WorldWideScience

Sample records for 2-oxoglutarate-dependent dioxygenase ectd

  1. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II and 2-oxoglutarate-dependent dioxygenase EctD.

    Directory of Open Access Journals (Sweden)

    Klaus Reuter

    Full Text Available As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD is a member of the non-heme iron(II-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11. These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe(3+ at a resolution of 1.85 A. Like other non-heme iron(II and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded beta-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family.

  2. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD.

    Science.gov (United States)

    Reuter, Klaus; Pittelkow, Marco; Bursy, Jan; Heine, Andreas; Craan, Tobias; Bremer, Erhard

    2010-01-01

    As a response to high osmolality, many microorganisms synthesize various types of compatible solutes. These organic osmolytes aid in offsetting the detrimental effects of low water activity on cell physiology. One of these compatible solutes is ectoine. A sub-group of the ectoine producer's enzymatically convert this tetrahydropyrimidine into a hydroxylated derivative, 5-hydroxyectoine. This compound also functions as an effective osmostress protectant and compatible solute but it possesses properties that differ in several aspects from those of ectoine. The enzyme responsible for ectoine hydroxylation (EctD) is a member of the non-heme iron(II)-containing and 2-oxoglutarate-dependent dioxygenases (EC 1.14.11). These enzymes couple the decarboxylation of 2-oxoglutarate with the formation of a high-energy ferryl-oxo intermediate to catalyze the oxidation of the bound organic substrate. We report here the crystal structure of the ectoine hydroxylase EctD from the moderate halophile Virgibacillus salexigens in complex with Fe(3+) at a resolution of 1.85 A. Like other non-heme iron(II) and 2-oxoglutarate dependent dioxygenases, the core of the EctD structure consists of a double-stranded beta-helix forming the main portion of the active-site of the enzyme. The positioning of the iron ligand in the active-site of EctD is mediated by an evolutionarily conserved 2-His-1-carboxylate iron-binding motif. The side chains of the three residues forming this iron-binding site protrude into a deep cavity in the EctD structure that also harbours the 2-oxoglutarate co-substrate-binding site. Database searches revealed a widespread occurrence of EctD-type proteins in members of the Bacteria but only in a single representative of the Archaea, the marine crenarchaeon Nitrosopumilus maritimus. The EctD crystal structure reported here can serve as a template to guide further biochemical and structural studies of this biotechnologically interesting enzyme family. PMID:20498719

  3. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases.

    Science.gov (United States)

    Kundu, Siddhartha

    2015-01-01

    Could a disjoint group of enzymes synchronize their activities and execute a complex multi-step, measurable, and reproducible response? Here, I surmise that the alpha-ketoglutarate dependent superfamily of non-haem iron (II) dioxygenases could influence cell physiology as a cohesive unit, and that the broad spectra of substrates transformed is an absolute necessity to this portrayal. This eclectic group comprises members from all major taxa, and participates in pesticide breakdown, hypoxia signaling, and osmotic stress neutralization. The oxidative decarboxylation of 2-oxoglutarate to succinate is coupled with a concomitant substrate hydroxylation and, in most cases, is followed by an additional specialized conversion. The domain profile of a protein sequence was used as an index of miscellaneous reaction chemistry and interpreted alongside existent kinetic data in a linear model of integrated function. Statistical parameters were inferred by the creation of a novel, empirically motivated flat-file database of over 3800 sequences (DB2OG) with putative 2-oxoglutarate dependent activity. The collated information was categorized on the basis of existing annotation schema. The data suggests that 2OG-dependent enzymes incorporate several desirable features of a systems level player. DB2OG, is free, accessible without a login to all users, and available at the following URL (http://comp-biol.theacms.in/DB2OG.html).

  4. Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger.

    Science.gov (United States)

    Matsuda, J; Okabe, S; Hashimoto, T; Yamada, Y

    1991-05-25

    Roots of several solanaceous plants produce anticholinergic alkaloids, hyoscyamine and scopolamine. Hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase (EC 1.14.11.11), catalyzes hydroxylation of hyoscyamine in the biosynthetic pathway leading to scopolamine. We report here on the isolation of cDNA clones encoding the hydroxylase from a cDNA library made from mRNA of the cultured roots of Hyoscyamus niger. The library was screened with three synthetic oligonucleotides that encode amino acid sequences of internal peptide fragments of the purified hydroxylase. Nucleotide sequence analysis of the cloned cDNA revealed an open reading frame that encodes 344 amino acids (Mr = 38,999). All 12 internal peptide fragments determined in the purified enzyme were found in the amino acid sequence deduced from the cDNA. With computer-aided comparison to other proteins we found that the hydroxylase is homologous to two synthases involved in the biosynthesis of beta-lactam antibiotics in some microorganisms and the gene products of tomato pTOM13 cDNA and maize A2 locus which had been proposed to catalyze oxidative reactions in the biosynthesis of ethylene and anthocyan, respectively. RNA blotting hybridization showed that mRNA of the hydroxylase is abundant in cultured roots and present in plant roots, but absent in leaves, stems, and cultured cells of H. niger. PMID:2033047

  5. Unity in diversity, a systems approach to regulating plant cell physiology by 2-oxoglutarate-dependent dioxygenases

    Directory of Open Access Journals (Sweden)

    Siddhartha eKundu

    2015-03-01

    Full Text Available Could a disjoint group of enzymes synchronize their activities and execute a complex multi-step, measurable, and reproducible response ? Here, I surmise that the alpha-ketoglutarate dependent superfamily of non-haem iron (II dioxygenases could influence cell physiology as a cohesive unit, and that the broad spectra of substrates transformed is an absolute necessity to this portrayal.This eclectic group comprises members from all major taxa, and participates in pesticide breakdown, hypoxia signaling, and osmotic stress neutralization. The oxidative decarboxylation of 2-oxoglutarate to succinate is coupled with a concomitant substrate hydroxylation and, in most cases, is followed by an additional specialized conversion. The domain profile of a protein sequence was used as an index of miscellaneous reaction chemistry and combined with available kinetic data to form a linear model of integrated function. Statistical parameters were inferred by the creation of a novel, empirically motivated flat-file database of over 3800 sequences (DB2OG with putative 2-oxoglutarate dependent activity. The collated information was categorized on the basis of existing annotation schema. The data suggests that the 2OG-dependent superfamily incorporates several desirable features of a systems level player. DB2OG, is free, accessible without a login to all users, and available at the following URL (http://comp-biol.theacms.in/DB2OG.html.

  6. A 2-oxoglutarate-dependent dioxygenase from Ruta graveolens L. exhibits p-coumaroyl CoA 2'-hydroxylase activity (C2'H): a missing step in the synthesis of umbelliferone in plants.

    Science.gov (United States)

    Vialart, Guilhem; Hehn, Alain; Olry, Alexandre; Ito, Kyoko; Krieger, Celia; Larbat, Romain; Paris, Cedric; Shimizu, Bun-Ichi; Sugimoto, Yukihiro; Mizutani, Masaharu; Bourgaud, Frederic

    2012-05-01

    Coumarins are important compounds that contribute to the adaptation of plants to biotic or abiotic stresses. Among coumarins, umbelliferone occupies a pivotal position in the plant phenylpropanoid network. Previous studies indicated that umbelliferone is derived from the ortho-hydroxylation of p-coumaric acid by an unknown biochemical step to yield 2,4-dihydroxycinnamic acid, which then undergoes spontaneous lactonization. Based on a recent report of a gene encoding a 2-oxoglutarate-dependent dioxygenase from Arabidopsis thaliana that exhibited feruloyl CoA 6'-hydroxylase activity (Bourgaud et al., 2006), we combined a bioinformatic approach and a cDNA library screen to identify an orthologous ORF (Genbank accession number JF799117) from Ruta graveolens L. This ORF shares 59% amino acid identity with feruloyl CoA 6'-hydroxylase, was functionally expressed in Escherichia coli, and converted feruloyl CoA into scopoletin and p-coumaroyl CoA into umbelliferone with equal activity. Its bi-functionality was further confirmed in planta: transient expression of JF799117 in Nicotiana benthamiana yielded plants with leaves containing high levels of umbelliferone and scopoletin when compared to control plants, which contained barely detectable traces of these compounds. The expression of JF799117 was also tightly correlated to the amount of umbelliferone that was found in UV-elicited R. graveolens leaves. Therefore, JF799117 encodes a p-coumaroyl CoA 2'-hydroxylase in R. graveolens, which represents a previously uncharacterized step in the synthesis of umbelliferone in plants. Psoralen, which is an important furanocoumarin in R. graveolens, was found to be a competitive inhibitor of the enzyme, and it may exert this effect through negative feedback on the enzyme at an upstream position in the pathway.

  7. Identification of a unique 2-oxoglutarate-dependent flavone 7-O-demethylase completes the elucidation of the lipophilic flavone network in basil.

    Science.gov (United States)

    Berim, Anna; Kim, Min-Jeong; Gang, David R

    2015-01-01

    Small molecule demethylation is considered unusual in plants. Of the studied instances, the N-demethylation of nicotine is catalyzed by a Cyt P450 monooxygenase, while the O-dealkylation of alkaloids in Papaver somniferum is mediated by 2-oxoglutarate-dependent dioxygenases (2-ODDs). This report describes a 2-ODD regiospecifically catalyzing the 7-O-demethylation of methoxylated flavones in peltate trichomes of sweet basil (Ocimum basilicum L.). Three candidate 2-ODDs were identified in the basil trichome transcriptome database. Only the candidate designated ObF7ODM1 was found to be active with and highly specific for the proposed natural substrates, gardenin B and 8-hydroxysalvigenin. Of the characterized 2-ODDs, ObF7ODM1 is most closely related to O-demethylases from Papaver. The demethylase activity in trichomes from four basil chemotypes matches well with the abundance of ObF7ODM1 peptides and transcripts in the same trichome preparations. Treatment of basil plants with a 2-ODD inhibitor prohexadione-calcium significantly reduced the accumulation of 7-O-demethylated flavone nevadensin, confirming the involvement of a 2-ODD in its formation. Notably, the full-length open reading frame of ObF7ODM1 contains a second in-frame AUG codon 57 nucleotides downstream of the first translation initiation codon. Both AUG codons are recognized by bacterial translation machinery during heterologous gene expression. The N-truncated ObF7ODM1 is nearly inactive. The N-terminus essential for activity is unique to ObF7ODM1 and does not align with the sequences of other 2-ODDs. Further studies will reveal whether alternative translation initiation plays a role in regulating the O-demethylase activity in planta. Molecular identification of the flavone 7-O-demethylase completes the biochemical elucidation of the lipophilic flavone network in basil.

  8. Co-operative intermolecular kinetics of 2-oxoglutarate dependent dioxygenases may be essential for system-level regulation of plant cell physiology

    Directory of Open Access Journals (Sweden)

    Siddhartha eKundu

    2015-07-01

    Full Text Available Chlorosis, a common manifestation of Fe-deficiency in plants occurs in soils with an alkaline pH and/or a high concentration of calcium carbonate (calcareous, and is an important cause of depressed yield. The core premise of this work is the notion that the response to waning ferrous iron in the cytosol of graminaceous root cells is a well orchestrated pathophysiological event, wherein the principal co-ordinator is not restricted to a single protein, but is an assortment of enzymes. The 2OG-dependent sequences comprise members present in all major kingdoms of life, and catalyze the release of carbon dioxide and succinic acid from 2-oxoglutarate, and the hydroxylation of a substrate molecule. This generic reaction is, in most cases accompanied by a specialized conversion of the product. Here, I present a model of iron deficiency sensing and response actuation in the root cells of graminaceous crops. This hypothesis is centered on the rationale that, iron is an essential co-factor for the catalytic process, and therefore, declining cytosolic levels of this micronutrient could trigger compensatory measures. Regression models of empirically available kinetic data for iron and alpha-ketoglutarate were formulated, analysed, and compared. The results, when viewed in the context of the superfamily responding as a unit to this abiotic stressor, suggest that the 2OG-sequences can indeed, work together to mitigate the effects of this noxious stimulus.

  9. The structure at 2.4 Å resolution of the protein from gene locus At3g21360, a putative Fe{sup II}/2-oxoglutarate-dependent enzyme from Arabidopsis thaliana

    Energy Technology Data Exchange (ETDEWEB)

    Bitto, Eduard; Bingman, Craig A.; Allard, Simon T. M.; Wesenberg, Gary E.; Aceti, David J.; Wrobel, Russell L.; Frederick, Ronnie O.; Sreenath, Hassan; Vojtik, Frank C.; Jeon, Won Bae; Newman, Craig S.; Primm, John; Sussman, Michael R.; Fox, Brian G.; Markley, John L.; Phillips, George N. Jr, E-mail: phillips@biochem.wisc.edu [Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison (United States)

    2005-05-01

    The crystal structure of the 37.2 kDa At3g21360 gene product from A. thaliana was determined at 2.4 Å resolution. The structure establishes that this protein binds a metal ion and is a member of a clavaminate synthase-like superfamily in A. thaliana. The crystal structure of the gene product of At3g21360 from Arabidopsis thaliana was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 19.3% (R{sub free} = 24.1%) at 2.4 Å resolution. The crystal structure includes two monomers in the asymmetric unit that differ in the conformation of a flexible domain that spans residues 178–230. The crystal structure confirmed that At3g21360 encodes a protein belonging to the clavaminate synthase-like superfamily of iron(II) and 2-oxoglutarate-dependent enzymes. The metal-binding site was defined and is similar to the iron(II) binding sites found in other members of the superfamily.

  10. The FTO (fat mass and obesity associated gene codes for a novel member of the non-heme dioxygenase superfamily

    Directory of Open Access Journals (Sweden)

    Andrade-Navarro Miguel A

    2007-11-01

    Full Text Available Abstract Background Genetic variants in the FTO (fat mass and obesity associated gene have been associated with an increased risk of obesity. However, the function of its protein product has not been experimentally studied and previously reported sequence similarity analyses suggested the absence of homologs in existing protein databases. Here, we present the first detailed computational analysis of the sequence and predicted structure of the protein encoded by FTO. Results We performed a sequence similarity search using the human FTO protein as query and then generated a profile using the multiple sequence alignment of the homologous sequences. Profile-to-sequence and profile-to-profile based comparisons identified remote homologs of the non-heme dioxygenase family. Conclusion Our analysis suggests that human FTO is a member of the non-heme dioxygenase (Fe(II- and 2-oxoglutarate-dependent dioxygenases superfamily. Amino acid conservation patterns support this hypothesis and indicate that both 2-oxoglutarate and iron should be important for FTO function. This computational prediction of the function of FTO should suggest further steps for its experimental characterization and help to formulate hypothesis about the mechanisms by which it relates to obesity in humans.

  11. Mechanistic Studies on the Application of DNA Aptamers as Inhibitors of 2-Oxoglutarate-Dependent Oxygenases

    OpenAIRE

    Krylova, Svetlana M.; Koshkin, Vasilij; Bagg, Eleanor; Christopher J Schofield; Krylov, Sergey N.

    2012-01-01

    The Escherichia coli (E. coli) AlkB protein and its functional human homologues belong to a subfamily of 2-oxoglutarate (2OG)-dependent oxygenases (2OG oxygenases for simplicity) that enable the repair of cytotoxic methylation damage in nucleic acids and which catalyse t-RNA oxidations. DNA alkylation is a major mechanism of action for cytotoxic anti-cancer drugs. Thus, the inhibition of oxidative demethylation, catalyzed by these enzymes, has the potential to improve the efficacy of chemothe...

  12. Molecular dynamics simulations and structure-guided mutagenesis provide insight into the architecture of the catalytic core of the ectoine hydroxylase.

    Science.gov (United States)

    Widderich, Nils; Pittelkow, Marco; Höppner, Astrid; Mulnaes, Daniel; Buckel, Wolfgang; Gohlke, Holger; Smits, Sander H J; Bremer, Erhard

    2014-02-01

    Many bacteria amass compatible solutes to fend-off the detrimental effects of high osmolarity on cellular physiology and water content. These solutes also function as stabilizers of macromolecules, a property for which they are referred to as chemical chaperones. The tetrahydropyrimidine ectoine is such a compatible solute and is widely synthesized by members of the Bacteria. Many ectoine producers also synthesize the stress protectant 5-hydroxyectoine from the precursor ectoine, a process that is catalyzed by the ectoine hydroxylase (EctD). The EctD enzyme is a member of the non-heme-containing iron(II) and 2-oxoglutarate-dependent dioxygenase superfamily. A crystal structure of the EctD protein from the moderate halophile Virgibacillus salexigens has previously been reported and revealed the coordination of the iron catalyst, but it lacked the substrate ectoine and the co-substrate 2-oxoglutarate. Here we used this crystal structure as a template to assess the likely positioning of the ectoine and 2-oxoglutarate ligands within the active site by structural comparison, molecular dynamics simulations, and site-directed mutagenesis. Collectively, these approaches suggest the positioning of the iron, ectoine, and 2-oxoglutarate ligands in close proximity to each other and with a spatial orientation that will allow the region-selective and stereo-specific hydroxylation of (4S)-ectoine to (4S,5S)-5-hydroxyectoine. Our study thus provides a view into the catalytic core of the ectoine hydroxylase and suggests an intricate network of interactions between the three ligands and evolutionarily highly conserved residues in members of the EctD protein family. PMID:24184278

  13. Molecular Dynamics Simulation of Nitrobenzene Dioxygenase Using AMBER Force Field

    OpenAIRE

    Pabis, Anna; Geronimo, Inacrist; York, Darrin M.; Paneth, Piotr

    2014-01-01

    Molecular dynamics simulation of the oxygenase component of nitrobenzene dioxygenase (NBDO) system, a member of the naphthalene family of Rieske nonheme iron dioxygenases, has been carried out using the AMBER force field combined with a new set of parameters for the description of the mononuclear nonheme iron center and iron–sulfur Rieske cluster. Simulation results provide information on the structure and dynamics of nitrobenzene dioxygenase in an aqueous environment and shed light on specif...

  14. Indoleamine 2,3-dioxygenase vaccination

    DEFF Research Database (Denmark)

    Andersen, Mads Hald; Svane, Inge Marie

    2015-01-01

    Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme. Remarkably, we discovered IDO-specific T cells that can influence adaptive immune reactions in patients with cancer. Further, a recent phase I clinical trial demonstrated long-lasting disease stabilization without toxicity in patien...... with non-small-cell lung cancer (NSCLC) who were vaccinated with an IDO-derived HLA-A2-restricted epitope....

  15. Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX.

    Directory of Open Access Journals (Sweden)

    Jan Lüddecke

    Full Text Available PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG, they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transport proteins and transcription factors. But, in reverse, these target proteins also modulate the metabolite sensing properties of PII, as has been recently shown. We used this effect to refine our PII based Förster resonance energy transfer (FRET sensor and amplify its sensitivity towards ADP. With this enhanced sensor setup we addressed the question whether the PII protein from the model organism Synechococcus elongatus autonomously switches into the ADP conformation through ATPase activity as proposed in a recently published model. The present study disproves ATPase activity as a relevant mechanism for the transition of PII into the ADP state. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the competitive interaction of PII with two targets, one of which preferentially binds PII in the ATP-state, the other in the ADP-state.

  16. Heme-containing dioxygenases involved in tryptophan oxidation.

    Science.gov (United States)

    Millett, Elizabeth S; Efimov, Igor; Basran, Jaswir; Handa, Sandeep; Mowat, Christopher G; Raven, Emma Lloyd

    2012-04-01

    Heme iron is often used in biology for activation of oxygen. The mechanisms of oxygen activation by heme-containing monooxygenases (the cytochrome P450s) are well known, and involve formation of a Compound I species, but information on the heme-containing dioxygenase enzymes involved in tryptophan oxidation lags far behind. In this review, we gather together information emerging recently from structural, mechanistic, spectroscopic, and computational approaches on the heme dioxygenase enzymes involved in tryptophan oxidation. We explore the subtleties that differentiate various heme enzymes from each other, and use this to piece together a developing picture for oxygen activation in this particular class of heme-containing dioxygenases.

  17. The "Gln-Type" Thiol Dioxygenase from Azotobacter vinelandii is a 3-Mercaptopropionic Acid Dioxygenase.

    Science.gov (United States)

    Pierce, Brad S; Subedi, Bishnu P; Sardar, Sinjinee; Crowell, Joshua K

    2015-12-29

    Cysteine dioxygenase (CDO) is a non-heme iron enzyme that catalyzes the O2-dependent oxidation of l-cysteine to produce cysteinesulfinic acid. Bacterial CDOs have been subdivided as either "Arg-type" or "Gln-type" on the basis of the identity of conserved active site residues. To date, "Gln-type" enzymes remain largely uncharacterized. It was recently noted that the "Gln-type" enzymes are more homologous with another thiol dioxygenase [3-mercaptopropionate dioxygenase (MDO)] identified in Variovorax paradoxus, suggesting that enzymes of the "Gln-type" subclass are in fact MDOs. In this work, a putative "Gln-type" thiol dioxygenase from Azotobacter vinelandii (Av) was purified to homogeneity and characterized. Steady-state assays were performed using three substrates [3-mercaptopropionic acid (3mpa), l-cysteine (cys), and cysteamine (ca)]. Despite comparable maximal velocities, the "Gln-type" Av enzyme exhibited a specificity for 3mpa (kcat/KM = 72000 M(-1) s(-1)) nearly 2 orders of magnitude greater than those for cys (110 M(-1) s(-1)) and ca (11 M(-1) s(-1)). Supporting X-band electron paramagnetic resonance (EPR) studies were performed using nitric oxide (NO) as a surrogate for O2 binding to confirm obligate-ordered addition of substrate prior to NO. Stoichimetric addition of NO to solutions of 3mpa-bound enzyme quantitatively yields an iron-nitrosyl species (Av ES-NO) with EPR features consistent with a mononuclear (S = (3)/2) {FeNO}(7) site. Conversely, two distinct substrate-bound conformations were observed in Av ES-NO samples prepared with cys and ca, suggesting heterogeneous binding within the enzymatic active site. Analytical EPR simulations are provided to establish the relative binding affinity for each substrate (3map > cys > ca). Both kinetic and spectroscopic results presented here are consistent with 3mpa being the preferred substrate for this enzyme. PMID:26624219

  18. Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms.

    Science.gov (United States)

    Widderich, Nils; Höppner, Astrid; Pittelkow, Marco; Heider, Johann; Smits, Sander H J; Bremer, Erhard

    2014-01-01

    Ectoine and hydroxyectoine are well-recognized members of the compatible solutes and are widely employed by microorganisms as osmostress protectants. The EctABC enzymes catalyze the synthesis of ectoine from the precursor L-aspartate-β-semialdehyde. A subgroup of the ectoine producers can convert ectoine into 5-hydroxyectoine through a region-selective and stereospecific hydroxylation reaction. This compatible solute possesses stress-protective and function-preserving properties different from those of ectoine. Hydroxylation of ectoine is carried out by the EctD protein, a member of the non-heme-containing iron (II) and 2-oxoglutarate-dependent dioxygenase superfamily. We used the signature enzymes for ectoine (EctC) and hydroxyectoine (EctD) synthesis in database searches to assess the taxonomic distribution of potential ectoine and hydroxyectoine producers. Among 6428 microbial genomes inspected, 440 species are predicted to produce ectoine and of these, 272 are predicted to synthesize hydroxyectoine as well. Ectoine and hydroxyectoine genes are found almost exclusively in Bacteria. The genome context of the ect genes was explored to identify proteins that are functionally associated with the synthesis of ectoines; the specialized aspartokinase Ask_Ect and the regulatory protein EctR. This comprehensive in silico analysis was coupled with the biochemical characterization of ectoine hydroxylases from microorganisms that can colonize habitats with extremes in salinity (Halomonas elongata), pH (Alkalilimnicola ehrlichii, Acidiphilium cryptum), or temperature (Sphingopyxis alaskensis, Paenibacillus lautus) or that produce hydroxyectoine very efficiently over ectoine (Pseudomonas stutzeri). These six ectoine hydroxylases all possess similar kinetic parameters for their substrates but exhibit different temperature stabilities and differ in their tolerance to salts. We also report the crystal structure of the Virgibacillus salexigens EctD protein in its apo

  19. Biochemical properties of ectoine hydroxylases from extremophiles and their wider taxonomic distribution among microorganisms.

    Directory of Open Access Journals (Sweden)

    Nils Widderich

    Full Text Available Ectoine and hydroxyectoine are well-recognized members of the compatible solutes and are widely employed by microorganisms as osmostress protectants. The EctABC enzymes catalyze the synthesis of ectoine from the precursor L-aspartate-β-semialdehyde. A subgroup of the ectoine producers can convert ectoine into 5-hydroxyectoine through a region-selective and stereospecific hydroxylation reaction. This compatible solute possesses stress-protective and function-preserving properties different from those of ectoine. Hydroxylation of ectoine is carried out by the EctD protein, a member of the non-heme-containing iron (II and 2-oxoglutarate-dependent dioxygenase superfamily. We used the signature enzymes for ectoine (EctC and hydroxyectoine (EctD synthesis in database searches to assess the taxonomic distribution of potential ectoine and hydroxyectoine producers. Among 6428 microbial genomes inspected, 440 species are predicted to produce ectoine and of these, 272 are predicted to synthesize hydroxyectoine as well. Ectoine and hydroxyectoine genes are found almost exclusively in Bacteria. The genome context of the ect genes was explored to identify proteins that are functionally associated with the synthesis of ectoines; the specialized aspartokinase Ask_Ect and the regulatory protein EctR. This comprehensive in silico analysis was coupled with the biochemical characterization of ectoine hydroxylases from microorganisms that can colonize habitats with extremes in salinity (Halomonas elongata, pH (Alkalilimnicola ehrlichii, Acidiphilium cryptum, or temperature (Sphingopyxis alaskensis, Paenibacillus lautus or that produce hydroxyectoine very efficiently over ectoine (Pseudomonas stutzeri. These six ectoine hydroxylases all possess similar kinetic parameters for their substrates but exhibit different temperature stabilities and differ in their tolerance to salts. We also report the crystal structure of the Virgibacillus salexigens EctD protein in its

  20. Hemoglobin: A Nitric-Oxide Dioxygenase

    Directory of Open Access Journals (Sweden)

    Paul R. Gardner

    2012-01-01

    Full Text Available Members of the hemoglobin superfamily efficiently catalyze nitric-oxide dioxygenation, and when paired with native electron donors, function as NO dioxygenases (NODs. Indeed, the NOD function has emerged as a more common and ancient function than the well-known role in O2 transport-storage. Novel hemoglobins possessing a NOD function continue to be discovered in diverse life forms. Unique hemoglobin structures evolved, in part, for catalysis with different electron donors. The mechanism of NOD catalysis by representative single domain hemoglobins and multidomain flavohemoglobin occurs through a multistep mechanism involving O2 migration to the heme pocket, O2 binding-reduction, NO migration, radical-radical coupling, O-atom rearrangement, nitrate release, and heme iron re-reduction. Unraveling the physiological functions of multiple NODs with varying expression in organisms and the complexity of NO as both a poison and signaling molecule remain grand challenges for the NO field. NOD knockout organisms and cells expressing recombinant NODs are helping to advance our understanding of NO actions in microbial infection, plant senescence, cancer, mitochondrial function, iron metabolism, and tissue O2 homeostasis. NOD inhibitors are being pursued for therapeutic applications as antibiotics and antitumor agents. Transgenic NOD-expressing plants, fish, algae, and microbes are being developed for agriculture, aquaculture, and industry.

  1. Structure and mechanism of mouse cysteine dioxygenase

    Science.gov (United States)

    McCoy, Jason G.; Bailey, Lucas J.; Bitto, Eduard; Bingman, Craig A.; Aceti, David J.; Fox, Brian G.; Phillips, George N.

    2006-01-01

    Cysteine dioxygenase (CDO) catalyzes the oxidation of l-cysteine to cysteine sulfinic acid. Deficiencies in this enzyme have been linked to autoimmune diseases and neurological disorders. The x-ray crystal structure of CDO from Mus musculus was solved to a nominal resolution of 1.75 Å. The sequence is 91% identical to that of a human homolog. The structure reveals that CDO adopts the typical β-barrel fold of the cupin superfamily. The NE2 atoms of His-86, -88, and -140 provide the metal binding site. The structure further revealed a covalent linkage between the side chains of Cys-93 and Tyr-157, the cysteine of which is conserved only in eukaryotic proteins. Metal analysis showed that the recombinant enzyme contained a mixture of iron, nickel, and zinc, with increased iron content associated with increased catalytic activity. Details of the predicted active site are used to present and discuss a plausible mechanism of action for the enzyme. PMID:16492780

  2. Indoleamine-2,3-dioxygenase activity in experimental human endotoxemia

    NARCIS (Netherlands)

    Padberg, Jan-Sören; Van Meurs, Matijs; Kielstein, Jan T; Martens-Lobenhoffer, Jens; Bode-Böger, Stefanie M; Zijlstra, Jan G; Kovesdy, Csaba P; Kümpers, Philipp

    2012-01-01

    UNLABELLED: BACKGROUND: Excessive tryptophan metabolism to kynurenine by the rate-limiting enzyme endothelial indoleamine 2,3-dioxygenase 1 (IDO) controls arterial vessel relaxation and causes hypotension in murine endotoxemia. However, its relevance in human endotoxemia has not been investigated so

  3. INDOLEAMINE 2,3-DIOXYGENASE (IDO AND IMMUNE TOLERANCE

    Directory of Open Access Journals (Sweden)

    Coma-del-Corral MJ

    2013-09-01

    Full Text Available SUMMARY: Indoleamine 2,3-dioxygenase (IDO is an intracellular and extrahepatic enzyme predominantly found in many cells, especially macrophages. Tryptophan degradation generates kynurenine, and this pathway of tryptophan metabolism is an effective mechanism for modulating the immune response. The IDO facilitates immune tolerance and is one of the main actors involved in the inhibition of cell proliferation, including activated T cells. IDO induces production of reactive oxygen species (ROS and nitric oxide (NO radicals. Several pathways involved in the regulation of immune response are regulated by redox mechanisms. Reactive oxygen and nitrogen species (ROS-RNS and other redox active molecules play key roles in immunity.

  4. Insights into the genetic diversity of initial dioxygenases from PAH-degrading bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Moser, R.; Stahl, U. [Technische Univ. Berlin, Inst. fuer Biotechnologie, Mikrobiologie und Genetik, Berlin (Germany)

    2001-07-01

    Alpha subunit genes of initial polyaromatic hydrocarbon (PAH) dioxygenases were used as targets for the PCR detection of PAH-degrading strains of the genera Pseudomonas, Comamonas and Rhodococcus which were obtained from activated sludge or soil samples. Sequence analysis of PCR products from several Pseudomonas strains showed that alpha subunits (nahAc allele) of this genus are highly conserved. PCR primers for the specific detection of alpha subunit genes of initial PAH dioxygenases from Pseudomonas strains were not suitable for detecting the corresponding genes from the genera Comamonas and Rhodococcus. Southern analysis using a heterologous gene probe derived from the P. putida OUS82 PAH dioxygenase alpha subunit identified segments of the PAH-degradation gene cluster from C. testosteroni strain H. Parts of this gene cluster containing three subunits of the initial PAH dioxygenase were isolated. These three subunits [ferredoxin (pahAb), alpha (pahAc) and beta (pahAd) subunit] were amplified by PCR as one fragment and expressed in Escherichia coli DH5{alpha}, resulting in an active initial dioxygenase with the ability to transform indole and phenanthrene. The DNA sequence alignment of alpha subunits from C. testosteroni H and various PAH-degrading bacteria permitted the design of new primers and oligonucleotide probes which are useful for the detection of the initial PAH dioxygenases from strains of Pseudomonas, Comamonas and Rhodococcus. (orig.)

  5. Molecular evolution of bacterial indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Yuasa, Hajime J; Ushigoe, Akiko; Ball, Helen J

    2011-10-01

    Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD(+)). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD(+), like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (K(m), V(max) and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD(+)) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking

  6. Conversion of 3-chlorocatechol by various catechol 2,3-dioxygenases and sequence analysis of the chlorocatechol dioxygenase region of Pseudomonas putida GJ31

    NARCIS (Netherlands)

    Mars, Astrid E.; Kingma, Jaap; Kaschabek, Stefan R.; Reineke, Walter; Janssen, Dick B.

    1999-01-01

    Pseudomonas putida GJ31 contains an unusual catechol 2,3-dioxygenase that converts 3-chlorocatechol and 3-methylcatechol, which enables the organism to use both chloroaromatics and methylaromatics for growth, A 3.1-kb region of genomic DNA of strain GJ31 containing the gene for this chlorocatechol 2

  7. Indoleamine-2,3-dioxygenase activity in experimental human endotoxemia

    Directory of Open Access Journals (Sweden)

    Padberg Jan-Sören

    2012-12-01

    Full Text Available Abstract Background Excessive tryptophan metabolism to kynurenine by the rate-limiting enzyme endothelial indoleamine 2,3-dioxygenase 1 (IDO controls arterial vessel relaxation and causes hypotension in murine endotoxemia. However, its relevance in human endotoxemia has not been investigated so far. We thus aimed to study changes in blood pressure in parallel with tryptophan and kynurenine levels during experimental endotoxemia in humans. Findings Six healthy male volunteers were given E. coli lipopolysaccharide (LPS; 4 ng/kg as a 1-min intravenous infusion. They had levels of soluble E-Selectin and soluble vascular cell adhesion molecule-1 as well as IDO activity assessed as the kynurenine-to-tryptophan plasma ratio by liquid chromatography-tandem mass spectrometry at various time points during a 24 h time course. During endotoxemia, IDO activity significantly increased, reaching peak levels at 8 h after LPS infusion (44.0 ± 15.2 vs. 29.4 ± 6.8 at baseline, P Conclusions LPS is a triggering factor for the induction of IDO in men. Our findings strongly support the concept that the induction of IDO in the vascular endothelium contributes to hypotension in human sepsis.

  8. Structure of the human 4-hydroxyphenylpyruvic acid dioxygenase gene (HPD)

    Energy Technology Data Exchange (ETDEWEB)

    Awata, H.; Endo, F.; Matsuda, I. [Kumamoto Univ. (Japan)

    1994-10-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD) is an important enzyme in tyrosine catabolism in most organisms. The activity of this enzyme is expressed mainly in the liver and developmentally regulated in mammals, and a genetic deficiency in this enzyme in humans and mice leads to hereditary tyrosinemia type 3. Using human HPD cDNA as a probe, a chromosomal gene related to HPD was isolated from human gene libraries. The human HPD gene is over 30 kb long and is split into 14 exons. The extract sizes and boundaries of exon blocks were determined, and all of the splice donor and acceptor sites conformed to the GT/AG rule. Analysis of the 5{prime} flanking sequence of the gene suggests that expression of the gene is regulated by hepatocyte-specific and liver-enriched transcription factors, as well as by hormones. These features of the 5{prime} flanking region of the gene are similar to those of other genes that are specifically expressed in hepatocytes and that are developmentally regulated. 41 refs., 2 figs., 1 tab.

  9. Expression, purification and kinetic characterization of recombinant benzoate dioxygenase from Rhodococcus ruber UKMP-5M

    Directory of Open Access Journals (Sweden)

    Arezoo Tavakoli

    2016-09-01

    Full Text Available In this study, benzoate dioxygenase from Rhodococcus ruber UKMP-5M was catalyzed by oxidating the benzene ring to catechol and other derivatives. The benzoate dioxygenase (benA gene from Rhodococcus ruber UKMP-5M was then expressed, purified, characterized, The benA gene was amplified (642 bp, and the product was cloned into a pGEM-T vector.The recombinant plasmid pGEMT-benA was digested by double restriction enzymes BamHI and HindIII to construct plasmid pET28b-benA and was then ligated into Escherichia coli BL21 (DE3. The recombinant E. coli was induced with 0.5 mM isopropyl β-D-thiogalactoside (IPTG at 22˚C to produce benzoate dioxygenase. The enzyme was then purified by ion exchange chromatography after 8 purification folds. The resulting product was 25 kDa, determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE and western blotting. Benzoate dioxygenase activity was found to be 6.54 U/mL and the optimal pH and temperature were 8.5 and 25°C, respectively. Maximum velocity (Vmax and Michaelis constant (Km were 7.36 U/mL and 5.58 µM, respectively. The end metabolite from the benzoate dioxygenase reaction was cyclohexane dione, which was determined by gas chromatography mass spectrometry (GC-MS.

  10. Crystal Structure of Mammalian Cysteine dioxygenase: A Novel Mononuclear Iron Center for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Liu, Q.; Huang, Q.; Hao, Q.; Begley, T.; Karplus, P.; Stipanuk, M.

    2006-01-01

    Cysteine dioxygenase is a mononuclear iron-dependent enzyme responsible for the oxidation of cysteine with molecular oxygen to form cysteinesulfinate. This reaction commits cysteine to either catabolism to sulfate and pyruvate or to the taurine biosynthetic pathway. Cysteine dioxygenase is a member of the cupin superfamily of proteins. The crystal structure of recombinant rat cysteine dioxygenase has been determined to 1.5 Angstroms resolution, and these results confirm the canonical cupin {beta}-sandwich fold and the rare cysteinyl-tyrosine intramolecular crosslink (between Cys93 and Tyr157) seen in the recently reported murine cysteine dioxygenase structure. In contrast to the catalytically inactive mononuclear Ni(II) metallocenter present in the murine structure, crystallization of a catalytically competent preparation of rat cysteine dioxygenase revealed a novel tetrahedrally coordinated mononuclear iron center involving three histidines (His86, His88, and His140) and a water molecule. Attempts to acquire a structure with bound ligand using either co-crystallization or soaks with cysteine revealed the formation of a mixed disulfide involving Cys164 near the active site, which may explain previously observed substrate inhibition. This work provides a framework for understanding the molecular mechanisms involved in thiol dioxygenation and sets the stage for exploring the chemistry of both the novel mononuclear iron center and the catalytic role of the cysteinyl-tyrosine linkage.

  11. Substrate Oxidation by Indoleamine 2,3-Dioxygenase: EVIDENCE FOR A COMMON REACTION MECHANISM.

    Science.gov (United States)

    Booth, Elizabeth S; Basran, Jaswir; Lee, Michael; Handa, Sandeep; Raven, Emma L

    2015-12-25

    The kynurenine pathway is the major route of L-tryptophan (L-Trp) catabolism in biology, leading ultimately to the formation of NAD(+). The initial and rate-limiting step of the kynurenine pathway involves oxidation of L-Trp to N-formylkynurenine. This is an O2-dependent process and catalyzed by indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase. More than 60 years after these dioxygenase enzymes were first isolated (Kotake, Y., and Masayama, I. (1936) Z. Physiol. Chem. 243, 237-244), the mechanism of the reaction is not established. We examined the mechanism of substrate oxidation for a series of substituted tryptophan analogues by indoleamine 2,3-dioxygenase. We observed formation of a transient intermediate, assigned as a Compound II (ferryl) species, during oxidation of L-Trp, 1-methyl-L-Trp, and a number of other substrate analogues. The data are consistent with a common reaction mechanism for indoleamine 2,3-dioxygenase-catalyzed oxidation of tryptophan and other tryptophan analogues.

  12. VITAMIN C FACILITATES DOPAMINE NEURON DIFFERENTIATION IN FETAL MIDBRAIN THROUGH TET1- AND JMJD3-DEPENDENT EPIGENETIC CONTROL MANNER

    OpenAIRE

    He, Xi-Biao; Kim, Mirang; Kim, Seon-Young; Yi, Sang-Hoon; Rhee, Yong-Hee; Kim, Taeho; Lee, Eun-Hye; Park, Chang-Hwan; Dixit, Shilpy; Harrison, Fiona E.; Lee, Sang-Hun

    2015-01-01

    Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell (NSC) cultures derived from embryonic midbrains greatly enhanced differentiation towards midbrain-type DA (mDA) neurons, the neuronal subtype...

  13. Crystal structure of thermostable catechol 2,3-dioxygenase determined by multiwavelength anomalous dispersion method

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The selenomethionyl derivative of the thermostable catechol 2,3-dioxygenase (SeMet-TC23O) is expressed,purified and crystallized. By using multiwave length anomalous dispersion (MAD) phasing techniques, the crystal structure of TC23O at 0.3 nm resolutions is determined.TC23O is a homotetramer. Each monomer is composed of N-terminal and C-terminal domains (residues 1~153 and 153~319, respectively). The two domains are proximately symmetric by a non-crystallographic axis. Each domain contains two characteristic motifs which are found in almost all of extradial dioxygenases.Kevwords: multiwavelength anomalous dispersion (MAD), X-ray diffraction, thermostable catechol 2,3-dioxygenase, crystal structure,synchrotron light source.

  14. Metal-Dependent Function of a Mammalian Acireductone Dioxygenase.

    Science.gov (United States)

    Deshpande, Aditi R; Wagenpfeil, Karina; Pochapsky, Thomas C; Petsko, Gregory A; Ringe, Dagmar

    2016-03-01

    The two acireductone dioxygenase (ARD) isozymes from the methionine salvage pathway of Klebsiella oxytoca are the only known pair of naturally occurring metalloenzymes with distinct chemical and physical properties determined solely by the identity of the divalent transition metal ion (Fe(2+) or Ni(2+)) in the active site. We now show that this dual chemistry can also occur in mammals. ARD from Mus musculus (MmARD) was studied to relate the metal ion identity and three-dimensional structure to enzyme function. The iron-containing isozyme catalyzes the cleavage of 1,2-dihydroxy-3-keto-5-(thiomethyl)pent-1-ene (acireductone) by O2 to formate and the ketoacid precursor of methionine, which is the penultimate step in methionine salvage. The nickel-bound form of ARD catalyzes an off-pathway reaction resulting in formate, carbon monoxide (CO), and 3-(thiomethyl) propionate. Recombinant MmARD was expressed and purified to obtain a homogeneous enzyme with a single transition metal ion bound. The Fe(2+)-bound protein, which shows about 10-fold higher activity than that of others, catalyzes on-pathway chemistry, whereas the Ni(2+), Co(2+), or Mn(2+) forms exhibit off-pathway chemistry, as has been seen with ARD from Klebsiella. Thermal stability of the isozymes is strongly affected by the metal ion identity, with Ni(2+)-bound MmARD being the most stable, followed by Co(2+) and Fe(2+), and Mn(2+)-bound ARD being the least stable. Ni(2+)- and Co(2+)-bound MmARD were crystallized, and the structures of the two proteins found to be similar. Enzyme-ligand complexes provide insight into substrate binding, metal coordination, and the catalytic mechanism. PMID:26858196

  15. Crystal Structures of Fe2+ Dioxygenase Superoxo, Alkylperoxo, and Bound Product Intermediates

    OpenAIRE

    Kovaleva, Elena G.; Lipscomb, John D.

    2007-01-01

    We report the structures of three intermediates in the O2 activation and insertion reactions of an extradiol ring-cleaving dioxygenase. A crystal of Fe2+-containing homoprotocatechuate 2,3-dioxygenase was soaked in the slow substrate 4-nitrocatechol in a low O2 atmosphere. The X-ray crystal structure shows that three different intermediates reside in different subunits of a single homotetrameric enzyme molecule. One of these is the key substrate-alkylperoxo-Fe2+ intermediate, which has been p...

  16. Cloning and Characterization of a Sulfonate/α-Ketoglutarate Dioxygenase from Saccharomyces cerevisiae

    OpenAIRE

    Hogan, Deborah A.; Auchtung, Thomas A.; Hausinger, Robert P.

    1999-01-01

    The Saccharomyces cerevisiae open reading frame YLL057c is predicted to encode a gene product with 31.5% amino acid sequence identity to Escherichia coli taurine/α-ketoglutarate dioxygenase and 27% identity to Ralstonia eutropha TfdA, a herbicide-degrading enzyme. Purified recombinant yeast protein is shown to be an Fe(II)-dependent sulfonate/α-ketoglutarate dioxygenase. Although taurine is a poor substrate, a variety of other sulfonates are utilized, with the best natural substrates being is...

  17. A biological pathway linking inflammation and depression: activation of indoleamine 2,3-dioxygenase

    Directory of Open Access Journals (Sweden)

    Christmas DM

    2011-07-01

    Full Text Available David M Christmas, JP Potokar, Simon JC DaviesAcademic Unit of Psychiatry, School of Social and Community Medicine, University of Bristol, Bristol, UK A presentation relating to this manuscript was made by Dr David Christmas at the 9th International Meeting on Clinical Pharmacology in Psychiatry (9th IMCPP in Copenhagen, Denmark in September 2010Abstract: This article highlights the evidence linking depression to increased inflammatory drive and explores putative mechanisms for the association by reviewing both preclinical and clinical literature. The enzyme indoleamine 2,3-dioxygenase is induced by proinflammatory cytokines and may form a link between immune functioning and altered neurotransmission, which results in depression. Increased indoleamine 2,3-dioxygenase activity may cause both tryptophan depletion and increased neurotoxic metabolites of the kynurenine pathway, two alterations which have been hypothesized to cause depression. The tryptophan-kynurenine pathway is comprehensively described with a focus on the evidence linking metabolite alterations to depression. The use of immune-activated groups at high risk of depression have been used to explore these hypotheses; we focus on the studies involving chronic hepatitis C patients receiving interferon-alpha, an immune activating cytokine. Findings from this work have led to novel strategies for the future development of antidepressants including inhibition of indoleamine 2,3-dioxygenase, moderating the cytokines which activate it, or addressing other targets in the kynurenine pathway.Keywords: depression, inflammation, indoleamine 2,3-dioxygenase, kynurenine, serotonin, tryptophan

  18. Structures of aminophenol dioxygenase in complex with intermediate, product and inhibitor.

    Science.gov (United States)

    Li, De Feng; Zhang, Jia Yue; Hou, Yan Jie; Liu, Lei; Hu, Yonglin; Liu, Shuang Jiang; Wang, Da Cheng; Liu, Wei

    2013-01-01

    Dioxygen activation by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Here, crystal structures of 2-aminophenol 1,6-dioxygenase, an enzyme that represents a minor group of extradiol dioxygenases and that catalyses the ring opening of 2-aminophenol, in complex with the lactone intermediate (4Z,6Z)-3-iminooxepin-2(3H)-one and the product 2-aminomuconic 6-semialdehyde and in complex with the suicide inhibitor 4-nitrocatechol are reported. The Fe-ligand binding schemes observed in these structures revealed some common geometrical characteristics that are shared by the published structures of extradiol dioxygenases, suggesting that enzymes that catalyse the oxidation of noncatecholic compounds are very likely to utilize a similar strategy for dioxygen activation and the fission of aromatic rings as the canonical mechanism. The Fe-ligation arrangement, however, is strikingly enantiomeric to that of all other 2-His-1-carboxylate enzymes apart from protocatechuate 4,5-dioxygenase. This structural variance leads to the generation of an uncommon O(-)-Fe(2+)-O(-) species prior to O(2) binding, which probably forms the structural basis on which APD distinguishes its specific substrate and inhibitor, which share an analogous molecular structure.

  19. Prognostic role of indoleamine 2,3-dioxygenase in endometrial carcinoma

    NARCIS (Netherlands)

    de Jong, Renske A; Kema, Ido P; Boerma, Annemarie; Boezen, Hendrika; van der Want, Johannes J L; Gooden, Marloes J M; Hollema, Harmen; Nijman, Hans W

    2012-01-01

    Objective. Indoleamine-2,3-dioxygenase (IDO) suppresses the function of T-lymphocytes and is an important immune escape mechanism for cancer. Therefore, it is to be expected that IDO influences prognosis of cancer patients. This study aimed to investigate the prognostic role of IDO expression in a l

  20. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels;

    2009-01-01

    BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune toleran......, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general....

  1. 4-Nitrocatechol as a colorimetric probe for non-heme iron dioxygenases.

    Science.gov (United States)

    Tyson, C A

    1975-03-10

    4-Nitrocatechol is examined as an active site probe for non-heme iron dioxygenases and found to be of value, particularly with those containing iron in the Fe(II) oxidation state. 4-Nitrocatechol is astrong competitive inhibitor of substrate oxygenation by protocatechuate 3,4-dioxygenase, forming a reversible complex with this enzyme, and by pyrocatechase. The number of binding sites per enzyme molecule titrated spectrophotometrically with 4-nitrocatechol agrees with results from previous studies with either the principal substrate or other analogues, as expected of an effective probe. Despite these facts and the observation that both enzymes cleave the same substrates at the same carbon-carbon bond, the optical and electron paramagnetic resonance (EPR) spectra of their 4-nitrocatechol complexes are remarkably different. The 4-nitocatechol-protocatechuate 3,4-dioxygenase optical spectra resemble that of the 4-nitrocatecholate ion shifted 20 to 30 nm to longer wavelength. Concomitant with this change the EPR signal centered at g equal 4.28 shows increased rhombicity (g values at 4.74, 4.28, and 3.74). In contrast, the spectrum of the 4-nitrocatechol-pyrocatechase complex has a maximum at the same wavelength as that of a 1:1 solution of free Fe(II) and 4-nitrocatechol in the absence of enzyme after titration of the catecholic protons with base and the g equal 4.28 EPR signal is not resolved at liquid N-2 temperature. These changes are interpreted as resulting in part from a pronounced change in the ligand fields about the irons at the active sites which in the case of protocatechuate 3,4-dioxygenase leads to enzyme inactivation. The results also are the first indication that substrate analogues change their ionization form upon complexation with Fe (III) dioxygenases. The interaction of the probe with metapyrocatechase, an Fe(III) containing dioxygenase, and with several additional oxygenases and hydroperoxidases is also briefly examined. The probe is not specific

  2. Discovery of Key Dioxygenases that Diverged the Paraherquonin and Acetoxydehydroaustin Pathways in Penicillium brasilianum.

    Science.gov (United States)

    Matsuda, Yudai; Iwabuchi, Taiki; Fujimoto, Takayuki; Awakawa, Takayoshi; Nakashima, Yu; Mori, Takahiro; Zhang, Huiping; Hayashi, Fumiaki; Abe, Ikuro

    2016-09-28

    Paraherquonin (1), a fungal meroterpenoid produced by Penicillium brasilianum NBRC 6234, possesses a unique, highly congested hexacyclic molecular architecture. Here we identified the biosynthetic gene cluster of 1 (the prh cluster) and elucidated the pathway up to berkeleydione (2), which serves as the key intermediate for the biosynthesis of 1 as well as many other meroterpenoids. Interestingly, the nonheme iron and α-ketoglutarate-dependent dioxygenase PrhA constructs the cycloheptadiene moiety to afford 2 from preaustinoid A1 (6), probably via the homoallyl-homoallyl radical rearrangement. Additionally, another fungal strain, P. brasilianum MG11, which produces acetoxydehydroaustin instead of 1, was found to have a gene cluster nearly identical to the prh cluster. The dioxygenase encoded by the cluster shares 92% sequence identity with PrhA, and also accepts 6 but produces preaustinoid A3 (17) with a spiro-lactone system, generating a diverging point for the two different meroterpenoid pathways in the same species.

  3. Novel carotenoid cleavage dioxygenase catalyzes the first dedicated step in saffron crocin biosynthesis

    KAUST Repository

    Frusciante, Sarah

    2014-08-05

    Crocus sativus stigmas are the source of the saffron spice and accumulate the apocarotenoids crocetin, crocins, picrocrocin, and safranal, responsible for its color, taste, and aroma. Through deep transcriptome sequencing, we identified a novel dioxygenase, carotenoid cleavage dioxygenase 2 (CCD2), expressed early during stigma development and closely related to, but distinct from, the CCD1 dioxygenase family. CCD2 is the only identified member of a novel CCD clade, presents the structural features of a bona fide CCD, and is able to cleave zeaxanthin, the presumed precursor of saffron apocarotenoids, both in Escherichia coli and in maize endosperm. The cleavage products, identified through high-resolution mass spectrometry and comigration with authentic standards, are crocetin dialdehyde and crocetin, respectively. In vitro assays show that CCD2 cleaves sequentially the 7,8 and 7′,8′ double bonds adjacent to a 3-OH-β-ionone ring and that the conversion of zeaxanthin to crocetin dialdehyde proceeds via the C30 intermediate 3-OH-β-apo-8′-carotenal. In contrast, zeaxanthin cleavage dioxygenase (ZCD), an enzyme previously claimed to mediate crocetin formation, did not cleave zeaxanthin or 3-OH-β-apo-8′-carotenal in the test systems used. Sequence comparison and structure prediction suggest that ZCD is an N-truncated CCD4 form, lacking one blade of the β-propeller structure conserved in all CCDs. These results constitute strong evidence that CCD2 catalyzes the first dedicated step in crocin biosynthesis. Similar to CCD1, CCD2 has a cytoplasmic localization, suggesting that it may cleave carotenoids localized in the chromoplast outer envelope.

  4. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase

    OpenAIRE

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M.; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M.; Fuchs, Dietmar; Stuppner, Hermann

    2013-01-01

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells i...

  5. 4-Hydroxyphenylpyruvate dioxygenase inhibitors in combination with safeners: solutions for modern and sustainable agriculture.

    Science.gov (United States)

    Ahrens, Hartmut; Lange, Gudrun; Müller, Thomas; Rosinger, Chris; Willms, Lothar; van Almsick, Andreas

    2013-09-01

    Inhibitors of 4-hydroxyphenylpyruvate dioxygenase (HPPD) prevent plant carotenoid pigment formation, which in turn leads to chlorophyll degradation. This "bleaching" herbicide mode of action provides weed-control products for various crops, such as rice, corn, and cereals. Combinations with suitable safeners allow the full exploitation of the potential of this compound class to selectively control major weed problems, including rapidly increasing cases of resistance against other important herbicide classes.

  6. Indoleamine 2,3-dioxygenase expression in patients with allergic rhinitis: a case-control study

    OpenAIRE

    Luukkainen Annika; Karjalainen Jussi; Honkanen Teemu; Lehtonen Mikko; Paavonen Timo; Toppila-Salmi Sanna

    2011-01-01

    Abstract Background Indoleamine 2,3-dioxygenase (IDO) is a tryptophan catalyzing enzyme. It has been suggested that it has a role in lower airway allergic inflammations, but its role in allergic rhinitis has not been investigated. Objective Our aim was to evaluate the expression of IDO in the nasal mucosa of allergic rhinitis patients allergic to birch pollen during peak exposure to birch pollen allergen and compare it to non-atopic patients. Methods IDO expression was immunohistochemically e...

  7. The Physcomitrella patens unique alpha-dioxygenase participates in both developmental processes and defense responses

    OpenAIRE

    Machado, Lucina; De Castro, Alexandra; Hamberg, Mats; Bannenberg, Gerard; Gaggero, Carina; Castresana, Carmen; León, Inés Ponce de

    2015-01-01

    Background Plant α-dioxygenases catalyze the incorporation of molecular oxygen into polyunsaturated fatty acids leading to the formation of oxylipins. In flowering plants, two main groups of α-DOXs have been described. While the α-DOX1 isoforms are mainly involved in defense responses against microbial infection and herbivores, the α-DOX2 isoforms are mostly related to development. To gain insight into the roles played by these enzymes during land plant evolution, we performed biochemical, ge...

  8. Characterization of an indoleamine 2,3-dioxygenase-like protein found in humans and mice.

    Science.gov (United States)

    Ball, Helen J; Sanchez-Perez, Angeles; Weiser, Silvia; Austin, Christopher J D; Astelbauer, Florian; Miu, Jenny; McQuillan, James A; Stocker, Roland; Jermiin, Lars S; Hunt, Nicholas H

    2007-07-01

    Indoleamine 2,3-dioxygenase (INDO) and tryptophan 2,3-dioxygenase (TDO) each catalyze the first step in the kynurenine pathway of tryptophan metabolism. We describe the discovery of another enzyme with this activity, indoleamine 2,3-dioxygenase-like protein (INDOL1), which is closely related to INDO and is expressed in mice and humans. The corresponding genes have a similar genomic structure and are situated adjacent to each other on human and mouse chromosome 8. They are likely to have arisen by gene duplication before the origin of the tetrapods. The expression of INDOL1 is highest in the mouse kidney, followed by epididymis, and liver. Expression of mouse INDOL1 was further localized to the tubular cells in the kidney and the spermatozoa. INDOL1 was assigned its name because of its structural similarity to INDO. We demonstrate that INDOL1 catalyses the conversion of tryptophan to kynurenine therefore a more appropriate nomenclature for the enzymes might be INDO-1 and INDO-2, or the more commonly-used abbreviations, IDO-1 and IDO-2. Although the two proteins have similar enzymatic activities, their different expression patterns within tissues and during malaria infection, suggests a distinct role for each protein. This identification of INDOL1 may help to explain the regulation of the diversity of physiological and patho-physiological processes in which the kynurenine pathway is involved.

  9. Isolation and characterization of two novel halotolerant Catechol 2, 3-dioxygenases from a halophilic bacterial consortium

    Science.gov (United States)

    Guo, Guang; Fang, Tingting; Wang, Chongyang; Huang, Yong; Tian, Fang; Cui, Qijia; Wang, Hui

    2015-12-01

    Study of enzymes in halophiles will help to understand the mechanism of aromatic hydrocarbons degradation in saline environment. In this study, two novel catechol 2,3-dioxygenases (C23O1 and C23O2) were cloned and overexpressed from a halophilic bacterial consortium enriched from an oil-contaminated saline soil. Phylogenetic analysis indicated that the novel C23Os and their relatives formed a new branch in subfamily I.2.A of extradiol dioxygenases and the sequence differences were further analyzed by amino acid sequence alignment. Two enzymes with the halotolerant feature were active over a range of 0-30% salinity and they performed more stable at high salinity than in the absence of salt. Surface electrostatic potential and amino acids composition calculation suggested high acidic residues content, accounting for their tolerance to high salinity. Moreover, two enzymes were further characterized. The enzymes activity both increased in the presence of Fe3+, Fe2+, Cu2+ and Al3+ and showed no significant inhibition by other tested metal ions. The optimal temperatures for the C23Os were 40 °C and 60 °C and their best substrates were catechol and 4-methylcatechol respectively. As the firstly isolated and characterized catechol dioxygenases from halophiles, the two halotolerant C23Os presented novel characteristics suggesting their potential application in aromatic hydrocarbons biodegradation.

  10. Characterizations of Two Bacterial Persulfide Dioxygenases of the Metallo-β-lactamase Superfamily.

    Science.gov (United States)

    Sattler, Steven A; Wang, Xia; Lewis, Kevin M; DeHan, Preston J; Park, Chung-Min; Xin, Yufeng; Liu, Honglei; Xian, Ming; Xun, Luying; Kang, ChulHee

    2015-07-31

    Persulfide dioxygenases (PDOs), also known as sulfur dioxygenases (SDOs), oxidize glutathione persulfide (GSSH) to sulfite and GSH. PDOs belong to the metallo-β-lactamase superfamily and play critical roles in animals, plants, and microorganisms, including sulfide detoxification. The structures of two PDOs from human and Arabidopsis thaliana have been reported; however, little is known about the substrate binding and catalytic mechanism. The crystal structures of two bacterial PDOs from Pseudomonas putida and Myxococcus xanthus were determined at 1.5- and 2.5-Å resolution, respectively. The structures of both PDOs were homodimers, and their metal centers and β-lactamase folds were superimposable with those of related enzymes, especially the glyoxalases II. The PDOs share similar Fe(II) coordination and a secondary coordination sphere-based hydrogen bond network that is absent in glyoxalases II, in which the corresponding residues are involved instead in coordinating a second metal ion. The crystal structure of the complex between the Pseudomonas PDO and GSH also reveals the similarity of substrate binding between it and glyoxalases II. Further analysis implicates an identical mode of substrate binding by known PDOs. Thus, the data not only reveal the differences in metal binding and coordination between the dioxygenases and the hydrolytic enzymes in the metallo-β-lactamase superfamily, but also provide detailed information on substrate binding by PDOs. PMID:26082492

  11. Crystal structure of 2-nitropropane dioxygenase complexed with FMN and substrate. Identification of the catalytic base.

    Science.gov (United States)

    Ha, Jun Yong; Min, Ji Young; Lee, Su Kyung; Kim, Hyoun Sook; Kim, Do Jin; Kim, Kyoung Hoon; Lee, Hyung Ho; Kim, Hye Kyung; Yoon, Hye-Jin; Suh, Se Won

    2006-07-01

    Nitroalkane compounds are widely used in chemical industry and are also produced by microorganisms and plants. Some nitroalkanes have been demonstrated to be carcinogenic, and enzymatic oxidation of nitroalkanes is of considerable interest. 2-Nitropropane dioxygenases from Neurospora crassa and Williopsis mrakii (Hansenula mrakii), members of one family of the nitroalkane-oxidizing enzymes, contain FMN and FAD, respectively. The enzymatic oxidation of nitroalkanes by 2-nitropropane dioxygenase operates by an oxidase-style catalytic mechanism, which was recently shown to involve the formation of an anionic flavin semiquinone. This represents a unique case in which an anionic flavin semiquinone has been experimentally observed in the catalytic pathway for oxidation catalyzed by a flavin-dependent enzyme. Here we report the first crystal structure of 2-nitropropane dioxygenase from Pseudomonas aeruginosa in two forms: a binary complex with FMN and a ternary complex with both FMN and 2-nitropropane. The structure identifies His(152) as the proposed catalytic base, thus providing a structural framework for a better understanding of the catalytic mechanism. PMID:16682407

  12. Expression Pattern and Clinicopathological Relevance of the Indoleamine 2,3-Dioxygenase 1/Tryptophan 2,3-Dioxygenase Protein in Colorectal Cancer.

    Science.gov (United States)

    Chen, I-Chien; Lee, Kuen-Haur; Hsu, Ying-Hua; Wang, Wei-Ran; Chen, Chuan-Mu; Cheng, Ya-Wen

    2016-01-01

    Aims. Cancer cells use the indoleamine 2,3-dioxygenase 1 (IDO1) pathway to suppress the host's immune response in order to facilitate survival, growth, invasion, and metastasis of malignant cells. Higher IDO1 expression was shown to be involved in colorectal cancer (CRC) progression and to be correlated with impaired clinical outcome. However, the potential correlation between the expression of IDO1 in a CRC population with a low mutation rate of the APC gene remains unknown. Material and Methods. Tissues and blood samples were collected from 192 CRC patients. The expressions of IDO1, tryptophan 2,3-dioxygenase (TDO2), and beta-catenin proteins were analyzed by immunohistochemistry. Microsatellite instability (MSI) was determined by PCR amplification of microsatellite loci. Results. The results showed that high IDO1 or TDO2 protein expression was associated with characteristics of more aggressive phenotypes of CRC. For the first time, they also revealed a positive correlation between the abnormal expression of beta-catenin and IDO1 or TDO2 proteins in a CRC population with a low mutation rate of APC. Conclusion. We concluded that an IDO1-regulated molecular pathway led to abnormal expression of beta-catenin in the nucleus/cytoplasm of CRC patients with low mutation rate of APC, making IDO1 an interesting target for immunotherapy in CRC. PMID:27578919

  13. Mechanism of S-oxygenation by a cysteine dioxygenase model complex

    Science.gov (United States)

    Sastry, G. Narahari

    2012-01-01

    In this work we present the first computational study on a biomimetic cysteine dioxygenase model complex, [FeII(LN3S)]+ where LN3S is a tetradentate ligand with a bis(imino)pyridyl scaffold and a pendant arylthiolate group. The reaction mechanism of sulfur dioxygenation with O2 was examined by density functional theory (DFT) methods, and compared to results obtained for cysteine dioxygenase. The reaction proceeds via multistate reactivity patterns on competing singlet, triplet and quintet spin state surfaces. The reaction mechanism is analogous to that found for cysteine dioxygenase enzymes [Kumar, D.; Thiel, W.; de Visser, S. P. J. Am. Chem. Soc. 2011, 133, 3869–3882], hence the computations indicate that this complex can closely mimic the enzymatic process. The catalytic mechanism starts from an iron(III)-superoxo complex and the attack of the terminal oxygen atom of the superoxo group on the sulfur atom of the ligand. Subsequently, the dioxygen bond breaks to form an iron(IV)-oxo complex with a bound sulfenato group. After reorganization the second oxygen atom is transferred to the substrate to give a sulfinic acid product. An alternative mechanism involving the direct attack of dioxygen on the sulfur, without involving any iron-oxygen intermediates, was also examined. Importantly, a significant energetic preference for dioxygen coordinating to the iron center prior to attack at sulfur was discovered and serves to elucidate the function of the metal ion in the reaction process. The computational results are in good agreement with experimental observations, and the differences and similarities of the biomimetic complex and the enzymatic CDO center are highlighted. PMID:22091701

  14. Iron(III) complexes of certain tetradentate phenolate ligands as functional models for catechol dioxygenases

    Indian Academy of Sciences (India)

    Mallayan Palaniandavar; Marappan Velusamy; Ramasamy Mayilmurugan

    2006-11-01

    Catechol 1,2-dioxygenase (CTD) and protocatechuate 3,4-dioxygenase (PCD) are bacterial non-heme iron enzymes, which catalyse the oxidative cleavage of catechols to cis, cis-muconic acids with the incorporation of molecular oxygen via a mechanism involving a high-spin ferric centre. The iron(III) complexes of tripodal phenolate ligands containing N3O and N2O2 donor sets represent the metal binding region of the iron proteins. In our laboratory iron(III) complexes of mono- and bisphenolate ligands have been studied successfully as structural and functional models for the intradiol-cleaving catechol dioxygenase enzymes. The single crystal X-ray crystal structures of four of the complexes have been determined. One of the bis-phenolato complexes contains a FeN2O2Cl chromophore with a novel trigonal bipyramidal coordination geometry. The Fe-O-C bond angle of 136.1° observed for one of the iron(III) complex of a monophenolate ligand is very similar to that in the enzymes. The importance of the nearby sterically demanding coordinated -NMe2 group has been established and implies similar stereochemical constraints from the other ligated amino acid moieties in the 3,4-PCD enzymes, the enzyme activity of which is traced to the difference in the equatorial and axial Fe-O(tyrosinate) bonds (Fe-O-C, 133, 148°). The nature of heterocyclic rings of the ligands and the methyl substituents on them regulate the electronic spectral features, FeIII/FeII redox potentials and catechol cleavage activity of the complexes. Upon interacting with catecholate anions, two catecholate to iron(III) charge transfer bands appear and the low energy band is similar to that of catechol dioxygenase-substrate complex. Four of the complexes catalyze the oxidative cleavage of H2DBC by molecular oxygen to yield intradiol cleavage products. Remarkably, the more basic N-methylimidazole ring in one of the complexes facilitates the rate-determining productreleasing phase of the catalytic reaction. The present

  15. Trichloroethylene removal and oxidation toxicity mediated by toluene dioxygenase of Pseudomonas putida.

    OpenAIRE

    Heald, S.; Jenkins, R. O.

    1994-01-01

    Whole cells of Pseudomonas putida containing toluene dioxygenase were able to remove all detectable trichloroethylene (TCE) from assay mixtures. The capacity of cells to remove TCE was 77 microM/mg of protein with an initial rate of removal of 5.2 nmol/min/ng of protein. TCE oxidation resulted in a decrease in the growth rate of cultures and caused rapid cell death. Addition of dithiothreitol to assay mixtures increased the TCE removal capacity of cells by up to 67% but did not prevent TCE-me...

  16. Homogentisate 1,2 dioxygenase is expressed in human osteoarticular cells: implications in alkaptonuria.

    Science.gov (United States)

    Laschi, Marcella; Tinti, Laura; Braconi, Daniela; Millucci, Lia; Ghezzi, Lorenzo; Amato, Loredana; Selvi, Enrico; Spreafico, Adriano; Bernardini, Giulia; Santucci, Annalisa

    2012-09-01

    Alkaptonuria (AKU) results from defective homogentisate1,2-dioxygenase (HGD), causing degenerative arthropathy. The deposition of ochronotic pigment in joints is so far attributed to homogentisic acid produced by the liver, circulating in the blood and accumulating locally. Human normal and AKU osteoarticular cells were tested for HGD gene expression by RT-PCR, mono- and 2D-Western blotting. HGD gene expression was revealed in chondrocytes, synoviocytes, osteoblasts. Furthermore, HGD expression was confirmed by Western blotting, that also revealed the presence of five enzymatic molecular species. Our findings indicate that AKU osteoarticular cells produce the ochronotic pigment in loco and this may strongly contribute to induction of ochronotic arthropathy.

  17. Indoleamine 2,3-dioxygenase specific, cytotoxic T cells as immune regulators

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Hadrup, Sine Reker; Svane, Inge Marie;

    2011-01-01

    Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme that is implicated in suppressing T-cell immunity in normal and pathologic settings. Here, we describe that spontaneous cytotoxic T-cell reactivity against IDO exists not only in patients with cancer but also in healthy persons. We......, this caused an increase in the production of the proinflammatory cytokines IL-6 and tumor necrosis factor-alpha while decreasing the IL-10 production. Finally, the addition of IDO-inducing agents (ie, the TLR9 ligand cytosine-phosphate- guanosine, soluble cytotoxic T lymphocyte-associated antigen 4...

  18. Compound-Specific Isotope Analysis of Nitroaromatic Contaminant Transformations by Nitroarene Dioxygenases

    Science.gov (United States)

    Pati, Sarah G.; Kohler, Hans-Peter E.; Hofstetter, Thomas B.

    2014-05-01

    Dioxygenation is an important biochemical reaction that often initiates the mineralization of recalcitrant organic contaminants such as nitroaromatic explosives, chlorinated benzenes, and polycyclic aromatic hydrocarbons. However, to assess the extent of dioxygenation in contaminated environments is difficult because of competing transformation processes and further reactions of the dioxygenation products. Compound-specific isotope analysis (CSIA) offers a new approach to reliably quantify biodegradation initiated by dioxygenation based on changes in stable isotope ratios of the pollutant. For CSIA it is essential to know the kinetic isotope effects (KIEs) pertinent to the dioxygenation mechanism of organic contaminants. Unfortunately, the range of KIEs of such reactions is poorly constrained although many dioxygenase enzymes with a broad substrate specificity have been reported. Dioxygenase enzymes usually exhibit complex reaction kinetics involving multiple substrates and substrate-specific binding modes which makes the determination of KIEs challenging. The goal of this study was to explore the magnitude and variability of 13C-, 2H-, and 15N-KIEs for the dioxygenation of one contaminant class, that is nitroaromatic contaminants (NACs). To this end, we investigated the C, H, and N isotope fractionation during the dioxygenation of nitrobenzene (NB), 2-nitrotoluene (2-NT), and 3-nitrotoluene (3-NT) by pure cultures, E. coli clones, cell extracts, and purified enzymes. From isotope fractionations measured in the substrates and reaction products, we determined dioxygenation KIEs for different combinations of the three substrates with nitrobenzene dioxygenase (NBDO) and 2-nitrotoluene dioxygenase (2NTDO). The 13C-, 2H-, and 15N-KIEs for the dioxygenation of NB by NBDO were consistent for all experimental systems considered (i.e., Comamonas sp. Strain JS765, E. coli clones, cell extracts of E. coli clones, and purified NBDO). This observation suggests that the isotope

  19. Structure of the 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP

    Energy Technology Data Exchange (ETDEWEB)

    Keegan, R.; Lebedev, A. [RAL, Harwell Oxford, Didcot OX11 0FA (United Kingdom); Erskine, P.; Guo, J.; Wood, S. P. [UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); Hopper, D. J. [Aberystwyth University, Penglais, Aberystwyth SY23 3DA Wales (United Kingdom); Rigby, S. E. J. [University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); Cooper, J. B., E-mail: jon.cooper@ucl.ac.uk [UCL Division of Medicine (Royal Free Campus), Rowland Hill Street, London NW3 2PF (United Kingdom); RAL, Harwell Oxford, Didcot OX11 0FA (United Kingdom)

    2014-09-01

    The first X-ray structure of a 2, 4′-dihydroxyacetophenone dioxygenase from Alcaligenes sp. 4HAP at a resolution of 2.2 Å is reported. This structure establishes that the enzyme adopts the cupin-fold, forming compact dimers with a pronounced hydrophobic interface between the monomers. Each monomer possesses a catalytic ferrous iron that is coordinated by three histidines (76, 78 and 114) and an additional ligand which has been putatively assigned as a carbonate, although formate and acetate are possibilities. The enzyme 2, 4′-dihydroxyacetophenone dioxygenase (DAD) catalyses the conversion of 2, 4′-dihydroxyacetophenone to 4-hydroxybenzoic acid and formic acid with the incorporation of molecular oxygen. Whilst the vast majority of dioxygenases cleave within the aromatic ring of the substrate, DAD is very unusual in that it is involved in C—C bond cleavage in a substituent of the aromatic ring. There is evidence that the enzyme is a homotetramer of 20.3 kDa subunits, each containing nonhaem iron, and its sequence suggests that it belongs to the cupin family of dioxygenases. In this paper, the first X-ray structure of a DAD enzyme from the Gram-negative bacterium Alcaligenes sp. 4HAP is reported, at a resolution of 2.2 Å. The structure establishes that the enzyme adopts a cupin fold, forming dimers with a pronounced hydrophobic interface between the monomers. The catalytic iron is coordinated by three histidine residues (76, 78 and 114) within a buried active-site cavity. The iron also appears to be tightly coordinated by an additional ligand which was putatively assigned as a carbonate dianion since this fits the electron density optimally, although it might also be the product formate. The modelled carbonate is located in a position which is highly likely to be occupied by the α-hydroxyketone group of the bound substrate during catalysis. Modelling of a substrate molecule in this position indicates that it will interact with many conserved amino acids in

  20. Pivotal role of anthranilate dioxygenase genes in the adaptation of Burkholderia multivorans ATCC 17616 in soil.

    Science.gov (United States)

    Nishiyama, Eri; Ohtsubo, Yoshiyuki; Yamamoto, Yasuhiro; Nagata, Yuji; Tsuda, Masataka

    2012-05-01

    In our recent screen for soil-induced genes, the expression of andA operon (andAcAdAbAa) for anthranilate catabolism in Burkholderia multivorans ATCC 17616 was found to increase dramatically in a soil sample (Nishiyama et al., Environ Microbiol 12: 2539, 2010). The operon was preceded by andR encoding a putative transcriptional regulator for the andA operon. In this study, the andA promoter was induced by tryptophan and anthranilate in an andR-dependent manner. The andA promoter in a deletion mutant lacking tryptophan dioxygenase (one of enzymes for the catabolism of tryptophan to anthranilate) did not respond to tryptophan, indicating that not tryptophan but anthranilate is the effector of AndR. Although both anthranilate and tryptophan were under the detection levels in the soil sample, andA promoter showed higher activity in the soil sample than in a laboratory medium. Such induction required andR and was moderately dependent on the ferric uptake regulator (Fur). The proliferation ability of andAc mutant in the sterile soil was low compared with the co-incubated wild-type cells. These findings suggested that in the soil environment, anthranilate dioxygenase genes are induced by AndR and Fur, and play a pivotal role in the proliferation in the soil environment. PMID:22360670

  1. Oxidation of alkyl nitronates catalyzed by 2-nitropropane dioxygenase from Hansenula mrakii.

    Science.gov (United States)

    Mijatovic, Slavica; Gadda, Giovanni

    2008-05-01

    2-Nitropropane dioxygenase from Hansenula mrakii was expressed in Escherichia coli cells and purified in active and stable form using 60% saturation of ammonium sulfate and a single chromatographic step onto a DEAE column. MALDI-TOF mass spectrometric and spectrophotometric analyses of the flavin extracted by heat or acid denaturation of the enzyme indicated that FMN, and not FAD as erroneously reported previously, is present in a 1:1 stoichiometry with the protein. Inductively coupled plasma mass spectrometric analysis of the enzyme established that H. mrakii 2-nitropropane dioxygenase contains negligible amounts of iron, manganese, zinc, and copper ions, which are not catalytically relevant. Anaerobic substrate reduction and kinetic data using a Clark oxygen electrode to measure rates of oxygen consumption indicated that the enzyme is active on a broad range of alkyl nitronates, with a marked preference for unbranched substrates over propyl-2-nitronate. Interestingly, the enzyme reacts poorly, if at all, with nitroalkanes, as suggested by lack of both anaerobic reduction of the enzyme-bound flavin and consumption of oxygen with nitroethane, nitrobutane, and 2-nitropropane. Finally, both the tight binding of sulfite (K(d)=90 microM, at pH 8 and 15 degrees C) to the enzyme and the formation of the anionic flavosemiquinone upon anaerobic incubation with alkyl nitronates are consistent with the presence of a positively charged group in proximity of the N1-C2=O atoms of the FMN cofactor. PMID:18329375

  2. The Role of Indoleamine 2,3-Dioxygenase in a Mouse Model of Neuroinflammation-Induced Depression

    NARCIS (Netherlands)

    Dobos, Nikoletta; de Vries, Erik F. J.; Kema, Ido P.; Patas, Konstantinos; Prins, Marloes; Nijholt, Ingrid M.; Dierckx, Rudi A.; Korf, Jakob; den Boer, Johan A.; Luiten, Paul G. M.; Eisel, Ulrich L. M.; Borsello, Tiziana

    2012-01-01

    Indoleamine 2,3-dioxygenase (IDO), an enzyme which is activated by pro-inflammatory cytokines, has been suggested as a potential link between neuroinflammatory processes in neurodegenerative diseases (like Alzheimer's disease) and depression. The present study aimed to determine whether neuroinflamm

  3. Involvement of a flavosemiquinone in the enzymatic oxidation of nitroalkanes catalyzed by 2-nitropropane dioxygenase.

    Science.gov (United States)

    Francis, Kevin; Russell, Bethany; Gadda, Giovanni

    2005-02-18

    2-Nitropropane dioxygenase (EC 1.13.11.32) catalyzes the oxidation of nitroalkanes into their corresponding carbonyl compounds and nitrite. In this study, the ncd-2 gene encoding for the enzyme in Neurospora crassa was cloned, expressed in Escherichia coli, and the resulting enzyme was purified. Size exclusion chromatography, heat denaturation, and mass spectroscopic analyses showed that 2-nitropropane dioxygenase is a homodimer of 80 kDa, containing a mole of non-covalently bound FMN per mole of subunit, and is devoid of iron. With neutral nitroalkanes and anionic nitronates other than propyl-1- and propyl-2-nitronate, for which a non-enzymatic free radical reaction involving superoxide was established using superoxide dismutase, substrate oxidation occurs within the enzyme active site. The enzyme was more specific for nitronates than nitroalkanes, as suggested by the second order rate constant k(cat)/K(m) determined with 2-nitropropane and primary nitroalkanes with alkyl chain lengths between 2 and 6 carbons. The steady state kinetic mechanism with 2-nitropropane, nitroethane, nitrobutane, and nitrohexane, in either the neutral or anionic form, was determined to be sequential, consistent with oxygen reacting with a reduced form of enzyme before release of the carbonyl product. Enzyme-monitored turnover with ethyl nitronate as substrate indicated that the catalytically relevant reduced form of enzyme is an anionic flavin semiquinone, whose formation requires the substrate, but not molecular oxygen, as suggested by anaerobic substrate reduction with nitroethane or ethyl nitronate. Substrate deuterium kinetic isotope effects with 1,2-[(2)H(4)]nitroethane and 1,1,2-[(2)H(3) ethyl nitronate at pH 8 yielded normal and inverse effects on the k(cat)/K(m) value, respectively, and were negligible on the k(cat) value. The k(cat)/K(m) and k(cat) pH profiles with anionic nitronates showed the requirement of an acid, whereas those for neutral nitroalkanes were consistent with

  4. 1,2,3-Triazoles as inhibitors of indoleamine 2,3-dioxygenase 2 (IDO2).

