WorldWideScience

Sample records for 20th hadron collider

  1. The 20th Hadron Collider Physics Symposium in Evian

    CERN Multimedia

    Ludwik Dobrzynski and Emmanuel Tsesmelis

    The 20th Hadron Collider Physics Symposium took place in Evian from 16 to 20 November 2009. The Hadron Collider Physics Symposium series has been a major forum for presentations of physics at the Tevatron over the past two decades. The merger of the former Topical Conference on Hadron Collider Physics with the LHC Symposium in 2005 brought together the Tevatron and LHC communities in a single forum. The 20th Hadron Collider Physics Symposium took place in Evian, on the shores of Lake Geneva, from 16-20 November 2009, some 17 years after the historic ECFA-CERN Evian meeting in March 1992 when Expressions of Interest for LHC detectors were presented for the first time. The 2009 event was organized jointly by CERN and the French high-energy physics community (CNRS-IN2P3 and CEA-IRFU). More than 170 people registered for this symposium. This year’s symposium was held at an important time for both the Tevatron and the LHC. It stimulated the completion of analyses for a significant Tevatron data sam...

  2. Hadron-hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Month, M.; Weng, W.T.

    1983-06-21

    The objective is to investigate whether existing technology might be extrapolated to provide the conceptual framework for a major hadron-hadron collider facility for high energy physics experimentation for the remainder of this century. One contribution to this large effort is to formalize the methods and mathematical tools necessary. In this report, the main purpose is to introduce the student to basic design procedures. From these follow the fundamental characteristics of the facility: its performance capability, its size, and the nature and operating requirements on the accelerator components, and with this knowledge, we can determine the technology and resources needed to build the new facility.

  3. Hadron Colliders and Hadron Collider Physics Symposium

    Directory of Open Access Journals (Sweden)

    Denisov D.

    2013-05-01

    Full Text Available This article summarizes main developments of the hadron colliders and physics results obtained since their inception around forty years ago. The increase in the collision energy of over two orders of magnitude and even larger increases in luminosity provided experiments with unique data samples. Developments of full acceptance detectors, particle identification and analysis methods provided fundamental discoveries and ultra-precise measurements which culminated in the completion and in depth verification of the Standard Model. Hadron Collider Physics symposium provided opportunities for those working at hadron colliders to share results of their research since 1979 and helped greatly to develop the field of particle physics.

  4. Toponium at hadronic colliders

    Energy Technology Data Exchange (ETDEWEB)

    Finjord, J. (Bern Univ. (Switzerland)); Girardi, G.; Sorba, P. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules); Mery, P. (European Organization for Nuclear Research, Geneva (Switzerland))

    1982-05-27

    We calculate hadronic toponium production by specific diagrams obeying colour conservation and charge conjugation. The resulting rates, though lower than those calculated using semi-local duality arguments are encouraging and may allow for toponium discovery at hadronic colliders currently in development.

  5. The Large Hadron Collider

    CERN Multimedia

    Wright, Alison

    2007-01-01

    "We are on the threshold of a new era in particle-physics research. In 2008, the Large Hadron Collider (LHC) - the hightest-energy accelerator ever built - will come into operation at CERN, the European labortory that straddles the French-Swiss border near Geneva." (1/2 page)

  6. Hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Pondrom, L.

    1991-10-03

    An introduction to the techniques of analysis of hadron collider events is presented in the context of the quark-parton model. Production and decay of W and Z intermediate vector bosons are used as examples. The structure of the Electroweak theory is outlined. Three simple FORTRAN programs are introduced, to illustrate Monte Carlo calculation techniques. 25 refs.

  7. The Large Hadron Collider

    CERN Document Server

    Juettner Fernandes, Bonnie

    2014-01-01

    What really happened during the Big Bang? Why did matter form? Why do particles have mass? To answer these questions, scientists and engineers have worked together to build the largest and most powerful particle accelerator in the world: the Large Hadron Collider. Includes glossary, websites, and bibliography for further reading. Perfect for STEM connections. Aligns to the Common Core State Standards for Language Arts. Teachers' Notes available online.

  8. Bottomonium production in hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Brenner Mariotto, C. [Universidade de Caxias do Sul, RS (Brazil). Centro de Ciencias Exatas e Tecnologia]. E-mail: mariotto@if.ufrgs.br; Gay Ducati, M.B. [Rio Grande do Sul Univ., Porto Alegre, RS (Brazil). Inst. de Fisica. Grupo de Fenomenologia de Particulas em Altas Energias; Ingelman, G. [Uppsala Univ. (Sweden). High Energy Physics

    2004-07-01

    Production of bottomonium in hadronic collisions is studied in the framework of the soft colour approach. We report some results for production of {upsilon} in the Tevatron and predictions for the future Large Hadron Collider (LHC). (author)

  9. Hadron collider physics at UCR

    Energy Technology Data Exchange (ETDEWEB)

    Kernan, A.; Shen, B.C.

    1997-07-01

    This paper describes the research work in high energy physics by the group at the University of California, Riverside. Work has been divided between hadron collider physics and e{sup +}-e{sup {minus}} collider physics, and theoretical work. The hadron effort has been heavily involved in the startup activities of the D-Zero detector, commissioning and ongoing redesign. The lepton collider work has included work on TPC/2{gamma} at PEP and the OPAL detector at LEP, as well as efforts on hadron machines.

  10. Physics at future hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    U. Baur et al.

    2002-12-23

    We discuss the physics opportunities and detector challenges at future hadron colliders. As guidelines for energies and luminosities we use the proposed luminosity and/or energy upgrade of the LHC (SLHC), and the Fermilab design of a Very Large Hadron Collider (VLHC). We illustrate the physics capabilities of future hadron colliders for a variety of new physics scenarios (supersymmetry, strong electroweak symmetry breaking, new gauge bosons, compositeness and extra dimensions). We also investigate the prospects of doing precision Higgs physics studies at such a machine, and list selected Standard Model physics rates.

  11. Large Hadron Collider nears completion

    CERN Multimedia

    2008-01-01

    Installation of the final component of the Large Hadron Collider particle accelerator is under way along the Franco-Swiss border near Geneva, Switzerland. When completed this summer, the LHC will be the world's largest and most complex scientific instrument.

  12. Charm-Hadron Production at Hadron Colliders

    CERN Document Server

    Watson, Miriam; The ATLAS collaboration

    2016-01-01

    Recent results on charm hadron production are presented, using data recorded in proton-proton collisions at the Large Hadron Collider and in proton-antiproton collisions at the Tevatron. These results include the production of charmonium and of open charm mesons, and their comparison with theoretical predictions. Measurements of the associated production of hidden or open charm mesons with additional quarkonium states are also presented.

  13. The Large Hadron Collider

    CERN Multimedia

    't Hooft, Gerardus; Llewellyn Smith, Christopher Hubert; Brüning, Oliver Sim; Collier, Paul; Stapnes, Steinar; Ellis, Jonathan Richard; Braun-Munzinger, Peter; Stachel, Johanna; Lederman, Leon Max

    2007-01-01

    Several articles about the LHC: The Making of the standard model; high-energy colliders and the rise of the standard model; How the LHC came to be; Building a behemoth; Detector challenges at the LHC; Beyond the standard model with the LHC; The quest for the quark-gluon plasma; The God particle et al. (42 pages

  14. Electroweak results from hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Marcel Demarteau

    1999-09-02

    A very brief summary of recent electroweak results from hadron colliders is given. The emphasis is placed on inclusive W{sup {+-}} and Z{sup 0} production, the measurement of the mass of the W boson and the measurement of trilinear gauge boson couplings.

  15. B physics at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Butler, J.N.; /Fermilab

    2005-09-01

    This paper discusses the physics opportunity and challenges for doing high precision B physics experiments at hadron colliders. It describes how these challenges have been addressed by the two currently operating experiments, CDF and D0, and how they are addressed by three experiments, ATLAS, CMS, and LHCb, at the LHC.

  16. Hard QCD at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Moch, S.

    2008-02-15

    We review the status of QCD at hadron colliders with emphasis on precision predictions and the latest theoretical developments for cross sections calculations to higher orders. We include an overview of our current information on parton distributions and discuss various Standard Model reactions such as W{sup {+-}}/Z-boson, Higgs boson or top quark production. (orig.)

  17. Why Large Hadron Collider?

    Indian Academy of Sciences (India)

    D P Roy

    2011-05-01

    I discuss LHC physics in the historical perspective of the progress in particle physics. After a recap of the Standard Model (SM) of particle physics, I discuss the high energy colliders leading up to LHC and their role in the discovery of these SM particles. Then I discuss the two main physics issues of LHC, i.e. Higgs mechanism and supersymmetry. I briefly touch upon Higgs and SUSY searches at LHC along with their cosmological implications.

  18. Soviet Hadron Collider

    Science.gov (United States)

    Kotchetkov, Dmitri

    2017-01-01

    Rapid growth of the high energy physics program in the USSR during 1960s-1970s culminated with a decision to build the Accelerating and Storage Complex (UNK) to carry out fixed target and colliding beam experiments. The UNK was to have three rings. One ring was to be built with conventional magnets to accelerate protons up to the energy of 600 GeV. The other two rings were to be made from superconducting magnets, each ring was supposed to accelerate protons up to the energy of 3 TeV. The accelerating rings were to be placed in an underground tunnel with a circumference of 21 km. As a 3 x 3 TeV collider, the UNK would make proton-proton collisions with a luminosity of 4 x 1034 cm-1s-1. Institute for High Energy Physics in Protvino was a project leading institution and a site of the UNK. Accelerator and detector research and development studies were commenced in the second half of 1970s. State Committee for Utilization of Atomic Energy of the USSR approved the project in 1980, and the construction of the UNK started in 1983. Political turmoil in the Soviet Union during late 1980s and early 1990s resulted in disintegration of the USSR and subsequent collapse of the Russian economy. As a result of drastic reduction of funding for the UNK, in 1993 the project was restructured to be a 600 GeV fixed target accelerator only. While the ring tunnel and proton injection line were completed by 1995, and 70% of all magnets and associated accelerator equipment were fabricated, lack of Russian federal funding for high energy physics halted the project at the end of 1990s.

  19. Exotic Hadron Bound State Production at Hadronic Colliders

    CERN Document Server

    Jin, Yi; Liu, Yan-Rui; Meng, Lu; Si, Zon-Guo; Zhang, Xiao-Feng

    2016-01-01

    The non-relativistic wave function framework is applied to study the production and decay of the exotic hadrons which can be effectively described as bound states of other hadrons. The ingredient hadron production can be calculated by event generators. We investigate the production of exotic hadrons in the multiproduction processes at high energy hadronic colliders with the help of the event generators. We illustrate the crucial information such as their momentum distributions and production rate for the measurements at the large hadron collider. This study provides crucial information for the measurements of the relevant exotic hadrons.

  20. Top production at hadron colliders

    Indian Academy of Sciences (India)

    Albert De Roeck

    2012-10-01

    New results on top quark production are presented from four hadron collider experiments: CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC. Cross-sections for single top and top pair production are discussed, as well as results on the top–antitop production asymmetry and searches for new physics including top quarks. The results are based on data samples of up to 5.4 fb-1 for the Tevatron experiments and 1.1 fb−1 for the LHC experiments.

  1. Testing Saturation at Hadron Colliders

    CERN Document Server

    Marquet, C

    2003-01-01

    We extend the saturation models a la Golec-Biernat and Wusthoff to cross-sections of hard processes initiated by virtual-gluon probes separated by large rapidity intervals at hadron colliders. We derive their analytic expressions and apply them to physical examples, such as saturation effects for Mueller-Navelet jets. By comparison to gamma*-gamma* cross-sections we find a more abrupt transition to saturation. We propose to study observables with a potentially clear saturation signal and to use heavy vector and flavored mesons as alternative virtual-gluon probes.

  2. High Energy Hadron Colliders - Report of the Snowmass 2013 Frontier Capabilities Hadron Collider Study Group

    CERN Document Server

    Barletta, William; Battaglia, Marco; Klute, Markus; Mangano, Michelangelo; Prestemon, Soren; Rossi, Lucio; Skands, Peter

    2013-01-01

    High energy hadron colliders have been the tools for discovery at the highest mass scales of the energy frontier from the SppS, to the Tevatron and now the LHC. This report reviews future hadron collider projects from the high luminosity LHC upgrade to a 100 TeV hadron collider in a large tunnel, the underlying technology challenges and R&D directions and presents a series of recommendations for the future development of hadron collider research and technology.

  3. Very large hadron collider (VLHC)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    A VLHC informal study group started to come together at Fermilab in the fall of 1995 and at the 1996 Snowmass Study the parameters of this machine took form. The VLHC as now conceived would be a 100 TeV hadron collider. It would use the Fermilab Main Injector (now nearing completion) to inject protons at 150 GeV into a new 3 TeV Booster and then into a superconducting pp collider ring producing 100 TeV c.m. interactions. A luminosity of {approximately}10{sup 34} cm{sup -2}s{sup -1} is planned. Our plans were presented to the Subpanel on the Planning for the Future of US High- Energy Physics (the successor to the Drell committee) and in February 1998 their report stated ``The Subpanel recommends an expanded program of R&D on cost reduction strategies, enabling technologies, and accelerator physics issues for a VLHC. These efforts should be coordinated across laboratory and university groups with the aim of identifying design concepts for an economically and technically viable facility`` The coordination has been started with the inclusion of physicists from Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), and Cornell University. Clearly, this collaboration must expanded internationally as well as nationally. The phrase ``economically and technically viable facility`` presents the real challenge.

  4. Whither colliders after the Large Hadron Collider?

    Indian Academy of Sciences (India)

    Rolf-Dieter Heuer

    2012-11-01

    This paper presents options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy as well as upgrades to the LHC (luminosity and energy) and to its injectors. This may be complemented by a linear electron–positron collider, based on the technology being developed by the Compact Linear Collider and by the International Linear Collider, by a high-energy electron– proton machine, the LHeC, and/or by a muon collider. This contribution describes the various future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining the key messages for the way forward.

  5. Academic Training Lecture: Jets at Hadron Colliders

    CERN Multimedia

    PH Department

    2011-01-01

    Regular Programme 30, 31 March and 1 April  2011 from 11:00 to 12:00 -  Bldg. 40-S2-A01 - Salle Andersson Jets at Hadron Colliders by Gavin Salam These three lectures will discuss how jets are defined at hadron colliders, the physics that is responsible for the internal structure of jets and the ways in which an understanding of jets may help in searches for new particles at the LHC.

  6. Physics at Hadronic Colliders (1/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  7. Physics at Hadronic Colliders (2/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  8. Physics at Hadronic Colliders (4/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  9. Physics at Hadronic Colliders (3/4)

    CERN Document Server

    CERN. Geneva

    2008-01-01

    Hadron colliders are often called "discovery machines" since they produce the highest mass particles and thus give often the best chance to discover new high mass particles. Currently they are particularly topical since the Large Hadron Collider will start operating later this year, increasing the centre-of-mass energy by a factor of seven compared to the current highest energy collider, the Tevatron. I will review the benefits and challenges of hadron colliders and review some of the current physics results from the Tevatron and give an outlook to the future results we are hoping for at the LHC. Prerequisite knowledge: Introduction to Particle Physics (F. Close), Detectors (W. Riegler, at least mostly) and The Standard Model (A. Pich)

  10. Forward physics of hadronic colliders

    Science.gov (United States)

    Ivanov, I. P.

    2013-12-01

    These lectures were given at the Baikal Summer School on Physics of Elementary Particles and Astrophysics in July 2012. They can be viewed as a concise introduction to hadronic diffraction, to the physics of the Pomeron and related topics.

  11. Top quark studies at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Sinervo, P.K. [Univ. of Toronto, Ontario (Canada)

    1997-01-01

    The techniques used to study top quarks at hadron colliders are presented. The analyses that discovered the top quark are described, with emphasis on the techniques used to tag b quark jets in candidate events. The most recent measurements of top quark properties by the CDF and DO Collaborations are reviewed, including the top quark cross section, mass, branching fractions, and production properties. Future top quark studies at hadron colliders are discussed, and predictions for event yields and uncertainties in the measurements of top quark properties are presented.

  12. Black Holes and the Large Hadron Collider

    Science.gov (United States)

    Roy, Arunava

    2011-01-01

    The European Center for Nuclear Research or CERN's Large Hadron Collider (LHC) has caught our attention partly due to the film "Angels and Demons." In the movie, an antimatter bomb attack on the Vatican is foiled by the protagonist. Perhaps just as controversial is the formation of mini black holes (BHs). Recently, the American Physical Society…

  13. Introduction to quantum chromodynamics at hadron colliders

    Indian Academy of Sciences (India)

    William B Kilgore

    2011-05-01

    A basic introduction to the application of QCD at hadron colliders is presented. I briefly review the phenomenological and theoretical origins of QCD, and then discuss factorization and infrared safety, parton distributions, the computation of hard scattering amplitudes and applications of perturbative QCD.

  14. Optimizing integrated luminosity of future hadron colliders

    CERN Document Server

    AUTHOR|(CDS)2108454; Schulte, Daniel; Zimmermann, Frank

    2015-01-01

    The integrated luminosity, a key figure of merit for any particle-physics collider, is closely linked to the peak luminosity and to the beam lifetime. The instantaneous peak luminosity of a collider is constrained by a number of boundary conditions, such as the available beam current, the maximum beam-beam tune shift with acceptable beam stability and reasonable luminosity lifetime (i.e., the empirical “beam-beam limit”), or the event pileup in the physics detectors. The beam lifetime at high-luminosity hadron colliders is largely determined by particle burn off in the collisions. In future highest-energy circular colliders synchrotron radiation provides a natural damping mechanism, which can be exploited for maximizing the integrated luminosity. In this article, we derive analytical expressions describing the optimized integrated luminosity, the corresponding optimum store length, and the time evolution of relevant beam parameters, without or with radiation damping, while respecting a fixed maximum value...

  15. 1st Large Hadron Collider Physics Conference

    CERN Document Server

    Juste, A; Martínez, M; Riu, I; Sorin, V

    2013-01-01

    The conference is the result of merging two series of international conferences, "Physics at Large Hadron Collider" (PLHC2012) and "Hadron Collider Physics Symposium" (HCP2012). With a program devoted to topics such as the Standard Model and Beyond, the Higgs Boson, Supersymmetry, Beauty and Heavy Ion Physics, the conference aims at providing a lively forum for discussion between experimenters and theorists of the latest results and of new ideas. LHCP 2013 will be hosted by IFAE (Institut de Fisica d'Altes Energies) in Barcelona (Spain), and will take place from May 13 to 18, 2013. The venue will be the Hotel Catalonia Plaza, Plaza España (Barcelona). More information will be posted soon. For questions, please contact lhcp2013@ifae.es.

  16. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  17. The Large Hadron Collider Pop Up Book

    CERN Multimedia

    2013-01-01

    Discover the ATLAS experiment in full 3D pop-up in this promotional video for the Large Hadron Collider pop-up book. The book contains 16 pop-ups telling the story of how the experiment works and its quest to understand what the universe is made of. It is now available in English, French and German. Paper engineer Anton Radevsky, texts Emma Sanders.

  18. Large Hadron Collider commissioning and first operation.

    Science.gov (United States)

    Myers, S

    2012-02-28

    A history of the commissioning and the very successful early operation of the Large Hadron Collider (LHC) is described. The accident that interrupted the first commissioning, its repair and the enhanced protection system put in place are fully described. The LHC beam commissioning and operational performance are reviewed for the period from 2010 to mid-2011. Preliminary plans for operation and future upgrades for the LHC are given for the short and medium term.

  19. Ntuples for NLO Events at Hadron Colliders

    CERN Document Server

    Bern, Z.; Febres Cordero, F.; Höche, S.; Ita, H.; Kosower, D.A.; Maitre, D.

    2014-01-01

    We present an event-file format for the dissemination of next-to-leading-order (NLO) predictions for QCD processes at hadron colliders. The files contain all information required to compute generic jet-based infrared-safe observables at fixed order (without showering or hadronization), and to recompute observables with different factorization and renormalization scales. The files also make it possible to evaluate cross sections and distributions with different parton distribution functions. This in turn makes it possible to estimate uncertainties in NLO predictions of a wide variety of observables without recomputing the short-distance matrix elements. The event files allow a user to choose among a wide range of commonly-used jet algorithms and jet-size parameters. We provide event files for a $W$ or $Z$ boson accompanied by up to four jets, and for pure-jet events with up to four jets. The files are for the Large Hadron Collider with a center of mass energy of 7 or 8 TeV. A C++ library along with a Python in...

  20. Measuring supersymmetry at the large hadron collider

    Indian Academy of Sciences (India)

    B C Allanach

    2003-02-01

    The large hadron collider (LHC) should have the ability to detect supersymmetric particles if low-energy supersymmetry solves the hierarchy problem. Studies of the LHC detection reach, and the ability to measure properties of supersymmetric particles are currently underway. We highlight some of these, such as the reach in minimal supergravity space and correlation with a fine-tuning parameter, precision measurements of edge variables, anomaly- or gauge-mediated supersymmetry breaking. Supersymmetry with baryon-number violation seems at first glance more difficult to detect, but proves to be possible by using leptons from cascade decays.

  1. Higgs physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Rohini M Godbole

    2011-05-01

    In this talk I shall begin by summarizing the importance of the Higgs physics studies at the Large Hadron Collider (LHC). I shall then give a short description of the pre-LHC constraints on the Higgs mass and the theoretical predictions for the LHC along with a discussion of the current experimental results, ending with prospects in the near future at the LHC. I have added to the writeup, recent experimental results from the LHC which have become available since the time of the workshop.

  2. Searching for Top Squark at Hadron Colliders

    Institute of Scientific and Technical Information of China (English)

    YANG Jin-Min(杨金民); Young Bing-Lin

    2002-01-01

    In this talk we briefly summarise our recent study (hep-ph/0007165) on searching for top squark at hadron colliders. The light top-squark (stop) if produced in hadron colliders in the form of the t1t1 pair and decaying through the likely decay chain t1→X+b followed by X→X0ff′, can mimic closely a top quark event when the mass of the stop is close to that of the top quark. Because of the much lower production rate, the stop event can be buried under the top quark event sample. In order to uncover the stop event, specific selection cuts need to be applied. Through Monte Carlo simulation with suitable kinematic cuts, we found that such stop event can be extracted from the top quark sample and detected by the top counting experiments in the upcoming upgraded Tevatron and LHC. However, because of the small statistics of the Run 1 of the Tevatron, the stop signal remains hidden at Run 1.

  3. Genesis of the Large Hadron Collider.

    Science.gov (United States)

    Smith, Chris Llewellyn

    2015-01-13

    This paper describes the scientific, technical and political genesis of the Large Hadron Collider (LHC). It begins with an outline of the early history of the LHC, from first thoughts and accelerator and detector developments that underwrote the project, through the first studies of the LHC and its scientific potential and the genesis of the experimental programme, to the presentation of the proposal to build the LHC to the CERN Council in December 1993. The events that led to the proposal to build the LHC in two stages, which was approved in December 1994, are then described. Next, the role of non-Member State contributions and of the agreement that CERN could take loans, which allowed single stage construction to be approved in December 1996, despite a cut in the Members' contributions, are explained. The paper concludes by identifying points of potential relevance for the approval of possible future large particle physics projects.

  4. Large Hadron Collider momentum calibration and accuracy

    CERN Document Server

    Wenninger, Jorg

    2017-01-01

    As a result of the excellent quality of the Large Hadron Collider (LHC) experimental detectors and the accurate calibration of the luminosity at the LHC, uncertainties on the LHC beam energy may contribute significantly to the measurement errors on certain observables unless the relative uncertainty is well below 1%. Direct measurements of the beam energy using the revolution frequency difference of proton and lead beams combined with the magnetic model errors are used to provide the energy uncertainty of the LHC beams. Above injection energy the relative uncertainty on the beam energy is determined to be ±0.1%. The energy values as reconstructed and distributed online to the LHC experiments do not require any correction above injection energy. At injection a correction of +0.31 GeV/c must be applied to the online energy values.

  5. A Large Hadron Electron Collider at CERN

    CERN Document Server

    Abelleira Fernandez, J L; Adzic, P; Akay, A N; Aksakal, H; Albacete, J L; Allanach, B; Alekhin, S; Allport, P; Andreev, V; Appleby, R B; Arikan, E; Armesto, N; Azuelos, G; Bai, M; Barber, D; Bartels, J; Behnke, O; Behr, J; Belyaev, A S; Ben-Zvi, I; Bernard, N; Bertolucci, S; Bettoni, S; Biswal, S; Blumlein, J; Bottcher, H; Bogacz, A; Bracco, C; Bracinik, J; Brandt, G; Braun, H; Brodsky, S; Bruning, O; Bulyak, E; Buniatyan, A; Burkhardt, H; Cakir, I T; Cakir, O; Calaga, R; Caldwell, A; Cetinkaya, V; Chekelian, V; Ciapala, E; Ciftci, R; Ciftci, A K; Cole, B A; Collins, J C; Dadoun, O; Dainton, J; Roeck, A.De; d'Enterria, D; DiNezza, P; Dudarev, A; Eide, A; Enberg, R; Eroglu, E; Eskola, K J; Favart, L; Fitterer, M; Forte, S; Gaddi, A; Gambino, P; Garcia Morales, H; Gehrmann, T; Gladkikh, P; Glasman, C; Glazov, A; Godbole, R; Goddard, B; Greenshaw, T; Guffanti, A; Guzey, V; Gwenlan, C; Han, T; Hao, Y; Haug, F; Herr, W; Herve, A; Holzer, B J; Ishitsuka, M; Jacquet, M; Jeanneret, B; Jensen, E; Jimenez, J M; Jowett, J M; Jung, H; Karadeniz, H; Kayran, D; Kilic, A; Kimura, K; Klees, R; Klein, M; Klein, U; Kluge, T; Kocak, F; Korostelev, M; Kosmicki, A; Kostka, P; Kowalski, H; Kraemer, M; Kramer, G; Kuchler, D; Kuze, M; Lappi, T; Laycock, P; Levichev, E; Levonian, S; Litvinenko, V N; Lombardi, A; Maeda, J; Marquet, C; Mellado, B; Mess, K H; Milanese, A; Milhano, J G; Moch, S; Morozov, I I; Muttoni, Y; Myers, S; Nandi, S; Nergiz, Z; Newman, P R; Omori, T; Osborne, J; Paoloni, E; Papaphilippou, Y; Pascaud, C; Paukkunen, H; Perez, E; Pieloni, T; Pilicer, E; Pire, B; Placakyte, R; Polini, A; Ptitsyn, V; Pupkov, Y; Radescu, V; Raychaudhuri, S; Rinolfi, L; Rizvi, E; Rohini, R; Rojo, J; Russenschuck, S; Sahin, M; Salgado, C A; Sampei, K; Sassot, R; Sauvan, E; Schaefer, M; Schneekloth, U; Schorner-Sadenius, T; Schulte, D; Senol, A; Seryi, A; Sievers, P; Skrinsky, A N; Smith, W; South, D; Spiesberger, H; Stasto, A M; Strikman, M; Sullivan, M; Sultansoy, S; Sun, Y P; Surrow, B; Szymanowski, L; Taels, P; Tapan, I; Tasci, T; Tassi, E; Kate, H.Ten; Terron, J; Thiesen, H; Thompson, L; Thompson, P; Tokushuku, K; Tomas Garcia, R; Tommasini, D; Trbojevic, D; Tsoupas, N; Tuckmantel, J; Turkoz, S; Trinh, T N; Tywoniuk, K; Unel, G; Ullrich, T; Urakawa, J; VanMechelen, P; Variola, A; Veness, R; Vivoli, A; Vobly, P; Wagner, J; Wallny, R; Wallon, S; Watt, G; Weiss, C; Wiedemann, U A; Wienands, U; Willeke, F; Xiao, B W; Yakimenko, V; Zarnecki, A F; Zhang, Z; Zimmermann, F; Zlebcik, R; Zomer, F; CERN. Geneva. LHeC Department

    2012-01-01

    This document provides a brief overview of the recently published report on the design of the Large Hadron Electron Collider (LHeC), which comprises its physics programme, accelerator physics, technology and main detector concepts. The LHeC exploits and develops challenging, though principally existing, accelerator and detector technologies. This summary is complemented by brief illustrations of some of the highlights of the physics programme, which relies on a vastly extended kinematic range, luminosity and unprecedented precision in deep inelastic scattering. Illustrations are provided regarding high precision QCD, new physics (Higgs, SUSY) and electron-ion physics. The LHeC is designed to run synchronously with the LHC in the twenties and to achieve an integrated luminosity of O(100) fb$^{-1}$. It will become the cleanest high resolution microscope of mankind and will substantially extend as well as complement the investigation of the physics of the TeV energy scale, which has been enabled by the LHC.

  6. Illuminating new electroweak states at hadron colliders

    Science.gov (United States)

    Ismail, Ahmed; Izaguirre, Eder; Shuve, Brian

    2016-07-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. We demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.

  7. Illuminating New Electroweak States at Hadron Colliders

    CERN Document Server

    Ismail, Ahmed; Shuve, Brian

    2016-01-01

    In this paper, we propose a novel powerful strategy to perform searches for new electroweak states. Uncolored electroweak states appear in generic extensions of the Standard Model (SM) and yet are challenging to discover at hadron colliders. This problem is particularly acute when the lightest state in the electroweak multiplet is neutral and all multiplet components are approximately degenerate. In this scenario, production of the charged fields of the multiplet is followed by decay into nearly invisible states; if this decay occurs promptly, the only way to infer the presence of the reaction is through its missing energy signature. Our proposal relies on emission of photon radiation from the new charged states as a means of discriminating the signal from SM backgrounds. We demonstrate its broad applicability by studying two examples: a pure Higgsino doublet and an electroweak quintuplet field.

  8. QCD and jets at hadron colliders

    Science.gov (United States)

    Sapeta, Sebastian

    2016-07-01

    We review various aspects of jet physics in the context of hadron colliders. We start by discussing the definitions and properties of jets and recent development in this area. We then consider the question of factorization for processes with jets, in particular for cases in which jets are produced in special configurations, like for example in the region of forward rapidities. We review numerous perturbative methods for calculating predictions for jet processes, including the fixed-order calculations as well as various matching and merging techniques. We also discuss the questions related to non-perturbative effects and the role they play in precision jet studies. We describe the status of calculations for processes with jet vetoes and we also elaborate on production of jets in forward direction. Throughout the article, we present selected comparisons between state-of-the-art theoretical predictions and the data from the LHC.

  9. QCD and Jets at Hadron Colliders

    CERN Document Server

    Sapeta, Sebastian

    2016-01-01

    We review various aspects of jet physics in the context of hadron colliders. We start by discussing the definitions and properties of jets and recent development in this area. We then consider the question of factorization for processes with jets, in particular for cases in which jets are produced in special configurations, like for example in the region of forward rapidities. We review numerous perturbative methods for calculating predictions for jet processes, including the fixed-order calculations as well as various matching and merging techniques. We also discuss the questions related to non-perturbative effects and the role they play in precision jet studies. We describe the status of calculations for processes with jet vetoes and we also elaborate on production of jets in forward direction. Throughout the article, we present selected comparisons between state-of-the-art theoretical predictions and the data from the LHC.

  10. Meeting of the Large Hadron Collider Committee

    CERN Multimedia

    2012-01-01

    Provisional Agenda for the 111th meeting of the Large Hadron Collider Committee to be held on Wednesday and Thursday, 26-27 September 2012. Open Session: Wednesday, 26 September at 9 a.m. in the Main Auditorium (Bldg. 500-1-001)  09.00 - 09.20    LHC Machine Status Report  09.30 - 10.00    ATLAS Status Report  10.10 - 10.40    CMS Status Report  10.50 - 11.10    COFFEE BREAK 11.10 - 11.40    LHCb Status Report 11.50 - 12.20   ALICE Status Report 12.30 - 12.50   TOTEM Status Report 13.00 - 13.20   LHCf Status Report

  11. The Large Hadron Collider, a personal recollection

    CERN Document Server

    Evans, L

    2014-01-01

    The construction of the Large Hadron Collider (LHC) has been a massive endeavor spanning almost 30 years from conception to commissioning. Building the machine with the highest possible energy (7 TeV) in the existing LEP tunnel of 27 km circumference and with a tunnel diameter of only 3.8m has required considerable innovation. The first was the development of an idea first proposed by Bob Palmer at Brookhaven National Laboratory in 1978, where the two rings are integrated into a single magnetic structure. This compact 2-in-1 structure was essential for the LHC due to both the limited space available in the existing Large Electron-Positron collider tunnel and the cost. The second innovation was the bold move to use superfluid helium cooling on a massive scale, which was imposed by the need to achieve a high (8.3 T) magnetic field using an affordable Nb-Ti superconductor. In this article, no attempt is made to give a comprehensive review of the machine design. This can be found in the LHC Design Report {[}1], w...

  12. Tune variations in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Aquilina, N. [CERN, Geneva (Switzerland); University of Malta, Msida (Malta); Giovannozzi, M.; Lamont, M. [CERN, Geneva (Switzerland); Sammut, N. [University of Malta, Msida (Malta); Steinhagen, R. [CERN, Geneva (Switzerland); Todesco, E., E-mail: ezio.todesco@cern.ch [CERN, Geneva (Switzerland); Wenninger, J. [CERN, Geneva (Switzerland)

    2015-04-01

    The horizontal and vertical betatron tunes of the Large Hadron Collider (LHC) mainly depend on the strength of the quadrupole magnets, but are also affected by the quadrupole component in the main dipoles. In case of systematic misalignments, the sextupole component from the main dipoles and sextupole corrector magnets also affect the tunes due to the feed down effect. During the first years of operation of the LHC, the tunes have been routinely measured and corrected through either a feedback or a feed forward system. In this paper, the evolution of the tunes during injection, ramp and flat top are reconstructed from the beam measurements and the settings of the tune feedback loop and of the feed forward corrections. This gives the obtained precision of the magnetic model of the machine with respect to quadrupole and sextupole components. Measurements at the injection plateau show an unexpected large decay whose origin is not understood. This data is discussed together with the time constants and the dependence on previous cycles. We present results of dedicated experiments that show that this effect does not originate from the decay of the main dipole component. During the ramp, the tunes drift by about 0.022. It is shown that this is related to the precision of tracking the quadrupole field in the machine and this effect is reduced to about 0.01 tune units during flat top.

  13. Transverse Diagnostics For High Energy Hadron Colliders

    CERN Document Server

    Castro Carballo, Maria Elena

    2007-01-01

    The Large Hadron Collider (LHC) is a circular synchrotron accelerator that will explore new Physics at the higher energies ever achieved, aiming to find the Higgs boson. The LHC is being built at CERN and by 2007 it will be ready to produce head-on collisions of protons at a centre-of-mass energy of 14 TeV. The employment of superconducting magnets for achieving high energies, the high luminosity required for physics, the limited dynamic aperture and the large energy stored in the beams will make the machine very challenging to operate, especially during the injection process and the energy ramp. Two particular problems will be a high sensitivity to beam losses and a relatively poor field quality requiring the use of many types of magnetic correction elements. This may lead to the inclusion of certain beam measurements in feedback loops, making special demands on the control system. The injection and acceleration of the LHC proton beams without particle losses and emittance blow up will require an accurate co...

  14. Luminosity Measurement at the Large Hadron Collider

    CERN Document Server

    Caron, B L; Pinfold, J L

    2006-01-01

    Two novel methods of measuring the luminosity delivered to the ATLAS Experiment at the CERN Large Hadron Collider experiments are presented. The production of $\\mu^{+}\\mu^{-}$ pair via two photon interactions and single $W^{\\pm}/Z^{0}$ boson production are evaluated as methods for the measurement and monitoring of the proton-proton luminosity at the LHC. The characteristics of the $\\mu^{+}\\mu^{-}$ pairs from coherent $\\gamma \\gamma$ interactions are examined for both matrix element and equivalent photon based monte carlo generators with subsequent simulation of the ATLAS detector effects. The application of specific kinematic and vertex fit requirements is shown to offer a strong method of isolating signal from background and in turn yield an accurate offline measurement of the delivered luminosity via the pure QED process. The choice of kinematic cuts is shown to reduce the overall uncertainty in the method by limiting the size of corrections to the two photon interaction cross section to the level of 1\\%. B...

  15. Vector boson pair production at hadron colliders

    CERN Document Server

    Adamson, K L

    2002-01-01

    We calculate the contribution of gluon-gluon induced processes to vector boson pair production at hadron colliders, specifically the production of WZ, W gamma and Z gamma pairs. We calculate the tree level processes gg -> WZqq-bqr, gg -> W gamma qq-bar and gg -> Z gamma qq-bar, and the one loop process gg -> Z gamma. We use the helicity method and include the decay of the W and Z bosons into leptons in the narrow width approximation. We include anomalous triple gauge couplings in all of our vector boson pair production calculations. In order to integrate over the qq-bar final state phase space we use an extended version of the subtraction method to NNLO and cancel collinear singularities explicitly. The general subtraction terms that are obtained apply to all vector boson pair production processes. Due to the large gluon density at low x, the gluon induced terms of vector boson pair production are expected to be the dominant NNLO QCD correction, relevant at LHC energies. However, we show that due to a cancell...

  16. The ATLAS Experiment at the CERN Large Hadron Collider

    Science.gov (United States)

    ATLAS Collaboration; Aad, G.; Abat, E.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B. A.; Abolins, M.; Abramowicz, H.; Acerbi, E.; Acharya, B. S.; Achenbach, R.; Ackers, M.; Adams, D. L.; Adamyan, F.; Addy, T. N.; Aderholz, M.; Adorisio, C.; Adragna, P.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Aielli, G.; Åkesson, P. F.; Åkesson, T. P. A.; Akimov, A. V.; Alam, S. M.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Aleppo, M.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alimonti, G.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Aloisio, A.; Alonso, J.; Alves, R.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amaral, S. P.; Ambrosini, G.; Ambrosio, G.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amram, N.; Anastopoulos, C.; Anderson, B.; Anderson, K. J.; Anderssen, E. C.; Andreazza, A.; Andrei, V.; Andricek, L.; Andrieux, M.-L.; Anduaga, X. S.; Anghinolfi, F.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Apsimon, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arguin, J.-F.; Arik, E.; Arik, M.; Arms, K. E.; Armstrong, S. R.; Arnaud, M.; Arnault, C.; Artamonov, A.; Asai, S.; Ask, S.; Åsman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Athar, B.; Atkinson, T.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aulchenko, V. M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, A.; Ay, C.; Azuelos, G.; Baccaglioni, G.; Bacci, C.; Bachacou, H.; Bachas, K.; Bachy, G.; Badescu, E.; Bagnaia, P.; Bailey, D. C.; Baines, J. T.; Baker, O. K.; Ballester, F.; Baltasar Dos Santos Pedrosa, F.; Banas, E.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S. P.; Baranov, S.; Barashkou, A.; Barberio, E. L.; Barberis, D.; Barbier, G.; Barclay, P.; Bardin, D. Y.; Bargassa, P.; Barillari, T.; Barisonzi, M.; Barnett, B. M.; Barnett, R. M.; Baron, S.; Baroncelli, A.; Barone, M.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barriuso Poy, A.; Barros, N.; Bartheld, V.; Bartko, H.; Bartoldus, R.; Basiladze, S.; Bastos, J.; Batchelor, L. E.; Bates, R. L.; Batley, J. R.; Batraneanu, S.; Battistin, M.; Battistoni, G.; Batusov, V.; Bauer, F.; Bauss, B.; Baynham, D. E.; Bazalova, M.; Bazan, A.; Beauchemin, P. H.; Beaugiraud, B.; Beccherle, R. B.; Beck, G. A.; Beck, H. P.; Becks, K. H.; Bedajanek, I.; Beddall, A. J.; Beddall, A.; Bednár, P.; Bednyakov, V. A.; Bee, C.; Behar Harpaz, S.; Belanger, G. A. N.; Belanger-Champagne, C.; Belhorma, B.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellachia, F.; Bellagamba, L.; Bellina, F.; Bellomo, G.; Bellomo, M.; Beltramello, O.; Belymam, A.; Ben Ami, S.; Ben Moshe, M.; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benes, J.; Benhammou, Y.; Benincasa, G. P.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas, E.; Berger, N.; Berghaus, F.; Berglund, S.; Bergsma, F.; Beringer, J.; Bernabéu, J.; Bernardet, K.; Berriaud, C.; Berry, T.; Bertelsen, H.; Bertin, A.; Bertinelli, F.; Bertolucci, S.; Besson, N.; Beteille, A.; Bethke, S.; Bialas, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieri, M.; Biglietti, M.; Bilokon, H.; Binder, M.; Binet, S.; Bingefors, N.; Bingul, A.; Bini, C.; Biscarat, C.; Bischof, R.; Bischofberger, M.; Bitadze, A.; Bizzell, J. P.; Black, K. M.; Blair, R. E.; Blaising, J. J.; Blanch, O.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Boaretto, C.; Bobbink, G. J.; Bocci, A.; Bocian, D.; Bock, R.; Boehm, M.; Boek, J.; Bogaerts, J. A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Bondarenko, V. G.; Bonino, R.; Bonis, J.; Bonivento, W.; Bonneau, P.; Boonekamp, M.; Boorman, G.; Boosten, M.; Booth, C. N.; Booth, P. S. L.; Booth, P.; Booth, J. R. A.; Borer, K.; Borisov, A.; Borjanovic, I.; Bos, K.; Boscherini, D.; Bosi, F.; Bosman, M.; Bosteels, M.; Botchev, B.; Boterenbrood, H.; Botterill, D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Boutemeur, M.; Bouzakis, K.; Boyd, G. R.; Boyd, J.; Boyer, B. H.; Boyko, I. R.; Bozhko, N. I.; Braccini, S.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, O.; Bratzler, U.; Braun, H. M.; Bravo, S.; Brawn, I. P.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N. D.; Breugnon, P.; Bright-Thomas, P. G.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Broklova, Z.; Bromberg, C.; Brooijmans, G.; Brouwer, G.; Broz, J.; Brubaker, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Buchanan, N. J.; Buchholz, P.; Budagov, I. A.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Buis, E. J.; Bujor, F.; Buran, T.; Burckhart, H.; Burckhart-Chromek, D.; Burdin, S.; Burns, R.; Busato, E.; Buskop, J. J. F.; Buszello, K. P.; Butin, F.; Butler, J. M.; Buttar, C. M.; Butterworth, J.; Butterworth, J. M.; Byatt, T.; Cabrera Urbán, S.; Cabruja Casas, E.; Caccia, M.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calderón Terol, D.; Callahan, J.; Caloba, L. P.; Caloi, R.; Calvet, D.; Camard, A.; Camarena, F.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Cammin, J.; Campabadal Segura, F.; Campana, S.; Canale, V.; Cantero, J.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Caprio, M.; Caracinha, D.; Caramarcu, C.; Carcagno, Y.; Cardarelli, R.; Cardeira, C.; Cardiel Sas, L.; Cardini, A.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carpentieri, C.; Carr, F. S.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castelo, J.; Castillo Gimenez, V.; Castro, N.; Castrovillari, F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caughron, S.; Cauz, D.; Cavallari, A.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerna, C.; Cernoch, C.; Cerqueira, A. S.; Cerri, A.; Cerutti, F.; Cervetto, M.; Cetin, S. A.; Cevenini, F.; Chalifour, M.; Chamizo llatas, M.; Chan, A.; Chapman, J. W.; Charlton, D. G.; Charron, S.; Chekulaev, S. V.; Chelkov, G. A.; Chen, H.; Chen, L.; Chen, T.; Chen, X.; Cheng, S.; Cheng, T. L.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chesneanu, D.; Cheu, E.; Chevalier, L.; Chevalley, J. L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Chilingarov, A.; Chiodini, G.; Chouridou, S.; Chren, D.; Christiansen, T.; Christidi, I. A.; Christov, A.; Chu, M. L.; Chudoba, J.; Chuguev, A. G.; Ciapetti, G.; Cicalini, E.; Ciftci, A. K.; Cindro, V.; Ciobotaru, M. D.; Ciocio, A.; Cirilli, M.; Citterio, M.; Ciubancan, M.; Civera, J. V.; Clark, A.; Cleland, W.; Clemens, J. C.; Clement, B. C.; Clément, C.; Clements, D.; Clifft, R. W.; Cobal, M.; Coccaro, A.; Cochran, J.; Coco, R.; Coe, P.; Coelli, S.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins-Tooth, C.; Collot, J.; Coluccia, R.; Comune, G.; Conde Muiño, P.; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F. A.; Cook, J.; Cooke, M.; Cooper-Smith, N. J.; Cornelissen, T.; Corradi, M.; Correard, S.; Corso-Radu, A.; Coss, J.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Coura Torres, R.; Courneyea, L.; Couyoumtzelis, C.; Cowan, G.; Cox, B. E.; Cox, J.; Cragg, D. A.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Cuenca Almenar, C.; Cuneo, S.; Cunha, A.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Rocha Gesualdi Mello, A.; Da Silva, P. V. M.; Da Silva, R.; Dabrowski, W.; Dael, A.; Dahlhoff, A.; Dai, T.; Dallapiccola, C.; Dallison, S. J.; Dalmau, J.; Daly, C. H.; Dam, M.; Damazio, D.; Dameri, M.; Danielsen, K. M.; Danielsson, H. O.; Dankers, R.; Dannheim, D.; Darbo, G.; Dargent, P.; Daum, C.; Dauvergne, J. P.; David, M.; Davidek, T.; Davidson, N.; Davidson, R.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; de Boer, R.; DeCastro, S.; DeGroot, N.; de Jong, P.; de La Broise, X.; DeLa Cruz-Burelo, E.; DeLa Taille, C.; DeLotto, B.; DeOliveira Branco, M.; DePedis, D.; de Saintignon, P.; DeSalvo, A.; DeSanctis, U.; DeSanto, A.; DeVivie DeRegie, J. B.; DeZorzi, G.; Dean, S.; Dedes, G.; Dedovich, D. V.; Defay, P. O.; Degele, R.; Dehchar, M.; Deile, M.; DelPapa, C.; DelPeso, J.; DelPrete, T.; Delagnes, E.; Delebecque, P.; Dell'Acqua, A.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca Silberberg, C.; Demers, S.; Demichev, M.; Demierre, P.; Demirköz, B.; Deng, W.; Denisov, S. P.; Dennis, C.; Densham, C. J.; Dentan, M.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K. K.; Dewhurst, A.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Simone, A.; Diaz Gomez, M. M.; Diehl, E. B.; Dietl, H.; Dietrich, J.; Dietsche, W.; Diglio, S.; Dima, M.; Dindar, K.; Dinkespiler, B.; Dionisi, C.; Dipanjan, R.; Dita, P.; Dita, S.; Dittus, F.; Dixon, S. D.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M. A. B.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O. B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Domingo, E.; Donega, M.; Dopke, J.; Dorfan, D. E.; Dorholt, O.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doyle, A. T.; Drake, G.; Drakoulakos, D.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Drohan, J. G.; Dubbert, J.; Dubbs, T.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dührssen, M.; Dür, H.; Duerdoth, I. P.; Duffin, S.; Duflot, L.; Dufour, M.-A.; Dumont Dayot, N.; Duran Yildiz, H.; Durand, D.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Díez Cornell, S.; Düren, M.; Ebenstein, W. L.; Eckert, S.; Eckweiler, S.; Eerola, P.; Efthymiopoulos, I.; Egede, U.; Egorov, K.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; Eklund, L. M.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engström, M.; Ennes, P.; Epp, B.; Eppig, A.; Epshteyn, V. S.; Ereditato, A.; Eremin, V.; Eriksson, D.; Ermoline, I.; Ernwein, J.; Errede, D.; Errede, S.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Esteves, F.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evans, H.; Evdokimov, V. N.; Evtoukhovitch, P.; Eyring, A.; Fabbri, L.; Fabjan, C. W.; Fabre, C.; Faccioli, P.; Facius, K.; Fadeyev, V.; Fakhrutdinov, R. M.; Falciano, S.; Falleau, I.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farrell, J.; Farthouat, P.; Fasching, D.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fawzi, F.; Fayard, L.; Fayette, F.; Febbraro, R.; Fedin, O. L.; Fedorko, I.; Feld, L.; Feldman, G.; Feligioni, L.; Feng, C.; Feng, E. J.; Fent, J.; Fenyuk, A. B.; Ferencei, J.; Ferguson, D.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferro, F.; Fiascaris, M.; Fichet, S.; Fiedler, F.; Filimonov, V.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Finocchiaro, G.; Fiorini, L.; Firan, A.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flaminio, V.; Flammer, J.; Flechl, M.; Fleck, I.; Flegel, W.; Fleischmann, P.; Fleischmann, S.; Fleta Corral, C. M.; Fleuret, F.; Flick, T.; Flix, J.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T. M.; Fopma, J.; Forbush, D. A.; Formica, A.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fox, H.; Francavilla, P.; Francis, D.; Franz, S.; Fraser, J. T.; Fraternali, M.; Fratianni, S.; Freestone, J.; French, R. S.; Fritsch, K.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fulachier, J.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Gallas, E. J.; Gallas, M. V.; Gallop, B. J.; Gan, K. K.; Gannaway, F. C.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garciá, C.; Garcia-Sciveres, M.; Garcìa Navarro, J. E.; Garde, V.; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V. G.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gautard, V.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gayde, J.-C.; Gazis, E. N.; Gazo, E.; Gee, C. N. P.; Geich-Gimbel, C.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M. A.; George, S.; Gerlach, P.; Gernizky, Y.; Geweniger, C.; Ghazlane, H.; Ghete, V. M.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, M. D.; Gibson, S. M.; Gieraltowski, G. F.; Gil Botella, I.; Gilbert, L. M.; Gilchriese, M.; Gildemeister, O.; Gilewsky, V.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordani, M. P.; Girard, C. G.; Giraud, P. F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B. K.; Glasman, C.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Gnanvo, K. G.; Godlewski, J.; Göpfert, T.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Goldschmidt, N.; Golling, T.; Gollub, N. P.; Golonka, P. J.; Golovnia, S. N.; Gomes, A.; Gomes, J.; Gonçalo, R.; Gongadze, A.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; González Millán, V.; Gonzalez Silva, M. L.; Gonzalez-Pineiro, B.; González-Sevilla, S.; Goodrick, M. J.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordeev, A.; Gordon, H.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Gorski, B. T.; Goryachev, S. V.; Goryachev, V. N.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Gough Eschrich, I.; Goujdami, D.; Goulette, M.; Gousakov, I.; Gouveia, J.; Gowdy, S.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassmann, H.; Gratchev, V.; Gray, H. M.; Graziani, E.; Green, B.; Greenall, A.; Greenfield, D.; Greenwood, D.; Gregor, I. M.; Grewal, A.; Griesmayer, E.; Grigalashvili, N.; Grigson, C.; Grillo, A. A.; Grimaldi, F.; Grimm, K.; Gris, P. L. Y.; Grishkevich, Y.; Groenstege, H.; Groer, L. S.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Grothe, M. E. M.; Grudzinski, J.; Gruse, C.; Gruwe, M.; Grybel, K.; Grybos, P.; Gschwendtner, E. M.; Guarino, V. J.; Guicheney, C. J.; Guilhem, G.; Guillemin, T.; Gunther, J.; Guo, B.; Gupta, A.; Gurriana, L.; Gushchin, V. N.; Gutierrez, P.; Guy, L.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Haboubi, G.; Hackenburg, R.; Hadash, E.; Hadavand, H. K.; Haeberli, C.; Härtel, R.; Haggerty, R.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakimi, M.; Hakobyan, H.; Hakobyan, H.; Haller, J.; Hallewell, G. D.; Hallgren, B.; Hamacher, K.; Hamilton, A.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Hanke, P.; Hansen, C. J.; Hansen, F. H.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansl-Kozanecka, T.; Hanson, G.; Hansson, P.; Hara, K.; Harder, S.; Harel, A.; Harenberg, T.; Harper, R.; Hart, J. C.; Hart, R. G. G.; Hartjes, F.; Hartman, N.; Haruyama, T.; Harvey, A.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Hatley, R. W.; Haubold, T. G.; Hauff, D.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Hauviller, C.; Havranek, M.; Hawes, B. M.; Hawkings, R. J.; Hawkins, D.; Hayler, T.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; He, Y. P.; Head, S. J.; Hedberg, V.; Heelan, L.; Heinemann, F. E. W.; Heldmann, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Hendriks, P. J.; Henriques Correia, A. M.; Henrot-Versille, S.; Henry-Couannier, F.; Henß, T.; Herten, G.; Hertenberger, R.; Hervas, L.; Hess, M.; Hessey, N. P.; Hicheur, A.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.; Hill, J. C.; Hill, N.; Hillier, S. J.; Hinchliffe, I.; Hindson, D.; Hinkelbein, C.; Hodges, T. A.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, A. E.; Hoffmann, D.; Hoffmann, H. F.; Holder, M.; Hollins, T. I.; Hollyman, G.; Holmes, A.; Holmgren, S. O.; Holt, R.; Holtom, E.; Holy, T.; Homer, R. J.; Homma, Y.; Homola, P.; Honerbach, W.; Honma, A.; Hooton, I.; Horazdovsky, T.; Horn, C.; Horvat, S.; Hostachy, J.-Y.; Hott, T.; Hou, S.; Houlden, M. A.; Hoummada, A.; Hover, J.; Howell, D. F.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, B. T.; Hughes, E.; Hughes, G.; Hughes-Jones, R. E.; Hulsbergen, W.; Hurst, P.; Hurwitz, M.; Huse, T.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Iglesias Escudero, M. C.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Ilyushenka, Y.; Imbault, D.; Imbert, P.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Inoue, K.; Ioannou, P.; Iodice, M.; Ionescu, G.; Ishii, K.; Ishino, M.; Ishizawa, Y.; Ishmukhametov, R.; Issever, C.; Ito, H.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, J.; Jackson, J. N.; Jaekel, M.; Jagielski, S.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakubek, J.; Jansen, E.; Jansweijer, P. P. M.; Jared, R. C.; Jarlskog, G.; Jarp, S.; Jarron, P.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jez, P.; Jézéquel, S.; Jiang, Y.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, M.; Jones, R.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jones, A.; Jonsson, O.; Joo, K. K.; Joos, D.; Joos, M.; Joram, C.; Jorgensen, S.; Joseph, J.; Jovanovic, P.; Junnarkar, S. S.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagawa, S.; Kaiser, S.; Kajomovitz, E.; Kakurin, S.; Kalinovskaya, L. V.; Kama, S.; Kambara, H.; Kanaya, N.; Kandasamy, A.; Kandasamy, S.; Kaneda, M.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M.; Karr, K.; Karst, P.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katunin, S.; Kawagoe, K.; Kawai, M.; Kawamoto, T.; Kayumov, F.; Kazanin, V. A.; Kazarinov, M. Y.; Kazarov, A.; Kazi, S. I.; Keates, J. R.; Keeler, R.; Keener, P. T.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Ketterer, C.; Khakzad, M.; Khalilzade, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khomutnikov, V. P.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kieft, G.; Kierstead, J. A.; Kilvington, G.; Kim, H.; Kim, H.; Kim, S. H.; Kind, P.; King, B. T.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kisielewski, B.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Kleinknecht, K.; Klier, A.; Klimentov, A.; Kline, C. R.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N. K.; Kneringer, E.; Knezo, E.; Knobloch, J.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kodys, P.; König, A. C.; König, S.; Köpke, L.; Koetsveld, F.; Koffas, T.; Koffeman, E.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Kollefrath, M.; Kolos, S.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Kondo, T.; Kondo, Y.; Kondratyeva, N. V.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konovalov, S. P.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korotkov, V. A.; Korsmo, H.; Kortner, O.; Kostrikov, M. E.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotchetkov, D.; Kotov, S.; Kotov, V. M.; Kotov, K. Y.; Kourkoumelis, C.; Koutsman, A.; Kovalenko, S.; Kowalewski, R.; Kowalski, H.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V.; Kramberger, G.; Kramer, A.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Krepouri, A.; Krieger, P.; Krivkova, P.; Krobath, G.; Kroha, H.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruger, K.; Krumshteyn, Z. V.; Kubik, P.; Kubischta, W.; Kubota, T.; Kudin, L. G.; Kudlaty, J.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kundu, N.; Kupco, A.; Kupper, M.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuzhir, P.; Kuznetsova, E. K.; Kvasnicka, O.; Kwee, R.; La Marra, D.; La Rosa, M.; La Rotonda, L.; Labarga, L.; Labbe, J. A.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, E.; Lambacher, M.; Lambert, F.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Langstaff, R. R.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapin, V. V.; Laplace, S.; Laporte, J. F.; Lara, V.; Lari, T.; Larionov, A. V.; Lasseur, C.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Lazarev, A. B.; LeBihan, A.-C.; LeDortz, O.; LeManer, C.; LeVine, M.; Leahu, L.; Leahu, M.; Lebel, C.; Lechowski, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lefebvre, M.; Lefevre, R. P.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lehto, M.; Leitner, R.; Lelas, D.; Lellouch, D.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lepidis, J.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Letheren, M.; Fook Cheong, A. Leung; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Leyton, M.; Li, J.; Li, W.; Liabline, M.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Liebig, W.; Lifshitz, R.; Liko, D.; Lim, H.; Limper, M.; Lin, S. C.; Lindahl, A.; Linde, F.; Lindquist, L.; Lindsay, S. W.; Linhart, V.; Lintern, A. J.; Liolios, A.; Lipniacka, A.; Liss, T. M.; Lissauer, A.; List, J.; Litke, A. M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Llosá Llácer, G.; Lloyd, S. L.; Lobkowicz, F.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lokwitz, S.; Long, M. C.; Lopes, L.; Lopez Mateos, D.; Losty, M. J.; Lou, X.; Loureiro, K. F.; Lovas, L.; Love, J.; Lowe, A.; Lozano Fantoba, M.; Lu, F.; Lu, J.; Lu, L.; Lubatti, H. J.; Lucas, S.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, I.; Ludwig, J.; Luehring, F.; Lüke, D.; Luijckx, G.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundquist, J.; Lupi, A.; Lupu, N.; Lutz, G.; Lynn, D.; Lynn, J.; Lys, J.; Lysan, V.; Lytken, E.; López-Amengual, J. M.; Ma, H.; Ma, L. L.; Maaß en, M.; Maccarrone, G.; Mace, G. G. R.; Macina, D.; Mackeprang, R.; Macpherson, A.; MacQueen, D.; Macwaters, C.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magrath, C. A.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maidantchik, C.; Maio, A.; Mair, G. M.; Mair, K.; Makida, Y.; Makowiecki, D.; Malecki, P.; Maleev, V. P.; Malek, F.; Malon, D.; Maltezos, S.; Malychev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Manara, A.; Manca, G.; Mandelli, L.; Mandić, I.; Mandl, M.; Maneira, J.; Maneira, M.; Mangeard, P. S.; Mangin-Brinet, M.; Manjavidze, I. D.; Mann, W. A.; Manolopoulos, S.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchesotti, M.; Marcisovsky, M.; Marin, A.; Marques, C. N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Garcia, S. Marti i.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph; Martinez, G.; Martínez Lacambra, C.; Martinez Outschoorn, V.; Martini, A.; Martins, J.; Maruyama, T.; Marzano, F.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mathes, M.; Matheson, J.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Maugain, J. M.; Maxfield, S. J.; May, E. N.; Mayer, J. K.; Mayri, C.; Mazini, R.; Mazzanti, M.; Mazzanti, P.; Mazzoni, E.; Mazzucato, F.; McKee, S. P.; McCarthy, R. L.; McCormick, C.; McCubbin, N. A.; McDonald, J.; McFarlane, K. W.; McGarvie, S.; McGlone, H.; McLaren, R. A.; McMahon, S. J.; McMahon, T. R.; McMahon, T. J.; McPherson, R. A.; Mechtel, M.; Meder-Marouelli, D.; Medinnis, M.; Meera-Lebbai, R.; Meessen, C.; Mehdiyev, R.; Mehta, A.; Meier, K.; Meinhard, H.; Meinhardt, J.; Meirosu, C.; Meisel, F.; Melamed-Katz, A.; Mellado Garcia, B. R.; Mendes Jorge, P.; Mendez, P.; Menke, S.; Menot, C.; Meoni, E.; Merkl, D.; Merola, L.; Meroni, C.; Merritt, F. S.; Messmer, I.; Metcalfe, J.; Meuser, S.; Meyer, J.-P.; Meyer, T. C.; Meyer, W. T.; Mialkovski, V.; Michelotto, M.; Micu, L.; Middleton, R.; Miele, P.; Migliaccio, A.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikestikova, M.; Mikulec, B.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Miller, W.; Milosavljevic, M.; Milstead, D. A.; Mima, S.; Minaenko, A. A.; Minano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitra, A.; Mitrofanov, G. Y.; Mitsou, V. A.; Miyagawa, P. S.; Miyazaki, Y.; Mjörnmark, J. U.; Mkrtchyan, S.; Mladenov, D.; Moa, T.; Moch, M.; Mochizuki, A.; Mockett, P.; Modesto, P.; Moed, S.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles Valls, R. M.; Molina-Perez, J.; Moll, A.; Moloney, G.; Mommsen, R.; Moneta, L.; Monnier, E.; Montarou, G.; Montesano, S.; Monticelli, F.; Moore, R. W.; Moore, T. B.; Moorhead, G. F.; Moraes, A.; Morel, J.; Moreno, A.; Moreno, D.; Morettini, P.; Morgan, D.; Morii, M.; Morin, J.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, E. J.; Morris, J.; Morrissey, M. C.; Moser, H. G.; Mosidze, M.; Moszczynski, A.; Mouraviev, S. V.; Mouthuy, T.; Moye, T. H.; Moyse, E. J. W.; Mueller, J.; Müller, M.; Muijs, A.; Muller, T. R.; Munar, A.; Munday, D. J.; Murakami, K.; Murillo Garcia, R.; Murray, W. J.; Myagkov, A. G.; Myska, M.; Nagai, K.; Nagai, Y.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Naito, D.; Nakamura, K.; Nakamura, Y.; Nakano, I.; Nanava, G.; Napier, A.; Nassiakou, M.; Nasteva, I.; Nation, N. R.; Naumann, T.; Nauyock, F.; Nderitu, S. K.; Neal, H. A.; Nebot, E.; Nechaeva, P.; Neganov, A.; Negri, A.; Negroni, S.; Nelson, C.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neukermans, L.; Nevski, P.; Newcomer, F. M.; Nichols, A.; Nicholson, C.; Nicholson, R.; Nickerson, R. B.; Nicolaidou, R.; Nicoletti, G.; Nicquevert, B.; Niculescu, M.; Nielsen, J.; Niinikoski, T.; Niinimaki, M. J.; Nikitin, N.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, B. S.; Nilsson, P.; Nisati, A.; Nisius, R.; Nodulman, L. J.; Nomachi, M.; Nomoto, H.; Noppe, J.-M.; Nordberg, M.; Norniella Francisco, O.; Norton, P. R.; Novakova, J.; Nowak, M.; Nozaki, M.; Nunes, R.; Nunes Hanninger, G.; Nunnemann, T.; Nyman, T.; O'Connor, P.; O'Neale, S. W.; O'Neil, D. C.; O'Neill, M.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermaier, M.; Oberson, P.; Ochi, A.; Ockenfels, W.; Odaka, S.; Odenthal, I.; Odino, G. A.; Ogren, H.; Oh, S. H.; Ohshima, T.; Ohshita, H.; Okawa, H.; Olcese, M.; Olchevski, A. G.; Oliver, C.; Oliver, J.; Olivo Gomez, M.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onea, A.; Onofre, A.; Oram, C. J.; Ordonez, G.; Oreglia, M. J.; Orellana, F.; Oren, Y.; Orestano, D.; Orlov, I. O.; Orr, R. S.; Orsini, F.; Osborne, L. S.; Osculati, B.; Osuna, C.; Otec, R.; Othegraven, R.; Ottewell, B.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Øye, O. K.; Ozcan, V. E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A.; Padhi, S.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pailler, P. M.; Pajchel, K.; Palestini, S.; Palla, J.; Pallin, D.; Palmer, M. J.; Pan, Y. B.; Panikashvili, N.; Panin, V. N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Paoloni, A.; Papadopoulos, I.; Papadopoulou, T.; Park, I.; Park, W.; Parker, M. A.; Parker, S.; Parkman, C.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Passmore, M. S.; Pastore, F.; Pastore, Fr; Pataraia, S.; Pate, D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pauna, E.; Peak, L. S.; Peeters, S. J. M.; Peez, M.; Pei, E.; Peleganchuk, S. V.; Pellegrini, G.; Pengo, R.; Pequenao, J.; Perantoni, M.; Perazzo, A.; Pereira, A.; Perepelkin, E.; Perera, V. J. O.; Perez Codina, E.; Perez Reale, V.; Peric, I.; Perini, L.; Pernegger, H.; Perrin, E.; Perrino, R.; Perrodo, P.; Perrot, G.; Perus, P.; Peshekhonov, V. D.; Petereit, E.; Petersen, J.; Petersen, T. C.; Petit, P. J. F.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petti, R.; Pezzetti, M.; Pfeifer, B.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccinini, M.; Pickford, A.; Piegaia, R.; Pier, S.; Pilcher, J. E.; Pilkington, A. D.; Pimenta Dos Santos, M. A.; Pina, J.; Pinfold, J. L.; Ping, J.; Pinhão, J.; Pinto, B.; Pirotte, O.; Placakyte, R.; Placci, A.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Podkladkin, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polak, I.; Polesello, G.; Policicchio, A.; Polini, A.; Polychronakos, V.; Pomarede, D. M.; Pommès, K.; Ponsot, P.; Pontecorvo, L.; Pope, B. G.; Popescu, R.; Popovic, D. S.; Poppleton, A.; Popule, J.; Portell Bueso, X.; Posch, C.; Pospelov, G. E.; Pospichal, P.; Pospisil, S.; Postranecky, M.; Potrap, I. N.; Potter, C. J.; Poulard, G.; Pousada, A.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Prast, J.; Prat, S.; Prata, M.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Primor, D.; Prokofiev, K.; Prosso, E.; Proudfoot, J.; Przysiezniak, H.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylaev, A. N.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qing, D.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Rabbers, J. J.; Radeka, V.; Rafi, J. M.; Ragusa, F.; Rahimi, A. M.; Rahm, D.; Raine, C.; Raith, B.; Rajagopalan, S.; Rajek, S.; Rammer, H.; Ramstedt, M.; Rangod, S.; Ratoff, P. N.; Raufer, T.; Rauscher, F.; Rauter, E.; Raymond, M.; Reads, A. L.; Rebuzzi, D.; Redlinger, G. R.; Reeves, K.; Rehak, M.; Reichold, A.; Reinherz-Aronis, E.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.; Renaudin-Crepe, S. R. C.; Renkel, P.; Rensch, B.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Rewiersma, P.; Rey, J.; Rey-Campagnolle, M.; Rezaie, E.; Reznicek, P.; Richards, R. A.; Richer, J.-P.; Richter, R. H.; Richter, R.; Richter-Was, E.; Ridel, M.; Riegler, W.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rios, R. R.; Riu Dachs, I.; Rivline, M.; Rivoltella, G.; Rizatdinova, F.; Robertson, S. H.; Robichaud-Veronneau, A.; Robins, S.; Robinson, D.; Robson, A.; Rochford, J. H.; Roda, C.; Rodier, S.; Roe, S.; Røhne, O.; Rohrbach, F.; Roldán, J.; Rolli, S.; Romance, J. B.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, F.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosselet, L.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Rozanov, A.; Rozen, Y.; Ruber, R.; Ruckert, B.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruggiero, G.; Ruiz, H.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybkine, G.; da Costa, J. Sá; Saavedra, A. F.; Saboumazrag, S.; F-W Sadrozinski, H.; Sadykov, R.; Sakamoto, H.; Sala, P.; Salamon, A.; Saleem, M.; Salihagic, D.; Salt, J.; Saltó Bauza, O.; Salvachúa Ferrando, B. M.; Salvatore, D.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sánchez Sánchez, C. A.; Sanchis Lozano, M. A.; Sanchis Peris, E.; Sandaker, H.; Sander, H. G.; Sandhoff, M.; Sandvoss, S.; Sankey, D. P. C.; Sanny, B.; Sansone, S.; Sansoni, A.; Santamarina Rios, C.; Santander, J.; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Sapinski, M.; Saraiva, J. G.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, D.; Sauvage, G.; Savard, P.; Savine, A. Y.; Savinov, V.; Savoy-Navarro, A.; Savva, P.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrissa, E.; Sbrizzi, A.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schaller, M.; Schamov, A. G.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schick, H.; Schieck, J.; Schieferdecker, P.; Schioppa, M.; Schlager, G.; Schlenker, S.; Schlereth, J. L.; Schmid, P.; Schmidt, M. P.; Schmitt, C.; Schmitt, K.; Schmitz, M.; Schmücker, H.; Schoerner, T.; Scholte, R. C.; Schott, M.; Schouten, D.; Schram, M.; Schricker, A.; Schroff, D.; Schuh, S.; Schuijlenburg, H. W.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schumacher, J.; Schumacher, M.; Schune, Ph; Schwartzman, A.; Schweiger, D.; Schwemling, Ph; Schwick, C.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Secker, H.; Sedykh, E.; Seguin-Moreau, N.; Segura, E.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Selldén, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sexton, K. A.; Sfyrla, A.; Shah, T. P.; Shan, L.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shears, T. G.; Sherwood, P.; Shibata, A.; Shield, P.; Shilov, S.; Shimojima, M.; Shin, T.; Shiyakova, M.; Shmeleva, A.; Shoa, M.; Shochet, M. J.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siebel, M.; Siegrist, J.; Sijacki, D.; Silva, J.; Silverstein, S. B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S.; Sjölin, J.; Skubic, P.; Skvorodnev, N.; Slattery, P.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Small, A.; Smirnov, S. Yu; Smirnov, Y.; Smirnova, L.; Smirnova, O.; Smith, N. A.; Smith, B. C.; Smith, D. S.; Smith, J.; Smith, K. M.; Smith, B.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Soares, S.; Sobie, R.; Sodomka, J.; Söderberg, M.; Soffer, A.; Solans, C. A.; Solar, M.; Sole, D.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solov'yanov, O. V.; Soloviev, I.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sorbi, M.; Soret Medel, J.; Sosebee, M.; Sosnovtsev, V. V.; Sospedra Suay, L.; Soukharev, A.; Soukup, J.; Spagnolo, S.; Spano, F.; Speckmayer, P.; Spegel, M.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spogli, L.; Spousta, M.; Sprachmann, G.; Spurlock, B.; St. Denis, R. D.; Stahl, T.; Staley, R. J.; Stamen, R.; Stancu, S. N.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Staroba, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavrianakou, M.; Stavropoulos, G.; Stefanidis, E.; Steffens, J. L.; Stekl, I.; Stelzer, H. J.; Stenzel, H.; Stewart, G.; Stewart, T. D.; Stiller, W.; Stockmanns, T.; Stodulski, M.; Stonjek, S.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandlie, A.; Strauss, M.; Strickland, V.; Striegel, D.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Stugu, B.; Stumer, I.; Su, D.; Subramania, S.; Suchkov, S. I.; Sugaya, Y.; Sugimoto, T.; Suk, M.; Sulin, V. V.; Sultanov, S.; Sun, Z.; Sundal, B.; Sushkov, S.; Susinno, G.; Sutcliffe, P.; Sutton, M. R.; Sviridov, Yu M.; Sykora, I.; Szczygiel, R. R.; Szeless, B.; Szymocha, T.; Sánchez, J.; Ta, D.; Taboada Gameiro, S.; Tadel, M.; Tafirout, R.; Taga, A.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, K.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tappern, G. P.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tarrant, J.; Tartarelli, G.; Tas, P.; Tasevsky, M.; Tayalati, Y.; Taylor, F. E.; Taylor, G.; Taylor, G. N.; Taylor, R. P.; Tcherniatine, V.; Tegenfeldt, F.; Teixeira-Dias, P.; Ten Kate, H.; Teng, P. K.; Ter-Antonyan, R.; Terada, S.; Terron, J.; Terwort, M.; Teuscher, R. J.; Tevlin, C. M.; Thadome, J.; Thion, J.; Thioye, M.; Thomas, A.; Thomas, J. P.; Thomas, T. L.; Thomas, E.; Thompson, R. J.; Thompson, A. S.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timm, S.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Titov, M.; Tobias, J.; Tocut, V. M.; Toczek, B.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tonazzo, A.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torrence, E.; Torres Pais, J. G.; Toth, J.; Touchard, F.; Tovey, D. R.; Tovey, S. N.; Towndrow, E. F.; Trefzger, T.; Treichel, M.; Treis, J.; Tremblet, L.; Tribanek, W.; Tricoli, A.; Trigger, I. M.; Trilling, G.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trka, Z.; Trocmé, B.; Troncon, C.; C-L Tseng, J.; Tsiafis, I.; Tsiareshka, P. V.; Tsipolitis, G.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Turala, M.; Turk Cakir, I.; Turlay, E.; Tuts, P. M.; Twomey, M. S.; Tyndel, M.; Typaldos, D.; Tyrvainen, H.; Tzamarioudaki, E.; Tzanakos, G.; Ueda, I.; Uhrmacher, M.; Ukegawa, F.; Ullán Comes, M.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urkovsky, E.; Usai, G.; Usov, Y.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valderanis, C.; Valenta, J.; Valente, P.; Valero, A.; Valkar, S.; Valls Ferrer, J. A.; Van der Bij, H.; van der Graaf, H.; van der Kraaij, E.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Van Berg, R.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vannucci, F.; Varanda, M.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vassilieva, L.; Vataga, E.; Vaz, L.; Vazeille, F.; Vedrine, P.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, S.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vertogardov, L.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Vigeolas, E.; Villa, M.; Villani, E. G.; Villate, J.; Villella, I.; Vilucchi, E.; Vincent, P.; Vincke, H.; Vincter, M. G.; Vinogradov, V. B.; Virchaux, M.; Viret, S.; Virzi, J.; Vitale, A.; Vivarelli, I.; Vives, R.; Vives Vaques, F.; Vlachos, S.; Vogt, H.; Vokac, P.; Vollmer, C. F.; Volpi, M.; Volpini, G.; von Boehn-Buchholz, R.; von der Schmitt, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorozhtsov, A. S.; Vorozhtsov, S. B.; Vos, M.; Voss, K. C.; Voss, R.; Vossebeld, J. H.; Vovenko, A. S.; Vranjes, N.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuaridel, B.; Vudragovic, M.; Vuillemin, V.; Vuillermet, R.; Wänanen, A.; Wahlen, H.; Walbersloh, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wallny, R. S.; Walsh, S.; Wang, C.; Wang, J. C.; Wappler, F.; Warburton, A.; Ward, C. P.; Warner, G. P.; Warren, M.; Warsinsky, M.; Wastie, R.; Watkins, P. M.; Watson, A. T.; Watts, G.; Waugh, A. T.; Waugh, B. M.; Weaverdyck, C.; Webel, M.; Weber, G.; Weber, J.; Weber, M.; Weber, P.; Weidberg, A. R.; Weilhammer, P. M.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wellisch, H. P.; Wells, P. S.; Wemans, A.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werneke, P.; Werner, P.; Werthenbach, U.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiesmann, M.; Wiesmann, M.; Wijnen, T.; Wildauer, A.; Wilhelm, I.; Wilkens, H. G.; Williams, H. H.; Willis, W.; Willocq, S.; Wilmut, I.; Wilson, J. A.; Wilson, A.; Wingerter-Seez, I.; Winton, L.; Witzeling, W.; Wlodek, T.; Woehrling, E.; Wolter, M. W.; Wolters, H.; Wosiek, B.; Wotschack, J.; Woudstra, M. J.; Wright, C.; Wu, S. L.; Wu, X.; Wuestenfeld, J.; Wunstorf, R.; Xella-Hansen, S.; Xiang, A.; Xie, S.; Xie, Y.; Xu, G.; Xu, N.; Yamamoto, A.; Yamamoto, S.; Yamaoka, H.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, J. C.; Yang, S.; Yang, U. K.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yao, Y.; Yarradoddi, K.; Yasu, Y.; Ye, J.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, H.; Yoshida, R.; Young, C.; Youssef, S. P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajac, J.; Zajacova, Z.; Zalite, A. Yu; Zalite, Yo K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zdrazil, M.; Zeitnitz, C.; Zeller, M.; Zema, P. F.; Zendler, C.; Zenin, A. V.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zhang, H.; Zhang, J.; Zheng, W.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, X.; Zhao, Z.; Zhelezko, A.; Zhemchugov, A.; Zheng, S.; Zhichao, L.; Zhou, B.; Zhou, N.; Zhou, S.; Zhou, Y.; Zhu, C. G.; Zhu, H. Z.; Zhuang, X. A.; Zhuravlov, V.; Zilka, B.; Zimin, N. I.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zoeller, M. M.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zychacek, V.

