion in distal 11q. Fifty-six percent of patients have clinically significant congenital heart defects. A cardiac "critical region" has been identified in distal 11q that contains over 40 annotated genes. In this study, we identify the distal breakpoint of a patient with a paracentric inversion in distal 11q who had hypoplastic left heart and congenital thrombocytopenia. The distal breakpoint mapped to JAM-3, a gene previously identified as a candidate gene for causing HLHS in 11q-. To determine the role of JAM-3 in cardiac development, we performed a comprehensive cardiac phenotypic assessment in which the mouse homolog for JAM-3, JAM-C, has been deleted. These mice have normal cardiac structure and function, indicating that haplo-insufficiency of JAM-3 is unlikely to cause the congenital heart defects that occur in 11q- patients. Notably, we identified a previously undescribed phenotype, jitteriness, in most of the sick or dying adult JAM-C knockout mice. These data provide further insights into the identification of the putative disease-causing cardiac gene(s) in distal 11q, as well as the functions of JAM-C in normal organ development.

  6. Severe Psychomotor Delay in a Severe Presentation of Cat-Eye Syndrome

    Directory of Open Access Journals (Sweden)

    Guillaume Jedraszak

    2015-01-01

    Full Text Available Cat-eye syndrome is a rare genetic syndrome of chromosomal origin. Individuals with cat-eye syndrome are characterized by the presence of preauricular pits and/or tags, anal atresia, and iris coloboma. Many reported cases also presented with variable congenital anomalies and intellectual disability. Most patients diagnosed with CES carry a small supernumerary bisatellited marker chromosome, resulting in partial tetrasomy of 22p-22q11.21. There are two types of small supernumerary marker chromosome, depending on the breakpoint site. In a very small proportion of cases, other cytogenetic anomalies are reportedly associated with the cat-eye syndrome phenotype. Here, we report a patient with cat-eye syndrome caused by a type 1 small supernumerary marker chromosome. The phenotype was atypical and included a severe developmental delay. The use of array comparative genomic hybridization ruled out the involvement of another chromosomal imbalance in the neurological phenotype. In the literature, only a few patients with cat-eye syndrome present with a severe developmental delay, and all of the latter carried an atypical partial trisomy 22 or an uncharacterized small supernumerary marker chromosome. Hence, this is the first report of a severe neurological phenotype in cat-eye syndrome with a typical type 1 small supernumerary marker chromosome. Our observation clearly complicates prognostic assessment, particularly when cat-eye syndrome is diagnosed prenatally.

  7. Specific deletion of NaV1.1 sodium channels in inhibitory interneurons causes seizures and premature death in a mouse model of Dravet syndrome

    OpenAIRE

    Cheah, Christine S.; Yu, Frank H.; Westenbroek, Ruth E.; Kalume, Franck K.; Oakley, John C; Potter, Gregory B.; Rubenstein, John L.; Catterall, William A.

    2012-01-01

    Heterozygous loss-of-function mutations in the brain sodium channel NaV1.1 cause Dravet syndrome (DS), a pharmacoresistant infantile-onset epilepsy syndrome with comorbidities of cognitive impairment and premature death. Previous studies using a mouse model of DS revealed reduced sodium currents and impaired excitability in GABAergic interneurons in the hippocampus, leading to the hypothesis that impaired excitability of GABAergic inhibitory neurons is the cause of epilepsy and premature deat...

  8. Integrated analysis of clinical signs and literature data for the diagnosis and therapy of a previously undescribed 6p21.3 deletion syndrome.

    OpenAIRE

    Zollino, Marcella; Gurrieri, Fiorella; Orteschi, Daniela; Marangi, Giuseppe; Leuzzi, Vincenzo; Neri, Giovanni

    2010-01-01

    Abstract A de novo 0.3 Mb deletion on 6p21.3 was detected by array-CGH in a girl with mental retardation, drug-resistant seizures, facial dysmorphisms, gut malrotation and abnormal pancreas segmentation. Consistent with phenotypic manifestations is haploinsufficiency of SYNGAP1, that was recently demonstrated to cause nonsyndromic mental retardation, and of the flanking genes CuTA, a likely modulator of the processing and trafficking of secretory proteins in the human brain, and hP...

  9. Deleted in Breast Cancer 1 Limits Adipose Tissue Fat Accumulation and Plays a Key Role in the Development of Metabolic Syndrome Phenotype

    NARCIS (Netherlands)

    Escande, Carlos; Nin, Veronica; Pirtskhalava, Tamar; Chini, Claudia C. S.; Tchkonia, Tamar; Kirkland, James L.; Chini, Eduardo N.

    2015-01-01

    Obesity is often regarded as the primary cause of metabolic syndrome. However, many lines of evidence suggest that obesity may develop as a protective mechanism against tissue damage during caloric surplus and that it is only when the maximum fat accumulation capacity is reached and fatty acid spill

  10. Rare mutations of FGFR2 causing Apert syndrome : identification of the first partial gene deletion, and an Alu element insertion from a new subfamily

    NARCIS (Netherlands)

    Bochukova, E.G.; Roscioli, T.; Hedges, D.J.; Taylor, I.B.; Johnson, D.; David, D.J.; Deininger, P.L.; Wilkie, A.O.

    2009-01-01

    Apert syndrome (AS) is a severe disorder, characterized by craniosynostosis and complex syndactyly of the hands and feet. Two heterozygous gain-of-function substitutions (Ser252Trp and Pro253Arg) in exon IIIa of fibroblast growth factor receptor 2 (FGFR2) are responsible for >98% of cases. Here we d

  11. Deletion of the Toll-Like Receptor 5 Gene Per Se Does Not Determine the Gut Microbiome Profile That Induces Metabolic Syndrome: Environment Trumps Genotype.

    Science.gov (United States)

    Zhang, Wei; Hartmann, Riley; Tun, Hein Min; Elson, Charles O; Khafipour, Ehsan; Garvey, W Timothy

    2016-01-01

    Over the past decade, emerging evidence has linked alterations in the gut microbial composition to a wide range of diseases including obesity, type 2 diabetes, and cardiovascular disease. Toll-like receptors (TLRs) are the major mediators for the interactions between gut microbiota and host innate immune system, which is involved in the localization and structuring of host gut microbiota. A previous study found that TLR5 deficient mice (TLR5KO1) had altered gut microbial composition which led to the development of metabolic syndrome including hyperlipidemia, hypertension, insulin resistance and increased adiposity. In the current study, a second TLR5-deficient mouse model was studied (TLR5KO2). TLR5 deficient mice did not manifest metabolic abnormalities related to the metabolic syndrome compared with littermate controls maintained on normal chow or after feeding a high fat diet. Analysis of the gut microbial composition of littermate TLR5KO2 and wild type mice revealed no significant difference in the overall microbiota structure between genotypes. However, the TLR5KO2 microbiota was distinctly different from that previously reported for TLR5KO1 mice with metabolic syndrome. We conclude that an altered composition of the microbiota in a given environment can result in metabolic syndrome, but it is not a consequence of TLR5 deficiency per se.

  12. A case of duplication of 13q32-->qter and deletion of 18p11.32-->pter with mild phenotype: Patau syndrome and duplications of 13q revisited.

    Science.gov (United States)

    Helali, N; Iafolla, A K; Kahler, S G; Qumsiyeh, M B

    1996-07-01

    A mild clinical phenotype is described in a patient with duplication of 13q32-->qter and a small deletion of 18p11.32-->pter. The 8 year old white male presented with psychomotor retardation, tethered cord, soft, fleshy ears, and normal facial features except for thin lips. The karyotype was found to be 46, XY, der(18)t(13;18) (q32;p11.32) pat confirmed by fluorescence in situ hybridisation (FISH). A review of earlier studies showed that features of trisomy 13 are found in cases of duplication of bands 13q14 to qter. None of the cardinal features of trisomy 13 was seen in this patient. The absence of polydactyly, hernias, urogenital abnormalities, and haemangiomas contrast this condition with both trisomy 13 and duplication of 13q14-22-->qter. Possible explanations for lack of Patau syndrome in this patient could include restriction of the critical region for Patau syndrome to duplication 13q14-->13q32 with variable expression, gene interactions, or interchromosomal effects.

  13. The putative imprinted locus D15S9 within the common deletion region for the Prader-Willi and Angelman syndromes encodes two overlapping mRNAs transcribed from opposite strands

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, C.C.; Driscoll, D.J. [Univ. of Florida, Gainesville, FL (United States); Saitoh, S. [Case Western Reserve Univ., Cleveland, OH (United States)] [and others

    1994-09-01

    Prader-Willi syndrome is typically caused by a deletion of paternal 15q11-q13, or maternal uniparental disomy (UPD) of chromosome 15, while Angelman syndrome is caused by a maternal deletion or paternal UPD of the same region. Therefore, these two clinically distinct neurobehavioral syndromes result from differential expression of imprinted genes within 15q11-q13. A 3.1 kb cDNA, DN34, from the D15S9 locus within 15q11-q13 was isolated from a human fetal brain library. We showed previously that DN34 probe detects a DNA methylation imprint and therefore may represent a candidate imprinted gene. Isolation of genomic clones and DNA sequencing demonstrated that the gene segment encoding the partial cDNA DN34 was split by a 2 kb intron, but did not encode a substantial open reading frame (ORF). Preliminary analysis of expression by RT-PCR suggests that this gene is expressed in fetal but not in tested tissue types from the adult, and thus its imprinting status has not been possible to assess at present. Surprisingly, we found an ORF on the antisense strand of the DN34 cDNA. This ORF encodes a putative polypeptide of 505 amino acid residues containing a RING C{sub 3}HC{sub 4} zinc-finger motif and other features of nuclear proteins. Subsequent characterization of this gene, ZNF127, and a mouse homolog, demonstrated expression of 3.2 kb transcript from all tested fetal and adult tissues. Transcripts initiate from within a CpG-island, shown to be differentially methylated on parental alleles in the human. Interestingly, functional imprinting of the mouse homolog was subsequently demonstrated in an F{sub 1} cross by analyzing a VNTR polymorphism in the mRNA. The ZNF127 gene is intronless, has significant overlap with the DN34 gene on the antisense strand, and a 1 kb 3{prime} end within the 2 kb DN34 intron.

  14. 9q22 Deletion - First Familial Case

    Directory of Open Access Journals (Sweden)

    Yamamoto Toshiyuki

    2011-06-01

    Full Text Available Abstract Background Only 29 cases of constitutional 9q22 deletions have been published and all have been sporadic. Most associate with Gorlin syndrome or nevoid basal cell carcinoma syndrome (NBCCS, MIM #109400 due to haploinsufficiency of the PTCH1 gene (MIM *601309. Methods and Results We report two mentally retarded female siblings and their cognitively normal father, all carrying a similar 5.3 Mb microdeletion at 9q22.2q22.32, detected by array CGH (244 K. The deletion does not involve the PTCH1 gene, but instead 30 other gene,s including the ROR2 gene (MIM *602337 which causing both brachydactyly type 1 (MIM #113000 and Robinow syndrome (MIM #268310, and the immunologically active SYK gene (MIM *600085. The deletion in the father was de novo and FISH analysis of blood lymphocytes did not suggest mosaicism. All three patients share similar mild dysmorphic features with downslanting palpebral fissures, narrow, high bridged nose with small nares, long, deeply grooved philtrum, ears with broad helix and uplifted lobuli, and small toenails. All have significant dysarthria and suffer from continuous middle ear and upper respiratory infections. The father also has a funnel chest and unilateral hypoplastic kidney but the daughters have no malformations. Conclusions This is the first report of a familial constitutional 9q22 deletion and the first deletion studied by array-CGH which does not involve the PTCH1 gene. The phenotype and penetrance are variable and the deletion found in the cognitively normal normal father poses a challenge in genetic counseling.

  15. 特纳综合征合并1p36缺失综合征误诊为甲减1例报告%Turner syndrome and monosomy 1p36 deletion syndrome misdiagnosed as thyropenia:report of one case

    Institute of Scientific and Technical Information of China (English)

    蒙绪标; 李智明; 刘婷婷; 闻智鸣

    2013-01-01

    1例身材矮小、原发性闭经就诊的女性患者进行染色体核型分析为45X核型,用微阵列比较基因组杂交技术扫描基因发现1p36缺如,并在多个染色体上基因有异常,临床主要表现为身材矮小、女性第二性征缺如、原发闭经、直肠扩张、内生殖器缺如,伴有甲状腺功能减退,智力一般等特征。容易被临床某一种表现而误诊,需要高度关注。%A 21-year-old woman with a short stature presented with primary amenorrhoea and a 45X karyotype, and comparative genomic hybridization revealed 1p36 deletion and abnormal genes in multiple chromosomes to support the diagnosis of Turner syndrome and monosomy 1p36 deletion syndrome. The main clinical features of this condition include microsomia, poor sexual development, menoschesis, gigantorectum, absence of internal genitalia, sometimes with thyropenia and low intelligence. This disease can be easily diagnosed for its heterogeneous clinical manifestations.

