Sample records for 221fr 213bi 209ti

  1. Evaluation of decay data of 213Bi

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiaolong; WANG Baosong


    213Bi disintegrates (97.91±0.03) % by β- emission to the levels in 213po, and (2.09±0.03) % through α decay to 209Tl. The evaluation of the complete decay scheme and data of 213Bi including the recent new measurements are presented in this report. The Limitation of Relative Statistical Weight Method (LWM) was applied to average numbers throughout the evaluation. The uncertainty assigned to the average value was always greater than or equal to the smallest uncertainty of the values used to calculate the average. The half-life is determined to be 45.59±0.06 minutes. All known measured gamma-ray relative emission probabilities have been examined. And the gamma-ray emission probability of the reference γ line of 440.44keV is recommended to be (26.1±0.3) %. The calculated internal conversion coefficients and their uncertainties have been used to obtain the complete decay intensity balance. The other decay characteristics are calculated using the ENSDF analysis program. Finally the new 213Bi decay scheme was re-built.

  2. Nuclear levels and structure from the decays of 213Bi and 209Tl (United States)

    Ardisson, G.; Barci, V.; El Samad, O.


    Direct γ and γ-γ coincidence spectra of pure 209Tl and 213Bi sources obtained by radiochemical continuous separation were measured with coaxial and planar HPGe detectors. In 209Tl the half-life was measured, the β-decay energies and intensities of 11 γ transitions were reported, and a new decay scheme was proposed. In 213Bi β decay 22 transitions were observed, of which 18 were assigned to a new 213Po level scheme accounting for 9 excited states.

  3. On the ^{221}Rn \\to ^{221}Fr Decay Scheme

    CERN Document Server

    Gromov, K Ya; Norseev, Yu V; Samatov, Zh K; Sergienko, V A; Fominykh, V I; Chumin, V G


    The results of investigating the ^{221}Rn beta^{-}-decay and the ^{225}Ac alpha-decay are compared. It is shown that ^{221}Fr levels at 145.9 and 393.2 keV are excited at the ^{221}Rn decay. Intensities and reduced probabilities of the beta^{-}-decay to the ^{221}Fr levels are determined. A conclusion is drawn that the parity of the ^{221}Rn ground state is positive.

  4. {sup 177}Lu-immunotherapy of experimental peritoneal carcinomatosis shows comparable effectiveness to {sup 213}Bi-immunotherapy, but causes toxicity not observed with {sup 213}Bi

    Energy Technology Data Exchange (ETDEWEB)

    Seidl, Christof; Zoeckler, Christine; Beck, Roswitha; Senekowitsch-Schmidtke, Reingard [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Quintanilla-Martinez, Leticia [Universitaetsklinikum Tuebingen, Institute for Pathology, Tuebingen (Germany); Bruchertseifer, Frank [Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe (Germany)


    {sup 213}Bi-d9MAb-immunoconjugates targeting gastric cancer cells have effectively cured peritoneal carcinomatosis in a nude mouse model following intraperitoneal injection. Because the {beta}-emitter {sup 177}Lu has proven to be beneficial in targeted therapy, {sup 177}Lu-d9MAb was investigated in this study in order to compare its therapeutic efficacy and toxicity with those of {sup 213}Bi-d9MAb. Nude mice were inoculated intraperitoneally with HSC45-M2 gastric cancer cells expressing d9-E-cadherin and were treated intraperitoneally 1 or 8 days later with different activities of specific {sup 177}Lu-d9MAb immunoconjugates targeting d9-E-cadherin or with nonspecific {sup 177}Lu-d8MAb. Therapeutic efficacy was evaluated by monitoring survival for up to 250 days. For evaluation of toxicity, both biodistribution of {sup 177}Lu-d9MAb and blood cell counts were determined at different time points and organs were examined histopathologically. Treatment with {sup 177}Lu-immunoconjugates (1.85, 7.4, 14.8 MBq) significantly prolonged survival. As expected, treatment on day 1 after tumour cell inoculation was more effective than treatment on day 8, and specific {sup 177}Lu-d9MAb conjugates were superior to nonspecific {sup 177}Lu-d8MAb. Treatment with 7.4 MBq of {sup 177}Lu-d9MAb was most successful, with 90% of the animals surviving longer than 250 days. However, treatment with therapeutically effective activities of {sup 177}Lu-d9MAb was not free of toxic side effects. In some animals lymphoblastic lymphoma, proliferative glomerulonephritis and hepatocarcinoma were seen but were not observed after treatment with {sup 213}Bi-d9MAb at comparable therapeutic efficacy. The therapeutic efficacy of {sup 177}Lu-d9MAb conjugates in peritoneal carcinomatosis is impaired by toxic side effects. Because previous therapy with {sup 213}Bi-d9MAb revealed comparable therapeutic efficacy without toxicity it should be preferred for the treatment of peritoneal carcinomatosis. (orig.)

  5. Radioimmunotherapy Using Vascular Targeted 213Bi: The Role of TNF-Alpha in the Development of Pulmonary Fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Davis, I.A.; Kennel, S.J.


    A monoclonal antibody (201B) specific to murine thrombomodulin, covalently linked to CHX-b-DTPA, successfully delivers chelated 213Bi, an {alpha}-particle emitter, (213Bi-201B) rapidly to lungvascular endothelium. When injected at doses of l MBq/mouse, 213Bi-201B destroyed most of the 100 colonies of EMT-6 mammary carcinomas growing as lung tumors of up to 2000 cells/colony. Some mice were cured of lung tumors and others had extended life-spans compared to untreated control animals but eventually succumbed to tumor recurrence. At injected doses of 4-6 MBq/mouse, 100% of lung tumor colonies were eliminated; however, 3-4 months later these mice developed pulmonary fibrosis and died. The mechanisms leading to the fibrotic response in other pulmonary irradiation models strongly implicate tumor necrosis factor-alpha (TNF-{alpha}), released from damaged tissues, as the pivotal inflammatory cytokine in a cascade of events which culminate in fibrosis. Attempts to prevent the development of pulmonary fibrosis, by using antibodies or soluble receptor (Enbrel{trademark}) as inhibitors of TNF-{alpha}, were unsuccessful. Additionally, mice genetically deficient for TNF-{alpha} production developed pulmonary fibrosis following 213Bi-201B treatment. Interestingly, non-tumor bearing BALB/c mice receiving Enbrel{trademark} or mice genetically deficient in TNF-{alpha} production and treated with 213Bi-201B, had significantly reduced life spans compared to mice receiving no treatment or 213Bi-201B alone. We speculate that, in normal mice, while TNF-{alpha} may induce an inflammatory response following {alpha}-particle radiation mediated tumor clearance and pulmonary damage, its effects in the post-tumor clearance time period may actually retard the development of fibrosis.

  6. Therapeutic efficacy and toxicity of {sup 225}Ac-labelled vs. {sup 213}Bi-labelled tumour-homing peptides in a preclinical mouse model of peritoneal carcinomatosis

    Energy Technology Data Exchange (ETDEWEB)

    Essler, Markus; Gaertner, Florian C.; Blechert, Birgit; Senekowitsch-Schmidtke, Reingard; Seidl, Christof [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Neff, Frauke [Helmholtz Zentrum Muenchen, Institute of Pathology, Neuherberg (Germany); Bruchertseifer, Frank; Morgenstern, Alfred [Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe (Germany)


    Targeted delivery of alpha-particle-emitting radionuclides is a promising novel option in cancer therapy. We generated stable conjugates of the vascular tumour-homing peptide F3 both with {sup 225}Ac and {sup 213}Bi that specifically bind to nucleolin on the surface of proliferating tumour cells. The aim of our study was to determine the therapeutic efficacy of {sup 225}Ac-DOTA-F3 in comparison with that of {sup 213}Bi-DTPA-F3. ID{sub 50} values of {sup 213}Bi-DTPA-F3 and {sup 225}Ac-DOTA-F3 were determined via clonogenic assays. The therapeutic efficacy of both constructs was assayed by repeated treatment of mice bearing intraperitoneal MDA-MB-435 xenograft tumours. Therapy was monitored by bioluminescence imaging. Nephrotoxic effects were analysed by histology. ID{sub 50} values of {sup 213}Bi-DTPA-F3 and {sup 225}Ac-DOTA-F3 were 53 kBq/ml and 67 Bq/ml, respectively. The median survival of control mice treated with phosphate-buffered saline was 60 days after intraperitoneal inoculation of 1 x 10{sup 7} MDA-MB-435 cells. Therapy with 6 x 1.85 kBq of {sup 225}Ac-DOTA-F3 or 6 x 1.85 MBq of {sup 213}Bi-DTPA-F3 prolonged median survival to 95 days and 97 days, respectively. While F3 labelled with short-lived {sup 213}Bi (t{sub 1/2} 46 min) reduced the tumour mass at early time-points up to 30 days after treatment, the antitumour effect of {sup 225}Ac-DOTA-F3 (t{sub 1/2} 10 days) increased at later time-points. The difference in the fraction of necrotic cells after treatment with {sup 225}Ac-DOTA-F3 (43%) and with {sup 213}Bi-DTPA-F3 (36%) was not significant. Though histological analysis of kidney samples revealed acute tubular necrosis and tubular oedema in 10-30% of animals after treatment with {sup 225}Ac-DOTA-F3 or {sup 213}Bi-DTPA-F3, protein casts were negligible (2%), indicating only minor damage to the kidney. Therapy with both {sup 225}Ac-DOTA-F3 and {sup 213}Bi-DTPA-F3 increased survival of mice with peritoneal carcinomatosis. Mild renal toxicity of both

