WorldWideScience

Sample records for 2-mediated interleukin-8 production

  1. Inhibition of Toll-like receptor 2-mediated interleukin-8 production in Cystic Fibrosis airway epithelial cells via the alpha7-nicotinic acetylcholine receptor.

    LENUS (Irish Health Repository)

    Greene, Catherine M

    2010-01-01

    Cystic Fibrosis (CF) is an inherited disorder characterised by chronic inflammation of the airways. The lung manifestations of CF include colonization with Pseudomonas aeruginosa and Staphylococcus aureus leading to neutrophil-dominated airway inflammation and tissue damage. Inflammation in the CF lung is initiated by microbial components which activate the innate immune response via Toll-like receptors (TLRs), increasing airway epithelial cell production of proinflammatory mediators such as the neutrophil chemokine interleukin-8 (IL-8). Thus modulation of TLR function represents a therapeutic approach for CF. Nicotine is a naturally occurring plant alkaloid. Although it is negatively associated with cigarette smoking and cardiovascular damage, nicotine also has anti-inflammatory properties. Here we investigate the inhibitory capacity of nicotine against TLR2- and TLR4-induced IL-8 production by CFTE29o- airway epithelial cells, determine the role of alpha7-nAChR (nicotinic acetylcholine receptor) in these events, and provide data to support the potential use of safe nicotine analogues as anti-inflammatories for CF.

  2. Doxycycline decreases production of interleukin-8 in a549 human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Hoyt JC

    2013-03-01

    Full Text Available Doxycycline is an antibiotic that possess anti-inflammatory properties. These anti-inflammatory properties make doxycycline an attractive candidate for possible treatments for a variety of common chronic obstructive airway diseases. Interleukin-8 (IL-8 is a major inflammatory chemokine and a powerful chemo-attractant for both neutrophils and monocytes. We hypothesized that doxycycline might exert its anti-inflammatory effects, at least in part, by modulating IL-8 production. To test this hypothesis, A549 human lung epithelial cells were stimulated with cytomix (IL-1beta, TNF-alpha and gamma-IFN in the presence or absence of varying concentrations of doxycycline. Doxycycline decreased IL-8 protein production in a concentration- and time-dependent manner. In the presence of 30 microg/ml doxycycline IL-8 protein production was decreased by 63% through out a 30 hr time course. In chemotaxis assays monocyte and neutrophil migration was decreased by 55% and 57% respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR experiments suggest that doxycycline does not decrease expression of IL-8 mRNA and that use of the RNA polymerase II inhibitor DRB indicates that doxycycline does not effect stability of this mRNA. In the presence of doxycycline p38-alpha mitogen-activated protein kinase (MAPK expression is decreased by 36% in cytomix-stimulated cells. These data demonstrate that doxycycline can modulate IL-8 release and suggest that it has potential as an anti-inflammatory in those disorders where IL-8 is an important inflammatory mediator.

  3. Toll-like receptor 2-mediated interleukin-8 expression in gingival epithelial cells by the Tannerella forsythia leucine-rich repeat protein BspA.

    Science.gov (United States)

    Onishi, Shinsuke; Honma, Kiyonobu; Liang, Shuang; Stathopoulou, Panagiota; Kinane, Denis; Hajishengallis, George; Sharma, Ashu

    2008-01-01

    Tannerella forsythia is a gram-negative anaerobe strongly associated with chronic human periodontitis. This bacterium expresses a cell surface-associated and secreted protein, designated BspA, which has been recognized as an important virulence factor. The BspA protein belongs to the leucine-rich repeat (LRR) and bacterial immunoglobulin-like protein families. BspA is, moreover, a multifunctional protein which interacts with a variety of host cells, including monocytes which appear to respond to BspA through Toll-like receptor (TLR) signaling. Since gingival epithelium forms a barrier against periodontal pathogens, this study was undertaken to determine if gingival epithelial cells respond to BspA challenge and if TLRs play any role in BspA recognition. This study was also directed towards identifying the BspA domains responsible for cellular activation. We provide direct evidence for BspA binding to TLR2 and demonstrate that the release of the chemokine interleukin-8 from human gingival epithelial cells by BspA is TLR2 dependent. Furthermore, the LRR domain of BspA is involved in activation of TLR2, while TLR1 serves as a signaling partner. Thus, our findings suggest that BspA is an important modulator of host innate immune responses through activation of TLR2 in cooperation with TLR1.

  4. Induction of interleukin-8 production by angiotensin Ⅱ in rat vascular smooth muscle cells

    Institute of Scientific and Technical Information of China (English)

    Zhi Wang; Lili Zhang; Baogui Sun; Qiuyan Dai

    2009-01-01

    Objective:Interleukin-8(IL-8) represents the prototypical chemokine that is made by a wide variety of cell types.Previously studies have suggested that angiotensin Ⅱ(Ang Ⅱ) is involved in atherogenesis through induction ofproinflammatory cytokines such as interleukin-6 or monocyte chemoattractant protein-1 (MCP-1) in vascular smooth muscle cells(VSMCs),while the role orang Ⅱ on IL-8 expression in VSMCs is poorly studied.Methods:In this study,VSMCs were isolated from the thoracic aorta of Sprague-Dawley rats.The expression of smooth muscle α-actin was confirmed by an immunohistochemical method.Semi-quantitative RT-PCR and enzyme-linked immunosorbent assay (ELISA) analyses were conducted to detect IL-8 expression.Results:In the present study we found that Ang Ⅱ significantly increased the expression of IL-8 both at the mRNA and protein levels in rat VSMCs in a dose- and time-dependent manner.Conclusion:These findings suggested that Ang Ⅱ may participate in atherosclerosis through induction of inflammatory mediator in VSMCs.

  5. Lobohedleolide induces interleukin-8 production in LPS-stimulated human monocytic cell line THP-1

    Directory of Open Access Journals (Sweden)

    T Oda

    2011-09-01

    Full Text Available Summary: Lobohedleolide (1 has been isolated from a soft coral, Sarcophyton sp., as one of three responsible substances for observed inhibitory activity against TNF-a production in lipopolysaccharide (LPS-stimulated murine macrophage-like RAW 264.7 cells. During the examination of other inflammatory cytokines, we found that only 1 induced the production of interleukin (IL-8 in LPS-stimulated human monocytic THP-1 cells, while the other two compounds did not affect the production of IL-8. Although 1 showed an inhibitory effect on nuclear factor-kappaB (NF-kB activation, this compound induced IL-8 promoter activity, which led to the induction of IL-8 production in LPS-stimulated THP-1 cells. Industrial Relevance: Marine organisms are a rich resource of biologically active secondary metabolites. Two marine natural products and two derivatives of marine sponge compounds have been utilized for medical treatment, and marked numbers of marine natural products and their derivatives are now in clinical and pre-clinical trials. Therefore, marine natural products are attractive sources of medicines and their lead compounds, and elucidation of new bioactivity and the mechanism of action of marine natural products are also a very important study for drug discovery. This report describes a new bioactivity of a diterpene previously obtained from an Indonesian soft corral.

  6. BLT2 up-regulates interleukin-8 production and promotes the invasiveness of breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Hyunju Kim

    Full Text Available BACKGROUND: The elevated production of interleukin (IL-8 is critically associated with invasiveness and metastatic potential in breast cancer cells. However, the intracellular signaling pathway responsible for up-regulation of IL-8 production in breast cancer cells has remained unclear. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we report that the expression of BLT2 is markedly up-regulated in the highly aggressive human breast cancer cell lines MDA-MB-231 and MDA-MB-435 compared with MCF-10A immortalized human mammary epithelial cells, as determined by RT-PCR, real-time PCR and FACS analysis. Blockade of BLT2 with BLT2 siRNA knockdown or BLT2 inhibitor treatment downregulated IL-8 production and thereby diminished the invasiveness of aggressive breast cancer cells, analyzed by Matrigel invasion chamber assays. We further characterized the downstream signaling mechanism by which BLT2 stimulates IL-8 production and identified critical mediatory roles for the generation of reactive oxygen species (ROS and the consequent activation of the transcription factor NF-κB. Moreover, blockade of BLT2 suppressed the formation of metastatic lung nodules by MDA-MB-231 cells in both experimental and orthotopic metastasis models. CONCLUSIONS/SIGNIFICANCE: Taken together, our study demonstrates that a BLT2-ROS-NF-κB pathway up-regulates IL-8 production in MDA-MB-231 and MDA-MB-435 cells, thereby contributing to the invasiveness of these aggressive breast cancer cells. Our findings provide insight into the molecular mechanism of invasiveness in breast cancer.

  7. Green tea polyphenol blocks h(2)o(2)-induced interleukin-8 production from human alveolar epithelial cells.

    Science.gov (United States)

    Matsuoka, Katsunari; Isowa, Noritaka; Yoshimura, Takashi; Liu, Mingyao; Wada, Hiromi

    2002-06-07

    Reactive oxygen species (ROS) play crucial roles in ischemia-reperfusion (IR) injury of lung transplants. Reactive oxygen species may stimulate the production of neutrophil chemotactic factors such as interleukin-8 (IL-8), from alveolar epithelial cells, causing recruitment and activation of neutrophils in the reperfused tissue. Green tea polyphenol has potent anti-oxidative activities and anti-inflammatory effects by decreasing cytokine production. In the present study, we found that green tea polyphenol significantly inhibited IL-8 production induced by hydrogen peroxide (H(2)O(2)) in human lung alveolar epithelial cells (A549 line). It has been shown that mitogen activated protein kinases, such as Jun N-terminal kinase (JNK), p38 and p44/42, could mediate IL-8 production from a variety of cell types. We further investigated the effect of green tea polyphenol on these protein kinases, and demonstrated that H(2)O(2)-induced phosphorylation of JNK and p38 but not p44/42 was inhibited by green tea polyphenol in A549 cells. We speculate that green tea polyphenol may inhibit H(2)O(2)-induced IL-8 production from A549 cells through inactivation of JNK and p38.

  8. miR-17 overexpression in cystic fibrosis airway epithelial cells decreases interleukin-8 production.

    Science.gov (United States)

    Oglesby, Irene K; Vencken, Sebastian F; Agrawal, Raman; Gaughan, Kevin; Molloy, Kevin; Higgins, Gerard; McNally, Paul; McElvaney, Noel G; Mall, Marcus A; Greene, Catherine M

    2015-11-01

    Interleukin (IL)-8 levels are higher than normal in cystic fibrosis (CF) airways, causing neutrophil infiltration and non-resolving inflammation. Overexpression of microRNAs that target IL-8 expression in airway epithelial cells may represent a therapeutic strategy for cystic fibrosis. IL-8 protein and mRNA were measured in cystic fibrosis and non-cystic fibrosis bronchoalveolar lavage fluid and bronchial brushings (n=20 per group). miRNAs decreased in the cystic fibrosis lung and predicted to target IL-8 mRNA were quantified in βENaC-transgenic, cystic fibrosis transmembrane conductance regulator (Cftr)-/- and wild-type mice, primary cystic fibrosis and non-cystic fibrosis bronchial epithelial cells and a range of cystic fibrosis versus non-cystic fibrosis airway epithelial cell lines or cells stimulated with lipopolysaccharide, Pseudomonas-conditioned medium or cystic fibrosis bronchoalveolar lavage fluid. The effect of miRNA overexpression on IL-8 protein production was measured. miR-17 regulates IL-8 and its expression was decreased in adult cystic fibrosis bronchial brushings, βENaC-transgenic mice and bronchial epithelial cells chronically stimulated with Pseudomonas-conditioned medium. Overexpression of miR-17 inhibited basal and agonist-induced IL-8 protein production in F508del-CFTR homozygous CFTE29o(-) tracheal, CFBE41o(-) and/or IB3 bronchial epithelial cells. These results implicate defective CFTR, inflammation, neutrophilia and mucus overproduction in regulation of miR-17. Modulating miR-17 expression in cystic fibrosis bronchial epithelial cells may be a novel anti-inflammatory strategy for cystic fibrosis and other chronic inflammatory airway diseases.

  9. Astragalus mongholicus polysaccharide inhibits lipopolysaccharide-induced production of TNF-α and interleukin-8

    Institute of Scientific and Technical Information of China (English)

    Yuan Yuan; Mei Sun; Ke-Shen Li

    2009-01-01

    AIM: To explore the effect of Astragalus mongholicus polysaccharide (APS) on gene expression and mitogenactivated protein kinase (MAPK) transcriptional activity in intestinal epithelial cells (IEC). METHODS: IEC were divided into control group, lipopolysaccharide (LPS) group, LPS+ 50 μg/mL APS group, LPS+ 100 μg/mL APS group, LPS+ 200 μg/mL APS group, and LPS+ 500 μg/mL APS group. Levels of mRNAs in LPS-induced inflammatory factors, tumor necrosis factor (TNF)-α and interleukin (IL)-8, were measured by reverse transcription-polymerase chain reaction. MAPK protein level was measured by Western blotting. RESULTS: The levels of TNF-α and IL-8 mRNAs were significantly higher in IEC with LPS-induced damage than in control cells. APS significantly abrogated the LPS-induced expression of the TNF-α and IL-8 genes. APS did not block the activation of extracellular signalregulated kinase or c Jun amino-terminal kinase, but inhibited the activation of p38, suggesting that APS inhibits LPS-induced production of TNF-α and IL-8 mRNAs, possibly by suppressing the p38 signaling pathway. CONCLUSION: APS-modulated bacterial productmediated p38 signaling represents an attractive strategy for prevention and treatment of intestinal inflammation.

  10. Lactobacilli inhibit interleukin-8 production induced by Helicobacter pylori lipopolysaccharide-activated Toll-like receptor 4

    Institute of Scientific and Technical Information of China (English)

    Chao Zhou; Feng-Zhen Ma; Xue-Jie Deng; Hong Yuan; Hong-Sheng Ma

    2008-01-01

    AIM: To investigate the effect of Lactobacillus bulgaricus (LBG) on the Toll-like receptor 4 (TLR4) pathway and interleukin-8 (IL-8) production in SGC-7901 cells treated with Helicobacter pyloriSydney strain 1 lipopolysaccharide (H pyloriSS1-LPS).METHODS: SGC-7901 cells were treated with H pyIoriSS1-LPS in the presence or absence of pretreatment for 1 h with viable LBG or supematant recovered from LBG culture MRS broth (LBG-s). Cellular lysates were prepared for Western blot with anti-TLR4,anti-transforming growth factor β-activated kinase 1 (TAK1), anti-phospho-TAK1, anti-nuclear factor κB (NF-κB), anti-p38 mitogen-activated protein kinase (p38MAPK), and anti-phospho-p38MAPK antibodies.The amount of IL-8 in cell culture medium was measured by ELISA.RESULTS: H pyloriSS1-LPS up-regulated the expression of TLR4, stimulated the phosphorylation of TAK1, subsequently enhanced the activation of NFκB and the phosphorylation of p38MAPK in a timedependent manner, leading to augmentation of IL-8 production in SGC-7901 cells. Viable LBG or LBG-s pretreatment attenuated the expression of TLR4,inhibited the phosphorylation of TAK1 and p38MAPK,prevented the activation of NF-κB, and consequently blocked IL-8 production.CONCLUSION: H pyloriSS1-LPS induces IL-8production through activating TLR4 signaling in SGC-7901 cells and viable LBG or LBG-s prevents H pyloriSS1-LPS-mediated IL-8 production via inhibition of the TLR4 pathway.

  11. Interleukin-8 and eicosanoid production in the lung during moderate to severe Pneumocystis carinii pneumonia in AIDS: a role of interleukin-8 in the pathogenesis of P. carinii pneumonia

    DEFF Research Database (Denmark)

    Benfield, T L; van Steenwijk, R; Nielsen, T L;

    1995-01-01

    Pneumocystis carinii pneumonia (PCP) may cause severe respiratory distress. This is believed to be partly caused by the accumulation of neutrophils in the lung. Interleukin-8 (IL-8) and leukotriene B4 (LTB4) are potent neutrophil chemo-attractants and activators. Eicosanoids [i.e. prostaglandins...... of IL-8 as a mediator in the pathogenesis of PCP, whereas the role of eicosanoids seems less clear....

  12. Interleukin-8 and eicosanoid production in the lung during moderate to severe Pneumocystis carinii pneumonia in AIDS: a role of interleukin-8 in the pathogenesis of P. carinii pneumonia

    DEFF Research Database (Denmark)

    Benfield, T L; van Steenwijk, R; Nielsen, T L

    1995-01-01

    Pneumocystis carinii pneumonia (PCP) may cause severe respiratory distress. This is believed to be partly caused by the accumulation of neutrophils in the lung. Interleukin-8 (IL-8) and leukotriene B4 (LTB4) are potent neutrophil chemo-attractants and activators. Eicosanoids [i.e. prostaglandins...... (PG) and leukotrienes (LT)] are pro-inflammatory mediators released from arachidonic acid by action of phospholipase A2 (PLA2) and have been implicated in the host response to micro-organisms. Bronchoalveolar lavage (BAL) was performed on patients with PCP as part of a randomized study of adjuvant...... corticosteroids vs. placebo, in addition to standard antimicrobial therapy. Re-bronchoscopy was offered at day 10. BAL fluid was available for 26 patients who had follow-up bronchoscopy performed. At diagnosis, IL-8 levels were elevated in patients with PCP, compared to healthy controls, and correlated...

  13. Helicobacter pylori environmental interactions: effect of acidic conditions on H. pylori-induced gastric mucosal interleukin-8 production

    Science.gov (United States)

    Choi, Il Ju; Fujimoto, Saori; Yamauchi, Kazuyoshi; Graham, David Y.; Yamaoka, Yoshio

    2010-01-01

    Summary To explore the interactions between the host, environment and bacterium responsible for the different manifestations of Helicobacter pylori infection, we examined the effect of acidic conditions on H. pylori-induced interleukin (IL)-8 expression. AGS gastric epithelial cells were exposed to acidic pH and infected with H. pylori [wild-type strain, its isogenic cag pathogenicity island (PAI) mutant or its oipA mutant]. Exposure of AGS cells to acidic pH alone did not enhance IL-8 production. However, following exposure to acidic conditions, H. pylori infection resulted in marked enhancement of IL-8 production which was independent of the presence of the cag PAI and OipA, indicating that H. pylori and acidic conditions act synergistically to induce gastric mucosal IL-8 production. In neutral pH environments H. pylori-induced IL-8 induction involved the NF-κB pathways, the extracellular signal-regulated kinase (ERK)→ c-Fos/c-Jun→activating protein (AP-1) pathways, JNK→c-Jun→AP-1 pathways and the p38 pathways. At acidic pH H. pylori-induced augmentation of IL-8 production involved markedly upregulated the NF-κB pathways and the ERK→c-Fos→AP-1 pathways. In contrast, activation of the JNK→c-Jun→AP-1 pathways and p38 pathways were pH independent. These results might explain the clinical studies in which patients with duodenal ulcers had higher levels of IL-8 in the antral gastric mucosa than patients with simple H. pylori gastritis. PMID:17517062

  14. Studies on the biological effects of ozone: 8. Effects on the total antioxidant status and on interleukin-8 production

    Directory of Open Access Journals (Sweden)

    V. Bocci

    1998-01-01

    Full Text Available Ozone (O3 is a controversial gas because, owing to its potent oxidant properties, it exerts damaging effects on the respiratory tract and yet it has been used for four decades as a therapy. While the disinfectant activity of O3 is understandable, it is less clear how other biological effects can be elicited in human blood with practically no toxicity. On the other hand plasma and cells are endowed with a powerful antioxidant system so that a fairly wide range of O3 concentrations between 40 and 80μ g/ml per gram of blood (˜0.83-1.66 mM are effective but not deleterious. After blood ozonation total antioxidant status (TAS and plasma protein thiol groups (PTG decrease by 20% and 25%, respectively, while thiobarbituric acid reactive substances (TBARS increases up to fivefold. The increase of haemolysis is negligible suggesting that the erythrocyte membrane is spared at the expense of other sacrificial substrates. While there is a clear relationship between the ozone dose and IL-8 levels, we have noticed that high TAS and PTG values inhibit the cytokine production. This is in line with the current idea that hydrogen peroxide, as a byproduct of O3 decomposition, acts as a messenger for the cytokine induction.

  15. Resolvin-D1 inhibits interleukin-8 and hydrogen peroxide production induced by cigarette smoke extract in 16HBE cells via attenuating NF-κB activation

    Institute of Scientific and Technical Information of China (English)

    Dong Jiajia; Zhang Mingke; Liao Zenglin; Wu Wei; Wang Tao; Chen Lei; Yang Ting

    2014-01-01

    Background Cigarette smoke induced airway inflammation plays a role in pathogenesis of airway inflammation.Resolvin-D1 derived from omega-3 polyunsaturated fatty acids is an endogenous anti-inflammatory and proresolving lipid mediator.Resolvin-D1 ameliorated inflammatory responses in lung injury,asthma,peritonitis and atherosclerosis.We investigated whether resolvin-D1 suppressed the productions of chemokines and oxidative stress induced by cigarette smoke extract (CSE) in vitro and its possible mechanism.Methods We examined the proinfiammatory chemokine interleukin-8 and hydrogen peroxide (H2O2)productions induced by CSE in 16 human bronchial epithelial (16HBE)cells after resolvin-D1 treatment and their mechanisms.16HBE cells were treated with resolvin-D1 at up to 10 nmol/L,for 30 minutes before CSE up to 16% (v/v) exposure.Release of interlukin-8 proteins was assessed by enzyme linked immunosort assay (ELISA) and its mRNA level by RT-PCR.We evaluated extracellular H2O2 expression in the supematant.Phosphorylation of NF-KB/p65 and degradation of Ⅰ-KB in 16HBE cells were determined by Westem blotting analysis and NF-KB DNA binding activity by electrophoretic mobility shift assay (EMSA).Results 16HBE cells treated with 8% CSE showed significantly higher interlukin-8 production.Resolvin-D1 pretreatment inhibited CSE induced intedukin-8 production (mRNA and protein) in a dose and time dependent manner.Extracellular H2O2 level decreased after resolvin-D1 treatment.Resolvin-D1 attenuated CSE triggered Ⅰ-KB degradation and NF-KB/p65 activation dose dependently and inhibited NF-KB DNA binding activity.Conclusion Resolvin-D1 inhibits CSE induced interlukin-8 and H2O2 production in 16HBE cells by modulating NF-KB activation and has therapeutic potential for pulmonary inflammation.

  16. Effects of low molecular weight heparin on platelet surface P-selectin expression and serum interleukin-8 production in rats with trinitrobenzene sulphonic acid-induced colitis

    Institute of Scientific and Technical Information of China (English)

    Bing Xia; Hong Han; Ke-Jian Zhang; Jin Li; Guang-Song Guo; Ling-Ling Gong; Xian-Chang Zeng; Jun-Yan Liu

    2004-01-01

    AIM: To observe the effects of Iow molecular weight heparin (LMWH) on platelet surface P-selectin expression and serum interleukin-8 production in rats with trinitrobenzene sulphonic acid (TNBS) induced colitis.METHODS: Colitis was induced in female Sprauge-Dawley rats by colonic administration of 2, 4, 6-TNBS. LMWH, a dalteparin (150 U/kg, 300 U/kg) was subcutaneously administrated one hour before induction of colitis and went on once a day for 6 days. Then a half dose was given for the normal saline once a day for 14 days after treated by TNBS.Animals were sacrificed at 24 h, days 7 and 14 after induction of colitis. The colon was excised for the evaluation of macroscopic and histological findings and TNF-a immunohistochemical assay. Platelet surface P-selectin expression was determined by radioimmunoassay and serum IL-8 production was assayed by ELISA method.RESULTS: LMWH treatment in a dose of 300 U/kg for 14 days significantly improved colonic inflammation by histological examination. Serum IL-8 production in the 300 U/kg treatment group was more significantly decreased at day 14 than that at 24 h (P<0.05). However, platelet surface P-selectin expression and TNF-a staining in colonic tissue were not significantly different among the three groups.CONCLUSION: LMWH has an anti-inflammatory effect on TNBS induced colitis in rats. The effect is possibly related to inhibition of proinfiammatory cytokine IL-8, but not involved platelet surface P-selectin expression.

  17. Candida albicans and Saccharomyces cerevisiae induce interleukin-8 production from intestinal epithelial-like Caco-2 cells in the presence of butyric acid.

    Science.gov (United States)

    Saegusa, Shizue; Totsuka, Mamoru; Kaminogawa, Shuichi; Hosoi, Tomohiro

    2004-07-01

    Intestinal epithelial cells (IEC) are important in initiation and regulation of immune responses against numerous foreign substances including food, microorganisms and their metabolites in the intestine. Since the responses of IEC against yeasts have not yet been well understood, we investigated the effects of Candida albicans, Saccharomyces cerevisiae, and their cell wall components on interleukin-8 (IL-8) secretion by the IEC-like Caco-2 cells. Live cells of both yeast species stimulated Caco-2 cells to produce IL-8 only in the presence of butyric acid, which is a metabolite produced by intestinal bacteria. S. cerevisiae zymosan and glucan also enhanced IL-8 secretion. Treatment of Caco-2 cells with butyric acid increased the expression of mRNAs coding for Toll-like receptor 1 (TLR1), TLR6 and dectin-1, which recognize zymosan. C. albicans induced more IL-8 secretion and also decreased transepithelial electrical resistance more rapidly than S. cerevisiae. These results suggest that both yeasts in the intestine stimulate the host's mucosal immune systems by interacting with IEC.

  18. Effect of nonfat dry milk and major whey components on interleukin-6 and interleukin-8 production in human intestinal epithelial-like Caco-2 cells.

    Science.gov (United States)

    Ustunol, Z; Wong, C

    2010-06-01

    Bovine nonfat dry milk (NDM) and major whey components (lactose, alpha-lactalbumin, and beta-lactoglobulin) were evaluated for their effects on IL-6 and IL-8 production in human intestinal-like Caco-2 cells unstimulated or stimulated with IL-1beta. All the whey components investigated and NDM induced IL-6 production by Caco-2 cells; the most significant increase was observed with beta-lactoglobulin. In the case of IL-1beta-stimulated cells, neither NDM nor the major whey components investigated contributed to the induction of IL-6 production after they were stimulated. Induction of IL-8 production by both alpha-lactalbumin and beta-lactoglobulin was higher than that by lactose and NDM; alpha-lactalbumin was a more potent inducer of IL-8 than beta-lactoglobulin and IL-1beta alone in both unstimulated and stimulated cells. In Caco-2 cells that were stimulated with IL1-beta, NDM and all the major whey components investigated had a synergistic effect on induction of IL-8 production, indicating that IL-8 induction was amplified by prior stimulation of cells by IL-1beta. This synergistic effect was not observed with IL-6. Our results suggest that immunomodulatory properties of milk components may be affected by other complex events in the gut.

  19. Interleukin-8 in breast cancer progression.

    Science.gov (United States)

    Todorović-Raković, Nataša; Milovanović, Jelena

    2013-10-01

    Interleukin-8 (IL-8) is a chemokine that has an autocrine and/or paracrine tumor-promoting role and significant potential as a prognostic and/or predictive cancer biomarker. In breast cancer, which is mostly determined by expression of estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2), IL-8 could play a specific role. IL-8 is highly expressed in ER- breast cancers, but it increases invasiveness and metastatic potential of both ER- and ER+ breast cancer cells. It is also highly expressed in HER2+ breast cancers. Because of the complex crosstalk between these receptors and IL-8, its role is mainly determined by delicate balance in their signaling pathways. Therefore, the main point of this review was to analyze the possible influence of IL-8 in breast cancer progression related to its interaction with ER and HER2 and the consequent therapeutic implications of these relations.