    Science.gov (United States)

    Röhrig, Ute F; Majjigapu, Somi Reddy; Caldelari, Daniela; Dilek, Nahzli; Reichenbach, Patrick; Ascencao, Kelly; Irving, Melita; Coukos, George; Vogel, Pierre; Zoete, Vincent; Michielin, Olivier

    2016-09-01

    Indoleamine 2,3-dioxygenase 2 (IDO2) is a potential therapeutic target for the treatment of diseases that involve immune escape such as cancer. In contrast to IDO1, only a very limited number of inhibitors have been described for IDO2 due to inherent difficulties in expressing and purifying a functionally active, soluble form of the enzyme. Starting from our previously discovered highly efficient 4-aryl-1,2,3-triazole IDO1 inhibitor scaffold, we used computational structure-based methods to design inhibitors of IDO2 which we then tested in cellular assays. Our approach yielded low molecular weight inhibitors of IDO2, the most active displaying an IC50 value of 51μM for mIDO2, and twofold selectivity over hIDO1. These compounds could be useful as molecular probes to investigate the biological role of IDO2, and could inspire the design of new IDO2 inhibitors. PMID:27469130

  5. Homogentisate 1,2 Dioxygenase is Expressed in Human Osteoarticular Cells: Implications in Alkaptonuria

    Science.gov (United States)

    Laschi, Marcella; Tinti, Laura; Braconi, Daniela; Millucci, Lia; Ghezzi, Lorenzo; Amato, Loredana; Selvi, Enrico; Spreafico, Adriano; Bernardini, Giulia; Santucci, Annalisa

    2012-01-01

    Alkaptonuria (AKU) results from defective homogentisate1,2-dioxygenase (HGD), causing degenerative arthropathy. The deposition of ochronotic pigment in joints is so far attributed to homogentisic acid produced by the liver, circulating in the blood and accumulating locally. Human normal and AKU osteoarticular cells were tested for HGD gene expression by RT-PCR, mono- and 2D-Western blotting. HGD gene expression was revealed in chondrocytes, synoviocytes, osteoblasts. Furthermore, HGD expression was confirmed by Western blotting, that also revealed the presence of five enzymatic molecular species. Our findings indicate that AKU osteoarticular cells produce the ochronotic pigment in loco and this may strongly contribute to induction of ochronotic arthropathy. J. Cell. Physiol. 227: 3254–3257, 2012. © 2011 Wiley Periodicals, Inc. PMID:22105303

  6. Characterization of catechol 1,2-dioxygenase from cell extracts of Sphingomonas xenophaga QYY

    Institute of Scientific and Technical Information of China (English)

    M.Salah; Uddin

    2009-01-01

    Sphingomonas xenophaga QYY, capable of growing significantly on more than ten kinds of aromatic compounds as sole carbon source, was used to study characterization of catechol 1,2-dioxygenase (C12O) in cell extracts. Characterization of the crude C12O showed that the maximum activity was obtained at 40-70℃ and pH 7.8-8.8. Metal ions had different influences on the activity of crude C12O. It was suggested that strain QYY possessed an inducible and ferric-dependent C12O. Kinetic studies showed that the value of Vmax and Km was 0.25 μmol catechol/L/mg protein/min and 52.85 μmol/L, respectively. In addition, the partial purification of C12O was achieved by a HiTrap Q Sepharose column chromatography.

  7. Characterization of catechol 1,2-dioxygenase from cell extracts of Sphingomonas xenophaga QYY

    Institute of Scientific and Technical Information of China (English)

    GOU Min; QU YuanYuan; ZHOU JiTi; LI Ang; M.Salah Uddin

    2009-01-01

    Sphingomonas xenophaga QYY, capable of growing significantly on more than ten kinds of aromatic compounds as sole carbon source, was used to study characterization of catechol 1,2-dioxygenase (C120) in cell extracts. Characterization of the crude C120 showed that the maximum activity was obtained at 40-70℃ and pH 7.8-8.8. Metal ions had different influences on the activity of crude C120. It was suggested that strain QYY possessed an inducible and ferric-dependent C120. Kinetic studies showed that the value of Vmax and Km was 0.25 μmol catechol/L/mg protein/min and 52.85 μmol/L, respectively. In addition, the partial purification of C120 was achieved by a HiTrap Q Sepharose column chromatography.

  8. Mutations in the 4-hydroxyphenylpyruvate dioxygenase gene (HPD) in patients with tyrosinemia type III.

    Science.gov (United States)

    Rüetschi, U; Cerone, R; Pérez-Cerda, C; Schiaffino, M C; Standing, S; Ugarte, M; Holme, E

    2000-06-01

    Tyrosinemia type III (OMIM 276710) is an autosomal recessive disorder caused by the deficiency of 4-hydroxyphenylpyruvate dioxygenase (HPD), the second enzyme in the tyrosine catabolic pathway. The enzyme deficiency results in an accumulation and increased excretion of tyrosine and phenolic metabolites. Only a few cases with the disorder have been described, and the clinical spectrum of the disorder is unknown. Reported patients have presented with mental retardation or neurological symptoms or have been picked up by neonatal screening. We have identified four presumed pathogenic mutations (two missense and two nonsense mutations) in the HPD gene in three unrelated families encompassing four homozygous individuals and one compound heterozygous individual with tyrosinemia type III. Furthermore, a number of polymorphic mutations have been identified in the HPD gene. No correlation of the severity of the mutation and enzyme deficiency and mental function has been found; neither do the recorded tyrosine levels correlate with the clinical phenotype.

  9. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran

    International Nuclear Information System (INIS)

    Highlights: ► Burkholderia xenovorans LB400 biphenyl dioxygenase (BphAELB400) metabolizes PCBs. ► Asn338Gln/Leu409Phe double mutation speeds up electron transfer of enzyme reaction. ► We tested how the mutations affect the PCB-degrading abilities of BphAELB400 variants. ► The same mutations also broaden the PCB substrate range of BphAELB400 variants. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAELB400) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAERR41, a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAELB400, metabolized a broader range of PCBs than BphAELB400. Hence, BphAERR41 was able to metabolize 2,6,2′,6′-, 3,4,3′,5′- and 2,4,3′,4′-tetrachlorobiphenyl that BphAELB400 is unable to metabolize. BphAERR41 was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAELB400 to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.

  10. Metabolism of chlorobiphenyls by a variant biphenyl dioxygenase exhibiting enhanced activity toward dibenzofuran

    Energy Technology Data Exchange (ETDEWEB)

    Viger, Jean-Francois; Mohammadi, Mahmood; Barriault, Diane [Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada H4K 1C2 (Canada); Sylvestre, Michel, E-mail: Michel.Sylvestre@iaf.inrs.ca [Institut National de la Recherche Scientifique, INRS-Institut Armand-Frappier, Laval, Quebec, Canada H4K 1C2 (Canada)

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Burkholderia xenovorans LB400 biphenyl dioxygenase (BphAE{sub LB400}) metabolizes PCBs. Black-Right-Pointing-Pointer Asn338Gln/Leu409Phe double mutation speeds up electron transfer of enzyme reaction. Black-Right-Pointing-Pointer We tested how the mutations affect the PCB-degrading abilities of BphAE{sub LB400} variants. Black-Right-Pointing-Pointer The same mutations also broaden the PCB substrate range of BphAE{sub LB400} variants. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) catalyzes the dihydroxylation of biphenyl and of several polychlorinated biphenyls (PCBs) but it poorly oxidizes dibenzofuran. In this work we showed that BphAE{sub RR41}, a variant which was previously found to metabolize dibenzofuran more efficiently than its parent BphAE{sub LB400}, metabolized a broader range of PCBs than BphAE{sub LB400}. Hence, BphAE{sub RR41} was able to metabolize 2,6,2 Prime ,6 Prime -, 3,4,3 Prime ,5 Prime - and 2,4,3 Prime ,4 Prime -tetrachlorobiphenyl that BphAE{sub LB400} is unable to metabolize. BphAE{sub RR41} was obtained by changing Thr335Phe336Asn338Ile341Leu409 of BphAE{sub LB400} to Ala335Met336Gln338Val341Phe409. Site-directed mutagenesis was used to create combinations of each substitution, in order to assess their individual contributions. Data show that the same Asn338Glu/Leu409Phe substitution that enhanced the ability to metabolize dibenzofuran resulted in a broadening of the PCB substrates range of the enzyme. The role of these substitutions on regiospecificities toward selected PCBs is also discussed.

  11. 2,3-Dihydroxybiphenyl dioxygenase gene was first discovered in Arthrobacter sp. strain P J3

    Institute of Scientific and Technical Information of China (English)

    YANG MeiYing; MA PengDa; LI WenMing; LIU JinYing; LI Liang; ZHU XiaoJuan; WANG XingZhi

    2007-01-01

    Bacterium strain PJ3, isolated from wastewater and identified as Arthrobacter sp. bacterium based on its 16S rDNA gene, could use carbazole as the sole carbon, nitrogen and energy source. The genomic libraryof strain PJ3 was constructed and a positive clone JM109 (pUCW402) was screened out for the expression of dioxygenase by the ability to form yellow ring-fission product. A 2,3-dihydroxybiphenyl dioxygenase (23DHBD) gene of 933 bp was found in the 3360 bp exogenous fragment of pUCW402 by GenSCAN software and BLAST analysis. The phylogenetic analysis showed that 23DHBD from strain PJ3 formed a deep branch separate from a cluster containing most known 23DHBD in GenBank.Southern hybridization confirmed for the first time that the 23DHBD gene was from the genomic DNA of Arthrobacter sp. PJ3. In order to test the gene function, recombinant bacterium BL21 (pETW-8) was constructed to express 23DHBD. The expression level in BL21 (pETW-8) was highest compared with the recombinant bacteria JM109 (pUCW402) and strain PJ3. We observed that 23DHBD was not absolute specific. The enzyme activity was higher with 2,3-dihydroxybiphenyl as a substrate than with catechol.The substrate specificity assay suggested that 23DHBD was essential for cleavage of bi-cyclic aromatic compounds during the course of aromatic compound biodegradation in Arthrobacter sp. strain PJ3.

  12. Linolenate 9R-dioxygenase and allene oxide synthase activities of Lasiodiplodia theobromae.

    Science.gov (United States)

    Jernerén, Fredrik; Eng, Felipe; Hamberg, Mats; Oliw, Ernst H

    2012-01-01

    Jasmonic acid (JA) is synthesized from linolenic acid (18:3n-3) by sequential action of 13-lipoxygenase, allene oxide synthase (AOS), and allene oxide cyclase. The fungus Lasiodiplodia theobromae can produce large amounts of JA and was recently reported to form the JA precursor 12-oxophytodienoic acid. The objective of our study was to characterize the fatty acid dioxygenase activities of this fungus. Two strains of L. theobromae with low JA secretion (~0.2 mg/L medium) oxygenated 18:3n-3 to 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid as well as 9R-hydroperoxy-10E,12Z,15Z-octadecatrienoic acid, which was metabolized by an AOS activity into 9-hydroxy-10-oxo-12Z,15Z-octadecadienoic acid. Analogous conversions were observed with linoleic acid (18:2n-6). Studies using [11S-(2)H]18:2n-6 revealed that the putative 9R-dioxygenase catalyzed stereospecific removal of the 11R hydrogen followed by suprafacial attack of dioxygen at C-9. Mycelia from these strains of L. theobromae contained 18:2n-6 as the major polyunsaturated acid but lacked 18:3n-3. A third strain with a high secretion of JA (~200 mg/L) contained 18:3n-3 as a major fatty acid and produced 5,8-dihydroxy-9Z,12Z,15Z-octadecatrienoic acid from added 18:3n-3. This strain also lacked the JA biosynthetic enzymes present in higher plants. PMID:22048860

  13. Structure of the Dioxygenase AsqJ: Mechanistic Insights into a One-Pot Multistep Quinolone Antibiotic Biosynthesis

    KAUST Repository

    Bräuer, Alois

    2015-11-10

    © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. Multienzymatic cascades are responsible for the biosynthesis of natural products and represent a source of inspiration for synthetic chemists. The FeII/α-ketoglutarate-dependent dioxygenase AsqJ from Aspergillus nidulans is outstanding because it stereoselectively catalyzes both a ferryl-induced desaturation reaction and epoxidation on a benzodiazepinedione. Interestingly, the enzymatically formed spiro epoxide spring-loads the 6,7-bicyclic skeleton for non-enzymatic rearrangement into the 6,6-bicyclic scaffold of the quinolone alkaloid 4′-methoxyviridicatin. Herein, we report different crystal structures of the protein in the absence and presence of synthesized substrates, surrogates, and intermediates that mimic the various stages of the reaction cycle of this exceptional dioxygenase.

  14. Indoleamine 2,3-Dioxygenase 1 (Ido1) Is Involved in the Control of Mouse Caput Epididymis Immune Environment

    OpenAIRE

    Aicha Jrad-Lamine; Joelle Henry-Berger; Christelle Damon-Soubeyrand; Fabrice Saez; Ayhan Kocer; Laurent Janny; Hanae Pons-Rejraji; MUNN, DAVID H.; Mellor, Andrew L.; Najoua Gharbi; Rémi Cadet; Rachel Guiton; Aitken, Robert J.; Joël R Drevet

    2013-01-01

    The epididymis maintains a state of immune tolerance towards spermatozoa while also protecting them and itself against infection and acute inflammation. The immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (Ido1) participates in this delicate local equilibrium. Using the mouse Ido1(-/-) model, we show here that the absence of IDO1 expression leads in the epididymis but not in serum to (1) an increase in the inflammatory state as evidenced by changes in the content of cytokines and chemo...

  15. THE ROLE OF 4-HYDROXYPHENYLPYRUVATE DIOXYGENASE IN ENHANCEMENT OF SOLID-PHASE ELECTRON TRANSFER BY SHEWANELLA ONEIDENSIS MR-1

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Amy Ekechukwu, A

    2007-06-01

    While mechanistic details of dissimilatory metal reduction are far from being understood, it is postulated that the electron transfer to solid metal oxides is mediated by outer membrane-associated c-type cytochromes and redox active electron shuttling compounds. This study focuses on the production of homogensitate in Shewanella oneidensis MR-1, an intermediate of tyrosine degradation pathway, which is a precursor of a redox cycling metabolite, pyomelanin. In this study, we determined that two enzymes involved in this pathway, 4-hydroxyphenylpyruvate dioxygenase (4HPPD) and homogentisate 1,2-dioxygenase are responsible for homogentisate production and oxidation, respectively. Inhibition of 4-HPPD activity with the specific inhibitor sulcotrione (2-(2-chloro-4-methane sulfonylbenzoyl)-1,3-cyclohexanedione), and deletion of melA, a gene encoding 4-HPPD, resulted in no pyomelanin production by S. oneidensis MR-1. Conversely, deletion of hmgA which encodes the putative homogentisate 1,2-dioxygenase, resulted in pyomelanin overproduction. The efficiency and rates, with which MR-1 reduces hydrous ferric oxide, were directly linked to the ability of mutant strains to produce pyomelanin. Electrochemical studies with whole cells demonstrated that pyomelanin substantially increases the formal potential (E{sup o}{prime}) of S. oneidensis MR-1. Based on this work, environmental production of pyomelanin likely contributes to an increased solid-phase metal reduction capacity in Shewanella oneidensis.

  16. Crystallization and preliminary crystallographic analysis of 2-aminophenol 1,6-dioxygenase complexed with substrate and with an inhibitor.

    Science.gov (United States)

    Li, De-Feng; Zhang, Jia-Yue; Hou, Yanjie; Liu, Lei; Liu, Shuang-Jiang; Liu, Wei

    2012-11-01

    Dioxygen activation implemented by nonhaem Fe(II) enzymes containing the 2-His-1-carboxylate facial triad has been extensively studied in recent years. Extradiol dioxygenase is the archetypal member of this superfamily and catalyzes the oxygenolytic ring opening of catechol analogues. Here, the crystallization and preliminary X-ray analysis of 2-aminophenol 1,6-dioxygenase, an enzyme representing a minor subset of extradiol dioxygenases that catalyze the fission of 2-aminophenol rather than catecholic compounds, is reported. Crystals of the holoenzyme with FeII and of complexes with the substrate 2-aminophenol and the suicide inhibitor 4-nitrocatechol were grown using the cocrystallization method under the same conditions as used for the crystallization of the apoenzyme. The crystals belonged to space group C2 and diffracted to 2.3-2.7 Å resolution; the crystal that diffracted to the highest resolution had unit-cell parameters a=270.24, b=48.39, c=108.55 Å, β=109.57°. All X-ray data sets collected from diffraction-quality crystals were suitable for structure determination.

  17. An aryl dioxygenase shows remarkable double dioxygenation capacity for diverse bis-aryl compounds, provided they are carbocyclic.

    Science.gov (United States)

    Overwin, Heike; González, Myriam; Méndez, Valentina; Seeger, Michael; Wray, Victor; Hofer, Bernd

    2016-09-01

    The bacterial dioxygenation of mono- or polycyclic aromatic compounds is an intensely studied field. However, only in a few cases has the repeated dioxygenation of a substrate possessing more than a single aromatic ring been described. We previously characterized the aryl-hydroxylating dioxygenase BphA-B4h, an artificial hybrid of the dioxygenases of the biphenyl degraders Burkholderia xenovorans LB400 and Pseudomonas sp. strain B4-Magdeburg, which contains the active site of the latter enzyme, as an exceptionally powerful biocatalyst. We now show that this dioxygenase possesses a remarkable capacity for the double dioxygenation of various bicyclic aromatic compounds, provided that they are carbocyclic. Two groups of biphenyl analogues were examined: series A compounds containing one heterocyclic aromatic ring and series B compounds containing two homocyclic aromatic rings. Whereas all of the seven partially heterocyclic biphenyl analogues were solely dioxygenated in the homocyclic ring, four of the six carbocyclic bis-aryls were converted into ortho,meta-hydroxylated bis-dihydrodiols. Potential reasons for failure of heterocyclic dioxygenations are discussed. The obtained bis-dihydrodiols may, as we also show here, be enzymatically re-aromatized to yield the corresponding tetraphenols. This opens a way to a range of new polyphenolic products, a class of compounds known to exert multiple biological activities. Several of the obtained compounds are novel molecules. PMID:27147529

  18. Molecular mechanism of strict substrate specificity of an extradiol dioxygenase, DesB, derived from Sphingobium sp. SYK-6.

    Directory of Open Access Journals (Sweden)

    Keisuke Sugimoto

    Full Text Available DesB, which is derived from Sphingobium sp. SYK-6, is a type II extradiol dioxygenase that catalyzes a ring opening reaction of gallate. While typical extradiol dioxygenases show broad substrate specificity, DesB has strict substrate specificity for gallate. The substrate specificity of DesB seems to be required for the efficient growth of S. sp. SYK-6 using lignin-derived aromatic compounds. Since direct coordination of hydroxyl groups of the substrate to the non-heme iron in the active site is a critical step for the catalytic reaction of the extradiol dioxygenases, the mechanism of the substrate recognition and coordination of DesB was analyzed by biochemical and crystallographic methods. Our study demonstrated that the direct coordination between the non-heme iron and hydroxyl groups of the substrate requires a large shift of the Fe (II ion in the active site. Mutational analysis revealed that His124 and His192 in the active site are essential to the catalytic reaction of DesB. His124, which interacts with OH (4 of the bound gallate, seems to contribute to proper positioning of the substrate in the active site. His192, which is located close to OH (3 of the gallate, is likely to serve as the catalytic base. Glu377' interacts with OH (5 of the gallate and seems to play a critical role in the substrate specificity. Our biochemical and structural study showed the substrate recognition and catalytic mechanisms of DesB.

  19. Characterization of arene di-oxygenases involved in polycyclic aromatic hydrocarbons biodegradation in Mycobacterium sp. 6PY1; Caracterisation d'arene dioxygenases impliquees dans la biodegradation des hydrocarbures aromatiques polycycliques chez Mycobacterium sp. 6PY1

    Energy Technology Data Exchange (ETDEWEB)

    Kuony, S.

    2005-06-15

    This thesis deals with the bacterial biodegradation of pollutants called polycyclic aromatic hydrocarbons (PAHs). The bacterium Mycobacterium sp. 6PY1 was isolated from a polluted soil for its ability to use pyrene, a 4-ring PAH, as sole source of carbon and energy. To learn about the pyrene metabolic pathway, the identification of the enzymes involved in this process has been undertaken using a proteomic approach. This approach revealed the occurrence of two ring-hydroxylating di-oxygenases in strain 6PY1, which could catalyze the initial attack of pyrene. The goal of this study was to clone the genes encoding the di-oxygenases identified in Mycobacterium sp. 6PY1, over-express these genes in an heterologous system in order to facilitate the purification of the corresponding enzymes, and determine the biochemical and catalytic properties of these enzymes. The pdoA1B1 genes encoding the terminal component of a di-oxygenase were cloned and over-expressed in Escherichia coli. The catalytic properties of this enzyme, called Pdo1, were determined in vivo by measuring the oxidation products of 2- to 4-ring PAHs by gas chromatography coupled to mass spectrometry (GC-MS). Analysis of the selectivity of the enzyme, as determined using GC-MS, showed that Pdo1 preferentially oxidized 3- or 4-ring PAHs, including phenanthrene and pyrene, but was inactive on di-aromatic compounds such as naphthalene and biphenyl. Pdo1 was unstable and was therefore purified in inactive form. The genes encoding a second di-oxygenase component were found in a locus containing two other catabolic genes. The pdoA2B2 genes encoded an enzyme called Pdo2 showing a narrow specificity towards 2- to 3-ring PAHs, and a high preference for phenanthrene. Pdo2 is an a3{beta}3 hexamer, containing [2Fe-2S] Rieske clusters which confer it a characteristic absorbance spectrum. A third set of genes possibly encoding another di-oxygenase was discovered in the genome of Mycobacterium sp. 6PY1. This set is closely

  20. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pravindra; Mohammadi, Mahmood; Dhindwal, Sonali; Pham, Thi Thanh My; Bolin, Jeffrey T.; Sylvestre, Michel (INRS); (IIT-India); (Purdue)

    2012-06-28

    The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) is a Rieske-type oxygenase that catalyzes the stereospecific oxygenation of many heterocyclic aromatics including dibenzofuran. In a previous work, we evolved BphAE{sub LB400} and obtained BphAE{sub RR41}. This variant metabolizes dibenzofuran and 2-chlorodibenzofuran more efficiently than BphAE{sub LB400}. However, the regiospecificity of BphAE{sub RR41} toward these substrates differs. Dibenzofuran is metabolized principally through a lateral dioxygenation whereas 2-chlorodibenzofuran is metabolized principally through an angular dioxygenation. In order to explain this difference, we examined the crystal structures of both substrate-bound forms of BphAE{sub RR41} obtained under anaerobic conditions. This structure analysis, in combination with biochemical data for a Ser283Gly mutant provided evidences that the substrate is compelled to move after oxygen-binding in BphAE{sub RR41}:dibenzofuran. In BphAE{sub RR41}:2-chlorodibenzofuran, the chlorine atom is close to the side chain of Ser283. This contact is missing in the BphAE{sub RR41}:dibenzofuran, and strong enough in the BphAE{sub RR41}:2-chlorodibenzofuran to help prevent substrate movement during the catalytic reaction.

  1. The key role of water in the dioxygenase function of Escherichia coli flavohemoglobin.

    Science.gov (United States)

    Ferreiro, Dardo N; Boechi, Leonardo; Estrin, Darío A; Martí, Marcelo A

    2013-02-01

    Flavohemoglobins (FHbs) are members of the globin superfamily, widely distributed among prokaryotes and eukaryotes that have been shown to carry out nitric oxide dioxygenase (NOD) activity. In prokaryotes, such as Escherichia coli, NOD activity is a defence mechanism against the NO release by the macrophages of the hosts' immune system during infection. Because of that, FHbs have been studied thoroughly and several drugs have been developed in an effort to fight infectious processes. Nevertheless, the protein's structural determinants involved in the NOD activity are still poorly understood. In this context, the aim of the present work is to unravel the molecular basis of FHbs structural dynamics-to-function relationship using state of the art computer simulation tools. In an effort to fulfill this goal, we studied three key processes that determine NOD activity, namely i) ligand migration into the active site ii) stabilization of the coordinated oxygen and iii) intra-protein electron transfer (ET). Our results allowed us to determine key factors related to all three processes like the presence of a long hydrophobic tunnel for ligand migration, the presence of a water mediated hydrogen bond to stabilize the coordinated oxygen and therefore achieve a high affinity, and the best possible ET paths between the FAD and the heme, where water molecules play an important role. Taken together the presented results close an important gap in our understanding of the wide and diverse globin structural-functional relationships. PMID:23220591

  2. Salmonella overcomes tumor immune tolerance by inhibition of tumor indoleamine 2, 3-dioxygenase 1 expression.

    Science.gov (United States)

    Kuan, Yu-Diao; Lee, Che-Hsin

    2016-01-01

    Over the past decades, Salmonella has been proven capable of inhibiting tumor growth. It can specifically target tumors and due to its facultative anaerobic property, can be more penetrative than other drug therapies. However, the molecular mechanism by which Salmonella inhibits tumor growth is still incompletely known. The antitumor therapeutic effect mediated by Salmonella is associated with an inflammatory immune response at the tumor site and a T cell-dependent immune response. Many tumors have been proven to have a high expression of indoleamine 2, 3-dioxygenase 1 (IDO), which is a rate-limiting enzyme that catalyzes tryptophan to kynurenine, thus causing immune tolerance within the tumor microenvironment. With decreased expression of IDO, increased immune response can be observed, which might be helpful when developing cancer immunotherapy. The expression of IDO was decreased after tumor cells were infected with Salmonella. In addition, Western blot analysis showed that the expression levels of phospho-protein kinase B (P-AKT), phospho-mammalian targets of rapamycin (P-mTOR), and phospho-p70 ribosomal s6 kinase (P-p70s6K) in tumor cells were decreased after Salmonella infection. In conclusion, our results indicate that Salmonella inhibits IDO expression and plays a crucial role in anti-tumor therapy, which might be a promising strategy combined with other cancer treatments.

  3. Lignans from Carthamus tinctorius suppress tryptophan breakdown via indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Kuehnl, Susanne; Schroecksnadel, Sebastian; Temml, Veronika; Gostner, Johanna M; Schennach, Harald; Schuster, Daniela; Schwaiger, Stefan; Rollinger, Judith M; Fuchs, Dietmar; Stuppner, Hermann

    2013-10-15

    Seed extracts of Carthamus tinctorius L. (Asteraceae), safflower, have been traditionally used to treat coronary disease, thrombotic disorders, and menstrual problems but also against cancer and depression. A possible effect of C. tinctorius compounds on tryptophan-degrading activity of enzyme indoleamine 2,3-dioxygenase (IDO) could explain many of its activities. To test for an effect of C. tinctorius extracts and isolated compounds on cytokine-induced IDO activity in immunocompetent cells in vitro methanol and ethylacetate seed extracts were prepared from cold pressed seed cakes of C. tinctorius and three lignan derivatives, trachelogenin, arctigenin and matairesinol were isolated. The influence on tryptophan breakdown was investigated in peripheral blood mononuclear cells (PBMCs). Effects were compared to neopterin production in the same cellular assay. Both seed extracts suppressed tryptophan breakdown in stimulated PBMC. The three structurally closely related isolates exerted differing suppressive activity on PBMC: arctigenin (IC50 26.5μM) and trachelogenin (IC50 of 57.4μM) showed higher activity than matairesinol (IC50 >200μM) to inhibit tryptophan breakdown. Effects on neopterin production were similar albeit generally less strong. Data show an immunosuppressive property of compounds which slows down IDO activity. The in vitro results support the view that some of the anti-inflammatory, anticancer and antidepressant properties of C. tinctorius lignans might relate to their suppressive influence on tryptophan breakdown. PMID:23867649

  4. On the substrate- and stereospecificity of the plant carotenoid cleavage dioxygenase 7

    KAUST Repository

    Bruno, Mark

    2014-05-01

    Strigolactones are phytohormones synthesized from carotenoids via a stereospecific pathway involving the carotenoid cleavage dioxygenases 7 (CCD7) and 8. CCD7 cleaves 9-cis-β-carotene to form a supposedly 9-cis-configured β-apo-10′-carotenal. CCD8 converts this intermediate through a combination of yet undetermined reactions into the strigolactone-like compound carlactone. Here, we investigated the substrate and stereo-specificity of the Arabidopsis and pea CCD7 and determined the stereo-configuration of the β-apo-10′-carotenal intermediate by using Nuclear Magnetic Resonance Spectroscopy. Our data unequivocally demonstrate the 9-cis-configuration of the intermediate. Both CCD7s cleave different 9-cis-carotenoids, yielding hydroxylated 9-cis-apo-10′-carotenals that may lead to hydroxylated carlactones, but show highest affinity for 9-cis-β-carotene. © 2014 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  5. Pyrazolone-quinazolone hybrids: a novel class of human 4-hydroxyphenylpyruvate dioxygenase inhibitors.

    Science.gov (United States)

    Xu, Yu-Ling; Lin, Hong-Yan; Cao, Run-Jie; Ming, Ze-Zhong; Yang, Wen-Chao; Yang, Guang-Fu

    2014-10-01

    4-Hydroxyphenylpyruvate dioxygenase (HPPD), converting 4-hydroxyphenylpyruvate acid to homogentisate, is an important target for treating type I tyrosinemia and alkaptonuria due to its significant role in tyrosine catabolism. However, only one commercial drug, NTBC, also known as nitisinone, has been available for clinical use so far. Herein, we have elucidated the structure-based design of a series of pyrazolone-quinazolone hybrids that are novel potent human HPPD inhibitors through the successful integration of various techniques including computational simulations, organic synthesis, and biochemical characterization. Most of the new compounds displayed potent inhibitory activity against the recombinant human HPPD in nanomolar range. Compounds 3h and 3u were identified as the most potent candidates with Ki values of around 10 nM against human HPPD, about three-fold more potent than NTBC. Molecular modeling indicated that the interaction between the pyrazolone ring and ferrous ion, and the hydrophobic interaction of quinazolone with its surrounding residues, such as Phe347 and Phe364, contributed greatly to the high potency of these inhibitors. Therefore, compounds 3h and 3u could be potentially useful for the treatment of type I tyrosinemia and other diseases with defects in tyrosine degradation. PMID:25182962

  6. Functional expression of a valencene dioxygenase from Pleurotus sapidus in E. coli.

    Science.gov (United States)

    Zelena, Kateryna; Krings, Ulrich; Berger, Ralf G

    2012-03-01

    Valencene dioxygenase (ValOx) from the edible basidiomycete Pleurotus sapidus converted the sesquiterpene (+)-valencene to the valuable grapefruit flavour (+)-nootkatone and to nootkatols through intermediate hydroperoxides. Expression of the enzyme was carried out in the cytosol and periplasm of Escherichia coli. The heterologous production led to high yields of inclusion bodies. The poor yield of soluble recombinant protein was improved by various strategies including cold shock expression, chaperone co-expression, and employment of mutant E. coli strains. Up to 60 mg of the biologically active, soluble ValOx was produced by cold shock under control of the cspA promoter at 8 °C in the BL21(DE3)Star strain and co-expression of the E. coli trigger factor. The recombinant enzyme, purified using the N-terminal His tag, showed the catalytic properties of the wild-type enzyme, as was confirmed by the LC-MS analysis of hydroperoxide intermediates and GC-MS analysis of the volatile products. PMID:22264428

  7. The Immunoregulatory Function of Indoleamine 2, 3 Dioxygenase and Its Application in Allotransplantation

    Directory of Open Access Journals (Sweden)

    Reza B. Jalili

    2007-12-01

    Full Text Available Indolemine 2, 3-dioxygenase (IDO is a cytosolic monomeric hemoprotein enzyme that catalyses tryptophan, the least available essential amino acid in the human body, to N-formylkynurenine, which in turn rapidly degrades to give kynurenine. IDO is expressed in different tissues, especially and prominently in some subsets of antigen presenting cells (APCs of lymphoid organs and also in the placenta of human and other mammals. Expression of IDO by certain dendritic cells, monocytes and macrophages has a regulatory effect on T cells probably by providing a tryptophan-deficient microenvironment and/or accumulation of toxic metabolites of tryptophan. This immunomodulatory function of IDO plays an essential role in different physiological and pathological states. IDO was shown to prevent rejection of the fetus during pregnancy, possibly by inhibiting alloreactive T cells. Moreover, IDO expression in APCs was suggested to control autoreactive immune responses. In this review we discuss the molecular and biological characteristics of IDO and its function in immune system as well as the potential application of this enzyme in improving the outcome of allogeneic transplantation as a local immunosuppressive factor.

  8. Indoleamine 2,3 Dioxygenase (IDO Expression and Activity in Relapsing-Remitting Multiple Sclerosis.

    Directory of Open Access Journals (Sweden)

    Roberta Mancuso

    Full Text Available Interferon gamma (IFN-γ production induces the transcription of indoleamine 2,3 dioxygenase (IDO resulting in the reduction of T-cell activation and proliferation through the depletion of tryptophan and the elicitation of Treg lymphocytes. IDO was shown to be involved in the pathogenesis of autoimmune diseases; we investigated whether changes in IDO gene expression and activity could be indicative of onset of relapse in multiple sclerosis (MS patients.IDO and interferon-γ (IFN-γ gene expression, serum IDO activity (Kynurenine/Tryptophan ratio and serum neopterin concentration--a protein released by macrophages upon IFN-γ stimulation--were measured in 51 individuals: 36 relapsing remitting (RR-MS patients (21 in acute phase--AMS, 15 in stable phase--SMS and 15 healthy controls (HC. PBMCs samples in AMS patients were collected before (BT-AMS and during glucocorticoids-based therapy (DT-AMS.IDO expression was increased and IFN-γ was decreased (p<0.001 in BT-AMS compared to SMS patients. Glucocorticoids-induced disease remission resulted in a significant reduction of IDO and IFN-γ gene expression, IDO catalytic activity (p<0.001. Serum neopterin concentration followed the same trend as IDO expression and activity.Measurement of IDO gene expression and activity in blood could be a useful marker to monitor the clinical course of RR-MS. Therapeutic interventions modulating IDO activity may be beneficial in MS.

  9. Identification and expression pattern of a new carotenoid cleavage dioxygenase gene member from Bixa orellana.

    Science.gov (United States)

    Rodríguez-Ávila, N L; Narváez-Zapata, J A; Ramírez-Benítez, J E; Aguilar-Espinosa, M L; Rivera-Madrid, R

    2011-11-01

    Carotenoid cleavage dioxygenases (CCDs) are a class of enzymes involved in the biosynthesis of a broad diversity of secondary metabolites known as apocarotenoids. In plants, CCDs are part of a genetic family with members which cleave specific double bonds of carotenoid molecules. CCDs are involved in the production of diverse and important metabolites such as vitamin A and abscisic acid (ABA). Bixa orellana L. is the main source of the natural pigment annatto or bixin, an apocarotenoid accumulated in large quantities in its seeds. Bixin biosynthesis has been studied and the involvement of a CCD has been confirmed in vitro. However, the CCD genes involved in the biosynthesis of the wide variety of apocarotenoids found in this plant have not been well documented. In this study, a new CCD1 gene member (BoCCD1) was identified and its expression was charaterized in different plant tissues of B. orellana plantlets and adult plants. The BoCCD1 sequence showed high homology with plant CCD1s involved mainly in the cleavage of carotenoids in several sites to generate multiple apocarotenoid products. Here, the expression profiles of the BoCCD1 gene were analysed and discussed in relation to total carotenoids and other important apocarotenoids such as bixin. PMID:21813796

  10. Reaction mechanism of cobalt-substituted homoprotocatechuate 2,3-dioxygenase: a QM/MM study.

    Science.gov (United States)

    Cao, Lili; Dong, Geng; Lai, Wenzhen

    2015-04-01

    The reaction mechanisms of cobalt-substituted homoprotocatechuate 2,3-dioxygenase (Co-HPCD) with electron-rich substrate homoprotocatechuate (HPCA) and electron-poor substrate 4-nitrocatechol (4NC) were investigated by quantum mechanical/molecular mechanical (QM/MM) calculations. Our results demonstrated that the Co-O2 adducts has doublet ground state with a Co(III)-O2(•-) character when 4NC was used as the substrate, in good agreement with the EPR spectroscopic experiment. The reactive oxygen species is the doublet Co(III)-O2(•-) for Co-HPCD/4NC and the quartet SQ(•↑)-Co(II)-O2(•-↓) species for Co-HPCD/HPCA, indicating that the substrate plays important roles in the dioxygen activation by Co-HPCD. B3LYP was found to overestimate the rate-limiting barriers in Co-HPCD. TPSSh predicts barriers of 21.5 versus 12.0 kcal/mol for Co-HPCD/4NC versus Co-HPCD/HPCA, which is consistent with the fact that the rate of the reaction is decreased when the substrate was changed from HPCA to 4NC.

  11. Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts.

    Science.gov (United States)

    Gupta, S L; Carlin, J M; Pyati, P; Dai, W; Pfefferkorn, E R; Murphy, M J

    1994-01-01

    Studies were carried out to evaluate the proposed role of indoleamine 2,3-dioxygenase (INDO) induction in the antimicrobial and antiproliferative effects of gamma interferon (IFN-gamma) in human fibroblasts. The INDO cDNA coding region was cloned in the pMEP4 expression vector, containing the metallothionein (MTII) promoter in the sense (+ve) or the antisense (-ve) orientation. Human fibroblasts (GM637) stably transfected with the sense construct expressed INDO activity after treatment with CdCl2 or ZnSO4, but cells transfected with the antisense construct did not. The growth of Chlamydia psittaci was strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+ or Zn2+. The inhibition correlated with the level of INDO activity induced and could be reversed by the addition of excess tryptophan to the medium. The growth of Toxoplasma gondii was also strongly inhibited in INDO +ve cells but not in INDO -ve cells after treatment with Cd2+. Expression of Cd(2+)-induced INDO activity also inhibited thymidine incorporation and led to cytotoxicity in INDO +ve cells but not in INDO -ve cells. Thus, the induction of INDO activity by IFN-gamma may be an important factor in the antimicrobial and antiproliferative effects of IFN-gamma in human fibroblasts. Images PMID:8188349

  12. Cysteine dioxygenase type 1 promotes adipogenesis via interaction with peroxisome proliferator-activated receptor gamma

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Peng; Chen, Yi; Ji, Ning; Lin, Yunfeng; Yuan, Quan; Ye, Ling; Chen, Qianming, E-mail: qmchen@scu.edu.cn

    2015-02-27

    Mammalian cysteine dioxygenase type 1 (CDO1) is an essential enzyme for taurine biosynthesis and the biodegradation of toxic cysteine. As previously suggested, Cdo1 may be a marker of liposarcoma progression and adipogenic differentiation, but the role of Cdo1 in adipogenesis has yet been reported. In this study, we found that the expression of Cdo1 is dramatically elevated during adipogenic differentiation of 3T3-L1 pre-adipocytes and mouse bone marrow-derived mesenchymal stem cells (mBMSCs). Conversely, knockdown of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation in 3T3-L1 cells and mBMSCs. Mechanistically, we found Cdo1 interacted with Pparγ in response to adipogenic stimulus. Further, depletion of Cdo1 reduced the recruitment of Pparγ to the promoters of C/EBPα and Fabp4. Collectively, our finding indicates that Cdo1 may be a co-activator of Pparγ in adipogenesis, and may contribute to the development of disease associated with excessive adipose tissue. - Highlights: • Cdo1expression is highly up-regulated during adipogenic differentiation of 3T3-L1 and mBMSCs. • Depletion of Cdo1 inhibited expression of adipogenic specific genes and lipid droplet formation. • Cdo1interacts with Pparγ during adipogenesis. • Knockdown of Cdo1 inhibited Pparγ binding to the promoters of C/EBPα and Fabp4.

  13. Indoleamine 2,3-dioxygenase expression in patients with allergic rhinitis: a case-control study

    Directory of Open Access Journals (Sweden)

    Luukkainen Annika

    2011-12-01

    Full Text Available Abstract Background Indoleamine 2,3-dioxygenase (IDO is a tryptophan catalyzing enzyme. It has been suggested that it has a role in lower airway allergic inflammations, but its role in allergic rhinitis has not been investigated. Objective Our aim was to evaluate the expression of IDO in the nasal mucosa of allergic rhinitis patients allergic to birch pollen during peak exposure to birch pollen allergen and compare it to non-atopic patients. Methods IDO expression was immunohistochemically evaluated from nasal specimens obtained in- and off-season from otherwise healthy non-smoking volunteers both allergic to birch pollen (having mild or moderate allergic rhinoconjunctivitis and non-allergic controls. Results: The IDO expression levels were low in healthy controls and remained low also in patients allergic to birch pollen. There were no differences in the expression of IDO in- and off-season in either healthy or allergic subjects. Conclusions There is a controversy in the role of IDO in upper and lower airways during allergic airway disease. It seems that IDO is associated to allergic inflammations of the lower airways, but does not have a local role in the nasal cavity at least in mild or moderate forms of allergic rhinitis.

  14. Tissue distribution, intracellular localization and proteolytic processing of rat 4-hydroxyphenylpyruvate dioxygenase.

    Science.gov (United States)

    Neve, Søren; Aarenstrup, Lene; Tornehave, Ditte; Rahbek-Nielsen, Henrik; Corydon, Thomas Juhl; Roepstorff, Peter; Kristiansen, Karsten

    2003-01-01

    4-hydroxyphenylpyruvate dioxygenase (HPD) is an important enzyme involved in tyrosine catabolism. HPD was shown to be identical to a protein named the F-antigen, exploited by immunologists because of its unique immunological properties. Congenital HPD deficiency is a rare, relatively benign condition known as hereditary type III tyrosinemia. Decreased expression of HPD is often observed in association with the severe type I tyrosinemia, and interestingly, inhibition of HPD activity seems to ameliorate the clinical symptoms of type I tyrosinemia. In this study we present a comprehensive analysis of tissue specific expression and intracellular localization of HPD in the rat. By combined use of in situ hybridization and immunohistochemistry we confirm previously known sites of expression in liver and kidney. In addition, we show that HPD is abundantly expressed in neurons in the cortex, cerebellum and hippocampus. By using immunoelectron microscopy and confocal laser scanning microscopy, we provide evidence that HPD contrary to earlier assumptions specifically localizes to membranes of the endoplasmic reticulum and the Golgi apparatus. Detailed mass spectrometric analyses of HPD purified from rat liver revealed N-terminal and C-terminal processing of HPD, and expression of recombinant HPD suggested that C-terminal processing enhances the enzymatic activity.

  15. Expression and post-translational modification of human 4-hydroxy-phenylpyruvate dioxygenase.

    Science.gov (United States)

    Aarenstrup, Lene; Falch, Anne Marie; Jakobsen, Kirsten K; Neve, Søren; Henriksen L, Linda Ø; Tommerup, Niels; Leffers, Henrik; Kristiansen, Karsten

    2002-01-01

    4-hydroxyphenylpyruvate dioxygenase (HPD) (EC 1.13.11.27) is a key enzyme involved in tyrosine catabolism. Congenital HPD deficiency is a rare, relatively benign condition known as hereditary type III tyrosinemia. The severe type I tyrosinemia, caused by a deficiency of fumarylacetoacetate hydrolase which functions downstream of HPD in the tyrosine degradation pathway, is often associated with decreased expression of HPD, and interestingly, inhibition of HPD activity seems to ameliorate the clinical symptoms of type I tyrosinemia. The HPD gene was previously mapped to the chromosomal region 12q24-->qter. In the present study high-resolution chromosome mapping localized the HPD gene to 12q24.31. DNase I footprinting, revealed that four regions of the HPD promoter were protected by rat liver nuclear proteins. Computer-assisted analyses suggested that these elements might bind Sp1/AP2, HNF4, HNF3/CREB, and C/EBP, respectively. In transient transfection experiments, the proximal 271bp of the promoter conferred basal transcriptional activation in human Chang cells. Sequences in intron 1 were able to enhance the activity of this basal promoter. Finally, vaccinia virus-based expression provided evidence that HPD is subject to phosphorylation, and furthermore, allowed mapping of the HPD protein in the human keratinocyte 2D database.

  16. Mutations in the 4-hydroxyphenylpyruvic acid dioxygenase gene are responsible for tyrosinemia type III and hawkinsinuria.

    Science.gov (United States)

    Tomoeda, K; Awata, H; Matsuura, T; Matsuda, I; Ploechl, E; Milovac, T; Boneh, A; Scott, C R; Danks, D M; Endo, F

    2000-11-01

    The enzyme 4-hydroxyphenylpyruvic acid dioxygenase (HPD) catalyzes the reaction of 4-hydroxyphenylpyruvic acid to homogentisic acid in the tyrosine catabolism pathway. A deficiency in the catalytic activity of HPD may lead to tyrosinemia type III, an autosomal recessive disorder characterized by elevated levels of blood tyrosine and massive excretion of tyrosine derivatives into urine. It has been postulated that hawkinsinuria, an autosomal dominant disorder characterized by the excretion of 'hawkinsin,' may also be a result of HPD deficiency. Hawkinsin is a sulfur amino acid identified as (2-l-cystein-S-yl, 4-dihydroxycyclohex-5-en-1-yl)acetic acid. Patients with hawkinsinuria excrete this metabolite in their urine throughout their life, although symptoms of metabolic acidosis and tyrosinemia improve in the first year of life. We performed analyses of the HPD gene in a patient with tyrosinemia type III and two unrelated patients with hawkinsinuria. A homozygous missense mutation predicting an Ala to Val change at codon 268 (A268V) in the HPD gene was found in the patient with tyrosinemia type III. A heterozygous missense mutation predicting an Ala to Thr change at codon 33 (A33T) was found in the same HPD gene in the two patients with hawkinsinuria. These findings support the hypothesis that alterations in the structure and activity of HPD are causally related to two different metabolic disorders, tyrosinemia type III and hawkinsinuria.

  17. Emerging concepts on inhibitors of indoleamine 2,3-dioxygenase in rheumatic diseases.

    Science.gov (United States)

    Filippini, P; Del Papa, N; Sambataro, D; Del Bufalo, A; Locatelli, F; Rutella, S

    2012-01-01

    The enzyme indoleamine 2,3-dioxygenase 1 (IDO1) finely regulates both innate and adaptive immune responses through the degradation of the essential amino acid tryptophan into kynurenine and other downstream metabolites, which suppress effector T-cell function and promote the differentiation of regulatory T cells. A novel role for IDO1 as a signaling molecule and a modifier of innate inflammatory responses is now emerging. In particular, IDO1 can either support or antagonize inflammation in a context- and tissuedependent manner. Studies in experimental arthritis have unravelled a previously unappreciated role for IDO in controlling B-cell activation and autoantibody production. IDO dysregulation has been documented in patients with systemic lupus erythematosus, systemic sclerosis and Sjogren's syndrome, as well as in severe sepsis and chronic kidney disease. This article summarizes the contribution of IDO to the pathophysiology of inflammatory/autoimmune disorders, and discusses whether strategies to restore metabolic equilibrium in the kynurenine pathway might be pursued in diseases states such as rheumatoid arthritis and systemic sclerosis. PMID:22963664

  18. The Role of Indoleamine 2, 3-Dioxygenase in Immune Suppression and Autoimmunity

    Directory of Open Access Journals (Sweden)

    Jacques C. Mbongue

    2015-09-01

    Full Text Available Indoleamine 2, 3-dioxygenase (IDO is the first and rate limiting catabolic enzyme in the degradation pathway of the essential amino acid tryptophan. By cleaving the aromatic indole ring of tryptophan, IDO initiates the production of a variety of tryptophan degradation products called “kynurenines” that are known to exert important immuno-regulatory functions. Because tryptophan must be supplied in the diet, regulation of tryptophan catabolism may exert profound effects by activating or inhibiting metabolism and immune responses. Important for survival, the regulation of IDO biosynthesis and its activity in cells of the immune system can critically alter their responses to immunological insults, such as infection, autoimmunity and cancer. In this review, we assess how IDO-mediated catabolism of tryptophan can modulate the immune system to arrest inflammation, suppress immunity to cancer and inhibit allergy, autoimmunity and the rejection of transplanted tissues. Finally, we examine how vaccines may enhance immune suppression of autoimmunity through the upregulation of IDO biosynthesis in human dendritic cells.

  19. Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines

    Institute of Scientific and Technical Information of China (English)

    Shih Ling HWANG; Nancy Pei-Yee CHUNG; Jacqueline Kwai-Yi CHAN; Chen-Lung Steve LIN

    2005-01-01

    Indoleamine 2, 3-dioxygenase (IDO) is a rate-limiting enzyme for the tryptophan catabolism. In human and murine cells, IDO inhibits antigen-specific T cell proliferation in vitro and suppresses T cell responses to fetal alloantigens during murine pregnancy. In mice, IDO expression is an inducible feature of specific subsets of dendritic cells (DCs),and is important for T cell regulatory properties. However, the effect of IDO and tryptophan deprivation on DC functions remains unknown. We report here that when tryptophan utilization was prevented by a pharmacological inhibitor of IDO, 1-methyl tryptophan (1MT), DC activation induced by pathogenic stimulus lipopolysaccharide (LPS) or inflammatory cytokine TNF-α was inhibited both phenotypically and functionally. Such an effect was less remarkable when DC was stimulated by a physiological stimulus, CD40 ligand. Tryptophan deprivation during DC activation also regulated the expression of CCR5 and CXCR4, as well as DC responsiveness to chemokines. These results suggest that tryptophan usage in the microenvironment is essential for DC maturation, and may also play a role in the regulation of DC migratory behaviors.

  20. Expression Profile of Carotenoid Cleavage Dioxygenase Genes in Summer Squash (Cucurbita pepo L.).

    Science.gov (United States)

    González-Verdejo, Clara I; Obrero, Ángeles; Román, Belén; Gómez, Pedro

    2015-06-01

    Carotenoids are important dietary components that can be found in vegetable crops. The accumulation of these compounds in fruit and vegetables is altered by the activity of carotenoid cleavage dioxygenases (CCDs) enzymes that produce their degradation. The aim of this work was to study the possible implication of CCD genes in preventing carotenoid storage in the horticultural crop summer squash (Cucurbita pepo L.). The relationship between the presence of these compounds and gene expression for CCDs was studied in three varieties showing different peel and flesh colour. Expression analysis for the CCD genes CpNCED1, CpNCED2, CpNCED3, CpNCED9, CpCCD1, CpCCD4a, CpCCD4b and CpCCD8 was carried out on different organs and at several fruit developmental stages. The results showed that the CpCCD4a and CpCCD4b genes were highly expressed in the variety with lowest carotenoid content suggesting a putative role in carotenoid accumulation pattern in summer squash fruit.

  1. Substrate Recognition and Catalysis by the Cofactor-Independent Dioxygenase DpgC+

    Energy Technology Data Exchange (ETDEWEB)

    Fielding,E.; Widboom, P.; Bruner, S.

    2007-01-01

    The enzyme DpgC belongs to a small class of oxygenases not dependent on accessory cofactors for activity. DpgC is in the biosynthetic pathway for the nonproteinogenic amino acid 3, 5-dihydroxyphenylglycine in actinomycetes bacteria responsible for the production of the vancomycin/teicoplanin family of antibiotic natural products. The X-ray structure of DpgC confirmed the absence of cofactors and defined a novel hydrophobic dioxygen binding pocket adjacent to a bound substrate analogue. In this paper, the role specific amino acids play in substrate recognition and catalysis is examined through biochemical and structural characterization of site-specific enzyme mutations and alternate substrates. The results establish the importance of three amino acids, Arg254, Glu299, and Glu189, in the chemistry of DpgC. Arg254 and Glu189 join to form a specific contact with one of the phenolic hydroxyls of the substrate, and this interaction plays a key role in both substrate recognition and catalysis. The X-ray crystal structure of Arg254Lys was determined to address the role this residue plays in the chemistry. In addition, characterization of alternate substrate analogues demonstrates the presence and position of phenol groups are necessary for both enzyme recognition and downstream oxidation chemistry. Overall, this work defines the mechanism of substrate recognition and specificity by the cofactor-independent dioxygenase DpgC.

  2. Functional analysis of the copper-dependent quercetin 2,3-dioxygenase. 2. X-ray absorption studies of native enzyme and anaerobic complexes with the substrates quercetin and myricetin

    NARCIS (Netherlands)

    Steiner, Roberto A.; Meyer-Klaucke, Wolfram; Dijkstra, Bauke W.

    2002-01-01

    Quercetin 2,3-dioxygenase (2,3QD) is a mononuclear copper-dependent dioxygenase which catalyzes the cleavage of the heterocyclic ring of the flavonol quercetin (5,7,3',4'-tetrahydroxy flavonol) to produce 2-protocatechuoyl-phloroglucinol carboxylic acid and carbon monoxide. In this study, X-ray abso

  3. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III

    Energy Technology Data Exchange (ETDEWEB)

    Endo, Fumio; Awata, Hisataka; Matsuda, Ichiro [Kumamoto Univ. (Japan)

    1995-01-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC 1.13.11.27) is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this train together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.

  4. A nonsense mutation in the 4-hydroxyphenylpyruvic acid dioxygenase gene (Hpd) causes skipping of the constitutive exon and hypertyrosinemia in mouse strain III.

    Science.gov (United States)

    Endo, F; Awata, H; Katoh, H; Matsuda, I

    1995-01-01

    4-Hydroxyphenylpyruvic acid dioxygenase (HPD; EC 1.13.11.27) is an important enzyme in tyrosine catabolism in most organisms. Decreased activity of 4-hydroxyphenylpyruvic acid dioxygenase in the liver of mouse strain III is associated with tyrosinemia. We report a nucleotide substitution that generates a termination codon in exon 7 of the 4-hydroxyphenylpyruvic acid dioxygenase gene in III mice. This mutation is associated with partial exon skipping, and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Mouse strain III is a model for human tyrosinemia type 3 (McKusick 276710), and this strain together with recently established models for tyrosinemia type 1 will facilitate studies of hereditary tyrosinemias.

  5. An EXAFS study of the interaction of substrate with the ferric active site of protocatechuate 3,4-dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    True, A.E.; Orville, A.M.; Pearce, L.L.; Lipscomb, J.D.; Que, L. Jr. (Univ. of Minnesota, Minneapolis (USA))

    1990-12-01

    X-ray crystallographic studies of the intradiol cleaving protocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa have shown that the enzyme has a trigonal bipyramidal ferric active site with two histidines, two tyrosines, and a solvent molecule as ligands. Fe K-edge EXAFS studies of the spectroscopically similar protocatechuate 3,4-dioxygenase from Brevibacterium fuscum are consistent with a pentacoordinate geometry of the iron active site with 3 O/N ligands at 1.90 {angstrom} and 2 O/N ligands at 2.08 {angstrom}. The 2.08-{angstrom} bonds are assigned to the two histidines, while the 1.90-{angstrom} bonds are associated with the two tyrosines and the coordinated solvent. The short Fe-O distance for the solvent suggests that it coordinates as hydroxide rather than water. When the inhibitor terephthalate is bound to the enzyme, the XANES data indicate that the ferric site becomes 6-coordinate and the EXAFS data show a beat pattern which can only be simulated with an additional Fe-O/N interaction at 2.46 {angstrom}. Together, the data suggest that the oxygens of the carboxylate group in terephthalate displace the hydroxide and chelate to the ferric site but in an asymmetric fashion. In contrast, protocatechuate 3,4-dioxygenase remains 5-coordinate upon the addition of the slow substrate homoprotocatechuic acid (HPCA). Previous EPR data have indicated that HPCA forms an iron chelate via the two hydroxyl functions. For the iron site to remain 5-coordinate and the HPCA to be chelated to the iron, the substrate must displace not only the hydroxide but also a ligand from the protein backbone, probably a histidine. The mechanistic implications of the displacement of hydroxide and a protein ligand in the active site are discussed.

  6. Swapping metals in Fe- and Mn-dependent dioxygenases: Evidence for oxygen activation without a change in metal redox state

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Joseph P.; Kovaleva, Elena G.; Farquhar, Erik R.; Lipscomb, John D.; Oue, Jr., Lawrence (UMM)

    2008-07-21

    Biological O{sub 2} activation often occurs after binding to a reduced metal [e.g., M(II)] in an enzyme active site. Subsequent M(II)-to-O{sub 2} electron transfer results in a reactive M(III)-superoxo species. For the extradiol aromatic ring-cleaving dioxygenases, we have proposed a different model where an electron is transferred from substrate to O{sub 2} via the M(II) center to which they are both bound, thereby obviating the need for an integral change in metal redox state. This model is tested by using homoprotocatechuate 2,3-dioxygenases from Brevibacterium fuscum (Fe-HPCD) and Arthrobacter globiformis (Mn-MndD) that share high sequence identity and very similar structures. Despite these similarities, Fe-HPCD binds Fe(II) whereas Mn-MndD incorporates Mn(II). Methods are described to incorporate the nonphysiological metal into each enzyme (Mn-HPCD and Fe-MndD). The x-ray crystal structure of Mn-HPCD at 1.7 {angstrom} is found to be indistinguishable from that of Fe-HPCD, while EPR studies show that the Mn(II) sites of Mn-MndD and Mn-HPCD, and the Fe(II) sites of the NO complexes of Fe-HPCD and Fe-MndD, are very similar. The uniform metal site structures of these enzymes suggest that extradiol dioxygenases cannot differentially compensate for the 0.7-V gap in the redox potentials of free iron and manganese. Nonetheless, all four enzymes exhibit nearly the same K{sub M} and V{sub max} values. These enzymes constitute an unusual pair of metallo-oxygenases that remain fully active after a metal swap, implicating a different way by which metals are used to promote oxygen activation without an integral change in metal redox state.

  7. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase

    International Nuclear Information System (INIS)

    Highlights: ► Regiospecificity of BphAERR41 toward dibenzofuran and 2-chlorodibenzofuran differs. ► We compared the structures of the substrate-bound forms of the enzyme with both substrates. ► Dibenzofuran is compelled to move during the catalytic reaction. ► Ser283 contact with 2-chlorodibenzofuran helps prevent substrate movement during the reaction. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAELB400) is a Rieske-type oxygenase that catalyzes the stereospecific oxygenation of many heterocyclic aromatics including dibenzofuran. In a previous work, we evolved BphAELB400 and obtained BphAERR41. This variant metabolizes dibenzofuran and 2-chlorodibenzofuran more efficiently than BphAELB400. However, the regiospecificity of BphAERR41 toward these substrates differs. Dibenzofuran is metabolized principally through a lateral dioxygenation whereas 2-chlorodibenzofuran is metabolized principally through an angular dioxygenation. In order to explain this difference, we examined the crystal structures of both substrate-bound forms of BphAERR41 obtained under anaerobic conditions. This structure analysis, in combination with biochemical data for a Ser283Gly mutant provided evidences that the substrate is compelled to move after oxygen-binding in BphAERR41:dibenzofuran. In BphAERR41:2-chlorodibenzofuran, the chlorine atom is close to the side chain of Ser283. This contact is missing in the BphAERR41:dibenzofuran, and strong enough in the BphAERR41:2-chlorodibenzofuran to help prevent substrate movement during the catalytic reaction.

  8. Structural insights into the metabolism of 2-chlorodibenzofuran by an evolved biphenyl dioxygenase

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pravindra [Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN 47907 (United States); Department of Biotechnology, Indian Institute of Technology, Roorkee 247667 (India); Mohammadi, Mahmood [Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, Canada H7V 1B7 (Canada); Dhindwal, Sonali [Department of Biotechnology, Indian Institute of Technology, Roorkee 247667 (India); Pham, Thi Thanh My [Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, Canada H7V 1B7 (Canada); Bolin, Jeffrey T. [Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, IN 47907 (United States); Sylvestre, Michel, E-mail: Michel.Sylvestre@iaf.inrs.ca [Institut National de la Recherche Scientifique (INRS-Institut Armand-Frappier), Laval, QC, Canada H7V 1B7 (Canada)

    2012-05-18

    Highlights: Black-Right-Pointing-Pointer Regiospecificity of BphAE{sub RR41} toward dibenzofuran and 2-chlorodibenzofuran differs. Black-Right-Pointing-Pointer We compared the structures of the substrate-bound forms of the enzyme with both substrates. Black-Right-Pointing-Pointer Dibenzofuran is compelled to move during the catalytic reaction. Black-Right-Pointing-Pointer Ser283 contact with 2-chlorodibenzofuran helps prevent substrate movement during the reaction. -- Abstract: The biphenyl dioxygenase of Burkholderia xenovorans LB400 (BphAE{sub LB400}) is a Rieske-type oxygenase that catalyzes the stereospecific oxygenation of many heterocyclic aromatics including dibenzofuran. In a previous work, we evolved BphAE{sub LB400} and obtained BphAE{sub RR41}. This variant metabolizes dibenzofuran and 2-chlorodibenzofuran more efficiently than BphAE{sub LB400}. However, the regiospecificity of BphAE{sub RR41} toward these substrates differs. Dibenzofuran is metabolized principally through a lateral dioxygenation whereas 2-chlorodibenzofuran is metabolized principally through an angular dioxygenation. In order to explain this difference, we examined the crystal structures of both substrate-bound forms of BphAE{sub RR41} obtained under anaerobic conditions. This structure analysis, in combination with biochemical data for a Ser283Gly mutant provided evidences that the substrate is compelled to move after oxygen-binding in BphAE{sub RR41}:dibenzofuran. In BphAE{sub RR41}:2-chlorodibenzofuran, the chlorine atom is close to the side chain of Ser283. This contact is missing in the BphAE{sub RR41}:dibenzofuran, and strong enough in the BphAE{sub RR41}:2-chlorodibenzofuran to help prevent substrate movement during the catalytic reaction.

  9. Novel aromatic ring-hydroxylating dioxygenase genes from coastal marine sediments of Patagonia

    Directory of Open Access Journals (Sweden)

    Ferrero Marcela A

    2008-03-01

    Full Text Available Abstract Background Polycyclic aromatic hydrocarbons (PAHs, widespread pollutants in the marine environment, can produce adverse effects in marine organisms and can be transferred to humans through seafood. Our knowledge of PAH-degrading bacterial populations in the marine environment is still very limited, and mainly originates from studies of cultured bacteria. In this work, genes coding catabolic enzymes from PAH-biodegradation pathways were characterized in coastal sediments of Patagonia with different levels of PAH contamination. Results Genes encoding for the catalytic alpha subunit of aromatic ring-hydroxylating dioxygenases (ARHDs were amplified from intertidal sediment samples using two different primer sets. Products were cloned and screened by restriction fragment length polymorphism analysis. Clones representing each restriction pattern were selected in each library for sequencing. A total of 500 clones were screened in 9 gene libraries, and 193 clones were sequenced. Libraries contained one to five different ARHD gene types, and this number was correlated with the number of PAHs found in the samples above the quantification limit (r = 0.834, p nahAc-like genes, phnAc-like genes as identified in Alcaligenes faecalis AFK2, and phnA1-like genes from marine PAH-degraders from the genus Cycloclasticus. Conclusion These results show the presence of hitherto unidentified ARHD genes in this sub-Antarctic marine environment exposed to anthropogenic contamination. This information can be used to study the geographical distribution and ecological significance of bacterial populations carrying these genes, and to design molecular assays to monitor the progress and effectiveness of remediation technologies.

  10. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes.

    Science.gov (United States)

    Wright, Terry R; Shan, Guomin; Walsh, Terence A; Lira, Justin M; Cui, Cory; Song, Ping; Zhuang, Meibao; Arnold, Nicole L; Lin, Gaofeng; Yau, Kerrm; Russell, Sean M; Cicchillo, Robert M; Peterson, Mark A; Simpson, David M; Zhou, Ning; Ponsamuel, Jayakumar; Zhang, Zhanyuan

    2010-11-23

    Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops.

  11. Resonance Raman study on indoleamine 2,3-dioxygenase: Control of reactivity by substrate-binding

    International Nuclear Information System (INIS)

    Highlights: • Indoleamine 2,3-dioygenase has been studied by resonance Raman spectroscopy. • Trp-binding to the enzyme induces high frequency shift of the Fe–His stretching mode. • Increased imidazolate character of histidine promotes the O–O bond cleavage step. • A fine-tuning of the reactivity of the O–O bond cleavage reaction is identified. • The results are consistent with the sequential oxygen-atom-transfer mechanism. - Abstract: Resonance Raman spectra of ligand-bound complexes including the 4-phenylimidazole complex and of free and L-Trp-bound forms of indoleamine 2, 3-dioxygenase in the ferric state were examined. Effects on the vinyl and propionate substituent groups of the heme were detected in a ligand-dependent fashion. The effects of phenyl group of 4-phenylimidazole on the vinyl and propionate Raman bands were evident when compared with the case of imidazole ligand. Substrate binding to the ferrous protein caused an upshift of the iron–histidine stretching mode by 3 cm−1, indicating an increase in negativity of the imidazole ring, which favors the O–O bond cleavage. The substrate binding event is likely to be communicated from the heme distal side to the iron–histidine bond through heme substituent groups and the hydrogen-bond network which includes water molecules, as identified in an X-ray structure of a 4-phenylimidazole complex. The results provide evidence for fine-tuning of the reactivity of O–O bond cleavage by the oxygenated heme upon binding of L-Trp

  12. (-)-Epigallocatechin gallate inhibits the expression of indoleamine 2,3-dioxygenase in human colorectal cancer cells.

    Science.gov (United States)

    Ogawa, Kengo; Hara, Takeshi; Shimizu, Masahito; Nagano, Junji; Ohno, Tomohiko; Hoshi, Masato; Ito, Hiroyasu; Tsurumi, Hisashi; Saito, Kuniaki; Seishima, Mitsuru; Moriwaki, Hisataka

    2012-09-01

    Immune escape, the ability of tumor cells to avoid tumor-specific immune responses, occurs during the development and progression of several types of human malignancies, including colorectal cancer (CRC). Indoleamine 2,3-dioxygenase (IDO), the tryptophan catabolic enzyme, plays a significant role in regulating the immune response and provides tumor cells with a potent tool to evade the immune system. In the present study, we examined the effects of (-)-epigallocatechin gallate (EGCG), the major catechin in green tea, on the inhibition of IDO expression induced by interferon (IFN)-γ in human CRC cells. We found that IFN-γ increased the expression levels of IDO protein and mRNA in HT29 and SW837 CRC cell lines. Treatment of SW837 cells with EGCG significantly decreased IFN-γ-induced expression of IDO protein and mRNA in a dose-dependent manner. Enzymatic activity of IDO, determined by the concentration of L-kynurenine in the culture medium, was also significantly inhibited by EGCG treatment. Phosphorylation of signal transducer and activator of transcription 1 (STAT1) induced by IFN-γ was also significantly inhibited by EGCG. Reporter assays indicated that EGCG inhibited the transcriptional activities of IDO promoters, IFN-stimulated response element and IFN-γ activation sequence, activated by STAT1 phosphorylation. These findings suggest that EGCG may exert antitumor effects on CRC, at least in part, by inhibiting the expression and function of IDO through the suppression of STAT1 activation. EGCG may, thus, serve as a potential agent for antitumor immunotherapy and be useful in the chemoprevention and/or treatment of CRC. PMID:23741252

  13. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase.

    Directory of Open Access Journals (Sweden)

    Rikke Baek Sørensen

    Full Text Available BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T lymphocytes (CTL from the peripheral blood of cancer patients were cloned and expanded. The functional capacity of the established CTL clones was examined by chrome release assays. The study unveiled spontaneous cytotoxic T-cell reactivity against IDO in peripheral blood as well as in the tumor microenvironment of different cancer patients. We demonstrate that these IDO reactive T cells are indeed peptide specific, cytotoxic effector cells. Hence, IDO reactive T cells are able to recognize and kill tumor cells including directly isolated AML blasts as well as IDO-expressing dendritic cells, i.e. one of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals, IDO-based immunotherapy holds the promise to boost anti-cancer immunotherapy in general.

  14. In vivo correction with recombinant adenovirus of 4-hydroxyphenylpyruvic acid dioxygenase deficiencies in strain III mice.

    Science.gov (United States)

    Kubo, S; Kiwaki, K; Awata, H; Katoh, H; Kanegae, Y; Saito, I; Yamamoto, T; Miyazaki, J; Matsuda, I; Endo, F

    1997-01-01

    Tyrosinemia type 3, caused by a genetic deficiency of 4-hydroxyphenylpyruvic acid dioxygenase (HPD) in tyrosine catabolism, is characterized by convulsion, ataxia, and mental retardation. The III mouse is a model of tyrosinemia type 3. HPD activity and protein are defective in the liver and its blood tyrosine levels are elevated, the range being between 1,100 and 1,656 microM. We constructed a recombinant adenoviral vector bearing the human HPD cDNA (AdexCAGhHPD), which is expressed under the control of a potent CAG promoter. III mice were injected with 1.0 x 10(8) to 1.0 x 10(9) pfu of AdexCAGhHPD through the tail vein. When 3.0 x 10(8) - 1.0 x 10(9) pfu were injected, blood tyrosine levels decreased within 3 hr, reached a normal range (under 300 microM), and remained at a low level for 2-6 weeks. Hepatic HPD activities also increased as early as 3 hr after the injection of 5.0 x 10(8) pfu, reached the levels comparable to the control mice in 3-7 days, and then decreased, and correlated well to blood tyrosine. Hepatic HPD expression was confirmed by Northern blot and immunoblot analyses. Histology revealed no difference (gross or microscopic) between the liver injected with AdexCAGhHPD and the control. No significant changes in blood tyrosine levels were noted after the second injection of 5.0 x 10(8) pfu of AdexCAGhHPD. Thus, the intravenous administration of the adenoviral vector bearing a foreign gene seems suitable for transient, early gene transfer into the liver.

  15. Structure of 4-hydrophenylpyruvic acid dioxygenase (HPD) gene and its mutation in tyrosinemic mouse strain III

    Energy Technology Data Exchange (ETDEWEB)

    Awata, H.; Endo, F.; Matsuda, I. [Kumamoto Univ. Medical School (Japan)] [and others

    1994-09-01

    4-Hydroxphenylpyruvic acid dioxygenase (HPD) is an important enzyme in tyrosine catabolism in most organisms. The activity of this enzyme is expressed mainly in the liver and is developmentally regulated in mammals. A genetic deficiency of the enzyme in man and mouse leads to hereditary tyrosinemia type 3. Using human HPD cDNA as a probe, a chromosomal gene related to HPD was isolated from human and mouse gene libraries. The human HPD gene is over 30 kilo-bases long and is split into 14 exons. Analysis of the 5{prime} flanking sequence of the gene suggests that expression of the gene is regulated by hepatocyte-specific and liver-enriched transcription factors, as well as by hormones. These features of the 5{prime} flanking region of the gene are similar to those of other genes which are specifically expressed in hepatocytes and which are developmentally regulated. The gene for mouse HPD has a similar structure and we obtained evidence for a nucleotide substitution which generates a termination codon in exon 7 of the HPD gene in III mice. This mutation associates a partial exon skipping and most of the mRNA lacks sequences corresponding to exon 7. The partial exon skipping apparently is the result of a nonsense mutation in the exon. Thus, mouse strain III can serve as a genetic model for human tyrosinemia type 3. Ongoing studies are expected to elucidate the disease process involved in hereditary tyrosinemia type 1 and to shed light on mechanisms that mediate developmental regulation of HPD gene expression. In addition, mouse strain III together with recently established models for tyrosinemia type 1 will facilitate studies on hereditary tyrosinemias.