  7. Enhanced efficacy of combined {sup 213}Bi-DTPA-F3 and paclitaxel therapy of peritoneal carcinomatosis is mediated by enhanced induction of apoptosis and G2/M phase arrest

    Energy Technology Data Exchange (ETDEWEB)

    Vallon, Mario; Seidl, Christof; Blechert, Birgit; Li, Zhoulei; Gaertner, Florian C.; Senekowitsch-Schmidtke, Reingard; Essler, Markus [Technische Universitaet Muenchen, Department of Nuclear Medicine, Munich (Germany); Gilbertz, Klaus-Peter [German Armed Forces, Institute of Radiobiology, Munich (Germany); Baumgart, Anja [Technische Universitaet Muenchen, III. Medical Department, Munich (Germany); Aichler, Michaela; Feuchtinger, Annette; Walch, Axel K. [Helmholtz Zentrum Muenchen, Institute of Pathology, Neuherberg (Germany); Bruchertseifer, Frank; Morgenstern, Alfred [Institute for Transuranium Elements, European Commission, Joint Research Centre, Karlsruhe (Germany)


    Targeted therapy with {alpha}-particle emitting radionuclides is a promising new option in cancer therapy. Stable conjugates of the vascular tumour-homing peptide F3 with the {alpha}-emitter {sup 213}Bi specifically target tumour cells. The aim of our study was to determine efficacy of combined {sup 213}Bi-diethylenetriaminepentaacetic acid (DTPA)-F3 and paclitaxel treatment compared to treatment with either {sup 213}Bi-DTPA-F3 or paclitaxel both in vitro and in vivo. Cytotoxicity of treatment with {sup 213}Bi-DTPA-F3 and paclitaxel, alone or in combination, was assayed towards OVCAR-3 cells using the alamarBlue assay, the clonogenic assay and flow cytometric analyses of the mode of cell death and cell cycle arrest. Therapeutic efficacy of the different treatment options was assayed after repeated treatment of mice bearing intraperitoneal OVCAR-3 xenograft tumours. Therapy monitoring was performed by bioluminescence imaging and histopathologic analysis. Treatment of OVCAR-3 cells in vitro with combined {sup 213}Bi-DTPA-F3 and paclitaxel resulted in enhanced cytotoxicity, induction of apoptosis and G2/M phase arrest compared to treatment with either {sup 213}Bi-DTPA-F3 or paclitaxel. Accordingly, i.p. xenograft OVCAR-3 tumours showed the best response following repeated (six times) combined therapy with {sup 213}Bi-DTPA-F3 (1.85 MBq) and paclitaxel (120 {mu}g) as demonstrated by bioluminescence imaging and histopathologic investigation of tumour spread on the mesentery of the small and large intestine. Moreover, mean survival of xenograft mice that received combined therapy with {sup 213}Bi-DTPA-F3 and paclitaxel was significantly superior to mice treated with either {sup 213}Bi-DTPA-F3 or paclitaxel alone. Combined treatment with {sup 213}Bi-DTPA-F3 and paclitaxel significantly increased mean survival of mice with peritoneal carcinomatosis of ovarian origin, thus favouring future therapeutic application. (orig.)

  8. {sup 213}Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: a first-in-human experience

    Energy Technology Data Exchange (ETDEWEB)

    Kratochwil, C.; Giesel, F.L.; Mier, W.; Haberkorn, U. [University Hospital Heidelberg, Department of Nuclear Medicine, Heidelberg (Germany); Bruchertseifer, F.; Apostolidis, C.; Morgenstern, A. [European Commission, Institute for Transuranium Elements, Karlsruhe (Germany); Boll, R.; Murphy, K. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)


    Radiopeptide therapy using a somatostatin analogue labelled with a beta emitter such as {sup 90}Y/{sup 177}Lu-DOTATOC is a new therapeutic option in neuroendocrine cancer. Alternative treatments for patients with refractory disease are rare. Here we report the first-in-human experience with {sup 213}Bi-DOTATOC targeted alpha therapy (TAT) in patients pretreated with beta emitters. Seven patients with progressive advanced neuroendocrine liver metastases refractory to treatment with {sup 90}Y/{sup 177}Lu-DOTATOC were treated with an intraarterial infusion of {sup 213}Bi-DOTATOC, and one patient with bone marrow carcinosis was treated with a systemic infusion of {sup 213}Bi-DOTATOC. Haematological, kidney and endocrine toxicities were assessed according to CTCAE criteria. Radiological response was assessed with contrast-enhanced MRI and {sup 68}Ga-DOTATOC-PET/CT. More than 2 years of follow-up were available in seven patients. The biodistribution of {sup 213}Bi-DOTATOC was evaluable with 440 keV gamma emission scans, and demonstrated specific tumour binding. Enduring responses were observed in all treated patients. Chronic kidney toxicity was moderate. Acute haematotoxicity was even less pronounced than with the preceding beta therapies. TAT can induce remission of tumours refractory to beta radiation with favourable acute and mid-term toxicity at therapeutic effective doses. (orig.)

  9. Levels in 221Fr fed by the α decay of 225Ac (United States)

    Ardisson, G.; Gasparro, J.; Barci, V.; Sheline, R. K.


    The α decay of 225Ac to 221Fr was reinvestigated by γ-ray spectroscopic studies with HPGe detectors and 225Ac sources purified using continuous elution processes. Energies and intensities of about 120 γ-ray transitions were measured. Among these, 40 are reported for the first time. A 221Fr level scheme with 46 excited states and 124 transitions is proposed. The level structure is described in terms of a reflection asymmetric structure with parity doublet bands Kπ=1/2+/-, 3/2+/-, 5/2+/-, and 3/2+/- in order of increasing energy. Both strong and intermediate coupling models have been shown to be in good agreement with the experimental data.

  10. A=225 implantation for $^{221}$Fr source for TRIUMF atom trap

    CERN Multimedia

    The FrPNC Collaboration is mounting an atom trap for parity violation experiments and precision spectroscopy on francium atoms at TRIUMF's ISAC facility. We would like to use ISOLDE's capability of simultaneously implanting A=225 (while another experiment runs online) to make a long-lived source feeding $^{221}$Fr for tests of the trap. $^{225}$Ra $\\beta$-decays to $^{225}$Ac, which then $\\alpha$-decays, producing 100 keV $^{221}$Fr t$_{1/2}$= 4.8 minute recoils. The implanted A=225 source would be shipped to TRIUMF, where it would be held for several minutes at a time a few mm from the same yttrium foil that normally receives the ISAC beam. SRIM calculations imply that 20% of the $^{221}$Fr will be implanted in a 1 cm diameter spot on the yttrium. Then the yttrium foil is moved to the trap and heated to release the Fr atoms, just as in normal ISAC online operation. A test implantation will be done at 10$^{7}$/sec production for 1 day, testing whether carbon cracking on the implantation foil in the mass separ...

  11. Investigation of $\\alpha$-decay rates of $^{221}$Fr, $^{224}$Ra and $^{226}$Ra in different environments

    CERN Multimedia


    It has recently been suggested, and indicated experimentally, that $\\alpha$- decay half-lives are modified by solid state effects in the surrounding environment. We propose here to measure with high accuracy the $\\alpha$-decay half-life of $^{221}$Fr, $^{224}$Ra and $^{226}$Ra in insulators and metals. Furthermore we plan to investigate the temperature dependency of the half-life in these materials (room temperature, 4 K and 10 mK).