  20. Characterization of interleukin-8 receptors in non-human primates

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, V.; Coto, E.; Gonzalez-Roces, S.; Lopez-Larrea, C. [Hospital Central de Asturias, Oviedo (Spain)] [and others

    1996-09-01

    Interleukin-8 is a chemokine with a potent neutrophil chemoatractant activity. In humans, two different cDNAs encoding human IL8 receptors designated IL8RA and IL8RB have been cloned. IL8RA binds IL8, while IL8RB binds IL8 as well as other {alpha}-chemokines. Both human IL8Rs are encoded by two genes physically linked on chromosome 2. The IL8RA and IL8RB genes have open reading frames (ORF) lacking introns. By direct sequencing of the polymerase chain reaction products, we sequenced the IL8R genes of cell lines from four non-human primates: chimpanzee, gorilla, orangutan, and macaca. The IL8RB encodes an ORF in the four non-human primates, showing 95%-99% similarity to the human IL8RB sequence. The IL8RA homologue in gorilla and chimpanzee consisted of two ORF 98%-99% identical to the human sequence. The macaca and orangutan IL8RA homologues are pseudogenes: a 2 base pair insertion generated a sequence with several stop codons. In addition, we describe the physical linkage of these genes in the four non-human primates and discuss the evolutionary implications of these findings. 25 refs., 5 figs., 3 tabs.

  1. Excretory-secretory products of Giardia lamblia induce interleukin-8 production in human colonic cells via activation of p38, ERK1/2, NF-κB and AP-1.

    Science.gov (United States)

    Lee, H-Y; Hyung, S; Lee, N Y; Yong, T-S; Han, S-H; Park, S-J

    2012-04-01

    Giardia lamblia, a pathogen causing diarrhoeal outbreaks, is interesting how it triggers immune response in the human epithelial cells. This study defined the crucial roles of signalling components involved in G. lamblia-induced cytokine production in human epithelial cells. Incubation of the gastrointestinal cell line HT-29 with G. lamblia GS trophozoites triggered production of interleukin (IL)-1β, IL-8 and tumour necrosis factor (TNF)-α. IL-8 production was not significantly decreased by physically separating the HT-29 cells and G. lamblia GS trophozoites. Indeed, treatment of HT-29 with G. lamblia excretory-secretory products (ESP) induced IL-8 production. Electrophoretic mobility gel shift and transfection assays using mutagenized IL-8 promoter reporter plasmids indicated that IL-8 production by G. lamblia ESP occurs through activation of two transcriptional factors, nuclear factor kappaB (NF-κB) and activator protein 1 (AP-1) in HT-29 cells. In addition, activation of two mitogen-activated protein kinases (MAPKs), p38 and ERK1/2, was also detected in the HT-29 cells stimulated with G. lamblia ESP. Selective inhibition of these MAPKs resulted in decreased production of ESP-induced IL-8. These results indicate that activation of p38, ERK1/2 MAPK, NF-κB and AP-1 comprises the signalling pathway responsible for IL-8 production by G. lamblia ESP.

  2. Immunohistochemical detection of interleukin-8 in inflamed porcine tissues

    DEFF Research Database (Denmark)

    Laursen, Henriette; Jensen, Henrik Elkær; Leifsson, Páll S.

    2014-01-01

    The objective of this study was to identify the specific localization of interleukin-8 (IL-8) in cells in situ in a variety of inflammatory processes in different tissues from pigs. Our hypothesis was that IL-8 primarily is a neutrophil related cytokine present in all extravascular neutrophils wh...

  3. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    Science.gov (United States)

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  4. Arginase-1 deficiency regulates arginine concentrations and NOS2-mediated NO production during endotoxemia.

    Directory of Open Access Journals (Sweden)

    Karolina A P Wijnands

    Full Text Available RATIONALE AND OBJECTIVE: Arginase-1 is an important component of the intricate mechanism regulating arginine availability during immune responses and nitric oxide synthase (NOS activity. In this study Arg1(fl/fl/Tie2-Cre(tg/- mice were developed to investigate the effect of arginase-1 related arginine depletion on NOS2- and NOS3-dependent NO production and jejunal microcirculation under resting and endotoxemic conditions, in mice lacking arginase-1 in endothelial and hematopoietic cells. METHODS AND RESULTS: Arginase-1-deficient mice as compared with control mice exhibited higher plasma arginine concentration concomitant with enhanced NO production in endothelial cells and jejunal tissue during endotoxemia. In parallel, impaired jejunal microcirculation was observed in endotoxemic conditions. Cultured bone-marrow-derived macrophages of arginase-1 deficient animals also presented a higher inflammatory response to endotoxin than control littermates. Since NOS2 competes with arginase for their common substrate arginine during endotoxemia, Nos2 deficient mice were also studied under endotoxemic conditions. As Nos2(-/- macrophages showed an impaired inflammatory response to endotoxin compared to wild-type macrophages, NOS2 is potentially involved. A strongly reduced NO production in Arg1(fl/fl/Tie2-Cre(tg/- mice following infusion of the NOS2 inhibitor 1400W further implicated NOS2 in the enhanced capacity to produce NO production Arg1(fl/fl/Tie2-Cre(tg/- mice. CONCLUSIONS: Reduced arginase-1 activity in Arg1(fl/fl/Tie2-Cre(tg/- mice resulted in increased inflammatory response and NO production by NOS2, accompanied by a depressed microcirculatory flow during endotoxemia. Thus, arginase-1 deficiency facilitates a NOS2-mediated pro-inflammatory activity at the expense of NOS3-mediated endothelial relaxation.

  5. Inhibitory effects of benzodiazepines on the adenosine A(2B) receptor mediated secretion of interleukin-8 in human mast cells.

    Science.gov (United States)

    Hoffmann, Kristina; Xifró, Rosa Altarcheh; Hartweg, Julia Lisa; Spitzlei, Petra; Meis, Kirsten; Molderings, Gerhard J; von Kügelgen, Ivar

    2013-01-30

    The activation of adenosine A(2B) receptors in human mast cells causes pro-inflammatory responses such as the secretion of interleukin-8. There is evidence for an inhibitory effect of benzodiazepines on mast cell mediated symptoms in patients with systemic mast cell activation disease. Therefore, we investigated the effects of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast cell leukaemia (HMC1) cells by an enzyme linked immunosorbent assay. The adenosine analogue N-ethylcarboxamidoadenosine (NECA, 0.3-3 μM) increased interleukin-8 production about 5-fold above baseline. This effect was attenuated by the adenosine A(2B) receptor antagonist MRS1754 (N-(4-cyanophenyl)-2-{4-(2,3,6,7-tetrahydro-2,6-dioxo-1,3-dipropyl-1H-purin-8-yl)phenoxy}-acetamide) 1 μM. In addition, diazepam, 4'-chlorodiazepam and flunitrazepam (1-30 μM) markedly reduced NECA-induced interleukin-8 production in that order of potency, whereas clonazepam showed only a modest inhibition. The inhibitory effect of diazepam was not altered by flumazenil 10 μM or PK11195 (1-(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinolinecarboxamide) 10 μM. Diazepam attenuated the NECA-induced expression of mRNA encoding for interleukin-8. Moreover, diazepam and flunitrazepam reduced the increasing effects of NECA on cAMP-response element- and nuclear factor of activated t-cells-driven luciferase reporter gene activities in HMC1 cells. Neither diazepam nor flunitrazepam affected NECA-induced increases in cellular cAMP levels in CHO Flp-In cells stably expressing recombinant human adenosine A(2B) receptors, excluding a direct action of benzodiazepines on human adenosine A(2B) receptors. In conclusion, this is the first study showing an inhibitory action of benzodiazepines on adenosine A(2B) receptor mediated interleukin-8 production in human mast (HMC1) cells. The rank order of potency indicates the involvement of an atypical benzodiazepine binding site.

  6. Immunohistochemical expression of interleukin 8 in skin biopsies from patients with inflammatory acne vulgaris

    Directory of Open Access Journals (Sweden)

    El Maged Rabee A

    2007-01-01

    Full Text Available Abstract Background This study was conducted to evaluate the immunohistochemical (IHC expression of interleukin 8 (IL-8 in skin biopsies of inflammatory acne vulgaris (IAV in an attempt to understand the disease pathogenesis. Materials and methods A total of 58 biopsies, 29 from lesional IAV and 29 normal non lesional sites were immunostained for IL-8. The intensity of staining was evaluated in the epidermis and dermis and was scored as mild, moderate and severe. The expression was correlated with the clinical grade, disease course and histological changes. Results IL-8 immunoreactivity was expressed in lesional IAV compared to non lesional skin biopsies (p Conclusion We were able to demonstrate altered immunoreactivity of IL-8 in IAV compared to normal skin. Targeted therapy to block IL-8 production may hold promise in limiting the deleterious effects of IL-8-mediated inflammatory response and angiogenesis.

  7. Acidic pH stimulates the production of the angiogenic CXC chemokine, CXCL8 (interleukin-8), in human adult mesenchymal stem cells via the extracellular signal-regulated kinase, p38 mitogen-activated protein kinase, and NF-kappaB pathways.

    Science.gov (United States)

    Bischoff, David S; Zhu, Jian-Hua; Makhijani, Nalini S; Yamaguchi, Dean T

    2008-07-01

    Blood vessel injury results in limited oxygen tension and diffusion leading to hypoxia, increased anaerobic metabolism, and elevated production of acidic metabolites that cannot be easily removed due to the reduced blood flow. Therefore, an acidic extracellular pH occurs in the local microenvironment of disrupted bone. The potential role of acidic pH and glu-leu-arg (ELR(+)) CXC chemokines in early events in bone repair was studied in human mesenchymal stem cells (hMSCs) treated with medium of decreasing pH (7.4, 7.0, 6.7, and 6.4). The cells showed a reciprocal increase in CXCL8 (interleukin-8, IL-8) mRNA levels as extracellular pH decreased. At pH 6.4, CXCL8 mRNA was induced >60x in comparison to levels at pH 7.4. hMSCs treated with osteogenic medium (OGM) also showed an increase in CXCL8 mRNA with decreasing pH; although, at a lower level than that seen in cells grown in non-OGM. CXCL8 protein was secreted into the medium at all pHs with maximal induction at pH 6.7. Inhibition of the G-protein-coupled receptor alpha, G(alphai), suppressed CXCL8 levels in response to acidic pH; whereas phospholipase C inhibition had no effect on CXCL8. The use of specific mitogen-activated protein kinase (MAPK) signal transduction inhibitors indicated that the pH-dependent increase in CXCL8 mRNA is due to activation of ERK and p38 pathways. The JNK pathway was not involved. NF-kappaB inhibition resulted in a decrease in CXCL8 levels in hMSCs grown in non-OGM. However, OGM-differentiated hMSCs showed an increase in CXCL8 levels when treated with the NF-kappaB inhibitor PDTC, a pyrrolidine derivative of dithiocarbamate.

  8. An immunohistochemical study of interleukin-8 (IL-8) in breast cancer.

    Science.gov (United States)

    Zuccari, Debora Aparecida Pires de Campos; Leonel, Camila; Castro, Rodrigo; Gelaleti, Gabriela Bottaro; Jardim, Bruna Victorasso; Moscheta, Marina Gobbe; Regiani, Vitor Rafael; Ferreira, Lívia Carvalho; Lopes, Juliana Ramos; Neto, Dalisio de Santi; Esteves, José Luis

    2012-10-01

    The use of prognostic markers for breast cancer is important for routine diagnosis and research. Interleukin-8 is a chemotactic cytokine produced by several cell types in response to inflammation, however, its expression, regulation and function are poorly understood. Recent studies have associated angiogenesis and inflammatory processes with tumor malignancy. The present study investigated the correlation between interleukin-8 expression and breast cancer prognosis. Interleukin-8 expression was assessed in 72 women with mammary neoplasia by immunohistochemistry and the results were statistically correlated with clinical-pathological findings. There was an inverse correlation between interleukin-8 expression and metastasis (p=0.03) and/or local recurrence (p=0.02). In the patient group that received post-surgery chemotherapy and radiotherapy, a lower interleukin-8 expression was found in those women that showed local recurrence (p=0.01). Multivariate logistic regression showed estrogen receptor negativity, progesterone positivity and metastasis with increased risk of death (p<0.05). The data reflect the complexity of the role of interleukin-8 in tumor microenvironment and support its classification as a possible prognostic marker, although more studies are necessary for its inclusion in clinical practice.

  9. Campylobacter-induced interleukin-8 responses in human intestinal epithelial cells and primary intestinal chick cells.

    Science.gov (United States)

    Borrmann, Erika; Berndt, Angela; Hänel, Ingrid; Köhler, Heike

    2007-09-20

    Campylobacter (C.) jejuni and C. coli can cause gastrointestinal disorders in humans characterized by acute inflammation. Inflammatory signals are initiated during interaction between these pathogens and human intestinal cells, but nothing is known about the stimulation of avian intestinal cells by Campylobacter. Interleukin-8 (IL-8) as a proinflammatory chemokine plays an important role in mobilizing cellular defence mechanism. IL-8 mRNA expression in both human intestinal cells (INT 407) and primary intestinal chick cells (PIC) was determined by quantitative real-time RT-PCR. The secretion of IL-8 protein by INT407 was measured using ELISA. Although C. jejuni and C. coli are considered to be harmless commensals in the gut of birds, the avian Campylobacter isolates investigated were able to induce the proinflammatory IL-8 in PIC as well as in INT407. In an in vitro system, C. jejuni as well as C. coli were able to induce IL-8 mRNA in PIC. Relation between the virulence properties like toxin production, the ability to invade and to survive in Caco-2 cells and the level of IL-8 mRNA produced by INT 407 and PIC after infection with Campylobacter strains was also investigated.

  10. Characterization of buffalo interleukin 8 (IL-8 and its expression in endometritis

    Directory of Open Access Journals (Sweden)

    Ahlam A. Abou Mossallam

    2015-06-01

    Full Text Available River buffalo (Bubalus bubalis bubalis with a population over 135 million heads is an important livestock. Interleukin 8 (IL-8 is a member of the chemokine family and is an important chemoattractant for neutrophils associated with a wide variety of inflammatory diseases such as endometritis. Tissue samples from the mammary gland, uterus and ovary were obtained from river buffalo (Mediterranean type with and without endometritis. Bacteriological examination showed the presence of both gram positive and negative in all buffalo with endometritis. RNA extraction and complementary DNA (cDNA synthesis were conducted from all tissues. Specific primer for IL8 full coding regions was designed using known cDNA sequences of Bubalus bubalis, Genbank accession number AY952930.1. IL-8 gene expression was investigated in buffalo tissues. Expression of IL-8 in buffalo with endometritis was found to increase significantly over buffalo without endometritis only in the uterus (P = 0.0159. PCR products from uterus tissues (target organs of buffalo with and without endometritis, were purified and sequenced. No polymorphic sites were detected in the investigated samples. IL-8 cDNA nucleotide sequences of buffalo with and without endometritis were 100% identical (accession number JX413057. Buffalo IL8 cDNAs were compared with corresponding sequences of member of subfamily Bovinae (buffalo and cattle and subfamily Caprinae (sheep and goat. IL-8 species specific differences were identified.

  11. Epigenetic dysregulation of interleukin 8 (CXCL8) hypersecretion in cystic fibrosis airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Poghosyan, Anna, E-mail: pannagos@yahoo.com; Patel, Jamie K.; Clifford, Rachel L.; Knox, Alan J., E-mail: alan.knox@nottingham.ac.uk

    2016-08-05

    Airway epithelial cells in cystic fibrosis (CF) overexpress Interleukin 8 (CXCL8) through poorly defined mechanisms. CXCL8 transcription is dependent on coordinated binding of CCAAT/enhancer binding protein (C/EBP)β, nuclear factor (NF)-κB, and activator protein (AP)-1 to the promoter. Here we show abnormal epigenetic regulation is responsible for CXCL8 overexpression in CF cells. Under basal conditions CF cells had increased bromodomain (Brd)3 and Brd4 recruitment and enhanced NF-κB and C/EBPβ binding to the CXCL8 promoter compared to non-CF cells due to trimethylation of histone H3 at lysine 4 (H3K4me3) and DNA hypomethylation at CpG6. IL-1β increased NF-κB, C/EBPβ and Brd4 binding. Furthermore, inhibitors of bromodomain and extra-terminal domain family (BET) proteins reduced CXCL8 production in CF cells suggesting a therapeutic target for the BET pathway. -- Highlights: •A regulatory mechanism of CXCL8 transcriptional control in CF airways is proposed. •There was an increased binding of NF-κB and C/EBPβ transcription factors. •There was enhanced recruitment of BET proteins to the CXCL8 promoter. •Epigenetic modifications are responsible for the aberrant CXCL8 transcription.

  12. Molecular piracy of mammalian interleukin-8 receptor type B by herpesvirus saimiri.

    Science.gov (United States)

    Ahuja, S K; Murphy, P M

    1993-10-05

    Viruses are known to acquire and modify the genes of their hosts to attain a survival advantage in the host environment. Herpesvirus saimiri (HVS) is a T-lymphotropic virus that causes fatal lymphoproliferative diseases in several non-human primates. The gene ECRF3 of HVS was most likely acquired from a primate host. ECRF3 encodes a putative seven-transmembrane-domain receptor that is remotely related (approximately 30% amino acid identity) to the known mammalian alpha and beta chemokine receptors, namely interleukin-8 receptor (IL8R) types A and B and the MIP-1 alpha/RANTES receptor, respectively. Chemokines regulate the trafficking, activation, and, in some cases, proliferation of myeloid and lymphoid cell types. We now show that ECRF3 encodes a functional receptor for the alpha chemokines IL-8, GRO/melanoma growth stimulatory activity (MGSA), and NAP-2 but not for beta chemokines, a specificity identical to that of IL8RB. Paradoxically, IL8RA shares 77% amino acid identity with IL8RB but is not a receptor for GRO/MGSA or NAP-2. This is the first functional characterization of a viral seven-transmembrane-domain receptor. It suggests a novel role for alpha chemokines in the pathogenesis of HVS infection by transmembrane signaling via the product of ECRF3.

  13. Direct effects of interleukin-8 on growth and functional activity of T lymphocytes.

    Science.gov (United States)

    Meniailo, Maksim Evgenievich; Malashchenko, Vladimir Vladimirovich; Shmarov, Viacheslav Anatolievich; Gazatova, Natalia Dinislamovna; Melashchenko, Olga Borisovna; Goncharov, Andrei Gennadievich; Seledtsova, Galina Victorovna; Seledtsov, Victor Ivanovich

    2017-09-01

    CD3(+) T-lymphocytes were isolated from the normal donors by positive magnetic separation. Activation of the T cells with particles conjugated with antibodies to CD3, СD28 and СD2 molecules led to a marked increase in T-cell production of interleukine-8 (IL-8). We present evidence that IL-8 receptor α-chain (CXCR1, CD181) is expressed on the cell surface of 13.3% T cells. Activation of T-lymphocytes resulted in significant enhancement of CD181(+) cells both in naive CD4(+) T cell and terminally differentiated effector CD4(+) T cell compartments with concomitant reduction of CD181(+) cells in effector memory CD4(+) T cell subset. The level of T cell activation was assessed judging from the surface expression of CD25 (IL-2 receptor α-chain). We demonstrate that IL-8 treatment (0.01-10.0ng/ml concentration range) reduced the activation status of both CD4(-) and CD4(+) effector memory T cells, as well as terminally differentiated effector T cells, without significantly affecting the activation of naive T cells or central memory T cells. In addition, IL-8 up-regulated IL-2 and down-regulated IL-10 production by activated T cells, with no effect on interferon-gamma (IFN-γ) and IL-4 production. Data obtained suggests the importance of IL-8 in the direct regulation of adaptive T cell reactivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Interleukin-8 transcripts in mononuclear cells determine impaired graft function after kidney transplantation

    DEFF Research Database (Denmark)

    Borst, Christoffer; Xia, Shengqiang; Bistrup, Claus

    2015-01-01

    OBJECTIVE: Interleukin-8 (IL-8) has been associated with ischemia reperfusion injury after renal allograft transplantation. Impaired allograft function may cause major impact on patient morbidity and health care costs. We investigated whether transcript levels in mononuclear cells including IL-8 ...

  15. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice

    NARCIS (Netherlands)

    Pruijt, JFM; Verzaal, P; van Os, R; de Kruijf, EJFM; van Schie, MLJ; Mantovani, A; Vecchi, A; Lindley, IJD; Willemze, R; Starckx, S; Opdenakker, G; Fibbe, WE

    2002-01-01

    The CXC chemokine interleukin-8 (IL-8/CXCL8) induces rapid mobilization of hematopoietic progenitor cells (HPCs). Previously we showed that mobilization could be prevented completely in mice by pretreatment with neutralizing antibodies against the beta2-integrin LFA-1 (CID11a). In addition, murine H

  16. Variants in the interleukin 8 gene and the response to inhaled bronchodilators in cystic fibrosis.

    Science.gov (United States)

    Furlan, Larissa Lazzarini; Ribeiro, José Dirceu; Bertuzzo, Carmen Sílvia; Salomão Junior, João Batista; Souza, Dorotéia Rossi Silva; Marson, Fernando Augusto Lima

    2017-07-15

    Interleukin 8 protein promotes inflammatory responses, even in airways. The presence of interleukin 8 gene variants causes altered inflammatory responses and possibly varied responses to inhaled bronchodilators. Thus, this study analyzed the interleukin 8 variants (rs4073, rs2227306, and rs2227307) and their association with the response to inhaled bronchodilators in cystic fibrosis patients. Analysis of interleukin 8 gene variants was performed by restriction fragment length polymorphism of polymerase chain reaction. The association between spirometry markers and the response to inhaled bronchodilators was evaluated by Mann-Whitney and Kruskal-Wallis tests. The analysis included all cystic fibrosis patients, and subsequently patients with two mutations in the cystic fibrosis transmembrane conductance regulator gene belonging to classes I to III. This study included 186 cystic fibrosis patients. There was no association of the rs2227307 variant with the response to inhaled bronchodilators. The rs2227306 variant was associated with FEF50% in the dominant group and in the group with two identified mutations in the cystic fibrosis transmembrane conductance regulator gene. The rs4073 variant was associated with spirometry markers in four genetic models: co-dominant (FEF25-75% and FEF75%), dominant (FEV1, FEF50%, FEF75%, and FEF25-75%), recessive (FEF75% and FEF25-75%), and over-dominant (FEV1/FVC). This study highlighted the importance of the rs4073 variant of the interleukin 8 gene, regarding response to inhaled bronchodilators, and of the assessment of mutations in the cystic fibrosis transmembrane conductance regulator gene. Copyright © 2017 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.

  17. PGE2 Inhibits IL-10 Production via EP2-Mediated β-Arrestin Signaling in Neuroinflammatory Condition.

    Science.gov (United States)

    Chu, Chun-Hsien; Chen, Shih-Heng; Wang, Qingshan; Langenbach, Robert; Li, Hong; Zeldin, Darryl; Chen, Shiou-Lan; Wang, Shijun; Gao, Huiming; Lu, Ru-Band; Hong, Jau-Shyong

    2015-08-01

    Regulatory mechanisms of the expression of interleukin-10 (IL-10) in brain inflammatory conditions remain elusive. To address this issue, we used multiple primary brain cell cultures to study the expression of IL-10 in lipopolysaccharide (LPS)-elicited inflammatory conditions. In neuron-glia cultures, LPS triggered well-orchestrated expression of various immune factors in the following order: tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), and lastly IL-10, and these inflammatory mediators were mainly produced from microglia. While exogenous application of individual earlier-released pro-inflammatory factors (e.g., TNF-α, IL-1β, or PGE2) failed to induce IL-10 expression, removal of LPS from the cultures showed the requirement of continuing presence of LPS for IL-10 expression. Interestingly, genetic disruption of tnf-α, its receptors tnf-r1/r2, and cox-2 and pharmacological inhibition of COX-2 activity enhanced LPS-induced IL-10 production in microglia, which suggests negative regulation of IL-10 induction by the earlier-released TNF-α and PGE2. Further studies showed that negative regulation of IL-10 production by TNF-α is mediated by PGE2. Mechanistic studies indicated that PGE2-elicited suppression of IL-10 induction was eliminated by genetic disruption of the PGE2 receptor EP2 and was mimicked by the specific agonist for the EP2, butaprost, but not agonists for the other three EP receptors. Inhibition of cAMP-dependent signal transduction failed to affect PGE2-mediated inhibition of IL-10 production, suggesting that a G protein-independent pathway was involved. Indeed, deficiency in β-arrestin-1 or β-arrestin-2 abolished PGE2-elicited suppression of IL-10 production. In conclusion, we have demonstrated that COX-2-derived PGE2 inhibits IL-10 expression in brain microglia through a novel EP2- and β-arrestin-dependent signaling pathway.

  18. INTERLEUKIN-6, INTERLEUKIN-8 AND TUMOR NECROSIS FACTOR-α EXPRESSION IN ULCERATIVE COLITIS

    Institute of Scientific and Technical Information of China (English)

    李琪佳; 宫恩聪; 刘叔平; 鄂文

    2001-01-01

    Objectve To study the new insight into the pathogenesis of ulcerative colitis. Methods Interleukin-6 (IL-6), Interleukin-8 (IL-8) and tumor necrosis factor-α(TNF-α) mRNA expression were assessed in the intestinal mucosa of active (n=32) and inactive (n=18) phase using in situ hybridization. Immunohistochemistry for different leukocyte subsets was performed in biopsy specimens of the intestinal mucosa from 50 patients with ulcerative colitis and 5 healthy controls.

  19. Molecular characterization of Legionella pneumophila-induced interleukin-8 expression in T cells

    Directory of Open Access Journals (Sweden)

    Mukaida Naofumi

    2010-01-01

    Full Text Available Abstract Background Legionella pneumophila is the causative agent of human Legionnaire's disease. During infection, the bacterium invades macrophages and lung epithelial cells, and replicates intracellularly. However, little is known about its interaction with T cells. We investigated the ability of L. pneumophila to infect and stimulate the production of interleukin-8 (IL-8 in T cells. The objective of this study was to assess whether L. pneumophila interferes with the immune system by interacting and infecting T cells. Results Wild-type L. pneumophila and flagellin-deficient Legionella, but not L. pneumophila lacking a functional type IV secretion system Dot/Icm, replicated in T cells. On the other hand, wild-type L. pneumophila and Dot/Icm-deficient Legionella, but not flagellin-deficient Legionella or heat-killed Legionella induced IL-8 expression. L. pneumophila activated an IL-8 promoter through the NF-κB and AP-1 binding regions. Wild-type L. pneumophila but not flagellin-deficient Legionella activated NF-κB, p38 mitogen-activated protein kinase (MAPK, Jun N-terminal kinase (JNK, and transforming growth factor β-associated kinase 1 (TAK1. Transfection of dominant negative mutants of IκBα, IκB kinase, NF-κB-inducing kinase, TAK1, MyD88, and p38 MAPK inhibited L. pneumophila-induced IL-8 activation. Inhibitors of NF-κB, p38 MAPK, and JNK blocked L. pneumophila-induced IL-8 expression. In addition, c-Jun, JunD, cyclic AMP response element binding protein, and activating transcription factor 1, which are substrates of p38 MAPK and JNK, bound to the AP-1 site of the IL-8 promoter. Conclusions Taken together, L. pneumophila induced a flagellin-dependent activation of TAK1, p38 MAPK, and JNK, as well as NF-κB and AP-1, which resulted in IL-8 production in human T cells, presumably contributing to the immune response in Legionnaire's disease.