  16. LPAC syndrome associated with deletion of the full exon 4 in a ABCB4 genetic mutation in a patient with hepatitis C

    OpenAIRE

    2014-01-01

    Low-phospholipid-associated cholelithiasis syndrome (LPAC) is associated with ABCB4 genetic mutation. ABCB4 encodes MDR3 protein, involved in biliary phosphatidylcholine excretion. Higher prevalence in women, biliary symptoms in young adults and ursodesoxycholic acid (UDCA) response are the main features. We report the case of a 48-year-old man with hepatitis C, genotype 1b, fibrosis F3, null responder to Peg-IFNα2b/ribavirin and nephritic colic. In 2011 he developed jaundice, pruritus and ep...

  17. Partial deletion 11q

    DEFF Research Database (Denmark)

    Hertz, Jens Michael; Tommerup, N; Sørensen, F B;

    1995-01-01

    We describe the cytogenetic findings and the dysmorphic features in a stillborn girl with a large de novo terminal deletion of the long arm of chromosome 11. The karyotype was 46,XX,del(11)(q21qter). By reviewing previous reports of deletion 11q, we found that cleft lip and palate are most...

  18. Terminal 3p deletions in two families--correlation between molecular karyotype and phenotype.

    NARCIS (Netherlands)

    Pohjola, P.; Leeuw, N. de; Penttinen, M.; Kaariainen, H.

    2010-01-01

    The 3p deletion syndrome is a rare disorder caused by deletions of different sizes in the 3p25-pter region. It is characterized by growth retardation, developmental delay, mental retardation, dysmorphism, microcephaly, and ptosis. The phenotype of individuals with deletions varies from normal to sev

  19. Quantum deletion is possible

    CERN Document Server

    Elizalde, E

    2000-01-01

    A deleting operation is introduced which differs from the commonly used {\\it controlled-not} (C-not) conditional logical operation $-$to flip the (classical or quantum) state of the last copy in a chain in a deletion process. It is completely reversible, in the classical case, possessing a most natural cloning operation counterpart. We call this deleting procedure R-deletion since, in a way, it can be viewed as a `randomization' of the standard C-not operator. It is a nonlinear operation and has the remarkable property of avoiding in a simple manner the `impossibility of deletion of a quantum state' principle, put forward by Pati and Braunstein recently \\cite{pbn1}.

  20. Mice deleted for cell division cycle 73 gene develop parathyroid and uterine tumours: model for the hyperparathyroidism-jaw tumour syndrome.

    Science.gov (United States)

    Walls, G V; Stevenson, M; Lines, K E; Newey, P J; Reed, A A C; Bowl, M R; Jeyabalan, J; Harding, B; Bradley, K J; Manek, S; Chen, J; Wang, P; Williams, B O; Teh, B T; Thakker, R V

    2017-03-13

    The hyperparathyroidism-jaw tumour (HPT-JT) syndrome is an autosomal dominant disorder characterized by occurrence of parathyroid tumours, often atypical adenomas and carcinomas, ossifying jaw fibromas, renal tumours and uterine benign and malignant neoplasms. HPT-JT is caused by mutations of the cell division cycle 73 (CDC73) gene, located on chromosome 1q31.2 and encodes a 531 amino acid protein, parafibromin. To facilitate in vivo studies of Cdc73 in tumourigenesis we generated conventional (Cdc73(+/-)) and conditional parathyroid-specific (Cdc73(+/L)/PTH-Cre and Cdc73(L/L)/PTH-Cre) mouse models. Mice were aged to 18-21 months and studied for survival, tumour development and proliferation, and serum biochemistry, and compared to age-matched wild-type (Cdc73(+/+) and Cdc73(+/+)/PTH-Cre) littermates. Survival of Cdc73(+/-) mice, when compared to Cdc73(+/+) mice was reduced (Cdc73(+/-)=80%; Cdc73(+/+)=90% at 18 months of age, Pfourfold higher than that in parathyroid glands of wild-type littermates (P<0.0001). Cdc73(+/-), Cdc73(+/L)/PTH-Cre and Cdc73(L/L)/PTH-Cre mice had higher mean serum calcium concentrations than wild-type littermates, and Cdc73(+/-) mice also had increased mean serum parathyroid hormone (PTH) concentrations. Parathyroid tumour development, and elevations in serum calcium and PTH, were similar in males and females. Cdc73(+/-) mice did not develop bone or renal tumours but female Cdc73(+/-) mice, at 18 months of age, had uterine neoplasms comprising squamous metaplasia, adenofibroma and adenomyoma. Uterine neoplasms, myometria and jaw bones of Cdc73(+/-) mice had increased proliferation rates that were 2-fold higher than in Cdc73(+/+) mice (P<0.05). Thus, our studies, which have established mouse models for parathyroid tumours and uterine neoplasms that develop in the HPT-JT syndrome, provide in vivo models for future studies of these tumours.Oncogene advance online publication, 13 March 2017; doi:10.1038/onc.2017.43.

  1. NFKBIA Deletion in Glioblastomas

    Science.gov (United States)

    Bredel, Markus; Scholtens, Denise M.; Yadav, Ajay K.; Alvarez, Angel A.; Renfrow, Jaclyn J.; Chandler, James P.; Yu, Irene L.Y.; Carro, Maria S.; Dai, Fangping; Tagge, Michael J.; Ferrarese, Roberto; Bredel, Claudia; Phillips, Heidi S.; Lukac, Paul J.; Robe, Pierre A.; Weyerbrock, Astrid; Vogel, Hannes; Dubner, Steven; Mobley, Bret; He, Xiaolin; Scheck, Adrienne C.; Sikic, Branimir I.; Aldape, Kenneth D.; Chakravarti, Arnab; Harsh, Griffith R.

    2013-01-01

    BACKGROUND Amplification and activating mutations of the epidermal growth factor receptor (EGFR) oncogene are molecular hallmarks of glioblastomas. We hypothesized that deletion of NFKBIA (encoding nuclear factor of κ-light polypeptide gene enhancer in B-cells inhibitor-α), an inhibitor of the EGFR-signaling pathway, promotes tumorigenesis in glioblastomas that do not have alterations of EGFR. METHODS We analyzed 790 human glioblastomas for deletions, mutations, or expression of NFKBIA and EGFR. We studied the tumor-suppressor activity of NFKBIA in tumor-cell culture. We compared the molecular results with the outcome of glioblastoma in 570 affected persons. RESULTS NFKBIA is often deleted but not mutated in glioblastomas; most deletions occur in nonclassical subtypes of the disease. Deletion of NFKBIA and amplification of EGFR show a pattern of mutual exclusivity. Restoration of the expression of NFKBIA attenuated the malignant phenotype and increased the vulnerability to chemotherapy of cells cultured from tumors with NFKBIA deletion; it also reduced the viability of cells with EGFR amplification but not of cells with normal gene dosages of both NFKBIA and EGFR. Deletion and low expression of NFKBIA were associated with unfavorable outcomes. Patients who had tumors with NFKBIA deletion had outcomes that were similar to those in patients with tumors harboring EGFR amplification. These outcomes were poor as compared with the outcomes in patients with tumors that had normal gene dosages of NFKBIA and EGFR. A two-gene model that was based on expression of NFKBIA and O6-methylguanine DNA methyltransferase was strongly associated with the clinical course of the disease. CONCLUSIONS Deletion of NFKBIA has an effect that is similar to the effect of EGFR amplification in the pathogenesis of glioblastoma and is associated with comparatively short survival. PMID:21175304

  2. AZF deletions in infertile men from the Republic of Macedonia.

    Science.gov (United States)

    Plaseski, Toso; Novevski, Predrag; Kocevska, Borka; Dimitrovski, Cedomir; Efremov, Georgi D; Plaseska-Karanfilska, Dijana

    2006-07-01

    Y chromosome deletions in the three azoospermia factor (AZF) regions constitute the most common genetic cause of spermatogenic failure. The aim of this study was to estimate the length and boundaries of the AZF deletions and to correlate the AZF deletions with the sperm concentrations, testicular histology, Y haplogroups and the ethnic origin of the men with deletions. PCR analysis of STS loci in the three AZF regions was used to characterize the deletions. Y haplogroup was predicted from a set of 17 Y short tandem repeats (STR) marker values. A total of nine men out of 218 infertile/subfertile men showed the presence of Y microdeletions. In eight patients the results were consistent with the presence of AZFc deletions, while in one patient a larger deletion involving both AZFb and AZFc regions was detected. In two patients, the deletion, initially diagnosed as AZFc, involved part of the distal part of the AZFb region and in one of them the deletion also extended into the region distal to the AZFc. The 3.5 Mb AZFc deletion, due to homologous recombination between b2 and b4 amplicons, was detected in six men (66.7% of all Y deletions), thus being the most common type of AZF deletion among infertile men from the Republic of Macedonia. Patients with the 3.5 Mb AZFc deletion had azoospermia or severe oligozoospermia and variable histological results [Sertoly cell only syndrome (SCOS), maturity arrest (MA) and hypospermatogenesis (HSG)]. They were of different ethnic origin (Macedonian, Albanian and Romany) and belonged to different Y haplogroups (I1b, J2, E3b and G).

  3. Adenosine A(2A) receptor gene (ADORA2A) variants may increase autistic symptoms and anxiety in autism spectrum disorder.

    Science.gov (United States)

    Freitag, Christine M; Agelopoulos, Konstantin; Huy, Ellen; Rothermundt, Matthias; Krakowitzky, Petra; Meyer, Jobst; Deckert, Jürgen; von Gontard, Alexander; Hohoff, Christa

    2010-01-01

    Autism spectrum disorders (ASDs) are heterogeneous disorders presenting with increased rates of anxiety. The adenosine A(2A) receptor gene (ADORA2A) is associated with panic disorder and is located on chromosome 22q11.23. Its gene product, the adenosine A(2A) receptor, is strongly expressed in the caudate nucleus, which also is involved in ASD. As autistic symptoms are increased in individuals with 22q11.2 deletion syndrome, and large 22q11.2 deletions and duplications have been observed in ASD individuals, in this study, 98 individuals with ASD and 234 control individuals were genotyped for eight single-nucleotide polymorphisms in ADORA2A. Nominal association with the disorder was observed for rs2236624-CC, and phenotypic variability in ASD symptoms was influenced by rs3761422, rs5751876 and rs35320474. In addition, association of ADORA2A variants with anxiety was replicated for individuals with ASD. Findings point toward a possible mediating role of ADORA2A variants on phenotypic expression in ASD that need to be replicated in a larger sample.

  4. Hard to Swallow: Developmental Biological Insights into Pediatric Dysphagia

    Science.gov (United States)

    LaMantia, Anthony-Samuel; Moody, Sally A.; Maynard, Thomas M.; Karpinski, Beverly A.; Zohn, Irene E.; Mendelowitz, David; Lee, Norman H.; Popratiloff, Anastas

    2015-01-01

    Pediatric dysphagia—feeding and swallowing difficulties that begin at birth, last throughout childhood, and continue into maturity—is one of the most common, least understood complications in children with developmental disorders. We argue that a major cause of pediatric dysphagia is altered hindbrain patterning during pre-natal development. Such changes can compromise craniofacial structures including oropharyngeal muscles and skeletal elements as well as motor and sensory circuits necessary for normal feeding and swallowing. Animal models of developmental disorders that include pediatric dysphagia in their phenotypic spectrum can provide mechanistic insight into pathogenesis of feeding and swallowing difficulties. A fairly common human genetic developmental disorder, DiGeorge/22q11.2 Deletion Syndrome (22q11DS) includes a substantial incidence of pediatric dysphagia in its phenotypic spectrum. Infant mice carrying a parallel deletion to 22q11DS patients have feeding and swallowing difficulties. Altered hindbrain patterning, neural crest migration, craniofacial malformations, and changes in cranial nerve growth prefigure these difficulties. Thus, in addition to craniofacial and pharyngeal anomalies that arise independently of altered neural development, pediatric dysphagia may reflect disrupted hindbrain patterning and its impact on neural circuit development critical for feeding and swallowing. The mechanisms that disrupt hindbrain patterning and circuitry may provide a foundation to develop novel therapeutic approaches for improved clinical management of pediatric dysphagia. PMID:26554723

  5. Effectiveness of multiplex ligation-dependent probe amplification assay used for detecting deletion of Prader-Willi syndrome%应用多重连接探针扩增法简便高效检测Prader-Willi综合征的基因缺失

    Institute of Scientific and Technical Information of China (English)

    Hong SHAO; Va LIP; Bai-Lin WU

    2005-01-01

    Objective: Prader-Willi syndrome (PWS) is characterized by severe hypotonia and feeding difficulties in early infancy, followed by excessive eating and gradual development of morbid obesity in later infancy or early childhood. Patients with PWS are often too young to manifest sufficient features or have atypical findings, making genetic testing important to confirm the diagnosis of PWS. Approximately 99% of patients with PWS have a diagnostic abnormality in the parent-specific methylation imprint within the Prader-Willi critical region (PWCR) at chromosome 15q11.2-q12. Of them, 70% have a paternal deletion; 25% have a maternal uniparental disomy (UPD); and <5% have a mutation in the imprinting center. Methods: Current techniques can identify a diagnostic abnormality, such as paternal deletion or maternal UPD for most of patients with PWS, but they are labor-intensive and cost-expensive. Multiplex ligation-dependent probe amplification (MLPA) is a novel, simple, and cost-effective technique for analysis of relative quantification in a single assay, which has recently been applied for the detection of genomic deletions, duplications, and amplifications in a variety of genes. Results: Six out of 20 patients referred for genetic diagnosis of PWS were found to have a deletion by MLPA, confirmed by FISH and DNA methylation analysis with 100% concordance. Conclusion: MLPA's high sensitivity and specificity for deletion detection is the same as FISH or Southern blot based analysis. Additional collaborative effort for developing and validating the complete MLPA-PWS assay, for not only detecting deletion but also identifying methylation abnormality, is on going.