  12. In vitro evaluation of {sup 213}Bi-rituximab versus external gamma irradiation for the treatment of B-CLL patients: relative biological efficacy with respect to apoptosis induction and chromosomal damage

    Energy Technology Data Exchange (ETDEWEB)

    Vandenbulcke, Katia; Lahorte, Christophe; Slegers, Guido [Department of Radiopharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, 9000, Gent (Belgium); De Vos, Filip; Dierckx, Rudi A. [Division of Nuclear Medicine, Ghent University Hospital (Belgium); Offner, Fritz [Department of Hematology, Ghent University Hospital (Belgium); Philippe, Jan [Department of Clinical Chemistry, Ghent University Hospital (Belgium); Apostolidis, Christos; Molinet, Roger; Nikula, Tuomo K. [European Commission, Joint Research Centre, Institute for Transuranium Elements, Karlsruhe (Germany); Bacher, Klaus; De Gelder, Virginie; Vral, Anne; Thierens, Hubert [Department of Anatomy, Embryology, Histology and Medical Physics, Ghent University (Belgium)


    External source radiotherapy and beta radioimmunotherapy (RIT) are effective treatments for lymphoid malignancies. The development of RIT with alpha emitters is attractive because of the high linear energy transfer (LET) and short path length, allowing higher tumour cell kill and lower toxicity to healthy tissues. We assessed the relative biological efficacy (RBE) of alpha RIT (in vitro) compared to external gamma irradiation with respect to induction of apoptosis in B chronic lymphocytic leukaemia (B-CLL) and induction of chromosomal damage in healthy donor B and T lymphocytes. The latter was measured by a micronucleus assay. {sup 213}Bi was eluted from a {sup 225}Ac generator and conjugated to CD20 antibody (rituximab) with CHX-A''-DTPA as a chelator. B-CLL cells from five patients were cultured for 24 h in RPMI/10% FCS while exposed to {sup 213}Bi conjugated to CD20 antibody or after external {sup 60}Co gamma irradiation. Binding assays were performed in samples of all patients to calculate the total absorbed dose. Apoptosis was scored by flow cytometric analyses of the cells stained with annexin V-FITC and 7-AAD. Apoptosis was expressed as % excess over spontaneous apoptosis in control. Full dose range experiments demonstrated {sup 213}Bi-conjugated CD20 antibody to be more effective than equivalent doses of external gamma irradiation, but showed that similar plateau values were reached at 10 Gy. The RBE for induction of apoptosis in B-CLL was 2 between 1.5 and 7 Gy. The micronucleus yield in lymphocytes of healthy volunteers was measured to assess the late toxicity caused by induction of chromosomal instability. While gamma radiation induced a steady increase in micronucleus yields in B and T cells, the damage induced by {sup 213}Bi was more dramatic, with RBE ranging from 5 to 2 between 0.1 Gy and 2 Gy respectively. In contrast to gamma irradiation, {sup 213}Bi inhibited mitogen-stimulated mitosis almost completely at 2 Gy. In conclusion, high

  13. Pre-clinical evaluation of a 213Bi-labeled 2556 antibody to HIV-1 gp41 glycoprotein in HIV-1 mouse models as a reagent for HIV eradication.

    Directory of Open Access Journals (Sweden)

    Ekaterina Dadachova

    Full Text Available BACKGROUND: Any strategy for curing HIV infection must include a method to eliminate viral-infected cells. Based on our earlier proof-of-principle results targeting HIV-1 infected cells with radiolabeled antibody (mAb to gp41 viral antigen, we embarked on identifying a suitable candidate mAb for preclinical development. METHODOLOGY/PRINCIPAL FINDINGS: Among the several human mAbs to gp41 tested, mAb 2556 was found to have high affinity, reactivity with multimeric forms of gp41 present on both the surface of virus particles and cells expressing HIV-1 Env, and recognition of a highly conserved epitope of gp41 shared by all HIV-1 subtypes. Also, mAb 2556 was the best in competition with HIV-1+ serum antibodies, which is an extremely important consideration for efficacy in the treatment of HIV patients. When radiolabeled with alpha-emitting radionuclide 213-Bismuth ((213Bi - (213Bi-2556 efficiently and specifically killed ACH-2 human lymphocytes chronically infected with HIV-1, and HIV-1 infected human peripheral blood mononuclear cells (hPBMCs. The number of binding sites for (213Bi-2556 on the surface of the infected cells was >10(6. The in vivo experiments were performed in two HIV-1 mouse models--splenic and intraperitoneal. In both models, the decrease in HIV-1 infected hPBMCs from the spleens and peritoneum, respectively, was dose-dependent with the most pronounced killing of hPBMCs observed in the 100 µCi (213Bi-2556 group (P = 0.01. Measurement of the blood platelet counts and gross pathology of the treated mice demonstrated the lack of toxicity for (213Bi-2556. CONCLUSIONS/SIGNIFICANCE: We describe the preclinical development of a novel radiolabeled mAb reagent that could potentially be part of an HIV eradication strategy that is ready for translation into the clinic as the next step in its development. As viral antigens are very different from "self" human antigens - this approach promises high selectivity, increased efficacy and low

  14. 209Tl half-life and gamma-ray measurements of radionuclides belonging to the (4 n + 1) decay chain (United States)

    Ardisson, G.; Barci, V.; El Samad, O.


    Gamma-ray spectra of radiochemically separated 221Fr, 213Bi and 209Tl sources were measured using coaxial and planar HPGe detectors. The energies and emission probabilities of eight new gamma-ray transitions were observed in the decay of 209Tl; a half-life of (2.161±0.007) min was measured. Twenty-two gamma-rays have been attributed to the β-decay of 213Bi, of which 17 are new with respect to previous studies. The 213Po level scheme was determined using γ-γ coincidence measurements: eight excited states are proposed of which six are new. Preliminary measurements of the α-decay of 221Fr revealed the existence of 18 gamma-ray transitions of which eight are reported for the first time.

  15. Dependence of the half-life of 221Fr on the implantation environment

    DEFF Research Database (Denmark)

    Olaizola, B.; Fraile, L.M.; Riisager, Karsten


    The possible dependence of the half-life of 221Fr on the solid-state environment has been investigated by the simultaneous measurement of implanted 221Fr ions in an insulator (Si) and a metallic substrate (Au) at the ISOLDE facility at CERN. Our results indicate that, if existing, the difference ...

  16. Alpha-particles induce autophagy in multiple myeloma cells

    Directory of Open Access Journals (Sweden)

    Joelle Marcelle Gaschet


    Full Text Available Objectives: Radiations emitted by the radionuclides in radioimmunotherapy (RIT approaches induce direct killing of the targeted cells as well as indirect killing through bystander effect. Our research group is dedicated to the development of α-RIT, i.e RIT using α-particles especially for the treatment of multiple myeloma (MM. γ-irradiation and β-irradiation have been shown to trigger apoptosis in tumor cells. Cell death mode induced by 213Bi α-irradiation appears more controversial. We therefore decided to investigate the effects of 213Bi on MM cell radiobiology, notably cell death mechanisms as well as tumor cell immunogenicity after irradiation.Methods: Murine 5T33 and human LP-1 multiple myeloma (MM cell lines were used to study the effects of such α-particles. We first examined the effects of 213Bi on proliferation rate, double strand DNA breaks, cell cycle and cell death. Then, we investigated autophagy after 213Bi irradiation. Finally, a co-culture of dendritic cells (DC with irradiated tumour cells or their culture media was performed to test whether it would induce DC activation.Results: We showed that 213Bi induces DNA double strand breaks, cell cycle arrest and autophagy in both cell lines but we detected only slight levels of early apoptosis within the 120 hours following irradiation in 5T33 and LP-1. Inhibition of autophagy prevented 213Bi induced inhibition of proliferation in LP-1 suggesting that this mechanism is involved in cell death after irradiation. We then assessed the immunogenicity of irradiated cells and found that irradiated LP-1 can activate DC through the secretion of soluble factor(s, however no increase in membrane or extracellular expression of danger associated molecular patterns (DAMPs was observed after irradiation.Conclusion: This study demonstrates that 213Bi induces mainly necrosis in MM cells, low levels of apoptosis and also autophagy that might be involved in tumor cell death.

  17. Preventing Radiobleaching of Cyanine Fluorophores Enhances Stability of Nuclear/NIRF Multimodality Imaging Agents (United States)

    Hernandez, Reinier; Heskamp, Sandra; Rijpkema, Mark; Bos, Desirée L.; Goldenberg, David M.; McBride, William J.; Morgenstern, Alfred; Bruchertseifer, Frank; Cai, Weibo; Boerman, Otto C.