  16. Characteristics and function of sulfur dioxygenase in Echiuran worm Urechis unicinctus.

    Directory of Open Access Journals (Sweden)

    Litao Zhang

    Full Text Available BACKGROUND: Sulfide is a common toxin to animals and is abundant in coastal and aquatic sediments. Sulfur dioxygenase (SDO is thought to be the key enzyme involved in sulfide oxidation in some organisms. The echiuran worm, Urechis unicinctus, inhabits coastal sediment and tolerates high concentrations of sulfide. The SDO is presumably important for sulfide tolerance in U. unicinctus. RESULTS: The full-length cDNA of SDO from the echiuran worm U. unicinctus, proven to be located in the mitochondria, was cloned and the analysis of its sequence suggests that it belongs to the metallo-β-lactamase superfamily. The enzyme was produced using an E. coli expression system and the measured activity is approximately 0.80 U mg protein(-1. Furthermore, the expression of four sub-segments of the U. unicinctus SDO was accomplished leading to preliminary identification of functional domains of the enzyme. The identification of the conserved metal I (H113, H115, H169 and D188, metal II (D117, H118, H169 and H229 as well as the potential glutathione (GSH (R197, Y231, M279 and I283 binding sites was determined by enzyme activity and GSH affinity measurements. The key residues responsible for SDO activity were identified by analysis of simultaneous mutations of residues D117 and H118 located close to the metal II binding site. CONCLUSION: The recombinant SDO from U. unicinctus was produced, purified and characterized. The metal binding sites in the SDO were identified and Y231 recognized as the mostly important amino acid residue for GSH binding. Our results show that SDO is located in the mitochondria where it plays an important role in sulfide detoxification of U. unicinctus.

  17. Inflated kinetic isotope effects in the branched mechanism of Neurospora crassa 2-nitropropane dioxygenase.

    Science.gov (United States)

    Francis, Kevin; Gadda, Giovanni

    2009-03-24

    Catalytic turnover of Neurospora crassa 2-nitropropane dioxygenase with nitroethane as substrate occurs through both nonoxidative and oxidative pathways. The pH dependence of the kinetic isotope effects with [1,1-(2)H(2)]nitroethane as substrate was measured in the current study by monitoring the formation of the nitronate product in the nonoxidative pathway. The kinetic isotope effect on the second-order rate constant for nitronate formation, k(cat)/K(m), decreased from an upper limiting value of 23 +/- 1 at low pH to a lower limiting value of 11 +/- 1 at high pH. These kinetic isotope effects are three times larger than those determined previously through measurements of oxygen consumption that occurs in the oxidative pathway of the enzyme [(2006) Biochemistry 45, 13889]. Analytical expressions for the k(cat)/K(m) values determined in each study show that the difference in the kinetic isotope effects arises from the branching of an enzyme-ethylnitronate reaction intermediate through oxidative and nonoxidative turnover. This branching is isotope sensitive due to a kinetic isotope effect on nitronate release rather than on flavin reduction as indicated by the pH-independent (D)k(red) value of 0.99 +/- 0.06 with ethylnitronate as substrate. The kinetic isotope effect on ethylnitronate release arises from the deprotonation of histidine 196, which provides electrostatic interactions with the nitronate to keep it bound in the active site for oxidation. The isotope effect on branching results in an inflation of the kinetic isotope observed for the nonoxidative pathway to values that are larger than the intrinsic values associated with CH bond cleavage. PMID:19199786

  18. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes.

    Science.gov (United States)

    Wright, Terry R; Shan, Guomin; Walsh, Terence A; Lira, Justin M; Cui, Cory; Song, Ping; Zhuang, Meibao; Arnold, Nicole L; Lin, Gaofeng; Yau, Kerrm; Russell, Sean M; Cicchillo, Robert M; Peterson, Mark A; Simpson, David M; Zhou, Ning; Ponsamuel, Jayakumar; Zhang, Zhanyuan

    2010-11-23

    Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant crops are, therefore, urgently needed. 2,4-dichlorophenoxyacetic acid (2,4-D) is an effective low-cost, broad-spectrum herbicide that controls many of the weeds developing resistance to glyphosate. We investigated the substrate preferences of bacterial aryloxyalkanoate dioxygenase enzymes (AADs) that can effectively degrade 2,4-D and have found that some members of this class can act on other widely used herbicides in addition to their activity on 2,4-D. AAD-1 cleaves the aryloxyphenoxypropionate family of grass-active herbicides, and AAD-12 acts on pyridyloxyacetate auxin herbicides such as triclopyr and fluroxypyr. Maize plants transformed with an AAD-1 gene showed robust crop resistance to aryloxyphenoxypropionate herbicides over four generations and were also not injured by 2,4-D applications at any growth stage. Arabidopsis plants expressing AAD-12 were resistant to 2,4-D as well as triclopyr and fluroxypyr, and transgenic soybean plants expressing AAD-12 maintained field resistance to 2,4-D over five generations. These results show that single AAD transgenes can provide simultaneous resistance to a broad repertoire of agronomically important classes of herbicides, including 2,4-D, with utility in both monocot and dicot crops. These transgenes can help preserve the productivity and environmental benefits of herbicide-resistant crops. PMID:21059954

  19. Adjuvant indoleamine 2,3-dioxygenase enzyme inhibition for comprehensive management of epilepsy and comorbid depression.

    Science.gov (United States)

    Singh, Tanveer; Goel, Rajesh Kumar

    2016-08-01

    Epilepsy is one of the major neurological disorders frequently associated with psychiatric disorders such as depression. Alteration of tryptophan metabolism towards kynurenine pathway may be one of the plausible reasons for association of depression in epilepsy. Hence, this study was envisaged to evaluate the dose dependent inhibition of indoleamine 2,3-dioxygenase (IDO) enzyme (responsible for shifting tryptophan metabolism) employing minocycline with valproic acid for comprehensive management of epilepsy and comorbid depression. Kindling was induced in male swiss albino mice by administration of pentylenetetrazole subconvulsive dose (35mg/kg, i.p.) at an interval of 48±2h. Kindled animals were treated with saline, valproate (300mg/kg/day i.p.), valproate in combination with different doses of minocycline (10mg/kg; 20mg/kg; 40mg/kg)/day i.p. and minocycline per se (40mg/kg/day i.p.) for 15 days. Except naïve, all the groups were challenged with pentylenetetrazole (35mg/kg i.p.) on day 5, 10, and 15 to evaluate the seizure severity score. Depression was evaluated in all experimental groups using tail suspension and forced swim test on days 1, 5, 10 and 15, 2h after pentylenetetrazole challenge. Results suggested that saline treated kindled animals were significantly associated with depression. Chronic valproate treatment significantly reduced seizure severity score but unable to ameliorate the associated depression. Minocycline supplementation with valproic acid dose dependently ameliorated depression associated with epilepsy. Neurochemical and biochemical findings also supported the behavioural findings of the study. Thus, our results suggested that supplementation of IDO enzyme inhibitors with valproic acid could be explored further for comprehensive management of epilepsy and associated depression. PMID:27189423

  20. The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant.

    Science.gov (United States)

    Zhang, Huirong; Du, Chao; Wang, Yan; Wang, Jia; Zheng, Linlin; Wang, Yingchun

    2016-09-01

    Reaumuria trigyna is a typical, native desert halophyte that grows under extreme conditions in Inner Mongolia. In a previous transcriptomic profiling analysis, flavonoid pathway-related genes in R. trigyna showed significant differences in transcript abundance under salt stress. Leucoanthocyanidin dioxygenase (LDOX, EC 1.14.11.19) is one of three dioxygenases in the flavonoid pathway that catalyzes the formation of anthocyanidins from leucoanthocyanidins. In this study, we cloned the full-length cDNA of R. trigyna LDOX (RtLDOX), and found RtLDOX recombinant protein was able to replace flavanone-3-hydroxylase (F3H, EC 1.14.11.9), another dioxygenase in the flavonoid pathway, to convert naringenin to dihydrokaempferol in vitro. R. trigyna LDOX can complement the Arabidopsis LDOX mutant transparent testa11 (tt11-11), which has reduced proanthocyanin (PA) and anthocyanin levels in seeds, to accumulate these two compounds. Thus, RtLDOX acts as a multifunctional dioxygenase to effect the synthesis of PA and anthocyanins and can perform F3H dioxygenase activities in the flavonoid biosynthesis pathway. The RtLDOX promoter harbored many cis-acting elements that might be recognized and bound by transcription factors related to stress response. RtLDOX expression was strongly increased under salt stress, and RtLDOX transgenic Arabidopsis mutant under NaCl stress accumulated the content of flavonoids leading to an increased antioxidant activities and plant biomass. These results suggest that RtLDOX as a multifunctional dioxygenase in flavonoid biosynthesis involves in enhancing plant response to NaCl stress. PMID:27219053

  1. Structure of Naegleria Tet-like dioxygenase (NgTet1) in complexes with a reaction intermediate 5-hydroxymethylcytosine DNA

    OpenAIRE

    Hashimoto, Hideharu; Pais, June E.; Dai, Nan; Corrêa, Ivan R; Zhang, Xing; Zheng, Yu; Cheng, Xiaodong

    2015-01-01

    The family of ten-eleven translocation (Tet) dioxygenases is widely distributed across the eukaryotic tree of life, from mammals to the amoeboflagellate Naegleria gruberi. Like mammalian Tet proteins, the Naegleria Tet-like protein, NgTet1, acts on 5-methylcytosine (5mC) and generates 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) in three consecutive, Fe(II)- and α-ketoglutarate-dependent oxidation reactions. The two intermediates, 5hmC and 5fC, could be...

  2. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine-200

    OpenAIRE

    Kovaleva, Elena G.; Rogers, Melanie S.; Lipscomb, John D.

    2015-01-01

    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homo...

  3. Overexpression of the rice carotenoid cleavage dioxygenase 1 gene in Golden Rice endosperm suggests apocarotenoids as substrates in planta.

    Science.gov (United States)

    Ilg, Andrea; Yu, Qiuju; Schaub, Patrick; Beyer, Peter; Al-Babili, Salim

    2010-08-01

    Carotenoids are converted by carotenoid cleavage dioxygenases that catalyze oxidative cleavage reactions leading to apocarotenoids. However, apocarotenoids can also be further truncated by some members of this enzyme family. The plant carotenoid cleavage dioxygenase 1 (CCD1) subfamily is known to degrade both carotenoids and apocarotenoids in vitro, leading to different volatile compounds. In this study, we investigated the impact of the rice CCD1 (OsCCD1) on the pigmentation of Golden Rice 2 (GR2), a genetically modified rice variety accumulating carotenoids in the endosperm. For this purpose, the corresponding cDNA was introduced into the rice genome under the control of an endosperm-specific promoter in sense and anti-sense orientations. Despite high expression levels of OsCCD1 in sense plants, pigment analysis revealed carotenoid levels and patterns comparable to those of GR2, pleading against carotenoids as substrates in rice endosperm. In support, similar carotenoid contents were determined in anti-sense plants. To check whether OsCCD1 overexpressed in GR2 endosperm is active, in vitro assays were performed with apocarotenoid substrates. HPLC analysis confirmed the cleavage activity of introduced OsCCD1. Our data indicate that apocarotenoids rather than carotenoids are the substrates of OsCCD1 in planta. PMID:20549230

  4. Multistep conversion of para-substituted phenols by phenol hydroxylase and 2,3-dihydroxybiphenyl 1,2-dioxygenase.

    Science.gov (United States)

    Qu, Yuanyuan; Shi, Shengnan; Ma, Qiao; Kong, Chunlei; Zhou, Hao; Zhang, Xuwang; Zhou, Jiti

    2013-04-01

    A multistep conversion system of para-substituted phenols by recombinant phenol hydroxylase (PH(IND)) and 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC(LA-4)) was constructed in this study. Docking studies with different para-substituted phenols and corresponding catechols inside of the active site of PH(IND) and BphC(LA-4) predicted that all the substrates should be transformed. High-performance liquid chromatography-mass spectrometry analysis showed that the products of multistep conversion were the corresponding para-substituted catechols and semialdehydes. For the first-step conversion, the formation rate of 4-fluorocatechol (0.39 μM/min/mg dry weight) by strain PH(IND) hydroxylation was 1.15, 6.50, 3.00, and 1.18-fold higher than the formation of 4-chlorocatechol, 4-bromocatechol, 4-nitrocatechol, and 4-methylcatechol, respectively. For the second-step conversion, the formation rates of semialdehydes by strain BphC(LA-4) were as follows: 5-fluoro-HODA>5-chloro-HODA>2-hydroxy-5-nitro-ODA>5-bromo-HODA>2-hydroxy-5-methyl-ODA. The present study suggested that the multistep conversion by both ring hydroxylase and cleavage dioxygenase should be potential in the synthesis of industrial precursors and provide a novel avenue in the wastewater recycling treatment.

  5. Molecular basis for catalysis and substrate-mediated cellular stabilization of human tryptophan 2,3-dioxygenase

    Science.gov (United States)

    Lewis-Ballester, Ariel; Forouhar, Farhad; Kim, Sung-Mi; Lew, Scott; Wang, YongQiang; Karkashon, Shay; Seetharaman, Jayaraman; Batabyal, Dipanwita; Chiang, Bing-Yu; Hussain, Munif; Correia, Maria Almira; Yeh, Syun-Ru; Tong, Liang

    2016-01-01

    Tryptophan 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) play a central role in tryptophan metabolism and are involved in many cellular and disease processes. Here we report the crystal structure of human TDO (hTDO) in a ternary complex with the substrates L-Trp and O2 and in a binary complex with the product N-formylkynurenine (NFK), defining for the first time the binding modes of both substrates and the product of this enzyme. The structure indicates that the dioxygenation reaction is initiated by a direct attack of O2 on the C2 atom of the L-Trp indole ring. The structure also reveals an exo binding site for L-Trp, located ~42 Å from the active site and formed by residues conserved among tryptophan-auxotrophic TDOs. Biochemical and cellular studies indicate that Trp binding at this exo site does not affect enzyme catalysis but instead it retards the degradation of hTDO through the ubiquitin-dependent proteasomal pathway. This exo site may therefore provide a novel L-Trp-mediated regulation mechanism for cellular degradation of hTDO, which may have important implications in human diseases. PMID:27762317

  6. The effects of trace elements, cations, and environmental conditions on protocatechuate 3,4-dioxygenase activity

    Directory of Open Access Journals (Sweden)

    Andréa Scaramal da Silva

    2013-04-01

    Full Text Available Phenanthracene is a highly toxic organic compound capable of contaminating water and soils, and biodegradation is an important tool for remediating polluted environments. This study aimed to evaluate the effects of trace elements, cations, and environmental conditions on the activity of the protocatechol 3,4-dioxygenase (P3,4O enzyme produced by the isolate Leifsonia sp. in cell-free and immobilized extracts. The isolate was grown in Luria Bertani broth medium (LB amended with 250 mg L-1 of phenanthrene. Various levels of pH (4.0-9.0, temperature (5-80 °C, time (0-90 min, trace elements (Cu2+, Hg2+ and Fe3+, and cations (Mg2+, Mn2+, K+ and NH4+ were tested to determine which conditions optimized enzyme activity. In general, the immobilized extract exhibited higher enzyme activity than the cell-free extract in the presence of trace elements and cations. Adding iron yielded the highest relative activity for both cell-free and immobilized extracts, with values of 16 and 99 %, respectively. Copper also increased enzyme activity for both cell-free and immobilized extracts, with values of 8 and 44 %, respectively. Enzyme activity in the phosphate buffer was high across a wide range of pH, reaching 80 % in the pH range between 6.5 and 8.0. The optimum temperatures for enzyme activity differed for cell-free and immobilized extracts, with maximum enzyme activity observed at 35 ºC for the cell-free extract and at 55 ºC for the immobilized extract. The cell-free extract of the P3,4O enzyme exhibited high activity only during the first 3 min of incubation, when it showed 50 % relative activity, and dropped to 0 % after 60 min of incubation. By contrast, activity in the immobilized extract was maintained during 90 min of incubation. This isolate has important characteristics for phenanthrene biodegradation, producing high quantities of the P3,4O enzyme that forms part of the most important pathway for PAH biodegradation.

  7. Virus Infections Incite Pain Hypersensitivity by Inducing Indoleamine 2,3 Dioxygenase.

    Directory of Open Access Journals (Sweden)

    Lei Huang

    2016-05-01

    Full Text Available Increased pain sensitivity is a comorbidity associated with many clinical diseases, though the underlying causes are poorly understood. Recently, chronic pain hypersensitivity in rodents treated to induce chronic inflammation in peripheral tissues was linked to enhanced tryptophan catabolism in brain mediated by indoleamine 2,3 dioxygenase (IDO. Here we show that acute influenza A virus (IAV and chronic murine leukemia retrovirus (MuLV infections, which stimulate robust IDO expression in lungs and lymphoid tissues, induced acute or chronic pain hypersensitivity, respectively. In contrast, virus-induced pain hypersensitivity did not manifest in mice lacking intact IDO1 genes. Spleen IDO activity increased markedly as MuLV infections progressed, while IDO1 expression was not elevated significantly in brain or spinal cord (CNS tissues. Moreover, kynurenine (Kyn, a tryptophan catabolite made by cells expressing IDO, incited pain hypersensitivity in uninfected IDO1-deficient mice and Kyn potentiated pain hypersensitivity due to MuLV infection. MuLV infection stimulated selective IDO expression by a discreet population of spleen cells expressing both B cell (CD19 and dendritic cell (CD11c markers (CD19+ DCs. CD19+ DCs were more susceptible to MuLV infection than B cells or conventional (CD19neg DCs, proliferated faster than B cells from early stages of MuLV infection and exhibited mature antigen presenting cell (APC phenotypes, unlike conventional (CD19neg DCs. Moreover, interactions with CD4 T cells were necessary to sustain functional IDO expression by CD19+ DCs in vitro and in vivo. Splenocytes from MuLV-infected IDO1-sufficient mice induced pain hypersensitivity in uninfected IDO1-deficient recipient mice, while selective in vivo depletion of DCs alleviated pain hypersensitivity in MuLV-infected IDO1-sufficient mice and led to rapid reduction in splenomegaly, a hallmark of MuLV immune pathogenesis. These findings reveal critical roles for CD19

  8. Virus Infections Incite Pain Hypersensitivity by Inducing Indoleamine 2,3 Dioxygenase.

    Science.gov (United States)

    Huang, Lei; Ou, Rong; Rabelo de Souza, Guilherme; Cunha, Thiago M; Lemos, Henrique; Mohamed, Eslam; Li, Lingqian; Pacholczyk, Gabriela; Randall, Janice; Munn, David H; Mellor, Andrew L

    2016-05-01

    Increased pain sensitivity is a comorbidity associated with many clinical diseases, though the underlying causes are poorly understood. Recently, chronic pain hypersensitivity in rodents treated to induce chronic inflammation in peripheral tissues was linked to enhanced tryptophan catabolism in brain mediated by indoleamine 2,3 dioxygenase (IDO). Here we show that acute influenza A virus (IAV) and chronic murine leukemia retrovirus (MuLV) infections, which stimulate robust IDO expression in lungs and lymphoid tissues, induced acute or chronic pain hypersensitivity, respectively. In contrast, virus-induced pain hypersensitivity did not manifest in mice lacking intact IDO1 genes. Spleen IDO activity increased markedly as MuLV infections progressed, while IDO1 expression was not elevated significantly in brain or spinal cord (CNS) tissues. Moreover, kynurenine (Kyn), a tryptophan catabolite made by cells expressing IDO, incited pain hypersensitivity in uninfected IDO1-deficient mice and Kyn potentiated pain hypersensitivity due to MuLV infection. MuLV infection stimulated selective IDO expression by a discreet population of spleen cells expressing both B cell (CD19) and dendritic cell (CD11c) markers (CD19+ DCs). CD19+ DCs were more susceptible to MuLV infection than B cells or conventional (CD19neg) DCs, proliferated faster than B cells from early stages of MuLV infection and exhibited mature antigen presenting cell (APC) phenotypes, unlike conventional (CD19neg) DCs. Moreover, interactions with CD4 T cells were necessary to sustain functional IDO expression by CD19+ DCs in vitro and in vivo. Splenocytes from MuLV-infected IDO1-sufficient mice induced pain hypersensitivity in uninfected IDO1-deficient recipient mice, while selective in vivo depletion of DCs alleviated pain hypersensitivity in MuLV-infected IDO1-sufficient mice and led to rapid reduction in splenomegaly, a hallmark of MuLV immune pathogenesis. These findings reveal critical roles for CD19+ DCs

  9. Immuno-regulatory function of indoleamine 2,3 dioxygenase through modulation of innate immune responses.

    Directory of Open Access Journals (Sweden)

    Malihe-Sadat Poormasjedi-Meibod

    Full Text Available Successful long-term treatment of type-1 diabetes mainly relies on replacement of β-cells via islet transplantation. Donor shortage is one of the main obstacles preventing transplantation from becoming the treatment of choice. Although animal organs could be an alternative source for transplantation, common immunosuppressive treatments demonstrate low efficacy in preventing xenorejection. Immunoprotective effects of indoleamine 2,3-dioxygenase (IDO on T-cell mediated allorejection has been extensively studied. Our studies revealed that IDO expression by fibroblasts, induced apoptosis in T-cells while not affecting non-immune cell survival/function. Since macrophages play a pivotal role in xenograft rejection, herein we investigated the effect of IDO-induced tryptophan deficiency/kynurenine accumulation on macrophage function/survival. Moreover, we evaluated the local immunosuppressive effect of IDO on islet-xenograft protection. Our results indicated that IDO expression by bystander fibroblasts significantly reduced the viability of primary macrophages via apoptosis induction. Treatment of peritoneal macrophages by IDO-expressing fibroblast conditioned medium significantly reduced their proinflammatory activity through inhibition of iNOS expression. To determine whether IDO-induced tryptophan starvation or kynurenine accumulation is responsible for macrophage apoptosis and inhibition of their proinflammatory activity, Raw264.7 cell viability and proinflammatory responses were evaluated in tryptophan deficient medium or in the presence of kynurenine. Tryptophan deficiency, but not kynurenine accumulation, reduced Raw264.7 cell viability and suppressed their proinflammatory activity. Next a three-dimensional islet-xenograft was engineered by embedding rat islets within either control or IDO-expressing fibroblast-populated collagen matrix. Islets morphology and immune cell infiltration were then studied in the xenografts transplanted into the C57

  10. NO binding to Mn-substituted homoprotocatechuate 2,3-dioxygenase: relationship to O₂ reactivity.

    Science.gov (United States)

    Hayden, Joshua A; Farquhar, Erik R; Que, Lawrence; Lipscomb, John D; Hendrich, Michael P

    2013-10-01

    Iron(II)-containing homoprotocatechuate 2,3-dioxygenase (FeHPCD) activates O2 to catalyze the aromatic ring opening of homoprotocatechuate (HPCA). The enzyme requires Fe(II) for catalysis, but Mn(II) can be substituted (MnHPCD) with essentially no change in the steady-state kinetic parameters. Near simultaneous O2 and HPCA activation has been proposed to occur through transfer of an electron or electrons from HPCA to O2 through the divalent metal. In O2 reactions with MnHPCD-HPCA and the 4-nitrocatechol (4NC) complex of the His200Asn (H200N) variant of FeHPCD, this transfer has resulted in the detection of a transient M(III)-O2 (·-) species that is not observed during turnover of the wild-type FeHPCD. The factors governing formation of the M(III)-O2 (·-) species are explored here by EPR spectroscopy using MnHPCD and nitric oxide (NO) as an O2 surrogate. Both the HPCA and the dihydroxymandelic substrate complexes of MnHPCD bind NO, thus representing the first reported stable MnNO complexes of a nonheme enzyme. In contrast, the free enzyme, the MnHPCD-4NC complex, and the MnH200N and MnH200Q variants with or without HPCA bound do not bind NO. The MnHPCD-ligand complexes that bind NO are also active in normal O2-linked turnover, whereas the others are inactive. Past studies have shown that FeHPCD and the analogous variants and catecholic ligand complexes all bind NO, and are active in normal turnover. This contrasting behavior may stem from the ability of the enzyme to maintain the approximately 0.8-V difference in the solution redox potentials of Fe(II) and Mn(II). Owing to the higher potential of Mn, the formation of the NO adduct or the O2 adduct requires both strong charge donation from the bound catecholic ligand and additional stabilization by interaction with the active-site His200. The same nonoptimal electronic and structural forces that prevent NO and O2 binding in MnHPCD variants may lead to inefficient electron transfer from the catecholic substrate to

  11. NO Binding to Mn-Substituted Homoprotocatechuate 2,3-Dioxygenase: Relationship to O2 Reactivity

    Science.gov (United States)

    Hayden, Joshua A.; Farquhar, Erik R.; Que, Lawrence; Lipscomb, John D.; Hendrich, Michael P.

    2014-01-01

    Homoprotocatechuate 2,3-dioxygenase (FeHPCD) activates O2 to catalyze the aromatic ring opening of 3,4-dihydroxyphenylacetic acid (HPCA). The enzyme requires FeII for catalysis, but MnII can be substituted (MnHPCD) with essentially no change in the steady-state kinetic parameters. Near simultaneous O2 and HPCA activation has been proposed to occur through transfer of an electron(s) from HPCA to O2 through the divalent metal. In O2 reactions with MnHPCD-HPCA and the 4-nitrocatechol (4NC) complex of the His200Asn (H200N) variant of FeHPCD, this transfer has resulted in the detection of a transient MIII-O2•− species not observed during turnover of the wild type FeHPCD. The factors governing formation of the MIII-O2•− species are explored here with EPR spectroscopy using MnHPCD and nitric oxide (NO) as an O2 surrogate. Both the HPCA and dihydroxymandelic substrate complexes of MnHPCD bind NO, thus representing the first reported stable MnNO complexes of a nonheme enzyme. In contrast, the free enzyme, the MnHPCD-4NC complex, and the MnH200N and MnH200Q variants with or without HPCA bound do not bind NO. The MnHPCD-ligand complexes that bind NO are also active in normal O2-linked turnover, whereas the others are inactive. Past studies have shown that FeHPCD and the analogous variants and catecholic ligand complexes all bind NO, and are active in normal turnover. This contrasting behavior may stem from ability of the enzyme to maintain the ~0.8 V difference in the solution redox potentials of FeII and MnII. Due to the higher potential of Mn, the formation of the NO or O2 adduct requires both strong charge donation from the bound catecholic ligand and additional stabilization by interaction with the active site His200. The same non-optimal electronic and structural forces that prevent NO and O2 binding in MnHPCD variants may lead to inefficient electron transfer from the catecholic substrate to the metal center in variants of FeHPCD during O2-linked turnover

  12. Synthesis of the Reported Pyranonaphthoquinone Structure of the Indoleamine-2,3-dioxygenase Inhibitor Annulin B by Regioselective Diels-Alder Reaction.

    Science.gov (United States)

    Inman, Martyn; Carvalho, Catarina; Lewis, William; Moody, Christopher J

    2016-09-01

    Annulin B, isolated from the marine hydroid isolated from Garveia annulata, is a potent inhibitor of the tryptophan catabolizing enzyme indoleamine-2,3-dioxygenase (IDO). A synthesis of the reported pyranonaphthoquinone structure is described, in which the key step is a regioselective Diels-Alder reaction between a pyranobenzoquinone dienophile and a silyl ketene acetal diene. PMID:27513176

  13. Gene therapy with adenovirus-delivered indoleamine 2,3-dioxygenase improves renal function and morphology following allogeneic kidney transplantation in rat

    NARCIS (Netherlands)

    Vavrincova-Yaghi, Diana; Deelman, Leo E.; van Goor, Harry; Seelen, Marc; Kema, Ido P.; Smit-van Oosten, Annemieke; de Zeeuw, Dick; Henning, Robert H.; Sandovici, Maria

    2011-01-01

    BACKGROUND: Indoleamine 2,3-dioxygenase (IDO), the rate-limiting enzyme in the tryptophan catabolism, has recently emerged as an important immunosuppressive enzyme involved in the regulation of both physiologic (maternal tolerance), as well as pathologic (neoplasia, autoimmune diseases, asthma) proc

  14. NUCLEOTIDE SEQUENCING AND TRANSCRIPTIONAL MAPPING OF THE GENES ENCODING BIPHENYL DIOXYGENASE, A MULTICOM- PONENT POLYCHLORINATED-BIPHENYL-DEGRADING ENZYME IN PSEUDOMONAS STRAIN LB400

    Science.gov (United States)

    The DNA region encoding biphenyl dioxygenase, the first enzyme in the biphenyl-polychlorinated biphenyl degradation pathway of Pseudomonas species strain LB400, was sequenced. Six open reading frames were identified, four of which are homologous to the components of toluene dioxy...

  15. Modeling the 2-His-1-Carboxylate Facial Triad: Iron-Catecholato Complexes as Structural and Functional Models of the Extradiol Cleaving Dioxygenases

    NARCIS (Netherlands)

    Bruijnincx, P.C.A.; Lutz, M.; Spek, A.L.; Hagen, W.R.; Weckhuysen, B.M.; van Koten, G.; Klein Gebbink, R.J.M.

    2007-01-01

    Mononuclear iron(II)- and iron(III)-catecholato complexes with three members of a new 3,3-bis(1-alkylimidazol-2-yl)propionate ligand family have been synthesized as models of the active sites of the extradiol cleaving catechol dioxygenases. These enzymes are part of the superfamily of dioxygen-activ

  16. Interaction of Carthamus tinctorius lignan arctigenin with the binding site of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Temml, Veronika; Kuehnl, Susanne; Schuster, Daniela; Schwaiger, Stefan; Stuppner, Hermann; Fuchs, Dietmar

    2013-01-01

    Mediterranean Carthamus tinctorius (Safflower) is used for treatment of inflammatory conditions and neuropsychiatric disorders. Recently C. tinctorius lignans arctigenin and trachelogenin but not matairesinol were described to interfere with the activity of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in peripheral blood mononuclear cells in vitro. We examined a potential direct influence of compounds on IDO enzyme activity applying computational calculations based on 3D geometry of the compounds. The interaction pattern analysis and force field-based minimization was performed within LigandScout 3.03, the docking simulation with MOE 2011.10 using the X-ray crystal structure of IDO. Results confirm the possibility of an intense interaction of arctigenin and trachelogenin with the binding site of the enzyme, while matairesinol had no such effect. PMID:24251110

  17. Indoleamine 2,3-dioxygenase 1 (ido1 is involved in the control of mouse caput epididymis immune environment.

    Directory of Open Access Journals (Sweden)

    Aicha Jrad-Lamine

    Full Text Available The epididymis maintains a state of immune tolerance towards spermatozoa while also protecting them and itself against infection and acute inflammation. The immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (Ido1 participates in this delicate local equilibrium. Using the mouse Ido1(-/- model, we show here that the absence of IDO1 expression leads in the epididymis but not in serum to (1 an increase in the inflammatory state as evidenced by changes in the content of cytokines and chemokines, (2 the engagement of a Th1-driven inflammatory response as evidenced by changes in the Th17/Treg as well as Th1/Th2 equilibria, as well as (3 differences in the content of lipid intermediates classically involved in inflammation. Despite this more pronounced inflammatory state, Ido1(-/- animals succeed in preserving the local epididymal immune situation due to the activation of compensatory mechanisms that are discussed.

  18. Indoleamine 2,3-dioxygenase 1 (ido1) is involved in the control of mouse caput epididymis immune environment.

    Science.gov (United States)

    Jrad-Lamine, Aicha; Henry-Berger, Joelle; Damon-Soubeyrand, Christelle; Saez, Fabrice; Kocer, Ayhan; Janny, Laurent; Pons-Rejraji, Hanae; Munn, David H; Mellor, Andrew L; Gharbi, Najoua; Cadet, Rémi; Guiton, Rachel; Aitken, Robert J; Drevet, Joël R

    2013-01-01

    The epididymis maintains a state of immune tolerance towards spermatozoa while also protecting them and itself against infection and acute inflammation. The immunosuppressive enzyme indoleamine 2,3-dioxygenase 1 (Ido1) participates in this delicate local equilibrium. Using the mouse Ido1(-/-) model, we show here that the absence of IDO1 expression leads in the epididymis but not in serum to (1) an increase in the inflammatory state as evidenced by changes in the content of cytokines and chemokines, (2) the engagement of a Th1-driven inflammatory response as evidenced by changes in the Th17/Treg as well as Th1/Th2 equilibria, as well as (3) differences in the content of lipid intermediates classically involved in inflammation. Despite this more pronounced inflammatory state, Ido1(-/-) animals succeed in preserving the local epididymal immune situation due to the activation of compensatory mechanisms that are discussed. PMID:23840489

  19. Molecular modeling of 2-nitropropane dioxygenase domain of Mycobacterium tuberculosis H37Rv and docking of herbal ligands.

    Science.gov (United States)

    Ramesh, K V; Akhila, B N; Deshmukh, Sudha

    2011-06-01

    The 3D structure of enoyl reductase (ER) domain generated by the SWISS MODEL server contains the 2-nitropropane dioxygenase (2NPD) structure displaying the TIM barrel fold. Though TIM barrel fold is made up of both main and inserted domains, in our study, we could only predict the structure of the main domain, which had central barrel of eight beta-strands surrounded by eight alpha-helices. Superimposition of the 2NPD region of ER domain of Mycobacterium tuberculosis H37Rv on to the corresponding region of 2UVA_G revealed a good structural alignment between the two, suggesting this template to be a good structural homologue. Among various herbal ligands that were screened as inhibitors, daucosterol was found to bind in closest proximity to the flavin mono nucleotide (FMN) binding site with the lowest docking energy. PMID:21793307

  20. Localization of the human indoleamine 2,3-dioxygenase (IDO) gene to the pericentromeric region of human chromosome 8

    Energy Technology Data Exchange (ETDEWEB)

    Burkin, D.J.; Jones, C. (Eleanor Roosevelt Institute for Cancer Research, Denver, CO (United States)); Kimbro, K.S.; Taylor, M.W. (Indiana Univ., Bloomington, IN (United States)); Barr, B.L.; Gupta, S.L. (Hipple Cancer Research Center, Dayton, OH (United States))

    1993-07-01

    Indoleamine 2,3-dioxygenase (IDO) is the first enzyme in the catabolic pathway for tryptophan. This extrahepatic enzyme differs from the hepatic enzyme, tryptophan 2,3-dioxygenase (TDO), in molecular as well as enzymatic characteristics, although both enzymes catalyze the same reaction: cleavage of tryptophan into N-formylkynurenine. The induction of IDO by IFN-[gamma] plays a role in the antigrowth effect of IFN-[gamma] in cell cultures and in the inhibition of intracellular pathogens, e.g., Toxoplasma gondii and Chlamydia psittaci. Tryptophan is also the precursor for the synthesis of serotonin, and reduced levels of tryptophan and serotonin found in AIDS patients have been correlated with the presence of IFN-[gamma] and consequent elevation of IDO activity. The IDO enzyme has been purified and characterized, and its cDNA and genomic DNA clones have been isolated and analyzed. DNA from hybrid cells containing fragments of human chromosome 8 was used to determine the regional localization of the IDO gene on chromosome 8. The hybrids R30-5B and R30-2A contain 8p11 [yields] qter and 8q13 [yields] qter, respectively. Hybrid 229-3A contains the 8pter [yields] q11. The hybrid R30-2A was negative for the IDO gene, whereas R30-5B and 229-3A were positive as analyzed by PCR and verified by Southern blotting. Only the region close to the centromere is shared by R30-5B and 229-3A hybrids. The results indicate that the IDO gene is located on chromosome 8p11 [yields] q11.

  1. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes.

    Science.gov (United States)

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo

    2016-01-01

    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H-ThnA4-ThnA3-ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H-ThnA4-ThnA3-ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction. PMID:27030382

  2. Properties of catechol 1,2-dioxygenase in the cell free extract and immobilized extract of Mycobacterium fortuitum

    Directory of Open Access Journals (Sweden)

    A.S. Silva

    2013-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAH are carcinogenic compounds which contaminate water and soil, and the enzymes can be used for bioremediation of these environments. This study aimed to evaluate some environmental conditions that affect the production and activity of the catechol 1,2-dioxygenase (C12O by Mycobacterium fortuitum in the cell free and immobilized extract in sodium alginate. The bacterium was grown in mineral medium and LB broth containing 250 mg L-1 of anthracene (PAH. The optimum conditions of pH (4.0-9.0, temperature (5-70 ºC, reaction time (10-90 min and the effect of ions in the enzyme activity were determined. The Mycobacterium cultivated in LB shown higher growth and the C12O activity was two-fold higher to that in the mineral medium. To both extracts the highest enzyme activity was at pH 8.0, however, the immobilized extract promoted the increase in the C12O activity in a pH range between 4.0 and 8.5. The immobilized extract increased the enzymatic activity time and showed the highest C12O activity at 45 ºC, 20 ºC higher than the greatest temperature in the cell free extract. The enzyme activity in both extracts was stimulated by Fe3+, Hg2+ and Mn2+ and inhibited by NH4+ and Cu2+, but the immobilization protected the enzyme against the deleterious effects of K+ and Mg2+ in tested concentrations. The catechol 1,2-dioxygenase of Mycobacterium fortuitum in the immobilized extract has greater stability to the variations of pH, temperature and reaction time, and show higher activity in presence of ions, comparing to the cell free extract.

  3. In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater

    International Nuclear Information System (INIS)

    The authors developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-microm-pore-size filters, which were then frozen to dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To the authors' knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches

  4. Redox proteins of hydroxylating bacterial dioxygenases establish a regulatory cascade that prevents gratuitous induction of tetralin biodegradation genes

    Science.gov (United States)

    Ledesma-García, Laura; Sánchez-Azqueta, Ana; Medina, Milagros; Reyes-Ramírez, Francisca; Santero, Eduardo

    2016-01-01

    Bacterial dioxygenase systems are multicomponent enzymes that catalyze the initial degradation of many environmentally hazardous compounds. In Sphingopyxis granuli strain TFA tetralin dioxygenase hydroxylates tetralin, an organic contaminant. It consists of a ferredoxin reductase (ThnA4), a ferredoxin (ThnA3) and a oxygenase (ThnA1/ThnA2), forming a NAD(P)H–ThnA4–ThnA3–ThnA1/ThnA2 electron transport chain. ThnA3 has also a regulatory function since it prevents expression of tetralin degradation genes (thn) in the presence of non-metabolizable substrates of the catabolic pathway. This role is of physiological relevance since avoids gratuitous and wasteful production of catabolic enzymes. Our hypothesis for thn regulation implies that ThnA3 exerts its action by diverting electrons towards the regulator ThnY, an iron-sulfur flavoprotein that together with the transcriptional activator ThnR is necessary for thn gene expression. Here we analyze electron transfer among ThnA4, ThnA3 and ThnY by using stopped-flow spectrophotometry and determination of midpoint reduction potentials. Our results indicate that when accumulated in its reduced form ThnA3 is able to fully reduce ThnY. In addition, we have reproduced in vitro the regulatory circuit in the proposed physiological direction, NAD(P)H–ThnA4–ThnA3–ThnY. ThnA3 represents an unprecedented way of communication between a catabolic pathway and its regulatory system to prevent gratuitous induction. PMID:27030382

  5. Identification of a novel dioxygenase involved in metabolism of o-xylene, toluene, and ethylbenzene by Rhodococcus sp. strain DK17.

    Science.gov (United States)

    Kim, Dockyu; Chae, Jong-Chan; Zylstra, Gerben J; Kim, Young-Soo; Kim, Seong-Ki; Nam, Myung Hee; Kim, Young Min; Kim, Eungbin

    2004-12-01

    Rhodococcus sp. strain DK17 is able to grow on o-xylene, benzene, toluene, and ethylbenzene. DK17 harbors at least two megaplasmids, and the genes encoding the initial steps in alkylbenzene metabolism are present on the 330-kb pDK2. The genes encoding alkylbenzene degradation were cloned in a cosmid clone and sequenced completely to reveal 35 open reading frames (ORFs). Among the ORFs, we identified two nearly exact copies (one base difference) of genes encoding large and small subunits of an iron sulfur protein terminal oxygenase that are 6 kb apart from each other. Immediately downstream of one copy of the dioxygenase genes (akbA1a and akbA2a) is a gene encoding a dioxygenase ferredoxin component (akbA3), and downstream of the other copy (akbA1b and akbA2b) are genes putatively encoding a meta-cleavage pathway. RT-PCR experiments show that the two copies of the dioxygenase genes are operonic with the downstream putative catabolic genes and that both operons are induced by o-xylene. When expressed in Escherichia coli, AkbA1a-AkbA2a-AkbA3 transformed o-xylene into 2,3- and 3,4-dimethylphenol. These were apparently derived from an unstable o-xylene cis-3,4-dihydrodiol, which readily dehydrates. This indicates a single point of attack of the dioxygenase on the aromatic ring. In contrast, attack of AkbA1a-AkbA2a-AkbA3 on ethylbenzene resulted in the formation of two different cis-dihydrodiols resulting from an oxidation at the 2,3 and the 3,4 positions on the aromatic ring, respectively. PMID:15574904

  6. Interaction of Carthamus tinctorius lignan arctigenin with the binding site of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase

    OpenAIRE

    Temml, Veronika; Kuehnl, Susanne; Schuster, Daniela; Schwaiger, Stefan; Stuppner, Hermann; Fuchs, Dietmar

    2013-01-01

    Mediterranean Carthamus tinctorius (Safflower) is used for treatment of inflammatory conditions and neuropsychiatric disorders. Recently C. tinctorius lignans arctigenin and trachelogenin but not matairesinol were described to interfere with the activity of tryptophan-degrading enzyme indoleamine 2,3-dioxygenase (IDO) in peripheral blood mononuclear cells in vitro. We examined a potential direct influence of compounds on IDO enzyme activity applying computational calculations based on 3D geom...

  7. Analysis of multi-domain hypothetical proteins containing iron-sulphur clusters and fad ligands reveal rieske dioxygenase activity suggesting their plausible roles in bioremediation.

    Science.gov (United States)

    Sathyanarayanan, Nitish; Nagendra, Holenarasipur Gundurao

    2012-01-01

    'Conserved hypothetical' proteins pose a challenge not just for functional genomics, but also to biology in general. As long as there are hundreds of conserved proteins with unknown function in model organisms such as Escherichia coli, Bacillus subtilis or Saccharomyces cerevisiae, any discussion towards a 'complete' understanding of these biological systems will remain a wishful thinking. Insilico approaches exhibit great promise towards attempts that enable appreciating the plausible roles of these hypothetical proteins. Among the majority of genomic proteins, two-thirds in unicellular organisms and more than 80% in metazoa, are multi-domain proteins, created as a result of gene duplication events. Aromatic ring-hydroxylating dioxygenases, also called Rieske dioxygenases (RDOs), are class of multi-domain proteins that catalyze the initial step in microbial aerobic degradation of many aromatic compounds. Investigations here address the computational characterization of hypothetical proteins containing Ferredoxin and Flavodoxin signatures. Consensus sequence of each class of oxidoreductase was obtained by a phylogenetic analysis, involving clustering methods based on evolutionary relationship. A synthetic sequence was developed by combining the consensus, which was used as the basis to search for their homologs via BLAST. The exercise yielded 129 multidomain hypothetical proteins containing both 2Fe-2S (Ferredoxin) and FNR (Flavodoxin) domains. In the current study, 40 proteins with N-terminus 2Fe-2S domain and C-terminus FNR domain are characterized, through homology modelling and docking exercises which suggest dioxygenase activity indicating their plausible roles in degradation of aromatic moieties.

  8. A murine model for type III tyrosinemia: lack of immunologically detectable 4-hydroxyphenylpyruvic acid dioxygenase enzyme protein in a novel mouse strain with hypertyrosinemia.

    Science.gov (United States)

    Endo, F; Katoh, H; Yamamoto, S; Matsuda, I

    1991-04-01

    We have characterized a new mutant strain of mouse that has hypertyrosinemia. The blood tyrosine level was persistently high, and increased amounts of 4-hydroxyphenylpyruvic acid and its derivatives were excreted into the urine. Succinylacetone was not detected in urine samples from these mice. All the animals were apparently healthy, and there was no evidence of hepatorenal dysfunction. The hypertyrosinemia was transmitted through an autosomal recessive inheritance. Analyses of hepatic enzymes related to tyrosine metabolism revealed that 4-hydroxyphenylpyruvic acid dioxygenase activity was virtually absent, while fumarylacetoacetase and tyrosine aminotransferases (cytosolic and mitochondrial forms) were normal in these mutant mice. Immunoblot analysis of 4-hydroxyphenylpyruvic acid dioxygenase protein in the liver indicated that the subunit protein of the enzyme was absent. It would appear that hypertyrosinemia in this mutant strain was caused by a genetic defect in 4-hydroxyphenylpyruvic acid dioxygenase. These features are similar to type III tyrosinemia in humans. Analysis of this mutant strain of mouse is expected to provide valuable information on the pathogenesis of human type III tyrosinemia and can also serve as a useful system for studies on tyrosine metabolism.

  9. The mitochondrial sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 is required for amino acid catabolism during carbohydrate starvation and embryo development in Arabidopsis.

    Science.gov (United States)

    Krüßel, Lena; Junemann, Johannes; Wirtz, Markus; Birke, Hannah; Thornton, Jeremy D; Browning, Luke W; Poschet, Gernot; Hell, Rüdiger; Balk, Janneke; Braun, Hans-Peter; Hildebrandt, Tatjana M

    2014-05-01

    The sulfur dioxygenase ETHYLMALONIC ENCEPHALOPATHY PROTEIN1 (ETHE1) catalyzes the oxidation of persulfides in the mitochondrial matrix and is essential for early embryo development in Arabidopsis (Arabidopsis thaliana). We investigated the biochemical and physiological functions of ETHE1 in plant metabolism using recombinant Arabidopsis ETHE1 and three transfer DNA insertion lines with 50% to 99% decreased sulfur dioxygenase activity. Our results identified a new mitochondrial pathway catalyzing the detoxification of reduced sulfur species derived from cysteine catabolism by oxidation to thiosulfate. Knockdown of the sulfur dioxygenase impaired embryo development and produced phenotypes of starvation-induced chlorosis during short-day growth conditions and extended darkness, indicating that ETHE1 has a key function in situations of high protein turnover, such as seed production and the use of amino acids as alternative respiratory substrates during carbohydrate starvation. The amino acid profile of mutant plants was similar to that caused by defects in the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex and associated dehydrogenases. Thus, in addition to sulfur amino acid catabolism, ETHE1 also affects the oxidation of branched-chain amino acids and lysine.

  10. Structure prediction of Fe(II) 2-oxoglutarate dioxygenase from a psychrophilic yeast Glaciozyma antarctica PI12

    Science.gov (United States)

    Yusof, Nik Yusnoraini; Bakar, Farah Diba Abu; Mahadi, Nor Muhammad; Raih, Mohd Firdaus; Murad, Abdul Munir Abdul

    2015-09-01

    A cDNA encoding Fe(II) 2-oxoglutarate (2OG) dependent dioxygenases was isolated from psychrophilic yeast, Glaciozyma antarctica PI12. We have successfully amplified 1,029 bp cDNA sequence that encodes 342 amino acid with predicted molecular weight 38 kDa. The prediction protein was analysed using various bioinformatics tools to explore the properties of the protein. Based on a BLAST search analysis, the Fe2OX amino acid sequence showed 61% identity to the sequence of oxoglutarate/iron-dependent oxygenase from Rhodosporidium toruloides NP11. SignalP prediction showed that the Fe2OX protein contains no putative signal peptide, which suggests that this enzyme most probably localised intracellularly.The structure of Fe2OX was predicted by homology modelling using MODELLER9v11. The model with the lowest objective function was selected from hundred models generated using MODELLER9v11. Analysis of the structure revealed the longer loop at Fe2OX from G.antarctica that might be responsible for the flexibility of the structure, which contributes to its adaptation to low temperatures. Fe2OX hold a highly conserved Fe(II) binding HXD/E…H triad motif. The binding site for 2-oxoglutarate was found conserved for Arg280 among reported studies, however the Phe268 was found to be different in Fe2OX.

  11. Ring-hydroxylating dioxygenase (RHD) expression in a microbial community during the early response to oil pollution.

    Science.gov (United States)

    Paissé, Sandrine; Goñi-Urriza, Marisol; Stalder, Thibault; Stadler, Thibault; Budzinski, Hélène; Duran, Robert

    2012-04-01

    The early functional response of a bacterial community from the sediments of a chronically oil-polluted retention basin located at the Etang de Berre (France) was investigated just after petroleum addition. After removing hydrocarbon compounds by natural abiotic and biotic processes, the sediments were maintained in microcosms and Vic Bilh petroleum was added. The diversity and the expression of genes encoding ring-hydroxylating dioxygenases (RHD) were examined just after the petroleum addition until 14 days focussing on the first hours following the contamination. RHD gene copy numbers and diversity were maintained throughout all the incubation period; however, transcripts were detected only during the first 2 days. One dominant RHD gene, immediately and specifically expressed in response to petroleum contamination, was related to RHD gene carried by a plasmid found in Pseudomonas spp. The expression of the RHD genes was correlated with high biodegradation levels observed for low molecular weight PAHs at 7 days of incubation. The study shows that the bacterial metabolism induced just after the oil input is a key stage that could determine the bacterial community structure changes. Monitoring the expression of RHD genes, key genes involved in hydrocarbon degradation, may provide useful information for managing bioremediation processes.

  12. Expression of tryptophan 2,3-dioxygenase in mature granule cells of the adult mouse dentate gyrus

    Directory of Open Access Journals (Sweden)

    Ohira, Koji

    2010-09-01

    Full Text Available Abstract New granule cells are continuously generated in the dentate gyrus of the adult hippocampus. During granule cell maturation, the mechanisms that differentiate new cells not only describe the degree of cell differentiation, but also crucially regulate the progression of cell differentiation. Here, we describe a gene, tryptophan 2,3-dioxygenase (TDO, whose expression distinguishes stem cells from more differentiated cells among the granule cells of the adult mouse dentate gyrus. The use of markers for proliferation, neural progenitors, and immature and mature granule cells indicated that TDO was expressed in mature cells and in some immature cells. In mice heterozygous for the alpha-isoform of calcium/calmodulin-dependent protein kinase II, in which dentate gyrus granule cells fail to mature normally, TDO immunoreactivity was substantially downregulated in the dentate gyrus granule cells. Moreover, a 5-bromo-2'-deoxyuridine labeling experiment revealed that new neurons began to express TDO between 2 and 4 wk after the neurons were generated, when the axons and dendrites of the granule cells developed and synaptogenesis occurred. These findings indicate that TDO might be required at a late-stage of granule cell development, such as during axonal and dendritic growth, synaptogenesis and its maturation.

  13. The carotenoid cleavage dioxygenase CCD2 catalysing the synthesis of crocetin in spring crocuses and saffron is a plastidial enzyme.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Berman, Judit; Capell, Teresa; Christou, Paul; Zhu, Changfu; Gómez-Gómez, Lourdes

    2016-01-01

    The apocarotenoid crocetin and its glycosylated derivatives, crocins, confer the red colour to saffron. Crocetin biosynthesis in saffron is catalysed by the carotenoid cleavage dioxygenase CCD2 (AIG94929). No homologues have been identified in other plant species due to the very limited presence of crocetin and its derivatives in the plant kingdom. Spring Crocus species with yellow flowers accumulate crocins in the stigma and tepals. Four carotenoid CCDs, namely CaCCD1, CaCCD2 and CaCCD4a/b and CaCCD4c were first cloned and characterized. CaCCD2 was localized in plastids, and a longer CCD2 version, CsCCD2L, was also localized in this compartment. The activity of CaCCD2 was assessed in Escherichia coli and in a stable rice gene function characterization system, demonstrating the production of crocetin in both systems. The expression of all isolated CCDs was evaluated in stigma and tepals at three key developmental stages in relation with apocarotenoid accumulation. CaCCD2 expression parallels crocin accumulation, but C14 apocarotenoids most likely are associated to the CaCCD1 activity in Crocus ancyrensis flowers. The specific CCD2 localization and its membrane interaction will contribute to the development of a better understanding of the mechanism of crocetin biosynthesis and regulation in the chromoplast. PMID:26377696

  14. 4-hydroxyphenylpyruvate dioxygenase catalysis: identification of catalytic residues and production of a hydroxylated intermediate shared with a structurally unrelated enzyme.

    Science.gov (United States)

    Raspail, Corinne; Graindorge, Matthieu; Moreau, Yohann; Crouzy, Serge; Lefèbvre, Bertrand; Robin, Adeline Y; Dumas, Renaud; Matringe, Michel

    2011-07-22

    4-Hydroxyphenylpyruvate dioxygenase (HPPD) catalyzes the conversion of 4-hydroxyphenylpyruvate (HPP) into homogentisate. HPPD is the molecular target of very effective synthetic herbicides. HPPD inhibitors may also be useful in treating life-threatening tyrosinemia type I and are currently in trials for treatment of Parkinson disease. The reaction mechanism of this key enzyme in both plants and animals has not yet been fully elucidated. In this study, using site-directed mutagenesis supported by quantum mechanical/molecular mechanical theoretical calculations, we investigated the role of catalytic residues potentially interacting with the substrate/intermediates. These results highlight the following: (i) the central role of Gln-272, Gln-286, and Gln-358 in HPP binding and the first nucleophilic attack; (ii) the important movement of the aromatic ring of HPP during the reaction, and (iii) the key role played by Asn-261 and Ser-246 in C1 hydroxylation and the final ortho-rearrangement steps (numbering according to the Arabidopsis HPPD crystal structure 1SQD). Furthermore, this study reveals that the last step of the catalytic reaction, the 1,2 shift of the acetate side chain, which was believed to be unique to the HPPD activity, is also catalyzed by a structurally unrelated enzyme.

  15. Reaction mechanism of homoprotocatechuate 2,3-dioxygenase with 4-nitrocatechol: implications for the role of substrate.

    Science.gov (United States)

    Dong, Geng; Lai, Wenzhen

    2014-02-20

    The reaction mechanism of the dioxygen activation by homoprotocatechuate 2,3-dioxygenase (HPCD) with the substrate 4-nitrocatechol was investigated by quantum mechanical/molecular mechanical calculations. Our results demonstrated that the experimentally determined side-on iron-oxygen complex in crystallo is a semiquinone substrate radical (SQ(•))-Fe(III)-hydroperoxo species, which could not act as the reactive species. In fact, the Fe(III)-superoxo species with a hydrogen bond between His200 and the proximal oxygen is the reactive oxygen species. The second-sphere His200 residue was found to play an important role in manipulating the orientation of the superoxide in the Fe-O2 adduct for the further reaction. The rate-limiting step is the attack of the superoxo group on the substrate with a barrier of 17.2 kcal/mol, in good agreement with the experimental value of 16.8 kcal/mol. The reaction mechanism was then compared with the one for HPCD with its native substrate homoprotocatechuate studied recently by the same methods, in which a hybrid SQ(•)-Fe(II)-O2(•-)/Fe(III)-O2(•-) was suggested to be the reactive species. Therefore, our studies suggested that the substrate plays important roles in the dioxygen activation by HPCD.

  16. Immunological and Nonimmunological Effects of Indoleamine 2,3-Dioxygenase on Breast Tumor Growth and Spontaneous Metastasis Formation

    Directory of Open Access Journals (Sweden)

    Vera Levina

    2012-01-01

    Full Text Available The role of the tryptophan-catabolizing enzyme, indoleamine 2,3-dioxygenase (IDO1, in tumor escape and metastasis formation was analyzed using two pairs of Ido1+ and Ido1− murine breast cancer cell lines. Ido1 expression in 4T1 cells was knocked down by shRNA, and Ido1 expression in NT-5 cells was upregulated by stable transfection. Growth of Ido1− tumors and spontaneous metastasis formation were inhibited in immunocompetent mice. A higher level of cytotoxic T lymphocytes was generated by spleen cells from mice bearing Ido1− tumors than Ido1+ tumors. Tumor and metastatic growth was enhanced in immunodeficient mice, confirming an intensified immune response in the absence of Ido1 expression. However, Ido1+ tumors grow faster than Ido1− tumors in immunodeficient SCID/beige mice (lacking T, B, and NK cells suggesting that some Ido1-controlled nonimmunological mechanisms may be involved in tumor cell growth regulation. In vitro experiments demonstrated that downregulation of Ido1 in tumor cells was associated with decreased cell proliferation, increased apoptosis, and changed expression of cell cycle regulatory genes, whereas upregulation of Ido1 in the cells had the opposite effects. Taken together, our findings indicate that Ido1 expression could exert immunological and nonimmunological effects in murine breast tumor cells.

  17. Scavenging properties of neutrophil 4-hydroxyphenylpyruvate dioxygenase are based on a hypothesis that does not stand up to scrutiny.

    Science.gov (United States)

    Salerno, Costantino; Zicari, Alessandra; Mari, Emanuela; D'Eufemia, Patrizia

    2014-10-01

    It was previously reported by D'Eufemia et al. [9] that neutrophil preparations from a patient with tyrosinemia type III, i.e. with inherited deficiency of 4-hydroxyphenylpyruvate dioxygenase (HPPD), exhibited a far higher NO release than controls, when NO was estimated in terms of nitrite content in the suspending media. It was hypothesized that HPPD might participate to NO sequestration in neutrophils and that excessive NO release might reflect the lack of the scavenging action in defective cells. In recent control experiments, we found that HPPD activity in neutrophils preparations from healthy subjects is below the detection limit of the enzymatic assay (less than 3nmol product/h per mg protein). This indicates that HPPD concentration in neutrophils is very low, if any, confirming what was already suggested in literature, and rules out the possibility of a prominent role of HPPD as NO scavenger in these cells. Moreover, we found that 500μM l-tyrosine increases nitrite release and accumulation in suspending media of U-937 cells, a human monoblast-like lymphoma cell line which displays many characteristics of macrophages, including the expression of inducible and endothelial nitric oxide synthases. We hypothesize that the increase of nitrite release by patient's neutrophils might be related to the presence of high l-tyrosine concentrations in the blood samples (426μmol/L instead of 52.1±10.9μmol/L as healthy subjects), rather than to HPPD deficiency of in these cells.

  18. Docking studies of antidepressants against single crystal structure of tryptophan 2, 3-dioxygenase using Molegro Virtual Docker software.

    Science.gov (United States)

    Dawood, Shazia; Zarina, Shamshad; Bano, Samina

    2014-09-01

    Tryptophan 2, 3-dioxygenase (TDO) a heme containing enzyme found in mammalian liver is responsible for tryptophan (Trp) catabolism. Trp is an essential amino acid that is degraded in to N-formylkynurenine by the action of TDO. The protein ligand interaction plays a significant role in structural based drug designing. The current study illustrates the binding of established antidepressants (ADs) against TDO enzyme using in-silico docking studies. For this purpose, Fluoxetine, Paroxetine, Sertraline, Fluvoxamine, Seproxetine, Citalopram, Moclobamide, Hyperforin and Amoxepine were selected. In-silico docking studies were carried out using Molegro Virtual Docker (MVD) software. Docking results show that all ADs fit well in the active site of TDO moreover Hyperforin and Paroxetine exhibited high docking scores of -152.484k cal/mol and -139.706k cal/mol, respectively. It is concluded that Hyperforin and Paroxetine are possible lead molecules because of their high docking scores as compared to other ADs examined. Therefore, these two ADs stand as potent inhibitors of TDO enzyme. PMID:25176248

  19. The nonoxidative conversion of nitroethane to ethylnitronate in Neurospora crassa 2-nitropropane dioxygenase is catalyzed by histidine 196.

    Science.gov (United States)

    Francis, Kevin; Gadda, Giovanni

    2008-09-01

    The deprotonation of nitroethane catalyzed by Neurospora crassa 2-nitropropane dioxygenase was investigated by measuring the formation and release of ethylnitronate formed in turnover as a function of pH and through mutagenesis studies. Progress curves for the enzymatic reaction obtained by following the increase in absorbance at 228 nm over time were visibly nonlinear, requiring a logarithmic approximation of the initial reaction rates for the determination of the kinetic parameters of the enzyme. The pH dependence of the second-order rate constant k cat/ K m with nitroethane as substrate implicates the presence of a group with a p K a of 8.1 +/- 0.1 that must be unprotonated for nitronate formation. Mutagenesis studies suggest that this group is histidine 196 as evident from the inability of a H196N variant form of the enzyme to catalyze the formation of ethylnitronate from nitroethane. Replacement of histidine 196 with asparagine resulted in an approximately 15-fold increase in the k cat/ K m with ethylnitronate as compared to the wild-type, which results from the inability of the mutant enzyme to undergo nonoxidative turnover. The results presented herein are consistent with a branched catalytic mechanism for the enzyme in which the ethylnitronate intermediate formed from the H196-catalyzed deprotonation of nitroethane partitions between release from the active site and oxidative denitrification to yield acetaldehyde and nitrite. PMID:18690716

  20. Eucalyptus ESTs involved in the production of 9-cis epoxycarotenoid dioxygenase, a regulatory enzyme of abscisic acid production

    Directory of Open Access Journals (Sweden)

    Iraê A. Guerrini

    2005-01-01

    Full Text Available Abscisic acid (ABA regulates stress responses in plants, and genomic tools can help us to understand the mechanisms involved in that process. FAPESP, a Brazilian research foundation, in association with four private forestry companies, has established the FORESTs database (https://forests.esalq.usp.br. A search was carried out in the Eucalyptus expressed sequence tag database to find ESTs involved with 9-cis epoxycarotenoid dioxygenase (NCED, the regulatory enzyme for ABA biosynthesis, using the basic local BLAST alignment tool. We found four clusters (EGEZLV2206B11.g, EGJMWD2252H08.g, EGBFRT3107F10.g, and EGEQFB1200H10.g, which represent similar sequences of the gene that produces NCED. Data showed that the EGBFRT3107F10.g cluster was similar to the maize (Zea mays NCED enzyme, while EGEZLV2206B11.g and EGJMWD2252H08.g clusters were similar to the avocado (Persea americana NCED enzyme. All Eucalyptus clusters were expressed in several tissues, especially in flower buds, where ABA has a special participation during the floral development process.

  1. Eosinophil Granulocytes Account for Indoleamine 2,3-Dioxygenase-Mediated Immune Escape in Human Non Small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Simonetta Astigiano

    2005-04-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO, a catabolizing enzyme of tryptophan, is supposed to play a role in tumor immune escape. Its expression in solid tumors has not yet been well elucidated: IDO can be expressed by the tumor cells themselves, or by ill-defined infiltrating cells, possibly depending on tumor type. We have investigated IDO expression in 25 cases of non small cell lung cancer (NSCLC. Using histochemistry and immunohistochemistry, we found that IDO was expressed not by tumor cells, but by normal cells infiltrating the peritumoral stroma. These cells were neither macrophages nor dendritic cells, and were identified as eosinophil granulocytes. The amount of IDO-positive eosinophils varied in different cases, ranging from a few cells to more than 50 per field at x200 magnification. IDO protein in NSCLC was enzymatically active. Therefore, at least in NSCLC cases displaying a large amount of these cells in the inflammatory infiltrate, IDO-positive eosinophils could exert an effective immunosuppressive action. On analyzing the 17 patients with adequate follow-up, a significant relationship was found between the amount of IDO-positive infiltrate and overall survival. This finding suggests that the degree of IDO-positive infiltrate could be a prognostic marker in NSCLC.

  2. Relationship of Abortion and the Expression of Indoleamine 2,3- dioxygenase (IDO) in Villus and Syncytiotrophoblasts

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective To study the relationship of abortion and the expression of indoleamine 2,3- dioxygenase (IDO) in villus and syncytiotrophoblast in vitro.Methods RT-PCR was applied to analyze the mRNA transcription of IDO in villus of normal pregnancy and inevitable abortion and JAR cells as well. Immunohistochemistry was applied to analyze the expression of IDO protein in villus. Western blot was applied to determinate the expression of IDO protein on cultured syncytiotrophoblast. Highperformance liquid chromatography was applied to determinate whether there was kynurenine in cell culture medium of syncytiotrophoblast.Results The expression of IDO mRNA and protein in villus of inevitable abortion was lower than that of normal pregnancy; IDO mRNA did not express in JAR cells. IDO protein expressed on cultured syncytiotrophoblast, and there was kynurenine in cell culture medium of syncytiotrophoblast.Conclusion Appropriate expression of IDO in villus is necessary for maintenance of normal pregnancy and an active IDO protein expresses in syncytiotrophoblast.

  3. Patchwork assembly of nag-like nitroarene dioxygenase genes and the 3-chlorocatechol degradation cluster for evolution of the 2-chloronitrobenzene catabolism pathway in Pseudomonas stutzeri ZWLR2-1.

    Science.gov (United States)

    Liu, Hong; Wang, Shu-Jun; Zhang, Jun-Jie; Dai, Hui; Tang, Huiru; Zhou, Ning-Yi

    2011-07-01

    Pseudomonas stutzeri ZWLR2-1 utilizes 2-chloronitrobenzene (2CNB) as a sole source of carbon, nitrogen, and energy. To identify genes involved in this pathway, a 16.2-kb DNA fragment containing putative 2CNB dioxygenase genes was cloned and sequenced. Of the products from the 19 open reading frames that resulted from this fragment, CnbAc and CnbAd exhibited striking identities to the respective α and β subunits of the Nag-like ring-hydroxylating dioxygenases involved in the metabolism of nitrotoluene, nitrobenzene, and naphthalene. The encoding genes were also flanked by two copies of insertion sequence IS6100. CnbAa and CnbAb are similar to the ferredoxin reductase and ferredoxin for anthranilate 1,2-dioxygenase from Burkholderia cepacia DBO1. Escherichia coli cells expressing cnbAaAbAcAd converted 2CNB to 3-chlorocatechol with concomitant nitrite release. Cell extracts of E. coli/pCNBC exhibited chlorocatechol 1,2-dioxygenase activity. The cnbCDEF gene cluster, homologous to a 3-chlorocatechol degradation cluster in Sphingomonas sp. strain TFD44, probably contains all of the genes necessary for the conversion of 3-chlorocatechol to 3-oxoadipate. The patchwork-like structure of this catabolic cluster suggests that the cnb cluster for 2CNB degradation evolved by recruiting two catabolic clusters encoding a nitroarene dioxygenase and a chlorocatechol degradation pathway. This provides another example to help elucidate the bacterial evolution of catabolic pathways in response to xenobiotic chemicals.

  4. Study of 'Redhaven' peach and its white-fleshed mutant suggests a key role of CCD4 carotenoid dioxygenase in carotenoid and norisoprenoid volatile metabolism

    Directory of Open Access Journals (Sweden)

    Tartarini Stefano

    2011-01-01

    Full Text Available Abstract Background Carotenoids are plant metabolites which are not only essential in photosynthesis but also important quality factors in determining the pigmentation and aroma of flowers and fruits. To investigate the regulation of carotenoid metabolism, as related to norisoprenoids and other volatile compounds in peach (Prunus persica L. Batsch., and the role of carotenoid dioxygenases in determining differences in flesh color phenotype and volatile composition, the expression patterns of relevant carotenoid genes and metabolites were studied during fruit development along with volatile compound content. Two contrasted cultivars, the yellow-fleshed 'Redhaven' (RH and its white-fleshed mutant 'Redhaven Bianca' (RHB were examined. Results The two genotypes displayed marked differences in the accumulation of carotenoid pigments in mesocarp tissues. Lower carotenoid levels and higher levels of norisoprenoid volatiles were observed in RHB, which might be explained by differential activity of carotenoid cleavage dioxygenase (CCD enzymes. In fact, the ccd4 transcript levels were dramatically higher at late ripening stages in RHB with respect to RH. The two genotypes also showed differences in the expression patterns of several carotenoid and isoprenoid transcripts, compatible with a feed-back regulation of these transcripts. Abamine SG - an inhibitor of CCD enzymes - decreased the levels of both isoprenoid and non-isoprenoid volatiles in RHB fruits, indicating a complex regulation of volatile production. Conclusions Differential expression of ccd4 is likely to be the major determinant in the accumulation of carotenoids and carotenoid-derived volatiles in peach fruit flesh. More in general, dioxygenases appear to be key factors controlling volatile composition in peach fruit, since abamine SG-treated 'Redhaven Bianca' fruits had strongly reduced levels of norisoprenoids and other volatile classes. Comparative functional studies of peach carotenoid

  5. Respiratory Syncytial Virus-Infected Mesenchymal Stem Cells Regulate Immunity via Interferon Beta and Indoleamine-2,3-Dioxygenase

    Science.gov (United States)

    Cheung, Michael B.; Sampayo-Escobar, Viviana; Green, Ryan; Moore, Martin L.; Mohapatra, Subhra; Mohapatra, Shyam S.

    2016-01-01

    Respiratory syncytial virus (RSV) has been reported to infect human mesenchymal stem cells (MSCs) but the consequences are poorly understood. MSCs are present in nearly every organ including the nasal mucosa and the lung and play a role in regulating immune responses and mediating tissue repair. We sought to determine whether RSV infection of MSCs enhances their immune regulatory functions and contributes to RSV-associated lung disease. RSV was shown to replicate in human MSCs by fluorescence microscopy, plaque assay, and expression of RSV transcripts. RSV-infected MSCs showed differentially altered expression of cytokines and chemokines such as IL-1β, IL6, IL-8 and SDF-1 compared to epithelial cells. Notably, RSV-infected MSCs exhibited significantly increased expression of IFN-β (~100-fold) and indoleamine-2,3-dioxygenase (IDO) (~70-fold) than in mock-infected MSCs. IDO was identified in cytosolic protein of infected cells by Western blots and enzymatic activity was detected by tryptophan catabolism assay. Treatment of PBMCs with culture supernatants from RSV-infected MSCs reduced their proliferation in a dose dependent manner. This effect on PBMC activation was reversed by treatment of MSCs with the IDO inhibitors 1-methyltryptophan and vitamin K3 during RSV infection, a result we confirmed by CRISPR/Cas9-mediated knockout of IDO in MSCs. Neutralizing IFN-β prevented IDO expression and activity. Treatment of MSCs with an endosomal TLR inhibitor, as well as a specific inhibitor of the TLR3/dsRNA complex, prevented IFN-β and IDO expression. Together, these results suggest that RSV infection of MSCs alters their immune regulatory function by upregulating IFN-β and IDO, affecting immune cell proliferation, which may account for the lack of protective RSV immunity and for chronicity of RSV-associated lung diseases such as asthma and COPD. PMID:27695127

  6. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine 200.

    Science.gov (United States)

    Kovaleva, Elena G; Rogers, Melanie S; Lipscomb, John D

    2015-09-01

    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady-state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homoprotocatechuate, 4-sulfonylcatechol, and 4-nitrocatechol) possessing substituents with different inductive capacity. Structures determined at 1.35-1.75 Å resolution show that there is essentially no change in overall active site architecture or substrate binding mode for these variants when compared to the structures of the wild-type enzyme and its analogous complexes. This shows that the maximal 50-fold decrease in kcat for ring cleavage, the dramatic changes in pH dependence, and the switch from ring cleavage to ring oxidation of 4-nitrocatechol by the FeHPCD variants can be attributed specifically to the properties of the altered second-sphere residue and the substrate. The results suggest that proton transfer is necessary for catalysis, and that it occurs most efficiently when the substrate provides the proton and His200 serves as a catalyst. However, in the absence of an available substrate proton, a defined proton-transfer pathway in the protein can be utilized. Changes in the steric bulk and charge of the residue at position 200 appear to be capable of altering the rate-limiting step in catalysis and, perhaps, the nature of the reactive species. PMID:26267790

  7. Intron retention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 during crocetin biosynthesis in saffron.

    Science.gov (United States)

    Ahrazem, Oussama; Rubio-Moraga, Angela; Argandoña-Picazo, Javier; Castillo, Raquel; Gómez-Gómez, Lourdes

    2016-06-01

    The carotenoid cleavage dioxygenase 2, a new member of the CCD family, catalyzes the conversion of zeaxanthin into crocetin-dialdehyde in Crocus. CCD2 is expressed in flowers, being responsible for the yellow, orange and red colorations displayed by tepals and stigma. Three CsCCD2 genes were identified in Crocus sativus, the longest contains ten exons and the shorter is a truncated copy with no introns and which lacks one exon sequence. Analysis of RNA-seq datasets of three developmental stages of saffron stigma allowed the determination of alternative splicing in CsCCD2, being intron retention (IR) the prevalent form of alternative splicing in CsCCD2. Further, high IR was observed in tissues that do not accumulate crocetin. The analysis of one CsCCD2 promoter showed cis-regulatory motifs involved in the response to light, temperature, and circadian regulation. The light and circadian regulation are common elements shared with the previously characterized CsLycB2a promoter, and these shared common cis-acting elements may represent binding sites for transcription factors responsible for co-regulation of these genes during the development of the stigma in saffron. A daily coordinated rhythmic regulation for CsCCD2 and CsLycB2a was observed, with higher levels of mRNA occurring at low temperatures during darkness, confirming the results obtained in the in silico promoter analysis. In addition, to the light and temperature dependent regulation of CsCCD2 expression, the apocarotenoid β-cyclocitral up-regulated CsCCD2 expression and could acts as a mediator of chromoplast-to-nucleus signalling, coordinating the expression of CsCCD2 with the developmental state of the chromoplast in the developing stigma. PMID:27071403

  8. The cystine/glutamate antiporter regulates indoleamine 2,3-dioxygenase protein levels and enzymatic activity in human dendritic cells.

    Science.gov (United States)

    Mattox, Mildred L; D'Angelo, June A; Grimes, Zachary M; Fiebiger, Edda; Dickinson, Bonny L

    2012-11-30

    Indoleamine 2,3-dioxygenase (IDO) is the rate-limiting enzyme in the tryptophan-catabolizing pathway and a key regulator of peripheral immune tolerance. As the suppressive effects of IDO are predominantly mediated by dendritic cells (DCs) and IDO-competent DCs promote long-term immunologic tolerance, a detailed understanding of how IDO expression and activity is regulated in these cells is central to the rational design of therapies to induce robust immune tolerance. We previously reported that the cystine/glutamate antiporter modulates the functional expression of IDO in human monocyte-derived DCs. Specifically, we showed that blocking antiporter uptake of cystine significantly increased both IDO mRNA and IDO enzymatic activity and that this correlated with impaired DC presentation of exogenous antigen to T cells via MHC class II and the cross-presentation pathway. The antiporter regulates intracellular and extracellular redox by transporting cystine into the cell in exchange for glutamate. Intracellular cystine is reduced to cysteine to support biosynthesis of the major cellular antioxidant glutathione and cysteine is exported from the cell where it functions as an extracellular antioxidant. Here we show that antiporter control of IDO expression in DCs is reversible, independent of interferon-γ, regulated by redox, and requires active protein synthesis. These findings highlight a role for antiporter regulation of cellular redox as a critical control point for modulating IDO expression and activity in DCs. Thus, systemic disease and aging, processes that perturb redox homeostasis, may adversely affect immunity by promoting the generation of IDO-competent DCs.