  20. Probiotics inhibit TNF-α-induced interleukin-8 secretion of HT29 cells

    Institute of Scientific and Technical Information of China (English)

    Ai-Ping Bai; Qin Ouyang; Wen Zhang; Chun-Hui Wang; Sheng-Fu Li

    2004-01-01

    AIM: To study the effect of probiotics on interleukin-8 secretion in intestinal epithelia when stimulated by METHODS: Colonic adenocarcinoma HT29 cells were cultured and divided into four groups: control, TNF-α (group T in short),bifidobacterium (group B), lactobacillus (group L). B. Longum and L. bulgaricus were suspended in culture medium with a concentration of 1x108 cfu/ml and added into 24 wells respectively. One hour later TNF-α (10 ng/ml) was added into each well of groups T, B, L. The supernatants were collected and measured for IL-8 after 3 hours, nucfear factorκB (NF-κB) p65 was also examined by Western blotting.RESULTS: There was less interleukin-8 secretion in HT29 cells when preincubated with B. Longum or L. bulgaricus compared with group T. Less p65 appeared in nuclei in groups B and L compared with group T, as detected by Western blot.CONCLUSION: Probiotics can suppress interleukin-8 secretion in intestinal epithelia when stimulated by proinflammatory cytokines, which is most likely mediated by NF-κB.

  1. Variation in the Effect of Particulate Matter on Pulmonary Function in Schoolchildren in Western Japan and Its Relation with Interleukin-8

    Science.gov (United States)

    Watanabe, Masanari; Noma, Hisashi; Kurai, Jun; Sano, Hiroyuki; Kitano, Hiroya; Saito, Rumiko; Kimura, Yutaka; Aiba, Setsuya; Oshimura, Mitsuo; Shimizu, Eiji

    2015-01-01

    This study aimed to investigate the effects of particulate matter (PM) on pulmonary function in schoolchildren, as well as the relationships of these effects with interleukin-8. Morning peak expiratory flow (PEF) was measured daily in 399 children during April–May 2012, and in 384 of these children during March–May 2013. PEF’s association with the daily levels of suspended particulate matter (SPM) and PM < 2.5 μm (PM2.5) was estimated using a linear mixed model. Interleukin-8 promoter activity was assessed in THP-G8 cells stimulated by fallen PM collected at Tottori University Hospital during four periods (two in 2012 and two in 2013). An increase of 14.0 μg/m3 in SPM led to PEF changes of −2.16 L/min in 2012 and −0.81 L/min in 2013, respectively. An increment of 10.7 μg/m3 in PM2.5 was associated with PEF changes of −2.58 L/min in 2012 and −0.55 L/min in 2013, respectively. These associations were only significant in 2012. Interleukin-8 promoter activity was significantly higher in both periods of 2012 than in 2013. There was a significant association between pulmonary function in schoolchildren and daily levels of SPM and PM2.5, but this association may differ depending on the PM’s ability to elicit interleukin-8 production. PMID:26569272

  2. The role of interleukin-8 produced by tumor induced fibroblasts in the development of cutaneous melanoma

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To determine the role of interleukin-8(IL-8)produced by tumor induced fibroblasts in the development of cutaneous melanoma.Methods B16 melanoma cells induced L929 fibroblasts phenotype was transdifferentiated to myofibroblasts(MF)by co-culture in vitro.MF was monitored by morphology and immunophenotype for a-SMA.The level of IL-8 was detected by ELISA.The effect on B16 cell proliferation rate was estimated using MTT method in vitro.Melanoma implanting model was constructed in C57 mice.Results L929...

  3. Interleukin-8 induces motile behavior and loss of focal adhesions in primary fibroblasts

    DEFF Research Database (Denmark)

    Dunlevy, J R; Couchman, J R

    1995-01-01

    Interleukin-8 (IL-8) is a proinflammatory cytokine that promotes neutrophil migration. Although fibroblasts are known to secrete IL-8, the actions of this cytokine on fibroblasts have not been previously reported. We have found that in subconfluent populations of cultured primary fibroblasts, IL-8....... Additionally, video microscopy assays using heart conditioned medium depleted with the IL-8 antibody show an increase in the percentage of stationary cells, a consequent decrease in the percentage of migrating cells, and a twofold increase in the mitotic rate. Interleukin-1 alpha and tumor necrosis factor...

  4. Association between interleukin-8 and severity of dengue shock syndrome in children

    OpenAIRE

    Suryadi N. N. Tatura; Dasril Daud; Irawan Yusuf; Sitti Wahyuni; Janno B. Bernadus

    2016-01-01

    Background Dengue hemorrhagic fever (DHF) remains a major health problem in tropical countries. The case fatality rate (CFR) can be reduced from 45% to <1%, if dengue shock syndrome (DSS) is treated early and adequately. Early biomarkers for DSS outcomes in children are needed. Interleukin-8 (IL-8) might be one of the molecule, as it plays a role in the pathophysiology of DHF in children.Objective To assess IL-8 levels in pediatric DHF patients at various stages of illness severity and to ...

  5. Effect of Helicobacterpylori cdrA on interleukin-8 secretions and nuclear factor kappa B activation

    Institute of Scientific and Technical Information of China (English)

    Hiroaki Takeuchi; Mikio Kamioka; Norihito Morimoto; Tetsuro Sugiura; Ya-Nan Zhang; Dawn A Israel; Richard M Peek Jr; Hideo Yanai

    2012-01-01

    AIM: To investigate genetic diversity of Helicobacter pylori (H. pylori) cell division-related gene A (cdrA) and its effect on the host response. METHODS: Inactivation of H. pylori cdrA, which is involved in cell division and morphological elongation, has a role in chronic persistent infections. Genetic property of H. pylori cdrA was evaluated using polymerase chain reaction and sequencing in 128 (77 American and 51 Japanese) clinical isolates obtained from 48 and 51 patients, respectively. Enzyme-linked immunosorbent assay was performed to measure interleukin-8 (IL-8) secretion with gadtric biopsy specimens obtained from American patients colonized with cdrA-positive or -negative strains and AGS cells co-cultured with wild-type HPK5 (cdrA-positive) or its derivative HPKT510 (cdrA-disruptant). Furthermore, the cytotoxin-associated gene A (cagA) status (translocation and phosphorylation) and kinetics of transcription factors [nuclear factor-kappa B (NF-κB) and inhibition kappa B] were investigated in AGS cells co-cultured with HPK5, HPKT510 and its derivative HPK5CA (cagAdisruptant) by western blotting analysis with immunoprecipitation. RESULTS: Genetic diversity of the H. pylori cdrA gene demonstrated that the cdrA status segregated into two categories including four allele types, cdrA-positive (allele types; Ⅰ and Ⅱ) and cdrA-negative (allele types; Ⅲ and Ⅳ) categories, respectively. Almost all Japanese isolates were cdrA -positive (Ⅰ: 7.8% and Ⅱ: 90.2%), whereas 16.9% of American isolates were cdrA -positive (Ⅱ) and 83.1% were cdrA -negative (Ⅲ: 37.7% and Ⅳ: 45.5%), indicating extended diversity of cdrA in individual American isolates. Comparison of each isolate from different regions (antrum and corpus) in the stomach of 29 Americans revealed that cdrA status was identical in both isolates from different regions in 17 cases. However, 12 cases had a different cdrA allele and 6 of them exhibited a different cdrA category between two regions in

  6. H1047R phosphatidylinositol 3-kinase mutant enhances HER2-mediated transformation via heregulin production and activation of HER3

    Science.gov (United States)

    Chakrabarty, Anindita; Rexer, Brent N.; Wang, Shizhen Emily; Cook, Rebecca S.; Engelman, Jeffrey A.; Arteaga, Carlos, L.

    2010-01-01

    Hyperactivation of phosphatidylinositol-3 kinase (PI3K) can occur as a result of somatic mutations in PIK3CA, the gene encoding the p110α subunit of PI3K. The HER2 oncogene is amplified in 25% of all breast cancers and some of these tumors also harbor PIK3CA mutations. We examined mechanisms by which mutant PI3K can enhance transformation and confer resistance to HER2-directed therapies. We introduced the PI3K mutations E545K and H1047R in MCF10A human mammary epithelial cells that also overexpress HER2. Both mutants conferred a gain of function to MCF10A/HER2 cells. Expression of H1047R PI3K but not E545K PI3K markedly upregulated the HER3/HER4 ligand heregulin (HRG). HRG siRNA inhibited growth of H1047R but not E545K-expressing cells and synergized with the HER2 inhibitors trastuzumab and lapatinib. The PI3K inhibitor BEZ235 markedly inhibited HRG and pAKT levels and, in combination with lapatinib, completely inhibited growth of cells expressing H1047R PI3K. These observations suggest that PI3K mutants enhance HER2-mediated transformation by amplifying the ligand-induced signaling output of the ErbB network. This also counteracts the full effect of therapeutic inhibitors of HER2. These data also suggest that mammary tumors that contain both HER2 gene amplification and PIK3CA mutations should be treated with a combination of HER2 and PI3K inhibitors. PMID:20581867

  7. Prognostic value of interleukin-8 in AIDS-associated Pneumocystis carinii pneumonia

    DEFF Research Database (Denmark)

    Benfield, T L; Vestbo, Jørgen; Junge, Jette

    1995-01-01

    and serum were prospectively collected in 76 consecutive HIV-infected patients with a primary episode of P. carinii pneumonia, as well as in 10 healthy control subjects. Patients were found to have elevated levels of IL-8 in BAL fluid compared with control subjects (p patients died during...... the course of P. carinii pneumonia. Comparing survivors with nonsurvivors, the median IL-8 level in BAL fluid was 127 (0 to 3,900) versus 584 (127 to 6,100) pg/ml (p patients with levels of IL-8 in BAL fluid greater than 90 pg/ml (i.e., greater than control subjects) had significantly......Interleukin-8 (IL-8) is a potent neutrophil chemoattractant and activator. Pneumocystis carinii pneumonia is associated with an accumulation of neutrophils in bronchoalveolar lavage (BAL) fluid. Thus, we hypothesized that IL-8 is involved in the pathogenesis of P. carinii pneumonia. BAL fluid...

  8. Prognostic value of interleukin-8 in AIDS-associated Pneumocystis carinii pneumonia

    DEFF Research Database (Denmark)

    Benfield, T L; Vestbo, Jørgen; Junge, Jette

    1995-01-01

    Interleukin-8 (IL-8) is a potent neutrophil chemoattractant and activator. Pneumocystis carinii pneumonia is associated with an accumulation of neutrophils in bronchoalveolar lavage (BAL) fluid. Thus, we hypothesized that IL-8 is involved in the pathogenesis of P. carinii pneumonia. BAL fluid...... and serum were prospectively collected in 76 consecutive HIV-infected patients with a primary episode of P. carinii pneumonia, as well as in 10 healthy control subjects. Patients were found to have elevated levels of IL-8 in BAL fluid compared with control subjects (p ... the course of P. carinii pneumonia. Comparing survivors with nonsurvivors, the median IL-8 level in BAL fluid was 127 (0 to 3,900) versus 584 (127 to 6,100) pg/ml (p

  9. Clinical Utility of Serum Interleukin-8 and Interferon-Alpha in Thyroid Diseases

    Directory of Open Access Journals (Sweden)

    Toral P. Kobawala

    2011-01-01

    Full Text Available Serum interleukin-8 (IL-8 and interferon-alpha (IFN-α levels have been estimated from a total of 88 individuals of which 19 were disease-free healthy individuals, and 69 were patients with thyroid diseases: goitre (N=21, autoimmune diseases (N=16, and carcinomas (N=32. Both IL-8 and IFN-α were significantly higher in all the patients as compared to healthy individuals. Serum IL-8 levels showed significant positive correlation with disease stage in thyroid cancer patients. Higher serum IL-8 levels were associated with advanced disease stage while no significant correlation was observed between serum IFN-α levels and any of the clinicopathological parameters. IL-8 and IFN-α significantly correlated with each other in anaplastic carcinoma patients. Finally concluding, monitoring the serum IL-8 and IFN-α levels can help differentiate patients with thyroid diseases from healthy individuals, and IL-8 seems to have a role in the pathogenesis of thyroid diseases and may represent a target for innovative diagnostic and therapeutic strategies.

  10. The role of interleukin-8 produced by tumor induced fibroblasts in the development of cutaneous melanoma

    Institute of Scientific and Technical Information of China (English)

    Cui Rong; Feng Jie; Cao Haozhe; Zhou Xi; Zhang Xin; Yan Xiaoning

    2008-01-01

    Objective To determine the role of interleukin-8 (IL-8) produced by tumor induced fibroblasts in the development of cutaneous melanoma. Methods B16 melanoma cells induced L929 fibroblasts phenotype was transdifferentiated to myofibroblasts (MF) by co-culture in vitro. MF was monitored by morphology and immunophenotype for a-SMA. The level of IL-8 was detected by ELISA. The effect on B16 cell proliferation rate was estimated using MIT method in vitro. Melanoma implanting model was constructed in C57 mice. Results L929 MF phenotype could be modulated by B16 melanoma cells-derived transforming growth factor-β1 (TGF-β1) and elevated the levels of IL-8. L929 MF did not influence the B16 melanoma cells viability in vitro, but shortened the time of tumor formation and increased the incidence rates of tumors in C57 implanting model mice. Conclusion Fibroblasts can be activated by tumor cells and produce IL-8, which acts as an inflammatory cytokine promoting the development of cutaneous melanoma.

  11. Interleukin-8 associates with adhesion, migration, invasion and chemosensitivity of human gastric cancer cells

    Institute of Scientific and Technical Information of China (English)

    Wen-Xia Kuai; Qiong wang; Xiao-Zhong Yang; Yao Zhao; Ren Yu; Xiao-Jun Tang

    2012-01-01

    AIM:To investigate the relationship between Interleukin-8 (IL-8) and proliferation,adhesion,migration,invasion and chemosensitivity of gastric cancer (GC) cells.METHODS:The IL-8 cDNA was stably transfected into human GC cell line MKN-45 and selected IL-8-secreting transfectants.The expression of IL-8 in human GC cell line KATO-Ⅲ was inhibited by RNA interference.The expressions of mRNA and protein of IL-8 in GC cells were detected by real-time reverse transcriptionpolymerase chain reaction or enzyme-linked immunosorbent assay (ELISA).RESULTS:The overexpression of IL-8 resulted in an increased cell adhesion,migration and invasion,and a significant resistance to oxaliplatin in MKN-45 cells.Inhibition of IL-8 expression with small interfering RNA decreased the adhesion,migration and invasion functions and oxaliplatin resistance in KATO-Ⅲ cells.IL-8 increased NF-кB and Akt activities and adhesion molecules ICAM-1,VCAM-1,and CD44 expression in GC cells.CONCLUSION:Overexpression of IL-8 promotes the adhesion,migration,invasion,and chemoresistance of GC cells,indicating that IL-8 is an important therapeutic target in GC.

  12. Tumour necrosis factor-alpha and interleukin-8 inhibit neutrophil migration in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    F. Q. Cunha

    1992-01-01

    Full Text Available Pretreatment of human neutrophils with recombinant tumour necrosis factor-alpha (rTNF-α and/or interleukin-8 (rIL-8, but not with either transforming growth factor-beta, interleukin-6 or interferon-gamma, rendered these cells less responsive to FMLP, in microchemotaxis assays. This inhibitory effect was dose dependent and more powerful when neutrophils were pretreated with a mixture of both cytokines. Intravenous injection of human rIL-8 (hrIL-8 and/or murine rTNF-α (mrTNF-α also significantly reduced in vivo neutrophil migration into peritoneal cavities of rats stimulated with carrageenan. These data suggest that the defect in neutrophil migration during septicaemia or endotoxaemia may be the result of the continuous release of IL-8 and TNF-α into the circulation. Thus, either the selective control or blockade of releasing of these cytokines as well as of its effects on neutrophils may be clinically useful in reestablishing the cell defence mechanisms.

  13. Effect of Periodontal Therapy on Crevicular Fluid Interleukin-6 and Interleukin-8 Levels in Chronic Periodontitis

    Directory of Open Access Journals (Sweden)

    Paschalina Goutoudi

    2012-01-01

    Full Text Available Purpose. The aim of this study was to analyse the levels of interleukin-6 (IL-6 and interleukin-8 (IL-8 in gingival crevicular fluid (GCF of patients with chronic periodontitis prior to and following surgical and/or nonsurgical periodontal therapy for a period of 32 weeks. Methods. GCF samples were obtained from 24 nondiseased and 72 diseased sites of 12 periodontal patients prior to as well as at 6, 16, and 32 weeks following non-surgical and surgical periodontal therapy. IL-6 and IL-8 levels were determined by enzyme-linked immunosorbent assay (ELISA. Results. Periodontal treatment improved all clinical parameters. Both treatment modalities resulted in similar IL-6 as well as IL-8 levels. Mean IL-6 and IL-8 concentrations were significantly higher in non-diseased compared to diseased sites and increased significantly following treatment in diseased sites. Mean total amounts of IL-6 and IL-8 (TAIL-6, TAIL-8 did not differ significantly between diseased and nondiseased sites, while following therapy TAIL-8 levels decreased significantly. Conclusions. The data suggest that periodontal therapy reduced the levels of IL-8 in GCF. However, a strong relationship between IL-6, IL-8 amounts in GCF and periodontal destruction and inflammation was not found.

  14. Serum thyroid-stimulating hormone and interleukin-8 levels in boys with autism spectrum disorder.

    Science.gov (United States)

    Singh, Sarika; Yazdani, Umar; Gadad, Bharathi; Zaman, Sayed; Hynan, Linda S; Roatch, Nichole; Schutte, Claire; Marti, C Nathan; Hewitson, Laura; German, Dwight C

    2017-06-02

    Autism spectrum disorder (ASD) affects approximately 1 in 68 children in the USA. An ASD blood biomarker may enable early diagnosis and/or identification of new therapeutic targets. Serum samples from ASD and typically developing (TD) boys (n = 30/group) were screened for differences in 110 proteins using a multiplex immunoassay. Eleven proteins were found that together could confirm ASD with modest accuracy using multiple training and test sets. Two of the 11 proteins identified here were further tested using a different detection platform and with a larger sample of ASD and TD boys. The two proteins, thyroid-stimulating hormone (TSH) and interleukin-8 (IL-8), have been previously identified as putative biomarkers for ASD. TSH levels were significantly lower in ASD boys, whereas IL-8 levels were significantly elevated. The diagnostic accuracy for ASD based upon TSH or IL-8 levels alone varied from 74 to 76%, but using both proteins together, the diagnostic accuracy increased to 82%. In addition, TSH levels were negatively correlated with the Autism Diagnostic Observation Schedule subdomain scores. These data suggest that a panel of proteins may be useful as a putative blood biomarker for ASD.

  15. The dynamics of interleukin-8 and its interaction with human CXC receptor I peptide

    Energy Technology Data Exchange (ETDEWEB)

    Kendrick, Agnieszka; Holliday, Michael; Isern, Nancy G.; Zhang, Fengli; Camilloni, Carlo; Huynh, Chi; Vendruscolo, Michele; Armstrong, Geoffrey S.; Eisenmesser, Elan Z.

    2014-01-20

    Interleukin-8 (CXCL8, IL-8) is a pro-inflammatory chemokine important for the regulation of inflammatory and immune responses via its interaction with G-protein coupled receptors, including CXC receptor 1 (CXCR1). CXCL8 exists as both a monomer and as a dimer at physiological concentrations, yet the molecular basis of CXCL8 interaction with its receptor as well as the importance of CXCL8 dimer formation remain poorly characterized. Although several biological studies have indicated that both the CXCL8 monomer and dimer are active, biophysical studies have reported conflicting results regarding the binding of CXCL8 to CXCR1. To clarify this problem, we expressed and purified a peptide (hCXCR1pep) corresponding to the N-terminal region of human CXCR1 (hCXCR1) and utilized nuclear magnetic resonance (NMR) spectroscopy to interrogate the binding of wild-type CXCL8 and a previously reported mutant (CXCL8M) that stabilizes the monomeric form. Our data reveal that CXCL8M engages hCXCR1pep with a slightly higher affinity than CXCL8, and that CXCL8 does not dissociate upon binding hCXCR1pep. These investigations also indicate that CXCL8 exhibits inherent flexibility within its receptor-binding site on multiple timescales, which may help explain the versatility in this interleukin for engaging its target receptors.

  16. Glioblastoma cell-secreted interleukin-8 induces brain endothelial cell permeability via CXCR2.

    Directory of Open Access Journals (Sweden)

    Julie Dwyer

    Full Text Available Glioblastoma constitutes the most aggressive and deadly of brain tumors. As yet, both conventional and molecular-based therapies have met with limited success in treatment of this cancer. Among other explanations, the heterogeneity of glioblastoma and the associated microenvironment contribute to its development, as well as resistance and recurrence in response to treatments. Increased vascularity suggests that tumor angiogenesis plays an important role in glioblastoma progression. However, the molecular crosstalk between endothelial and glioblastoma cells requires further investigation. To examine the effects of glioblastoma-derived signals on endothelial homeostasis, glioblastoma cell secretions were collected and used to treat brain endothelial cells. Here, we present evidence that the glioblastoma secretome provides pro-angiogenic signals sufficient to disrupt VE-cadherin-mediated cell-cell junctions and promote endothelial permeability in brain microvascular endothelial cells. An unbiased angiogenesis-specific antibody array screen identified the chemokine, interleukin-8, which was further demonstrated to function as a key factor involved in glioblastoma-induced permeability, mediated through its receptor CXCR2 on brain endothelia. This underappreciated interface between glioblastoma cells and associated endothelium may inspire the development of novel therapeutic strategies to induce tumor regression by preventing vascular permeability and inhibiting angiogenesis.

  17. Effects of pulsatile CPB on interleukin-8 and endothelin-1 levels.

    Science.gov (United States)

    Sezai, Akira; Shiono, Motomi; Nakata, Kin-ichi; Hata, Mitsumasa; Iida, Mitsuru; Saito, Akira; Hattori, Tsutomu; Wakui, Shinji; Soeda, Masao; Taoka, Makoto; Umeda, Tomofumi; Negishi, Nanao; Sezai, Yukiyasu

    2005-09-01

    Studies on pulsatile and nonpulsatile perfusion have long been performed. However, investigators have not reached a conclusion on which is more effective. In the present study, pulsatile cardiopulmonary bypass (CPB) was investigated in terms of the effects on cytokines, endothelin, catecholamine, and pulmonary and renal functions. Twenty-four patients who underwent coronary artery bypass grafting were divided into a pulsatile CPB group and a nonpulsatile CPB group. Parameters examined were hemodynamics, interleukin-8 (IL-8), endothelin-1 (ET-1), epinephrine, norepinephrine, lactate, arterial ketone body ratio, urine volume, blood urea nitrogen, creatinine, renin activity, angiotensin-II, lactate dehydrogenase, plasma-free hemoglobin, tracheal intubation time, and respiratory index. The IL-8 at 0.5, 3, and 6 h after CPB, and ET-1 at 3, 6, 9, and 18 h after CPB were significantly lower in the pulsatile group. Both epinephrine and norepinephrine were significantly lower in the pulsatile group. The respiratory index was significantly higher in the pulsatile group. In the present study, inhibitory effects on cytokine activity, edema in pulmonary alveoli, and endothelial damage were shown in addition to the favorable effects on catecholamine level, renal function, and peripheral circulation that have already been documented.

  18. Interleukin 8 Receptor Deficiency Confers Susceptibility to Acute Experimental Pyelonephritis and May Have a Human Counterpart

    Science.gov (United States)

    Frendéus, Björn; Godaly, Gabriela; Hang, Long; Karpman, Diana; Lundstedt, Ann-Charlotte; Svanborg, Catharina

    2000-01-01

    Neutrophils migrate to infected mucosal sites that they protect against invading pathogens. Their interaction with the epithelial barrier is controlled by CXC chemokines and by their receptors. This study examined the change in susceptibility to urinary tract infection (UTI) after deletion of the murine interleukin 8 receptor homologue (mIL-8Rh). Experimental UTIs in control mice stimulated an epithelial chemokine response and increased chemokine receptor expression. Neutrophils migrated through the tissues to the epithelial barrier that they crossed into the lumen, and the mice developed pyuria. In mIL-8Rh knockout (KO) mice, the chemokine response was intact, but the epithelial cells failed to express IL-8R, and neutrophils accumulated in the tissues. The KO mice were unable to clear bacteria from kidneys and bladders and developed bacteremia and symptoms of systemic disease, but control mice were fully resistant to infection. The experimental UTI model demonstrated that IL-8R–dependent mechanisms control the urinary tract defense, and that neutrophils are essential host effector cells. Patients prone to acute pyelonephritis also showed low CXC chemokine receptor 1 expression compared with age-matched controls, suggesting that chemokine receptor expression may also influence the susceptibility to UTIs in humans. The results provide a first molecular clue to disease susceptibility of patients prone to acute pyelonephritis. PMID:10993918

  19. Elevated interleukin-8 enhances prefrontal synaptic transmission in mice with persistent inflammatory pain

    Directory of Open Access Journals (Sweden)

    Cui Guang-bin

    2012-02-01

    Full Text Available Abstract Background Interleukin-8 (IL-8 is known for its roles in inflammation and plays critical roles in the development of pain. Its expression increases in the brain after peripheral inflammation. Prefrontal cortex, including the anterior cingulate cortex (ACC, is a forebrain structure known for its roles in pain transmission and modulation. Painful stimuli potentiate the prefrontal synaptic transmission, however, little is known about the expression of IL-8 and its role in the enhanced ACC synaptic transmission in animals with persistent inflammatory pain. Findings In the present study, we examined IL-8 expression in the ACC, somatosensory cortex (SSC, and the dorsal horn of lumbar spinal cord following hind-paw administration of complete Freund's adjuvant (CFA in mice and its effects on the ACC synaptic transmission. Quantification of IL-8 at protein level (by ELISA revealed enhanced expression in the ACC and spinal cord during the chronic phases of CFA-induced peripheral inflammation. In vitro whole-cell patch-clamp recordings revealed that IL-8 significantly enhanced synaptic transmission through increased probability of neurotransmitter release in the ACC slice. ACC local infusion of repertaxin, a non-competitive allosteric blocker of IL-8 receptors, notably prolonged the paw withdrawal latency to thermal radian heat stimuli bilaterally in mice. Conclusions Our findings suggest that up-regulation of IL-8 in the ACC partly attributable to the enhanced prefrontal synaptic transmission in the mice with persistent inflammatory pain.

  20. 99mTc-labeled interleukin 8 for the scintigraphic detection of infection and inflammation: first clinical evaluation.

    NARCIS (Netherlands)

    Bleeker-Rovers, C.P.; Rennen, H.J.J.M.; Boerman, O.C.; Wymenga, A.B.; Visser, E.P.; Bakker, J.H.; Meer, J.W.M. van der; Corstens, F.H.M.; Oyen, W.J.G.

    2007-01-01

    Interleukin 8 (IL-8) is a chemotactic cytokine that binds with a high affinity to receptors expressed on neutrophils. Previous studies with various animal models showed that (99m)Tc-labeled IL-8 accumulates specifically and rapidly in infectious and inflammatory foci. The aims of the present study w

  1. p62/SQSTM1 enhances NOD2-mediated signaling and cytokine production through stabilizing NOD2 oligomerization.

    Directory of Open Access Journals (Sweden)

    Sangwook Park

    Full Text Available NOD2 is a cytosolic pattern-recognition receptor that senses muramyl dipeptide of peptidoglycan that constitutes the bacterial cell wall, and plays an important role in maintaining immunological homeostasis in the intestine. To date, multiple molecules have shown to be involved in regulating NOD2 signaling cascades. p62 (sequestosome-1; SQSTM1 is a multifaceted scaffolding protein involved in trafficking molecules to autophagy, and regulating signal cascades activated by Toll-like receptors, inflammasomes and several cytokine receptors. Here, we show that p62 positively regulates NOD2-induced NF-κB activation and p38 MAPK, and subsequent production of cytokines IL-1β and TNF-α. p62 associated with the nucleotide binding domain of NOD2 through a bi-directional interaction mediated by either TRAF6-binding or ubiquitin-associated domains. NOD2 formed a large complex with p62 in an electron-dense area of the cytoplasm, which increased its signaling cascade likely through preventing its degradation. This study for the first time demonstrates a novel role of p62 in enhancing NOD2 signaling effects.