    2008-08-01

    The ATLAS detector as installed in its experimental cavern at point 1 at CERN is described in this paper. A brief overview of the expected performance of the detector when the Large Hadron Collider begins operation is also presented.

  17. Supersymmetry status and phenomenology at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Alexander Belyaev

    2009-01-01

    Large Hadron Collider (LHC) has a great chance to finally reveal supersymmetry which remains a compelling theory for over 30 years in spite of lack of its discovery. It might be around the corner the present LHC era with sensitive dark matter search experiments and international linear collider hopefully coming up in the near future.

  18. The Very Large Hadron Collider: The farthest energy frontier

    Energy Technology Data Exchange (ETDEWEB)

    Barletta, William A.

    2001-06-21

    The Very Large Hadron Collider (or Eloisatron) represents what may well be the final step on the energy frontier of accelerator-based high energy physics. While an extremely high luminosity proton collider at 100-200 TeV center of mass energy can probably be built in one step with LHC technology, that machine would cost more than what is presently politically acceptable. This talk summarizes the strategies of collider design including staged deployment, comparison with electron-positron colliders, opportunities for major innovation, and the technical challenges of reducing costs to manageable proportions. It also presents the priorities for relevant R and D for the next few years.

  19. Academic Training Lecture: Higgs Boson Searches at Hadron Colliders

    CERN Multimedia

    HR Department

    2010-01-01

    Regular Programme 21, 22, 23 & 24 June 2010 from 11:00 to 12:00 - Main Auditorium, Bldg. 500-1-001 Higgs Boson Searches at Hadron Colliders by Dr. Karl Jakobs (University of Freiburg) In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and ...

  20. Il Collisore LHC (Large Hadron Collider)

    CERN Multimedia

    Brianti, Giorgio

    2004-01-01

    In 2007, in a new Collider in the tunnel of 27km, collisions will be made between very powerful beams of protons and ions. The energies will be very high to try to catch the most tiny particle (1 page)

  1. Production of electroweak bosons at hadron colliders: theoretical aspects

    CERN Document Server

    Mangano, Michelangelo L

    2016-01-01

    Since the W and Z discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  2. Production of Electroweak Bosons at Hadron Colliders: Theoretical Aspects

    Science.gov (United States)

    Mangano, Michelangelo L.

    2016-10-01

    Since the W± and Z0 discovery, hadron colliders have provided a fertile ground, in which continuously improving measurements and theoretical predictions allow to precisely determine the gauge boson properties, and to probe the dynamics of electroweak and strong interactions. This article will review, from a theoretical perspective, the role played by the study, at hadron colliders, of electroweak boson production properties, from the better understanding of the proton structure, to the discovery and studies of the top quark and of the Higgs, to the searches for new phenomena beyond the Standard Model.

  3. FCC Based Lepton-Hadron and Photon-Hadron Colliders: Luminosity and Physics

    CERN Document Server

    Acar, Y C; Beser, S; Karadeniz, H; Kaya, U; Oner, B B; Sultansoy, S

    2016-01-01

    Construction of future electron-positron colliders (or dedicated electron linac) and muon colliders (or dedicated muon ring) tangential to Future Circular Collider (FCC) will give opportunity to utilize highest energy proton and nucleus beams for lepton-hadron and photon-hadron collisions. Luminosity values of FCC based ep, \\mup, eA, \\muA, \\gammap and \\gammaA colliders are estimated. Multi-TeV center of mass energy ep colliders based on the FCC and linear colliders (LC) are considered in detail. Parameters of upgraded versions of the FCC proton beam are determined to optimize luminosity of electron-proton collisions keeping beam-beam effects in mind. Numerical calculations are performed using a currently being developed collision point simulator. It is shown that L_{ep}\\sim10^{32}\\,cm^{-2}s^{-1} can be achieved with LHeC-like upgrade of the FCC parameters.

  4. First Considerations on Beam Optics and Lattice Design for the Future Hadron-Hadron Collider FCC

    CERN Document Server

    Alemany Fernandez, R

    2014-01-01

    The present document explains the steps carried out in order to make the first design of the Future Hadron-Hadron Collider (FCC-hh) following the base line parameters that can be found in [1]. Two lattice layouts are presented, a ring collider with 12 arcs and 12 straight sections, four of them designed as interaction points, and a racetrack like collider with two arcs and two straight sections, each of them equipped with two interaction points. The lattice design presented in the paper is modular allowing the same modules be used for both layouts. The present document addresses as well the beta star reach at the interaction points.

  5. Resummed Results for Hadron Collider Observables

    Science.gov (United States)

    McAslan, Heather

    2016-07-01

    Event shapes are invaluable QCD tools for theoretical calculations and experimental measurements. We revise the definition of these observables in e+e- annihilation and in hadron collisions, and give a review of the state-of-the-art results for their resummation. Then we detail how recent work on the re-summation of event shapes in electron-positron annihilation can provide us with the tools to extend resummation of generic hadronic event shapes to NNLL accuracy. We match our findings to fixed-order results at NNLO accuracy, showing the sizeable effects of resummation in the relevant regions of phase space.

  6. Resummed Results for Hadron Collider Observables

    Directory of Open Access Journals (Sweden)

    McAslan Heather

    2016-01-01

    Full Text Available Event shapes are invaluable QCD tools for theoretical calculations and experimental measurements. We revise the definition of these observables in e+e− annihilation and in hadron collisions, and give a review of the state-of-the-art results for their resummation. Then we detail how recent work on the re-summation of event shapes in electron-positron annihilation can provide us with the tools to extend resummation of generic hadronic event shapes to NNLL accuracy. We match our findings to fixed-order results at NNLO accuracy, showing the sizeable effects of resummation in the relevant regions of phase space.

  7. TOP AND HIGGS PHYSICS AT THE HADRON COLLIDERS

    Energy Technology Data Exchange (ETDEWEB)

    Jabeen, Shabnam

    2013-10-20

    This review summarizes the recent results for top quark and Higgs boson measurements from experiments at Tevatron, a proton–antiproton collider at a center-of-mass energy of √ s =1 . 96 TeV, and the Large Hadron Collider, a proton–proton collider at a center- of-mass energy of √ s = 7 TeV. These results include the discovery of a Higgs-like boson and measurement of its various properties, and measurements in the top quark sector, e.g. top quark mass, spin, charge asymmetry and production of single top quark.

  8. The future of the Large Hadron Collider and CERN.

    Science.gov (United States)

    Heuer, Rolf-Dieter

    2012-02-28

    This paper presents the Large Hadron Collider (LHC) and its current scientific programme and outlines options for high-energy colliders at the energy frontier for the years to come. The immediate plans include the exploitation of the LHC at its design luminosity and energy, as well as upgrades to the LHC and its injectors. This may be followed by a linear electron-positron collider, based on the technology being developed by the Compact Linear Collider and the International Linear Collider collaborations, or by a high-energy electron-proton machine. This contribution describes the past, present and future directions, all of which have a unique value to add to experimental particle physics, and concludes by outlining key messages for the way forward.

  9. Model independent spin determination at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Edelhaeuser, Lisa

    2012-04-25

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s{sub ff} of the adjacent particles. In this thesis

  10. Model independent spin determination at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Edelhaeuser, Lisa

    2012-04-25

    By the end of the year 2011, both the CMS and ATLAS experiments at the Large Hadron Collider have recorded around 5 inverse femtobarns of data at an energy of 7 TeV. There are only vague hints from the already analysed data towards new physics at the TeV scale. However, one knows that around this scale, new physics should show up so that theoretical issues of the standard model of particle physics can be cured. During the last decades, extensions to the standard model that are supposed to solve its problems have been constructed, and the corresponding phenomenology has been worked out. As soon as new physics is discovered, one has to deal with the problem of determining the nature of the underlying model. A first hint is of course given by the mass spectrum and quantum numbers such as electric and colour charges of the new particles. However, there are two popular model classes, supersymmetric models and extradimensional models, which can exhibit almost equal properties at the accessible energy range. Both introduce partners to the standard model particles with the same charges and thus one needs an extended discrimination method. From the origin of these partners arises a relevant difference: The partners constructed in extradimensional models have the same spin as their standard model partners while in Supersymmetry they differ by spin 1/2. These different spins have an impact on the phenomenology of the two models. For example, one can exploit the fact that the total cross sections are affected, but this requires a very good knowledge of the couplings and masses involved. Another approach uses angular distributions depending on the particle spins. A prevailing method based on this idea uses the invariant mass distribution of the visible particles in decay chains. One can relate these distributions to the spin of the particle mediating the decay since it reflects itself in the highest power of the invariant mass s{sub ff} of the adjacent particles. In this thesis

  11. CERN to start Large Hadron Collider november 2007

    CERN Multimedia

    2006-01-01

    "The Large Hadron Collider (LHC) is expected to provide its first collisions in November 2007, CERN has announced. A two-month run at 0.9 TeV is planned for 2007 to test the accelerating and detecting equipment, and a full power run at 14 TeV is expected in the spring of 2008."

  12. Large Hadron Collider project to study the origins of matter

    CERN Multimedia

    2007-01-01

    "The Scientific Information Port (PIC), a technological centre located on the campus of the UAB, recently started work on the first stage of the European project Large Hadron Collider (LHC), the largest particle accelerator in the world, which has the aim of reproducing conditions similar to those produced during the Big Bang in order to study the origins of matter." (1/2 page)

  13. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  14. Large Hadron Collider The Discovery Machine

    CERN Multimedia

    2008-01-01

    The mammoth machine, after a nine-year construction period, is scheduled (touch wood) to begin producing its beams of particles later this year. The commissioning process is planned to proceed from one beam to two beams to colliding beams; from lower energies to the terascale; from weaker test intensities to stronger ones suitable for producing data at useful rates but more difficult to control.

  15. Parton-Hadron-String Dynamics at Relativistic Collider Energies

    CERN Document Server

    Bratkovskaya, E L; Konchakovski, V P; Linnyk, O

    2011-01-01

    The novel Parton-Hadron-String Dynamics (PHSD) transport approach is applied to nucleus-nucleus collisions at RHIC energies with respect to differential hadronic spectra in comparison to available data. The PHSD approach is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results from the Wuppertal-Budapest group in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Our dynamical studies for heavy-ion collisions at relativistic collider energies are compared to earlier results from the Hadron-String Dynamics (HSD) approach - incorporating no explicit dynamical partonic phase - as well as to experimental data from the STAR, PHENIX, BRAHMS and PHOBOS collaborations for Au+Au collisions at the top RHIC energy...

  16. CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    Applications are now open for the 2nd CERN-Fermilab Hadron Collider Physics Summer School, which will take place at CERN from 6 to 15 June 2007. The school web site is http://cern.ch/hcpss with links to the academic program and application procedure. The application deadline is 9 March 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be given on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be  supported by in-depth discussion sess...

  17. Physics at the Large Hadron Collider

    CERN Document Server

    Mukhopadhyaya, Biswarup; Raychaudhari, Amitava

    2009-01-01

    In an epoch when particle physics is awaiting a major step forward, the Large Hydron Collider (LHC) at CERN, Geneva will soon be operational. It will collide a beam of high energy protons with another similar beam circulation in the same 27 km tunnel but in the opposite direction, resulting in the production of many elementary particles some never created in the laboratory before. It is widely expected that the LHC will discover the Higgs boson, the particle which supposedly lends masses to all other fundamental particles. In addition, the question as to whether there is some new law of physics at such high energy is likely to be answered through this experiment. The present volume contains a collection of articles written by international experts, both theoreticians and experimentalists, from India and abroad, which aims to acquaint a non-specialist with some basic issues related to the LHC. At the same time, it is expected to be a useful, rudimentary companion of introductory exposition and technical expert...

  18. Parton-Hadron-String Dynamics at relativistic collider energies

    Science.gov (United States)

    Bratkovskaya, E. L.; Cassing, W.; Konchakovski, V. P.; Linnyk, O.

    2011-04-01

    The novel Parton-Hadron-String Dynamics (PHSD) transport approach is applied to nucleus-nucleus collisions at RHIC energies with respect to differential hadronic spectra in comparison to available data. The PHSD approach is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results from the Wuppertal-Budapest group in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Our dynamical studies for heavy-ion collisions at relativistic collider energies are compared to earlier results from the Hadron-String Dynamics (HSD) approach - incorporating no explicit dynamical partonic phase - as well as to experimental data from the STAR, PHENIX, BRAHMS and PHOBOS Collaborations for Au + Au collisions at the top RHIC energy of √{s}=200 GeV. We find a reasonable reproduction of hadron rapidity distributions and transverse mass spectra and also a fair description of the elliptic flow of charged hadrons as a function of the centrality of the reaction and the transverse momentum p. Furthermore, an approximate quark-number scaling of the elliptic flow v of hadrons is observed in the PHSD results, too.

  19. Parton-Hadron-String Dynamics at relativistic collider energies

    Energy Technology Data Exchange (ETDEWEB)

    Bratkovskaya, E.L., E-mail: Elena.Bratkovskaya@th.physik.uni-frankfurt.d [Institut fuer Theoretische Physik, JWG Universitaet Frankfurt, D-60438 Frankfurt am Main (Germany); Frankfurt Institut for Advanced Studies, Frankfurt University, D-60438 Frankfurt-am-Main (Germany); Cassing, W.; Konchakovski, V.P. [Institut fuer Theoretische Physik, Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Linnyk, O. [Frankfurt Institut for Advanced Studies, Frankfurt University, D-60438 Frankfurt-am-Main (Germany)

    2011-04-15

    The novel Parton-Hadron-String Dynamics (PHSD) transport approach is applied to nucleus-nucleus collisions at RHIC energies with respect to differential hadronic spectra in comparison to available data. The PHSD approach is based on a dynamical quasiparticle model for partons (DQPM) matched to reproduce recent lattice-QCD results from the Wuppertal-Budapest group in thermodynamic equilibrium. The transition from partonic to hadronic degrees of freedom is described by covariant transition rates for the fusion of quark-antiquark pairs or three quarks (antiquarks), respectively, obeying flavor current-conservation, color neutrality as well as energy-momentum conservation. Our dynamical studies for heavy-ion collisions at relativistic collider energies are compared to earlier results from the Hadron-String Dynamics (HSD) approach - incorporating no explicit dynamical partonic phase - as well as to experimental data from the STAR, PHENIX, BRAHMS and PHOBOS Collaborations for Au + Au collisions at the top RHIC energy of {radical}(s)=200 GeV. We find a reasonable reproduction of hadron rapidity distributions and transverse mass spectra and also a fair description of the elliptic flow of charged hadrons as a function of the centrality of the reaction and the transverse momentum p{sub T}. Furthermore, an approximate quark-number scaling of the elliptic flow v{sub 2} of hadrons is observed in the PHSD results, too.

  20. Invisible Higgs decay at the Large Hadron-Electron Collider

    Science.gov (United States)

    Tang, Yi-Lei; Zhang, Chen; Zhu, Shou-hua

    2016-07-01

    The possibility that the 125 GeV Higgs boson may decay into invisible non-standard-model (non-SM) particles is theoretically and phenomenologically intriguing. In this paper, we investigate the sensitivity of the Large Hadron Electron Collider (LHeC) to an invisibly decaying Higgs, in its proposed high-luminosity running mode. We focus on the neutral current Higgs production channel which offers more kinematical handles than its charged current counterpart. The signal contains one electron, one jet, and large missing energy. With a cut-based parton-level analysis, we estimate that if the h Z Z coupling is at its standard model (SM) value, then assuming an integrated luminosity of 1 ab-1 , the LHeC with the proposed 60 GeV electron beam (with -0.9 polarization) and 7 TeV proton beam is capable of probing Br (h →TE)=6 % at 2 σ level. Good lepton veto performance (especially hadronic τ veto) in the forward region is crucial to the suppression of the dominant W j e background. We also explicitly point out the important role that may be played by the LHeC in probing a wide class of exotic Higgs decay processes and emphasize the general function of lepton-hadron colliders in the precision study of new resonances after their discovery in hadron-hadron collisions.

  1. Beam physics in future electron hadron colliders

    CERN Document Server

    Valloni, A; Klein, M; Schulte, D; Zimmermann, F

    2013-01-01

    High-energy electron-hadron collisions could support a rich research programme in particle and nuclear physics. Several future projects are being proposed around the world, in particular eRHIC at BNL, MEIC at TJNAF in the US, and LHeC at CERN in Europe. This paper will highlight some of the accelerator physics issues, and describe related technical developments and challenges for these machines. In particular, optics design and beam dynamics studies are discussed, including longitudinal phase space manipulation, coherent synchrotron radiation, beam-beam kink instability, ion effects, as well as mitigation measures for beam break up and for space-charge induced emittance growth, all of which could limit the machine performance. Finally, first steps are presented towards an LHeC R&D facility, which should investigate relevant beam-physics processes.

  2. The Structure of Jets at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Larkoski, Andrew James [Stanford Univ., CA (United States)

    2012-08-01

    Particle physics seeks to understand the interactions and properties of the fundamental particles. To gain understanding, there is an interplay between theory and experiment. Models are proposed to explain how particles behave and interact. These models make precise predictions that can be tested. Experiments are built and executed to measure the properties of these particles, providing necessary tests for the theories that attempt to explain the realm of fundamental particles. However, there is also another level of interaction between theory and experiment; the development of new experiments demands the study of how particles will behave with respect to the measured observables toward the goal of understanding the details and idiosyncrasies of the measurements very well. Only once these are well-modeled and understood can one be con dent that the data that are measured is trustworthy. The modeling and interpretation of the physics of a proton collider, such as the LHC, is the main topic of this thesis.

  3. Lepton Flavor Violation at the Large Hadron Collider

    CERN Document Server

    Allahverdi, Rouzbeh; Kamon, Teruki; Krislock, Abram

    2012-01-01

    We investigate a potential of discovering lepton flavor violation (LFV) at the Large Hadron Collider. A sizeable LFV in low energy supersymmetry can be induced by massive right handed neutrinos, which can explain neutrino oscillations via the seesaw mechanism. We investigate a scenario where the distribution of an invariant mass of two hadronically decaying taus ($\\tauh\\tauh$) from $\\schizero{2}$ decays is the same in events with or without LFV. We first develop a transfer function using this ditau massdistribution to model the shape of the non-LFV $\\tauh\\mu$ invariant mass. We then show the feasibility of extracting the LFV $\\tauh\\mu$ signal.

  4. QCD threshold corrections for gluino pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Langenfeld, Ulrich [Wuerzburg Univ. (Germany); Moch, Sven-Olaf; Pfoh, Torsten [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2012-11-15

    We present the complete threshold enhanced predictions in QCD for the total cross section of gluino pair production at hadron colliders at next-to-next-to-leading order. Thanks to the computation of the required one-loop hard matching coefficients our results are accurate to the next-to-next-to-leading logarithm. In a brief phenomenological study we provide predictions for the total hadronic cross sections at the LHC and we discuss the uncertainties arising from scale variations and the parton distribution functions.

  5. Bi-Event Subtraction Technique at Hadron Colliders

    CERN Document Server

    Dutta, Bhaskar; Kolev, Nikolay; Krislock, Abram

    2011-01-01

    We propose the Bi-Event Subtraction Technique (BEST) as a method of modeling and subtracting large portions of the combinatoric background which arises during reconstruction of particle decay chains at particle colliders. The combinatoric background arises because it is impossible to know experimentally which observed particles come from the decay chain of interest. BEST models this combinatoric background by combining observable particles from different collision events. The combinatoric background modeled by BEST can then be subtracted away, greatly reducing the overall background. This technique can be applied towards two goals of hadron colliders: To improve our understanding of the Standard Model and to search for new physics beyond the Standard Model.

  6. Working group report: Physics at the Large Hadron Collider

    Indian Academy of Sciences (India)

    D K Ghosh; A Nyffeler; V Ravindran

    2011-05-01

    This is a summary of the activities of the Physics at the LHC working group in the XIth Workshop on High Energy Physics Phenomenology (WHEPP-XI) held at the Physical Research Laboratory, Ahmedabad, India in January 2010. We discuss the activities of each sub-working group on physics issues at colliders such as Tevatron and Large Hadron Collider (LHC). The main issues discussed involve (1) results on W mass measurement and associated QCD uncertainties, (2) an attempt to understand the asymmetry measured at Tevatron in the top quark production, and (3) phenomenology of warped space dimension model.

  7. The standard model Higgs search at the large hadron collider

    Indian Academy of Sciences (India)

    Satyaki Bhattacharya; on behalf of the CMS and the ATLAS Collaborations

    2007-11-01

    The experiments at the large hadron collider (LHC) will probe for Higgs boson in the mass range between the lower bound on the Higgs mass set by the experiments at the large electron positron collider (LEP) and the unitarity bound (∼ 1 TeV). Strategies are being developed to look for signatures of Higgs boson and measure its properties. In this paper results from full detector simulation-based studies on Higgs discovery from both ATLAS and CMS experiments at the LHC will be presented. Results of simulation studies on Higgs coupling measurement at LHC will be discussed.

  8. Joint resummation for slepton pair production at hadron colliders

    Science.gov (United States)

    Bozzi, Giuseppe; Fuks, Benjamin; Klasen, Michael

    2008-05-01

    We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O(α). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for ee˜R∗ production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.

  9. Joint resummation for slepton pair production at hadron colliders

    CERN Document Server

    Bozzi, G; Klasen, M

    2007-01-01

    We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O(alpha_s). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for ~e_R ~e_R^* production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.

  10. Joint resummation for slepton pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Bozzi, Giuseppe [Institut fuer Theoretische Physik, Universitaet Karlsruhe, Postfach 6980, D-76128 Karlsruhe (Germany); Fuks, Benjamin [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France); Klasen, Michael [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)], E-mail: klasen@lpsc.in2p3.fr

    2008-05-01

    We present a precision calculation of the transverse-momentum and invariant-mass distributions for supersymmetric particle pair production at hadron colliders, focusing on Drell-Yan like slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement the joint resummation formalism at the next-to-leading logarithmic accuracy with a process-independent Sudakov form factor, thus ensuring a universal description of soft-gluon emission, and consistently match the obtained result with the pure perturbative result at the first order in the strong coupling constant, i.e. at O({alpha}{sub s}). We also implement three different recent parameterizations of non-perturbative effects. Numerically, we give predictions for e-tilde{sub R}e-tilde{sub R}* production and compare the resummed cross section with the perturbative result. The dependence on unphysical scales is found to be reduced, and non-perturbative contributions remain small.

  11. Champagne moments[Expections of the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-10-15

    The Large Hadron Collider could bring CERN huge rewards - but there are risks too. Anyone who is not a particle physicist is likely to look on in envy at the massive sums being spent on the Large Hadron Collider (LHC) at CERN. It has cost -1.8bn to build the machine's accelerator, which will whip protons in opposite directions around a 27 km-long underground ring before smashing them together at energies up to 14 TeV some billion times a second. The four giant detectors - including the two general-purpose experiments CMS and ATLAS - have swallowed up several more billion Euros. Then there is the new Grid computer system, which is meant to analyse the vast streams of data spewing out from thee detectors every second. The total bill? A cool - Euro6.3bn, give or take the odd bottle of champagne. (U.K.)

  12. Electron Lenses for the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermilab; Valishev, Alexander [Fermilab; Bruce, Roderik [CERN; Redaelli, Stefano [CERN; Rossi, Adriana [CERN; Salvachua, Belen [CERN

    2014-07-01

    Electron lenses are pulsed, magnetically confined electron beams whose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-by-bunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beam compensation, and for the demonstration of halo scraping with hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. This project is moving towards a technical design in 2014, with the goal to build the devices in 2015-2017, after resuming LHC operations and re-assessing needs and requirements at 6.5 TeV. Because of their electric charge and the absence of materials close to the proton beam, electron lenses may also provide an alternative to wires for long-range beam-beam compensation in LHC luminosity upgrade scenarios with small crossing angles.

  13. Electron lenses for the large hadron collider

    CERN Document Server

    Stancari†, G; Bruce, R; Redaelli, S; Rossi, A; Salvachua Ferrando, B

    2014-01-01

    Electron lenses are pulsed, magnetically confined electron beamswhose current-density profile is shaped to obtain the desired effect on the circulating beam. Electron lenses were used in the Fermilab Tevatron collider for bunch-bybunch compensation of long-range beam-beam tune shifts, for removal of uncaptured particles in the abort gap, for preliminary experiments on head-on beam-beamcompensation, and for the demonstration of halo scrapingwith hollow electron beams. Electron lenses for beam-beam compensation are being commissioned in RHIC at BNL. Within the US LHC Accelerator Research Program and the European HiLumi LHC Design Study, hollow electron beam collimation was studied as an option to complement the collimation system for the LHC upgrades. A conceptual design was recently completed, and the project is moving towards a technical design in 2014–2015 for construction in 2015–2017, if needed, after resuming LHC operations and re-assessing collimation needs and requirements at 6.5 TeV. Because of the...

  14. Discriminating Supersymmetry and Black Holes at the Large Hadron Collider

    CERN Document Server

    Roy, Arunava

    2008-01-01

    We show how to differentiate the minimal supersymmetric extension of the standard model from black hole events at the Large Hadron Collider. Black holes are simulated with the CATFISH generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET. Our study, based on event shape variables, visible and missing momenta, and analysis of dilepton events, demonstrates that supersymmetry and black hole events at the LHC can be easily discriminated.

  15. Discriminating Supersymmetry and Black Holes at the Large Hadron Collider

    Science.gov (United States)

    Roy, Arunava; Cavaglia, Marco

    2008-04-01

    We assess the distinguishability between supersymmetry and black hole events at the Large Hadron Collider. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET. Our study, based on event shape variables, visible and missing momenta, and analysis of dilepton events, shows that supersymmetry and black hole events at the LHC can be easily discriminated.

  16. Theory overview of electroweak physics at hadron colliders

    CERN Document Server

    Campbell, John M

    2016-01-01

    This contribution summarizes some of the important theoretical progress that has been made in the arena of electroweak physics at hadron colliders. The focus is on developments that have sharpened theoretical predictions for final states produced through electroweak processes. Special attention is paid to new results that have been presented in the last year, since LHCP2015, as well as on key issues for future measurements at the LHC.

  17. vh@nnlo - Higgs Strahlung at hadron colliders

    CERN Document Server

    Brein, Oliver; Zirke, Tom J E

    2012-01-01

    A numerical program for the evaluation of the inclusive cross section for associated Higgs production with a massive weak gauge boson at hadron colliders is described, sigma(pp/pbar p -> HV), V=W,Z. The calculation is performed in the framework of the Standard Model and includes next-to-next-to-leading order QCD as well as next-to-leading order electro-weak effects.

  18. W and Z Boson Production at Hadron Colliders

    CERN Document Server

    Hays, C

    2009-01-01

    The electroweak theory has been tested to high precision, with measurements probing its predictions at the loop level. The current generation of particle accelerators will produce enough W and Z bosons through hadron collisions to significantly improve the accuracy of these measurements. I review the issues related to such production, with particular emphasis on associated uncertainties on the W boson mass, which has now been measured more precisely at the Tevatron than at the Large Electron Positron collider.

  19. Learning to See at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris

    2010-01-01

    The staged commissioning of the Large Hadron Collider presents an opportunity to map gross features of particle production over a significant energy range. I suggest a visual tool - event displays in (pseudo)rapidity-transverse-momentum space - as a scenic route that may help sharpen intuition, identify interesting classes of events for further investigation, and test expectations about the underlying event that accompanies large-transverse-momentum phenomena.

  20. 3rd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at ...

  1. 12th CERN-Fermilab Hadron Collider Physics Summer School

    CERN Document Server

    2017-01-01

    CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the twelfth edition, from 28th August to 6th September 2017. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school targeted particularly at young postdocs and senior PhD students working towards the completion of their thesis project, in both Experimental High Energy Physics (HEP) and phenomenology. Other schools, such as the CERN European School of High Energy Physics, may provide more appropriate training for students in experimental HEP who are still working towards their PhDs. Mark your calendar for 28 August - 6 September 2017, when CERN will welcome students to the twelfth CERN-Fermilab Hadron Collider Physics Summer School. The School will include nine days of lectures and discussions, and one free day in the middle of the period. Limited scholarship ...

  2. 2nd CERN-Fermilab Hadron Collider Physics Summer School

    CERN Multimedia

    2007-01-01

    June 6-15, 2007, CERN The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007 The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, extensively covered the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis t...

  3. A Novel Collimation Method for Large Hadron Colliders

    CERN Document Server

    Zou, Ye; Tang, Jingyu

    2016-01-01

    This paper proposes a novel collimation method for large hadron colliders by arranging betatron and momentum collimation systems in the same insertion to improve the overall cleaning efficiency. The method has the potential of avoiding beam losses at the downstream dispersion suppression section following the conventional betatron collimation section, which is caused by those particles with single diffractive scattering at the collimators. Evident beam loss in arc sections should be avoided to protect the superconducting magnets from quenching, especially when the stored beam energy is up to hundreds of MJ level or even higher in modern proton-proton collider. Our studies show that it is beneficial to arrange the momentum collimation system just after the betatron collimation system so that it can clean the particles with lower momentum due to the single diffractive scattering in the betatron collimators. This method is being applied to the future proton-proton collider SPPC. Preliminary multi-particle simula...

  4. Disambiguating Seesaw Models using Invariant Mass Variables at Hadron Colliders

    CERN Document Server

    Dev, P S Bhupal; Mohapatra, Rabindra N

    2015-01-01

    We propose ways to distinguish between different mechanisms behind the collider signals of TeV-scale seesaw models for neutrino masses using kinematic endpoints of invariant mass variables. We particularly focus on two classes of such models widely discussed in literature: (i) Standard Model extended by the addition of singlet neutrinos and (ii) Left-Right Symmetric Models. Relevant scenarios involving the same "smoking-gun" collider signature of dilepton plus dijet with no missing transverse energy differ from one another by their event topology, resulting in distinctive relationships among the kinematic endpoints to be used for discerning them at hadron colliders. These kinematic endpoints are readily translated to the mass parameters of the on-shell particles through simple analytic expressions which can be used for measuring the masses of the new particles. A Monte Carlo simulation with detector effects is conducted to test the viability of the proposed strategy in a realistic environment. Finally, we dis...

  5. Dark Matter Searches at the Large Hadron Collider

    CERN Document Server

    Hoh, Siew Yan; Abdullah, Wan Ahmad Tajuddin Bin Wan

    2015-01-01

    Dark Matter is a hypothetical particle proposed to explain the missing matter expected from the cosmological observation. The motivation of Dark Matter is overwhelming however as it is mainly deduced from its gravitational interaction, for it does little to pinpoint what Dark Matter really is. In WIMPs Miracle, weakly interactive massive particle being the Dark Matter candidate is correctly producing the current thermal relic density at weak scale, implying the possibility of producing and detecting it in Large Hadron Collider. Assuming WIMPs being the maverick particle within collider, it is expected to be pair produced in association with a Standard Model particle. The presence of the WIMPs pair is inferred from the Missing Transverse Energy (MET) which is the vector sum of the imbalance in the transverse momentum plane recoils a Standard Model Particle. The collider is able to produce light mass Dark Matter which the traditional detection fail to detect due to the small momentum transfer involved in the in...

  6. A 233 km tunnel for lepton and hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Summers, D. J.; Cremaldi, L. M.; Datta, A.; Duraisamy, M.; Luo, T.; Lyons, G. T. [Dept. of Physics and Astronomy, University of Mississippi-Oxford, University, MS 38677 (United States)

    2012-12-21

    A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of e{sup +}e{sup -}, pp-bar , and {mu}{sup +}{mu}{sup -} collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV e{sup +}e{sup -} colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV e{sup +}e{sup -} collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV pp-bar collider uses the high intensity Fermilab p-bar source, exploits high cross sections for pp-bar production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in 63 orbits with 71% survival, and mitigates neutrino radiation with phase shifting, roller coaster motion in a FODO lattice.

  7. A 233 km Tunnel for Lepton and Hadron Colliders

    CERN Document Server

    Summers, D J; Datta, A; Duraisamy, M; Luo, T; Lyons, G T

    2012-01-01

    A decade ago, a cost analysis was conducted to bore a 233 km circumference Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we outline implementations of $e^+e^-$, $p \\bar{p}$, and $\\mu^+ \\mu^-$ collider rings in this tunnel using recent technological innovations. The 240 and 500 GeV $e^+e^-$ colliders employ Crab Waist Crossings, ultra low emittance damped bunches, short vertical IP focal lengths, superconducting RF, and low coercivity, grain oriented silicon steel/concrete dipoles. Some details are also provided for a high luminosity 240 GeV $e^+ e^-$ collider and 1.75 TeV muon accelerator in a Fermilab site filler tunnel. The 40 TeV $p \\bar{p}$ collider uses the high intensity Fermilab $\\bar{p}$ source, exploits high cross sections for $p \\bar{p}$ production of high mass states, and uses 2 Tesla ultra low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds, uses 250 GV of superconduct...

  8. Transverse beams stability studies at the Large Hadron Collider

    CERN Document Server

    Buffat, Xavier; Pieloni, Tatiana

    2015-01-30

    A charged particle beam travelling at the speed of light produces large electromagnetic wake fields which, through interactions with its surroundings, act back on the particles in the beam. This coupled system may become unstable, resulting in a deterioration of the beam quality. Such effects play a major role in most existing storage rings, as they limit the maximum performance achievable. In a collider, the presence of a second beam significantly changes the dynamics, as the electromagnetic interactions of the two beams on each other are usually very strong and may, also, limit the collider performances. This thesis treats the coherent stability of the two beams in a circular collider, including the effects of the electromagnetic wake fields and of the beam-beam interactions, with particular emphasis on CERN's Large Hadron Collider. As opposed to other colliders, this machine features a large number of bunches per beam each experiencing multiple long-range and head-on beam-beam interactions. Existing models...

  9. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  10. Polarization and Resummation in Slepton Production at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Klasen, M. [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2006-10-15

    In R-parity conserving supersymmetric (SUSY) models, sleptons are produced in pairs at hadron colliders through neutral and charged electroweak currents. We demonstrate that the polarization of the initial hadron beams allows for a direct extraction of the slepton mixing angle and thus for a determination of the underlying SUSY-breaking mechanism. We also perform a first precision calculation of the transverse-momentum (q{sub T} ) spectrum of the slepton pairs by resumming soft multiple-gluon emission at next-to-leading logarithmic order. The results show a relevant contribution of resummation both in the small and intermediate q{sub T} -regions, which strongly influences the extraction of the missing transverse-momentum signal and the subsequent slepton mass-determination, and little dependence on unphysical scales and non-perturbative contributions.

  11. Polarization and Resummation in Slepton Production at Hadron Colliders

    CERN Document Server

    Klasen, M

    2006-01-01

    In R-parity conserving supersymmetric (SUSY) models, sleptons are produced in pairs at hadron colliders through neutral and charged electroweak currents. We demonstrate that the polarization of the initial hadron beams allows for a direct extraction of the slepton mixing angle and thus for a determination of the underlying SUSY-breaking mechanism. We also perform a first precision calculation of the transverse-momentum (q_T) spectrum of the slepton pairs by resumming soft multiple-gluon emission at next-to-leading logarithmic order. The results show a relevant contribution of resummation both in the small and intermediate q_T-regions, which strongly influences the extraction of the missing transverse-momentum signal and the subsequent slepton mass-determination, and little dependence on unphysical scales and non-perturbative contributions.

  12. Polarization and Resummation in Slepton Production at Hadron Colliders

    Science.gov (United States)

    Klasen, M.

    2006-10-01

    In R-parity conserving supersymmetric (SUSY) models, sleptons are produced in pairs at hadron colliders through neutral and charged electroweak currents. We demonstrate that the polarization of the initial hadron beams allows for a direct extraction of the slepton mixing angle and thus for a determination of the underlying SUSY-breaking mechanism. We also perform a first precision calculation of the transverse-momentum ( q T) spectrum of the slepton pairs by resumming soft multiple-gluon emission at next-to-leading logarithmic order. The results show a relevant contribution of resummation both in the small and intermediate q T-regions, which strongly influences the extraction of the missing transverse-momentum signal and the subsequent slepton mass-determination, and little dependence on unphysical scales and non-perturbative contributions.

  13. Non-Diagonal and Mixed Squark Production at Hadron Colliders

    CERN Document Server

    Bozzi, G; Klasen, M

    2005-01-01

    We calculate squared helicity amplitudes for non-diagonal and mixed squark pair production at hadron colliders, taking into account not only loop-induced QCD diagrams, but also previously unconsidered electroweak channels, which turn out to be dominant. Mixing effects are included for both top and bottom squarks. Numerical results are presented for several SUSY benchmark scenarios at both the CERN LHC and the Fermilab Tevatron, including the possibilities of light stops or sbottoms. The latter should be easily observed at the Tevatron in associated production of stops and sbottoms for a large range of stop masses and almost independently of the stop mixing angle. Asymmetry measurements for light stops at the polarized BNL RHIC collider are also briefly discussed.

  14. Nondiagonal and mixed squark production at hadron colliders

    CERN Document Server

    Bozzi, G; Klasen, M; 10.1103/PhysRevD.72.035016

    2005-01-01

    We calculate squared helicity amplitudes for nondiagonal and mixed squark pair production at hadron colliders, taking into account not only loop-induced QCD diagrams, but also previously unconsidered electroweak channels, which turn out to be dominant. Mixing effects are included for both top and bottom squarks. Numerical results are presented for several SUSY benchmark scenarios at both the CERN LHC and the Fermilab Tevatron, including the possibilities of light stops or sbottoms. The latter should be easily observed at the Tevatron in associated production of stops and sbottoms for a large range of stop masses and almost independently of the stop mixing angle. Asymmetry measurements for light stops at the polarized BNL Relativistic Heavy Ion Collider are also briefly discussed.

  15. Large Hadron Collider (LHC) phenomenology, operational challenges and theoretical predictions

    CERN Document Server

    Gilles, Abelin R

    2013-01-01

    The Large Hadron Collider (LHC) is the highest-energy particle collider ever constructed and is considered "one of the great engineering milestones of mankind." It was built by the European Organization for Nuclear Research (CERN) from 1998 to 2008, with the aim of allowing physicists to test the predictions of different theories of particle physics and high-energy physics, and particularly prove or disprove the existence of the theorized Higgs boson and of the large family of new particles predicted by supersymmetric theories. In this book, the authors study the phenomenology, operational challenges and theoretical predictions of LHC. Topics discussed include neutral and charged black hole remnants at the LHC; the modified statistics approach for the thermodynamical model of multiparticle production; and astroparticle physics and cosmology in the LHC era.

  16. Design parameters for the Very Large Hadron Collider

    CERN Document Server

    Mishra, C S

    1999-01-01

    The goal of the Very Large Hadron Collider (VLHC) is to extend the energy frontier beyond LHC. The proposed design center-of-mass energy for the VLHC pp collider is 100 TeV, with a luminosity of le34 cm/sup -2/ sec/sup -1/. At present accelerator designs and calculations are being carried out for two different magnet technologies, one using superferric magnets at 2 Tesla (T), the other using high-field design with B>10 T. This paper summarizes the accelerator parameters for these two designs. We discuss the design parameters that have the largest effects on the performance of the accelerator and therefore need careful optimization. (11 refs).

  17. Joint resummation for gaugino pair production at hadron colliders

    Science.gov (United States)

    Debove, Jonathan; Fuks, Benjamin; Klasen, Michael

    2011-08-01

    We calculate direct gaugino pair production at hadron colliders at next-to-leading order of perturbative QCD, resumming simultaneously large logarithms in the small transverse-momentum and threshold regions to next-to-leading logarithmic accuracy. Numerical predictions are presented for transverse momentum and invariant mass spectra as well as for total cross sections and compared to results obtained at fixed order and with pure transverse-momentum and threshold resummation. We find that our new results are in general in good agreement with the previous ones, but often even more precise.

  18. Joint Resummation for Gaugino Pair Production at Hadron Colliders

    CERN Document Server

    Debove, J; Klasen, M

    2011-01-01

    We calculate direct gaugino pair production at hadron colliders at next-to-leading order of perturbative QCD, resumming simultaneously large logarithms in the small transverse-momentum and threshold regions to next-to-leading logarithmic accuracy. Numerical predictions are presented for transverse momentum and invariant mass spectra as well as for total cross sections and compared to results obtained at fixed order and with pure transverse-momentum and threshold resummation. We find that our new results are in general in good agreement with the previous ones, but often even more precise.

  19. Revisiting Combinatorial Ambiguities at Hadron Colliders with MT2

    CERN Document Server

    Baringer, Philip; McCaskey, Mathew; Noonan, Daniel

    2011-01-01

    We present a method to resolve combinatorial issues in multi-particle final states at hadron colliders. The use of kinematic variables such as MT2 and invariant mass significantly reduces combinatorial ambiguities in the signal, but at a cost of losing statistics. We illustrate this idea with gluino pair production leading to 4 jets $+\\met$ in the final state as well as $t\\bar{t}$ production in the dilepton channel. Compared to results in recent studies, our method provides greater efficiency with similar purity

  20. W±πt干 Associated Production at Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    HUANGJin-Shu; PANQun-Na

    2004-01-01

    In this paper we calculate the production of a charged top pion in association with a W boson at the CERN Large Hadron Collider (LHC) in the context of the topcolor assisted technicolor model. We find that the cross section of pp → bb- → W±πt干 is roughly corresponding to the result of the process pp → bb- → W±πt干= in the minimal supersymmetric standard model, and for reasonable ranges of the parameters, the cross section can reach a few hundred fb. The W±πt干 signal should be clearly visible at LHC unless π t± is very heavy.

  1. High luminosity electron-hadron collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, V.; Aschenauer, E.; Bai, M.; Beebe-Wang, J.; Belomestnykh, S.; Ben-Zvi, I.; Blaskiewicz, M..; Calaga, R.; Chang, X.; Fedotov, A.; Gassner, D.; Hammons, L.; Hahn, H.; Hammons, L.; He, P.; Hao, Y.; Jackson, W.; Jain, A.; Johnson, E.C.; Kayran, D.; Kewisch, J.; Litvinenko, V.N.; Luo, Y.; Mahler, G.; McIntyre, G.; Meng, W.; Minty, M.; Parker, B.; Pikin, A.; Rao, T.; Roser, T.; Skaritka, J.; Sheehy, B.; Skaritka, J.; Tepikian, S.; Than, Y.; Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Wang, G.; Webb, S.; Wu, Q.; Xu, W.; Pozdeyev, E.; Tsentalovich, E.

    2011-03-28

    We present the design of a future high-energy high-luminosity electron-hadron collider at RHIC called eRHIC. We plan on adding 20 (potentially 30) GeV energy recovery linacs to accelerate and to collide polarized and unpolarized electrons with hadrons in RHIC. The center-of-mass energy of eRHIC will range from 30 to 200 GeV. The luminosity exceeding 10{sup 34} cm{sup -2} s{sup -1} can be achieved in eRHIC using the low-beta interaction region with a 10 mrad crab crossing. We report on the progress of important eRHIC R&D such as the high-current polarized electron source, the coherent electron cooling, ERL test facility and the compact magnets for recirculation passes. A natural staging scenario of step-by-step increases of the electron beam energy by building-up of eRHIC's SRF linacs is presented.

  2. The higgsino-singlino world at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Soo [Universidad Autonoma de Madrid, Instituto de Fisica Teorica UAM/CSIC, Madrid (Spain); Ray, Tirtha Sankar [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Melbourne, VIC (Australia)

    2015-02-01

    We consider light higgsinos and singlinos in the next-to-minimal supersymmetric standard model at the large hadron collider. We assume that the singlino is the lightest supersymmetric particle and that the higgsino is the next-to-lightest supersymmetric particle with the remaining supersymmetric particles in the multi-TeV range. This scenario, which is motivated by the flavor and CP issues, provides a phenomenologically viable dark matter candidate and improved electroweak fit consistent with the measured Higgs mass. Here, the higgsinos decay into on (off)-shell gauge boson and the singlino. We consider the leptonic decay modes and the resulting signature is three isolated leptons and missing transverse energy which is known as the trilepton signal. We simulate the signal and the Standard Model backgrounds and present the exclusion region in the higgsino-singlino mass plane at the large hadron collider at √(s) = 14 TeV for an integrated luminosity of 300 fb{sup -1}. (orig.)