  6. 3q27.3 microdeletional syndrome

    DEFF Research Database (Denmark)

    Thevenon, Julien; Callier, Patrick; Poquet, Hélène

    2014-01-01

    BACKGROUND: Since the advent of array-CGH, numerous new microdeletional syndromes have been delineated while others remain to be described. Although 3q29 subtelomeric deletion is a well-described syndrome, there is no report on 3q interstitial deletions. METHODS: We report for the first time seven...... (18.5report on a new microdeletional syndrome...

  7. Paternal uniparental disomy chromosome 14-like syndrome due a maternal de novo 160 kb deletion at the 14q32.2 region not encompassing the IG- and the MEG3-DMRs: Patient report and genotype-phenotype correlation.

    Science.gov (United States)

    Corsello, Giovanni; Salzano, Emanuela; Vecchio, Davide; Antona, Vincenzo; Grasso, Marina; Malacarne, Michela; Carella, Massimo; Palumbo, Pietro; Piro, Ettore; Giuffrè, Mario

    2015-12-01

    The human chromosome 14q32 carries a cluster of imprinted genes which include the paternally expressed genes (PEGs) DLK1 and RTL1, as well as the maternally expressed genes (MEGs) MEG3, RTL1as, and MEG8. PEGs and MEGs expression at the 14q32.2-imprinted region are regulated by two differentially methylated regions (DMRs): the IG-DMR and the MEG3-DMR, which are respectively methylated on the paternal and unmethylated on the maternal chromosome 14 in most cells. Genetic and epigenetic abnormalities affecting these imprinted gene clusters result in two different phenotypes currently known as maternal upd(14) syndrome and paternal upd(14) syndrome. However, only few patients carrying a maternal deletion at the 14q32.2-imprinted critical region have been reported so far. Here we report on the first patient with a maternal de novo deletion of 160 kb at the 14q32.2 chromosome that does not involves the IG-DMR or the MEG3-DMR but elicits a full upd(14)pat syndrome's phenotype encompassing the three mentioned MEGs. By the analysis of this unique genotype-phenotype correlation, we further widen the spectrum of the congenital anomalies associated to this rare disorder and we propose that the paternally expressed imprinted RTL1 gene, as well as its maternally expressed RTL1as antisense transcript, may play a prominent causative role.

  8. Dissecting the clinical heterogeneity of autism spectrum disorders through defined genotypes.

    Directory of Open Access Journals (Sweden)

    Hilgo Bruining

    Full Text Available BACKGROUND: The etiology of autism spectrum disorders (ASD is largely determined by different genetic factors of variable impact. This genetic heterogeneity could be a factor to explain the clinical heterogeneity of autism spectrum disorders. Here, a first attempt is made to assess whether genetically more homogeneous ASD groups are associated with decreased phenotypic heterogeneity with respect to their autistic symptom profile. METHODOLOGY: The autistic phenotypes of ASD subjects with 22q11 deletion syndrome (22q11DS and ASD subjects with Klinefelter Syndrome (KS were statistically compared to the symptom profile of a large (genetically heterogeneous ASD sample. Autism diagnostic interview-revised (ADI-R variables were entered in different statistical analyses to assess differences in symptom homogeneity and the feasibility of discrimination of group-specific ASD-symptom profiles. PRINCIPAL FINDINGS: The results showed substantially higher symptom homogeneity in both the genetic disorder ASD groups in comparison to the heterogeneous ASD sample. In addition, a robust discrimination between 22q11-ASD and KS-ASD and idiopathic ASD phenotypes was feasible on the basis of a reduced number of autistic scales and symptoms. The lack of overlap in discriminating subscales and symptoms between KS-ASD and 22q11DS-ASD suggests that their autistic symptom profiles cluster around different points in the total diagnostic space of profiles present in the general ASD population. CONCLUSION: The findings of the current study indicate that the clinical heterogeneity of ASDs may be reduced when subgroups based on a specific genotype are extracted from the idiopathic ASD population. The current strategy involving the widely used ADI-R offers a relatively straightforward possibility for assessing genotype-phenotype ASD relationships. Reverse phenotype strategies are becoming more feasible, given the accumulating evidence for the existence of genetic variants of

  9. Genetic obesity syndromes.

    Science.gov (United States)

    Goldstone, Anthony P; Beales, Philip L

    2008-01-01

    There are numerous reports of multi-system genetic disorders with obesity. Many have a characteristic presentation and several, an overlapping phenotype indicating the likelihood of a shared common underlying mechanism or pathway. By understanding the genetic causes and functional perturbations of such syndromes we stand to gain tremendous insight into obesogenic pathways. In this review we focus particularly on Bardet-Biedl syndrome, whose molecular genetics and cell biology has been elucidated recently, and Prader-Willi syndrome, the commonest obesity syndrome due to loss of imprinted genes on 15q11-13. We also discuss highlights of other genetic obesity syndromes including Alstrom syndrome, Cohen syndrome, Albright's hereditary osteodystrophy (pseudohypoparathyroidism), Carpenter syndrome, MOMO syndrome, Rubinstein-Taybi syndrome, cases with deletions of 6q16, 1p36, 2q37 and 9q34, maternal uniparental disomy of chromosome 14, fragile X syndrome and Börjeson-Forssman-Lehman syndrome.

  10. Characterization of a lymphoblastoid line deleted for lambda immunoglobulin genes

    Energy Technology Data Exchange (ETDEWEB)

    Hough, C.A., White, B.N., Holden, J.A. [Queen`s Univ., Ontario (Canada)

    1995-04-01

    While characterizing the cat eye syndrome (CES) supernumerary chromosome for the presence of {lambda} immunoglobulin gene region sequences, a lymphoblastoid cell line from one CES patient was identified in which there was selection of cells deleted from some IGLC and IGLV genes. Two distinct deletions, one on each chromosome 22, were identified, presumably arising from independent somatic recombination events occurring during B-lymphocyte differentiation. The extent of the deleted regions was determined using probes from the various IGLV subgroups and they each covered at least 82 kilobases. The precise definition of the deletions was not possible because of conservation of some restriction sites in the IGLV region. The cell line was used to map putative IGLV genes within the recombinant phage {lambda}V{lambda}135 to the distal part of the IGLV gene region. 35 refs., 4 figs.

  11. A Novel Aberrant Splice Site Mutation in RAB23 Leads to an Eight Nucleotide Deletion in the mRNA and Is Responsible for Carpenter Syndrome in a Consanguineous Emirati Family

    OpenAIRE

    2012-01-01

    Carpenter syndrome is caused by mutations in the RAB23 gene that encodes a small GTPase of the Rab subfamily of proteins. Rab proteins are known to be involved in the regulation of cellular trafficking and signal transduction. Currently, only few mutations in RAB23 have been reported in patients with Carpenter syndrome. In this paper, we report the clinical features, molecular and functional analysis of 2 children from an Emirati consanguineous family with this syndrome. The affected children...

  12. Long interspersed nuclear element-1 (LINE1)-mediated deletion of EVC, EVC2, C4orf6, and STK32B in Ellis-van Creveld syndrome with borderline intelligence.

    Science.gov (United States)

    Temtamy, Samia A; Aglan, Mona S; Valencia, Maria; Cocchi, Guido; Pacheco, Maria; Ashour, Adel M; Amr, Khalda S; Helmy, Sanaa M H; El-Gammal, Mona A; Wright, Michael; Lapunzina, Pablo; Goodship, Judith A; Ruiz-Perez, Victor L

    2008-07-01

    Previous work has shown Ellis-van Creveld (EvC) patients with mutations either in both alleles of EVC or in both alleles of EVC2. We now report affected individuals with the two genes inactivated on each allele. In a consanguineous pedigree diagnosed with EvC and borderline intelligence, we detected a 520-kb homozygous deletion comprising EVC, EVC2, C4orf6, and STK32B, caused by recombination between long interspersed nuclear element-1 (LINE-1 or L1) elements. Patients homozygous for the deletion are deficient in EVC and EVC2 and have no increase in the severity of the EvC typical features. Similarly deletion carriers demonstrate absence of digenic inheritance in EvC. Further, the phenotype of these patients suggests that the EVC-STK32B deletion also leads to mild mental retardation and reveals that loss of the novel genes C4orf6 and STK32B causes at most mild mental deficit. In an EvC compound heterozygote of different ethnic origin we identified the same LINE-to-LINE rearrangement due to a different recombination event. These findings highlight the importance of L1 repetitive sequences in human genome architecture and disease.

  13. PRODH mutations and hyperprolinemia in a subset of schizophrenic patients.

    Science.gov (United States)

    Jacquet, Hélène; Raux, Grégory; Thibaut, Florence; Hecketsweiler, Bernadette; Houy, Emmanuelle; Demilly, Caroline; Haouzir, Sadeq; Allio, Gabrielle; Fouldrin, Gael; Drouin, Valérie; Bou, Jacqueline; Petit, Michel; Campion, Dominique; Frébourg, Thierry

    2002-09-15

    The increased prevalence of schizophrenia among patients with the 22q11 interstitial deletion associated with DiGeorge syndrome has suggested the existence of a susceptibility gene for schizophrenia within the DiGeorge syndrome chromosomal region (DGCR) on 22q11. Screening for genomic rearrangements of 23 genes within or at the boundaries of the DGCR in 63 unrelated schizophrenic patients and 68 unaffected controls, using quantitative multiplex PCR of short fluorescent fragments (QMPSF), led us to identify, in a family including two schizophrenic subjects, a heterozygous deletion of the entire PRODH gene encoding proline dehydrogenase. This deletion was associated with hyperprolinemia in the schizophrenic patients. In addition, two heterozygous PRODH missense mutations (L441P and L289M), detected in 3 of 63 schizophrenic patients but in none among 68 controls, were also associated with increased plasma proline levels. Segregation analysis within the two families harboring respectively the PRODH deletion and the L441P mutation showed that the presence of a second PRODH nucleotide variation resulted in higher levels of prolinemia. In two unrelated patients suffering from severe type I hyperprolinemia with neurological manifestations, we identified a homozygous L441P PRODH mutation, associated with a heterozygous R453C substitution in one patient. These observations demonstrate that type I hyperprolinemia is present in a subset of schizophrenic patients, and suggest that the genetic determinism of type I hyperprolinemia is complex, the severity of hyperprolinemia depending on the nature and number of hits affecting the PRODH locus.

  14. Genetics Home Reference: Jacobsen syndrome

    Science.gov (United States)

    ... disorders, which are characterized by impaired communication and socialization skills. Jacobsen syndrome is also characterized by distinctive ... they can pass the chromosome deletion to their children. Between 5 and 10 percent of people with ...

  15. Novel large-range mitochondrial DNA deletions and fatal multisystemic disorder with prominent hepatopathy

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Marzia; Rizza, Teresa; Verrigni, Daniela [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Martinelli, Diego [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Tozzi, Giulia; Torraco, Alessandra; Piemonte, Fiorella [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Dionisi-Vici, Carlo [Division of Metabolism, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Nobili, Valerio [Gastroenterology and Liver Unit, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Francalanci, Paola; Boldrini, Renata; Callea, Francesco [Dept. Pathology, ' Bambino Gesu' Children' s Hospital, Rome (Italy); Santorelli, Filippo Maria [UOC Neurogenetica e Malattie Neuromuscolari, Fondazione Stella Maris, Pisa (Italy); Bertini, Enrico [Unit of Molecular Medicine for Neuromuscular and Neurodegenerative Diseases, ' Bambino Gesu' Children' s Hospital, Rome (Italy); and others

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Expanded array of mtDNA deletions. Black-Right-Pointing-Pointer Pearson syndrome with prominent hepatopathy associated with single mtDNA deletions. Black-Right-Pointing-Pointer Detection of deletions in fibroblasts and blood avoids muscle and liver biopsy. Black-Right-Pointing-Pointer Look for mtDNA deletions before to study nuclear genes related to mtDNA depletion. -- Abstract: Hepatic involvement in mitochondrial cytopathies rarely manifests in adulthood, but is a common feature in children. Multiple OXPHOS enzyme defects in children with liver involvement are often associated with dramatically reduced amounts of mtDNA. We investigated two novel large scale deletions in two infants with a multisystem disorder and prominent hepatopathy. Amount of mtDNA deletions and protein content were measured in different post-mortem tissues. The highest levels of deleted mtDNA were in liver, kidney, pancreas of both patients. Moreover, mtDNA deletions were detected in cultured skin fibroblasts in both patients and in blood of one during life. Biochemical analysis showed impairment of mainly complex I enzyme activity. Patients manifesting multisystem disorders in childhood may harbour rare mtDNA deletions in multiple tissues. For these patients, less invasive blood specimens or cultured fibroblasts can be used for molecular diagnosis. Our data further expand the array of deletions in the mitochondrial genomes in association with liver failure. Thus analysis of mtDNA should be considered in the diagnosis of childhood-onset hepatopathies.