  2. Essential role of mitogen-activated protein kinase pathways in protease activated receptor 2-mediated nitric-oxide production from rat primary astrocytes.

    Science.gov (United States)

    Park, Gyu Hwan; Jeon, Se Jin; Ryu, Jae Ryun; Choi, Min Sik; Han, Seol-Heui; Yang, Sung-Il; Ryu, Jong Hoon; Cheong, Jae Hoon; Shin, Chan Young; Ko, Kwang Ho

    2009-09-01

    Protease-activated receptors (PARs) play important roles in the regulation of brain function such as neuroinflammation by transmitting the signal from proteolytic enzymes such as thrombin and trypsin. We and others have reported that a member of the family, PAR-2 is activated by trypsin, whose involvement in the neurophysiological process is increasingly evident, and is involved in the neuroinflammatory processes including morphological changes of astrocytes. In this study, we investigated the role of PAR-2 in the production of nitric oxide (NO) in rat primary astrocytes. Treatment of PAR-2 agonist trypsin increased NO production in a dose-dependent manner, which was mediated by the induction of inducible nitric-oxide synthase. The trypsin-mediated production of NO was mimicked by PAR-2 agonist peptide and reduced by either pharmacological PAR-2 antagonist peptide or by siRNA-mediated inhibition of PAR-2 expression, which suggests the critical role of PAR-2 in this process. NO production by PAR-2 was mimicked by PMA, a PKC activator, and was attenuated by Go6976, a protein kinase C (PKC) inhibitor. PAR-2 stimulation activated three subtypes of mitogen-activated protein kinases (MAPKs): extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 MAPK. NO production by PAR-2 was blocked by inhibition of ERK, p38, and JNK pathways. PAR-2 stimulation also activated nuclear factor-kappaB (NF-kappaB) DNA binding and transcriptional activity as well as IkappaBalpha phosphorylation. Inhibitors of NF-kappaB pathway inhibited PAR-2-mediated NO production. In addition, inhibitors of MAPK pathways prevented transcriptional activation of NF-kappaB reporter constructs. These results suggest that PAR-2 activation-mediated NO production in astrocytes is transduced by the activation of MAPKs followed by NF-kappaB pathways.

  3. Serial Changes of Heat Shock Protein 70 and Interleukin-8 in Burn Blister Fluid

    Science.gov (United States)

    Yoo, Kicheol; Suh, Kang Yeol; Choi, Gi Hun; Seo, Dong Kook; Kym, Dohern; Yoon, Hyeon; Cho, Yong Se

    2017-01-01

    Background It has been reported that heat shock protein 70 (HSP70) and interleukin-8 (IL-8) play an important role in cells during the wound healing process. However, there has been no report on the effect of HSP70 and IL-8 on the blisters of burn patients. Objective This study aimed to evaluate the serial quantitative changes of HSP70 and IL-8 in burn blisters. Methods Twenty-five burn patients were included, for a total of 36 cases: twenty cases on the first day, six cases on the second, five cases on the third, three cases on the fourth, and two cases on the fifth. A correlation analysis was performed to determine the relationship between the concentration of HSP70 and IL-8 and the length of the treatment period. Results The HSP70 concentration was the highest on the first day, after which it decreased down to near zero. Most HSP70 was generated during the first 12 hours after the burn accident. There was no correlation between the concentration of HSP70 on the first day and the length of the treatment period. No measurable concentration of IL-8 was detected before 5 hours, but the concentration started to increase after 11 hours. The peak value was measured on the fourth day. Conclusion While HSP70 increased in the first few hours and decreased afterwards, IL-8 was produced after 11 hours and increased afterward in burn blister fluid. These findings provide new evidence on serial changes of inflammatory mediators in burn blister fluid. PMID:28392647

  4. Interleukin-8 for diagnosis of neonatal sepsis: a meta-analysis.

    Directory of Open Access Journals (Sweden)

    Min Zhou

    Full Text Available Neonatal sepsis (NS is a life-threatening disorder and an important cause of morbidity and mortality in neonates. Previous studies showed that interleukin 8 (IL-8 may effectively and rapidly diagnose NS.We conducted the systematic review and meta-analysis to investigate the diagnostic value of the IL-8 in NS.The literature was searched in PUBMED, EMBASE, Cochrane Library, CNKI, VIP and other Chinese Medical Databases during October 1998 to January 2014 using set search criteria. Each included study was evaluated by quality assessment of diagnostic accuracy studies tool. Two investigators independently extracted the data and study characteristics, and disagreements, if any, were resolved by consensus. Meta-disc software was used to calculate the pooled sensitivity, specificity and summary diagnostic odds ratio (SDOR, I² or Cochrane Q to test heterogeneity, and meta-regression to investigate the source of heterogeneity. Funnel plots were used to test the potential presence of publication bias. False-positive report probability (FPRP was calculated to confirm the significance of the results.Eight studies (548 neonates were included in this meta-analysis. The pooled sensitivity and specificity of IL-8 were 0.78 and 0.84, respectively, which had moderate accuracy in the diagnosis of NS. The pooled diagnostic odds ratio (DOR and area under curve (AUC was 21.64 and 0.8908 (Q*=0.8215, respectively. The diagnostic threshold analysis showed that there was no threshold effect. The meta-regression analysis showed the cut-off, QUADAS and onset time have no effect on the heterogeneity. The funnel plots showed the existence of publication bias.Meta-analysis showed IL-8 had a moderate accuracy (AUC=0.8908 for the diagnosis of NS. IL-8 is a helpful biomarker for early diagnosis of NS. However, we should combine the results with clinical symptoms and signs, laboratory and microbial results.

  5. Characterization of a receptor for human monocyte-derived neutrophil chemotactic factor/interleukin-8

    Energy Technology Data Exchange (ETDEWEB)

    Grob, P.M.; David, E.; Warren, T.C.; DeLeon, R.P.; Farina, P.R.; Homon, C.A. (Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT (USA))

    1990-05-15

    Monocyte-derived neutrophil chemotactic factor/interleukin-8 (MDNCF/IL-8) is an 8,000-dalton protein produced by monocytes which exhibits activity as a chemoattractant for neutrophils with maximal activity achieved at a concentration of 50 ng/ml. This polypeptide has been iodinated by chloramine-T methodology (350 Ci/mM), and specific receptors for MDNCF/IL-8 have been detected on human neutrophils, U937 cells, THP-1 cells, and dimethyl sulfoxide-differentiated HL-60 cells. The binding of MDNCF/IL-8 to human neutrophils is not inhibited by interleukin-1 alpha, tumor necrosis factor-alpha, insulin, or epidermal growth factor. In addition, chemoattractants such as C5a, fMet-Leu-Phe, leukotriene B4, and platelet-activating factor fail to inhibit binding, suggesting that MDNCF/IL-8 utilizes a unique receptor. The receptor for MDNCF/IL-8 is apparently glycosylated since ligand binding is inhibited by the presence of wheat germ agglutinin, a lectin with a binding specificity for N-acetylglucosamine and neuraminic acid. Steady state binding experiments indicate Kd values of 4 and 0.5 nM and receptor numbers of 75,000 and 7,400 for human neutrophils and differentiated HL-60 cells, respectively. 125I-MDNCF/IL-8 bound to human neutrophils is rapidly internalized and subsequently released from cells as trichloroacetic acid-soluble radioactivity. Affinity labeling experiments suggest that the human neutrophil MDNCF/IL-8 receptor exhibits a mass of approximately 58,000 daltons.

  6. EpCAM modulates NF-κB signaling and interleukin-8 expression in breast cancer.

    Science.gov (United States)

    Sankpal, Narendra V; Fleming, Timothy P; Gillanders, William E

    2013-04-01

    The epithelial cell adhesion molecule (EpCAM) is a 40-kD type I transmembrane protein that is overexpressed in human epithelial cancers and is currently the target of molecular therapy based on its overexpression at the cell surface. Recently, we and others have shown a role for EpCAM in cell signaling and carcinogenesis, and EpCAM expression seems to promote breast cancer invasion. Interleukin-8 (IL-8/CXCL-8) is an inflammatory cytokine that has recently been shown to modulate breast cancer invasion and angiogenesis. In preliminary experiments, we identified a correlation between EpCAM and IL-8 expression in primary human breast cancers. Specific ablation of EpCAM in breast cancer cell lines results in decreased IL-8 expression, and IL-8 contributes to EpCAM-dependent breast cancer invasion. Specific ablation of EpCAM is also associated with decreased NF-κB transcription factor activity, decreased phosphorylation of the NF-κB family member RELA, and increased IκBα protein expression. EpCAM modulates IL-8 expression at baseline, and following IL-1β stimulation, which is known to be a potent inducer of NF-κB in breast cancer. In functional rescue experiments, specific ablation of RELA or forced expression of the NF-κB inhibitor protein IκBα prevented EpCAM-dependent rescue of IL-8 promoter activity. These studies show for the first time that EpCAM can modulate NF-κB transcription factor activity and IL-8 expression in breast cancer and confirm the role of EpCAM signaling in modulating breast cancer invasion. Further study is required to define the molecular mechanism(s) of EpCAM signaling in breast cancer and to direct the rational development of molecular therapies targeting EpCAM.

  7. Circulating interleukin-8 levels explain breast cancer osteolysis in mice and humans.

    Science.gov (United States)

    Kamalakar, Archana; Bendre, Manali S; Washam, Charity L; Fowler, Tristan W; Carver, Adam; Dilley, Joshua D; Bracey, John W; Akel, Nisreen S; Margulies, Aaron G; Skinner, Robert A; Swain, Frances L; Hogue, William R; Montgomery, Corey O; Lahiji, Parshawn; Maher, Jacqueline J; Leitzel, Kim E; Ali, Suhail M; Lipton, Alan; Nicholas, Richard W; Gaddy, Dana; Suva, Larry J

    2014-04-01

    Skeletal metastases of breast cancer and subsequent osteolysis connote a dramatic change in the prognosis for the patient and significantly increase the morbidity associated with disease. The cytokine interleukin 8 (IL-8/CXCL8) is able to directly stimulate osteoclastogenesis and bone resorption in mouse models of breast cancer bone metastasis. In this study, we determined whether circulating levels of IL-8 were associated with increased bone resorption and breast cancer bone metastasis in patients and investigated IL-8 action in vitro and in vivo in mice. Using breast cancer patient plasma (36 patients), we identified significantly elevated IL-8 levels in bone metastasis patients compared with patients lacking bone metastasis (pIL-8 and increased bone resorption (pIL-8 expression. In vitro, human MDA-MB-231 and MDA-MET breast cancer cell lines secrete two distinct IL-8 isoforms, both of which were found to stimulate osteoclastogenesis. However, the more osteolytic MDA-MET-derived full length IL-8(1-77) had significantly higher potency than the non-osteolytic MDA-MB-231-derived IL-8(6-77), via the CXCR1 receptor. MDA-MET breast cancer cells were injected into the tibia of nude mice and 7days later treated daily with a neutralizing IL-8 monoclonal antibody. All tumor-injected mice receiving no antibody developed large osteolytic bone tumors, whereas 83% of the IL-8 antibody-treated mice had no evidence of tumor at the end of 28days and had significantly increased survival. The pro-osteoclastogenic activity of IL-8 in vivo was confirmed when transgenic mice expressing human IL-8 were examined and found to have a profound osteopenic phenotype, with elevated bone resorption and inherently low bone mass. Collectively, these data suggest that IL-8 plays an important role in breast cancer osteolysis and that anti-IL-8 therapy may be useful in the treatment of the skeletal related events associated with breast cancer.

  8. Study on the role of Interleukine-8 in the pathogenesis of endometriosis

    Institute of Scientific and Technical Information of China (English)

    Wang Lijie; Leng Jinhua; Lang Jinghe

    2004-01-01

    Objective:To determine the role of Interleukine-8 in the pathogenesis of endometriosis(EM).Methods:36 patients with endometriosis were selected as study group.20 patients without endometriosis served as control group. IL-8 concentration in peritoneal fluid(PF) and serum of both groups were detected by ELISA.The correlation between IL-8 concentration and the severity of EM were performed.The differences of IL-8 mRNA expression in eutopic endometrium of patients between with and without endometriosis, and the differences among different endometriotic lesions were further studied by Northern Blot;Cultured endometrial stromal cells(CESC) were divided into groups. IL-8 and anti-IL-8 were used to treat these cells.Results:(1)The PF and serum from patients with EM contained significantly greater amounts of IL-8 than those in controls. A significant correlation between PF IL-8 content and the severity of disease was noted but there were no evidences of a relationship between concentrations of serum IL-8 and PF IL-8.(2) It was showed that the expression density of IL-8 mRNA of Eu were significantly higher than that of En. Among the three different endometriotic lesions, the highest IL-8 mRNA expression density was found in RPL(red peritoneal lesion), while the lowest IL-8mRNA expression density was detected in ULN(uterosacral ligament module).(3) There was a dose-dependent stimulatory effect of IL-8 on the survival of ESC. At 1ng/ml, anti-IL-8 significantly inhibited the survival of endometrial cells.Conclusion:IL-8 may be one of the essential factors for the pathogenesis of endometriosis.

  9. Cell-Associated Interleukin-8 in Cord Blood of Term and Preterm Infants

    Science.gov (United States)

    Dembinski, J.; Behrendt, D.; Heep, A.; Dorn, C.; Reinsberg, J.; Bartmann, P.

    2002-01-01

    To assess the effect of gestational age and labor on the interleukin-8 (IL-8) concentration in whole cord blood and serum, IL-8 levels were determined simultaneously in cord blood serum and lysate in 134 infants. Following the elimination of some of the samples due to exclusion criteria, the data for 99 uninfected infants (71 term and 28 preterm) and 9 infants with neonatal bacterial infection delivered either vaginally or by elective or emergency cesarean section were analyzed. The effects of labor and gestational age were tested by analysis of variance. IL-8 was not detectable in the serum of 25 infants, whereas IL-8 levels in whole blood were measurable in all of the samples. The median IL-8 conncentrations in whole cord blood lysate were 106 pg/ml (range, 20 to 415 pg/ml) in preterm infants and 176 pg/ml (range, 34 to 1,667 pg/ml) in term infants. In contrast to the IL-8 levels in serum, IL-8 levels in whole blood were reduced after ECS. Gestational age had no independent effect on the IL-8 concentrations in either serum or whole blood; these concentrations increased in infected infants after labor. We conclude that the neonatal proinflammatory response to labor stress was more evident in the concentrations of IL-8 in whole blood than in serum. The levels of IL-8 in whole-blood lysate reflect proinflammatory stimulation in neonates and may be a useful diagnostic tool for the early diagnosis of neonatal infection. PMID:11874870

  10. Interleukin-8 gene polymorphism –251T>A contributes to Alzheimer's disease susceptibility

    Science.gov (United States)

    Qin, Biyong; Li, Li; Wang, Shanshan; Wu, Jun; Huang, Yulan; Zhou, Ping; Bai, Jiao; Zheng, Yan

    2016-01-01

    Abstract Background: Published association studies have investigated the correlation between interleukin-8 (IL-8) gene polymorphism –251T>A and susceptibility to Alzheimer's disease (AD); however, the results are conflicting. Thus, we conducted the meta-analysis to reassess the effect of IL-8 gene –251T>A variant on the risk of AD. Methods: Relevant studies regarding this association were electronically searched and identified from the PubMed, Embase, Cochrane Library, China National Knowledge Infrastructure, and the Chinese Biomedicine Database. The odds ratios (ORs) with the corresponding 95% confidence intervals (95% CIs) were pooled to calculate the strength of this association. Results: Nine studies with a total of 1406 cases and 2152 controls were included in the meta-analysis. Overall, a significant association of IL-8 gene –251T>A polymorphism with increased risk of AD was observed in several genetic models (allele, A vs T: OR=1.32, 95%CI=1.16-1.50; homozygous, AA vs TT: OR=1.70, 95%CI=1.21–2.21; heterozygous, TA vs TT: OR=1.37, 95%CI=1.12–1.69; recessive, AA vs TA+TT: OR=1.40, 95%CI=1.12–1.75). Similarly, such association was also revealed both in Asian and European populations in the subgroup analysis by ethnicity. Conclusion: The current study suggested that IL-8 gene polymorphism –251T>A may contribute to the susceptibility to AD. PMID:27684880

  11. Fisetin inhibits osteoclastogenesis through prevention of RANKL-induced ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

    Science.gov (United States)

    Sakai, Eiko; Shimada-Sugawara, Megumi; Yamaguchi, Yu; Sakamoto, Hiroshi; Fumimoto, Reiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2013-01-01

    Osteoclasts (OCLs) are multinucleated bone-resorbing cells that are differentiated by stimulation with receptor activator of nuclear factor kappa-B ligand (RANKL) and macrophage colony-stimulating factor. We recently demonstrated that regulation of heme-oxygenase 1 (HO-1), a stress-induced cytoprotective enzyme, also functions in OCL differentiation. In this study, we investigated effects of fisetin, a natural bioactive flavonoid that has been reported to induce HO-1 expression, on the differentiation of macrophages into OCLs. Fisetin inhibited the formation of OCLs in a dose-dependent manner and suppressed the bone-resorbing activity of OCLs. Moreover, fisetin-treated OCLs showed markedly decreased phosphorylation of extracellular signal-regulated kinase, Akt, and Jun N-terminal kinase, but fisetin did not inhibit p38 phosphorylation. Fisetin up-regulated mRNA expression of phase II antioxidant enzymes including HO-1 and interfered with RANKL-mediated reactive oxygen species (ROS) production. Studies with RNA interference showed that suppression of NF-E2-related factor 2 (Nrf2), a key transcription factor for phase II antioxidant enzymes, rescued fisetin-mediated inhibition of OCL differentiation. Furthermore, fisetin significantly decreased RANKL-induced nuclear translocation of cFos and nuclear factor of activated T cells cytoplasmic-1 (NFATc1), which is a transcription factor critical for osteoclastogenic gene regulation. Therefore, fisetin inhibits OCL differentiation through blocking RANKL-mediated ROS production by Nrf2-mediated up-regulation of phase II antioxidant enzymes.

  12. Effects of COX-2 inhibition on expression of vascular endothelial growth factor and interleukin-8 in lung cancer cells

    Directory of Open Access Journals (Sweden)

    Yu Danny CW

    2008-07-01

    Full Text Available Abstract Background Cyclooxygenase (COX-2 has been implicated in tumour progression, angiogenesis and metastasis in non-small cell lung cancer (NSCLC. We speculated that inhibition of COX-2 activity might reduce expression of the pro-angiogenic factors vascular endothelial growth factor (VEGF and interleukin-8 (IL-8 in lung cancer cells. Methods The levels of IL-8, VEGF and prostaglandin E2 (PGE2 were measured by ELISA. Expression of COX-1 and COX-2 was determined by Western blotting. Inhibition or knockdown of COX-2 was achieved by treating NSCLC cells with specific COX-2 inhibitor NS-398 or COX-2 siRNA, respectively. Results We found that NSCLC cell lines produced more IL-8 than VEGF (p 2 was significantly higher in NSCLC cell lines than SCLC cell lines (p 2 production. VEGF was significantly reduced following the treatment of NS-398 in A549 (by 31% and MOR/P (by 47% cells lines which expressing strong COX-2, but not in H460 cell line which expressing very low COX-2. However, IL-8 was not reduced in these cell lines. To confirm these results, we knocked down COX-2 expression with COX-2 siRNA in these cell lines. VEGF was significantly decreased in A549 (by 24% and in MOR/P (by 53%, but not in H460 whereas IL-8 was not affected in any cell line. Conclusion We conclude that NSCLC cells produce much higher levels of IL-8 than SCLC cells whereas both NSCLC and SCLC cells produce similar levels of VEGF. COX-2 is only expressed in NSCLC cells, but not in SCLC cells. VEGF is produced in both NSCLC and SCLC cells regardless of COX-2 expression. However, VEGF production is, at least partly, COX-2 dependent in NSCLC cells expressing COX-2. In contrast, IL-8 production is COX-2 independent in both NSCLC and SCLC cells. We speculate that combined targeting of COX-2 and IL-8 may be useful in the treatment of patients with NSCLC and targeting VEGF may be useful in the treatment of patients with SCLC.

  13. Prognostic value of serum level of interleukin-6 and interleukin-8 in metastatic breast cancer patients.

    Science.gov (United States)

    Ahmed, Olal I; Adel, Azza M; Diab, Dina R; Gobran, Nagy S

    2006-01-01

    Previous studies indicated that interleukins may stimulate cancer cells growth and contribute to loco regional relapse as well as metastasis. The aim in this study was to investigate the level of interleukin-6 (IL-6) and interleukin-8 (IL-8) in metastatic breast cancer patients and find out the relation between the levels of these cytokines and the clinical out come of patients and to predict the value of these cytokines as independent prognostic factors. The present study was carried out on 40 women divided into two groups; the first group included 30 patients diagnosed as having metastatic breast cancer. The second group included 10 healthy women as controls. An immunoenzymometric assays for the quantitative measurement of human IL-6 and IL-8 were used. The serum level of IL-6 and IL-8 were measured for patients and controls. Serum level of both IL-6 and IL-8 were found to be higher in patients than in healthy volunteers. Serum IL-6 was detected in all patients and controls with a mean value of (25.3 pg/ml) versus (1.5 pg/ml) for patients and controls respectively and this difference was statistically highly significant (P IL-8 was detected in 26 patients (86.7%) and 7 controls (70%) with a mean value of (8.96 pg/ml) versus (3.9 pg/ml) for patients and controls respectively and this difference was also statistically highly significant (P IL-8 (10.2 pg/ml) in comparison with those with size less than 5cm (IL-6 14 pg/ml) and (IL-8 7.2 pg/ml) and the difference in both cases was statistically significant (P IL-8 with a mean value of 32.8 pg/ml and 10.2 pg/ml for IL-6 and IL-8 respectively, than those with less than 3 positive lymph nodes with mean value of 14 pg/ml and 6.9 pg/ml for IL-6 and IL-8 respectively and this difference was statistically significant (P IL-8 (P IL-8 was 6.2 pg/ml versus 11.3 pg/ml for patients with one metastatic site and patients with more than one metastatic site respectively. However, the level of IL-6 and IL-8 did not correlate with

  14. Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hyuk, E-mail: jhkim@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Frantz, Aric M.; Anderson, Katie L.; Graef, Ashley J.; Scott, Milcah C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Robinson, Sally [Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Sharkey, Leslie C. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); O' Brien, Timothy D. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Dickerson, Erin B. [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States); Modiano, Jaime F., E-mail: modiano@umn.edu [Department of Veterinary Clinical Science, College of Veterinary Medicine, University of Minnesota, St. Paul, MN (United States); Masonic Cancer Center, University of Minnesota, Minneapolis, MN (United States)

    2014-04-15

    Interleukin-8 (IL-8) gene expression is highly up-regulated in canine hemangiosarcoma (HSA); however, its role in the pathogenesis of this disease is unknown. We investigated the expression of IL-8 in canine HSA tissues and cell lines, as well and the effects of IL-8 on canine HSA in vitro, and in vivo using a mouse xenograft model for the latter. Constitutive expression of IL-8 mRNA, IL-8 protein, and IL-8 receptor were variable among different tumor samples and cell lines, but they showed stable steady states in each cell line. Upon the addition of IL-8, HSA cells showed transient intracellular calcium fluxes, suggesting that their IL-8 receptors are functional and that IL-8 binding activates relevant signaling pathways. Yet, neither addition of exogenous IL-8 nor blockade of endogenous IL-8 by neutralizing anti-IL-8 antibody (α-IL-8 Ab) affected HSA cell proliferation or survival in vitro. To assess potential effects of IL-8 in other tumor constituents, we stratified HSA cell lines and whole tumor samples into “IL-8 high” and “IL-8 low” groups. Genome-wide gene expression profiling showed that samples in the “IL-8 high” tumor group were enriched for genes associated with a “reactive microenvironment,” including activation of coagulation, inflammation, and fibrosis networks. Based on these findings, we hypothesized that the effects of IL-8 on these tumors were mostly indirect, regulating interactions with the microenvironment. This hypothesis was supported by in vivo xenograft experiments where survival and engraftment of tumor cells was inhibited by administration of neutralizing α-IL-8 Ab. Together, our results suggest that IL-8 contributes to establishing a permissive microenvironment during the early stages of tumorigenesis in HSA. - Highlights: • IL-8 is expressed in canine hemangiosarcoma tumor samples and cell lines. • IL-8 transduces a relevant biological signal in canine hemangiosarcoma cells. • IL-8 gene signature is associated

  15. Phosphorylation of p65 Is Required for Zinc Oxide Nanoparticle–Induced Interleukin 8 Expression in Human Bronchial Epithelial Cells

    OpenAIRE

    Wu, Weidong; Samet, James M.; Peden, David B.; Bromberg, Philip A.

    2010-01-01

    Background Exposure to zinc oxide (ZnO) in environmental and occupational settings causes acute pulmonary responses through the induction of proinflammatory mediators such as interleukin-8 (IL-8). Objective We investigated the effect of ZnO nanoparticles on IL-8 expression and the underlying mechanisms in human bronchial epithelial cells. Methods We determined IL-8 mRNA and protein expression in primary human bronchial epithelial cells and the BEAS-2B human bronchial epithelial cell line usin...

  16. Met receptor tyrosine kinase signaling induces secretion of the angiogenic chemokine interleukin-8/CXCL8 in pancreatic cancer.

    Directory of Open Access Journals (Sweden)

    Kristen S Hill

    Full Text Available At diagnosis, the majority of pancreatic cancer patients present with advanced disease when curative resection is no longer feasible and current therapeutic treatments are largely ineffective. An improved understanding of molecular targets for effective intervention of pancreatic cancer is thus urgent. The Met receptor tyrosine kinase is one candidate implicated in pancreatic cancer. Notably, Met is over expressed in up to 80% of invasive pancreatic cancers but not in normal ductal cells correlating with poor overall patient survival and increased recurrence rates following surgical resection. However the functional role of Met signaling in pancreatic cancer remains poorly understood. Here we used RNA interference to directly examine the pathobiological importance of increased Met signaling for pancreatic cancer. We show that Met knockdown in pancreatic tumor cells results in decreased cell survival, cell invasion, and migration on collagen I in vitro. Using an orthotopic model for pancreatic cancer, we provide in vivo evidence that Met knockdown reduced tumor burden correlating with decreased cell survival and tumor angiogenesis, with minimal effect on cell growth. Notably, we report that Met signaling regulates the secretion of the pro-angiogenic chemokine interleukin-8/CXCL8. Our data showing that the interleukin-8 receptors CXCR1 and CXCR2 are not expressed on pancreatic tumor cells, suggests a paracrine mechanism by which Met signaling regulates interleukin-8 secretion to remodel the tumor microenvironment, a novel finding that could have important clinical implications for improving the effectiveness of treatments for pancreatic cancer.

  17. Clinical significance of serum concentration of interleukin 8 in patients with bronchial asthma or chronic pulmonary emphysema.

    Science.gov (United States)

    Kanazawa, H; Kurihara, N; Otsuka, T; Fujii, T; Tanaka, S; Kudoh, S; Hirata, K; Takeda, T

    1996-01-01

    Interleukin-8 (IL-8) belongs to the family of chemotactic cytokines and has been shown to activate neutrophils in vitro and in vivo. In this study, we measured IL-8 concentration in the serum of patients with pulmonary emphysema or bronchial asthma. IL-8 concentration in serum of emphysema patients was significantly higher than in asthmatics; in emphysema patients it was significantly correlated with the smoking index and the annual decrease of FEV1.0. In asthmatics IL-8 concentration was below the level of detection, but was markedly increased during exacerbation of asthma. Our findings suggest that IL-8 may be one of the causal factors in these diseases.