  3. Detector Development for the High Luminosity Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00367854; Gößling, Claus

    To maximise the discovery potential of the Large Hadron Collider, it will be upgraded to the High Luminosity Large Hadron Collider in 2024. New detector challenges arise from the higher instantaneous luminosity and the higher particle flux. The new ATLAS Inner Tracker will replace the current tracking detector to be able to cope with these challenges. Many pixel detector technologies exist for particle tracking, but their suitability for the ATLAS Inner Tracker needs to be studied. Active high-voltage CMOS sensors, which are produced in industrialised processes, offer a fast readout and radiation tolerance. In this thesis the HV2FEI4v2 sensor, which is capacitively coupled to the ATLAS Pixel FE-I4 readout chip, is characterised for the usage in the outer layers of the ATLAS Inner Tracker. Key quantities of this prototype module are studied, such as the hit efficiency and the subpixel encoding. The early HV2FEI4v2 prototype shows promising results as a starting point for further module developments. Active CMO...

  4. FCC-hh Hadron Collider - Parameter Scenarios and Staging Options

    CERN Document Server

    Benedikt, Michael; Schulte, Daniel; Zimmermann, F; Syphers, M J

    2015-01-01

    FCC-hh is a proposed future energy-frontier hadron collider, based on dipole magnets with a field around 16 T installed in a new tunnel with a circumference of about 100 km, which would provide proton collisions at a centre-of-mass energy of 100 TeV, as well as heavy-ion collisions at the equivalent energy. The FCC-hh should deliver a high integrated proton-proton luminosity at the level of several 100 fb−1 per year, or more. The challenges for operating FCC-hh with high beam current and at high luminosity include the heat load from synchrotron radiation in a cold environment, the radiation from collision debris around the interaction region, and machine protection. In this paper, starting from the FCC-hh design baseline parameters we explore different approaches for increasing the integrated luminosity, and discuss the impact of key individual pa- rameters, such as the turnaround time. We also present some injector considerations and options for early hadron-collider operation.

  5. Direct stau production at hadron colliders in cosmologically motivated scenarios

    CERN Document Server

    Lindert, Jonas M; Trenkel, Maike K

    2011-01-01

    We calculate dominant cross section contributions for stau pair production at hadron colliders within the MSSM, taking into account left-right mixing of the stau eigenstates. We find that b-quark annihilation and gluon fusion can enhance the cross sections by more than one order of magnitude with respect to the Drell-Yan predictions. These additional production channels are not yet included in the common Monte Carlo analysis programs and have been neglected in experimental analyses so far. For long-lived staus, we investigate differential distributions and prospects for their stopping in the collider detectors. New possible strategies are outlined to determine the mass and width of the heavy CP-even Higgs boson H0. Scans of the relevant regions in the CMSSM are performed and predictions are given for the current experiments at the LHC and the Tevatron. The obtained insights allow us to propose collider tests of cosmologically motivated scenarios with long-lived staus that have an exceptionally small thermal r...

  6. Parton Distributions at a 100 TeV Hadron Collider

    CERN Document Server

    Rojo, Juan

    2016-01-01

    The determination of the parton distribution functions (PDFs) of the proton will be an essential input for the physics program of a future 100 TeV hadron collider. The unprecedented center-of-mass energy will require knowledge of PDFs in currently unexplored kinematical regions such as the ultra low-x region or the region of multi-TeV momentum transfers. In this contribution we briefly summarise the studies presented in the PDF section of the upcoming report on "Physics at a 100 TeV pp collider: Standard Model processes". First we map the PDF kinematical coverage in the $(x,Q^2)$ plane, quantify PDF uncertainties, and compute ratios of PDF luminosities between 100 TeV and 14 TeV. Then we show how the extreme kinematics of such collider lead to a number of remarkable PDF-related phenomena such as the top quark as a massless parton, an increased role of photon-initiated processes and the possible need of PDFs with high-energy resummation.

  7. Challenges for MSSM Higgs searches at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela S.; /Fermilab; Menon, A.; /Argonne /Chicago U., EFI; Wagner, C.E.M.; /Argonne /Chicago U., EFI /KICP, Chicago /Chicago U.

    2007-04-01

    In this article we analyze the impact of B-physics and Higgs physics at LEP on standard and non-standard Higgs bosons searches at the Tevatron and the LHC, within the framework of minimal flavor violating supersymmetric models. The B-physics constraints we consider come from the experimental measurements of the rare B-decays b {yields} s{gamma} and B{sub u} {yields} {tau}{nu} and the experimental limit on the B{sub s} {yields} {mu}{sup +}{mu}{sup -} branching ratio. We show that these constraints are severe for large values of the trilinear soft breaking parameter A{sub t}, rendering the non-standard Higgs searches at hadron colliders less promising. On the contrary these bounds are relaxed for small values of A{sub t} and large values of the Higgsino mass parameter {mu}, enhancing the prospects for the direct detection of non-standard Higgs bosons at both colliders. We also consider the available ATLAS and CMS projected sensitivities in the standard model Higgs search channels, and we discuss the LHC's ability in probing the whole MSSM parameter space. In addition we also consider the expected Tevatron collider sensitivities in the standard model Higgs h {yields} b{bar b} channel to show that it may be able to find 3 {sigma} evidence in the B-physics allowed regions for small or moderate values of the stop mixing parameter.

  8. Summary of the very large hadron collider physics and detector workshop

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, G.; Berger, M.; Brandt, A.; Eno, S. [and others

    1997-10-01

    One of the options for an accelerator beyond the LHC is a hadron collider with higher energy. Work is going on to explore accelerator technologies that would make such a machine feasible. This workshop concentrated on the physics and detector issues associated with a hadron collider with an energy in the center of mass of the order of 100 to 200 TeV.

  9. Comparing Tsallis and Boltzmann temperatures from relativistic heavy ion collider and large hadron collider heavy-ion data

    Science.gov (United States)

    Gao, Y.-Q.; Liu, F.-H.

    2016-03-01

    The transverse momentum spectra of charged particles produced in Au + Au collisions at the relativistic heavy ion collider and in Pb + Pb collisions at the large hadron collider with different centrality intervals are described by the multisource thermal model which is based on different statistic distributions for a singular source. Each source in the present work is described by the Tsallis distribution and the Boltzmann distribution, respectively. Then, the interacting system is described by the (two-component) Tsallis distribution and the (two-component) Boltzmann distribution, respectively. The results calculated by the two distributions are in agreement with the experimental data of the Solenoidal Tracker At Relativistic heavy ion collider, Pioneering High Energy Nuclear Interaction eXperiment, and A Large Ion Collider Experiment Collaborations. The effective temperature parameters extracted from the two distributions on the descriptions of heavy-ion data at the relativistic heavy ion collider and large hadron collider are obtained to show a linear correlation.

  10. In the loop Large Hadron Collider project - UK engineering firms

    CERN Document Server

    Wilks, N

    2004-01-01

    This paper presents the latest measures being taken to boost the level of UK engineering firms' involvement in research at CERN (Centre for Nuclear Research), including its 27 km circular Large Hadron Collider (LHC) project. Virtually all of the components on this complex project have had to be custom-made, usually in the form of collaboration. It is part of these collaborations that some UK firms have proved they can shine. However, despite the proven capabilities, the financial return continues to be less than the government's funding. Each of the 20 CERN member states provides funds in proportion to its GDP and the UK is the second largest financial contributor. UK firms become price-competitive where a contract calls for a degree of customisation or product development, project management and tight quality control. Development of the Particle Physics Grid, for dissemination and analysis of data from the LHC, continues to provide major supply opportunities for UK manufacturers.

  11. Black Holes and other exotica at the Large Hadron Collider

    Science.gov (United States)

    Roy, Arunava; Cavaglia, Marco

    2009-05-01

    If the fundamental scale of gravity is of the order of 1 TeV, black holes might be produced at the Large Hadron Collider. We present simulations of black holes and other exotic predictions of physics beyond the Standard Model - supersymmetry and string theory. Black hole events are simulated using the CATFISH Monte Carlo generator, simulations of string resonances use PYTHIA and supersymmetric simulations use a combination of ISAJET and PYTHIA. Our analysis shows that black holes can be discriminated from supersymmetry and string resonances. Isolated leptons with high transverse momentum can be used to distinguish black holes and supersymmetry. Z bosons and photons with high transverse momentum allow the discrimination of black holes and string resonances. The analysis of visible and missing energy /momenta, event-shape variables and multilepton events complement these techniques.

  12. High temperature superconducting current leads for the Large Hadron Collider

    CERN Document Server

    Ballarino, A

    1999-01-01

    The large hadron collider (LHC) will be equipped with about 8000 superconducting magnets. Some 3380 leads will feed the currents ranging from 60 to 13000 A. To reduce the heat inleak into the liquid helium, CERN aims to use high temperature superconducting material for leads having current ratings between 600 and 13000 A. Specifications have been written for 13000 A current leads, incorporating a high temperature superconducting section, for the main of the LHC, and contracts have been placed with several firms for the supply of prototypes for comparative testing. The leads used for feeding locally the 60 and 120 A dipole orbit correctors will be conventional conduction cooledmagnets resistive leads. An optimized lead of variable cross section has been tested, and an integral design has been initiated. This report describes the design status of the current leads for the LHC, emphasizing, for the different solutions, the principle of optimization and the choice of cooling methods. (8 refs).

  13. The Large Hadron Collider harvest of run 1

    CERN Document Server

    2015-01-01

    This comprehensive volume summarizes and structures the multitude of results obtained at the LHC in its first running period and draws the grand picture of today’s physics at a hadron collider. Topics covered are Standard Model measurements, Higgs and top-quark physics, flavour physics, heavy-ion physics and searches for super symmetry and other extensions of the Standard Model. Emphasis is placed on overview and presentation of the lessons learned. Chapters on detectors and the LHC machine and a thorough outlook into the future complement the book. The individual chapters are written by teams of expert authors working at the forefront of LHC research, typically one from each of the two multi-purpose experiments ATLAS and CMS and one from theory.

  14. Threshold Resummation for Slepton-Pair Production at Hadron Colliders

    CERN Document Server

    Bozzi, G; Klasen, M

    2007-01-01

    We present a first and extensive study of threshold resummation effects for supersymmetric (SUSY) particle production at hadron colliders, focusing on Drell-Yan like slepton-pair and slepton-sneutrino associated production. After confirming the known next-to-leading order (NLO) QCD corrections and generalizing the NLO SUSY-QCD corrections to the case of mixing squarks in the virtual loop contributions, we employ the usual Mellin N-space resummation formalism with the minimal prescription for the inverse Mellin-transform and improve it by resumming 1/N-suppressed and a class of N-independent universal contributions. Numerically, our results increase the theoretical cross sections by 5 to 15% with respect to the NLO predictions and stabilize them by reducing the scale dependence from up to 20% at NLO to less than 10% with threshold resummation.

  15. Threshold resummation for gaugino pair production at hadron colliders

    Science.gov (United States)

    Debove, Jonathan; Fuks, Benjamin; Klasen, Michael

    2011-01-01

    We present a complete analysis of threshold resummation effects on direct light and heavy gaugino pair production at the Tevatron and the LHC. Based on a new perturbative calculation at next-to-leading order of SUSY-QCD, which includes also squark mixing effects, we resum soft gluon radiation in the threshold region at leading and next-to-leading logarithmic accuracy, retaining at the same time the full SUSY-QCD corrections in the finite coefficient function. This allows us to correctly match the resummed to the perturbative cross section. Universal subleading logarithms are resummed in full matrix form. We find that threshold resummation slightly increases and considerably stabilizes the invariant mass spectra and total cross sections with respect to the next-to-leading order calculation. For future reference, we present total cross sections and their theoretical errors in tabular form for several commonly used SUSY benchmark points, gaugino pairs, and hadron collider energies.

  16. Threshold resummation for gaugino pair production at hadron colliders

    CERN Document Server

    Debove, J; Klasen, M

    2010-01-01

    We present a complete analysis of threshold resummation effects on direct light and heavy gaugino pair production at the Tevatron and the LHC. Based on a new perturbative calculation at next-to-leading order of SUSY-QCD, which includes also squark mixing effects, we resum soft gluon radiation in the threshold region at leading and next-to-leading logarithmic accuracy, retaining at the same time the full SUSY-QCD corrections in the finite coefficient function. This allows us to correctly match the resummed to the perturbative cross section. Universal subleading logarithms are resummed in full matrix form. We find that threshold resummation slightly increases and considerably stabilizes the invariant mass spectra and total cross sections with respect to the next-to-leading order calculation. For future reference, we present total cross sections and their theoretical errors in tabular form for several commonly used SUSY benchmark points, gaugino pairs, and hadron collider energies.

  17. Threshold resummation for slepton-pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Bozzi, Giuseppe [Institut fuer Theoretische Physik, Universitaet Karlsruhe, Postfach 6980, D-76128 Karlsruhe (Germany); Fuks, Benjamin [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France); Klasen, Michael [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)]. E-mail: klasen@lpsc.in2p3.fr

    2007-08-13

    We present a first and extensive study of threshold resummation effects for supersymmetric (SUSY) particle production at hadron colliders, focusing on Drell-Yan like slepton-pair and slepton-sneutrino associated production. After confirming the known next-to-leading order (NLO) QCD corrections and generalizing the NLO SUSY-QCD corrections to the case of mixing squarks in the virtual loop contributions, we employ the usual Mellin N-space resummation formalism with the minimal prescription for the inverse Mellin-transform and improve it by resumming 1/N-suppressed and a class of N-independent universal contributions. Numerically, our results increase the theoretical cross sections by 5 to 15% with respect to the NLO predictions and stabilize them by reducing the scale dependence from up to 20% at NLO to less than 10% with threshold resummation.

  18. Threshold resummation for slepton-pair production at hadron colliders

    Science.gov (United States)

    Bozzi, Giuseppe; Fuks, Benjamin; Klasen, Michael

    2007-08-01

    We present a first and extensive study of threshold resummation effects for supersymmetric (SUSY) particle production at hadron colliders, focusing on Drell-Yan like slepton-pair and slepton-sneutrino associated production. After confirming the known next-to-leading order (NLO) QCD corrections and generalizing the NLO SUSY-QCD corrections to the case of mixing squarks in the virtual loop contributions, we employ the usual Mellin N-space resummation formalism with the minimal prescription for the inverse Mellin-transform and improve it by resumming 1/N-suppressed and a class of N-independent universal contributions. Numerically, our results increase the theoretical cross sections by 5 to 15% with respect to the NLO predictions and stabilize them by reducing the scale dependence from up to 20% at NLO to less than 10% with threshold resummation.

  19. Modification of Fox-Wolfram Moments for Hadron Colliders

    CERN Document Server

    Spiller, Laurence Anthony

    2015-01-01

    Collisions of composite particles impose an arbitrary boost in the longitudinal direction on a given event. This implies that the centre-of-mass frame at hadron colliders is undetermined for processes with missing energy in the final state. This motivates the modification of the Fox-Wolfram moments such that the moments for a given event are identical when viewed in the lab or centre-of-mass frame of the beam. The resulting moments are invariant under rotations in the plane transverse to the beam and boosts parallel to the beam. These moments are then used to demonstrate improved signal separation in the channel where the Higgs decays to two b-quarks while being produced in association with a vector boson.

  20. Direct measurement of the top quark charge at hadron colliders

    Science.gov (United States)

    Baur, U.; Buice, M.; Orr, Lynne H.

    2001-11-01

    We consider photon radiation in t¯t events at the upgraded Fermilab Tevatron and the CERN Large Hadron Collider (LHC) as a tool to measure the electric charge of the top quark. We analyze the contributions of t¯tγ production and radiative top quark decays to pp(-)-->γl+/-νb¯bjj, assuming that both b quarks are tagged. With 20 fb-1 at the Tevatron, the possibility that the ``top quark'' discovered in run I is actually an exotic charge -4/3 quark can be ruled out at the ~95% confidence level. At the CERN LHC, it will be possible to determine the charge of the top quark with an accuracy of about 10%.

  1. $H^{+}H^{-}$ Pair Production at the Large Hadron Collider

    CERN Document Server

    Barrientos-Bendezu, A A

    2000-01-01

    We study the pair production of charged Higgs bosons at the CERN Large Hadron Collider in the context of the minimal supersymmetric extension of the standard model. We compare the contributions due to qq-bar annihilation at the tree level and gg fusion, which proceeds at one loop. At small or large values of tan(beta), H^+H^- production proceeds dominantly via bb-bar annihilation, due to Feynman diagrams involving neutral CP-even Higgs bosons and top quarks, which come in addition to the usually considered Drell-Yan diagrams. In the case of gg fusion, the squark loop contributions may considerably enhance the well-known quark loop contributions.

  2. The fast tracker processor for hadron collider triggers

    CERN Document Server

    Annovi, A; Bardi, A; Carosi, R; Dell'Orso, Mauro; D'Onofrio, M; Giannetti, P; Iannaccone, G; Morsani, E; Pietri, M; Varotto, G

    2001-01-01

    Perspectives for precise and fast track reconstruction in future hadron collider experiments are addressed. We discuss the feasibility of a pipelined highly parallel processor dedicated to the implementation of a very fast tracking algorithm. The algorithm is based on the use of a large bank of pre-stored combinations of trajectory points, called patterns, for extremely complex tracking systems. The CMS experiment at LHC is used as a benchmark. Tracking data from the events selected by the level-1 trigger are sorted and filtered by the Fast Tracker processor at an input rate of 100 kHz. This data organization allows the level-2 trigger logic to reconstruct full resolution tracks with transverse momentum above a few GeV and search for secondary vertices within typical level-2 times. (15 refs).

  3. 120-mm superconducting quadrupole for interaction regions of hadron colliders

    CERN Document Server

    Zlobin, A V; Mokhov, N V; Novitski, I

    2012-01-01

    Magnetic and mechanical designs of a Nb3Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil mid-planes to reduce the level of radiation heat deposition and radiation dose in the coil. The quadrupole mechanical structure is based on aluminum collars supported by an iron yoke and a stainless steel skin. Magnet parameters including maximum field gradient and field harmonics, Nb3Sn coil pre-stress and protection at the operating temperatures of 4.5 and 1.9 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

  4. Search for Higgs bosons at LEP2 and hadron colliders

    CERN Document Server

    Trefzger, T M

    2001-01-01

    The search for the Higgs boson was one of the most relevant issues of the final years of LEP running at high energies. An excess of 3 sigma beyond the background expectation has been found, consistent with the production of the Higgs boson with a mass near 115 GeV/c/sup 2/. At the upgraded Tevatron and at LHC the search for the Higgs boson will continue. At the Tevatron Higgs bosons can be detected with masses up to 180 GeV with an assumed total integrated luminosity of 20 fb/sup -1/. LHC has the potential to discover the Higgs boson in many different decay channels for Higgs masses up to 1 TeV. It will be possible to measure Higgs boson parameters, such as mass, width, and couplings to fermions and bosons. The results from Higgs searches at LEP2 and the possibilities for searches at hadron colliders will be reviewed. (156 refs).

  5. The physics of heavy quark distributions in hadrons: Collider tests

    Science.gov (United States)

    Brodsky, S. J.; Bednyakov, V. A.; Lykasov, G. I.; Smiesko, J.; Tokar, S.

    2017-03-01

    We present a review of the current understanding of the heavy quark distributions in the nucleon and their impact on collider physics. The origin of strange, charm and bottom quark pairs at high light-front (LF) momentum fractions in hadron wavefunction-the "intrinsic" quarks, is reviewed. The determination of heavy-quark parton distribution functions (PDFs) is particularly significant for the analysis of hard processes at LHC energies. We show that a careful study of the inclusive production of open charm and the production of γ / Z / W particles, accompanied by the heavy jets at large transverse momenta can give essential information on the intrinsic heavy quark (IQ) distributions. We also focus on the theoretical predictions concerning other observables which are very sensitive to the intrinsic charm contribution to PDFs including Higgs production at high xF and novel fixed target measurements which can be tested at the LHC.

  6. Advances in Cryogenics at the Large Hadron Collider

    CERN Document Server

    Lebrun, P

    1998-01-01

    After a decade of intensive R&D in the key technologies of high-field superconducting accelerator magnets and superfluid helium cryogenics, the Large Hadron Collider (LHC) has now fully entered its co nstruction phase, with the adjudication of major procurement contracts to industry. As concerns cryogenic engineering, this R&D program has resulted in significant developments in several fields, amon g which thermo-hydraulics of two-phase saturated superfluid helium, efficient cycles and machinery for large-capacity refrigeration at 1.8 K, insulation techniques for series-produced cryostats and mu lti-kilometre long distribution lines, large-current leads using high-temperature superconductors, industrial precision thermometry below 4 K, and novel control techniques applied to strongly non-line ar processes. We review the most salient advances in these domains.

  7. Non-perturbative QCD effects in jets at hadron colliders

    CERN Document Server

    Dasgupta, Mrinal; Salam, Gavin P

    2008-01-01

    We discuss non-perturbative QCD contributions to jet observables, computing their dependence on the jet radius R, and on the colour and transverse momentum of the parton initiating the jet. We show, using analytic QCD models of power corrections as well as Monte Carlo simulations, that hadronisation corrections grow at small values of R, behaving as 1/R, while underlying event contributions grow with the jet area as R^2. We highlight the connection between hadronisation corrections to jets and those for event shapes in e^+e^- and DIS; we note the limited dependence of our results on the choice of jet algorithm; finally, we propose several measurements in the context of which to test or implement our predictions. The results presented here reinforce the motivation for the use of a range of R values, as well as a plurality of infrared-safe jet algorithms, in precision jet studies at hadron colliders.

  8. Precision Muon Tracking Detectors for High-Energy Hadron Colliders

    CERN Document Server

    Gadow, Philipp; Kroha, Hubert; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimized for mass production and provide sense wire positioning accuracy of better than 10 ?m. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and gamma-rays, by an order of magnitude, which is sufficient for almost the whole muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  9. Precise Predictions for Z + 4 Jets at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ita, H.; Bern, Z.; Dixon, L.J.; Cordero, F.Febres; Kosower, D.A.; Maitre, D.

    2011-12-09

    We present the cross section for production of a Z boson in association with four jets at the Large Hadron Collider, at next-to-leading order in the QCD coupling. When the Z decays to neutrinos, this process is a key irreducible background to many searches for new physics. Its computation has been made feasible through the development of the on-shell approach to perturbative quantum field theory. We present the total cross section for pp collisions at {radical}s = 7 TeV, after folding in the decay of the Z boson, or virtual photon, to a charged-lepton pair. We also provide distributions of the transverse momenta of the four jets, and we compare cross sections and distributions to the corresponding ones for the production of a W boson with accompanying jets.

  10. Threshold resummation for slepton-pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Bozzi, Giuseppe [Institut fuer Theoretische Physik, Universitaet Karlsruhe, Postfach 6980, D-76128 Karlsruhe (Germany); Fuks, Benjamin; Klasen, Michael [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier / CNRS-IN2P3, 53 Avenue des Martyrs, F-38026 Grenoble (France)

    2007-07-01

    We present a first and extensive study of threshold resummation effects for supersymmetric (SUSY) particle production at hadron colliders, focusing on Drell-Yan like slepton-pair and slepton-sneutrino associated production. After confirming the known next-to-leading order (NLO) QCD corrections and generalizing the NLO SUSY-QCD corrections to the case of mixing squarks in the virtual loop contributions, we employ the usual Mellin N-space resummation formalism with the minimal prescription for the inverse Mellin-transform and improve it by re-summing 1/N-suppressed and a class of N-independent universal contributions. Numerically, our results increase the theoretical cross sections by 5 to 15% with respect to the NLO predictions and stabilize them by reducing the scale dependence from up to 20% at NLO to less than 10% with threshold resummation. (authors)

  11. Flavour physics and the Large Hadron Collider beauty experiment.

    Science.gov (United States)

    Gibson, Valerie

    2012-02-28

    An exciting new era in flavour physics has just begun with the start of the Large Hadron Collider (LHC). The LHCb (where b stands for beauty) experiment, designed specifically to search for new phenomena in quantum loop processes and to provide a deeper understanding of matter-antimatter asymmetries at the most fundamental level, is producing many new and exciting results. It gives me great pleasure to describe a selected few of the results here-in particular, the search for rare B(0)(s)-->μ+ μ- decays and the measurement of the B(0)(s) charge-conjugation parity-violating phase, both of which offer high potential for the discovery of new physics at and beyond the LHC energy frontier in the very near future.

  12. Heavy ions: Results from the Large Hadron Collider

    Indian Academy of Sciences (India)

    Tapan K Nayak

    2012-10-01

    On November 8, 2010 the Large Hadron Collider (LHC) at CERN collided the first stable beams of heavy ions (Pb on Pb) at the centre-of-mass energy of 2.76 TeV/nucleon. The LHC worked exceedingly well during its one month of operation with heavy ions, delivering about 10 −1 of data, with peak luminosity reaching to $L_{O} = 2 × 10^{25}$ cm-2 s-1 towards the end of the run. Three experiments, ALICE, ATLAS and CMS, recorded their first heavy-ion data, which were analysed in a record time. The results of the multiplicity, flow, fluctuations and Bose–Einstein correlations indicate that the fireball formed in nuclear collisions at the LHC is hotter, lives longer, and expands to a larger size at freeze-out as compared to lower energies. We give an overview of these as well as new results on quarkonia and heavy flavour suppression, and jet energy loss.

  13. Type-II Seesaw and Multilepton Signatures at Hadron Colliders

    CERN Document Server

    Mitra, Manimala; Spannowsky, Michael

    2016-01-01

    We investigate multilepton signatures, arising from the decays of doubly charged and singly charged Higgs bosons in the Type-II Seesaw model. Depending on the vacuum expectation value of the triplet $v_{\\Delta}$, the doubly and singly charged Higgs bosons can decay into a large variety of multi-lepton final states. We explore all possible decay modes corresponding to different regimes of $v_{\\Delta}$, that generate distinguishing four and five leptonic signatures. We focus on the 13 TeV Large Hadron Collider (LHC) and further extend the study to a very high energy proton-proton collider (VLHC) with a center-of-mass energy of 100 TeV. We find that a doubly charged Higgs boson of masses around 375 GeV can be discovered at immediate LHC runs. A heavier mass of 630 GeV can instead be discovered at the high-luminosity run of the LHC or at the VLHC with 30 $\\rm{fb}^{-1}$.

  14. Resummation for supersymmetric particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Brensing, Silja Christine

    2011-05-10

    The search for supersymmetry is among the most important tasks at current and future colliders. Especially the production of coloured supersymmetric particles would occur copiously in hadronic collisions. Since these production processes are of high relevance for experimental searches accurate theoretical predictions are needed. Higher-order corrections in quantum chromodynamics (QCD) to these processes are dominated by large logarithmic terms due to the emission of soft gluons from initial-state and final-state particles. A systematic treatment of these logarithms to all orders in perturbation theory is provided by resummation methods. We perform the resummation of soft gluons at next-to-leading-logarithmic (NLL) accuracy for all possible production processes in the framework of the Minimal Supersymmetric Standard Model. In particular we consider pair production processes of mass-degenerate light-flavour squarks and gluinos as well as the pair production of top squarks and non-mass-degenerate bottom squarks. We present analytical results for all considered processes including the soft anomalous dimensions. Moreover numerical predictions for total cross sections and transverse-momentum distributions for both the Large Hadron Collider (LHC) and the Tevatron are presented. We provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. The inclusion of NLL corrections leads to a considerable reduction of the theoretical uncertainty due to scale variation and to an enhancement of the next-to-leading order (NLO) cross section predictions. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. At the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV, the corrections due to NLL resummation over and above the NLO predictions can be as high as 35 % in the case of gluino-pair production, whereas at the

  15. Search for invisibly decaying Higgs boson at Large Hadron Collider

    Indian Academy of Sciences (India)

    S Bansal; K Mazumdar; J B Singh

    2010-02-01

    In several scenarios of Beyond Standard Model physics, the invisible decay mode of the Higgs boson is an interesting possibility. The search strategy for an invisible Higgs boson at the Large Hadron Collider (LHC), using weak boson fusion process, has been studied in detail, by taking into account all possible backgrounds. Realistic simulations have been used in the context of CMS experiment to devise a set of event selection criteria which eventually enhances the signal contribution compared to the background processes in characteristic distributions. In cut-based analysis, multi-jet background is found to overwhelm the signal in the finally selected sample. With an integrated luminosity of 10 fb-1, an upper limit of 36% on the branching ratio can be obtained for Higgs boson with a mass of 120 GeV/c2 for LHC energy of 14 TeV. Since the analysis essentially depends on the background estimation, detailed studies have been done to determine the background rates from real data.

  16. The Hunt for New Physics at the Large Hadron Collider

    CERN Document Server

    Nath, Pran; Davoudiasl, Hooman; Dutta, Bhaskar; Feldman, Daniel; Liu, Zuowei; Han, Tao; Langacker, Paul; Mohapatra, Rabi; Valle, Jose; Pilaftsis, Apostolos; Zerwas, Dirk; AbdusSalam, Shehu; Adam-Bourdarios, Claire; Aguilar-Saavedra, J A; Allanach, Benjamin; Altunkaynak, B; Anchordoqui, Luis A; Baer, Howard; Bajc, Borut; Buchmueller, O; Carena, M; Cavanaugh, R; Chang, S; Choi, Kiwoon; Csaki, C; Dawson, S; de Campos, F; De Roeck, A; Duhrssen, M; Eboli, O J.P; Ellis, J R; Flacher, H; Goldberg, H; Grimus, W; Haisch, U; Heinemeyer, S; Hirsch, M; Holmes, M; Ibrahim, Tarek; Isidori, G; Kane, Gordon; Kong, K; Lafaye, Remi; Landsberg, G; Lavoura, L; Lee, Jae Sik; Lee, Seung J; Lisanti, M; Lust, Dieter; Magro, M B; Mahbubani, R; Malinsky, M; Maltoni, Fabio; Morisi, S; Muhlleitner, M M; Mukhopadhyaya, B; Neubert, M; Olive, K A; Perez, Gilad; Perez, Pavel Fileviez; Plehn, T; Ponton, E; Porod, Werner; Quevedo, F; Rauch, M; Restrepo, D; Rizzo, T G; Romao, J C; Ronga, F J; Santiago, Jose; Schechter, J; Senjanovic, G; Shao, J; Spira, M; Stieberger, S; Sullivan, Zack; Tait, Tim M P; Tata, Xerxes; Taylor, T R; Toharia, M; Wacker, J; Wagner, C E.M; Wang, Lian-Tao; Weiglein, G; Zeppenfeld, D; Zurek, K

    2010-01-01

    The Large Hadron Collider presents an unprecedented opportunity to probe the realm of new physics in the TeV region and shed light on some of the core unresolved issues of particle physics. These include the nature of electroweak symmetry breaking, the origin of mass, the possible constituent of cold dark matter, new sources of CP violation needed to explain the baryon excess in the universe, the possible existence of extra gauge groups and extra matter, and importantly the path Nature chooses to resolve the hierarchy problem - is it supersymmetry or extra dimensions. Many models of new physics beyond the standard model contain a hidden sector which can be probed at the LHC. Additionally, the LHC will be a top factory and accurate measurements of the properties of the top and its rare decays will provide a window to new physics. Further, the LHC could shed light on the origin of neutralino masses if the new physics associated with their generation lies in the TeV region. Finally, the LHC is also a laboratory ...

  17. Visible Cascade Higgs Decays to Four Photons at Hadron Colliders

    Science.gov (United States)

    Chang, Spencer; Fox, Patrick J.; Weiner, Neal

    2007-03-01

    The presence of a new singlet scalar particle a can open up new decay channels for the Higgs boson, through cascades of the form h→2a→X, possibly making discovery through standard model channels impossible. If a is CP odd, its decays are particularly sensitive to new physics. Quantum effects from heavy fields can naturally make h→4g the dominant decay which is difficult to observe at hadron colliders, and is allowed by CERN LEP for mh>82GeV. However, there are usually associated decays, either h→2g2γ or h→4γ, which are more promising. The decay h→4γ is a clean channel that can discover both a and h. At the CERN LHC with 300fb-1 of luminosity, a branching ratio of order 10-4 is sufficient for discovery for a large range of Higgs boson masses. With total luminosity of ˜8fb-1, discovery at the Fermilab Tevatron requires more than 5×10-3 in branching ratio.

  18. Anisotropic flow and flow fluctuations at the large hadron collider

    CERN Document Server

    Zhou, You

    One of the fundamental questions in the phenomenology of Quantum Chromodynamics (QCD) is what the properties of matter are at the extreme densities and temperatures where quarks and gluons are in a new state of matter, the so-called Quark Gluon Plasma (QGP). Collisions of high-energy heavy-ions at the CERN Large Hadron Collider (LHC), allow us to create and study the properties of such a system in the laboratory. Anisotropic flow (vn) is strong evidence for the existence of QGP, and has been described as one of the most important observations measured in the ultra-relativistic heavy-ion collisions. In this thesis, the anisotropic flow of not only charged particles but also identified particles are presented. In addition, the investigations of correlations and fluctuations of both flow angle (symmetry plane) and magnitude were discussed. The main goal of this thesis is to understand the nature of anisotropic flow and its response to the initial geometry of the created system as well as its fluctuations.

  19. Longitudinal emittance blowup in the large hadron collider

    CERN Document Server

    Baudrenghien, P

    2013-01-01

    The Large Hadron Collider (LHC) relies on Landau damping for longitudinal stability. To avoid decreasing the stability margin at high energy, the longitudinal emittance must be continuously increased during the acceleration ramp. Longitudinal blowup provides the required emittance growth. The method was implemented through the summer of 2010. Band-limited RF phase-noise is injected in the main accelerating cavities during the whole ramp of about 11min. Synchrotron frequencies change along the energy ramp, but the digitally created noise tracks the frequency change. The position of the noise-band, relative to the nominal synchrotron frequency, and the bandwidth of the spectrum are set by pre-defined constants, making the diffusion stop at the edges of the demanded distribution. The noise amplitude is controlled by feedback using the measurement of the average bunch length. This algorithm reproducibly achieves the programmed bunch length of about 1.2ns, at flat top with low bunch-to-bunch scatter and provides a...

  20. Superconductive technologies for the Large Hadron collider at CERN

    CERN Document Server

    Rossi, L

    2000-01-01

    The Large Hadron Collider (LHC) project is the largest plant based on superconductivity and cryogenics: 27 km of tunnel filled with superconducting magnets and other equipment that will be kept at 1.9 K. The dipole magnets have to generate a minimum magnetic field of 8.3 T to allow collisions of proton beams at an energy of 14 TeV in the centre of mass. The construction of LHC started in 1997 at CERN in Geneva and required 10 years of research and development on fine- filament NbTi superconducting wires and cables, on magnet technology and on He-II refrigerators. In particular the project needs the production of about 1000 tons of high-homogeneity NbTi with current densities of more than 2000 A mm/sup -2/ at 9 T and 1.9 K, with tight control also of all other cable properties such as magnetization, interstrand resistance and copper resistivity. The paper describes the main dipole magnets and reviews the most significant steps in the research and development, focusing on the issues related to the conductor, to...

  1. Mirror mesons at the Large Hadron Collider (LHC)

    CERN Document Server

    Triantaphyllou, George

    2016-01-01

    The existence of mirror partners of Standard-Model fermions offers a viable alternative to a fundamental BEH mechanism, with the coupling corresponding to the gauged mirror generation symmetry becoming naturally strong at energies around 1 TeV. The resulting non-perturbative processes produce dynamical katoptron masses which might range from 0.1 to 1.15 TeV in a way circumventing usual problems with the S parameter. Moreover, they create mirror mesons belonging in two main groups, with masses differing from each other approximately by a factor of six and which might range approximately from 0.1 to 2.8 TeV. Since the corresponding phenomenology expected at hadron colliders is particularly rich, some interesting mirror-meson cross-sections are presented, something that might also lead to a deeper understanding of the underlying mirror fermion structure. Among other findings, results in principle compatible with indications from LHC concerning decays of new particles to two photons are analyzed.

  2. Development of superconducting links for the Large Hadron Collider machine

    CERN Document Server

    Ballarino, A

    2014-01-01

    In the framework of the upgrade of the Large Hadron Collider (LHC) machine, new superconducting lines are being developed for the feeding of the LHC magnets. The proposed electrical layout envisages the location of the power converters in surface buildings, and the transfer of the current from the surface to the LHC tunnel, where the magnets are located, via superconducting links containing tens of cables feeding different circuits and transferring altogether more than 150 kA. Depending on the location, the links will have a length ranging from 300 m to 500 m, and they will span a vertical distance of about 80 m. An overview of the R&D program that has been launched by CERN is presented, with special attention to the development of novel types of cables made from MgB 2 and high temperature superconductors (Bi-2223 and REBCO) and to the results of the tests performed on prototype links. Plans for future activities are presented, together with a timeline for potential future integration in the LHC machine.

  3. Superconducting Cable and Magnets for the Large Hadron Collider

    CERN Document Server

    Rossi, L

    2004-01-01

    The Large Hadron Collider (LHC) is a high energy, high luminosity particle accelerator under construction at CERN and it will be the largest application of superconductivity. Most of the existing 27 km underground tunnel will be filled with superconducting magnets, mainly 15 m long dipoles and 3 m long quadrupoles. These 1232 dipole and 400 quadrupole magnets as well as many other magnets, are wound with copper stabilized NbTi Rutherford cables and will be operated at 1.9 K by means of pressurized superfluid helium. The operating dipole field is 8.33 T; however the whole system is designed for possible operation up to 9 T. The coils are powered at about 12 kA and about 12 GJ of magnetic energy will be stored in superconducting devices. After a brief review of the main characteristics of the superconductors and of the magnets, the special measures taken to fulfill the mass production with the necessary accuracy are presented. The results on one third of the superconducting cable production and on the first f...

  4. Using Data from the Large Hadron Collider in the Classroom

    Science.gov (United States)

    Smith, Jeremy

    2017-01-01

    Now is an exciting time for physics students, because they have access to technology and experiments all over the world that were unthinkable a generation ago. Therefore, now is also the ideal time to bring these experiments into the classroom, so students can see what cutting edge science looks like, both in terms of the underlying physics and in terms of the technology used to gather data. With the continued running of the Large Hadron Collider at CERN, and the lab's continued dedication to providing open, worldwide access to their data, there is a unique opportunity for students to use these data in a manner very similar to how it's done in the particle physics community. In this session, we will explore ways for students to analyze real data from the CMS experiment at the LHC, plot these data to discover patterns and signals, and use these plots to determine quantities such as the invariant masses of the W, Z and Higgs bosons. Furthermore, we will show how such activities already fit well into standard introductory physics classes, and can in fact enhance already-existing lessons in the topics of momentum, kinematics, energy and electromagnetism.

  5. Visible cascade Higgs decays to four photons at hadron colliders.

    Science.gov (United States)

    Chang, Spencer; Fox, Patrick J; Weiner, Neal

    2007-03-16

    The presence of a new singlet scalar particle a can open up new decay channels for the Higgs boson, through cascades of the form h --> 2a --> X, possibly making discovery through standard model channels impossible. If a is CP odd, its decays are particularly sensitive to new physics. Quantum effects from heavy fields can naturally make h --> 4 g the dominant decay which is difficult to observe at hadron colliders, and is allowed by CERN LEP for m(h) > 82 GeV. However, there are usually associated decays, either h --> 2g2gamma or h --> 4gamma, which are more promising. The decay h-->4gamma is a clean channel that can discover both a and h. At the CERN LHC with 300 fb(-1) of luminosity, a branching ratio of order 10(-4) is sufficient for discovery for a large range of Higgs boson masses. With total luminosity of approximately 8 fb(-1), discovery at the Fermilab Tevatron requires more than 5 x 10(-3) in branching ratio.

  6. Resolving gluon fusion loops at current and future hadron colliders

    Science.gov (United States)

    Azatov, Aleksandr; Grojean, Christophe; Paul, Ayan; Salvioni, Ennio

    2016-09-01

    Inclusive Higgs measurements at the LHC have limited resolution on the gluon fusion loops, being unable to distinguish the long-distance contributions mediated by the top quark from possible short-distance new physics effects. Using an Effective Field Theory (EFT) approach we compare several proposed methods to lift this degeneracy, including toverline{t}h and boosted, off-shell and double Higgs production, and perform detailed projections to the High-Luminosity LHC and a future hadron collider. In addition, we revisit off-shell Higgs production. Firstly, we point out its sensitivity to modifications of the top- Z couplings, and by means of a general analysis we show that the reach is comparable to that of tree-level processes such as toverline{t}Z production. Implications for composite Higgs models are also discussed. Secondly, we assess the regime of validity of the EFT, performing an explicit comparison for a simple extension of the Standard Model containing one vector-like quark.

  7. Large hadron collider (LHC) project quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-09-30

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

  8. Commissioning and First Operation of the Large Hadron Collider (LHC)

    CERN Document Server

    Lebrun, Ph

    2010-01-01

    After some fifteen years of construction, the Large Hadron Collider (LHC) was commissioned at CERN, the European Organization for Nuclear Research in 2008. This high-energy particle accelerator of 26.7 km circumference – the largest scientific instrument ever built – brings into collision intense beams of protons and ions to probe the structure of matter and study the forces acting on its elementary components at the TeV scale, an order of magnitude higher than the previous stateof-the-art. To guide and focus its particle beams, the LHC uses several thousands high-field superconducting magnets operating in superfluid helium at 1.9 K. The project therefore constitutes a technological feat: all its components were developed, industrialized and series produced by industrial companies according to demanding specifications. Started as a CERN undertaking – by decision of the CERN Council and its twenty European member states – the project soon became global with special contributions from Canada, India, Jap...

  9. Precision muon tracking detectors for high-energy hadron colliders

    Science.gov (United States)

    Gadow, Ph.; Kortner, O.; Kroha, H.; Richter, R.

    2017-02-01

    Small-diameter muon drift tube (sMDT) chambers with 15 mm tube diameter are a cost-effective technology for high-precision muon tracking over large areas at high background rates as expected at future high-energy hadron colliders including HL-LHC. The chamber design and construction procedures have been optimised for mass production and provide sense wire positioning accuracy of better than 10 μm. The rate capability of the sMDT chambers has been extensively tested at the CERN Gamma Irradiation Facility. It exceeds the one of the ATLAS muon drift tube (MDT) chambers, which are operated at unprecedentedly high background rates of neutrons and γ-rays, by an order of magnitude, which is sufficient for almost the whole of the muon detector acceptance at FCC-hh at maximum luminosity. sMDT operational and construction experience exists from ATLAS muon spectrometer upgrades which are in progress or under preparation for LHC Phase 1 and 2.

  10. Extra dimension searches at hadron colliders to next-to-leading order-QCD

    Indian Academy of Sciences (India)

    M C Kumar; Prakash Mathewes; V Ravindran

    2007-11-01

    The quantitative impact of NLO-QCD corrections for searches of large and warped extra dimensions at hadron colliders are investigated for the Drell-Yan process. The K-factor for various observables at hadron colliders are presented. Factorisation, renormalisation scale dependence and uncertainties due to various parton distribution functions are studied. Uncertainties arising from the error on experimental data are estimated using the MRST parton distribution functions.

  11. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider (English version)

    CERN Document Server

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  12. Destination Universe: The Incredible Journey of a Proton in the Large Hadron Collider

    CERN Document Server

    Lefevre, C

    2008-01-01

    This brochure illustrates the incredible journey of a proton as he winds his way through the CERN accelerator chain and ends up inside the Large Hadron Collider (LHC). The LHC is CERN's flagship particle accelerator which can collide protons together at close to the speed of light, creating circumstances like those just seconds after the Big Bang.

  13. CERN Library | Mario Campanelli presents "Inside CERN's Large Hadron Collider" | 16 March

    CERN Multimedia

    CERN Library

    2016-01-01

    "Inside CERN's Large Hadron Collider" by Mario Campanelli. Presentation on Wednesday, 16 March at 4 p.m. in the Library (bldg 52-1-052) The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson.  Inside CERN's Large Hadron Collider  Mario Campanelli World Scientific Publishing, 2015  ISBN 9789814656641​

  14. Precision predictions for electroweak superpartner production at hadron colliders with Resummino

    CERN Document Server

    Fuks, Benjamin; Lamprea, David R; Rothering, Marcel

    2013-01-01

    We describe the Resummino package, a C++ and Fortran program dedicated to precision calculations in the framework of gaugino and slepton pair production at hadron colliders. This code allows to calculate transverse-momentum and invariant-mass distributions as well as total cross sections by combining the next-to-leading order predictions obtained by means of perturbative QCD with the resummation of the large logarithmic contributions arising in the small transverse-momentum region and close to the production threshold. The results computed in this way benefit from reduced theoretical uncertainties, compared to a pure next-to-leading order approach as currently employed in the experimental analyses searching for sleptons and gauginos at hadron colliders. This is illustrated by using of Resummino in the context of a typical supersymmetric benchmark point dedicated to superpartner searches at the Large Hadron Collider.

  15. Precision predictions for electroweak superpartner production at hadron colliders with Resummino

    Science.gov (United States)

    Fuks, Benjamin; Klasen, Michael; Lamprea, David R.; Rothering, Marcel

    2013-07-01

    We describe the Resummino package, a C++ and Fortran program dedicated to precision calculations in the framework of gaugino and slepton pair production at hadron colliders. This code allows to calculate transverse-momentum and invariant-mass distributions as well as total cross sections by combining the next-to-leading order predictions obtained by means of perturbative QCD with the resummation of the large logarithmic contributions arising in the small transverse-momentum region and close to the production threshold. The results computed in this way benefit from reduced theoretical uncertainties, compared to a pure next-to-leading order approach as currently employed in the experimental analyses searching for sleptons and gauginos at hadron colliders. This is illustrated by using Resummino in the context of a typical supersymmetric benchmark point dedicated to superpartner searches at the Large Hadron Collider.

  16. Precision predictions for electroweak superpartner production at hadron colliders with Resummino

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Benjamin [CERN, Theory Division, Physics Department, Geneva 23 (Switzerland); Universite de Strasbourg/CNRS-IN2P3, Institut Pluridisciplinaire Hubert Curien/Departement Recherches Subatomiques, Strasbourg (France); Klasen, Michael; Lamprea, David R.; Rothering, Marcel [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany)

    2013-07-15

    We describe the Resummino package, a C++ and Fortran program dedicated to precision calculations in the framework of gaugino and slepton pair production at hadron colliders. This code allows to calculate transverse-momentum and invariant-mass distributions as well as total cross sections by combining the next-to-leading order predictions obtained by means of perturbative QCD with the resummation of the large logarithmic contributions arising in the small transverse-momentum region and close to the production threshold. The results computed in this way benefit from reduced theoretical uncertainties, compared to a pure next-to-leading order approach as currently employed in the experimental analyses searching for sleptons and gauginos at hadron colliders. This is illustrated by using Resummino in the context of a typical supersymmetric benchmark point dedicated to superpartner searches at the Large Hadron Collider. (orig.)

  17. Top-quark pair production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Ahrens, Valentin

    2011-12-08

    In this thesis we investigate several phenomenologically important properties of top-quark pair production at hadron colliders. We calculate double differential cross sections in two different kinematical setups, pair invariant-mass (PIM) and single-particle inclusive (1PI) kinematics. In pair invariant-mass kinematics we are able to present results for the double differential cross section with respect to the invariant mass of the top-quark pair and the top-quark scattering angle. Working in the threshold region, where the pair invariant mass M is close to the partonic center-of-mass energy {radical}(s), we are able to factorize the partonic cross section into different energy regions. We use renormalization-group (RG) methods to resum large threshold logarithms to next-to-next-to-leading-logarithmic (NNLL) accuracy. On a technical level this is done using effective field theories, such as heavy-quark effective theory (HQET) and soft-collinear effective theory (SCET). The same techniques are applied when working in 1PI kinematics, leading to a calculation of the double differential cross section with respect to transverse-momentum pT and the rapidity of the top quark. We restrict the phase-space such that only soft emission of gluons is possible, and perform a NNLL resummation of threshold logarithms. The obtained analytical expressions enable us to precisely predict several observables, and a substantial part of this thesis is devoted to their detailed phenomenological analysis. Matching our results in the threshold regions to the exact ones at next-to-leading order (NLO) in fixed-order perturbation theory, allows us to make predictions at NLO+NNLL order in RG-improved, and at approximate next-to-next-to-leading order (NNLO) in fixed order perturbation theory. We give numerical results for the invariant mass distribution of the top-quark pair, and for the top-quark transverse-momentum and rapidity spectrum. We predict the total cross section, separately for both

  18. Spin asymmetries in squark and gluino production at polarized hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Gehrmann, T. [Institut fuer Theoretische Physik, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: gehrt@physik.unizh.ch; Maitre, D. [Institut fuer Theoretische Physik, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: maitreda@physik.unizh.ch; Wyler, D. [Institut fuer Theoretische Physik, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057 Zurich (Switzerland)]. E-mail: wyler@physik.unizh.ch

    2004-12-20

    We study the production cross sections for squarks and gluinos in collision of longitudinally polarized hadrons. The corresponding polarized partonic cross sections are computed in leading order supersymmetric QCD. The resulting asymmetries are evaluated for the polarized proton collider RHIC, as well as for hypothetical polarized options of the Tevatron and the LHC. These asymmetries turn out to be sizable over a wide range of supersymmetric particle masses. Once supersymmetric particles are discovered in unpolarized collisions, a measurement of the spin asymmetries would thus potentially help to establish the properties of the newly discovered particles and open a window to detailed sparticle spectroscopy at future polarized hadron colliders.

  19. Hangout With CERN: The Large Hadron Collider (S01E02)

    CERN Multimedia

    Kahle, Kate

    2012-01-01

    In this second Hangout with CERN "The Large Hadron Collider" ATLAS physicist Steven Goldfarb is joined by Giulia Papotti and Laurette Ponce from the CERN Control Centre, Despina Hatzifotiadou and Ken Read from the ALICE experiment, Achintya Rao and Roberto Rossin from the CMS experiment and Patrick Koppenburg from the LHCb experiment, as well as Jaana Nystrom from Finland and Liz Krane from the USA. This hangout answers questions about the Large Hadron Collider (LHC) received via #askCERN on Twitter and Google+ and via YouTube and Facebook comments. Recorded live on 8th November 2012.

  20. Quantitative Calculations for Black Hole Production at the Large Hadron Collider

    CERN Document Server

    Bock, Nicolas

    2008-01-01

    The framework of Large Extra Dimensions provides a way to explain why gravity is weaker compared to the other forces in nature. A consequence of this model is the possible production of D-dimensional Black Holes in high energy p-p collisions at the Large Hadron Collider. The present work uses the CATFISH Black Hole generator to study quantitatively how these events could be observed in the hadronic channel at mid-rapidity using a particle tracking detector.

  1. Quantitative Calculations for Black Hole Production at the Large Hadron Collider

    Science.gov (United States)

    Bock, Nicolas; Humanic, Thomas J.

    The framework of large extra dimensions provides a way to explain why gravity is weaker than the other forces in nature. A consequence of this model is the possible production of D-dimensional black holes in high energy p-p collisions at the Large Hadron Collider. The present work uses the CATFISH black hole generator to study quantitatively how these events could be observed in the hadronic channel at midrapidity using a particle-tracking detector.

  2. Diffractive Higgs boson production at the Fermilab Tevatron and the CERN Large Hadron Collider.

    Science.gov (United States)

    Enberg, R; Ingelman, G; Kissavos, A; Tîmneanu, N

    2002-08-19

    Improved possibilities to find the Higgs boson in diffractive events, having less hadronic activity, depend on whether the cross section is large enough. Based on the soft color interaction models that successfully describe diffractive hard scattering at DESY HERA and the Fermilab Tevatron, we find that only a few diffractive Higgs events may be produced at the Tevatron, but we predict a substantial rate at the CERN Large Hadron Collider.

  3. Probing the Higgs sector of the minimal Left-Right symmetric model at future hadron colliders

    Science.gov (United States)

    Dev, P. S. Bhupal; Mohapatra, Rabindra N.; Zhang, Yongchao

    2016-05-01

    If neutrino masses arise from a TeV-scale minimal Left-Right seesaw model, the ensuing extended Higgs sector with neutral, singly and doubly-charged scalars has a plethora of implications for new Higgs boson searches beyond the Standard Model at future hadron colliders, such as the √{s} = 14 TeV High-Luminosity Large Hadron Collider (HL-LHC) and the proposed √{s} = 100 TeV collider (FCC-hh or SPPC). In this article, we provide a glimpse of this new physics in the Higgs sector. Our discussion focuses on the minimal non-supersymmetric version of the Left-Right model with high-scale parity breaking but TeV-scale SU(2) R -breaking, a property desirable to suppress the type-II seesaw contribution to neutrino masses. We analyze the masses and couplings of the physical Higgs bosons in this model, and discuss their dominant production and decay modes at hadron colliders. We identify the best discovery channels for each of the non-SM Higgs bosons and estimate the expected SM backgrounds in these channels to derive the sensitivity reaches for the new Higgs sector at future hadron colliders under discussion. Following a rather conservative approach, we estimate that the heavy Higgs sector can be effectively probed up to 15 TeV at the √{s} = 100 TeV machine. We also discuss how the LR Higgs sector can be distinguished from other extended Higgs sectors.

  4. Production of exotic charmonium in $\\gamma \\gamma$ interactions at hadronic colliders

    CERN Document Server

    Moreira, B D; Goncalves, V P; Navarra, F S

    2016-01-01

    In this paper we investigate the Exotic Charmonium (EC) production in $\\gamma \\gamma$ interactions present in proton-proton, proton-nucleus and nucleus-nucleus collisions at the CERN Large Hadron Collider (LHC) energies as well as for the proposed energies of the Future Circular Collider (FCC). Our results demonstrate that the experimental study of these processes is feasible and can be used to constrain the theoretical decay widths and shed some light on the configuration of the considered multiquark states.

  5. Production of exotic charmonium in γ γ interactions at hadron colliders

    Science.gov (United States)

    Moreira, B. D.; Bertulani, C. A.; Gonçalves, V. P.; Navarra, F. S.

    2016-11-01

    In this paper we investigate the exotic charmonium production in γ γ interactions present in proton-proton, proton-nucleus, and nucleus-nucleus collisions at the CERN Large Hadron Collider energies as well as for the proposed energies of the Future Circular Collider. Our results demonstrate that the experimental study of these processes is feasible and can be used to constrain the theoretical decay widths and shed some light on the configuration of the considered multiquark states.

  6. Flavour Tagging in Hadronic $B_s^0$ Decays for the ATLAS Experiment at the Large Hadron Collider

    CERN Document Server

    Jussel, Patrick

    2011-01-01

    The determination of the initial b quark content of neutral B mesons using various tech- niques of flavour tagging has been studied for the ATLAS experiment at the Large Hadron Collider at CERN near Geneva. This work mainly focuses on opposite side soft muon flavour tagging on the hadronic decay channels Bs0 → Ds−π+ and Bs0 → Ds−a+1 with Ds− → φ(K+,K−)π− and a+1 → ρ0(π+,π−)π+. These hadronic decay channels will be used for the measurement of the Bs0 oscillation frequency ∆ms. This study has been performed on fully simulated and reconstructed Monte Carlo data sets.

  7. Recognizing Critical Behavior amidst Minijets at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    Rudolph C. Hwa

    2015-01-01

    Full Text Available The transition from quarks to hadrons in a heavy-ion collision at high energy is usually studied in two different contexts that involve very different transverse scales: local and nonlocal. Models that are concerned with the pT spectra and azimuthal anisotropy belong to the former, that is, hadronization at a local point in (η,ϕ space, such as the recombination model. The nonlocal problem has to do with quark-hadron phase transition where collective behavior through near-neighbor interaction can generate patterns of varying sizes in the (η,ϕ space. The two types of problems are put together in this paper both as brief reviews separately and to discuss how they are related to each other. In particular, we ask how minijets produced at LHC can affect the investigation of multiplicity fluctuations as signals of critical behavior. It is suggested that the existing data from LHC have sufficient multiplicities in small pT intervals to make the observation of distinctive features of clustering of soft particles, as well as voids, feasible that characterize the critical behavior at phase transition from quarks to hadrons, without any ambiguity posed by the clustering of jet particles.

  8. CERN celebrating the Lowering of the final detector element for large Hadron Collider

    CERN Multimedia

    2008-01-01

    In the early hours of the morning the final element of the Compact Muon Solenoid (CMS) detector began the descent into its underground experimental cavern in preparation for the start-up of CERNs Large Hadron Collider (LHC) this summer. This is a pivotal moment for the CMS collaboration.

  9. CERN-Fermilab Hadron Collider Physics Summer School 2013 open for applications

    CERN Multimedia

    2013-01-01

    Mark your calendar for 28 August - 6 September 2013, when CERN will welcome students to the eighth CERN-Fermilab Hadron Collider Physics Summer School.   Experiments at hadron colliders will continue to provide our best tools for exploring physics at the TeV scale for some time. With the completion of the 7-8 TeV runs of the LHC, and the final results from the full Tevatron data sample becoming available, a new era in particle physics is beginning, heralded by the Higgs-like particle recently discovered at 125 GeV. To realize the full potential of these developments, CERN and Fermilab are jointly offering a series of "Hadron Collider Physics Summer Schools", to prepare young researchers for these exciting times. The school has alternated between CERN and Fermilab, and will return to CERN for the eighth edition, from 28 August to 6 September 2013. The CERN-Fermilab Hadron Collider Physics Summer School is an advanced school which particularly targets young postdocs in exper...

  10. The Large Hadron Collider project: organizational and financial matters (of physics at the terascale)

    NARCIS (Netherlands)

    J. Engelen

    2012-01-01

    n this paper, I present a view of organizational and financial matters relevant for the successful construction and operation of the experimental set-ups at the Large Hadron Collider of CERN, the European Laboratory for Particle Physics in Geneva. Construction of these experiments was particularly c

  11. Discovering a Light Scalar or Pseudoscalar at The Large Hadron Collider

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal; Sannino, Francesco

    2012-01-01

    The allowed standard model Higgs mass range has been reduced to a region between 114 and 130 GeV or above 500 GeV, at the 99% confidence level, since the Large Hadron Collider (LHC) program started. Furthermore some of the experiments at Tevatron and LHC observe excesses that could arise from...

  12. Taking Energy to the Physics Classroom from the Large Hadron Collider at CERN

    Science.gov (United States)

    Cid, Xabier; Cid, Ramon

    2009-01-01

    In 2008, the greatest experiment in history began. When in full operation, the Large Hadron Collider (LHC) at CERN will generate the greatest amount of information that has ever been produced in an experiment before. It will also reveal some of the most fundamental secrets of nature. Despite the enormous amount of information available on this…

  13. Smash! exploring the mysteries of the Universe with the Large Hadron Collider

    CERN Document Server

    Latta, Sara

    2017-01-01

    What is the universe made of? At CERN, the European Organization for Nuclear Research, scientists have searched for answers to this question using the largest machine in the world: the Large Hadron Collider. It speeds up tiny particles, then smashes them togetherand the collision gives researchers a look at the building blocks of the universe.

  14. NCG gluon fusion for the Higgs production at large hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Chadou, I.; Mebarki, N.; Bekli, M. R. [Laboratoire de Physique Mathematique et Subatomique, University of Constantine (Algeria)

    2012-06-27

    A pure NCG gluon fusion contribution to the Higgs production at large hadron colliders is discussed. It is shown that the NCG results become relevant at very high energies. This can be a good signal for the space-time non commutativity events.

  15. Improving the discovery potential of charged Higgs bosons at the Tevatron and large hadron collider

    Indian Academy of Sciences (India)

    Stefano Moretti

    2003-02-01

    We outline several improvements to the experimental analyses carried out at Tevatron (Run 2) or simulated in view of the large hadron collider (LHC) that could increase the scope of CDF/D0 and ATLAS/CMS in detecting charged Higgs bosons.