  16. Mitochondrial Myopathy with DNA Deletions

    OpenAIRE

    J Gordon Millichap

    1992-01-01

    Deletions of mitochondrial DNA (mtDNA) are reported in 19 of 56 patients with mitochondrial myopathy examined in the Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN.

  17. A 600 kb triplication in the cat eye syndrome critical region causes anorectal, renal and preauricular anomalies in a three-generation family.

    Science.gov (United States)

    Knijnenburg, Jeroen; van Bever, Yolande; Hulsman, Lorette O M; van Kempen, Chantal A P; Bolman, Galhana M; van Loon, Rosa Laura E; Beverloo, H Berna; van Zutven, Laura J C M

    2012-09-01

    Cat eye syndrome (CES) is caused by a gain of the proximal part of chromosome 22. Usually, a supernumerary marker chromosome is present, containing two extra copies of the chromosome 22q11.1q11.21 region. More sporadically, the gain is present intrachromosomally. The critical region for CES is currently estimated to be about 2.1 Mb and to contain at least 14 RefSeq genes. Gain of this region may cause ocular coloboma, preauricular, anorectal, urogenital and congenital heart malformations. We describe a family in which a 600 kb intrachromosomal triplication is present in at least three generations. The copy number alteration was detected using MLPA and further characterized with interphase and metaphase FISH and SNP-array. The amplified fragment is located in the distal part of the CES region. The family members show anal atresia and preauricular tags or pits, matching part of the phenotype of this syndrome. This finding suggests that amplification of the genes CECR2, SLC25A18 and ATP6V1E1, mapping within the critical region for CES, may be responsible for anorectal, renal and preauricular anomalies in patients with CES.

  18. What binds biosociality? The collective effervescence of the parent-led conference.

    Science.gov (United States)

    Dimond, Rebecca; Bartlett, Andrew; Lewis, Jamie

    2015-02-01

    Questions of community are central to many research settings in the social sciences. Rabinow argued that, in the wake of the Human Genome Project, an increasingly important form of collectivity would be biosociality. Biosociality recognises a central role for biomedical knowledge in constructing genetic identities and producing and reproducing social relationships. Accordingly, it is often imagined as a new form of social solidarity. We draw on observations of parent-led conferences to explore the way in which biosociality is expressed at events organised around a particular genetic syndrome - 22q11 deletion syndrome. The parent-led conferences took place within the United Kingdom between 2007 and 2010 and were observed as part of a multi-sited ethnographic study. By bringing together a geographically dispersed group of people together within the same physical location, conferences offer an ideal platform to empirically examine sociality. Durkheim used the term collective effervescence to describe the collective expression of heightened emotion. We suggest that in the case of the 22q11 deletion syndrome activities discussed in this paper, collective effervescence is a mechanism through which individuals become a collective. We argue that parent-led conferences gather individuals in one location on the basis of common biological factors, but it is the shared emotional experience of being together that consolidates and renews the connection between members.

  19. Outcomes in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with isolated deletion 5q treated with lenalidomide: A subset analysis from the MDS-004 study

    NARCIS (Netherlands)

    A. Giagounidis (Aristoteles); G.J. Mufti (Ghulam); M. Mittelman (Moshe); G. Sanz (Guillermo); U. Platzbecker (Uwe); P. Muus (P.); D. Selleslag; O. Beyne-Rauzy (Odile); P.A.W. te Boekhorst (Peter); C. del Cañizo (Consuelo); A. Guerci-Bresler (Agnes); L. Nilsson (Lars); M. Lübbert (Michael); B. Quesnel (Bruno); A. Ganser (Arnold); D. Bowen (David); B. Schlegelberger (Brigitte); G. Göhring (Gudrun); T. Fu (Tommy); B. Benettaib (Bouchra); E. Hellström-Lindberg (Eva); P. Fenaux (Pierre)

    2014-01-01

    textabstractObjective: A subset analysis of the randomised, phase 3, MDS-004 study to evaluate outcomes in patients with International Prognostic Scoring System (IPSS)-defined Low-/Intermediate (Int)-1-risk myelodysplastic syndromes (MDS) with isolated del(5q). Methods: Patients received lenalidomid

  20. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    NARCIS (Netherlands)

    Vega, H.; Trainer, A.H.; Gordillo, M.; Crosier, M.; Kayserili, H.; Skovby, F.; Uzielli, M.L.G.; Schnur, R.E.; Manouvrier, S.; Blair, E.; Hurst, J.A.; Forzano, F.; Meins, M.; Simola, K.O.J.; Raas-Rothschild, A; Hennekam, R.C.M.; Jabs, E.W.

    2010-01-01

    Background Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be trunc

  1. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    DEFF Research Database (Denmark)

    Vega, H; Trainer, A H; Gordillo, M;

    2010-01-01

    Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be truncating mu...

  2. Phenotypic variability in 49 cases of ESCO2 mutations, including novel missense and codon deletion in the acetyltransferase domain, correlates with ESCO2 expression and establishes the clinical criteria for Roberts syndrome

    DEFF Research Database (Denmark)

    Vega, H; Trainer, A H; Gordillo, M;

    2010-01-01

    Roberts syndrome (RBS) and SC phocomelia are caused by mutations in ESCO2, which codes for an acetyltransferase involved in the regulation of sister chromatid cohesion. Of 26 mutations described to date, only one missense mutation has been reported and all others are predicted to be truncating...

  3. Ovotestes and XY sex reversal in a female with an interstitial 9q33.3-q34.1 deletion encompassing NR5A1 and LMX1B causing features of Genitopatellar syndrome.

    NARCIS (Netherlands)

    Schlaubitz, S.; Yatsenko, S.A.; Smith, L.D.; Keller, K.L.; Vissers, L.E.L.M.; Scott, D.A.; Cai, W.W.; Reardon, W.; Abdul-Rahman, O.A.; Lammer, E.J.; Lifchez, C.A.; Magenis, E.; Veltman, J.A.; Stankiewicz, P.; Zabel, B.U.; Lee, B.

    2007-01-01

    We describe our findings in a 46,XY female with a clinical features of Genitopatellar syndrome (GPS) and confirmed hermaphroditism with ovotestes, and five additional patients with GPS. GPS is a genetic disorder characterized by renal and genital anomalies, joint dislocation, aplastic or hypoplastic

  4. Clinical applications of schizophrenia genetics: genetic diagnosis, risk, and counseling in the molecular era

    Directory of Open Access Journals (Sweden)

    Costain G

    2012-02-01

    Full Text Available Gregory Costain1,2, Anne S Bassett1–41Clinical Genetics Research Program, Centre for Addiction and Mental Health, 2Institute of Medical Science, University of Toronto, 3Division of Cardiology, Department of Medicine and Department of Psychiatry, University Health Network, 4Department of Psychiatry, University of Toronto, Toronto, Ontario, CanadaAbstract: Schizophrenia is a complex neuropsychiatric disease with documented clinical and genetic heterogeneity, and evidence for neurodevelopmental origins. Driven by new genetic technologies and advances in molecular medicine, there has recently been concrete progress in understanding some of the specific genetic causes of this serious psychiatric illness. In particular, several large rare structural variants have been convincingly associated with schizophrenia, in targeted studies over two decades with respect to 22q11.2 microdeletions, and more recently in large-scale, genome-wide case-control studies. These advances promise to help many families afflicted with this disease. In this review, we critically appraise recent developments in the field of schizophrenia genetics through the lens of immediate clinical applicability. Much work remains in translating the recent surge of genetic research discoveries into the clinic. The epidemiology and basic genetic parameters (such as penetrance and expression of most genomic disorders associated with schizophrenia are not yet well characterized. To date, 22q11.2 deletion syndrome is the only established genetic subtype of schizophrenia of proven clinical relevance. We use this well-established association as a model to chart the pathway for translating emerging genetic discoveries into clinical practice. We also propose new directions for research involving general genetic risk prediction and counseling in schizophrenia.Keywords: schizophrenia, genetics, 22q11 deletion syndrome, copy number variation, genetic counseling, genetic predisposition to disease

  5. Jacobsen syndrome.

    Science.gov (United States)

    Mattina, Teresa; Perrotta, Concetta Simona; Grossfeld, Paul

    2009-03-07

    Jacobsen syndrome is a MCA/MR contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. To date, over 200 cases have been reported. The prevalence has been estimated at 1/100,000 births, with a female/male ratio 2:1. The most common clinical features include pre- and postnatal physical growth retardation, psychomotor retardation, and characteristic facial dysmorphism (skull deformities, hypertelorism, ptosis, coloboma, downslanting palpebral fissures, epicanthal folds, broad nasal bridge, short nose, v-shaped mouth, small ears, low set posteriorly rotated ears). Abnormal platelet function, thrombocytopenia or pancytopenia are usually present at birth. Patients commonly have malformations of the heart, kidney, gastrointestinal tract, genitalia, central nervous system and skeleton. Ocular, hearing, immunological and hormonal problems may be also present. The deletion size ranges from approximately 7 to 20 Mb, with the proximal breakpoint within or telomeric to subband 11q23.3 and the deletion extending usually to the telomere. The deletion is de novo in 85% of reported cases, and in 15% of cases it results from an unbalanced segregation of a familial balanced translocation or from other chromosome rearrangements. In a minority of cases the breakpoint is at the FRA11B fragile site. Diagnosis is based on clinical findings (intellectual deficit, facial dysmorphic features and thrombocytopenia) and confirmed by cytogenetics analysis. Differential diagnoses include Turner and Noonan syndromes, and acquired thrombocytopenia due to sepsis. Prenatal diagnosis of 11q deletion is possible by amniocentesis or chorionic villus sampling and cytogenetic analysis. Management is multi-disciplinary and requires evaluation by general pediatrician, pediatric cardiologist, neurologist, ophthalmologist. Auditory tests, blood tests, endocrine and immunological assessment and follow-up should be offered to all patients. Cardiac malformations can be very severe

  6. Jacobsen syndrome

    Directory of Open Access Journals (Sweden)

    Grossfeld Paul

    2009-03-01

    Full Text Available Abstract Jacobsen syndrome is a MCA/MR contiguous gene syndrome caused by partial deletion of the long arm of chromosome 11. To date, over 200 cases have been reported. The prevalence has been estimated at 1/100,000 births, with a female/male ratio 2:1. The most common clinical features include pre- and postnatal physical growth retardation, psychomotor retardation, and characteristic facial dysmorphism (skull deformities, hypertelorism, ptosis, coloboma, downslanting palpebral fissures, epicanthal folds, broad nasal bridge, short nose, v-shaped mouth, small ears, low set posteriorly rotated ears. Abnormal platelet function, thrombocytopenia or pancytopenia are usually present at birth. Patients commonly have malformations of the heart, kidney, gastrointestinal tract, genitalia, central nervous system and skeleton. Ocular, hearing, immunological and hormonal problems may be also present. The deletion size ranges from ~7 to 20 Mb, with the proximal breakpoint within or telomeric to subband 11q23.3 and the deletion extending usually to the telomere. The deletion is de novo in 85% of reported cases, and in 15% of cases it results from an unbalanced segregation of a familial balanced translocation or from other chromosome rearrangements. In a minority of cases the breakpoint is at the FRA11B fragile site. Diagnosis is based on clinical findings (intellectual deficit, facial dysmorphic features and thrombocytopenia and confirmed by cytogenetics analysis. Differential diagnoses include Turner and Noonan syndromes, and acquired thrombocytopenia due to sepsis. Prenatal diagnosis of 11q deletion is possible by amniocentesis or chorionic villus sampling and cytogenetic analysis. Management is multi-disciplinary and requires evaluation by general pediatrician, pediatric cardiologist, neurologist, ophthalmologist. Auditory tests, blood tests, endocrine and immunological assessment and follow-up should be offered to all patients. Cardiac malformations can be

  7. Anterior Pituitary Aplasia in an Infant with Ring Chromosome 18p Deletion

    Directory of Open Access Journals (Sweden)

    Edward J. Bellfield

    2016-01-01

    Full Text Available We present the first reported case of an infant with 18p deletion syndrome with anterior pituitary aplasia secondary to a ring chromosome. Endocrine workup soon after birth was reassuring; however, repeat testing months later confirmed central hypopituitarism. While MRI reading initially indicated no midline defects, subsequent review of the images confirmed anterior pituitary aplasia with ectopic posterior pituitary. This case demonstrates how deletion of genetic material, even if resulting in a chromosomal ring, still results in a severe syndromic phenotype. Furthermore, it demonstrates the necessity of close follow-up in the first year of life for children with 18p deletion syndrome and emphasizes the need to verify radiology impressions if there is any doubt as to the radiologic findings.