  18. Determination of strains of Helicobacter pylori and of polymorphism in the interleukin-8 gene in patients with stomach cancer

    Directory of Open Access Journals (Sweden)

    Ruth Maria Dias Ferreira Vinagre

    2011-03-01

    Full Text Available CONTEXT: Gastric neoplasia is the second most common cause of death by cancer in the world and H. pylori is classified as a type I human carcinogen by the World Health Organization. However, despite the high prevalence of infection by H. pylori around the world, less than 3% of individuals carrying the bacteria develop gastric neoplasias. Such a fact indicates that evolution towards malignancy may be associated with bacterial factors in the host and the environment. OBJECTIVES: To investigate the association between polymorphism in the region promoting the IL-8 (-251 gene and the H. pylori genotype, based on the vacA alleles and the presence of the cagA gene, using clinical and histopathological data. METHODS: In a prospective study, a total of 102 patients with stomach cancer and 103 healthy volunteers were analysed. Polymorphism in interleukin 8 (-251 was determined by the PCR-restriction fragment length polymorphism reaction and sequencing. PCR was used for genotyping the vacA alleles and the cagA in the bacterial strains PCR. Gastric biopsies were histologically assessed. RESULTS: The H. pylori serology was positive for 101 (99% of all patients analysed, and 98 (97% of them were colonized by only one strain. In patients with monoinfection, 82 (84% of the bacterial strains observed had the s1b/m1 genotype. The cagA gene was detected in 74 (73% of patients infected by H. pylori. The presence of the cagA gene was demonstrated as associated with the presence of the s1b/m1 genotype of the vacA gene (P = 0.002. As for polymorphism in the interleukin 8 (-251 gene we observed that the AA (P = 0.026 and AT (P = 0.005 genotypes were most frequent in the group of patients with gastric adenocarcinoma. By comparing the different types of isolated bacterial strains with the interleukin -8 (-251 and the histopathological data we observed that carriers of the A allele (AT and AA infected by virulent strains (m1s1 cagA+ demonstrated a greater risk of

  19. Determination of strains of Helicobacter pylori and of polymorphism in the interleukin-8 gene in patients with stomach cancer.

    Science.gov (United States)

    Vinagre, Ruth Maria Dias Ferreira; Corvelo, Tereza Cristina de Oliveira; Arnaud, Vanda Catão; Leite, Ana Claudia Klautau; Barile, Katarine Antonia Dos Santos; Martins, Luisa Caricio

    2011-01-01

    Gastric neoplasia is the second most common cause of death by cancer in the world and H. pylori is classified as a type I human carcinogen by the World Health Organization. However, despite the high prevalence of infection by H. pylori around the world, less than 3% of individuals carrying the bacteria develop gastric neoplasias. Such a fact indicates that evolution towards malignancy may be associated with bacterial factors in the host and the environment. To investigate the association between polymorphism in the region promoting the IL-8 (-251) gene and the H. pylori genotype, based on the vacA alleles and the presence of the cagA gene, using clinical and histopathological data. In a prospective study, a total of 102 patients with stomach cancer and 103 healthy volunteers were analysed. Polymorphism in interleukin 8 (-251) was determined by the PCR-restriction fragment length polymorphism reaction and sequencing. PCR was used for genotyping the vacA alleles and the cagA in the bacterial strains PCR. Gastric biopsies were histologically assessed. The H. pylori serology was positive for 101 (99%) of all patients analysed, and 98 (97%) of them were colonized by only one strain. In patients with monoinfection, 82 (84%) of the bacterial strains observed had the s1b/m1 genotype. The cagA gene was detected in 74 (73%) of patients infected by H. pylori. The presence of the cagA gene was demonstrated as associated with the presence of the s1b/m1 genotype of the vacA gene (P = 0.002). As for polymorphism in the interleukin 8 (-251) gene we observed that the AA (P = 0.026) and AT (P = 0.005) genotypes were most frequent in the group of patients with gastric adenocarcinoma. By comparing the different types of isolated bacterial strains with the interleukin -8 (-251) and the histopathological data we observed that carriers of the A allele (AT and AA) infected by virulent strains (m1s1 cagA+) demonstrated a greater risk of presenting a degree of inflammation (OR = 24.75 CI 95

  20. Inhibition of lanthanide nanocrystal-induced inflammasome activation in macrophages by a surface coating peptide through abrogation of ROS production and TRPM2-mediated Ca(2+) influx.

    Science.gov (United States)

    Yao, Han; Zhang, Yunjiao; Liu, Liu; Xu, Youcui; Liu, Xi; Lin, Jun; Zhou, Wei; Wei, Pengfei; Jin, Peipei; Wen, Long-Ping

    2016-11-01

    necessary for inflammasome activation, and this event was completely inhibited by RE-1 coating. We conclude from these studies that inhibition of ROS production, and the subsequent abrogation of TRPM2-mediated Ca(2+) influx, is the primary mechanism underlying RE-1's inhibitory effect on LNs-induced inflammasome activation. The ability of regulating the inflammatory response of nanocrystals through peptide surface coating may be of great value for in vivo applications of LNs and other engineered nanomaterials.

  1. PKA and Epac cooperate to augment bradykinin-induced interleukin-8 release from human airway smooth muscle cells

    Directory of Open Access Journals (Sweden)

    Halayko Andrew J

    2009-09-01

    Full Text Available Abstract Background Airway smooth muscle contributes to the pathogenesis of pulmonary diseases by secreting inflammatory mediators such as interleukin-8 (IL-8. IL-8 production is in part regulated via activation of Gq-and Gs-coupled receptors. Here we study the role of the cyclic AMP (cAMP effectors protein kinase A (PKA and exchange proteins directly activated by cAMP (Epac1 and Epac2 in the bradykinin-induced IL-8 release from a human airway smooth muscle cell line and the underlying molecular mechanisms of this response. Methods IL-8 release was assessed via ELISA under basal condition and after stimulation with bradykinin alone or in combination with fenoterol, the Epac activators 8-pCPT-2'-O-Me-cAMP and Sp-8-pCPT-2'-O-Me-cAMPS, the PKA activator 6-Bnz-cAMP and the cGMP analog 8-pCPT-2'-O-Me-cGMP. Where indicated, cells were pre-incubated with the pharmacological inhibitors Clostridium difficile toxin B-1470 (GTPases, U0126 (extracellular signal-regulated kinases ERK1/2 and Rp-8-CPT-cAMPS (PKA. The specificity of the cyclic nucleotide analogs was confirmed by measuring phosphorylation of the PKA substrate vasodilator-stimulated phosphoprotein. GTP-loading of Rap1 and Rap2 was evaluated via pull-down technique. Expression of Rap1, Rap2, Epac1 and Epac2 was assessed via western blot. Downregulation of Epac protein expression was achieved by siRNA. Unpaired or paired two-tailed Student's t test was used. Results The β2-agonist fenoterol augmented release of IL-8 by bradykinin. The PKA activator 6-Bnz-cAMP and the Epac activator 8-pCPT-2'-O-Me-cAMP significantly increased bradykinin-induced IL-8 release. The hydrolysis-resistant Epac activator Sp-8-pCPT-2'-O-Me-cAMPS mimicked the effects of 8-pCPT-2'-O-Me-cAMP, whereas the negative control 8-pCPT-2'-O-Me-cGMP did not. Fenoterol, forskolin and 6-Bnz-cAMP induced VASP phosphorylation, which was diminished by the PKA inhibitor Rp-8-CPT-cAMPS. 6-Bnz-cAMP and 8-pCPT-2'-O-Me-cAMP induced GTP

  2. Xanthohumol, a prenylated chalcone derived from hops, inhibits proliferation, migration and interleukin-8 expression of hepatocellular carcinoma cells.

    Science.gov (United States)

    Dorn, Christoph; Weiss, Thomas S; Heilmann, Jörg; Hellerbrand, Claus

    2010-02-01

    Xanthohumol, the major prenylated chalcone found in hops, is well known to exert anti-cancer effects, but information regarding the impact on hepatocellular carcinoma (HCC) cells and potential adverse effects on non-tumorous hepatocytes is limited. Here, we show that xanthohumol at a concentration of 25 microM induced apoptosis in two HCC cell lines (HepG2 and Huh7). Furthermore, xanthohumol repressed proliferation and migration, as well as TNF induced NF-kappaB activity and interleukin-8 expression in both cell lines at even lower concentrations. In contrast, xanthohumol concentrations up to 100 microM did not affect viability of primary human hepatocytes in vitro. In summary, our data showed that xanthohumol can ameliorate different pro-tumorigenic mechanisms known to promote HCC progression, indicating its potential as promising therapeutic agent that selectively affects cancer cells.

  3. Helicobacter pylori cagA Promoter Region Sequences Influence CagA Expression and Interleukin 8 Secretion.

    Science.gov (United States)

    Ferreira, Rui M; Pinto-Ribeiro, Ines; Wen, Xiaogang; Marcos-Pinto, Ricardo; Dinis-Ribeiro, Mário; Carneiro, Fátima; Figueiredo, Ceu

    2016-02-15

    Heterogeneity at the Helicobacter pylori cagA gene promoter region has been linked to variation in CagA expression and gastric histopathology. Here, we characterized the cagA promoter and expression in 46 H. pylori strains from Portugal. Our results confirm the relationship between cagA promoter region variation and protein expression originally observed in strains from Colombia. We observed that individuals with intestinal metaplasia were all infected with H. pylori strains containing a specific cagA motif. Additionally, we provided novel functional evidence that strain-specific sequences in the cagA promoter region and CagA expression levels influence interleukin 8 secretion by the host gastric epithelial cells.

  4. Relationship between dietary folate intake and plasma monocyte chemoattractant protein-1 and interleukin-8 in heart failure patients.

    Science.gov (United States)

    Chung, Hye Kyung; Kim, Oh Yoen; Lee, Hyeran; Do, Hyun Joo; Kim, Young Soon; Oh, Jaewon; Kang, Seok-Min; Shin, Min-Jeong

    2011-07-01

    This study aimed to examine the association of dietary vitamin intakes with plasma pro-inflammatory cytokine levels in Korean heart failure patients. Stable outpatients with heart failure were recruited and finally 91 patients were included. Dietary intakes were estimated by a developed semi-quantitative food frequency questionnaire. The simultaneous measurement of 17 cytokines was performed along with analysis of plasma C-reactive protein. Plasma C-reactive protein levels significantly correlated with dietary intakes of vitamin C (r = -0.30, pmonocyte chemoattractant protein-1 significantly correlated with dietary folate intake (r = -0.31, pmonocyte chemoattractant protein-1 (pmonocyte chemoattractant protein-1 and interleukin-8 which indicates dietary folate may have a potentially beneficial role in the prevention and treatment of heart failure.

  5. Up-regulation of interleukin-8 expressions induced by mast cell tryptase via protease activated receptor-2 in endothelial cell line

    Institute of Scientific and Technical Information of China (English)

    LU Chao; ZHAO Feng-di; LI Xiao-bo; YIN Lian-hua

    2005-01-01

    Background Protease activated receptor-2 is cleaved and activated by trypsin or mast cell tryptase and may play an important role in inflammation. However, it is unknown whetehr PAR-2 can mediate tryptase-induced inflammatory reaction. This study was conduct to investigate wheter PAR-2 could be the activated by mast cell tryptase and medicated the tryptase induced interleukin-8 expression in endothelial cells.Methods Protease activated receptor-2 expression was found in endothelial cell lines ECV304 cell by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting. Interleukin-8 stimulated by purified human mast cell tryptase was determined by RT-PCR and enzyme linked immunosorbent assay (ELISA). Data were analysed by the S-N-K one-way ANOVA test.Results The present study shows that mRNA and protein of protease activated receptor-2 could be expressed in ECV304 cells, and tryptase upregulated the expression levels of both interleukin-8 mRNA and protein. The increased expression of interleukin-8 was inhibited by an antiprotease activated receptor-2 monoclonal antibody, SAM11. An additional band was observed by Western blotting after the incubation of ECV304 cells with tryptase for 2 hours, which suggested that protease activated receptor-2 was activated. Conclusion Protease activated receptor-2 can mediate the mast cell tryptase stimulated expression of interleukin-8 in ECV304 cell.

  6. Induction of interleukin-8 by Naegleria fowleri lysates requires activation of extracellular signal-regulated kinase in human astroglial cells.

    Science.gov (United States)

    Kim, Jong-Hyun; Sohn, Hae-Jin; Lee, Sang-Hee; Kwon, Daeho; Shin, Ho-Joon

    2012-08-01

    Naegleria fowleri is a pathogenic free-living amoeba which causes primary amoebic meningoencephalitis in humans and experimental animals. To investigate the mechanisms of such inflammatory diseases, potential chemokine gene activation in human astroglial cells was investigated following treatment with N. fowleri lysates. We demonstrated that N. fowleri are potent inducers for the expression of interleukin-8 (IL-8) genes in human astroglial cells which was preceded by activation of extracellular signal-regulated kinase (ERK). In addition, N. fowleri lysates induces the DNA binding activity of activator protein-1 (AP-1), an important transcription factor for IL-8 induction. The specific mitogen-activated protein kinase kinase/ERK inhibitor, U0126, blocks N. fowleri-mediated AP-1 activation and subsequent IL-8 induction. N. fowleri-induced IL-8 expression requires activation of ERK in human astroglial cells. These findings indicate that treatment of N. fowleri on human astroglial cells leads to the activation of AP-1 and subsequent expression of IL-8 which are dependent on ERK activation. These results may help understand the N. fowleri-mediated upregulation of chemokine and cytokine expression in the astroglial cells.

  7. Differential effects of multiplicity of infection on Helicobacter pylori-induced signaling pathways and interleukin-8 gene transcription.

    Science.gov (United States)

    Ritter, Birgit; Kilian, Petra; Reboll, Marc Rene; Resch, Klaus; DiStefano, Johanna Kay; Frank, Ronald; Beil, Winfried; Nourbakhsh, Mahtab

    2011-02-01

    Interleukin-8 (IL-8) plays a central role in the pathogenesis of Helicobacter pylori infection. We used four different H. pylori strains isolated from patients with gastritis or duodenal ulcer disease to examine their differential effects on signaling pathways and IL-8 gene response in gastric epithelial cells. IL-8 mRNA level is elevated in response to high (100) multiplicity of infection (MOI) independent of cagA, vacA, and dupA gene characteristics. By lower MOIs (1 or 10), only cagA ( + ) strains significantly induce IL-8 gene expression. This is based on differential regulation of IL-8 promoter activity. Analysis of intracellular signaling pathways indicates that H. pylori clinical isolates induce IL-8 gene transcription through NF-κB p65, but by a MOI-dependent differential activation of MAPK pathways. Thus, the major virulence factors of H. pylori CagA, VacA, and DupA might play a minor role in the level of IL-8 gene response to a high bacterial load.

  8. Serum interleukin -8 is not a reliable marker for prediction of vesicoureteral reflux in children with febrile urinary tract infection

    Directory of Open Access Journals (Sweden)

    Abolfazl Mahyar

    2015-12-01

    Full Text Available Objective: In view of the side effects of voiding cystourethrography (VCUG, identification of noninvasive markers predicting the presence of vesicoureteral reflux (VUR is important. This study was conducted to determine the predictive value of serum interleukin-8 (IL-8 in diagnosis of VUR in children with first febrile urinary tract infection (UTI. Materials and Methods: Eighty children with first febrile UTI were divided into two groups, with and without VUR, based on the results of VCUG. The sensitivity, specificity, positive and negative predictive value positive and negative likelihood ratio, and accuracy of IL-8 for prediction of VUR were investigated. Results: Of the 80 children with febrile UTI, 30 (37.5% had VUR. There was no significant difference between the children with and without VUR and also between low and high-grade VUR groups in terms of serum concentration of IL-8 (P>0.05. Based on ROC curve, the sensitivity, specificity, likelihood ratio positive, and accuracy of serum IL-8 was lower than those of erythrocyte sedimentation rate and C-reactive protein. Multivariate logistic regression analysis showed significant positive correlation only between erythrocyte sedimentation rate and VUR. Conclusions: This study showed no significant difference between the children with and without VUR in terms of the serum concentration of IL-8. Therefore, it seems that serum IL-8 is not a reliable marker for prediction of VUR.

  9. Potential Role of Vascular Endothelial Growth Factor, Interleukin-8 and Monocyte Chemoattractant Protein-1 in Periodontal Diseases

    Directory of Open Access Journals (Sweden)

    En Lee

    2003-08-01

    Full Text Available Host-mediated immunoinflammatory pathways activated by bacteria lead to destruction of the periodontal connective tissues and alveolar bone. The objective of this study was to elucidate the activation of the inflammatory processes in periodontal disease by quantitative assessment of cytokines and periodontopathogens. Gingival crevicular fluids (GCF and subgingival plaque samples were collected from patients with chronic periodontitis and gingivitis and from periodontally healthy sites. Vascular endothelial growth factor (VEGF, monocyte chemoattractant protein-1 (MCP-1, and interleukin 8 (IL-8 in GCF were analyzed by enzyme-linked immunosorbent assay. Periodontopathogens, including Bacteroides forsythus, Campylobacter rectus, Porphyromonas gingivalis and Prevotella intermedia, were analyzed by immunofluorescence and dark-field microscopy. There was significantly more VEGF and IL-8 in chronic periodontitis and gingivitis sites than in periodontally healthy sites. There were significant positive correlations between the concentrations and total amounts of VEGF and IL-8 in chronic periodontitis and gingivitis sites, and between the levels of periodontopathogens and the total amounts of VEGF, MCP-1 and IL-8. These data indicate that inflammatory processes induced by periodontopathogens and the activation of certain cytokines (VEGF, MCP-1, IL-8 in periodontal diseases may be relevant to host-mediated destruction in chronic periodontitis.

  10. Interleukin-8-251T > a, interleukin-1α-889C > t and apolipoprotein e polymorphisms in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Alex Augusto Vendramini

    2011-01-01

    Full Text Available An inflammatory process has been involved in numerous neurodegenerative disorders such as Parkinson's disease, stroke and Alzheimer's disease (AD. In AD, the inflammatory response is mainly located in the vicinity of amyloid plaques. Cytokines, such as interleukin-8 (IL-8 and interleukin-1α (IL-1α, have been clearly involved in this inflammatory process. Polymorphisms of several interleukin genes have been correlated to the risk of developing AD. The present study investigated the association of AD with polymorphisms IL-8 -251T > A (rs4073 and IL-1α-889C > T (rs1800587 and the interactive effect of both, adjusted by the Apolipoprotein E genotype. 199 blood samples from patients with AD, 146 healthy elderly controls and 95 healthy young controls were obtained. DNA samples were isolated from blood cells, and the PCR-RFLP method was used for genotyping. The genotype distributions of polymorphisms IL-8, IL-1α and APOE were as expected under Hardy-Weinberg equilibrium. The allele frequencies did not differ significantly among the three groups tested. As expected, the APOE4 allele was strongly associated with AD (p A and IL-1α-889C > T were not found to be risk factors for AD.

  11. Lactobacillus plantarum inhibits epithelial barrier dysfunction and interleukin-8 secretion induced by tumor necrosis factor-α

    Institute of Scientific and Technical Information of China (English)

    Jae Sung Ko; Hye Ran Yang; Ju Young Chang; Jeong Kee Seo

    2007-01-01

    AIM: To determine whether Lactobacillus plantarum can modify the deleterious effects of tumor necrosis factor-α(TNF-α) on intestinal epithelial cells.METHODS: Caco-2 cells were incubated with TNF-α alone or in the presence of L. plantarum. Transepithelial electrical resistance was used to measure epithelial barrier function. Interleukin 8 (IL-8) secretion by intestinal epithelial cells was measured using an ELISA.Cellular lysate proteins were immunoblotted using the anti-extracellular regulated kinase (ERK), anti-phospho-ERK and anti-IκB-α.RESULTS: A TNF-α-induced decrease in transepithelial electrical resistance was inhibited by L. plantarum. TNF-α-induced IL-8 secretion was reduced by L. plantarum.L. plantarum inhibited the activation of ERK and the degradation of IκB-α in TNF-α-treated Caco-2 cells.CONCLUSION: Induction of epithelial barrier dysfunction and IL-8 secretion by TNF-α is inhibited by L. plantarum.Probiotics may preserve epithelial barrier function and inhibit the inflammatory response by altering the signal transduction pathway.

  12. Chromatin remodeling protein SMAR1 regulates NF-κB dependent Interleukin-8 transcription in breast cancer.

    Science.gov (United States)

    Malonia, Sunil K; Yadav, Bhawna; Sinha, Surajit; Lazennec, Gwendel; Chattopadhyay, Samit

    2014-10-01

    Interleukin-8 (IL-8) is a pleiotropic chemokine involved in metastasis and angiogenesis of breast tumors. The expression of IL-8 is deregulated in metastatic breast carcinomas owing to aberrant NF-κB activity, which is known to positively regulate IL-8 transcription. Earlier, we have shown that tumor suppressor SMAR1 suppresses NF-κB transcriptional activity by modulating IκBα function. Here, we show that NF-κB target gene IL-8, is a direct transcriptional target of SMAR1. Using chromatin immunoprecipitation and reporter assays, we demonstrate that SMAR1 binds to IL-8 promoter MAR (matrix attachment region) and recruits HDAC1 dependent co-repressor complex. Further, we also show that SMAR1 antagonizes p300-mediated acetylation of RelA/p65, a post-translational modification indispensable for IL-8 transactivation. Thus, we decipher a new role of SMAR1 in NF-κB dependent transcriptional regulation of pro-angiogenic chemokine IL-8.

  13. Interleukin-8-251T > a, interleukin-1α-889C > t and apolipoprotein e polymorphisms in Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Alex Augusto Vendramini

    2011-01-01

    Full Text Available An inflammatory process has been involved in numerous neurodegenerative disorders such as Parkinson's disease, stroke and Alzheimer's disease (AD. In AD, the inflammatory response is mainly located in the vicinity of amyloid plaques. Cytokines, such as interleukin-8 (IL-8 and interleukin-1α (IL-1α, have been clearly involved in this inflammatory process. Polymorphisms of several interleukin genes have been correlated to the risk of developing AD. The present study investigated the association of AD with polymorphisms IL-8 -251T > A (rs4073 and IL-1α-889C > T (rs1800587 and the interactive effect of both, adjusted by the Apolipoprotein E genotype. 199 blood samples from patients with AD, 146 healthy elderly controls and 95 healthy young controls were obtained. DNA samples were isolated from blood cells, and the PCR-RFLP method was used for genotyping. The genotype distributions of polymorphisms IL-8, IL-1α and APOE were as expected under Hardy-Weinberg equilibrium. The allele frequencies did not differ significantly among the three groups tested. As expected, the APOE4 allele was strongly associated with AD (p A and IL-1α-889C > T were not found to be risk factors for AD.

  14. Interleukin-8 and Its Receptors in Human Milk from Mothers of Full-Term and Premature Infants.

    Science.gov (United States)

    Polat, Adem; Tunc, Turan; Erdem, Galip; Yerebasmaz, Neslihan; Tas, Ahmet; Beken, Serdar; Basbozkurt, Gokalp; Saldir, Mehmet; Zenciroglu, Aysegul; Yaman, Halil

    2016-06-01

    In addition to its nutritional benefits, human milk also has bioactive elements. Limited immunological functions of newborns are supported and altered by the immunological elements of mother milk. Chemokines are of importance among these immune factors. Interleukin-8 (IL-8) has been demonstrated in mother's milk, and its receptors, CXC chemokine receptors (CXCR)-1 and CXCR-2, were detected on cells, responsible for immunological reactions and mammary glandular cells. The soluble forms of these receptors are yet to be described in human milk. In this study, it was aimed to assess the IL-8 levels and the concentrations of its receptors in colostrum and mature mother's milk in regard to preterm and term delivery. The results of this study indicated a decline in IL-8 levels with the lactation stage, but no difference was observed between term and preterm mother's milk. Regarding the CXCR-1 and CXCR-2, the concentrations of these receptors were similar in both colostrum and mature milk. Furthermore, there was not any significant difference between term and preterm mother's milk. In conclusion, this is the first study to investigate the concentrations of CXCR-1 and CXCR-2 with the levels of IL-8 in colostrum and mature human milk of term and preterm newborns. The alterations in IL-8 levels were similar in some of the studies reported. CXCR-1 and CXCR-2 levels did not demonstrate any significant difference. Further studies are required to investigate the soluble forms of these receptors and their relation to IL-8 with larger cohort.

  15. Interleukin-8 increases vascular endothelial growth factor and neuropilin expression and stimulates ERK activation in human pancreatic cancer.

    Science.gov (United States)

    Li, Min; Zhang, Yuqing; Feurino, Louis W; Wang, Hao; Fisher, William E; Brunicardi, F Charles; Chen, Changyi; Yao, Qizhi

    2008-04-01

    Interleukin-8 (IL-8) is associated with tumorigenesis by promoting angiogenesis and metastasis. Although up-regulation of IL-8 is indicated in many cancers, its function in pancreatic cancer has not been well characterized. In this study we examined the expression of IL-8 on pancreatic cancer cells and clinical tissue specimens, and investigated the effect of exogenous IL-8 on gene expression, and signaling in human pancreatic cancer cells. We found that pancreatic cancer cells expressed higher amount of IL-8 mRNA than normal human pancreatic ductal epithelium cells. IL-8 mRNA was also substantially overexpressed in 11 of 14 (79%) clinical pancreatic-adenocarcinoma samples compared with that in their surrounding normal tissues. Exogenous IL-8 up-regulated the expression of vascular endothelial growth factor(165), and neuropilin (NRP)-2 in BxPC-3 cells, one of human pancreatic cancer cell lines. IL-8 expression was inducible by hypoxia mimicking reagent cobalt chloride. In addition, IL-8 activated extracellular signal-regulated kinase (ERK)1/2 signaling pathway in BxPC-3 cells. Our studies suggest that IL-8 might be a malignant factor in human pancreatic cancer by induction of vascular endothelial growth factor and NRP-2 expression and ERK activation. Targeting IL-8 along with other antiangiogenesis therapy could be an effective treatment for this malignancy.

  16. Label-free electrochemical impedance biosensor to detect human interleukin-8 in serum with sub-pg/ml sensitivity.

    Science.gov (United States)

    Sharma, R; Deacon, S E; Nowak, D; George, S E; Szymonik, M P; Tang, A A S; Tomlinson, D C; Davies, A G; McPherson, M J; Wälti, C

    2016-06-15

    Biosensors with high sensitivity and short time-to-result that are capable of detecting biomarkers in body fluids such as serum are an important prerequisite for early diagnostics in modern healthcare provision. Here, we report the development of an electrochemical impedance-based sensor for the detection in serum of human interleukin-8 (IL-8), a pro-angiogenic chemokine implicated in a wide range of inflammatory diseases. The sensor employs a small and robust synthetic non-antibody capture protein based on a cystatin scaffold that displays high affinity for human IL-8 with a KD of 35 ± 10 nM and excellent ligand specificity. The change in the phase of the electrochemical impedance from the serum baseline, ∆θ(ƒ), measured at 0.1 Hz, was used as the measure for quantifying IL-8 concentration in the fluid. Optimal sensor signal was observed after 15 min incubation, and the sensor exhibited a linear response versus logarithm of IL-8 concentration from 900 fg/ml to 900 ng/ml. A detection limit of around 90 fg/ml, which is significantly lower than the basal clinical levels of 5-10 pg/ml, was observed. Our results are significant for the development of point-of-care and early diagnostics where high sensitivity and short time-to-results are essential.

  17. Pneumocystis carinii major surface glycoprotein induces interleukin-8 and monocyte chemoattractant protein-1 release from a human alveolar epithelial cell line

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Shelhamer, J H

    1999-01-01

    BACKGROUND: The major surface glycoprotein (MSG) is an abundant, immunogenic glycoprotein located on the surface of Pneumocystis carinii. Little is known about the proinflammatory effects of MSG. DESIGN: We have investigated the effect of human MSG on the secretion of the chemokines interleukin 8...