  9. Role of 9-Lipoxygenase and α-Dioxygenase Oxylipin Pathways as Modulators of Local and Systemic Defense

    Institute of Scientific and Technical Information of China (English)

    Jorge Vicente; Tomás Cascón; Begonya Vicedo; Pilar García-Agustín; Mats Hamberg; Carmen Castresana

    2012-01-01

    Plant 9-lipoxygenases(9-LOX)and α-dioxygenases(α-DOX)initiate the synthesis of oxylipins after bacterial infection.Here,the role of these enzymes in plants' defense was investigated using individual Arabidopsis thaliana lox1 and dox1 mutants and a double lox1 dox1 mutant.Studies with Pseudomonas syringae pv.tomato(Pst)revealed the enhanced susceptibility of lox1 to the virulent strain Pst DC3000 and the partial impairment of lox1 and dox1 mutants to activate systemic acquired resistance.Notably,both defects were enhanced in the lox1 dox1 plants as compared with individual mutants.We found that pre-treatment with 9-LOX- and α-DOX-generated oxylipins protected plant tissues against bacterial infection.The strongest effect in this respect was exerted by 9-ketooctadecatrienoic acid(9-KOT),which is produced from linolenic acid by 9-LOX.Quantification of 9-KOT revealed its accumulation after bacterial infection.The levels were reduced in lox1 and lox1 dox1 plants but strongly increased in the dox1 mutant due to metabolic interaction of the two pathways.Transcriptional analyses indicated that 9-KOT pre-treatment modifies hormone homeostasis during bacterial infection.The nature of the changes detected suggested that 9-KOT interferes with the hormonal changes caused by bacterial effectors.This notion was substantiated by the finding that 9-KOT failed to reduce the growth of PstDC3000hrpA,a mutant compromised in effector secretion,and of the avirulent strain Pst DC3000 avrRpm1.Further support for the action of the 9-LOX- and α-DOX-oxylipin pathways as modulators of hormone homeostasis was the observation that lox1 dox1 seedlings are hypersensitive to the growth-inhibitory effect of ABA and showed enhanced activation of ABA-inducible marker genes as compared with wild-type plants.

  10. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine-200

    Science.gov (United States)

    Kovaleva, Elena G.; Rogers, Melanie S.; Lipscomb, John D.

    2015-01-01

    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homoprotocatechuate, 4-sulfonylcatechol, and 4-nitrocatechol) possessing substituents with different inductive capacity. Structures solved at 1.35 –1.75 Å resolution show that there is essentially no change in overall active site architecture or substrate binding mode for these variants when compared to the structures of the wild type enzyme and its analogous complexes. This shows that the maximal 50-fold decrease in kcat for ring cleavage, the dramatic changes in pH dependence, and the switch from ring cleavage to ring oxidation of 4-nitrocatechol by the FeHPCD variants can be attributed specifically to the properties of the altered second sphere residue and the substrate. The results suggest that proton transfer is necessary for catalysis, and that it occurs most efficiently when the substrate provides the proton and His200 serves as a catalyst. However, in the absence of an available substrate proton, a defined proton-transfer pathway in the protein can be utilized. Changes in steric bulk and charge of the residue at position 200 appear capable of altering the rate-limiting step in catalysis, and perhaps, the nature of the reactive species. PMID:26267790

  11. Purification and Characterization of Catechol 1,2-Dioxygenase from Acinetobacter sp. Y64 Strain and Escherichia coli Transformants.

    Science.gov (United States)

    Lin, J; Milase, R N

    2015-12-01

    This study intends to purify and characterize catechol 1,2-dioxygenase (C1,2O) of phenol-degrading Acinetobacter sp. Y64 and of E. coli transformant. Acinetobacter sp. Y64 was capable of degrading 1000 mg/L of phenol within 14 ± 2 h at 30 °C, 160 rpm and pH of 7. One C1,2O of 36 kDa was purified using ammonium sulphate precipitation and Hitrap QFF column chromatograph with 49% recovery and a 10.6-fold increase in purity. Purified Y64 C1,2O had temperature and pH optimum at 37 °C and pH 7.7 respectively with the Michaelis constant of 17.53 µM and the maximal velocity of 1.95 U/mg, respectively. The presence of Fe(3+) or Fe(2+) enhanced the activity of Y64 C1,2O while other compounds such as Ca(2+), and EDTA had an inhibitory effect. 80% of C1,2O activity remained using 4-nitrocatechol as substrate while 2% remained using 3-methylcatechol compared with that using catechol. Y64 catA gene encoding C1,2O was amplified using PCR cloned into pET22b vector and expressed in Escherichia coli BL21 DE3 (pLysS) after transformation. Purified and cloned Y64 C1,2O show no significant differences in the biochemical properties. The phylogenetic tree based on the protein sequences indicates that these C1,2Os possess a common ancestry.

  12. Structural Basis for Substrate and Oxygen Activation in Homoprotocatechuate 2,3-Dioxygenase: Roles of Conserved Active Site Histidine 200.

    Science.gov (United States)

    Kovaleva, Elena G; Rogers, Melanie S; Lipscomb, John D

    2015-09-01

    Kinetic and spectroscopic studies have shown that the conserved active site residue His200 of the extradiol ring-cleaving homoprotocatechuate 2,3-dioxygenase (FeHPCD) from Brevibacterium fuscum is critical for efficient catalysis. The roles played by this residue are probed here by analysis of the steady-state kinetics, pH dependence, and X-ray crystal structures of the FeHPCD position 200 variants His200Asn, His200Gln, and His200Glu alone and in complex with three catecholic substrates (homoprotocatechuate, 4-sulfonylcatechol, and 4-nitrocatechol) possessing substituents with different inductive capacity. Structures determined at 1.35-1.75 Å resolution show that there is essentially no change in overall active site architecture or substrate binding mode for these variants when compared to the structures of the wild-type enzyme and its analogous complexes. This shows that the maximal 50-fold decrease in kcat for ring cleavage, the dramatic changes in pH dependence, and the switch from ring cleavage to ring oxidation of 4-nitrocatechol by the FeHPCD variants can be attributed specifically to the properties of the altered second-sphere residue and the substrate. The results suggest that proton transfer is necessary for catalysis, and that it occurs most efficiently when the substrate provides the proton and His200 serves as a catalyst. However, in the absence of an available substrate proton, a defined proton-transfer pathway in the protein can be utilized. Changes in the steric bulk and charge of the residue at position 200 appear to be capable of altering the rate-limiting step in catalysis and, perhaps, the nature of the reactive species.

  13. Purification and Characterization of Catechol 1,2-Dioxygenase from Acinetobacter sp. Y64 Strain and Escherichia coli Transformants.

    Science.gov (United States)

    Lin, J; Milase, R N

    2015-12-01

    This study intends to purify and characterize catechol 1,2-dioxygenase (C1,2O) of phenol-degrading Acinetobacter sp. Y64 and of E. coli transformant. Acinetobacter sp. Y64 was capable of degrading 1000 mg/L of phenol within 14 ± 2 h at 30 °C, 160 rpm and pH of 7. One C1,2O of 36 kDa was purified using ammonium sulphate precipitation and Hitrap QFF column chromatograph with 49% recovery and a 10.6-fold increase in purity. Purified Y64 C1,2O had temperature and pH optimum at 37 °C and pH 7.7 respectively with the Michaelis constant of 17.53 µM and the maximal velocity of 1.95 U/mg, respectively. The presence of Fe(3+) or Fe(2+) enhanced the activity of Y64 C1,2O while other compounds such as Ca(2+), and EDTA had an inhibitory effect. 80% of C1,2O activity remained using 4-nitrocatechol as substrate while 2% remained using 3-methylcatechol compared with that using catechol. Y64 catA gene encoding C1,2O was amplified using PCR cloned into pET22b vector and expressed in Escherichia coli BL21 DE3 (pLysS) after transformation. Purified and cloned Y64 C1,2O show no significant differences in the biochemical properties. The phylogenetic tree based on the protein sequences indicates that these C1,2Os possess a common ancestry. PMID:26563518

  14. Induction of indoleamine 2, 3-dioxygenase in human dendritic cells by a cholera toxin B subunit-proinsulin vaccine.

    Directory of Open Access Journals (Sweden)

    Jacques C Mbongue

    Full Text Available Dendritic cells (DC interact with naïve T cells to regulate the delicate balance between immunity and tolerance required to maintain immunological homeostasis. In this study, immature human dendritic cells (iDC were inoculated with a chimeric fusion protein vaccine containing the pancreatic β-cell auto-antigen proinsulin linked to a mucosal adjuvant the cholera toxin B subunit (CTB-INS. Proteomic analysis of vaccine inoculated DCs revealed strong up-regulation of the tryptophan catabolic enzyme indoleamine 2, 3-dioxygenase (IDO1. Increased biosynthesis of the immunosuppressive enzyme was detected in DCs inoculated with the CTB-INS fusion protein but not in DCs inoculated with proinsulin, CTB, or an unlinked combination of the two proteins. Immunoblot and PCR analyses of vaccine treated DCs detected IDO1mRNA by 3 hours and IDO1 protein synthesis by 6 hours after vaccine inoculation. Determination of IDO1 activity in vaccinated DCs by measurement of tryptophan degradation products (kynurenines showed increased tryptophan cleavage into N-formyl kynurenine. Vaccination did not interfere with monocytes differentiation into DC, suggesting the vaccine can function safely in the human immune system. Treatment of vaccinated DCs with pharmacological NF-κB inhibitors ACHP or DHMEQ significantly inhibited IDO1 biosynthesis, suggesting a role for NF-κB signaling in vaccine up-regulation of dendritic cell IDO1. Heat map analysis of the proteomic data revealed an overall down-regulation of vaccinated DC functions, suggesting vaccine suppression of DC maturation. Together, our experimental data indicate that CTB-INS vaccine induction of IDO1 biosynthesis in human DCs may result in the inhibition of DC maturation generating a durable state of immunological tolerance. Understanding how CTB-INS modulates IDO1 activity in human DCs will facilitate vaccine efficacy and safety, moving this immunosuppressive strategy closer to clinical applications for prevention

  15. Prognostic Significance of Promoter DNA Hypermethylation of cysteine dioxygenase 1 (CDO1 Gene in Primary Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Naoko Minatani

    Full Text Available Using pharmacological unmasking microarray, we identified promoter DNA methylation of cysteine dioxygenase 1 (CDO1 gene in human cancer. In this study, we assessed the clinicopathological significance of CDO1 methylation in primary breast cancer (BC with no prior chemotherapy. The CDO1 DNA methylation was quantified by TaqMan methylation specific PCR (Q-MSP in 7 BC cell lines and 172 primary BC patients with no prior chemotherapy. Promoter DNA of the CDO1 gene was hypermethylated in 6 BC cell lines except SK-BR3, and CDO1 gene expression was all silenced at mRNA level in the 7 BC cell lines. Quantification of CDO1 methylation was developed using Q-MSP, and assessed in primary BC. Among the clinicopathologic factors, CDO1 methylation level was not statistically significantly associated with any prognostic factors. The log-rank plot analysis elucidated that the higher methylation the tumors harbored, the poorer prognosis the patients exhibited. Using the median value of 58.0 as a cut-off one, disease specific survival in BC patients with CDO1 hypermethylation showed significantly poorer prognosis than those with hypomethylation (p = 0.004. Multivariate Cox proportional hazards model identified that CDO1 hypermethylation was prognostic factor as well as Ki-67 and hormone receptor status. The most intriguingly, CDO1 hypermethylation was of robust prognostic relevance in triple negative BC (p = 0.007. Promoter DNA methylation of CDO1 gene was robust prognostic indicator in primary BC patients with no prior chemotherapy. Prognostic relevance of the CDO1 promoter DNA methylation is worthy of being paid attention in triple negative BC cancer.

  16. Indoleamine 2,3-dioxygenase 1 (IDO1 activity correlates with immune system abnormalities in multiple myeloma

    Directory of Open Access Journals (Sweden)

    Bonanno Giuseppina

    2012-12-01

    Full Text Available Abstract Background Multiple myeloma (MM is a plasma cell malignancy with a multifaceted immune dysfunction. Indoleamine 2,3-dioxygenase 1 (IDO1 degrades tryptophan into kynurenine (KYN, which inhibits effector T cells and promote regulatory T-cell (Treg differentiation. It is presently unknown whether MM cells express IDO1 and whether IDO1 activity correlates with immune system impairment. Methods We investigated IDO1 expression in 25 consecutive patients with symptomatic MM and in 7 patients with either monoclonal gammopathy of unknown significance (MGUS; n=3 or smoldering MM (SMM; n=4. IDO1-driven tryptophan breakdown was correlated with the release of hepatocyte growth factor (HGF and with the frequency of Treg cells and NY-ESO-1-specific CD8+ T cells. Results KYN was increased in 75% of patients with symptomatic MM and correlated with the expansion of CD4+CD25+FoxP3+ Treg cells and the contraction of NY-ESO-1-specific CD8+ T cells. In vitro, primary MM cells promoted the differentiation of allogeneic CD4+ T cells into bona fide CD4+CD25hiFoxP3hi Treg cells and suppressed IFN-γ/IL-2 secretion, while preserving IL-4 and IL-10 production. Both Treg expansion and inhibition of Th1 differentiation by MM cells were reverted, at least in part, by d,l-1-methyl-tryptophan, a chemical inhibitor of IDO. Notably, HGF levels were higher within the BM microenvironment of patients with IDO+ myeloma disease compared with patients having IDO- MM. Mechanistically, the antagonism of MET receptor for HGF with SU11274, a MET inhibitor, prevented HGF-induced AKT phosphorylation in MM cells and translated into reduced IDO protein levels and functional activity. Conclusions These data suggest that IDO1 expression may contribute to immune suppression in patients with MM and possibly other HGF-producing cancers.

  17. Structural investigations of the ferredoxin and terminal oxygenase components of the biphenyl 2,3-dioxygenase from Sphingobium yanoikuyae B1

    Directory of Open Access Journals (Sweden)

    Gibson David T

    2007-03-01

    Full Text Available Abstract Background The initial step involved in oxidative hydroxylation of monoaromatic and polyaromatic compounds by the microorganism Sphingobium yanoikuyae strain B1 (B1, previously known as Sphingomonas yanoikuyae strain B1 and Beijerinckia sp. strain B1, is performed by a set of multiple terminal Rieske non-heme iron oxygenases. These enzymes share a single electron donor system consisting of a reductase and a ferredoxin (BPDO-FB1. One of the terminal Rieske oxygenases, biphenyl 2,3-dioxygenase (BPDO-OB1, is responsible for B1's ability to dihydroxylate large aromatic compounds, such as chrysene and benzo[a]pyrene. Results In this study, crystal structures of BPDO-OB1 in both native and biphenyl bound forms are described. Sequence and structural comparisons to other Rieske oxygenases show this enzyme to be most similar, with 43.5 % sequence identity, to naphthalene dioxygenase from Pseudomonas sp. strain NCIB 9816-4. While structurally similar to naphthalene 1,2-dioxygenase, the active site entrance is significantly larger than the entrance for naphthalene 1,2-dioxygenase. Differences in active site residues also allow the binding of large aromatic substrates. There are no major structural changes observed upon binding of the substrate. BPDO-FB1 has large sequence identity to other bacterial Rieske ferredoxins whose structures are known and demonstrates a high structural homology; however, differences in side chain composition and conformation around the Rieske cluster binding site are noted. Conclusion This is the first structure of a Rieske oxygenase that oxidizes substrates with five aromatic rings to be reported. This ability to catalyze the oxidation of larger substrates is a result of both a larger entrance to the active site as well as the ability of the active site to accommodate larger substrates. While the biphenyl ferredoxin is structurally similar to other Rieske ferredoxins, there are distinct changes in the amino acids near

  18. Abundance of Novel and Diverse tfdA-Like Genes, Encoding Putative Phenoxyalkanoic Acid Herbicide-Degrading Dioxygenases, in Soil▿ †

    OpenAIRE

    Zaprasis, Adrienne; Liu, Ya-Jun; Liu, Shuang-Jiang; Drake, Harold L.; Horn, Marcus A.

    2009-01-01

    Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified ...

  19. Long-lasting Disease Stabilization in the Absence of Toxicity in Metastatic Lung Cancer Patients Vaccinated with an Epitope Derived from Indoleamine 2,3 Dioxygenase

    DEFF Research Database (Denmark)

    Iversen, Trine Zeeberg; Engell-Noerregaard, Lotte; Ellebaek, Eva;

    2014-01-01

    PURPOSE: To investigate targeting of indoleamine 2,3 dioxygenase (IDO) enzyme using a synthetic peptide vaccine administered to patients with metastatic non-small cell lung cancer (NSCLC). EXPERIMENTAL DESIGN: In a clinical phase I study, we treated 15 HLA-A2-positive patients with stage III...... significant improved OS (P = 0.03) when compared with the group of patients excluded because of HLA-A2 negativity. IDO-specific CD8(+) T-cell immunity was demonstrated by IFN-γ Elispot and Tetramer staining. Fluorescence-activated cell sorting analyses demonstrated a significant reduction of the Treg...

  20. Cysteine dioxygenase and cysteine sulfinate decarboxylase genes of the deep-sea mussel Bathymodiolus septemdierum: possible involvement in hypotaurine synthesis and adaptation to hydrogen sulfide.

    Science.gov (United States)

    Nagasaki, Toshihiro; Hongo, Yuki; Koito, Tomoko; Nakamura-Kusakabe, Ikumi; Shimamura, Shigeru; Takaki, Yoshihiro; Yoshida, Takao; Maruyama, Tadashi; Inoue, Koji

    2015-03-01

    It has been suggested that invertebrates inhabiting deep-sea hydrothermal vent areas use the sulfinic acid hypotaurine, a precursor of taurine, to protect against the toxicity of hydrogen sulfide contained in the seawater from the vent. In this protective system, hypotaurine is accumulated in the gill, the primary site of sulfide exposure. However, the pathway for hypotaurine synthesis in mollusks has not been identified. In this study, we screened for the mRNAs of enzymes involved in hypotaurine synthesis in the deep-sea mussel Bathymodiolus septemdierum and cloned cDNAs encoding cysteine dioxygenase and cysteine sulfinate decarboxylase. As mRNAs encoding cysteamine dioxygenase and cysteine lyase were not detected, the cysteine sulfinate pathway is suggested to be the major pathway of hypotaurine and taurine synthesis. The two genes were found to be expressed in all the tissues examined, but the gill exhibited the highest expression. The mRNA level in the gill was not significantly changed by exposure to sulfides or thiosulfate. These results suggests that the gill of B. septemdierum maintains high levels of expression of the two genes regardless of ambient sulfide level and accumulates hypotaurine continuously to protect against sudden exposure to high level of sulfide.

  1. Non-chemical proton-dependent steps prior to O2-activation limit Azotobacter vinelandii 3-mercaptopropionic acid dioxygenase (MDO) catalysis.

    Science.gov (United States)

    Crowell, Joshua K; Sardar, Sinjinee; Hossain, Mohammad S; Foss, Frank W; Pierce, Brad S

    2016-08-15

    3-mercaptopropionate dioxygenase from Azotobacter vinelandii (Av MDO) is a non-heme mononuclear iron enzyme that catalyzes the O2-dependent oxidation of 3-mercaptopropionate (3mpa) to produce 3-sulfinopropionic acid (3spa). With one exception, the active site residues of MDO are identical to bacterial cysteine dioxygenase (CDO). Specifically, the CDO Arg-residue (R50) is replaced by Gln (Q67) in MDO. Despite this minor active site perturbation, substrate-specificity of Av MDO is more relaxed as compared to CDO. In order to investigate the relative timing of chemical and non-chemical events in Av MDO catalysis, the pH/D-dependence of steady-state kinetic parameters (kcat and kcat/KM) and viscosity effects are measured using two different substrates [3mpa and l-cysteine (cys)]. The pL-dependent activity of Av MDO in these reactions can be rationalized assuming a diprotic enzyme model in which three ionic forms of the enzyme are present [cationic, E((z+1)); neutral, E(z); and anionic, E((z-1))]. The activities observed for each substrate appear to be dominated by electrostatic interactions within the enzymatic active site. Given the similarity between MDO and the more extensively characterized mammalian CDO, a tentative model for the role of the conserved 'catalytic triad' is proposed. PMID:27311613

  2. Ability of bacterial biphenyl dioxygenases from Burkholderia sp. LB400 and Comamonas testosteroni B-356 to catalyse oxygenation of ortho-hydroxychlorobiphenyls formed from PCBs by plants

    International Nuclear Information System (INIS)

    Bacterial dioxygenases are useful in breakdown of PCB products associated with plants. - Capacity of enzymes of the biphenyl/chlorobiphenyl pathway, especially biphenyl dioxygenase (BPDO) of two polychlorinated biphenyls (PCB) degrading bacteria, Burkholderia sp. LB400 and Comamonas testosteroni B-356, to metabolize ortho-substituted hydroxybiphenyls was tested.,These compounds found among plant products of PCB metabolism, are carrying chlorine atoms on the hydroxyl-substituted ring. The abilities of His-tagged purified LB400 and B-356 BPDOs to catalyze the oxygenation of 2-hydroxy-3-chlorobiphenyl, 2-hydroxy-5-chlorobiphenyl and 2-hydroxy-3,5-dichlorobiphenyl were compared. Both enzyme preparations catalyzed the hydroxylation of the three chloro-hydroxybiphenyls on the non-substituted ring. Neither LB400 BPDO nor B-356 BPDO oxygenated the substituted ring of the ortho-hydroxylated biphenyl. The fact that metabolites generated by both enzymes were identical for all three hydroxychlorobiphenyls tested; exclude any other mode of attack of these compounds by LB400 BPDOs than the ortho-meta oxygenation

  3. Expression, purification, crystallization and preliminary X-ray analysis of a novel N-substituted branched-chain l-amino-acid dioxygenase from Burkholderia ambifaria AMMD

    International Nuclear Information System (INIS)

    Diffraction data were collected to a limiting resolution of 2.4 Å from a crystal of selenomethionyl-labelled SadA, an l-amino-acid dioxygenase. Ferrous ion- and α-ketoglutarate-dependent dioxygenase from Burkholderia ambifaria AMMD (SadA) catalyzes the C3-hydroxylation of N-substituted branched-chain l-amino acids, especially N-succinyl-l-leucine, coupled to the conversion of α-ketoglutarate to succinate and CO2. SadA was expressed in Escherichia coli, purified and crystallized using the sitting-drop vapour-diffusion method at 293 K. Crystals of selenomethionine-substituted SadA were obtained using a reservoir solution containing PEG 3000 as the precipitant at pH 9.5 and diffracted X-rays to 2.4 Å resolution. The crystal belonged to space group P212121, with unit-cell parameters a = 49.3, b = 70.9, c = 148.2 Å. The calculated Matthews coefficient (VM = 2.1 Å3 Da−1, 41% solvent content) suggested that the crystal contains two molecules per asymmetric unit

  4. Inhibition of para-Hydroxyphenylpyruvate Dioxygenase by Analogues of the Herbicide Nitisinone As a Strategy to Decrease Homogentisic Acid Levels, the Causative Agent of Alkaptonuria.

    Science.gov (United States)

    Laschi, Marcella; Bernardini, Giulia; Dreassi, Elena; Millucci, Lia; Geminiani, Michela; Braconi, Daniela; Marzocchi, Barbara; Botta, Maurizio; Manetti, Fabrizio; Santucci, Annalisa

    2016-04-01

    Alkaptonuria (AKU) is a rare multisystem metabolic disease caused by deficient activity of homogentisate 1,2-dioxygenase (HGD), which leads to the accumulation of homogentisic acid (HGA). Currently, there is no treatment for AKU. The sole drug with some beneficial effects is the herbicide nitisinone (1), an inhibitor of p-hydroxyphenylpyruvate dioxygenase (4-HPPD). 1 has been used as a life-saving drug in infants with type I tyrosinemia despite severe side effects due to the buildup of tyrosine. Four clinical trials of nitisinone to treat AKU have shown that 1 consistently decreases HGA levels, but also caused the accumulation of tyrosine in blood serum. Moreover, the human preclinical toxicological data for 1 are incomplete. In this work, we performed pharmacodynamics and toxicological evaluations of 1, providing the first report of LD50 values in human cells. Intracellular tyrosinemia was also evaluated. Three additional 4-HPPD inhibitors with a more favorable profile than that of 1 in terms of IC50 , LD50 , and tyrosine accumulation were also identified among commercially available compounds. These may be promising starting points for the development of new therapeutic strategies for the treatment of AKU. PMID:26947423

  5. Inhibition of para-Hydroxyphenylpyruvate Dioxygenase by Analogues of the Herbicide Nitisinone As a Strategy to Decrease Homogentisic Acid Levels, the Causative Agent of Alkaptonuria.

    Science.gov (United States)

    Laschi, Marcella; Bernardini, Giulia; Dreassi, Elena; Millucci, Lia; Geminiani, Michela; Braconi, Daniela; Marzocchi, Barbara; Botta, Maurizio; Manetti, Fabrizio; Santucci, Annalisa

    2016-04-01

    Alkaptonuria (AKU) is a rare multisystem metabolic disease caused by deficient activity of homogentisate 1,2-dioxygenase (HGD), which leads to the accumulation of homogentisic acid (HGA). Currently, there is no treatment for AKU. The sole drug with some beneficial effects is the herbicide nitisinone (1), an inhibitor of p-hydroxyphenylpyruvate dioxygenase (4-HPPD). 1 has been used as a life-saving drug in infants with type I tyrosinemia despite severe side effects due to the buildup of tyrosine. Four clinical trials of nitisinone to treat AKU have shown that 1 consistently decreases HGA levels, but also caused the accumulation of tyrosine in blood serum. Moreover, the human preclinical toxicological data for 1 are incomplete. In this work, we performed pharmacodynamics and toxicological evaluations of 1, providing the first report of LD50 values in human cells. Intracellular tyrosinemia was also evaluated. Three additional 4-HPPD inhibitors with a more favorable profile than that of 1 in terms of IC50, LD50, and tyrosine accumulation were also identified among commercially available compounds. These may be promising starting points for the development of new therapeutic strategies for the treatment of AKU.

  6. Spectroscopic and computational studies of NTBC bound to the non-heme iron enzyme (4-hydroxyphenyl)pyruvate dioxygenase: active site contributions to drug inhibition.

    Science.gov (United States)

    Neidig, Michael L; Decker, Andrea; Kavana, Michael; Moran, Graham R; Solomon, Edward I

    2005-12-01

    (4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is an alpha-keto-acid-dependent dioxygenase which catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate as part of tyrosine catabolism. While several di- and tri-ketone alkaloids are known as inhibitors of HPPD and used commercially as herbicides, one such inhibitor, [2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC), has also been used therapeutically to treat type I tyrosinemia and alkaptonuria in humans. To gain further insight into the mechanism of inhibition by NTBC, a combination of CD/MCD spectroscopy and DFT calculations of HPPD/Fe(II)/NTBC has been performed to evaluate the contribution of the Fe(II)-NTBC bonding interaction to the high affinity of this drug for the enzyme. The results indicate that the bonding of NTBC to Fe(II) is very similar to that for HPP, both involving similar pi-backbonding interactions between NTBC/HPP and Fe(II). Combined with the result that the calculated binding energy of NTBC is, in fact, approximately 3 kcal/mol less than that for HPP, the bidentate coordination of NTBC to Fe(II) is not solely responsible for its extremely high affinity for the enzyme. Thus, the pi-stacking interactions between the aromatic rings of NTBC and two phenyalanine residues, as observed in the crystallography of the HPPD/Fe(II)/NTBC complex, appear to be responsible for the observed high affinity of drug binding.

  7. Preparation, crystallization and X-ray diffraction analysis to 1.5 Å resolution of rat cysteine dioxygenase, a mononuclear iron enzyme responsible for cysteine thiol oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons, Chad R. [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States); Hao, Quan [MacCHESS at the Cornell High Energy Synchrotron Source, Cornell University, Ithaca, NY 14853-8001 (United States); Stipanuk, Martha H., E-mail: mhs6@cornell.edu [Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853-8001 (United States)

    2005-11-01

    Recombinant rat cysteine dioxygenase (CDO) has been expressed, purified and crystallized and X-ray diffraction data have been collected to 1.5 Å resolution. Cysteine dioxygenase (CDO; EC 1.13.11.20) is an ∼23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O{sub 2}, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Å resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Å, α = β = γ = 90°. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  8. Purification of Biotransformation Products of Cis-Isoflavan-4-ol by Biphenyl Dioxygenase of Pseudomonas pseudoalcaligenes KF707 Strain Expressed in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Tri Ratna Sulistiyani

    2013-04-01

    Full Text Available Isoflavone has multiple beneficial effects on human health, especially through its antioxidant and anticancer activities. The biotransformation of isoflavone using byphenyl dioxygenase could be performed to extend the diversity of flavonoids and to improve their biological and physiological properties. Biotransformation of two enantiomers (3R, 4R-cis-isoflavan-4-ol and (3S, 4S-cis-isoflavan-4-ol by E. coli JM109 (pJHF108 carrying a biphenyl dioxygenase gene from P. pseudoalcaligenesKF707 produced two products, designated as CM1 andCM2. The products had a retention time of 11.9 and 14.6 min, respectively, and the same absorption peaks at 204, 220, and 275 nm. CM1 and CM2 had [M-H2O+H]+ at m/z 225. Based on the molecular mass and hydrolysis products, we proposed that epoxidation occurred on cis-isoflavan-4-ol. Chloroform extraction instead of ethyl acetate extraction was performed to improve the stability of cismetabolites, CM1 and CM2.

  9. Molecular Cloning and Characterization of a New Cold-active Extradiol Dioxygenase from a Metagenomic Library Derived from Polychlorinated Biphenyl-contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    REN He-jun; LU Yang; ZHOU Rui; DAI Chun-yan; WANG Yan; ZHANG Lan-ying

    2012-01-01

    To find new extradiol dioxygenases(EDOs,EC 1.13.11.2),a metagenomics library was constructed from polychlorinated biphenyl-contaminated soil and was screened for some dioxygenase with aromatic ring cleavage activity.A novel EDO,designated as BphC_A,was identified and heterologously expressed in Escherichia coli.The deduced amino acid sequence of BphC_A exhibited a homology of less than 60% with other known EDOs.Phylogenetic analysis of BphC_A suggests that the protein is a novel member of the EDO family.The enzyme exhibits higher substrate affinity and catalytic efficiency toward 3-methylcatechol than toward 2,3-dihydroxybiphenyl or catechol,the preferred substrate of other known EDOs.The optimum activity of purified BphC_A occurred at pH=8.5 and 35 ℃,and BphC_A showed more than 40% of its initial activity at 5 ℃.The activity of purified BphC_A was significantly induced by Mn2+ and slightly reduced bv Al3+,Cu2+ and Zn2+.

  10. Recent Advances in Developing Inhibitors for Hypoxia-Inducible Factor Prolyl Hydroxylases and Their Therapeutic Implications

    Directory of Open Access Journals (Sweden)

    So Yeon Kim

    2015-11-01

    Full Text Available Hypoxia-inducible factor (HIF prolyl hydroxylases (PHDs are members of the 2-oxoglutarate dependent non-heme iron dioxygenases. Due to their physiological roles in regulation of HIF-1α stability, many efforts have been focused on searching for selective PHD inhibitors to control HIF-1α levels for therapeutic applications. In this review, we first describe the structure of PHD2 as a molecular basis for structure-based drug design (SBDD and various experimental methods developed for measuring PHD activity. We further discuss the current status of the development of PHD inhibitors enabled by combining SBDD approaches with high-throughput screening. Finally, we highlight the clinical implications of small molecule PHD inhibitors.

  11. The protein that binds to DNA base J in trypanosomatids has features of a thymidine hydroxylase.

    Science.gov (United States)

    Yu, Zhong; Genest, Paul-André; ter Riet, Bas; Sweeney, Kate; DiPaolo, Courtney; Kieft, Rudo; Christodoulou, Evangelos; Perrakis, Anastassis; Simmons, Jana M; Hausinger, Robert P; van Luenen, Henri G A M; Rigden, Daniel J; Sabatini, Robert; Borst, Piet

    2007-01-01

    Trypanosomatids contain an unusual DNA base J (beta-d-glucosylhydroxymethyluracil), which replaces a fraction of thymine in telomeric and other DNA repeats. To determine the function of base J, we have searched for enzymes that catalyze J biosynthesis. We present evidence that a protein that binds to J in DNA, the J-binding protein 1 (JBP1), may also catalyze the first step in J biosynthesis, the conversion of thymine in DNA into hydroxymethyluracil. We show that JBP1 belongs to the family of Fe(2+) and 2-oxoglutarate-dependent dioxygenases and that replacement of conserved residues putatively involved in Fe(2+) and 2-oxoglutarate-binding inactivates the ability of JBP1 to contribute to J synthesis without affecting its ability to bind to J-DNA. We propose that JBP1 is a thymidine hydroxylase responsible for the local amplification of J inserted by JBP2, another putative thymidine hydroxylase. PMID:17389644

  12. HIF hydroxylase pathways in cardiovascular physiology and medicine.

    Science.gov (United States)

    Bishop, Tammie; Ratcliffe, Peter J

    2015-06-19

    Hypoxia inducible factors (HIFs) are α/β heterodimeric transcription factors that direct multiple cellular and systemic responses in response to changes in oxygen availability. The oxygen sensitive signal is generated by a series of iron and 2-oxoglutarate-dependent dioxygenases that catalyze post-translational hydroxylation of specific prolyl and asparaginyl residues in HIFα subunits and thereby promote their destruction and inactivation in the presence of oxygen. In hypoxia, these processes are suppressed allowing HIF to activate a massive transcriptional cascade. Elucidation of these pathways has opened several new fields of cardiovascular research. Here, we review the role of HIF hydroxylase pathways in cardiac development and in cardiovascular control. We also consider the current status, opportunities, and challenges of therapeutic modulation of HIF hydroxylases in the therapy of cardiovascular disease.

  13. Staphylococcus aureus CstB is a novel multidomain persulfide dioxygenase-sulfurtransferase involved in hydrogen sulfide detoxification

    Science.gov (United States)

    Shen, Jiangchuan; Keithly, Mary E.; Armstrong, Richard N.; Higgins, Khadine A.; Edmonds, Katherine A.; Giedroc, David P.

    2016-01-01

    Hydrogen sulfide (H2S) is both a lethal gas and an emerging gasotransmitter in humans, suggesting that cellular H2S level must be tightly regulated. CstB is encoded by the cst operon of the major human pathogen Staphylococcus aureus (S. aureus) and is under the transcriptional control of the persulfide sensor CstR and H2S. Here we show that CstB is a multifunctional Fe(II)-containing persulfide dioxygenase (PDO), analogous to the vertebrate protein ETHE1 (Ethylmalonic Encephalopathy Protein 1). Chromosomal deletion of ethe1 is fatal in vertebrates. In the presence of molecular oxygen (O2), hETHE1 oxidizes glutathione persulfide (GSSH) to generate sulfite and reduced glutathione. In contrast, CstB oxidizes major cellular low molecular weight (LMW) persulfide substrates from S. aureus, coenzyme A persulfide (CoASSH) and bacillithiol persulfide (BSSH), directly to generate thiosulfate (TS) and reduced thiols, thereby avoiding the cellular toxicity of sulfite. Both Cys201 in the N-terminal PDO domain (CstBPDO) and Cys408 in the C-terminal rhodanese domain (CstBRhod) strongly enhance the TS generating activity of CstB. CstB also possesses persulfide transferase (PT; reverse rhodanese) activity which generates TS when provided with LMW persulfides and sulfite, as well as conventional thiosulfate transferase (TST; rhodanese) activity; both activities require Cys408. CstB protects S. aureus against H2S toxicity with C201S and C408S cstB genes unable to rescue a NaHS-induced ΔcstB growth phenotype. Induction of the cst operon by NaHS reveals that functional CstB impacts the cellular TS concentrations. These data collectively suggest that CstB may have evolved to facilitate the clearance of LMW persulfides that occur upon the elevation of the level of cellular H2S and hence may have an impact on bacterial viability under H2S stress, in concert with the other enzymes encoded by the cst operon. PMID:26177047

  14. Remarkable Role of Indoleamine 2,3-Dioxygenase and Tryptophan Metabolites in Infectious Diseases: Potential Role in Macrophage-Mediated Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yuki Murakami

    2013-01-01

    Full Text Available Indoleamine 2,3-dioxygenase 1 (IDO1, the L-tryptophan-degrading enzyme, plays a key role in the immunomodulatory effects on several types of immune cells. Originally known for its regulatory function during pregnancy and chronic inflammation in tumorigenesis, the activity of IDO1 seems to modify the inflammatory state of infectious diseases. The pathophysiologic activity of L-tryptophan metabolites, kynurenines, is well recognized. Therefore, an understanding of the regulation of IDO1 and the subsequent biochemical reactions is essential for the design of therapeutic strategies in certain immune diseases. In this paper, current knowledge about the role of IDO1 and its metabolites during various infectious diseases is presented. Particularly, the regulation of type I interferons (IFNs production via IDO1 in virus infection is discussed. This paper offers insights into new therapeutic strategies in the modulation of viral infection and several immune-related disorders.

  15. The prognostic significance of indoleamine-2,3-dioxygenase and the receptors for transforming growth factor β and interferon γ in metastatic lymph nodes in malignant melanoma.

    Science.gov (United States)

    Pelak, Maciej J; Śnietura, Mirosław; Lange, Dariusz; Nikiel, Barbara; Pecka, Katarzyna M

    2015-12-01

    We analyzed the prognostic significance of indoleamine-2,3-dioxygenase (IDO) and type 1 receptors for transforming growth factor beta (TGF-βR1) and interferon gamma (IFN-γR1) in resected nodal metastases of 48 malignant melanoma patients. In 32 cases the corresponding skin tumors were available. We used immunohistochemical (IHC) staining which was assessed by pathologists and by a computer-aided algorithm that yielded quantitative results, both absolute and relative. We correlated the results with the patient outcome. We identified absolute computer-assessed IDO levels as positively correlated with increased risk of death in a multivariate model (HR = 1.02; 95% CI: 1.002-1.04; p = 0.03). In univariate analysis, patients with IDO levels below the median had a better overall survival time (30.3 vs. 17.5 months; p = 0.03). TGF-βR1 and IFN-γR1 expression was modestly correlated (R = 0.34; p lt; 0.05) and TGF-βR1 expression was lower in lymph nodes than in matched primary skin tumors (Z = 2.87; p = 0.004). The pathologists' and computer-aided IHC assessment demonstrated high correlation levels (R = 0.61, R = 0.74 and R = 0.88 for IDO, TGF-βR1 and IFN-γR1, respectively). Indoleamine-2,3-dioxygenase is prognostic for the patient outcome in melanoma with nodal involvement and should be investigated prospectively for its predictive significance. IHC assessment by computer-aided methods is recommended as its gives IHC more objectivity and reproducibility. ecting mismatch repair deficiency. Association of CDX2 and PMS2 in the present study is necessary to conduct further genetic and pathological studies focusing on these two markers together. PMID:27003769

  16. Probing the chemical steps of nitroalkane oxidation catalyzed by 2-nitropropane dioxygenase with solvent viscosity, pH, and substrate kinetic isotope effects.

    Science.gov (United States)

    Francis, Kevin; Gadda, Giovanni

    2006-11-21

    Among the enzymes that catalyze the oxidative denitrification of nitroalkanes to carbonyl compounds, 2-nitropropane dioxygenase is the only one known to effectively utilize both the neutral and anionic (nitronate) forms of the substrate. A recent study has established that the catalytic pathway is common to both types of substrates, except for the initial removal of a proton from the carbon of the neutral substrates [Francis, K., Russell, B., and Gadda, G. (2005) J. Biol. Chem. 280, 5195-5204]. In the present study, the mechanistic properties of the enzyme have been investigated with solvent viscosity, pH, and kinetic isotope effects. With nitroethane or ethylnitronate, the kcat/Km and kcat values were independent of solvent viscosity, consistent with the substrate and product binding to the enzyme in rapid equilibrium. The abstraction of the proton from the alpha carbon of neutral substrates was investigated by measuring the pH dependence of the D(kcat/KNE) value with 1,1-[2H2]-nitroethane. The formation of the enzyme-bound flavosemiquinone formed during catalysis was examined by determining the pH dependence of the kcat/Km values with ethylnitronate and nitroethane and the inhibition by m-nitrobenzoate. Finally, alpha-secondary kinetic isotope effects with 1-[2H]-ethylnitronate were used to propose a non-oxidative tautomerization pathway, in which the enzyme catalyzes the interconversion of nitroalkanes between their anionic and neutral forms. The data presented suggest that enzymatic turnover of 2-nitropropane dioxygenase with neutral substrates is limited by the cleavage of the substrate CH bond at low pH, whereas that with anionic substrates is limited by the non-oxidative tautomerization of ethylnitroante to nitroethane at high pH. PMID:17105207

  17. Cloning and characterisation of a maize carotenoid cleavage dioxygenase (ZmCCD1) and its involvement in the biosynthesis of apocarotenoids with various roles in mutualistic and parasitic interactions

    OpenAIRE

    Sun, Z.; Hans, J.; Walter, M H; Matusova, R.; Beekwilder, M.J.; Verstappen, F.W.A.; Ming, Z.; Echteld, van, C.J.A.; Strack, D; Bisseling, T.; Bouwmeester, H.J.

    2008-01-01

    Colonisation of maize roots by arbuscular mycorrhizal (AM) fungi leads to the accumulation of apocarotenoids (cyclohexenone and mycorradicin derivatives). Other root apocarotenoids (strigolactones) are involved in signalling during early steps of the AM symbiosis but also in stimulation of germination of parasitic plant seeds. Both apocarotenoid classes are predicted to originate from cleavage of a carotenoid substrate by a carotenoid cleavage dioxygenase (CCD), but the precursors and cleavag...

  18. Anaerobic crystallization and initial X-ray diffraction data of biphenyl 2,3-dioxygenase from Burkholderia xenovorans LB400: addition of agarose improved the quality of the crystals

    International Nuclear Information System (INIS)

    Biphenyl 2,3-dioxygenase from B. xenovorans LB400 and its variants BPDOP4 and BPDORR41 were crystallized using agarose gel and the crystals were characterized using X-ray diffraction. Biphenyl 2,3-dioxygenase (BPDO; EC 1.14.12.18) catalyzes the initial step in the degradation of biphenyl and some polychlorinated biphenyls (PCBs). BPDOLB400, the terminal dioxygenase component from Burkholderia xenovorans LB400, a proteobacterial species that degrades a broad range of PCBs, has been crystallized under anaerobic conditions by sitting-drop vapour diffusion. Initial crystals obtained using various polyethylene glycols as precipitating agents diffracted to very low resolution (∼8 Å) and the recorded reflections were diffuse and poorly shaped. The quality of the crystals was significantly improved by the addition of 0.2% agarose to the crystallization cocktail. In the presence of agarose, wild-type BPDOLB400 crystals that diffracted to 2.4 Å resolution grew in space group P1. Crystals of the BPDOP4 and BPDORR41 variants of BPDOLB400 grew in space group P21

  19. 4-nitrocatechol as a probe of a Mn(II)-dependent extradiol-cleaving catechol dioxygenase (MndD): comparison with relevant Fe(II) and Mn(II) model complexes.

    Science.gov (United States)

    Reynolds, Mark F; Costas, Miquel; Ito, Masami; Jo, Du-Hwan; Tipton, A Alex; Whiting, Adam K; Que, Lawrence

    2003-02-01

    Mn(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase (MndD) is an extradiol-cleaving catechol dioxygenase from Arthrobacter globiformis that has 82% sequence identity to and cleaves the same substrate (3,4-dihydroxyphenylacetic acid) as Fe(II)-dependent 3,4-dihydroxyphenylacetate 2,3-dioxygenase (HPCD) from Brevibacterium fuscum. We have observed that MndD binds the chromophoric 4-nitrocatechol (4-NCH(2)) substrate as a dianion and cleaves it extremely slowly, in contrast to the Fe(II)-dependent enzymes which bind 4-NCH(2) mostly as a monoanion and cleave 4-NCH(2) 4-5 orders of magnitude faster. These results suggest that the monoanionic binding state of 4-NC is essential for extradiol cleavage. In order to address the differences in 4-NCH(2) binding to these enzymes, we synthesized and characterized the first mononuclear monoanionic and dianionic Mn(II)-(4-NC) model complexes as well as their Fe(II)-(4-NC) analogs. The structures of [(6-Me(2)-bpmcn)Fe(II)(4-NCH)](+), [(6-Me(3)-TPA)Mn(II)(DBCH)](+), and [(6-Me(2)-bpmcn)Mn(II)(4-NCH)](+) reveal that the monoanionic catecholate is bound in an asymmetric fashion (Delta r(metal-O(catecholate))=0.25-0.35 A), as found in the crystal structures of the E(.)S complexes of extradiol-cleaving catechol dioxygenases. Acid-base titrations of [(L)M(II)(4-NCH)](+) complexes in aprotic solvents show that the p K(a) of the second catecholate proton of 4-NCH bound to the metal center is half a p K(a) unit higher for the Mn(II) complexes than for the Fe(II) complexes. These results are in line with the Lewis acidities of the two divalent metal ions but are the opposite of the trend observed for 4-NCH(2) binding to the Mn(II)- and Fe(II)-catechol dioxygenases. These results suggest that the MndD active site decreases the second p K(a) of the bound 4-NCH(2) relative to the HPCD active site.

  20. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    KAUST Repository

    Ilg, Andrea

    2014-06-25

    The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum) carotenoid cleavage dioxygenase (SlCCD1B), which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-. trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents. © 2014 The Authors.

  1. Primary hepatocytes from mice lacking cysteine dioxygenase show increased cysteine concentrations and higher rates of metabolism of cysteine to hydrogen sulfide and thiosulfate.

    Science.gov (United States)

    Jurkowska, Halina; Roman, Heather B; Hirschberger, Lawrence L; Sasakura, Kiyoshi; Nagano, Tetsuo; Hanaoka, Kenjiro; Krijt, Jakub; Stipanuk, Martha H

    2014-05-01

    The oxidation of cysteine in mammalian cells occurs by two routes: a highly regulated direct oxidation pathway in which the first step is catalyzed by cysteine dioxygenase (CDO) and by desulfhydration-oxidation pathways in which the sulfur is released in a reduced oxidation state. To assess the effect of a lack of CDO on production of hydrogen sulfide (H2S) and thiosulfate (an intermediate in the oxidation of H2S to sulfate) and to explore the roles of both cystathionine γ-lyase (CTH) and cystathionine β-synthase (CBS) in cysteine desulfhydration by liver, we investigated the metabolism of cysteine in hepatocytes isolated from Cdo1-null and wild-type mice. Hepatocytes from Cdo1-null mice produced more H2S and thiosulfate than did hepatocytes from wild-type mice. The greater flux of cysteine through the cysteine desulfhydration reactions catalyzed by CTH and CBS in hepatocytes from Cdo1-null mice appeared to be the consequence of their higher cysteine levels, which were due to the lack of CDO and hence lack of catabolism of cysteine by the cysteinesulfinate-dependent pathways. Both CBS and CTH appeared to contribute substantially to cysteine desulfhydration, with estimates of 56 % by CBS and 44 % by CTH in hepatocytes from wild-type mice, and 63 % by CBS and 37 % by CTH in hepatocytes from Cdo1-null mice.

  2. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase

    Science.gov (United States)

    Li, Xiuying; Xu, Zhuo; Bai, Jinping; Yang, Shuyuan; Zhao, Shuli; Zhang, Yingjie; Chen, Xiaodong

    2016-01-01

    It has been reported that human mesenchymal stem cells are able to inhibit T lymphocyte activation; however, the discrepancy among different sources of MSCs is not well documented. In this study, we have compared the MSCs from bone marrow (BM), adipose tissue (AT), placenta (PL), and umbilical cord (UC) to determine which one displayed the most efficient immunosuppressive effects on phytohemagglutinin-induced T cell proliferation. Among them we found that hUC-MSC has the strongest effects on inhibiting T cell proliferation and is chosen to do the further study. We observed that T lymphocyte spontaneously released abundant IFN-γ. And IFN-γ secreted by T lymphocyte could induce the expression of indoleamine 2, 3-dioxygenase (IDO) in hUC-MSCs. IDO was previously reported to induce T lymphocyte apoptosis and cell cycle arrest in S phase. When cocultured with hUC-MSCs, T lymphocyte expression of caspase 3 was significantly increased, while Bcl2 and CDK4 mRNA expression decreased dramatically. Addition of 1-methyl tryptophan (1-MT), an IDO inhibitor, restored T lymphocyte proliferation, reduced apoptosis, and induced resumption of the cell cycle. In addition, the changes in caspase 3, CDK4, and Bcl2 expression were reversed by 1-MT. These findings demonstrate that hUC-MSCs induce T lymphocyte apoptosis and cell cycle arrest by expressing abundant IDO and provide an explanation for some of the immunomodulatory effects of MSCs. PMID:27418932

  3. Umbilical Cord Tissue-Derived Mesenchymal Stem Cells Induce T Lymphocyte Apoptosis and Cell Cycle Arrest by Expression of Indoleamine 2, 3-Dioxygenase

    Directory of Open Access Journals (Sweden)

    Xiuying Li

    2016-01-01

    Full Text Available It has been reported that human mesenchymal stem cells are able to inhibit T lymphocyte activation; however, the discrepancy among different sources of MSCs is not well documented. In this study, we have compared the MSCs from bone marrow (BM, adipose tissue (AT, placenta (PL, and umbilical cord (UC to determine which one displayed the most efficient immunosuppressive effects on phytohemagglutinin-induced T cell proliferation. Among them we found that hUC-MSC has the strongest effects on inhibiting T cell proliferation and is chosen to do the further study. We observed that T lymphocyte spontaneously released abundant IFN-γ. And IFN-γ secreted by T lymphocyte could induce the expression of indoleamine 2, 3-dioxygenase (IDO in hUC-MSCs. IDO was previously reported to induce T lymphocyte apoptosis and cell cycle arrest in S phase. When cocultured with hUC-MSCs, T lymphocyte expression of caspase 3 was significantly increased, while Bcl2 and CDK4 mRNA expression decreased dramatically. Addition of 1-methyl tryptophan (1-MT, an IDO inhibitor, restored T lymphocyte proliferation, reduced apoptosis, and induced resumption of the cell cycle. In addition, the changes in caspase 3, CDK4, and Bcl2 expression were reversed by 1-MT. These findings demonstrate that hUC-MSCs induce T lymphocyte apoptosis and cell cycle arrest by expressing abundant IDO and provide an explanation for some of the immunomodulatory effects of MSCs.

  4. DNA双加氧酶TET在中枢神经系统的研究进展%Research progress of DNA dioxygenase TET in the central nervous system

    Institute of Scientific and Technical Information of China (English)

    刘洁; 米亚静

    2015-01-01

    DNA双加氧酶TET家族是新发现的一类表观遗传修饰蛋白,能够将DNA的5-甲基胞嘧啶氧化为5-羟甲基胞嘧啶,进而调控基因的表达。多项研究显示,TET1-3在中枢神经系统表达丰富,其潜在的生物功能也被广泛关注。本文从TET蛋白结构功能概述、TET蛋白在中枢神经系统的表达及功能以及针对TET家族的基因敲除小鼠实验三方面作一综述。%DNA dioxygenase TET family is a recently discovered proteins involved epigenetic modification, which can oxidize the 5-methylcytosine of DNA into 5-hydroxymethylcytosine and thereby regulate gene expression. Accumulative studies have shown that TET1-3 was abundantly expressed in the central nervous system, and its poten-tial functions were beginning to be studied. This paper gives an overview of the structure and functions of TET, its po-tential roles in the central nervous system, and also the TET gene knockout experiments.

  5. Indoleamine 2,3-dioxygenase (IDO) activity during the primary immune response to influenza infection modifies the memory T cell response to influenza challenge.

    Science.gov (United States)

    Sage, Leo K; Fox, Julie M; Mellor, Andrew L; Tompkins, Stephen M; Tripp, Ralph A

    2014-04-01

    The generation of a heterosubtypic memory T cell response is important for cross-protective immunity against unrelated strains of influenza virus. One way to facilitate the generation of the memory T cell population is to control the activity of immune modulatory agents. The enzyme, indoleamine 2,3-dioxygenase (IDO), is upregulated during influenza infection by the interferon response where IDO activity depletes tryptophan required in T cell response. In this study, IDO activity was pharmacologically inhibited with 1-methyl-tryptophan (1MT) during the primary response to influenza virus infection and the effect on the memory T cell response was evaluated. 1MT treatment improved the memory T cell response to influenza virus challenge by increasing interferon gamma expression by CD4 and CD8 T cells, and numbers of lung virus-specific CD8+ T cells, and increased the Th1 response as well as modifying the immunodominance hierarchy to increase the number of subdominant epitope specific CD8+ T cells, a feature which may be linked to decreased regulatory T cell function. These changes also accompanied evidence of accelerated lung tissue repair upon virus challenge. These findings suggest that modulation of IDO activity could be exploited in influenza vaccine development to enhance memory T cell responses and reduce disease burden. PMID:24702331

  6. Depressive symptoms as a side effect of Interferon-α therapy induced by induction of indoleamine 2,3-dioxygenase 1.

    Science.gov (United States)

    Murakami, Yuki; Ishibashi, Takaaki; Tomita, Eiichi; Imamura, Yukio; Tashiro, Tomoyuki; Watcharanurak, Kanitta; Nishikawa, Makiya; Takahashi, Yuki; Takakura, Yoshinobu; Mitani, Satoko; Fujigaki, Hidetsugu; Ohta, Yoshiji; Kubo, Hisako; Mamiya, Takayoshi; Nabeshima, Toshitaka; Kim, Hyoung-Chun; Yamamoto, Yasuko; Saito, Kuniaki

    2016-01-01

    Depression is known to occur frequently in chronic hepatitis C viral (HCV) patients receiving interferon (IFN)-α therapy. In this study, we investigated whether indoleamine 2,3-dioxygenase1 (IDO1)-mediated tryptophan (TRP) metabolism plays a critical role in depression occurring as a side effect of IFN-α therapy. Increases in serum kynurenine (KYN) and 3-hydroxykynurenine (3-HK) concentrations and in the ratios of KYN/TRP and 3-HK/kynurenic acid (KA) were much larger in depressive HCV patients than in non-depressed patients following therapy. Furthermore, transfection of a plasmid continuously expressing murine IFN-γ into normal mice significantly increased depression-like behavior. IFN-γ gene transfer also resulted in a decrease in serum TRP levels in the mice while KYN and 3-HK levels were significantly increased in both serum and frontal cortex. Genetic deletion of IDO1 in mice abrogated both the increase in depression-like behavior and the elevation in TRP metabolites' levels, and the turnover of serotonin in the frontal cortex after IFN-γ gene transfer. These results indicate that the KYN pathway of IDO1-mediated TRP metabolism plays a critical role in depressive symptoms associated with IFN-α therapy. PMID:27436416

  7. Effect of surfactant-induced cell surface modifications on electron transport system and catechol 1,2-dioxygenase activities and phenanthrene biodegradation by Citrobacter sp. SA01.

    Science.gov (United States)

    Li, Feng; Zhu, Lizhong

    2012-11-01

    In order to better understand how surfactants affect biodegradation of hydrophobic organic compounds (HOCs), Tween 80 and sodium dodecyl benzene sulfonate (SDBS), were selected to investigate effects on cell surface hydrophobicity (CSH), electron transport system (ETS) activities and phenanthrene biodegradation by Citrobacter sp. SA01. Tween 80 and SDBS increased CSH by 19.8-25.2%, ETS activities by 352.1-376.0μmol/gmin, catechol 1,2-dioxygenase (C12) activities by 50.8-52.7U/L, and phenanthrene biodegradation by 8.9-17.2% separately in the presence of 50mg/L of surfactants as compared to in their absence. Lipopolysaccharide (LPS) release was 334.7μg/mg in the presence of both surfactants whereas in their absence only 8.6-44.4μg/mg of LPS was released. Thus, enhanced LPS release probably increased ETS and C12 activities as well as phenanthrene biodegradation by increasing CSH. The results demonstrate that surfactant-enhanced CSH provides a simple, yet effective strategy for field applications of surfactant-enhanced bioremediation of HOCs.

  8. DFT study of the mechanism of manganese quercetin 2,3-dioxygenase: quest for origins of enzyme unique nitroxygenase activity and regioselectivity.

    Science.gov (United States)

    Wojdyła, Zuzanna; Borowski, Tomasz

    2016-07-01

    Quercetin 2,3-dioxygenase (QDO) is an enzyme which accepts various transition metal ions as cofactors, and cleaves the heterocyclic ring of quercetin with consumption of dioxygen and release of carbon monoxide. QDO from B. subtilis that binds Mn(II) displays an unprecedented nitroxygenase activity, whereby nitroxyl (HNO) is incorporated into quercetin cleavage products instead of dioxygen. Interestingly, the reaction proceeds with high regiospecificity, i.e., nitrogen and oxygen atoms of HNO are incorporated into specific fragments of the cleavage product. A nonenzymatic base-catalyzed reaction, which occurs in pH above 7.5, yields the same reaction products. Herein, we report results of quantum chemical studies on the mechanisms of the nitroxygenase reaction of Mn-QDO. Density functional method with dispersion correction (B3LYP-D3) was applied to the Mn-QDO active site model and the reactants of the nonenzymatic reaction. Co(II)- and Fe(II)-variants of the active site were also considered. Analysis of reaction energy profiles suggests that the regiospecificity of the reaction is an inherent property of the reactants, whereas the unique reactivity of Mn-QDO, as opposed to Co- or Fe-QDO that do not catalyze nitroxygenation, stems from weak HNO binding and lack of strong preference for coordination of HNO through the nitrogen atom. Moreover, the enzyme activates quercetin through deprotonation and the proton acceptor-Glu69 needs to reorient for the reaction to proceed. PMID:27170159

  9. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls

    KAUST Repository

    Bruno, Mark

    2015-04-01

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-. trans-β-carotene at the C9\\'-C10\\' double bond, leading to β-ionone and all-. trans-β-apo-10\\'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9\\'-C10\\' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-. cis-β-carotene, which led to 9-. cis-β-apo-10\\'-carotenal. Our data indicate that all-. trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development.

  10. Indoleamine 2,3-dioxygenase (IDO) is frequently expressed in stromal cells of Hodgkin lymphoma and is associated with adverse clinical features: a retrospective cohort study

    International Nuclear Information System (INIS)

    Regulation of tumor microenvironment is closely involved in the prognosis of Hodgkin lymphoma (HL). Indoleamine 2,3-dioxygenase (IDO) is an enzyme acting as immune modulator through suppression of T-cell immunity. This study aims to investigate role of IDO in the microenvironment of HL. A total of 121 cases of HL were enrolled to do immunohistochemistry for IDO, CD163, CD68, CD4, CD8, and FoxP3. Positivity was evaluated from area fractions or numbers of positive cells using automated image analyzer. Correlations between IDO expression and various cellular infiltrates and clinicopathologic parameters were examined and survival analyses were performed. IDO was expressed in histiocytes, dendritic cells and some endothelial cells with variable degrees, but not in tumor cells. IDO positive cells were more frequently found in mixed cellularity type than other histologic types, and in cases with EBV+, high Ann Arbor stages, B symptoms, and high IPS (all p < 0.05). High IDO expression was associated with inferior survival (p < 0.001) and reflects an independent prognostic factor in nodular sclerosis HL. This is the first study suggesting that IDO is the principle immunomodulator and is involved to adverse clinical outcomes of HL

  11. Cloning of two individual cDNAS encoding 9-cis-epoxycarotenoid dioxygenase from Gentiana lutea, their tissue-specific expression and physiological effect in transgenic tobacco.

    Science.gov (United States)

    Zhu, Changfu; Kauder, Friedrich; Römer, Susanne; Sandmann, Gerhard

    2007-02-01

    Two 9-cis-epoxycarotenoid dioxygenase (NCED) cDNAs have been cloned from a petal library of Gentiana lutea. Both cDNAs carry a putative transit sequence for chloroplast import and differ mainly in their length and the 5'-flanking regions. GlNCED1 was evolutionary closely related to Arabidopsis thaliana NCED6 whereas GlNCED2 showed highest homology to tomato NCED1 and A. thaliana NCED3. The amounts of GlNCED2 transcript were below Northern detection in G. lutea. In contrast, GlNCED1 was specifically expressed at higher levels in developing flowers when petals start appearing. By genetic engineering of tobacco with coding regions of either gene under a constitutive promoter, their function was further analyzed. Although mRNA of both genes was detectable in the corresponding transgenic plants, a physiological effect was only found for GlNCED1 but not for GlNCED2. In germination experiments of GlNCED1 transgenic lines, delayed radicle formation and cotyledon appearance were observed. However, the transformants exhibited no improved tolerance against desiccation stress. In contrast to other plants with over-expressed NCEDs, prolonged delay of seed germination is the only abscisic-acid-related phenotypic effect in the GlNCED1 transgenic lines. PMID:16618520

  12. Preparation, Crystallization and X-ray Diffraction Analysis to 1.5 A Resolution of Rat Cysteine Dioxygenase, a Mononuclear Iron Enzyme Responsible for Cysteine Thiol Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Simmons,C.; Hao, Q.; Stipanuk, M.

    2005-01-01

    Cysteine dioxygenase (CDO; EC 1.13.11.20) is an {approx}23 kDa non-heme iron metalloenzyme that is responsible for the oxidation of cysteine by O2, yielding cysteinesulfinate. CDO catalyzes the first step in the conversion of cysteine to taurine, as well as the first step in the catabolism of cysteine to pyruvate plus sulfate. Recombinant rat CDO was heterologously expressed, purified and crystallized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The optimal CDO crystals diffracted to 1.5 Angstroms resolution and belonged to space group P4{sub 3}2{sub 1}2 or P4{sub 1}2{sub 1}2, with unit-cell parameters a = b = 57.55, c = 123.06 Angstrom, {alpha} = {beta} = {gamma} = 90. CDO shows little homology to any other proteins; therefore, the structure of the enzyme will be determined by ab initio phasing using a selenomethionyl derivative.

  13. para-Nitrophenol 4-monooxygenase and hydroxyquinol 1,2-dioxygenase catalyze sequential transformation of 4-nitrocatechol in Pseudomonas sp. strain WBC-3.

    Science.gov (United States)

    Wei, Min; Zhang, Jun-Jie; Liu, Hong; Zhou, Ning-Yi

    2010-11-01

    Pseudomonas sp. strain WBC-3 utilizes para-nitrophenol (PNP) as a sole source of carbon, nitrogen and energy. PnpA (PNP 4-monooxygenase) and PnpB (para-benzoquinone reductase) were shown to be involved in the initial steps of PNP catabolism via hydroquinone. We demonstrated here that PnpA also catalyzed monooxygenation of 4-nitrocatechol (4-NC) to hydroxyquinol, probably via hydroxyquinone. It was the first time that a single-component PNP monooxygenase has been shown to catalyze this conversion. PnpG encoded by a gene located in the PNP degradation cluster was purified as a His-tagged protein and identified as a hydroxyquinol dioxygenase catalyzing a ring-cleavage reaction of hydroxyquinol. Although all the genes necessary for 4-NC metabolism seemed to be present in the PNP degradation cluster in strain WBC-3, it was unable to grow on 4-NC as a sole source of carbon, nitrogen and energy. This was apparently due to the substrate's inability to trigger the expression of genes involved in degradation. Nevertheless, strain WBC-3 could completely degrade both PNP and 4-NC when PNP was used as the inducer, demonstrating its potential in bioremediation of the environment polluted by both 4-NC and PNP.

  14. Tryptamine and dimethyltryptamine inhibit indoleamine 2,3 dioxygenase and increase the tumor-reactive effect of peripheral blood mononuclear cells.

    Science.gov (United States)

    Tourino, Melissa Cavalheiro; de Oliveira, Edson Mendes; Bellé, Luziane Potrich; Knebel, Franciele Hinterholz; Albuquerque, Renata Chaves; Dörr, Felipe Augusto; Okada, Sabrina Sayori; Migliorini, Silene; Soares, Irene Silva; Campa, Ana

    2013-07-01

    Indoleamine 2,3-dioxygenase (IDO) is an interferon-γ (IFN-γ)-induced tryptophan-degrading enzyme, producing kynurenine (KYN) that participates in the mechanism of tumor immune tolerance. Thus, IDO inhibition has been considered a strategy for anticancer therapy. The aim of this study was to identify whether the metabolites originated from the competitive routes of tryptophan metabolism, such as the serotonergic or N, N-dimethyltryptamine (DMT) pathways, have inhibitory effects on recombinant human IDO (rhIDO) activity. Serotonin and melatonin had no effect; on the other hand, tryptamine (TRY) and DMT modulated the activity of rhIDO as classical non-competitive inhibitors, with Ki values of 156 and 506 μM, respectively. This inhibitory effect was also observed on constitutively expressed or IFN-γ-induced IDO in the A172 human glioma cell line. TRY and DMT increased the cytotoxic activity of peripheral blood mononuclear cells (PBMCs) in co-culture assays. We conclude that the IDO inhibition by TRY and DMT contributed to a more effective tumor-reactive response by the PBMCs. PMID:23754498

  15. Tomato carotenoid cleavage dioxygenases 1A and 1B: Relaxed double bond specificity leads to a plenitude of dialdehydes, mono-apocarotenoids and isoprenoid volatiles

    Directory of Open Access Journals (Sweden)

    Andrea Ilg

    2014-01-01

    Full Text Available The biosynthetic processes leading to many of the isoprenoid volatiles released by tomato fruits are still unknown, though previous reports suggested a clear correlation with the carotenoids contained within the fruit. In this study, we investigated the activity of the tomato (Solanum lycopersicum carotenoid cleavage dioxygenase (SlCCD1B, which is highly expressed in fruits, and of its homolog SlCCD1A. Using in vitro assays performed with purified recombinant enzymes and by analyzing products formed by the two enzymes in carotene-accumulating Escherichia coli strains, we demonstrate that SlCCD1A and, to a larger extent, SlCCD1B, have a very relaxed specificity for both substrate and cleavage site, mediating the oxidative cleavage of cis- and all-trans-carotenoids as well as of different apocarotenoids at many more double bonds than previously reported. This activity gives rise to a plenitude of volatiles, mono-apocarotenoids and dialdehyde products, including cis-pseudoionone, neral, geranial, and farnesylacetone. Our results provide a direct evidence for a carotenoid origin of these compounds and point to CCD1s as the enzymes catalyzing the formation of the vast majority of tomato isoprenoid volatiles, many of which are aroma constituents.

  16. Evidence for N coordination to Fe in the [2Fe-2S] clusters of Thermus Rieske protein and phthalate dioxygenase from Pseudomonas

    International Nuclear Information System (INIS)

    Rieske-type iron/sulfur proteins and several NADH-dependent oxygenases contain Fe/S clusters with similar spectral and magnetic properties. Purified Rieske iron/sulfur protein from Thermus thermophilus contains two apparently identical [2Fe-2S] clusters in a polypeptide having only four cysteine residues, and it has been proposed that each Fe/S cluster is coordinated to two cysteine S-atoms and to an unknown number of other non-sulfur atoms. The authors have examined the Rieske protein from Thermus and the phthalate dioxygenase from Pseudomonas cepacia with electron nuclear double resonance (ENDOR) and pulsed EPR methods and report here evidence for the direct coordination of nitrogenous ligands to the Fe/S clusters in these proteins. The electron nuclear double resonance signals arising from 14N have been interpreted in terms of a strongly coupled ligand with A/sup N/ = approx.26-28 MHz and a weakly coupled ligand with A/sup N/ = approx.9 MHz. The pulsed EPR spectrum shows a rich pattern of lines in the Fourier transformed data having peaks in the range of 0.8 to 6.7 MHz. The lower frequency resonances are tentatively associated with coupling of the unpaired spin to the remote N-atoms of coordinated imidazole rings. 26 references, 3 figures

  17. Identification of 11 Novel Homogentisate 1,2 Dioxygenase Variants in Alkaptonuria Patients and Establishment of a Novel LOVD-Based HGD Mutation Database.

    Science.gov (United States)

    Zatkova, Andrea; Sedlackova, Tatiana; Radvansky, Jan; Polakova, Helena; Nemethova, Martina; Aquaron, Robert; Dursun, Ismail; Usher, Jeannette L; Kadasi, Ludevit

    2012-01-01

    Enzymatic loss in alkaptonuria (AKU), an autosomal recessive disorder, is caused by mutations in the homogentisate 1,2 dioxygenase (HGD) gene, which decrease or completely inactivate the function of the HGD protein to metabolize homogentisic acid (HGA). AKU shows a very low prevalence (1:100,000-250,000) in most ethnic groups, but there are countries with much higher incidence, such as Slovakia and the Dominican Republic. In this work, we report 11 novel HGD mutations identified during analysis of 36 AKU patients and 41 family members from 27 families originating from 9 different countries, mainly from Slovakia and France. In Slovak patients, we identified two additional mutations, thus a total number of HGD mutations identified in this small country is 12. In order to record AKU-causing mutations and variants of the HGD gene, we have created a HGD mutation database that is open for future submissions and is available online ( http://hgddatabase.cvtisr.sk/ ). It is founded on the Leiden Open (source) Variation Database (LOVD) system and includes data from the original AKU database ( http://www.alkaptonuria.cib.csic.es ) and also all so far reported variants and AKU patients. Where available, HGD-haplotypes associated with the mutations are also presented. Currently, this database contains 148 unique variants, of which 115 are reported pathogenic mutations. It provides a valuable tool for information exchange in AKU research and care fields and certainly presents a useful data source for genotype-phenotype correlations and also for future clinical trials.

  18. Detailed analysis and follow-up studies of a high-throughput screening for indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors.

    Science.gov (United States)

    Röhrig, Ute F; Majjigapu, Somi Reddy; Chambon, Marc; Bron, Sylvian; Pilotte, Luc; Colau, Didier; Van den Eynde, Benoît J; Turcatti, Gerardo; Vogel, Pierre; Zoete, Vincent; Michielin, Olivier

    2014-09-12

    Indoleamine 2,3-dioxygenase 1 (IDO1) is a key regulator of immune responses and therefore an important therapeutic target for the treatment of diseases that involve pathological immune escape, such as cancer. Here, we describe a robust and sensitive high-throughput screen (HTS) for IDO1 inhibitors using the Prestwick Chemical Library of 1200 FDA-approved drugs and the Maybridge HitFinder Collection of 14,000 small molecules. Of the 60 hits selected for follow-up studies, 14 displayed IC50 values below 20 μM under the secondary assay conditions, and 4 showed an activity in cellular tests. In view of the high attrition rate we used both experimental and computational techniques to identify and to characterize compounds inhibiting IDO1 through unspecific inhibition mechanisms such as chemical reactivity, redox cycling, or aggregation. One specific IDO1 inhibitor scaffold, the imidazole antifungal agents, was chosen for rational structure-based lead optimization, which led to more soluble and smaller compounds with micromolar activity.

  19. Increased activity of indoleamine 2,3-dioxygenase in serum from acutely infected dengue patients linked to gamma interferon antiviral function

    Science.gov (United States)

    Becerra, Aniuska; Warke, Rajas V.; Xhaja, Kris; Evans, Barbara; Evans, James; Martin, Katherine; de Bosch, Norma; Rothman, Alan L.; Bosch, Irene

    2009-01-01

    The depletion of l-tryptophan (L-Trp) has been associated with the inhibition of growth of micro-organisms and also has profound effects on T cell proliferation and immune tolerance. The enzyme indoleamine 2,3-dioxygenase (IDO) catalyses the rate-limiting step in the catabolic pathway of L-Trp. Gene expression analysis has shown upregulation of genes involved in L-Trp catabolism in in vitro models of dengue virus (DENV) infection. To understand the role of IDO during DENV infection, we measured IDO activity in sera from control and DENV-infected patients. We found increased IDO activity, lower levels of L-Trp and higher levels of l-kynurenine in sera from DENV-infected patients during the febrile days of the disease compared with patients with other febrile illnesses and healthy donors. Furthermore, we confirmed upregulation of IDO mRNA expression in response to DENV infection in vitro, using a dendritic cell (DC) model of DENV infection. We found that the antiviral effect of gamma interferon (IFN-γ) in DENV-infected DCs in vitro was partially dependent on IDO activity. Our results demonstrate that IDO plays an important role in the antiviral effect of IFN-γ against DENV infection in vitro and suggest that it has a role in the immune response to DENV infections in vivo. PMID:19264674

  20. Early carcinogenesis involves the establishment of immune privilege via intrinsic and extrinsic regulation of Indoleamine 2,3-dioxygenase-1: Translational implications in cancer immunotherapy

    Directory of Open Access Journals (Sweden)

    Alisha eHoltzhausen

    2014-10-01

    Full Text Available Although prolonged genetic pressure has been conjectured to be necessary for the eventual development of tumor immune evasion mechanisms, recent work is demonstrating that early genetic mutations are capable of moonlighting as both intrinsic and extrinsic modulators of the tumor immune microenvironment. The indoleamine 2,3-dioxygenase-1 (IDO immunoregulatory enzyme is emerging as a key player in tumor-mediated immune tolerance. While loss of the tumor suppressor, BIN-1, and the over-expression of cyclooxygenase-2 (COX-2 have been implicated in intrinsic regulation of IDO, recent findings have demonstrated the loss of TβRIII and the upregulation of Wnt5a by developing cancers to play a role in the extrinsic control of IDO activity by local dendritic cell populations residing within tumor and tumor-draining lymph node tissues. Together, these genetic changes are capable of modulating paracrine signaling pathways in the early stages of carcinogenesis to establish a site of immune privilege by promoting the differentiation and activation of local regulatory T cells. Additional investigation of these immune evasion pathways promises to provide opportunities for the development of novel strategies to synergistically enhance the efficacy of the evolving class of T cell-targeted ‘checkpoint’ inhibitors.

  1. Effects of various phytochemicals on indoleamine 2,3-dioxygenase 1 activity: galanal is a novel, competitive inhibitor of the enzyme.

    Directory of Open Access Journals (Sweden)

    Rie Yamamoto

    Full Text Available Indoleamine 2,3-dioxygenase (IDO 1, that catalyzes the first and rate-limiting step in the degradation of L-tryptophan, has an important immunomodulatory function. The activity of IDO1 increases in various inflammatory diseases, including tumors, autoimmune diseases, and different kinds of inflammation. We evaluated the suppressive effect of plant extracts or phytochemicals on IDO1 induction and activity; sixteen kinds of plants extracts and fourteen kinds of phytochemicals were examined. As a result, the methanol extracts of Myoga flower buds, which are traditional Japanese foods, and labdane-type diterpene galanal derived from Myoga flowers significantly suppressed IDO1 activity. The Lineweaver-Burk plot analysis indicated that galanal is a competitive inhibitor. Galanal attenuated L-kynurenine formation with an IC₅₀ value of 7.7 µM in the assay system using recombinant human IDO1, and an IC₅₀ value of 45 nM in the cell-based assay. Further, mechanistic analysis revealed that galanal interfered with the transcriptional function of the nuclear factor-κB and the interferon-γ signaling pathway. These effects of galanal are important for immune response. Because the inhibitory effect of galanal on IDO1 activity was stronger than that of 1-methyl tryptophan, a tryptophan analog, galanal may have great potential as the novel drug for various immune-related diseases.

  2. The potato carotenoid cleavage dioxygenase 4 catalyzes a single cleavage of β-ionone ring-containing carotenes and non-epoxidated xanthophylls.