  8. Deletion of chromosome 21 in a girl with congenital hypothyroidism and mild mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    Ahlbom, B.E.; Anneren, G. [Univ. Hospital, Uppsala (Sweden); Sidenvall, R. [Central Hospital of Hudiksvall (Sweden)

    1996-08-23

    We report on a girl with a large interstitial deletion of the long arm of chromosome 21 and with mild mental retardation, congenital hypothyroidism, and hyperopia. The deletion [del(21)(q11.1-q22.1)] extends molecularly from marker D21S215 to D21S213. The distal breakpoint is not clearly defined but is situated between markers D21S213 and IFNAR. This patient has the largest deletion of chromosome 21 known without having severe mental retardation or malformations. The deletion does not involve the {open_quotes}Down syndrome chromosome{close_quotes} region, the region of chromosome 21 which in trisomy causes most of the manifestations of Down syndrome. Apparently, the proximal part of the long arm of chromosome 21 does not include genes that are responsible for severe clinical effects in the event of either deletion or duplication, since several reported patients with either trisomy or deletion of this region have mild phenotypic abnormalities. Congenital hypothyroidism is much more common in Down syndrome than in the average population. Thus, the congenital hypothyroidism of the present patient might indicate that there is one or several genes on the proximal part of chromosome 21, which might be of importance for the thyroid function. 24 refs., 4 figs., 2 tabs.

  9. A common cognitive, psychiatric, and dysmorphic phenotype in carriers of NRXN1 deletion.

    Science.gov (United States)

    Viñas-Jornet, Marina; Esteba-Castillo, Susanna; Gabau, Elisabeth; Ribas-Vidal, Núria; Baena, Neus; San, Joan; Ruiz, Anna; Coll, Maria Dolors; Novell, Ramon; Guitart, Miriam

    2014-11-01

    Deletions in the 2p16.3 region that includes the neurexin (NRXN1) gene are associated with intellectual disability and various psychiatric disorders, in particular, autism and schizophrenia. We present three unrelated patients, two adults and one child, in whom we identified an intragenic 2p16.3 deletion within the NRXN1 gene using an oligonucleotide comparative genomic hybridization array. The three patients presented dual diagnosis that consisted of mild intellectual disability and autism and bipolar disorder. Also, they all shared a dysmorphic phenotype characterized by a long face, deep set eyes, and prominent premaxilla. Genetic analysis of family members showed two inherited deletions. A comprehensive neuropsychological examination of the 2p16.3 deletion carriers revealed the same phenotype, characterized by anxiety disorder, borderline intelligence, and dysexecutive syndrome. The cognitive pattern of dysexecutive syndrome with poor working memory and reduced attention switching, mental flexibility, and verbal fluency was the same than those of the adult probands. We suggest that in addition to intellectual disability and psychiatric disease, NRXN1 deletion is a risk factor for a characteristic cognitive and dysmorphic profile. The new cognitive phenotype found in the 2p16.3 deletion carriers suggests that 2p16.3 deletions might have a wide variable expressivity instead of incomplete penetrance.

  10. A novel acquired cryptic three-way translocation t(2;11;5)(p21.3;q13.5;q23.2) with a submicroscopic deletion at 11p14.3 in an adult with hypereosinophilic syndrome.

    Science.gov (United States)

    Kjeldsen, Eigil

    2015-08-01

    Hypereosinophilic syndrome (HES) is a clinically and pathologically heterogeneous disease entity. It is characterized by persistent eosinophilia and organ damage after excluding other causes. Clonal eosinophilia is distinguished from idiopathic eosinophilia by the presence of histologic, cytogenetic, or molecular evidence of an underlying malignancy. There are two distinct subcategories of clonal eosinophilia: chronic eosinophilic leukemia, not otherwise specified and myeloid/lymphoid neoplasms with eosinophilia and mutations involving platelet-derived growth factor receptor α/β or fibroblast growth factor receptor 1. More than 50% of HES are without knowledge of underlying pathogenic molecular pathways. Here we examined a HES patient by oligo-based aCGH analysis and molecular cytogenetic methods. Examination for the common eosinophilia-related cytogenetic abnormalities involving the genes PDGFRA, PDGFRB, and FGFR1 together with BCR-ABL fusion gene was negative. Cytogenetic analysis and multi-color FISH analysis revealed a novel cryptic three-way translocation t(2;11;5)(p21.3;q13.5;q23.2). By oaCGH analysis we could not find any copy number changes related to the cytogenetic breakpoints but instead detected a 0.9Mb submicroscopic deletion at 11p14.3. The deleted region involved the 5'-upstream sequences and exons 1-4 of the LUZP2 gene, which encodes a leucine zipper protein. Analysis of surrogate germ-line cells revealed a normal result showing that the detected chromosomal aberrations were acquired. This is the first report on a HES patient associated with a novel complex three-way translocation t(2;11;5)(p21.3;q13.5;q23.2) and a submicroscopic deletion in chromosome band 11p14.3. The study also demonstrates the benefits of oligo-based aCGH analysis in detecting hidden disease related chromosomal abnormalities. The present findings provide additional clues to unravel important molecular pathways in HES to obtain the full spectrum of acquired chromosomal and

  11. Eating behavior, prenatal and postnatal growth in Angelman syndrome

    DEFF Research Database (Denmark)

    Mertz, Line Granild Bie; Christensen, Rikke; Vogel, Ida;

    2014-01-01

    The objectives of the present study were to investigate eating behavior and growth parameters in Angelman syndrome. We included 39 patients with Angelman syndrome. Twelve cases had a larger Class I deletion, eighteen had a smaller Class II deletion, whereas paternal uniparental disomy (pUPD) or a...

  12. FOXL2 copy number changes in the molecular pathogenesis of BPES: unique cohort of 17 deletions.

    Science.gov (United States)

    D'haene, B; Nevado, J; Pugeat, M; Pierquin, G; Lowry, R B; Reardon, W; Delicado, A; García-Miñaur, S; Palomares, M; Courtens, W; Stefanova, M; Wallace, S; Watkins, W; Shelling, A N; Wieczorek, D; Veitia, R A; De Paepe, A; Lapunzina, P; De Baere, E

    2010-05-01

    Blepharophimosis Syndrome (BPES) is an autosomal dominant developmental disorder of the eyelids with or without ovarian dysfunction caused by FOXL2 mutations. Overall, FOXL2deletions represent 12% of all genetic defects in BPES. Here, we have identified and characterized 16 new and one known FOXL2 deletion combining multiplex ligation-dependent probe amplification (MLPA), custom-made quantitative PCR (qPCR) and/or microarray-based copy number screening. The deletion breakpoints could be localized for 13 out of 17 deletions. The deletion size is highly variable (29.8 kb - 11.5 Mb), indicating absence of a recombination hotspot. Although the heterogeneity of their size and breakpoints is not reflected in the uniform BPES phenotype, there is considerable phenotypic variability regarding associated clinical findings including psychomotor retardation (8/17), microcephaly (6/17), and subtle skeletal features (2/17). In addition, in all females in whom ovarian function could be assessed, FOXL2 deletions proved to be associated with variable degrees of ovarian dysfunction. In conclusion, we present the largest series of BPES patients with FOXL2 deletions and standardized phenotyping reported so far. Our genotype-phenotype data can be useful for providing a prognosis (i.e. occurrence of associated features) in newborns with BPES carrying a FOXL2 deletion.

  13. Angelman Syndrome: Genetic Mechanisms and Relationship to Prader-Willi Syndrome.

    Science.gov (United States)

    Smith, Arabella

    1994-01-01

    Research points to two distinct regions within the Prader-Willi chromosome region: one for Prader Willi syndrome and one for Angelman syndrome. Genetic mechanisms in Angelman syndrome are complex, and at present, three mechanisms are recognized: maternal deletion, paternal uniparental disomy, and a nondeleted nondisomic form. (Author/JDD)

  14. 76 FR 9555 - Procurement List; Proposed Deletions

    Science.gov (United States)

    2011-02-18

    ... PEOPLE WHO ARE BLIND OR SEVERELY DISABLED Procurement List; Proposed Deletions AGENCY: Committee for Purchase From People Who Are Blind or Severely Disabled. ACTION: Proposed deletions from the Procurement...'Day Act (41 U.S.C. 46- 48c) in connection with the products proposed for deletion from the...

  15. Genetics Home Reference: Kearns-Sayre syndrome

    Science.gov (United States)

    ... Deletion Syndromes ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific Articles on PubMed (1 link) PubMed OMIM (1 link) ... M, Bonilla E, Schon EA, DiMauro S, Moraes CT. Distribution of wild-type and common deletion forms of mtDNA in normal and respiration-deficient muscle fibers from patients with ...

  16. Sotos syndrome

    Directory of Open Access Journals (Sweden)

    Cormier-Daire Valérie

    2007-09-01

    Full Text Available Abstract Sotos syndrome is an overgrowth condition characterized by cardinal features including excessive growth during childhood, macrocephaly, distinctive facial gestalt and various degrees of learning difficulty, and associated with variable minor features. The exact prevalence remains unknown but hundreds of cases have been reported. The diagnosis is usually suspected after birth because of excessive height and occipitofrontal circumference (OFC, advanced bone age, neonatal complications including hypotonia and feeding difficulties, and facial gestalt. Other inconstant clinical abnormalities include scoliosis, cardiac and genitourinary anomalies, seizures and brisk deep tendon reflexes. Variable delays in cognitive and motor development are also observed. The syndrome may also be associated with an increased risk of tumors. Mutations and deletions of the NSD1 gene (located at chromosome 5q35 and coding for a histone methyltransferase implicated in transcriptional regulation are responsible for more than 75% of cases. FISH analysis, MLPA or multiplex quantitative PCR allow the detection of total/partial NSD1 deletions, and direct sequencing allows detection of NSD1 mutations. The large majority of NSD1 abnormalities occur de novo and there are very few familial cases. Although most cases are sporadic, several reports of autosomal dominant inheritance have been described. Germline mosaicism has never been reported and the recurrence risk for normal parents is very low (

  17. [The Angelman's syndrome].

    Science.gov (United States)

    Djurić-Nedeljković, M; Marjanović, B; Zamurović, D; Guć-Sćekić, M; Lejić, S; Zotović, M

    1994-01-01

    Distinction of patients with Angelman's syndrome in a group of mentally retarded patients is important even though the syndrome was rarely reported since the original description in 1965. Before that time these patients were thought to suffer from neurologic sequelae of perinatal asphyxia, Lennox-Gastaut syndrome or mental retardation of unknown origin. Diagnosis is based on the following criteria: developmental delay from early age, absent speech (or speech limited to less than six words), jerky movements with an ataxic gait if the patient is walking, paroxysm of inappropriate laughing, dysmorphic craniofacial features (brachycephaly, mid-facial hypoplasia, deep set eyes, macrostomia, prominent mandible). About 60% of patients have deletion of chromozome 15q11-13. Cytogenetic studies suggest that de novo deletion of chromozome 15 is connected with the low recurrence risk and that families with several members with Angelman's syndrome belong to the group without identifiable deletion on citogenetic or molecular level. The article deals with the diagnostic criteria, clinical features and electroencephalographic changes (after several years of followup) in seven children with Angelman's syndrome (four girls and three boys).