  18. Inhibition of COX-2-mediated eicosanoid production plays a major role in the anti-inflammatory effects of the endocannabinoid N-docosahexaenoylethanolamine (DHEA) in macrophages

    Science.gov (United States)

    Meijerink, Jocelijn; Poland, Mieke; Balvers, Michiel G J; Plastina, Pierluigi; Lute, Carolien; Dwarkasing, Jvalini; van Norren, Klaske; Witkamp, Renger F

    2015-01-01

    BACKGROUND AND PURPOSE N-docosahexaenoylethanolamine (DHEA) is the ethanolamine conjugate of the long-chain polyunsaturated n-3 fatty acid docosahexaenoic (DHA; 22: 6n-3). Its concentration in animal tissues and human plasma increases when diets rich in fish or krill oil are consumed. DHEA displays anti-inflammatory properties in vitro and was found to be released during an inflammatory response in mice. Here, we further examine possible targets involved in the immune-modulating effects of DHEA. EXPERIMENTAL APPROACH Antagonists for cannabinoid (CB)1 and CB2 receptors and PPARγ were used to explore effects of DHEA on NO release by LPS-stimulated RAW264.7 cells. The possible involvement of CB2 receptors was studied by comparing effects in LPS-stimulated peritoneal macrophages obtained from CB2−/− and CB2+/+ mice. Effects on NF-κB activation were determined using a reporter cell line. To study DHEA effects on COX-2 and lipoxygenase activity, 21 different eicosanoids produced by LPS-stimulated RAW264.7 cells were quantified by LC-MS/MS. Finally, effects on mRNA expression profiles were analysed using gene arrays followed by Ingenuity® Pathways Analysis. KEY RESULTS CB1 and CB2 receptors or PPARs were not involved in the effects of DHEA on NO release. NF-κB and IFN-β, key elements of the myeloid differentiation primary response protein D88 (MyD88)-dependent and MyD88-independent pathways were not decreased. By contrast, DHEA significantly reduced levels of several COX-2-derived eicosanoids. Gene expression analysis provided support for an effect on COX–2-mediated pathways. CONCLUSIONS AND IMPLICATIONS Our findings suggest that the anti-inflammatory effects of DHEA in macrophages predominantly take place via inhibition of eicosanoids produced through COX-2. LINKED ARTICLES This article is part of a themed section on Cannabinoids 2013 published in volume 171 issue 6. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10

  19. The polymorphism interleukin-8 -251A/T is associated with a significantly increased risk of cancers from a meta-analysis.

    Science.gov (United States)

    Wang, Ziliang; Liu, Yang; Yang, Lina; Yin, Sheng; Zang, Rongyu; Yang, Gong

    2014-07-01

    Emerging evidences show that interleukin-8 (IL-8) has important regulatory functions in tumorigenesis. IL-8 -251A/T is a single nucleotide polymorphism in the promoter region of the IL-8 gene and affects IL-8 production. Analysis of previous studies on the association of -251A/T polymorphism with different cancer types remained to be illustrated. To further assess the effect of -251A/T polymorphism on cancer risks, we performed this meta-analysis, up to November 2013, of 12,917 cases with different cancer types and 17,689 controls from 47 published case-control designed studies. Statistical analyses were performed using STATA 11.0 software. Crude odds ratios (ORs) with 95 % confidence intervals (CIs) were used to assess the strength of associations. ORs with 95 % CIs for IL-8 -251A/T polymorphism and cancer were estimated using fixed- and random-effects models when appropriate. Significantly increased risks were found in overall under the models of A allele vs. T allele, AA vs. TT, and AA vs. AT/TT. Significantly elevated risks were observed in breast cancer under the models of A allele vs. T allele, AT vs. TT, AA/AT vs. TT, and AA vs. AT/TT, and in nasopharyngeal carcinoma under the models of AT vs. TT, AA/AT vs. TT, and AA vs. AT/TT. We found that significantly elevated risks were observed in the Asian population and hospital-based studies in all comparison models. Thus, this meta-analysis indicates that IL-8 -251A/T polymorphism is associated with a significantly increased risk of cancers and may provide evidence-based medical certificate to study the cancer susceptibility.

  20. Inhibition of Lipopolysaccharide-Induced Interleukin 8 in Human Adenocarcinoma Cell Line HT-29 by Spore Probiotics: B. coagulans and B. subtilis (natto).

    Science.gov (United States)

    Azimirad, Masoumeh; Alebouyeh, Masoud; Naji, Tahereh

    2017-03-01

    Probiotics are used as a treatment for different intestinal disorders. They confer health benefits by different ways. This study was aimed to investigate immunomodulatory effect of Bacillus probiotic spores on the production of lipopolysaccharide (LPS)-induced interleukin 8 (IL-8) in HT-29 intestinal epithelial cells. Differentiated intestinal epithelial cell line was used as a model for the study of colonization of purified spores (Bacillus subtilis (natto) and B. coagulans) and their anti-inflammatory effects. MTT assay and trypan blue staining were used for the detection of optimal concentration of the purified spores and LPS. Pre-treatment assay was done by treatment of the cells with the purified spores for 2 h, followed by challenges with LPS for 3 and 18 h. Post-treatment assay was done by initial treatment of the cells with LPS for 18 h, followed by the spores for 3 and 6 h. Levels of IL-8 secretion and its mRNA expression were measured by ELISA and relative Q real-time PCR. Our results showed similar rates of adherence to intestinal epithelial cells by the spore probiotics, while displaying no cytotoxic effect. In the pre-treatment assay, a significant decrease in IL-8, at both protein and mRNA levels, was measured for B. coagulans spores after the addition of LPS, which was higher than those observed for Bacillus subtilis (natto) spores. In the post-treatment assay, while Bacillus subtilis (but not B. coagulans) diminished the LPS-stimulated IL-8 levels after 3 h of incubation, the inhibitory effect was not constant. In conclusion, ability of Bacillus spore probiotics for adherence to intestinal epithelial cell and their anti-inflammatory effects, through interference with LPS/IL-8 signaling, was shown in this study. Further studies are needed to characterize responsible bacterial compounds associated with these effects.

  1. Differential expression of interleukin-8 by polymorphonuclear leukocytes of two closely related species, Ovis canadensis and Ovis aries, in response to Mannheimia haemolytica infection.

    Science.gov (United States)

    Herndon, Caroline N; Foreyt, William J; Srikumaran, Subramaniam

    2010-08-01

    The pneumonic lesions and mortality caused by Mannheimia haemolytica in bighorn sheep (BHS; Ovis canadensis) are more severe than those in the related species, domestic sheep (DS; Ovis aries), under both natural and experimental conditions. Leukotoxin (Lkt) and lipopolysaccharide (LPS) are the most important virulence factors of this organism. One hallmark of pathogenesis of pneumonia is the influx of polymorphonuclear leukocytes (PMNs) into the lungs. Lkt-induced cytolysis of PMNs results in the release of cytotoxic compounds capable of damaging lung tissue. Interleukin-8 (IL-8) is a potent PMN chemoattractant. The objective of the present study was to determine if there is differential expression of IL-8 by the macrophages and PMNs of BHS and DS in response to M. haemolytica. Macrophages and PMNs of BHS and DS were stimulated with heat-killed M. haemolytica or LPS. IL-8 expression by the cells was measured by enzyme-linked immunosorbent assays and real-time reverse transcription-PCR (RT-PCR). The PMNs of BHS expressed severalfold higher levels of IL-8 than those of DS upon stimulation. Lesional lung tissue of M. haemolytica-infected BHS contained significantly higher levels of IL-8 than nonlesional tissue. The bronchoalveolar lavage (BAL) fluid of infected BHS also contained higher levels of IL-8 than that of infected DS. Depletion of IL-8 reduced migration of PMNs toward BAL fluid by approximately 50%, indicating that IL-8 is integral to PMN recruitment to the lung during M. haemolytica infection. Excessive production of IL-8, enhanced recruitment of PMNs, and PMN lysis by Lkt are likely responsible for the severity of the lung lesions in M. haemolytica-infected BHS.

  2. Difluoromethylornithine is a novel inhibitor of Helicobacter pylori growth, CagA translocation, and interleukin-8 induction.

    Directory of Open Access Journals (Sweden)

    Daniel P Barry

    Full Text Available Helicobacter pylori infects half the world's population, and carriage is lifelong without antibiotic therapy. Current regimens prescribed to prevent infection-associated diseases such as gastroduodenal ulcers and gastric cancer can be thwarted by antibiotic resistance. We reported that administration of 1% D,L-α-difluoromethylornithine (DFMO to mice infected with H. pylori reduces gastritis and colonization, which we attributed to enhanced host immune response due to inhibition of macrophage ornithine decarboxylase (ODC, the rate-limiting enzyme in polyamine biosynthesis. Although no ODC has been identified in any H. pylori genome, we sought to determine if DFMO has direct effects on the bacterium. We found that DFMO significantly reduced the growth rate of H. pylori in a polyamine-independent manner. Two other gram-negative pathogens possessing ODC, Escherichia coli and Citrobacter rodentium, were resistant to the DFMO effect. The effect of DFMO on H. pylori required continuous exposure to the drug and was reversible when removed, with recovery of growth rate in vitro and the ability to colonize mice. H. pylori exposed to DFMO were significantly shorter in length than those untreated and they contained greater internal levels of ATP, suggesting severe effects on bacterial metabolism. DFMO inhibited expression of the H. pylori virulence factor cytotoxin associated gene A, and its translocation and phosphorylation in gastric epithelial cells, which was associated with a reduction in interleukin-8 expression. These findings suggest that DFMO has effects on H. pylori that may contribute to its effectiveness in reducing gastritis and colonization and may be a useful addition to anti-H. pylori therapies.

  3. Difluoromethylornithine Is a Novel Inhibitor of Helicobacter pylori Growth, CagA Translocation, and Interleukin-8 Induction

    Science.gov (United States)

    Barry, Daniel P.; Asim, Mohammad; Leiman, David A.; de Sablet, Thibaut; Singh, Kshipra; Casero, Robert A.; Chaturvedi, Rupesh; Wilson, Keith T.

    2011-01-01

    Helicobacter pylori infects half the world's population, and carriage is lifelong without antibiotic therapy. Current regimens prescribed to prevent infection-associated diseases such as gastroduodenal ulcers and gastric cancer can be thwarted by antibiotic resistance. We reported that administration of 1% d,l-α-difluoromethylornithine (DFMO) to mice infected with H. pylori reduces gastritis and colonization, which we attributed to enhanced host immune response due to inhibition of macrophage ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine biosynthesis. Although no ODC has been identified in any H. pylori genome, we sought to determine if DFMO has direct effects on the bacterium. We found that DFMO significantly reduced the growth rate of H. pylori in a polyamine-independent manner. Two other Gram-negative pathogens possessing ODC, Escherichia coli and Citrobacter rodentium, were resistant to the DFMO effect. The effect of DFMO on H. pylori required continuous exposure to the drug and was reversible when removed, with recovery of growth rate in vitro and the ability to colonize mice. H. pylori exposed to DFMO were significantly shorter in length than those untreated and they contained greater internal levels of ATP, suggesting severe effects on bacterial metabolism. DFMO inhibited expression of the H. pylori virulence factor cytotoxin associated gene A, and its translocation and phosphorylation in gastric epithelial cells, which was associated with a reduction in interleukin-8 expression. These findings suggest that DFMO has effects on H. pylori that may contribute to its effectiveness in reducing gastritis and colonization and may be a useful addition to anti-H. pylori therapies. PMID:21386987

  4. Regulation of CXCL-8 (Interleukin-8) Induction by Double-Stranded RNA Signaling Pathways during Hepatitis C Virus Infection▿

    Science.gov (United States)

    Wagoner, Jessica; Austin, Michael; Green, Jamison; Imaizumi, Tadaatsu; Casola, Antonella; Brasier, Allan; Khabar, Khalid S. A.; Wakita, Takaji; Gale, Michael; Polyak, Stephen J.

    2007-01-01

    Hepatitis C virus (HCV) infection induces the α-chemokine interleukin-8 (CXCL-8), which is regulated at the levels of transcription and mRNA stability. In the current study, CXCL-8 regulation by double-stranded (ds)RNA pathways was analyzed in the context of HCV infection. A constitutively active mutant of the retinoic acid-inducible gene I (RIG-I), RIG-N, activated CXCL-8 transcription. Promoter mutagenesis experiments indicated that NF-κB and interferon (IFN)-stimulated response element (ISRE) binding sites were required for the RIG-N induction of CXCL-8 transcription. IFN-β promoter stimulator 1 (IPS-1) expression also activated CXCL-8 transcription, and mutations of the ISRE and NF-κB binding sites reduced and abrogated CXCL-8 transcription, respectively. In the presence of wild-type RIG-I, transfection of JFH-1 RNA or JFH-1 virus infection of Huh7.5.1 cells activated the CXCL-8 promoter. Expression of IFN regulatory factor 3 (IRF-3) stimulated transcription from both full-length and ISRE-driven CXCL-8 promoters. Chromatin immunoprecipitation assays demonstrated that IRF-3 and NF-κB bound directly to the CXCL-8 promoter in response to virus infection and dsRNA transfection. RIG-N stabilized CXCL-8 mRNA via the AU-rich element in the 3′ untranslated region of CXCL-8 mRNA, leading to an increase in its half-life following tumor necrosis factor alpha induction. The data indicate that HCV infection triggers dsRNA signaling pathways that induce CXCL-8 via transcriptional activation and mRNA stabilization and define a regulatory link between innate antiviral and inflammatory cellular responses to virus infection. PMID:17035306

  5. Phenylketonuria is not a risk factor for changes of inflammation status as assessed by interleukin 6 and interleukin 8 concentrations

    Directory of Open Access Journals (Sweden)

    Renata Mozrzymas

    2016-06-01

    Full Text Available Background. High oxidative stress and a reduced potential for free radical scavenging in phenylketonuria (PKU patients, a phenomenon confirmed in a few studies, may lead to systemic chronic inflammation. The aim of this study was to compare the inflammation status, as assessed by interleukin 6 and interleukin 8 con- centrations, in patients with PKU and in healthy controls. Material and methods. Twenty patients with classical PKU, aged 18–34 years and under dietary control, were enrolled in the study. The control group comprised of 20 healthy subjects matched for age and sex. Interleukin 6 and 8 levels were measured by enzyme-linked immunosorbent assay (ELISA kits in all study participants. Results. IL-6 concentrations in the study group ranged from 0.74 pg/ml to 1.34 pg/ml. No significant dif- ferences were found between IL-6 concentration between the study group and the control group (p = 0.989. IL-8 concentrations ranged from 17.56 pg/ml to 20.87 pg/ml. The obtained results of IL-8 levels did not differ significantly between the study group and control group (p = 0.192. No significant correlation was observed between Phe blood levels and IL-6 or IL-8 concentrations in the study group (ρ respectively: –0.225, 0.177. In a multivariate analysis, neither IL-6 nor IL-8 concentrations were correlated with sex, age, BMI and Phe levels. Conclusions. Phenylketonuria is not a risk factor for changes of inflammation status as assessed by IL-6 and IL-8 concentrations.

  6. High concentrations of pepsin in bronchoalveolar lavage fluid from children with cystic fibrosis are associated with high interleukin-8 concentrations.

    LENUS (Irish Health Repository)

    McNally, P

    2012-02-01

    BACKGROUND: Gastro-oesophageal reflux is common in children with cystic fibrosis (CF) and is thought to be associated with pulmonary aspiration of gastric contents. The measurement of pepsin in bronchoalveolar lavage (BAL) fluid has recently been suggested to be a reliable indicator of aspiration. The prevalence of pulmonary aspiration in a group of children with CF was assessed and its association with lung inflammation investigated. METHODS: This was a cross-sectional case-control study. BAL fluid was collected from individuals with CF (n=31) and healthy controls (n=7). Interleukin-8 (IL-8), pepsin, neutrophil numbers and neutrophil elastase activity levels were measured in all samples. Clinical, microbiological and lung function data were collected from medical notes. RESULTS: The pepsin concentration in BAL fluid was higher in the CF group than in controls (mean (SD) 24.4 (27.4) ng\\/ml vs 4.3 (4.0) ng\\/ml, p=0.03). Those with CF who had raised pepsin concentrations had higher levels of IL-8 in the BAL fluid than those with a concentration comparable to controls (3.7 (2.7) ng\\/ml vs 1.4 (0.9) ng\\/ml, p=0.004). Within the CF group there was a moderate positive correlation between pepsin concentration and IL-8 in BAL fluid (r=0.48, p=0.04). There was no association between BAL fluid pepsin concentrations and age, sex, body mass index z score, forced expiratory volume in 1 s or Pseudomonas aeruginosa colonisation status. CONCLUSIONS: Many children with CF have increased levels of pepsin in the BAL fluid compared with normal controls. Increased pepsin levels were associated with higher IL-8 concentrations in BAL fluid. These data suggest that aspiration of gastric contents occurs in a subset of patients with CF and is associated with more pronounced lung inflammation.

  7. Quantitative Detection of Interleukin 8 Gene Expression in Lung Cancer by Real-time Polymerase Chain Reaction

    Institute of Scientific and Technical Information of China (English)

    JianzhongSu; QianggangDong; JinsuHuang; GuoliangBao

    2004-01-01

    OBJECTIVE To develop a method for absolute quantification of interleukin 8 (IL-8) mRNA by using real-time polymerase chain reaction (PCR). METHODS The IL-8 mRNA and protein expression in 2 human lung cancer cell lines, H460 and A549, were evaluated by real-time PCR and ELISA. The IL-8 mRNA expression in 9 cases of normal lung tissue and 44 cases of non-small cell lung cancer (NSCLC) were examined. RESULTS The IL-8 mRNA copy number in a given sample can be measured by real-time PCR. The gene expression of IL-8 is correlated with its protein secretion. The normalized value of IL-8 expression was 4.87+1.69 (copies/104 GAPDH copies) in normal lung tissue and 17.04±23.96 in NSCLC, respectively. The difference between these two groups is statistically significant (P=0.002). Using 9.74 and 19.48 as cut-off points for positive expression and overexpression of IL-8, 52.3%(23/44cases) of NSCLC were found to express an increased level of IL-8, among which 29.5% (13/44cases) were defined as positive expression and 22.7% (10/44cases) as overexpression. Statistical analysis indicated that IL-8 overexpression was significantly increased in female cancers, squamous carcinoma, and in late stages of disease (P<0.05). CONCLUSION The IL-8 gene expression can be determined by a real-time PCR technique. IL-8 overexpression is correlated with gender, histopathology and stages of the disease.

  8. Human adenovirus type 19 infection of corneal cells induces p38 MAPK-dependent interleukin-8 expression

    Directory of Open Access Journals (Sweden)

    Chodosh James

    2008-01-01

    Full Text Available Abstract Background Human adenovirus type 19 (HAdV-19 is a major cause of epidemic keratoconjunctivitis, the only ocular adenoviral infection associated with prolonged corneal inflammation. In this study, we investigated the role of p38 mitogen-activated protein kinase (MAPK in HAdV-19 infection, with particular attention to the role of p38 MAPK in the transcriptional control of interleukin-8 (IL-8, a chemokine previously shown to be central to the initiation of adenovirus keratitis. Results We found that infection of corneal cells with HAdV-19 led to activation of p38 MAPK and its downstream targets, HSP-27 and ATF-2, within 15 to 30 minutes post-infection. Infection also induced phosphorylation of IκB and NFκB in a p38 MAPK-dependent fashion. Furthermore, HAdV-19 induced an interaction between p38 MAPK and NFκB-p65, followed by nuclear translocation of activated NFκB-p65 and its binding to the IL-8 promoter. The interaction between p38 MAPK and NFκB-p65 was inhibited in concentration-dependent fashion by SB203580, a chemical inhibitor of p38 MAPK, but not by SP600125, an inhibitor of JNK – another MAPK implicated in chemokine expression by HAdV-19 infected cells. IL-8 gene expression in HAdV-19 infection was significantly reduced in the presence of sequence-specific p38 MAPK siRNA but not control siRNA. Conclusion These results provide the first direct evidence for transcriptional regulation of IL-8 in HAdV-19 infected cells through the activation of the p38 MAPK signaling pathway. The p38 MAPK pathway may play a biologically important role in regulation of IL-8 gene expression in the adenovirus-infected cornea.

  9. Ultrasonographic and clinical correlates of seminal plasma interleukin-8 levels in patients attending an andrology clinic for infertility.

    Science.gov (United States)

    Lotti, F; Corona, G; Mancini, M; Filimberti, E; Degli Innocenti, S; Colpi, G M; Baldi, E; Noci, I; Forti, G; Adorini, L; Maggi, M

    2011-12-01

    This study was aimed at evaluating the association between seminal plasma interleukin-8 (sIL-8) and colour-Doppler ultrasound (CDU) characteristics of the male genital tract in a series of patients fulfilling the criteria of male accessory gland infections (MAGI). Of 250 subjects seeking medical care for couple infertility, 79 (mean age: 36.4 ± 7.5 years) met the criteria of MAGI and scored higher than the rest of the sample on the National Institutes of Health-Chronic Prostatitis Symptom Index score. All patients underwent simultaneous hormone evaluation and seminal analysis (including sIL-8), along with scrotal and transrectal CDU before and after ejaculation. After adjusting for age, sIL-8 in patients with MAGI was significantly related to several abnormal semen and CDU parameters. In particular, leucocytospermia was closely associated with sIL-8. Ejaculate volume, unlike other semen or hormonal parameters, was negatively associated with sIL-8. When scrotal CDU was performed, sIL-8 was positively related to CDU inhomogeneous, hypo-echoic, hyper-echoic epididymis and to epididymal calcifications. In addition, a positive correlation among sIL-8, hyperaemic epididymis and an increased size of epididymal tail was found. When transrectal CDU was performed, an association among sIL-8 and hyper-echoic seminal vesicles, dilated ejaculatory ducts and duct calcifications was also observed. Finally, sIL-8 was positively related to prostate CDU abnormalities such as calcifications, inhomogeneous/hypo-echoic texture, hyperaemia and high arterial blood flow. No association was found with testis parameters. In conclusion, sIL-8 levels in patients with MAGI are associated with several parameters and CDU abnormalities of epididymis, seminal vesicles, ejaculatory ducts and prostate, but not of the testis. Furthermore, sIL-8 positively correlates with CDU signs of ejaculatory duct inflammatory subobstruction.

  10. Inhibition of cytochrome P450 1A2-mediated metabolism and production of reactive oxygen species by heme oxygenase-1 in rat liver microsomes.

    Science.gov (United States)

    Reed, James R; Cawley, George F; Backes, Wayne L

    2011-01-01

    Heme oxygenase-1 (HO-1) is induced in most cell types by many forms of environmental stress and is believed to play a protective role in cells exposed to oxidative stress. Metabolism by cytochromes P450 (P450) is highly inefficient as the oxidation of substrate is associated with the production of varying proportions of hydrogen peroxide and/or superoxide. This study tests the hypothesis that heme oxygenase-1 (HO-1) plays a protective role against oxidative stress by competing with P450 for binding to the common redox partner, the NADPH P450 reductase (CPR) and in the process, diminishing P450 metabolism and the associated production of reactive oxygen species (ROS). Liver microsomes were isolated from uninduced rats and rats that were treated with cadmium and/or β-napthoflavone (BNF) to induce HO-1 and/or CYP1A2. HO-1 induction was associated with slower rates of metabolism of the CYP1A2-specific substrate, 7-ethoxyresorufin. Furthermore, HO-1 induction also was associated with slower rates of hydrogen peroxide and hydroxyl radical production by microsomes from rats induced for CYP1A2. The inhibition associated with HO-1 induction was not dependent on the addition of heme to the microsomal incubations. The effects of HO-1 induction were less dramatic in the absence of substrate for CYP1A2, suggesting that the enzyme was more effective in inhibiting the CYP1A2-related activity than the CPR-related production of superoxide (that dismutates to form hydrogen peroxide).

  11. Interleukin-8-mediated heterologous receptor internalization provides resistance to HIV-1 infectivity. Role of signal strength and receptor desensitization.

    Science.gov (United States)

    Richardson, Ricardo M; Tokunaga, Kenzo; Marjoram, Robin; Sata, Tetsutaro; Snyderman, Ralph

    2003-05-02

    Human immunodeficiency virus type 1 (HIV-1) entry into CD4(+) cells requires the chemokine receptors CCR5 or CXCR4 as co-fusion receptors. We have previously demonstrated that chemokine receptors are capable of cross-regulating the functions of each other and, thus, affecting cellular responsiveness at the site of infection. To investigate the effects of chemokine receptor cross-regulation in HIV-1 infection, monocytes and MAGIC5 and rat basophilic leukemia (RBL-2H3) cell lines co-expressing the interleukin-8 (IL-8 or CXCL8) receptor CXCR1 and either CCR5 (ACCR5) or CXCR4 (ACXCR4) were generated. IL-8 activation of CXCR1, but not the IL-8 receptor CXCR2, cross-phosphorylated CCR5 and CXCR4 and cross-desensitized their responsiveness to RANTES (regulated on activation normal T cell expressed and secreted) (CCL5) and stromal derived factor (SDF-1 or CXCL12), respectively. CXCR1 activation internalized CCR5 but not CXCR4 despite cross-phosphorylation of both. IL-8 pretreatment also inhibited CCR5- but not CXCR4-mediated virus entry into MAGIC5 cells. A tail-deleted mutant of CXCR1, DeltaCXCR1, produced greater signals upon activation (Ca(2+) mobilization and phosphoinositide hydrolysis) and cross-internalized CXCR4, inhibiting HIV-1 entry. The protein kinase C inhibitor staurosporine prevented phosphorylation and internalization of the receptors by CXCR1 activation. Taken together, these results indicate that chemokine receptor-mediated HIV-1 cell infection is blocked by receptor internalization but not desensitization alone. Thus, activation of chemokine receptors unrelated to CCR5 and CXCR4 may play a cross-regulatory role in the infection and propagation of HIV-1. Since DeltaCXCR1, but not CXCR1, cross-internalized and cross-inhibited HIV-1 infection to CXCR4, the data indicate the importance of the signal strength of a receptor and, as a consequence, protein kinase C activation in the suppression of HIV-1 infection by cross-receptor-mediated internalization.

  12. Parapoxvirus orf virus infection induces an increase in interleukin-8, tumour necrosis factor-α, and decorin in goat skin fibroblast cells

    Directory of Open Access Journals (Sweden)

    Wang Lingling

    2016-09-01

    Full Text Available Introduction: Orf virus (ORFV is a prototype Parapoxvirus species in the Poxviridae family that causes serious zoonotic infectious disease. Goat skin fibroblast (GSF cells are the major host targets of ORFV. Interleukin 8 (IL-8 and tumour necrosis factor (TNF-α are known to play a vital role in immune response during viral infections. However, the manner of variation over time of their level of expression in GSF cells remains unclear.

  13. 白介素-8对体外培养黑素细胞的影响%Effects of Interleukin-8 on Human Melanocytes in Vitro

    Institute of Scientific and Technical Information of China (English)

    陈静宇; 林新瑜; 王芳; 林鸿刚

    2012-01-01

    Objective: To establish the culture system of human normal melanocytes in vitro, and to study the effects of interleukin-8 at different concentrations on the proliferation of human melanocytes and melanin synthesis. Methods: MTT method and NaOH lysis method were employed to measure the effects of interleukin-8 at different concentrations on the proliferation of human melanocytes and melanin respectively. Apoptosis rates of melanocytes were detected with flow cytometer. Results: Interleukin-8 promotes melanocyte proliferation and melanin synthesis. Conclusions: Interleukin-8 enhances melanocyte proliferation and melanin synthesis.%目的:建立正常人表皮黑素细胞体外培养体系,观察不同浓度白介素-8对体外培养正常人黑素细胞的细胞增殖及黑素合成的影响.方法:采用四甲基偶氮唑盐(MTr)法测定不同浓度白介素-8对黑素细胞增值的影响,NaOH裂解法测定黑素生成量,流式细胞仪检测黑素细胞的凋亡率.结果:白介素-8对黑素细胞活力有增强作用,能使细胞增殖能力增加,黑素合成增加,但对黑素细胞的凋亡率无显著性影响.结论:白介素-8对体外培养的黑素细胞增殖及黑素生成都有增强作用.