    Despite the large interest in nuclear/optical multimodality imaging, the effect of radiation on the fluorescence of fluorophores remains largely unexplored. Herein, we report on the radiobleaching of cyanine fluorophores and describe conditions to provide robust radioprotection under practical (pre)clinical settings. We determined the radiosensitivity of several cyanine fluorescent compounds, including IRDye 800CW (800CW) and a dual modality imaging tetrapeptide containing DOTA as chelator and Dylight 800 as fluorophore, exposed to increasing activities of 111In, 68Ga, or 213Bi (γ, EC/β, and α emitter, respectively). An activity and type of radiation-dependent radiation-induced loss of fluorescence, radiobleaching, of 800CW was observed upon incubation with escalating activities of 111In, 68Ga, or 213Bi. 68Ga showed the largest radiolytic effect, followed by 111In and 213Bi. The addition of oxygen radical scavengers including ethanol, gentisic acid, and ascorbic acid (AA), provided a concentration dependent radioprotective effect. These results supported the hypothesis of a free radical-mediated radiobleaching mechanism. AA provided the most robust radioprotection over a wide range of concentrations and preserved fluorescence at much higher radioactivity levels. Overall, both near-infrared fluorescent compounds displayed similar sensitivity, except for 213Bi-irradiated solutions, where the dual modality construct exhibited enhanced radiolysis, presumably due to direct radiation damage from α particles. Concurrently, AA was not able to preserve fluorescence of the dual-modality molecule labeled with 213Bi. Our findings have important consequences for several research areas including ROS sensing, radiation-mediated drug release (uncaging), fluorescent dosimetry, and in the preparation of dual-modality radiopharmaceuticals. PMID:28042311

  18. Renal uptake of bismuth-213 and its contribution to kidney radiation dose following administration of actinium-225-labeled antibody

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, J; O' Donoghue, J A; Humm, J L [Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); Jaggi, J S [Bristol-Myers Squibb, Plainsboro, NJ (United States); Ruan, S; Larson, S M [Nuclear Medicine Service Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065 (United States); McDevitt, M; Scheinberg, D A, E-mail: [Molecular Pharmacology and Chemistry, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065 (United States)


    Clinical therapeutic studies using {sup 225}Ac-labeled antibodies have begun. Of major concern is renal toxicity that may result from the three alpha-emitting progeny generated following the decay of {sup 225}Ac. The purpose of this study was to determine the amount of {sup 225}Ac and non-equilibrium progeny in the mouse kidney after the injection of {sup 225}Ac-huM195 antibody and examine the dosimetric consequences. Groups of mice were sacrificed at 24, 96 and 144 h after injection with {sup 225}Ac-huM195 antibody and kidneys excised. One kidney was used for gamma ray spectroscopic measurements by a high-purity germanium (HPGe) detector. The second kidney was used to generate frozen tissue sections which were examined by digital autoradiography (DAR). Two measurements were performed on each kidney specimen: (1) immediately post-resection and (2) after sufficient time for any non-equilibrium excess {sup 213}Bi to decay completely. Comparison of these measurements enabled estimation of the amount of excess {sup 213}Bi reaching the kidney ({gamma}-ray spectroscopy) and its sub-regional distribution (DAR). The average absorbed dose to whole kidney, determined by spectroscopy, was 0.77 (SD 0.21) Gy kBq{sup -1}, of which 0.46 (SD 0.16) Gy kBq{sup -1} (i.e. 60%) was due to non-equilibrium excess {sup 213}Bi. The relative contributions to renal cortex and medulla were determined by DAR. The estimated dose to the cortex from non-equilibrium excess {sup 213}Bi (0.31 (SD 0.11) Gy kBq{sup -1}) represented {approx}46% of the total. For the medulla the dose contribution from excess {sup 213}Bi (0.81 (SD 0.28) Gy kBq{sup -1}) was {approx}80% of the total. Based on these estimates, for human patients we project a kidney-absorbed dose of 0.28 Gy MBq{sup -1} following administration of {sup 225}Ac-huM195 with non-equilibrium excess {sup 213}Bi responsible for approximately 60% of the total. Methods to reduce renal accumulation of radioactive progeny appear to be necessary for the

  19. Commissioning of the Francium Trapping Facility at TRIUMF

    CERN Document Server

    Tandecki, M; Collister, R; Aubin, S; Behr, J A; Gomez, E; Gwinner, G; Orozco, L A; Pearson, M R


    We report on the successful commissioning of the Francium Trapping Facility at TRIUMF. Large laser-cooled samples of francium are produced from a francium ion beam delivered by the ISAC radioactive ion beam facility. The ion beam is neutralized on an yttrium foil, which is subsequently heated to transfer the atoms into the magneto-optical trapping region. We have successfully trapped $^{207}$Fr, $^{209}$Fr and $^{221}$Fr, with a maximum of $2.5 \\times 10^5$ $^{209}$Fr atoms. The neutral cold atoms will be used in studies of the weak interaction through measurements of atomic parity non-conservation.

  20. Combination of anti-retroviral drugs and radioimmunotherapy specifically kills infected cells from HIV infected individuals

    Directory of Open Access Journals (Sweden)

    Dina Tsukrov


    Full Text Available Eliminating virally infected cells is an essential component of any HIV eradication strategy. Radioimmunotherapy (RIT, a clinically established method for killing cells using radiolabeled antibodies, was recently applied to target HIV-1 gp41 antigen expressed on the surface of infect-ed cells. Since gp41 expression by infected cells is likely down-regulated in patients on an-tiretroviral therapy (ART, we evaluated the ability of RIT to kill ART-treated infected cells us-ing both in vitro models and lymphocytes isolated from HIV-infected subjects. Human peripheral blood mononuclear cells (PBMCs were infected with HIV and cultured in the presence of two clinically relevant ART combinations. Scatchard analysis of the 2556 human monoclonal anti-body to HIV gp41 binding to the infected and ART-treated cells demonstrated sufficient residual expression of gp41 on the cell surface to warrant subsequent RIT. This is the first time the quantification of gp41 post-ART is being reported. Cells were then treated with Bismuth-213-labeled 2556 antibody. conjugated to the human monoclonal antibody 2556, which binds to HIV gp41. Cell survival was quantified by Trypan blue and residual viremia by p24 ELISA. Cell surface gp41 expression was assessed by Scatchard analysis. The experiments were repeated using PBMCs isolated from blood specimens obtained from 15 HIV-infected individuals: ten on ART and five ART-naive. We found that 213Bi-2556 killed ART-treated infected PBMCs and reduced viral production to undetectable levels. ART and RIT co-treatment was more effective at reducing viral load in vitro than either therapy alone, indicating that gp41 expression under ART was sufficient to allow 213Bi-2556 to deliver cytocidal doses of radiation to infected cells. This study provides proof of concept that 213Bi-2556 may represent an innovative and effective targeting method for killing HIV-infected cells treated with ART, and supports continued development of 213Bi

  1. Therapeutic use of alpha-emitters

    Energy Technology Data Exchange (ETDEWEB)

    Lassmann, M. [Klinik und Poliklinik fuer Nuklearmedizin der Univ. Wuerzburg (Germany)


    In recent years there is a growing interest in the therapeutic use of {alpha}-emitters for patient treatment, {alpha}-particles have much higher energy and their range is only a few cell diameters. Their high LET and the limited ability of cells to repair DNA damage from {alpha}-radiation explain their high relative biological effectiveness and cytotoxicity. Potential {alpha}-emitting isotopes for therapeutic applications are {sup 224}Ra, {sup 223}Ra, {sup 213}Bi and {sup 211}At. The treatment with {alpha}-particles is focused upon targeted cancer therapy using radiolabeled monoclonal antibodies, on palliation of bone metastases or upon pain relief in patients with ankylosing spondylitis (AS). Examples for targeted cancer therapy are the treatment of melanoma with {sup 213}Bi and non-Hodgkin lymphoma with {sup 211}At. For metastatic bone pain palliation {sup 223}Ra was applied in a phase I clinical trial. For amelioration of pain in AS-patients {sup 224}Ra-chloride is used. This radiopharmaceutical is licensed for this particular application in Germany. Today there are some potential clinical applications for {alpha}-emitters although most of them are in the state of scientific, non-routine investigations. In-vivo dosimetry for risk assessment associated with this treatment is even more difficult to perform than for therapies using beta-emitting radiopharmaceuticals. (orig.)

  2. Design and synthesis of {sup 225}Ac radioimmunopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    McDevitt, Michael R.; Ma, Dangshe; Simon, Jim; Frank, R. Keith; Scheinberg, David A. E-mail:


    The alpha-particle-emitting radionuclides {sup 213}Bi, {sup 211}At, {sup 224}Ra are under investigation for the treatment of leukemias, gliomas, and ankylosing spondylitis, respectively. {sup 213}Bi and {sup 211}At were attached to monoclonal antibodies and used as targeted immunotherapeutic agents while unconjugated {sup 224}Ra chloride selectively seeks bone. {sup 225}Ac possesses favorable physical properties for radioimmunotherapy (10 d half-life and 4 net alpha particles), but has a history of unfavorable radiolabeling chemistry and poor metal-chelate stability. We selected functionalized derivatives of DOTA as the most promising to pursue from out of a group of potential {sup 225}Ac chelate compounds. A two-step synthetic process employing either MeO-DOTA-NCS or 2B-DOTA-NCS as the chelating moiety was developed to attach {sup 225}Ac to monoclonal antibodies. This method was tested using several different IgG systems. The chelation reaction yield in the first step was 93{+-}8% radiochemically pure (n=26). The second step yielded {sup 225}Ac-DOTA-IgG constructs that were 95{+-}5% radiochemically pure (n=27) and the mean percent immunoreactivity ranged from 25% to 81%, depending on the antibody used. This process has yielded several potential novel targeted {sup 225}Ac-labeled immunotherapeutic agents that may now be evaluated in appropriate model systems and ultimately in humans.