  16. Precision calculations for gauge-boson pair production with a hadronic jet at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Kallweit, Stefan

    2008-11-21

    Gauge-boson pair-production processes with an additional hadronic jet are of particular interest as background to Higgs and new-physics searches at hadron colliders. Moreover, they enable - besides genuine gauge-boson pair production - a direct analysis of the non-Abelian gauge-boson self-interactions in the electroweak sector. In this work we provide precision calculations for the processes pp/p anti p {yields} VV+jet+X. In detail, corrections to WW+jet, ZZ+jet, and WZ+jet production are evaluated at next-to-leading-order in the strong coupling (NLO QCD). Particular care has to be taken when treating the infrared singularities arising in the virtual and real corrections. The FormCalc/LoopTools package is applied for the virtual corrections, where dimensionally regularized infrared-divergent integrals are added to the FF library which is used for the regular ones. The real-emission matrix elements are evaluated in terms of helicity amplitudes in the Weyl--van-der-Waerden formalism. The Catani--Seymour dipole subtraction formalism mediates the cancellation of infrared divergences between the two contributions. To perform the numerical integration a multi-channel Monte Carlo integrator is written in C++, which is designed to meet the requirements of integrating cross sections in the dipole subtraction formalism. For all gauge-boson assignments, the NLO QCD corrections significantly stabilize the artificial dependence of the leading-order (LO) cross sections on renormalization and factorization scales for Tevatron. For LHC, however, only a modest reduction of the scale dependence results unless a veto on a second hard jet is applied. Beyond investigating the production processes, leptonic decays of the gauge bosons are considered. To this end, a full amplitude calculation including resonant and non-resonant contributions to the leptonic final states, a simple narrow-width approximation (NWA), and an improved version of the NWA that takes into account spin correlations

  17. Preliminary design of the beam screen cooling for the Future Circular Collider of hadron beams

    CERN Document Server

    Kotnig, C

    2015-01-01

    Following recommendations of the recent update of the European strategy in particle physics, CERN has undertaken an international study of possible future circular colliders beyond the LHC. This study considers an option for a very high energy (100 TeV) hadron-hadron collider located in a quasi-circular underground tunnel having a circumference of 80 to 100 km. The synchrotron radiation emitted by the high-energy hadron beam increases by more than two orders of magnitude compared to the LHC. To reduce the entropic load on the superconducting magnets' refrigeration system, beam screens are indispensable to extract the heat load at a higher temperature level. After illustrating the decisive constraints of the beam screen's refrigeration design, this paper presents a preliminary design of the length of a continuous cooling loop comparing helium and neon, for different cooling channel geometries with emphasis on the cooling length limitations and the exergetic efficiency.

  18. Measurement of → → inclusive process at Large Hadron Collider

    Indian Academy of Sciences (India)

    S Bansal; K Mazumdar; J B Singh

    2010-09-01

    In several scenarios of beyond Standard Model physics a new heavy resonance is invoked which may decay preferentially, to a pair of taus. Identification of the decay of Standard Model resonance to tau pairs at LHC via subsequent decays of the taus to leptons as well as hadrons is the first step towards the discovery. A method has been suggested to discriminate to tau pair to electron + muon final state against various backgrounds, for early phase of 14 TeV LHC.

  19. Low-cost hadron colliders at Fermilab: A discussion paper

    Energy Technology Data Exchange (ETDEWEB)

    Foster, G.W.; Malamud, E.

    1996-06-21

    New more economic approaches are required to continue the dramatic exponential rise in collider energies as represented by the well known Livingston plot. The old idea of low cost, low field iron dominated magnets in a small diameter pipe may become feasible in the next decade with dramatic recent advances in technology: (1) advanced tunneling technologies for small diameter, non human accessible tunnels, (2) accurate remote guidance systems for tunnel survey and boring machine steering, (3) high T{sub c} superconductors operating at liquid N{sub 2} or liquid H{sub 2} temperatures, (4) industrial applications of remote manipulation and robotics, (5) digitally multiplexed electronics to minimize cables, (6) achievement of high luminosities in p-p and p-{anti P} colliders. The goal of this paper is to stimulate continuing discussions on approaches to this new collider and to identify critical areas needing calculations, construction of models, proof of principle experiments, and full scale prototypes in order to determine feasibility and arrive at cost estimates.

  20. 62-TeV center of mass hadron collider with capability for super bunch beams

    Energy Technology Data Exchange (ETDEWEB)

    Ryuji Yamada and Ken Takayama

    2001-08-22

    A 60 TeV center of mass hadron collider is proposed, which has capability of using Superbunch beam. With Superbunch beam, the luminosity is expected to be increased by a factor of 20, compared with conventional acceleration using RF cavities. This hadron collider will be built in two stages with a low field magnet ring first and a high field magnet ring later in the same tunnel. The low field magnet rig will be built with Pipetron scheme, with 7 TeV and 7 TeV proton beams, making a 14 TeV center of mass energy high luminosity collider, using Superbunch beams. In the second stage 10 Tesla high field magnets with twin beams, will be installed. It also utilizes Superbunch beams, realizing high luminosity collider. To accelerate Superbunch beams, the barrier bucket and acceleration induction cells will be used, which are made of induction cells, utilizing FINEMET material. The core loss of the FINEMET is estimated for the whole collider is estimated. The synchrotron radiation of the collider is also estimated. Merits of Superbunch beams over RF bunched beams for the high energy experiments is described.

  1. Mass-degenerate heavy vector mesons at hadron colliders

    Science.gov (United States)

    Piai, M.; Round, M.

    2010-08-01

    We study the LHC phenomenology of two mass-degenerate heavy gauge bosons with the same quantum numbers as Z and γ. We give a leading-order estimate of the number of events expected in Drell-Yan processes in terms of the parameters of the model (mass and coupling) and of the LHC machine specifications (integrated luminosity and energy). We consider the feasibility of measuring a forward-backward asymmetry for various choices of the parameters and estimate the potential reach. We comment on how the results may affect future collider design and apply our results to a specific model of electro-weak symmetry breaking by way of example.

  2. Mass-degenerate Heavy Vector Mesons at Hadron Colliders

    CERN Document Server

    Piai, Maurizio

    2009-01-01

    We study the LHC phenomenology of a couple of mass-degenerate heavy new gauge bosons with the quantum numbers of the Z and photon. We give a leading-order estimate of the number of events expected in Drell-Yan processes in terms of the parameters of the model (mass and coupling) and of the LHC machine specifications (luminosity and energy). We consider the feasibility of measuring a forward-backward asymmetry for various choices of the parameters and estimate the potential reach. We comment on how the results may affect future collider design and the results for a specific model of electro-weak symmetry breaking by way of example.

  3. For Information: CERN-Fermilab2006 Hadron Collider Physics Summer School

    CERN Multimedia

    2006-01-01

    Applications are Now Open for the CERN-Fermilab2006 Hadron Collider Physics Summer School August 9-18, 2006 Please go to the school web site http://hcpss.fnal.gov/ and follow the links to the Application process. The APPLICATION DEADLINE IS APRIL 8, 2006. Successful applicants and support awards will be announced shortly thereafter. Also available on the web is the tentative academic program of the school. The main goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers a broad picture of both the theoretical and experimental aspects of hadron collider physics. The emphasis of the first school will be on the physics potential of the first years of data taking at the LHC, and on the experimental and theoretical tools needed to exploit that potential. A series of lectures and informal discussions will include an introduction to the theoretical and phenomenological framework of hadron collisions, and current theoretical models of frontier physics, as...

  4. Production of doubly heavy-flavored hadrons at $e^+e^-$ colliders

    CERN Document Server

    Zheng, Xu-Chang; Pan, Zan

    2015-01-01

    Production of the doubly heavy-flavored hadrons ($B_c$ meson, doubly heavy baryons $\\Xi_{cc}$, $\\Xi_{bc}$, $\\Xi_{bb}$, their excited states and antiparticles of them as well) at $e^+e^-$ colliders is investigated under two different approaches: $LO$ (leading order QCD complete calculation) and $LL$ (leading logarithm fragmentation calculation). The results for the production obtained by the approaches $LO$ and $LL$, including the angle distributions of the produced hadrons with unpolarized and polarized incoming beams, the behaviors on the energy fraction of the produced doubly heavy hadron and comparisons between the two approaches' results, are presented in terms of tables and figures. Thus characteristics of the production and uncertainties of the approaches are shown precisely, and it is concluded that only if the colliders run at the eneries around $Z$-pole (which may be called as $Z$-factories) and additionally the luminosity of the colliders is as high as possible then to study the doubly heavy hadrons...

  5. Observable Properties of Quark-Hadron Phase Transition at the Large Hadron Collider

    CERN Document Server

    Hwa, Rudolph C

    2016-01-01

    Quark-hadron phase transition is simulated by an event generator that incorporates the dynamical properties of contraction due to QCD confinement forces and randomization due to the thermal behavior of a large quark system on the edge of hadronization. Fluctuations of emitted pions in the $(\\eta,\\phi)$ space are analyzed using normalized factorial moments in a wide range of bin sizes. The scaling index $\

  6. Progress towards next generation hadron colliders: FCC-hh, HE-LHC, and SPPC

    Science.gov (United States)

    Zimmermann, Frank; EuCARD-2 Extreme Beams Collaboration; Future Circular Collider (FCC) Study Collaboration

    2017-01-01

    A higher-energy circular proton collider is generally considered to be the only path available in this century for exploring energy scales well beyond the reach of the Large Hadron Collider (LHC) presently in operation at CERN. In response to the 2013 Update of the European Strategy for Particle Physics and aligned with the 2014 US ``P5'' recommendations, the international Future Circular Collider (FCC) study, hosted by CERN, is designing such future frontier hadron collider. This so-called FCC-hh will provide proton-proton collisions at a centre-of-mass energy of 100 TeV, with unprecedented luminosity. The FCC-hh energy goal is reached by combining higher-field, 16 T magnets, based on Nb3Sn superconductor, and a new 100 km tunnel connected to the LHC complex. In addition to the FCC-hh proper, the FCC study is also exploring the possibility of a High-Energy LHC (HE-LHC), with a centre-of-mass energy of 25-27 TeV, as could be achieved in the existing 27 km LHC tunnel using the FCC-hh magnet technology. A separate design effort centred at IHEP Beijing aims at developing and constructing a similar collider in China, with a smaller circumference of about 54 km, called SPPC. Assuming even higher-field 20 T magnets, by relying on high-temperature superconductor, the SPPC could reach a c.m. energy of about 70 TeV. This presentation will report the motivation and the present status of the R&D for future hadron colliders, a comparison of the three designs under consideration, the major challenges, R&D topics, the international technology programs, and the emerging global collaboration. Work supported by the European Commission under Capacities 7th Framework Programme project EuCARD-2, Grant Agreement 312453, and the HORIZON 2020 project EuroCirCol, Grant Agreement 654305.

  7. NLO Electroweak Corrections to Higgs Boson Production at Hadron Colliders

    CERN Document Server

    Actis, S; Sturm, C; Uccirati, S

    2008-01-01

    Results for the complete NLO electroweak corrections to Standard Model Higgs production via gluon fusion are included in the total cross section for hadronic collisions. Artificially large threshold effects are avoided working in the complex-mass scheme. The numerical impact at LHC (Tevatron) energies is explored for Higgs mass values up to 500 GeV (200 GeV). Assuming a complete factorization of the electroweak corrections, one finds a +5 % shift with respect to the NNLO QCD cross section for a Higgs mass of 120 GeV both at the LHC and the Tevatron. Adopting two different factorization schemes for the electroweak effects, an estimate of the corresponding total theoretical uncertainty is computed.

  8. Pair production of neutral Higgs bosons at the CERN Large Hadron Collider

    CERN Document Server

    Barrientos-Bendezu, A A

    2001-01-01

    We study the hadroproduction of two neutral Higgs bosons in the minimal supersymmetric extension of the standard model, which provides a handle on the trilinear Higgs couplings. We include the contributions from quark-antiquark annihilation at the tree level and those from gluon-gluon fusion, which proceeds via quark and squark loops. We list compact results for the tree-level partonic cross sections and the squark loop amplitudes, and we confirm previous results for the quark loop amplitudes. We quantitatively analyze the hadronic cross sections at the CERN Large Hadron Collider assuming a favorable supergravity-inspired scenario.

  9. Associated production of Z and neutral Higgs bosons at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Palisoc, Caesar P. [Univ. of the Philippines, Diliman, Quezon City (Philippines). National Inst. of Physics

    2011-12-15

    We study the hadroproduction of a CP-even or CP-odd neutral Higgs boson in association with a Z boson in the minimal supersymmetric extension of the standard model (MSSM) We include the contributions from quark-antiquark annihilation at the tree level and those from gluon-gluon fusion, which proceeds via quark and squark loops, and list compact analytic results. We quantitatively analyze the hadronic cross sections at the CERN Large Hadron Collider assuming a favorable supergravity-inspired MSSM scenario. (orig.)

  10. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Physics at the Large Hadron Collider

    Science.gov (United States)

    Dremin, Igor M.

    2009-06-01

    The goals of the physics to be studied at the Large Hadron Collider (LHC) are very impressive. Four major experimental installations are ready to compete in obtaining and analyzing the data from high-energy hadron collisions. The main hope is to answer the most intricate questions ever asked concerning the most fundamental problems of matter and its fundamental forces and space structure. The design of the LHC and its four detectors is briefly described. We then review the main facts revealed previously by experimentalists at other accelerators. The most pertinent topics and the stage-by-stage plans for LHC investigations are discussed. Further prospects for high-energy physics are outlined.

  11. Inside CERN's Large Hadron Collider from the proton to the Higgs boson

    CERN Document Server

    Campanelli, Mario

    2016-01-01

    The book aims to explain the historical development of particle physics, with special emphasis on CERN and collider physics. It describes in detail the LHC accelerator and its detectors, describing the science involved as well as the sociology of big collaborations, culminating with the discovery of the Higgs boson. Readers are led step-by-step to understanding why we do particle physics, as well as the tools and problems involved in the field. It provides an insider's view on the experiments at the Large Hadron Collider.

  12. Study of highly-excited string states at the Large Hadron Collider

    CERN Document Server

    Gingrich, Douglas M

    2008-01-01

    In TeV-scale gravity scenarios with large extra dimensions, black holes may be produced at future colliders. Good arguments have been made for why general relativistic black holes may be just out of reach of the Large Hadron Collider (LHC). However, in weakly-coupled string theory, highly excited string states - string balls - could be produced at the LHC with high rates and decay thermally, not unlike general relativistic black holes. In this paper, we simulate and study string ball production and decay at the LHC. We specifically emphasize the experimentally-detectable similarities and differences between string balls and general relativistic black holes at a TeV scale.

  13. Particle Physics after the Higgs-Boson Discovery: Opportunities for the Large Hadron Collider

    CERN Document Server

    Quigg, Chris

    2015-01-01

    The first run of the Large Hadron Collider at CERN brought the discovery of the Higgs boson, an apparently elementary scalar particle with a mass of 125 GeV, the avatar of the mechanism that hides the electroweak symmetry. A new round of experimentation is beginning, with the energy of the proton--proton colliding beams raised to 6.5 TeV per beam, from 4 TeV at the end of the first run. This article summarizes what we have learned about the Higgs boson, and calls attention to some issues that will be among our central concerns in the near future.

  14. Higgs bosons, electroweak symmetry breaking, and the physics of the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Quigg, Chris; /Fermilab /CERN

    2007-02-01

    The Large Hadron Collider, a 7 {circle_plus} 7 TeV proton-proton collider under construction at CERN (the European Laboratory for Particle Physics in Geneva), will take experiments squarely into a new energy domain where mysteries of the electroweak interaction will be unveiled. What marks the 1-TeV scale as an important target? Why is understanding how the electroweak symmetry is hidden important to our conception of the world around us? What expectations do we have for the agent that hides the electroweak symmetry? Why do particle physicists anticipate a great harvest of discoveries within reach of the LHC?

  15. Toward particle-level filtering of individual collision events at the Large Hadron Collider and beyond

    CERN Document Server

    Colecchia, Federico

    2013-01-01

    Low-energy strong interactions are a major source of background at hadron colliders, and methods of subtracting the associated energy flow are well established in the field. Traditional approaches treat the contamination as diffuse, and estimate background energy levels either by averaging over large data sets or by restricting to given kinematic regions inside individual collision events. On the other hand, more recent techniques take into account the discrete nature of background, most notably by exploiting the presence of substructure inside hard jets, i.e. inside collections of particles originating from scattered hard quarks and gluons. However, none of the existing methods subtract background at the level of individual particles inside events. We illustrate the use of an algorithm that will allow particle-by-particle background discrimination at the Large Hadron Collider, and we envisage this as the basis for a novel event filtering procedure upstream of the official reconstruction chains. Our hope is t...

  16. $W^+W^-$ + 3 Jet Production at the Large Hadron Collider in NLO QCD

    CERN Document Server

    Cordero, F Febres; Ita, H

    2015-01-01

    We present next-to-leading order (NLO) QCD predictions to $W^+W^-$ production in association with up to three jets at hadron colliders. We include contributions from couplings of the $W$ bosons to light quarks as well as trilinear vector couplings. These processes are used in vector-boson coupling measurements, are background to Higgs signals and are needed to constrain many new physics scenarios. For the first time NLO QCD predictions are shown for electroweak di-vector boson production with three jets at a hadron collider. We show total and differential cross sections for the LHC with proton center-of-mass energies of 8 and 13 TeV. To perform the calculation we employ on-shell and unitarity methods implemented in the BlackHat library along with the SHERPA package. We have produced event files that can be accessed for future dedicated studies.

  17. Probing gauge-phobic heavy Higgs bosons at high energy hadron colliders

    Directory of Open Access Journals (Sweden)

    Yu-Ping Kuang

    2015-07-01

    Full Text Available We study the probe of the gauge-phobic (or nearly gauge-phobic heavy Higgs bosons (GPHB at high energy hadron colliders including the 14 TeV LHC and the 50 TeV Super Proton–Proton Collider (SppC. We take the process pp→tt¯tt¯, and study it at the hadron level including simulating the jet formation and top quark tagging (with jet substructure. We show that, for a GPHB with MH<800 GeV, MH can be determined by adjusting the value of MH in the theoretical pT(b1 distribution to fit the observed pT(b1 distribution, and the resonance peak can be seen at the SppC for MH=800 GeV and 1 TeV.

  18. Thermal photon radiation in high multiplicity p+Pb collisions at the Large Hadron Collider

    CERN Document Server

    Shen, C; Denicol, G S; Jeon, S; Gale, C

    2015-01-01

    The collective behaviour of hadronic particles has been observed in high multiplicity proton-lead collisions at the Large Hadron Collider (LHC), as well as in deuteron-gold collisions at the Relativistic Heavy-Ion Collider (RHIC). In this work we present the first calculation, in the hydrodynamic framework, of thermal photon radiation from such small collision systems. Owing to their compact size, these systems can reach temperatures comparable to those in central nucleus-nucleus collisions. The thermal photons can thus shine over the prompt background, and increase the low $p_T$ direct photon spectrum by a factor of 2-3 in 0-1% p+Pb collisions at 5.02 TeV. This thermal photon enhancement can therefore serve as a clean signature of the existence of a hot quark-gluon plasma during the evolution of these small collision systems, as well as validate hydrodynamic behavior in small systems.

  19. Matter-Antimatter Asymmetry in the Large Hadron Collider

    CERN Document Server

    Tawfik, A

    2010-01-01

    The matter-antimatter asymmetry is one of the greatest challenges in the modern physics. The universe including this paper and even the reader him(her)self seems to be built up of ordinary matter only. Theoretically, the well-known Sakharov's conditions remain the solid framework explaining the circumstances that matter became dominant against the antimatter while the universe cools down and/or expands. On the other hand, the standard model for elementary particles apparently prevents at least two conditions out of them. In this work, we introduce a systematic study of the antiparticle-to-particle ratios measured in various $NN$ and $AA$ collisions over the last three decades. It is obvious that the available experimental facilities turn to be able to perform nuclear collisions, in which the matter-antimatter asymmetry raises from $\\sim 0%$ at AGS to $\\sim 100%$ at LHC. Assuming that the final state of hadronization in the nuclear collisions takes place along the freezeout line, which is defined by a constant...

  20. Discriminating supersymmetry and black holes at the CERN Large Hadron Collider

    Science.gov (United States)

    Roy, Arunava; Cavaglià, Marco

    2008-03-01

    We show how to differentiate the minimal supersymmetric extension of the standard model from black hole events at the CERN Large Hadron Collider. Black holes are simulated with the CATFISH generator. Supersymmetry simulations use a combination of pythia and isajet. Our study, based on event-shape variables, visible and missing momenta, and analysis of dilepton events, demonstrates that supersymmetry and black hole events at the LHC can be easily discriminated.

  1. Nucleon Decay and Neutrino Experiments, Experiments at High Energy Hadron Colliders, and String Theor

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Chang Kee [State University of New York at Stony Brook; Douglas, Michaek [State University of New York at Stony Brook; Hobbs, John [State University of New York at Stony Brook; McGrew, Clark [State University of New York at Stony Brook; Rijssenbeek, Michael [State University of New York at Stony Brook

    2013-07-29

    This is the final report of the DOE grant DEFG0292ER40697 that supported the research activities of the Stony Brook High Energy Physics Group from November 15, 1991 to April 30, 2013. During the grant period, the grant supported the research of three Stony Brook particle physics research groups: The Nucleon Decay and Neutrino group, the Hadron Collider Group, and the Theory Group.

  2. Determining the structure of Higgs couplings at the CERN LargeHadron Collider.

    Science.gov (United States)

    Plehn, Tilman; Rainwater, David; Zeppenfeld, Dieter

    2002-02-01

    Higgs boson production via weak boson fusion at the CERN Large Hadron Collider has the capability to determine the dominant CP nature of a Higgs boson, via the tensor structure of its coupling to weak bosons. This information is contained in the azimuthal angle distribution of the two outgoing forward tagging jets. The technique is independent of both the Higgs boson mass and the observed decay channel.

  3. Probing Neutrino Oscillations in Supersymmetric Models at the Large Hadron Collider

    CERN Document Server

    De Campos, F; Hirsch, M; Magro, M B; Porod, W; Restrepo, D; Valle, J W F

    2010-01-01

    The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.

  4. University of Tennessee deploys force10 C-series to analyze data from CERN's Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "Force20 networks, the pioneer in building and securing reliable networks, today announced that the University of Tennessee physics department has deployed the C300 resilient switch to analyze data form CERN's Large Hadron Collider." (1 page)

  5. Beyond the LHC: A Conceptual Approach to a Future High Energy Hadron Collider

    CERN Document Server

    Syphers, M J; Peggs, S

    1996-01-01

    The concept of a post LHC hadron collider operating in the ra- diation damping regime was discussed in the DPF workshop on future hadron facilities[1]. To date hadron colliders have all op- erated in a state of insigni®cant damping, where phase space di- lution from any source results in a costly degradation of instanta- neous and thus integrated luminosity. The concept of using radi- ation damping to enhance the integrated luminosity results in an effective decoupling of the machine performance from the ini- tial beam parameters. By relying more heavily on the damping mechanism, the requirements for tight emittance control through the injector chain and during the collider ®ll process can be re- laxed allowing for less stringent injection ®eld quality and the possibilities for looser tolerances in many other aspects of the machine. In this paper we present some generic parameters and machine characteristics before examining options for lengthen- ing the standard cell (quadrupole and spool piece reduction...

  6. 3rd CERN-Fermilab HadronCollider Physics Summer School

    CERN Multimedia

    EP Department

    2008-01-01

    August 12-22, 2008, Fermilab The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 29 FEBRUARY 2008. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high-energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The third session of the summer school will focus on exposing young post-docs and advanced graduate students to broader theories and real data beyond what they’ve learned at their home institutions. Experts from across the globe will lecture on the theoretical and experimental foundations of hadron collider physics, host parallel discussion sessions and answer students’ questions. This year’s school will also have a greater focus on physics beyond the Standard Model, as well as more time for questions at the end of each lecture. The 2008 School will be held at Fermilab. Further enquiries should ...

  7. 2nd CERN-Fermilab Hadron Collider Physics Summer School, June 6-15, 2007, CERN

    CERN Multimedia

    2007-01-01

    The school web site is http://cern.ch/hcpss with links to the academic programme and the application procedure. The APPLICATION DEADLINE IS 9 MARCH 2007. The results of the selection process will be announced shortly thereafter. The goal of the CERN-Fermilab Hadron Collider Physics Summer Schools is to offer students and young researchers in high energy physics a concentrated syllabus on the theory and experimental challenges of hadron collider physics. The first school in the series, held last summer at Fermilab, covered extensively the physics at the Tevatron collider experiments. The second school, to be held at CERN, will focus on the technology and physics of the LHC experiments. Emphasis will be placed on the first years of data-taking at the LHC and on the discovery potential of the programme. The series of lectures will be supported by in-depth discussion sessions and will include the theory and phenomenology of hadron collisions, discovery physics topics, detector and analysis techniques and tools...

  8. Probing the Higgs Sector of the Minimal Left-Right Symmetric Model at Future Hadron Colliders

    CERN Document Server

    Dev, P S Bhupal; Zhang, Yongchao

    2016-01-01

    If neutrino masses arise from a TeV-scale minimal Left-Right seesaw model, the ensuing extended Higgs sector with neutral, singly and doubly-charged scalars has a plethora of implications for new Higgs boson searches beyond the Standard Model at future hadron colliders, such as the $\\sqrt s=14$ TeV LHC and the proposed $\\sqrt s=100$ TeV FCC-hh. In this article, we provide a glimpse of this new physics in the Higgs sector. Our discussion focuses on the minimal non-supersymmetric version of the Left-Right model with high-scale parity breaking but TeV-scale $SU(2)_R$-breaking, a property desirable in the non-supersymmetric version to suppress the type-II seesaw contribution to neutrino masses. We analyze the masses and couplings of the physical Higgs bosons in this model, and discuss their production and decay mechanisms at hadron colliders. We derive the sensitivity reach of the new Higgs sector at future hadron colliders under discussion and find that the heavy Higgs sector can be effectively probed up to abou...

  9. Hadronic "flow" in p--Pb collisions at the Large Hadron Collider?

    CERN Document Server

    Zhou, You; Li, Pengfei; Song, Huichao

    2015-01-01

    Using the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model, we investigate azimuthal correlations in p--Pb collisions at $\\sqrt{s_{_{\\rm NN}}}=5.02$ TeV. Comparison with the experimental data shows that UrQMD can not reproduce the multiplicity dependence of 2- and 4-particle cumulants, especially the transition from positive to negative values of $c_{2}\\{4\\}$ in high multiplicity events, which has been taken as experimental evidence of collectivity in p--Pb collisions. Meanwhile, UrQMD can not qualitatively describe the differential elliptic flow, $v_{2}(p_{\\rm T})$, of all charged hadrons at various multiplicity classes. These discrepancies show that the simulated hadronic p--Pb systems can not generate enough collective flow as observed in experiment, the associated hadron emissions are largely influenced by non-flow effects. However, the characteristic $v_{2}(p_{\\rm T})$ mass-ordering of pions, kaons and protons is observed in UrQMD, which is the consequence of hadronic interactions and not nece...

  10. Revealing Partons in Hadrons: From the ISR to the SPS Collider

    CERN Document Server

    Darriulat, Pierre

    2015-01-01

    Our understanding of the structure of hadrons has developed during the seventies and early eighties from a few vague ideas to a precise theory, Quantum Chromodynamics, that describes hadrons as made of elementary partons (quarks and gluons). Deep inelastic scattering of electrons and neutrinos on nucleons and electron–positron collisions have played a major role in this development. Less well known is the role played by hadron collisions in revealing the parton structure, studying the dynamic of interactions between partons and offering an exclusive laboratory for the direct study of gluon interactions. The present article recalls the decisive contributions made by the CERN Intersecting Storage Rings and, later, the proton–antiproton SPS Collider to this chapter of physics.

  11. Physics perspectives of the ALICE experiment at the large hadron collider

    Indian Academy of Sciences (India)

    Massimo Masera

    2003-04-01

    The large hadron collider (LHC) under construction at CERN will deliver ion beams up to centre of mass energies of the order of 5.5 TeV per nucleon, in case of lead. If compared to the available facilities for the study of nucleus–nucleus collisions (SpS and RHIC), this represents a huge step forward in terms of both volume and energy density that can be attained in nuclear interactions. ALICE (a large ion collider experiment) is the only detector specifically designed for the physics of nuclear collisions at LHC, even though it can also study high cross-section processes occurring in proton–proton collisions. The main goal of the experiment is to observe and study the phase transition from hadronic matter to deconfined partonic matter (quark gluon plasma – QGP). ALICE is conceived as a general-purpose detector and will address most of the phenomena related to the QGP formation at LHC energies: for this purpose, a large fraction of the hadrons, leptons and photons produced in each interaction will be measured and identified.

  12. Collectivity of strange hadrons in small and large colliding systems with CMS

    CERN Document Server

    Stephans, George Stewart

    2016-01-01

    Observation of a long-range, near-side, two-particle correlation (known as the ``Ridge") in high-multiplicity pp and pPb collisions opened up new opportunities of exploring novel QCD dynamics in small collision systems. CMS has excellent capabilities of reconstructing weakly decay strange hadrons such as $K^0_s$, $\\Lambda$ and $\\Xi^-$. Studies of strange hadron production and correlations in small colliding systems provide crucial insights to the physical origin of novel collective phenomena. New results of pT spectra and long-range two-particle correlations for charged particles and identified strange hadrons in high-multiplicity pp and pPb collisions are presented. The data at various collision energies for pp and pPb collisions are compared to those obtained in large PbPb colliding systems. A measurement of multi-paricle cumulant in pp and pPb is also presented to explore the collective nature of the long-range correlations.

  13. Aspects of pQCD at a 100 TeV future hadron collider

    CERN Document Server

    Bothmann, Enrico; Krauss, Frank; Kuttimalai, Silvan; Schumann, Steffen; Thompson, Jennifer

    2016-01-01

    In this publication we consider particle production at a future circular hadron collider with 100 TeV centre of mass energy within the Standard Model, and in particular their QCD aspects. Accurate predictions for these processes pose severe theoretical challenges related to large hierarchies of scales and possible large multiplicities of final state particles. We investigate scaling patterns in multijet-production rates allowing to extrapolate predictions to very high final-state multiplicities. Furthermore, we consider large-area QCD jets and study the expectation for the mean number of subjets to be reconstructed from their constituents and confront these with analytical resummed predictions and with the expectation for boosted hadronic decays of top-quarks and W-bosons. We also discuss the validity of Higgs-Effective-Field-Theory in making predictions for Higgs-boson production in association with jets. Finally, we consider the case of New Physics searches at such a 100 TeV hadron-collider machine and disc...

  14. Physics perspectives of the ALICE experiment at the Large Hadron Collider

    CERN Document Server

    Riccati, L

    2003-01-01

    The Large Hadron Collider (LHC) under construction at CERN will deliver ion beams up to centre of mass energies of the order of 5.5 TeV per nucleon, in case of lead. If compared to the available facilities for the study of nucleus-nucleus collisions (SPS and RHIC) , this represents a huge step forward in terms of both volume and energy density that can be attained in nuclear interactions. ALICE (A Large Ion Collider Experiment) is the only detector specifically designed for the physics of nuclear collisions at LHC, even though it can also study high cross section processes occurring in proton- proton collisions. The main goal of the experiment is to observe and study the phase transition from hadronic matter to deconfined partonic matter (quark gluon plasma - QGP). ALICE is conceived as a general purpose detector and will address most of the phenomena related to the QGP formation at LHC energies: to this purpose, a large fraction of the hadrons, leptons and photons produced in each interaction will be measure...

  15. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Multimedia

    Cecile Noels

    2009-01-01

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  16. Literature in focus - The Large Hadron Collider: A Marvel of Technology

    CERN Multimedia

    Cecile Noels

    Inside an insulating vacuum chamber in a tunnel about 100 metres below the surface of the Franco-Swiss plain near Geneva, packets of protons whirl around the 27-km circumference of the Large Hadron Collider (LHC) at a speed close to that of light, colliding every 25 nanoseconds at four beam crossing points. The products of these collisions, of which hundreds of billions will be produced each second, are observed and measured with the most advanced particle-detection technology, capable of tracking individual particles as they generate a signature track during their passage through the detectors. All this information is captured, filtered and piped to huge networks of microprocessors for analysis and study by an international team of physicists. When the Large Hadron Collider (LHC) comes on line in 2009, it will be the largest scientific experiment ever constructed, and the data it produces will lead to a new understanding of our Universe. Many thousands of scientists and engineers were behind the planning...

  17. Heavy Majorana Neutrinos from $W\\gamma$ Fusion at Hadron Colliders

    CERN Document Server

    Alva, Daniel; Ruiz, Richard

    2014-01-01

    Vector boson fusion processes become increasingly more important at higher collider energies and for probing larger mass scales due to collinear logarithmic enhancements of the cross section. In this context, we revisit the production of a hypothetic heavy Majorana neutrino $(N)$ at hadron colliders. Particular attention is paid to the fusion process $W\\gamma \\rightarrow N\\ell^{\\pm}$. We systematically categorize the contributions from an initial state photon in the elastic, inelastic, and deeply inelastic channels. Comparing with the leading channel via the Drell-Yan production $q \\bar{q}'\\rightarrow W^{*}\\rightarrow N\\ell^{\\pm}$ at NNLO in QCD, we find that the $W\\gamma$ fusion process becomes relatively more important at higher scales, surpassing the DY mechanism at $m_{N} \\sim 1 \\text{TeV} \\ (770 \\text{GeV})$ at the 14 TeV LHC (100 TeV VLHC). We investigate the inclusive heavy Majorana neutrino signal, including QCD corrections, and quantify the Standard Model backgrounds at future hadron colliders. We co...

  18. Quantum chromodynamics at high energy, theory and phenomenology at hadron colliders; Chromodynamique quantique a haute energie, theorie et phenomenologie appliquee aux collisions de hadrons

    Energy Technology Data Exchange (ETDEWEB)

    Marquet, C

    2006-09-15

    When probing small distances inside a hadron, one can resolve its partonic constituents: quarks and gluons that obey the laws of perturbative Quantum Chromodynamics (QCD). This substructure reveals itself in hadronic collisions characterized by a large momentum transfer: in such collisions, a hadron acts like a collection of partons whose interactions can be described in QCD. In a collision at moderate energy, a hadron looks dilute and the partons interact incoherently. As the collision energy increases, the parton density inside the hadron grows. Eventually, at some energy much bigger than the momentum transfer, one enters the saturation regime of QCD: the gluon density has become so large that collective effects are important. We introduce a formalism suitable to study hadronic collisions in the high-energy limit in QCD, and the transition to the saturation regime. In this framework, we derive known results that are needed to present our personal contributions and we compute different cross-sections in the context of hard diffraction and particle production. We study the transition to the saturation regime as given by the Balitsky-Kovchegov equation. In particular we derive properties of its solutions.We apply our results to deep inelastic scattering and show that, in the energy range of the HERA collider, the predictions of high-energy QCD are in good agreement with the data. We also consider jet production in hadronic collisions and discuss the possibility to test saturation at the Large Hadron Collider. (author)

  19. A new micro-strip tracker for the new generation of experiments at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Dinardo, Mauro E. [Univ. of Milan (Italy)

    2005-12-01

    This thesis concerns the development and characterization of a prototype Silicon micro-strip detector that can be used in the forward (high rapidity) region of a hadron collider. These detectors must operate in a high radiation environment without any important degradation of their performance. The innovative feature of these detectors is the readout electronics, which, being completely data-driven, allows for the direct use of the detector information at the lowest level of the trigger. All the particle hits on the detector can be readout in real-time without any external trigger and any particular limitation due to dead-time. In this way, all the detector information is available to elaborate a very selective trigger decision based on a fast reconstruction of tracks and vertex topology. These detectors, together with the new approach to the trigger, have been developed in the context of the BTeV R&D program; our aim was to define the features and the design parameters of an optimal experiment for heavy flavour physics at hadron colliders. Application of these detectors goes well beyond the BTeV project and, in particular, involves the future upgrades of experiments at hadron colliders, such as Atlas, CMS and LHCb. These experiments, indeed, are already considering for their future high-intensity runs a new trigger strategy a la BTeV. Their aim is to select directly at trigger level events containing Bhadrons, which, on several cases, come from the decay of Higgs bosons, Zo's or W±'s; the track information can also help on improving the performance of the electron and muon selection at the trigger level. For this reason, they are going to develop new detectors with practically the same characteristics as those of BTeV. To this extent, the work accomplished in this thesis could serve as guide-line for those upgrades.

  20. QCD corrections to J/psi and Upsilon production at hadron colliders.

    Science.gov (United States)

    Campbell, J; Maltoni, F; Tramontano, F

    2007-06-22

    We calculate the cross section for hadroproduction of a pair of heavy quarks in a (3)S(1) color-singlet state at next-to-leading order in QCD. This corresponds to the leading contribution in the nonrelativistic QCD expansion for J/psi and Upsilon production. The higher-order corrections have a large impact on the p(T) distributions, enhancing the production at high p(T) at both the Fermilab Tevatron and the CERN Large Hadron Collider. The total decay rate of a (3)S(1) into hadrons at next-to-leading order is also computed, confirming for the first time the result obtained by Mackenzie and Lepage in 1981.

  1. Predictions for the heavy-ion programme at the Large Hadron Collider

    CERN Document Server

    Armesto, N

    2010-01-01

    I review the main predictions for the heavy-ion programme at the Large Hadron Collider (LHC) at CERN, as available in early March 2009. I begin by remembering the standard claims made in view of the experimental data measured at the Super Proton Synchrotron (SPS) at CERN and at the Relativistic Heavy Ion Collider (RHIC) at the BNL. These claims will be used for later discussion of the new opportunities at the LHC. Next I review the generic, qualitative expectations for the LHC. Then I turn to quantitative predictions: First I analyze observables which characterize directly the medium produced in the collisions - bulk observables or soft probes -: multiplicities, collective flow, hadrochemistry at low transverse momentum, correlations and fluctuations. Second, I move to calibrated probes of the medium i.e. typically those whose expectation in the absence of any medium can be described in Quantum Chromodynamics (QCD) using perturbative techniques (pQCD), usually called hard probes. I discuss particle production...

  2. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    Science.gov (United States)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  3. Heavy-Ion Collimation at the Large Hadron Collider Simulations and Measurements

    CERN Document Server

    AUTHOR|(CDS)2083002; Wessels, Johannes Peter; Bruce, Roderik; Wessels, Johannes Peter; Bruce, Roderik

    The CERN Large Hadron Collider (LHC) stores and collides proton and $^{208}$Pb$^{82+}$ beams of unprecedented energy and intensity. Thousands of superconducting magnets, operated at 1.9 K, guide the very intense and energetic particle beams, which have a large potential for destruction. This implies the demand for a multi-stage collimation system to provide protection from beam-induced quenches or even hardware damage. In heavy-ion operation, ion fragments with significant rigidity offsets can still scatter out of the collimation system. When they irradiate the superconducting LHC magnets, the latter risk to quench (lose their superconducting property). These secondary collimation losses can potentially impose a limitation for the stored heavy-ion beam energy. Therefore, their distribution in the LHC needs to be understood by sophisticated simulations. Such simulation tools must accurately simulate the particle motion of many different nuclides in the magnetic LHC lattice and simulate their interaction with t...

  4. Large Hadron Collider Physics (LHCP2017) conference | 15-20 May 2017 | Shanghai

    CERN Multimedia

    2016-01-01

    The fifth Annual Large Hadron Collider Physics will be held in Shanghai and hosted by Shanghai Jiao Tong University in the period of May 15-20, 2017. The main goal of the conference is to provide intense and lively discussions between experimenters and theorists in such research areas as the Standard Model Physics and Beyond, the Higgs Boson, Supersymmetry, Heavy Quark Physics and Heavy Ion Physics as well as to share a recent progress in the high luminosity upgrades and future colliders developments.     The LHCP2017 website: http://lhcp2017.physics.sjtu.edu.cn/ Event date: 15 - 20 May 2017 Location: Shanghai, China

  5. Probing gluon number fluctuation effects in future electron-hadron colliders

    CERN Document Server

    Amaral, J T; Kugeratski, M S

    2013-01-01

    The description of the QCD dynamics in the kinematical range which will be probed in the future electron - hadron colliders is still an open question. Although phenomenological studies indicate that the gluon number fluctuations, which are related to discreteness in the QCD evolution, are negligible at HERA, the magnitude of these effects for the next generation of colliders still should be estimated. In this paper we investigate inclusive and diffractive $ep$ observables considering a model for the physical scattering amplitude which describes the HERA data. Moreover, we estimate, for the first time, the contribution of the fluctuation effects for the nuclear structure functions. In the case of electron-proton collisions, our results indicate that the study of the longitudinal and diffractive structure functions can be useful to constrain the presence of gluon number fluctuations. In the case of electron-ion collisions, these effects are small.

  6. Accuracy of the Transverse Emittance Measurements of the CERN Large Hadron Collider

    CERN Document Server

    Roncarolo, Federico; Dehning, Bernd Dehning

    High energy accelerators and storage rings are designed to collide charged particle beams and study their collision products. The production rate of the collision products has to be maximized in order to reduce the statistical uncertainty of the produced events. Monitoring the transverse distribution of the accelerated species allows to measure and optimize the beam transverse emittance, which directly affects the secondary particles production rate. The beam transverse emittance is measured by a class of diagnostics, the transverse profile monitors, designed to observe the particles transverse distributions. This thesis work aims at determining the accuracy of two classes of profile monitors presently installed in the CERN accelerators and foreseen for the Large Hadron Collider (LHC): wire scanners and residual gas monitors. The explanation of the linear dynamics that characterize the particles transverse motion in an accelerator is followed by the description of the principles of operation of the studied mo...

  7. Kinematical Correlations for Higgs Boson Plus High P_{T} Jet Production at Hadron Colliders.

    Science.gov (United States)

    Sun, Peng; Yuan, C-P; Yuan, Feng

    2015-05-22

    We investigate the effect of QCD resummation to kinematical correlations in the Higgs boson plus high transverse momentum (P(T)) jet events produced at hadron colliders. We show that at the complete one-loop order, the Collins-Soper-Sterman resummation formalism can be applied to derive the Sudakov form factor. We compare the singular behavior of resummation calculation to fixed order prediction in the case that a Higgs boson and high P(T) jet are produced nearly back to back in their transverse momenta, and find perfect agreement. The phenomenological importance of the resummation effect at the LHC is also demonstrated.

  8. NLO production of W' bosons at hadron colliders using the MC@NLO and POWHEG methods

    CERN Document Server

    Papaefstathiou, Andreas

    2009-01-01

    We present a next-to-leading order (NLO) treatment of the production of a new charged heavy vector boson, generically called W', at hadron colliders via the Drell-Yan process. We fully consider the interference effects with the Standard Model W boson and allow for arbitrary chiral couplings to quarks and leptons. We present results at both leading order (LO) and NLO in QCD using the MC@NLO/Herwig++ and POWHEG methods. We derive observation curves on the mass-width plane for the LO case and give the significance for a sample of NLO mass-width points. The event generator used, Wpnlo, is fully customisable and publicly available.

  9. Electroweak corrections to top quark pair production in association with a hard photon at hadron colliders

    Science.gov (United States)

    Duan, Peng-Fei; Zhang, Yu; Wang, Yong; Song, Mao; Li, Gang

    2017-03-01

    We present the next-to-leading order (NLO) electroweak (EW) corrections to the top quark pair production associated with a hard photon at the current and future hadron colliders. The dependence of the leading order (LO) and NLO EW corrected cross sections on the photon transverse momentum cut are investigated. We also provide the LO and NLO EW corrected distributions of the transverse momentum of final top quark and photon and the invariant mass of top quark pair and top-antitop-photon system. The results show that the NLO EW corrections are significant in high energy regions due to the EW Sudakov effect.

  10. Experience with High-Intensity Beam Scraping and Tail Population at the Large Hadron Collider

    CERN Document Server

    Redaelli, S; Burkart, F; Bruce, R; Mirarchi, D; Salvachua, B; Valentino, G; Wollmann, D

    2013-01-01

    The population of beam tails at the Large Hadron Collider (LHC) is a source of concern for the operation at higher beam energies and intensities when even small fractions of the beam could represent a potential danger is case of slow or fast losses, e.g. caused by orbit transients or by collimator movements. Different studies have been performed using the technique of collimator scans to probe the beam tail population in different conditions. The experience accumulated during the operation at 3.5 TeV and 4 TeV is reviewed.

  11. Story of a journey: Rutherford to the Large Hadron Collider and onwards

    CERN Document Server

    Godbole, Rohini M

    2010-01-01

    In this article, I set out arguments why the Large Hadron Collider (LHC) : the machine and the experiments with it, are a watershed for particle physics. I give a historical perspective of the essential link between development of particle accelerators and that in our knowledge of the laws governing interactions among the fundamental particles, showing how this journey has reached destination LHC. I explain how the decisions for the LHC design; the energy and number of particles in the beam, were arrived at. I will end by discussing the LHC physics agenda and the time line in which the particle physicists hope to achieve it.

  12. Identification and Classification of Beam Loss Patterns in the Large Hadron Collider

    CERN Document Server

    Panagiotis, Theodoropoulos; Valentino, Gianluca; Redaelli, Stefano; Herbster, Mark

    The Large Hadron Collider, is the largest particle accelerator ever built, achieving record beam energy and beam intensity. Beam losses are unavoidable and can risk the safety of accelerator’s components. Beam loss maps are used to validate the collimation system, designed to protect the accelerator against beam losses. The complexity of this system requires well defined inspection methods and well defined case studies that ensure normal operation and efficient performance evaluation. In this work, enhancements are proposed to the existing validation methods with extensions towards automating the inspection mechanisms, introducing pattern recognition and statistical learning methods.

  13. Searches for the technicolor signatures via gg→W±π_t~(-+) at the Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin-Shu; SONG Tai-Ping; WANG Shuai-Wei; LU Gong-Ru

    2011-01-01

    In this paper, we calculate the production of a charged top pion in association with a W boson via gg fusion at CERN's Large Hadron Collider in the context of the topcolor assisted technicolor model. We find that the total cross section of pp→gg→W±π_t~(-+) is several dozen femtobarns with reasonable values of the parameters, and the total cross section of pp→W±π_t~(-+) can reach a few hundred femtobarns when we consider the sum of the contributions of these two parton subprocesses, gg→W±π_t~(-+) and bb~-→W±π_t~(-+).

  14. Probing new physics in diphoton production with proton tagging at the Large Hadron Collider

    CERN Document Server

    Fichet, S; Kepka, O.; Lenzi, B.; Royon, C.; Saimpert, M.

    2014-01-01

    The sensitivities to anomalous quartic photon couplings at the Large Hadron Collider are estimated using diphoton production via photon fusion. The tagging of the protons proves to be a very powerful tool to suppress the background and unprecedented sensitivities down to $6 \\cdot 10^{-15}$\\gev$^{-4}$ are obtained, providing a new window on extra dimensions and strongly-interacting composite states in the multi-TeV range. Generic contributions to quartic photon couplings from charged and neutral particles with arbitrary spin are also presented.

  15. The q{sub T} subtraction method for top-quark production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Bonciani, Roberto [Universita di Roma ' ' La Sapienza' ' , Dipartimento di Fisica, Rome (Italy); INFN, Sezione di Roma, Rome (Italy); Catani, Stefano [INFN, Sezione di Firenze, Sesto Fiorentino, Florence (Italy); Universita di Firenze, Dipartimento di Fisica e Astronomia, Sesto Fiorentino, Florence (Italy); Grazzini, Massimiliano; Sargsyan, Hayk; Torre, Alessandro [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland)

    2015-12-15

    We consider QCD radiative corrections to top-quark pair production at hadron colliders. We use the q{sub T} subtraction formalism to perform a fully differential computation for this process. Our calculation is accurate up to the next-to-leading order in QCD perturbation theory and it includes all the flavour off-diagonal partonic channels at the next-to-next-to-leading order. We present a comparison of our numerical results with those obtained with the publicly available numerical programs MCFM and Top++. (orig.)

  16. Boosting Higgs CP properties via VH production at the Large Hadron Collider

    Science.gov (United States)

    Godbole, Rohini; Miller, David J.; Mohan, Kirtimaan; White, Chris D.

    2014-03-01

    We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a bbbar pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately.

  17. Boosting Higgs CP properties via VH Production at the Large Hadron Collider

    CERN Document Server

    Godbole, Rohini; Mohan, Kirtimaan; White, Chris D

    2013-01-01

    We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a bb pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately.

  18. Standard Model Higgs boson searches with the ATLAS detector at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Aleandro Nisati; on behalf of the ATLAS Collaboration

    2012-10-01

    The investigation of the mechanism responsible for electroweak symmetry breaking is one of the most important tasks of the scientific program of the Large Hadron Collider. The experimental results on the search of the Standard Model Higgs boson with 1 to 2 fb-1 of proton–proton collision data at $\\sqrt{s} = 7$ TeV recorded by the ATLAS detector are presented and discussed. No significant excess of events is found with respect to the expectations from Standard Model processes, and the production of a Higgs boson is excluded at 95% Confidence Level for the mass regions 144–232, 256–282 and 296–466 GeV.

  19. Constraints on four-fermion interactions from the t anti t charge asymmetry at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Rosello, M.P.; Vos, M. [IFIC (UVEG/CSIC), Valencia (Spain)

    2016-04-15

    The charge asymmetry in top quark production at hadron colliders is sensitive to beyond-the-Standard-Model four-fermion interactions. In this study we compare the sensitivity of t anti t cross-section and charge asymmetry measurements to effective operators describing four-fermion interactions and study the limits on the validity of this approach. A fit to a combination of Tevatron and LHC measurements yields stringent limits on the linear combinations C{sub 1} and C{sub 2} of the four-fermion effective operators. (orig.)

  20. Treating jet correlations in high pile-up at hadron colliders

    Directory of Open Access Journals (Sweden)

    F. Hautmann

    2016-03-01

    Full Text Available Experiments in the high-luminosity runs at the Large Hadron Collider face the challenges of very large pile-up. Primary techniques to deal with this are based on precise vertex and track reconstruction. Outside tracker acceptances, however, lie regions of interest for many aspects of the LHC physics program. We explore complementary approaches to pile-up treatment and propose a data-driven jet-mixing method which can be used outside tracker acceptances without depending on Monte Carlo generators. The method can be applied to treat correlation observables and take into account, besides the jet transverse momentum pedestal, effects of hard jets from pile-up.

  1. Electroweak corrections to top quark pair production in association with a hard photon at hadron colliders

    CERN Document Server

    Duan, Peng-Fei; Wang, Yong; Song, Mao; Li, Gang

    2016-01-01

    We present the next-to-leading order (NLO) electroweak (EW) corrections to the top quark pair production associated with a hard photon at the current and future hadron colliders. The dependence of the leading order (LO) and NLO EW corrected cross sections on the photon transverse momentum cut are investigated. We also provide the LO and NLO EW corrected distributions of the transverse momentum of final top quark and photon and the invariant mass of top quark pair and top-antitop-photon system. The results show that the NLO EW corrections are significant in high energy regions due to the EW Sudakov effect.

  2. Lower limit on dark matter production at the CERN Large Hadron Collider.

    Science.gov (United States)

    Feng, Jonathan L; Su, Shufang; Takayama, Fumihiro

    2006-04-21

    We evaluate the prospects for finding evidence of dark matter production at the CERN Large Hadron Collider. We consider weakly interacting massive particles (WIMPs) and superWIMPs and characterize their properties through model-independent parametrizations. The observed relic density then implies lower bounds on dark matter production rates as functions of a few parameters. For WIMPs, the resulting signal is indistinguishable from background. For superWIMPs, however, this analysis implies significant production of metastable charged particles. For natural parameters, these rates may far exceed Drell-Yan cross sections and yield spectacular signals.

  3. W production at large transverse momentum at the CERN Large Hadron Collider.

    Science.gov (United States)

    Gonsalves, Richard J; Kidonakis, Nikolaos; Sabio Vera, Agustín

    2005-11-25

    We study the production of W bosons at large transverse momentum in pp collisions at the CERN Large Hadron Collider. We calculate the complete next-to-leading order (NLO) corrections to the differential cross section. We find that the NLO corrections provide a large increase to the cross section but, surprisingly, do not reduce the scale dependence relative to leading order (LO). We also calculate next-to-next-to-leading-order (NNLO) soft-gluon corrections and find that, although they are small, they significantly reduce the scale dependence thus providing a more stable result.

  4. Observable T_7 Lepton Flavor Symmetry at the Large Hadron Collider

    CERN Document Server

    Cao, Qing-Hong; Ma, Ernest; Okada, Hiroshi

    2010-01-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T_7 and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  5. Observable T7 lepton flavor symmetry at the Large Hadron Collider.

    Science.gov (United States)

    Cao, Qing-Hong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T(7) and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  6. Beam dynamics aspects of crab cavities in the CERN Large Hadron Collider

    CERN Document Server

    Sun, Y P; Barranco, J; Tomás, R; Weiler, T; Zimmermann, F; Calaga, R; Morita, A

    2009-01-01

    Modern colliders bring into collision a large number of bunches to achieve a high luminosity. The long-range beam-beam effects arising from parasitic encounters at such colliders are mitigated by introducing a crossing angle. Under these conditions, crab cavities (CC) can be used to restore effective head-on collisions and thereby to increase the geometric luminosity. Such crab cavities have been proposed for both linear and circular colliders. The crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The use of crab cavities in the Large Hadron Collider (LHC) may not only raise the luminosity, but it could also complicate the beam dynamics, e.g., crab cavities might not only cancel synchrobetatron resonances excited by the crossing angle but they could also excite new ones, they could reduce the dynamic aperture for off-momentum particles, they could influence the aperture and orbit...

  7. Particle collider magnet failure blamed on faulty engineering Experts are still weighing whether the hitch will delay the start-up of the Large Hadron Collider

    CERN Multimedia

    2007-01-01

    "Researchers have identified the cause of a hiccup in the construction of the world's next top particle smasher, the Large Hadron Collider (LHC). During stress tests last week at the European Laboratory for Particle Physics (CERN), a support structure tore loose from the housing of a keay ultracold magnet."(1 page)

  8. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    CERN Document Server

    Stancari, Giulio; Valishev, Alexander; Bruce, Roderik; Redaelli, Stefano; Rossi, Adriana; Ferrando, Belen Salvachua; Salvachua Ferrando, B

    2014-01-01

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. Within the US LHC Accelerator Research Program (LARP) and the European FP7 HiLumi LHC Design Study, we are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were check...

  9. The Large Hadron Collider of CERN and the roadmap toward higher performance

    CERN Document Server

    Rossi, L

    2012-01-01

    The Large Hadron Collider is exploring the new frontier of particle physics. It is the largest and most ambitious scientific instrument ever built and 100 years after the Rutherford experiment it continues that tradition of “smashing atoms” to unveil the secret of the infinitely small. LHC makes use of all what we learnt in 40 years of hadron colliders, in particular of ISR and Sp-pbarS at CERN and Tevatron at Fermilab, and it is based on Superconductivity, discovered also 100 years ago. Designing, developing the technology, building and finally commissioning the LHC took more than twenty years. While LHC is now successfully running, we are already preparing the future for the next step. First, by increasing of a factor five the LHC luminosity in ten years from now, and then by increasing its energy by a factor two or more, on the horizon of the next twenty years. These LHC upgrades, in luminosity and energy, will be the super-exploitation of the CERN infrastructure and is the best investment that the HEP...

  10. Supersymmetry, naturalness and the "fine-tuning price" of the Very Large Hadron Collider

    CERN Document Server

    Fowlie, Andrew

    2014-01-01

    The absence of supersymmetry or other new physics at the Large Hadron Collider (LHC) has lead many to question naturalness arguments. With Bayesian statistics, we argue that natural models are most probable and that naturalness is not merely an aesthetic principle. We calculate a probabilistic measure of naturalness, the Bayesian evidence, for the Standard Model (SM) with and without quadratic divergences, confirming that the SM with quadratic divergences is improbable. We calculate the Bayesian evidence for the Constrained Minimal Supersymmetric Standard Model (CMSSM) with naturalness priors in three cases: with only the $M_Z$ measurement; with the $M_Z$ measurement and LHC measurements; and with the $M_Z$ measurement, $m_h$ measurement and a hypothetical null result from a $\\sqrt{s}=100\\,\\text{TeV}$ Very Large Hadron Collider (VLHC) with $3000/\\text{fb}$. The "fine-tuning price" of the VLHC given LHC results would be $\\sim400$, which is slightly less than that of the LHC results given the electroweak scale ...

  11. Heavy-Quark Associated Production with One Hard Photon at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Hartanto, Heribertus Bayu [Florida State Univ., Tallahassee, FL (United States)

    2013-01-01

    We present the calculation of heavy-quark associated production with a hard photon at hadron colliders, namely $pp(p\\bar p) → Q\\bar Q +X$γ (for $Q=t,b$), at Next-to-Leading Order (NLO) in Quantum Chromodynamics (QCD). We study the impact of NLO QCD corrections on the total cross section and several differential distributions at both the Tevatron and the Large Hadron Collider (LHC). For $t\\bar t$γ production we observe a sizeable reduction of the renormalization and factorization scale dependence when the NLO QCD corrections are included, while for $b\\bar b$γ production a considerable scale dependence still persists at NLO in QCD. This is consistent with what emerges in similar processes involving $b$ quarks and vector bosons and we explain its origin in detail. For $b\\bar b$γ production we study both the case in which at least one $b$ jet and the case in which at least two $b$ jets are observed. We perform the $b\\bar b$γ calculation using the Four Flavor Number Scheme (4FNS) and compare the case where at least one $b$ jet is observed with the corresponding results from the Five Flavor Number Scheme (5FNS) calculation. Finally we compare our results for $p\\bar p →+b+X$γ with the Tevatron data.

  12. Conceptual design of hollow electron lenses for beam halo control in the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Stancari, Giulio [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Previtali, Valentina [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Valishev, Alexander [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Bruce, Roderik [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Redaelli, Stefano [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Rossi, Adriana [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Salvachua Ferrando, Belen [European Organization for Nuclear Research (CERN), Geneva (Switzerland)

    2014-06-26

    Collimation with hollow electron beams is a technique for halo control in high-power hadron beams. It is based on an electron beam (possibly pulsed or modulated in intensity) guided by strong axial magnetic fields which overlaps with the circulating beam in a short section of the ring. The concept was tested experimentally at the Fermilab Tevatron collider using a hollow electron gun installed in one of the Tevatron electron lenses. We are proposing a conceptual design for applying this technique to the Large Hadron Collider at CERN. A prototype hollow electron gun for the LHC was built and tested. The expected performance of the hollow electron beam collimator was based on Tevatron experiments and on numerical tracking simulations. Halo removal rates and enhancements of halo diffusivity were estimated as a function of beam and lattice parameters. Proton beam core lifetimes and emittance growth rates were checked to ensure that undesired effects were suppressed. Hardware specifications were based on the Tevatron devices and on preliminary engineering integration studies in the LHC machine. Required resources and a possible timeline were also outlined, together with a brief discussion of alternative halo-removal schemes and of other possible uses of electron lenses to improve the performance of the LHC.

  13. Studies of Machine Protections for Fast Crab Cavity Failures in the High Luminosity Large Hadron Collider

    CERN Document Server

    Yee Rendon, Bruce; Lopez, Ricardo

    2014-01-01

    Crab Cavities (CCs) play a main role in the High Luminosity Large Hadron Collider (HL-LHC) project for increasing the luminosity of the Large Hadron Collider (LHC). Their successful installation at KEKB accelerator allowed reaching a peak luminosity of 2.1x10^34/cm^2/s. However, CCs have exhibited abrupt changes of phase and voltage during a time period of the order of a few LHC turns. If similar scenarios take place in the HL-LHC, considering the significant stored energy in the beam, CC failures represent a serious threat in regard to LHC machine protection. This thesis presents and discusses the effect of CC voltage or phase changes on a time interval similar to, or longer than, the one needed to dump the beam. The simulations assume a quasi-stationary state (QSS) distribution, before the failure is produced, in order to assess the particles losses for the HL-LHC. These distributions produce beam losses below the safe operation threshold for Gaussian tails, while, for non-Gaussian tails, they are on the sa...