  14. Effects of nimesulide, acetylsalicylic acid, ibuprofen and nabumetone on cyclooxygenase-1- and cyclooxygenase-2-mediated prostanoid production in healthy volunteers ex vivo.

    Science.gov (United States)

    Kerola, Markku; Vuolteenaho, Katriina; Kosonen, Outi; Kankaanranta, Hannu; Sarna, Seppo; Moilanen, Eeva

    2009-01-01

    : The beneficial actions of non-steroidal anti-inflammatory drugs (NSAIDs) have been associated with inhibition of cyclooxygenase-2 (COX-2), whereas some of their adverse effects are associated mainly with inhibition of COX-1. Selective COX-2 inhibitors reduce the risk of gastrointestinal adverse events, but increase the risk of thromboembolic events pointing to importance of optimal COX-1/COX-2 inhibition in drug safety. We compared the effects of acetylsalicylic acid, ibuprofen, nabumetone and nimesulide on COX-1 and COX-2 pathways in healthy volunteers in an ex vivo set-up using single oral doses commonly used to treat acute pain. In a randomized, double-blind four-phase cross-over study, 15 healthy volunteers were given orally a single dose of either acetylsalicylic acid 500 mg, ibuprofen 400 mg, nabumetone 1 g or nimesulide 100 mg. Blood samples were drawn before and 1, 3, 6, 24 and 48 hr after the drug for the assessment of COX-1 and COX-2 activity. COX-1 activity was measured as thromboxane(2) production during blood clotting and COX-2 activity as endotoxin-induced prostaglandin E(2) synthesis in blood leucocytes. The data show that after a single oral dose these four NSAIDs have different profiles of action on COX-1 and COX-2. As expected, acetylsalicylic acid appeared to be COX-1-selective and ibuprofen effectively inhibited both COX-1 and COX-2. Nabumetone showed only a slight inhibitory effect on COX-1 and COX-2. Nimesulide caused almost complete suppression of COX-2 activity and a partial reduction of COX-1 activity. This confirms the relative COX-2 selectivity of nimesulide.

  15. The rLrp of Mycobacterium tuberculosis inhibits proinflammatory cytokine production and downregulates APC function in mouse macrophages via a TLR2-mediated PI3K/Akt pathway activation-dependent mechanism.

    Science.gov (United States)

    Liu, Yuan; Li, Jia-Yun; Chen, Su-Ting; Huang, Hai-Rong; Cai, Hong

    2016-11-01

    We demonstrate that Mycobacterium tuberculosis recombinant leucine-responsive regulatory protein (rLrp) inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNF-α), interleukin-6, and interleukin-12 production and blocks the nuclear translocation of subunits of the nuclear-receptor transcription factor NF-κB (Nuclear factor-kappa B). Moreover, rLrp attenuated LPS-induced DNA binding and NF-κB transcriptional activity, which was accompanied by the degradation of inhibitory IκBα and a consequent decrease in the nuclear translocation of the NF-κB p65 subunit. RLrp interfered with the LPS-induced clustering of TNF receptor-associated factor 6 and with interleukin-1 receptor-associated kinase 1 binding to TAK1. Furthermore, rLrp did not attenuate proinflammatory cytokines or the expression of CD86 and major histocompatibility complex class-II induced by interferon-gamma in the macrophages of Toll-like receptor 2 deletion (TLR2(-/-)) mice and in protein kinase b (Akt)-depleted mouse cells, indicating that the inhibitory effects of rLrp were dependent on TLR2-mediated activation of the phosphatidylinositol 3-OH kinase (PI3K)/Akt pathway. RLrp could also activate the PI3K/Akt pathway by stimulating the rapid phosphorylation of PI3K, Akt, and glycogen synthase kinase 3 beta in macrophages. In addition, 19 amino acid residues in the N-terminus of rLrp were determined to be important and required for the inhibitory effects mediated by TLR2. The inhibitory function of these 19 amino acids of rLrp raises the possibility that mimetic inhibitory peptides could be used to restrict innate immune responses in situations in which prolonged TLR signaling has deleterious effects. Our study offers new insight into the inhibitory mechanisms by which the TLR2-mediated PI3K/Akt pathway ensures the transient expression of potent inflammatory mediators.

  16. The major surface glycoprotein of Pneumocystis carinii induces release and gene expression of interleukin-8 and tumor necrosis factor alpha in monocytes

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Levine, S J

    1997-01-01

    Recent studies suggest that interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-alpha) may play a central role in host defense and pathogenesis during Pneumocystis carinii pneumonia. In order to investigate whether the major surface antigen (MSG) of human P. carinii is capable of eliciting...... with 0.2 to 5 microg of MSG/ml (P protection assay, increases in steady-state mRNA levels for IL-8 and TNF......-alpha were detectable at 4 h. These data show that recognition of MSG by monocytes involves a mannose-mediated mechanism and results in the release of the proinflammatory cytokines IL-8 and TNF-alpha....

  17. Maternal and Cord Blood Levels of Serum Amyloid A, C-Reactive Protein, Tumor Necrosis Factor-α, Interleukin -1β, and Interleukin-8 During and After Delivery

    Directory of Open Access Journals (Sweden)

    Luciane Marzzullo Cicarelli

    2005-01-01

    after delivery and try to correlate these proteins with tumor necrosis factor-α, interleukin -1β, and interleukin-8. Acute-phase proteins and cytokines were measured by ELISA in 24 healthy pregnant women undergoing vaginal delivery or Cesarean section. Cord blood samples in addition to maternal blood were collected. SAA and CRP reached the maximum maternal serum levels 24 hours after delivery, while cytokines remained constant over time. SAA and CRP were significantly higher in maternal serum than in newborn's (P<.001 at the moment of delivery. SAA and CRP, regardless of the type of delivery, reproduce the common pattern observed in most inflammatory conditions. Proinflammatory cytokine serum levels do not mirror the increase in SAA and CRP levels.

  18. The major surface glycoprotein of Pneumocystis carinii induces release and gene expression of interleukin-8 and tumor necrosis factor alpha in monocytes

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Levine, S J

    1997-01-01

    Recent studies suggest that interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-alpha) may play a central role in host defense and pathogenesis during Pneumocystis carinii pneumonia. In order to investigate whether the major surface antigen (MSG) of human P. carinii is capable of eliciting...... the release of IL-8 and TNF-alpha, human monocytes were cultured in the presence of purified MSG. MSG-stimulated cells released significant amounts of IL-8 within 4 h, and at 20 h, cells stimulated with MSG released 45.5 +/- 9.3 ng of IL-8/ml versus 3.7 +/- 1.1 ng/ml for control cultures (P = 0...... with 0.2 to 5 microg of MSG/ml (P

  19. Evaluation of ferritin, interleukin-6, interleukin-8 and tumor necrosis factor alpha in the differentiation of exudates and transudates in pleural effusions.

    Science.gov (United States)

    Alexandrakis, M G; Coulocheri, S A; Bouros, D; Eliopoulos, G D

    1999-01-01

    In an attempt to define diagnostic criteria for the differentiation of pleural exudates from transudates, we measured ferritin (FER), interleukin-6 (IL-6), interleukin-8 (IL-8) and tumor necrosis factor-alpha (TNF-alpha) in pleural effusions and blood serum in 84 consecutive patients with pleural effusions of various etiologies. Concentrations of FER, IL-8 and TNF-alpha were significantly higher in serum and pleural effusion in patients with exudates than in patients with transudates. Serum concentrations of IL-6 were not significantly increased in pleural exudate patients (9.78 +/- 17.12 fmol/L) compared to transudate patients (4.05 +/- 2.33 fmol/L), while significant differences were found between pleural exudates and transudates (p exudates from transudates.

  20. Black Tea Extract and Its Theaflavin Derivatives Inhibit the Growth of Periodontopathogens and Modulate Interleukin-8 and β-Defensin Secretion in Oral Epithelial Cells.

    Science.gov (United States)

    Lombardo Bedran, Telma Blanca; Morin, Marie-Pierre; Palomari Spolidorio, Denise; Grenier, Daniel

    2015-01-01

    Over the years, several studies have brought evidence suggesting that tea polyphenols, mostly from green tea, may have oral health benefits. Since few data are available concerning the beneficial properties of black tea and its theaflavin derivatives against periodontal disease, the objective of this study was to investigate their antibacterial activity as well as their ability to modulate interleukin-8 and human β-defensin (hBD) secretion in oral epithelial cells. Among the periodontopathogenic bacteria tested, Porphyromonas gingivalis was found to be highly susceptible to the black tea extract and theaflavins. Moreover, our data indicated that the black tea extract, theaflavin and theaflavin-3,3'-digallate can potentiate the antibacterial effect of metronidazole and tetracycline against P. gingivalis. Using lipopolysaccharide-stimulated oral epithelial cells, the black tea extract (100 μg/ml), as well as theaflavin and theaflavin-3,3'-digallate (50 μg/ml) reduced interleukin-8 (IL-8) secretion by 85%, 79%, and 86%, respectively, thus suggesting an anti-inflammatory property. The ability of the black tea extract and its theaflavin derivatives to induce the secretion of the antimicrobial peptides hBD-1, hBD-2 and hBD-4 by oral epithelial cells was then evaluated. Our results showed that the black tea extract as well as theaflavin-3,3'-digallate were able to increase the secretion of the three hBDs. In conclusion, the ability of a black tea extract and theaflavins to exert antibacterial activity against major periodontopathogens, to attenuate the secretion of IL-8, and to induce hBD secretion in oral epithelial cells suggest that these components may have a beneficial effect against periodontal disease.

  1. Dopamine attenuates the chemoattractant effect of interleukin-8: a novel role in the systemic inflammatory response syndrome.

    LENUS (Irish Health Repository)

    Sookhai, S

    2012-02-03

    Activated neutrophil (PMN) adherence to vascular endothelium comprises a key step for both transendothelial migration and initiation of potentially deleterious release of PMN products. The biogenic amine, dopamine (DA), has been used for several decades in patients to maintain hemodynamic stability. The effect of dopamine on PMN transendothelial migration and adhesion receptor expression and on the endothelial molecules, E-selectin and ICAM-1, was evaluated. PMN were isolated from healthy controls, stimulated with lipopolysaccharide (LPS), and tumor necrosis factor-alpha (TNF-alpha) and treated with dopamine. CD 11b and CD 18 PMN adhesion receptor expression were assessed flow cytometrically. In a separate experiment, the chemoattractant peptide, IL-8, was placed in the lower chamber of transwells, and PMN migration was assessed. Human umbilical vein endothelial cells (HUVEC) were stimulated with LPS\\/TNF-alpha and incubated with dopamine. ICAM-1 and E-selectin endothelial molecule expression were assessed flow cytometrically. There was a significant increase in transendothelial migration in stimulated PMN compared with normal PMN (40 vs. 14%, P < 0.001). In addition, PMN CD11b\\/CD18 was significantly upregulated in stimulated PMN compared with normal PMN (252.4\\/352.4 vs. 76.7\\/139.4, P < 0.001) as were endothelial E-selectin\\/ICAM-1 expression compared with normal EC (8.1\\/9 vs. 3.9\\/3.8, P < 0.05). After treatment with dopamine, PMN transmigration was significantly decreased compared with stimulated PMN (8% vs. 40%, P < 0.001). Furthermore, dopamine also attenuated PMN CD11b\\/CD18 and the endothelial molecules E-selectin and ICAM-1 compared with stimulated PMN\\/EC that were not treated dopamine (174\\/240 vs. 252\\/352, P < 0.05 and 4\\/4.4 vs. 8.1\\/9, P < 0.05. respectively). The chemoattractant effect of IL-8 was also attenuated. These results identify for the first time that dopamine attenuates the initial interaction between PMN and the endothelium

  2. Primary 1,25-dihydroxyvitamin D3 response of the interleukin 8 gene cluster in human monocyte- and macrophage-like cells.

    Directory of Open Access Journals (Sweden)

    Jussi Ryynänen

    Full Text Available Genome-wide analysis of vitamin D receptor (VDR binding sites in THP-1 human monocyte-like cells highlighted the interleukin 8 gene, also known as chemokine CXC motif ligand 8 (CXCL8. CXCL8 is a chemotactic cytokine with important functions during acute inflammation as well as in the context of various cancers. The nine genes of the CXCL cluster and the strong VDR binding site close to the CXCL8 gene are insulated from neighboring genes by CCCTC-binding factor (CTCF binding sites. Only CXCL8, CXCL6 and CXCL1 are expressed in THP-1 cells, but all three are up-regulated primary 1,25-dihydroxyvitamin D3 (1,25(OH2D3 target genes. Formaldehyde-assisted isolation of regulatory elements sequencing analysis of the whole CXCL cluster demonstrated 1,25(OH2D3-dependent chromatin opening exclusively for the VDR binding site. In differentiated THP-1 cells the CXCL8 gene showed a 33-fold higher basal expression, but is together with CXCL6 and CXCL1 still a primary 1,25(OH2D3 target under the control of the same genomic VDR binding site. In summary, both in undifferentiated and differentiated THP-1 cells the genes CXCL8, CXCL6 and CXCL1 are under the primary control of 1,25(OH2D3 and its receptor VDR. Our observation provides further evidence for the immune-related functions of vitamin D.

  3. Generation of high-affinity fully human anti-interleukin-8 antibodies from its cDNA by two-hybrid screening and affinity maturation in yeast.

    Science.gov (United States)

    Ding, Ling; Azam, Mark; Lin, Yu-Huei; Sheridan, James; Wei, Shuanghong; Gupta, Gigi; Singh, Rakesh K; Pauling, Michelle H; Chu, Waihei; Tran, Antares; Yu, Nai-Xuan; Hu, Jiefeng; Wang, Wei; Long, Hao; Xiang, Dong; Zhu, Li; Hua, Shao-Bing

    2010-10-01

    We have developed a technology for rapidly generating novel and fully human antibodies by simply using the antigen DNA. A human single-chain variable fragment (scFv) antibody library was constructed in a yeast two-hybrid vector with high complexity. After cloning cDNA encoding the mature sequence of human interleukin-8 (hIL8) into the yeast two-hybrid system vector, we have screened the human scFv antibody library and obtained three distinct scFv clones that could specifically bind to hIL8. One clone was chosen for further improvement by a novel affinity maturation process using the error-prone PCR of the scFv sequence followed by additional rounds of yeast two-hybrid screening. The scFv antibodies of both primary and affinity-matured scFv clones were expressed in E. coli. All purified scFvs showed specific binding to hIL8 in reciprocal coimmunoprecipitation and ELISA assays. All scFvs, as well as a fully human IgG antibody converted from one of the scFv clones and expressed in the mammalian cells, were able to effectively inhibit hIL8 in neutrophil chemotaxis assays. The technology described can generate fully human antibodies with high efficiency and low cost.

  4. Reduction of Monocyte Chemoattractant Protein-1 and Interleukin-8 Levels by Ticlopidine in TNF-α Stimulated Human Umbilical Vein Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Chaur-Jong Hu

    2009-01-01

    Full Text Available Atherosclerosis and its associated complications represent major causes of morbidity and mortality in the industrialized or Western countries. Monocyte chemoattractant protein-1 (MCP-1 is critical for the initiating and developing of atherosclerotic lesions. Interleukin-8 (IL-8, a CXC chemokine, stimulates neutrophil chemotaxis. Ticlopidine is one of the antiplatelet drugs used to prevent thrombus formation relevant to the pathophysiology of atherothrombosis. In this study, we found that ticlopidine dose-dependently decreased the mRNA and protein levels of TNF-α-stimulated MCP-1, IL-8, and vascular cell adhesion molecule-1 (VCAM-1 in human umbilical vein endothelial cells (HUVECs. Ticlopidine declined U937 cells adhesion and chemotaxis as compared to TNF-α stimulated alone. Furthermore, the inhibitory effects were neither due to decreased HUVEC viability, nor through NF-kB inhibition. These results suggest that ticlopidine decreased TNF-α induced MCP-1, IL-8, and VCAM-1 levels in HUVECs, and monocyte adhesion. Therefore, the data provide additional therapeutic machinery of ticlopidine in treatment and prevention of atherosclerosis.

  5. Role of NF-κB activation in matrix metalloproteinase 9, vascular endothelial growth factor and interleukin 8 expression and secretion in human breast cancer cells.

    Science.gov (United States)

    Li, Caijuan; Guo, Sufen; Shi, Tiemei

    2013-04-01

    The aims of this study were to assess the effects and potential mechanisms of parthenolide on the expression of vascular endothelial growth factor (VEGF), interleukin 8 (IL-8) and matrix metalloproteinase 9 (MMP-9) in human breast cancer cell line MDA-MB-231. After incubation with different concentrations of parthenolide for 24 h, MDA-MB-231 cells were collected, and the expressions of VEGF, IL-8 and MMP-9 were measured by real-time PCR and Western blot. The secretions of VEGF, IL-8 and MMP-9 in culture supernatant of MDA-MB-231 cells were then measured with ELISA assays. The NF-κB DNA-binding activity of breast cancer cells treated with parthenolide was analyzed using electrophoretic mobility assays. The real-time PCR and Western blot data showed that the expressions of VEGF, IL-8 and MMP-9 were significantly inhibited by parthenolide at both transcription level and protein level in MDA-MB-231 cells. ELISA results also confirmed these effects at a secretion level. The electrophoretic mobility assay results demonstrated that parthenolide can inhibit NF-κB DNA-binding activity of the breast cancer cells. Hence, the expression of VEGF, IL-8 and MMP-9 may be suppressed by parthenolide through the inhibition of NF-κB DNA-binding activity in MDA-MB-231 cells.

  6. Human Umbilical Cord Mesenchymal Stem Cells Promote Breast Cancer Metastasis by Interleukin-8- and Interleukin-6-Dependent Induction of CD44(+)/CD24(-) Cells.

    Science.gov (United States)

    Ma, Fengxia; Chen, Dandan; Chen, Fang; Chi, Ying; Han, Zhibo; Feng, Xiaoming; Li, Xue; Han, Zhongchao

    2015-01-01

    Although emerging evidence links mesenchymal stem cells (MSCs) with cancer metastasis, the underlying mechanisms are poorly understood. In the present study, we found that human umbilical cord-derived MSCs (UC-MSCs) promoted MCF-7 cell migration in vitro and metastasis in vivo. To explore the mechanisms, the characteristics of MCF-7 cells cocultured with UC-MSCs were assessed. The expression and secretion of interleukin-8 (IL-8) and IL-6 were induced in MCF-7 cells cocultured with UC-MSCs. However, neutralization of IL-8 or IL-6 secreted by UC-MSCs could attenuate the enhanced expression of IL-8 and IL-6 in MCF-7 cells cocultured with UC-MSCs, which subsequently alleviated the enhanced migration. Similar to UC-MSCs, exogenous human recombinant IL-8 or IL-6 also promoted IL-8 and IL-6 expression and MCF-7 cell migration. In addition to enhanced IL-8 and IL-6 expression, MCF-7 cells cocultured with UC-MSCs displayed enhanced mammosphere-forming ability and increased percentage of CD44(+)/CD24(-) cells. However, epithelial-to-mesenchymal transition (EMT) was not observed in MCF-7 cells cocultured with UC-MSCs. Taken together, these results suggested that IL-8 and IL-6 secreted by UC-MSCs activated the autocrine IL-8 and IL-6 signaling in MCF-7 cells and induced CD44(+)/CD24(-) cells, which subsequently promoted MCF-7 cell migration in vitro and metastasis in vivo.

  7. The major surface glycoprotein of Pneumocystis carinii induces release and gene expression of interleukin-8 and tumor necrosis factor alpha in monocytes

    DEFF Research Database (Denmark)

    Benfield, T L; Lundgren, Bettina; Levine, S J;

    1997-01-01

    with 0.2 to 5 microg of MSG/ml (P TNF-alpha from MSG-stimulated monocytes at 20 h was inhibited by 60 and 86%, respectively, after coincubation with soluble yeast mannan (P = 0.01). With an RNase protection assay, increases in steady-state mRNA levels for IL-8 and TNF......Recent studies suggest that interleukin-8 (IL-8) and tumor necrosis factor alpha (TNF-alpha) may play a central role in host defense and pathogenesis during Pneumocystis carinii pneumonia. In order to investigate whether the major surface antigen (MSG) of human P. carinii is capable of eliciting...... the release of IL-8 and TNF-alpha, human monocytes were cultured in the presence of purified MSG. MSG-stimulated cells released significant amounts of IL-8 within 4 h, and at 20 h, cells stimulated with MSG released 45.5 +/- 9.3 ng of IL-8/ml versus 3.7 +/- 1.1 ng/ml for control cultures (P = 0...

  8. Effect of Yufeining(愈肺宁) on Induced Sputum Interleukin-8 in Patients with Chronic Obstructive Pulmonary Disease at the Stable Phase

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Objective: To evaluate the effect of Yufeining (愈肺宁), a traditional Chinese medicine, on induced sputum interleukin-8 (IL-8) in patients with chronic obstructive pulmonary disease (COPD) at the stable phase. Methods: Thirty-six patients with COPD were divided into trial group (18 cases) and control group (18 cases) randomly. The trial group was treated with Yufeining pills taken orally for half a year; thecontrol group was not given any medicine. Routine lung function was recorded before and after treatment. Total cell count (TCC), differential cell counts (DCCs) and IL-8 in induced sputum were determined at the baseline and 6 months later. Results: The indices of lung function improved significantly after 6 months' treatment in trial group (P<0.05); TCC and absolute neutrophil count decreased significantly compared with baseline in the trial group (P<0.05); Sputum IL-8 concentration dropped significantly after 6 months' treatment, from a mean of 5. 216±2.914 μg/L to 4. 222± 2.140 μg/L (P<0.05). There were insignificant changes in the parameters in the control group between baseline and 6 months later. Conclusion: Yufeining could improve lung function, decrease sputum TCC, absolute neutrophil count and IL-8 concentration, and relieve airway inflammation in patients with COPD in the stable phase.

  9. Molecular cloning of interleukin-1β, interleukin-8, and tumor necrosis factor-α of bighorn sheep (Ovis canadensis) and comparison with those of other species.

    Science.gov (United States)

    Herndon, Caroline N; Dassanayake, Rohana P; Foreyt, William J; Srikumaran, Subramaniam

    2010-11-15

    The susceptibility to, and pathology induced by, Mannheimia haemolytica infection in bighorn sheep (BHS) and domestic sheep (DS) are distinctly different. Bighorn sheep are particularly susceptible to pneumonia caused by M. haemolytica, and the pneumonic lesions in infected BHS are more severe than those in DS. The molecular basis for this disparity has not been elucidated. Proinflammatory cytokines have been implicated in the pathogenesis of multiple lung diseases of humans and animals. It is possible that the enhanced pathology observed in the pneumonic lungs of M. haemolytica-infected BHS, in comparison to that of DS, is due to comparatively higher levels of proinflammatory cytokine expression in BHS. As the first step towards elucidating this concept, we have cloned and sequenced the cDNA encoding the cytokines interleukin-1β (IL-1β), interleukin-8 (IL-8), and tumor necrosis factor-α (TNF-α) of BHS. The cDNA of BHS IL-1β, IL-8, and TNF-α consists of 801, 306, and 705 base pairs encoding 266, 101, and 234 amino acids, respectively. The availability of cDNA encoding IL-1β, IL-8, and TNF-α of BHS should facilitate the elucidation of the role of these cytokines in the differential pathology induced by M. haemolytica infection in BHS and DS. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The different effects of probiotics treatment on Salmonella-induced interleukin-8 response in intestinal epithelia cells via PI3K/Akt and NOD2 expression.

    Science.gov (United States)

    Huang, F-C; Huang, S-C

    2016-11-30

    Salmonella spp. remains a major public health problem for the whole world. Intestinal epithelial cells serve as an essential component of the innate mucosal immune system to defend against Salmonella infection. A substantial amount of evidence has accumulated that probiotics can regulate interleukin 8 (IL-8) involved in innate immunity. However, the exact effect of probiotics on epithelial IL-8 response to Salmonella infection is not well understood. Therefore, we investigated the action of probiotics on Salmonella-infected Caco-2 cells and its novel mechanisms. Two probiotic strains were examined for Salmonella-induced IL-8 responses and regulating proteins using Caco-2 cell cultures. We demonstrated probiotic, either Lactobacillus rhamnosus GG or Bifidobacterium animalis subsp. lactis DSM10140, administered before Salmonella infection conferred significantly suppressive effect on Salmonella-induced IL-8 responses in Caco-2 cells, either in secreted protein or mRNA, via the PI3K/Akt signal pathway while probiotic administered after infection enhanced Salmonella-induced IL-8 responses via nucleotide-binding oligomerisation domain-containing protein 2 expression in membrane. These findings suggest that the different regulation of probiotics on Salmonella-induced IL-8 responses in Caco-2 cells according to the administered timing supports a rationale for the therapeutic use of probiotics in the treatment of Salmonella colitis and inflammatory bowel disease. This can explain the reported controversial effect of probiotics on these diseases.

  11. Safrole oxide induces human umbilical vein endothelial cell transdifferentiation to 5-hydroxytryptaminergic neuron-like cells through tropomyosin receptor kinase A/cyclooxygenase 2/nuclear factor-kappa B/interleukin 8 signaling.

    Science.gov (United States)

    Su, Le; Zhao, Jing; Zhao, Bao Xiang; Zhang, Shang Li; Miao, Jun Ying

    2011-10-01

    The phenomenon of endothelial-neural transdifferentiation has been observed for a long time, but the mechanism is not clear. We previously found that safrole oxide induced human umbilical vein endothelial cell transdifferentiation into neuron-like cells. In this study, we first validated that these cells induced by safrole oxide were functional 5-hydroxytryptaminergic neuron-like cells. Then, we performed microarray analysis of safrole oxide-treated and -untreated human umbilical vein endothelial cells. Safrole oxide elevated the levels of cyclooxygenase 2 (COX-2), interleukin-8 (IL-8) and reactive oxygen species (ROS), which was accompanied by nuclear factor-kappa B (NF-κB) nuclear translocation during the transdifferentiation. Blockade of tropomyosin receptor kinase A (TrkA) by an inhibitor or short hairpin RNA inhibited the levels of COX-2/IL-8 and the nuclear translocation of NF-κB but did not suppress the increased ROS level. As a result, cells underwent apoptosis. Therefore, via TrkA, safrole oxide may induce endothelial cell transdifferentiation into functional neuron-like cells. During this process, the increased levels of COX-2/IL-8 and the subsequent elevation of ROS production induced NF-κB nuclear translocation and IL-8 secretion. With the activity of TrkA inhibited, the inactive NF-κB regulated the ROS level in a negative feedback manner. Finally, the transdifferentiation pathway was blocked and cells became apoptotic. The TrkA/COX-2/IL-8 signal pathway may have an important role in endothelial-neural transdifferentiation, and safrole oxide may trigger this process by activating TrkA.

  12. -251 T/A polymorphism of the interleukin-8 gene and cancer risk: a HuGE review and meta-analysis based on 42 case-control studies.