  3. Emission Channeling Studies of the Lattice Site of Oversized Alkali Atoms Implanted in Metals

    CERN Multimedia


    % IS340 \\\\ \\\\ As alkali atoms have the largest atomic radius of all elements, the determination of their lattice configuration following implantation into metals forms a critical test for the various models predicting the lattice site of implanted impurity atoms. The site determination of these large atoms will especially be a crucial check for the most recent model that relates the substitutional fraction of oversized elements to their solution enthalpy. Recent exploratory $^{213}$Fr and $^{221}$Fr $\\alpha$-emission channeling experiments at ISOLDE-CERN and hyperfine interaction measurements on Fr implanted in Fe gave an indication for anomalously large substitutional fractions. To investigate further the behaviour of Fr and other alkali atoms like Cs and Rb thoroughly, more on-line emission channeling experiments are needed. We propose a number of shifts for each element, where the temperature of the implanted metals will be varied between 50$^\\circ$ and 700$^\\circ$~K. Temperature dependent measurements wi...

  4. An ion guide for the production of a low energy ion beam of daughter products of {alpha}-emitters

    Energy Technology Data Exchange (ETDEWEB)

    Tordoff, B. [Nuclear Physics Group, Schuster Laboratory, Brunswick Street, University of Manchester, Manchester M13 9PL (United Kingdom)]. E-mail:; Eronen, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Elomaa, V.V. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Gulick, S. [Ernest Rutherford Physics Building, McGill University, 3600 rue University, Montreal, QC, H3A 2T8 (Canada); Hager, U. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Karvonen, P. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Kessler, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Lee, J. [Ernest Rutherford Physics Building, McGill University, 3600 rue University, Montreal, QC, Canada H3A 2T8 (Canada); Moore, I. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Popov, A. [Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188350 (Russian Federation); Rahaman, S. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Rinta-Antila, S. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Sonoda, T. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland); Aystoe, J. [Department of Physics, University of Jyvaeskylae, P.O. Box 35, 40014 Jyvaeskylae (Finland)


    A new ion guide has been modeled and tested for the production of a low energy ({approx}40 kV) ion beam of daughter products of alpha-emitting isotopes. The guide is designed to evacuate daughter recoils originating from the {alpha}-decay of a {sup 233}U source. The source is electroplated onto stainless steel strips and mounted along the inner walls of an ion guide chamber. A combination of electric fields and helium gas flow transport the ions through an exit hole for injection into a mass separator. Ion guide efficiencies for the extraction of {sup 229}Th{sup +} (0.06%), {sup 221}Fr{sup +} (6%) and {sup 217}At{sup +} (6%) beams have been measured. A detailed study of the electric field and gas flow influence on the ion guide efficiency is described for two differing electric field configurations.

  5. An Ion Guide for the Production of a Low Energy Ion Beam of Daughter Products of $\\alpha$-Emitters

    CERN Document Server

    Tordoff, B; Elomaa, V V; Gulick, S; Hager, U; Karvonen, P; Kessler, T; Lee, J; Moore, I; Popov, A; Rahaman, S; Rinta-Antila, S; Sonoda, T; Äystö, J


    A new ion guide has been modeled and tested for the production of a low energy ($\\approx$ 40 kV) ion beam of daughter products of alpha-emitting isotopes. The guide is designed to evacuate daughter recoils originating from the $\\alpha$-decay of a $^{233}$U source. The source is electroplated onto stainless steel strips and mounted along the inner walls of an ion guide chamber. A combination of electric fields and helium gas flow transport the ions through an exit hole for injection into a mass separator. Ion guide efficiencies for the extraction of $^{229}$Th$^{+}$ (0.06%), $^{221}$Fr$^{+}$ (6%), and $^{217}$At$^{+}$ (6%) beams have been measured. A detailed study of the electric field and gas flow influence on the ion guide efficiency is described for two differing electric field configurations.

  6. Antitumor Immunity Induced after α Irradiation

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Gorin


    Full Text Available Radioimmunotherapy (RIT is a therapeutic modality that allows delivering of ionizing radiation directly to targeted cancer cells. Conventional RIT uses β-emitting radioisotopes, but recently, a growing interest has emerged for the clinical development of α particles. α emitters are ideal for killing isolated or small clusters of tumor cells, thanks to their specific characteristics (high linear energy transfer and short path in the tissue, and their effect is less dependent on dose rate, tissue oxygenation, or cell cycle status than γ and X rays. Several studies have been performed to describe α emitter radiobiology and cell death mechanisms induced after α irradiation. But so far, no investigation has been undertaken to analyze the impact of α particles on the immune system, when several studies have shown that external irradiation, using γ and X rays, can foster an antitumor immune response. Therefore, we decided to evaluate the immunogenicity of murine adenocarcinoma MC-38 after bismuth-213 (213Bi irradiation using a vaccination approach. In vivo studies performed in immunocompetent C57Bl/6 mice induced a protective antitumor response that is mediated by tumor-specific T cells. The molecular mechanisms potentially involved in the activation of adaptative immunity were also investigated by in vitro studies. We observed that 213Bi-treated MC-38 cells release “danger signals” and activate dendritic cells. Our results demonstrate that α irradiation can stimulate adaptive immunity, elicits an efficient antitumor protection, and therefore is an immunogenic cell death inducer, which provides an attractive complement to its direct cytolytic effect on tumor cells.

  7. Targeted killing of virally infected cells by radiolabeled antibodies to viral proteins.

    Directory of Open Access Journals (Sweden)

    Ekaterina Dadachova


    Full Text Available BACKGROUND: The HIV epidemic is a major threat to health in the developing and western worlds. A modality that targets and kills HIV-1-infected cells could have a major impact on the treatment of acute exposure and the elimination of persistent reservoirs of infected cells. The aim of this proof-of-principle study was to demonstrate the efficacy of a therapeutic strategy of targeting and eliminating HIV-1-infected cells with radiolabeled antibodies specific to viral proteins in vitro and in vivo. METHODS AND FINDINGS: Antibodies to HIV-1 envelope glycoproteins gp120 and gp41 labeled with radioisotopes bismuth 213 ((213Bi and rhenium 188 ((188Re selectively killed chronically HIV-1-infected human T cells and acutely HIV-1-infected human peripheral blood mononuclear cells (hPBMCs in vitro. Treatment of severe combined immunodeficiency (SCID mice harboring HIV-1-infected hPBMCs in their spleens with a (213Bi- or (188Re-labeled monoclonal antibody (mAb to gp41 resulted in a 57% injected dose per gram uptake of radiolabeled mAb in the infected spleens and in a greater than 99% elimination of HIV-1-infected cells in a dose-dependent manner. The number of HIV-1-infected thymocytes decreased 2.5-fold in the human thymic implant grafts of SCID mice treated with the (188Re-labeled antibody to gp41 compared with those treated with the (188Re-control mAb. The treatment did not cause acute hematologic toxicity in the treated mice. CONCLUSIONS: The current study demonstrates the effectiveness of HIV-targeted radioimmunotherapy and may provide a novel treatment option in combination with highly active antiretroviral therapy for the eradication of HIV.

  8. Production of actinium-225 for alpha particle mediated radioimmunotherapy. (United States)

    Boll, Rose A; Malkemus, Dairin; Mirzadeh, Saed


    The initial clinical trials for treatment of acute myeloid leukemia have demonstrated the effectiveness of the alpha emitter (213)Bi in killing cancer cells. Bismuth-213 is obtained from a radionuclide generator system from decay of 10-days (225)Ac parent. Recent pre-clinical studies have also shown the potential application of both (213)Bi, and the (225)Ac parent radionuclide in a variety of cancer systems and targeted radiotherapy. This paper describes our five years of experience in production of (225)Ac in partial support of the on-going clinical trials. A four-step chemical process, consisting of both anion and cation exchange chromatography, is utilized for routine separation of carrier-free (225)Ac from a mixture of (228)Th, (229)Th and (232)Th. The separation of Ra and Ac from Th is achieved using the marcoporous anion exchange resin MP1 in 8M HNO(3) media. Two sequential MP1/NO(3) columns provide a separation factor of approximately 10(6) for Ra and Ac from Th. The separation of Ac from Ra is accomplished on a low cross-linking cation exchange resin AG50-X4 using 1.2M HNO(3) as eluant. Two sequential AG50/NO(3) columns provide a separation factor of approximately 10(2) for Ac from Ra. A 60-day processing schedule has been adopted in order to reduce the processing cost and to provide the highest levels of (225)Ac possible. Over an 8-week campaign, a total of approximately 100 mCi of (225)Ac (approximately 80% of the theoretical yield) is shipped in 5-6 batches, with the first batch typically consisting of approximately 50 mCi. After the initial separation and purification of Ac, the Ra pool is re-processed on a bi-weekly schedule or as needed to provide smaller batches of (225)Ac. The averaged radioisotopic purity of the (225)Ac was 99.6 +/- 0.7% with a (225)Ra content of < or =0.6%, and an average (229)Th content of (4(-4)(+5)) x 10(-5)%.