  14. Top-Quark Initiated Processes at High-Energy Hadron Colliders

    CERN Document Server

    Han, Tao; Westhoff, Susanne

    2014-01-01

    In hadronic collisions at high energies, the top-quark may be treated as a parton inside a hadron. Top-quark initiated processes become increasingly important since the top-quark luminosity can reach a few percent of the bottom-quark luminosity. In the production of a heavy particle $H$ with mass $m_H > m_t$, treating the top-quark as a parton allows us to resum large logarithms $\\log(m_{H}^{2}/m_{t}^{2}$) arising from collinear splitting in the initial state. We quantify the effect of collinear resummation at the 14-TeV LHC and a future 100-TeV hadron collider, focusing on the top-quark open-flavor process $gg\\to t\\bar t H$ in comparison with $t\\bar t \\to H$ and $tg\\rightarrow tH$ at the leading order (LO) in QCD. We employ top-quark parton distribution functions with appropriate collinear subtraction and power counting. We find that (1) Collinear resummation enhances the inclusive production of a heavy particle with $m_H\\approx$ 5 TeV (0.5 TeV) by more than a factor of two compared to the open-flavor proces...

  15. Searches for the technicolor signatures via gg ) W±+πtT at the Large Hadron Collider%Searches for the technicolor signatures via gg ) W±+πtT at the Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    黄金书; 宋太平; 王帅伟; 鲁公儒

    2011-01-01

    In this paper, we calculate the production of a charged top pion in association with a W boson via gg fusion at CERN's Large Hadron Collider in the context of the topcolor assisted technicolor model. We find that the total cross section of pp → gg → W±+πt

  16. 62-TeV center of mass hadron collider with superbunch beams

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, R. [FNAL, Batavia, IL (United States); Takayama, K.; Kishiro, J.; Wake, M.; Toyama, T.; Nakamura, E.; Shimosaki, Y. [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Watanabe, N. [Tokyo Institute of Technology, Yokohama, Kanagawa (Japan)

    2003-03-01

    The scheme of a 62-TeV center of mass p-p collider with superbunch beams at Fermilab is proposed as a practical and realistically achievable future project. It will be built in two stages, using the same tunnel, first with a 2 Tesla low field magnet collider ring and later with a 10 Tesla high field magnet collider ring. Both low and high field magnets have twin bore apertures and will be installed in the tunnel with the circumference of 87.25 km. In each bore a proton beam is accelerated, using induction cavities to increase luminosity. In the first stage we install a 7 TeV accelerator ring with operating field of 2 Tesla, based on the superferric transmission-line design. This ring will be operated as a 14-TeV center of mass collider. This will have the same energy as the LHC, but it will have 15 times higher luminosity, namely 1.5x10{sup 35}/cm{sup 2}/sec. The estimated synchrotron radiation is negligible with this machine. The existing Fermilab accelerator system, including the 150 GeV main injector, will be used as the injector system. Its rough cost estimation and schedule for this first stage are presented. In the second stage proton beams are accelerated, also using induction cavities up to 31 TeV with the 10 Tesla dipole magnets. The counter circulating beams will collide with the 62-TeV center of mass energy. With the superbunch beams we can expect the luminosity can be increased more than the conventional method with RF cavities. It will be 5x10{sup 34}/cm{sup 2}/sec. In the second stage, the synchrotron radiation power will be about 12 W/m, which will be the limiting factor for beam intensity, and we need an elaborate beam screen. In appendix another hadron collider up to 90 to 100 TeV center of mass energy is attached. (author)

  17. Massively Parallel Computing at the Large Hadron Collider up to the HL-LHC

    CERN Document Server

    AUTHOR|(CDS)2080997; Halyo, Valerie

    2015-01-01

    As the Large Hadron Collider (LHC) continues its upward progression in energy and luminosity towards the planned High-Luminosity LHC (HL-LHC) in 2025, the challenges of the experiments in processing increasingly complex events will also continue to increase. Improvements in computing technologies and algorithms will be a key part of the advances necessary to meet this challenge. Parallel computing techniques, especially those using massively parallel computing (MPC), promise to be a significant part of this effort. In these proceedings, we discuss these algorithms in the specific context of a particularly important problem: the reconstruction of charged particle tracks in the trigger algorithms in an experiment, in which high computing performance is critical for executing the track reconstruction in the available time. We discuss some areas where parallel computing has already shown benefits to the LHC experiments, and also demonstrate how a MPC-based trigger at the CMS experiment could not only improve perf...

  18. Black holes in many dimensions at the CERN large Hadron collider testing critical string theory

    CERN Document Server

    Hewett, J L; Rizzo, T G; Hewett, JoAnne L.; Lillie, Ben; Rizzo, Thomas G.

    2005-01-01

    We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With ~20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, n. In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if n is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.

  19. Cryogenic safety aspect of the low -$\\beta$ magnest systems at the Large Hadron Collider (LHC)

    Energy Technology Data Exchange (ETDEWEB)

    Darve, C.; /Fermilab

    2010-07-01

    The low-{beta} magnet systems are located in the LHC insertion regions around the four interaction points. They are the key elements in the beams focusing/defocusing process and will allow proton collisions at a luminosity of up to 10{sup 34}cm{sup -2}s{sup -1}. Large radiation dose deposited at the proximity of the beam collisions dictate stringent requirements for the design and operation of the systems. The hardware commissioning phase of the LHC was completed in the winter of 2010 and permitted to validate this system safe operation. This paper presents the analysis used to qualify and quantify the safe operation of the low-{beta} magnet systems in the Large Hadron Collider (LHC) for the first years of operation.

  20. The Radiological Situation in the Beam-Cleaning Sections of the CERN Large Hadron Collider (LHC)

    CERN Document Server

    Brugger, Markus; Stevenson, Graham

    2003-01-01

    This thesis contributes to radiological assessments of the design and operation of the Large Hadron Collider currently under construction at CERN. In particular, the scope of this thesis is to examine the beam cleaning insertions - two of the main loss regions of the LHC where beam particles which would otherwise cause unwanted losses at different places of the machine are purposely intercepted. Two critical issues with regard to the protection of personnel and environment are studied: remanent dose rates due to induced radioactivity and airborne radioactivity. Although a detailed estimate of remanent dose rates is important for an optimization of later maintenance interventions only very limited information on remanent dose rates to be expected around the collimators was available so far. This thesis is an attempt to extend the knowledge considerably, especially by applying a new calculational method. Since this new approach is used for the first time in the design of the LHC a careful benchmarking with expe...

  1. Higgs self-coupling measurements at a 100 TeV hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Barr, Alan J. [Denys Wilkinson Building, Oxford (United Kingdom); Dolan, Matthew J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Englert, Christoph [Univ. of Glasgow, Glasgow (United Kingdom); Ferreira de Lima, Enoque Danilo [Univ. of Glasgow, Glasgow (United Kingdom); Durham Univ. (United Kingdom); Spannowsky, Michael [Durham Univ. (United Kingdom)

    2015-02-03

    An important physics goal of a possible next-generation high-energy hadron collider will be precision characterisation of the Higgs sector and electroweak symmetry breaking. A crucial part of understanding the nature of electroweak symmetry breaking is measuring the Higgs self-interactions. We study dihiggs production in proton-proton collisions at 100 TeV centre of mass energy in order to estimate the sensitivity such a machine would have to variations in the trilinear Higgs coupling around the Standard Model expectation. We focus on the bb¯γγ final state, including possible enhancements in sensitivity by exploiting dihiggs recoils against a hard jet. In conclusion, we find that it should be possible to measure the trilinear self-coupling with 40% accuracy given 3/ab and 12% with 30/ab of data.

  2. Thermomechanical properties of the coil of the superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Couturier, K; Scandale, Walter; Todesco, Ezio; Tommasini, D

    2002-01-01

    The correct definition and measurement of the thermomechanical properties of the superconducting cable used in high-field magnets is crucial to study and model the behavior of the magnet coil from assembly to the operational conditions. In this paper, the authors analyze the superconducting coil of the main dipoles for the Large Hadron Collider. They describe an experimental setup for measuring the elastic modulus at room and at liquid nitrogen temperature and for evaluating the thermal contraction coefficient. The coils exhibit strong nonlinear stress-strain behavior characterized by hysteresis phenomena, which decreases from warm to cold temperature, and a thermal contraction coefficient, which depends on the stress applied to the cable during cooldown. (35 refs).

  3. Manufacturing and Installation of the Compound Cryogenic Distribution Line for the Large Hadron Collider

    CERN Document Server

    Riddone,, G; Bouillot, A; Brodzinski, K; Dupont, M; Fathallah, M; Fournel, JL; Gitton, E; Junker, S; Moussavi, H; Parente, C; Riddone, G

    2007-01-01

    The Large Hadron Collider (LHC) [1] currently under construction at CERN will make use of superconducting magnets operating in superfluid helium below 2 K. A compound cryogenic distribution line (QRL) will feed with helium at different temperatures and pressures the local elementary cooling loops in the cryomagnet strings. Low heat inleak to all temperature levels is essential for the overall LHC cryogenic performance. Following a competitive tendering, CERN adjudicated in 2001 the contract for the series line to Air Liquide (France). This paper recalls the main features of the technical specification and shows the project status. The basic choices and achievements for the industrialization phase of the series production are also presented, as well as the installation issues and status.

  4. Industrial Technology for Unprecented Energy and Luminosity The Large Hadron Collider

    CERN Document Server

    Lebrun, P

    2004-01-01

    With over 3 billion Swiss francs procurement contracts under execution in industry and the installation of major technical systems in its first 3.3 km sector, the Large Hadron Collider (LHC) construction is now in full swing at CERN, the European Organization for Nuclear Research. The LHC is not only the most challenging particle accelerator, it is also the largest global project ever for a scientific instrument based on advanced technology. Starting from accelerator performance requirements, we recall how these can be met by an appropriate combination of technologies, such as high-field superconducting magnets, superfluid helium cryogenics, power electronics, with particular emphasis on developments required to meet demanding specifications, and industrialization issues which had to be solved for achieving series production of precision components under tight quality assurance and within limited resources. This provides the opportunity for reviewing the production status of the main systems and the progress ...

  5. eμ Production in R-Parity Violating Supersymmetric Model at Hadron Colliders

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We investigate the lepton flavor violating productions (p-)p/pp → eμ + X in the framework of the R-parity violating (RPV) supersymmetric model at the Tevatron and the CERN large hadron collider (LHC). We present the total cross sections including the next-to-leading order (NLO) QCD corrections and the contribution from gluon-gluon fusion subprocess. Our numerical results show that the one-loop QCD corrections significantly increase the tree-level cross sections, and the variation of K factor is in the range between 1.28 (1.32) and 1.79 (1.58) at the Tevatron (LHC).We find that the QCD correction from the one-loop gluon-gluon fusion subprocess is remarkable at the LHC and should be taken into account.

  6. Transverse-momentum resummation for slepton-pair production at the CERN Large Hadron Collider

    Science.gov (United States)

    Bozzi, G.; Fuks, B.; Klasen, M.

    2006-07-01

    We perform a first precision calculation of the transverse-momentum (qT) distribution of slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider. We implement soft-gluon resummation at the next-to-leading logarithmic level and consistently match the obtained result to the pure fixed-order perturbative result at leading order in the QCD coupling constant, i.e. O(αs). We give numerical predictions for τ˜1τ˜1* and τ˜1ν˜τ*+τ˜1*ν˜τ production, also implementing recent parametrizations of nonperturbative effects. The results show a relevant contribution of resummation both in the small and intermediate qT-regions and little dependence on unphysical scales and nonperturbative contributions.

  7. Transverse-momentum resummation for slepton-pair production at the CERN large hadron collider

    CERN Document Server

    Bozzi, G; Klasen, M

    2006-01-01

    We perform a first precision calculation of the transverse-momentum (q_T) distribution of slepton pair and slepton-sneutrino associated production at the CERN Large Hadron Collider (LHC). We implement soft-gluon resummation at the next-to-leading logarithmic (NLL) level and consistently match the obtained result to the pure fixed-order perturbative result at leading order (LO) in the QCD coupling constant, i.e. O(alpha_s). We give numerical predictions for stau_1 stau_1^* and stau_1 sneutrino_tau^* + stau_1^* sneutrino_tau production, also implementing recent parameterizations of non-perturbative effects. The results show a relevant contribution of resummation both in the small and intermediate q_T-regions and little dependence on unphysical scales and non-perturbative contributions.

  8. Effects of the anomalous Higgs couplings on the Higgs boson production at the Large Hadron Collider

    CERN Document Server

    Kanemura, Shinya

    2008-01-01

    We study the impact of dimension-six operators on single- and double-Higgs production via gluon fusion at the Large Hadron Collider (LHC). If the top-Yukawa coupling is modified by some new physics whose scale is of the TeV scale, its effect changes the cross sections of single-Higgs production $gg\\to H$ and double-Higgs production $gg\\to HH$ through the top-loop diagram. In particular, double-Higgs production can receive significant enhancement from the effective top-Yukawa coupling and the new dimension-five coupling $t{\\bar t}HH$ which are induced by the dimension-six operator. Comparing these results to the forthcoming data at the LHC, one can extract information of the dimension-six operators relevant to the top quark and the Higgs boson.

  9. $W^{pm}H^{mp}$ Associated Production at the Large Hadron Collider

    CERN Document Server

    Barrientos-Bendezu, A A

    1999-01-01

    We study the production of a charged Higgs boson in association with a W boson at the CERN Large Hadron Collider in the context of the minimal supersymmetric extension of the standard model. This production mechanism is particularly promising if the charged Higgs boson is too heavy to be generated by top-quark decay. We compare the contributions due to b b-bar annihilation at the tree level and gg fusion, which proceeds at one loop. Apart from the total cross section, we also consider distributions in transverse momentum and rapidity. We also assess the viability of W^+- H^-+ associated production at the Fermilab Tevatron after the installation of the Main Injector and the Recycler.

  10. Commercial associative memory performance for applications in track-based triggers at the Large Hadron Collider

    Science.gov (United States)

    Webster, Jordan

    2017-01-01

    Dense track environments in pp collisions at the Large Hadron Collider (LHC) motivate the use of triggers with dedicated hardware for fast track reconstruction. The ATLAS Collaboration is in the process of implementing a Fast Tracker (FTK) trigger upgrade, in which Content Addressable Memories (CAMs) will be used to rapidly match hit patterns with large banks of simulated tracks. The FTK CAMs are produced primarily at the University of Pisa. However, commercial CAM technology is rapidly developing due to applications in computer networking devices. This poster presents new studies comparing FTK CAMs to cutting-edge ternary CAMs developed by Cavium. The comparison is intended to guide the design of future track-based trigger systems for the next Phase at the LHC.

  11. The ERL-based Design of Electron-Hadron Collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, Vadim [et al.

    2016-06-01

    Recent developments of the ERL-based design of future high-luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design ($L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.

  12. Exergy Analysis of the Cryogenic Helium Distribution System for the Large Hadron Collider (LHC)

    CERN Document Server

    Claudet, S; Tavian, L; Wagner, U

    2010-01-01

    The Large Hadron Collider (LHC) at CERN features the world’s largest helium cryogenic system, spreading over the 26.7 km circumference of the superconducting accelerator. With a total equivalent capacity of 145 kW at 4.5 K including 18 kW at 1.8 K, the LHC refrigerators produce an unprecedented exergetic load, which must be distributed efficiently to the magnets in the tunnel over the 3.3 km length of each of the eight independent sectors of the machine. We recall the main features of the LHC cryogenic helium distribution system at different temperature levels and present its exergy analysis, thus enabling to qualify second-principle efficiency and identify main remaining sources of irreversibility..

  13. Parton distribution functions probed in ultraperipheral collisions at the CERN Large Hadron Collider

    CERN Document Server

    Thomas, J; Brady, N; Clark, D B; Godat, E; Olness, F

    2016-01-01

    Vector meson production in ultra-peripheral pA and AA collisions at the CERN Large Hadron Collider (LHC) are very sensitive to Parton Distribution Functions (PDF) as well as to their leading-order, next-to-leading-order, and medium corrections. This process is a complimentary tool to explore the effects of different PDFs in particle production in proton-nucleus and nucleus-nucleus central collisions. Existing and forthcoming data available, e.g., from ALICE and CMS, may be used in conjunction with our theoretical predictions to constrain the PDFs. We make predictions for rapidity distributions and for cross sections of J/$\\psi$ , $\\psi(2S)$ and $\\Upsilon$ production at $\\sqrt{s_{NN}}=2.76$ TeV and $\\sqrt{s_{NN}}=5$ TeV. We use the second energy as representative for the Run 2 of PbPb collisions at the LHC.

  14. Data-driven estimation of neutral pileup particle multiplicity in high-luminosity hadron collider environments

    CERN Document Server

    Colecchia, Federico

    2015-01-01

    The upcoming operation regimes of the Large Hadron Collider are going to place stronger requirements on the rejection of particles originating from pileup, i.e. from interactions between other protons. For this reason, particle weighting techniques have recently been proposed in order to subtract pileup at the level of individual particles. We describe a choice of weights that, unlike others that rely on particle proximity, exploits the particle-level kinematic signatures of the high-energy scattering and of the pileup interactions. We illustrate the use of the weights to estimate the number density of neutral pileup particles inside individual events, and we elaborate on the complementarity between ours and other methods. We conclude by suggesting the idea of combining different sets of weights with a view to exploiting different features of the underlying processes for improved pileup subtraction at higher luminosity.

  15. W+ W- production at hadron colliders in next to next to leading order QCD.

    Science.gov (United States)

    Gehrmann, T; Grazzini, M; Kallweit, S; Maierhöfer, P; von Manteuffel, A; Pozzorini, S; Rathlev, D; Tancredi, L

    2014-11-21

    Charged gauge boson pair production at the Large Hadron Collider allows detailed probes of the fundamental structure of electroweak interactions. We present precise theoretical predictions for on-shell W+ W- production that include, for the first time, QCD effects up to next to next to leading order in perturbation theory. As compared to next to leading order, the inclusive W+ W- cross section is enhanced by 9% at 7 TeV and 12% at 14 TeV. The residual perturbative uncertainty is at the 3% level. The severe contamination of the W+ W- cross section due to top-quark resonances is discussed in detail. Comparing different definitions of top-free W+ W- production in the four and five flavor number schemes, we demonstrate that top-quark resonances can be separated from the inclusive W+ W- cross section without a significant loss of theoretical precision.

  16. "Light" Higgs and warped models: Case for a Gigantic International Hadron Collider

    CERN Document Server

    Soni, Amarjit

    2013-01-01

    The LHC seems to have made a monumental discovery, Higgs-like particle of mass around 125 GeV with properties akin to a Standard Model Higgs. In the context of a warped theory of flavor, which is theoretically very attractive, this suggests Kaluza-Klein particle masses are likely to be above 10 TeV except possibly for a radion. The interpretation of the SM-like Higgs from the perspective of other interesting beyond the SM scenarios is also likely that the relevant scale is higher than accessible to the LHC. In light of these developments, deeper understanding of flavor and other fundamental issues requires a gigantic international hadron collider [GIHC] perhaps with cm energy of $\\approx$ 100 TeV \\cite{2talks}. It is suggested that a {\\it global effort} should be made for constructing this machine for resolving many questions that SM cannot answer.

  17. Role-Based Access Control for the Large Hadron Collider at CERN

    CERN Document Server

    Yastrebov, I

    2010-01-01

    Large Hadron Collider (LHC) is the largest scientific instrument ever created. It was built with the intention of testing the most extreme conditions of the matter. Taking into account the significant dangers of LHC operations, European Organization for Nuclear Research (CERN) has developed multi-pronged approach for machine safety, including access control system. This system is based on role-based access control (RBAC) concept. It was designed to protect from accidental and unauthorized access to the LHC and injector equipment. This paper introduces the new model of the role-based access control developed at CERN and gives detailed mathematical description of it. We propose a new technique called dynamic authorization that allows deploying RBAC gradually in the large systems. Moreover, we show how the protection for the very large distributed equipment control system may be implemented in efficient way. This paper also describes motivation of the project, requirements and overview of the main components: au...

  18. Beam-induced energy deposition issues in the Very Large Hadron Collider

    CERN Document Server

    Mokhov, N V; Foster, G W

    2001-01-01

    Energy deposition issues are extremely important in the Very Large Hadron Collider (VLHC) with huge energy stored in its 20 TeV (Stage-1) and 87.5 TeV (Stage-2) beams. The status of the VLHC design on these topics, and possible solutions of the problems are discussed. Protective measures are determined based on the operational and accidental beam loss limits for the prompt radiation dose at the surface, residual radiation dose, ground water activation, accelerator components radiation damage and quench stability. The beam abort and beam collimation systems are designed to protect accelerator from accidental and operational beam losses, IP region quadrupoles from irradiation by the products of beam-beam collisions, and to reduce the accelerator-induced backgrounds in the detectors. (7 refs).

  19. Fast supersymmetry phenomenology at the Large Hadron Collider using machine learning techniques

    CERN Document Server

    Buckley, A; White, M J

    2011-01-01

    A pressing problem for supersymmetry (SUSY) phenomenologists is how to incorporate Large Hadron Collider search results into parameter fits designed to measure or constrain the SUSY parameters. Owing to the computational expense of fully simulating lots of points in a generic SUSY space to aid the calculation of the likelihoods, the limits published by experimental collaborations are frequently interpreted in slices of reduced parameter spaces. For example, both ATLAS and CMS have presented results in the Constrained Minimal Supersymmetric Model (CMSSM) by fixing two of four parameters, and generating a coarse grid in the remaining two. We demonstrate that by generating a grid in the full space of the CMSSM, one can interpolate between the output of an LHC detector simulation using machine learning techniques, thus obtaining a superfast likelihood calculator for LHC-based SUSY parameter fits. We further investigate how much training data is required to obtain usable results, finding that approximately 2000 po...

  20. Higgs boson production at hadron colliders in the k{sub T}-factorization approach

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, A.V.; Zotov, N.P. [Moskovskij Gosudarstvennyj Univ., Moscow (Russian Federation). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki

    2005-01-01

    We consider the Higgs boson production at high energy hadron colliders in the framework of the {kappa}{sub T}-factorization approach. The attention is focused on the dominant gluon-gluon fusion subprocess. We calculate the total cross section and transverse momentum distributions of the inclusive Higgs production using unintegrated gluon distributions in a proton obtained from the full CCFM evolution equation. We show that {kappa}{sub T}-factorization gives a possibility to investigate the associated Higgs boson and jets production. We calculate the transverse momentum distributions and study the Higgs-jet and jet-jet azimuthal correlations in the Higgs+one or two jet production processes. We demonstrate the importance of the higher-order corrections within the {kappa}{sub T}-factorization approach. These corrections should be developed and taken into account in the future applications. (orig.)

  1. Crab dispersion and its impact on the CERN Large Hadron Collider collimation

    CERN Document Server

    Sun, P; Tomàs, R; Zimmermann, F

    2010-01-01

    Crab cavities are proposed to be used for a luminosity upgrade of the Large Hadron Collider (LHC). Crab cavities are rf cavities operated in a transverse dipole mode, which imparts on the beam particles a transverse kick that varies with the longitudinal position along the bunch. The crab cavity introduces another kind of dispersion to the particles which is z dependent, and thus could complicate the beam dynamics and have an impact on the LHC collimation system. As for LHC, the off-momentum beta-beat and dispersion-beat already compromise the performance of the collimation system; the crab dispersion introduced by global crab cavities might do the same, and should be carefully evaluated. In this paper, we present a definition for the crab dispersion, and study its impact on the LHC collimation system.

  2. Kalman-Filter-Based Particle Tracking on Parallel Architectures at Hadron Colliders

    CERN Document Server

    Cerati, Giuseppe; Lantz, Steven; McDermott, Kevin; Riley, Dan; Tadel, Matevž; Wittich, Peter; Würthwein, Frank; Yagil, Avi

    2016-01-01

    Power density constraints are limiting the performance improvements of modern CPUs. To address this we have seen the introduction of lower-power, multi-core processors such as GPGPU, ARM and Intel MIC. To stay within the power density limits but still obtain Moore's Law performance/price gains, it will be necessary to parallelize algorithms to exploit larger numbers of lightweight cores and specialized functions like large vector units. Track finding and fitting is one of the most computationally challenging problems for event reconstruction in particle physics. At the High-Luminosity Large Hadron Collider (HL-LHC), for example, this will be by far the dominant problem. The need for greater parallelism has driven investigations of very different track finding techniques such as Cellular Automata or Hough Transforms. The most common track finding techniques in use today, however, are those based on the Kalman Filter. Significant experience has been accumulated with these techniques on real tracking detector sy...

  3. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2014-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  4. Calibration of the CMS Pixel Detector at the Large Hadron Collider

    CERN Document Server

    Vami, Tamas Almos

    2015-01-01

    The Compact Muon Solenoid (CMS) detector is one of two general-purpose detectors that reconstruct the products of high energy particle interactions at the Large Hadron Collider (LHC) at CERN. The silicon pixel detector is the innermost component of the CMS tracking system. It determines the trajectories of charged particles originating from the interaction region in three points with high resolution enabling precise momentum and impact parameter measurements in the tracker. The pixel detector is exposed to intense ionizing radiation generated by particle collisions in the LHC. This irradiation could result in temporary or permanent malfunctions of the sensors and could decrease the efficiency of the detector. We have developed procedures in order to correct for these effects. In this paper, we present the types of malfunctions and the offline calibration procedures. We will also show the efficiency and the resolution of the detector in 2012.

  5. Landscape of supersymmetric particle mass hierarchies and their signature space at the CERN Large Hadron Collider.

    Science.gov (United States)

    Feldman, Daniel; Liu, Zuowei; Nath, Pran

    2007-12-21

    The minimal supersymmetric standard model with soft breaking has a large landscape of supersymmetric particle mass hierarchies. This number is reduced significantly in well-motivated scenarios such as minimal supergravity and alternatives. We carry out an analysis of the landscape for the first four lightest particles and identify at least 16 mass patterns, and provide benchmarks for each. We study the signature space for the patterns at the CERN Large Hadron Collider by analyzing the lepton+ (jet> or =2) + missing P{T} signals with 0, 1, 2, and 3 leptons. Correlations in missing P{T} are also analyzed. It is found that even with 10 fb{-1} of data a significant discrimination among patterns emerges.

  6. Fluctuations as a test of chemical nonequilibrium at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Begun, Viktor

    2016-11-01

    It is shown that large chemical potential leads to the significant increase of multiplicity fluctuations for bosons, and makes the fluctuations infinite in the case of Bose-Einstein condensation. It allows us to distinguish between the models that explain the anomalous proton to pion ratio and the low transverse momentum enhancement of pion spectra in Pb+Pb collisions at the Large Hadron Collider within chemical equilibrium or nonequilibrium models. The effects of resonance decays, finite size of the system, requirements to the event statistics, different momentum cuts, and limited detector acceptance are considered. The obtained results show the possibility to observe a substantial increase of the normalized kurtosis for positively or negatively charged pions in the case of nonequilibrium or partial pion condensation using currently measured data.

  7. Cost-Benefit Analysis of the Large Hadron Collider to 2025 and beyond

    CERN Document Server

    Florio, Massimo; Sirtori, Emanuela

    2015-01-01

    Social cost-benefit analysis (CBA) of projects has been successfully applied in different fields such as transport, energy, health, education, and environment, including climate change. It is often argued that it is impossible to extend the CBA approach to the evaluation of the social impact of research infrastructures, because the final benefit to society of scientific discovery is generally unpredictable. Here, we propose a quantitative approach to this problem, we use it to design an empirically testable CBA model, and we apply it to the the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by determining their value to users (scientists, early-stage researchers, firms, visitors) and non-users (the general public). Four classes of contributions to users are identified: knowledge output, human capital development, technological spillovers, and cultural effects. Benefits for non-users can be ...

  8. The ERL-based Design of Electron-Hadron Collider eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Ptitsyn, Vadim; et al.

    2016-06-01

    Recent developments of the ERL-based design of future high luminosity electron-hadron collider eRHIC focused on balancing technological risks present in the design versus the design cost. As a result a lower risk design has been adopted at moderate cost increase. The modifications include a change of the main linac RF frequency, reduced number of SRF cavity types and modified electron spin transport using a spin rotator. A luminosity-staged approach is being explored with a Nominal design ($L \\sim 10^{33} {\\rm cm}^2 {\\rm s}^{-1}$) that employs reduced electron current and could possibly be based on classical electron cooling, and then with the Ultimate design ($L \\gt 10^{34} {\\rm cm}^{-2} {\\rm s}^{-1}$) that uses higher electron current and an innovative cooling technique (CeC). The paper describes the recent design modifications, and presents the full status of the eRHIC ERL-based design.

  9. Performance Assessment of 239 Series Sub-cooling Heat Exchangers for the Large Hadron Collider

    CERN Document Server

    Riddone, G; Roussel, P; Moracchioli, R; Tavian, L

    2006-01-01

    Helium sub-cooling heat exchangers of the counter-flow type are used to minimize the vapor fraction produced in the final expansion of the 1.9 K distributed cooling loops used for cooling the superconducting magnets of the Large Hadron Collider (LHC). These components are of compact design, featuring low-pressure drop and handling very low pressure vapor at low temperature. Following a qualification phase of prototypes, a contract has been placed in European industry for the supply of 239 heat exchanger units. Different levels of extracted heat load require three different variants of heat exchangers. This paper will describe the manufacturing phase with emphasis on the main difficulties encountered to keep the production quality after a brief recall of the prototype phase. Finally, the acceptance tests performed at room temperature and at the nominal cryogenic condition at the factory and at CEA-Grenoble will be presented.

  10. Willingness to pay for basic research: a contingent valuation experiment on the large hadron collider

    CERN Document Server

    Catalano, Gelsomina; Giffoni, Francesco

    2016-01-01

    An increasing number of countries and institutions are investing in large-scale research infrastructures (RIs) and in basic research. Scientific discoveries, which are expected thanks to RIs, may have a non-use value, in analogy with environmental and cultural public goods. This paper provides, for the first time, an empirical estimation of the willingness to pay (WTP) for discoveries in basic research by the general public. We focus on the Large Hadron Collider (LHC), the largest particle accelerator worldwide, where in 2012 the Higgs boson was discovered. Nobody knows the practical value of such discovery, beyond knowledge per se. The findings of our study are based on a dichotomous choice contingent valuation (CV) survey carried out in line with the NOAA guidelines. The survey involved 1,022 undergraduate students enrolled in more than 30 different degrees (including the humanities) at five universities located in four countries (Italy, France, Spain, UK). We ask two main research questions: Which are the ...

  11. Precision Muon Tracking at Future Hadron Colliders with sMDT Chambers

    CERN Document Server

    INSPIRE-00218368; Kroha, Hubert; Müller, Felix; Nowak, Sebastian; Richter, Robert

    2016-01-01

    Small-diameter muon drift tube (sMDT) chambers are a cost-effective technology for high-precision muon tracking. The rate capability of the sMDT chambers has been extensively tested at the Gamma Irradiation Facility at CERN in view of expected rates at future high-energy hadron colliders. Results show that it fulfills the requirements over most of the acceptance of muon detectors. The optimization of the read-out electronics to further increase the rate capability of the detectors is discussed. Chambers of this type are under construction for upgrades of the muon spectrometer of the ATLAS detector at high LHC luminosities. Design and construction procedures have been optimized for mass production while providing a precision of better than 10 micrometers in the sense wire positions and the mechanical stability required to cover large areas.

  12. Black holes in many dimensions at the CERN Large Hadron Collider: testing critical string theory.

    Science.gov (United States)

    Hewett, JoAnne L; Lillie, Ben; Rizzo, Thomas G

    2005-12-31

    We consider black hole production at the CERN Large Hadron Collider (LHC) in a generic scenario with many extra dimensions where the standard model fields are confined to a brane. With approximately 20 dimensions the hierarchy problem is shown to be naturally solved without the need for large compactification radii. We find that in such a scenario the properties of black holes can be used to determine the number of extra dimensions, . In particular, we demonstrate that measurements of the decay distributions of such black holes at the LHC can determine if is significantly larger than 6 or 7 with high confidence and thus can probe one of the critical properties of string theory compactifications.

  13. A polarized window for left-right symmetry at the Large Hadron-Electron Collider

    CERN Document Server

    Mondal, Subhadeep

    2015-01-01

    The breaking of parity, a fundamental symmetry between left and right is best understood in the framework of left-right symmetric extension of the standard model. We show that the production of a heavy right-handed neutrino at the proposed Large Hadron-Electron Collider (LHeC) could give us the most simple and direct hint of the scale of this breaking in left-right symmetric theories. This production mode gives a lepton number violating signal with $\\Delta L=2$ which is very clean and has practically no standard model background. We highlight that the right-handed nature of $W_R$ exchange which defines the left-right symmetric theories can be confirmed by using a polarized electron beam and also enhance the production rates with relatively lower beam energy.

  14. Precise Predictions for W 4 Jet Production at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C.F.; /MIT, LNS; Bern, Z.; /UCLA; Dixon, Lance J.; /CERN /SLAC; Cordero, F.Febres; /Simon Bolivar U.; Forde, D.; /CERN /NIKHEF, Amsterdam; Gleisberg, T.; /SLAC; Ita, H.; /UCLA; Kosower, D.A.; /Saclay, SPhT; Maitre, D.; /Durham U.

    2010-09-14

    We present the first next-to-leading order QCD results for W + 4-jet production at hadron colliders. Total cross sections, as well as distributions in the jet transverse momenta and in the total transverse energy HT, are provided for the initial LHC energy of {radical}s = 7 TeV. We use a leading-color approximation, known to be accurate to 3% for W production with fewer jets. The virtual matrix elements and the most complicated real-emission matrix elements are handled by the BlackHat library, based on on-shell methods. The remaining parts of the calculation, including the integration over phase space, are performed by the SHERPA package.

  15. A clean signal for a top-like isosinglet fermion at the Large Hadron Collider

    Indian Academy of Sciences (India)

    Aarti Girdhar

    2013-12-01

    We predict a clean signal at the Large Hadron Collider ($\\sqrt{s} = 14$ TeV) for a scenario where there is a top-like, charge +2/3 vector-like isosinglet fermion. Such a quark, via mixing with the standard model top, can undergo decays via both flavour-changing Z-boson coupling and flavour-changing Yukawa interactions. We concentrate on the latter channel, and study the situation where, following its pair production, the heavy quark pair gives rise to two tops and two Higgs bosons. We show that when each Higgs decays in the $b\\bar{b}$ channel, there can be a rather distinct and background-free signal that can unveil the existence of the vector-like isosinglet quark of this kind.

  16. W±π(干)t Associated Production at Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    HUANG Jin-Shu; PAN Qun-Na

    2004-01-01

    In this paper we calculate the production of a charged top pion in association with a W boson at the CERN Large Hadron Collider (LHC) in the context of the topcolor assisted technicolor model. We find that the cross section of pp → b(-b) → W±π(干)t is roughly corresponding to the result of the process pp → b(-b) → W±H(干) in the minimal supersymmetric standard model, and for reasonable ranges of the parameters, the cross section can reach a few hundred fo. The W±π(干)t signal should be clearly visible at LHC unless π±t is very heavy.

  17. The data acquisition and reduction challenge at the Large Hadron Collider.

    Science.gov (United States)

    Cittolin, Sergio

    2012-02-28

    The Large Hadron Collider detectors are technological marvels-which resemble, in functionality, three-dimensional digital cameras with 100 Mpixels-capable of observing proton-proton (pp) collisions at the crossing rate of 40 MHz. Data handling limitations at the recording end imply the selection of only one pp event out of each 10(5). The readout and processing of this huge amount of information, along with the selection of the best approximately 200 events every second, is carried out by a trigger and data acquisition system, supplemented by a sophisticated control and monitor system. This paper presents an overview of the challenges that the development of these systems has presented over the past 15 years. It concludes with a short historical perspective, some lessons learnt and a few thoughts on the future.

  18. The B  ‑  L supersymmetric standard model with inverse seesaw at the large hadron collider

    Science.gov (United States)

    Khalil, S.; Moretti, S.

    2017-03-01

    We review the TeV scale B  ‑  L extension of the minimal supersymmetric standard model (BLSSM) where an inverse seesaw mechanism of light neutrino mass generation is naturally implemented and concentrate on its hallmark manifestations at the large hadron collider (LHC).

  19. Design Concept and Parameters of a 15 T $Nb_{3}Sn$ Dipole Demonstrator for a 100 TEV Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Zlobin, A. V. [Fermilab; Andreev, N. [Fermilab; Barzi, E. [Fermilab; Kashikhin, V. V. [Fermilab; Novitski, I. [Fermilab

    2015-06-01

    FNAL has started the development of a 15 T $Nb_{3}Sn$ dipole demonstrator for a 100 TeV scale hadron collider. This paper describes the design concept and parameters of the 15 T $Nb_{3}Sn$ dipole demonstrator. The dipole magnetic, mechanical and quench protection concept and parameters are presented and discussed.

  20. Electron reconstruction and electroweak processes as tools to achieve precision measurements at a hadron collider: From CDF to CMS

    Energy Technology Data Exchange (ETDEWEB)

    Giolo-Nicollerat, Anne-Sylvie [Univ. of Lausanne (Switzerland)

    2004-01-01

    Precision measurements are an important aspect of hadron colliders physics program. This thesis describes a method, together with a first application, of how to achieve and use precision measurements at the LHC. The idea is to use refernce processes to control the detector systematics and to constrain the theoretical predictions.

  1. On the Deviation of the Standard Model Predictions in the Large Hadron Collider Experiments (Letters to Progress in Physics

    Directory of Open Access Journals (Sweden)

    Belyakov A. V.

    2016-01-01

    Full Text Available The newest Large Hadron Collider experiments targeting the search for New Physics manifested the possibility of new heavy particles. Such particles are not predicted in the framework of Standard Model, however their existence is lawful in the framework of another model based on J. A.Wheeler’s geometrodynamcs.

  2. Non-Standard ZZ Production with Leptonic Decays at the Large Hadron Collider

    Institute of Scientific and Technical Information of China (English)

    SUN Hao

    2012-01-01

    The prospects of anomalous ZZγ and ZZZ triple gauge boson couplings are investigated at the Large Hadron Collider (LHC) through an excess of events in ZZ diboson production. Two such channels are selected and the tree level results including leptonic final states are discussed: ZZ → e1 e1+ e2- e2+ and ZZ → e- e+v(v)(e, e1,2 = e, μ). The results in the full finite width method are compared with the narrow width approximation (NWA) method in detail. Besides the Z boson transverse momentum distributions, the azimuthal angle between the Z boson decay to fermions, △Φ, and their separations in the pseudo-rapidity-azimuthal angle plane, AR, as well as the sensitivity on anomalous couplings are displayed at the 14 TeV LHC.%The prospects of anomalous ZZγ and ZZZ triple gauge boson couplings are investigated at the Large Hadron Collider (LHC) through an excess of events in ZZ diboson production.Two such channels are selected and the tree level results including leptonic final states are discussed:Z Z → e-1e+1 e-2 e+2 and Z Z → e-e+v-(v)( e,e1,2 =e,μ).The results in the full finite width method are compared with the narrow width approximation (NWA) method in detail.Besides the Z boson transverse momentum distributions,the azimuthal angle between the Z boson decay to fermions,△ Φ,and their separations in the pseudo-rapidity-azimuthal angle plane,△R,as well as the sensitivity on anomalous couplings are displayed at the 14 TeV LHC.

  3. Applications of SCET to the pair production of supersymmetric particles at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Broggio, Alessandro

    2013-02-04

    In this thesis we investigate the phenomenology of supersymmetric particles at hadron colliders beyond next-to-leading order (NLO) in perturbation theory. We discuss the foundations of Soft-Collinear Effective Theory (SCET) and, in particular, we explicitly construct the SCET Lagrangian for QCD. As an example, we discuss factorization and resummation for the Drell-Yan process in SCET. We use techniques from SCET to improve existing calculations of the production cross sections for slepton-pair production and top-squark-pair production at hadron colliders. As a first application, we implement soft-gluon resummation at next-to-next-to-next-to-leading logarithmic order (NNNLL) for slepton-pair production in the minimal supersymmetric extension of the Standard Model (MSSM). This approach resums large logarithmic corrections arising from the dynamical enhancement of the partonic threshold region caused by steeply falling parton luminosities. We evaluate the resummed invariant-mass distribution and total cross section for slepton-pair production at the Tevatron and LHC and we match these results, in the threshold region, onto NLO fixed-order calculations. As a second application we present the most precise predictions available for top-squark-pair production total cross sections at the LHC. These results are based on approximate NNLO formulas in fixed-order perturbation theory, which completely determine the coefficients multiplying the singular plus distributions. The analysis of the threshold region is carried out in pair invariant mass (PIM) kinematics and in single-particle inclusive (1PI) kinematics. We then match our results in the threshold region onto the exact fixed-order NLO results and perform a detailed numerical analysis of the total cross section.

  4. Higgs Factory and 100 TeV Hadron Collider: Opportunity for a New World Laboratory within a Decade

    CERN Document Server

    Assadi, Saeed; McIntyre, Peter; Gerity, James; Kellams, Joshua; Mann, Thomas; Mathewson, Christopher; Pogue, Nathaniel; Sattarov, Akhdiyor; York, Richard

    2014-01-01

    Suggestions have been made for a 80-100 km circumference Future Circular Collider (FCC) that could ultimately contain a circular e+e- ring collider operating as a Higgs Factory as well as a 100 TeV hadron collider. Those suggestions have motivated us to propose an approach in which the project is sited at the location at the SSC tunnel, which has the lowest tunnel cost ever. The low tunnel cost would make it cost-effective to locate the 100 TeV Hadron Collider in a 270 km circumference tunne, using 4.5 Tesla superconducting magnets. The SSC tunnel itself would be used to house the Higgs Factory and the injector for the Hadron Collider. The injector for the Higgs Factory would be also used as a driver for an X-ray Free Electron Laser with unique capabilities for protein crystallography. The location of the project at a location with favorable geotechnology for minimum-cost tunneling, and low-cost/low-risk technology for the SRF and superconducting magnets, open the possibility to build the proposed laboratory ...

  5. Mixing It Up With MT2: Unbiased Mass Measurements at Hadron Colliders

    CERN Document Server

    Curtin, David

    2011-01-01

    Recently, much progress has been made on techniques to measure the masses of new particles with partially-invisible decays at a hadron collider. We examine for the first time the realistic application of MT2-based measurement methods to a fully hadronic final state from a symmetric two-step decay chain with maximal combinatorial uncertainty. Several problems arise in such an analysis: the MT2 variables are powerful but fragile, with shallow edges that are easily washed out or faked by ubiquitous combinatorics background. Traditional methods of both cleaning up the distribution and determining edge position can fail badly. To perform successful mass measurements we introduce several new techniques: the Edge-to-Bump method of extracting an edge from a distribution by analyzing a distribution of fits rather than a single fit; a very simple yet high-yield method for determining decay-chain assignments event-by-event; and a systematic procedure to obtain MT2 edge measurements in the presence of heavy combinatorics...

  6. Electroweak Gauge-Boson Production in Association with b Jets at Hadron Colliders

    CERN Document Server

    Cordero, F Febres

    2015-01-01

    The production of both charged and neutral electroweak gauge bosons in association with $b$ jets has attracted a lot of experimental and theoretical attention in recent years because of its central role in the physics programs of both the Fermilab Tevatron and the CERN Large Hadron Collider. The improved level of accuracy achieved both in the theoretical predictions and experimental measurements of these processes can promote crucial developments in modeling $b$-quark jets and $b$-quark parton distribution functions, and can provide a more accurate description of some of the most important backgrounds to the measurement of Higgs-boson couplings and several new physics searches. In this paper we review the status of theoretical predictions for cross sections and kinematic distributions of processes in which an electroweak gauge boson is produced in association with up to two $b$ jets in hadronic collisions, namely $p\\bar{p}, pp\\rightarrow V+1b$ jet and $p\\bar{p},pp\\rightarrow V+2b$ jets with $V=W^\\pm, Z/\\gamma...

  7. A Novel method for modeling the recoil in W boson events at hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Aguilo, Ernest; /Alberta U. /Simon Fraser U. /York U., Canada /McGill U.; Ahsan, Mahsana; /Kansas State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls /Northeastern U.

    2009-07-01

    We present a new method for modeling the hadronic recoil in W {yields} {ell}{nu} events produced at hadron colliders. The recoil is chosen from a library of recoils in Z {yields} {ell}{ell} data events and overlaid on a simulated W {yields} {ell}{nu} event. Implementation of this method requires that the data recoil library describe the properties of the measured recoil as a function of the true, rather than the measured, transverse momentum of the boson. We address this issue using a multidimensional Bayesian unfolding technique. We estimate the statistical and systematic uncertainties from this method for the W boson mass and width measurements assuming 1 fb{sup -1} of data from the Fermilab Tevatron. The uncertainties are found to be small and comparable to those of a more traditional parameterized recoil model. For the high precision measurements that will be possible with data from Run II of the Fermilab Tevatron and from the CERN LHC, the method presented in this paper may be advantageous, since it does not require an understanding of the measured recoil from first principles.

  8. High-Luminosity Large Hadron Collider (HL-LHC) Preliminary Design Report

    CERN Document Server

    Apollinari, G; Béjar Alonso, I; Brüning, O; Lamont, M; Rossi, L

    2015-01-01

    The Large Hadron Collider (LHC) is one of the largest scientific instruments ever built. Since opening up a new energy frontier for exploration in 2010, it has gathered a global user community of about 7,000 scientists working in fundamental particle physics and the physics of hadronic matter at extreme temperature and density. To sustain and extend its discovery potential, the LHC will need a major upgrade in the 2020s. This will increase its luminosity (rate of collisions) by a factor of five beyond the original design value and the integrated luminosity (total collisions created) by a factor ten. The LHC is already a highly complex and exquisitely optimised machine so this upgrade must be carefully conceived and will require about ten years to implement. The new configuration, known as High Luminosity LHC (HL-LHC), will rely on a number of key innovations that push accelerator technology beyond its present limits. Among these are cutting-edge 11-12 tesla superconducting magnets, compact superconducting cav...

  9. Test of relativistic gravity for propulsion at the Large Hadron Collider

    CERN Document Server

    Felber, Franklin

    2009-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. The first exact time-dependent solutions of Einstein's gravitational field equation confirm that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated 'antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s^2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  10. Probing Electroweak Gauge Boson Scattering with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Anger, Philipp; Lammers, Sabine

    Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of $20.3\\;\\mathrm{fb}^{-1}$ at a center-of-mass e...

  11. Supersymmetry phenomenology in the context of neutrino physics and the large hadron collider LHC

    Energy Technology Data Exchange (ETDEWEB)

    Hanussek, Marja

    2012-05-15

    Experimentally, it is well established that the Standard Model of particle physics requires an extension to accommodate the neutrino oscillation data, which indicates that at least two neutrinos are massive and that two of the neutrino mixing angles are large. Massive neutrinos are naturally present in a supersymmetric extension of the Standard Model which includes lepton-number violating terms (the B3 MSSM). Furthermore, supersymmetry stabilizes the hierarchy between the electroweak scale and the scale of unified theories or the Planck scale. In this thesis, we study in detail how neutrino masses are generated in the B3 MSSM. We present a mechanism how the experimental neutrino oscillation data can be realized in this framework. Then we discuss how recently published data from the Large Hadron Collider (LHC) can be used to constrain the parameter space of this model. Furthermore, we present work on supersymmetric models where R-parity is conserved, considering scenarios with light stops in the light of collider physics and scenarios with near-massless neutralinos in connection with cosmological restrictions.

  12. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bracco, C; Brugger, M; Cauchi, M; Cerutti, F; Deboy, D; Ferrari, A; Lari, L; Marsili, A; Mereghetti, A; Mirarchi, D; Quaranta, E; Redaelli, S; Robert-Demolaize, G; Rossi, A; Salvachua, B; Skordis, E; Tambasco, C; Valentino, G; Weiler, T; Vlachoudis, V; Wollmann, D

    2014-01-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010--2013, the LHC was routinely storing protons at 3.5--4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An un-controlled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multi-stage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the co...

  13. Development of a CVD diamond Beam Condition Monitor for CMS at the Large Hadron Collider

    CERN Document Server

    Fernández-Hernando, L; Gray, R; Ilgner, C; MacPherson, A; Oh, A; Pritchard, T; Stone, R; Worm, S

    2005-01-01

    The CERN Large Hadron Collider (LHC) will store 2808 bunches per colliding beam, with each bunch consisting of 1011 protons at an energy of 7 TeV. If there is a failure in an element of the accelerator, the resulting beam losses could cause damage not only to the machine but also to the experiments. A Beam Condition Monitor (BCM) is foreseen to monitor fast increments of particle fluxes near the interaction point and, if necessary, to generate an abort signal to the LHC accelerator control to dump the beams. The system is being developed initially for the CMS experiment but it is sufficiently general to find potential applications elsewhere. Due to its high radiation hardness, CVD diamond was chosen for investigation as the BCM sensor. Various samples of CVD diamond have been characterized extensively with both a 90Sr source and in high-intensity test beams in order to assess the capabilities of such sensors and to study whether this detector technology is suitable for a BCM system. A selection of results fro...

  14. Science and the Large Hadron Collider: a probe into instrumentation, periodization and classification

    CERN Document Server

    Roy, Arpita

    2012-01-01

    On September 19, 2008, the Large Hadron Collider (LHC) at CERN, Switzerland, began the world’s highest energy experiments as a probe into the structure of matter and forces of nature. Just nine days after the gala start-up, an explosion occurred in the LHC tunnel that brought the epic collider to a complete standstill. In light of the catastrophic incident that disrupted the operation of the LHC, the paper investigates the relation of temporality to the cycle of work in science, and raises the question: What kind of methodological value should we ascribe to events such as crises or breakdowns? Drawing upon and integrating classical anthropological themes with two and a half years of fieldwork at the LHC particle accelerator complex, the paper explores how the incident in September, which affected the instrument, acquaints us with the distribution of work in the laboratory. The incident discloses that the organization of science is not a homogenous ensemble, but marked by an enormous diversity of tasks and p...

  15. Searching for Supersymmetry with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    French, Sky Trillium

    2011-01-01

    On Monday 23rd November 2009, the ATLAS experiment at the Large Hadron Collider began taking data at $\\sqrt{s}=900$ GeV. On the penultimate day of March the following year, after a brief shutdown, ATLAS resumed data taking but at $\\sqrt{s}=7$ TeV. These $\\sqrt{s}=7$ TeV collisions continued until the end of October 2010. This thesis presents the very first low-$p_T$ electron candidates from the complete 9$\\mu b^{-1} \\sqrt{s}=900$ GeV dataset, and higher-$p_T$ candidates from the first 1 nb$^{-1}$ of the $\\sqrt{s}=7$ TeV dataset. These candidates are presented in the context of electron reconstruction and identification and illustrate how various properties of these electrons compare with expectations based on Monte Carlo simulations. An observation is made of the $Z$ candidates present in the first ~220 nb$^{-1}$ of $\\sqrt{s}=7$ TeV collision data, these being amongst the first $Z$ bosons ever produced by a proton-proton collider. A detailed study is then presented of the full ~35pb$^{-1}$ 2010 $\\sqrt{s}=7$ T...

  16. Left-Right Symmetry and Lepton Number Violation at the Large Hadron Electron Collider

    CERN Document Server

    Lindner, Manfred; Rodejohann, Werner; Yaguna, Carlos E

    2016-01-01

    We show that the proposed Large Hadron electron Collider (LHeC) will provide a great opportunity to search for left-right symmetry and establish lepton number violation, complementing current and planned searches based on LHC data and neutrinoless double beta decay. We consider several plausible configurations for the LHeC -- including different electron energies and polarizations, as well as distinct values for the charge misidentification rate. Within left-right symmetric theories we determine the values of right-handed neutrino and gauge boson masses that could be tested at the LHeC after one, five and ten years of operation. Our results indicate that this collider might probe, via the $\\Delta L =2$ signal $e^-p\\to e^+jjj$, Majorana neutrino masses up to $1$ TeV and $W_R$ masses up to $\\sim 6.5$ TeV. Interestingly, part of this parameter space is beyond the expected reach of the LHC and of future neutrinoless double beta decay experiments.

  17. Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider.

    Science.gov (United States)

    Schukraft, J

    2012-02-28

    After close to 20 years of preparation, the dedicated heavy-ion experiment A Large Ion Collider Experiment (ALICE) took first data at the CERN Large Hadron Collider (LHC) accelerator with proton collisions at the end of 2009 and with lead nuclei at the end of 2010. After a short introduction into the physics of ultra-relativistic heavy-ion collisions, this article recalls the main design choices made for the detector and summarizes the initial operation and performance of ALICE. Physics results from this first year of operation concentrate on characterizing the global properties of typical, average collisions, both in proton-proton (pp) and nucleus-nucleus reactions, in the new energy regime of the LHC. The pp results differ, to a varying degree, from most quantum chromodynamics-inspired phenomenological models and provide the input needed to fine tune their parameters. First results from Pb-Pb are broadly consistent with expectations based on lower energy data, indicating that high-density matter created at the LHC, while much hotter and larger, still behaves like a very strongly interacting, almost perfect liquid.

  18. Commissioning and First Operation of Superconducting Links at the Large Hadron Collider (LHC)

    CERN Document Server

    van Weelderen, R; Perin, A; Darve, C; Doohan, R S; Gilankar, S G

    2010-01-01

    The Large Hadron Collider (LHC) now under commissioning at CERN is a 26.7 km collider based on several thousand high-field superconducting magnets, the majority of which operating in superfluid helium below 2 K and some isolated magnets operating in normal helium at 4.5 K. Four superconducting links (DSLs) of about 76 m in length and one of about 517 m in length, were designed, constructed and installed over a three year period. Their purpose is to transport current over long distances whenever underground LHC space constraints prevents to put power converters, current feed boxes and magnets in each others’ proximity. The four 76 m long DSLs transport current between current feed boxes and several of the isolated magnets, whereas the 517 m long DSL transports current between two current feed boxes. The links are comprised of cryogenic, vacuum-insulated, transfer lines housing one or more superconducting cables. The operating temperatures are about 5 K for the DSL part that houses the cable and about 60 K fo...

  19. Long term dynamics of the high luminosity Large Hadron Collider with crab cavities

    Science.gov (United States)

    Barranco García, J.; De Maria, R.; Grudiev, A.; Tomás García, R.; Appleby, R. B.; Brett, D. R.

    2016-10-01

    The High Luminosity upgrade of the Large Hadron Collider (HL-LHC) aims to achieve an integrated luminosity of 200 - 300 fb-1 per year, including the contribution from the upgrade of the injector chain. For the HL-LHC the larger crossing angle together with a smaller beta function at the collision point would result in more than 70% luminosity loss due to the incomplete geometric overlap of colliding bunches. To recover head-on collisions at the high-luminosity particle-physics detectors ATLAS and CMS and benefit from the very low β* provided by the Achromatic Telescopic Squeezing (ATS) optics, a local crab cavity scheme provides transverse kicks to the proton bunches. The tight space constraints at the location of these cavities leads to designs which are axially non-symmetric, giving rise to high order multipoles components of the main deflecting mode and, since these kicks are harmonic in time, we expand them in a series of multipoles in a similar fashion as is done for static field magnets. In this work we calculate, for the first time, the higher order multipoles and their impact on beam dynamics for three different crab cavity prototypes. Different approaches to calculate the multipoles are presented. Furthermore, we perform the first calculation of their impact on the long term stability of the machine using the concept of dynamic aperture.

  20. Cryogenic Studies for the Proposed CERN Large Hadron Electron Collider (LHeC)

    CERN Document Server

    Haug, F

    2011-01-01

    The LHeC (Large Hadron electron Collider) is a proposed future colliding beam facility for lepton-nucleon scattering particle physics at CERN. A new 60 GeV electron accelerator will be added to the existing 27 km circumference 7 TeV LHC for collisions of electrons with protons and heavy ions. Two basic design options are being pursued. The first is a circular accelerator housed in the existing LHC tunnel which is referred to as the "Ring-Ring" version. Low field normal conducting magnets guide the particle beam while superconducting (SC) RF cavities cooled to 2 K are installed at two opposite locations at the LHC tunnel to accelerate the beams. For this version in addition a 10 GeV re-circulating SC injector will be installed. In total four refrigerators with cooling capacities between 1.2 kW and 3 kW @ 4.5 K are needed. The second option, referred to as the "Linac-Ring" version consists of a race-track re-circulating energy-recovery type machine with two 1 km long straight acceleration sections. The 944 hi...

  1. Fault Tracking of the Superconducting Magnet System at the CERN Large Hadron Collider

    CERN Document Server

    Griesemer, Tobias

    2016-03-25

    The Large Hadron Collider (LHC) at CERN is one of the most complex machines ever built. It is used to explore the mysteries of the universe by reproducing conditions of the big bang. High energy particles are collide in particle detectors and as a result of the collision process secondary particles are created. New particles could be discovered during this process. The operation of such a machine is not straightforward and is subject to many different types of failures. A model of LHC operation needs to be defined in order to understand the impact of the various failures on availability. As an example a typical operational cycle is described: the beams are first injected, then accelerated, and finally brought into collisions. Under nominal conditions, beams should be in collision (so-called ‘stable beams’ period) for about 10 hours and then extracted onto a beam dump block. In case of a failure, the Machine Protection Systems ensure safe extraction of the beams. From the experience in LHC Run 1 (2009 - 20...

  2. AGS 20th anniversary celebration

    Energy Technology Data Exchange (ETDEWEB)

    Baggett, N.V. (ed.)

    1980-05-22

    On May 22, 1980, a symposium was held at Brookhaven to celebrate the 20th birthday of the AGS, to recall its beginnings, and to review major discoveries that have been made with its beams. The talks at the symposium are recorded in this volume.

  3. Searches for Lorentz Violation in Top-Quark Production and Decay at Hadron Colliders

    Energy Technology Data Exchange (ETDEWEB)

    Whittington, Denver Wade [Indiana Univ., Bloomington, IN (United States)

    2012-07-01

    We present a first-of-its-kind confirmation that the most massive known elementary particle obeys the special theory of relativity. Lorentz symmetry is a fundamental aspect of special relativity which posits that the laws of physics are invariant regardless of the orientation and velocity of the reference frame in which they are measured. Because this symmetry is a fundamental tenet of physics, it is important to test its validity in all processes. We quantify violation of this symmetry using the Standard-Model Extension framework, which predicts the effects that Lorentz violation would have on elementary particles and their interactions. The top quark is the most massive known elementary particle and has remained inaccessible to tests of Lorentz invariance until now. This model predicts a dependence of the production cross section for top and antitop quark pairs on sidereal time as the orientation of the experiment in which these events are produced changes with the rotation of the Earth. Using data collected with the DØ detector at the Fermilab Tevatron Collider, we search for violation of Lorentz invariance in events involving the production of a $t\\bar{t}$ pair. Within the experimental precision, we find no evidence for such a violation and set upper limits on parameters describing its possible strength within the Standard-Model Extension. We also investigate the prospects for extending this analysis using the ATLAS detector at the Large Hadron Collider which, because of the higher rate of $t\\bar{t}$ events at that experiment, has the potential to improve the limits presented here.

  4. Simulations and measurements of beam loss patterns at the CERN Large Hadron Collider

    Science.gov (United States)

    Bruce, R.; Assmann, R. W.; Boccone, V.; Bracco, C.; Brugger, M.; Cauchi, M.; Cerutti, F.; Deboy, D.; Ferrari, A.; Lari, L.; Marsili, A.; Mereghetti, A.; Mirarchi, D.; Quaranta, E.; Redaelli, S.; Robert-Demolaize, G.; Rossi, A.; Salvachua, B.; Skordis, E.; Tambasco, C.; Valentino, G.; Weiler, T.; Vlachoudis, V.; Wollmann, D.

    2014-08-01

    The CERN Large Hadron Collider (LHC) is designed to collide proton beams of unprecedented energy, in order to extend the frontiers of high-energy particle physics. During the first very successful running period in 2010-2013, the LHC was routinely storing protons at 3.5-4 TeV with a total beam energy of up to 146 MJ, and even higher stored energies are foreseen in the future. This puts extraordinary demands on the control of beam losses. An uncontrolled loss of even a tiny fraction of the beam could cause a superconducting magnet to undergo a transition into a normal-conducting state, or in the worst case cause material damage. Hence a multistage collimation system has been installed in order to safely intercept high-amplitude beam protons before they are lost elsewhere. To guarantee adequate protection from the collimators, a detailed theoretical understanding is needed. This article presents results of numerical simulations of the distribution of beam losses around the LHC that have leaked out of the collimation system. The studies include tracking of protons through the fields of more than 5000 magnets in the 27 km LHC ring over hundreds of revolutions, and Monte Carlo simulations of particle-matter interactions both in collimators and machine elements being hit by escaping particles. The simulation results agree typically within a factor 2 with measurements of beam loss distributions from the previous LHC run. Considering the complex simulation, which must account for a very large number of unknown imperfections, and in view of the total losses around the ring spanning over 7 orders of magnitude, we consider this an excellent agreement. Our results give confidence in the simulation tools, which are used also for the design of future accelerators.