  18. Outcomes in RBC transfusion-dependent patients with Low-/Intermediate-1-risk myelodysplastic syndromes with isolated deletion 5q treated with lenalidomide: a subset analysis from the MDS-004 study

    Science.gov (United States)

    Giagounidis, Aristoteles; Mufti, Ghulam J; Mittelman, Moshe; Sanz, Guillermo; Platzbecker, Uwe; Muus, Petra; Selleslag, Dominik; Beyne-Rauzy, Odile; te Boekhorst, Peter; del Cañizo, Consuelo; Guerci-Bresler, Agnès; Nilsson, Lars; Lübbert, Michael; Quesnel, Bruno; Ganser, Arnold; Bowen, David; Schlegelberger, Brigitte; Göhring, Gudrun; Fu, Tommy; Benettaib, Bouchra; Hellström-Lindberg, Eva; Fenaux, Pierre

    2014-01-01

    Objective A subset analysis of the randomised, phase 3, MDS-004 study to evaluate outcomes in patients with International Prognostic Scoring System (IPSS)-defined Low-/Intermediate (Int)-1-risk myelodysplastic syndromes (MDS) with isolated del(5q). Methods Patients received lenalidomide 10 mg/d (days 1–21; n = 47) or 5 mg/d (days 1–28; n = 43) on 28-d cycles or placebo (n = 45). From the placebo and lenalidomide 5 mg groups, 84% and 58% of patients, respectively, crossed over to lenalidomide 5 or 10 mg at 16 wk, respectively. Results Rates of red blood cell-transfusion independence (RBC-TI) ≥182 d were higher in the lenalidomide 10 mg (57.4%; P < 0.0001) and 5 mg (37.2%; P = 0.0001) groups vs. placebo (2.2%). Cytogenetic response rates (major + minor responses) were 56.8% (P < 0.0001), 23.1% (P = 0.0299) and 0%, respectively. Two-year cumulative risk of acute myeloid leukaemia progression was 12.6%, 17.4% and 16.7% in the lenalidomide 10 mg, 5 mg, and placebo groups, respectively. In a 6-month landmark analysis, overall survival was longer in lenalidomide-treated patients with RBC-TI ≥182 d vs. non-responders (P = 0.0072). The most common grade 3–4 adverse event was myelosuppression. Conclusions These data support the clinical benefits and acceptable safety profile of lenalidomide in transfusion-dependent patients with IPSS-defined Low-/Int-1-risk MDS with isolated del(5q). PMID:24813620

  19. NPM1 deletion is associated with gross chromosomal rearrangements in leukemia.

    Directory of Open Access Journals (Sweden)

    Roberta La Starza

    Full Text Available BACKGROUND: NPM1 gene at chromosome 5q35 is involved in recurrent translocations in leukemia and lymphoma. It also undergoes mutations in 60% of adult acute myeloid leukemia (AML cases with normal karyotype. The incidence and significance of NPM1 deletion in human leukemia have not been elucidated. METHODOLOGY AND PRINCIPAL FINDINGS: Bone marrow samples from 145 patients with myelodysplastic syndromes (MDS and AML were included in this study. Cytogenetically 43 cases had isolated 5q-, 84 cases had 5q- plus other changes and 18 cases had complex karyotype without 5q deletion. FISH and direct sequencing investigated the NPM1 gene. NPM1 deletion was an uncommon event in the "5q- syndrome" but occurred in over 40% of cases with high risk MDS/AML with complex karyotypes and 5q loss. It originated from large 5q chromosome deletions. Simultaneous exon 12 mutations were never found. NPM1 gene status was related to the pattern of complex cytogenetic aberrations. NPM1 haploinsufficiency was significantly associated with monosomies (p<0.001 and gross chromosomal rearrangements, i.e., markers, rings, and double minutes (p<0.001, while NPM1 disomy was associated with structural changes (p=0.013. Interestingly, in complex karyotypes with 5q- TP53 deletion and/or mutations are not specifically associated with NPM1 deletion. CONCLUSIONS AND SIGNIFICANCE: NPM1/5q35 deletion is a consistent event in MDS/AML with a 5q-/-5 in complex karyotypes. NPM1 deletion and NPM1 exon 12 mutations appear to be mutually exclusive and are associated with two distinct cytogenetic subsets of MDS and AML.

  20. Association of copy number polymorphisms at the promoter and translated region of COMT with Japanese patients with schizophrenia.

    Science.gov (United States)

    Higashiyama, Ryoko; Ohnuma, Tohru; Takebayashi, Yuto; Hanzawa, Ryo; Shibata, Nobuto; Yamamori, Hidenaga; Yasuda, Yuka; Kushima, Itaru; Aleksic, Branko; Kondo, Kenji; Ikeda, Masashi; Hashimoto, Ryota; Iwata, Nakao; Ozaki, Norio; Arai, Heii

    2016-04-01

    Chromosome 22q11.2 deletion syndrome and genetic variations including single-nucleotide polymorphism (SNP) and copy number variation (CNV) in catechol-O-methyltransferase (COMT) situated at 22q11.2 remains controversial. Here, the genetic relationship between COMT and Japanese patients with schizophrenia was investigated by examining whether the SNPs correlated with schizophrenia based on a common disease-common variant hypothesis. Additionally, 22q11.2DS were screened based on a common disease-rare variant hypothesis; low-frequency CNVs situated at two COMT promoters and exons were investigated based on the low-frequency variants with an intermediate effect; and positive findings from the first stage were reconfirmed using a second-stage replication study including a larger sample size. Eight SNPs and 10 CNVs were investigated using Taqman SNP and CNV quantitative real-time polymerase chain reaction method. For the first-stage analysis, 513 unrelated Japanese patients with schizophrenia and 705 healthy controls were examined. For the second-stage replication study, positive findings from the first stage were further investigated using a larger sample size, namely 1,854 patients with schizophrenia and 2,137 controls. The first-stage analysis showed significant associations among schizophrenia, intronic SNP rs165774, CNV6 situated at promoter 1, CNV8 at exon 6, and CNV9 at exon 7. The second-stage study showed that intronic SNP rs165774 (χ(2)  = 8.327, P = 0.0039), CNV6 (χ(2)  = 19.66, P = 0.00005), and CNV8 (χ(2)  = 16.57, P = 0.00025) were significantly associated with schizophrenia. Large and rare CNVs as well as low-frequency CNVs and relatively small CNVs, namely schizophrenia.

  1. HIRA Gene is Lower Expressed in the Myocardium of Patients with Tetralogy of Fallot

    Institute of Scientific and Technical Information of China (English)

    Zhao-Ru Ju; Hui-Jun Wang; Xiao-Jing Ma; Duan Ma; Guo-Ying Huang

    2016-01-01

    Background:The most typical cardiac abnormality is conotruncal defects (CTDs) in patients with 22q11 deletion syndrome (22q11DS).HIRA (histone cell cycle regulator) gene,as one of the candidate genes located at the critical region of 22q11DS,was reported as possibly relevant to CTD in animal models.This study aimed to analyze the level of expression of the HIRA gene in tetralogy of Fallot (TOF) patients and the potential DNA sequence variations in the promoter region.Methods:The messenger RNA (mRNA) expression was examined with quantitative real-time polymerase chain reaction in 39 myocardial tissues of the right ventricular outflow tract (RVOT) from TOF patients and 4 myocardial tissues of RVOT from noncardiac death children.The protein expression was detected using immunohistochemistry in 12 TOF patients and 4 controls.A total of 100 TOF cases and 200 healthy controls were recruited for DNA sequencing.Results:The mRNA and protein expressions of the HIRA gene in the myocardium of the TOF patients were both significantly lower as compared to the controls (P < 0.05).Five single nucleotide polymorphisms (SNPs),including g.4111A>G (rs1128399),g.4265C>A (rs4585115),g.4369T>G (rs2277837),g.4371C>A (rs148516780),and g.4543T>C (rs111802956),were found in the promoter region of the HIRA gene.There were no significant differences of frequencies in these SNPs between the TOF patients and the controls (P > 0.05).Conclusion:The abnormal lower expression of the HIRA gene in the myocardium may participate in the pathogenesis of TOF.

  2. Voxel-based morphometry and automated lobar volumetry: the trade-off between spatial scale and statistical correction.

    Science.gov (United States)

    Voormolen, Eduard H J; Wei, Corie; Chow, Eva W C; Bassett, Anne S; Mikulis, David J; Crawley, Adrian P

    2010-01-01

    Voxel-based morphometry (VBM) and automated lobar region of interest (ROI) volumetry are comprehensive and fast methods to detect differences in overall brain anatomy on magnetic resonance images. However, VBM and automated lobar ROI volumetry have detected dissimilar gray matter differences within identical image sets in our own experience and in previous reports. To gain more insight into how diverging results arise and to attempt to establish whether one method is superior to the other, we investigated how differences in spatial scale and in the need to statistically correct for multiple spatial comparisons influence the relative sensitivity of either technique to group differences in gray matter volumes. We assessed the performance of both techniques on a small dataset containing simulated gray matter deficits and additionally on a dataset of 22q11-deletion syndrome patients with schizophrenia (22q11DS-SZ) vs. matched controls. VBM was more sensitive to simulated focal deficits compared to automated ROI volumetry, and could detect global cortical deficits equally well. Moreover, theoretical calculations of VBM and ROI detection sensitivities to focal deficits showed that at increasing ROI size, ROI volumetry suffers more from loss in sensitivity than VBM. Furthermore, VBM and automated ROI found corresponding GM deficits in 22q11DS-SZ patients, except in the parietal lobe. Here, automated lobar ROI volumetry found a significant deficit only after a smaller sub-region of interest was employed. Thus, sensitivity to focal differences is impaired relatively more by averaging over larger volumes in automated ROI methods than by the correction for multiple comparisons in VBM. These findings indicate that VBM is to be preferred over automated lobar-scale ROI volumetry for assessing gray matter volume differences between groups.

  3. 14q12 Microdeletion syndrome and congenital variant of Rett syndrome.

    NARCIS (Netherlands)

    Mencarelli, M.A.; Kleefstra, T.; Katzaki, E.; Papa, F.T.; Cohen, M.; Pfundt, R.P.; Ariani, F.; Meloni, I.; Mari, F.; Renieri, A.

    2009-01-01

    Only two patients with 14q12 deletion have been reported to date. Here, we describe an additional patient with a similar deletion in order to improve the clinical delineation of this new microdeletion syndrome. The emerging phenotype is characterized by a Rett-like clinical course with an almost nor

  4. Deletion of ameloblastin exon 6 is associated with amelogenesis imperfecta.

    Science.gov (United States)

    Poulter, James A; Murillo, Gina; Brookes, Steven J; Smith, Claire E L; Parry, David A; Silva, Sandra; Kirkham, Jennifer; Inglehearn, Chris F; Mighell, Alan J

    2014-10-15

    Amelogenesis imperfecta (AI) describes a heterogeneous group of inherited dental enamel defects reflecting failure of normal amelogenesis. Ameloblastin (AMBN) is the second most abundant enamel matrix protein expressed during amelogenesis. The pivotal role of AMBN in amelogenesis has been confirmed experimentally using mouse models. However, no AMBN mutations have been associated with human AI. Using autozygosity mapping and exome sequencing, we identified genomic deletion of AMBN exon 6 in a second cousin consanguineous family with three of the six children having hypoplastic AI. The genomic deletion corresponds to an in-frame deletion of 79 amino acids, shortening the protein from 447 to 368 residues. Exfoliated primary teeth (unmatched to genotype) were available from family members. The most severely affected had thin, aprismatic enamel (similar to that reported in mice homozygous for Ambn lacking exons 5 and 6). Other teeth exhibited thicker but largely aprismatic enamel. One tooth had apparently normal enamel. It has been suggested that AMBN may function in bone development. No clinically obvious bone or other co-segregating health problems were identified in the family investigated. This study confirms for the first time that AMBN mutations cause non-syndromic human AI and that mouse models with disrupted Ambn function are valid.

  5. Identification of SPRED1 deletions using RT-PCR, multiplex ligation-dependent probe amplification and quantitative PCR.

    Science.gov (United States)

    Spencer, Emily; Davis, Julia; Mikhail, Fady; Fu, Chuanhua; Vijzelaar, Raymon; Zackai, Elaine H; Feret, Holly; Meyn, M Stephen; Shugar, Andrea; Bellus, Gary; Kocsis, Kristina; Kivirikko, Sirpa; Pöyhönen, Minna; Messiaen, Ludwine

    2011-06-01

    Legius syndrome, is a recently identified autosomal dominant disorder caused by loss of function mutations in the SPRED1 gene, with individuals mainly presenting with multiple café-au-lait macules (CALM), freckling and macrocephaly. So far, only SPRED1 point mutations have been identified as the cause of this syndrome. To determine if copy number changes (CNCs) are a cause of Legius syndrome, we have used a Multiplex Ligation-dependent Probe Amplification (MLPA) assay covering all SPRED1 exons in a cohort of 510 NF1-negative patients presenting with multiple CALMs with or without freckling, but no other NF1 diagnostic signs. Four different deletions were identified by MLPA and confirmed by quantitative PCR, reverse transcriptase PCR and/or array CGH: a deletion of exon 1 and the SPRED1 promoter region in a proband and two first-degree relatives; a deletion of the entire SPRED1 gene in a sporadic patient; a deletion of exon 2-6 in a proband and her father; and an ∼6.6 Mb deletion on chromosome 15 that spans SPRED1 in a sporadic patient. Deletions account for ∼10% of the 40 detected SPRED1 mutations in this cohort of 510 individuals. These results indicate the need for dosage analysis to complement sequencing-based SPRED1 mutation analyses.