    Energy Technology Data Exchange (ETDEWEB)

    Nicholas, R.G.; Lacy, N.H.; Butz, T.R.; Brandon, N.E.


    As part of its commitment to clean up Cold War legacy sites, the U.S. Department of Energy (DOE) has initiated an exciting and unique project to dispose of its inventory of uranium-233 (233U) stored at Oak Ridge National Laboratory (ORNL), and extract isotopes that show great promise in the treatment of deadly cancers. In addition to increasing the supply of potentially useful medical isotopes, the project will rid DOE of a nuclear concern and cut surveillance and security costs. For more than 30 years, DOE's ORNL has stored over 1,200 containers of fissile 233U, originally produced for several defense-related projects, including a pilot study that looked at using 233U as a commercial reactor fuel. This uranium, designated as special nuclear material, requires expensive security, safety, and environmental controls. It has been stored at an ORNL facility, Building 3019A, that dates back to the Manhattan Project. Down-blending the material to a safer form, rather than continuing to store it, will eliminate a $15 million a year financial liability for the DOE and increase the supply of medical isotopes by 5,700 percent. During the down-blending process, thorium-229 (229Th) will be extracted. The thorium will then be used to extract actinium-225 (225Ac), which will ultimately supply its progeny, bismuth-213 (213Bi), for on-going cancer research. The research includes Phase II clinical trials for the treatment of acute myelogenous leukemia at Sloan-Kettering Memorial Cancer Center in New York, as well as other serious cancers of the lungs, pancreas, and kidneys using a technique known as alpha-particle radioimmunotherapy. Alpha-particle radioimmunotherapy is based on the emission of alpha particles by radionuclides. 213Bi is attached to a monoclonal antibody that targets specific cells. The bismuth then delivers a high-powered but short-range radiation dose, effectively killing the cancerous cells but sparing the surrounding tissue. Production of the actinium and

  10. Thick target yield measurement of {sup 211}At through the nuclear reaction {sup 209}Bi({alpha}, 2n)

    Energy Technology Data Exchange (ETDEWEB)

    Alfarano, A [Institute for Health and Consumer Protection, IHCP, Joint Research Centre, via E. Fermi 1, 21020 Ispra, Varese (Italy); Abbas, K [Institute for Health and Consumer Protection, IHCP, Joint Research Centre, via E. Fermi 1, 21020 Ispra, Varese (Italy); Holzwarth, U [Institute for Health and Consumer Protection, IHCP, Joint Research Centre, via E. Fermi 1, 21020 Ispra, Varese (Italy); Bonardi, M [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, 20090 Segrate, Milan (Italy); Groppi, F [Universita degli Studi di Milano and INFN-Milano, LASA, Radiochemistry Laboratory, via F.lli Cervi 201, 20090 Segrate, Milan (Italy); Alfassi, Z [Department of Nuclear Engineering, Ben Gurion University, 84105 Beer Sheva (Israel); Menapace, E [ENEA, Applied Physics Division, Bologna (Italy); Gibson, P N [Institute for Health and Consumer Protection, IHCP, Joint Research Centre, via E. Fermi 1, 21020 Ispra, Varese (Italy)


    Radionuclide Therapy (RNT) and Radioimmunotherapy (RIT) are potentially of great interest for cancer therapy. In many therapeutic applications alpha emitters should be much more effective than already-approved beta emitters due to the short range and high linear energy transfer of alpha particles. {sup 213}Bi is an important alpha emitter already used in clinical trials but the half-life of this radioisotope is short (46 minutes) and so its use is limited for certain therapies. {sup 211}At is potentially very interesting for medical purposes because of its longer half-life of 7.2 hours, and suitable decay scheme. We have studied the cyclotron-based production of {sup 211}At via the reaction {sup 209}Bi({alpha}, 2n), this production route probably being the most promising in the long term. The energy dependence of thick target yields and the reaction cross sections for the production of {sup 211}At and {sup 210}At were determined and found to be in good agreement with literature. The best energy to produce {sup 211}At is 28-29 MeV. The possible production of the undesired, highly radiotoxic, and long-lived alpha-emitting {sup 210}Po (138.38 days), which is produced from decay of {sup 210}At, is also discussed.

  11. Meson-Exchange Enhancement of First-Forbidden $\\beta$-Transitions in the Lead Region

    CERN Multimedia

    Delaure, B J P; Severijns, N


    Both on-line and off-line low temperature nuclear orientation is used to measure the $\\beta$-asymmetry parameter for the first-forbidden g.s. $\\rightarrow$~g.s. $\\beta$-transitions of $^{205}$Hg, $^{207,209}$Tl, $^{209}$Pb and $^{213}$Bi. From this, the ratio of the rank-zero and the rank-one strengths in these decays can be deduced, with the rank of a $\\beta$-transition being defined as the total angular momentum of the lepton system. Combining this result with the experimental ${ft}$-values yields for the first time a purely experimental determination of the rank-zero contribution in these $\\Delta$ J = 0 first-forbidden transitions. This provides an independent check of the large enhancement (of about 100% over the impulse approximation) of the rank-zero matrix element of $\\gamma_{5} $, caused by meson exchange currents (MEC), which was recently obtained from a comparison of calculated first-forbidden $\\beta$-decay rates with experimentally observed values for nuclei in the lead region (A = 205-212). Measur...

  12. Laser Spectroscopy of Neutron Rich Bismuth Isotopes

    CERN Multimedia


    %IS344 :\\\\ \\\\ The aim of the experiment is to measure the optical isotope shifts and hyperfine structures of bismuth isotopes across the N=126 shell closure in order to extract the change in mean square charge radii ($\\delta\\langle r^{2}\\rangle$) and static moments. These include the first isotones of lead to be measured directly above the shell closure and will provide new information on the systematics of the kink ($\\delta\\langle r^{2}\\rangle)$ seen in the lead isotopic chain. After two very successful runs the programme has been extended to include the neutron deficient isotopes below $^{201}$Bi to study the systematics across the $i_{13/2}$ neutron sub-shell closure at N=118.\\\\ \\\\ During the initial 2 runs (9 shifts) the isotope shifts and hyperfine structures of three new isotopes, $ ^{210,212,213}$Bi and the 9$^{-}$ isomer of $^{210}$Bi have been measured. The accuracy of the previous measurements of $^{205,206,208}$Bi have been greatly improved. The samples of $ ^{208,210,210^{m}}$Bi were prepared by c...

  13. The feasibility of [sup 225]Ac as a source of [alpha]-particles in radioimmunotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Geerlings, M.W.; Hout, R. van der (Akzo nv, Arnhem (Netherlands)); Kaspersen, F.M. (Organon International bv, Oss (Netherlands)); Apostolides, C. (Commission of the European Communities, Karlsruhe (Germany). European Inst. for Transuranium Elements)


    This paper proposes the utilization of [sup 225]Ac for the [alpha]-radioimmunotherapy of cancer. The isotope decays with a radioactive half-life of 10 days into a cascade of short-lived [alpha]-and [beta]-emitting isotopes. In addition, when indicated by the pharmacokinetic requirements of particular clinical applications, [sup 213]Bi, with a radioactive half-life of 47 min, can be chosen as an alternative source of [alpha]-particles in radioimmunotherapy. This isotope is the last [alpha] emitter in the [sup 225]Ac decay-cascade and can be extracted from a [sup 225]Ac source at the bedside of the patient. [sup 225]Ac can quasi ad infinitum be obtained from one of its precursors, [sup 229]Th, which can be made available by various means. The indications for the use of [alpha]-particles as an alternative to more traditional classes of radiation are derived from the particle-kinetic characteristics and the radioactive half-life of their source isotope, as well as from the properties of the target-selective carrier moiety for the source isotope. It may be expected that useful applications, complementary to and/or in conjunction with other means of therapy will be identified. (author).