  5. Fundamental cavity impedance and longitudinal coupled-bunch instabilities at the High Luminosity Large Hadron Collider

    Science.gov (United States)

    Baudrenghien, P.; Mastoridis, T.

    2017-01-01

    The interaction between beam dynamics and the radio frequency (rf) station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf) system that measures the cavity field (or beam current) and generates the rf power drive. The Large Hadron Collider (LHC) rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz) can only come from the synchrotron tune spread (Landau damping) and will be very small (time constant in the order of 0.1 s). In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC) doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters). Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.

  6. Development of a beam condition monitor for use in experiments at the CERN Large Hadron Collider using synthetic diamond

    CERN Document Server

    Fernández-Hernando, L; Ilgner, C; MacPherson, A; Oh, A; Pernegger, H; Pritchard, T; Stone, R; Worm, S

    2004-01-01

    The CERN Large Hadron Collider (LHC) will collide two counter rotating proton beams, each with a store energy about 350MJ; enough to melt 550kg of copper. If there is failure in an element of the accelerator, the resulting beam losses could cause damage not only to the machine but also to the experiments. A Beam Condition Monitor (BCM) is foreseen to monitor last increments of particle flux near the interaction point and if necessary, to generate an abort signal to the LHC accelerator control, to dump the beams. Due to its radiation hardness and minimal services requirements, synthetic CVD diamond is being considered as BCM sensor option. (12 refs).

  7. For information - Université de Genève : Accelerator Physics Challenges for the Large Hadron Collider at CERN

    CERN Multimedia

    Université de Genève

    2005-01-01

    UNIVERSITE DE GENEVE Faculte des sciences Section de physique - Département de physique nucléaire et corspusculaire 24, Quai Ernest-Ansermet - 1211 GENEVE 4 Tél : (022) 379 62 73 Fax: (022) 379 69 92 Mercredi 16 March SEMINAIRE DE PHYSIQUE CORPUSCULAIRE à 17h00 - Auditoire Stückelberg Accelerator Physics Challenges for the Large Hadron Collider at CERN Prof. Olivier Bruning / CERN The Large Hadron Collider project at CERN will bring the energy frontier of high energy particle physics back to Europe and with it push the accelerator technology into uncharted teritory. The talk presents the LHC project in the context of the past CERN accelerator developments and addresses the main challenges in terms of technology and accelerator physics. Information: http://dpnc.unige.ch/seminaire/annonce.html Organizer: A. Cervera Villanueva

  8. Design optimization of 600 A-13 kA current leads for the Large Hadron Collider project at CERN

    CERN Document Server

    Spiller, D M; Al-Mosawl, M K; Friend, C M; Thacker, P; Ballarino, A

    2001-01-01

    The requirements of the Large Hadron Collider project at CERN for high-temperature superconducting (HTS) current leads have been widely publicized. CERN require hybrid current leads of resistive and HTS materials with current ratings of 600 A, 6 kA and 13 kA. BICC General Superconductors, in collaboration with the University of Southampton, have developed and manufactured prototype current leads for the Large Hadron Collider project. The resistive section consists of a phosphorus de-oxidized copper conductor and heat exchanger and the HTS section is constructed from BICC General's (Pb, Bi)2223 tapes with a reduced thermal conductivity Ag alloy sheath. We present the results of the materials optimization studies for the resistive and the HTS sections. Some results of the acceptance tests at CERN are discussed. (9 refs).

  9. W+W-+3 -jet production at the Large Hadron Collider in next-to-leading-order QCD

    Science.gov (United States)

    Febres Cordero, F.; Hofmann, P.; Ita, H.

    2017-02-01

    We present next-to-leading-order (NLO) QCD predictions to W+W- production in association with up to three jets at hadron colliders. We include contributions from couplings of the W bosons to light quarks as well as trilinear vector couplings. These processes are used in vector-boson coupling measurements, are background to Higgs signals and are needed to constrain many new physics scenarios. For the first time NLO QCD predictions are shown for electroweak di-vector boson production with three jets at a hadron collider. We show total and differential cross sections for the LHC with proton center-of-mass energies of 8 and 13 TeV. To perform the calculation we employ on-shell and unitarity methods implemented in the blackhat library along with the sherpa package. We have produced event files that can be accessed for future dedicated studies.

  10. Forward-backward asymmetries of lepton pairs in events with a large transverse momentum jet at hadron colliders

    CERN Document Server

    del Águila, F; Talavera, P; Ametller, Ll.

    2002-01-01

    We discuss forward-backward charge asymmetries for lepton pair production in association with a large transverse momentum jet at hadron colliders. The measurement of the lepton charge asymmetry relative to the jet direction A_{FB}^j gives a new determination of the effective weak mixing angle sin^2{\\theta_{eff}^{lept}(M_Z^2)} with in principle a statistical precision after cuts of \\sim 4 x 10^{-5} (10^{-3}) at LHC (Tevatron), due to the large cross section of the process with initial gluons. The identification of b jets also allows for the measurement of the bottom quark Z asymmetry A_{FB}^b at hadron colliders with a precision at LHC in principle higher than at LEP, the resulting statistical precision for sin^2{\\theta_{eff}^{lept}(M_Z^2)} being \\sim 4 x 10^{-5} (3 x 10^{-3} at Tevatron).

  11. Chromaticity decay due to superconducting dipoles on the injection plateau of the Large Hadron Collider

    CERN Document Server

    Aquilina, N; Sammut, N; Strzeclzyk, M; Todesco, E

    2012-01-01

    It is well known that in a superconducting accelerator a significant chromaticity drift can be induced by the decay of the sextupolar component of the main dipoles. In this paper we give a brief overview of what was expected for the Large Hadron Collider on the grounds of magnetic measurements of individual dipoles carried out during the production. According to this analysis, the decay time constants were of the order of 200 s: since the injection in the LHC starts at least 30 minutes after the magnets are at constant current, the dynamic correction of this effect was not considered to be necessary. The first beam measurements of chromaticity showed significant decay even after few hours. For this reason, a dynamic correction of decay on the injection plateau was implemented based on beam measurements. This means that during the injection plateau the sextupole correctors are powered with a varying current to cancel out the decay of the dipoles. This strategy has been implemented successfully. A similar pheno...

  12. CP violation in supersymmetry, Higgs sector and the large hadron collider

    Indian Academy of Sciences (India)

    Rohini M Godbole

    2006-11-01

    In this talk I discuss some aspects of CP violation (CPV) in supersymmetry (SUSY) as well as in the Higgs sector. Further, I discuss ways in which these may be probed at hadronic colliders. In particular I will point out the ways in which studies in the $\\tilde{}^{±}$, $\\tilde{}_{2}^{0}$ sector at the Tevatron may be used to provide information on this and how the search can be extended to the LHC. I will then follow this by a discussion of the CP mixing induced in the Higgs sector due to the above-mentioned CPV in the soft SUSY breaking parameters and its effects on the Higgs phenomenology at the LHC. I would then point out some interesting aspects of the phenomenology of a moderately light charged Higgs boson, consistent with the LEP constraints, in this scenario. Decay of such a charged Higgs boson would also allow a probe of a light (≲ 50 GeV), CP-violating (CPV) Higgs boson. Such a light neutral Higgs boson might have escaped detection at LEP and could also be missed at the LHC in the usual search channels.

  13. Beam-induced radiation in the compact muon solenoid tracker at the Large Hadron Collider

    Indian Academy of Sciences (India)

    A P Singh; P C Bhat; N V Mokhov; S Beri

    2010-05-01

    The intense radiation environment at the Large Hadron Collider, CERN at a design energy of $\\sqrt{s} = 14$ TeV and a luminosity of 1034 cm−2S−1 poses unprecedented challenges for safe operation and performance quality of the silicon tracker detectors in the CMS and ATLAS experiments. The silicon trackers are crucial for the physics at the LHC experiments, and the inner layers, being situated only a few centimeters from the interaction point, are most vulnerable to beam-induced radiation. We have recently carried out extensive Monte Carlo simulation studies using MARS program to estimate particle fluxes and radiation dose in the CMS silicon pixel and strip trackers from proton–proton collisions at $\\sqrt{s} = 14$ TeV and from machine-induced background such as beam–gas interactions and beam halo. We will present results on radiation dose, particle fluxes and spectra from these studies and discuss implications for radiation damage and performance of the CMS silicon tracker detectors.

  14. Reliability of the Beam Loss Monitors System for the Large Hadron Collider at CERN

    CERN Document Server

    Guaglio, G; Santoni, C

    2005-01-01

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out....

  15. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, M

    2016-01-01

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for me...

  16. Jet angular correlation in vector-boson fusion processes at hadron colliders

    CERN Document Server

    Hagiwara, Kaoru; Mawatari, Kentarou

    2009-01-01

    Higgs boson and massive-graviton productions in association with two jets via vector-boson fusion (VBF) processes and their decays into a vector-boson pair at hadron colliders are studied. They include scalar and tensor boson production processes via weak-boson fusion in quark-quark collisions, gluon fusion in quark-quark, quark-gluon and gluon-gluon collisions, as well as their decays into a pair of weak bosons or virtual gluons which subsequently decay into $\\ell\\bar\\ell$, $q\\bar q$ or $gg$. We give the helicity amplitudes explicitly for all the VBF subprocesses, and show that the VBF amplitudes dominate the exact matrix elements not only for the weak-boson fusion processes but also for all the gluon fusion processes when appropriate selection cuts are applied, such as a large rapidity separation between two jets and a slicing cut for the transverse momenta of the jets. We also show that our off-shell vector-boson current amplitudes reduce to the standard quark and gluon splitting amplitudes with appropriat...

  17. EuCARD-AccNet-EuroLumi Workshop: The High-Energy Large Hadron Collider

    CERN Document Server

    Zimmermann, F; HE-LHC10; HE-LHC 10

    2011-01-01

    This report contains the proceedings of the EuCARD-AccNet-EuroLumi Workshop on a High-Energy Large Hadron Collider `HE-LHC10' which was held on Malta from 14 to 16 October 2010. This is the first workshop where the possibility of building a 33 TeV centre-of-mass energy proton--proton accelerator in the LHC tunnel is discussed. The key element of such a machine will be the 20 T magnets needed to bend the particle beams: therefore much space was given to discussions about magnet technologies for high fields. The workshop also discussed possible parameter sets, issues related to beam dynamics and synchrotron radiation handling, and the need for new injectors, possibly with 1 TeV energy. The workshop searched for synergies with other projects and studies around the world facing similar challenges or pushing related technologies, revisited past experience, and explored a possible re-use of existing superconducting magnets. Last not least, it reinforced the inter-laboratory collaborations within EuCARD, especially ...

  18. Phenomenology of Large Extra Dimensions Models at Hadrons Colliders using Monte Carlo Techniques (Spin-2 Graviton)

    CERN Document Server

    Bakhet, Nady; Hussein, Tarek

    2015-01-01

    Large Extra Dimensions Models have been proposed to remove the hierarchy problem and give an explanation why the gravity is so much weaker than the other three forces. In this work, we present an analysis of Monte Carlo data events for new physics signatures of spin-2 Graviton in context of ADD model with total dimensions $D=4+\\delta,$ $\\delta = 1,2,3,4,5,6 $ where $ \\delta $ is the extra special dimension, this model involves missing momentum $P_{T}^{miss}$ in association with jet in the final state via the process $pp(\\bar{p}) \\rightarrow G+jet$, Also, we present an analysis in context of the RS model with 5-dimensions via the process $pp(\\bar{p}) \\rightarrow G+jet$, $G \\rightarrow e^{+}e^{-}$ with final state $e^{+}e^{-}+jet$. We used Monte Carlo event generator Pythia8 to produce efficient signal selection rules at the Large Hadron Collider with $\\sqrt{s}$=14TeV and at the Tevatron $\\sqrt{s}$=1.96TeV .

  19. Novel Concepts for Optimization of the CERN Large Hadron Collider Injection Lines.

    CERN Document Server

    Fuchsberger, Kajetan; Wenninger, J

    2011-01-01

    The Large Hadron Collider (LHC) is presently the particle accelerator with the highest center of mass energy in the world and is for that reason the most promising instrument for particle physics discoveries in the near future. The transfer lines TI2 and TI8 which transfer the beam from the last pre-accelerator, the Super Proton Synchrotron (SPS), to the LHC are with a total length of about 6 km the longest ones in the world, which makes it necessary to do optics matching with high precision. Tests between 2004 and 2008 revealed several, previousely unpredicted, effects in these lines: An assymetry in betatron phase between the two transverse planes, a dispersion mismatch at the injection point from the transfer lines to the LHC and unexpectedly strong transverse coupling at the same location. In this thesis, we introduce the methods and tools that we developed to investigate these discrepancies. We describe the analysis of the available data, measurements of the transfer line optics and the calculation of op...

  20. A central rapidity straw tracker and measurements on cryogenic components for the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Danielsson, Hans

    1997-04-01

    The thesis is divided into two parts in which two different aspects of the Large Hadron Collider (LHC) project are discussed. The first part describes the design of a transition radiation tracker (TRT) for the inner detector in ATLAS. In particular, the barrel part was studied in detail. The barrel TRT consists of 52544 1.5 m long proportional tubes (straws), parallel to the beam axis and each with a diameter of 4 mm. The detector is divided into three module layers with 32 modules in each layer. The preparatory study comprises: module size optimization, mechanical and thermal calculations, tracking performance and material budget studies. The second part deals with the cryogenic system for the LHC superconducting magnets. They will work at a temperature below 2 K and it is essential to understand the thermal behaviour of the individual cryogenic components in order to assess the insulating properties of the magnet cryostat. The work involves the design of two dedicated heat-inlet measuring benches for cryogenic components, and the results from heat-inlet measurements on two different types of cryogenic components are reported. 54 refs., 79 figs., 14 tabs.

  1. Large Hadron Collider at CERN: Beams Generating High-Energy-Density Matter

    CERN Document Server

    Tahir, N A; Shutov, A; Lomonosov, IV; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-01-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic response of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. This data has been used as input to a sophisticated two--dimensional hydrodynamic computer code, BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1~m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy de...

  2. The upgraded Pixel Detector of the ATLAS Experiment for Run2 at the Large Hadron Collider

    CERN Document Server

    Backhaus, Malte; The ATLAS collaboration

    2015-01-01

    During Run-1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This includes the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore a new readout chip and two new sensor technologies (planar and 3D) are used in IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanic...

  3. The Thermosiphon Cooling System of the ATLAS Experiment at the CERN Large Hadron Collider

    CERN Document Server

    Battistin, M; Bitadze, A; Bonneau, P; Botelho-Direito, J; Boyd, G; Corbaz, F; Crespo-Lopez, O; Da Riva, E; Degeorge, C; Deterre, C; DiGirolamo, B; Doubek, M; Favre, G; Godlewski, J; Hallewell, G; Katunin, S; Lefils, D; Lombard, D; McMahon, S; Nagai, K; Robinson, D; Rossi, C; Rozanov, A; Vacek, V; Zwalinski, L

    2015-01-01

    The silicon tracker of the ATLAS experiment at CERN Large Hadron Collider will operate around –15°C to minimize the effects of radiation damage. The present cooling system is based on a conventional evaporative circuit, removing around 60 kW of heat dissipated by the silicon sensors and their local electronics. The compressors in the present circuit have proved less reliable than originally hoped, and will be replaced with a thermosiphon. The working principle of the thermosiphon uses gravity to circulate the coolant without any mechanical components (compressors or pumps) in the primary coolant circuit. The fluorocarbon coolant will be condensed at a temperature and pressure lower than those in the on-detector evaporators, but at a higher altitude, taking advantage of the 92 m height difference between the underground experiment and the services located on the surface. An extensive campaign of tests, detailed in this paper, was performed using two small-scale thermosiphon systems. These tests confirmed th...

  4. The High Luminosity Large Hadron Collider the new machine for illuminating the mysteries of Universe

    CERN Document Server

    Brüning, Oliver

    2015-01-01

    This book provides a broad introduction to the physics and technology of the High Luminosity Large Hadron Collider (HL-LHC). This new configuration of the LHC is one of the major accelerator projects for the next 15 years and will give new life to the LHC after its first 15-year operation. Not only will it allow more precise measurements of the Higgs boson and of any new particles that might be discovered in the next LHC run, but also extend the mass limit reach for detecting new particles. The HL-LHC is based on the innovative accelerator magnet technologies capable of generating 11–13 Tesla fields, with effectiveness enhanced by use of the new Achromatic Telescopic Squeezing scheme, and other state-of-the-art accelerator technologies, such as superconducting compact RF crab cavities, advanced collimation concepts, and novel power technology based on high temperature superconducting links. The book consists of a series of chapters touching on all issues of technology and design, and each chapter can be re...

  5. Finite-width effects in unstable-particle production at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Falgari, P. [Utrecht Univ. (Netherlands). Inst. for Theoretical Physics; Utrecht Univ. (Netherlands). Spinoza Inst.; Papanastasiou, A.S. [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Signer, A. [Paul Scherrer Institut, Villigen (Switzerland); Zuerich Univ. (Switzerland). Inst. for Theoretical Physics

    2013-03-15

    We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of {Gamma}{sub X}/m{sub X}, with {Gamma}{sub X} and m{sub X} the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the q anti q partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the naive counting {proportional_to}{Gamma}{sub t}/m{sub t}{proportional_to}1%. However, they can be sizeable, in excess of 10%, close to edges of certain kinematical distributions. The dependence of the results on the mass renormalization scheme, and its implication for a precise extraction of the top-quark mass, is also discussed.

  6. The CERN Large Hadron Collider as a tool to study high-energy density matter

    CERN Document Server

    Tahir, N A; Gryaznov, V; Hoffmann, Dieter H H; Kain, V; Lomonosov, I V; Piriz, A R; Schmidt, R; Shutov, A; Temporal, M

    2005-01-01

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15*10/sup 11/ protons so that the total number of protons in one beam will be about 3*10/sup 14/ and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma =0.2 mm. The total duration of the beam will be about 89 mu s. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  7. T-odd Gluon-Top-Quark Effective Couplings at the CERN Large Hadron Collider

    CERN Document Server

    Choi, S Y; Lee, J; Lee, Jake

    1997-01-01

    The T-odd top-quark chromoelectric dipole moment (tCEDM) is probed through top-quark-pair production via gluon fusion at the CERN Large Hadron Collider (LHC) by considering the possibility of having polarized protons. The complete analytic expressions for the tree-level helicity amplitudes of gg-> ttbar is also presented. For the derived analytic results we determine the 1-sigma statistical sensitivities to the tCEDM form factor for (i) typical CP-odd observables composed of lepton and anti-lepton momenta from t and tbar semileptonic decays for unpolarized protons, and (ii) a CP-odd event asymmetry for polarized protons by using the so-called Berger-Qiu (BQ) parametrization of polarized gluon distribution functions. We find that at the CERN LHC, the CP-odd energy and angular correlations can put a limit of 10^{-18} to 10^{-17} g_scm on the real and imaginary parts of the tCEDM, while the simple CP-odd event asymmetry with polarized protons could put a very strong limit of 10^{-20} g_scm on the imaginary part ...

  8. Superconducting Magnet with the Minimum Steel Yoke for the Hadron Future Circular Collider Detector

    CERN Document Server

    Klyukhin, V I; Ball, A.; Curé, B.; Dudarev, A.; Gaddi, A.; Gerwig, H.; Mentink, M.; Da Silva, H. Pais; Rolando, G.; ten Kate, H. H. J.; Berriaud, C.P.

    2016-01-01

    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T in combination with two superconducting dipole and two conventional toroid magnets is proposed for a FCC-hh experimental setup. The coil of 23.468 m long has seven 3.35 m long modules included into one cryostat. The steel yoke with a mass of 22.6 kt consists of two barrel layers of 0.5 m radial thickness, and the 0.7 m thick nose disk and four 0.6 m thick end-cap disks each side. The maximum outer diameter of the yoke is 17.7 m; the length is 62.6 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity about \\pm 2.7. The superconducting dipole magnets allow measuring the charged particle momenta in the pseudora...

  9. The upgraded Pixel Detector of the ATLAS Experiment for Run 2 at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, M., E-mail: malte.backhaus@cern.ch

    2016-09-21

    During Run 1 of the Large Hadron Collider (LHC), the ATLAS Pixel Detector has shown excellent performance. The ATLAS collaboration took advantage of the first long shutdown of the LHC during 2013 and 2014 and extracted the ATLAS Pixel Detector from the experiment, brought it to surface and maintained the services. This included the installation of new service quarter panels, the repair of cables, and the installation of the new Diamond Beam Monitor (DBM). Additionally, a completely new innermost pixel detector layer, the Insertable B-Layer (IBL), was constructed and installed in May 2014 between a new smaller beam pipe and the existing Pixel Detector. With a radius of 3.3 cm the IBL is located extremely close to the interaction point. Therefore, a new readout chip and two new sensor technologies (planar and 3D) are used in the IBL. In order to achieve best possible physics performance the material budget was improved with respect to the existing Pixel Detector. This is realized using lightweight staves for mechanical support and a CO{sub 2} based cooling system. This paper describes the improvements achieved during the maintenance of the existing Pixel Detector as well as the performance of the IBL during the construction and commissioning phase. Additionally, first results obtained during the LHC Run 2 demonstrating the distinguished tracking performance of the new Four Layer ATLAS Pixel Detector are presented.

  10. Measurement of nonlinear observables in the Large Hadron Collider using kicked beams

    Science.gov (United States)

    Maclean, E. H.; Tomás, R.; Schmidt, F.; Persson, T. H. B.

    2014-08-01

    The nonlinear dynamics of a circular accelerator such as the Large Hadron Collider (LHC) may significantly impact its performance. As the LHC progresses to more challenging regimes of operation it is to be expected that the nonlinear single particle dynamics in the transverse planes will play an increasing role in limiting the reach of the accelerator. As such it is vital that the nonlinear sources are well understood. The nonlinear fields of a circular accelerator may be probed through measurement of the amplitude detuning: the variation of tune with single particle emittance. This quantity may be assessed experimentally by exciting the beam to large amplitudes with kicks, and obtaining the tunes and actions from turn-by-turn data at Beam Position Monitors. The large amplitude excitations inherent to such a measurement also facilitate measurement of the dynamic aperture from an analysis of beam losses following the kicks. In 2012 these measurements were performed on the LHC Beam 2 at injection energy (450 GeV) with the nominal magnetic configuration. Nonlinear coupling was also observed. A second set of measurements were performed following the application of corrections for b4 and b5 errors. Analysis of the experimental results, and a comparison to simulation are presented herein.

  11. A Possible 1.8 K Refrigeration Cycle for the Large Hadron Collider

    CERN Document Server

    Millet, F; Tavian, L; Wagner, U

    1998-01-01

    The Large Hadron Collider (LHC) under construction at the European Laboratory for Particle Physics, CERN, will make use of superconducting magnets operating below 2.0 K. This requires, for each of the eight future cryogenic installations, an isothermal cooling capacity of up to 2.4 kW obtained by vaporisation of helium II at 1.6 kPa and 1.8 K. The process design for this cooling duty has to satisfy several demands. It has to be adapted to four already existing as well as to four new refrigerators. It must cover a dynamic range of one to three, and it must to allow continuous pump-down from 4.5 K to 1.8 K. A possible solution, as presented in this paper, includes a combination of cold centrifugal and warm volumetric compressors. It is characterised by a low thermal load on the refrigerator, and a large range of adaptability to different operation modes. The expected power factor for 1.8 K cooling is given, and the proposed control strategy is explained.

  12. Correlation between magnetic field quality and mechanical components of the Large Hadron Collider main dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Bellesia, B

    2006-12-15

    The 1234 superconducting dipoles of the Large Hadron Collider, working at a cryogenic temperature of 1.9 K, must guarantee a high quality magnetic field to steer the particles inside the beam pipe. Magnetic field measurements are a powerful way to detect assembly faults that could limit magnet performances. The aim of the thesis is the analysis of these measurements performed at room temperature during the production of the dipoles. In a large scale production the ideal situation is that all the magnets produced were identical. However all the components constituting a magnet are produced with certain tolerance and the assembly procedures are optimized during the production; due to these the reality drifts away from the ideal situation. We recollected geometrical data of the main components (superconducting cables, coil copper wedges and austenitic steel coil collars) and coupling them with adequate electro-magnetic models we reconstructed a multipolar field representation of the LHC dipoles defining their critical components and assembling procedures. This thesis is composed of 3 main parts: 1) influence of the geometry and of the assembling procedures of the dipoles on the quality of the magnetic field, 2) the use of measurement performed on the dipoles in the assembling step in order to solve production issues and to understand the behaviour of coils during the assembling step, and 3) a theoretical study of the uncertain harmonic components of the magnetic field in order to assess the dipole production.

  13. Search for Microscopic Black Hole Signatures at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, Ka Vang [Brown Univ., Providence, RI (United States)

    2011-05-01

    A search for microscopic black hole production and decay in proton-proton collisions at a center-of-mass energy of 7 TeV has been conducted using Compact Muon Solenoid (CMS) detector at the CERN Large Hadron Collider. A total integrated luminosity of 35 pb-1 data sample, taken by CMS Collaboration in year 2010, has been analyzed. A novel background estimation for multi-jet events beyond TeV scale has been developed. A good agreement with standard model backgrounds, dominated by multi-jet production, is observed for various final-state multiplicities. Using semi-classical approximation, upper limits on minimum black hole mass at 95% confidence level are set in the range of 3.5 - 4.5 TeV for values of the Planck scale up to 3 TeV. Model-independent limits are provided to further constrain microscopic black hole models with additional regions of parameter space, as well as new physics models with multiple energetic final states. These are the first limits on microscopic black hole production at a particle accelerator.

  14. The CERN Large Hadron Collider as a tool to study high-energy density matter.

    Science.gov (United States)

    Tahir, N A; Kain, V; Schmidt, R; Shutov, A; Lomonosov, I V; Gryaznov, V; Piriz, A R; Temporal, M; Hoffmann, D H H; Fortov, V E

    2005-04-08

    The Large Hadron Collider (LHC) at CERN will generate two extremely powerful 7 TeV proton beams. Each beam will consist of 2808 bunches with an intensity per bunch of 1.15x10(11) protons so that the total number of protons in one beam will be about 3x10(14) and the total energy will be 362 MJ. Each bunch will have a duration of 0.5 ns and two successive bunches will be separated by 25 ns, while the power distribution in the radial direction will be Gaussian with a standard deviation, sigma=0.2 mm. The total duration of the beam will be about 89 mus. Using a 2D hydrodynamic code, we have carried out numerical simulations of the thermodynamic and hydrodynamic response of a solid copper target that is irradiated with one of the LHC beams. These calculations show that only the first few hundred proton bunches will deposit a high specific energy of 400 kJ/g that will induce exotic states of high energy density in matter.

  15. Studies of purification of the Resistive Plate Chamber gas mixture for the Large Hadron Collider experiments

    CERN Document Server

    Capeans, M; Guida, R; Hahn, F; Haider, S

    2009-01-01

    The Resistive Plate Chambers (RPCs) installed as part of the large muon detectors at the Large Hadron Collider (LHC) experiments use a gas mixture of 94.7% C2H2F4, 5% iC(4)H(10) and 0.3% SF6. Based on economical grounds, the design philosophy of the gas systems for the ATLAS and CMS RPC's foresees to recirculate the gas mixture in 90-95% closed loop circulation. At the LHC, RPC chambers are operated in a high radiation environment, conditions for which large amount of impurities in the return gas have been observed in earlier studies. They are potentially dangerous for the stable operation of the detectors, the materials in the detector and the gas system. While several purification stages have been foreseen in the present gas systems, chemical reactions between the absorber and the impurities are yet not well understood. Furthermore, the effects on the gas mixture of the foreseen factor 10 increase of luminosity for the LHC upgraded phase should be studied. We present the results of systematic studies of the...

  16. Busca por dimensões extras no detector CMS do large hadron collider

    CERN Document Server

    Fernandez Perez Tomei, T R

    We present the results of a search for experimental evidence of extra space dimensions in proton-proton collisions at a center-of-mass energy of 7 TeV, furnished by the Large Hadron Collider accelerator. We analyzed the data taken by the Compact Muon Solenoid experiment during 2011, which total an integrated luminosity of 4.7 fb−1. The Randall-Sundrum warped extra dimensions model was used as a standard benchmark for the experimental signatures which could be observed in the data, in the presence of extra dimensions. The studied reaction is pp → G∗→ ZZ→ qqνν, where G∗ is the first Randall-Sundrum graviton resonance. The observations agree witht he Standard Model predictions. In the absence of experimental signals of extra dimensions, we put limits on the parameters of the Randall-Sundrum model. Upper limits, with 95% confidence, for the cross-section of processes which would raise the event yield in the channel considered are in the [0.047 – 0.021] pb range, for resonance masses in the [1000...

  17. The Local Helium Compound Transfer Lines for the Large Hadron Collider Cryogenic System

    CERN Document Server

    Parente, C; Munday, A; Wiggins, P

    2006-01-01

    The cryogenic system for the Large Hadron Collider (LHC) under construction at CERN will include twelve new local helium transfer lines distributed among five LHC points in underground caverns. These lines, being manufactured and installed by industry, will connect the cold boxes of the 4.5-K refrigerators and the 1.8-K refrigeration units to the cryogenic interconnection boxes. The lines have a maximum of 30-m length and may possess either small or large re-distribution units to allow connection to the interface ports. Due to space restrictions the lines may have complex routings and require several elbowed sections. The lines consist of a vacuum jacket, a thermal shield and either three or four helium process pipes. Specific internal and external supporting and compensation systems were designed for each line to allow for thermal contraction of the process pipes (or vacuum jacket, in case of a break in the insulation vacuum) and to minimise the forces applied to the interface equipment. Whenever possible, f...

  18. Finite-width effects in unstable-particle production at hadron colliders

    CERN Document Server

    Falgari, P; Signer, A

    2013-01-01

    We present a general formalism for the calculation of finite-width contributions to the differential production cross sections of unstable particles at hadron colliders. In this formalism, which employs an effective-theory description of unstable-particle production and decay, the matrix element computation is organized as a gauge-invariant expansion in powers of $\\Gamma_X/m_X$, with $\\Gamma_X$ and $m_X$ the width and mass of the unstable particle. This framework allows for a systematic inclusion of off-shell and non-factorizable effects whilst at the same time keeping the computational effort minimal compared to a full calculation in the complex-mass scheme. As a proof-of-concept example, we give results for an NLO calculation of top-antitop production in the $q \\bar{q}$ partonic channel. As already found in a similar calculation of single-top production, the finite-width effects are small for the total cross section, as expected from the na\\" ive counting $\\sim \\Gamma_t/m_t \\sim 1%$. However, they can be si...

  19. Superconducting Magnet with the Reduced Barrel Yoke for the Hadron Future Circular Collider

    CERN Document Server

    Klyukhin, V I; Berriaud, C; Curé, B; Dudarev, A; Gaddi, A; Gerwig, H; Hervé, A; Mentink, M; Rolando, G; Da Silva, H F Pais; Wagner, U; Kate, H H J ten

    2016-01-01

    The conceptual design study of a hadron Future Circular Collider (FCC-hh) with a center-of-mass energy of the order of 100 TeV in a new tunnel of 80-100 km circumference assumes the determination of the basic requirements for its detectors. A superconducting solenoid magnet of 12 m diameter inner bore with the central magnetic flux density of 6 T is proposed for a FCC-hh experimental setup. The coil of 24.518 m long has seven 3.5 m long modules included into one cryostat. The steel yoke with a mass of 21 kt consists of two barrel layers of 0.5 m radial thickness, and 0.7 m thick nose disk, four 0.6 m thick end-cap disks, and three 0.8 m thick muon toroid disks each side. The outer diameter of the yoke is 17.7 m; the length without the forward muon toroids is 33 m. The air gaps between the end-cap disks provide the installation of the muon chambers up to the pseudorapidity of \\pm 3.5. The conventional forward muon spectrometer provides the measuring of the muon momenta in the pseudorapidity region from \\pm 2.7...

  20. Performance Analysis of the Ironless Inductive Position Sensor in the Large Hadron Collider Collimators Environment

    CERN Document Server

    Danisi, Alessandro; Losito, Roberto

    2015-01-01

    The Ironless Inductive Position Sensor (I2PS) has been introduced as a valid alternative to Linear Variable Differential Transformers (LVDTs) when external magnetic fields are present. Potential applications of this linear position sensor can be found in critical systems such as nuclear plants, tokamaks, satellites and particle accelerators. This paper analyzes the performance of the I2PS in the harsh environment of the collimators of the Large Hadron Collider (LHC), where position uncertainties of less than 20 μm are demanded in the presence of nuclear radiation and external magnetic fields. The I2PS has been targeted for installation for LHC Run 2, in order to solve the magnetic interference problem which standard LVDTs are experiencing. The paper describes in detail the chain of systems which belong to the new I2PS measurement task, their impact on the sensor performance and their possible further optimization. The I2PS performance is analyzed evaluating the position uncertainty (on 30 s), the magnetic im...

  1. grille de calcul pour le Large hadron collider: un nouveau défi est relevé

    CERN Multimedia

    2006-01-01

    The worldwide collaboration WLCG(1), in which the Computing Center of IN2P3-CNRS in Villeurbanne participates, has just announced a new record in the implementation of a worldwide computing grid for the Large Hadron Collider (LHC): a continuous flow of scientific data has been transferred on a worldwide computers grid, with a flow going until the equivalent of a DVD of scientific data every 5 secondes (1 page)

  2. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  3. Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider

    Indian Academy of Sciences (India)

    Subrata Pal

    2015-05-01

    We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.

  4. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah

    2016-04-01

    In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.

  5. Chiral electric field in relativistic heavy-ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Zhong, Yang; Yang, Chun-Bin; Cai, Xu; Feng, Sheng-Qin

    2016-08-01

    It has been proposed that electric fields may lead to chiral separation in quark-gluon plasma (QGP). This is called the chiral electric separation effect. The strong electromagnetic field and the QCD vacuum can both be completely produced in off-central nuclear-nuclear collision. We use the Woods-Saxon nucleon distribution to calculate the electric field distributions of off-central collisions. The chiral electric field spatial distribution at Relativistic Heavy-Ion Collider (RHIC) and Large Hadron Collider (LHC) energy regions are systematically studied in this paper. The dependence of the electric field produced by the thermal quark in the central position with different impact parameters on the proper time with different collision energies in the RHIC and LHC energy regions are studied in this paper. Supported by National Natural Science Foundation of China (11375069, 11435054, 11075061, 11221504) and Key Laboratory Foundation of Quark and Lepton Physics (Hua-Zhong Normal University)(QLPL2014P01)

  6. Beam losses from ultra-peripheral nuclear collisions between Pb ions in the Large Hadron Collider and their alleviation

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; /CERN; Bocian, D.; /Fermilab /CERN; Gilardoni, S.; Jowett, J.M.; /CERN

    2009-08-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of {sup 208}Pb{sup 82+} ion operation in the LHC, with focus on the alice interaction region, and show that the expected heat load during nominal {sup 208}Pb{sup 82+} operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  7. Next-to-next-to-leading-order subtraction formalism in hadron collisions and its application to Higgs-boson production at the large hadron collider.

    Science.gov (United States)

    Catani, Stefano; Grazzini, Massimiliano

    2007-06-01

    We consider higher-order QCD corrections to the production of colorless high-mass systems (lepton pairs, vector bosons, Higgs bosons, etc.) in hadron collisions. We propose a new formulation of the subtraction method to numerically compute arbitrary infrared-safe observables for this class of processes. To cancel the infrared divergences, we exploit the universal behavior of the associated transverse-momentum (qT) distributions in the small-qT region. The method is illustrated in general terms up to the next-to-next-to-leading order in QCD perturbation theory. As a first explicit application, we study Higgs-boson production through gluon fusion. Our calculation is implemented in a parton level Monte Carlo program that includes the decay of the Higgs boson into two photons. We present selected numerical results at the CERN Large Hadron Collider.

  8. Prompt D*+ production in proton-proton and lead-lead collisions, measured with the ALICE experiment at the CERN Large Hadron Collider

    NARCIS (Netherlands)

    de Rooij, R. S.

    2013-01-01

    In this thesis the results are presented of the first measurements of the D*+ meson nuclear modification factor RAA in heavy ion collisions at the Large Hadron Collider (LHC) using the ALICE (A Large Ion Collider Experiment) detector at CERN. These open charmed mesons are a useful tool to investigat

  9. Colliders

    CERN Document Server

    Chou, Weiren

    2014-01-01

    The idea of colliding two particle beams to fully exploit the energy of accelerated particles was first proposed by Rolf Wideröe, who in 1943 applied for a patent on the collider concept and was awarded the patent in 1953. The first three colliders — AdA in Italy, CBX in the US, and VEP-1 in the then Soviet Union — came to operation about 50 years ago in the mid-1960s. A number of other colliders followed. Over the past decades, colliders defined the energy frontier in particle physics. Different types of colliers — proton–proton, proton–antiproton, electron–positron, electron–proton, electron-ion and ion-ion colliders — have played complementary roles in fully mapping out the constituents and forces in the Standard Model (SM). We are now at a point where all predicted SM constituents of matter and forces have been found, and all the latest ones were found at colliders. Colliders also play a critical role in advancing beam physics, accelerator research and technology development. It is timel...

  10. Radial and elliptic flow in Pb+Pb collisions at the Large Hadron Collider from viscous hydrodynamic

    CERN Document Server

    Shen, Chun; Huovinen, Pasi; Song, Huichao

    2011-01-01

    A comprehensive viscous hydrodynamic fit of spectra and elliptic flow for charged hadrons and identified pions and protons from Au+Au collisions of all centralities measured at the Relativistic Heavy Ion Collider is performed and used as the basis for predicting the analogous observables for Pb+Pb collisions at the Large Hadron Collider at sqrt(s)=2.76 and 5.5 A TeV. Comparison with recent measurements of the elliptic flow of charged hadrons by the ALICE experiment shows that the model slightly over-predicts the data if the same (constant) specific shear viscosity eta/s is assumed at both collision energies. In spite of differences in our assumptions for the equation of state, the freeze-out temperature, the chemical composition at freeze-out, and the starting time for the hydrodynamic evolution, our results agree remarkably well with those of Luzum [M. Luzum, Phys. Rev. C 83, 044911 (2011)], indicating robustness of the hydrodynamic model extrapolations. Future measurements of the centrality and transverse m...

  11. The large Hadron Collider (LHC) and the search for the divine particle; El gran acelerador de hadrones (LHC) y la busqueda de la particula divina

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, G.

    2008-07-01

    The large Hadron Collider (LHC) is a particle circular accelerator of 27 km of circumference. It will be used to study the smallest known particles. Two beams of subatomic particles called hadrons either protons or lead ion- will travel in opposite directions inside the circular accelerator gaining energy with every lap. Physicists will use the LHC to recreate the conditions just after the Big Bang, by colliding the two beams had-on at very high energy. There are many theories as to what will result from these collisions, but what's for sure is that a brave new world of physics will emerge from the new accelerator, as knowledge in particle physics goes on to describe the working of the Universe. for decades, the Standard Model of particle physics has served physicists well as a means of understanding the fundamental laws of Nature, but it does not tell the whole story. Only experimental data using the higher energies reached by the LHC can push knowledge forward, challenging those who seek confirmation of established knowledge, and those who dare to dream beyond the paradigm. The Higgs boson, that complete the standard model, is waited to be found. (Author)

  12. A Large Hadron Electron Collider at CERN: Report on the Physics and Design Concepts for Machine and Detector

    CERN Document Server

    Abelleira Fernandez, J L; Akay, A N; Aksakal, H; Albacete, J L; Alekhin, S; Allport, P; Andreev, V; Appleby, R B; Arikan, E; Armesto, N; Azuelos, G; Bai, M; Barber, D; Bartels, J; Behnke, O; Behr, J; Belyaev, A S; Ben-Zvi, I; Bernard, N; Bertolucci, S; Bettoni, S; Biswal, S; Blumlein, J; Bottcher, H; Bogacz, A; Bracco, C; Brandt, G; Braun, H; Brodsky, S; Brüning, O; Bulyak, E; Buniatyan, A; Burkhardt, H; Cakir, I T; Cakir, O; Calaga, R; Cetinkaya, V; Ciapala, E; Ciftci, R; Ciftci, A K; Cole, B A; Collins, J C; Dadoun, O; Dainton, J; De Roeck, A; d'Enterria, D; Dudarev, A; Eide, A; Enberg, R; Eroglu, E; Eskola, K J; Favart, L; Fitterer, M; Forte, S; Gaddi, A; Gambino, P; Garcia Morales, H; Gehrmann, T; Gladkikh, P; Glasman, C; Godbole, R; Goddard, B; Greenshaw, T; Guffanti, A; Guzey, V; Gwenlan, C; Han, T; Hao, Y; Haug, F; Herr, W; Herve, A; Holzer, B J; Ishitsuka, M; Jacquet, M; Jeanneret, B; Jimenez, J M; Jowett, J M; Jung, H; Karadeniz, H; Kayran, D; Kilic, A; Kimura, K; Klein, M; Klein, U; Kluge, T; Kocak, F; Korostelev, M; Kosmicki, A; Kostka, P; Kowalski, H; Kramer, G; Kuchler, D; Kuze, M; Lappi, T; Laycock, P; Levichev, E; Levonian, S; Litvinenko, V N; Lombardi, A; Maeda, J; Marquet, C; Mellado, B; Mess, K H; Milanese, A; Moch, S; Morozov, I I; Muttoni, Y; Myers, S; Nandi, S; Nergiz, Z; Newman, P R; Omori, T; Osborne, J; Paoloni, E; Papaphilippou, Y; Pascaud, C; Paukkunen, H; Perez, E; Pieloni, T; Pilicer, E; Pire, B; Placakyte, R; Polini, A; Ptitsyn, V; Pupkov, Y; Radescu, V; Raychaudhuri, S; Rinol, L; Rohini, R; Rojo, J; Russenschuck, S; Sahin, M; Salgado, C A; Sampei, K; Sassot, R; Sauvan, E; Schneekloth, U; Schorner-Sadenius, T; Schulte, D; Senol, A; Seryi, A; Sievers, P; Skrinsky, A N; Smith, W; Spiesberger, H; Stasto, A M; Strikman, M; Sullivan, M; Sultansoy, S; Sun, Y P; Surrow, B; Szymanowski, L; Taels, P; Tapan, I; Tasci, T; Tassi, E; Ten Kate, H; Terron, J; Thiesen, H; Thompson, L; Tokushuku, K; Tomas Garcia, R; Tommasini, D; Trbojevic, D; Tsoupas, N; Tuckmantel, J; Turkoz, S; Trinh, T N; Tywoniuk, K; Unel, G; Urakawa, J; VanMechelen, P; Variola, A; Veness, R; Vivoli, A; Vobly, P; Wagner, J; Wallny, R; Wallon, S; Watt, G; Weiss, C; Wiedemann, U A; Wienands, U; Willeke, F; Xiao, B W; Yakimenko, V; Zarnecki, A F; Zhang, Z; Zimmermann, F; Zlebcik, R; Zomer, F

    2012-01-01

    The physics programme and the design are described of a new collider for particle and nuclear physics, the Large Hadron Electron Collider (LHeC), in which a newly built electron beam of 60 GeV, up to possibly 140 GeV, energy collides with the intense hadron beams of the LHC. Compared to HERA, the kinematic range covered is extended by a factor of twenty in the negative four-momentum squared, $Q^2$, and in the inverse Bjorken $x$, while with the design luminosity of $10^{33}$ cm$^{-2}$s$^{-1}$ the LHeC is projected to exceed the integrated HERA luminosity by two orders of magnitude. The physics programme is devoted to an exploration of the energy frontier, complementing the LHC and its discovery potential for physics beyond the Standard Model with high precision deep inelastic scattering measurements. These are designed to investigate a variety of fundamental questions in strong and electroweak interactions. The physics programme also includes electron-deuteron and electron-ion scattering in a $(Q^2, 1/x)$ ran...

  13. Probing electroweak gauge boson scattering with the ATLAS detector at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Anger, Philipp

    2014-09-01

    Electroweak gauge bosons as central components of the Standard Model of particle physics are well understood theoretically and have been studied with high precision at past and present collider experiments. The electroweak theory predicts the existence of a scattering process of these particles consisting of contributions from triple and quartic bosonic couplings as well as Higgs boson mediated interactions. These contributions are not separable in a gauge invariant way and are only unitarized in the case of a Higgs boson as it is described by the Standard Model. The process is tied to the electroweak symmetry breaking which introduces the longitudinal modes for the massive electroweak gauge bosons. A study of this interaction is also a direct verification of the local gauge symmetry as one of the fundamental axioms of the Standard Model. With the start of the Large Hadron Collider and after collecting proton-proton collision data with an integrated luminosity of 20.3 fb{sup -1} at a center-of-mass energy of √(s)=8 TeV with the ATLAS detector, first-ever evidence for this process could be achieved in the context of this work. A study of leptonically decaying W{sup ±}W{sup ±}jj, same-electric-charge diboson production in association with two jets resulted in an observation of the electroweak W{sup ±}W{sup ±}jj production with same electric charge of the W bosons, inseparably comprising W{sup ±}W{sup ±}→W{sup ±}W{sup ±} electroweak gauge boson scattering contributions, with a significance of 3.6 standard deviations. The measured production cross section is in agreement with the Standard Model prediction. In the course of a study for leptonically decaying WZ productions, methods for background estimation, the extraction of systematic uncertainties and cross section measurements were developed. They were extended and applied to the WZjj final state whereof the purely electroweakly mediated contribution is intrinsically tied to the scattering of all Standard

  14. Probing small parton densities in ultraperipheral A A and pA collisions at the CERN large Hadron Collider.

    Science.gov (United States)

    Strikman, Mark; Vogt, Ramona; White, Sebastian

    2006-03-01

    We calculate photoproduction rates for several hard processes in ultraperipheral proton-lead and lead-lead collisions at the CERN Large Hadron Collider (LHC) with square root of sNN = 8.8 and 5.5 TeV, respectively, which could be triggered in the large LHC detectors. We use ATLAS as an example. The lead ion is treated as a source of (coherently produced) photons with energies and intensities greater than those of equivalent ep collisions at the DESY collider HERA. We find very large rates for both inclusive and diffractive production that will extend the HERA x range by nearly an order of magnitude for similar virtualities. We demonstrate that it is possible to reach the kinematic regime where nonlinear effects are larger than at HERA.

  15. Large Hadron Collider at CERN: Beams generating high-energy-density matter.

    Science.gov (United States)

    Tahir, N A; Schmidt, R; Shutov, A; Lomonosov, I V; Piriz, A R; Hoffmann, D H H; Deutsch, C; Fortov, V E

    2009-04-01

    This paper presents numerical simulations that have been carried out to study the thermodynamic and hydrodynamic responses of a solid copper cylindrical target that is facially irradiated along the axis by one of the two Large Hadron Collider (LHC) 7 TeV/ c proton beams. The energy deposition by protons in solid copper has been calculated using an established particle interaction and Monte Carlo code, FLUKA, which is capable of simulating all components of the particle cascades in matter, up to multi-TeV energies. These data have been used as input to a sophisticated two-dimensional hydrodynamic computer code BIG2 that has been employed to study this problem. The prime purpose of these investigations was to assess the damage caused to the equipment if the entire LHC beam is lost at a single place. The FLUKA calculations show that the energy of protons will be deposited in solid copper within about 1 m assuming constant material parameters. Nevertheless, our hydrodynamic simulations have shown that the energy deposition region will extend to a length of about 35 m over the beam duration. This is due to the fact that first few tens of bunches deposit sufficient energy that leads to high pressure that generates an outgoing radial shock wave. Shock propagation leads to continuous reduction in the density at the target center that allows the protons delivered in subsequent bunches to penetrate deeper and deeper into the target. This phenomenon has also been seen in case of heavy-ion heated targets [N. A. Tahir, A. Kozyreva, P. Spiller, D. H. H. Hoffmann, and A. Shutov, Phys. Rev. E 63, 036407 (2001)]. This effect needs to be considered in the design of a sacrificial beam stopper. These simulations have also shown that the target is severely damaged and is converted into a huge sample of high-energy density (HED) matter. In fact, the inner part of the target is transformed into a strongly coupled plasma with fairly uniform physical conditions. This work, therefore, has

  16. Design and Tests on the 30 to 600 A HTS Current Leads for the Large Hadron Collider

    CERN Document Server

    Ballarino, A

    1997-01-01

    Some 800 correction magnets of the Large Hadron Collider will be individually powered. Each of them needs a pair of current leads. To reduce the heat leak through these leads, the current has been chosen as low as reasonably possible, 30 to 600 A. For the same reason CERN started in-house a development of current leads using commercial bulk BSCCO-2212 material.This paper discusses the design and the test results of this lead. We tested several prototypes, measured the heat leak through the lead, studied and tested what happens if the lead is brought to critical temperature causing it to quench.

  17. Four-Jet Production at the Large Hadron Collider at Next-to-Leading Order in QCD

    CERN Document Server

    Bern, Z; Dixon, L J; Cordero, F Febres; Hoeche, S; Kosower, D A; Ita, H; Maitre, D; Ozeren, K

    2012-01-01

    We present the cross sections for production of up to four jets at the Large Hadron Collider, at next-to-leading order in the QCD coupling. We use the BlackHat library in conjunction with SHERPA and a recently developed algorithm for assembling primitive amplitudes into color-dressed amplitudes. We adopt the cuts used by ATLAS in their study of multi-jet events in pp collisions at \\sqrt{s} = 7 TeV. We include estimates of nonperturbative corrections and compare to ATLAS data. We store intermediate results in a framework that allows the inexpensive computation of additional results for different choices of scale or parton distributions.

  18. Searches for and identification of effects of extra spatial dimensions in dilepton and diphoton production at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Pankov, A. A., E-mail: pankov@ictp.it; Serenkova, I. A., E-mail: inna.serenkova@cern.ch; Tsytrinov, A. V., E-mail: tsytrin@gstu.by; Bednyakov, V. A., E-mail: Vadim.Bednyakov@cern.ch [Pavel Sukhoi Gomel State Technical University, ICTP (Abdus Salam International Centre for Theoretical Physics, Trieste, Italy) Affiliated Centre (Belarus)

    2015-06-15

    Prospects of discovering and identifying effects of extra spatial dimensions in dilepton and diphoton production at the Large Hadron Collider (LHC) are studied. Such effects may be revealed by the characteristic behavior of the invariant-mass distributions of dileptons and diphotons, and their identification can be performed on the basis of an analysis of their angular distributions. The discovery and identification reaches are estimated for the scale parameter M{sub S} of the Kaluza-Klein gravitational towers, which can be determined in experiments devoted to measuring the dilepton and diphoton channels at the LHC.

  19. Support Vector Machine Classification on a Biased Training Set: Multi-Jet Background Rejection at Hadron Colliders

    CERN Document Server

    Sforza, Federico

    2014-01-01

    This paper describes an innovative way to optimize a multivariate classifier, in particular a Support Vector Machine algorithm, on a problem characterized by a biased training sample. This is possible thanks to the feedback of a signal-background template fit performed on a validation sample and included both in the optimization process and in the input variable selection. The procedure is applied to a real case of interest at hadron collider experiments: the reduction and the estimate of the multi-jet background in the $W\\to e \

  20. Electromagnetic Design and Optimization of Directivity of Stripline Beam Position Monitors for the High Luminosity Large Hadron Collider

    CERN Document Server

    Draskovic, Drasko; Jones, Owain Rhodri; Lefèvre, Thibaut; Wendt, Manfred

    2015-01-01

    This paper presents the preliminary electromagnetic design of a stripline Beam Position Monitor (BPM) for the High Luminosity program of the Large Hadron Collider (HL-LHC) at CERN. The design is fitted into a new octagonal shielded Beam Screen for the low-beta triplets and is optimized for high directivity. It also includes internal Tungsten absorbers, required to reduce the energy deposition in the superconducting magnets. The achieved broadband directivity in wakefield solver simulations presents significant improvement over the directivity of the current stripline BPMs installed in the LHC.

  1. Lattice design for the future ERL-based electron hadron colliders eRHIC and LHeC

    Energy Technology Data Exchange (ETDEWEB)

    Trbojevic, D.; Beebe-Wang, J.; Hao, Y.; Litvinenko, V.N.; Ptitsyn, V.; Kayran, D.; Tsoupas, N.

    2011-03-28

    We present a lattice design of a CW Electron Recovery Linacs (ERL) for future electron hadron colliders eRHIC and LHeC. In eRHIC, an six-pass ERL installed in the existing Relativistic Heavy Ion Collider (RHIC) tunnel will collide 5-30 GeV polarized electrons with RHIC's 50-250 (325) GeV polarized protons or 20-100 (130) GeV/u heavy ions. In LHeC a stand-along, 3-pass 60 GeV CW ERL will collide polarized electrons with 7 TeV protons. After collision, electron beam energy is recovered and electrons are dumped at low energy. Two superconducting linacs are located in the two straight sections in both ERLs. The multiple arcs are made of Flexible Momentum Compaction lattice (FMC) allowing adjustable momentum compaction for electrons with different energies. The multiple arcs, placed above each other, are matched to the two linac's straight sections with splitters and combiners.

  2. A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    INSPIRE-00425747; McMahon, Stephen J

    2015-01-01

    ATLAS is a particle physics experiment at the Large Hadron Collider (LHC) that detects proton-proton collisions at a centre of mass energy of 14 TeV. The Semiconductor Tracker is part of the Inner Detector, implemented using silicon microstrip detectors with binary read-out, providing momentum measurement of charged particles with excellent resolution. The operation of the LHC and the ATLAS experiment started in 2010, with ten years of operation expected until major upgrades are needed in the accelerator and the experiments. The ATLAS tracker will need to be completely replaced due to the radiation damage and occupancy of some detector elements and the data links at high luminosities. These upgrades after the first ten years of operation are named the Phase-II Upgrade and involve a re-design of the LHC, resulting in the High Luminosity Large Hadron Collider (HL-LHC). This thesis presents the work carried out in the testing of the ATLAS Phase-II Upgrade electronic systems in the future strips tracker a...

  3. Probing triple-Higgs productions via $4b2\\gamma$ at a 100 TeV hadron collider

    CERN Document Server

    Chen, Chien-Yi; Zhao, Xiaoran; Zhong, Yi-Ming; Zhao, Zhijie

    2016-01-01

    The quartic self-coupling of the Standard Model Higgs boson can only be measured by observing the triple-Higgs production process, but it is challenging for the LHC Run 2 or ILC at a few TeV because of its extremely small production rate. In this paper, we present a detailed MC simulation study of the triple-Higgs production through gluon fusion at a 100 TeV hadron collider and explore the feasibility of observing this production mode. We focus on the decay channel $HHH\\rightarrow b\\bar{b}b\\bar{b}\\gamma\\gamma$, investigating detector effects and optimizing the kinematic cuts to discriminate the signal from the backgrounds. Our study shows that in order to observe the Standard Model triple-Higgs signal, the integrated luminosity of a 100 TeV hadron collider should be greater than $1.8\\times 10^4$ ab$^{-1}$. We also explore the dependence of the cross section upon the trilinear ($\\lambda_3$) and quartic ($\\lambda_4$) self-couplings of the Higgs. We find that, through a search in the triple Higgs production, the...

  4. Experimental search for W/Z pairs and Higgs bosons at very high energy hadron-hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Alverson, G.; Bengtsson, H.U.; Hauptman, J.; Hedin, D.; Herrero, M.J.; Wang, E.; Linn, S.; Young, C.; Milliken, B.; Paige, F.

    1987-03-01

    We study, from an experimental point of view, the main ways to detect standard high mass Higgs bosons (from 300 GeV up to about 1 TeV) when they decay into W- and Z-pairs at the SSC. We also consider the corresponding W- and Z/sup 0/-pair continuum which may itself provide interesting physics, and we pay some attention to the case of an intermediate mass charged Higgs decaying into tau..nu../sub tau/ (m/sub H+-/ = 300 GeV). We first explain why and how high energy pp colliders may search for Higgs' and we compare their possible performances to those of the e/sup +/e/sup -/ and ep colliders at all possible mass scale (from few tens of GeV's up to 1 TeV). We then estimate the rates of the signals and the main backgrounds. We define the main characteristics of these events as reproduced by M.C. generators (especially implemented with these processes) and simulated through an idealized 4..pi.. fine-grained calorimeter. A trigger strategy for W- and Z-pairs is derived from this study. 26 refs., 28 figs.

  5. Discovery and measurement of excited b hadrons at the Collider Detector at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Pursley, Jennifer Marie [Johns Hopkins Univ., Baltimore, MD (United States)

    2007-08-01

    This thesis presents evidence for the B**0 and Σ$(*)±\\atop{b}$ hadrons in proton-antiproton collisions at a center of mass energy of 1.96 TeV, using data collected by the Collider Detector at Fermilab. In the search for B**0 → B± π, two B± decays modes are reconstructed: B± → J/ΨK±, where J/Ψ → μ+μ-, and B± → $\\bar{D}$0π±, where $\\bar{D}$0 → K± π±. Both modes are reconstructed using 370 ± 20 pb-1 of data. Combining the B± meson with a charged pion to reconstruct B**0 led to the observation and measurement of the masses of the two narrow B**0 states, B$1\\atop{0}$ and B$*0\\atop{2}$, of m(B$1\\atop{0}$) = 5734 ± 3(stat.) ± 2(syst.) MeV/c2; m(B$*0\\atop{2}$) = 5738 ± 5(stat.) ± 1(syst.) MeV/c{sup 2}. In the search for Σ$(*)±\\atop{b}$ → Λ$0\\atop{b}$π±, the Λ$0\\atop{b}$ is reconstructed in the decay mode Λ$0\\atop{b}$ → Λ$+\\atop{c}$π-, where Λ$+\\atop{c}$→ pK- π+, using 1070 ± 60 pb-1 of data. Upon combining the Λ$0\\atop{b}$ candidate with a charged pion, all four of the Σ$(*)±\\atop{b}$ states are observed and their masses measured to be: m(Σ$+\\atop{b}$) = 5807.8$+2.0\\atop{-2.2}$(stat.) ± 1.7(syst.) MeV/c2; m(Σ$+\\atop{b}$) = 5815.2 ± 1.0(stat.) ± 1.7(syst.) MeV/c2; m(Σ$*+\\atop{b}$) = 5829.0$+1.6\\atop{-1.8}$(stat.)$+1.7\\atop{-1.8}$(syst.) MeV/c 2; M(Σ$*-±\\atop{b}$) - 5836.4 ± 2.0(stat.)$+1.8\\atop{-1.7}$(syst.) MeV/c2. This is the first observation of Σ$(*)±\\atop{b}$ baryons.

  6. Podcast The Large Hadron Collider and the Search for the Higgs-Boson

    CERN Multimedia

    2008-01-01

    When it was first developed, the standard model predicted a collection of particles, and thanks to more and more powerful colliders, physicsists have been able to find them all except one: the Higgs-Boson.

  7. Large Area Silicon Tracking Detectors with Fast Signal Readout for the Large Hadron Collider (LHC) at CERN

    CERN Document Server

    Köstner, S

    2005-01-01

    The Standard Model of elementary particles, which is summarized briefly in the second chapter, incorporates a number of successful theories to explain the nature and consistency of matter. However not all building blocks of this model could yet be tested by experiment. To confirm existing theories and to improve nowadays understanding of matter a new machine is currently being built at CERN, the Large Hadron Collider (LHC), described in the third chapter. LHC is a proton-proton collider which will reach unprecedented luminosities and center of mass energies. Five experiments are attached to it to give answers to questions like the existence of the Higgs meson, which allows to explain the mass content of matter, and the origin of CP-violation, which plays an important role in the baryogenesis of the universe. Supersymmetric theories, proposing a bosonic superpartner for each fermion and vice versa, will be tested. By colliding heavy ions, high energy and particle densities can be achieved and probed. This stat...

  8. Are the collective phenomena a universal feature of the hadronic matter created in p-p, p-A and A-A colliding systems?

    Science.gov (United States)

    Flores, Eleazar Cuautle

    2016-06-01

    Collective phenomena in ion-ion collisions are well-known, but the research in small systems, like proton-proton and proton-lead, is starting both from the experimental and theoretical side. In this paper, we present a short review of the most important observables related to flow, as well as phenomenological results to explain the Relativistic Heavy Ion Collider and Large Hadron Collider results. Different variables and their relations to collectivity in small systems are discussed.