    Science.gov (United States)

    Bruno, Mark; Beyer, Peter; Al-Babili, Salim

    2015-04-15

    Down-regulation of the potato carotenoid cleavage dioxygenase 4 (StCCD4) transcript level led to tubers with altered morphology and sprouting activity, which also accumulated higher levels of violaxanthin and lutein leading to elevated carotenoid amounts. This phenotype indicates a role of this enzyme in tuber development, which may be exerted by a cleavage product. In this work, we investigated the enzymatic activity of StCCD4, by expressing the corresponding cDNA in carotenoid accumulating Escherichia coli strains and by performing in vitro assays with heterologously expressed enzyme. StCCD4 catalyzed the cleavage of all-trans-β-carotene at the C9'-C10' double bond, leading to β-ionone and all-trans-β-apo-10'-carotenal, both in vivo and in vitro. The enzyme also cleaved β,β-cryptoxanthin, zeaxanthin and lutein either at the C9'-C10' or the C9-C10 double bond in vitro. In contrast, we did not observe any conversion of violaxanthin and only traces of activity with 9-cis-β-carotene, which led to 9-cis-β-apo-10'-carotenal. Our data indicate that all-trans-β-carotene is the likely substrate of StCCD4 in planta, and that this carotene may be precursor of an unknown compound involved in tuber development. PMID:25703194

  3. Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase.

    Science.gov (United States)

    Wang, Yan; Ren, Hejun; Pan, Hongyu; Liu, Jinliang; Zhang, Lanying

    2015-04-01

    Polychlorinated biphenyls (PCBs) and 2,4-dichlorophenol (2,4-DCP) generally led to mixed contamination of soils as a result of commercial and agricultural activities. Their accumulation in the environment poses great risks to human and animal health. Therefore, the effective strategies for disposal of these pollutants are urgently needed. In this study, genetic engineering to enhance PCBs/2,4-DCP phytoremediation is a focus. We cloned the 2,3-dihydroxybiphenyl-1,2-dioxygenase (BphC.B) from a soil metagenomic library, which is the key enzyme of aerobic catabolism of a variety of aromatic compounds, and then it was expressed in alfalfa driven by CaMV 35S promoter using Agrobacterium-mediated transformation. Transgenic line BB11 was selected out through PCR, Western blot analysis and enzyme activity assays. Its disposal and tolerance to both PCBs and 2,4-DCP were examined. The tolerance capability of transgenic line BB11 towards complex contaminants of PCBs/2,4-DCP significantly increased compared with non-transgenic plants. Strong dissipation of PCBs and high removal efficiency of 2,4-DCP were exhibited in a short time. It was confirmed expressing BphC.B would be a feasible strategy to help achieving phytoremediation in mixed contaminated soils with PCBs and 2,4-DCP.

  4. Diversity of extradiol dioxygenases in aromatic-degrading microbial community explored using both culture-dependent and culture-independent approaches.

    Science.gov (United States)

    Suenaga, Hikaru; Mizuta, Shiori; Miyazaki, Kentaro; Yaoi, Katsuro

    2014-11-01

    Culture-dependent and culture-independent approaches were used for extensive retrieval of the extradiol dioxygenase (EDO) gene from the environment to investigate the relationship between the EDO genes from isolated bacteria and the metagenomic EDO genes from which they were isolated. In our previous study, we identified 91 fosmid clones showing EDO enzyme activity using a metagenomic approach. In the present study, we classified all these metagenome-derived EDOs and newly isolated 88 phenol-utilizing bacteria from the same sample and identified four EDO genes from them. Of these, two EDOs had amino acid sequences similar to those reported previously in aromatic-utilizing strains, and one EDO had a sequence almost identical to that of metagenomic EDOs identified in our previous study. Unexpectedly, one EDO showed no similarity to any class I EDOs and was categorized as class II, which has not been found in past metagenomic approaches. Quantitative polymerase chain reaction (PCR) assay indicated that the low-abundance class II EDO gene can be enriched by culturing approaches. We conclude that the combined use of the two approaches can explore the gene community more extensively than their individual use. PMID:25059259

  5. Tryptophan recycling is responsible for the interferon-gamma resistance of Chlamydia psittaci GPIC in indoleamine dioxygenase-expressing host cells.

    Science.gov (United States)

    Wood, Heidi; Roshick, Christine; McClarty, Grant

    2004-05-01

    Comparative genomics indicates that vast differences in Chlamydia sp. host range and disease characteristics can be traced back to subtle variations in gene content within a region of the chromosome termed the plasticity zone. Genes required for tryptophan biosynthesis are located in the plasticity zone; however, the complement of genes encoded varies depending on the chlamydial species examined. Of the sequenced chlamydia genomes, Chlamydia psittaci GPIC contains the most complete tryptophan biosynthesis operon, encoding trpRDCFBA. Immediately downstream of the trp operon are genes encoding kynureninase and ribose phosphate pyrophosphokinase. Here, we show that, in GPIC, these genes are transcribed as a single transcript, the expression of which is regulated by tryptophan. Complementation analyses, using various mutant Escherichia coli isolates, indicate that the tryptophan biosynthesis, kynureninase and ribose phosphate pyrophosphokinase gene products are functional. Furthermore, growth of C. psittaci GPIC in HeLa cells, cultured in tryptophan-free medium, could be rescued by the addition of anthranilate, kynurenine or indole. In total, our results indicate that this complement of genes enables GPIC to recycle tryptophan and thus accounts for the interferon-gamma resistant phenotype displayed in indoleamine-2,3-dioxygenase-expressing host cells. PMID:15101993

  6. Synthesis, structure, spectra and reactivity of iron(III) complexes of facially coordinating and sterically hindering 3N ligands as models for catechol dioxygenases.

    Science.gov (United States)

    Sundaravel, Karuppasamy; Dhanalakshmi, Thirumanasekaran; Suresh, Eringathodi; Palaniandavar, Mallayan

    2008-12-28

    A series of 1 : 1 iron(III) complexes of sterically hindered and systematically modified tridentate 3N donor ligands have been isolated and studied as functional models for extradiol-cleaving catechol dioxygenases. All of them are of the type [Fe(L)Cl(3)], where L is N-methyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L1), N-ethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L2), N-benzyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L3), N,N-dimethyl-N'-(pyrid-2-ylmethyl)ethylenediamine (L4), N'-methyl-N'-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L5), N'-ethyl-N'-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L6) and N'-benzyl-N'-(pyrid-2-ylmethyl)-N,N-dimethylethylenediamine (L7). They have been characterized by elemental analysis and spectral and electrochemical methods. The X-ray crystal structures of the complexes [Fe(L2)Cl(3)] 2, [Fe(L3)Cl(3)] 3 and [Fe(L7)Cl(3)] 7 have been successfully determined. All the three complexes possess a distorted octahedral coordination geometry in which the ligand is facially coordinated to iron(III) and the chloride ions occupy the remaining coordination sites. Upon replacing the N-ethyl group on the terminal nitrogen donor in 2 by the bulky N-benzyl group as in 3, the terminal Fe-N bond distance increases slightly from 2.229(5) A to 2.244(5) A. Upon incorporating the sterically demanding N-benzyl group on the central nitrogen donor in 4 to obtain 7, the central Fe-N(amine) bond distance increases from 2.181(5) A to 2.299(2) A. The catecholate adducts [Fe(L)(DBC)(Cl)] and [Fe(L)(DBC)(Sol)](+), where H(2)DBC is 3,5-di-tert-butylcatechol and Sol = solvent (H(2)O/DMF), have been generated in situ and their spectral and redox properties and dioxygenase activities have been studied in N,N-dimethylformamide and dichloromethane solutions. The adducts [Fe(L)(DBC)(Sol)](+) undergo cleavage of DBC(2-) in the presence of molecular oxygen to afford both intra- and extradiol cleavage products. The extradiol products are higher in dichloromethane than in

  7. Homogentisate 1-2-Dioxygenase Downregulation in the Chronic Persistence of Pseudomonas aeruginosa Australian Epidemic Strain-1 in the CF Lung.

    Science.gov (United States)

    Harmer, Christopher J; Wynn, Matthew; Pinto, Rachel; Cordwell, Stuart; Rose, Barbara R; Harbour, Colin; Triccas, James A; Manos, Jim

    2015-01-01

    Some Pseudomonas aeruginosa strains including Australian Epidemic Strain-1 (AES-1 or AUS-01) cause persistent chronic infection in cystic fibrosis (CF) patients, with greater morbidity and mortality. Factors conferring persistence are largely unknown. Previously we analysed the transcriptomes of AES-1 grown in Luria broth, nematode growth medium for Caenorhabditis elegans assay (both aerobic) and artificial sputum medium (mainly hypoxic). Transcriptional comparisons included chronic AES-1 strains against PAO1 and acute AES-1 (AES-1R) against its chronic isogen (AES-1M), isolated 10.5 years apart from a CF patient and not eradicated in the meantime. Prominent amongst genes downregulated in AES-1M in all comparisons was homogentisate-1-2-dioxygenase (hmgA); an oxygen-dependent gene known to be mutationally deactivated in many chronic infection strains of P. aeruginosa. To investigate if hmgA downregulation and deactivation gave similar virulence persistence profiles, a hmgA mutant made in UCBPP-PA14 utilising RedS-recombinase and AES-1M were assessed in the C. elegans virulence assay, and the C57BL/6 mouse for pulmonary colonisation and TNF-α response. In C. elegans, hmgA deactivation resulted in significantly increased PA14 virulence while hmgA downregulation reduced AES-1M virulence. AES-1M was significantly more persistent in mouse lung and showed a significant increase in TNF-α (p<0.0001), sustained even with no detectable bacteria. PA14ΔhmgA did not show increased TNF-α. This study suggests that hmgA may have a role in P. aeruginosa persistence in chronic infection and the results provide a starting point for clarifying the role of hmgA in chronic AES-1. PMID:26252386

  8. Recombinant adenovirus with human indoleamine-2,3-dioxygenase and hepatitis B virus preS was constructed and expressed in HepG2 cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Yong-bing; SHI Xian-jie; LU Gang; NIE Hong-feng; SHEN Xiao-qing; YU Cong-hui; GONG Jian-ping

    2011-01-01

    Background Indoleamine-2,3-dioxygenase (IDO) is proven to suppress hepatitis B virus (HBV) specific immune response and depletion of IDO may be a useful approach for HBV therapy. To test this concept, we constructed recombinant adenovirus with human IDO and HBV preS, which would form the basis for future in vivo experiments.Methods The fragment of human IDO and HBV preS cDNA were subcloned into multiple cloning sites in an adenoviral vector system containing two cytomegalovirus (CMV) promoters. Recombination was conducted in the Escherichia coli BJ5183. The recombinant adenovirus containing hlDO gene and HBVpreS gene was packaged and amplified in 293 cells.Integration was confirmed by polymerase chain reaction as well as the quantification of viral titers. HepG2 cells were infected with the recombinant adenovirus and mRNA and protein specific for hlDO and HBVpreS was detected by RT-PCR and Western blotting respectively.Results The recombinant adenovirus was produced successfully. Its titer was 2.5x109 efu/ml. IDO and HBVpreS mRNA as well as the encoded proteins could be found in transfected HepG2 cells, but not in control HepG2 cells.Conclusion The transfer of hlDO-HBVpreS with double-promoter adenoviral vector was efficient. The recombinant adenovirus with hlDO and HBVpreS would provide the experimental basis for future studies.

  9. Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: Both effects are reversed by inhibition of indoleamine 2,3-dioxygenase.

    Science.gov (United States)

    Fuertig, René; Azzinnari, Damiano; Bergamini, Giorgio; Cathomas, Flurin; Sigrist, Hannes; Seifritz, Erich; Vavassori, Stefano; Luippold, Andreas; Hengerer, Bastian; Ceci, Angelo; Pryce, Christopher R

    2016-05-01

    Psychosocial stress is a major risk factor for mood and anxiety disorders, in which excessive reactivity to aversive events/stimuli is a major psychopathology. In terms of pathophysiology, immune-inflammation is an important candidate, including high blood and brain levels of metabolites belonging to the kynurenine pathway. Animal models are needed to study causality between psychosocial stress, immune-inflammation and hyper-reactivity to aversive stimuli. The present mouse study investigated effects of psychosocial stress as chronic social defeat (CSD) versus control-handling (CON) on: Pavlovian tone-shock fear conditioning, activation of the kynurenine pathway, and efficacy of a specific inhibitor (IDOInh) of the tryptophan-kynurenine catabolising enzyme indoleamine 2,3-dioxygenase (IDO1), in reversing CSD effects on the kynurenine pathway and fear. CSD led to excessive fear learning and memory, whilst repeated oral escitalopram (antidepressant and anxiolytic) reversed excessive fear memory, indicating predictive validity of the model. CSD led to higher blood levels of TNF-α, IFN-γ, kynurenine (KYN), 3-hydroxykynurenine (3-HK) and kynurenic acid, and higher KYN and 3-HK in amygdala and hippocampus. CSD was without effect on IDO1 gene or protein expression in spleen, ileum and liver, whilst increasing liver TDO2 gene expression. Nonetheless, oral IDOInh reduced blood and brain levels of KYN and 3-HK in CSD mice to CON levels, and we therefore infer that CSD increases IDO1 activity by increasing its post-translational activation. Furthermore, repeated oral IDOInh reversed excessive fear memory in CSD mice to CON levels. IDOInh reversal of CSD-induced hyper-activity in the kynurenine pathway and fear system contributes significantly to the evidence for a causal pathway between psychosocial stress, immune-inflammation and the excessive fearfulness that is a major psychopathology in stress-related neuropsychiatric disorders. PMID:26724575

  10. Implication of Tryptophan 2,3-Dioxygenase and its Novel Variants in the Hippocampus and Cerebellum During the Developing and Adult Brain

    Directory of Open Access Journals (Sweden)

    Masaaki Kanai

    2010-07-01

    Full Text Available Tryptophan 2,3-dioxygenase (TDO is a first and rate-limiting enzyme for the kynurenine pathway of tryptophan metabolism. Using Tdo-/-mice, we have recently shown that TDO plays a pivotal role in systemic tryptophan metabolism and brain serotonin synthesis as well as emotional status and adult neurogenesis. However, the expression of TDO in the brain has not yet been well characterized, in contrast to its predominant expression in the liver. To further examine the possible role of local TDO in the brain, we quantified the levels of tdo mRNA in various nervous tissues, using Northern blot and quantitative real-time RT-PCR. Higher levels of tdo mRNA expression were detected in the cerebellum and hippocampus. We also identified two novel variants of the tdo gene, termed tdo variant1 and variant2, in the brain. Similar to the known TDO form (TDO full-form, tetramer formation and enzymatic activity were obtained when these variant forms were expressed in vitro. While quantitative real-time RT-PCR revealed that the tissue distribution of these variants was similar to that of tdo full-form, the expression patterns of these variants during early postnatal development in the hippocampus and cerebellum differed. Our findings indicate that in addition to hepatic TDO, TDO and its variants in the brain might function in the developing and adult nervous system. Given the previously reported associations of tdo gene polymorphisms in the patients with autism and Tourette syndrome, the expression of TDO in the brain suggests the possible influence of TDO on psychiatric status. Potential functions of TDOs in the cerebellum, hippocampus and cerebral cortex under physiological and pathological conditions are discussed.

  11. Overexpression of Crocus carotenoid cleavage dioxygenase, CsCCD4b, in Arabidopsis imparts tolerance to dehydration, salt and oxidative stresses by modulating ROS machinery.

    Science.gov (United States)

    Baba, Shoib Ahmad; Jain, Deepti; Abbas, Nazia; Ashraf, Nasheeman

    2015-09-15

    Apocarotenoids modulate vital physiological and developmental processes in plants. These molecules are formed by the cleavage of carotenoids, a reaction catalyzed by a family of enzymes called carotenoid cleavage dioxygenases (CCDs). Apocarotenoids like β-ionone and β-cyclocitral have been reported to act as stress signal molecules during high light stress in many plant species. In Crocus sativus, these two apocarotenoids are formed by enzymatic cleavage of β-carotene at 9, 10 and 7, 8 bonds by CsCCD4 enzymes. In the present study three isoforms of CsCCD4 were subjected to molecular modeling and docking analysis to determine their substrate specificity and all the three isoforms displayed high substrate specificity for β-carotene. Further, expression of these three CsCCD4 isoforms investigated in response to various stresses revealed that CsCCD4a and CsCCD4b exhibit enhanced expression in response to dehydration, salt and methylviologen, providing a clue towards their role in mediating plant defense response. This was confirmed by overexpressing CsCCD4b in Arabidopsis. The transgenic plants developed longer roots and possessed higher number of lateral roots. Further, overexpression of CsCCD4b imparted enhanced tolerance to salt, dehydration and oxidative stresses as was evidenced by higher survival rate, increased relative root length and biomass in transgenic plants as compared to wild type. Transgenic plants also displayed higher activity and expression of reactive oxygen species (ROS) metabolizing enzymes. This indicates that β-ionone and β-cyclocitral which are enzymatic products of CsCCD4b may act as stress signals and mediate reprogramming of stress responsive genes which ultimately leads to plant defense.

  12. New target carotenoids for CCD4 enzymes are revealed with the characterization of a novel stress-induced carotenoid cleavage dioxygenase gene from Crocus sativus.

    Science.gov (United States)

    Rubio-Moraga, Angela; Rambla, José Luis; Fernández-de-Carmen, Asun; Trapero-Mozos, Almudena; Ahrazem, Oussama; Orzáez, Diego; Granell, Antonio; Gómez-Gómez, Lourdes

    2014-11-01

    Apocarotenoid compounds play diverse communication functions in plants, some of them being as hormones, pigments and volatiles. Apocarotenoids are the result of enzymatic cleavage of carotenoids catalyzed by carotenoid cleavage dioxygenase (CCD). The CCD4 family is the largest family of plant CCDs, only present in flowering plants, suggesting a functional diversification associated to the adaptation for specific physiological capacities unique to them. In saffron, two CCD4 genes have been previously isolated from the stigma tissue and related with the generation of specific volatiles involved in the attraction of pollinators. The aim of this study was to identify additional CCD4 members associated with the generation of other carotenoid-derived volatiles during the development of the stigma. The expression of CsCCD4c appears to be restricted to the stigma tissue in saffron and other Crocus species and was correlated with the generation of megastigma-4,6,8-triene. Further, CsCCD4c was up-regulated by wounding, heat, and osmotic stress, suggesting an involvement of its apocarotenoid products in the adaptation of saffron to environmental stresses. The enzymatic activity of CsCCD4c was determined in vivo in Escherichia coli and subsequently in Nicotiana benthamiana by analyzing carotenoids by HPLC-DAD and the volatile products by GC/MS. β-Carotene was shown to be the preferred substrate, being cleaved at the 9,10 (9',10') bonds and generating β-ionone, although β-cyclocitral resulting from a 7,8 (7',8') cleavage activity was also detected at lower levels. Lutein, neoxanthin and violaxanthin levels in Nicotiana leaves were markedly reduced when CsCCD4c is over expressed, suggesting that CsCCD4c recognizes these carotenoids as substrates.

  13. The tryptophan derivative, tranilast, and conditioned medium with indoleamine 2,3-dioxygenase-expressing cells inhibit the proliferation of lymphoid malignancies.

    Science.gov (United States)

    Suwa, Shihoko; Kasubata, Aya; Kato, Miyu; Iida, Megumi; Watanabe, Ken; Miura, Osamu; Fukuda, Tetsuya

    2015-03-01

    Indoleamine 2,3-dioxygenase (IDO) is an enzyme that catalyzes tryptophan degradation and induces immunosuppression. Although IDO is an important factor that allows tumors to escape from immunological attack, its effect on lymphoid malignancies has not been fully revealed. We evaluated the expression of IDO in samples from patients with B-cell malignancies. The IDO expression in the tumor samples was comparable to those in peripheral blood mononuclear cells from healthy donors and had mainly originated from non-B cell populations. We introduced IDO gene into Chinese hamster ovary (CHO) cells. We then cultured various cell lines using CHO- or CHO-IDO-conditioned medium. Compared with the CHO medium (CHO-CM), the CHO-IDO medium (IDO-CM) decreased the viability of lymphoid cell lines but not those of the non-lymphoid lines. Next, we examined the effects of tryptophan metabolites on lymphoid tumors, and revealed that the drug N-[3',4'-dimethoxycinnamoyl] anthranilic acid (tranilast), a synthetic derivative of the tryptophan metabolite, was able to repress proliferation and dose-dependently induce cell death of lymphoid cell lines. Tranilast induced the activation of the c-Jun N-terminal kinase, which is activated by cellular stress, in lymphoid cells. The effect of tranilast on lymphoid cells was independent of the aryl hydrocarbon receptor (AhR) although tranilast has been reported to be an AhR agonist. Finally, the administration of tranilast decreased murine lymphoid tumor progression in vivo. These results indicated that IDO and tryptophan derivatives, particularly tranilast, can be tools for the therapy for lymphoid malignancies.

  14. A "White" Anthocyanin-less Pomegranate (Punica granatum L. Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS Gene.

    Directory of Open Access Journals (Sweden)

    Zohar Ben-Simhon

    Full Text Available Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" pomegranate tissues are able to synthesize mRNA corresponding to the PgLDOX gene (leucoanthocyanidin dioxygenase, also called ANS, anthocyanidin synthase, which is one of the central structural genes in the anthocyanin-biosynthesis pathway. HPLC analysis revealed that none of the "white" pomegranate tissues accumulate anthocyanins, whereas other flavonoids, corresponding to biochemical reactions upstream of LDOX, were present. Molecular analysis of the "white" pomegranate revealed the presence of an insertion and an SNP within the coding region of PgLDOX. It was found that the SNP does not change amino acid sequence and is not fully linked with the "white" phenotype in all pomegranate accessions from the collection. On the other hand, genotyping of pomegranate accessions from the collection and segregating populations for the "white" phenotype demonstrated its complete linkage with the insertion, inherited as a recessive single-gene trait. Taken together, the results indicate that the insertion in PgLDOX is responsible for the "white" anthocyanin-less phenotype. These data provide the first direct molecular, genetic and chemical evidence for the effect of a natural modification in the LDOX gene on color accumulation in a fruit-bearing woody perennial deciduous tree. This modification can be further utilized to elucidate the physiological role of anthocyanins in protecting the tree organs from harmful environmental conditions, such as temperature and UV

  15. Cerebral Microvascular Endothelial Cell Apoptosis after Ischemia: Role of Enolase-Phosphatase 1 Activation and Aci-Reductone Dioxygenase 1 Translocation.

    Science.gov (United States)

    Zhang, Yuan; Wang, Ting; Yang, Ke; Xu, Ji; Ren, Lijie; Li, Weiping; Liu, Wenlan

    2016-01-01

    Enolase-phosphatase 1 (ENOPH1), a newly discovered enzyme of the methionine salvage pathway, is emerging as an important molecule regulating stress responses. In this study, we investigated the role of ENOPH1 in blood brain barrier (BBB) injury under ischemic conditions. Focal cerebral ischemia induced ENOPH1 mRNA and protein expression in ischemic hemispheric microvessels in rats. Exposure of cultured brain microvascular endothelial cells (bEND3 cells) to oxygen-glucose deprivation (OGD) also induced ENOPH1 upregulation, which was accompanied by increased cell death and apoptosis reflected by increased 3-(4, 5-Dimethylthiazol-2-yl)-2, 5- diphenyltetrazolium bromide formation, lactate dehydrogenase release and TUNEL staining. Knockdown of ENOPH1 expression with siRNA or overexpressing ENOPH1 with CRISPR-activated plasmids attenuated or potentiated OGD-induced endothelial cell death, respectively. Moreover, ENOPH1 knockdown or overexpression resulted in a significant reduction or augmentation of reactive oxygen species (ROS) generation, apoptosis-associated proteins (caspase-3, PARP, Bcl-2 and Bax) and Endoplasmic reticulum (ER) stress proteins (Ire-1, Calnexin, GRP78 and PERK) in OGD-treated endothelial cells. OGD upregulated the expression of ENOPH1's downstream protein aci-reductone dioxygenase 1 (ADI1) and enhanced its interaction with ENOPH1. Interestingly, knockdown of ENOPH1 had no effect on OGD-induced ADI1 upregulation, while it potentiated OGD-induced ADI1 translocation from the nucleus to the cytoplasm. Lastly, knockdown of ENOPH1 significantly reduced OGD-induced endothelial monolayer permeability increase. In conclusion, our data demonstrate that ENOPH1 activation may contribute to OGD-induced endothelial cell death and BBB disruption through promoting ROS generation and the activation of apoptosis associated proteins, thus representing a new therapeutic target for ischemic stroke. PMID:27630541

  16. Use of 4-Nitrophenoxyacetic Acid for Detection and Quantification of 2,4-Dichlorophenoxyacetic Acid (2,4-D)/(alpha)-Ketoglutarate Dioxygenase Activity in 2,4-D-Degrading Microorganisms

    OpenAIRE

    Sassanella, T. M.; Fukumori, F; Bagdasarian, M; Hausinger, R P

    1997-01-01

    Purified 2,4-dichlorophenoxyacetic acid (2,4-D)/(alpha)-ketoglutarate dioxygenase (TfdA) was shown to use 4-nitrophenoxyacetic acid (K(infm) = 0.89 (plusmn) 0.04 mM, k(infcat) [catalytic constant] = 540 (plusmn) 10 min(sup-1)), producing intensely yellow 4-nitrophenol. This reagent was used to develop a rapid, continuous, colorimetric assay for the detection of TfdA and analogous activities in 2,4-D-degrading bacterial cells and extracts.

  17. Mononuclear non-heme iron(III) complexes of linear and tripodal tridentate ligands as functional models for catechol dioxygenases: Effect of -alkyl substitution on regioselectivity and reaction rate

    Indian Academy of Sciences (India)

    Mallayan Palaniandavar; Kusalendiran Visvaganesan

    2011-03-01

    Catechol dioxygenases are responsible for the last step in the biodegradation of aromatic molecules in the environment. The iron(II) active site in the extradiol-cleaving enzymes cleaves the C-C bond adjacent to the hydroxyl group, while the iron(III) active site in the intradiol-cleaving enzymes cleaves the C-C bond in between two hydroxyl groups. A series of mononuclear iron(III) complexes of the type [Fe(L)Cl3], where L is the linear -alkyl substituted bis(pyrid-2-ylmethyl)amine, -alkyl substituted -(pyrid-2-ylmethyl)ethylenediamine, linear tridentate 3N ligands containing imidazolyl moieties and tripodal ligands containing pyrazolyl moieties have been isolated and studied as structural and functional models for catechol dioxygenase enzymes. All the complexes catalyse the cleavage of catechols using molecular oxygen to afford both intra- and extradiol cleavage products. The rate of oxygenation depends on the solvent and the Lewis acidity of iron(III) center as modified by the sterically demanding -alkyl groups. Also, our studies reveal that stereo-electronic factors like the Lewis acidity of the iron(III) center and the steric demand of ligands, as regulated by the -alkyl substituents, determine the regioselectivity and the rate of dioxygenation. In sharp contrast to all these complexes, the pyrazole-containing tripodal ligand complexes yield mainly the oxidized product benzoquinone.

  18. Betalain production is possible in anthocyanin-producing plant species given the presence of DOPA-dioxygenase and L-DOPA

    Directory of Open Access Journals (Sweden)

    Harris Nilangani N

    2012-03-01

    Full Text Available Abstract Background Carotenoids and anthocyanins are the predominant non-chlorophyll pigments in plants. However, certain families within the order Caryophyllales produce another class of pigments, the betalains, instead of anthocyanins. The occurrence of betalains and anthocyanins is mutually exclusive. Betalains are divided into two classes, the betaxanthins and betacyanins, which produce yellow to orange or violet colours, respectively. In this article we show betalain production in species that normally produce anthocyanins, through a combination of genetic modification and substrate feeding. Results The biolistic introduction of DNA constructs for transient overexpression of two different dihydroxyphenylalanine (DOPA dioxygenases (DODs, and feeding of DOD substrate (L-DOPA, was sufficient to induce betalain production in cell cultures of Solanum tuberosum (potato and petals of Antirrhinum majus. HPLC analysis showed both betaxanthins and betacyanins were produced. Multi-cell foci with yellow, orange and/or red colours occurred, with either a fungal DOD (from Amanita muscaria or a plant DOD (from Portulaca grandiflora, and the yellow/orange foci showed green autofluorescence characteristic of betaxanthins. Stably transformed Arabidopsis thaliana (arabidopsis lines containing 35S: AmDOD produced yellow colouration in flowers and orange-red colouration in seedlings when fed L-DOPA. These tissues also showed green autofluorescence. HPLC analysis of the transgenic seedlings fed L-DOPA confirmed betaxanthin production. Conclusions The fact that the introduction of DOD along with a supply of its substrate (L-DOPA was sufficient to induce betacyanin production reveals the presence of a background enzyme, possibly a tyrosinase, that can convert L-DOPA to cyclo-DOPA (or dopaxanthin to betacyanin in at least some anthocyanin-producing plants. The plants also demonstrate that betalains can accumulate in anthocyanin-producing species. Thus, introduction

  19. Central Administration of Lipopolysaccharide Induces Depressive-like Behavior in Vivo and Activates Brain Indoleamine 2,3 Dioxygenase In Murine Organotypic Hippocampal Slice Cultures

    Directory of Open Access Journals (Sweden)

    Kavelaars Annemieke

    2010-08-01

    Full Text Available Abstract Background Transient stimulation of the innate immune system by an intraperitoneal injection of lipopolysaccharide (LPS activates peripheral and central expression of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO which mediates depressive-like behavior. It is unknown whether direct activation of the brain with LPS is sufficient to activate IDO and induce depressive-like behavior. Methods Sickness and depressive-like behavior in C57BL/6J mice were assessed by social exploration and the forced swim test, respectively. Expression of cytokines and IDO mRNA was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. Enzymatic activity of IDO was estimated as the amount of kynurenine produced from tryptophan as determined by high pressure liquid chromatography (HPLC with electrochemical detection. Results Intracerebroventricular (i.c.v. administration of LPS (100 ng increased steady-state transcripts of TNFα, IL-6 and the inducible isoform of nitric oxide synthase (iNOS in the hippocampus in the absence of any change in IFNγ mRNA. LPS also increased IDO expression and induced depressive-like behavior, as measured by increased duration of immobility in the forced swim test. The regulation of IDO expression was investigated using in situ organotypic hippocampal slice cultures (OHSCs derived from brains of newborn C57BL/6J mice. In accordance with the in vivo data, addition of LPS (10 ng/ml to the medium of OHSCs induced steady-state expression of mRNA transcripts for IDO that peaked at 6 h and translated into increased IDO enzymatic activity within 8 h post-LPS. This activation of IDO by direct application of LPS was preceded by synthesis and secretion of TNFα and IL-6 protein and activation of iNOS while IFNγ expression was undetectable. Conclusion These data establish that activation of the innate immune system in the brain is sufficient to activate IDO and induce

  20. HIV-1 Tat activates indoleamine 2,3 dioxygenase in murine organotypic hippocampal slice cultures in a p38 mitogen-activated protein kinase-dependent manner

    Directory of Open Access Journals (Sweden)

    Kelley Keith W

    2011-08-01

    Full Text Available Abstract Background We have established that activation of the tryptophan degrading enzyme indoleamine 2,3 dioxygenase (IDO mediates the switch from cytokine-induced sickness behavior to depressive-like behavior. Because human immunodeficiency virus type 1 (HIV-1 Tat protein causes depressive-like behavior in mice, we investigated its ability to activate IDO in organotypic hippocampal slice cultures (OHSCs derived from neonatal C57BL/6 mice. Methods Depressive-like behavior in C57BL/6J mice was assessed by the forced swim test. Expression of cytokines and IDO mRNA in OHSCs was measured by real-time RT-PCR and cytokine protein was measured by enzyme-linked immunosorbent assays (ELISAs. p38 MAPK phosphorylation was analyzed by western blot. Results Intracerebroventricular (i.c.v. administration of Tat (40 ng induced depressive-like behavior in the absence of sickness. Addition of Tat (40 ng/slice to the medium of OHSCs induced IDO steady-state mRNA that peaked at 6 h. This effect was potentiated by pretreatment with IFNγ. Tat also induced the synthesis and release of TNFα and IL-6 protein in the supernatant of the slices and increased expression of the inducible isoform of nitric oxide synthase (iNOS and the serotonin transporter (SERT. Tat had no effect on endogenous synthesis of IFNγ. To explore the mechanisms of Tat-induced IDO expression, slices were pretreated with the p38 mitogen-activated protein kinase (MAPK inhibitor SB 202190 for 30 min before Tat treatment. SB 202190 significantly decreased IDO expression induced by Tat, and this effect was accompanied by a reduction of Tat-induced expression of TNFα, IL-6, iNOS and SERT. Conclusion These data establish that Tat induces IDO expression via an IFNγ-independent mechanism that depends upon activation of p38 MAPK. Targeting IDO itself or the p38 MAPK signaling pathway could provide a novel therapy for comorbid depressive disorders in HIV-1-infected patients.

  1. Structural insight into the substrate- and dioxygen-binding manner in the catalytic cycle of rieske nonheme iron oxygenase system, carbazole 1,9a-dioxygenase

    Directory of Open Access Journals (Sweden)

    Ashikawa Yuji

    2012-06-01

    Full Text Available Abstract Background Dihydroxylation of tandemly linked aromatic carbons in a cis-configuration, catalyzed by multicomponent oxygenase systems known as Rieske nonheme iron oxygenase systems (ROs, often constitute the initial step of aerobic degradation pathways for various aromatic compounds. Because such RO reactions inherently govern whether downstream degradation processes occur, novel oxygenation mechanisms involving oxygenase components of ROs (RO-Os is of great interest. Despite substantial progress in structural and physicochemical analyses, no consensus exists on the chemical steps in the catalytic cycles of ROs. Thus, determining whether conformational changes at the active site of RO-O occur by substrate and/or oxygen binding is important. Carbazole 1,9a-dioxygenase (CARDO, a RO member consists of catalytic terminal oxygenase (CARDO-O, ferredoxin (CARDO-F, and ferredoxin reductase. We have succeeded in determining the crystal structures of oxidized CARDO-O, oxidized CARDO-F, and both oxidized and reduced forms of the CARDO-O: CARDO-F binary complex. Results In the present study, we determined the crystal structures of the reduced carbazole (CAR-bound, dioxygen-bound, and both CAR- and dioxygen-bound CARDO-O: CARDO-F binary complex structures at 1.95, 1.85, and 2.00 Å resolution. These structures revealed the conformational changes that occur in the catalytic cycle. Structural comparison between complex structures in each step of the catalytic mechanism provides several implications, such as the order of substrate and dioxygen bindings, the iron-dioxygen species likely being Fe(III-(hydroperoxo, and the creation of room for dioxygen binding and the promotion of dioxygen binding in desirable fashion by preceding substrate binding. Conclusions The RO catalytic mechanism is proposed as follows: When the Rieske cluster is reduced, substrate binding induces several conformational changes (e.g., movements of the nonheme iron and the ligand

  2. ITC Methods for Assessing Buffer/Protein Interactions from the Perturbation of Steady-State Kinetics: A Reactivity Study of Homoprotocatechuate 2,3-Dioxygenase.

    Science.gov (United States)

    Henderson, Kate L; Boyles, Delta K; Le, Vu H; Lewis, Edwin A; Emerson, Joseph P

    2016-01-01

    -hydroxymuconic semialdehyde by the nonheme iron(II) metalloenzyme, homoprotocatechuate 2,3-dioxygenase. Several buffers were observed to engage in buffer/enzyme interactions within the active site pocket. These enzyme-buffer interactions were shown to inhibit substrate turnover and to contribute additional enthalpy terms to the overall heat of reaction observed for substrate turnover (and for substrate binding).

  3. Interaction of (4-hydroxyphenyl)pyruvate dioxygenase with the specific inhibitor 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione.

    Science.gov (United States)

    Kavana, Michael; Moran, Graham R

    2003-09-01

    (4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is a non-heme Fe(II) enzyme that catalyzes the conversion of (4-hydroxyphenyl)pyruvate (HPP) to homogentisate as part of the tyrosine catabolism pathway. Inhibition of HPPD by the triketone 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione (NTBC) is used to treat type I tyrosinemia, a rare but fatal defect in tyrosine catabolism. Although triketones have been used for many years as HPPD inhibitors for both medical and herbicidal purposes, the mechanism of inhibition is not well understood. The following work provides mechanistic insight into NTBC binding. The tautomeric population of NTBC in aqueous solution is dominated by a single enol as determined by NMR spectroscopy. NTBC preferentially binds to the complex of HPPD and FeII [HPPD.Fe(II)] as evidenced by a visible absorbance feature centered at 450 nm. The binding of NTBC to HPPD.Fe(II) was observed using a rapid mixing method and was shown to occur in two phases and comprise three steps. A hyperbolic dependence of the first observable process with NTBC concentration indicates a pre-equilibrium binding step followed by a limiting rate (K(1) = 1.25 +/- 0.08 mM, k(2) = 8.2 +/- 0.2 s(-1)), while the second phase (k(3) = 0.76 +/- 0.02 s(-1)) had no dependence on NTBC concentration. Neither K(1),k(2), nor k(3) was influenced by pH in the range of 6.0-8.0. Isotope effects on both k(2) and k(3) were observed when D(2)O is used as the solvent (for k(2), k(h)/k(d) = 1.3; for k(3), k(h)/k(d) = 3.2). It is therefore proposed that the bidentate association of NTBC with the active site metal ion (k(2)) precedes the Lewis acid-assisted conversion of the bound enol to the enolate (k(3)). Although the native enzyme without substrate reacts with molecular oxygen to form the oxidized holoenzyme, the HPPD.Fe(II).NTBC complex does not. When the complex is exposed to atmospheric oxygen, the absorbance feature associated with NTBC binding does not diminish over the course of 2

  4. Synthesis, structure, spectra and reactivity of iron(III) complexes of imidazole and pyrazole containing ligands as functional models for catechol dioxygenases.

    Science.gov (United States)

    Dhanalakshmi, Thirumanasekaran; Suresh, Eringathodi; Palaniandavar, Mallayan

    2009-10-21

    A series of new 1 : 1 iron(iii) complexes of the type [Fe()Cl(3)], where is a tridentate 3N donor ligand, has been isolated and studied as functional models for catechol dioxygenases. The ligands (1-methyl-1H-imidazol-2-ylmethyl)pyrid-2-ylmethyl-amine (), N,N-dimethyl-N'-(1-methyl-1H-imidazol-2-ylmethyl)ethane-1,2-diamine () and N-(1-methyl-1H-imidazol-2-ylmethyl)-N'-phenylethane-1,2-diamine () are linear while the ligands tris(1-pyrazolyl)methane (), tris(3,5-dimethyl-1-pyrazolyl)methane () and tris(3-iso-propylpyrazolyl)methane () are tripodal ones. All the complexes have been characterized by spectral and electrochemical methods. The X-ray crystal structure of the dinuclear catecholate adduct [Fe()(TCC)](2)O, where TCC(2-) is a tetrachlorocatecholate dianion, has been successfully determined. In this complex both the iron(iii) atoms are bridged by a mu-oxo group and each iron(iii) center possesses a distorted octahedral coordination geometry in which the ligand is facially coordinated and the remaining coordination sites are occupied by the TCC(2-) dianion. Spectral studies suggest that addition of a base like Et(3)N induces the mononuclear complex species [Fe()(TCC)Cl] to dimerize forming a mu-oxo-bridged complex. The spectral and electrochemical properties of the catecholate adducts of the complexes generated in situ reveal that a systematic variation in the ligand donor atom type significantly influences the Lewis acidity of the iron(iii) center and hence the interaction of the complexes with simple and substituted catechols. The 3,5-di-tert-butylcatecholate (DBC(2-)) adducts of the type [Fe()(DBC)Cl], where is a linear tridentate ligand (), undergo mainly oxidative intradiol cleavage of the catechol in the presence of dioxygen. Also, the extradiol-to-intradiol product selectivity (E : I) is enhanced upon removal of the coordinated chloride ion in these adducts to obtain [Fe()(DBC)(Sol)](+) and upon incorporating coordinated N-methylimidazolyl nitrogen in

  5. Probiotics Differently Affect Gut-Associated Lymphoid Tissue Indolamine-2,3-Dioxygenase mRNA and Cerebrospinal Fluid Neopterin Levels in Antiretroviral-Treated HIV-1 Infected Patients: A Pilot Study

    Science.gov (United States)

    Scagnolari, Carolina; Corano Scheri, Giuseppe; Selvaggi, Carla; Schietroma, Ivan; Najafi Fard, Saeid; Mastrangelo, Andrea; Giustini, Noemi; Serafino, Sara; Pinacchio, Claudia; Pavone, Paolo; Fanello, Gianfranco; Ceccarelli, Giancarlo; Vullo, Vincenzo; d’Ettorre, Gabriella

    2016-01-01

    Recently the tryptophan pathway has been considered an important determinant of HIV-1 infected patients’ quality of life, due to the toxic effects of its metabolites on the central nervous system (CNS). Since the dysbiosis described in HIV-1 patients might be responsible for the microbial translocation, the chronic immune activation, and the altered utilization of tryptophan observed in these individuals, we speculated a correlation between high levels of immune activation markers in the cerebrospinal fluid (CSF) of HIV-1 infected patients and the over-expression of indolamine-2,3-dioxygenase (IDO) at the gut mucosal surface. In order to evaluate this issue, we measured the levels of neopterin in CSF, and the expression of IDO mRNA in gut-associated lymphoid tissue (GALT), in HIV-1-infected patients on effective combined antiretroviral therapy (cART), at baseline and after six months of probiotic dietary management. We found a significant reduction of neopterin and IDO mRNA levels after the supplementation with probiotic. Since the results for the use of adjunctive therapies to reduce the levels of immune activation markers in CSF have been disappointing so far, our pilot study showing the efficacy of this specific probiotic product should be followed by a larger confirmatory trial. PMID:27689995

  6. Effects of Homologous Expression of 1,4-Benzoquinone Reductase and Homogentisate 1,2-Dioxygenase Genes on Wood Decay in Hyper-Lignin-Degrading Fungus Phanerochaete sordida YK-624.

    Science.gov (United States)

    Mori, Toshio; Koyama, Genki; Kawagishi, Hirokazu; Hirai, Hirofumi

    2016-10-01

    We investigated the function of 1,4-benzoquinone reductase (BQR)- and homogentisate 1,2-dioxygenase (HGD)-like genes in wood degradation by Phanerochaete sordida YK-624, which exhibits high ligninolytic activity and selectivity. We determined homologous expression in the genomic and cDNA sequences of BQR- and HGD-like genes in P. sordida YK-624 (PsBQR and PsHGD). Both genes shared high homology (≥90 % amino acid sequence similarity) with the corresponding genes in Phanerochaete chrysosporium. These genes were co-transformed with a reporter gene into an uracil auxotrophic mutant of P. sordida YK-624. The PsBQR and PsHGD co-transformants exhibited lower holocellulolytic activity and higher ligninolytic selectivity than the control transformants. In liquid culture with vanillin, both co-transformants significantly accelerated vanillin degradation. Thus, we suggest that the rapid metabolism of low-molecular weight lignin fragments, due to the homologous expression of BQR- and HGD-like genes, affects quinone redox cycling to produce hydroxyl radicals, thereby decreasing holocellulose degradation and increasing ligninolytic selectivity. PMID:27363425

  7. Induction of indoleamine 2,3-dioxygenase (IDO) enzymatic activity contributes to interferon-gamma induced apoptosis and death receptor 5 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Chung, Ting Wen; Tan, Kok-Tong; Chan, Hong-Lin; Lai, Ming-Derg; Yen, Meng-Chi; Li, Yi-Ron; Lin, Sheng Hao; Lin, Chi-Chen

    2014-01-01

    Interferon-gamma (IFN-γ) has been used to treat various malignant tumors. However, the molecular mechanisms underlying the direct anti-proliferative activity of IFN-γ are poorly understood. In the present study, we examined the in vitro antitumor activity of IFN-γ on two human non-small-cell lung carcinoma (NSCLC) cell lines, H322M and H226. Our findings indicated that IFN-γ treatment caused a time-dependent reduction in cell viability and induced apoptosis through a FADD-mediated caspase-8/tBid/mitochondria-dependent pathway in both cell lines. Notably, we also postulated that IFN-γ increased indoleamine 2,3-dioxygenase (IDO) expression and enzymatic activity in H322M and H226 cells. In addition, inhibition of IDO activity by the IDO inhibitor 1-MT or tryptophan significantly reduced IFN-γ-induced apoptosis and death receptor 5 (DR5) expression, which suggests that IDO enzymatic activity plays an important role in the anti-NSCLC cancer effect of IFN-γ. These results provide new mechanistic insights into interferon-γ antitumor activity and further support IFN-γ as a potential therapeutic adjuvant for the treatment of NCSLC. PMID:25292102

  8. 吲哚胺2,3双加氧酶在妇科肿瘤免疫耐受中的作用%Role of indoleamine 2,3-dioxygenase in tumor' s immune tolerance

    Institute of Scientific and Technical Information of China (English)

    顾卓伟; 狄文; 王颖

    2011-01-01

    Currently, it is known that immune escape mechanism is the key factor of occurrence and development of a tumor. Indoleamine 2,3-dioxygenase(IDO) is an extrahepatic enzyme that catalyzes nntial and rate-limiting steps in degradation of tryptophan along kynurenine pathway, and it plays an important role in process of immune escape. In this paper, four aspects such as biological characteristics,expression regulation of IDO, tumor immunotolerance, as well as inhibitors of IDO were reviewed.%目前已知免疫逃逸机制是妇科恶性肿瘤发生、发展的关键因素,而吲哚胺2,3双加氧酶作为人体内肝脏以外唯一可催化色氨酸分子沿犬尿酸途径分解代谢的限速酶,在免疫逃逸过程中发挥了重要作用.该文根据吲哚胺2,3双加氧酶的生物学特性、表达调控、与肿瘤免疫耐受及其抑制剂等四方面的研究现状作一综述.

  9. Selective inhibition of OCTN2 is more effective than inhibition of gamma-butyrobetaine dioxygenase to decrease the availability of l-carnitine and to reduce myocardial infarct size.

    Science.gov (United States)

    Liepinsh, Edgars; Makrecka, Marina; Kuka, Janis; Cirule, Helena; Makarova, Elina; Sevostjanovs, Eduards; Grinberga, Solveiga; Vilskersts, Reinis; Lola, Daina; Loza, Einars; Stonans, Ilmars; Pugovics, Osvalds; Dambrova, Maija

    2014-07-01

    l-Carnitine is a cofactor in the energy metabolism pathways where it drives the uptake and oxidation of long chain fatty acids (LCFA) by mitochondria. LCFA lipotoxicity causes mitochondrial damage and results in an insufficient energy supply and a decrease in l-carnitine content limits LCFA flux and protects mitochondria. Here, we tested whether the inhibition of GBB dioxygenase (BBOX) or organic cation transporter 2 (OCTN2) is the most effective strategy to decrease l-carnitine content. The activity of 51 compounds was tested and we identified selective inhibitors of OCTN2. In contrast to selective inhibitors of BBOX, OCTN2 inhibitors induced a 10-fold decrease in l-carnitine content in the heart tissues and a significant 35% reduction of myocardial infarct size. In addition, OCTN2 inhibition correlated with the inhibitor content in the heart tissues, and OCTN2 could potentially be an efficient target to increase drug transport into tissues and to reduce drug elimination by urine. In conclusion, the results of this study confirm that selective inhibition of OCTN2, compared to selective inhibition of BBOX, is a far more effective approach to decrease l-carnitine content and to induce cardioprotective effects. OCTN2 could potentially be an efficient tool to increase drug transport in tissues and to reduce drug elimination via urine. PMID:24836867

  10. Regulation of BZR1 in fruit ripening revealed by iTRAQ proteomics analysis

    Science.gov (United States)

    Liu, Lihong; Liu, Haoran; Li, Shuo; Zhang, Xin; Zhang, Min; Zhu, Ning; Dufresne, Craig P.; Chen, Sixue; Wang, Qiaomei

    2016-01-01

    Fruit ripening is a complex and genetically programmed process. Brassinosteroids (BRs) play an essential role in plant growth and development, including fruit ripening. As a central component of BR signaling, the transcription factor BZR1 is involved in fruit development in tomato. However, the transcriptional network through which BZR1 regulates fruit ripening is mostly unknown. In this study, we use isobaric tags for relative and absolute quantitation (iTRAQ) labeling technology to explore important proteins regulated by BZR1 in two independent tomato transgenic lines over-expressing BZR1-1D at four ripening stages, identifying 411 differentially expressed proteins. These proteins were implicated in light reaction, plant hormone pathways and cell-wall-related metabolism, etc. The ‘light reaction’ metabolic pathway was identified as a markedly enhanced pathway by BZR1 during tomato fruit ripening. The protein level of a probable 2-oxoglutarate-dependent dioxygenase 2-ODD2, involved in gibberellin biosynthesis was significantly increased at all four developmental and ripening stages. The results reveal molecular links between BR signaling pathway and downstream components involved in multiple ripening-associated events during tomato fruit ripening, which will provide new insights into the molecular mechanisms underlying tomato ripening regulatory networks, and be potential in understanding BR-regulated fruit ripening. PMID:27680870

  11. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner.

    Science.gov (United States)

    He, Xi-Biao; Kim, Mirang; Kim, Seon-Young; Yi, Sang-Hoon; Rhee, Yong-Hee; Kim, Taeho; Lee, Eun-Hye; Park, Chang-Hwan; Dixit, Shilpy; Harrison, Fiona E; Lee, Sang-Hun

    2015-04-01

    Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell cultures derived from embryonic midbrains greatly enhanced differentiation toward midbrain-type dopamine (mDA) neurons, the neuronal subtype associated with Parkinson's disease. VC induced gain of 5-hydroxymethylcytosine (5hmC) and loss of H3K27m3 in DA phenotype gene promoters, which are catalyzed by Tet1 and Jmjd3, respectively. Consequently, VC enhanced DA phenotype gene transcriptions in the progenitors by Nurr1, a transcription factor critical for mDA neuron development, to be more accessible to the gene promoters. Further mechanism studies including Tet1 and Jmjd3 knockdown/inhibition experiments revealed that both the 5hmC and H3K27m3 changes, specifically in the progenitor cells, are indispensible for the VC-mediated mDA neuron differentiation. We finally show that in Svct2 knockout mouse embryos, mDA neuron formation in the developing midbrain decreased along with the 5hmC/H3k27m3 changes. These findings together indicate an epigenetic role of VC in midbrain DA neuron development. PMID:25535150

  12. Krebs cycle intermediates regulate DNA and histone methylation: epigenetic impact on the aging process.

    Science.gov (United States)

    Salminen, Antero; Kauppinen, Anu; Hiltunen, Mikko; Kaarniranta, Kai

    2014-07-01

    Many aging theories have proposed that mitochondria and energy metabolism have a major role in the aging process. There are recent studies indicating that Krebs cycle intermediates can shape the epigenetic landscape of chromatin by regulating DNA and histone methylation. A growing evidence indicates that epigenetics plays an important role in the regulation of healthspan but also is involved in the aging process. 2-Oxoglutarate (α-ketoglutarate) is a key metabolite in the Krebs cycle but it is also an obligatory substrate for 2-oxoglutarate-dependent dioxygenases (2-OGDO). The 2-OGDO enzyme family includes the major enzymes of DNA and histone demethylation, i.e. Ten-Eleven Translocation (TETs) and Jumonji C domain containing (JmjC) demethylases. In addition, 2-OGDO members can regulate collagen synthesis and hypoxic responses in a non-epigenetical manner. Interestingly, succinate and fumarate, also Krebs cycle intermediates, are potent inhibitors of 2-OGDO enzymes, i.e. the balance of Krebs cycle reactions can affect the level of DNA and histone methylation and thus control gene expression. We will review the epigenetic mechanisms through which Krebs cycle intermediates control the DNA and histone methylation. We propose that age-related disturbances in the Krebs cycle function induce stochastic epigenetic changes in chromatin structures which in turn promote the aging process.

  13. Krebs cycle dysfunction shapes epigenetic landscape of chromatin: novel insights into mitochondrial regulation of aging process.

    Science.gov (United States)

    Salminen, Antero; Kaarniranta, Kai; Hiltunen, Mikko; Kauppinen, Anu

    2014-07-01

    Although there is a substantial literature that mitochondria have a crucial role in the aging process, the mechanism has remained elusive. The role of reactive oxygen species, mitochondrial DNA injuries, and a decline in mitochondrial quality control has been proposed. Emerging studies have demonstrated that Krebs cycle intermediates, 2-oxoglutarate (also known as α-ketoglutarate), succinate and fumarate, can regulate the level of DNA and histone methylation. Moreover, citrate, also a Krebs cycle metabolite, can enhance histone acetylation. Genome-wide screening studies have revealed that the aging process is linked to significant epigenetic changes in the chromatin landscape, e.g. global demethylation of DNA and histones and increase in histone acetylation. Interestingly, recent studies have revealed that the demethylases of DNA (TET1-3) and histone lysines (KDM2-7) are members of 2-oxoglutarate-dependent dioxygenases (2-OGDO). The 2-OGDO enzymes are activated by oxygen, iron and the major Krebs cycle intermediate, 2-oxoglutarate, whereas they are inhibited by succinate and fumarate. Considering the endosymbiont origin of mitochondria, it is not surprising that Krebs cycle metabolites can control the gene expression of host cell by modifying the epigenetic landscape of chromatin. It seems that age-related disturbances in mitochondrial metabolism can induce epigenetic reprogramming, which promotes the appearance of senescent phenotype and degenerative diseases.

  14. Comparative proteomics reveals that a saxitoxin-producing and a nontoxic strain of Anabaena circinalis are two different ecotypes.

    Science.gov (United States)

    D'Agostino, Paul M; Song, Xiaomin; Neilan, Brett A; Moffitt, Michelle C

    2014-03-01

    In Australia, saxitoxin production is restricted to the cyanobacterial species Anabaena circinalis and is strain-dependent. We aimed to characterize a saxitoxin-producing and nontoxic strain of A. circinalis at the proteomic level using iTRAQ. Seven proteins putatively involved in saxitoxin biosynthesis were identified within our iTRAQ experiment for the first time. The proteomic profile of the toxic A. circinalis was significantly different from the nontoxic strain, indicating that each is likely to inhabit a unique ecological niche. Under control growth conditions, the saxitoxin-producing A. circinalis displayed a higher abundance of photosynthetic, carbon fixation and nitrogen metabolic proteins. Differential abundance of these proteins suggests a higher intracellular C:N ratio and a higher concentration of intracellular 2-oxoglutarate in our toxic strain compared with the nontoxic strain. This may be a novel site for posttranslational regulation because saxitoxin biosynthesis putatively requires a 2-oxoglutarate-dependent dioxygenase. The nontoxic A. circinalis was more abundant in proteins, indicating cellular stress. Overall, our study has provided the first insight into fundamental differences between a toxic and nontoxic strain of A. circinalis, indicating that they are distinct ecotypes.

  15. Cellular Oxygen Sensing: Crystal Structure of Hypoxia-Inducible Factor Prolyl Hydroxylase (PHD2)

    Energy Technology Data Exchange (ETDEWEB)

    McDonough,M.; Li, V.; Flashman, E.; Chowdhury, R.; Mohr, C.; Lienard, B.; Zondlo, J.; Oldham, N.; Clifton, I.; et al.

    2006-01-01

    Cellular and physiological responses to changes in dioxygen levels in metazoans are mediated via the posttranslational oxidation of hypoxia-inducible transcription factor (HIF). Hydroxylation of conserved prolyl residues in the HIF-{alpha} subunit, catalyzed by HIF prolyl-hydroxylases (PHDs), signals for its proteasomal degradation. The requirement of the PHDs for dioxygen links changes in dioxygen levels with the transcriptional regulation of the gene array that enables the cellular response to chronic hypoxia; the PHDs thus act as an oxygen-sensing component of the HIF system, and their inhibition mimics the hypoxic response. We describe crystal structures of the catalytic domain of human PHD2, an important prolyl-4-hydroxylase in the human hypoxic response in normal cells, in complex with Fe(II) and an inhibitor to 1.7 Angstroms resolution. PHD2 crystallizes as a homotrimer and contains a double-stranded {beta}-helix core fold common to the Fe(II) and 2-oxoglutarate-dependant dioxygenase family, the residues of which are well conserved in the three human PHD enzymes (PHD 1-3). The structure provides insights into the hypoxic response, helps to rationalize a clinically observed mutation leading to familial erythrocytosis, and will aid in the design of PHD selective inhibitors for the treatment of anemia and ischemic disease.

  16. Vitamin C facilitates dopamine neuron differentiation in fetal midbrain through TET1- and JMJD3-dependent epigenetic control manner.

    Science.gov (United States)

    He, Xi-Biao; Kim, Mirang; Kim, Seon-Young; Yi, Sang-Hoon; Rhee, Yong-Hee; Kim, Taeho; Lee, Eun-Hye; Park, Chang-Hwan; Dixit, Shilpy; Harrison, Fiona E; Lee, Sang-Hun

    2015-04-01

    Intracellular Vitamin C (VC) is maintained at high levels in the developing brain by the activity of sodium-dependent VC transporter 2 (Svct2), suggesting specific VC functions in brain development. A role of VC as a cofactor for Fe(II)-2-oxoglutarate-dependent dioxygenases has recently been suggested. We show that VC supplementation in neural stem cell cultures derived from embryonic midbrains greatly enhanced differentiation toward midbrain-type dopamine (mDA) neurons, the neuronal subtype associated with Parkinson's disease. VC induced gain of 5-hydroxymethylcytosine (5hmC) and loss of H3K27m3 in DA phenotype gene promoters, which are catalyzed by Tet1 and Jmjd3, respectively. Consequently, VC enhanced DA phenotype gene transcriptions in the progenitors by Nurr1, a transcription factor critical for mDA neuron development, to be more accessible to the gene promoters. Further mechanism studies including Tet1 and Jmjd3 knockdown/inhibition experiments revealed that both the 5hmC and H3K27m3 changes, specifically in the progenitor cells, are indispensible for the VC-mediated mDA neuron differentiation. We finally show that in Svct2 knockout mouse embryos, mDA neuron formation in the developing midbrain decreased along with the 5hmC/H3k27m3 changes. These findings together indicate an epigenetic role of VC in midbrain DA neuron development.

  17. The Crystal Structure of a Quercetin 2,3-Dioxygenase from Bacillus subtilis Suggests Modulation of Enzyme Activity by a Change in the Metal Ion at the Active Site(s)

    Energy Technology Data Exchange (ETDEWEB)

    Gopal, B.; Madan, Lalima L.; Betz, Stephen F.; Kossiakoff, Anthony A. (Indian); (UC); (GeneFormatics)

    2010-11-10

    Common structural motifs, such as the cupin domains, are found in enzymes performing different biochemical functions while retaining a similar active site configuration and structural scaffold. The soil bacterium Bacillus subtilis has 20 cupin genes (0.5% of the total genome) with up to 14% of its genes in the form of doublets, thus making it an attractive system for studying the effects of gene duplication. There are four bicupins in B. subtilis encoded by the genes yvrK, yoaN, yxaG, and ywfC. The gene products of yvrK and yoaN function as oxalate decarboxylases with a manganese ion at the active site(s), whereas YwfC is a bacitracin synthetase. Here we present the crystal structure of YxaG, a novel iron-containing quercetin 2,3-dioxygenase with one active site in each cupin domain. Yxag is a dimer, both in solution and in the crystal. The crystal structure shows that the coordination geometry of the Fe ion is different in the two active sites of YxaG. Replacement of the iron at the active site with other metal ions suggests modulation of enzymatic activity in accordance with the Irving-Williams observation on the stability of metal ion complexes. This observation, along with a comparison with the crystal structure of YvrK determined recently, has allowed for a detailed structure-function analysis of the active site, providing clues to the diversification of function in the bicupin family of proteins.

  18. Iron(III) complexes of N2O and N3O donor ligands as functional models for catechol dioxygenase enzymes: ether oxygen coordination tunes the regioselectivity and reactivity.

    Science.gov (United States)

    Sundaravel, Karuppasamy; Suresh, Eringathodi; Saminathan, Kolandaivel; Palaniandavar, Mallayan

    2011-08-28

    A series of mononuclear iron(III) complexes of the type [Fe(L)Cl(3)], where L is a systematically modified N(2)O or N(3)O ligand with a methoxyethyl/tetrahydrofuryl ether oxygen donor atom, have been isolated and studied as models for catechol dioxygenases. The X-ray crystal structures of [Fe(L2)Cl(3)] 2, [Fe(L6)Cl(3)] 6, [Fe(L5)(TCC)Cl] 5a, where H(2)TCC = tetrachlorocatechol, [Fe(L6)(TCC)Br] 6a, and the μ-oxo dimer [{Fe(L6)Cl}(2)O](ClO(4))(2) 6b have been successfully determined. In [Fe(L2)Cl(3)] 2 the N(2)O ligand is facially coordinated to iron(III) through the pyridine and secondary amine nitrogen atoms and the tetrahydrofuryl oxygen atom. In [Fe(L6)Cl(3)] 6, [Fe(L5)(TCC)Cl] 5a and [Fe(L6)(TCC)Br] 6a the N(3)O donor ligands L5 and L6 act as a tridentate N3 donor ligand coordinated through two pyridine and one secondary amine nitrogen atoms, whereas the ether oxygen is not coordinated. The spectral and electrochemical properties of the adducts [Fe(L)(DBC)Cl] of 1-8, where H(2)DBC = 3,5-di-tert-butylcatechol, in DMF and their solvated adduct species [Fe(L)(DBC)(Sol)](+), where Sol = DMF/H(2)O, generated in situ in dichloromethane, respectively, have been investigated. The product analysis demonstrates that the adducts [Fe(L)(DBC)Cl] effect cleavage of catechol in the presence of O(2) in DMF to give mainly the intradiol (I) product with a small amount of the extradiol (E) product (E/I, 0.2:1-0.7:1). Interestingly, the solvated species [Fe(L)(DBC)(Sol)](+) derived from 1-4 cleave H(2)DBC to provide mainly the extradiol cleavage products with lower amounts of intradiol products (E/I, 2.3:1-4.3:1) in dichloromethane. In contrast, the solvated species [Fe(L)(DBC)(Sol)](+) derived from 5-8 cleave H(2)DBC to provide both extradiol and intradiol products (E/I, 0.6:1-2.3:1) due to the involvement of the ether oxygen donor of the methoxyethyl/tetrahydrofuryl arm in the coordination to iron(III) upon removal of a chloride ion. PMID:21766098

  19. Effects of pentoxifylline, 7-nitroindazole, and imipramine on tumor necrosis factor-α and indoleamine 2,3-dioxygenase enzyme activity in the hippocampus and frontal cortex of chronic mild-stress-exposed rats

    Directory of Open Access Journals (Sweden)

    Mohamed BMSA

    2013-05-01

    Full Text Available Bassim MSA Mohamed,1,6 Sawsan Aboul-Fotouh,2,5 Eman A Ibrahim,3 Hanan Shehata,4 Amal A Mansour,4 Nemat AZ Yassin,1 Wafaa El-Eraky,1 Ahmed M Abdel-Tawab2,5 1Department of Pharmacology, National Research Centre, Cairo, Egypt; 2Department of Pharmacology, 3Department of Pathology, 4Department of Medical Biochemistry and Molecular Biology, 5Clinical Pharmacology Unit, Ain Shams University, Cairo, Egypt; 6Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, Canada Objectives: This study aimed to investigate the role of tumor necrosis factor (TNF-α and the neuronal nitric oxide synthase enzyme in dysregulation of indoleamine 2,3-dioxygenase (IDO enzyme, and hence serotonin availability in chronic mild stress (CMS, an animal model of depression. Methods: Rats were divided into five groups: two control and CMS-exposed for 6 weeks, and another three groups exposed to CMS and administered pentoxifylline 50 mg/kg/day intraperitoneally, 7-nitroindazole 40 mg/kg/day subcutaneously, or imipramine 20 mg/kg/day intraperitoneally for the previous 3 CMS weeks. Rats were assessed for neurochemical and immunohistochemical abnormalities. Results: Pentoxifylline-, 7-nitroindazole-, and imipramine-treated rats showed amelioration of CMS-induced behavioral deficits that was accompanied by significant reduction in kynurenine/serotonin molar ratio and nitrates/nitrites in frontal cortex and hippocampus. In the pentoxifylline and 7-nitroindazole groups, serum TNF-α was reduced relative to the CMS group (18.54 ± 0.85 and 19.16 ± 1.54 vs 26.20 ± 1.83 pg/mL, respectively; P < 0.05. Exposure to CMS increased TNF-α and IDO immunohistochemical staining scores in both hippocampus and midbrain raphe nuclei. 7-Nitroindazole and pentoxifylline significantly (P < 0.05 reduced TNF-α immunostaining in hippocampus and raphe nuclei, with significant (P < 0.01 reduction of IDO immunostaining in raphe nuclei. Likewise, imipramine reduced TNF

  20. Interaction of indoleamine 2, 3-dioxygenase and CD4 + CD25 + Foxp3 + regulatory T cell in asthmatic mice%IDO与Treg在支气管哮喘小鼠中的相互作用及其意义

    Institute of Scientific and Technical Information of China (English)

    周丽蓉; 张劼; 罗永艾

    2013-01-01

    Objective To explore the interaction and the role of indoleamine 2,3-dioxygenase (IDO) and CD4 + CD25 + Foxp3 + regulatory T cell (Treg) in a mice model of allergic bronchial asthma.Methods BALB/c mice were sensitized and challenged by ovalbumin (OVA).Penh were measured to evaluate the airway responsiveness by noninvasive lung functional instrument.Bronchoalveolar lavage cytology was analyzed.IFN-γ,IL-4 and IL-10 in BALF were detected by enzyme-linked immunosorbent assay (ELISA).The mRNA expression of IDO and Foxp3 was measured by real-time fluorescence-based quantitative PCR.The protein expression of IDO was detected by immunohistochemistry.The percentage of Treg in CD4 + cells was assessed by flow cytometry.Results The airway responsiveness,the total cell number,the eosinophils and IL-4 in BALF of the asthmatic group significantly increased as compared with the control group (P < 0.01).The levels of IFN-γand IL-10 in BALF,the mRNA expression of IDO and Foxp3,the protein expression of IDO,and the percentage of Treg in CD4 + cells in the asthmatic group were significantly lower than those in the control group (P <0.01).The mRNA expression of IDO and Foxp3 was positively correlated with each other (r =0.819,0.807,P <0.05).The protein expression of IDO was positively correlated with the percentage of Treg in CD4 +cells (r =0.783,0.765,P < 0.05).Conclusions IDO and Treg reciprocally regulate each other,which surmounts immune tolerance and induces asthma.Therefore,IDO and Treg may play important roles in asthma.%目的 探讨吲哚胺2,3双加氧酶(indoleamine 2,3-dioxygense,IDO)与CD4+ CD25+ Foxp3+调节性T细胞(Treg)之间的相关性及在支气管哮喘发病机制中的作用.方法 BALB/c小鼠用随机数字表法分成对照组和哮喘组,每组8只.哮喘组以鸡卵清蛋白(ovalbumin,OVA)致敏,激发小鼠建立哮喘模型,无创肺功能仪检测气道反应性,支气管肺泡灌洗液(BALF)进行细胞学分析,ELISA检测BALF

  1. 78 FR 52776 - Documents to Support Submission of an Electronic Common Technical Document; Availability

    Science.gov (United States)

    2013-08-26

    ...; ``Specifications for eCTD Validation Criteria,'' version 3.0; and ``Example Submissions using eCTD Backbone Files... Specification for Module 1,'' version 2.2 ``Specifications for eCTD Validation Criteria,'' version 3.0 ``Example... Food and Drug Administration (FDA) is announcing the availability on the Agency Web site of...

  2. Biosynthesis of 8-O-Methylated Benzoxazinoid Defense Compounds in Maize.

    Science.gov (United States)

    Handrick, Vinzenz; Robert, Christelle A M; Ahern, Kevin R; Zhou, Shaoqun; Machado, Ricardo A R; Maag, Daniel; Glauser, Gaetan; Fernandez-Penny, Felix E; Chandran, Jima N; Rodgers-Melnik, Eli; Schneider, Bernd; Buckler, Edward S; Boland, Wilhelm; Gershenzon, Jonathan; Jander, Georg; Erb, Matthias; Köllner, Tobias G

    2016-07-01

    Benzoxazinoids are important defense compounds in grasses. Here, we investigated the biosynthesis and biological roles of the 8-O-methylated benzoxazinoids, DIM2BOA-Glc and HDM2BOA-Glc. Using quantitative trait locus mapping and heterologous expression, we identified a 2-oxoglutarate-dependent dioxygenase (BX13) that catalyzes the conversion of DIMBOA-Glc into a new benzoxazinoid intermediate (TRIMBOA-Glc) by an uncommon reaction involving a hydroxylation and a likely ortho-rearrangement of a methoxy group. TRIMBOA-Glc is then converted to DIM2BOA-Glc by a previously described O-methyltransferase BX7. Furthermore, we identified an O-methyltransferase (BX14) that converts DIM2BOA-Glc to HDM2BOA-Glc. The role of these enzymes in vivo was demonstrated by characterizing recombinant inbred lines, including Oh43, which has a point mutation in the start codon of Bx13 and lacks both DIM2BOA-Glc and HDM2BOA-Glc, and Il14H, which has an inactive Bx14 allele and lacks HDM2BOA-Glc in leaves. Experiments with near-isogenic maize lines derived from crosses between B73 and Oh43 revealed that the absence of DIM2BOA-Glc and HDM2BOA-Glc does not alter the constitutive accumulation or deglucosylation of other benzoxazinoids. The growth of various chewing herbivores was not significantly affected by the absence of BX13-dependent metabolites, while aphid performance increased, suggesting that DIM2BOA-Glc and/or HDM2BOA-Glc provide specific protection against phloem feeding insects. PMID:27317675

  3. Regulation of intracellular pH in cancer cell lines under normoxia and hypoxia.

    Science.gov (United States)

    Hulikova, Alzbeta; Harris, Adrian L; Vaughan-Jones, Richard D; Swietach, Pawel

    2013-04-01

    Acid-extrusion by active transport is important in metabolically active cancer cells, where it removes excess intracellular acid and sets the intracellular resting pH. Hypoxia is a major trigger of adaptive responses in cancer, but its effect on acid-extrusion remains unclear. We studied pH-regulation under normoxia and hypoxia in eight cancer cell-lines (HCT116, RT112, MDA-MB-468, MCF10A, HT29, HT1080, MiaPaca2, HeLa) using the pH-sensitive fluorophore, cSNARF-1. Hypoxia responses were triggered by pre-incubation in low O(2) or with the 2-oxoglutarate-dependent dioxygenase inhibitor dimethyloxalylglycine (DMOG). By selective pharmacological inhibition or transport-substrate removal, acid-extrusion flux was dissected into components due to Na(+)/H(+) exchange (NHE) and Na(+)-dependent HCO(3)(-) transport. In half of the cell-lines (HCT116, RT112, MDA-MB-468, MCF10A), acid-extrusion on NHE was the dominant flux during an acid load, and in all of these, bar one (MDA-MB-468), NHE-flux was reduced following hypoxic incubation. Further studies in HCT116 cells showed that extrusion by Na(+)-dependent HCO(3)(-) transport was hypoxia-insensitive and comparable in all cell lines. This constitutive and stable element of pH-regulation was found to be important for setting and stabilizing resting pH at a mildly alkaline level (conducive for growth), irrespective of oxygenation status. In contrast, the more variable flux on NHE underlies cell-specific differences in their dynamic response to larger acid loads. PMID:22949268

  4. The gene pat-2, which induces natural parthenocarpy, alters the gibberellin content in unpollinated tomato ovaries.

    Science.gov (United States)

    Fos, M; Nuez, F; García-Martínez, J L

    2000-02-01

    We investigated the role of gibberellins (GAs) in the effect of pat-2, a recessive mutation that induces facultative parthenocarpic fruit development in tomato (Lycopersicon esculentum Mill.) using near-isogenic lines with two different genetic backgrounds. Unpollinated wild-type Madrigal (MA/wt) and Cuarenteno (CU/wt) ovaries degenerated, but GA(3) application induced parthenocarpic fruit growth. On the contrary, parthenocarpic growth of MA/pat-2 and CU/pat-2 fruits, which occurs in the absence of pollination and hormone application, was not affected by GA(3). Pollinated MA/wt and parthenocarpic MA/pat-2 ovary development was negated by paclobutrazol, and this inhibitory effect was counteracted by GA(3). The main GAs of the early-13-hydroxylation pathway (GA(1), GA(3), GA(8), GA(19), GA(20), GA(29), GA(44), GA(53), and, tentatively, GA(81)) and two GAs of the non-13-hydroxylation pathway (GA(9) and GA(34)) were identified in MA/wt ovaries by gas chromatography-selected ion monitoring. GAs were quantified in unpollinated ovaries at flower bud, pre-anthesis, and anthesis. In unpollinated MA/pat-2 and CU/pat-2 ovaries, the GA(20) content was much higher (up to 160 times higher) and the GA(19) content was lower than in the corresponding non-parthenocarpic ovaries. The application of an inhibitor of 2-oxoglutarate-dependent dioxygenases suggested that GA(20) is not active per se. The pat-2 mutation may increase GA 20-oxidase activity in unpollinated ovaries, leading to a higher synthesis of GA(20), the precursor of an active GA. PMID:10677440

  5. Isolation, degradation characteristics and catechol 1,2 dioxygenase gene expression level of 1,2,4-TCB degrading bacterium under low temperature%低温1,2,4-TCB降解菌的选育、降解特性及邻苯二酚1,2-双加氧酶基因表达水平

    Institute of Scientific and Technical Information of China (English)

    胡日查; 孙立波

    2013-01-01

    从长期受l,2,4-三氯苯(1,2,4-TCB)污染的地下水中筛选出一株低温寡营养降解菌A2,对A2菌进行革兰氏染色鉴定和16S rDNA鉴定,研究了不同pH、温度、盐度等因素对A2菌降解l,2,4-TCB效果以及对邻苯二酚l,2-双加氧酶基因表达的影响,并进行了正交实验.结果表明,A2菌为革兰氏阴性短杆细菌,初步鉴定为假单胞菌;在pH值为7、培养温度30℃、盐度0.8%、培养时间6d时,A2菌对1,2,4-TCB降解效果最好,降解率达到88.14%,同时该条件下邻苯二酚1,2-双加氧酶基因相对表达水平最高;培养温度为10℃时,A2菌对1,2,4-TCB降解率可达到85.3%,同时邻苯二酚l,2-双加氧酶基因也有较高的相对表达水平 以上结果说明,将A2菌应用于低温寡营养地下水的生物修复是可能的.%An oligotrophic degrading bacterium named strain A2 was screened from groundwater long-term contaminated by 1 , 2 , 4-TCB under low temperature condition, strain A2 was identified by gram stain and 16S rDNA sequence, the impacts of different pH, temperature, salinity on degradation effect and catechol 1 ,2 dioxyge-nase gene expression level were studied, and orthogonality experiment was carried out. The results showed that strain A2 was gram negative short rods, and was identified as pseudomonas preliminarily. The degrading effect of strain A2 on 1 ,2,4-TCB and catechol 1 ,2 dioxygenase gene expression level showed best under the conditions; pH of 7, cultivation temperature of 30℃ , salinity of 0.8% , cultivation time of 6 days, and the degrading rate could reach 88. 14% . The degrading rate of 1 ,2,4-TCB by strain A2 could reach 85.3% at 10℃ , and catechol 1 ,2 dioxygenase gene expression level also showed a relative high expression level. This research demonstrated that it is possible to apply strain A2 in the bioremediation of oligotrophic groundwater under low temperature condition.