  14. Application of ion exchange and extraction chromatography to the separation of actinium from proton-irradiated thorium metal for analytical purposes. (United States)

    Radchenko, V; Engle, J W; Wilson, J J; Maassen, J R; Nortier, F M; Taylor, W A; Birnbaum, E R; Hudston, L A; John, K D; Fassbender, M E


    Actinium-225 (t1/2=9.92d) is an α-emitting radionuclide with nuclear properties well-suited for use in targeted alpha therapy (TAT), a powerful treatment method for malignant tumors. Actinium-225 can also be utilized as a generator for (213)Bi (t1/2 45.6 min), which is another valuable candidate for TAT. Actinium-225 can be produced via proton irradiation of thorium metal; however, long-lived (227)Ac (t1/2=21.8a, 99% β(-), 1% α) is co-produced during this process and will impact the quality of the final product. Thus, accurate assays are needed to determine the (225)Ac/(227)Ac ratio, which is dependent on beam energy, irradiation time and target design. Accurate actinium assays, in turn, require efficient separation of actinium isotopes from both the Th matrix and highly radioactive activation by-products, especially radiolanthanides formed from proton-induced fission. In this study, we introduce a novel, selective chromatographic technique for the recovery and purification of actinium isotopes from irradiated Th matrices. A two-step sequence of cation exchange and extraction chromatography was implemented. Radiolanthanides were quantitatively removed from Ac, and no non-Ac radionuclidic impurities were detected in the final Ac fraction. An (225)Ac spike added prior to separation was recovered at ≥ 98%, and Ac decontamination from Th was found to be ≥ 10(6). The purified actinium fraction allowed for highly accurate (227)Ac determination at analytical scales, i.e., at (227)Ac activities of 1-100 kBq (27 nCi to 2.7 μCi).

  15. Targeted alpha anticancer therapies: update and future prospects

    Directory of Open Access Journals (Sweden)

    Allen BJ


    Full Text Available Barry J Allen,1,2 Chen-Yu Huang,3 Raymond A Clarke2 1Faculty of Physics, University of Sydney, Sydney, NSW, Australia; 2Faculty of Medicine, Ingham Institute, University of Western Sydney, Liverpool, NSW, Australia; 3Central Clinical School, University of Sydney, Sydney, NSW, AustraliaAbstract: Targeted alpha therapy (TAT is an emerging option for local and systemic cancer treatment. Preclinical research and clinical trials show that alpha-emitting radionuclides can kill targeted cancer cells while sparing normal cells, thus reducing toxicity. 223RaCl2 (Xofigo® is the first alpha emitting radioisotope to gain registration in the US for palliative therapy of prostate cancer bone metastases by indirect physiological targeting. The alpha emitting radioisotopes 211At, 213Bi, 225Ac and 227Th are being used to label targeting vectors such as monoclonal antibodies for specific cancer therapy indications. In this review, safety and tolerance aspects are considered with respect to microdosimetry, specific energy, Monte Carlo model calculations, biodosimetry, equivalent dose and mutagenesis. The clinical efficacy of TAT for solid tumors may also be enhanced by its capacity for tumor anti-vascular (TAVAT effects. This review emphasizes key aspects of TAT research with respect to the PAI2-uPAR complex and the monoclonal antibodies bevacizumab, C595 and J591. Clinical trial outcomes are reviewed for neuroendocrine tumors, leukemia, glioma, melanoma, non-Hodgkins lymphoma, and prostate bone metastases. Recommendations and future directions are proposed.Keywords: biodosimetry, microdosimetry, mutagenesis, PAI2, bevacizumab, C595, J591, tumors, cancer, metastases

  16. Targeted Radionuclide Therapy of Melanoma. (United States)

    Norain, Abdullah; Dadachova, Ekaterina


    An estimated 60,000 individuals in the United States and 132,000 worldwide are yearly diagnosed with melanoma. Until recently, treatment options for patients with stages III-IV metastatic disease were limited and offered marginal, if any, improvement in overall survival. The situation changed with the introduction of B-RAF inhibitors and anti-cytotoxic T-lymphocyte antigen 4 and anti-programmed cell death protein 1 immunotherapies into the clinical practice. With only some patients responding well to the immune therapies and with very serious side effects and high costs of immunotherapy, there is still room for other approaches for the treatment of metastatic melanoma. Targeted radionuclide therapy of melanoma could be divided into the domains of radioimmunotherapy (RIT), radiolabeled peptides, and radiolabeled small molecules. RIT of melanoma is currently experiencing a renaissance with the clinical trials of alpha-emitter (213)Bi-labeled and beta-emitter (188)Rhenium-labeled monoclonal antibodies in patients with metastatic melanoma producing encouraging results. The investigation of the mechanism of efficacy of melanoma RIT points at killing of melanoma stem cells by RIT and involvement of immune system such as complement-dependent cytotoxicity. The domain of radiolabeled peptides for targeted melanoma therapy has been preclinical so far, with work concentrated on radiolabeled peptide analogues of melanocyte-stimulating hormone receptor and on melanin-binding peptides. The field of radiolabeled small molecule produced radioiodinated benzamides that cross the cellular membrane and bind to the intracellular melanin. The recent clinical trial demonstrated measurable antitumor effects and no acute or midterm toxicities. We are hopeful that the targeted radionuclide therapy of metastatic melanoma would become a clinical reality as a stand-alone therapy or in combination with the immunotherapies such as anti-PD1 programmed cell death protein 1 monoclonal antibodies

  17. Mechanism of visible light photocatalytic NO(x) oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres. (United States)

    Sun, Yanjuan; Zhao, Zaiwang; Dong, Fan; Zhang, Wei


    Semimetal bismuth (Bi), as an emerging non-noble metal-based cocatalyst and plasmonic photocatalyst, has attracted significant attention. In this work, a one-pot solvent-controlled synthesis strategy was utilized for the in situ-deposition of plasmonic Bi nanoparticles onto the surfaces of (BiO)2CO3 microspheres (BOC-WE) using bismuth citrate, sodium carbonate, and ethylene glycol as precursors. The introduction of the Bi nanoparticles has a pivotal effect on the morphology, optical and photocatalytic performance of the pristine (BiO)2CO3. The results indicated that the Bi nanoparticles were generated on the surface of (BiO)2CO3 microspheres via the in situ reduction of Bi(3+) by ethylene glycol. The Bi-deposited (BiO)2CO3 microspheres were used for the photocatalytic purification of NOx in air under visible light irradiation. Significantly, the BOC-WE samples exhibited a drastically promoted photocatalytic performance with a NOx removal ratio (η) of 37.2%, superior to pristine (BiO)2CO3 (η = 19.1%), outperforming other well-known visible light photocatalysts, such as C-doped TiO2 (η = 21.8%), BiOBr (η = 21.3%), BiOI (η = 14.9%) and C3N4 (η = 25.5%). The conspicuously enhanced photocatalytic capability can be attributed to the synergistic effects of the surface plasmon resonance (SPR) effect, increased visible light absorption and the efficient separation of electron-hole pairs induced by the Bi nanoparticles. The Bi nanoparticles can act as a non-noble metal-based cocatalyst for strengthening photocatalytic performance, which is similar to the behavior of noble metals (Au, Ag) in enhancing photocatalysis. The mechanism of visible light photocatalytic NOx oxidation was investigated. DMPO-ESR spin-trapping results demonstrated that hydroxyl radicals were confirmed to be the main active species for NOx photo-oxidation. Due to the SPR effect of Bi, the BOC-WE could produce more hydroxyl radicals than BOC, which was responsible for the enhanced NO photo-oxidation ability. Moreover, the BOC-WE photocatalysts showed high photochemical stability under repeated irradiation. This work demonstrates the feasibility of utilizing low cost Bi cocatalysts as a substitute for noble metals to enhance the performance of other photocatalysts. This work could not only provide new insights into the in situ fabrication of Bi/semiconductor nanocomposites, but also pave a new way for the modification of photocatalysts with non-noble metals as cocatalysts to achieve an enhanced performance for environmental and energetic applications.

  18. Targeted alpha therapy for cancer

    Energy Technology Data Exchange (ETDEWEB)

    Allen, Barry J [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Raja, Chand [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Rizvi, Syed [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Li Yong [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Tsui, Wendy [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Zhang, David [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Song, Emma [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Qu, C F [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Kearsley, John [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Graham, Peter [Centre for Experimental Radiation Oncology, St George Cancer Care Centre, Gray St, Kogarah 2217, NSW (Australia); Thompson, John [Sydney Melanoma Unit, Royal Prince Alfred Hospital, Camperdown 2050 NSW (Australia)