  6. An unbalanced 5;22 translocation in a patient with features of VCFS: Confirmation by FISH of loss of the DGS/VCFS critical region

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.J.; McGlothlin, J.C. [Baylor College of Medicine, Houston, TX (United States); Lindsay, E.A. [Georgia Neurological Institute, Savannah, GA (United States)

    1994-09-01

    A 14-month-old male with a history of ventricular septal defect (VSD) and cleft lip and palate (CL/P) was referred for evaluation because of growth retardation, developmental delay and hypotonia. The initial cytogenetic analysis was 45,XY,-5,-22,+der(5)t(5q:22q). Determination of breakpoints 5q35.3 and 22q11.2 were made on G-banded chromosomes with band lengths of over 550. However, with both regions being light G bands, it was difficult to tell if the break in 22 was proximal to or distal to the DiGeorge syndrome/velocardiofacial syndrome (DGS/VCFS) critical region. Since the patient had a VSD and CL/P, velocardiofacial syndrome and a deletion of the DGS/VCFS critical region was suspected. FISH analysis of the derivative chromosome was performed with a cocktail containing two probes (ONCOR), D22S75, which maps to the DGS/VCFS region in 22q11.2 and D22S39, which maps to 22q13.3 and is used as a control for the presence of chromosome 22. Three fluorescent signals were observed, two on the normal 22 and the third on the terminal end of the derivative 5 chromosome verifying the translocation of 22q to 5q. No signal was observed for D22S75 on the proximal part of the translocated segment, verifying a deletion of the DGS/VCFS region in a patient whose clinical evaluation is consistent with velocardiofacial syndrome. Experiments with additional probes are underway to determine the deletion boundaries.

  7. Deletion and duplication within the p11.2 region of chromosome 17

    Energy Technology Data Exchange (ETDEWEB)

    McCorquodale, D.J.; McCorquodale, M.; Bereziouk, O. [Univ. of Illinois College of Medicine, Chicago, IL (United States)] [and others

    1994-09-01

    A 7 1/2-year-old male patient presented with mild mental retardation, speech delay, hyperactivity, behavioral problems, mild facial hypoplasia, short broad hands, digital anomalies, and self-injurious behavior. Chromosomes obtained from peripheral blood cells revealed a deletion of 17p11.2 in about 40% of the metaphases examined, suggesting that the patient had Smith-Magenis Syndrome. A similar pattern of mosaicism in peripheral blood cells, but not in fibroblasts in which all cells displayed the deletion, has been previously reported. Since some cases of Smith-Magenis Syndrome have a deletion that extends into the region associated with Charcot-Marie-Tooth (CMT) Syndrome, we examined interphase cells with a CMT1A-specific probe by the method of fluorescence in situ hybridization. The CMT1A region was not deleted, but about 40% of the cells gave signals indicating a duplication of the CMT1A region. The patient has not presented neuropathies associated with CMT at this time. Future tracking of the patient should be informative.

  8. Interstitial deletions of the short arm of chromosome 4 in patients with a similar combination of multiple minor anomalies and mental retardation

    Energy Technology Data Exchange (ETDEWEB)

    White, D.M.; Pillers, D.A.M.; Magenis, R.E. [Oregon Health Sciences Univ., Portland, OR (United States)] [and others

    1995-07-17

    Interstitial deletions of chromosome 4 have been described rarely and have had variable presentations. We describe the phenotypic characteristics associated with interstitial deletion of the p14-16 region of chromosome 4 in 7 patients with multiple minor anomalies in common, and with mental retardation. A review of published cases of interstitial deletions of the short arm of chromosome 4 is provided. These deletions present a distinct phenotype which is different from that of Wolf-Hirschhorn syndrome. 52 refs., 12 figs., 2 tabs.

  9. Language and Literacy Development of Children with Williams Syndrome

    Science.gov (United States)

    Mervis, Carolyn B.

    2009-01-01

    Williams syndrome is a rare neurodevelopmental disorder caused by deletion of approximately 25 genes on chromosome 7q11.23. Children with the syndrome evidence large individual differences in both broad language and reading abilities. Nevertheless, as a group, children with this syndrome show a consistent pattern characterized by relative…

  10. Union-Find with Constant Time Deletions

    DEFF Research Database (Denmark)

    Alstrup, Stephen; Thorup, Mikkel; Gørtz, Inge Li;

    2014-01-01

    A union-find data structure maintains a collection of disjoint sets under the operations makeset, union, and find. Kaplan, Shafrir, and Tarjan [SODA 2002] designed data structures for an extension of the union-find problem in which items of the sets maintained may be deleted. The cost of a delete...

  11. Seven gene deletions in seven days

    DEFF Research Database (Denmark)

    Ingemann Jensen, Sheila; Lennen, Rebecca; Herrgard, Markus;

    2015-01-01

    enables growth at 37 °C, thereby facilitating removal of integrated antibiotic cassettes and deletion of additional genes in the same day. Phosphorothioated primers were demonstrated to enable simultaneous deletions during one round of electroporation. Utilizing these methods, we constructed strains...

  12. 患有Klinefelter综合症的少精病人中典型的Y染色体无精子症因子区微缺失的常规普查%Routine screening for classical azoospermia factor deletions of the Y chromosome in azoospermic patients with Klinefelter syndrome

    Institute of Scientific and Technical Information of China (English)

    J. H. Choe; J. W. Kim; J. S. Lee; J. T. Seo

    2007-01-01

    目的:评价Y染色体上典型的无精子症因子(AZF)的缺失是患有Klinefelter综合症(KS)少精病人的常规检查.方法:我们采集了95名KS少精病人(91例为47,XXY的染色体表型,4例为47,XXY/46,XY镶嵌得染色体表型)和93例可生育男性的血样.测定睾酮、促卵泡生长激素(FSH)和促黄体生成激素(LH)的含量.为确定Y染色体微缺失的百分比,用5个位于AZF区的序列标签位点(sY84、sY129、sY134、sY254、sY255)的引物从分离的基因组DNA中进行PCR鉴定.结果:在95例KS少精病人中没有发现Y染色体微缺失.此外,使用相似的PCR条件在93名可育男性中也未发现微缺失.KS病人的FSH水平高于可育男性(38.2±10.3 mIU/mL vs.5.4±2.9 mIU/mL,P<0.001)而睾酮水平低于可育男性(1.7±0.3 ng/mL vs.4.3±1.3 ng/mL,P<0.001).结论:我们的试验数据和已发表的文献数据显示:典型的AZF缺失可能对47,XXY染色体表型的KS病人的表型没有影响.此外,AZF缺失的常规检测对这些病人是不必要的.更深一步研究AZFc缺失(包括部分缺失)对了解KS病人精子生成障碍的机制十分必要.%Aim: To evaluate the occurrence of classical azoospermia factor (AZF) deletions of the Y chromosome as a routine examination in azoospermic subjects with Klinefelter syndrome (KS). Methods: Blood samples were collected from 95 azoospermic subjects with KS (91 subjects had a 47,XXY karyotype and four subjects had a mosaic 47,XXY/46,XY karyotype) and a control group of 93 fertile men. The values of testosterone, follicle stimulating hormone (FSH)and luteinizing hormone (LH) were measured. To determine the presence of Y chromosome microdeletions, polymerase chain reaction (PCR) of five sequence-tagged site primers (sY84, sY129, sY134, sY254, sY255) spanning the AZF region, was performed on isolated genomic DNA. Results: Y chromosome microdeletions were not found in any of the 95 azoospermic subjects with KS. In addition, using similar conditions

  13. Clinical Profile of Patients with Tetralogy of Fallot admitted for Surgery at a Cardiac surgical centre

    Directory of Open Access Journals (Sweden)

    B E Otaigbe

    2011-04-01

    Full Text Available INTRODUCTION: Tetralogy of Fallot (TOF, a conotruncal defect, has been documented to be associated with chromosome abnormalities, single gene syndrome (22q11 microdeletion, known teratogens, with the rest associations being multifactorial. This study was carried out to determine the clinical profile and associated risk factors in patients with TOF admitted for surgical repairs. METHODS: Case files of all patients admitted for Tetralogy of Fallot over a period of one year were retrieved from the Medical Records Department and reviewed. Data on the patients' and their family history and associated cardiac anomalies were noted. RESULTS: There were 54 patients, 37 males and 17 females, with a mean age of 6.8 years +/- 7.1. Sixty percent were born between July and December, 81.5% as full term and 44% as first born. Twenty-six percent were born into consanguineous marriages. Five patients had dysmorphic features. Associated cardiac anomalies included right aortic arch, pulmonary atresia, dextrocardia and left superior vena cavae. CONCLUSION: The associated risk factors noted in this study were male sex, birthdates between July and December, first born and increased paternal age. Other risk factors were consanguinity and specific patterns of cardiovascular diseases associated with 22q 11 deletions. This suggests a multifactorial etiology for TOF. Keywords: associated risk factors, cardiac anomalies, demographic factors, Tetralogy of Fallot

  14. Genetics Home Reference: 2q37 deletion syndrome

    Science.gov (United States)

    ... is unknown. Approximately 100 cases have been reported worldwide. Related Information What information about a genetic condition can statistics provide? Why are some genetic conditions more common ...

  15. Age-and gender-dependent obesity in individuals with 16p11.2 deletion

    Institute of Scientific and Technical Information of China (English)

    Yongguo Yu; Haitao Zhu; David T. Miller; James F. Gusella; Orah S. Platt; Bai-Lin Wu; Yiping Shen

    2011-01-01

    Recurrent genomic imbalances at 16p11.2 are genetic risk factors of variable penetrance for developmental delay and autism.Recently,16p11.2 (chr16:29.5 Mb-30.1 Mb) deletion has also been detected in individuals with early-onset severe obesity.The penetrance of 16p11.2deletion as a genetic risk factor for obesity is unknown.We evaluated the growth and body mass characteristics of 28 individuals with 16p11.2(chr16:29.5 Mb-30.1 Mb) deletion originally ascertained for their developmental disorders by reviewing their medical records.We found that nine individuals could be classilied as obese and six as overweight.These individuals generally had early feeding and growth difficulties,and started to gain excessive weight around 5-6 years of age.Thirteen out of the 18 deletion carriers aged 5 years and older (72%) were overweight or obese,whereas only two of 10 deletion carriers (20%) younger than five were overweight or obese.Males exhibited more severe obesity than females.Thus,the obesity phenotype of 16p11.2 deletion carriers is of juvenile onset,exhibited an age.and gender-dependent penetrance.16p11.2 deletion appears to predispose individuals to juvenile onset obesity and in this case are similar to the well-described Prader-Willi syndrome (PWS).Early detection of this deletion will provide opportunity to prevent obesity.

  16. Functional Polymorphisms in PRODH Are Associated with Risk and Protection for Schizophrenia and Fronto-Striatal Structure and Function

    Science.gov (United States)

    Kempf, Lucas; Nicodemus, Kristin K.; Kolachana, Bhaskar; Vakkalanka, Radhakrishna; Verchinski, Beth A.; Egan, Michael F.; Straub, Richard E.; Mattay, Venkata A.; Callicott, Joseph H.; Weinberger, Daniel R.; Meyer-Lindenberg, Andreas

    2008-01-01

    PRODH, encoding proline oxidase (POX), has been associated with schizophrenia through linkage, association, and the 22q11 deletion syndrome (Velo-Cardio-Facial syndrome). Here, we show in a family-based sample that functional polymorphisms in PRODH are associated with schizophrenia, with protective and risk alleles having opposite effects on POX activity. Using a multimodal imaging genetics approach, we demonstrate that haplotypes constructed from these risk and protective functional polymorphisms have dissociable correlations with structure, function, and connectivity of striatum and prefrontal cortex, impacting critical circuitry implicated in the pathophysiology of schizophrenia. Specifically, the schizophrenia risk haplotype was associated with decreased striatal volume and increased striatal-frontal functional connectivity, while the protective haplotype was associated with decreased striatal-frontal functional connectivity. Our findings suggest a role for functional genetic variation in POX on neostriatal-frontal circuits mediating risk and protection for schizophrenia. PMID:18989458

  17. Cri-du-chat syndrome

    NARCIS (Netherlands)

    Didden, H.C.M.; Curfs, L.M.G

    2013-01-01

    Cri-du-chat syndrome is a genetic disease resulting from a deletion occurring on the short arm of chromosome 5 (5p-). The incidence ranges from 1:15 000 to 1:50 000 live-born infants. Its main clinical features are a high-pitched monochromatic cry, microcephaly, broad nasal bridge, epicanthal folds,

  18. Prenatal Diagnosis of WAGR Syndrome

    Directory of Open Access Journals (Sweden)

    Berrin Tezcan

    2015-01-01

    Full Text Available Wilm’s tumour, aniridia, genitourinary abnormalities, and mental retardation (WAGR syndrome is a rare genetic disorder with an estimated prevalence of 1 in 500,000 to 1 million. It is a contiguous gene syndrome due to deletion at chromosome 11p13 in a region containing WT1 and PAX6 genes. Children with WAGR syndrome mostly present in the newborn/infancy period with sporadic aniridia. The genotypic defects in WAGR syndrome have been well established. However, antenatal ultrasonographic presentation of this syndrome has never been reported. Prenatal diagnosis of this condition is possible in some cases with careful ultrasound examination of classical and nonclassical manifestations of this syndrome. The key point for this rare diagnosis was the decision to perform chromosomal microarray analysis after antenatal diagnosis of absent corpus callosum and absent cavum septum pellucidum, as this finding mandates search for potentially associated genetic disorders. We report a case of WAGR syndrome diagnosed prenatally at 29-week gestation. The diagnosis of the anomaly was based on two- and three-dimensional ultrasound as well as fetal MRI scan and microarray analysis. The ultrasonographic findings included borderline ventriculomegaly, absent corpus callosum, and absent cavum septum pellucidum. Cytogenetic results from the amniotic fluid confirmed WAGR syndrome. Parental karyotype was normal, with no evidence of copy number change, deletion, or rearrangement of this region of chromosome 11.