  6. The effect of kidney-replenishing herb on the Indoleamine 2,3-dioxygenase of decidual macrophages%补肾中药对蜕膜巨噬细胞吲哚胺2,3-二氧化酶的影响

    Institute of Scientific and Technical Information of China (English)

    李雪莲; 归绥琪; 王海燕

    2005-01-01

    目的:探讨补肾中药对人早孕蜕膜巨噬细胞吲哚胺2,3-二氧化酶(Indoleamine 2,3-dioxygenase,IDO)的影响.方法:半定量RT-PCR测蜕膜IDO mRNA表达;Western blot检测蜕膜巨噬细胞IDO蛋白质表达;ELISA测蜕膜巨噬细胞和淋巴细胞共培养上清液中IL-10、IFN-γ含量,高效液相色谱法测上清色氨酸、犬尿氨酸含量,以二者比值表示IDO活性.结果:正常组蜕膜IDOmRNA表达高于难免流产组;IDO抑制剂使Th细胞因子平衡偏离Th2型;中药血清可提高IDO蛋白质表达及活性,恢复Th细胞因子平衡.结论:蜕膜巨噬细胞IDO正常表达和活性是维持妊娠所必需,补肾中药可提高IDO活性至正常水平.

  7. Effects of the tryptophan 2,3-dioxygenase in tryptophan metabolism and immunoregulation%色氨酸2,3-双加氧酶在色氨酸分解代谢及免疫调节中的作用

    Institute of Scientific and Technical Information of China (English)

    李善宝; 徐军明

    2016-01-01

    Tryptophan 2,3-dioxygenase (TDO)is the rate-limiting enzyme in the catabolism of Trp along the kynurenine pathway.Trp is mainly catabilized by the TDO in the liver,which could not only regulate the concentration of the Trp and suppress the T cells proliferation,but also participate in antibacterial action and inflammatory response.The metabolin kynurenines as an endogenous ligand of the AhR receptor,the TDO enzymes,Kyn and AhR form the TDO-Kyn-AhR pathway have effects of regulatory the growth of tumor.With the research of the mechanism of immune regulation goes futher,it is expected to be a promising prospect in cancer therapy and the immune tolerance of transplantation.We reviewed in the article,which summarized the TDO mediated catabolism of Trp and immunomodulatory effect.%色氨酸2,3-双加氧酶(TDO)是催化色氨酸由犬尿氨酸(Kyn)途径分解代谢的限速酶.TDO主要在肝内降解色氨酸,调整体内色氨酸水平,能够抑制T细胞增殖,参与抗菌及炎性反应.代谢产物Kyn为芳烃受体(AhR)的内源性配体,TDO-Kyn-AhR通路具有调节肿瘤生长作用.随着对TDO介导色氨酸代谢免疫机制研究的不断积累,其在肿瘤治疗及移植免受耐受领域的应用前景令人期待.本文就TDO介导的色氨酸分解代谢及免疫调节作用进行综述.

  8. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize

    Science.gov (United States)

    Benzoxazinoids are important defense compounds in grasses. Here, we investigated the biosynthesis and biological roles of the 8-O-methylated benzoxazinoids, DIM2BOA-Glc and HDM2BOA-Glc. Using quantitative trait locus mapping and heterologous expression, we identified a 2-oxoglutarate-dependent dioxy...

  9. 枸杞脱落酸生物合成关键酶基因NCED的克隆及表达分析%Cloning and Characterization of 9-cis-epoxycarotenoid Dioxygenase Gene(NCED) Encoding a Key Enzyme during Abscisic Acid Biosynthesis in Lycium barbarum L.

    Institute of Scientific and Technical Information of China (English)

    陆平; 田跃胜; 王名雪; 李杉; 赵静雅

    2013-01-01

    Abscisic acid(ABA) regulates the essential physiological and developmental processes of plants and plays imporant roles in plant responses to various environmental stresses. 9-cis-epoxycarotenoid dioxygenase ( NCED)is the key regulatory enzyme in the biosynthesis pathway of ABA in higher plants. In the study,a full-lengh cDNA of NCED gene( LbNCED) was fristly isolated and characterized from the leaves of L. barbarum. LbNCED was 2316 bp, containing a 1824 bp ORF and encoding 607 amino acids. Comparative and bioinformatics analysis revealed that the homology amino acid sequence of Lycopersicon esculentum and Solarium tuberosum LbNCED was 90%. At the N-terminus of the LbNCED located a 15 amino acids putative chloroplast transit peptide. Southern blot analysis revealed that it was a low-copy gene in the genome of L. barbarum. Real-time Quantitative PCR ( RT-QPCR) analysis showed that LbNCED mRNA most abundantly accumulated in leaves. The RT-QPCR analysis revealed that dehydration and salt stress signficantly enhanced LbNCED transcript expression and ABA content accumulation.%脱落酸(abscisic acid,ABA)对植物的生长发育具有独特的调控功能,并在植物适应逆境环境中发挥重要作用.9-顺式环氧类胡萝卜素双加氧酶(NCED)是高等植物中ABA生物合成途径的一个关键酶.根据GenBank中的植物NCED基因的同源序列设计简并引物,通过RT-PCR及RACE技术从枸杞叶片中克隆到1个编码NCED的基因,命名为LbNCED.其cDNA全长为2316 bp,含有1个1824 bp的开放阅读框,编码1个含607氨基酸残基,分子量为67.38 kDa、等电点(pI)为6.43的假定蛋白,其氨基酸序列与番茄(Lycopersicon esculentum)和马铃薯(Solanum tuberosum)的同源性达90%,在N-末端具有1个含15个氨基酸的叶绿体转运肽.Southern杂交结果表明,该基因在枸杞基因组中以低拷贝形式存在.盐处理和脱水处理的枸杞叶片中LbNCED基因的表达与内源ABA的积累同步变化.

  10. 吲哚胺2,3-双加氧酶基因转染对肝癌细胞凋亡的影响及相关机制研究%Effects of Hepatocellular Carcinoma Cells'Apoptosis and the Related Mechanisms after Indoleamine 2,3-Dioxygenase Gene Transfection

    Institute of Scientific and Technical Information of China (English)

    卜晓倩; 张瑞; 申慧琴; 罗静; 刘燕; 张路英; 刘春亮; 王琦

    2011-01-01

    目的:通过细胞培养和在体实验探讨吲哚胺2,3-双加氧酶(indoleamine 2,3-dioxygenase,IDO)基因转染后对肝癌细胞凋亡的影响及相关细胞免疫机制的研究.方法:提取健康人外周血中的T细胞利用细胞培养和基因转染技术将T细胞和肝癌细胞混合培养.实验分为6组:根据是否加入D-1-MT分为未干预组和干预组,每组根据培养细胞的不同又分为T细胞与HepG2细胞组、T细胞与pcDNA3.1-HepG2细胞组、T细胞与pcDNA3.1-IDO-HepG2细胞组.于混合培养2天后应用流式细胞术、MTT法检测各组中HepG2细胞的凋亡情况和T细胞抗HepG2细胞的细胞毒活性.在混合培养5天后应用流式细胞术检测调节性T细胞(Regulatory T cell,Treg)的比例.并建立人肝癌细胞小鼠模型,用流式细胞仪检测荷瘤小鼠外周血中Treg细胞的比例.结果:1.混合培养2天后,转染IDO基因的肝癌细胞其凋亡率和T细胞抗HepG2细胞的细胞毒活性均明显降低,分别为(1.65±0.14)%和(35.00±2.20)%(p<0.05);加入1-MT干预后,以上指标均明显高于干预前,且干预前后比较有明显的统计学意义(P<0.05).2.混合培养5天后,IDO-HepG2细胞组Treg细胞的比例明显升高(10.53±1.05)%,与其余两个未干预组比较有统计学意义(p<0.05);加1-MT干预后,Treg细胞比例均明显降低(p<0.05).3.转染IDO的荷瘤小鼠模型中外周血Treg细胞比例明显升高(15.33±1.18)%,与其余两组比较有统计学意义(p<0.05).结论:1.IDO可能通过增加调节性T细胞的比例来抑制肝癌细胞(HepG2细胞)的凋亡和T细胞的免疫毒性功能.1-MT可抑制IDO的这种作用.2.在体实验证实IDO的过量表达可提高外周血Treg细胞的比例.%Objective : To explore after indoleamine-2 ,3-dioxygenase ( IDO) gene transfection the influence of the hepatocellular carcinoma cells' apoptosis and the related cellular immune mechanisms by cell culture and in vivo. Methods: By cell culture and gene transfection

  11. Genomic structure and expression of Jmjd6 and evolutionary analysis in the context of related JmjC domain containing proteins

    Directory of Open Access Journals (Sweden)

    Edler Stefanie

    2008-06-01

    Full Text Available Abstract Background The jumonji C (JmjC domain containing gene 6 (Jmjd6, previously known as phosphatidylserine receptor has misleadingly been annotated to encode a transmembrane receptor for the engulfment of apoptotic cells. Given the importance of JmjC domain containing proteins in controlling a wide range of diverse biological functions, we undertook a comparative genomic analysis to gain further insights in Jmjd6 gene organisation, evolution, and protein function. Results We describe here a semiautomated computational pipeline to identify and annotate JmjC domain containing proteins. Using a sequence segment N-terminal of the Jmjd6 JmjC domain as query for a reciprocal BLAST search, we identified homologous sequences in 62 species across all major phyla. Retrieved Jmjd6 sequences were used to phylogenetically analyse corresponding loci and their genomic neighbourhood. This analysis let to the identification and characterisation of a bi-directional transcriptional unit compromising the Jmjd6 and 1110005A03Rik genes and to the recognition of a new, before overseen Jmjd6 exon in mammals. Using expression studies, two novel Jmjd6 splice variants were identified and validated in vivo. Analysis of the Jmjd6 neighbouring gene 1110005A03Rik revealed an incident deletion of this gene in two out of three earlier reported Jmjd6 knockout mice, which might affect previously described conflicting phenotypes. To determine potentially important residues for Jmjd6 function a structural model of the Jmjd6 protein was calculated based on sequence conservation. This approach identified a conserved double-stranded β-helix (DSBH fold and a HxDxnH facial triad as structural motifs. Moreover, our systematic annotation in nine species identified 313 DSBH fold-containing proteins that split into 25 highly conserved subgroups. Conclusion We give further evidence that Jmjd6 most likely has a function as a nonheme-Fe(II-2-oxoglutarate-dependent dioxygenase as

  12. Oxygen-sensing under the influence of nitric oxide.

    Science.gov (United States)

    Berchner-Pfannschmidt, Utta; Tug, Suzan; Kirsch, Michael; Fandrey, Joachim

    2010-03-01

    The transcription factor complex Hypoxia inducible factor 1 (HIF-1) controls the expression of most genes involved in adaptation to hypoxic conditions. Oxygen-dependency is maintained by prolyl- and asparagyl-4-hydroxylases (PHDs/FIH-1) belonging to the superfamily of iron(II) and 2-oxoglutarate dependent dioxygenases. Hydroxylation of the HIF-1alpha subunit by PHDs and FIH-1 leads to its degradation and inactivation. By hydroxylating HIF-1alpha in an oxygen-dependent manner PHDs and FIH-1 function as oxygen-sensing enzymes of HIF signalling. Besides molecular oxygen nitric oxide (NO), a mediator of the inflammatory response, can regulate HIF-1alpha accumulation, HIF-1 activity and HIF-1 dependent target gene expression. Recent studies addressing regulation of HIF-1 by NO revealed a complex and paradoxical picture. Acute exposure of cells to high doses of NO increased HIF-1alpha levels irrespective of the residing oxygen concentration whereas prolonged exposure to NO or low doses of this radical reduced HIF-1alpha accumulation even under hypoxic conditions. Several mechanisms were found to contribute to this paradoxical role of NO in regulating HIF-1. More recent studies support the view that NO regulates HIF-1 by modulating the activity of the oxygen-sensor enzymes PHDs and FIH-1. NO dependent HIF-1alpha accumulation under normoxia was due to direct inhibition of PHDs and FIH-1 most likely by competitive binding of NO to the ferrous iron in the catalytically active center of the enzymes. In contrast, reduced HIF-1alpha accumulation by NO under hypoxia was mainly due to enhanced HIF-1alpha degradation by induction of PHD activity. Three major mechanisms are discussed to be involved in enhancing the PHD activity despite the lack of oxygen: (1) NO mediated induction of a HIF-1 dependent feedback loop leading to newly expressed PHD2 and enhanced nuclear localization, (2) O2-redistribution towards PHDs after inhibition of mitochondrial respiration by NO, (3

  13. Dynamic observation of the expression of indoleamine 2,3-dioxygenase on the surface of dendritic cells induced by Echinococcus granulosus antigens%细粒棘球蚴抗原诱导树突状细胞表达吲哚胺2,3-双加氧酶的动态观察

    Institute of Scientific and Technical Information of China (English)

    单骄宇; 李海涛; 吐尔洪江·吐逊; 肖晋; 李亮; 林仁勇; 温浩

    2012-01-01

    Objective To dynamically observe the expression of indoleamine 2, 3-dioxygenase(IDO) on the surface of dendritic cells (DCs) using different Echinococcus granulosus antigens. Methods Bone marrow DCs (BMDCs) from C57BL/6 mice were obtained in vitro. BMDCs were then treated with 15 μg/ml rAgB, 5 mg/ml MHF or 1 000 U/ml IFN-γ (as a positive control. The relative expression of IDO mRNA and IL-10 mRNA was dynamically measured with FQ-RT-PCR and the expression of IDO protein was determined with Western blot at 6 , 18, 24, 48, and 60 h. Results FQ-RT-PCR analysis showed that IDO was up-regulated 26. 8-fold at 24 h while IL-10 was markedly up-regulated 65. 1-fold at 48 h in rAgB-treated DCs. In MHF-treated DCs, IDO and IL-10 were up-regulated 12. 6-fold and 3. 9-fold at 24 h, respectively. In IDO protein detection, the expression of IDO increased in DCs treated with rAgB and MHF. In rAgB-treated DCs, the expression of IDO became evident at 24 h; in MHF-treated DCs, the expression of IDO became evident at 48 h. Conclusion rAgB and MHF up-regulate the expression of IDO. rAgB was better able to up-regulate IDO than was MHF. IDO is a molecule that regulates the immune response and can play a key role in the Th2 immune responsc. Results suggest that IDO may be involved in immune evasion and inhibition of the inflammatory response by echinococco-sis.%目的 动态检测细粒棘球蚴不同抗原体外诱导树突状细胞表达吲哚胺2,3-双加氧酶(IDO). 方法 在体外实验的条件下,获得C57BL/6小鼠骨髓来源的树突状细胞(BMDCs),分别应用15 μg/ml重组抗原B(rAgB)、5 mg/ml小鼠囊型包虫囊液(MHF)、1 000 U/ml IFN-γ(阳性对照)刺激BMDCs,在6、18、24、48、60h采用实时荧光定量RT-PCR动态监测IDO、IL-10 mRNA相对表达情况;在不同时间点收集各组DCs,应用Western blot检测IDO蛋白的表达.结果 FQ-RT-PCR显示,rAgB处理组IDO mRNA在24 h时上调26.8倍,IL-10 mRNA在48 h时上调65.1倍,MHF处理组干预24 h

  14. Different Echinococcus granulosus Antigens Induced Indoleamine 2,3-dioxygenase Expression in Dendritic Cells%不同棘球蚴抗原诱导树突状细胞表达吲哚胺2,3-双加氧酶的实验研究

    Institute of Scientific and Technical Information of China (English)

    单骄宇; 李海涛; 李春燕; 肖晋; 李亮; 张雪; 林仁勇; 温浩

    2013-01-01

    Objective To observe the expression of indoleamine 2,3-dioxygenase (IDO) in dendritic cells (DCs) via different Echinococcus granulosus antigens in vitro.Methods Bone Marrow DCs generated from bone marrow precursor cells of C57BL/6 mice and cultured in the presence of recombinant mouse GM-CSF (rmGM-CSF).Then,DCs were induced with 15 μg/ml recombinant antigen B (rAgB),5 mg/ml mouse hydatid fluid (MHF),1 000 U/ml IFN-γ (as positive control),and RPMI 1640 complete medium (as negative control),respectively.Meanwhile,the treated DCs and cell supernatants were collected at 18,24 and 48 h after induction.The positive expressions of D40,CD80,CD86 and I-A/I-E on DCs were determined by flow cytometry.By real-time fluorescent quantitative reverse-transcription polymerase chain reaction (FQ-RT-PCR),the expression level of IDO mRNA in DCs was measured.Concentrations of tryptophan (Try) were tested by high-performance liquid chromatography (HPLC) assay in cell supernatant.Results The data from flow cytometry showed that the positive expressions of CD40,CD80,CD86,I-A/I-E were decreased after stimulated by rAgB and MHF.At 24 h after induction,there was significant difference in the level of CD40,CD86 and I-A/I-E among rAgB-treated group [(22.60±2.69)%,(35.50±4.38)%,(57.30±4.38)%],MHF-treated group [(38.00±3.54)%,(53.00± 3.39)%,(77.10±1.70)%] and negative control [(37.95±3.61) %,(19.55±1.06) % and (85.45±1.63) %](P<0.05).At 18,24 and 48h after induction,the levels of IDO mRNA in rAgB-treated group [(9.20t0.01),(29.44±0.02),(16.48±0.04)] and MHF-treated group [(9.67±0.02),(17.52±0.01),(16.81±0.01)] was higher than that of negative control group[(2.46±0.01),(7.77±0.01),and(10.56±0.01)] (P<0.01).And significant difference was found between rAgB-treated group and MHF-treated group (P<0.05).At 18,24 and 48 h after induction,the concentrations of Try were lowest in rAgB-treated group [(23.65±0.64),(13.95±1.06),(19.05±0.64) μmol/L].At 24h

  15. 吲哚胺2,3双加氧酶与乙肝病毒不同感染状态T淋巴细胞亚群及病毒载量的相关性研究%Investigation of the correlation between indoleamine 2,3-dioxygenase and T cell subsets,viral load in different hepatitis B virus infection status

    Institute of Scientific and Technical Information of China (English)

    曾道炳; 卢实春; 李军峰; 胡冬; 周育森

    2012-01-01

    目的 探讨乙肝病毒(HBV)不同感染状态下,吲哚胺2,3双加氧酶(indoleamine 2,3-dioxygenase,IDO)表达水平及其与T淋巴细胞亚群及病毒载量的相关性.方法 检测受检者外周静脉血IDO mRNA、IDO蛋白、IDO活性,T淋巴细胞亚群及病毒载量(对照组除外);进行各组间均数比较及相关性分析.结果 IDO mRNA、IDO蛋白及IDO活性从高到低依次为急性乙型肝炎组(acute hepatitis B,AHB)、肝硬化组(HBV-related liver cirrhosis,LC)、慢性乙型肝炎组(chronic hepatitis B,CHB)、肝癌组(HBV-related hepatocellular carcinoma,HCC)、对照组.HCC组及对照组均明显低于其他3组(P<0.01),其余各组间两两比较,差异有统计学意义(P<0.05).CD3+、CD4+T淋巴细胞在AHB组最高,对照组次之,LC组最低;AHB组、对照组及CHB组均明显高于LC组(P< 0.05);AHB组、对照组明显高于HCC组(P<0.05).CD8+T淋巴细胞在对照组最高,AHB组次之,LC组最低;但仅AHB组、对照组明显高于LC组(P<0.05).AHB组CD4+/CD8+明显高于其他组(P<0.01).CHB及LC组病毒载量最高,均明显高于HCC及AHB组(P<0.05).CD3+、CD4+、CD8+T淋巴细胞与病毒载量、IDO蛋白及IDO活性均呈负相关,CD8+T淋巴细胞与IDO mRNA呈负相关(r=-0.287,P=0.039);CD4+/CD8+与IDO蛋白及IDO活性均呈正相关(r=0.470,P=0.000;r=0.285,P=0.040),病毒载量与IDO mRNA、IDO蛋白及IDO活性均呈正相关(r=0.530,P=0.001;r=0.416,P=0.002;r=0.649,P=0.000).结论 HBV感染者IDO表达明显增强,与病毒载量呈正相关,与T淋巴细胞呈负相关,其早期升高有利于病毒清除,但持续升高会导致HBV特异性T淋巴细胞功能抑制,使HBV慢性化.%Objective To investigate the expression levels of indoleamine 2,3-dioxygenase(IDO) and the correlation between IDO level, T cell subsets and viral load in hepatitis B related liver disease subjects. Methods Peripheral blood samples were collected, and the the expression level of IDO Mrna and IDO protein in PBMC

  16. Structural, Functional and Evolutionary Studies on Prolyl-Hydroxylases

    OpenAIRE

    Scotti, John Salvatore; Christopher J. Schofield

    2014-01-01

    This thesis studies the prolyl-hydroxylase family of 2-oxoglutarate dependent oxygenases from structural, functional and evolutionary perspectives. The role of prolyl-hydroxylation was first identified in collagen, wherein hydroxyproline was found to stabilise the collagen triple helix. In the 1960s, the presence of hydroxyproline in collagen was found to be a result of enzyme catalysed protein modification. An enzyme, now known as collagen prolyl-4-hydroxylase (CP4H), was found to be com...

  17. The Targeting of Indoleamine 2,3 Dioxygenase -Mediated Immune Escape in Cancer

    DEFF Research Database (Denmark)

    Iversen, Trine Zeeberg; Andersen, Mads Hald; Svane, Inge Marie

    2015-01-01

    immune parameters during treatment is essential. In the summary of this PhD thesis, we investigated changes in immune parameters and their possible correlation with clinical efficacy in patients with MM during treatments with the standard chemo- and immunotherapies, temozolomide (TMZ) and interferon-α2b...

  18. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick;

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are...... cytotoxic effector cells that recognize and kill tumor cells. Our data suggest that IDO2 might be a useful target for anticancer immunotherapeutic strategies....

  19. Spontaneous cytotoxic T-Cell reactivity against indoleamine 2,3-dioxygenase-2

    DEFF Research Database (Denmark)

    Sørensen, Rikke Bæk; Køllgaard, Tania; Andersen, Rikke Sick;

    2011-01-01

    in mouse models of cancer in a nontoxic fashion. Here, we describe the immunogenicity of IDO2 by showing the presence of spontaneous cytotoxic T-cell reactivity against IDO2 in peripheral blood of both healthy donors and cancer patients. Furthermore, we show that these IDO2-specific T cells are cytotoxic...

  20. Alcaligenes eutrophus JMP134 "2,4-dichlorophenoxyacetate monooxygenase" is an alpha-ketoglutarate-dependent dioxygenase.

    OpenAIRE

    Fukumori, F; Hausinger, R P

    1993-01-01

    The Alcaligenes eutrophus JMP134 tfdA gene, encoding the enzyme responsible for the first step in 2,4-dichlorophenoxyacetic acid (2,4-D) biodegradation, was overexpressed in Escherichia coli, and several enzymatic properties of the partially purified gene product were examined. Although the tfdA-encoded enzyme is typically referred to as 2,4-D monooxygenase, we were unable to observe any reductant-dependent activity. Rather, we demonstrate that this enzyme is a ferrous ion-dependent dioxygena...

  1. EXPRESSION AND POST-TRANSLATIONAL MODIFICATION OF HUMAN 4-HYDROXY-PHENYLPYRUVATE DIOXYGENASE

    DEFF Research Database (Denmark)

    Aarenstrup, Lene; Falch, Anne-Marie; Jakobsen, Kirsten K.;

    2002-01-01

    12q24¿qter. In the present study high-resolution chromosome mapping localized the HPD gene to 12q24.31. DNase I footprinting, revealed that four regions of the HPD promoter were protected by rat liver nuclear proteins. Computer-assisted analyses suggested that these elements might bind Sp1/AP2, HNF4...... provided evidence that HPD is subject to phosphorylation, and furthermore, allowed mapping of the HPD protein in the human keratinocyte 2D database....

  2. Purification, Characterization, and Mechanism of a Flavin Mononucleotide-Dependent 2-Nitropropane Dioxygenase from Neurospora crassa

    OpenAIRE

    Gorlatova, Natalia; Tchorzewski, Marek; Kurihara, Tatsuo; Soda, Kenji; Esaki, Nobuyoshi

    1998-01-01

    A nitroalkane-oxidizing enzyme was purified to homogeneity from Neurospora crassa. The enzyme is composed of two subunits; the molecular weight of each subunit is approximately 40,000. The enzyme catalyzes the oxidation of nitroalkanes to produce the corresponding carbonyl compounds. It acts on 2-nitropropane better than on nitroethane and 1-nitropropane, and anionic forms of nitroalkanes are much better substrates than are neutral forms. The enzyme does not act on aromatic compounds. When th...

  3. Robust crop resistance to broadleaf and grass herbicides provided by aryloxyalkanoate dioxygenase transgenes

    OpenAIRE

    Wright, Terry R.; Shan, Guomin; Walsh, Terence A.; Lira, Justin M.; Cui, Cory; Song, Ping; Zhuang, Meibao; Arnold, Nicole L.; Lin, Gaofeng; Yau, Kerrm; Russell, Sean M.; Cicchillo, Robert M.; Peterson, Mark A.; Simpson, David M.; Zhou, Ning

    2010-01-01

    Engineered glyphosate resistance is the most widely adopted genetically modified trait in agriculture, gaining widespread acceptance by providing a simple robust weed control system. However, extensive and sustained use of glyphosate as a sole weed control mechanism has led to field selection for glyphosate-resistant weeds and has induced significant population shifts to weeds with inherent tolerance to glyphosate. Additional weed control mechanisms that can complement glyphosate-resistant cr...

  4. NO dioxygenase activity in hemoglobins is ubiquitous in vitro, but limited by reduction in vivo.

    Directory of Open Access Journals (Sweden)

    Benoit J Smagghe

    Full Text Available Genomics has produced hundreds of new hemoglobin sequences with examples in nearly every living organism. Structural and biochemical characterizations of many recombinant proteins reveal reactions, like oxygen binding and NO dioxygenation, that appear general to the hemoglobin superfamily regardless of whether they are related to physiological function. Despite considerable attention to "hexacoordinate" hemoglobins, which are found in nearly every plant and animal, no clear physiological role(s has been assigned to them in any species. One popular and relevant hypothesis for their function is protection against NO. Here we have tested a comprehensive representation of hexacoordinate hemoglobins from plants (rice hemoglobin, animals (neuroglobin and cytoglobin, and bacteria (Synechocystis hemoglobin for their abilities to scavenge NO compared to myoglobin. Our experiments include in vitro comparisons of NO dioxygenation, ferric NO binding, NO-induced reduction, NO scavenging with an artificial reduction system, and the ability to substitute for a known NO scavenger (flavohemoglobin in E. coli. We conclude that none of these tests reveal any distinguishing predisposition toward a role in NO scavenging for the hxHbs, but that any hemoglobin could likely serve this role in the presence of a mechanism for heme iron re-reduction. Hence, future research to test the role of Hbs in NO scavenging would benefit more from the identification of cognate reductases than from in vitro analysis of NO and O(2 binding.

  5. Buffer management optimization strategy for satellite ATM

    Institute of Scientific and Technical Information of China (English)

    Lu Rong; Cao Zhigang

    2006-01-01

    ECTD (erroneous cell tail drop), a buffer management optimization strategy is suggested which can improve the utilization of buffer resources in satellite ATM (asynchronous transfer mode) networks. The strategy, in which erroneous cells caused by satellite channel and the following cells that belong to the same PDU (protocol data Unit) are discarded, concerns non-real-time data services that use higher layer protocol for retransmission. Based on EPD (early packet drop) policy, mathematical models are established with and without ECTD. The numerical results show that ECTD would optimize buffer management and improve effective throughput (goodput), and the increment of goodput is relative to the CER (cell error ratio) and the PDU length. The higher their values are, the greater the increment. For example,when the average PDU length values are 30 and 90, the improvement of goodput are respectively about 4% and 10%.

  6. A dioxygenase of Pleurotus sapidus transforms (+)-valencene regio-specifically to (+)-nootkatone via a stereo-specific allylic hydroperoxidation.

    Science.gov (United States)

    Krügener, Sven; Krings, Ulrich; Zorn, Holger; Berger, Ralf G

    2010-01-01

    A selective and highly efficient allylic oxidation of the sesquiterpene (+)-valencene to the grapefruit flavour compound (+)-nootkatone was achieved with lyophilisate of the edible mushroom Pleurotus sapidus. The catalytic reaction sequence was elucidated through the identification of intermediate, (+)-valencene derived hydroperoxides. A specific staining of hydroperoxides allowed the semi-preparative isolation of two secondary (+)-valencene hydroperoxides, 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-4(S)-yl-hydroperoxide and 6(R)-Isopropenyl-4(R),4a(S)-dimethyl-2,3,4,4a,5,6,7,8-octahydro-naphthalen-2(R)-yl-hydroperoxide. Chemical reduction of the biotransformation products yielded a tertiary alcohol identified as 2(R)-Isopropenyl-8(R),8a(S)-dimethyl-1,3,4,7,8,8a-hexahydro-2H-naphthalen-4a(R)-ol. This suggested a lipoxygenase-type oxidation of (+)-valencene via secondary and tertiary hydroperoxides and confirmed homology data of the key enzyme obtained previously from amino acid sequencing. PMID:19765983

  7. Tryptophan 2,3-dioxygenase (TDO)-reactive T cells differ in their functional characteristics in health and cancer

    DEFF Research Database (Denmark)

    Hjortsø, Mads Duus; Larsen, Stine Kiaer; Kongsted, Per;

    2015-01-01

    in response to TDO-derived MHC-class II restricted peptides. Hence, in healthy donors (HD) a Th1 helper response was predominant, whereas in cancer patients CD4(+) T-cell responses were skewed toward a regulatory T cell (Treg) response. Furthermore, MM patients hosting a TDO-specific IL-17 response...... cells of different origin. Interestingly, the processed and presented TDO-derived epitopes varied between different cancer cells. With respect to CD4(+) TDO-reactive T cells, in vitro expanded T-cell cultures comprised a Th1 and/or a Treg phenotype. In summary, our data demonstrate that the immune...

  8. Identifying a Carotenoid Cleavage Dioxygenase 4a Gene and Its Efficient Agrobacterium-Mediated Genetic Transformation in Bixa orellana L.

    Science.gov (United States)

    Sankari, Mohan; Hemachandran, Hridya; Anantharaman, Amirtha; Babu, Subramanian; Madrid, Renata Rivera; C, George Priya Doss; Fulzele, Devanand P; Siva, Ramamoorthy

    2016-07-01

    Carotenoids are metabolized to apocarotenoids through the pathway catalysed by carotenoid cleavage oxygenases (CCOs). The apocarotenoids are economically important as it is known to have therapeutic as well as industrial applications. For instance, bixin from Bixa orellana and crocin from Crocus sativus are commercially used as a food colourant and cosmetics since prehistoric time. In our present study, CCD4a gene has been identified and isolated from leaves of B. orellana for the first time and named as BoCCD4a; phylogenetic analysis was carried out using CLUSTAL W. From sequence analysis, BoCCD4a contains two exons and one intron, which was compared with the selected AtCCD4, RdCCD4, GmCCD4 and CmCCD4a gene. Further, the BoCCD4a gene was cloned into pCAMBIA 1301, transformed into Agrobacterium tumefaciens EHA105 strain and subsequently transferred into hypocotyledons and callus of B. orellana by agro-infection. Selection of stable transformation was screened on the basis of PCR detection by using GUS and hptII specific primer, which was followed by histochemical characterization. The percent transient GUS expression in hypocotyledons and callus was 84.4 and 80 %, respectively. The expression of BoCCD4a gene in B. orellana was confirmed through RT-PCR analysis. From our results, the sequence analysis of BoCCD4a gene of B. orellana was closely related to the CsCCD4 gene of C. sativus, which suggests this gene may have a role in various processes such as fragrance, insect attractant and pollination. PMID:26922728

  9. Indoleamine 2,3-Dioxygenase: Expressing Cells in Inflammatory Bowel Disease—A Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Janette Furuzawa-Carballeda

    2013-01-01

    Full Text Available Aim. To characterise and enumerate IDO+ cells, Tregs, and T cell subsets in patients with ulcerative colitis (UC and Crohn’s disease (CD with regard to their clinical activity. Methods. Ten active UC (aUC, 10 inactive UC (iUC, 6 aCD, and 8 iCD patients and 10 healthy individuals were included in the study. Circulating Foxp3-, IDO-, IL-17A-, IL-4-, IFN-γ-, and IL-10-expressing CD4+ T cells were quantitated by flow cytometry. Interleukin-17-expressing cells, CD25+/Foxp3+ Tregs, and CD123+/IDO+ plasmacytoid dendritic cells were evaluated in intestinal biopsies from 10 aUC, 6 aCD, and 10 noninflamed tissues. Results. All CD4+ T subsets were increased in aIBD patients compared with healthy donors. Meanwhile, frequency of CD8α+/CD16+/IDO+, CD8α+/CD56+/IDO+, CD8α+/CD80+/IDO+, CD8α+/CD123+/IDO+ large granular nonlymphoid cells, and CCR6+/CD123+/IDO+ plasmacytoid dendritic cells was higher in aIBD patients versus healthy donors or iIBD patients. Tissue IL-17A+ cells were present in higher amounts in aIBD versus noninflamed controls. IDO- and Foxp3-expressing cells were increased in aUC versus aCD patients and noninflamed tissues. Conclusions. The findings represent an original work in Mexican Mestizo patients with IBD. It shows that Tregs and IDO-expressing cells are increased with regard to disease activity. These cells could significantly shape inflammatory bowel disease pathophysiology, severity, and tolerance loss.

  10. CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicas

    NARCIS (Netherlands)

    Liu, J.; Novero, M.; Charnikhova, T.; Ferrandino, A.; Schubert, A.; Ruyter-Spira, C.P.; Biofante, P.; Lovisolo, C.; Bouwmeester, H.J.

    2013-01-01

    Strigolactones (SLs) are newly identified hormones that regulate multiple aspects of plant development, infection by parasitic weeds, and mutualistic symbiosis in the roots. In this study, the role of SLs was studied for the first time in the model plant Lotus japonicus using transgenic lines silenc

  11. Characterization of a chromosomally encoded 2,4-dichlorophenoxyacetic acid/alpha-ketoglutarate dioxygenase from Burkholderia sp. strain RASC.

    OpenAIRE

    Suwa, Y.; Wright, A D; Fukimori, F; Nummy, K A; Hausinger, R P; Holben, W E; Forney, L J

    1996-01-01

    The findings of previous studies indicate that the genes required for metabolism of the pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) are typically encoded on broad-host-range plasmids. However, characterization of plasmid-cured strains of Burkholderia sp. strain RASC, as well as mutants obtained by transposon mutagenesis, suggested that the 2,4-D catabolic genes were located on the chromosome of this strain. Mutants of Burkholderia strain RASC unable to degrade 2,4-D (2,4-D- strains) were...

  12. Metabolomic and genetic analyses of flavonol synthesis in Arabidopsis thaliana support the in vivo involvement of leucoanthocyanidin dioxygenase

    NARCIS (Netherlands)

    Stracke, R.; Vos, de R.C.H.; Bartelniewoehner, L.; Ishihara, H.; Sagasser, M.; Martens, S.; Weisshaar, B.

    2009-01-01

    Flavonol synthase (FLS) (EC-number 1.14.11.23), the enzyme that catalyses the conversion of flavonols into dihydroflavonols, is part of the flavonoid biosynthesis pathway. In Arabidopsis thaliana, this activity is thought to be encoded by several loci. In addition to the FLAVONOL SYNTHASE1 (FLS1) lo

  13. Induction of indoleamine 2,3-dioxygenase in vascular smooth muscle cells by interferon-gamma contributes to medial immunoprivilege.

    Science.gov (United States)

    Cuffy, Madison C; Silverio, Amanda M; Qin, Lingfeng; Wang, Yinong; Eid, Raymond; Brandacher, Gerald; Lakkis, Fadi G; Fuchs, Dietmar; Pober, Jordan S; Tellides, George

    2007-10-15

    Atherosclerosis and graft arteriosclerosis are characterized by leukocytic infiltration of the vessel wall that spares the media. The mechanism(s) for medial immunoprivilege is unknown. In a chimeric humanized mouse model of allograft rejection, medial immunoprivilege was associated with expression of IDO by vascular smooth muscle cells (VSMCs) of rejecting human coronary artery grafts. Inhibition of IDO by 1-methyl-tryptophan (1-MT) increased medial infiltration by allogeneic T cells and increased VSMC loss. IFN-gamma-induced IDO expression and activity in cultured human VSMCs was considerably greater than in endothelial cells (ECs) or T cells. IFN-gamma-treated VSMCs, but not untreated VSMCs nor ECs with or without IFN-gamma pretreatment, inhibited memory Th cell alloresponses across a semipermeable membrane in vitro. This effect was reversed by 1-MT treatment or tryptophan supplementation and replicated by the absence of tryptophan, but not by addition of tryptophan metabolites. However, IFN-gamma-treated VSMCs did not activate allogeneic memory Th cells, even after addition of 1-MT or tryptophan. Our work extends the concept of medial immunoprivilege to include immune regulation, establishes the compartmentalization of immune responses within the vessel wall due to distinct microenvironments, and demonstrates a duality of stimulatory EC signals versus inhibitory VSMC signals to artery-infiltrating T cells that may contribute to the chronicity of arteriosclerotic diseases.

  14. Cloning and expression of the transposable chlorobenzoate-3,4-dioxygenase genes of Alcaligenes sp. strain BR60.

    OpenAIRE

    Nakatsu, C. H.; Wyndham, R. C.

    1993-01-01

    Growth on 3-chlorobenzoate was found to induce the enzymes of the protocatechuate meta ring fission pathway in Alcaligenes sp. strain BR60. The chlorobenzoate catabolic genes, designated cba, were localized to a 3.7-kb NotI-EcoRI fragment within the nonrepeated region of the composite transposon Tn5271. The cba genes were cloned onto two broad-host-range vectors and expressed in Escherichia coli and Alcaligenes sp. strain BR6024. In E. coli, expression of the cba genes with the IPTG (isopropy...

  15. Protein (Cyanobacteria): 175247 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available sistance protein/dioxygenase Gloeocapsa sp. PCC 7428 MKFGYTIFYVPDVSAAVSFYEQAFGLSRRFVHESSQYAEMETGSTILAFASEEMAKSNGLTITPHRLENNAAAVEVAFITETIEEAFNQAIKAGAVAVKPIEVKPWGQTVGYVRDLNGVVVELCTPVL ...

  16. Protein (Cyanobacteria): 175559 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available in resistance protein/dioxygenase Calothrix sp. PCC 7507 MQITQSLHTAILVTDLERSEYFYGKVLGLSKVDRVLKYPGAWYQVGDYQIHLIVASSVLTENQNQKWGRNPHVAFSVADLDIAKQELLDQNYLIQVSASGRAAFFTHDPDGNIVELSQG ...

  17. Protein (Cyanobacteria): 175563 [PGDBj - Ortholog DB

    Lifescience Database Archive (English)

    Full Text Available istance protein/dioxygenase Geitlerinema sp. PCC 7407 MDIVACLHTALLVRDLAQAERFYGEVLGLQKVDRGLKYPGAWYQVGPHQIHLIQDTTAPPALHNRDQWGRNPHVAFGVRDLAAIQAELTDQGYPCQRSASGRSALFTQDPDGNVIEISEIPGTL ...

  18. The structure at 2.4 Å resolution of the protein from gene locus At3g21360, a putative FeII/2-oxo­glutarate-dependent enzyme from Arabidopsis thaliana

    Science.gov (United States)

    Bitto, Eduard; Bingman, Craig A.; Allard, Simon T. M.; Wesenberg, Gary E.; Aceti, David J.; Wrobel, Russell L.; Frederick, Ronnie O.; Sreenath, Hassan; Vojtik, Frank C.; Jeon, Won Bae; Newman, Craig S.; Primm, John; Sussman, Michael R.; Fox, Brian G.; Markley, John L.; Phillips, George N.

    2005-01-01

    The crystal structure of the gene product of At3g21360 from Arabidopsis thaliana was determined by the single-wavelength anomalous dispersion method and refined to an R factor of 19.3% (R free = 24.1%) at 2.4 Å resolution. The crystal structure includes two monomers in the asymmetric unit that differ in the conformation of a flexible domain that spans residues 178–230. The crystal structure confirmed that At3g21360 encodes a protein belonging to the clavaminate synthase-like superfamily of iron(II) and 2-oxoglutarate-dependent enzymes. The metal-binding site was defined and is similar to the iron(II) binding sites found in other members of the superfamily. PMID:16511070

  19. Systemic treatment with CpG-B after sublethal rickettsial infection induces mouse death through indoleamine 2,3-dioxygenase (IDO.

    Directory of Open Access Journals (Sweden)

    Lijun Xin

    Full Text Available Due to its strong immune stimulatory effects through TLR9, CpG-containing oligodeoxynucleotides (CpG ODN have been tested in multiple clinical trials as vaccine adjuvant for infectious diseases and cancer. However, immune suppression induced by systemic administration of CpGs has been reported recently. In this study, we evaluated the impact of CpGs in an acute rickettsiosis model. We found that systemic treatment with type B CpG (CpG-B, but not type A CpG (CpG-A, at 2 days after sublethal R. australis infection induced mouse death. Although wild-type (WT B6 and IDO(-/- mice showed similar survival rates with three different doses of R. australis infection, treatment with CpG-B after sublethal infection consistently induced higher mortality with greater tissue bacterial loads in WT but not IDO(-/- mice. Also, CpG-B treatment promoted the development of higher serum concentrations of proinflammatory cytokines/chemokines through IDO. Furthermore, while T cell-mediated immune responses enhanced by CpG-B were independent of IDO, treatment with CpG-B promoted T cell activation, PD-1 expression and cell apoptosis partially through IDO. A depletion study using anti-mPDCA-1 mAb indicated that plasmacytoid dendritic cells (pDC were not required for CpG-B-induced death of R. australis-infected mice. Additionally, the results in iNOS(-/- mice suggested that nitric oxide (NO was partially involved in CpG-B-induced death of R. australis-infected mice. Surprisingly, pre-treatment with CpG-B before administration of a lethal dose of R. australis provided effective immunity in WT, IDO(-/- and iNOS(-/- mice. Taken together, our study provides evidence that CpGs exert complex immunological effects by both IDO-dependent and -independent mechanisms, and that systemic treatment with CpGs before or after infection has a significant and distinct impact on disease outcomes.

  20. Characterization of the 3-O-Methylgallate Dioxygenase Gene and Evidence of Multiple 3-O-Methylgallate Catabolic Pathways in Sphingomonas paucimobilis SYK-6

    OpenAIRE

    Kasai, Daisuke; Masai, Eiji; Miyauchi, Keisuke; Katayama, Yoshihiro; Fukuda, Masao

    2004-01-01

    Sphingomonas paucimobilis SYK-6 is able to grow on various lignin-derived biaryls as the sole source of carbon and energy. These compounds are degraded to vanillate and syringate by the unique and specific enzymes in this strain. Vanillate and syringate are converted to protocatechuate (PCA) and 3-O-methylgallate (3MGA), respectively, by the tetrahydrofolate-dependent O-demethylases. Previous studies have suggested that these compounds are further degraded via the PCA 4,5-cleavage pathway. Ho...

  1. Discovery of (2-benzoylethen-1-ol)-containing 1,2-benzothiazine derivatives as novel 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibiting-based herbicide lead compounds.

    Science.gov (United States)

    Lei, Kang; Hua, Xue-Wen; Tao, Yuan-Yuan; Liu, Yang; Liu, Na; Ma, Yi; Li, Yong-Hong; Xu, Xiao-Hua; Kong, Chui-Hua

    2016-01-15

    A series of (2-benzoylethen-1-ol)-containing benzothiazine derivatives was synthesized, and their herbicidal activities were first evaluated. The bioassay results indicated that some of 3-benzoyl-4-hydroxy-2-methyl-2H-1,2-benzothiazine-1,1-dioxide derivatives displayed good herbicidal activity in greenhouse testing, especially, compound 4w had good pre-emergent herbicidal activities against Brassica campestris, Amaranthus retroflexus and Echinochloa crusgalli even at a dosage of 187.5 g ha(-1). More importantly, compound 4w displayed significant inhibitory activity against Arabidopsis thaliana HPPD and was identified as the most potent candidate with IC50 value of 0.48 μM, which is better than the commercial herbicide sulctrione (IC50=0.53 μM) and comparable with the commercial herbicide mesotrione (IC50=0.25 μM). The structure-activity relationships was studied and provided some useful information for improving herbicidal activity. The present work indicated that (2-benzoylethen-1-ol)-containing 1,2-benzothiazine motif could be a potential lead structure for further development of novel HPPD inhibiting-based herbicides. PMID:26682702

  2. A "White" Anthocyanin-less Pomegranate (Punica granatum L.) Caused by an Insertion in the Coding Region of the Leucoanthocyanidin Dioxygenase (LDOX; ANS) Gene

    OpenAIRE

    Zohar Ben-Simhon; Sylvie Judeinstein; Taly Trainin; Rotem Harel-Beja; Irit Bar-Ya'akov; Hamutal Borochov-Neori; Doron Holland

    2015-01-01

    Color is an important determinant of pomegranate fruit quality and commercial value. To understand the genetic factors controlling color in pomegranate, chemical, molecular and genetic characterization of a "white" pomegranate was performed. This unique accession is lacking the typical pomegranate color rendered by anthocyanins in all tissues of the plant, including flowers, fruit (skin and arils) and leaves. Steady-state gene-expression analysis indicated that none of the analyzed "white" po...

  3. Characterization and functional identification of a novel plant extradiol 4,5-dioxygenase involved in betalain pigment biosynthesis in Portulaca Grandiflora

    OpenAIRE

    Christinet L.

    2004-01-01

    RESUME Les bétalaïnes sont des pigments chromo-alcaloïdes violets et jaunes présents dans les plantes appartenant à l'ordre des Caryophyllales et dans les champignons des genres Amanita et Hygrocybe. Leur courte voie de biosynthèse est élucidée chimiquement depuis de nombreuses années, mais les enzymes impliquées dans cette biosynthèse chez les plantes ne sont toujours pas caractérisées. L'enzyme de la DOPA-dioxygénase d' Amanita muscaria a été identifiée (Girod et Zryd, 1991a), mais de nombr...

  4. Characterization and functional identification of a novel plant extradiol 4,5-dioxygenase involved in betalain pigment biosynthesis in portulaca grandiflora

    OpenAIRE

    Christinet, Laurent; Zrÿd, Jean-Pierre

    2004-01-01

    Les bétalaïnes sont des pigments chromo-alcaloïdes violets et jaunes présents dans les plantes appartenant à l’ordre des Caryophyllales et dans les champignons des genres Amanita et Hygrocybe. Leur courte voie de biosynthèse est élucidée chimiquement depuis de nombreuses années, mais les enzymes impliquées dans cette biosynthèse chez les plantes ne sont toujours pas caractérisées. L’enzyme de la DOPA-dioxygénase d’Amanita muscaria a été identifiée (Girod et Zrÿd, 1991a), mais de nombreuses te...

  5. Formation of norisoprenoid flavor compounds in carrot (Daucus carota L.) roots: characterization of a cyclic-specific carotenoid cleavage dioxygenase 1 gene

    Science.gov (United States)

    Carotenoids are isoprenoid pigments that upon oxidative cleavage lead to the production of norisoprenoids that have profound effect on flavor and aromas of agricultural produce. The biosynthetic pathway to norisoprenoids in carrots (Daucus carota L.) is still widely unknown. We found that geranial i...

  6. Bacterial properties changing under Triton X-100 presence in the diesel oil biodegradation systems: from surface and cellular changes to mono- and dioxygenases activities

    OpenAIRE

    Sałek, Karina; Kaczorek, Ewa; Guzik, Urszula; Zgoła-Grześkowiak, Agnieszka

    2014-01-01

    Triton X-100, as one of the most popular surfactants used in bioremediation techniques, has been reported as an effective agent enhancing the biodegradation of hydrocarbons. However efficient, the surfactant’s role in different processes that together enable the satisfying biodegradation should be thoroughly analysed and verified. In this research, we present the interactions of Triton X-100 with the bacterial surfaces (hydrophobicity and zeta potential), its influence on the enzymatic proper...

  7. Hydrogen Peroxide-induced Cell Death in Arabidopsis : Transcriptional and Mutant Analysis Reveals a Role of an Oxoglutarate-dependent Dioxygenase Gene in the Cell Death Process

    NARCIS (Netherlands)

    Gechev, Tsanko S.; Minkov, Ivan N.; Hille, Jacques

    2005-01-01

    Hydrogen peroxide is a major regulator of plant programmed cell death (PCD) but little is known about the downstream genes from the H2O2-signaling network that mediate the cell death. To address this question, a novel system for studying H2O2-induced programmed cell death in Arabidopsis thaliana was

  8. Single amino acid substitution in homogentisate 1,2-dioxygenase is responsible for pigmentation in a subset of Burkholderia cepacia complex isolates

    OpenAIRE

    Gonyar, Laura A.; Fankhauser, Sarah C.; Joanna B Goldberg

    2014-01-01

    The Burkholderia cepacia complex (Bcc) is a group of Gram-negative bacilli that are ubiquitous in the environment and have emerged over the past 30 years as opportunistic pathogens in immunocompromised populations, specifically individuals with cystic fibrosis (CF) and chronic granulomatous disease. This complex of at least 18 distinct species is phenotypically and genetically diverse. One phenotype observed in a subset of Burkholderia cenocepacia (a prominent Bcc pathogen) isolates is the ab...

  9. Structure-function relationships of non-cyclic dioxygenase products from polyunsaturated fatty acids: Poxytrins as a class of bioactive derivatives.

    OpenAIRE

    Lagarde, Michel; Véricel, Evelyne; Liu, Miao; Chen, Ping; Guichardant, Michel

    2014-01-01

    : More and more attention is paid to omega-3 fatty acids because of their potential activities in preventing cardiovascular events. In this brief review, we focus on the lipoxygenase end-metabolites of two relevant nutrients belonging to the omega-3 family fatty acids: alpha-linolenic and docosahexaenoic acids, the latter being a prominent component of brain lipids. Dihydroxylated derivatives are described as well as their inhibitory effects on platelet aggregation and cyclooxygenase activiti...

  10. Capture of a catabolic plasmid that encodes only 2,4-dichlorophenoxyacetic acid:alpha-ketoglutaric acid dioxygenase (TfdA) by genetic complementation.

    OpenAIRE

    Top, E. M.; Maltseva, O V; Forney, L J

    1996-01-01

    The modular pathway for the metabolism of 2,4-dichlorophenoxyacetic acid (2,4-D) encoded on plasmid pJP4 of Alcaligenes eutrophus JMP134 appears to be an example in which two genes, tfdA and tfdB, have been recruited during the evolution of a catabolic pathway. The products of these genes act to convert 2,4-D to a chloro-substituted catechol that can be further metabolized by enzymes of a modified ortho-cleavage pathway encoded by tfdCDEF. Given that modified ortho-cleavage pathways are compa...

  11. Evidence for Acquisition in Nature of a Chromosomal 2,4-Dichlorophenoxyacetic Acid/(alpha)-Ketoglutarate Dioxygenase Gene by Different Burkholderia spp

    OpenAIRE

    Matheson, V. G.; Forney, L J; Suwa, Y.; Nakatsu, C. H.; A. J. Sexstone; Holben, W E

    1996-01-01

    We characterized the gene required to initiate the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by the soil bacterium Burkholderia sp. strain TFD6, which hybridized to the tfdA gene of the canonical 2,4-D catabolic plasmid pJP4 under low-stringency conditions. Cleavage of the ether bond of 2,4-D by cell extracts of TFD6 proceeded by an (alpha)-ketoglutarate-dependent reaction, characteristic of TfdA (F. Fukumori and R. P. Hausinger, J. Bacteriol. 175:2083-2086, 1993). The TFD6 tfdA g...

  12. TNFα mediates stress-induced depression by upregulating indoleamine 2,3-dioxygenase in a mouse model of unpredictable chronic mild stress

    OpenAIRE

    Liu, Yu-Ning; Peng, Yun-Li; Lei-Liu,; Wu, Teng-Yun; Zhang, Yi; Lian, Yong-Jie; Yang, Yuan-Yuan; Kelley, Keith W.; Jiang, Chun-Lei; Wang, Yun-Xia

    2015-01-01

    Depression is often preceded by exposure to stressful life events. Chronic stress causes perturbations in the immune system, and up-regulates production of proinflammatory cytokines, which has been proposed to be associated with the pathogenesis of clinical depression. However, the potential mechanisms by which stress-induced proinflammatory cytokines lead to the development of depression are not well understood. Here, we sought to screen the main proinflammatory cytokines and the potential m...

  13. Indoleamine-2,3-dioxygenase mediates neurobehavioral alterations induced by an intracerebroventricular injection of amyloid-β1-42 peptide in mice.

    Science.gov (United States)

    Souza, Leandro Cattelan; Jesse, Cristiano R; Antunes, Michelle S; Ruff, Jossana Rodrigues; de Oliveira Espinosa, Dieniffer; Gomes, Nathalie Savedra; Donato, Franciele; Giacomeli, Renata; Boeira, Silvana Peterini

    2016-08-01

    Alzheimer's disease (AD) is a neurodegenerative disorder that is characterized by a progressive cognitive decline along with various neuropsychiatric symptoms, including depression and anxiety. Increasing evidence has been proposed the activation of the tryptophan-degrading indoleamine-2,3-dyoxigenase (IDO), the rate-limiting enzyme of kynurerine pathway (KP), as a pathogenic factor of amyloid-beta (Aβ)-related inflammation in AD. In the current study, the effects of an intracerebroventricular (i.c.v.) injection of Aβ1-42 peptide (400pmol/mice; 3μl/site) on the regulation of KP biomarkers (IDO activity, tryptophan and kynurerine levels) and the impact of Aβ1-42 on neurotrophic factors levels were investigated as potential mechanisms linking neuroinflammation to cognitive/emotional disturbances in mice. Our results demonstrated that Aβ1-42 induced memory impairment in the object recognition test. Aβ1-42 also induced emotional alterations, such as depressive and anxiety-like behaviors, as evaluated in the tail suspension and elevated-plus maze tests, respectively. We observed an increase in levels of proinflammatory cytokines in the Aβ1-42-treated mice, which led to an increase in IDO activity in the prefrontal cortex (PFC) and the hippocampus (HC). The IDO activation subsequently increased kynurerine production and the kynurenine/tryptophan ratio and decreased the levels of neurotrophic factors in the PFC and HC, which contributed to Aβ-associated behavioral disturbances. The inhibition of IDO activation by IDO inhibitor 1-methyltryptophan (1-MT), prevented the development of behavioral and neurochemical alterations. These data demonstrate that brain IDO activation plays a key role in mediating the memory and emotional disturbances in an experimental model based on Aβ-induced neuroinflammation. PMID:26965653

  14. EST Table: FY036659 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FY036659 rbmte13c09 11/12/09 GO hit GO:0047800(cysteamine dioxygenase activity)|GO:...f|XP_974899.1| PREDICTED: similar to 2-aminoethanethiol (cysteamine) dioxygenase [Tribolium castaneum] FY036659 bmte ...

  15. AcEST: DK953973 [AcEST

    Lifescience Database Archive (English)

    Full Text Available KG4_CAPAN Dioxygenase OS=Capsicum annuum PE=2 SV=1 223 8e-57 tr|Q0H901|Q0H901_COFCA Carotenoid cleavage dioxygenase 1 OS=Coff....d cleavage dioxygenase 1 OS=Rosa... 220 5e-56 tr|Q0H8Z7|Q0H8Z7_COFAR Carotenoid cleavage dioxygenase 1 OS=Coff.

  16. GenBank blastx search result: AK062096 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062096 001-044-H12 AF060489.1 Sphingomonas sp. CB3 initial dioxygenase large subu...nit (carAa) gene, partial cds; and initial dioxygenase small subunit (carAb), initial dioxygenase ferredoxin subunit (carAc), initial

  17. Ectoine and 5-hydroxyectoine accumulation in the halophile Virgibacillus halodenitrificans PDB-F2 in response to salt stress.

    Science.gov (United States)

    Tao, Ping; Li, Hui; Yu, Yunjiang; Gu, Jidong; Liu, Yongdi

    2016-08-01

    The moderately halophilic bacterium Virgibacillus halodenitrificans PDB-F2 copes with salinity by synthesizing or taking up compatible solutes. The main compatible solutes in this strain were ectoine and hydroxyectoine, as determined by (1)H nuclear magnetic resonance spectroscopy ((1)H-NMR). A high-performance liquid chromatography (HPLC) analysis showed that ectoine was the major solute that was synthesized in response to elevated salinity, while hydroxyectoine was a minor solute. However, the hydroxyectoine/ectoine ratio increased from 0.04 at 3 % NaCl to 0.45 at 15 % NaCl in the late exponential growth phase. A cluster of ectoine biosynthesis genes was identified, including three genes in the order of ectA, ectB, and ectC. The hydroxyectoine biosynthesis gene ectD was not part of the ectABC gene cluster. Reverse transcription-quantitative polymerase chain reactions (RT-qPCR) showed that the expression of the ect genes was salinity dependent. The expression of ectABC reached a maximum at 12 % NaCl, while ectD expression increased up to 15 % NaCl. Ectoine and hydroxyectoine production was growth phase dependent. The hydroxyectoine/ectoine ratio increased from 0.018 in the early exponential phase to 0.11 in the stationary phase at 5 % NaCl. Hydroxyectoine biosynthesis started much later than ectoine biosynthesis after osmotic shock, and the temporal expression of the ect genes differed under these conditions, with the ectABC genes being expressed first, followed by ectD gene. Increased culture salinity triggered ectoine or hydroxyectoine uptake when they were added to the medium. Hydroxyectoine was accumulated preferentially when both ectoine and hydroxyectoine were provided exogenously. PMID:27106915

  18. Cloning and Sequence Analysis of 1, 2, 4-Trichlorobenzene Dioxygenase and Dehydrogenase Genes%1,2,4-三氯苯双加氧酶和脱氢酶基因克隆与序列分析

    Institute of Scientific and Technical Information of China (English)

    姜健; 王慧; 高静思; 宋蕾; 宁大亮

    2008-01-01

    通过PseudomonasnitroreducensJ5-1对不同氯苯类底物的降解实验,发现其降解能力大小顺序为:1,2,4-三氯苯,1,3-二氯苯,1,2-=氯苯,氯苯,与已报道的1,2,4-三氯苯降解菌株在底物利用的特性方面存在差异.采用PCR技术从J5-1中扩增获得氯苯降解过程中的关键酶--氯苯双加氧酶和脱氢酶的基因序列,分别命名为tcbA和tcbB,序列比对发现其与Burkholderia sp-PS12的氯苯双加氧酶和脱氢酶的基因序列同源性最高.通过J5-1的氯苯双加氧酶.亚基(TcbAa)与PS12的氯苯双加氧酶a亚基(TecAl)的氨基酸序列比对发现,在307-310位置有连续4个氨基酸残基的差异(1307L、M308T、1309V、Q310E),这可能是造成2株菌对1,2,4,5-四氯苯降解偏好性差异的原因.此外,通过催化芳香化合物降解的双力D氧酶a亚基的系统进化分析,认为TcbAa属于甲苯/联苯亚科,且与多取代氯苯双加氧酶e亚基的同源性最大.

  19. Cloning of 9-cis-epoxycarotenoid dioxygenase (NCED) gene encoding a key enzyme during abscisic acid (ABA) biosynthesis and ABA-regulated ethylene production in detached young persimmon calyx

    Institute of Scientific and Technical Information of China (English)

    LENG Ping; ZHANG GuangLian; LI XiangXin; WANG LiangHe; ZHENG ZhongMing

    2009-01-01

    Unlike the typical climacteric fruits,persimmons (Diospyros kaki Thunb.) produce higher levels of ethylene when they are detached from trees at a younger stage.In order to obtain detailed information on the role of abscisic acid (ABA) in ripening,we cloned the DKNCED1,DKACS2,and DKAC01 genes from the calyx.Water loss was first noted in the calyx lobe,and DKNCED1 was highly expressed 1 d after the fruits were detached,coinciding with an increase in the ABA content.Then,the DKACS2 and DKAC01 genes were expressed after some delay.In the calyx,the ABA peak was observed 2 d after the fruits were harvested,and this peak preceded the ethylene peak observed on day 3.The fruit firmness rapidly decreased on day 4,and the fruits softened completely 6 d after they were harvested.The increases in the expressions of ABA,ethylene,and the genes in the calyxes occurred earlier than the corresponding increases in the pulp,although the 3 increases occurred on different days.Exogenous ABA treatment increased ABA concentration,induced expression of both ACS and ACO,and promoted ethylene synthesis and young-fruit softening;by contrast,treatment with NDGA inhibited the gene expressions and ethylene synthesis and delayed young-fruit softening.These results indicate that ethylene biosynthesis in the detached young persimmon fruits is initially triggered by ABA,which is induced by water loss in the calyx,through the induction of DKACS2 and DKAC01 expressions.The ethylene produced in the calyx subsequently diffuses into the pulp tissue,where it induces autocatalytic ethylene biosynthesis,resulting in an abrupt increase in ethylene production.

  20. 山葡萄无色花色素双加氧酶基因(LDOX)cDNA的克隆与表达%Cloning and Analysis of Leucoanthocyanidin Dioxygenase (LDOX) in Vitis amurensis Rupr

    Institute of Scientific and Technical Information of China (English)

    李娟; 刘海峰; 曹芳芳

    2016-01-01

    为获得山葡萄LDOX基因的全长序列,采用RT-PCR与SMART RACE技术克隆LDOX基因,并对该基因进行生物信息学分析.结果显示,山葡萄LDOX基因全长1 353 bp,其中开放阅读框(ORF)为1 068 bp,编码355个氨基酸,氨基酸序列的分子质量为40.19 ku,等电点为5.61;VAmLDOX基因(GenBank登陆号:FJ645769)属于双加氧酶基因家族,不含信号肽,VAmLDOX蛋白属于不稳定亲水蛋白,二级结构中随机卷曲含量最高;山葡萄VAmLDOX氨基酸序列与欧亚种葡萄、苹果、大豆、三花龙胆和紫苏等的同源性系数分别为99%、81%、80%、77%和75%;半定量RT-PCR分析显示,在山葡萄果实着色过程中,VAmLDOX在不同时期的果皮中均有表达,在转色期的叶片、茎、果肉中也均有表达,且表达量相近.

  1. JBP1 and JBP2 are two distinct thymidine hydroxylases involved in J biosynthesis in genomic DNA of African trypanosomes.

    Science.gov (United States)

    Cliffe, Laura J; Kieft, Rudo; Southern, Timothy; Birkeland, Shanda R; Marshall, Marion; Sweeney, Kate; Sabatini, Robert

    2009-04-01

    Genomic DNA of African trypanosomes contains a hypermodified thymidine residue termed base J (beta-d-glucosyl-HOMedU). This modified base is localized primarily to repetitive DNA, namely the telomeres, and is implicated in the regulation of antigenic variation. The base is synthesized in a two-step pathway. Initially, a thymidine residue in DNA is hydroxylated by a thymidine hydroxylase (TH). This intermediate (HOMedU) is then glucosylated to form base J. Two proteins involved in J synthesis, JBP1 (J binding protein 1) and JBP2, contain a putative TH domain related to the family of Fe(2+)/2-oxoglutarate-dependent hydroxylases. We have previously shown that mutations in the TH domain of JBP1 kill its ability to stimulate J synthesis. Here we show that mutation of key residues in the TH domain of JBP2 ablate its ability to induce de novo J synthesis. While the individual JBP1 null and JBP2 null trypanosomes have reduced J levels, the deletion of both JBP1 and JBP2 generates a cell line that completely lacks base J but still contains glucosyl-transferase activity. Reintroduction of JBP2 in the J-null trypanosome stimulates HOMedU formation and site-specific synthesis of base J. We conclude that JBP2 and JBP1 are the TH enzymes involved in J biosynthesis. PMID:19136460

  2. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice.

    Directory of Open Access Journals (Sweden)

    Xue Gao

    Full Text Available FTO (fat mass and obesity associated was identified as an obesity-susceptibility gene by several independent large-scale genome association studies. A cluster of SNPs (single nucleotide polymorphism located in the first intron of FTO was found to be significantly associated with obesity-related traits, such as body mass index, hip circumference, and body weight. FTO encodes a protein with a novel C-terminal α-helical domain and an N-terminal double-strand β-helix domain which is conserved in Fe(II and 2-oxoglutarate-dependent oxygenase family. In vitro, FTO protein can demethylate single-stranded DNA or RNA with a preference for 3-methylthymine or 3-methyluracil. Its physiological substrates and function, however, remain to be defined. Here we report the generation and analysis of mice carrying a conditional deletion allele of Fto. Our results demonstrate that Fto plays an essential role in postnatal growth. The mice lacking Fto completely display immediate postnatal growth retardation with shorter body length, lower body weight, and lower bone mineral density than control mice, but their body compositions are relatively normal. Consistent with the growth retardation, the Fto mutant mice have reduced serum levels of IGF-1. Moreover, despite the ubiquitous expression of Fto, its specific deletion in the nervous system results in similar phenotypes as the whole body deletion, indicating that Fto functions in the central nerve system to regulate postnatal growth.

  3. Arabidopsis CDS blastp result: AK062144 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK062144 001-045-G08 At5g54080.2 homogentisate 1,2-dioxygenase / homogentisicase/homogentis...ate oxygenase / homogentisic acid oxidase (HGO) identical to SP|Q9ZRA2 Homogentisate 1,2-dioxygenase... (EC 1.13.11.5) (Homogentisicase) (Homogentisate oxygenase) (Homogentisic acid oxidase) {Arabidopsis thaliana}; contains Pfam profile PF04209: homogentisate 1,2-dioxygenase 1e-155 ...

  4. Arabidopsis CDS blastp result: AK065189 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK065189 J013002E07 At5g54080.2 homogentisate 1,2-dioxygenase / homogentisicase/homogentis...ate oxygenase / homogentisic acid oxidase (HGO) identical to SP|Q9ZRA2 Homogentisate 1,2-dioxygenase (EC 1.13.11.5) (Homogenti...sicase) (Homogentisate oxygenase) (Homogentisic acid oxidase) {Arabidopsis thaliana}; contains Pfam profile PF04209: homogentisate 1,2-dioxygenase 0.0 ...

  5. AcEST: DK963380 [AcEST

    Lifescience Database Archive (English)

    Full Text Available =Capsicum annuum PE=2 SV=1 221 2e-56 tr|Q0H901|Q0H901_COFCA Carotenoid cleavage dioxygenase 1 OS=Coff... 220...otenoid cleavage dioxygenase 1 OS=Petu... 219 1e-55 tr|Q0H8Z7|Q0H8Z7_COFAR Carotenoid cleavage dioxygenase 1 OS=Coff.

  6. AcEST: DK961324 [AcEST

    Lifescience Database Archive (English)

    Full Text Available age dioxygenase1 (Fragmen... 274 3e-72 tr|Q0H901|Q0H901_COFCA Carotenoid cleavage dioxygenase 1 OS=Coff... 2...74 3e-72 tr|Q0H8Z7|Q0H8Z7_COFAR Carotenoid cleavage dioxygenase 1 OS=Coff... 273 7e-72 tr|Q6E4P3|Q6E4P3_PETH

  7. AcEST: DK951060 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 1 tr|Q0H901|Q0H901_COFCA Carotenoid cleavage dioxygenase 1 OS=Coff... 237 6e-61 tr|A9Z0V7|A9Z0V7_ROSDA Carot...id cleavage dioxygenase 1 OS=Petu... 236 1e-60 tr|Q0H8Z7|Q0H8Z7_COFAR Carotenoid cleavage dioxygenase 1 OS=Coff.

  8. Metabolism of aromatic compounds by Caulobacter crescentus

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, D.K.; Bourquin, A.W.

    1987-05-01

    Cultures of Caulobacter crescentus were found to grow on a variety of aromatic compounds. Degradation of benzoate, p-hydroxybenzoate, and phenol was found to occur via ..beta..-ketoadipate. The induction of degradative enzymes such as benzoate 1,2-dioxygenase, the ring cleavage enzyme catechol 1,2-dioxygenase, and cis,cis-muconate lactonizing enzyme appeared similar to the control mechanism present in Pseudomonas spp. Both benzoate 1,2-dioxygenase and catechol 1,2-dioxygenase had stringent specificities, as revealed by their action toward substituted benzoates and substituted catechols, respectively.

  9. Simulation of the substrate cavity dynamics of quercetinase

    NARCIS (Netherlands)

    van den Bosch, M; Swart, M; van Gunsteren, WF; Canters, GW

    2004-01-01

    Molecular dynamics (MD) simulations have been performed on quercetin 2,3 dioxygenase (2,3QD) to study the mobility and flexibility of the substrate cavity. 2,3QD is the only firmly established Cu-containing dioxygenase known so far. It catalyses the breakage of the O-heterocycle of flavonols. The su

  10. AcEST: DK952352 [AcEST

    Lifescience Database Archive (English)

    Full Text Available d protein OS=Popul... 204 2e-54 tr|Q0H901|Q0H901_COFCA Carotenoid cleavage dioxygenase 1 OS=Coff... 213 5e-5...etu... 212 1e-53 tr|Q0H8Z7|Q0H8Z7_COFAR Carotenoid cleavage dioxygenase 1 OS=Coff.

  11. EST Table: FS920530 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available FS920530 E_FL_fufe_50K23_F_0 11/12/09 GO hit GO:0047800(cysteamine dioxygenase acti...090992|ref|XP_974899.1| PREDICTED: similar to 2-aminoethanethiol (cysteamine) dioxygenase [Tribolium castaneum] FS920530 fufe ...

  12. SwissProt search result: AK107236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107236 002-125-E12 (Q924Y0) Gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_MOUSE 7e-33 ...

  13. SwissProt search result: AK107236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107236 002-125-E12 (Q9QZU7) Gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_RAT 6e-34 ...

  14. SwissProt search result: AK110314 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110314 002-164-B12 (O75936) Gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_HUMAN 3e-12 ...

  15. SwissProt search result: AK110314 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110314 002-164-B12 (Q9QZU7) Gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_RAT 2e-11 ...

  16. SwissProt search result: AK107236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107236 002-125-E12 (Q98KK0) Probable gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_RHILO 7e-33 ...

  17. SwissProt search result: AK110314 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110314 002-164-B12 (Q924Y0) Gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_MOUSE 2e-11 ...

  18. SwissProt search result: AK110314 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110314 002-164-B12 (Q98KK0) Probable gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_RHILO 1e-20 ...

  19. SwissProt search result: AK107236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107236 002-125-E12 (O75936) Gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_HUMAN 7e-32 ...

  20. SwissProt search result: AK107236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107236 002-125-E12 (Q19000) Probable gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_CAEEL 1e-14 ...

  1. SwissProt search result: AK107236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107236 002-125-E12 (P80193) Gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_PSESK 1e-34 ...

  2. SwissProt search result: AK110314 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK110314 002-164-B12 (P80193) Gamma-butyrobetaine dioxygenase (EC 1.14.11.1) (Gamma-butyrobetaine...,2-oxoglutarate dioxygenase) (Gamma-butyrobetaine hydroxylase) (Gamma-BBH) BODG_PSESK 4e-18 ...

  3. EST Table: FS898353 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available 29 50 %/248 aa C28H8.11a#CE01822#WBGene00016201#tryptophan 2, 3- dioxygenase#status:Confirmed#UniProt:Q09474...FS898353 E_FL_ftes_30H20_R_0 11/12/09 GO hit GO:0004833(tryptophan 2,3-dioxygenase

  4. EST Table: FS795745 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available 29 51 %/290 aa C28H8.11a#CE01822#WBGene00016201#tryptophan 2, 3- dioxygenase#status:Confirmed#UniProt:Q09474...FS795745 E_FL_ffbm_19C09_F_0 11/12/09 GO hit GO:0004833(tryptophan 2,3-dioxygenase

  5. NCBI nr-aa BLAST: CBRC-XTRO-01-3800 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-3800 ref|ZP_02006305.1| 2-nitropropane dioxygenase, NPD [Ralstonia pick...ettii 12D] gb|EDN42447.1| 2-nitropropane dioxygenase, NPD [Ralstonia pickettii 12D] ZP_02006305.1 0.32 25% ...

  6. Impaired mitochondrial energy metabolism in Alzheimer's disease: Impact on pathogenesis via disturbed epigenetic regulation of chromatin landscape.

    Science.gov (United States)

    Salminen, Antero; Haapasalo, Annakaisa; Kauppinen, Anu; Kaarniranta, Kai; Soininen, Hilkka; Hiltunen, Mikko

    2015-08-01

    The amyloid cascade hypothesis for the pathogenesis of Alzheimer's disease (AD) was proposed over twenty years ago. However, the mechanisms of neurodegeneration and synaptic loss have remained elusive delaying the effective drug discovery. Recent studies have revealed that amyloid-β peptides as well as phosphorylated and fragmented tau proteins accumulate within mitochondria. This process triggers mitochondrial fission (fragmentation) and disturbs Krebs cycle function e.g. by inhibiting the activity of 2-oxoglutarate dehydrogenase. Oxidative stress, hypoxia and calcium imbalance also disrupt the function of Krebs cycle in AD brains. Recent studies on epigenetic regulation have revealed that Krebs cycle intermediates control DNA and histone methylation as well as histone acetylation and thus they have fundamental roles in gene expression. DNA demethylases (TET1-3) and histone lysine demethylases (KDM2-7) are included in the family of 2-oxoglutarate-dependent oxygenases (2-OGDO). Interestingly, 2-oxoglutarate is the obligatory substrate of 2-OGDO enzymes, whereas succinate and fumarate are the inhibitors of these enzymes. Moreover, citrate can stimulate histone acetylation via acetyl-CoA production. Epigenetic studies have revealed that AD is associated with changes in DNA methylation and histone acetylation patterns. However, the epigenetic results of different studies are inconsistent but one possibility is that they represent both coordinated adaptive responses and uncontrolled stochastic changes, which provoke pathogenesis in affected neurons. Here, we will review the changes observed in mitochondrial dynamics and Krebs cycle function associated with AD, and then clarify the mechanisms through which mitochondrial metabolites can control the epigenetic landscape of chromatin and induce pathological changes in AD.