  9. Charm production in Pb+Pb collisions at the Large Hadron Collider energy

    CERN Document Server

    Song, Taesoo; Cabrera, Daniel; Cassing, Wolfgang; Bratkovskaya, Elena

    2015-01-01

    We study charm production in Pb+Pb collisions at $\\sqrt{s_{\\rm NN}}=$2.76 TeV in the Parton-Hadron-String-Dynamics transport approach and the charm dynamics in the partonic and hadronic medium. The charm quarks are produced through initial binary nucleon-nucleon collisions by using the PYTHIA event generator taking into account the (anti-)shadowing incorporated in the EPS09 package. The produced charm quarks interact with off-shell massive partons in the quark-gluon plasma and are hadronized into $D$ mesons through coalescence or fragmentation close to the critical energy density, and then interact with hadrons in the final hadronic stage with scattering cross sections calculated in an effective Lagrangian approach with heavy-quark spin symmetry. The PHSD results show a reasonable $R_{\\rm AA}$ and elliptic flow of $D$ mesons in comparison to the experimental data for Pb+Pb collisions at $\\sqrt{s_{NN}}$ = 2.76 TeV from the ALICE Collaboration. We also study the effect of temperature-dependent off-shell charm q...

  10. Description of the ATLAS jet veto measurement and jet gap jet events at hadronic colliders

    CERN Document Server

    Royon, C

    2014-01-01

    We present a new QCD description of the ATLAS jet veto measurement, using the Banfi- Marchesini-Smye equation to constrain the inter-jet QCD radiation. This equation resums emis- sions of soft gluons at large angles and leads to a very good description of data. We also investigate jet gap jet events in hadron-hadron collisions, in which two jets are produced and separated by a large rapidity gap. Using a renormalisation-group improved NLL kernel implemented in the HERWIG Monte Carlo program, we show that the BFKL predictions are in good agreement with the Tevatron data, and present predictions that could be tested at the LHC.

  11. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Miller, D W; Schwartzman, Ariel

    2011-01-01

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of $sqrt{s}=7$ TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include t...

  12. Les Houches Guidebook to Monte Carlo generators for hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, M.A

    2004-08-24

    Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.

  13. Les Houches guidebook to Monte Carlo generators for hadron collider physics

    Energy Technology Data Exchange (ETDEWEB)

    Dobbs, Matt A.; Frixione, Stefano; Laenen, Eric; Tollefson, Kirsten

    2004-03-01

    Recently the collider physics community has seen significant advances in the formalisms and implementations of event generators. This review is a primer of the methods commonly used for the simulation of high energy physics events at particle colliders. We provide brief descriptions, references, and links to the specific computer codes which implement the methods. The aim is to provide an overview of the available tools, allowing the reader to ascertain which tool is best for a particular application, but also making clear the limitations of each tool.

  14. The effect of neutron skin on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies

    Science.gov (United States)

    De, Somnath

    2017-04-01

    Recent experiments on lead ({{{Pb}}}82208) nuclei have observed the celebrated phenomenon of the neutron skin thickness of low energy nuclear physics. Skin thickness provides a measure of the extension of the spatial distribution of neutrons inside the atomic nucleus than protons. We have studied the effect of neutron skin thickness on inclusive prompt photon production in Pb + Pb collisions at Large Hadron Collider energies. We have calculated the ‘central-to-peripheral ratio’ ({R}{cp}) of prompt photon production with and without accounting for the neutron skin effect. The neutron skin causes a characteristic enhancement of the ratio, in particular at forward rapidity, which is distinguishable in our calculation. However, a very precise direct photon measurement up to large transverse momenta would be necessary to constrain the feature in experiment.

  15. Optimising charged Higgs boson searches at the Large Hadron Collider across b b bar W± final states

    Science.gov (United States)

    Moretti, Stefano; Santos, Rui; Sharma, Pankaj

    2016-09-01

    In the light of the most recent data from Higgs boson searches and analyses, we re-assess the scope of the Large Hadron Collider in accessing heavy charged Higgs boson signals in b b bar W± final states, wherein the contributing channels can be H+ → t b bar , hW±, HW± and AW±. We consider a 2-Higgs Doublet Model Type-II and we assume as production mode bg → tH- +c.c., the dominant one over the range MH± ≥ 480 GeV, as dictated by b → sγ constraints. Prospects of detection are found to be significant for various Run 2 energy and luminosity options.

  16. A Particle Consistent with the Higgs Boson Observed with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadatsch, Stefan; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gildemeister, Otto; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hard, Andrew; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Jonathan; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmid, Peter; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spearman, William Robert; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trilling, George; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Byszewski, Marcin; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-01

    Nearly 50 years ago, theoretical physicists proposed that a field permeates the universe and gives energy to the vacuum. This field was required to explain why some, but not all, fundamental particles have mass. Numerous precision measurements during recent decades have provided indirect support for the existence of this field, but one crucial prediction of this theory has remained unconfirmed despite 30 years of experimental searches: the existence of a massive particle, the standard model Higgs boson. The ATLAS experiment at the Large Hadron Collider at CERN has now observed the production of a new particle with a mass of 126 giga–electron volts and decay signatures consistent with those expected for the Higgs particle. This result is strong support for the standard model of particle physics, including the presence of this vacuum field. The existence and properties of the newly discovered particle may also have consequences beyond the standard model itself.

  17. Study of some optical glues for the Compact Muon Solenoid at the Large Hadron Collider of CERN

    CERN Document Server

    Montecchi, Marco

    2001-01-01

    Two Avalanche Photodiodes will measure the light produced in each of the 61,200 PbWO4 crystals composing the barrel part of the electromagnetic calorimeter of the Compact Muon Solenoid (CMS) at the Large Hadron Collider of CERN. To improve the collection of the photons, these detectors will be glued to the crystal. To be used in CMS, the optical glue must fulfil several requirements. The paper describes those requirements and reports the results of the investigation of several commercial optical glues. In particular, refractive index, absorption length, radiation hardness and forecast ageing after 15 years are reported. The most promising glue for CMS was more deeply investigated, in particular its chemical composition, chemical compatibility with the other parts of the calorimeter and curing time in realistic conditions.

  18. Cryogenic testing of by-pass diode stacks for the superconducting magnets of the Large Hadron Collider at CERN

    CERN Document Server

    Della Corte, A; Hagedorn, Dietrich; Turtu, S; Basile, G L; Catitti, A; Chiarelli, S; Di Ferdinando, E; Taddia, G; Talli, M; Verdini, L; Viola, R

    2002-01-01

    A dedicated facility prepared by ENEA (Italian Agency for Energy and Environment) for the cryogenic testing of by-pass diodes for the protection of the CERN Large Hadron Collider main magnets will be described. This experimental activity is in the frame of a contract awarded to OCEM, an Italian firm active in the field of electronic devices and power supplies, in collaboration with ENEA, for the manufacture and testing of all the diode stacks. In particular, CERN requests the measurement of the reverse and forward voltage diode characteristics at 300 K and 77 K, and endurance test cycles at liquid helium temperature. The experimental set-up at ENEA and data acquisition system developed for the scope will be described and the test results reported. (3 refs).

  19. Optimising charged Higgs boson searches at the Large Hadron Collider across bb¯W± final states

    Directory of Open Access Journals (Sweden)

    Stefano Moretti

    2016-09-01

    Full Text Available In the light of the most recent data from Higgs boson searches and analyses, we re-assess the scope of the Large Hadron Collider in accessing heavy charged Higgs boson signals in bb¯W± final states, wherein the contributing channels can be H+→tb¯, hW±, HW± and AW±. We consider a 2-Higgs Doublet Model Type-II and we assume as production mode bg→tH−+c.c., the dominant one over the range MH±≥480 GeV, as dictated by b→sγ constraints. Prospects of detection are found to be significant for various Run 2 energy and luminosity options.

  20. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Science.gov (United States)

    Li, Zheng; Eremin, Vladimir; Verbitskaya, Elena; Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas; Kurfürst, Christoph; Härkönen, Jaakko

    2016-07-01

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 1016 protons/cm2 while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development-results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014-is presented. Our main finding is that silicon detectors survive under irradiation to 1×1016 p/cm2 at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode.

  1. Model-Independent Description and Large Hadron Collider Implications of Suppressed Two-Photon Decay of a Light Higgs Boson

    CERN Document Server

    Phalen, D; Wells, J D; Phalen, Daniel; Thomas, Brooks; Wells, James D.

    2006-01-01

    For a Standard Model Higgs boson with mass between 115 GeV and 150 GeV, the two-photon decay mode is important for discovery at the Large Hadron Collider (LHC). We describe the interactions of a light Higgs boson in a more model-independent fashion, and consider the parameter space where there is no two-photon decay mode. We argue from generalities that analysis of the $t\\bar t h$ discovery mode outside its normally thought of range of applicability is especially needed under these circumstances. We demonstrate the general conclusion with a specific example of parameters of a type I two-Higgs doublet theory, motivated by ideas in strongly coupled model building. We then specify a complete set of branching fractions and discuss the implications for the LHC.

  2. Constraining the Higgs couplings to up and down quarks using production kinematics at the CERN Large Hadron Collider

    CERN Document Server

    Bonner, Gage

    2016-01-01

    We study the prospects for constraining the Higgs boson's couplings to up and down quarks using kinematic distributions in Higgs production at the CERN Large Hadron Collider. We find that the Higgs $p_T$ distribution can be used to constrain these couplings with precision competitive to other proposed techniques. With 3000 fb$^{-1}$ of data at 13 TeV in the four-lepton decay channel, we find $-0.73 \\lesssim \\bar{\\kappa}_u \\lesssim 0.33$ and $-0.88 \\lesssim \\bar{\\kappa}_d \\lesssim 0.32$, where $\\bar{\\kappa}_q = (m_q/m_b) \\kappa_q$ is a scaling factor that modifies the $q$ quark Yukawa coupling relative to the Standard Model bottom quark Yukawa coupling. The sensitivity may be improved by including additional Higgs decay channels.

  3. Study of cosmic ray events with high muon multiplicity using the ALICE detector at the CERN Large Hadron Collider

    CERN Document Server

    AUTHOR|(CDS)2073687; Adamova, Dagmar; Aggarwal, Madan Mohan; Aglieri Rinella, Gianluca; Agnello, Michelangelo; Agrawal, Neelima; Ahammed, Zubayer; Ahn, Sang Un; Aiola, Salvatore; Akindinov, Alexander; Alam, Sk Noor; Aleksandrov, Dmitry; Alessandro, Bruno; Alexandre, Didier; Alfaro Molina, Jose Ruben; Alici, Andrea; Alkin, Anton; Millan Almaraz, Jesus Roberto; Alme, Johan; Alt, Torsten; Altinpinar, Sedat; Altsybeev, Igor; Alves Garcia Prado, Caio; Andrei, Cristian; Andronic, Anton; Anguelov, Venelin; Anielski, Jonas; Anticic, Tome; Antinori, Federico; Antonioli, Pietro; Aphecetche, Laurent Bernard; Appelshaeuser, Harald; Arcelli, Silvia; Armesto Perez, Nestor; Arnaldi, Roberta; Arsene, Ionut Cristian; Arslandok, Mesut; Audurier, Benjamin; Augustinus, Andre; Averbeck, Ralf Peter; Azmi, Mohd Danish; Bach, Matthias Jakob; Badala, Angela; Baek, Yong Wook; Bagnasco, Stefano; Bailhache, Raphaelle Marie; Bala, Renu; Baldisseri, Alberto; Baltasar Dos Santos Pedrosa, Fernando; Baral, Rama Chandra; Barbano, Anastasia Maria; Barbera, Roberto; Barile, Francesco; Barnafoldi, Gergely Gabor; Barnby, Lee Stuart; Ramillien Barret, Valerie; Bartalini, Paolo; Barth, Klaus; Bartke, Jerzy Gustaw; Bartsch, Esther; Basile, Maurizio; Bastid, Nicole; Basu, Sumit; Bathen, Bastian; Batigne, Guillaume; Batista Camejo, Arianna; Batyunya, Boris; Batzing, Paul Christoph; Bearden, Ian Gardner; Beck, Hans; Bedda, Cristina; Belikov, Iouri; Bellini, Francesca; Bello Martinez, Hector; Bellwied, Rene; Belmont Iii, Ronald John; Belmont Moreno, Ernesto; Belyaev, Vladimir; Bencedi, Gyula; Beole, Stefania; Berceanu, Ionela; Bercuci, Alexandru; Berdnikov, Yaroslav; Berenyi, Daniel; Bertens, Redmer Alexander; Berzano, Dario; Betev, Latchezar; Bhasin, Anju; Bhat, Inayat Rasool; Bhati, Ashok Kumar; Bhattacharjee, Buddhadeb; Bhom, Jihyun; Bianchi, Livio; Bianchi, Nicola; Bianchin, Chiara; Bielcik, Jaroslav; Bielcikova, Jana; Bilandzic, Ante; Biswas, Rathijit; Biswas, Saikat; Bjelogrlic, Sandro; Blair, Justin Thomas; Blanco, Fernando; Blau, Dmitry; Blume, Christoph; Bock, Friederike; Bogdanov, Alexey; Boggild, Hans; Boldizsar, Laszlo; Bombara, Marek; Book, Julian Heinz; Borel, Herve; Borissov, Alexander; Borri, Marcello; Bossu, Francesco; Botta, Elena; Boettger, Stefan; Braun-Munzinger, Peter; Bregant, Marco; Breitner, Timo Gunther; Broker, Theo Alexander; Browning, Tyler Allen; Broz, Michal; Brucken, Erik Jens; Bruna, Elena; Bruno, Giuseppe Eugenio; Budnikov, Dmitry; Buesching, Henner; Bufalino, Stefania; Buncic, Predrag; Busch, Oliver; Buthelezi, Edith Zinhle; Bashir Butt, Jamila; Buxton, Jesse Thomas; Caffarri, Davide; Cai, Xu; Caines, Helen Louise; Calero Diaz, Liliet; Caliva, Alberto; Calvo Villar, Ernesto; Camerini, Paolo; Carena, Francesco; Carena, Wisla; Carnesecchi, Francesca; Castillo Castellanos, Javier Ernesto; Castro, Andrew John; Casula, Ester Anna Rita; Cavicchioli, Costanza; Ceballos Sanchez, Cesar; Cepila, Jan; Cerello, Piergiorgio; Cerkala, Jakub; Chang, Beomsu; Chapeland, Sylvain; Chartier, Marielle; Charvet, Jean-Luc Fernand; Chattopadhyay, Subhasis; Chattopadhyay, Sukalyan; Chelnokov, Volodymyr; Cherney, Michael Gerard; Cheshkov, Cvetan Valeriev; Cheynis, Brigitte; Chibante Barroso, Vasco Miguel; Dobrigkeit Chinellato, David; Cho, Soyeon; Chochula, Peter; Choi, Kyungeon; Chojnacki, Marek; Choudhury, Subikash; Christakoglou, Panagiotis; Christensen, Christian Holm; Christiansen, Peter; Chujo, Tatsuya; Chung, Suh-Urk; Zhang, Chunhui; Cicalo, Corrado; Cifarelli, Luisa; Cindolo, Federico; Cleymans, Jean Willy Andre; Colamaria, Fabio Filippo; Colella, Domenico; Collu, Alberto; Colocci, Manuel; Conesa Balbastre, Gustavo; Conesa Del Valle, Zaida; Connors, Megan Elizabeth; Contreras Nuno, Jesus Guillermo; Cormier, Thomas Michael; Corrales Morales, Yasser; Cortes Maldonado, Ismael; Cortese, Pietro; Cosentino, Mauro Rogerio; Costa, Filippo; Crochet, Philippe; Cruz Albino, Rigoberto; Cuautle Flores, Eleazar; Cunqueiro Mendez, Leticia; Dahms, Torsten; Dainese, Andrea; Danu, Andrea; Das, Debasish; Das, Indranil; Das, Supriya; Dash, Ajay Kumar; Dash, Sadhana; De, Sudipan; De Caro, Annalisa; De Cataldo, Giacinto; De Cuveland, Jan; De Falco, Alessandro; De Gruttola, Daniele; De Marco, Nora; De Pasquale, Salvatore; Deisting, Alexander; Deloff, Andrzej; Denes, Ervin Sandor; D'Erasmo, Ginevra; Dhankher, Preeti; Di Bari, Domenico; Di Mauro, Antonio; Di Nezza, Pasquale; Diaz Corchero, Miguel Angel; Dietel, Thomas; Dillenseger, Pascal; Divia, Roberto; Djuvsland, Oeystein; Dobrin, Alexandru Florin; Dobrowolski, Tadeusz Antoni; Domenicis Gimenez, Diogenes; Donigus, Benjamin; Dordic, Olja; Drozhzhova, Tatiana; Dubey, Anand Kumar; Dubla, Andrea; Ducroux, Laurent; Dupieux, Pascal; Ehlers Iii, Raymond James; Elia, Domenico; Engel, Heiko; Epple, Eliane; Erazmus, Barbara Ewa; Erdemir, Irem; Erhardt, Filip; Espagnon, Bruno; Estienne, Magali Danielle; Esumi, Shinichi; Eum, Jongsik; Evans, David; Evdokimov, Sergey; Eyyubova, Gyulnara; Fabbietti, Laura; Fabris, Daniela; Faivre, Julien; Fantoni, Alessandra; Fasel, Markus; Feldkamp, Linus; Felea, Daniel; Feliciello, Alessandro; Feofilov, Grigorii; Ferencei, Jozef; Fernandez Tellez, Arturo; Gonzalez Ferreiro, Elena; Ferretti, Alessandro; Festanti, Andrea; Feuillard, Victor Jose Gaston; Figiel, Jan; Araujo Silva Figueredo, Marcel; Filchagin, Sergey; Finogeev, Dmitry; Fionda, Fiorella; Fiore, Enrichetta Maria; Fleck, Martin Gabriel; Floris, Michele; Foertsch, Siegfried Valentin; Foka, Panagiota; Fokin, Sergey; Fragiacomo, Enrico; Francescon, Andrea; Frankenfeld, Ulrich Michael; Fuchs, Ulrich; Furget, Christophe; Furs, Artur; Fusco Girard, Mario; Gaardhoeje, Jens Joergen; Gagliardi, Martino; Gago Medina, Alberto Martin; Gallio, Mauro; Gangadharan, Dhevan Raja; Ganoti, Paraskevi; Gao, Chaosong; Garabatos Cuadrado, Jose; Garcia-Solis, Edmundo Javier; Gargiulo, Corrado; Gasik, Piotr Jan; Gauger, Erin Frances; Germain, Marie; Gheata, Andrei George; Gheata, Mihaela; Ghosh, Premomoy; Ghosh, Sanjay Kumar; Gianotti, Paola; Giubellino, Paolo; Giubilato, Piero; Gladysz-Dziadus, Ewa; Glassel, Peter; Gomez Coral, Diego Mauricio; Gomez Ramirez, Andres; Gonzalez Zamora, Pedro; Gorbunov, Sergey; Gorlich, Lidia Maria; Gotovac, Sven; Grabski, Varlen; Graczykowski, Lukasz Kamil; Graham, Katie Leanne; Grelli, Alessandro; Grigoras, Alina Gabriela; Grigoras, Costin; Grigoryev, Vladislav; Grigoryan, Ara; Grigoryan, Smbat; Grynyov, Borys; Grion, Nevio; Grosse-Oetringhaus, Jan Fiete; Grossiord, Jean-Yves; Grosso, Raffaele; Guber, Fedor; Guernane, Rachid; Guerzoni, Barbara; Gulbrandsen, Kristjan Herlache; Gulkanyan, Hrant; Gunji, Taku; Gupta, Anik; Gupta, Ramni; Haake, Rudiger; Haaland, Oystein Senneset; Hadjidakis, Cynthia Marie; Haiduc, Maria; Hamagaki, Hideki; Hamar, Gergoe; Harris, John William; Harton, Austin Vincent; Hatzifotiadou, Despina; Hayashi, Shinichi; Heckel, Stefan Thomas; Heide, Markus Ansgar; Helstrup, Haavard; Herghelegiu, Andrei Ionut; Herrera Corral, Gerardo Antonio; Hess, Benjamin Andreas; Hetland, Kristin Fanebust; Hilden, Timo Eero; Hillemanns, Hartmut; Hippolyte, Boris; Hosokawa, Ritsuya; Hristov, Peter Zahariev; Huang, Meidana; Humanic, Thomas; Hussain, Nur; Hussain, Tahir; Hutter, Dirk; Hwang, Dae Sung; Ilkaev, Radiy; Ilkiv, Iryna; Inaba, Motoi; Ippolitov, Mikhail; Irfan, Muhammad; Ivanov, Marian; Ivanov, Vladimir; Izucheev, Vladimir; Jacobs, Peter Martin; Jadhav, Manoj Bhanudas; Jadlovska, Slavka; Jahnke, Cristiane; Jang, Haeng Jin; Janik, Malgorzata Anna; Pahula Hewage, Sandun; Jena, Chitrasen; Jena, Satyajit; Jimenez Bustamante, Raul Tonatiuh; Jones, Peter Graham; Jung, Hyungtaik; Jusko, Anton; Kalinak, Peter; Kalweit, Alexander Philipp; Kamin, Jason Adrian; Kang, Ju Hwan; Kaplin, Vladimir; Kar, Somnath; Karasu Uysal, Ayben; Karavichev, Oleg; Karavicheva, Tatiana; Karayan, Lilit; Karpechev, Evgeny; Kebschull, Udo Wolfgang; Keidel, Ralf; Keijdener, Darius Laurens; Keil, Markus; Khan, Mohammed Mohisin; Khan, Palash; Khan, Shuaib Ahmad; Khanzadeev, Alexei; Kharlov, Yury; Kileng, Bjarte; Kim, Beomkyu; Kim, Do Won; Kim, Dong Jo; Kim, Hyeonjoong; Kim, Jinsook; Kim, Mimae; Kim, Minwoo; Kim, Se Yong; Kim, Taesoo; Kirsch, Stefan; Kisel, Ivan; Kiselev, Sergey; Kisiel, Adam Ryszard; Kiss, Gabor; Klay, Jennifer Lynn; Klein, Carsten; Klein, Jochen; Klein-Boesing, Christian; Kluge, Alexander; Knichel, Michael Linus; Knospe, Anders Garritt; Kobayashi, Taiyo; Kobdaj, Chinorat; Kofarago, Monika; Kollegger, Thorsten; Kolozhvari, Anatoly; Kondratev, Valerii; Kondratyeva, Natalia; Kondratyuk, Evgeny; Konevskikh, Artem; Kopcik, Michal; Kour, Mandeep; Kouzinopoulos, Charalampos; Kovalenko, Oleksandr; Kovalenko, Vladimir; Kowalski, Marek; Koyithatta Meethaleveedu, Greeshma; Kral, Jiri; Kralik, Ivan; Kravcakova, Adela; Kretz, Matthias; Krivda, Marian; Krizek, Filip; Kryshen, Evgeny; Krzewicki, Mikolaj; Kubera, Andrew Michael; Kucera, Vit; Kugathasan, Thanushan; Kuhn, Christian Claude; Kuijer, Paulus Gerardus; Kumar, Ajay; Kumar, Jitendra; Lokesh, Kumar; Kumar, Shyam; Kurashvili, Podist; Kurepin, Alexander; Kurepin, Alexey; Kuryakin, Alexey; Kushpil, Svetlana; Kweon, Min Jung; Kwon, Youngil; La Pointe, Sarah Louise; La Rocca, Paola; Lagana Fernandes, Caio; Lakomov, Igor; Langoy, Rune; Lara Martinez, Camilo Ernesto; Lardeux, Antoine Xavier; Lattuca, Alessandra; Laudi, Elisa; Lea, Ramona; Leardini, Lucia; Lee, Graham Richard; Lee, Seongjoo; Legrand, Iosif; Lehas, Fatiha; Lemmon, Roy Crawford; Lenti, Vito; Leogrande, Emilia; Leon Monzon, Ildefonso; Leoncino, Marco; Levai, Peter; Li, Shuang; Li, Xiaomei; Lien, Jorgen Andre; Lietava, Roman; Lindal, Svein; Lindenstruth, Volker; Lippmann, Christian; Lisa, Michael Annan; Ljunggren, Hans Martin; Lodato, Davide Francesco; Lonne, Per-Ivar; Loginov, Vitaly; Loizides, Constantinos; Lopez, Xavier Bernard; Lopez Torres, Ernesto; Lowe, Andrew John; Luettig, Philipp Johannes; Lunardon, Marcello; Luparello, Grazia; Ferreira Natal Da Luz, Pedro Hugo; Maevskaya, Alla; Mager, Magnus; Mahajan, Sanjay; Mahmood, Sohail Musa; Maire, Antonin; Majka, Richard Daniel; Malaev, Mikhail; Maldonado Cervantes, Ivonne Alicia; Malinina, Liudmila; Mal'Kevich, Dmitry; Malzacher, Peter; Mamonov, Alexander; Manko, Vladislav; Manso, Franck; Manzari, Vito; Marchisone, Massimiliano; Mares, Jiri; Margagliotti, Giacomo Vito; Margotti, Anselmo; Margutti, Jacopo; Marin, Ana Maria; Markert, Christina; Marquard, Marco; Martin, Nicole Alice; Martin Blanco, Javier; Martinengo, Paolo; Martinez Hernandez, Mario Ivan; Martinez-Garcia, Gines; Martinez Pedreira, Miguel; Martynov, Yevgen; Mas, Alexis Jean-Michel; Masciocchi, Silvia; Masera, Massimo; Masoni, Alberto; Massacrier, Laure Marie; Mastroserio, Annalisa; Masui, Hiroshi; Matyja, Adam Tomasz; Mayer, Christoph; Mazer, Joel Anthony; Mazzoni, Alessandra Maria; Mcdonald, Daniel; Meddi, Franco; Melikyan, Yuri; Menchaca-Rocha, Arturo Alejandro; Meninno, Elisa; Mercado-Perez, Jorge; Meres, Michal; Miake, Yasuo; Mieskolainen, Matti Mikael; Mikhaylov, Konstantin; Milano, Leonardo; Milosevic, Jovan; Minervini, Lazzaro Manlio; Mischke, Andre; Mishra, Aditya Nath; Miskowiec, Dariusz Czeslaw; Mitra, Jubin; Mitu, Ciprian Mihai; Mohammadi, Naghmeh; Mohanty, Bedangadas; Molnar, Levente; Montano Zetina, Luis Manuel; Montes Prado, Esther; Morando, Maurizio; Moreira De Godoy, Denise Aparecida; Perez Moreno, Luis Alberto; Moretto, Sandra; Morreale, Astrid; Morsch, Andreas; Muccifora, Valeria; Mudnic, Eugen; Muhlheim, Daniel Michael; Muhuri, Sanjib; Mukherjee, Maitreyee; Mulligan, James Declan; Gameiro Munhoz, Marcelo; Munzer, Robert Helmut; Murray, Sean; Musa, Luciano; Musinsky, Jan; Naik, Bharati; Nair, Rahul; Nandi, Basanta Kumar; Nania, Rosario; Nappi, Eugenio; Naru, Muhammad Umair; Nattrass, Christine; Nayak, Kishora; Nayak, Tapan Kumar; Nazarenko, Sergey; Nedosekin, Alexander; Nellen, Lukas; Ng, Fabian; Nicassio, Maria; Niculescu, Mihai; Niedziela, Jeremi; Nielsen, Borge Svane; Nikolaev, Sergey; Nikulin, Sergey; Nikulin, Vladimir; Noferini, Francesco; Nomokonov, Petr; Nooren, Gerardus; Cabanillas Noris, Juan Carlos; Norman, Jaime; Nyanin, Alexander; Nystrand, Joakim Ingemar; Oeschler, Helmut Oskar; Oh, Saehanseul; Oh, Sun Kun; Ohlson, Alice Elisabeth; Okatan, Ali; Okubo, Tsubasa; Olah, Laszlo; Oleniacz, Janusz; Oliveira Da Silva, Antonio Carlos; Oliver, Michael Henry; Onderwaater, Jacobus; Oppedisano, Chiara; Orava, Risto; Ortiz Velasquez, Antonio; Oskarsson, Anders Nils Erik; Otwinowski, Jacek Tomasz; Oyama, Ken; Ozdemir, Mahmut; Pachmayer, Yvonne Chiara; Pagano, Paola; Paic, Guy; Pajares Vales, Carlos; Pal, Susanta Kumar; Pan, Jinjin; Pandey, Ashutosh Kumar; Pant, Divyash; Papcun, Peter; Papikyan, Vardanush; Pappalardo, Giuseppe; Pareek, Pooja; Park, Woojin; Parmar, Sonia; Passfeld, Annika; Paticchio, Vincenzo; Patra, Rajendra Nath; Paul, Biswarup; Peitzmann, Thomas; Pereira Da Costa, Hugo Denis Antonio; Pereira De Oliveira Filho, Elienos; Peresunko, Dmitry Yurevich; Perez Lara, Carlos Eugenio; Perez Lezama, Edgar; Peskov, Vladimir; Pestov, Yury; Petracek, Vojtech; Petrov, Viacheslav; Petrovici, Mihai; Petta, Catia; Piano, Stefano; Pikna, Miroslav; Pillot, Philippe; Pinazza, Ombretta; Pinsky, Lawrence; Piyarathna, Danthasinghe; Ploskon, Mateusz Andrzej; Planinic, Mirko; Pluta, Jan Marian; Pochybova, Sona; Podesta Lerma, Pedro Luis Manuel; Poghosyan, Martin; Polishchuk, Boris; Poljak, Nikola; Poonsawat, Wanchaloem; Pop, Amalia; Porteboeuf, Sarah Julie; Porter, R Jefferson; Pospisil, Jan; Prasad, Sidharth Kumar; Preghenella, Roberto; Prino, Francesco; Pruneau, Claude Andre; Pshenichnov, Igor; Puccio, Maximiliano; Puddu, Giovanna; Pujahari, Prabhat Ranjan; Punin, Valery; Putschke, Jorn Henning; Qvigstad, Henrik; Rachevski, Alexandre; Raha, Sibaji; Rajput, Sonia; Rak, Jan; Rakotozafindrabe, Andry Malala; Ramello, Luciano; Rami, Fouad; Raniwala, Rashmi; Raniwala, Sudhir; Rasanen, Sami Sakari; Rascanu, Bogdan Theodor; Rathee, Deepika; Read, Kenneth Francis; Real, Jean-Sebastien; Redlich, Krzysztof; Reed, Rosi Jan; Rehman, Attiq Ur; Reichelt, Patrick Simon; Reidt, Felix; Ren, Xiaowen; Renfordt, Rainer Arno Ernst; Reolon, Anna Rita; Reshetin, Andrey; Rettig, Felix Vincenz; Revol, Jean-Pierre; Reygers, Klaus Johannes; Riabov, Viktor; Ricci, Renato Angelo; Richert, Tuva Ora Herenui; Richter, Matthias Rudolph; Riedler, Petra; Riegler, Werner; Riggi, Francesco; Ristea, Catalin-Lucian; Rivetti, Angelo; Rocco, Elena; Rodriguez Cahuantzi, Mario; Rodriguez Manso, Alis; Roeed, Ketil; Rogochaya, Elena; Rohr, David Michael; Roehrich, Dieter; Romita, Rosa; Ronchetti, Federico; Ronflette, Lucile; Rosnet, Philippe; Rossi, Andrea; Roukoutakis, Filimon; Roy, Ankhi; Roy, Christelle Sophie; Roy, Pradip Kumar; Rubio Montero, Antonio Juan; Rui, Rinaldo; Russo, Riccardo; Ryabinkin, Evgeny; Ryabov, Yury; Rybicki, Andrzej; Sadovskiy, Sergey; Safarik, Karel; Sahlmuller, Baldo; Sahoo, Pragati; Sahoo, Raghunath; Sahoo, Sarita; Sahu, Pradip Kumar; Saini, Jogender; Sakai, Shingo; Saleh, Mohammad Ahmad; Salgado Lopez, Carlos Alberto; Salzwedel, Jai Samuel Nielsen; Sambyal, Sanjeev Singh; Samsonov, Vladimir; Sandor, Ladislav; Sandoval, Andres; Sano, Masato; Sarkar, Debojit; Scapparone, Eugenio; Scarlassara, Fernando; Scharenberg, Rolf Paul; Schiaua, Claudiu Cornel; Schicker, Rainer Martin; Schmidt, Christian Joachim; Schmidt, Hans Rudolf; Schuchmann, Simone; Schukraft, Jurgen; Schulc, Martin; Schuster, Tim Robin; Schutz, Yves Roland; Schwarz, Kilian Eberhard; Schweda, Kai Oliver; Scioli, Gilda; Scomparin, Enrico; Scott, Rebecca Michelle; Seger, Janet Elizabeth; Sekiguchi, Yuko; Sekihata, Daiki; Selyuzhenkov, Ilya; Senosi, Kgotlaesele; Seo, Jeewon; Serradilla Rodriguez, Eulogio; Sevcenco, Adrian; Shabanov, Arseniy; Shabetai, Alexandre; Shadura, Oksana; Shahoyan, Ruben; Shangaraev, Artem; Sharma, Ankita; Sharma, Mona; Sharma, Monika; Sharma, Natasha; Shigaki, Kenta; Shtejer Diaz, Katherin; Sibiryak, Yury; Siddhanta, Sabyasachi; Sielewicz, Krzysztof Marek; Siemiarczuk, Teodor; Silvermyr, David Olle Rickard; Silvestre, Catherine Micaela; Simatovic, Goran; Simonetti, Giuseppe; Singaraju, Rama Narayana; Singh, Ranbir; Singha, Subhash; Singhal, Vikas; Sinha, Bikash; Sarkar - Sinha, Tinku; Sitar, Branislav; Sitta, Mario; Skaali, Bernhard; Slupecki, Maciej; Smirnov, Nikolai; Snellings, Raimond; Snellman, Tomas Wilhelm; Soegaard, Carsten; Soltz, Ron Ariel; Song, Jihye; Song, Myunggeun; Song, Zixuan; Soramel, Francesca; Sorensen, Soren Pontoppidan; Spacek, Michal; Spiriti, Eleuterio; Sputowska, Iwona Anna; Spyropoulou-Stassinaki, Martha; Srivastava, Brijesh Kumar; Stachel, Johanna; Stan, Ionel; Stefanek, Grzegorz; Stenlund, Evert Anders; Steyn, Gideon Francois; Stiller, Johannes Hendrik; Stocco, Diego; Strmen, Peter; Alarcon Do Passo Suaide, Alexandre; Sugitate, Toru; Suire, Christophe Pierre; Suleymanov, Mais Kazim Oglu; Suljic, Miljenko; Sultanov, Rishat; Sumbera, Michal; Symons, Timothy; Szabo, Alexander; Szanto De Toledo, Alejandro; Szarka, Imrich; Szczepankiewicz, Adam; Szymanski, Maciej Pawel; Tabassam, Uzma; Takahashi, Jun; Tambave, Ganesh Jagannath; Tanaka, Naoto; Tangaro, Marco-Antonio; Tapia Takaki, Daniel Jesus; Tarantola Peloni, Attilio; Tarhini, Mohamad; Tariq, Mohammad; Tarzila, Madalina-Gabriela; Tauro, Arturo; Tejeda Munoz, Guillermo; Telesca, Adriana; Terasaki, Kohei; Terrevoli, Cristina; Teyssier, Boris; Thaeder, Jochen Mathias; Thomas, Deepa; Tieulent, Raphael Noel; Timmins, Anthony Robert; Toia, Alberica; Trogolo, Stefano; Trubnikov, Victor; Trzaska, Wladyslaw Henryk; Tsuji, Tomoya; Tumkin, Alexandr; Turrisi, Rosario; Tveter, Trine Spedstad; Ullaland, Kjetil; Uras, Antonio; Usai, Gianluca; Utrobicic, Antonija; Vajzer, Michal; Valencia Palomo, Lizardo; Vallero, Sara; Van Der Maarel, Jasper; Van Hoorne, Jacobus Willem; Van Leeuwen, Marco; Vanat, Tomas; Vande Vyvre, Pierre; Varga, Dezso; Vargas Trevino, Aurora Diozcora; Vargyas, Marton; Varma, Raghava; Vasileiou, Maria; Vasiliev, Andrey; Vauthier, Astrid; Vechernin, Vladimir; Veen, Annelies Marianne; Veldhoen, Misha; Velure, Arild; Venaruzzo, Massimo; Vercellin, Ermanno; Vergara Limon, Sergio; Vernet, Renaud; Verweij, Marta; Vickovic, Linda; Viesti, Giuseppe; Viinikainen, Jussi Samuli; Vilakazi, Zabulon; Villalobos Baillie, Orlando; Villatoro Tello, Abraham; Vinogradov, Alexander; Vinogradov, Leonid; Vinogradov, Yury; Virgili, Tiziano; Vislavicius, Vytautas; Viyogi, Yogendra; Vodopyanov, Alexander; Volkl, Martin Andreas; Voloshin, Kirill; Voloshin, Sergey; Volpe, Giacomo; Von Haller, Barthelemy; Vorobyev, Ivan; Vranic, Danilo; Vrlakova, Janka; Vulpescu, Bogdan; Vyushin, Alexey; Wagner, Boris; Wagner, Jan; Wang, Hongkai; Wang, Mengliang; Watanabe, Daisuke; Watanabe, Yosuke; Weber, Michael; Weber, Steffen Georg; Wessels, Johannes Peter; Westerhoff, Uwe; Wiechula, Jens; Wikne, Jon; Wilde, Martin Rudolf; Wilk, Grzegorz Andrzej; Wilkinson, Jeremy John; Williams, Crispin; Windelband, Bernd Stefan; Winn, Michael Andreas; Yaldo, Chris G; Yang, Hongyan; Yang, Ping; Yano, Satoshi; Yasar, Cigdem; Yin, Zhongbao; Yokoyama, Hiroki; Yoo, In-Kwon; Yurchenko, Volodymyr; Yushmanov, Igor; Zaborowska, Anna; Zaccolo, Valentina; Zaman, Ali; Zampolli, Chiara; Correia Zanoli, Henrique Jose; Zaporozhets, Sergey; Zardoshti, Nima; Zarochentsev, Andrey; Zavada, Petr; Zavyalov, Nikolay; Zbroszczyk, Hanna Paulina; Zgura, Sorin Ion; Zhalov, Mikhail; Zhang, Haitao; Zhang, Xiaoming; Zhang, Yonghong; Zhang, Zuman; Zhao, Chengxin; Zhigareva, Natalia; Zhou, Daicui; Zhou, You; Zhou, Zhuo; Zhu, Hongsheng; Zhu, Jianhui; Zichichi, Antonino; Zimmermann, Alice; Zimmermann, Markus Bernhard; Zinovjev, Gennady; Zyzak, Maksym

    2016-01-01

    ALICE is one of four large experiments at the CERN Large Hadron Collider near Geneva, specially designed to study particle production in ultra-relativistic heavy-ion collisions. Located 52 meters underground with 28 meters of overburden rock, it has also been used to detect muons produced by cosmic ray interactions in the upper atmosphere. In this paper, we present the multiplicity distribution of these atmospheric muons and its comparison with Monte Carlo simulations. This analysis exploits the large size and excellent tracking capability of the ALICE Time Projection Chamber. A special emphasis is given to the study of high multiplicity events containing more than 100 reconstructed muons and corresponding to a muon areal density $\\rho_{\\mu} > 5.9~$m$^{-2}$. Similar events have been studied in previous underground experiments such as ALEPH and DELPHI at LEP. While these experiments were able to reproduce the measured muon multiplicity distribution with Monte Carlo simulations at low and intermediate multiplic...

  4. Optimising Charged Higgs Boson Searches at the Large Hadron Collider Across $b\\bar b W^\\pm$ Final States

    CERN Document Server

    Moretti, Stefano; Sharma, Pankaj

    2016-01-01

    In the light of the most recent data from Higgs boson searches and analyses, we re-assess the scope of the Large Hadron Collider in accessing heavy charged Higgs boson signals in $b\\bar b W^\\pm$ final states, wherein the contributing channels can be $H^+\\to t\\bar b$, $hW^\\pm, HW^\\pm$ and $AW^\\pm$. We consider a 2-Higgs Doublet Model Type-II and we assume as production mode $bg\\to tH^-$ + c.c., the dominant one over the range $M_{H^\\pm}\\ge 480$ GeV, as dictated by $b\\to s\\gamma$ constraints. Prospects of detection are found to be significant for various Run 2 energy and luminosity options.

  5. Calculation of abort thresholds for the Beam Loss Monitoring System of the Large Hadron Collider at CERN

    CERN Document Server

    Nemcic, Martin; Dehning, Bernd

    The Beam Loss Monitoring (BLM) System is one of the most critical machine protection systems for the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN), Switzerland. Its main purpose is to protect the superconducting magnets from quenches and other equipment from damage by requesting a beam abort when the measured losses exceed any of the predefined threshold levels. The system consist of circa 4000 ionization chambers which are installed around the 27 kilometres ring (LHC). This study aims to choose a technical platform and produce a system that addresses all of the limitations with the current system that is used for the calculation of the LHC BLM abort threshold values. To achieve this, a comparison and benchmarking of the Java and .NET technical platforms is performed in order to establish the most suitable solution. To establish which technical platform is a successful replacement of the current abort threshold calculator, comparable prototype systems in Java and .NET we...

  6. Large hadron collider will get us closer to the Big Bang

    CERN Multimedia

    Khadilkar, Dhananjay

    2006-01-01

    The LHC consists of a 27 km tunnel located 100 meters under the ground near Geneva in Switzerland, lined with hundreds of superconducting magnets which will accelerate protons and subsequently collide them at mind-boggling energies of 14 terra electorn Volts. The result will be conditions prevalent just microseconds after the Big Band 15 billion years ago (1/2 page)

  7. A Tale of Two Searches, with the ATLAS detector at the Large Hadron Collider

    CERN Document Server

    Bouffard, Julian Michael

    Two searches carried out with the ATLAS detector at the Large Hardron Collider at a center of mass energy of 8 TeV. Primarily, a search for the associated production of a Standard Model Higgs boson produced in association with a top quark pair. Additionally, a search for the existence of R-Parity violating Supersymmetry.

  8. Magnet trouble likely to complicate start of large hadron collider Repairs may preclude a test run before the particle smasher starts tackling the Higgs boson

    CERN Multimedia

    2007-01-01

    "Researchers building the world's next top particle accelerator, the Large Hadron Collider (LHC) that straddles the Franco-Swiss border, may not get a chance to work out the bugs before they fire up the machine in earnest." (1/2 page)

  9. 62-TeV center of mass hadron collider with superbunch beams

    Energy Technology Data Exchange (ETDEWEB)

    Ryuji Yamada et al.

    2001-11-05

    The scheme of a 62-TeV center of mass p-p collider with superbunch beams at Fermilab is proposed as a practical and realistically achievable future project. It will be built in two stages, using the same tunnel, first with a 2 Tesla low field magnet collider ring and later with a 10 Tesla high field magnet collider ring. Both low and high field magnets have twin bore aperture and will be installed in the tunnel with the circumference of 87.25 km. In each bore a proton beam is accelerated, using induction cavities to increase luminosity. In the first stage they install a 7 TeV accelerator ring with operating field of 2 Tesla, based on the superferric transmission-line design. This ring will be operated at a 14-TeV center of mass collider. This will have the same energy as the LHC, but it will have 15 times higher luminosity, namely 1.5 x 10{sup 35}/cm{sup 2}/sec. The estimated synchrotron radiation is negligible with this machine. The existing Fermilab accelerator system, including the 150 GeV main injector, will be used as the injector system. Its rough cost estimation and schedule for this first stage are presented. In the second stage proton beams are accelerated, also using induction cavities up to 31 TeV with the 10 Tesla dipole magnets. The counter circulating beams will collide with the 62-TeV center of mass energy. With the superbunch beams they can expect the luminosity can be increased about 15 times more than the conventional method with RF cavities. It will be 10{sup 35}/cm{sup 2}/sec. In the second stage, the synchrotron radiation power will be about 12 W/m, and they need an elaborated beam screen.

  10. First evidence for WW and WZ diboson production with semi-leptonic decays at a Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Haley, Joseph Glenn Biddle [Princeton Univ., NJ (United States)

    2009-06-01

    Presented is a measurement of the simultaneous production of a W± boson in association with a second weak boson (W± or Z0) in p$\\bar{p}$ collisions at √s = 1.96 TeV. Events are consider with one electron or one muon, missing transverse energy, and at least two hadronic jets. The data were collected by the D0 detector in Run IIa of the Tevatron accelerator and correspond to 1.07 fb-1 of integrated luminosity for each of the two channels (WW/WZ → evq$\\bar{q}$ and WW/WZ → μvq$\\bar{q}$). The cross section for WW + WZ production is measured to be 20.2 ± 2.5(stat) ± 3.6(sys) ± 1.2(lum) pb with a Gaussian significance of 4.4 standard deviations above the background-only scenario. This measurement is consistent with the Standard Model prediction and represents the first direct evidence for WW and WZ production with semi-leptonic decays at a hadron collider.

  11. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    CERN Document Server

    Weuste, Lars

    The Compact Linear Collider (CLIC) is a concept for a 48.3km long e+ e- accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, will be presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30mm x 30mm x 5mm, read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimet...

  12. Light-by-light scattering in ultraperipheral Pb-Pb collisions at energies available at the CERN Large Hadron Collider

    Science.gov (United States)

    Kłusek-Gawenda, Mariola; Lebiedowicz, Piotr; Szczurek, Antoni

    2016-04-01

    We calculate cross sections for diphoton production in (semi)exclusive PbPb collisions, relevant for the CERN Large Hadron Collider (LHC). The calculation is based on the equivalent photon approximation in the impact parameter space. The cross sections for the elementary γ γ →γ γ subprocess are calculated including two different mechanisms. We take into account box diagrams with leptons and quarks in the loops. In addition, we consider a vector-meson dominance (VDM-Regge) contribution with virtual intermediate hadronic (vector-like) excitations of the photons. We get measurable cross sections in PbPb collisions. This opens a possibility to study the γ γ →γ γ (quasi)elastic scattering at the LHC. We present many interesting differential distributions which could be measured by the ALICE, CMS, or ATLAS Collaborations at the LHC. We study whether a separation or identification of different components (boxes, VDM-Regge) is possible. We find that the cross section for elastic γ γ scattering could be measured in the heavy-ion collisions for subprocess energies smaller than Wγ γ≈15 -20 GeV.

  13. Impact of high energy high intensity proton beams on targets: Case studies for Super Proton Synchrotron and Large Hadron Collider

    CERN Document Server

    Tahir, N A; Shutov, A; Schmidt, R; Piriz, A R

    2012-01-01

    The Large Hadron Collider (LHC) is designed to collide two proton beams with unprecedented particle energy of 7 TeV. Each beam comprises 2808 bunches and the separation between two neighboring bunches is 25 ns. The energy stored in each beam is 362 MJ, sufficient to melt 500 kg copper. Safety of operation is very important when working with such powerful beams. An accidental release of even a very small fraction of the beam energy can result in severe damage to the equipment. The machine protection system is essential to handle all types of possible accidental hazards; however, it is important to know about possible consequences of failures. One of the critical failure scenarios is when the entire beam is lost at a single point. In this paper we present detailed numerical simulations of the full impact of one LHC beam on a cylindrical solid carbon target. First, the energy deposition by the protons is calculated with the FLUKA code and this energy deposition is used in the BIG2 code to study the corresponding...

  14. Development of large-capacity refrigeration at 1.8 K for the Large Hadron Collider at CERN

    CERN Document Server

    Lebrun, P; Claudet, G

    1996-01-01

    CERN, the European Laboratory for Particle Physics, is working towards the construction of the Large Hadron Collider (LHC), a high-energy, high-luminosity particle accelerator and collider [1] of 26.7 km circumference, due to start producing frontier physics, by bringing into collision intense proton and ion beams with centre-of-mass energies in the TeV-per-constituent range, at the beginning of the next century. The key technology for achieving this ambitious scientific goal at economically acceptable cost is the use of high-field superconducting magnets using Nb-Ti conductor operating in superfluid helium [2]. To maintain the some 25 km of bending and focusing magnets at their operating temperature of 1.9 K, the LHC cryogenic system will have to produce an unprecedented total refrigeration capacity of about 20 kW at 1.8 K, in eight cryogenic plants distributed around the machine circumference [3]. This has requested the undertaking of an industrial development programme, in the form of a collaboration betwe...

  15. Top quark threshold scan and study of detectors for highly granular hadron calorimeters at future linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, Michal

    2014-03-11

    Two major projects for future linear electron-positron colliders, the International Linear Collider (ILC) and the Compact Linear Collider (CLIC), are currently under development. These projects can be seen as complementary machines to the Large Hadron Collider (LHC) which permit a further progress in high energy physics research. They overlap considerably and share the same technological approaches. To meet the ambitious goals of precise measurements, new detector concepts like very finely segmented calorimeters are required. We study the precision of the top quark mass measurement achievable at CLIC and the ILC. The employed method was a t anti t pair production threshold scan. In this technique, simulated measurement points of the t anti t production cross section around the threshold are fitted with theoretical curves calculated at next-to-next-to-leading order. Detector effects, the influence of the beam energy spectrum and initial state radiation of the colliding particles are taken into account. Assuming total integrated luminosity of 100 fb{sup -1}, our results show that the top quark mass in a theoretically well-defined 1S mass scheme can be extracted with a combined statistical and systematic uncertainty of less than 50 MeV. The other part of this work regards experimental studies of highly granular hadron calorimeter (HCAL) elements. To meet the required high jet energy resolution at the future linear colliders, a large and finely segmented detector is needed. One option is to assemble a sandwich calorimeter out of many low-cost scintillators read out by silicon photomultipliers (SiPM). We characterize the areal homogeneity of SiPM response with the help of a highly collimated beam of pulsed visible light. The spatial resolution of the experiment reach the order of 1 μm and allows to study the active area structures within single SiPM microcells. Several SiPM models are characterized in terms of relative photon detection efficiency and probability

  16. Tetra- and pentaquarks with charm and bottom quarks at hadron colliders

    CERN Document Server

    Koppenburg, Patrick

    2017-01-01

    The latest years have seen a resurrection of interest in searches for exotic states motivated by tantalising observations by Belle and CDF. Using the data collected at pp collisions at 7 and 8 TeV by the LHC experiments we present the unambiguous new observation of exotic charmonia tetraquarks and pentaquarks produced in b hadron decays. Recently tetraquarks with a single beauty quark have also be reported by the D0 collaboration. We report about the yet unclear experimental status.

  17. Right-handed charged currents in the era of the Large Hadron Collider arXiv

    CERN Document Server

    Alioli, S.; Dekens, W.; de Vries, J.; Mereghetti, E.

    We discuss the phenomenology of right-handed charged currents in the framework of the Standard Model Effective Field Theory, in which they arise due to a single gauge-invariant dimension-six operator. We study the manifestations of the nine complex couplings of the $W$ to right-handed quarks in collider physics, flavor physics, and low-energy precision measurements. We first obtain constraints on the couplings under the assumption that the right-handed operator is the dominant correction to the Standard Model at observable energies. We subsequently study the impact of degeneracies with other Beyond-the-Standard-Model effective interactions and identify observables, both at colliders and low-energy experiments, that would uniquely point to right-handed charged currents.

  18. Energy Extraction in the CERN Large Hadron Collider a Project Overview

    CERN Document Server

    Dahlerup-Petersen, K; Kazmine, B; Medvedko, A S; Sytchev, V V; Vasilev, L B

    2001-01-01

    In case of a resistive transition (quench), fast and reliable extraction of the magnetic energy, stored in the superconducting coils of the electromagnets of a particle collider, represents an important part of its magnet protection system. In general, the quench detectors, the quench heaters and the cold by-pass diodes across each magnet, together with the energy extraction facilities provide the required protection of the quenching superconductors against damage due to local energy dissipation. In CERN's LHC machine the energy stored in each of its eight superconducting dipole chains exceeds 1300 MJ. Following an opening of the extraction switches this energy will be absorbed in large extraction resistors located in the underground collider tunnel or adjacent galleries, during the exponential current decay. Also the sixteen, 13 kA quadrupole chains (QF, QD) and more than one hundred and fifty, 600 A circuits of the corrector magnets will be equipped with extraction systems. The extraction switch-gear is bas...

  19. Hidden-charm Pentaquark States in Heavy Ion Collisions at the Large Hadron Collider

    CERN Document Server

    Wang, Rui-Qin; Sun, Kai-Jia; Chen, Lie-Wen; Li, Gang; Shao, Feng-Lan

    2016-01-01

    In the framework of the quark combination, we derive the yield formulas and study the yield ratios of the hidden-charm pentaquark states in ultra-relativistic heavy ion collisions. We propose some interesting yield ratios which clearly exhibit the production relationships between different hidden-charm pentaquark states. We show how to employ a specific quark combination model to evaluate the yields of exotic $P_c^+(4380)$, $P_c^+(4450)$ and their partners on the basis of reproducing the yields of normal identified hadrons, and execute the calculations in central Pb+Pb collisions at $\\sqrt{s_{NN}}= 2.76$ TeV as an example.

  20. Indications of conical emission of charged hadrons at the BNL relativistic heavy ion collider.

    Science.gov (United States)

    Abelev, B I; Aggarwal, M M; Ahammed, Z; Anderson, B D; Arkhipkin, D; Averichev, G S; Bai, Y; Balewski, J; Barannikova, O; Barnby, L S; Baudot, J; Baumgart, S; Beavis, D R; Bellwied, R; Benedosso, F; Betts, R R; Bhardwaj, S; Bhasin, A; Bhati, A K; Bichsel, H; Bielcik, J; Bielcikova, J; Biritz, B; Bland, L C; Bombara, M; Bonner, B E; Botje, M; Bouchet, J; Braidot, E; Brandin, A V; Bruna, E; Bueltmann, S; Burton, T P; Bystersky, M; Cai, X Z; Caines, H; Calderón de la Barca Sánchez, M; Callner, J; Catu, O; Cebra, D; Cendejas, R; Cervantes, M C; Chajecki, Z; Chaloupka, P; Chattopadhyay, S; Chen, H F; Chen, J H; Chen, J Y; Cheng, J; Cherney, M; Chikanian, A; Choi, K E; Christie, W; Chung, S U; Clarke, R F; Codrington, M J M; Coffin, J P; Cormier, T M; Cosentino, M R; Cramer, J G; Crawford, H J; Das, D; Dash, S; Daugherity, M; De Silva, C; de Moura, M M; Dedovich, T G; Dephillips, M; Derevschikov, A A; de Souza, R Derradi; Didenko, L; Djawotho, P; Dogra, S M; Dong, X; Drachenberg, J L; Draper, J E; Du, F; Dunlop, J C; Dutta Mazumdar, M R; Edwards, W R; Efimov, L G; Elhalhuli, E; Elnimr, M; Emelianov, V; Engelage, J; Eppley, G; Erazmus, B; Estienne, M; Eun, L; Fachini, P; Fatemi, R; Fedorisin, J; Feng, A; Filip, P; Finch, E; Fine, V; Fisyak, Y; Gagliardi, C A; Gaillard, L; Gangadharan, D R; Ganti, M S; Garcia-Solis, E; Ghazikhanian, V; Ghosh, P; Gorbunov, Y N; Gordon, A; Grebenyuk, O; Grosnick, D; Grube, B; Guertin, S M; Guimaraes, K S F F; Gupta, A; Gupta, N; Guryn, W; Haag, B; Hallman, T J; Hamed, A; Harris, J W; He, W; Heinz, M; Heppelmann, S; Hippolyte, B; Hirsch, A; Hjort, E; Hoffman, A M; Hoffmann, G W; Hofman, D J; Hollis, R S; Huang, H Z; Humanic, T J; Igo, G; Iordanova, A; Jacobs, P; Jacobs, W W; Jakl, P; Jin, F; Jones, P G; Joseph, J; Judd, E G; Kabana, S; Kajimoto, K; Kang, K; Kapitan, J; Kaplan, M; Keane, D; Kechechyan, A; Kettler, D; Khodyrev, V Yu; Kiryluk, J; Kisiel, A; Klein, S R; Knospe, A G; Kocoloski, A; Koetke, D D; Kopytine, M; Kotchenda, L; Kouchpil, V; Kravtsov, P; Kravtsov, V I; Krueger, K; Krus, M; Kuhn, C; Kumar, L; Kurnadi, P; Lamont, M A C; Landgraf, J M; Lapointe, S; Lauret, J; Lebedev, A; Lednicky, R; Lee, C-H; Levine, M J; Li, C; Li, Y; Lin, G; Lin, X; Lindenbaum, S J; Lisa, M A; Liu, F; Liu, H; Liu, J; Liu, L; Ljubicic, T; Llope, W J; Longacre, R S; Love, W A; Lu, Y; Ludlam, T; Lynn, D; Ma, G L; Ma, Y G; Mahapatra, D P; Majka, R; Mall, O I; Mangotra, L K; Manweiler, R; Margetis, S; Markert, C; Matis, H S; Matulenko, Yu A; McShane, T S; Meschanin, A; Millane, J; Miller, M L; Minaev, N G; Mioduszewski, S; Mischke, A; Mitchell, J; Mohanty, B; Molnar, L; Morozov, D A; Munhoz, M G; Nandi, B K; Nattrass, C; Nayak, T K; Nelson, J M; Nepali, C; Netrakanti, P K; Ng, M J; Nogach, L V; Nurushev, S B; Odyniec, G; Ogawa, A; Okada, H; Okorokov, V; Olson, D; Pachr, M; Page, B S; Pal, S K; Pandit, Y; Panebratsev, Y; Pawlak, T; Peitzmann, T; Perevoztchikov, V; Perkins, C; Peryt, W; Phatak, S C; Planinic, M; Pluta, J; Poljak, N; Poskanzer, A M; Potukuchi, B V K S; Prindle, D; Pruneau, C; Pruthi, N K; Putschke, J; Raniwala, R; Raniwala, S; Ray, R L; Reed, R; Ridiger, A; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Rose, A; Roy, C; Ruan, L; Russcher, M J; Rykov, V; Sahoo, R; Sakrejda, I; Sakuma, T; Salur, S; Sandweiss, J; Sarsour, M; Schambach, J; Scharenberg, R P; Schmitz, N; Seger, J; Selyuzhenkov, I; Seyboth, P; Shabetai, A; Shahaliev, E; Shao, M; Sharma, M; Shi, S S; Shi, X-H; Sichtermann, E P; Simon, F; Singaraju, R N; Skoby, M J; Smirnov, N; Snellings, R; Sorensen, P; Sowinski, J; Spinka, H M; Srivastava, B; Stadnik, A; Stanislaus, T D S; Staszak, D; Strikhanov, M; Stringfellow, B; Suaide, A A P; Suarez, M C; Subba, N L; Sumbera, M; Sun, X M; Sun, Y; Sun, Z; Surrow, B; Symons, T J M; Szanto de Toledo, A; Takahashi, J; Tang, A H; Tang, Z; Tarnowsky, T; Thein, D; Thomas, J H; Tian, J; Timmins, A R; Timoshenko, S; Tlusty, D; Tokarev, M; Trainor, T A; Tram, V N; Trattner, A L; Trentalange, S; Tribble, R E; Tsai, O D; Ulery, J; Ullrich, T; Underwood, D G; Van Buren, G; van Leeuwen, M; Vander Molen, A M; Vanfossen, J A; Varma, R; Vasconcelos, G M S; Vasilevski, I M; Vasiliev, A N; Videbaek, F; Vigdor, S E; Viyogi, Y P; Vokal, S; Voloshin, S A; Wada, M; Waggoner, W T; Wang, F; Wang, G; Wang, J S; Wang, Q; Wang, X; Wang, X L; Wang, Y; Webb, J C; Westfall, G D; Whitten, C; Wieman, H; Wissink, S W; Witt, R; Wu, Y; Xu, N; Xu, Q H; Xu, Y; Xu, Z; Yepes, P; Yoo, I-K; Yue, Q; Zawisza, M; Zbroszczyk, H; Zhan, W; Zhang, H; Zhang, S; Zhang, W M; Zhang, Y; Zhang, Z P; Zhao, Y; Zhong, C; Zhou, J; Zoulkarneev, R; Zoulkarneeva, Y; Zuo, J X

    2009-02-06

    Three-particle azimuthal correlation measurements with a high transverse momentum trigger particle are reported for pp, d+Au, and Au+Au collisions at sqrt[s_{NN}]=200 GeV by the STAR experiment. Dijet structures are observed in pp, d+Au and peripheral Au+Au collisions. An additional structure is observed in central Au+Au data, signaling conical emission of correlated charged hadrons. The conical emission angle is found to be theta=1.37+/-0.02(stat)-0.07+0.06(syst), independent of p_{ perpendicular}.