    Targeted alpha therapy (TAT) offers the potential to inhibit the growth of micrometastases by selectively killing isolated and preangiogenic clusters of cancer cells. The practicality and efficacy of TAT is tested by in vitro and in vivo studies in melanoma, leukaemia, colorectal, breast and prostate cancers, and by a phase 1 trial of intralesional TAT for melanoma. The alpha-emitting radioisotope used is Bi-213, which is eluted from the Ac-225 generator and chelated to a cancer specific monoclonal antibody (mab) or protein (e.g. plasminogen activator inhibitor-2 PAI2) to form the alpha-conjugate (AC). Stable alpha-ACs have been produced which have been tested for specificity and cytotoxicity in vitro against melanoma (9.2.27 mab), leukaemia (WM60), colorectal (C30.6), breast (PAI2, herceptin), ovarian (PAI2, herceptin, C595), prostate (PAI2, J591) and pancreatic (PAI2, C595) cancers. Subcutaneous inoculation of 1-1.5 million human cancer cells into the flanks of nude mice causes tumours to grow in all mice. Tumour growth is compared for untreated controls, nonspecific AC and specific AC, for local (subcutaneous) and systemic (tail vein or intraperitoneal) injection models. The {sup 213}Bi-9.2.27 AC is injected into secondary skin melanomas in stage 4 patients in a dose escalation study to determine the effective tolerance dose, and to measure kinematics to obtain the equivalent dose to organs. In vitro studies show that TAT is one to two orders of magnitude more cytotoxic to targeted cells than non-specific ACs, specific beta emitting conjugates or free isotopes. In vivo local TAT at 2 days post-inoculation completely prevents tumour formation for all cancers tested so far. Intra-lesional TAT can completely regress advanced sc melanoma but is less successful for breast and prostate cancers. Systemic TAT inhibits the growth of sc melanoma xenografts and gives almost complete control of breast and prostate cancer tumour growth. Intralesional doses up to 450 {mu

  19. α放射核素靶向治疗研究进展%The Research Progress of Alpha-emitting Radionuclides Targeted Therapy

    Institute of Scientific and Technical Information of China (English)

    李明起; 潘俊男; 段玉春; 邓启民; 王邦金


    Alpha‐emitting radionuclides provide effective cell‐killing properties in vivo and have been shown to be effective in cancer treatment .Its short‐range make little effect on normal tissues ,thus alpha‐emitting radionuclides drugs is one of the important research focus areas and radiopharmaceutical research .T he excellent nature of the radi‐onuclide (right half life ,ray energy ,etc .) ,stable supply of high purity nuclides ,suit‐able radionuclide carrier base and excellent kinetics in vivo are necessary to the produc‐tion and research of alpha‐emitting radionuclides .At present ,the alpha‐emitting radio‐nuclidesinclude223Ra,225Ac,213Bi,211At,212Bi,149Tband227Thwereinvestagated.The preparation and sources of the above radionuclides and the latest developments for targe‐ted cancer therapy were described .The existing problems ,status and clinical applica‐tion were briefly discussed .%α放射核素在内照射时具有极强的细胞毒性,对肿瘤细胞具有较强的杀灭作用,而其短射程对正常组织影响较小,因此α放射核素类药物是放射性药物研究的重要领域和研究热点之一。α放射核素类药物的生产和研究关键在于核素的选择、高纯度核素的稳定可靠供应、核素载体及合适的体内动力学。目前国内外研究比较活跃的α放射核素主要包括223 Ra、225 Ac、213 Bi、211 At、212 Bi、149 Tb和227 Th等。本文主要介绍了以上核素的来源制备及用于肿瘤靶向治疗的最新进展,对存在的问题、现状及临床应用前景进行了简要的探讨。

  20. Targeted Alpha Therapy Approach to the Management of Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Ross C. Smith


    Full Text Available Evidence for the efficacy of targeted alpha therapy for the control of pancreatic cancer in preclinical models is reviewed. Results are given for in vitro pancreatic cancer cells and clusters and micro-metastatic cancer lesions in vivo. Two complementary targeting vectors are examined. These are the C595 monoclonal antibody that targets the MUC1 antigen and the PAI2 ligand that targets the uPA receptor. The expression of the tumor-associated antigen MUC-1 and the uPA receptor on three pancreatic cancer cell lines is reported for cell clusters, human mouse xenografts and lymph node metastases, as well as for human pancreatic cancer tissues, using immuno-histochemistry, confocal microscopy and flow cytometry. The targeting vectors C595 and PAI2 were labeled with the alpha emitting radioisotope 213Bi using the chelators cDTPA and CHX-A″ to form the alpha-conjugates (AC. Cell clusters were incubated with the AC and examined at 48 hours. Apoptosis was documented using the TUNEL assay. In vivo, the anti-proliferative effect for tumors was tested at two days post-subcutaneous cell inoculation. Mice were injected with different concentrations of AC by local or systemic administration. Changes in tumor progression were assessed by tumor size. MUC-1 and uPA are strongly expressed on CFPAC-1, PANC-1 and moderate expression was found CAPAN-1 cell clusters and tumor xenografts. The ACs can target pancreatic cells and regress cell clusters (~100 µm diameter, causing apoptosis in some 70–90 % of cells. At two days post-cell inoculation in mice, a single local injection of 74 MBq/kg of AC causes complete inhibition of tumor growth. Systemic injections of 111, 222 and 333 MBq/kg of alpha-conjugate caused significant tumor growth delay in a dose dependent manner after 16 weeks, compared with the non-specific control at 333 MBq/kg. Cytotoxicity was assessed by the MTS and TUNEL assays. The C595 and PAI2-alpha conjugates are indicated for the treatment of

  1. Production of Endohedral Fullerenes by Ion Implantation

    Energy Technology Data Exchange (ETDEWEB)

    Diener, M.D.; Alford, J. M.; Mirzadeh, S.


    The empty interior cavity of fullerenes has long been touted for containment of radionuclides during in vivo transport, during radioimmunotherapy (RIT) and radioimaging for example. As the chemistry required to open a hole in fullerene is complex and exceedingly unlikely to occur in vivo, and conformational stability of the fullerene cage is absolute, atoms trapped within fullerenes can only be released during extremely energetic events. Encapsulating radionuclides in fullerenes could therefore potentially eliminate undesired toxicity resulting from leakage and catabolism of radionuclides administered with other techniques. At the start of this project however, methods for production of transition metal and p-electron metal endohedral fullerenes were completely unknown, and only one method for production of endohedral radiofullerenes was known. They therefore investigated three different methods for the production of therapeutically useful endohedral metallofullerenes: (1) implantation of ions using the high intensity ion beam at the Oak Ridge National Laboratory (ORNL) Surface Modification and Characterization Research Center (SMAC) and fullerenes as the target; (2) implantation of ions using the recoil energy following alpha decay; and (3) implantation of ions using the recoil energy following neutron capture, using ORNL's High Flux Isotope Reactor (HFIR) as a thermal neutron source. While they were unable to obtain evidence of successful implantation using the ion beam at SMAC, recoil following alpha decay and neutron capture were both found to be economically viable methods for the production of therapeutically useful radiofullerenes. In this report, the procedures for preparing fullerenes containing the isotopes {sup 212}Pb, {sup 212}Bi, {sup 213}Bi, and {sup 177}Lu are described. None of these endohedral fullerenes had ever previously been prepared, and all of these radioisotopes are actively under investigation for RIT. Additionally, the chemistry for

  2. Compartmental and dosimetric studies of anti-CD20 labelled with {sup 188}Re; Estudo compartimental e dosimetrico do Anti-CD20 marcado com {sup 188}Re

    Energy Technology Data Exchange (ETDEWEB)

    Kuramoto, Graciela Barrio


    The radioimmunotherapy (RIT) uses MAbs conjugated to radionuclides α or β{sup -} emitters, both for therapy. Your treatment is based on the irradiation and tumor destruction, preserving the normal organs as the excess radiation. Radionuclides β{sup -} emitters as {sup 131}I, {sup 90}Y, {sup 188}Re {sup 177}Lu and are useful for the development of therapeutic radiopharmaceuticals and, when coupled with MAb and Anti-CD20 it is important mainly for the treatment of non-Hodgkin's lymphomas (NHL). {sup 188}Re (E{sub β} = 2.12 MeV; E{sub γ} = 155 keV; t1/2 = 16.9 h) is an attractive radionuclide for RIT. However, {sup 188}Re can be obtained from a radionuclide generator of {sup 188}W/{sup 188}Re, commercially available, making it convenient for use in research and for clinical routine. The CR of IPEN has a project aimed at the production of radiopharmaceutical {sup 188}Re-Anti-CD20, where the radionuclide can be obtained from a generator system {sup 188}W/{sup 188}Re. With this proposed a study to assess the efficiency of this labeling technique for treatment in accordance compartmental and dosimetry. The objective of this study was to compare the marking of anti-CD20 MAb with {sup 188}Re with the marking of the antibody with {sup 90}Y, {sup 131}I, {sup 177}Lu and {sup 99m}Tc (for their similar chemical characteristics) and {sup 211}At, {sup 213}Bi, {sup 223}Ra and {sup 225}Ac); through the study of labeling techniques reported in literature, the proposal of a compartmental model to evaluate its pharmacokinetic and dosimetric studies, high interest for therapy. The result of the study shows a favorable kinetics for {sup 188}Re, by their physical and chemical characteristics compared to the other evaluated radionuclides. The compartment proposed study describes the metabolism of {sup 188}Reanti- CD20 through a compartment mammillary model, which by their pharmacokinetic analysis, performed compared to products emitters β{sup -131}I-labeled anti CD20, {sup 177