  7. Quantitative high-throughput screening identifies 8-hydroxyquinolines as cell-active histone demethylase inhibitors.

    Directory of Open Access Journals (Sweden)

    Oliver N F King

    Full Text Available BACKGROUND: Small molecule modulators of epigenetic processes are currently sought as basic probes for biochemical mechanisms, and as starting points for development of therapeutic agents. N(ε-Methylation of lysine residues on histone tails is one of a number of post-translational modifications that together enable transcriptional regulation. Histone lysine demethylases antagonize the action of histone methyltransferases in a site- and methylation state-specific manner. N(ε-Methyllysine demethylases that use 2-oxoglutarate as co-factor are associated with diverse human diseases, including cancer, inflammation and X-linked mental retardation; they are proposed as targets for the therapeutic modulation of transcription. There are few reports on the identification of templates that are amenable to development as potent inhibitors in vivo and large diverse collections have yet to be exploited for the discovery of demethylase inhibitors. PRINCIPAL FINDINGS: High-throughput screening of a ∼236,000-member collection of diverse molecules arrayed as dilution series was used to identify inhibitors of the JMJD2 (KDM4 family of 2-oxoglutarate-dependent histone demethylases. Initial screening hits were prioritized by a combination of cheminformatics, counterscreening using a coupled assay enzyme, and orthogonal confirmatory detection of inhibition by mass spectrometric assays. Follow-up studies were carried out on one of the series identified, 8-hydroxyquinolines, which were shown by crystallographic analyses to inhibit by binding to the active site Fe(II and to modulate demethylation at the H3K9 locus in a cell-based assay. CONCLUSIONS: These studies demonstrate that diverse compound screening can yield novel inhibitors of 2OG dependent histone demethylases and provide starting points for the development of potent and selective agents to interrogate epigenetic regulation.

  8. Molecular characterization and expression analysis of fat mass and obesity-associated gene in rabbit

    Indian Academy of Sciences (India)

    Jinyi Xing; Wenqian Jing; Yunliang Jiang

    2013-12-01

    Fat mass and obesity-associated (FTO) gene codes for a nuclear protein of the AlkB related nonhaem iron and 2-oxoglutarate-dependent oxygenase superfamily, and is involved in animal fat deposition and human obesity. In this work, the molecular characterization and expression features of rabbit (Oryctolagus cuniculus) FTO cDNA were analysed. The rabbit FTO cDNA with a size of 2158 bp was cloned, including 1515 bp of the open reading frame that encoded a basic protein of 504 amino acids. Homologous comparison indicated that the rabbit FTO shared 36.36–91.88% identity with those from other species and phylogenetic analysis showed that the rabbit FTO is closely related to human, but more distantly related to zebrafish. The New Zealand rabbit FTO mRNA was detected in all tissues examined, with the highest levels found in the spleen and the lowest found in the kidney. However, no significant differences were seen in cerebellum, corpora quadrigemina, medulla oblongata and cerebral cortex of commercial adult rabbits. Moreover, mRNA levels of FTO in liver tissues were significantly increased in lactating New Zealand rabbits compared with 70-day-old, 90-day-old and gestating rabbits $(P \\lt 0.05)$. In contrast, FTO mRNA levels were significantly lower in longissimus dorsi muscle of 90-day-old New Zealand rabbits than in 70-day-old rabbits $(P \\lt 0.05)$. However, the expression levels of FTO in mammary gland and ovary of gestating and lactating rabbits were not significantly different $(P \\gt 0.05)$.

  9. Coloration efficiency of chemically deposited electrochromic thin films

    International Nuclear Information System (INIS)

    Transparent nickel oxide and copper oxide thin films were produced by very simple and economic method of chemical deposition. Those films were deposited onto fluorine doped tin oxide (FTO) coated glass substrates. Electrochromic test device (ECTD) was constructed by using these films as working electrodes, together with the FTO as a counter electrode in alkaline environment (0,1 M NaOH aqueous solution). All the obtained films exhibited electrochromic behavior. Nichel oxide films were transparent for visible light in the reduced state, and displayed a dark brown color in the oxidised state and displayed a very dark brown color in the reduced state. The coloration efficiency (CE) at wavelength λ=670 nm was estimated from the slope of the graphical presentation of the optical density as a function of the charge density, during the charge extraction (nickel oxide films) and charge insertion (copper oxide films). (Author)

  10. GenBank blastx search result: AK119211 [KOME

    Lifescience Database Archive (English)

    Full Text Available posase gene, partial cds; insertion sequence IS1380 transposase, hypothetical protein, LysR-type transcriptional regulator (tfd...R), chlorocatechol 1,2-dioxygenase (tfdC), chloromuconate cycloisomerase (tfdD), hypothet...ical protein, chlorodienlactone hydrolase (tfdE), chloromaleylacetate reductase (tfd...F), hypothetical protein, hypothetical protein, 2,4-D/alpha-ketoglutarate dioxygenase (tfdA), putative transport protein (tfd...K), dichlorophenol hydroxylase (tfdB), chlorodienlactone hydrolase (tfdEII), chlorocatechol 1,2-dioxygenase (tfd

  11. A Preliminary Study of Expression of a New Catechol- 1,2-Dioxygenase Gene ( tfd C) from Plesiomanas in Arabidopsis thaliana%邻单胞菌邻苯二酚1,2-双加氧酶基因(tfdC)在拟南芥中表达的初步研究

    Institute of Scientific and Technical Information of China (English)

    王文东; 陈文峻; 罗如新; 蒯本科

    2002-01-01

    将从一株邻单胞菌中克隆到的一个新的邻苯二酚1,2-双加氧酶基因(tfd C)的起始密码子由GTG突变成ATG,并克隆到农杆菌双元载体pPZPY122中,利用农杆菌介导转化模式植物拟南芥,获得了转化植株经过PCR,PCR-Southern和southern dot blot方法检测证实,tfdC基因已经整合到拟南芥基因组中.邻苯二酚1,2-双加氧酶酶活性检测表明,转基因植株具有一定的酶活性,而未转化的植株则不具有酶活性。

  12. 假单胞菌ZL13邻苯二酚2,3-双加氧酶基因的克隆表达%Cloning of a new catechol 2,3-dioxygenase gene from Pseudomonas sp.ZL13 and its expression in the E.coli BL21

    Institute of Scientific and Technical Information of China (English)

    张鲁进; 杨谦; 李娟

    2010-01-01

    寻找新型高效石油降解菌,并研究其相关基因一直是石油降解领域的热点.本文以细菌Pseudomonas sp.ZL13的降解性质粒pZL-1的DNA为模板,通过PCR扩增的方法进行基因克隆,得到邻苯二酚2,3-双加氧酶基因.序列分析结果表明,该基因大小为924 bp,编码307个氨基酸;序列同源性比较结果显示,该基因与荧光假单胞菌(Pseudomortas fluorescens)和恶臭假单胞菌(Pseudomonas pudita)的基因序列的相似性较高,处于同一分支.将目的基因连接到pGEX-4T-2表达载体上,在E.coli BL21中成功表达,转化子具有原油降解能力.

  13. Relationship of Abortion and the Expression of Indoleamine 2,3-Dioxygenase (IDO) in Villus and Syncytiotrophoblasts%绒毛及合体滋养层细胞吲哚胺2,3-二氧化酶表达与流产的关系

    Institute of Scientific and Technical Information of China (English)

    李雪莲; 归绥琪; 王海燕

    2006-01-01

    目的:探讨人早孕绒毛组织吲哚胺2,3-二氧化酶(IDO)的表达与流产的关系.方法:RT-PCR测正常妊娠和难免流产绒毛组织及JAR细胞株IDO mRNA表达;免疫组化分析两组绒毛组织IDO蛋白质表达;Westernblot检测体外培养的合体滋养层细胞IDO蛋白质表达;高效液相色谱法检测细胞培养上清液中有无犬尿氨酸.结果:难免流产组绒毛组织IDO mRNA及蛋白质表达均低于正常组;JAR细胞株不表达IDO mRNA;合体滋养层细胞表达IDO蛋白质;合体滋养层细胞培养上清中有犬尿氨酸.结论:绒毛组织IDO正常表达是维持妊娠所必需;体外培养的人早孕绒毛合体滋养层细胞表达的IDO具有活性.

  14. Non-target-site resistance to ALS inhibitors in waterhemp (Amaranthus tuberculatus)

    Science.gov (United States)

    A waterhemp population (MCR) previously characterized as resistant to 4-hyroxyphenylpyruvate dioxygenase (HPPD) and photosystem II (PSII) inhibitors was found to have two different resistance responses to acetolactate synthase (ALS) inhibitors. Plants from the MCR population exhibiting high resistan...

  15. InterProScan Result: BY940643 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available ogentisate 1,2-dioxygenase Biological Process: L-phenylalanine catabolic process (GO:0006559)|Biological Pro...cess: tyrosine metabolic process (GO:0006570)|Biological Process: oxidation reduction (GO:0055114) ...

  16. InterProScan Result: FS863249 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available mogentisate 1,2-dioxygenase Biological Process: L-phenylalanine catabolic process (GO:0006559)|Biological Pr...ocess: tyrosine metabolic process (GO:0006570)|Biological Process: oxidation reduction (GO:0055114) ...

  17. Disease: H00163 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available ,2-dioxygenase that leads to the widespread deposition of polymeric homogentisic acid, and clinical symptoms from degeneration of joi...nts and the aortic valve. Inherited metabolic disease hsa00350(3081+C00544) Tyrosin

  18. Disease: H00926 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available tercurrent infection or unidentified cause in these patients. Congenital disorder...e dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet 85:106-11 (2009) ...

  19. AcEST: DK951571 [AcEST

    Lifescience Database Archive (English)

    Full Text Available 1e-88 tr|Q0H901|Q0H901_COFCA Carotenoid cleavage dioxygenase 1 OS=Coff... 327 3e-88 tr|Q0H8Z7|Q0H8Z7_COFAR ...Carotenoid cleavage dioxygenase 1 OS=Coff... 327 3e-88 tr|Q6E4P3|Q6E4P3_PETHY Car

  20. AcEST: DK955113 [AcEST

    Lifescience Database Archive (English)

    Full Text Available noid cleavage dioxygenase 1 OS=Coff... 207 3e-52 tr|B4FBA4|B4FBA4_MAIZE 9,10-9,10 carotenoid cleavage dioxyg...a ... 206 5e-52 tr|Q0H8Z7|Q0H8Z7_COFAR Carotenoid cleavage dioxygenase 1 OS=Coff... 206 7e-52 tr|Q5U905|Q5U9

  1. AcEST: DK951968 [AcEST

    Lifescience Database Archive (English)

    Full Text Available ioxygenase OS=Capsicum annuum PE=2 SV=1 236 5e-61 tr|Q0H901|Q0H901_COFCA Carotenoid cleavage dioxygenase 1 OS=Coff....id cleavage dioxygena... 233 5e-60 tr|Q0H8Z7|Q0H8Z7_COFAR Carotenoid cleavage dioxygenase 1 OS=Coff... 233 5

  2. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds.

    OpenAIRE

    1988-01-01

    Trichloroethylene (TCE) was metabolized by the natural microflora of three different environmental water samples when stimulated by the addition of either toluene or phenol. Two different strains of Pseudomonas putida that degrade toluene by a pathway containing a toluene dioxygenase also metabolized TCE. A mutant of one of these strains lacking an active toluene dioxygenase could not degrade TCE, but spontaneous revertants for toluene degradation also regained TCE-degradative ability. The re...

  3. New metabolic pathway for N,N-dimethyltryptamine

    Energy Technology Data Exchange (ETDEWEB)

    Hryhorczuk, L.M.; Rainey, J.M. Jr.; Frohman, C.E.; Novak, E.A.

    1986-01-01

    N,N-Dimethyltryptamine (DMT) undergoes a major structural alteration when added to whole human blood or its red blood cells in vitro. A new high-pressure liquid chromatography (HPLC) peak is present in extracts of these treated tissues. The compound responsible for this peak has been identified by ultraviolet spectrophotometry and by mass spectrometry as dimethylkynuramine (DMK). The enzyme responsible for this appears to be different from tryptophan 2,3-dioxygenase and also from indoleamine 2,3-dioxygenase.

  4. Bacterial degradation of naproxen--undisclosed pollutant in the environment.

    Science.gov (United States)

    Wojcieszyńska, Danuta; Domaradzka, Dorota; Hupert-Kocurek, Katarzyna; Guzik, Urszula

    2014-12-01

    The presence of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment is an emerging problem due to their potential influence on human health and biocenosis. This is the first report on the biotransformation of naproxen, a polycyclic NSAID, by a bacterial strain. Stenotrophomonas maltophilia KB2 transformed naproxen within 35 days with about 28% degradation efficiency. Under cometabolic conditions with glucose or phenol as a carbon source degradation efficiency was 78% and 40%, respectively. Moreover, in the presence of naproxen phenol monooxygenase, naphthalene dioxygenase, hydroxyquinol 1,2-dioxygenase and gentisate 1,2-dioxygenase were induced. This suggests that degradation of naproxen occurs by its hydroxylation to 5,7,8-trihydroxynaproxen, an intermediate that can be cleaved by hydroxyquinol 1,2-dioxygenase. The cleavage product is probably further oxidatively cleaved by gentisate 1,2-dioxygenase. The obtained results provide the basis for the use of cometabolic systems in the bioremediation of polycyclic NSAID-contaminated environments. PMID:25026371

  5. Metabolic Engineering to Develop a Pathway for the Selective Cleavage of Carbon-Nitrogen Bonds

    Energy Technology Data Exchange (ETDEWEB)

    John J. Kilbane II

    2005-10-01

    The objective of the project is to develop a biochemical pathway for the selective cleavage of C-N bonds in molecules found in petroleum. Specifically a novel biochemical pathway will be developed for the selective cleavage of C-N bonds in carbazole. The cleavage of the first C-N bond in carbazole is accomplished by the enzyme carbazole dioxygenase, that catalyzes the conversion of carbazole to 2-aminobiphenyl-2,3-diol. The genes encoding carbazole dioxygenase were cloned from Sphingomonas sp. GTIN11 and from Pseudomonas resinovorans CA10. The selective cleavage of the second C-N bond has been challenging, and efforts to overcome that challenge have been the focus of recent research in this project. Enrichment culture experiments succeeded in isolating bacterial cultures that can metabolize 2-aminobiphenyl, but no enzyme capable of selectively cleaving the C-N bond in 2-aminobiphenyl has been identified. Aniline is very similar to the structure of 2-aminobiphenyl and aniline dioxygenase catalyzes the conversion of aniline to catechol and ammonia. For the remainder of the project the emphasis of research will be to simultaneously express the genes for carbazole dioxygenase and for aniline dioxygenase in the same bacterial host and then to select for derivative cultures capable of using carbazole as the sole source of nitrogen.

  6. [Activity of 5-aminolevulinate synthase in rat liver during degradation of cytochrome P-450 caused by administration of cadmium chloride].

    Science.gov (United States)

    Kaliman, P A; Inshina, N N

    2003-01-01

    The 5-aminolevulinate synthase, tryptophan-2,3-dioxygenase activities and cytochrome P-450 content in the rat liver was studied in different terms after CdCl2 administration and after administration of metal salt against a background of 2-hours action of alpha-tocopherol. The lowering of activity of 5-aminolevulinate synthase in 2 h with the consequent increase of the enzyme activity in 6 h and 24 h was detected. The holoenzyme activity and heme saturation of tryptophan-2,3-dioxygenase increased 6 h after CdCl2 administration. The holoenzyme activity and the total activity of tryptophan-2,3-dioxygenase rised in 24 h. The level of cytochrome P-450 lowered. Preliminary administration of alpha-tocopherol prevented changes of studied parameters 24 h after CdCl2 administration. The relationship between decrease of cytochrome P-450 level and 5-aminolevulinate synthase activation are discussed. PMID:14577179

  7. Key enzymes of the protocatechuate branch of the β-ketoadipate pathway for aromatic degradation in Corynebacterium glutamicum

    Institute of Scientific and Technical Information of China (English)

    SHEN; Xihui; LIU; Shuangjiang

    2005-01-01

    Although the protocatechuate branch of the β-ketoadipate pathway in Gram bacteria has been well studied, this branch is less understood in Gram+ bacteria. In this study,Corynebacterium glutamicum was cultivated with protocatechuate, p-cresol, vanillate and 4-hydroxybenzoate as sole carbon and energy sources for growth. Enzymatic assays indicated that growing cells on these aromatic compounds exhibited protocatechuate 3,4-dioxygenase activities. Data-mining of the genome of this bacterium revealed that the genetic locus ncg12314-ncg12315 encoded a putative protocatechuate 3,4-dioxygenase. The genes,ncg12314 and ncg12315, were amplified by PCR technique and were cloned into plasmid (pET21aP34D). Recombinant Escherichia coli strain harboring this plasmid actively expressed protocatechuate 3,4-dioxygenase activity. Further, when this locus was disrupted in C. glutamicum, the ability to degrade and assimilate protocatechuate, p-cresol, vanillate or 4-hydroxybenzoate was lost and protocatechuate 3,4-dioxygenase activity was disappeared. The ability to grow with these aromatic compounds and protocatechuate 3,4-dioxygenase activity of C.glutamicum mutant could be restored by gene complementation. Thus, it is clear that the key enzyme for ring-cleavage, protocatechuate 3,4-dioxygenase, was encoded by ncg12314 and ncg12315. The additional genes involved in the protocatechuate branch of the β-ketoadipate pathway were identified by mining the genome data publically available in the GenBank. The functional identification of genes and their unique organization in C. glutamicum provided new insight into the genetic diversity of aromatic compound degradation.

  8. Chemical bath deposition and electrochromic properties of NiO{sub x} films

    Energy Technology Data Exchange (ETDEWEB)

    Ristova, M.; Velevska, J. [Physics Department, Faculty of Science, P. O. Box 162, Skopje (Macedonia); Ristov, M. [Macedonian Academy of Sciences and Arts, Skopje (Macedonia)

    2002-02-01

    Nickel oxide (NiO{sub x}) thin films were prepared by the chemical deposition method (solution growth) on two kinds of substrates: (1) glass and (2) glass/SnO{sub 2}:F. Films were thermally treated at 200C for 10min in atmosphere. The texture, microstructure and composition were examined by optical microscopy, X-ray diffraction patterns (XRD) and X-ray photoelectron spectroscopy (XPS) analysis of the surface layer. The films exhibited anode electrochromism. The optical properties of the bleached and colored state were examined with transmittance spectroscopy in the visible region and reflectance FTIR spectroscopy. An electrochromic test device (ECTD), consisting of SnO{sub 2}/NiO{sub x}/NaOH-H{sub 2}O/SnO{sub 2}, was assembled and tested by cyclic voltammetry combined with a simultaneous recording of the change of transparency at {lambda}=670nm. The coloration efficiency was evaluated to be 24.3cm{sup 2}/C. The spontaneous ex-situ change of coloration with time of the colored and bleached NiO{sub x}/SnO{sub 2}/glass was also examined.

  9. Electrochromic properties of NiO{sub x} prepared by low vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Velevska, J.; Ristova, M. [Faculty of Natural Sciences and Mathematics, Institute of Physics, P. O. Box 162, Skopje (Macedonia)

    2002-06-01

    Nickel oxide (NiO{sub x}) thin films were prepared by a low vacuum evaporation (LVE) onto fluorine doped tin oxide (FTO) coated glass substrates. Electrochromic test device (ECTD) was constructed by using these films as working electrodes, together with the FTO/glass as an opposite (counter) electrode in alkaline environment (0.1M NaOH aqueous solution). Those films exhibited anodic electrochromism, changing color from transparent white-yellowish to dark brown. The coloration and bleaching times were found to be 1.7 and 4.2s, respectively. The electrochromic characteristics were recorded by using cyclic voltammetry. The optical transmission spectra of the bleached and colored states were recorded in the visible part of the spectrum. The Fourier-transform infrared (FTIR) reflection spectra of the sample in the bleached and colored states were measured at near normal incidence angle. The dependence of the transmission of the sample at wavelength {lambda}=670nm on the electric charge transported to the anode were also examined. The coloration efficiency was calculated to be 32.4cm{sup 2}/C from the slope of the graphical presentation of the optical density as a function of the charge density, during the charge extraction. The spontaneous ex situ change of coloration with time and stability of the sample in the bleached and colored states were also examined.

  10. Estimating Influence of Crystallizing Latent Heat on Cooling-Crystallizing Process of a Granitic Melt and Its Geological Implications

    Institute of Scientific and Technical Information of China (English)

    ZHANG Bangtong; WU Junqi; LING Hongfei; CHEN Peirong

    2008-01-01

    Based on the theory of thermal conductivity, in this paper we derived a formula to estimate the prolongation period (AtL) of cooling-crystallization process of a granitic melt caused by latent heat of crystallization as follows: △t=QL×△tcol/TM-TC×CP where TM is initial temperature of the granite melt, Tc crystallization temperature of the granite melt,CP specific heat, △tcol cooling period of a granite melt from its initial temperature (TM) to its crystallization temperature (TC), QL latent heat of the granite melt. The cooling period of the melt for the Fanshan granodiorite from its initial temperature (900℃) to crystallization temperature (600℃) could be estimated ~210,000 years if latent heat was not considered. Calculation for the Fanshan melt using the above formula yields a AtL value of~190,000 years, which implies that the actual cooling period within the temperature range of 900℃-600℃ should be 400,000 years. This demonstrates that the latent heat produced from crystallization of the granitic melt is a key factor influencing the cooling-crystallization process of a granitic melt, prolongating the period of crystallization and resulting in the large emplacement-crystallization time difference (ECTD) in granite batholith.

  11. A new metabolic pathway for N,N-dimethyltryptamine.

    Science.gov (United States)

    Hryhorczuk, L M; Rainey, J M; Frohman, C E; Novak, E A

    1986-01-01

    N,N-Dimethyltryptamine (DMT) undergoes a major structural alteration when added to whole human blood or its red blood cells in vitro. A new high-pressure liquid chromatography (HPLC) peak is present in extracts of these treated tissues. The compound responsible for this peak has been identified by ultraviolet spectrophotometry and by mass spectrometry as dimethylkynuramine (DMK). The enzyme responsible for this appears to be different from tryptophan 2,3-dioxygenase and also from indoleamine 2,3-dioxygenase. PMID:3455825

  12. Regulation of tfdCDEF by tfdR of the 2,4-dichlorophenoxyacetic acid degradation plasmid pJP4.

    OpenAIRE

    Kaphammer, B; Kukor, J J; Olsen, R H

    1990-01-01

    The closely linked structural genes tfdCDEF borne on the 2,4-dichlorophenoxyacetic acid (TFD) catabolic plasmid, pRO101, were cloned into vector pRO2321 as a 12.6-kilobase-pair BamHI C fragment and designated pRO2334. The first gene in this cluster, tfdC, encodes chlorocatechol 1,2-dioxygenase and was expressed constitutively. Chlorocatechol 1,2-dioxygenase expression by pRO2334 was repressed in trans by the negative regulatory element, tfdR, on plasmid pRO1949. Derepression of tfdC was achie...

  13. Tyrosinemia type III: diagnosis and ten-year follow-up.

    Science.gov (United States)

    Cerone, R; Holme, E; Schiaffino, M C; Caruso, U; Maritano, L; Romano, C

    1997-09-01

    Tyrosinemia type III, caused by deficiency of 4-hydroxyphenylpyruvate dioxygenase, is a rare disorder of tyrosine catabolism. Primary 4-hydroxyphenylpyruvate dioxygenase deficiency has been described in only three patients. The biochemical phenotype shows hypertyrosinemia and elevated urinary excretion of 4-hydroxyphenyl derivatives. We report the clinical and biochemical findings and the results of long-term follow-up in a new patient with this disorder presenting with severe mental retardation and neurological abnormalities. The clinical phenotype is compared with those reported in the three previously described patients.

  14. Extracellular matrix metabolism in bronchopulmonary dysplasia : Focus on lysyl hydroxylases and transglutaminases

    OpenAIRE

    Witsch, Jörn Thilo

    2013-01-01

    Bronchopulmonary dysplasia is a complication of premature birth characterized by impaired alveolar development. Remodeling of the ECM is a driving force for alveolarization and, if pertubated, may impair septation, suggesting dysregulation of ECM remodeling enzymes that drive collagen fiber formation and maturation: the procollagen-lysine, 2-oxoglutarate 5-dioxygenases (Plod) family, also known as lysyl hydroxylases (which catalyzes glycosylation and hydroxylation of collagen),...

  15. Main: 1TFZ [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 27 (4-Hydroxyphenylpyruvate Dioxygenase) C.Yang, J.W.Pflugrath, D.L.Camper, M.L.Foster, D.J.P...ernich, T.A.Walsh C.Yang, J.W.Pflugrath, D.L.Camper, M.L.Foster, D.J.Pernich, T.A.Walsh Structur

  16. Main: 1SQD [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 27 (4-Hydroxyphenylpyruvate Dioxygenase) C.Yang, J.W.Pflugrath, D.L.Camper, M.L.Foster, D.J.P...ernich, T.A.Walsh C.Yang, J.W.Pflugrath, D.L.Camper, M.L.Foster, D.J.Pernich, T.A.Walsh Structur

  17. Main: 1TG5 [RPSD[Archive

    Lifescience Database Archive (English)

    Full Text Available 7 (4-Hydroxyphenylpyruvate Dioxygenase) C.Yang, J.W.Pflugrath, D.L.Camper, M.L.Foster, D.J.P...ernich, T.A.Walsh C.Yang, J.W.Pflugrath, D.L.Camper, M.L.Foster, D.J.Pernich, T.A.Walsh Structura

  18. LOX1 inhibition with small molecules

    DEFF Research Database (Denmark)

    Gousiadou, Chryssoula; Kouskoumvekaki, Irene

    2016-01-01

    Lipoxygenases (LOXs) are nonheme, iron-containing dioxygenases that catalyze the dioxygenation of polyunsaturated fatty acids and are widely distributed among plant and animal species. Human LOXs, now identified as key enzymes in the pathogenesis of major disorders, have increasingly drawn the at...

  19. Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria.

    OpenAIRE

    Wackett, L P; Brusseau, G A; Householder, S R; Hanson, R S

    1989-01-01

    Microorganisms that biosynthesize broad-specificity oxygenases to initiate metabolism of linear and branched-chain alkanes, nitroalkanes, cyclic ketones, alkenoic acids, and chromenes were surveyed for the ability to biodegrade trichloroethylene (TCE). The results indicated that TCE oxidation is not a common property of broad-specificity microbial oxygenases. Bacteria that contained nitropropane dioxygenase, cyclohexanone monooxygenase, cytochrome P-450 monooxygenases, 4-methoxybenzoate monoo...

  20. EST Table: FS904141 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available ar to 2-aminoethanethiol (cysteamine) dioxygenase [Tribolium castaneum] gb|EFA09634.1| hypothetical protein ...10 33 %/248 aa gnl|Amel|GB12350-PA 10/09/10 35 %/238 aa gi|91090992|ref|XP_974899.1| PREDICTED: similar to 2-aminoethanethiol (cystea

  1. CATABOLISM OF AROMATIC BIOGENIC AMINES BY 'PSEUDOMONAS AERUGINOSA' PA01 VIA META CLEAVAGE OF HOMOPROTOCATECHUIC ACID (JOURNAL VERSION)

    Science.gov (United States)

    Pseudomonas aruginosa PA01 catabolized the aromatic amines tyramine and octopamine through 4-hydroxyphenylacetic acid and 3,4-dihydroxyphenylacetic acid (HPA). Meta ring cleavage was mediated by 3-4-dihydroxyphenylacetate 2,3-dioxygenase (HPADO), producing 2-hydroxy-5-carboxymeth...

  2. PhnY and PhnZ comprise a new oxidative pathway for enzymatic cleavage of a carbon-phosphorus bond

    DEFF Research Database (Denmark)

    McSorley, Fern R.; Wyatt, Peter W.; Martinez, Ascuncion;

    2012-01-01

    The sequential activities of PhnY, an α-ketoglutarate/Fe(II)-dependent dioxygenase, and PhnZ, a Fe(II)-dependent enzyme of the histidine-aspartate motif hydrolase family, cleave the carbon-phosphorus bond of the organophosphonate natural product 2-aminoethylphosphonic acid. PhnY adds a hydroxyl g...

  3. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil

    Energy Technology Data Exchange (ETDEWEB)

    Yrjaelae, Kim, E-mail: kim.yrjala@helsinki.f [Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki (Finland); Keskinen, Anna-Kaisa; Akerman, Marja-Leena; Fortelius, Carola [METROPOLIA University of Applied Science, Vantaa (Finland); Sipilae, Timo P. [Department of Biological and Environmental Sciences, General Microbiology, University of Helsinki, P.O. Box 56, (Biocenter 1C), 00014 Helsinki (Finland)

    2010-05-15

    To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation. - The bacterial community analysis using 16S rRNA and extradiol dioxygenase marker genes in rhizoremediation revealed both a rhizosphere and a PAH-pollution effect.

  4. GenBank blastx search result: AK107236 [KOME

    Lifescience Database Archive (English)

    Full Text Available AK107236 002-125-E12 BC019406.1 Mus musculus butyrobetaine (gamma), 2-oxoglutarate ...dioxygenase 1 (gamma-butyrobetaine hydroxylase), mRNA (cDNA clone MGC:30364 IMAGE:5134018), complete cds.|ROD ROD 8e-32 +2 ...

  5. An iron–oxygen intermediate formed during the catalytic cycle of cysteine dioxygenase† †Electronic supplementary information (ESI) available: Experimental and computational details. See DOI: 10.1039/c6cc03904a Click here for additional data file.

    Science.gov (United States)

    Tchesnokov, E. P.; Faponle, A. S.; Davies, C. G.; Quesne, M. G.; Turner, R.; Fellner, M.; Souness, R. J.; Wilbanks, S. M.

    2016-01-01

    Cysteine dioxygenase is a key enzyme in the breakdown of cysteine, but its mechanism remains controversial. A combination of spectroscopic and computational studies provides the first evidence of a short-lived intermediate in the catalytic cycle. The intermediate decays within 20 ms and has absorption maxima at 500 and 640 nm. PMID:27297454

  6. Structure and function of para-hydroxybenzoate hydroxylase

    NARCIS (Netherlands)

    Bolt, van der F.J.T.

    1999-01-01

    Enzymes which utilize molecular oxygen to either hydroxylate or cleave an aromatic ring are known as monooxygenases and dioxygenases, respectively. These enzymes contain a non-protein group such as heme, flavin, pterin or a transition metal ion in their active site, for oxygen activation. In his the

  7. InterProScan Result: FS863249 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available GENASE 1.3e-139 T IPR005708 Homogentisate 1,2-dioxygenase Biological Process: L-phenylalanine catabolic process (GO:0006559)|Biolog...ical Process: tyrosine metabolic process (GO:0006570)|Biological Process: oxidation reduction (GO:0055114) ...

  8. InterProScan Result: BY940643 [KAIKOcDNA[Archive

    Lifescience Database Archive (English)

    Full Text Available GENASE 3.4e-53 T IPR005708 Homogentisate 1,2-dioxygenase Biological Process: L-phenylalanine catabolic process (GO:0006559)|Biolog...ical Process: tyrosine metabolic process (GO:0006570)|Biological Process: oxidation reduction (GO:0055114) ...

  9. Characterization of Phenol Biodegradation by Comamonas testosteroni ZD4-1 and Pseudomonas aeruginosa ZD4-3

    Institute of Scientific and Technical Information of China (English)

    YING-XU CHEN; HE LIU; HUA-LIN CHEN

    2003-01-01

    Objective To investigate the characteristic and biochemical mechanism about the phenolbiodegradation by bacterial strains ZD 4-1 and ZD 4-3. Methods Bacterial strains ZD 4-1 and ZD4-3 were isolated by using phenol as the sole source of carbon and energy, and identified by 16SrDNA sequence analysis. The concentrations of phenol and total organic carbon (TOC) weremonitored to explore the degradation mechanism. The biodegradation intermediates were scanned at375 nm by using a uv-vis spectrophotometer. The enzyme assays were performed to detect theactivities of dioxygenases. Results Bacterial strains ZD 4-1 and ZD 4-3 were identified asComamonas testosteroni and Pseudomonas aeruginosa by 16S rDNA sequence analysis, respectively.The growth of the two strains was observed on a variety of aromatic hydrocarbons. The strains ZD 4-1and ZD 4-3 metabolized phenol via ortho-pathways and meta-pathways, respectively. In addition, theresults of enzyme assays showed that the biodegradation efficiency of phenol by meta-pathways washigher than that by ortho-pathways. Finally, the results of induction experiment indicated that thecatechol dioxygenases, both catechol 1,2-dioxygenase (C120) and catechol 2,3-dioxygenase (C230),were all inducible. Conclusion The strains ZD 4-1 and ZD 4-3 metabolize phenol throughortho-pathways and meta-pathway, respectively. Furthermore, the biodegradation efficiency of phenolby meta-pathways is higher than that by ortho-pathways.

  10. Functional identification of gene cluster for the aniline metabolic pathway mediated by transposable element

    Institute of Scientific and Technical Information of China (English)

    LIANG Quanfeng; Takeo Masahiro; LIN Min; CHEN Ming; XU Yuquan; ZHANG Wei; PING Shuzhen; LU Wei; SONG Xianlong; WANG Weiwei; GENG Lizhao

    2005-01-01

    A convenient and widely applicable method has been developed to clone aniline metabolic gene cluster in this study. Three positive recombinant plasmids pDA1, pDB2 and pDB11 were cloned from genomic library of aniline degradation strain AD9. The result of aniline dioxygenase (AD) activity and catechol 2,3-oxygenase (C23O) activity assay showed that pDA1 and pDB11 contain aniline dioxygenase genes and catechol 2,3-dioxygenase genes, respectively. The sequence analysis of the total 24.7-kb region revealed that this region contains 25 ORFs, of which 17 genes involve metabolism of aniline. In the gene cluster, the first five genes (tadQTA1A2B) and the subsequent gene (tadR1) were predicted to encode a multi-component aniline dioxygenase and a LysR-type regulator, respectively, while the others (tadD1C1D2C2EFGIJKL) were expected to encode meta- cleavage pathway enzymes for catechol degradation. The gene cluster was surrounded by two IS1071 sequences.

  11. Proteomic characterization of plasmid pLA1 for biodegradation of polycyclic aromatic hydrocarbons in the marine bacterium, Novosphingobium pentaromativorans US6-1.

    Directory of Open Access Journals (Sweden)

    Sung Ho Yun

    Full Text Available Novosphingobium pentaromativorans US6-1 is a halophilic marine bacterium able to degrade polycyclic aromatic hydrocarbons (PAHs. Genome sequence analysis revealed that the large plasmid pLA1 present in N. pentaromativorans US6-1 consists of 199 ORFs and possess putative biodegradation genes that may be involved in PAH degradation. 1-DE/LC-MS/MS analysis of N. pentaromativorans US6-1 cultured in the presence of different PAHs and monocyclic aromatic hydrocarbons (MAHs identified approximately 1,000 and 1,400 proteins, respectively. Up-regulated biodegradation enzymes, including those belonging to pLA1, were quantitatively compared. Among the PAHs, phenanthrene induced the strongest up-regulation of extradiol cleavage pathway enzymes such as ring-hydroxylating dioxygenase, putative biphenyl-2,3-diol 1,2-dioxygenase, and catechol 2,3-dioxygenase in pLA1. These enzymes lead the initial step of the lower catabolic pathway of aromatic hydrocarbons through the extradiol cleavage pathway and participate in the attack of PAH ring cleavage, respectively. However, N. pentaromativorans US6-1 cultured with p-hydroxybenzoate induced activation of another extradiol cleavage pathway, the protocatechuate 4,5-dioxygenase pathway, that originated from chromosomal genes. These results suggest that N. pentaromativorans US6-1 utilizes two different extradiol pathways and plasmid pLA1 might play a key role in the biodegradation of PAH in N. pentaromativorans US6-1.

  12. Site-specific deletions of chromosomally located DNA segments with the multimer resolution system of broad-host-range plasmid RP4

    DEFF Research Database (Denmark)

    Sternberg, Claus; Eberl, Leo; Sanchezromero, Juan M.;

    1995-01-01

    -galactosidase and catechol 2,3 dioxygenase) or luminescent (Vibrio harveyi luciferase) phenotypic markers associated to res sequences were inserted in the chromosome of the target bacteria and exposed in vivo to the product of the parA gene, The high frequencies of marker excision obtained, with different configurations...

  13. Total synthesis of exiguamines A and B inspired by catecholamine chemistry.

    Science.gov (United States)

    Sofiyev, Vladimir; Lumb, Jean-Philip; Volgraf, Matthew; Trauner, Dirk

    2012-04-16

    The evolution of a total synthesis of the exiguamines, two structurally unusual natural products that are highly active inhibitors of indolamine-2,3-dioxygenase (IDO), is described. The ultimately successful strategy involves advanced cross-coupling methodology and features a potentially biosynthetic tautomerization/electrocyclization cascade reaction that forms two heterocycles and installs a quaternary ammonium ion in a single synthetic operation.

  14. Distinct Tryptophan Catabolism and Th17/Treg Balance in HIV Progressors and Elite Controllers

    NARCIS (Netherlands)

    Jenabian, Mohammad-Ali; Patel, Mital; Kema, Ido; Kanagaratham, Cynthia; Radzioch, Danuta; Thebault, Pamela; Lapointe, Rejean; Tremblay, Cecile; Gilmore, Norbert; Ancuta, Petronela; Routy, Jean-Pierre

    2013-01-01

    Tryptophan (Trp) catabolism into immunosuppressive kynurenine (Kyn) by indoleamine 2,3-dioxygenase (IDO) was previously linked to Th17/Treg differentiation and immune activation. Here we examined Trp catabolism and its impact on Th17/Treg balance in uninfected healthy subjects (HS) and a large cohor

  15. Using "Pseudomonas Putida xylE" Gene to Teach Molecular Cloning Techniques for Undergraduates

    Science.gov (United States)

    Dong, Xu; Xin, Yi; Ye, Li; Ma, Yufang

    2009-01-01

    We have developed and implemented a serial experiment in molecular cloning laboratory course for undergraduate students majored in biotechnology. "Pseudomonas putida xylE" gene, encoding catechol 2, 3-dioxygenase, was manipulated to learn molecular biology techniques. The integration of cloning, expression, and enzyme assay gave students a chance…

  16. OXIDATION OF BIPHENYL BY A MULTICOMPONENT ENZYME SYSTEM FROM PSEUDOMONAS SP. STRAIN LB400

    Science.gov (United States)

    Pseudomonas sp. strain LB400 grows on biphenyl as the sole carbon and energy source. This organism also cooxidizes several chlorinated biphenyl congeners. Biphenyl dioxygenase activity in cell extract required addition of NAD(P)H as an electron donor for the conversion of bipheny...

  17. Oxidation of polychlorinated biphenyls by Pseudomonas sp. strain LB400 and Pseudomonas pseudoalcaligenes KF707.

    OpenAIRE

    Gibson, D T; Cruden, D. L.; Haddock, J D; Zylstra, G J; Brand, J M

    1993-01-01

    Biphenyl-grown cells and cell extracts prepared from biphenyl-grown cells of Pseudomonas sp. strain LB400 oxidize a much wider range of chlorinated biphenyls than do analogous preparations from Pseudomonas pseudoalcaligenes KF707. These results are attributed to differences in the substrate specificity of the biphenyl 2,3-dioxygenases from both organisms.

  18. The rhizosphere and PAH amendment mediate impacts on functional and structural bacterial diversity in sandy peat soil

    International Nuclear Information System (INIS)

    To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation. - The bacterial community analysis using 16S rRNA and extradiol dioxygenase marker genes in rhizoremediation revealed both a rhizosphere and a PAH-pollution effect.

  19. 组蛋白去甲基化酶PHD锌指蛋白8与神经发育%The Histone Demethylase PHF8 and Neural Development

    Institute of Scientific and Technical Information of China (English)

    郭晓强; 沈永青; 刘贝; 常彦忠; 段相林

    2011-01-01

    PHF8 (PHD finger protein 8) is a Fe2+ and 2-oxoglutarate dependent histone lysine demethylase and belongs to a family of JmjC domain-containing proteins. PHF8 also contains a plant homeodomain (PHD) finger motif in its N-terminus, which involves in transcriptional regulation. PHF8 can demethylate H3K9me2/1,H4K20mel and H3K27me2 with JmjC domain, and also act as a transcriptional coactivator through binding to H3K4me3 via PHI) finger. PHF8 regulates expression of rRNA and many protein-coding genes involved in neural development such as JARID 1C. Mutations in human PHF8 which are defective in histone demethylase activity can cause inherited X-linked mental retardation (XLMR) and cleft lip/cleft palate. These researches suggested that PHF8 is an important regulator of neural development, which deepens the understanding of historne methylation with gene expression and provides novel clues to understanding of XLMR.%PHD锌指蛋白8(PHF8)是一种Fe2+和α-酮戊二酸依赖的组蛋白赖氨酸去甲基化酶.PHF8属于包含Jmjc结构域蛋白家族,在N端还含有一个PHD(plant homeadomain)锌指结构域.人的PHF8基因突变往往破坏组蛋白去甲基化酶活性,从而引发遗传性X-连锁智力迟滞(XLMR)并伴发唇裂的发生.PHF8一方面可催化H3K9me2/1、H4K20me1和H3K27me2的去甲基化,另一方面还通过N端PHD锌指结构域与H3K4me3结合而发挥转录共激活作用.PHF8可调节rRNA和多个涉及神经发育的蛋白质编码基因如JARID1C的表达.这些研究显示,PHF8是一种重要的神经发育调节因子,从而拓宽了对组蛋白甲基化与基因表达关联的理解,同时为XLMR疾病的理解提供了新的线索.

  20. Differential Expression of the Demosponge (Suberites domuncula Carotenoid Oxygenases in Response to Light: Protection Mechanism Against the Self-Produced Toxic Protein (Suberitine

    Directory of Open Access Journals (Sweden)

    Heinz C. Schröder

    2012-01-01

    Full Text Available The demosponge Suberites domuncula has been described to contain high levels of a proteinaceous toxin, Suberitine, that displays haemolytic activityIn the present study this 7–8 kDa polypeptide has been isolated and was shown to exhibit also cytotoxic effects on cells of the same species. Addition of retinal, a recently identified metabolite of β-carotene that is abundantly present in S. domuncula was found to reduce both the haemolytic and the cell toxic activity of Suberitine at a molar ratio of 1:1. Spectroscopic analyses revealed that the interaction between β-carotene and Suberitine can be ascribed to a reversible energy transfer reaction. The enzyme that synthesises retinal in the sponge system is the β,β-carotene-15,15′-dioxygenase [carotene dioxygenase]. In order to clarify if this enzyme is the only β-carotene-metabolizing enzyme a further oxygenase had been identified and cloned, the (related carotenoid oxygenase. In contrast to the dioxygenase, the carotenoid oxygenase could not degrade β-carotene or lycopene in Escherichia coli strains that produced these two carotenoids; therefore it had been termed related-carotenoid oxygenase. Exposure of primmorphs to light of different wavelengths from the visible spectrum resulted after 3 days in a strong upregulation of the dioxygenase in those 3D-cell aggregates that had been incubated with β-carotene. The strongest effect is seen with blue light at a maximum around 490 nm. It is concluded that the toxin Suberitine is non-covalently modified by retinal, the cleavage product from β-carotene via the enzyme carotene dioxygenase, a light inducible oxygenase. Hence, this study highlights that in S. domuncula the bioactive metabolite, retinal, has the property to detoxify its homologous toxin.

  1. Impact of clay mineral, wood sawdust or root organic matter on the bacterial and fungal community structures in two aged PAH-contaminated soils.

    Science.gov (United States)

    Cébron, Aurélie; Beguiristain, Thierry; Bongoua-Devisme, Jeanne; Denonfoux, Jérémie; Faure, Pierre; Lorgeoux, Catherine; Ouvrard, Stéphanie; Parisot, Nicolas; Peyret, Pierre; Leyval, Corinne

    2015-09-01

    The high organic pollutant concentration of aged polycyclic aromatic hydrocarbon (PAH)-contaminated wasteland soils is highly recalcitrant to biodegradation due to its very low bioavailability. In such soils, the microbial community is well adapted to the pollution, but the microbial activity is limited by nutrient availability. Management strategies could be applied to modify the soil microbial functioning as well as the PAH contamination through various amendment types. The impact of amendment with clay minerals (montmorillonite), wood sawdust and organic matter plant roots on microbial community structure was investigated on two aged PAH-contaminated soils both in laboratory and 1-year on-site pot experiments. Total PAH content (sum of 16 PAHs of the US-EPA list) and polar polycyclic aromatic compounds (pPAC) were monitored as well as the available PAH fraction using the Tenax method. The bacterial and fungal community structures were monitored using fingerprinting thermal gradient gel electrophoresis (TTGE) method. The abundance of bacteria (16S rRNA genes), fungi (18S rRNA genes) and PAH degraders (PAH-ring hydroxylating dioxygenase and catechol dioxygenase genes) was followed through qPCR assays. Although the treatments did not modify the total and available PAH content, the microbial community density, structure and the PAH degradation potential changed when fresh organic matter was provided as sawdust and under rhizosphere influence, while the clay mineral only increased the percentage of catechol-1,2-dioxygenase genes. The abundance of bacteria and fungi and the percentage of fungi relative to bacteria were enhanced in soil samples supplemented with wood sawdust and in the plant rhizospheric soils. Two distinct fungal populations developed in the two soils supplemented with sawdust, i.e. fungi related to Chaetomium and Neurospora genera and Brachyconidiellopsis and Pseudallescheria genera, in H and NM soils respectively. Wood sawdust amendment favoured the

  2. Isolation and characteristics of a novel biphenyl-degrading bacterial strain, Dyella ginsengisoli LA-4

    Institute of Scientific and Technical Information of China (English)

    LI Ang; QU Yuanyuan; ZHOU Jiti; GOU Min

    2009-01-01

    A novel biphenyl-degrading bacterial strain LA-4 was isolated from activated sludge. It was identified as Dyella ginsengisoli according to phylogenetic similarity of 16S rRNA gene sequence. This isolate could utilize biphenyl as sole source of carbon and energy, which degraded over 95 mg/L biphenyl within 36 h. The major metabolites formed from biphenyl, such as 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) and benzoic acid, were identified by LC-MS. The crude cell extract of strain LA-4 exhibited the activity of 2,3-dihydroxybiphenyl 1,2-dioxygenase (2,3-DHBD) and the kinetic parameters were Km= 26.48 μmol/L and Vmax= 8.12 μmol/mg protein. A conserved region of the biphenyl dioxygenase gene bphA1 of strain LA-4 was amplified by PCR and confirmed by DNA sequencing.

  3. Lysyl hydroxylases:characterization of mouse lysyl hydroxylases and generation of genetically modified lysyl hydroxylase 3 mouse lines

    OpenAIRE

    Ruotsalainen, H. (Heidi)

    2005-01-01

    Abstract Lysyl hydroxylase (EC 1.14.11.4, procollagen-lysine, 2-oxyglutarate, 5-dioxygenase, Plod) catalyzes the hydroxylation of certain lysine residues in collagens and in other proteins with collagenous domains. Three lysyl hydroxylase isoforms have been cloned from human and rat. The importance of lysyl hydroxylase 1 in collagen biosynthesis is demonstrated by the heritable disorder, Ehlers-Danlos syndrome type VI, which is characterized by joint laxity, progressive scoliosis, muscle h...

  4. Weed management in conventional, no-till, and transgenic corn with mesotrione combinations and other herbicides

    OpenAIRE

    Armel, Gregory Russell

    2002-01-01

    Weed management programs in corn typically include herbicides applied both preemergence (PRE) and postemergence (POST) for season-long weed control. Mesotrione is a new triketone herbicide registered for PRE and POST control of broadleaf weeds in corn. Triketone herbicides function through inhibition of the enzyme p-hydroxyphenylpyruvate dioxygenase. Mesotrione applied PRE did not adequately control common lambsquarters (Chenopodium album L.), smooth pigweed (Amaranthus hybridus L.), commo...

  5. Novel Pathway of Salicylate Degradation by Streptomyces sp. Strain WA46

    OpenAIRE

    Ishiyama, Daisuke; Vujaklija, Dusica; Davies, Julian

    2004-01-01

    A novel salicylate-degrading Streptomyces sp., strain WA46, was identified by UV fluorescence on solid minimal medium containing salicylate; trace amounts of gentisate were detected by high-pressure liquid chromatography when strain WA46 was grown with salicylate. PCR amplification of WA46 DNA with degenerate primers for gentisate 1,2-dioxygenase (GDO) genes produced an amplicon of the expected size. Sequential PCR with nested GDO primers was then used to identify a salicylate degradation gen...

  6. Addition of Aromatic Substrates Restores Trichloroethylene Degradation Activity in Pseudomonas putida F1

    OpenAIRE

    Morono, Yuki; Unno, Hajime; TANJI, Yasunori; Hori, Katsutoshi

    2004-01-01

    The rate of trichloroethylene (TCE) degradation by toluene dioxygenase (TDO) in resting cells of Pseudomonas putida F1 gradually decreased and eventually stopped within 1.5 h, as in previous reports. However, the subsequent addition of toluene, which is the principal substrate of TDO, resulted in its immediate degradation without a lag phase. After the consumption of toluene, degradation of TCE restarted at a rate similar to its initial degradation, suggesting that this degradation was mediat...

  7. Prolyl 4 Hydroxylase: A Critical Target in the Pathophysiology of Diseases

    OpenAIRE

    Kant, Ravi; Bali, Anjana; Singh, Nirmal; Jaggi, Amteshwar Singh

    2013-01-01

    Prolyl 4 hydroxylases (P4H) are iron- and 2-oxoglutamate-dependent dioxygenase enzymes and hypoxia-inducible transcription factor (HIF)-P4Hs play a critical role in the regulating oxygen homeostasis in the local tissues as well in the systemic circulation. Over a period of time, a number of prolyl hydroxylase inhibitors and activators have been developed. By employing the pharmacological tools and transgenic knock out animals, the critical role of these enzymes has been established in the pat...

  8. Metabolic Effects of Increasing Doses of Nitisinone in the Treatment of Alkaptonuria

    OpenAIRE

    Gertsman, Ilya; Barshop, Bruce A.; Panyard-Davis, Jan; Gangoiti, Jon A.; Nyhan, William L.

    2015-01-01

    Alkaptonuria is an autosomal recessive disease involving a deficiency of the enzyme homogentisate dioxygenase, which is involved in the tyrosine degradation pathway. The enzymatic deficiency results in high concentrations of homogentisic acid (HGA), which results in orthopedic and cardiac complications, among other symptoms. Nitisinone (NTBC) has been shown to effectively treat alkaptonuria by blocking the conversion of 4-hydroxyphenylpyruvate to HGA, but there have been concerns that using d...

  9. Nitisinone Arrests but Does Not Reverse Ochronosis in Alkaptonuric Mice

    OpenAIRE

    Keenan, Craig M; Preston, Andrew J; Sutherland, Hazel; Wilson, Peter J.; Psarelli, Eftychia E; Cox, Trevor F; Ranganath, Lakshminarayan R.; Jarvis, Jonathan C.; Gallagher, James A

    2015-01-01

    Alkaptonuria (AKU) is an ultrarare autosomal recessive disorder resulting from a deficiency of homogentisate 1,2 dioxygenase (HGD), an enzyme involved in the catabolism of phenylalanine and tyrosine. Loss of HGD function prevents metabolism of homogentisic acid (HGA), leading to increased levels of plasma HGA and urinary excretion. Excess HGA becomes deposited in collagenous tissues and subsequently undergoes polymerisation, principally in the cartilages of loaded joints, in a process known a...

  10. Microbial community development of biofilm in Amaranth decolourization technology analysed by FISH

    Science.gov (United States)

    Belouhova, Mihaela; Schneider, Irina; Chakarov, Stoyan; Ivanova, Iliana; Topalova, Yana

    2014-01-01

    The aim of this study was to elucidate the role, the space distribution and the relationships of the bacteria from the genus Pseudomonas in a biofilm community during semi-continuous Amaranth decolourization process in model sand biofilters. The examined parameters of the process were as follows: technological parameters; key enzyme activities (azoreductase, succinate dehydrogenase, catechol-1,2-dioxygenase, catechol-2,3-dioxygenase); the number of azo-degrading bacteria and the bacteria from genus Pseudomonas (plate count technique); the amount and the location of Pseudomonas sp. using fluorescent in situ hybridization (FISH). The results showed that the increase of the Amaranth removal rate with 120% was accompanied with increase of the enzyme activities of the biofilm (azoreductase activity – with 25.90% and succinate dehydrogenase – with 10.61%). The enzyme assays showed absence of activity for сatechol-1,2-dioxygenase and catechol-2,3-dioxygenase at the early phase and high activities of the same oxygenases at the late phase (2.76 and 1.74 μmol/min mg protein, respectively). In the beginning of the process (0–191 h), the number of the culturable microorganisms from genus Pseudomonas was increased with 48.76% but at the late phase (191–455 h) they were decreased with 15.25% while the quantity of the non-culturable bacteria from this genus with synergetic relationships was increased with 23.26%. The dominant microbial factors were identified in the structure of the biofilm during the azo-degradation process by using FISH analysis. Furthermore, the inner mechanisms for increase of the rate and the range of the detoxification were revealed during the complex wastewater treatment processes. PMID:26019551

  11. 5-azacytidine reduces methylation, promotes differentiation and induces tumor regression in a patient-derived IDH1 mutant glioma xenograft

    OpenAIRE

    Borodovsky, Alexandra; Salmasi, Vafi; Turcan, Sevin; Fabius, Armida W. M.; Baia, Gilson S; Eberhart, Charles G.; Weingart, Jon D.; Gallia, Gary L.; Baylin, Stephen B.; Chan, Timothy A.; Riggins, Gregory J.

    2013-01-01

    Somatic mutations in Isocitrate Dehydrogenase 1 (IDH1) are frequent in low grade and progressive gliomas and are characterized by the production of 2-hydroxyglutarate (2-HG) from α-ketoglutarate by the mutant enzyme. 2-HG is an “oncometabolite” that competitively inhibits α-KG dependent dioxygenases resulting in various widespread cellular changes including abnormal hypermethylation of genomic DNA and suppression of cellular differentiation. Despite the growing understanding of IDH mutant gli...

  12. Dibenzofuran degradation by Sphingomonas wittichii RW1 under environmental stresses

    OpenAIRE

    Coronado E.

    2013-01-01

    Sphingomonas wittichii is a gram-negative Alpha-proteobacterium, capable of degrading xenobiotic compounds such as dibenzofuran (DBF), dibenzo-p-dioxin, carbazole, 2-hydroxybiphenyl or nitro diphenyl ether herbicides. The metabolism of strain RW1 has been the subject of previous studies and a number of genes involved in DBF degradation have been characterized. It is known that RW1 posseses a unique initial DBF dioxygenase (encoded by the dxnAl gene) that catalyzes the first step in the degrad...

  13. The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida

    OpenAIRE

    Arias-Barrau, Elsa; Olivera, Elías R.; Luengo, José M.; Fernández, Cristina; Galán, Beatriz; García, José L.; Díaz, Eduardo; Miñambres, Baltasar

    2004-01-01

    Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Wherea...

  14. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia

    OpenAIRE

    Estrada-Melo, Alejandro C; Chao,; Reid, Michael S; Cai-Zhong Jiang

    2015-01-01

    The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress...

  15. Role of tfdCIDIEIFI and tfdDIICIIEIIFII Gene Modules in Catabolism of 3-Chlorobenzoate by Ralstonia eutropha JMP134(pJP4)

    OpenAIRE

    Pérez-Pantoja, D.; L. Guzmán; Manzano, M.; Pieper, D. H.; González, B.

    2000-01-01

    The enzymes chlorocatechol-1,2-dioxygenase, chloromuconate cycloisomerase, dienelactone hydrolase, and maleylacetate reductase allow Ralstonia eutropha JMP134(pJP4) to degrade chlorocatechols formed during growth in 2,4-dichlorophenoxyacetate or 3-chlorobenzoate (3-CB). There are two gene modules located in plasmid pJP4, tfdCIDIEIFI (module I) and tfdDIICIIEIIFII (module II), putatively encoding these enzymes. To assess the role of both tfd modules in the degradation of chloroaromatics, each ...

  16. Characterization of the first enzyme in 2,4-dichlorophenoxyacetic acid metabolism.

    OpenAIRE

    Hausinger, R P; Fukumori, F

    1995-01-01

    This paper reviews the properties of the Alcaligenes eutrophus JMP134 tfdA gene product, the enzyme responsible for the first step in 2,4-dichlorophenoxyacetic acid (2,4-D) biodegradation. The gene was overexpressed in Escherichia coli and several of its enzymatic properties were characterized. Although this enzyme catalyzes a hydroxylation reaction, it is not a monooxygenase. Rather, TfdA is an Fe(II) and alpha-ketoglutarate-dependent dioxygenase that metabolizes the latter cosubstrate to su...

  17. Preischemic targeting of HIF prolyl hydroxylation inhibits fibrosis associated with acute kidney injury

    OpenAIRE

    Kapitsinou, Pinelopi P.; Jaffe, Jonathan; Michael, Mark; Swan, Christina E.; Duffy, Kevin J.; Erickson-Miller, Connie L.; Haase, Volker H.

    2012-01-01

    Acute kidney injury (AKI) due to ischemia is an important contributor to the progression of chronic kidney disease (CKD). Key mediators of cellular adaptation to hypoxia are oxygen-sensitive hypoxia-inducible factors (HIF), which are regulated by prolyl-4-hydroxylase domain (PHD)-containing dioxygenases. While activation of HIF protects from ischemic cell death, HIF has been shown to promote fibrosis in experimental models of CKD. The impact of HIF activation on AKI-induced fibrosis has not b...

  18. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA

    OpenAIRE

    Isabella, Vincent M.; Clark, Virginia L.

    2011-01-01

    Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamiliy of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated ...

  19. Untersuchungen zur Bestimmung des inhärenten katalytischen Potentials von Metall-bindenden Enzymen

    OpenAIRE

    Wetzl, Dennis

    2014-01-01

    In der hier vorgestellten Arbeit sollte, beispielhaft an zwei Modell-Systemen, untersucht werden ob und inwieweit man das katalytische Potential von Metalloenzymen nutzen kann, um alternative, sogenannte promiskuitive Reaktionen zu katalysieren. Dabei teilten sich die beiden Modell-Systeme, die Eisen-bindende Taurin Dioxygenase (TauD) und die artifizielle Kupfer-bindenen tHisF Varianten, eine HisHisAsp Triade als gemeinsames Strukturmotiv für die Koordination der Metallionen Eisen bzw. Kupfer...

  20. Rôle de l'indoléamine-2,3-dioxygénase dans la persistance des infections virales

    OpenAIRE

    Lepiller, Quentin

    2015-01-01

    Indoleamine-2,3-dioxygenase (IDO) is a tryptophan-catabolizing enzyme that plays a dual role during infectious diseases by contributing to the innate defenses against pathogens and by regulating the immune response. IDO is expressed in patients with hepatitis C virus (HCV) infection. However, the molecular mechanism of IDO induction in HCV infection and its role in the antiviral immune response remain unknown. Using primary human hepatocytes, we have shown that HCV infection stimulates IDO ex...

  1. Biotransformation of eugenol via protocatechuic acid by thermophilic Geobacillus sp. AY 946034 strain.

    Science.gov (United States)

    Giedraityte, Gražina; Kalėdienė, Lilija

    2014-04-01

    The metabolic pathway of eugenol degradation by thermophilic Geobacillus sp. AY 946034 strain was analyzed based on the lack of data about eugenol degradation by thermophiles. TLC, GC-MS, and biotransformation with resting cells showed that eugenol was oxidized through coniferyl alcohol, and ferulic and vanillic acids to protocatechuic acid before the aromatic ring was cleaved. The cell-free extract of Geobacillus sp. AY 946034 strain grown on eugenol showed a high activity of eugenol hydroxylase, feruloyl-CoA synthetase, vanillate-O-demethylase, and protocatechuate 3,4-dioxygenase. The key enzyme, protocatechuate 3,4- dioxygenase, which plays a crucial role in the degradation of various aromatic compounds, was purified 135-fold to homogeneity with a 34% overall recovery from Geobacillus sp. AY 946034. The relative molecular mass of the native enzyme was about 450 ± 10 kDa and was composed of the non-identical subunits. The pH and temperature optima for enzyme activity were 8 and 60°C, respectively. The half-life of protocatechuate 3,4-dioxygenase at the optimum temperature was 50 min.

  2. Enzyme systems for biodegradation of polychlorinated dibenzo-p-dioxins

    Energy Technology Data Exchange (ETDEWEB)

    Sakaki, Toshiyuki; Munetsuna, Eiji [Toyama Prefectural Univ. (Japan). Dept. of Biotechnology

    2010-09-15

    The angular dioxygenase, cytochrome P450, lignin peroxidase, and dehalogenase are known as dioxin-metabolizing enzymes. All of these enzymes have metal ions in their active centers, and the enzyme systems except for peroxidase have each distinct electron transport chain. Although the enzymatic properties of the angular dioxygenase, lignin peroxidase, and cytochrome P450 have been studied well, the information about dehalogenase is much less than other enzyme systems due to its instability under the aerobic conditions. However, this enzyme system appears to be quite promising from the viewpoint of practical use for bioremediation, because dehalogenases are capable of degradation of polychlorinated dibenzo-p-dioxins (PCDDs) with more than four chlorine substituents, whereas the other three enzyme systems prefer low-chlorinated PCDDs. On the other hand, protein engineering of angular dioxygenase, lignin peroxidase, and cytochrome P450 based on their tertiary structures has great potential to generate highly efficient dioxin-metabolizing enzymes. Actually, we successfully generated 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-metabolizing enzyme by site-directed mutagenesis of cytochrome P450. We hope that recombinant microorganisms harboring genetically engineered dioxin-metabolizing enzymes will be used for bioremediation of soil contaminated with PCDDs and polychlorinated dibenzofurans in the near future. (orig.)

  3. Identification of soil bacteria able to degrade phenanthrene bound to a hydrophobic sorbent in situ

    International Nuclear Information System (INIS)

    Efficient bioremediation of PAH-contaminated sites is limited by the hydrophobic character and poor bioavailability of pollutants. In this study, stable isotope probing (SIP) was implemented to track bacteria that can degrade PAHs adsorbed on hydrophobic sorbents. Temperate and tropical soils were incubated with 13C-labeled phenanthrene, supplied by spiking or coated onto membranes. Phenanthrene mineralization was faster in microcosms with PAH-coated membranes than in microcosms containing spiked soil. Upon incubation with temperate soil, phenanthrene degraders found in the biofilms that formed on coated membranes were mainly identified as Sphingomonadaceae and Actinobacteria. In the tropical soil, uncultured Rhodocyclaceae dominated degraders bound to membranes. Accordingly, ring-hydroxylating dioxygenase sequences recovered from this soil matched PAH-specific dioxygenase genes recently found in Rhodocyclaceae. Hence, our SIP approach allowed the detection of novel degraders, mostly uncultured, which differ from those detected after soil spiking, but might play a key role in the bioremediation of PAH-polluted soils. -- Highlights: •Soil bacteria with the ability to degrade sorbent-bound PAHs were investigated. •In soil, membrane-bound phenanthrene was readily mineralized. •PAH degraders found in biofilms were different in temperate and tropical soils. •Uncultured Rhodocyclaceae were dominant phenanthrene degraders in the tropical soil. •PAH-specific ring-hydroxylating dioxygenase sequences were identified in soil DNA. -- Bacteria able to degrade PAHs bound to a hydrophobic sorbent were mainly identified as uncultured Rhodocyclaceae and Sphingomonadaceae in polluted soils from tropical and temperate area, respectively

  4. Molecular perspectives and recent advances in microbial remediation of persistent organic pollutants.

    Science.gov (United States)

    Chakraborty, Jaya; Das, Surajit

    2016-09-01

    Nutrition and pollution stress stimulate genetic adaptation in microorganisms and assist in evolution of diverse metabolic pathways for their survival on several complex organic compounds. Persistent organic pollutants (POPs) are highly lipophilic in nature and cause adverse effects to the environment and human health by biomagnification through the food chain. Diverse microorganisms, harboring numerous plasmids and catabolic genes, acclimatize to these environmentally unfavorable conditions by gene duplication, mutational drift, hypermutation, and recombination. Genetic aspects of some major POP catabolic genes such as biphenyl dioxygenase (bph), DDT 2,3-dioxygenase, and angular dioxygenase assist in degradation of biphenyl, organochlorine pesticides, and dioxins/furans, respectively. Microbial metagenome constitutes the largest genetic reservoir with miscellaneous enzymatic activities implicated in degradation. To tap the metabolic potential of microorganisms, recent techniques like sequence and function-based screening and substrate-induced gene expression are proficient in tracing out novel catabolic genes from the entire metagenome for utilization in enhanced biodegradation. The major endeavor of today's scientific world is to characterize the exact genetic mechanisms of microbes for bioremediation of these toxic compounds by excavating into the uncultured plethora. This review entails the effect of POPs on the environment and involvement of microbial catabolic genes for their removal with the advanced techniques of bioremediation. PMID:27234838

  5. [Activity of key enzymes of heme metabolism and cytochrome P-450 content in the rat liver in experimental rhabdomyolysis and hemolytic anemia].

    Science.gov (United States)

    Kaliman, P A; Inshina, N N; Strel'chenko, E V

    2003-01-01

    The 5-aminolevulinate synthase, heme oxygenase, tryptophan-2,3-dioxygenase activities, the content of total heme and cytochrome P-450 content in the rat liver and absorption spectrum of blood serum in Soret region under glycerol model of rhabdomiolisis and hemolytic anemia caused by single phenylhydrazine injection have been investigated. The glycerol injection caused a considerable accumulation of heme-containing products in the serum and the increase of the total heme content, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as the increase of the 5-aminolevulinate synthase and heme oxygenase activities in the liver during the first hours of its action and the decrease of cytochrome P-450 content in 24 h. Administration of phenylhydrazine lead to the increasing of hemolysis products content in blood serum too, although it was less expressed. The phenylhydrazine injection caused the increase of activities of 5-aminolevulinate synthase, holoenzyme, total activity and heme saturation of tryptophan-2,3-dioxygenase, as well as decrease of cytochrome P-450 content in the rat liver in 2 h. The increase of the total heme content and heme oxygenase activity has been observed in 24 h. The effect of heme arrival from the blood stream, as well as a direct influence of glycerol and phenylhydrazine on the investigated parameters are discussed. PMID:14577161

  6. Regulation of heme oxygenase activity in rat liver during oxidative stress induced by cobalt chloride and mercury chloride.

    Science.gov (United States)

    Kaliman, P A; Nikitchenko, I V; Sokol, O A; Strel'chenko, E V

    2001-01-01

    Activities of heme oxygenase and tryptophan-2,3-dioxygenase and cytochrome P450 content in liver as well as absorption of the Soret band and optical density at 280 nm in serum were determined 2 and 24 h after administration of HgCl(2) and CoCl(2) and after co-administration of the metal salts with alpha-tocopherol. Administration of HgCl(2) and CoCl(2) increased the contents of hemolysis products in the serum, induced heme oxygenase, and decreased cytochrome P450 content in the liver. Injection of HgCl(2) increased the activity of tryptophan-2,3-dioxygenase holoenzyme and enzyme saturation with the heme, but administration of CoCl(2) decreased these parameters. Pretreatment with alpha-tocopherol completely blocked the changes induced by HgCl(2) after 24 h. Induction of heme oxygenase induced by CoCl(2) was not blocked by alpha-tocopherol, but this antioxidant normalized the increase in the level of hemolysis products in the serum and decrease in tryptophan-2,3-dioxygenase holoenzyme activity and cytochrome P450 content. Mechanisms of regulation of heme oxygenase by mercury and cobalt ions are discussed. PMID:11240397

  7. Biodegradation of phenanthrene by fungi screened from nature.

    Science.gov (United States)

    Hadibarata, Tony; Tachibana, Sanro; Itoh, Kazutaka

    2007-08-01

    Microbial degradation of Phenanthrene with several fungi screened from nature was conducted to select fungi for the bioremediation ofPhenanthrene. Thrichoderma sp. S019, a fungus collected from soil, had the highest rate of degradation on the agar medium containing Phenanthrene. Maximal degradation (72%) was obtained when Trichoderma sp. S019 was incubated for 30 days after the addition of 0.1 mM of Phenanthrene to the liquid medium. Furthermore, the degradation of Phenanthrene was affected by the addition of a carbon source, the addition of a nitrogen source and agitation. Also, 1,2-Dioxygenase and 2,3-Dioxygenase were produced by Trichoderma sp. S019 in a liquid medium. These enzymes play an important role in the metabolism of substrates, revealing a high stereoselectivity for initial dioxygenase and enzymatic hydration since the K-region of phenanthrene was the major site of metabolism. Phenanthrene was indeed degraded by Trichoderma sp. S019 because 1-Hydroxy-2-naphthoic acid, Salicyaldehyde, Salicylic acid and Catechol, considered to be the intermediates in the bioremediation of Phenanthrene, were detected among the reaction products.

  8. Genetic Determinants for Pyomelanin Production and Its Protective Effect against Oxidative Stress in Ralstonia solanacearum.

    Science.gov (United States)

    Ahmad, Shabir; Lee, Seung Yeup; Kong, Hyun Gi; Jo, Eun Jeong; Choi, Hye Kyung; Khan, Raees; Lee, Seon-Woo

    2016-01-01

    Ralstonia solanacearum is a soil-borne plant pathogen that infects more than 200 plant species. Its broad host range and long-term survival under different environmental stress conditions suggest that it uses a variety of mechanisms to protect itself against various types of biotic and abiotic stress. R. solanacearum produces a melanin-like brown pigment in the stationary phase when grown in minimal medium containing tyrosine. To gain deeper insight into the genetic determinants involved in melanin production, transposon-inserted mutants of R. solanacearum strain SL341 were screened for strains with defective melanin-producing capability. In addition to one mutant already known to be involved in pyomelanin production (viz., strain SL341D, with disruption of the hydroxphenylpyruvate dioxygenase gene), we identified three other mutants with disruption in the regulatory genes rpoS, hrpG, and oxyR, respectively. Wild-type SL341 produced pyomelanin in minimal medium containing tyrosine whereas the mutant strains did not. Likewise, homogentisate, a major precursor of pyomelanin, was detected in the culture filtrate of the wild-type strain but not in those of the mutant strains. A gene encoding hydroxyphenylpyruvate dioxygenase exhibited a significant high expression in wild type SL341 compared to other mutant strains, suggesting that pyomelanin production is regulated by three different regulatory proteins. However, analysis of the gene encoding homogentisate dioxygenase revealed no significant difference in its relative expression over time in the wild-type SL341 and mutant strains, except for SL341D, at 72 h incubation. The pigmented SL341 strain also exhibited a high tolerance to hydrogen peroxide stress compared with the non-pigmented SL341D strain. Our study suggests that pyomelanin production is controlled by several regulatory factors in R. solanacearum to confer protection under oxidative stress. PMID:27513990

  9. Simultaneous biodegradation of nitrogen-containing aromatic compounds in a sequencing batch bioreactor

    Institute of Scientific and Technical Information of China (English)

    LIU Xing-yu; WANG Bao-jun; JIANG Cheng-ying; ZHAO Ke-xin; Harold L.Drake; LIU Shuang-Jiang

    2007-01-01

    Many nitrogen-containing aromatic compounds (NACs), such as nitrobenzene (NB), 4-nitrophenol (4-NP), aniline (AN), and 2,4-dinitrophenol (2,4-DNP), are environmentally hazardous, and their removal from contaminated water is one of the main challenges facing wastewater treatment plants. In this study, synthetic wastewater containing NB, 4-NP, 2,4-DNP, and AN at concentrations ranging from 50 to 180 mg/L was fed into a sequencing batch reactor (SBR). Analyses of the SBR system indicated that it simultaneously removed more than 99% of the NACs at loading rates of 0.36 kg NB/(m3·d), 0.3 kg 4-NP/(m3·d), 0.25 kg AN/(m3·d), and 0.1 kg 2,4-DNP/(m3·d). Bacterial groups of Bacteriodetes, Candidate division TM7, α-Proteobacteria, and β-Proteobacteria were dominant in the clone libraries of 16S rRNA genes retrieved from the microbial communities in the SBR system. "Cycle tests" designed to alter feeding and aeration parameters of the SBR system demonstrated that the resident microbial biome of the SBR system responded rapidly to changing conditions. Consumption of O2 was concomitant with the apparent mineralization of NACs. Aromatic ring-cleaving dioxygenase activities suggested that (1) AN and NB were degraded via catechol 2,3-dioxygenase; (2) 4-NP was degraded via 1,2,4-benzentriol 1,2-dioxygenase; and (3) 2,4-DNP was degraded via an unresolved pathway.

  10. OxDBase: a database of oxygenases involved in biodegradation

    Directory of Open Access Journals (Sweden)

    Raghava Gajendra PS

    2009-04-01

    Full Text Available Abstract Background Oxygenases belong to the oxidoreductive group of enzymes (E.C. Class 1, which oxidize the substrates by transferring oxygen from molecular oxygen (O2 and utilize FAD/NADH/NADPH as the co-substrate. Oxygenases can further be grouped into two categories i.e. monooxygenases and dioxygenases on the basis of number of oxygen atoms used for oxidation. They play a key role in the metabolism of organic compounds by increasing their reactivity or water solubility or bringing about cleavage of the aromatic ring. Findings We compiled a database of biodegradative oxygenases (OxDBase which provides a compilation of the oxygenase data as sourced from primary literature in the form of web accessible database. There are two separate search engines for searching into the database i.e. mono and dioxygenases database respectively. Each enzyme entry contains its common name and synonym, reaction in which enzyme is involved, family and subfamily, structure and gene link and literature citation. The entries are also linked to several external database including BRENDA, KEGG, ENZYME and UM-BBD providing wide background information. At present the database contains information of over 235 oxygenases including both dioxygenases and monooxygenases. This database is freely available online at http://www.imtech.res.in/raghava/oxdbase/. Conclusion OxDBase is the first database that is dedicated only to oxygenases and provides comprehensive information about them. Due to the importance of the oxygenases in chemical synthesis of drug intermediates and oxidation of xenobiotic compounds, OxDBase database would be very useful tool in the field of synthetic chemistry as well as bioremediation.

  11. Oxygen-dependent catabolism of indole-3-acetic acid in Bradyrhizobium japonicum

    DEFF Research Database (Denmark)

    Egebo, L A; Nielsen, S V; Jochimsen, B U

    1991-01-01

    Some strains of Bradyrhizobium japonicum have the ability to catabolize indole-3-acetic acid (IAA). Examination of this catabolism in strain 110 by in vivo experiments has revealed an enzymatic activity catalyzing the degradation of IAA and 5-hydroxy-indole-3-acetic acid. The activity requires...... an oxygen-consuming opening of the indole ring analogous to the one catalyzed by tryptophan 2,3-dioxygenase. The pattern of metabolite usage by known tryptophan-auxotrophic mutants and studies of metabolites by high-performance liquid chromatography indicate that anthranilic acid is a terminal degradation...

  12. Biotechnical approach to studies on the biodegradation of chlorobenzenes and trichloroethylene. Final report, 1 September 1988-31 May 1992

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, D.T.

    1992-10-01

    The absolute stereochemistry of the chiral dihydrodiols formed from ortho- and meta-dichlorobenzene were determined. Both diols were found to be enantiomerically pure with 1S,2S absolute configuration. Toluene-grown cells of Pseudomonas putida F1 and Pseudomonas sp. JS150 were found to oxidize 2- and 3-nitrotoluene to benzyl alcohols. These results represent the first demonstration of the oxidation of a methyl substituent by toluene dioxygenase. Both organisms oxidized 4-nitrotoluene to 2-methyl-5-nitrophenol and 3-methyl-6-nitrocatechol. The significance of these unexpected results was evaluated.