  19. Neuropsychological profiles of patients with 2q37.3 deletion associated with developmental dyspraxia.

    Science.gov (United States)

    Ogura, Kaeko; Takeshita, Kenzo; Arakawa, Chikako; Shimojima, Keiko; Yamamoto, Toshiyuki

    2014-12-01

    Patients with 2q37 deletions manifest brachydactyly mental retardation syndrome (BDMR). Recent advances in human molecular research have revealed that alterations in the histone deacetylase 4 gene (HDAC4) are responsible for the clinical manifestations of BDMR. Here, we report two male patients with 2q37.3 deletions. One of the patients showed a typical BDMR phenotype, and HDAC4 was included in the deletion region. HDAC4 was preserved in the other patient, and he showed a normal intelligence level with the delayed learning of complex motor skills. Detailed neuropsychological examinations revealed similar neuropsychological profiles in these two patients (visuo-spatial dyspraxia) that suggested developmental dyspraxia. These observations suggested that some other candidate genes for neuronal development exist in the telomeric region of HDAC4.

  20. Genetics Home Reference: Senior-Løken syndrome

    Science.gov (United States)

    ... R, Ghiggeri GM. Renal-retinal syndromes: association of retinal anomalies and recessive nephronophthisis in patients with homozygous deletion of the NPH1 locus. Am J Kidney Dis. 1998 Dec;32(6): ...

  1. Deletion in the FMR1 gene in a fragile-X male

    Energy Technology Data Exchange (ETDEWEB)

    Mannermaa, A.; Pulkkinen, L.; Kajanoja, E. [Kuopio Univ., Hospital (Finland)] [and others

    1996-08-09

    The pathogenesis of fragile-X syndrome is a consequence of absence of the FMR1 gene product associated with expansion of the CGG repeat and abnormal methylation of this and a CpG island 250 hp proximal to the CGG repeat located at exon 1 in the FMR1 gene. While this is usually the case, some suspected fragile-X syndrome patients have been described with a mutation other than CGG expansion. We describe here an affected fragile-X male, who was found to be mosaic of a full mutation of the CGG expansion and a deletion in the FMR1 gene. The patient`s phenotype is probably mainly due to the effect of the full mutation of the repeat sequence. Thus, the influence of the deletion is difficult to evaluate. 20 refs., 2 figs.

  2. Microarray based analysis of an inherited terminal 3p26.3 deletion, containing only the CHL1 gene, from a normal father to his two affected children

    Directory of Open Access Journals (Sweden)

    Lerone Margherita

    2011-04-01

    Full Text Available Abstract Background terminal deletions of the distal portion of the short arm of chromosome 3 cause a rare contiguous gene disorder characterized by growth retardation, developmental delay, mental retardation, dysmorphisms, microcephaly and ptosis. The phenotype of individuals with deletions varies from normal to severe. It was suggested that a 1,5 Mb minimal terminal deletion including the two genes CRBN and CNTN4 is sufficient to cause the syndrome. In addition the CHL1 gene, mapping at 3p26.3 distally to CRBN and CNTN4, was proposed as candidate gene for a non specific mental retardation because of its high level of expression in the brain. Methods and Results we describe two affected siblings in which array-CGH analysis disclosed an identical discontinuous terminal 3p26.3 deletion spanning less than 1 Mb. The deletion was transmitted from their normal father and included only the CHL1 gene. The two brothers present microcephaly, light mental retardation, learning and language difficulties but not the typical phenotype manifestations described in 3p- syndrome. Conclusion a terminal 3p26.3 deletion including only the CHL1 gene is a very rare finding previously reported only in one family. The phenotype of the affected individuals in the two families is very similar and the deletion has been inherited from an apparently normal parent. As already described for others recurrent syndromes with variable phenotype, these findings are challenging in genetic counselling because of an evident variable penetrance.

  3. Hereditary spherocytic anemia with deletion of the short arm of chromosome 8

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, Nobuhiko; Wada, Yoshinao; Nakamura, Yoich [Osaka Medical Center and Research Inst. for Maternal and Child Health, Tokyo (Japan)] [and others

    1995-09-11

    We describe a 30-month-old boy with multiple anomalies and mental retardation with hereditary spherocytic anemia. His karyotype was 46,XYdel(8)(p11.23p21.1). Genes for ankyrin and glutathione reductase (GSR) were localized to chromosome areas 8p11.2 and 8p21.1, respectively. Six patients with spherocytic anemia and interstitial deletion of 8p- have been reported. In these patients, severe mental retardation and multiple anomalies are common findings. This is a new contiguous gene syndrome. Lux established that ankyrin deficiency and associated deficiencies of spectrin and protein 4.2 were responsible for spherocytosis in this syndrome. We reviewed the manifestations of this syndrome. Patients with spherocytic anemia and multiple congenital anomalies should be investigated by high-resolution chromosomal means to differentiate this syndrome. 14 refs., 3 figs., 2 tabs.

  4. Braddock-Carey syndrome: A 21q22 contiguous gene syndrome encompassing RUNX1.

    Science.gov (United States)

    Braddock, Stephen R; South, Sarah T; Schiffman, Joshua D; Longhurst, Maria; Rowe, Leslie R; Carey, John C

    2016-10-01

    In 1994, Braddock and Carey first reported two unrelated girls with a new multiple malformation syndrome. The primary features included Pierre Robin sequence, persistent neonatal-onset thrombocytopenia, agenesis of the corpus callosum, a distinctive facies, enamel hypoplasia, and severe developmental delay. Since that time, there have been multiple other reported patients with a similar phenotype. In addition, several reports of thrombocytopenia and developmental delay have been documented in association with deletions in the Down syndrome critical region at 21q22. The similarity of the reported cases with deletions involving 21q22 with the clinical presentation of the two patients with Braddock-Carey syndrome resulted in a reinvestigation of the genetic etiology of these two patients 20 years after the original study. This investigation provides evidence that the etiology of this and other "Fanconi-like" disorders represent a newly recognized contiguous gene deletion syndrome involving 21q22 and specifically, the RUNX1 gene. © 2016 Wiley Periodicals, Inc.

  5. Characterization of a complex rearrangement involving duplication and deletion of 9p in an infant with craniofacial dysmorphism and cardiac anomalies

    Directory of Open Access Journals (Sweden)

    Di Bartolo Daniel L

    2012-07-01

    Full Text Available Abstract Partial duplication and partial deletion of the short arm of chromosome 9 have each been reported in the literature as clinically recognizable syndromes. We present clinical, cytogenetic, and molecular findings on a five-week-old female infant with concomitant duplication and terminal deletion of the short arm of chromosome 9. To our knowledge ten such cases have previously been reported. Conventional cytogenetic analysis identified additional material on chromosome 9 at band p23. FISH analysis aided in determining the additional material consisted of an inverted duplication with a terminal deletion of the short arm. Microarray analysis confirmed this interpretation and further characterized the abnormality as a duplication of about 32.7 Mb, from 9p23 to 9p11.2, and a terminal deletion of about 11.5 Mb, from 9p24.3 to 9p23. The infant displayed characteristic features of Duplication 9p Syndrome (hypotonia, bulbous nose, single transverse palmar crease, cranial anomalies, as well as features associated with Deletion 9p Syndrome (flat nasal bridge, long philtrum, cardiac anomalies despite the deletion being distal to the reported critical region for this syndrome. This case suggests that there are genes or regulatory elements that lie outside of the reported critical region responsible for certain phenotypic features associated with Deletion 9p Syndrome. It also underscores the importance of utilizing array technology to precisely define abnormalities involving the short arm of 9p in order to further refine genotype/phenotype associations and to identify additional cases of duplication/deletion.

  6. Novel Vascular Malformation in an Affected Newborn with Deletion Del(4)(q31.3)

    OpenAIRE

    Norma Elena de León Ojeda; Michel Soriano-Torres; Cabrera, Mercedes J.; Dunia Bárbara Benítez Ramos

    2012-01-01

    We report on a newborn male patient with a terminal deletion in the long arm of the chromosome 4 with a congenital heart defect unreported before in association with this syndrome. The patient had multiple congenital anomalies including a pointed duplicated fingernail, low set posteriorly rotated ears, large anterior fontanel, micrognathia, glabellar capillary vascular malformation, and Interrupted Aortic Arch type C. The patient died due to multiple congenital malformations; a peripheral chr...

  7. Deleted in Malignant Brain Tumors 1 (DMBT1) is present in hyaline membranes and modulates surface tension of surfactant

    DEFF Research Database (Denmark)

    Müller, Hanna; End, Caroline; Renner, Marcus

    2007-01-01

    BACKGROUND: Deleted in Malignant Brain Tumors 1 (DMBT1) is a secreted scavenger receptor cysteine-rich protein that binds various bacteria and is thought to participate in innate pulmonary host defense. We hypothesized that pulmonary DMBT1 could contribute to respiratory distress syndrome in neon...

  8. 16p11.2 Deletion Mice Display Cognitive Deficits in Touchscreen Learning and Novelty Recognition Tasks

    Science.gov (United States)

    Yang, Mu; Lewis, Freeman C.; Sarvi, Michael S.; Foley, Gillian M.; Crawley, Jacqueline N.

    2015-01-01

    Chromosomal 16p11.2 deletion syndrome frequently presents with intellectual disabilities, speech delays, and autism. Here we investigated the Dolmetsch line of 16p11.2 heterozygous (+/-) mice on a range of cognitive tasks with different neuroanatomical substrates. Robust novel object recognition deficits were replicated in two cohorts of 16p11.2…

  9. A Prenatally Ascertained De Novo Terminal Deletion of Chromosomal Bands 1q43q44 Associated with Multiple Congenital Abnormalities in a Female Fetus

    Directory of Open Access Journals (Sweden)

    Carolina Sismani

    2015-01-01

    Full Text Available Terminal deletions in the long arm of chromosome 1 result in a postnatally recognizable disorder described as 1q43q44 deletion syndrome. The size of the deletions and the resulting phenotype varies among patients. However, some features are common among patients as the chromosomal regions included in the deletions. In the present case, ultrasonography at 22 weeks of gestation revealed choroid plexus cysts (CPCs and a single umbilical artery (SUA and therefore amniocentesis was performed. Chromosomal analysis revealed a possible terminal deletion in 1q and high resolution array CGH confirmed the terminal 1q43q44 deletion and estimated the size to be approximately 8 Mb. Following termination of pregnancy, performance of fetopsy allowed further clinical characterization. We report here a prenatal case with the smallest pure terminal 1q43q44 deletion, that has been molecularly and phenotypically characterized. In addition, to our knowledge this is the first prenatal case reported with 1q13q44 terminal deletion and Pierre-Robin sequence (PRS. Our findings combined with review data from the literature show the complexity of the genetic basis of the associated syndrome.

  10. Dumping Syndrome

    Science.gov (United States)

    ... System & How it Works Digestive Diseases A-Z Dumping Syndrome What is dumping syndrome? Dumping syndrome occurs when food, especially sugar, ... the colon and rectum—and anus. What causes dumping syndrome? Dumping syndrome is caused by problems with ...

  11. Concurrent Van der Woude syndrome and Turner syndrome: A case report

    Directory of Open Access Journals (Sweden)

    Evan Los

    2017-01-01

    Full Text Available Most cases of Van der Woude syndrome are caused by a mutation to interferon regulatory factor 6 on chromosome 1. Turner syndrome is caused by complete or partial absence of the second sex chromosome in girls. We describe a unique case of the two syndromes occurring concurrently though apparently independently in a girl with Van der Woude syndrome diagnosed at birth and Turner syndrome at 14 years 9 months. Short stature was initially misattributed to Van der Woude syndrome and pituitary insufficiency associated with clefts before correctly diagnosing Turner syndrome. We discuss the prevalence of delayed diagnosis of Turner syndrome, the rarity of reports of concurrent autosomal chromosome mutation and sex chromosome deletion, as well as the need to consider the diagnosis of Turner syndrome in all girls with short stature regardless of prior medical history.

  12. Concurrent Van der Woude syndrome and Turner syndrome: A case report.

    Science.gov (United States)

    Los, Evan; Baines, Hayley; Guttmann-Bauman, Ines

    2017-01-01

    Most cases of Van der Woude syndrome are caused by a mutation to interferon regulatory factor 6 on chromosome 1. Turner syndrome is caused by complete or partial absence of the second sex chromosome in girls. We describe a unique case of the two syndromes occurring concurrently though apparently independently in a girl with Van der Woude syndrome diagnosed at birth and Turner syndrome at 14 years 9 months. Short stature was initially misattributed to Van der Woude syndrome and pituitary insufficiency associated with clefts before correctly diagnosing Turner syndrome. We discuss the prevalence of delayed diagnosis of Turner syndrome, the rarity of reports of concurrent autosomal chromosome mutation and sex chromosome