  1. Measurement of Hadronic Event Shapes and Jet Substructure in Proton-Proton Collisions at 7.0 TeV Center-of-Mass Energy with the ATLAS Detector at the Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Miller, David Wilkins

    2012-03-20

    This thesis presents the first measurement of 6 hadronic event shapes in proton-proton collisions at a center-of-mass energy of {radical}s = 7 TeV using the ATLAS detector at the Large Hadron Collider. Results are presented at the particle-level, permitting comparisons to multiple Monte Carlo event generator tools. Numerous tools and techniques that enable detailed analysis of the hadronic final state at high luminosity are described. The approaches presented utilize the dual strengths of the ATLAS calorimeter and tracking systems to provide high resolution and robust measurements of the hadronic jets that constitute both a background and a signal throughout ATLAS physics analyses. The study of the hadronic final state is then extended to jet substructure, where the energy flow and topology within individual jets is studied at the detector level and techniques for estimating systematic uncertainties for such measurements are commissioned in the first data. These first substructure measurements in ATLAS include the jet mass and sub-jet multiplicity as well as those concerned with multi-body hadronic decays and color flow within jets. Finally, the first boosted hadronic object observed at the LHC - the decay of the top quark to a single jet - is presented.

  2. A new observable to measure the top-quark mass at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Alioli, S. [Lawrence Berkeley National Lab., CA (United States); California Univ., Berkeley, CA (United States); Fernandez, P.; Fuster, J.; Irles, A.; Vos, M. [Valencia Univ. (Spain). IFIC; CSIC, Paterna (Spain); Moch, S. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Uwer, P. [Humboldt-Universitaet, Berlin (Germany)

    2013-03-15

    A new method to measure the top-quark mass in high energetic hadron collisions is presented. We use theoretical predictions calculated at next-to-leading order accuracy in quantum chromodynamics to study the (normalized) differential distribution of the t anti t+1-jet cross section with respect to its invariant mass {radical}(s{sub t} {sub anti} {sub tj}). The sensitivity of the method to the top-quark mass together with the impact of various theoretical and experimental uncertainties has been investigated and quantified. The new method allows for a complementary measurement of the top-quark mass parameter and has a high potential to become competitive in precision with respect to established approaches. Furthermore we emphasize that in the proposed method the mass parameter is uniquely defined through one-loop renormalization.

  3. First Observation of Vector Boson Pairs in a Hadronic Final State at the Tevatron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Aaltonen, T.; /Helsinki Inst. of Phys.; Adelman, Jahred A.; /Chicago U., EFI; Akimoto, T.; /Tsukuba U.; Alvarez Gonzalez, B.; /Cantabria Inst. of Phys.; Amerio, S.; /INFN, Padua; Amidei, Dante E.; /Michigan U.; Anastassov, A.; /Northwestern U.; Annovi, Alberto; /Frascati; Antos, Jaroslav; /Comenius U.; Apollinari, G.; /Fermilab; Apresyan, A.; /Purdue U. /Waseda U.

    2009-05-01

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W,Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb{sup -1} of integrated luminosity of p{bar p} collisions at {radical}s = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 {+-} 239(stat) {+-} 144(syst) diboson candidate events and measure a cross section {sigma}(p{bar p} {yields} VV + X) of 18.0 {+-} 2.8(stat) {+-} 2.4(syst) {+-} 1.1(lumi) pb, in agreement with the expectations of the standard model.

  4. First observation of vector boson pairs in a hadronic final state at the tevatron collider.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; Di Canto, A; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-08-28

    We present the first observation in hadronic collisions of the electroweak production of vector boson pairs (VV, V = W, Z) where one boson decays to a dijet final state. The data correspond to 3.5 fb(-1) of integrated luminosity of pp[over ] collisions at sqrt[s] = 1.96 TeV collected by the CDF II detector at the Fermilab Tevatron. We observe 1516 + or - 239(stat) + or - 144(syst) diboson candidate events and measure a cross section sigma(pp[over ]-->VV + X) of 18.0 + or - 2.8(stat) + or - 2.4(syst) + or -1.1(lumi) pb, in agreement with the expectations of the standard model.

  5. Light-by-light scattering in ultraperipheral PbPb collisions at the Large Hadron Collider

    CERN Document Server

    Klusek-Gawenda, Mariola; Szczurek, Antoni

    2016-01-01

    We calculate cross sections for diphoton production in (semi)exclusive $PbPb$ collisions, relevant for the LHC. The calculation is based on equivalent photon approximation in the impact parameter space. The cross sections for elementary $\\gamma \\gamma \\to \\gamma \\gamma$ subprocess are calculated including two different mechanisms. We take into account box diagrams with leptons and quarks in the loops. In addition, we consider a vector-meson dominance (VDM-Regge) contribution with virtual intermediate hadronic (vector-like) excitations of the photons. We get much higher cross sections in $PbPb$ collisions than in earlier calculation from the literature. This opens a possibility to study the $\\gamma \\gamma \\to \\gamma \\gamma$ (quasi)elastic scattering at the LHC. We present many interesting differential distributions which could be measured by the ALICE, CMS or ATLAS Collaborations at the LHC. We study whether a separation or identification of different components (boxes, VDM-Regge) is possible. We find that the...

  6. The semi-digital hadronic calorimeter (SDHCAL) for future leptonic colliders

    CERN Document Server

    Pingault, Antoine

    2016-01-01

    The first technological SDHCAL prototype having been successfully tested, a new phase of R&D, to validate completely the SDHCAL option for the International Linear Detector (ILD) project of the International Linear Collider (ILC), has started with the conception and the realisation of a new prototype. The new one is intended to host few but large active layers of the future SDHCAL. The new active layers, made of Glass Resistive Plate Chambers (GRPC) with sizes larger than 2m^2 will be equipped with a new version of the electronic readout, fulfilling the requirements of the future ILD detector. The new GRPC are conceived to improve the homogeneity with a new gas distribution scheme. Finally the mechanical structure will be achieved using the electron beam welding technique. The progress realised will be presented and future steps will be discussed.

  7. Reliability of Beam Loss Monitors System for the Large Hadron Collider

    CERN Document Server

    Guaglio, Gianluca; Santoni, C

    2004-01-01

    The employment of superconducting magnets, in the high energies colliders, opens challenging failure scenarios and brings new criticalities for the whole system protection. For the LHC beam loss protection system, the failure rate and the availability requirements have been evaluated using the Safety Integrity Level (SIL) approach. A downtime cost evaluation is used as input for the SIL approach. The most critical systems, which contribute to the final SIL value, are the dump system, the interlock system, the beam loss monitors system and the energy monitor system. The Beam Loss Monitors System (BLMS) is critical for short and intense particles losses, while at medium and higher loss time it is assisted by other systems, such as the quench protection system and the cryogenic system. For BLMS, hardware and software have been evaluated in detail. The reliability input figures have been collected using historical data from the SPS, using temperature and radiation damage experimental data as well as using standar...

  8. Bulk matter physics and its future at the large hadron collider

    Energy Technology Data Exchange (ETDEWEB)

    Hippolyte, B. [Departement de Recherches Subatomiques, Universite Louis Pasteur, Institut Pluridisciplinaire Hubert Curien, Strasbourg (France)

    2009-07-15

    Measurements at low transverse momentum will be performed at the LHC for studying particle production mechanisms in pp and heavy-ion collisions. Some of the experimental capabilities for bulk matter physics are presented, focusing on tracking elements and particle identification. In order to anticipate the study of baryon production for both colliding systems at multi-TeV energies, measurements for identified species and recent model extrapolations are discussed. Several mechanisms are expected to compete for hadro-production in the low momentum region. For this reason, experimental observables that could be used for investigating multi-parton interactions and help understanding the ''underlying event'' content in the first pp collisions at the LHC are also mentioned. (orig.)

  9. Top++: A program for the calculation of the top-pair cross-section at hadron colliders

    Science.gov (United States)

    Czakon, Michał; Mitov, Alexander

    2014-11-01

    We present the program Top++ for the numerical evaluation of the total inclusive cross-section for producing top quark pairs at hadron colliders. The program calculates the cross-section in (a) fixed order approach with exact next-to-next-to leading order (NNLO) accuracy and (b) by including soft-gluon resummation for the hadronic cross-section in Mellin space with full next-to-next-to-leading logarithmic (NNLL) accuracy. The program offers the user significant flexibility through the large number (29) of available options. Top++ is written in C++. It has a very simple to use interface that is intuitive and directly reflects the physics. The running of the program requires no programming experience from the user. Catalogue identifier: AETR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AETR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License No. of lines in distributed program, including test data, etc.: 15 896 No. of bytes in distributed program, including test data, etc.: 695 919 Distribution format: tar.gz Programming language: C++. Computer: any running a unix operating system. Program was developed and tested with GNU Compiler Collection, C++ compiler. Operating system: Linux; Mac OS X; can be adapted for other unix systems. RAM: typically less than 200 MB. Classification: 11.1. External routines: GNU Scientific Library (GSL); the Les Houches Accord pdf Interface (LHAPDF). Nature of problem: computation of the total cross-section in perturbative QCD. Solution method: numerical integration of the product of hard partonic cross-section (with or without soft gluon resummation) with two parton distribution functions. Additional comments: sub per-mill accuracy achievable in realistic time (program does not employ Monte Carlo methods). Running time: depending on the options. The program is optimized for speed.

  10. Reaching record-low β* at the CERN Large Hadron Collider using a novel scheme of collimator settings and optics

    Science.gov (United States)

    Bruce, R.; Bracco, C.; De Maria, R.; Giovannozzi, M.; Mereghetti, A.; Mirarchi, D.; Redaelli, S.; Quaranta, E.; Salvachua, B.

    2017-03-01

    The Large Hadron Collider (LHC) at CERN is built to collide intense proton beams with an unprecedented energy of 7 TeV. The design stored energy per beam of 362 MJ makes the LHC beams highly destructive, so that any beam losses risk to cause quenches of superconducting magnets or damage to accelerator components. Collimators are installed to protect the machine and they define a minimum normalized aperture, below which no other element is allowed. This imposes a limit on the achievable luminosity, since when squeezing β* (the β-function at the collision point) to smaller values for increased luminosity, the β-function in the final focusing system increases. This leads to a smaller normalized aperture that risks to go below the allowed collimation aperture. In the first run of the LHC, this was the main limitation on β*, which was constrained to values above the design specification. In this article, we show through theoretical and experimental studies how tighter collimator openings and a new optics with specific phase-advance constraints allows a β* as small as 40 cm, a factor 2 smaller than β*=80 cm used in 2015 and significantly below the design value β*=55 cm, in spite of a lower beam energy. The proposed configuration with β*=40 cm has been successfully put into operation and has been used throughout 2016 as the LHC baseline. The decrease in β* compared to 2015 has been an essential contribution to reaching and surpassing, in 2016, the LHC design luminosity for the first time, and to accumulating a record-high integrated luminosity of around 40 fb-1 in one year, in spite of using less bunches than in the design.

  11. Mass measurement of right-handed scalar quarks and time measurement of hadronic showers for the compact linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Weuste, Lars

    2013-06-12

    The Compact Linear Collider (CLIC) is a concept for a 48.3 km long e{sup +}e{sup -} accelerator with a center-of-mass energy of 3TeV. Its purpose is the precise measurement of particles discovered by the LHC as well as the discovery of yet unknown particles. The International Large Detector (ILD) is one of its detector concepts which was specifically designed for the usage of the Particle Flow Algorithm. This thesis is divided into two parts, both within the context of CLIC. In the first part of this thesis the unprecedented measurement on time structure of hadronic showers in calorimeters with tungsten absorber material, which is used in the ILD concept for CLIC, is presented. It shows the development and the construction of a small testbeam experiment called Tungsten Timing Testbeam (T3B) which consists of only 15 scintillator tiles of 30 x 30 x 5 mm{sup 3}, read out with Silicon Photomultipliers which in turn were connected to USB oscilloscopes. T3B was placed downstream of the CALICE tungsten analog hadron calorimeter (W-AHCal) during beam tests performed at CERN in 2010 and 2011. The resulting data is compared to simulation obtained with three different hadronic shower physics models of the Geant4 simulation toolkit: QGSPBERT, QGSPBERTHP and QBBC. The results from 60 GeV high statistics run show that QBBC and QGSPBERTHP are mostly consistent with the testbeam data, while QGSPBERT, which is lacking a sophisticated treatment of neutrons, overestimates the late energy depositions. The second part of this thesis presents one out of the six benchmark processes that were part of the CLIC Conceptual Design Report (CDR) to verify the detector performance at CLIC. This benchmark process is the measurement of the mass and cross-section of two supersymmetric right-handed scalar quarks. In the underlying SUSY model these almost exclusively decay into the lightest neutralino (missing energy) and the corresponding standard model quark (jet). Within this analysis pile

  12. Measurement of Electroweak Gauge Boson Scattering in the Channel $pp \\rightarrow W^{\\pm}W^{\\pm}jj$ with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Gumpert, Christian; Heinemann, Beate; Klein, Uta

    Particle physics deals with the elementary constituents of our universe and their interactions. The electroweak symmetry breaking mechanism in the Standard Model of Particle Physics is of paramount importance and it plays a central role in the physics programmes of current high-energy physics experiments at the Large Hadron Collider. The study of scattering processes of massive electroweak gauge bosons provides an approach complementary to the precise measurement of the properties of the recently discovered Higgs boson. Owing to the unprecedented energies achieved in proton-proton collisions at the Large Hadron Collider and the large amount of data collected, experimental studies of these processes become feasible for the first time. Especially the scattering of two $W^{\\pm}$ bosons of identical electric charge is considered a promising process for an initial study due to its distinct experimental signature. In the course of this work, $20.3 \\, \\mathrm{fb}^{−1}$ of proton-proton collision data recorded by t...

  13. Integrated analysis of particle interactions at hadron colliders Report of research activities in 2010-2015

    Energy Technology Data Exchange (ETDEWEB)

    Nadolsky, Pavel M. [Southern Methodist Univ., Dallas, TX (United States)

    2015-08-31

    The report summarizes research activities of the project ”Integrated analysis of particle interactions” at Southern Methodist University, funded by 2010 DOE Early Career Research Award DE-SC0003870. The goal of the project is to provide state-of-the-art predictions in quantum chromodynamics in order to achieve objectives of the LHC program for studies of electroweak symmetry breaking and new physics searches. We published 19 journal papers focusing on in-depth studies of proton structure and integration of advanced calculations from different areas of particle phenomenology: multi-loop calculations, accurate long-distance hadronic functions, and precise numerical programs. Methods for factorization of QCD cross sections were advanced in order to develop new generations of CTEQ parton distribution functions (PDFs), CT10 and CT14. These distributions provide the core theoretical input for multi-loop perturbative calculations by LHC experimental collaborations. A novel ”PDF meta-analysis” technique was invented to streamline applications of PDFs in numerous LHC simulations and to combine PDFs from various groups using multivariate stochastic sampling of PDF parameters. The meta-analysis will help to bring the LHC perturbative calculations to the new level of accuracy, while reducing computational efforts. The work on parton distributions was complemented by development of advanced perturbative techniques to predict observables dependent on several momentum scales, including production of massive quarks and transverse momentum resummation at the next-to-next-to-leading order in QCD.

  14. Kaluza-Klein gluon + jets associated production at the Large Hadron Collider

    CERN Document Server

    Iyer, A.M.; Manglani, N.; Sridhar, K.

    2016-01-01

    The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons ($g_{KK}$): one where it is produced in association with one or more hard jets. The cross-section for the $g_{KK}+$ jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the $qg$ and the $gg$ initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different $g_{KK}$ masses in bulk-RS models.

  15. Kaluza–Klein gluon + jets associated production at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    A.M. Iyer

    2016-08-01

    Full Text Available The Kaluza–Klein excitations of gluons offer the exciting possibility of probing bulk Randall–Sundrum (RS models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons (gKK: one where it is produced in association with one or more hard jets. The cross-section for the gKK + jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the qg and the gg initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different gKK masses in bulk-RS models.

  16. Kaluza-Klein gluon + jets associated production at the Large Hadron Collider

    Science.gov (United States)

    Iyer, A. M.; Mahmoudi, F.; Manglani, N.; Sridhar, K.

    2016-08-01

    The Kaluza-Klein excitations of gluons offer the exciting possibility of probing bulk Randall-Sundrum (RS) models. In these bulk models either a custodial symmetry or a deformation of the metric away from AdS is invoked in order to deal with electroweak precision tests. Addressing both these models, we suggest a new channel in which to study the production of KK-gluons (gKK): one where it is produced in association with one or more hard jets. The cross-section for the gKK + jets channel is significant because of several contributing sub-processes. In particular, the 1-jet and the 2-jet associated processes are important because at these orders in QCD the qg and the gg initial states respectively come into play. We have performed a hadron-level simulation of the signal and present strategies to effectively extract the signal from what could potentially be a huge background. We present results for the kinematic reach of the LHC Run-II for different gKK masses in bulk-RS models.

  17. Double vector meson production in γγ interactions at hadronic colliders

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V.P. [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden); Universidade Federal de Pelotas, High and Medium Energy Group, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Moreira, B.D.; Navarra, F.S. [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo, SP (Brazil)

    2016-03-15

    In this paper we revisit the double vector meson production in γγ interactions at heavy ion collisions and present, by the first time, predictions for the ρρ and J/ΨJ/Ψ production in proton.nucleus and proton.proton collisions. In order to obtain realistic predictions for rapidity distributions and total cross sections for the double vector production in ultra peripheral hadronic collisions we take into account the description of γγ → VV cross section at lowenergies as well as its behavior at large energies, associated to the gluonic interaction between the color dipoles. Our results demonstrate that the double ρ production is dominated by the low energy behavior of the γγ → VV cross section. In contrast, for the double J/Ψ production, the contribution associated to the description of the QCD dynamics at high energies contributes significantly, mainly in pp collisions. Predictions for the RHIC, LHC, FCC, and CEPC-SPPC energies are shown. (orig.)

  18. Dual branch high voltage pulse generator for the beam extraction of the Large Hadron Collider

    CERN Document Server

    Bonthond, J; Ducimetière, L; Jansson, U; Vossenberg, Eugène B

    2002-01-01

    The LHC beam extraction kicker system, MKD, is composed of 15 fast kicker magnets per beam to extract the particles in one turn from the collider and to dispose them, after dilution, on an external absorber. Each magnet is powered by a separate pulse generator. The original single branch generator consisted of a discharge capacitor in series with a solid state closing switch left bracket 1 right bracket operating at 30 kV. In combination with a parallel freewheel diode stack this generator produced a current pulse of 2.7 mus rise time, 18.5 kA amplitude and about 1.8 ms fall time, of which only about 90 mus are needed to dump the beam. The freewheel diode circuit is equipped with a flat top current droop compensation network, consisting of a low voltage, low stray inductance, high current discharge capacitor. Extensive reliability studies have meanwhile suggested to further increase the operational safety of this crucial system by equipping each generator with two parallel branches. This paper presents the re...

  19. Thermal Performance of the Supporting System for the Large Hadron Collider (LHC) Superconducting Magnets

    CERN Document Server

    Castoldi, M; Parma, Vittorio; Vandoni, Giovanna

    1999-01-01

    The LHC collider will be composed of approximately 1700 main ring superconducting magnets cooled to 1.9 K in pressurised superfluid helium and supported within their cryostats on low heat in-leak column-type supports. The precise positioning of the heavy magnets and the stringent thermal budgets imposed by the machine cryogenic system, require a sound thermo-mechanical design of the support system. Each support is composed of a main tubular thin-walled structure in glass-fibre reinforced epoxy resin, with its top part interfaced to the magnet at 1.9 K and its bottom part mounted onto the cryostat vacuum vessel at 293 K. In order to reduce the conduction heat in-leak at 1.9 K, each support mounts two heat intercepts at intermediate locations on the column, both actively cooled by cryogenic lines carrying helium gas at 4.5-10 K and 50-65 K. The need to assess the thermal performance of the supports has lead to setting up a dedicated test set-up for precision heat load measurements on prototype supports. This pa...

  20. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    CERN Document Server

    Bruce, R; Boccone, V; Bregliozzi, G; Burkhardt, H; Cerutti, F; Ferrari, A; Huhtinen, M; Lechner, A; Levinsen, Y; Mereghetti, A; Mokhov, N V; Tropin, I S; Vlachoudis, V

    2013-01-01

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, a...

  1. Quench tests at the Large Hadron Collider with collimation losses at 3.5 Z TeV

    CERN Document Server

    Redaelli, S; Bellodi, G; Brodzinski, K; Bruce, R; Burkart, F; Cauchi, M; Deboy, D; Dehning, B; Holzer, E B; Jowett, J M; Lari, L; Nebot del Busto, E; Pojer, M; Priebe, A; Rossi, A; Schmidt, R; Sapinski, M; Schaumann, M; Solfaroli Camollocci, M; Valentino, G; Versteegen, R; Wenninger, J; Wollmann, D; Zerlauth, M

    2013-01-01

    The Large Hadron Collider (LHC) has been operating since 2010 at 3.5 TeV and 4.0 TeV without experiencing quenches induced by losses from circulating beams. This situation might change at 7 TeV where the quench margins in the super-conducting magnets are reduced. The critical locations are the dispersion suppressors (DSs) at either side of the cleaning and experimental insertions, where dispersive losses are maximum. It is therefore crucial to understand the quench limits with beam loss distributions alike those occurring in standard operation. In order to address this aspect, quench tests were performed by inducing large beam losses on the primary collimators of the betatron cleaning insertion, for proton and lead ion beams of 3.5 Z TeV, to probe the quench limits of the DS magnets. Losses up to 500 kW were achieved without quenches. The measurement technique and the results obtained are presented, with observations of heat loads in the cryogenics system.

  2. Who cares about particle physics? making sense of the Higgs boson, the Large Hadron Collider and CERN

    CERN Document Server

    AUTHOR|(CDS)2051327

    2016-01-01

    CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers work together to push scientific knowledge forward. Here is a book written for every person who wishes to learn a little more about particle physics, without requiring prior scientific knowledge. It starts from the basics to build a solid understanding of current res...

  3. Forecasting the Socio-Economic Impact of the Large Hadron Collider: a Cost-Benefit Analysis to 2025 and Beyond

    CERN Document Server

    Florio, Massimo; Sirtori, Emanuela

    2016-01-01

    In this paper we develop a cost-benefit analysis of a major research infrastructure, the Large Hadron Collider (LHC), the highest-energy accelerator in the world, currently operating at CERN. We show that the evaluation of benefits can be made quantitative by estimating their welfare effects on different types of agents. Four classes of direct benefits are identified, according to the main social groups involved: (a) scientists; (b) students and young researchers; (c) firms in the procurement chain and other organizations; (d) the general public, including onsite and website visitors and other media users. These benefits are respectively related to the knowledge output of scientists; human capital formation; technological spillovers; and direct cultural effects for the general public. Welfare effects for taxpayers can also be estimated by the contingent valuation of the willingness to pay for a pure public good for which there is no specific direct use (i.e., as non-use value). Using a Monte Carlo approach, w...

  4. Qualification of Sub-Atmospheric Pressure Sensors for the Cryomagnet Bayonet Heat Exchangers of the Large Hadron Collider

    Science.gov (United States)

    Bager, T.; Casas-Cubillos, J.; Jeanmonod, N.

    2006-04-01

    The superconducting magnets of the Large Hadron Collider (LHC) will be cooled at 1.9 K by distributed cooling loops working with saturated two-phase superfluid helium flowing in 107 m long bayonet heat exchangers located in each magnet cold-mass cell. The temperature of the magnets could be difficult to control because of the large dynamic heat load variations. Therefore, it is foreseen to measure the heat exchangers pressure to feed the regulation loops with the corresponding saturation temperature. The required uncertainty of the sub-atmospheric saturation pressure measurement shall be of the same order of the one associated to the magnet thermometers, in pressure it translates as ±5 Pa at 1.6 kPa. The transducers shall be radiation hard as they will endure, in the worst case, doses up to 10 kGy and 1015 neutronsṡcm-2 over 10 years. The sensors under evaluation were installed underground in the dump section of the SPS accelerator with a radiation environment close to the one expected for the LHC. The monitoring equipment was installed in a remote radiation protected area. This paper presents the results of the radiation qualification campaign with emphasis on the reliability and accuracy of the pressure sensors under the test conditions.

  5. Qualification of Sub-atmospheric Pressure Sensors for the Cryomagnet Bayonet Heat Exchangers of the Large Hadron Collider

    CERN Document Server

    Jeanmonod, N; Casas-Cubillos, J

    2006-01-01

    The superconducting magnets of the Large Hadron Collider (LHC) will be cooled at 1.9 K by distributed cooling loops working with saturated two-phase superfluid helium flowing in 107 m long bayonet heat exchangers [1] located in each magnet cold-mass cell. The temperature of the magnets could be difficult to control because of the large dynamic heat load variations. Therefore, it is foreseen to measure the heat exchangers pressure to feed the regulation loops with the corresponding saturation temperature. The required uncertainty of the sub-atmospheric saturation pressure measurement shall be of the same order of the one associated to the magnet thermometers, in pressure it translates as ±5 Pa at 1.6 kPa. The transducers shall be radiation hard as they will endure, in the worst case, doses up to 10 kGy and 10**15 neutrons·cm**-2 over 10 years. The sensors under evaluation were installed underground in the dump section of the SPS accelerator with a radiation environment close to the one expected for the L...

  6. Mono-jet, -photon and -Z Signals of a Supersymmetric (B-L) model at the Large Hadron Collider

    CERN Document Server

    Abdallah, W; Khalil, S; Moretti, S

    2015-01-01

    Search for invisible final states produced at the Large Hadron Collider (LHC) by new physics scenarios are normally carried out resorting to a variety of probes emerging from the initial state, in the form of single-jet, -photon and -$Z$ boson signatures. These are particularly effective for models of Supersymmetry (SUSY) in presence of $R$-parity conservation, owing to the presence in their spectra of a stable neutralino as dark matter candidate. We assume here as theoretical framework Supersymmetric ($B-L$) extension of the Standard Model (BLSSM), wherein a mediator for invisible decays can be $Z'$ boson. The peculiarity of the signal is thus that the final state objects carry a very large (transverse) missing energy, since the $Z'$ is naturally massive and constrained by direct searches and electro-weak precision tests to be at least in TeV scale region. Under these circumstances the efficiency in accessing the invisible final state and rejecting the standard model background is very high. This somehow com...

  7. Sources of machine-induced background in the ATLAS and CMS detectors at the CERN Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, R.; et al.,

    2013-11-21

    One source of experimental background in the CERN Large Hadron Collider (LHC) is particles entering the detectors from the machine. These particles are created in cascades, caused by upstream interactions of beam protons with residual gas molecules or collimators. We estimate the losses on the collimators with SixTrack and simulate the showers with FLUKA and MARS to obtain the flux and distribution of particles entering the ATLAS and CMS detectors. We consider some machine configurations used in the first LHC run, with focus on 3.5 TeV operation as in 2011. Results from FLUKA and MARS are compared and a very good agreement is found. An analysis of logged LHC data provides, for different processes, absolute beam loss rates, which are used together with further simulations of vacuum conditions to normalize the results to rates of particles entering the detectors. We assess the relative importance of background from elastic and inelastic beam-gas interactions, and the leakage out of the LHC collimation system, and show that beam-gas interactions are the dominating source of machine-induced background for the studied machine scenarios. Our results serve as a starting point for the experiments to perform further simulations in order to estimate the resulting signals in the detectors.

  8. Single t-Quark Productions via Flavor-Changing Processes in Topcolor-Assisted Technicolor Model at Hadron Colliders

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Qiang; XU Wen-Na; WANG Guang-Rui; WANG Xue-Lei; CHEN Shi-Gang; XIAO Zhen-Jun

    2008-01-01

    In the framework of topcolor-assisted technicolor (TC2) model, there exist tree-level flavor-changing (FC)couplings, which can result in the loop-level FC coupling tcg. Such tcg coupling can contribute significant clues at the forthcoming Large Hadron Collider (LHC) experiments. In this paper, based on the TC2 model, we study some single t-quark production processes involving tc9 coupling at the Tevatron and LHC: pp(pp) → tq (q = u, d, s), tg. We calculate the cross sections of these processes. The results show that the cross sections at the Tevatron are too small to observe the signal, but at the LHC it can reach a few pb. With the high luminosity, the LHC has considerable capability to find the single t-quark signal produced via some FC processes involving coupling tcg. On the other hand, these processes can also provide some valuable information of the coupling tc9 with detailed study of the processes and furthermore provide the reliable evidence to test the TC2 model.

  9. Monitoring of damage on water–cooled cables installed in the Large Hadron Collider (CERN) and research on possible alternatives.

    CERN Document Server

    Wollmann, Alexander; Guillaume, J C; Ricci, D

    To supply the superconducting magnets in the Large Hadron Collider at CERN, several thousand metres of water–cooled cables were installed. These cables consist of a flexible copper core surrounded by a reinforced rubber hose. Although the hose material has been selected carefully, on many cables the rubber hose has suffered from damage. After giving a general overview on common rubber materials and known reasons for their ageing, the technology of water–cooled cables and their special requirements will be introduced. Then, the aim of this thesis is to present the monitoring of the damage on the rubber hoses. This includes an introduction to the monitoring technique used, followed by an analysis and discussion of the results obtained. As a different way of investigating the damage, a pressure test for the rubber hose will be proposed and specified; and the possibility of using alternative conductors for the current supply of the LHC main magnets will be examined. Finally, a series of radiation tests on pot...

  10. Thermomechanical assessment of the effects of a jaw-beam angle during beam impact on Large Hadron Collider collimators

    Science.gov (United States)

    Cauchi, Marija; Assmann, R. W.; Bertarelli, A.; Carra, F.; Lari, L.; Rossi, A.; Mollicone, P.; Sammut, N.

    2015-02-01

    The correct functioning of a collimation system is crucial to safely and successfully operate high-energy particle accelerators, such as the Large Hadron Collider (LHC). However, the requirements to handle high-intensity beams can be demanding, and accident scenarios must be well studied in order to assess if the collimator design is robust against possible error scenarios. One of the catastrophic, though not very probable, accident scenarios identified within the LHC is an asynchronous beam dump. In this case, one (or more) of the 15 precharged kicker circuits fires out of time with the abort gap, spraying beam pulses onto LHC machine elements before the machine protection system can fire the remaining kicker circuits and bring the beam to the dump. If a proton bunch directly hits a collimator during such an event, severe beam-induced damage such as magnet quenches and other equipment damage might result, with consequent downtime for the machine. This study investigates a number of newly defined jaw error cases, which include angular misalignment errors of the collimator jaw. A numerical finite element method approach is presented in order to precisely evaluate the thermomechanical response of tertiary collimators to beam impact. We identify the most critical and interesting cases, and show that a tilt of the jaw can actually mitigate the effect of an asynchronous dump on the collimators. Relevant collimator damage limits are taken into account, with the aim to identify optimal operational conditions for the LHC.

  11. CERN-RD39 collaboration activities aimed at cryogenic silicon detector application in high-luminosity Large Hadron Collider

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zheng [National-Provincial Laboratory of Special Function Thin Film Materials, School of Material Sciences and Engineering, Xiangtan University, Xiangtan, Hunan 411105 (China); Eremin, Vladimir [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Verbitskaya, Elena, E-mail: elena.verbitskaya@cern.ch [Ioffe Institute, 26 Politekhnicheskaya str., St. Petersburg 194021 (Russian Federation); Dehning, Bernd; Sapinski, Mariusz; Bartosik, Marcin R.; Alexopoulos, Andreas [CERN, CH-1211, Geneva 23 (Switzerland); Kurfürst, Christoph [Technische Universität, Universitätsring 1, 1010 Wien (Austria); Härkönen, Jaakko [Helsinki Institute of Physics, Gustaf Hällströminkatu, 200014 Helsingin yliopisto (Finland)

    2016-07-11

    Beam Loss Monitors (BLM) made of silicon are new devices for monitoring of radiation environment in the vicinity of superconductive magnets of the Large Hadron Collider. The challenge of BLMs is extreme radiation hardness, up to 10{sup 16} protons/cm{sup 2} while placed in superfluid helium (temperature of 1.9 K). CERN BE-BI-BL group, together with CERN-RD39 collaboration, has developed prototypes of BLMs and investigated their device physics. An overview of this development—results of the in situ radiation tests of planar silicon detectors at 1.9 K, performed in 2012 and 2014—is presented. Our main finding is that silicon detectors survive under irradiation to 1×10{sup 16} p/cm{sup 2} at 1.9 K. In order to improve charge collection, current injection into the detector sensitive region (Current Injection Detector (CID)) was tested. The results indicate that the detector signal increases while operated in CID mode. - Highlights: • Activities aimed at upgrading of Beam Loss Monitors (BLM) at HL-LHC are described. • Overview of in situ radiation tests of silicon BLMs immersed in LHe is presented. • Silicon detectors with 300 and 100 μm thickness survived radiation at 1.9 K. • Current injection is still effective at 1.9 K for radiation hardness improvement. • Si detectors are currently installed on the magnets for their operation as BLMs.

  12. Search for Supersymmetry using a Higgs boson in the decay cascade with the ATLAS detector at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00342591; Lefebvre, Michel

    The Standard Model of particle physics is a successful theory, yet it is incomplete. Supersymmetry is one of the favored extensions of the Standard Model, elegantly addressing several unresolved issues. This thesis presents a search for the pair production of supersymmetric particles $pp \\rightarrow \\widetilde{\\chi}_1^\\pm$ $\\widetilde{\\chi}_2^0$, where the neutralino two $\\widetilde{\\chi}_2^0$ decays to the lightest neutralino and the 125 GeV Higgs boson. The final states considered for the search have large missing transverse momentum, an isolated lepton and two jets identified as originating from bottom quarks ($h \\to b\\bar{b}$ channel). The analysis is based on 20.3 fb$^{-1}$ of $\\sqrt{s}$~=~8~TeV proton--proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. No excess over Standard Model predictions is observed. The analysis has been combined with three independent searches that probe other decay modes of the Standard Model Higgs boson. Limits are set at 95\\% co...

  13. A posteriori inclusion of parton density functions in NLO QCD final-state calculations at hadron colliders: The APPLGRID Project

    CERN Document Server

    Carli, Tancredi; Cooper-Sarkar, Amanda; Gwenlan, Claire; Salam, Gavin P; Siegert, Frank; Starovoitov, Pavel; Sutton, Mark

    2010-01-01

    A method to facilitate the consistent inclusion of cross-section measurements based on complex final-states from HERA, TEVATRON and the LHC in proton parton density function (PDF) fits has been developed. This can be used to increase the sensitivity of LHC data to deviations from Standard Model predictions. The method stores perturbative coefficients of NLO QCD calculations of final-state observables measured in hadron colliders in look-up tables. This allows the posteriori inclusion of parton density functions (PDFs), and of the strong coupling, as well as the a posteriori variation of the renormalisation and factorisation scales in cross-section calculations. The main novelties in comparison to original work on the subject are the use of higher-order interpolation, which substantially improves the trade-off between accuracy and memory use, and a CPU and computer memory optimised way to construct and store the look-up table using modern software tools. It is demonstrated that a sufficient accuracy on the cro...

  14. Z{prime} phenomenology: Constraints from low-energy measurements, and detailed study at TeV-scale lepton and hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Austern, M.H.

    1994-05-01

    In this dissertation, I discuss the phenomenology of new massive neutral gauge bosons, or Z{prime} bosons, concentrating on experimental tests by which the properties of a Z{prime} boson could be determined. In Chapter I, I briefly review the Standard Model of elementary particle physics, and discuss the motivation for extending it. I review some of the extensions to the Standard Model that predict the existence of Z{prime} bosons, and present a general, model-independent parameterization of the Z{prime}s properties, as well as a simpler parameterization that applies to the most important class of models. In Chapter II, I discuss present-day limits on the existence of Z{prime} bosons, both from direct searches, and from indirect higher-order tests. In Chapter III, I discuss the production and discovery of a Z{prime} at a future hadron collider, such as the CERN Large Hadron Collider (LHC). Discovery of a Z{prime} at the LHC may be possible if its mass is less than 5 TeV. I also discuss the experimental tests of its properties that could be performed at such a collider, emphasizing the measurement of leptonic asymmetries. Finally, the Chapter IV, I discuss the experimental tests that could be performed at an e{sup +}e{sup {minus}} collider with {radical}s = M{sub Z{prime}}. I include several higher-order effects, such as initial-state radiation and beamstrahlung, whose inclusion is necesary for a realistic description of the experimental environment at a very high energy e{sup +}e{sup {minus}} collider. The combination of leptonic and hadronic experiments permits the measurement of all of the parameters.

  15. Z' phenomenology: Constraints from low-energy measurements, and detailed study at TeV-scale lepton and hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Austern, Matthew Harold [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    In this dissertation, I discuss the phenomenology of new massive neutral gauge bosons, or Z' bosons, concentrating on experimental tests by which the properties of a Z' boson could be determined. In Chapter I, I briefly review the Standard Model of elementary particle physics, and discuss the motivation for extending it. I review some of the extensions to the Standard Model that predict the existence of Z' bosons, and present a general, model-independent parameterization of the Z's properties, as well as a simpler parameterization that applies to the most important class of models. In Chapter II, I discuss present-day limits on the existence of Z' bosons, both from direct searches, and from indirect higher-order tests. In Chapter III, I discuss the production and discovery of a Z' at a future hadron collider, such as the CERN Large Hadron Collider (LHC). Discovery of a Z' at the LHC may be possible if its mass is less than 5 TeV. I also discuss the experimental tests of its properties that could be performed at such a collider, emphasizing the measurement of leptonic asymmetries. Finally, the Chapter IV, I discuss the experimental tests that could be performed at an e+ e- collider with √s = MZ'. I include several higher-order effects, such as initial-state radiation and beamstrahlung, whose inclusion is necesary for a realistic description of the experimental environment at a very high energy e+ e- collider. The combination of leptonic and hadronic experiments permits the measurement of all of the parameters.

  16. Happy 20th Birthday, World Wide Web!

    CERN Multimedia

    2009-01-01

    On 13 March CERN celebrated the 20th anniversary of the World Wide Web. Check out the video interview with Web creator Tim Berners-Lee and find out more about the both the history and future of the Web. To celebrate CERN also launched a brand new website, CERNland, for kids.

  17. Beam losses from ultra-peripheral nuclear collisions between $^{208}$Pb$^{82+}$ ions in the Large Hadron Collider and their alleviation

    CERN Document Server

    Bruce, R; Jowett, J; Bocian, D; CERN. Geneva. BE Department

    2009-01-01

    Electromagnetic interactions between colliding heavy ions at the Large Hadron Collider (LHC) at CERN will give rise to localized beam losses that may quench superconducting magnets, apart from contributing significantly to the luminosity decay. To quantify their impact on the operation of the collider, we have used a three-step simulation approach, which consists of optical tracking, a Monte-Carlo shower simulation and a thermal network model of the heat flow inside a magnet. We present simulation results for the case of Pb ion operation in the LHC, with focus on the ALICE interaction region, and show that the expected heat load during nominal Pb operation is 40% above the quench level. This limits the maximum achievable luminosity. Furthermore, we discuss methods of monitoring the losses and possible ways to alleviate their effect.

  18. Reliability of the beam loss monitors system for the large hadron collider at CERN; Fiabilite du systeme des moniteurs de pertes du faisceau pour le Large Hadron Collider au CERN

    Energy Technology Data Exchange (ETDEWEB)

    Guaglio, G

    2005-12-15

    The energy stored in the Large Hadron Collider is unprecedented. The impact of the beam particles can cause severe damage on the superconductive magnets, resulting in significant downtime for repairing. The Beam Loss Monitors System (BLMS) detects the secondary particles shower of the lost beam particles and initiates the extraction of the beam before any serious damage to the equipment can occur. This thesis defines the BLMS specifications in term of reliability. The main goal is the design of a system minimizing both the probability to not detect a dangerous loss and the number of false alarms generated. The reliability theory and techniques utilized are described. The prediction of the hazard rates, the testing procedures, the Failure Modes Effects and Criticalities Analysis and the Fault Tree Analysis have been used to provide an estimation of the probability to damage a magnet, of the number of false alarms and of the number of generated warnings. The weakest components in the BLMS have been pointed out. The reliability figures of the BLMS have been calculated using a commercial software package (Isograph.). The effect of the variation of the parameters on the obtained results has been evaluated with a sensitivity analysis. The reliability model has been extended by the results of radiation tests. Design improvements, like redundant optical transmission, have been implemented in an iterative process. The proposed system is compliant with the reliability requirements. The model uncertainties are given by the limited knowledge of the thresholds levels of the superconductive magnets and of the locations of the losses along the ring. The implemented model allows modifications of the system, following the measuring of the hazard rates during the LHC life. It can also provide reference numbers to other accelerators which will implement similar technologies. (author)

  19. Radiative corrections to W+jet production at hadron colliders with a leptonic decay of the W boson

    Energy Technology Data Exchange (ETDEWEB)

    Kasprzik, Tobias

    2009-08-31

    The production of W bosons and additional jets at hadron colliders is a topic of great phenomenological interest, because such processes have large cross sections and, owing to the clear decay signature of the W boson, can for instance be used to monitor and calibrate the collider's luminosity, as well as for a precise determination of the W-boson mass and width. Thus, a profound theoretical understanding of this process class is mandatory. In order to improve the accuracy of the theoretical predictions, this thesis is devoted to the calculation of the electroweak radiative corrections to the production of one W boson with one associated jet at the LHC and the Tevatron within the Standard Model. Since these corrections are at first evaluated on the parton level in a perturbative approach, we work in the parton model, where the hadronic cross section is obtained by folding the partonic contributions with the parton distribution functions that contain the non-perturbative information of the proton structure and have to be determined by experiment. We provide results for a stable W boson that is produced on its mass shell as well as for an intermediate (off-shell) W boson decaying into a charged lepton and a neutrino. For a consistent calculation of the next-to-leading order corrections, we have to take into account the virtual one-loop contributions, as well as the real bremsstrahlung corrections caused by radiation of one additional photon. Within both contributions, mass singularities appear that have to be treated with care within the numerical evaluation. In the calculation with a stable W boson in the final state, we use the method of phase-space slicing in order to exclude such singularities from the numerical phase-space integration and calculate them analytically in the problematic phase-space regions. For the off-shell calculation, however, we use the more sophisticated dipole subtraction technique to subtract the infrared-singular structures on the

  20. The 3-, 4-, and 5-flavor NNLO parton distributions functions from deep-inelastic-scattering data and at hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Institute for High Energy Physics, Protvino (Russian Federation); Bluemlein, J.; Klein, S.; Moch, S. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2009-08-15

    We determine the parton distribution functions (PDFs) in a next-to-next-to-leading order (NNLO) QCD-analysis of the inclusive neutral-current deep-inelastic-scattering (DIS) world data combined with the neutrino-nucleon DIS di-muon data and the fixed-target Drell-Yan data. The PDF-evolution is performed in the N{sub f} = 3 fixed-flavor scheme and supplementary sets of PDFs in the 4- and 5-flavor schemes are derived from the results in the 3-flavor scheme using matching conditions. The charm-quark DIS contribution is calculated in a general-mass variable-flavor-number (GMVFN) scheme interpolating between the zero mass 4-flavor scheme at asymptotically large values of momentum transfer Q{sup 2} and the 3-flavor scheme prescription of Buza-Matiounine-Smith-van Neerven (BMSN) at the value of Q{sup 2} = m{sub c}{sup 2}. The results in the GMVFN scheme are compared with those of the fixed-flavor scheme and other prescriptions used in global fits of PDFs. The strong coupling constant is measured at an accuracy of {approx} 1.5%. We obtain at NNLO {alpha}{sub s}(M{sub Z}{sup 2})=0.1135{+-}0.0014 in the fixed-flavor scheme and {alpha}{sub s}(M{sub Z}{sup 2})=0.1129{+-}0.0014 applying the BMSN-prescription. The implications for important standard candle and hard scattering processes at hadron colliders are illustrated. Predictions for cross sections of W{sup {+-}}- and Z-boson, the top-quark pair- and Higgs-boson production at the Tevatron and the LHC based on the 5-flavor PDFs of the present analysis are provided. (orig.)

  1. Muon colliders

    Science.gov (United States)

    Palmer, R. B.; Sessler, A.; Skrinsky, A.; Tollestrup, A.; Baltz, A. J.; Chen, P.; Cheng, W.-H.; Cho, Y.; Courant, E.; Fernow, R. C.; Gallardo, J. C.; Garren, A.; Green, M.; Kahn, S.; Kirk, H.; Lee, Y. Y.; Mills, F.; Mokhov, N.; Morgan, G.; Neuffer, D.; Noble, R.; Norem, J.; Popovic, M.; Schachinger, L.; Silvestrov, G.; Summers, D.; Stumer, I.; Syphers, M.; Torun, Y.; Trbojevic, D.; Turner, W.; Van Ginneken, A.; Vsevolozhskaya, T.; Weggel, R.; Willen, E.; Winn, D.; Wurtele, J.

    1996-05-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity μ+μ- colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  2. Muon colliders

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, R.B. [Brookhaven National Lab., Upton, NY (United States)]|[Stanford Linear Accelerator Center, Menlo Park, CA (United States); Sessler, A. [Lawrence Berkeley Lab., CA (United States); Skrinsky, A. [BINP, RU-630090 Novosibirsk (Russian Federation)] [and others

    1996-01-01

    Muon Colliders have unique technical and physics advantages and disadvantages when compared with both hadron and electron machines. They should thus be regarded as complementary. Parameters are given of 4 TeV and 0.5 TeV high luminosity {micro}{sup +}{micro}{sup {minus}}colliders, and of a 0.5 TeV lower luminosity demonstration machine. We discuss the various systems in such muon colliders, starting from the proton accelerator needed to generate the muons and proceeding through muon cooling, acceleration and storage in a collider ring. Problems of detector background are also discussed.

  3. A Search for Lepton-Flavor-Violating Decays of the 125 GeV Higgs Boson with Hadronically Decaying Tau Leptons in the 20.3 inverse fembtobarns using the $\\sqrt{s}=8$ TeV Dataset Collected in 2012 by the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00287453

    A Search for Lepton-Flavor-Violating Decays of the 125 GeV Higgs Boson with Hadronically Decaying Tau Leptons in the $20.3 fb^1$ proton-proton $\\sqrt{s}= 8$ TeV Dataset collected in 2012 by the ATLAS Detector at the Large Hadron Collider is reported.

  4. Linguistics in the 20th century

    Institute of Scientific and Technical Information of China (English)

    周婷

    2017-01-01

    In the 20th century, linguistics flourished in western countries. Many schools and linguists came into 0being so that theories of modern linguistics were put forward at that age. Some schools and their thoughts exerted an influence on the development of modern linguistics. What is even more important is that Swiss linguist Ferdinand de Saussure, who made a discipline which was caled modern linguistics. And he is described the father of modern linguistics. A lot of schools added color to the modern linguistics. Therefore, modern linguistics started to take center stage.

  5. Top Quark Pair Production in Association with a Jet with Next-to-Leading-Order QCD Off-Shell Effects at the Large Hadron Collider.

    Science.gov (United States)

    Bevilacqua, G; Hartanto, H B; Kraus, M; Worek, M

    2016-02-01

    We present a complete description of top quark pair production in association with a jet in the dilepton channel. Our calculation is accurate to next-to-leading order (NLO) in QCD and includes all nonresonant diagrams, interferences, and off-shell effects of the top quark. Moreover, nonresonant and off-shell effects due to the finite W gauge boson width are taken into account. This calculation constitutes the first fully realistic NLO computation for top quark pair production with a final state jet in hadronic collisions. Numerical results for differential distributions as well as total cross sections are presented for the Large Hadron Collider at 8 TeV. With our inclusive cuts, NLO predictions reduce the unphysical scale dependence by more than a factor of 3 and lower the total rate by about 13% compared to leading-order QCD predictions. In addition, the size of the top quark off-shell effects is estimated to be below 2%.

  6. VINCIA for hadron colliders

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, N.; Skands, P. [Monash University, School of Physics and Astronomy, Clayton, VIC (Australia); Prestel, S. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States); Ritzmann, M. [Nikhef, Theory Group, Amsterdam (Netherlands); CEA Saclay, Institut de Physique Theorique, Gif-sur-Yvette Cedex (France)

    2016-11-15

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2 → 3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p {sub perpendicular} {sub to} measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g → q anti q) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q{sup 2}. Recoils and kinematics are governed by exact on-shell 2 → 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α{sub s}{sup 4}) (4 jets), and for Drell-Yan and Higgs production up to O(α{sub s}{sup 3}) (V/H + 3 jets). The resulting algorithm has been made publicly available in Vincia 2.0. (orig.)

  7. The Large Hadron Collider

    CERN Multimedia

    CERN Audiovisual Unit

    2005-01-01

    With Mike Struik (LHC Magnets Interconnection), Pascal Ponsot (LHC Magnet Transport), André Jacquemod (LHC Magnets Interconnection), Jean-Marc Balaguer (Ultrasound Welding), Davide Bozzini (Testing) and Lyn Evans (LHC Project Leader)

  8. VINCIA for hadron colliders

    Science.gov (United States)

    Fischer, N.; Prestel, S.; Ritzmann, M.; Skands, P.

    2016-11-01

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are 2→ 3 antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a p_perp measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., g→ qbar{q}) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of 1/Q^2. Recoils and kinematics are governed by exact on-shell 2→ 3 phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to O(α _s^4) (4 jets), and for Drell-Yan and Higgs production up to O(α _s^3) ( V / H + 3 jets). The resulting algorithm has been made publicly available in Vincia 2.0.

  9. Vincia for Hadron Colliders

    CERN Document Server

    Fischer, Nadine; Ritzmann, Mathias; Skands, Peter

    2016-01-01

    We present the first public implementation of antenna-based QCD initial- and final-state showers. The shower kernels are $2\\to 3$ antenna functions, which capture not only the collinear dynamics but also the leading soft (coherent) singularities of QCD matrix elements. We define the evolution measure to be inversely proportional to the leading poles, hence gluon emissions are evolved in a $p_\\perp$ measure inversely proportional to the eikonal, while processes that only contain a single pole (e.g., $g\\to q\\bar{q}$) are evolved in virtuality. Non-ordered emissions are allowed, suppressed by an additional power of $1/Q^2$. Recoils and kinematics are governed by exact on-shell $2\\to 3$ phase-space factorisations. This first implementation is limited to massless QCD partons and colourless resonances. Tree-level matrix-element corrections are included for QCD up to $\\mathcal{O}(\\alpha_s^4)$ (4 jets), and for Drell-Yan and Higgs production up to $\\mathcal{O}(\\alpha_s^3)$ ($V/H$ + 3 jets). The resulting algorithm ha...

  10. Double Higgs production from $HH\\to(b\\bar{b})(b\\bar{b})$ at a 100 TeV hadron collider

    CERN Document Server

    Hartland, Nathan P

    2016-01-01

    In this contribution we study the prospects of measuring double Higgs production at a potential 100 TeV future circular collider. We apply an analysis procedure that utilises reconstructed Higgs pairs from multiple final state event topologies in order to maintain high selection efficiencies. Signal purity is then further improved by means of a artificial neural network classifier. The results of this analysis for the high luminosity LHC show significant potential, however when applied to a 100 TeV hadron collider we find that such a measurement is likely to suffer from a very poor signal to background ratio. Such a measurement at the FCC is therefore likely to be significantly more challenging than at the high luminosity phase of the LHC.

  11. 13000 a current lead with 1.5 W heat load to 4.5 K for the Large Hadron Collider at CERN

    CERN Document Server

    Good, J A; Martini, L

    2000-01-01

    Cryogenic Ltd. and ENEL S.p.A. have collaborated on the design and construction of prototype current leads for the Large Hadron Collider project at CERN, Geneva. The aim is to deliver a direct current of 13 kA into a 4.5 K liquid helium bath with a total heat load of less than 1.5 W. These hybrid leads transport the current via a resistive heat exchanger cooled by a separate source of helium gas in the high temperature region, and below 50 K via self-cooled high temperature superconductor. (6 refs).

  12. CERN Library | Pauline Gagnon presents the book "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN" | 15 September

    CERN Multimedia

    CERN Library

    2016-01-01

    "Who cares about particle physics? : making sense of the Higgs boson, the Large Hadron Collider and CERN ", by Pauline Gagnon. Thursday 15 September 2016, 16:00 - 17:30 in the CERN Library (Bldg 52 1-052) *Coffee will be served at 15:30* CERN, the European Laboratory for particle physics, regularly makes the news. What kind of research happens at this international laboratory and how does it impact people's daily lives? Why is the discovery of the Higgs boson so important? Particle physics describes all matter found on Earth, in stars and all galaxies but it also tries to go beyond what is known to describe dark matter, a form of matter five times more prevalent than the known, regular matter. How do we know this mysterious dark matter exists and is there a chance it will be discovered soon? About sixty countries contributed to the construction of the gigantic Large Hadron Collider (LHC) at CERN and its immense detectors. Dive in to discover how international teams of researchers...

  13. High Baryon Densities in Heavy Ion Collisions at Energies Attainable at the Relativistic Heavy Ion Collider and the Large Hadron Collider

    CERN Document Server

    Li, Ming

    2016-01-01

    In very high energy collisions nuclei are practically tranparent to each other but produce very hot, nearly baryon-free, matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.

  14. High baryon densities in heavy ion collisions at energies attainable at the BNL Relativistic Heavy-Ion Collider and the CERN Large Hadron Collider

    Science.gov (United States)

    Li, Ming; Kapusta, Joseph I.

    2017-01-01

    In very high-energy collisions nuclei are practically transparent to each other but produce very hot nearly baryon-free matter in the so-called central rapidity region. The energy in the central rapidity region comes from the kinetic energy of the colliding nuclei. We calculate the energy and rapidity loss of the nuclei using the color glass condensate model. This model also predicts the excitation energy of the nuclear fragments. Using a space-time picture of the collision we calculate the baryon and energy densities of the receding baryonic fireballs. For central collisions of gold nuclei at the highest energy attainable at the Relativistic Heavy-Ion Collider, for example, we find baryon densities more than ten times that of atomic nuclei over a large volume.

  15. Search for Long-Lived Neutral Particles in Final States with a Muon and Multi-Track Displaced Vertex with the ATLAS Detector at the Large Hadron Collider

    CERN Document Server

    Loh, Chang Wei

    This work presents the result of a search for a new long-lived neutral particle decaying into a muon and charged hadrons in proton-proton collisions at a centre-of-mass energy of 7 TeV with a total integrated luminosity of 4.4 inverse femtobarn, using the ATLAS detector located at the Large Hadron Collider (LHC). Many extensions to the current Standard Model of particle physics predict the existence of such new particles, including the neutralino in an R-parity violating supersymmetry scenario. In this search, a set of selection criteria has been established to be sensitive to this kind of signal, in addition to evaluating the background in a data-driven manner. No excess of events above the expected background is observed with the collected data and limits are set on the squark pair production cross section, multiplied by the branching ratio for a squark to decay, via a long-lived neutralino, to a muon and charged hadrons, as a function of the neutralino lifetime. In addition, we present a study on two-trac...

  16. Measurement of very forward neutron energy spectra for 7 TeV proton–proton collisions at the Large Hadron Collider

    Directory of Open Access Journals (Sweden)

    O. Adriani

    2015-11-01

    Full Text Available The Large Hadron Collider forward (LHCf experiment is designed to use the LHC to verify the hadronic-interaction models used in cosmic-ray physics. Forward baryon production is one of the crucial points to understand the development of cosmic-ray showers. We report the neutron-energy spectra for LHC s=7 TeV proton–proton collisions with the pseudo-rapidity η ranging from 8.81 to 8.99, from 8.99 to 9.22, and from 10.76 to infinity. The measured energy spectra obtained from the two independent calorimeters of Arm1 and Arm2 show the same characteristic feature before unfolding the detector responses. We unfolded the measured spectra by using the multidimensional unfolding method based on Bayesian theory, and the unfolded spectra were compared with current hadronic-interaction models. The QGSJET II-03 model predicts a high neutron production rate at the highest pseudo-rapidity range similar to our results, and the DPMJET 3.04 model describes our results well at the lower pseudo-rapidity ranges. However, no model perfectly explains the experimental results over the entire pseudo-rapidity range. The experimental data indicate a more abundant neutron production rate relative to the photon production than any model predictions studied here.

  17. Confronting fragmentation function universality with single hadron inclusive production at HERA and e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Albino, S.; Kniehl, B.A.; Kramer, G.; Sandoval, C. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2006-11-15

    Predictions for light charged hadron production data in the current fragmentation region of deeply inelastic scattering from the H1 and ZEUS experiments are calculated using perturbative Quantum Chromodynamics at next-to-leading order, and using fragmentation functions obtained by fitting to similar data from e{sup +}e{sup -} reactions. General good agreement is found when the magnitude Q{sup 2} of the hard photon's virtuality is sufficiently large. The discrepancy at low Q and small scaled momentum x{sub p} is reduced by incorporating mass effects of the detected hadron. By performing quark tagging, the contributions to the overall fragmentation from the various quark flavours in the ep reactions are studied and compared to the contributions in e{sup +}e{sup -} reactions. The yields of the various hadron species are also calculated. (orig.)

  18. The Evolution of the Control System for the Electromagnetic Calorimeter of the Compact Muon Solenoid Experiment at the Large Hadron Collider

    CERN Multimedia

    Holme, Oliver; Dissertori, Günther; Lustermann, Werner; Zelepoukine, Serguei

    2011-01-01

    This paper discusses the evolution of the Detector Control System (DCS) designed and implemented for the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC) as well as the operational experience acquired during the LHC physics data taking periods of 2010 and 2011. The current implementation in terms of functionality and planned hardware upgrades are presented. Furthermore, a project for reducing the long-term software maintenance, including a year-long detailed analysis of the existing applications, is put forward and the current outcomes which have informed the design decisions for the next CMS ECAL DCS software generation are described. The main goals for the new version are to minimize external dependencies enabling smooth migration to new hardware and software platforms and to maintain the existing functionality whilst substantially reducing support and maintenance effort through homogenization, simplification and standardization of the contr...

  19. Optimization of the design of DC-DC converters for improving the electromagnetic compatibility with the Front-End electronic for the super Large Hadron Collider Trackers

    CERN Document Server

    Fuentes Rojas, Cristian Alejandro; Blanchot, G

    2011-01-01

    The upgrade of the Large Hadron Collider (LHC) experiments at CERN sets new challenges for the powering of the detectors. One of the powering schemes under study is based on DC-DC buck converters mounted on the front-end modules. The hard environmental conditions impose strict restrictions to the converters in terms of low volume, radiation and magnetic field tolerance. Furthermore, the noise emission of the switching converters must not affect the performance of the powered systems. A study of the sources and paths of noise of a synchronous buck converter has been made for identifying the critical parameters to reduce their emissions. As proof of principle, a converter was designed following the PCB layout considerations proposed and then used for powering a silicon strip module prototype for the ATLAS upgrade, in order to evaluate their compatibility.

  20. Studying the underlying event in Z{yields}e{sup +}e{sup -} using hadron collider event shapes at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, Holger; Lacker, Heiko; Leyton, Michael; Mamach, Martin; Weyh, Daniel [HU Berlin (Germany); Krauss, Frank [IPPP, Durham (United Kingdom); Brandt, Gerhard

    2012-07-01

    The underlying event (UE) is an irreducible background at any hadron collider such as the LHC. Its understanding requires phenomenological models as it cannot be calculated within perturbative QCD. Most of the activity of the UE comes from the phenomenon of multiple-parton-interactions which is studied with the analysis presented here. A key part of this analysis is the isolation and removal of particles coming from the hard sub-process in pp{yields}Z+X events where the Z boson is reconstructed in the e{sup +}e{sup -} decay channel. By selecting Z bosons with very low momentum transverse to the beam axis, events with an accompanying recoil jet are efficiently suppressed. After removing of all tracks associated to the leptons from the event, various inclusive event shapes are calculated using the remaining charged particles which stem from the UE.