  13. Suppression of humoral immune response to hepatitis B surface antigen vaccine in BALB/c mice by 1-methyl-tryptophan co-administration

    OpenAIRE

    Sparopoulou, T; Eleftheriadis, T; Antoniadi, G; Liakopoulos, V; Stefanidis, I.; Galaktidou, G

    2011-01-01

      Background and the purpose of the study:Indoleamine 2,3-dioxygenase (IDO) suppresses adaptive immune response. The purpose of this study was to determine the effect of the IDO inhibitor namely 1-methyl-DL-tryptophan (DL-1-MT) on antibody production after vaccination with hepatitis B surface (HBs) antigen. Methods:Four groups of BALB/c mice were immunized with a HBs antigen vaccine. In the first group the vaccine had no DL-1-MT, whereas in the other three groups the vaccine containe...

  14. Assay Methods for H2S Biogenesis and Catabolism Enzymes

    Science.gov (United States)

    Banerjee, Ruma; Chiku, Taurai; Kabil, Omer; Libiad, Marouane; Motl, Nicole; Yadav, Pramod K.

    2015-01-01

    H2S is produced from sulfur-containing amino acids, cysteine and homocysteine, or a catabolite, 3-mercaptopyruvate, by three known enzymes: cystathionine β-synthase, γ-cystathionase, and 3-mercaptopyruvate sulfurtransferase. Of these, the first two enzymes reside in the cytoplasm and comprise the transsulfuration pathway, while the third enzyme is found both in the cytoplasm and in the mitochondrion. The following mitochondrial enzymes oxidize H2S: sulfide quinone oxidoreductase, sulfur dioxygenase, rhodanese, and sulfite oxidase. The products of the sulfide oxidation pathway are thiosulfate and sulfate. Assays for enzymes involved in the production and oxidative clearance of sulfide to thiosulfate are described in this chapter. PMID:25725523

  15. EL ENZIMA INDOLEAMINA 2,3 DIOXIGENASA (IDO Y LA TOLERANCIA INMUNE

    Directory of Open Access Journals (Sweden)

    Coma-del-Corral MJ

    2013-09-01

    Full Text Available Indoleamine 2,3-dioxygenase (IDO is an intracellular and extrahepatic enzyme predominantly found in many cells, especially macrophages. Tryptophan degradation generates kynurenine, and this pathway of tryptophan metabolism is an effective mechanism for modulating the immune response. The IDO facilitates immune tolerance and is one of the main actors involved in the inhibition of cell proliferation, including activated T cells. IDO induces production of reactive oxygen species (ROS and nitric oxide (NO radicals. Several pathways involved in the regulation of immune response are regulated by redox mechanisms. Reactive oxygen and nitrogen species (ROS-RNS and other redox active molecules play key roles in immunity.

  16. Immobilized Native Bacteria as a Tool for Bioremediation of Soils and Waters: Implementation and Modeling

    Directory of Open Access Journals (Sweden)

    C. Lobo

    2002-01-01

    Full Text Available Based on 3,4-dihydroxyphenylacetate (3,4-DHPA dioxygenase amino acid sequence and DNA sequence data for homologous genes, two different oligonucleotides were designed. These were assayed to detect 3,4-DHPA related aromatic compound—degrading bacteria in soil samples by using the FISH method. Also, amplification by PCR using a set of ERIC primers was assayed for the detection of Pseudomonas GCH1 strain, which used in the soil bioremediation process. A model was developed to understand and predict the behavior of bacteria and pollutants in a bioremediation system, taking into account fluid dynamics, molecular/cellular scale processes, and biofilm formation.

  17. Biosynthesis of the food and cosmetic plant pigment bixin (annatto).

    Science.gov (United States)

    Bouvier, Florence; Dogbo, Odette; Camara, Bilal

    2003-06-27

    Bixin, also known as annatto, is a seed-specific pigment widely used in foods and cosmetics since pre-Columbian times. We show that three genes from Bixa orellana, native to tropical America, govern bixin biosynthesis. These genes code for lycopene cleavage dioxygenase, bixin aldehyde dehydrogenase, and norbixin carboxyl methyltransferase, which catalyze the sequential conversion of lycopene into bixin. Introduction of these three genes in Escherichia coli engineered to produce lycopene induced bixin synthesis, thus expanding the supply of this economically important plant product. PMID:12829782

  18. tfdA-Like Genes in 2,4-Dichlorophenoxyacetic Acid-Degrading Bacteria Belonging to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia Cluster in α-Proteobacteria

    OpenAIRE

    Itoh, Kazuhito; Kanda, Rie; Sumita, Yoko; Kim, Hongik; Kamagata, Yoichi; Suyama, Kousuke; Yamamoto, Hiroki; Hausinger, Robert P.; Tiedje, James M.

    2002-01-01

    The 2,4-dichlorophenoxyacetate (2,4-D)/α-ketoglutarate dioxygenase gene (tfdA) homolog designated tfdAα was cloned and characterized from 2,4-D-degrading bacterial strain RD5-C2. This Japanese upland soil isolate belongs to the Bradyrhizobium-Agromonas-Nitrobacter-Afipia cluster in the α subdivision of the class Proteobacteria on the basis of its 16S ribosomal DNA sequence. Sequence analysis showed 56 to 60% identity of tfdAα to representative tfdA genes. A MalE-TfdAα fusion protein expressed...

  19. Transposon mutagenesis and cloning analysis of the pathways for degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP134(pJP4).

    OpenAIRE

    Don, R H; Weightman, A J; Knackmuss, H J; Timmis, K N

    1985-01-01

    Plasmid pJP4 permits its host bacterium, strain JMP134, to degrade and utilize as sole sources of carbon and energy 3-chlorobenzoate and 2,4-dichlorophenoxyacetic acid (R. H. Don and J. M. Pemberton, J. Bacteriol. 145:681-686, 1981). Mutagenesis of pJP4 by transposons Tn5 and Tn1771 enabled localization of five genes for enzymes involved in these catabolic pathways. Four of the genes, tfdB, tfdC, tfdD, and tfdE, encoded 2,4-dichlorophenol hydroxylase, dichlorocatechol 1,2-dioxygenase, chlorom...

  20. Tyrosinemia Type III detected via neonatal screening: management and outcome.

    Science.gov (United States)

    Heylen, Evelyne; Scherer, Gerd; Vincent, Marie-Françoise; Marie, Sandrine; Fischer, Judith; Nassogne, Marie-Cécile

    2012-11-01

    Tyrosinemia Type III is caused by the deficiency of 4-hydroxyphenylpyruvate dioxygenase (4-HPPD), an enzyme involved in the catabolic pathway of tyrosine. To our knowledge, only a few patients presenting with this disease have been described in the literature, and the clinical phenotype remains variable and unclear. We report the case of a boy with tyrosinemia Type III detected using neonatal screening, who is homozygous for the splice donor mutation IVS11+1G>A in intron 11 of the HPD gene. At the age of 30 months, the boy's outcome under mild protein restriction was characterized by normal growth and psychomotor development.

  1. Oxidation of indole-3-acetic acid to oxindole-3-acetic acid by an enzyme preparation from Zea mays

    Science.gov (United States)

    Reinecke, D. M.; Bandurski, R. S.

    1988-01-01

    Indole-3-acetic acid is oxidized to oxindole-3-acetic acid by Zea mays tissue extracts. Shoot, root, and endosperm tissues have enzyme activities of 1 to 10 picomoles per hour per milligram protein. The enzyme is heat labile, is soluble, and requires oxygen for activity. Cofactors of mixed function oxygenase, peroxidase, and intermolecular dioxygenase are not stimulatory to enzymic activity. A heat-stable, detergent-extractable component from corn enhances enzyme activity 6- to 10-fold. This is the first demonstration of the in vitro enzymic oxidation of indole-3-acetic acid to oxindole-3-acetic acid in higher plants.

  2. Whole-genome analysis of 5-hydroxymethylcytosine and 5-methylcytosine at base resolution in the human brain

    OpenAIRE

    Wen, Lu; Li, Xianlong; Yan, Liying; Tan, Yuexi; Li, Rong; Zhao, Yangyu; Wang, Yan; Xie, Jingcheng; Zhang, Yan; Song, Chunxiao; Yu, Miao; Liu, Xiaomeng; Zhu, Ping; Li, XiaoYu; Hou, Yu

    2014-01-01

    Background 5-methylcytosine (mC) can be oxidized by the tet methylcytosine dioxygenase (Tet) family of enzymes to 5-hydroxymethylcytosine (hmC), which is an intermediate of mC demethylation and may also be a stable epigenetic modification that influences chromatin structure. hmC is particularly abundant in mammalian brains but its function is currently unknown. A high-resolution hydroxymethylome map is required to fully understand the function of hmC in the human brain. Results We present gen...

  3. 1-MT Enhances Potency of Tumor Cell Lysate-pulsed Dendritic Cells against Pancreatic Adenocarcinoma by Downregulating the Percentage of Tregs

    Institute of Scientific and Technical Information of China (English)

    李元栋; 徐钧; 邹浩军; 王春友

    2010-01-01

    This study examined whether 1-methyl-tryptophan [1-MT,an indoleamine 2,3-dioxygenase(IDO) inhibitor] could reduce CD4+CD25+ regulatory T cells(Tregs) proliferation and improve the anti-tumor efficacy of dendritic cells(DCs) pulsed with tumor cell lysate in the mice bearing pancreatic adenocarcinoma.The models of pancreatic adenocarcinoma were established in C57BL/6 mice by subcutaneous injection of Pan02 cells.Eight mice which were subcutaneously injected with PBS served as control.The expression of IDO was...

  4. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  5. The effect of cyclic anaerobic-aerobic conditions on biodegradation of azo dyes.

    Science.gov (United States)

    Yaşar, Semra; Cirik, Kevser; Cinar, Ozer

    2012-03-01

    The effect of cyclic anaerobic-aerobic conditions on the biodegradative capability of the mixed microbial culture for the azo dye Remazol Brilliant Violet 5R (RBV-5R) was investigated in the sequencing batch reactor (SBR) fed with a synthetic textile wastewater. The SBR had a 12-h cycle time with anaerobic-aerobic periods of 3/9, 6/6 and 9/3 h. General SBR performance was assessed by measurement of catabolic enzymes (catechol 2,3-dioxygenase, azo reductase), chemical oxygen demand (COD), color and amount of aromatic amines. In this study, under steady-state conditions, the anaerobic period of the cyclic SBR was found to allow the reductive decolorization of azo dye. Longer anaerobic periods resulted in higher color removal efficiencies, approximately 71% for the 3-h, 87% for 6-h and 92% for the 9-h duration. Total COD removal efficiencies were over 84% under each of the cyclic conditions and increased as the length of the anaerobic period was increased; however, the highest color removal rate was attained for the cycle with the shortest anaerobic period of 3 h. During the decolorization of RBV-5R, two sulfonated aromatic amines (benzene based and naphthalene based) were formed. Additionally, anaerobic azo reductase enzyme was found to be positively affected with the increasing duration of the anaerobic period; however; it was vice versa for the aerobic catechol 2,3-dioxygenase (C23DO) enzyme.

  6. Identification of PAHX, a Refsum disease gene.

    Science.gov (United States)

    Mihalik, S J; Morrell, J C; Kim, D; Sacksteder, K A; Watkins, P A; Gould, S J

    1997-10-01

    Refsum disease is an autosomal recessive disorder characterized by retinitis pigmentosa, peripheral polyneuropathy, cerebellar ataxia and increased cerebrospinal fluid protein. Biochemically, the disorder is defined by two related properties: pronounced accumulation of phytanic acid and selective loss of the peroxisomal dioxygenase required for alpha-hydroxylation of phytanoyl-CoA2. Decreased phytanic-acid oxidation is also observed in human cells lacking PEX7, the receptor for the type-2 peroxisomal targetting signal (PTS2; refs 3,4), suggesting that the enzyme defective in Refsum disease is targetted to peroxisomes by a PTS2. We initially identified the human PAHX and mouse Pahx genes as expressed sequence tags (ESTs) capable of encoding PTS2 proteins. Human PAHX is targetted to peroxisomes, requires the PTS2 receptor for peroxisomal localization, interacts with the PTS2 receptor in the yeast two-hybrid assay and has intrinsic phytanoyl-CoA alpha-hydroxylase activity that requires the dioxygenase cofactor iron and cosubstrate 2-oxoglutarate. Radiation hybrid data place PAHX on chromosome 10 between the markers D10S249 and D10S466, a region previously implicated in Refsum disease by homozygosity mapping. We find that both Refsum disease patients examined are homozygous for inactivating mutations in PAHX, demonstrating that mutations in PAHX can cause Refsum disease.

  7. 2-Oxoglutarate: linking TCA cycle function with amino acid, glucosinolate, flavonoid, alkaloid and gibberellin biosynthesis

    Directory of Open Access Journals (Sweden)

    Wagner L. Araújo

    2014-10-01

    Full Text Available The tricarboxylic acid (TCA cycle intermediate 2-oxoglutarate (2-OG is used as an obligatory substrate in a range of oxidative reactions catalyzed by 2-OG-dependent dioxygenases. These enzymes are widespread in nature being involved in several important biochemical processes. We have recently demonstrated that tomato plants in which the TCA cycle enzyme 2-OG dehydrogenase (2-ODD was antisense inhibited were characterized by early senescence and modified fruit ripening associated with differences in the levels of bioactive gibberellin (GA. Accordingly, there is now compelling evidence that the TCA cycle plays an important role in modulating the rate of flux from 2-OG to amino acid metabolism. Here we discuss recent advances in the biochemistry and molecular biology of 2-OG metabolism occurring in different biological systems indicating the importance of 2-OG and 2-OG dependent dioxygenases not only in glucosinolate, flavonoid and alkaloid metabolism but also in GA and amino acid metabolism. We additionally summarize recent findings regarding the impact of modification of 2-OG metabolism on biosynthetic pathways involving 2-ODDs.

  8. Biodegradation of phenol by Antarctic strains of Aspergillus fumigatus.

    Science.gov (United States)

    Gerginova, Maria; Manasiev, Jordan; Yemendzhiev, Husein; Terziyska, Anna; Peneva, Nadejda; Alexieva, Zlatka

    2013-01-01

    Taxonomic identification of three newly isolated Antarctic fungal strains by their 18S rDNA sequences revealed their affiliation with Aspergillus fumigatus. Phenol (0.5 g/l) as the sole carbon source was completely degraded by all strains within less than two weeks. Intracellular activities of three key enzymes involved in the phenol catabolism were determined. Activities of phenol hydroxylase (EC 1.14.13.7), hydroquinone hydroxylase (EC 1.14.13.x), and catechol 1,2-dioxygenase (EC 1.13.11.1) varied significantly between strains. The rates of phenol degradation in the three strains correlated best with the activity of catechol 1,2-dioxygenase. Six pairs of oligonucleotide primers were designed on the basis of the Aspergillus fumigatus Af293 genome sequence (NCBI Acc. No. XM_743491.1) and used to amplify phenol hydroxylase-related gene sequences. DNA sequences of about 1200 bp were amplified from all three strains and found to have a high degree of sequence identity with the corresponding gene of Aspergillus fumigatus Af293.

  9. Biosynthetic engineering and fermentation media development leads to gram-scale production of spliceostatin natural products in Burkholderia sp.

    Science.gov (United States)

    Eustáquio, Alessandra S; Chang, Li-Ping; Steele, Greg L; O'Donnell, Christopher J; Koehn, Frank E

    2016-01-01

    A key challenge in natural products drug discovery is compound supply. Hundreds of grams of purified material are needed to advance a natural product lead through preclinical development. Spliceostatins are polyketide-nonribosomal peptide natural products that bind to the spliceosome, an emerging target in cancer therapy. The wild-type bacterium Burkholderia sp. FERM BP-3421 produces a suite of spliceostatin congeners with varying biological activities and physiological stabilities. Hemiketal compounds such as FR901464 were the first to be described. Due to its improved properties, we were particularly interested in a carboxylic acid precursor analog that was first reported from Burkholderia sp. MSMB 43 and termed thailanstatin A. Inactivation of the iron/α-ketoglutarate-dependent dioxygenase gene fr9P had been shown to block hemiketal biosynthesis. However, a 4-deoxy congener of thailanstatin A was the main product seen in the dioxygenase mutant. We show here that expression of the cytochrome P450 gene fr9R is a metabolic bottle neck, as use of an l-arabinose inducible system led to nearly complete conversion of the 4-deoxy analog to the target molecule. By integrating fermentation media development approaches with biosynthetic engineering, we were able to improve production titers of the target compound >40-fold, going from the starting ~60 mg/L to 2.5 g/L, and to achieve what is predominantly a single component production profile. These improvements were instrumental in enabling preclinical development of spliceostatin analogs as chemotherapy. PMID:26620532

  10. Urine homogentisic acid and tyrosine: simultaneous analysis by liquid chromatography tandem mass spectrometry.

    Science.gov (United States)

    Hughes, A T; Milan, A M; Christensen, P; Ross, G; Davison, A S; Gallagher, J A; Dutton, J J; Ranganath, L R

    2014-07-15

    Alkaptonuria (AKU) is a rare debilitating autosomal recessive disorder of tyrosine metabolism. Deficiency of homogentisate 1,2-dioxygenase results in increased homogentisic acid (HGA) which although excreted in gram quantities in the urine, is deposited as an ochronotic pigment in connective tissues, especially cartilage. Ochronosis leads to a severe, early-onset form of osteoarthritis, increased renal and prostatic stone formation and hardening of heart vessels. Treatment with the orphan drug, Nitisinone, an inhibitor of the enzyme 4-hydroxyphenylpyruvate dioxygenase has been shown to reduce urinary excretion of HGA, resulting in accumulation of the upstream pre-cursor, tyrosine. Using reverse phase LC-MS/MS, a method has been developed to simultaneously quantify urinary HGA and tyrosine. Using matrix-matched calibration standards, two product ion transitions were identified for each compound and their appropriate isotopically labelled internal standards. Validation was performed across the AKU and post-treatment concentrations expected. Intrabatch accuracy for acidified urine was 96-109% for tyrosine and 94-107% for HGA; interbatch accuracy (n=20 across ten assays) was 95-110% for tyrosine and 91-109% for HGA. Precision, both intra- and interbatch was nitisinone therapy. PMID:24952314

  11. Overlaps between the various biodegradation pathways in Sphingomonas subarctica SA1.

    Science.gov (United States)

    Magony, Mónika; Kákonyi, Ildikó; Gara, Anna; Rapali, P; Perei, Katalin; Kovács, K L; Rákhely, G

    2007-01-01

    A bacterium capable to grow on sulfanilic acid as sole carbon, nitrogen and sulfur source has been isolated. A unique feature of this strain is that it contains the full set of enzymes necessary for the biodegradation of sulfanilic acid. Taxonomical analysis identified our isolate as Sphingomonas subaretica SA1 sp. The biodegradation pathway of sulfanilic acid was investigated at the molecular level. Screening the substrate specificity of the strain disclosed its capacity to degrade six analogous aromatic compounds including p-aminobenzoic acid. Moreover, the strain was successfully used for removal of oil contaminations. S. subarctica SA1 seemed to use distinct enzyme cascades for decomposition of these molecules, since alternative enzymes were induced in cells grown on various substrates. However, the protein patterns appearing upon induction by sulfanilic acid and sulfocatechol were very similar to each other indicating common pathways for the degradation of these substrates. Cells grown on sulfanilic acid could convert p-aminobenzoic acid to some extent and vice versa. Two types of ring cleaving dioxygenases were detected in the cells grown on various substrates: one preferred protocatechol, while the other had higher activity with sulfocatechol. This latter enzyme, named as sulfocatechol dioxygenase was partially purified and characterized.

  12. Molecular responses of Frankia sp. strain QA3 to naphthalene.

    Science.gov (United States)

    Baker, Ethan; Tang, Yang; Chu, Feixia; Tisa, Louis S

    2015-04-01

    The Frankia-actinorhizal plant symbiosis plays a significant role in plant colonization in soils contaminated with heavy metals and toxic aromatic hydrocarbons. The molecular response of Frankia upon exposure to soil contaminants is not well understood. To address this issue, we subjected Frankia sp. strain QA3 to naphthalene stress and showed that it could grow on naphthalene as a sole carbon source. Bioinformatic analysis of the Frankia QA3 genome identified a potential operon for aromatic compound degradation as well as several ring-hydroxylating dioxygenases. Under naphthalene stress, the expression of these genes was upregulated. Proteome analysis showed a differential protein profile for cells under naphthalene stress. Several protein spots were analyzed and used to identify proteins involved in stress response, metabolism, and energy production, including a lignostilbene dioxygenase. These results provide a model for understanding the molecular response of Frankia to common soil pollutants, which may be required for survival and proliferation of the bacterium and their hosts in polluted environments. PMID:25742598

  13. Tryptophan PET Imaging of the Kynurenine Pathway in Patient-Derived Xenograft Models of Glioblastoma.

    Science.gov (United States)

    Guastella, Anthony R; Michelhaugh, Sharon K; Klinger, Neil V; Kupsky, William J; Polin, Lisa A; Muzik, Otto; Juhász, Csaba; Mittal, Sandeep

    2016-01-01

    Increasing evidence demonstrates the immunosuppressive kynurenine pathway's (KP) role in the pathophysiology of human gliomas. To study the KP in vivo, we used the noninvasive molecular imaging tracer α-[(11)C]-methyl-l-tryptophan (AMT). The AMT-positron emission tomography (PET) has shown high uptake in high-grade gliomas and predicted survival in patients with recurrent glioblastoma (GBM). We generated patient-derived xenograft (PDX) models from dissociated cells, or tumor fragments, from 5 patients with GBM. Mice bearing subcutaneous tumors were imaged with AMT-PET, and tumors were analyzed to detect the KP enzymes indoleamine 2,3-dioxygenase (IDO) 1, IDO2, tryptophan 2,3-dioxygenase, kynureninase, and kynurenine 3-monooxygenase. Overall, PET imaging showed robust tumoral AMT uptake in PDX mice with prolonged tracer accumulation over 60 minutes, consistent with AMT trapping seen in humans. Immunostained tumor tissues demonstrated positive detection of multiple KP enzymes. Furthermore, intracranial implantation of GBM cells was performed with imaging at both 9 and 14 days postimplant, with a marked increase in AMT uptake at 14 days and a corresponding high level of tissue immunostaining for KP enzymes. These results indicate that our PDX mouse models recapitulate human GBM, including aberrant tryptophan metabolism, and offer an in vivo system for development of targeted therapeutics for patients with GBM. PMID:27151136

  14. Mycobacterium tuberculosis Rv3406 is a type II alkyl sulfatase capable of sulfate scavenging.

    Directory of Open Access Journals (Sweden)

    Kimberly M Sogi

    Full Text Available The genome of Mycobacterium tuberculosis (Mtb encodes nine putative sulfatases, none of which have a known function or substrate. Here, we characterize Mtb's single putative type II sulfatase, Rv3406, as a non-heme iron (II and α-ketoglutarate-dependent dioxygenase that catalyzes the oxidation and subsequent cleavage of alkyl sulfate esters. Rv3406 was identified based on its homology to the alkyl sulfatase AtsK from Pseudomonas putida. Using an in vitro biochemical assay, we confirmed that Rv3406 is a sulfatase with a preference for alkyl sulfate substrates similar to those processed by AtsK. We determined the crystal structure of the apo Rv3406 sulfatase at 2.5 Å. The active site residues of Rv3406 and AtsK are essentially superimposable, suggesting that the two sulfatases share the same catalytic mechanism. Finally, we generated an Rv3406 mutant (Δrv3406 in Mtb to study the sulfatase's role in sulfate scavenging. The Δrv3406 strain did not replicate in minimal media with 2-ethyl hexyl sulfate as the sole sulfur source, in contrast to wild type Mtb or the complemented strain. We conclude that Rv3406 is an iron and α-ketoglutarate-dependent sulfate ester dioxygenase that has unique substrate specificity that is likely distinct from other Mtb sulfatases.

  15. GENETIC ANALYSIS OF ABSCISIC ACID BIOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    MCCARTY D R

    2012-01-10

    The carotenoid cleavage dioxygenases (CCD) catalyze synthesis of a variety of apo-carotenoid secondary metabolites in plants, animals and bacteria. In plants, the reaction catalyzed by the 11, 12, 9-cis-epoxy carotenoid dioxygenase (NCED) is the first committed and key regulated step in synthesis of the plant hormone, abscisic acid (ABA). ABA is a key regulator of plant stress responses and has critical functions in normal root and seed development. The molecular mechanisms responsible for developmental control of ABA synthesis in plant tissues are poorly understood. Five of the nine CCD genes present in the Arabidopsis genome encode NCED's involved in control of ABA synthesis in the plant. This project is focused on functional analysis of these five AtNCED genes as a key to understanding developmental regulation of ABA synthesis and dissecting the role of ABA in plant development. For this purpose, the project developed a comprehensive set of gene knockouts in the AtNCED genes that facilitate genetic dissection of ABA synthesis. These mutants were used in combination with key molecular tools to address the following specific objectives: (1) the role of ABA synthesis in root development; (2) developmental control of ABA synthesis in seeds; (3) analysis of ATNCED over-expressers; (4) preliminary crystallography of the maize VP14 protein.

  16. Expression, Function of the Human Androgen-Responsive Gene AD11 in Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Shane W. Oram

    2007-08-01

    Full Text Available We have previously identified an androgen-responsive gene in rat prostate that shares homology with the acireductone dioxygenase (ARD/ARD′ family of metalbinding enzymes involved in methionine salvage. We found that the gene, aci-reductone dioxygenase 1 (ADI1, was downregulated in prostate cancer cells, whereas enforced expression of rat Adi1 in these cells caused apoptosis. Here we report the characterization of human ADI1 in prostate cancer. Androgens induced ADI1 expression in human prostate cancer LNCaP cells, which was not blocked by cycloheximide, indicating that ADI1 is a primary androgen-responsive gene. In human benign prostatic hyperplasia specimens, epithelial cells expressed ADI1. Immunohistochemistry of prostate tumor tissue microarrays showed that benign regions expressed more ADI1 than tumors, suggesting a suppressive role for ADI1 in prostate cancer. Bacterial lysates containing recombinant ADI1 produced a five-fold increase in aci-reductone decay over controls, demonstrating that ADI1 has ARD activity. We generated point mutations at key residues in the metal-binding site of ADI1 to disrupt ARD function, we found that these mutations did not affect intracellular localization, apoptosis, or colony formation suppression in human prostate cancer cells. Collectively, these observations argue that AD11 may check prostate cancer progression through apoptosis, that this activity does not require metal binding.

  17. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    Science.gov (United States)

    Arora, Pankaj K.; Sharma, Ashutosh

    2015-01-01

    Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography–mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate, whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis,cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10–12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil. PMID:26082768

  18. New metabolic pathway for degradation of 2-nitrobenzoate by Arthrobacter sp. SPG

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-06-01

    Full Text Available Arthrobacter sp. SPG utilized 2-nitrobenzoate as its sole source of carbon and energy and degraded it with accumulation of stoichiometric amounts of nitrite ions. Salicylate and catechol were detected as metabolites of the 2-nitrobenzoate degradation using high performance liquid chromatography and gas chromatography-mass spectrometry. Enzyme activities for 2-nitrobenzoate-2-monooxygenase, salicylate hydroxylase, and catechol-1,2-dioxygenase were detected in the crude extracts of the 2-nitrobenzoate-induced cells of strain SPG. The 2-nitrobenzoate-monooxygenase activity resulted in formation of salicylate and nitrite from 2-nitrobenzoate whereas salicylate hydroxylase catalyzed the conversion of salicylate to catechol. The ring-cleaving enzyme, catechol-1,2-dioxygenase cleaved catechol to cis, cis-muconic acid. Cells of strain SPG were able to degrade 2-nitrobenzoate in sterile as well as non-sterile soil microcosms. The results of microcosm studies showed that strain SPG degraded more than 90% of 2-nitrobenzoate within 10-12 days. This study clearly shows that Arthrobacter sp. SPG degraded 2-nitrobenzoate via a new pathway with formation of salicylate and catechol as metabolites. Arthrobacter sp. SPG may be used for bioremediation of 2-nitrobenzoate-contaminated sites due to its ability to degrade 2-nitrobenzoate in soil.

  19. Mice lacking Alkbh1 display sex-ratio distortion and unilateral eye defects.

    Directory of Open Access Journals (Sweden)

    Line M Nordstrand

    Full Text Available BACKGROUND: Escherichia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1 is one of eight members of the newly discovered family of mammalian dioxygenases. METHODS AND FINDINGS: In the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice. Both Alkbh1(-/- and heterozygous Alkbh1(+/- offspring are born at a greatly reduced frequency. Additionally, the sex-ratio is considerably skewed against female offspring, with one female born for every three to four males. Most mechanisms that cause segregation distortion, act in the male gametes and affect male fertility. The skewing of the sexes appears to be of paternal origin, and might be set in the pachythene stage of meiosis during spermatogenesis, in which Alkbh1 is upregulated more than 10-fold. In testes, apoptotic spermatids were revealed in 5-10% of the tubules in Alkbh1(-/- adults. The deficiency of Alkbh1 also causes misexpression of Bmp2, 4 and 7 at E11.5 during embryonic development. This is consistent with the incompletely penetrant phenotypes observed, particularly recurrent unilateral eye defects and craniofacial malformations. CONCLUSIONS: Genetic and phenotypic assessment suggests that Alkbh1 mediates gene regulation in spermatogenesis, and that Alkbh1 is essential for normal sex-ratio distribution and embryonic development in mice.

  20. Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2.

    Directory of Open Access Journals (Sweden)

    Alexia Comte

    Full Text Available Phenol is a widespread pollutant and a model molecule to study the biodegradation of monoaromatic compounds. After a first oxidation step leading to catechol in mesophilic and thermophilic microorganisms, two main routes have been identified depending on the cleavage of the aromatic ring: ortho involving a catechol 1,2 dioxygenase (C12D and meta involving a catechol 2,3 dioxygenase (C23D. Our work aimed at elucidating the phenol-degradation pathway in the hyperthermophilic archaea Sulfolobus solfataricus 98/2. For this purpose, the strain was cultivated in a fermentor under different substrate and oxygenation conditions. Indeed, reducing dissolved-oxygen concentration allowed slowing down phenol catabolism (specific growth and phenol-consumption rates dropped 55% and 39%, respectively and thus, evidencing intermediate accumulations in the broth. HPLC/Diode Array Detector and LC-MS analyses on culture samples at low dissolved-oxygen concentration (DOC  =  0.06 mg x L(-1 suggested, apart for catechol, the presence of 2-hydroxymuconic acid, 4-oxalocrotonate and 4-hydroxy-2-oxovalerate, three intermediates of the meta route. RT-PCR analysis on oxygenase-coding genes of S. solfataricus 98/2 showed that the gene coding for the C23D was expressed only on phenol. In 2D-DIGE/MALDI-TOF analysis, the C23D was found and identified only on phenol. This set of results allowed us concluding that S. solfataricus 98/2 degrade phenol through the meta route.

  1. 新筛选菌种Delftia sp.XYJ5生物降解苯胺的途径%Biodegradation of Aniline by a Newly Isolated Delftia sp. XYJ6

    Institute of Scientific and Technical Information of China (English)

    肖诚斌; 宁君; 闫海; 孙旭东; 胡继业

    2009-01-01

    A promising gram-negative bacterial strain for the biodegradation of aniline as the sole carbon, nitrogen and energy sources was successfully isolated and identified as Delftia sp. XYJ6. The optimal temperature and pH for both the growth of Delftia sp. XYJ6 and the biodegradation of aniline were 30℃ and 7.0, respectively. Initial aniline of 2000 mg·L1 could be completely removed by the strain at 22 h, which showed that Delftia sp. XYJ6 had a strong ability in the biodegradation of aniline. It indicated that aniline was firstly converted to catechol catalyzed by aniline dioxygenase as a first product, which was then further biodegraded to cis,cis-muconic acid catalyzed by the catechol 1,2-dioxygenase of Delftia sp. XYJ6 as a second product. Cis,.cid-muconic acid could also be further biodegraded to other small compound again. The pathway for the biodegradation of aniline by Delftia sp. XYJ6 was not previously reported.

  2. Use of bromodeoxyuridine immunocapture to identify psychrotolerant phenanthrene-degrading bacteria in phenanthrene-enriched polluted Baltic Sea sediments

    Energy Technology Data Exchange (ETDEWEB)

    Edlund, A.; Jansson, J.

    2008-05-01

    The aim of this study was to enrich and identify psychrotolerant phenanthrenedegrading bacteria from polluted Baltic Sea sediments. Polyaromatic hydrocarbon (PAH)-contaminated sediments were spiked with phenanthrene and incubated for 2 months in the presence of bromodeoxyuridine that is incorporated into the DNA of replicating cells. The bromodeoxyuridine-incorporated DNA was extracted by immunocapture and analyzed by terminal-restriction fragment length polymorphism and 16S rRNA gene cloning and sequencing to identify bacterial populations that were growing. In addition, degradation genes were quantified in the bromodeoxyuridine-incorporated DNA by real-time PCR. Phenanthrene concentrations decreased after 2 months of incubation in the phenanthrene-enriched sediments and this reduction correlated to increases in copy numbers of xylE and phnAc dioxygenase genes. Representatives of Exiguobacterium, Schewanella,Methylomonas, Pseudomonas, Bacteroides and an uncultured Deltaproteobacterium and a Gammaproteobacterium dominated the growing community in the phenanthrene spiked sediments. Isolates that were closely related to three of these bacteria (two pseudomonads and an Exiguobacterium sp.) could reduce phenanthrene concentrations in pure cultures and they all harbored phnAc dioxygenase genes. These results confirm that this combination of culture-based and molecular approaches was useful for identification of actively growing bacterial species with a high potential for phenanthrene degradation.

  3. Structural analysis of a phosphonate hydroxylase with an access tunnel at the back of the active site.

    Science.gov (United States)

    Li, Changqing; Junaid, Muhammad; Almuqri, Eman Abdullah; Hao, Shiguang; Zhang, Houjin

    2016-05-01

    FrbJ is a member of the Fe(2+)/α-ketoglutarate-dependent dioxygenase family which hydroxylates the natural product FR-900098 of Streptomyces rubellomurinus, yielding the phosphonate antibiotic FR-33289. Here, the crystal structure of FrbJ, which shows structural homology to taurine dioxygenase (TauD), a key member of the same family, is reported. Unlike other members of the family, FrbJ has an unusual lid structure which consists of two β-strands with a long loop between them. To investigate the role of this lid motif, a molecular-dynamics simulation was performed with the FrbJ structure. The molecular-dynamics simulation analysis implies that the lid-loop region is highly flexible, which is consistent with the fact that FrbJ has a relatively broad spectrum of substrates with different lengths. Interestingly, an access tunnel is found at the back of the active site which connects the putative binding site of α-ketoglutarate to the solvent outside. PMID:27139827

  4. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p < 0.05). The findings of this study provide insights into the surfactant-induced shifts of microbial community, as well as critical factors for efficient bioremediation. PMID:27068902

  5. Identification of a conserved protein involved in anaerobic unsaturated fatty acid synthesis in Neiserria gonorrhoeae: implications for facultative and obligate anaerobes that lack FabA.

    Science.gov (United States)

    Isabella, Vincent M; Clark, Virginia L

    2011-10-01

    Transcriptome analysis of the facultative anaerobe, Neisseria gonorrhoeae, revealed that many genes of unknown function were induced under anaerobic conditions. Mutation of one such gene, NGO1024, encoding a protein belonging to the 2-nitropropane dioxygenase-like superfamily of proteins, was found to result in an inability of gonococci to grow anaerobically. Anaerobic growth of an NG1024 mutant was restored upon supplementation with unsaturated fatty acids (UFA), but not with the saturated fatty acid palmitate. Gonococcal fatty acid profiles confirmed that NGO1024 was involved in UFA synthesis anaerobically, but not aerobically, demonstrating that gonococci contain two distinct pathways for the production of UFAs, with a yet unidentified aerobic mechanism, and an anaerobic mechanism involving NGO1024. Expression of genes involved in classical anaerobic UFA synthesis, fabA, fabM and fabB, was toxic in gonococci and unable to complement a NGO1024 mutation, suggesting that the chemistry involved in gonococcal anaerobic UFA synthesis is distinct from that of the classical pathway. NGO1024 homologues, which we suggest naming UfaA, form a distinct lineage within the 2-nitropropane dioxygenase-like superfamily, and are found in many facultative and obligate anaerobes that produce UFAs but lack fabA, suggesting that UfaA is part of a widespread pathway involved in UFA synthesis. PMID:21895795

  6. Effects of a block in cysteine catabolism on energy balance and fat metabolism in mice.

    Science.gov (United States)

    Niewiadomski, Julie; Zhou, James Q; Roman, Heather B; Liu, Xiaojing; Hirschberger, Lawrence L; Locasale, Jason W; Stipanuk, Martha H

    2016-01-01

    To gain further insights into the effects of elevated cysteine levels on energy metabolism and the possible mechanisms underlying these effects, we conducted studies in cysteine dioxygenase (Cdo1)-null mice. Cysteine dioxygenase (CDO) catalyzes the first step of the major pathway for cysteine catabolism. When CDO is absent, tissue and plasma cysteine levels are elevated, resulting in enhanced flux of cysteine through desulfhydration reactions. When Cdo1-null mice were fed a high-fat diet, they gained more weight than their wild-type controls, regardless of whether the diet was supplemented with taurine. Cdo1-null mice had markedly lower leptin levels, higher feed intakes, and markedly higher abundance of hepatic stearoyl-CoA desaturase 1 (SCD1) compared to wild-type control mice, and these differences were not affected by the fat or taurine content of the diet. Thus, reported associations of elevated cysteine levels with greater weight gain and with elevated hepatic Scd1 expression are also seen in the Cdo1-null mouse model. Hepatic accumulation of acylcarnitines suggests impaired mitochondrial β-oxidation of fatty acids in Cdo1-null mice. The strong associations of elevated cysteine levels with excess H2 S production and impairments in energy metabolism suggest that H2 S signaling could be involved.

  7. Stringency of the 2-His-1-Asp active-site motif in prolyl 4-hydroxylase.

    Directory of Open Access Journals (Sweden)

    Kelly L Gorres

    Full Text Available The non-heme iron(II dioxygenase family of enzymes contain a common 2-His-1-carboxylate iron-binding motif. These enzymes catalyze a wide variety of oxidative reactions, such as the hydroxylation of aliphatic C-H bonds. Prolyl 4-hydroxylase (P4H is an alpha-ketoglutarate-dependent iron(II dioxygenase that catalyzes the post-translational hydroxylation of proline residues in protocollagen strands, stabilizing the ensuing triple helix. Human P4H residues His412, Asp414, and His483 have been identified as an iron-coordinating 2-His-1-carboxylate motif. Enzymes that catalyze oxidative halogenation do so by a mechanism similar to that of P4H. These halogenases retain the active-site histidine residues, but the carboxylate ligand is replaced with a halide ion. We replaced Asp414 of P4H with alanine (to mimic the active site of a halogenase and with glycine. These substitutions do not, however, convert P4H into a halogenase. Moreover, the hydroxylase activity of D414A P4H cannot be rescued with small molecules. In addition, rearranging the two His and one Asp residues in the active site eliminates hydroxylase activity. Our results demonstrate a high stringency for the iron-binding residues in the P4H active site. We conclude that P4H, which catalyzes an especially demanding chemical transformation, is recalcitrant to change.

  8. Growth of bacteria on 3-nitropropionic acid as a sole source of carbon, nitrogen, and energy.

    Science.gov (United States)

    Nishino, Shirley F; Shin, Kwanghee A; Payne, Rayford B; Spain, Jim C

    2010-06-01

    3-Nitropropionic acid (3NPA) is a widespread nitroaliphatic toxin found in a variety of legumes and fungi. Several enzymes have been reported that can transform the compound, but none led to the mineralization of 3NPA. We report here the isolation of bacteria that grow on 3NPA and its anion, propionate-3-nitronate (P3N), as the sole source of carbon, nitrogen, and energy. Experiments with resting cells, cell extracts, and purified enzymes indicate that the pathway involves conversion of 3NPA to P3N, which upon denitration yields malonic semialdehyde, nitrate, nitrite, and traces of H(2)O(2). Malonic semialdehyde is decarboxylated to acetyl coenzyme A. The gene that encodes the enzyme responsible for the denitration of P3N was cloned and expressed, and the enzyme was purified. Stoichiometry of the reaction indicates that the enzyme is a monooxygenase. The gene sequence is related to a large group of genes annotated as 2-nitropropane dioxygenases, but the P3N monooxygenase and closely related enzymes form a cluster within COG2070 that differs from previously characterized 2-nitropropane dioxygenases by their substrate specificities and reaction products. The results suggest that the P3N monooxygenases enable bacteria to exploit 3NPA in natural habitats as a growth substrate. PMID:20382807

  9. Molecular characterisation and the light-dark regulation of carotenoid biosynthesis in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.).

    Science.gov (United States)

    Tuan, Pham Anh; Thwe, Aye Aye; Kim, Jae Kwang; Kim, Yeon Bok; Lee, Sanghyun; Park, Sang Un

    2013-12-15

    Seven partial-length cDNAs and 1 full-length cDNA that were involved in carotenoid biosynthesis and 2 partial-length cDNAs that encoded carotenoid cleavage dioxygenases were first isolated and characterised in 2 tartary buckwheat cultivars (Fagopyrum tataricum Gaertn.), Hokkai T8 and Hokkai T10. They were constitutively expressed at high levels in the leaves and flowers, where carotenoids are mostly distributed. During the seed development of tartary buckwheat, an inverse correlation between transcription level of carotenoid cleavage dioxygenase and carotenoid content was observed. The light-grown sprouts exhibited higher levels of expression of carotenoid biosynthetic genes in T10 and carotenoid content in both T8 and T10 compared to the dark-grown sprouts. The predominant carotenoids in tartary buckwheat were lutein and β-carotene, and very abundant amounts of these carotenoids were found in light-grown sprouts. This study might broaden our understanding of the molecular mechanisms involved in carotenoid biosynthesis and indicates targets for increasing the production of carotenoids in tartary buckwheat.

  10. Identification of naphthalene metabolism by white rot fungus Armillaria sp.F022

    Institute of Scientific and Technical Information of China (English)

    Tony Hadibarata; Abdull Rahim Mohd Yusoff; Azmi Aris; Risky Ayu Kristanti

    2012-01-01

    Armillaria sp.F022,a white rot fungus isolated from tropical rain forest (Samarinda,Indonesia) was used to biodegrade naphthalene in cultured medium.Transformation of naphthalene by Armillaria sp.F022 which is able to use naphthalene,a two ring-polycyclic aromatic hydrocarbon (PAH) as a source of carbon and energy was investigated.The metabolic pathway was elucidated by identifying metabolites,biotransformation studies and monitoring enzyme activities in cell-free extracts.The identification of metabolites suggests that Armillaria sp.F022 initiates its attack on naphthalene by dioxygenation at its C-1 and C-4 positions to give 1,4-naphthoquinone.The intermediate 2-hydroxybenzaldehyde and salicylic acid,and the characteristic of the meta-cleavage of the resulting diol were identified in the long-term incubation.A part from typical metabolites of naphthalene degradation known from mesophiles,benzoic acid was identified as the next intermediate for the naphthalene pathway of this Armillaria sp.F022.Neither phthalic acid,catechol and cis,cis-muconic acid metabolites were detected in culture extracts.Several enzymes (manganese peroxidase,lignin peroxidase,laccase,1,2-dioxygenase and 2,3-dioxygenase) produced by Armillaria sp.F022 were detected during the incubation.

  11. Isolation of the phe-operon from G. stearothermophilus comprising the phenol degradative meta-pathway genes and a novel transcriptional regulator

    Directory of Open Access Journals (Sweden)

    Reiss Monika

    2008-11-01

    Full Text Available Abstract Background Geobacillus stearothermophilus is able to utilize phenol as a sole carbon source. A DNA fragment encoding a phenol hydroxylase catalyzing the first step in the meta-pathway has been isolated previously. Based on these findings a PCR-based DNA walk was performed initially to isolate a catechol 2,3-dioxygenase for biosensoric applications but was continued to elucidate the organisation of the genes encoding the proteins for the metabolization of phenol. Results A 20.2 kb DNA fragment was isolated as a result of the DNA walk. Fifteen open reading frames residing on a low-copy megaplasmid were identified. Eleven genes are co-transcribed in one polycistronic mRNA as shown by reverse transcription-PCR. Ten genes encode proteins, that are directly linked with the meta-cleavage pathway. The deduced amino acid sequences display similarities to a two-component phenol hydroxylase, a catechol 2,3-dioxygenase, a 4-oxalocrotonate tautomerase, a 2-oxopent-4-dienoate hydratase, a 4-oxalocrotonate decarboxylase, a 4-hydroxy-2-oxovalerate aldolase, an acetaldehyde dehydrogenase, a plant-type ferredoxin involved in the reactivation of extradiol dioxygenases and a novel regulatory protein. The only enzymes missing for the complete mineralization of phenol are a 2-hydroxymuconic acid-6-semialdehyde hydrolase and/or 2-hydroxymuconic acid-6-semialdehyde dehydrogenase. Conclusion Research on the bacterial degradation of aromatic compounds on a sub-cellular level has been more intensively studied in gram-negative organisms than in gram-positive bacteria. Especially regulatory mechanisms in gram-positive (thermophilic prokaryotes remain mostly unknown. We isolated the first complete sequence of an operon from a thermophilic bacterium encoding the meta-pathway genes and analyzed the genetic organization. Moreover, the first transcriptional regulator of the phenol metabolism in gram-positive bacteria was identified. This is a first step to elucidate

  12. Recent advances in tobacco carotenoid metabolism research and its application in genetic engineering%烟草类胡萝卜素代谢的遗传及基因工程研究进展

    Institute of Scientific and Technical Information of China (English)

    杨永霞; 冯琦; 王景; 崔红; 刘国顺

    2013-01-01

    综述了烟草类胡萝卜素合成和降解途径所涉及的关键基因的分离、功能分析、分子调控及类胡萝卜素代谢的调节和基因工程研究进展,同时对烟草类胡萝卜素代谢的研究方向和应用前景进行了讨论和展望.%Advances in research of biosynthetic and degradation pathway of carotenoid,and hence its related carotenogenic gene as well as carotenoid dioxygenase gene were reviewed. Metabolic manipulation of carotenoid was summarized. Strategies, problems and achievements of genetic manipulation of carotenoid metabolism were discussed.

  13. Metabolism of carotenoids and apocarotenoids during ripening of raspberry fruit

    DEFF Research Database (Denmark)

    Beekwilder, J; van der Meer, IM; Simicb, A;

    2008-01-01

    Carotenoids are important lipophilic antioxidants in fruits. Apocarotenoids such as α-ionone and β-ionone, which are breakdown products of carotenoids, are important for the flavor characteristics of raspberry fruit, and have also been suggested to have beneficial effects on human health. Raspberry...... is one of the few fruits where fruit ripening is accompanied by the massive production of apocarotenoids. In this paper, changes in levels of carotenoids and apocarotenoids during raspberry fruit ripening are described. In addition, the isolation and characterization of a gene encoding a carotenoid...... cleavage dioxygenase (CCD), which putatively mediates the degradation of carotenoids to apocarotenoids during raspberry fruit ripening, is reported. Such information helps us to better understand how these compounds are produced in plants and may also enable us to develop novel strategies for improved...

  14. Distinct Carotenoid and Flavonoid Accumulation in a Spontaneous Mutant of Ponkan (Citrus reticulata Blanco) Results in Yellowish Fruit and Enhanced Postharvest Resistance.

    Science.gov (United States)

    Luo, Tao; Xu, Kunyang; Luo, Yi; Chen, Jiajing; Sheng, Ling; Wang, Jinqiu; Han, Jingwen; Zeng, Yunliu; Xu, Juan; Chen, Jianmin; Wu, Qun; Cheng, Yunjiang; Deng, Xiuxin

    2015-09-30

    As the most important fresh fruit worldwide, citrus is often subjected to huge postharvest losses caused by abiotic and biotic stresses. As a promising strategy to reduce postharvest losses, enhancing natural defense by potential metabolism reprogramming in citrus mutants has rarely been reported. The yellowish spontaneous mutant of Ponkan (Citrus reticulata Blanco) (YP) was used to investigate the influence of metabolism reprogramming on postharvest performance. Our results show that reduced xanthophyll accumulation is the cause of yellowish coloring of YP and might be attributed to the reduced carotenoid sequestration capacity and upregulated expression of carotenoid cleavage dioxygenase genes. Constantly higher levels of polymethoxylated flavones (PMFs) during the infection and the storage stage might make significant contribution to the more strongly induced resistance against Penicillium digitatum and lower rotting rate. The present study demonstrates the feasibility of applying bud mutants to improve the postharvest performance of citrus fruits. PMID:26329679

  15. PYOMELANIN IS PRODUCED BY SHEWANELLA ALGAE BRY AND EFFECTED BY EXOGENOUS IRON

    Energy Technology Data Exchange (ETDEWEB)

    Turick, C; Frank Caccavo, F; Jr., J; Louis S. Tisa, L

    2006-11-29

    Melanin production by S. algae BrY occurred during late/post-exponential growth in lactate-basal-salts liquid medium supplemented with tyrosine or phenylalanine. The antioxidant ascorbate inhibited melanin production, but not production of the melanin precursor, homogentisic acid. In the absence of ascorbate, melanin production was inhibited by the 4-hydroxyplenylpyruvate dioxygenase inhibitor, sulcotrione and Fe(II) (>0.2mM). These data support the hypothesis that pigment production by S. algae BrY was a result the conversion of tyrosine or phenylalanine to homogentisic acid which was excreted, auto-oxidized and self-polymerized to form pyomelanin. The inverse relationship between Fe(II) concentration and pyomelanin production has implications that pyomelanin may play a role in iron assimilation under Fe(II) limiting conditions.

  16. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator.

    Science.gov (United States)

    Berezina, Nathalie; Yada, Bopha; Lefebvre, Rodrigue

    2015-01-25

    Organic pollution by aromatic compounds is of increasing concern to our environment. Therefore, the transformation of aromatic pollutants into valuable aliphatic and biodegradable bioplastics was studied. Since benzoic acid was found to be the key compound for such bioremediation processes, its transformation, and metabolic pathways of digestion, by Cupriavidus necator were specifically analysed. It was found that the degradation of aromatic compounds follows the 2,3-dioxygenase pathway in this strain and that the batch transformations of benzoic acid with either fresh or adapted cells were limited to an initial concentration of 2.5 g/L of pollutant. The repeated fed-batch with partial withdrawal process, however, showed a 17.5-fold improvement, thus allowing the transformation of a total of 43.7 g/L in 12 weeks. PMID:25252021

  17. Characterization of the Initial Intermediate Formed during Photoinduced Oxygenation of the Ruthenium(II) Bis(bipyridyl)flavonolate Complex.

    Science.gov (United States)

    Han, Xiaozhen; Klausmeyer, Kevin K; Farmer, Patrick J

    2016-08-01

    A ruthenium(II) flavonolate complex, [Ru(II)(bpy)2fla][BF4], was synthesized to model the reactivity of the flavonol dioxygenases. The treatment of dry CH3CN solutions of [Ru(II)(bpy)2fla][BF4] with dioxygen under light leads to the oxidative O-heterocyclic ring opening of the coordinated substrate flavonolate, resulting in the formation of [Ru(II)(bpy)2(carboxylate)][BF4] (carboxylate = O-benzoylsalicylate or benzoate) species, as determined by electrospray ionization mass spectrometry. Moderation of the excitation and temperature allowed isolation and characterization of an intermediate, [Ru(II)(bpy)2bpg][BF4] (bpg = 2-benzoyloxyphenylglyoxylate), generated by the 1,2-addition of dioxygen to the central flavonolate ring. PMID:27437831

  18. Oxygen-18 Kinetic Isotope Effects of Nonheme Iron Enzymes HEPD and MPnS Support Iron(III) Superoxide as the Hydrogen Abstraction Species.

    Science.gov (United States)

    Zhu, Hui; Peck, Spencer C; Bonnot, Florence; van der Donk, Wilfred A; Klinman, Judith P

    2015-08-26

    Nonheme iron oxygenases that carry out four-electron oxidations of substrate have been proposed to employ iron(III) superoxide species to initiate this reaction [Paria, S.; Que, L.; Paine, T. K. Angew. Chem. Int. Ed. 2011, 50, 11129]. Here we report experimental evidence in support of this proposal. (18)O KIEs were measured for two recently discovered mononuclear nonheme iron oxygenases: hydroxyethylphosphonate dioxygenase (HEPD) and methylphosphonate synthase (MPnS). Competitive (18)O KIEs measured with deuterated substrates are larger than those measured with unlabeled substrates, which indicates that C-H cleavage must occur before an irreversible reductive step at molecular oxygen. A similar observation was previously used to implicate copper(II) superoxide in the H-abstraction reactions catalyzed by dopamine β-monooxygenase [Tian, G. C.; Klinman, J. P. J. Am. Chem. Soc. 1993, 115, 8891] and peptidylglycine α-hydroxylating monooxygenase [Francisco, W. A.; Blackburn, N. J.; Klinman, J. P. Biochemistry 2003, 42, 1813]. PMID:26267117

  19. Hybrid pseudomonads engineered by two-step homologous recombination acquire novel degradation abilities toward aromatics and polychlorinated biphenyls

    Energy Technology Data Exchange (ETDEWEB)

    Suenaga, Hikaru [National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba (Japan). Bioproduction Research Inst.; Nonaka, Kazuhiko; Goto, Masatoshi [Kyushu Univ., Fukuoka (Japan). Dept. of Bioscience and Biotechnology; Fujihara, Hidehiko; Furukawa, Kensuke [Beppu Univ. (Japan). Dept. of Fermentation and Food Science

    2010-10-15

    Pseudomonas pseudoalcaligenes KF707 possesses a chromosomally encoded bph gene cluster responsible for the catabolism of biphenyl and polychlorinated biphenyls. Previously, we constructed chimeric versions of the bphA1 gene, which encodes a large subunit of biphenyl dioxygenase, by using DNA shuffling between bphA1 genes from P. pseudoalcaligenes KF707 and Burkholderia xenovorans LB400. In this study, we demonstrate replacement of the bphA1 gene with chimeric bphA1 sequence within the chromosomal bph gene cluster by two-step homologous recombination. Notably, some of the hybrid strains acquired enhanced and/or expanded degradation capabilities for specific aromatic compounds, including single aromatic hydrocarbons and polychlorinated biphenyls. (orig.)

  20. A multi-enzymatic cascade reaction for the stereoselective production of γ-oxyfunctionalyzed amino acids

    Directory of Open Access Journals (Sweden)

    Junichi eEnoki

    2016-04-01

    Full Text Available A stereoselective three-enzyme cascade for synthesis of diasteromerically pure γ-oxyfunctionalized α-amino acids was developed. By coupling a dynamic kinetic resolution using an N-acylamino acid racemase and an L-selective aminoacylase from Geobacillus thermoglucosidasius with a stereoselective isoleucine dioxygenase from Bacillus thuringiensis, diastereomerically pure oxidized amino acids were produced from racemic N-acetylamino acids. The three enzymes differ in their optimal temperature and pH-spectra. Their different metal cofactor dependencies lead to inhibitory effects. Under optimized conditions, racemic N-acetylmethionine was quantitatively converted into L-methionine-(S-sulfoxide with 97% conversion and 95% de. The combination of these three different biocatalysts allows the direct synthesis of diastereopure oxyfunctionalized amino acids from inexpensive racemic starting material.

  1. Dicty_cDB: [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available VF (Link to library) VFB729 (Link to dictyBase) - - - Contig-U12568-1 VFB729F (Link... to Original site) VFB729F 500 - - - - - - Show VFB729 Library VF (Link to library) Clone ID VFB729 (Link to dict...yBase) Atlas ID - NBRP ID - dictyBase ID - Link to Contig Contig-U12568-1 Original site URL http://dict... DNA Score E Sequences producing significant alignments: (bits) Value N AF189237 |AF189237.1 Dictyostelium d...me: Full=Homogentisate 1,2-dioxygenase; E... 344 6e-94 AF189237_1( AF189237 |pid:none) Dictyostelium discoid

  2. The specific targeting of immune regulation

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2012-01-01

    -inflammatory signals, and IDO-based immunotherapy may consequently be synergistic with additional immunotherapy. In this regard, we have shown that the presence of IDO-specific T cells boosted immunity against CMV and tumor antigens by eliminating IDO(+) suppressive cells and changing the regulatory microenvironment......Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme that is implicated in suppressing T-cell immunity in many settings including cancer. In recent years, we have described spontaneous CD8(+) as well as CD4(+) T-cell reactivity against IDO in the tumor microenvironment of different...... cancer patients as well as in the peripheral blood of both cancer patients and to a lesser extent in healthy donors. We have demonstrated that IDO-reactive CD8(+) T cells were peptide-specific, cytotoxic effector cells, which are able to recognize and kill IDO-expressing cells including tumor cells...

  3. Type 1 Tyrosinemia with Hypophosphatemic Rickets; a Case Report

    Directory of Open Access Journals (Sweden)

    Peyman Eshraghi

    2014-09-01

    Full Text Available Background: Tyrosinemia type 1 is an autosomal recessive metabolic disorder, which typically affects liver and kidneys. It is caused by a defect in fumarylacetoacetate hydrolase or fumarylacetoacetase (FAH enzyme, the final enzyme in the tyrosine degradation pathway. The disease typically manifests as early onset type in early infancy with acute hepatic crisis with hepatomegaly and bleeding tendency. In 1992, a new drug orfadin (NTBC, Nitisinone which is a potent inhibitor of 4 hydroxy phenyl pyrovate dioxygenase has revolutionized the treatment of tyrosinemia type 1 and is now the mainstry of therapy. Case presentation: Our case was a girl in midchidhood period with profound rickets and slowly progressing liver disease who presented with difficulty walking and weakness of muscles. She had an elevated serum tyrosine and urinary succinylacetone, which confirmed the diagnosis of tyrosinemia type 1 and after treatment with NTBC significant remission, was achieved.

  4. The epigenetic role of vitamin C in health and disease.

    Science.gov (United States)

    Camarena, Vladimir; Wang, Gaofeng

    2016-04-01

    Recent advances have uncovered a previously unknown function of vitamin C in epigenetic regulation. Vitamin C exists predominantly as an ascorbate anion under physiological pH conditions. Ascorbate was discovered as a cofactor for methylcytosine dioxygenases that are responsible for DNA demethylation, and also as a likely cofactor for some JmjC domain-containing histone demethylases that catalyze histone demethylation. Variation in ascorbate bioavailability thus can influence the demethylation of both DNA and histone, further leading to different phenotypic presentations. Ascorbate deficiency can be presented systematically, spatially and temporally in different tissues at the different stages of development and aging. Here, we review how ascorbate deficiency could potentially be involved in embryonic and postnatal development, and plays a role in various diseases such as neurodegeneration and cancer through epigenetic dysregulation. PMID:26846695

  5. Arabidopsis VARIEGATED 3 encodes a chloroplast-targeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, Agnethe; Jenkins, Tom;

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...... protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  6. Arabidopsis VARIEGATED 3 encodes a chloroplasttargeted, zinc-finger protein required for chloroplast and palisade cell development

    DEFF Research Database (Denmark)

    Næsted, Henrik; Holm, A.; Jenkins, T.;

    2004-01-01

    The stable, recessive Arabidopsis variegated 3 (var3) mutant exhibits a variegated phenotype due to somatic areas lacking or containing developmentally retarded chloroplasts and greatly reduced numbers of palisade cells. The VAR3 gene, isolated by transposon tagging, encodes the 85.9 kDa VAR3...... protein containing novel repeats and zinc fingers described as protein interaction domains. VAR3 interacts specifically in yeast and in vitro with NCED4, a putative polyene chain or carotenoid dioxygenase, and both VAR3 and NCED4 accumulate in the chloroplast stroma. Metabolic profiling demonstrates...... that pigment profiles are qualitatively similar in wild type and var3, although var3 accumulates lower levels of chlorophylls and carotenoids. These results indicate that VAR3 is a part of a protein complex required for normal chloroplast and palisade cell development....

  7. The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe'i Group Musa Cultivar.

    Science.gov (United States)

    Buah, Stephen; Mlalazi, Bulukani; Khanna, Harjeet; Dale, James L; Mortimer, Cara L

    2016-04-27

    The regulation of carotenoid biosynthesis in a high-carotenoid-accumulating Fe'i group Musa cultivar, "Asupina", has been examined and compared to that of a low-carotenoid-accumulating cultivar, "Cavendish", to understand the molecular basis underlying carotenogenesis during banana fruit development. Comparisons in the accumulation of carotenoid species, expression of isoprenoid genes, and product sequestration are reported. Key differences between the cultivars include greater carotenoid cleavage dioxygenase 4 (CCD4) expression in "Cavendish" and the conversion of amyloplasts to chromoplasts during fruit ripening in "Asupina". Chromoplast development coincided with a reduction in dry matter content and fruit firmness. Chromoplasts were not observed in "Cavendish" fruits. Such information should provide important insights for future developments in the biofortification and breeding of banana.

  8. Current Concepts of Hyperinflammation in Chronic Granulomatous Disease

    Directory of Open Access Journals (Sweden)

    Nikolaus Rieber

    2012-01-01

    Full Text Available Chronic granulomatous disease (CGD is the most common inherited disorder of phagocytic functions, caused by genetic defects in the leukocyte nicotinamide dinucleotide phosphate (NADPH oxidase. Consequently, CGD phagocytes are impaired in destroying phagocytosed microorganisms, rendering the patients susceptible to bacterial and fungal infections. Besides this immunodeficiency, CGD patients suffer from various autoinflammatory symptoms, such as granuloma formation in the skin or urinary tract and Crohn-like colitis. Owing to improved antimicrobial treatment strategies, the majority of CGD patients reaches adulthood, yet the autoinflammatory manifestations become more prominent by lack of causative treatment options. The underlying pathomechanisms driving hyperinflammatory reactions in CGD are poorly understood, but recent studies implicate reduced neutrophil apoptosis and efferocytosis, dysbalanced innate immune receptors, altered T-cell surface redox levels, induction of Th17 cells, the enzyme indolamine-2,3-dioxygenase (IDO, impaired Nrf2 activity, and inflammasome activation. Here we discuss immunological mechanisms of hyperinflammation and their potential therapeutic implications in CGD.

  9. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis

    DEFF Research Database (Denmark)

    Rasmussen, Kasper D; Jia, Guangshuai; Johansen, Jens V;

    2015-01-01

    DNA methylation is tightly regulated throughout mammalian development, and altered DNA methylation patterns are a general hallmark of cancer. The methylcytosine dioxygenase TET2 is frequently mutated in hematological disorders, including acute myeloid leukemia (AML), and has been suggested to...... protect CG dinucleotide (CpG) islands and promoters from aberrant DNA methylation. In this study, we present a novel Tet2-dependent leukemia mouse model that closely recapitulates gene expression profiles and hallmarks of human AML1-ETO-induced AML. Using this model, we show that the primary effect of Tet......2 loss in preleukemic hematopoietic cells is progressive and widespread DNA hypermethylation affecting up to 25% of active enhancer elements. In contrast, CpG island and promoter methylation does not change in a Tet2-dependent manner but increases relative to population doublings. We confirmed this...

  10. Molecular cloning, substrate specificity of the functionally expressed dihydroflavonol 4-reductases from Malus domestica and Pyrus communis cultivars and the consequences for flavonoid metabolism.

    Science.gov (United States)

    Fischer, Thilo C; Halbwirth, Heidrun; Meisel, Barbara; Stich, Karl; Forkmann, Gert

    2003-04-15

    Treatment with the dioxygenase inhibitor prohexadione-Ca leads to major changes in the flavonoid metabolism of apple (Malus domestica) and pear (Pyrus communis) leaves. Accumulation of unusual 3-deoxyflavonoids is observed, which have been linked to an enhanced resistance toward fire blight. The committed step in this pathway is the reduction of flavanones. Crude extracts from leaves are able to perform this reaction. There was previous evidence that DFR enzymes of certain plants possess additional flavanone 4-reductase (FNR) activity. Such an FNR activity of DFR enzymes is proved here by heterologous expression of the enzymes. The heterologously expressed DFR/FNR enzymes of Malus and Pyrus possess distinct differences in substrate specificities despite only minor differences of the amino acid sequences. Kinetic studies showed that dihydroflavonols generally are the preferred substrates. However, with the observed substrate specificities the occurrence of 3-deoxyflavonoids in vivo after application of prohexadione-Ca can be explained.

  11. The role of nitisinone in tyrosine pathway disorders.

    Science.gov (United States)

    Lock, Edward; Ranganath, Lakshminarayan R; Timmis, Oliver

    2014-11-01

    Nitisinone 2-(2-nitro-4-trifluoromethylbenzoyl)cyclohexane-1,3-dione (NTBC), an effective herbicide, is the licensed treatment for the human condition, hereditary tyrosinaemia type 1 (HT-1). Its mode of action interrupts tyrosine metabolism through inhibition of 4-hydroxyphenylpyruvate dioxygenase (HPPD). Nitisinone is a remarkable safe drug to use with few side effects reported. Therefore, we propose that it should be investigated as a potential treatment for other disorders of tyrosine metabolism. These include alkaptonuria (AKU), a rare disease resulting is severe, early-onset osteoarthritis. We present a case study from the disease, and attempts to use the drug both off-label and in clinical research through the DevelopAKUre consortium. PMID:25266991

  12. Strong Impact on the Polycyclic Aromatic Hydrocarbon (PAH)-Degrading Community of a PAH-Polluted Soil but Marginal Effect on PAH Degradation when Priming with Bioremediated Soil Dominated by Mycobacteria

    DEFF Research Database (Denmark)

    Johnsen, Anders R.; Schmidt, Stine; Hybholdt, Trine K.;

    2007-01-01

    Bioaugmentation of soil polluted with polycyclic aromatic hydrocarbons (PAHs) is often disappointing because of the low survival rate and low activity of the introduced degrader bacteria. We therefore investigated the possibility of priming PAH degradation in soil by adding 2% of bioremediated soil...... with a high capacity for PAH degradation. The culturable PAH-degrading community of the bioremediated primer soil was dominated by Mycobacterium spp. A microcosm containing pristine soil artificially polluted with PAHs and primed with bioremediated soil showed a fast, 100- to 1,000-fold increase in numbers...... of culturable phenanthrene-, pyrene-, and fluoranthene degraders and a 160-fold increase in copy numbers of the mycobacterial PAH dioxygenase gene pdo1. A nonpolluted microcosm primed with bioremediated soil showed a high rate of survival of the introduced degrader community during the 112 days of incubation...

  13. The effect of pregnancy on paternal skin allograft survival

    Institute of Scientific and Technical Information of China (English)

    SHOU ZhangFei; XU YiFang; XIAO HuaYing; ZHOU Qin; CAI JieRu; YANG Yi; JIANG Hong; ZHANG WenJie; CHEN JiangHua

    2009-01-01

    Elucidation of maternal-fetal tolerance mechanisms clarifies the role of regulatory T cells (Treg)in transplant tolerance.This study aim to investigate the effect of pregnancy on paternal skin allograft survival.Flow cytometry techniques,mixed lymphocytes reaction (MLR),PCR,real-time PCR and skin transplantation were key methods.Treg increased significantly from 4.2% before pregnancy to peak at 6.8% day 8 after pregnancy.Both heme oxygenase-1 (HO-1)and indoleamine 2,3-dioxygenase (IDO)mRNA express high in placenta while low in spleen (P<0.05).Although Treg increased during pregnancy,and splenocytes from the pregnant mice showed lower MLR response toward the paternal stimulator,single time pregnancy showed no significant protective effect on paternal skin allograft survival in the tested condition.

  14. Characterization of a paramagnetic mononuclear nonheme iron-superoxo complex.

    Science.gov (United States)

    Chiang, Chien-Wei; Kleespies, Scott T; Stout, Heather D; Meier, Katlyn K; Li, Po-Yi; Bominaar, Emile L; Que, Lawrence; Münck, Eckard; Lee, Way-Zen

    2014-08-01

    O2 bubbling into a THF solution of Fe(II)(BDPP) (1) at -80 °C generates a reversible bright yellow adduct 2. Characterization by resonance Raman and Mössbauer spectroscopy provides complementary insights into the nature of 2. The former shows a resonance-enhanced vibration at 1125 cm(-1), which can be assigned to the ν(O-O) of a bound superoxide, while the latter reveals the presence of a high-spin iron(III) center that is exchange-coupled to the superoxo ligand, like the Fe(III)-O2(-) pair found for the O2 adduct of 4-nitrocatechol-bound homoprotocatechuate 2,3-dioxygenase. Lastly, 2 oxidizes dihydroanthracene to anthracene, supporting the notion that Fe(III)-O2(-) species can carry out H atom abstraction from a C-H bond to initiate the 4-electron oxidation of substrates proposed for some nonheme iron enzymes.

  15. Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter sp.

    Energy Technology Data Exchange (ETDEWEB)

    Jain, R.K.; Spain, J.C. [Armstrong Lab., Tyndall Air Force Base, FL (United States); Dreisbach, J.H. [Univ. of Scranton, PA (United States)

    1994-08-01

    The degradation of p-nitrophenol (PNP) by Moraxella and Pseudomonas spp. involves an initial monooxygenase-catalyzed removal of the nitro group. The resultant hydroquinone is subject to ring fission catalyzed by a dioxygenase enzyme. A strain of an Arthrobacter sp. JS443, capable of degrading PNP with stoichiometric release of nitrite has been isolated. During induction of the enzymes required for growth on PNP, 1,2,4-benzenetriol was identified as an intermediate by gas chromatography-mass spectroscopy and radiotracer studies. 1,2,4-Benzenetriol was converted to maleylacetic acid, which was further degraded by the beta-ketoadipate pathway. Conversion of PNP to 1,2,4-benzenetriol is catalyzed by a monooxygenase system in strain JS443 through the formation of 4-nitrocatechol, 4-nitroresorcinol, or both. Results clearly indicate the existence of an alternative pathway for the biodegradation of PNP. 15 refs, 2 figs., 2 tabs.

  16. Proteomic analysis of differently cultured endemic medicinal mushroom Antrodia cinnamomea T.T. Chang et W.N. Chou from Taiwan.

    Science.gov (United States)

    Lin, Yan-Liang; Wen, Tuan-Nan; Chang, Shang-Tzen; Chu, Fang-Hua

    2011-01-01

    Antrodia cinnamomea is peculiar to Taiwan. It only grows on one host and is highly valued as an important component of several traditional Chinese medicines. In this study, the different protein expression profiles of artificially cultivated vegetative mycelium and wild-type basidiomatal fruiting bodies were compared and unique protein spots from wild-type basidiomatal fruiting body were investigated using 2D polyacrylamide gel electrophoresis and LC-MS/MS protein identification. Most of the wild-type proteins not seen in the artificially cultivated mycelium were associated to function in metabolism, cell stress, ROS scavenging, and cell growth. Several proteins from wild-type basidiomes, such as catalase, aryl-alcohol dehydrogenase, S-adenosyl-L-homocysteine hydrolase, intradiol dioxygenase, haloacid dyhydrogenase, alpha- and beta-form tubulin, prohibitin, septin, chaperone, and HSP90 ATPase, showed higher expression than those from artificially cultured mycelium at the mRNA level.

  17. Synergistic effects between catalase inhibitors and modulators of nitric oxide metabolism on tumor cell apoptosis.

    Science.gov (United States)

    Scheit, Katrin; Bauer, Georg

    2014-10-01

    Inhibitors of catalase (such as ascorbate, methyldopa, salicylic acid and neutralizing antibodies) synergize with modulators of nitric oxide (NO) metabolism (such as arginine, arginase inhibitor, NO synthase-inducing interferons and NO dioxygenase inhibitors) in the singlet oxygen-mediated inactivation of tumor cell protective catalase. This is followed by reactive oxygen species (ROS)-dependent apoptosis induction. TGF-beta, NADPH oxidase-1, NO synthase, dual oxidase-1 and caspase-9 are characterized as essential catalysts in this process. The FAS receptor and caspase-8 are required for amplification of ROS signaling triggered by individual compounds, but are dispensable when the synergistic effect is established. Our findings explain the antitumor effects of catalase inhibitors and of compounds that target NO metabolism, as well as their synergy. These data may have an impact on epidemiological studies related to secondary plant compounds and open new perspectives for the establishment of novel antitumor drugs and for the improvement of established chemotherapeutics.

  18. Overexpression of an ABA biosynthesis gene using a stress-inducible promoter enhances drought resistance in petunia.

    Science.gov (United States)

    Estrada-Melo, Alejandro C; Chao; Reid, Michael S; Jiang, Cai-Zhong

    2015-01-01

    The response of plants to drought stress includes reduced transpiration as stomates close in response to increased abscisic acid (ABA) concentrations. Constitutive overexpression of 9-cis-epoxycarotenoid dioxygenase (NCED), a key enzyme in ABA biosynthesis, increases drought resistance, but causes negative pleiotropic effects on plant growth and development. We overexpressed the tomato NCED (LeNCED1) in petunia plants under the control of a stress-inducible promoter, rd29A. Under water stress, the transgenic plants had increased transcripts of NCED mRNA, elevated leaf ABA concentrations, increased concentrations of proline, and a significant increase in drought resistance. The transgenic plants also displayed the expected decreases in stomatal conductance, transpiration, and photosynthesis. After 14 days without water, the control plants were dead, but the transgenic plants, though wilted, recovered fully when re-watered. Well-watered transgenic plants grew like non-transformed control plants and there was no effect of the transgene on seed dormancy. PMID:26504568

  19. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator.

    Science.gov (United States)

    Berezina, Nathalie; Yada, Bopha; Lefebvre, Rodrigue

    2015-01-25

    Organic pollution by aromatic compounds is of increasing concern to our environment. Therefore, the transformation of aromatic pollutants into valuable aliphatic and biodegradable bioplastics was studied. Since benzoic acid was found to be the key compound for such bioremediation processes, its transformation, and metabolic pathways of digestion, by Cupriavidus necator were specifically analysed. It was found that the degradation of aromatic compounds follows the 2,3-dioxygenase pathway in this strain and that the batch transformations of benzoic acid with either fresh or adapted cells were limited to an initial concentration of 2.5 g/L of pollutant. The repeated fed-batch with partial withdrawal process, however, showed a 17.5-fold improvement, thus allowing the transformation of a total of 43.7 g/L in 12 weeks.

  20. Modulation of Tumor Tolerance in Primary Central Nervous System Malignancies

    Directory of Open Access Journals (Sweden)

    Theodore S. Johnson

    2012-01-01

    Full Text Available Central nervous system tumors take advantage of the unique immunology of the CNS and develop exquisitely complex stromal networks that promote growth despite the presence of antigen-presenting cells and tumor-infiltrating lymphocytes. It is precisely this immunological paradox that is essential to the survival of the tumor. We review the evidence for functional CNS immune privilege and the impact it has on tumor tolerance. In this paper, we place an emphasis on the role of tumor-infiltrating myeloid cells in maintaining stromal and vascular quiescence, and we underscore the importance of indoleamine 2,3-dioxygenase activity as a myeloid-driven tumor tolerance mechanism. Much remains to be discovered regarding the tolerogenic mechanisms by which CNS tumors avoid immune clearance. Thus, it is an open question whether tumor tolerance in the brain is fundamentally different from that of peripheral sites of tumorigenesis or whether it simply stands as a particularly strong example of such tolerance.