    Science.gov (United States)

    Wang, Na; Zhou, Rongmiao; Wang, Chunmei; Guo, Xiaoqing; Chen, Zhifeng; Yang, Shan; Li, Yan

    2012-03-01

    The -251T/A (rs4073), a single nucleotide polymorphism, has been identified in the promoter region of the interleukin-8 (IL-8) gene. It's presence could influence the production of IL-8 protein by regulating the transcriptional activity of the gene. A large number of studies have been performed to evaluate the role of -251T/A polymorphism on various cancers, with inconsistent results being reported. In this paper, we summarized 13,189 cases and 16,828 controls from 42 case-control studies and attempted to assess the susceptibility of -251T/A polymorphism to cancers by a comprehensive meta-analysis. Pooled odds ratios and 95% confidence intervals were calculated by using the random-effects model. Publication bias, subgroup, and sensitivity analysis were also performed. Results showed that the carriers of the -251A allele had about a 12-21% increased risk for the reviewed cancer, in total. The carriers of -251A had an elevated risk to breast cancer, gastric cancer and nasopharyngeal cancer and a reduced risk to prostate cancer, but no evidence was found to indicate that the -251A allele predisposed its carriers to colorectal and lung cancers. When stratified separately by 'racial descent' and 'study design', it was found that the carriers of the -251A allele among the African group, Asian group and hospital-based case-control study group were at a higher risk for cancer, but not in European group and population-based case-control study. These results show that -251A allele is susceptible in the development of low-penetrance cancers.

  13. Phospholipase A(2) activation by poultry particulate matter is mediated through extracellular signal-regulated kinase in lung epithelial cells: regulation of interleukin-8 release.

    Science.gov (United States)

    Kotha, Sainath R; Piper, Melissa G; Patel, Rishi B; Sliman, Sean; Malireddy, Smitha; Zhao, Lingying; Baran, Christopher P; Nana-Sinkam, Patrick S; Wewers, Mark D; Romberger, Debra; Marsh, Clay B; Parinandi, Narasimham L

    2013-11-01

    The mechanisms of poultry particulate matter (PM)-induced agricultural respiratory disorders are not thoroughly understood. Hence, it is hypothesized in this article that poultry PM induces the release of interleukin-8 (IL-8) by lung epithelial cells that is regulated upstream by the concerted action of cytosolic phospholipase A2 (cPLA2) and extracellular signal-regulated kinase (ERK). To test this hypothesis, the widely used cultured human lung epithelial cells (A549) were chosen as the model system. Poultry PM caused a significant activation of PLA2 in A549 cells, which was attenuated by AACOCF3 (cPLA2 inhibitor) and PD98059 (ERK-1/2 upstream inhibitor). Poultry PM induced upstream ERK-1/2 phosphorylation and downstream cPLA2 serine phosphorylation, in a concerted fashion, in cells with enhanced association of ERK-1/2 and cPLA2. The poultry PM-induced cPLA2 serine phosphorylation and IL-8 release were attenuated by AACOCF3, PD98059, and by transfection with dominant-negative ERK-1/2 DNA in cells. The poultry PM-induced IL-8 release by the bone marrow-derived macrophages of cPLA2 knockout mice was significantly lower. For the first time, this study demonstrated that the poultry PM-induced IL-8 secretion by human lung epithelial cells was regulated by cPLA2 activation through ERK-mediated serine phosphorylation, suggesting a mechanism of airway inflammation among poultry farm workers.

  14. miR-520b regulates migration of breast cancer cells by targeting hepatitis B X-interacting protein and interleukin-8.

    Science.gov (United States)

    Hu, Nan; Zhang, Jianli; Cui, Wenjing; Kong, Guangyao; Zhang, Shuai; Yue, Lin; Bai, Xiao; Zhang, Zhao; Zhang, Weiying; Zhang, Xiaodong; Ye, Lihong

    2011-04-15

    MicroRNAs play important roles in tumor metastasis. Recently, we reported that the level of miR-520b is inversely related to the metastatic potential of breast cancer cells. In this study, we investigated the role of miR-520b in breast cancer cell migration. We found that miR-520b suppressed the migration of breast cancer cells with high metastatic potential, including MDA-MB-231 and LM-MCF-7 cells, although the inhibition of miR-520b enhanced the migration of low metastatic potential MCF-7 cells. We further discovered that miR-520b directly targets the 3'-untranslated region (3'UTR) of either hepatitis B X-interacting protein (HBXIP) or interleukin-8 (IL-8), which has been reported to contribute to cell migration. Surprisingly, tissue array assays showed that 75% (38:49) and 94% (36:38) of breast cancer tissues and metastatic lymph tissues, respectively, were positive for HBXIP expression. Moreover, overexpression of HBXIP was able to promote the migration of MCF-7 cells. Interestingly, HBXIP was able to regulate IL-8 transcription by NF-κB, suggesting that the two target genes of miR-520b are functionally connected. In addition, we found that miR-520b could indirectly regulate IL-8 transcription by targeting HBXIP. Thus, we conclude that miR-520b is involved in regulating breast cancer cell migration by targeting HBXIP and IL-8 via a network in which HBXIP promotes migration by stimulating NF-κB-mediated IL-8 expression. These studies point to HBXIP as a potential therapeutic target for breast cancer.

  15. Marek's disease viral interleukin-8 promotes lymphoma formation through targeted recruitment of B cells and CD4+ CD25+ T cells.

    Science.gov (United States)

    Engel, Annemarie T; Selvaraj, Ramesh K; Kamil, Jeremy P; Osterrieder, Nikolaus; Kaufer, Benedikt B

    2012-08-01

    Marek's disease virus (MDV) is a cell-associated and highly oncogenic alphaherpesvirus that infects chickens. During lytic and latent MDV infection, a CXC chemokine termed viral interleukin-8 (vIL-8) is expressed. Deletion of the entire vIL-8 open reading frame (ORF) was shown to severely impair disease progression and tumor development; however, it was unclear whether this phenotype was due to loss of secreted vIL-8 or of splice variants that fuse exons II and III of vIL-8 to certain upstream open reading frames, including the viral oncoprotein Meq. To specifically examine the role of secreted vIL-8 in MDV pathogenesis, we constructed a recombinant virus, vΔMetvIL-8, in which we deleted the native start codon from the signal peptide encoding exon I. This mutant lacked secreted vIL-8 but did not affect Meq-vIL-8 splice variants. Loss of secreted vIL-8 resulted in highly reduced disease and tumor incidence in animals infected with vΔMetvIL-8 by the intra-abdominal route. Although vΔMetvIL-8 was still able to spread to naïve animals by the natural route, infection and lymphomagenesis in contact animals were severely impaired. In vitro assays showed that purified recombinant vIL-8 efficiently binds to and induces chemotaxis of B cells, which are the main target for lytic MDV replication, and also interacts with CD4(+) CD25(+) T cells, known targets of MDV transformation. Our data provide evidence that vIL-8 attracts B and CD4(+) CD25(+) T cells to recruit targets for both lytic and latent infection.

  16. 白细胞介素-8在葡萄膜炎发病机制中的作用%Role of interleukin-8 in uveitis pathogenesis

    Institute of Scientific and Technical Information of China (English)

    王振华

    2014-01-01

    葡萄膜炎病因复杂,发病机制尚不十分明确.近年来,越来越多的证据提示趋化因子白细胞介素-8(IL-8)参与了葡萄膜炎的发病过程.研究IL-8及其细胞因子网络的特点为明确葡萄膜炎的发病机制,寻求新的活动性检测指标和治疗提供了基础.从IL-8及其生理作用、IL-8在眼部炎症反应中的作用机制、IL-8在葡萄膜炎中的作用、IL-8在各类型葡萄膜炎中的表现等方面对IL-8在葡萄膜炎发病机制中的作用进行综述.%The etiology of uveitis is very complicated and the pathogenesis is not yet clear.In recent years,more and more evidences imply that the chemokines interleukin-8 (IL-8) is involved in the development of uveitis.Studies of IL-8 and its network features contribute to the understanding of uveitis pathogenesis and provide an important foundation for seeking new indication of activity of uveitis and new treatment target.This paper summarizes the progression in the study on IL-8 in uveitis,including the physiology functions of IL-8,mechanisms for ocular inflammatory,and the role and performance of IL-8 in uveitis.

  17. Interleukin-8, interleukin-1β and tumour necrosis factor-α in sequential units of packed red blood cells collected from retired racing Greyhounds.

    Science.gov (United States)

    Purcell, S L; Claus, M; Hosgood, G; Smart, L

    2017-01-01

    We hypothesised that concentrations of interleukin-8 (IL-8), interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α) would increase during storage in the third sequential unit (U3) of canine packed red blood cells (PRBC) collected from terminal donors in haemorrhagic shock. We further hypothesised that leucoreduction would prevent cytokine accumulation in U3 and that cytokine concentrations in U3 would be higher than in the first units (U1) collected from the same dogs. U1 and U3 were each collected from 12 anaesthetised healthy Greyhounds. Removal of leucocytes from half of each PRBC unit produced one leucoreduced (LR) and one non-leucoreduced (NLR) unit. Canine IL-8, IL-1β and TNF-α concentrations were measured in samples collected from the units during storage on days 0, 10, 20, 30 and 37. The IL-8 concentration in U3 NLR units was significantly higher on days 10, 20, 30 and 37 than on day 0 and was significantly higher than in the LR units at all time points. The IL-1β concentration in U3 did not change over time, or between LR and NLR units. TNF-α was not detected in any unit. There were no significant differences in IL-8 or IL-1β concentrations between U3 and U1 at any time point; however, some NLR U3 units had markedly elevated IL-8 concentrations at day 37 (2060-20,682 pg/mL) compared with NLR U1 units (3369-5280 pg/mL). NLR U3 units collected from dogs in haemorrhagic shock showed a significant increase in IL-8 concentrations during storage. Leucoreduction was effective at preventing the accumulation of IL-8. There was no difference detected between U3 and U1. © 2017 Australian Veterinary Association.

  18. Production of interleukin 8 and Monocyte chemoattractant protein-1 on human umbilical vein endothelial cells stimulated by Porphyromonas gingivalis with different fimA genotypes

    Institute of Scientific and Technical Information of China (English)

    Shu-Yu Cai; Song Ge

    2015-01-01

    Objective:To study the effects ofPorphyromonas gingivalis (Pg) with different fimA genotypes on IL-8 and MCP-1 produciton by human umbilical vein endothelial cells and to reveal their the possible role in the development of atherosclerosis.Methods: Pg with different fimA genotypes were cultured with anaerobic and were used to infect HUVEC cells at a MOI of 100. Supernatant IL-8 and MCP-1 contents of cultured HUVEC cells after Pg stimulation at 2 h, 6 h and 24 h, respectively, were detected by ELISA.Results: Supernatant IL-8 and MCP-1 contents of HUVEC cells after Pg stimulation at 2 h, 6 h and 24 h were significantly higher than those in un-stimulation groups (P<0.05), and supernatant IL-8 and MCP-1 contents of HUVEC cells after II fimA and IV fimA genotypes Pg stimulation were significantly higher than those after I fimA genotypes Pg stimulation (P<0.05). Also, supernatant IL-8 and MCP-1 contents of HUVEC cells after II fimA genotypes Pg stimulation were significantly higher than those after IV fimA genotypes Pg stimulation.Conclusion: Pg with II fimA genotypes show a stronger ability to stimulate HUVEC cells to express IL-8 and MCP-1,which may lead a functional disorder of vascular endothelial.

  19. Interleukin-8 production from human somatotroph adenoma cells is stimulated by interleukin-1β and inhibited by growth hormone releasing hormone and somatostatin

    DEFF Research Database (Denmark)

    Vindeløv, Signe Diness; Hartoft-Nielsen, Marie-Louise; Rasmussen, Åse Krogh;

    2011-01-01

    Pituitary adenomas cause morbidity and mortality due to their localization and influence on pituitary hormone secretion. Although the pathogenesis of pituitary adenomas is unclear, studies have indicated that cytokines are involved. We investigated the role of cytokines, in particular interleukin...... (IL)-8, in the pathogenesis of growth hormone (GH) producing tumours.......Pituitary adenomas cause morbidity and mortality due to their localization and influence on pituitary hormone secretion. Although the pathogenesis of pituitary adenomas is unclear, studies have indicated that cytokines are involved. We investigated the role of cytokines, in particular interleukin...

  20. Depletion of intrinsic expression of Interleukin-8 in prostate cancer cells causes cell cycle arrest, spontaneous apoptosis and increases the efficacy of chemotherapeutic drugs

    Directory of Open Access Journals (Sweden)

    Lokeshwar Bal L

    2009-07-01

    Full Text Available Abstract Background The progression of all cancers is characterized by increased-cell proliferation and decreased-apoptosis. The androgen-independent prostate cancer (AIPC is the terminal stage of the disease. Many chemokines and cytokines are suspects to cause this increased tumor cell survival that ultimately leads to resistance to therapy and demise of the host. The AIPC cells, but not androgen-responsive cells, constitutively express abundant amount of the pro-inflammatory chemokine, Interleukin-8 (IL-8. The mechanism of IL-8 mediated survival and therapeutic resistance in AIPC cells is unclear at present. The purpose of this report is to show the pervasive role of IL-8 in malignant progression of androgen-independent prostate cancer (AIPC and to provide a potential new therapeutic avenue, using RNA interference. Results The functional consequence of IL-8 depletion in AIPC cells was investigated by RNA interference in two IL-8 secreting AIPC cell lines, PC-3 and DU145. The non-IL-8 secreting LNCaP and LAPC-4 cells served as controls. Cells were transfected with RISC-free siRNA (control or validated-pool of IL-8 siRNA. Transfection with 50 nM IL-8 siRNA caused >95% depletion of IL-8 mRNA and >92% decrease in IL-8 protein. This reduction in IL-8 led to cell cycle arrest at G1/S boundary and decreases in cell cycle-regulated proteins: Cyclin D1 and Cyclin B1 (both decreased >50% and inhibition of ERK1/2 activity by >50%. Further, the spontaneous apoptosis was increased by >43% in IL-8 depleted cells, evidenced by increases in caspase-9 activation and cleaved-PARP. IL-8 depletion caused significant decreases in anti-apoptotic proteins, BCL-2, BCL-xL due to decrease in both mRNA and post-translational stability, and increased levels of pro-apoptotic BAX and BAD proteins. More significantly, depletion of intracellular IL-8 increased the cytotoxic activity of multiple chemotherapeutic drugs. Specifically, the cytotoxicity of Docetaxel

  1. Elastase, α1-proteinase inhibitor, and interleukin-8 in children and young adults with end-stage kidney disease undergoing continuous ambulatory peritoneal dialysis.

    Science.gov (United States)

    Polańska, Bożena; Augustyniak, Daria; Makulska, Irena; Niemczuk, Maria; Jankowski, Adam; Zwolińska, Danuta

    2014-06-01

    Peritoneal dialysis is one of the main modality of treatment in end-stage kidney diseases (ESKD) in children. In our previous work in chronic kidney disease patients, in pre-dialyzed period and on hemodialysis, the neutrophils were highly activated. The aim of this study was to assess an inflammatory condition and neutrophil activation in ESKD patients undergoing continuous ambulatory peritoneal dialysis (CAPD). Thirteen CAPD patients without infection, both sexes, aged 2.5-24 years, and group of healthy subjects (C) were studied. For comparative purposes the conservatively treated (CT) group of ESKD patients was included. Neutrophil elastase in complex with α1-proteinase inhibitor (NE-α1PI; ELISA), α1-proteinase inhibitor (α1PI; radial immunodiffusion) and interleukin-8 (IL-8; ELISA) were measured in the blood samples from CAPD, CT, and C group and in the peritoneal dialysate fluid (PDF) samples of patients on CAPD. A significantly increased plasma NE-α1PI levels (median 176.5 μg/L, range 85.2-373.2 μg/L; p < 0.00005), serum IL-8 (median 18.6 pg/mL, range 15.73-35.28 pg/mL; p < 0.05), and slightly decreased serum α1PI (median 1,540 mg/L, range 1,270-1,955; p ≤ 0.05) compared to the control groups were found. There were no significant differences of analyzed parameters between CAPD and CT patients. The concentration ratio of NE-α1PI, α1PI and IL-8 in blood/PDF was 29.97, 8.24, and 4.48, respectively. There were significantly positive correlations between serum and PDF concentration of α1PI and IL-8 (r = 0.613, p < 0.05; r = 0.59; p < 0.005, respectively). The results of our study demonstrate that neutrophils are highly activated in non-infected CAPD patients. The pivotal marker of this activation is NE-α1PI. It may contribute to chronic inflammation and tissues injury.

  2. Measurement of tumor necrosis factor-α, leukotriene B4, and interleukin 8 in the exhaled breath condensate in patients with acute exacerbations of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Fanny WS Ko

    2008-12-01

    Full Text Available Fanny WS Ko1, Ting-Fan Leung2, Gary WK Wong2, Jenny Ngai1, Kin W To1, Susanna Ng1, David SC Hui11Department of Medicine and Therapeutics; 2Department of Pediatrics, The Chinese University of Hong Kong, Hong KongBackground: Assessment of airway inflammation in the clinical course of acute exacerbations of chronic obstructive pulmonary disease (AECOPD may advance our understanding of the pathogenesis and treatment.Objectives: To assess airway inflammation in patients during the course of AECOPD by serial analyses of their exhaled breath condensates (EBC.Methods: Twenty-six patients with AECOPD (22 males, mean[SD] percentage predicted forced expiratory volume in one second (FEV1 44.8 [14.3], 11 with stable COPD, and 14 age and sex-matched healthy controls were studied. Patients with AECOPD were treated with systemic steroid and antibiotic for 7 days. EBC was collected from each patient with AECOPD on Day 5, 14, 30, and 60 post-hospitalization using EcoScreen (VIASYS Healthcare, USA during tidal breathing over 10 minutes. Concentrations of tumor necrosis factor-α (TNF-α, leukotriene B4 (LTB4, and interleukin-8 (IL-8 were measured by enzyme-linked immunosorbent assay.Results: The median (IQR of TNF-α level on Day 5 was 5.08 (3.80–6 .32 pg/ml, which was lower than on Day 14 (5.84 [4.91–9.14] pg/ml, p = 0.017, Day 30 (6.14 [3.82–7.67] pg/ml, p = 0.045, and Day 60 (5.60 [4.53–8.80] pg/ml, p = 0.009. On Day 60, subjects receiving inhaled corticosteroid (ICS had a lower level of TNF-α than those who were not (4.82 [4.06–5.65] vs 7.66 [5.48–10.9] pg/ml, p = 0.02. EBC LTB4 level did not change significantly during recovery from AECOPD whereas IL-8 was mostly undetectable.Conclusions: EBC TNF-α level was low in patients receiving systemic steroid and antibiotic therapy for AECOPD. These findings suggest a potential role for serial EBC TNF-α for noninvasive monitoring of disease activity.Keywords: COPD, exacerbation, exhaled breath

  3. UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.

    Science.gov (United States)

    Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen

    2015-12-01

    Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.

  4. Small intestinal bacterial overgrowth in nonalcoholic steatohepatitis: association with toll-like receptor 4 expression and plasma levels of interleukin 8.

    LENUS (Irish Health Repository)

    Shanab, Ahmed Abu

    2011-05-01

    Experimental and clinical studies suggest an association between small intestinal bacterial overgrowth (SIBO) and nonalcoholic steatohepatitis (NASH). Liver injury and fibrosis could be related to exposure to bacterial products of intestinal origin and, most notably, endotoxin, including lipopolysaccharide (LPS).

  5. High-glucose environment enhanced oxidative stress and increased interleukin-8 secretion from keratinocytes: new insights into impaired diabetic wound healing.

    Science.gov (United States)

    Lan, Cheng-Che E; Wu, Ching-Shuang; Huang, Shu-Mei; Wu, I-Hui; Chen, Gwo-Shing

    2013-07-01

    Impaired wound healing frequently occurs in patients with diabetes. Interleukin (IL)-8 production by keratinocyte is responsible for recruiting neutrophils during healing. Intense inflammation is associated with diabetic wounds, while reduction of neutrophil infiltration is associated with enhanced healing. We hypothesized that increased neutrophil recruitment by keratinocytes may contribute to the delayed healing of diabetic wounds. Using cultured human keratinocytes and a diabetic rat model, the current study shows that a high-glucose environment enhanced IL-8 production via epidermal growth factor receptor (EGFR)-extracellular signal-regulated kinase (ERK) pathway in a reactive oxygen species (ROS)-dependent manner in keratinocytes. In addition, diabetic rat skin showed enhanced EGFR, ERK, and IL-8 expression compared with control rats. The dermal neutrophil infiltration of the wound, as represented by expression of myeloperoxidase level, was also significantly higher in diabetic rats. Treating diabetic rats with dapsone, an agent known to inhibit neutrophil function, was associated with improved healing. In conclusion, IL-8 production and neutrophil infiltration are increased in a high-glucose environment due to elevated ROS level and contributed to impaired wound healing in diabetic skin. Targeting these dysfunctions may present novel therapeutic approaches.

  6. Interleukin-8 induction due to diffusely adherent Escherichia coli possessing Afa/Dr genes depends on flagella and epithelial Toll-like receptor 5.

    Science.gov (United States)

    Arikawa, Kentaro; Nishikawa, Yoshikazu

    2010-09-01

    DAEC is considered potentially diarrheagenic. For diffuse adhesion, the role of the Afa, which was originally identified as a uropathogenic factor, is now understood. However, the role of DAEC in diarrheal disease remains controversial because DAEC is often isolated not only from patients but also from healthy individuals. Previously, we suggested that Afa/Dr DAEC, which can induce high levels of IL-8 secretion in cultures of human carcinoma epithelial cells (HEp-2, Caco-2), is enterovirulent. In the present study, we examined whether IL-8 secretion induced by certain Afa/Dr DAEC strains was primarily due to flagella via TLR5. All IL-8 high-inducing strains were highly motile in swarming tests. Partially purified flagella induced IL-8 in a dose-dependent manner. However, IL-8 induction was inhibited by small-interfering RNA against TLR5 or by treating flagella with disialoganglioside-GD1a, a TLR5 blocker. TLR5 is reportedly located on the basolateral side of intestinal epithelia; flagella should not have reached TLR5 from the apical side beyond tight junctions. Reduction in the number of intracellular organisms by wortmannin, a PI3K inhibitor, did not reduce IL-8 secretion. Afa/Dr DAEC seemed to loosen the tight junctions because it quickly reduced transepithelial electrical resistance after infection. Decreased resistance led to increased IL-8 production. In conclusion, diffuse adhesion itself is insufficient to induce high levels of IL-8, and simultaneous stimulation by flagella via TLR5 is likely required for additional induction. Clinically, high motility may be a candidate criterion for predicting the ability of Afa/Dr DAEC strains to induce higher levels of IL-8 secretion.

  7. CLINICAL SIGNIFICANCE OF INTERLEUKIN-8 GENE EXPRESSION IN BREAST CANCER%乳腺癌中白细胞介素-8基因表达的临床意义

    Institute of Scientific and Technical Information of China (English)

    赵春英; 朱江; 董选; 程锦玲; 方琦; 谈柯岚; 杨莉; 扬澜; 张磊

    2003-01-01

    目的:探讨乳腺癌组织中白细胞介素-8(Interleukin-8,IL-8)基因表达及其与临床病理因素的关系.方法:应用实时定量PCR方法检测了46例乳腺癌及其正常乳腺组织中的IL-8 mRNA表达(单位:IL-8拷贝数/GAPDH拷贝数),计算求出肿瘤(T)及正常乳腺组织(N)的比值(T/N);并分析IL-8基因表达与临床病理因素的关系.结果:乳腺癌组织中均可以检测到IL-8 mRNA表达,若以T/N≥2为标准,65.2%(30/46例)的乳腺癌中IL-8基因高表达;T/N比值与组织学类型、肿瘤分期、淋巴结转移数相关,但与年龄无关.结论:乳腺癌组织中IL-8 mRNA含量明显增高,并且早期乳腺癌中IL-8表达高于晚期乳腺癌.

  8. Effect of photobiomodulation therapy on reducing the chemo-induced oral mucositis severity and on salivary levels of CXCL8/interleukin 8, nitrite, and myeloperoxidase in patients undergoing hematopoietic stem cell transplantation: a randomized clinical trial.

    Science.gov (United States)

    Salvador, Daniella Ribeiro Naves; Soave, Danilo Figueiredo; Sacono, Nancy Tomoko; de Castro, Eduardo Fernandes; Silva, Geisa Badauy Lauria; E Silva, Larissa Pereira; Silva, Tarcília Aparecida; Valadares, Marize Campos; Mendonça, Elismauro Francisco; Batista, Aline Carvalho

    2017-06-29

    Oral mucositis (OM) is the most common debilitating complication among patients undergoing hematopoietic stem cell transplantation (HSCT). Photobiomodulation therapy (PBM) has shown beneficial effects in the treatment of OM, but few studies have evaluated its biological effects. This study evaluated the effect of PBM on the reduction of OM severity in patients undergoing HSCT and its relation to the modulation of the inflammatory response. Fifty-one patients were randomly assigned to two groups: PBM [submitted to PBM from admission (AD) to D+7] (n = 27) and control (n = 24) [received oral hygiene]. OM severity was assessed daily using the WHO scale. Saliva samples were collected on AD, D+7, and hospital discharge (HD) to measure CXCL8/interleukin 8, using cytometric bead array analysis and nitrite (NO) and myeloperoxidase (MPO) using colorimetric methods. PBM significantly reduced the severity of OM from D+7 to D+11 (p  0.05). MPO significantly decreased on D+7 in both groups (p < 0.05). PBM brought about a reduction in the severity of OM in patients undergoing HSCT, and this reduction was associated with a decrease in CXCL8 salivary levels.

  9. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-κB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells.

    Science.gov (United States)

    Choi, Soo-Jin; Paek, Hee-Jeong; Yu, Jin

    2015-01-01

    Anionic nanoclays are layered double hydroxide nanoparticles (LDH-NPs) that have been shown to exhibit toxicity by inducing reactive oxidative species and a proinflammatory mediator in human lung epithelial A549 cells. However, the molecular mechanism responsible for this LDH-NP-induced toxicity and the relationship between oxidative stress and inflammatory events remains unclear. In this study, we focused on intracellular signaling pathways and transcription factors induced in response to oxidative stress caused by exposure to LDH-NPs in A549 cells. Mitogen-activated protein kinase (MAPK) cascades, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase (JNK), and p38, were investigated as potential signaling mechanisms responsible for regulation of oxidative stress and cytokine release. Src family kinases (SFKs), which are known to mediate activation of MAPK, together with redox-sensitive transcription factors, including nuclear factor kappa B and nuclear factor-erythroid 2-related factor-2, were also investigated as downstream events of MAPK signaling. The results obtained suggest that LDH-NP exposure causes oxidative stress, leading to expression of antioxidant enzymes, such as catalase, glucose reductase, superoxide dismutase, and heme oxygenase-1, via a SFK-JNK and p38-nuclear factor kappa B signaling pathway. Further, activation of this signaling was also found to regulate release of inflammatory cytokines, including interleukin-6 and interleukin-8, demonstrating the inflammatory potential of LDH-NP.

  10. Interleukin-8,RANTES gene polymorphism and respiratory syncytial virus bronchiolitis%白介素8、RANTES基因多态性与呼吸道合胞病毒毛细支气管炎

    Institute of Scientific and Technical Information of China (English)

    田曼; 陈荣华

    2008-01-01

    呼吸道合胞病毒(respiratory syncytial virus,RSV)感染2岁以下几乎所有的儿童,但只有少数发展为比较严重的毛细支气管炎及毛细支气管炎后反复喘息.随着对其遗传学研究的不断深入,通过对RSV毛细支气管炎患儿基因型的分析,发现白介素8、RANTES存在基因多态性,且可能与RSV毛细支气管炎及毛细支气管炎后反复喘息的易感性相关.%Respiratory syncytial virus(RSV)infects nearly all children under two years old,but only minority of them developed serious bronchiolitis and subsequent wheezing.Whether there is a genetic component is not known.The common single nucleotide polymorphisms in the promoter region of interleukin-8(IL-8)and RANTES upstream of the transcription start site affect their mRNA levels and protein expressions.This review includes the new researches about the genetic association between the IL-8,RANTES gene polymorphism and RSV bronchiolitis and post-bronchiolitis wheezing.

  11. Genital Tract Interleukin-8 but not Interleukin-1β or Interleukin-6 Concentration is Associated with Bacterial Vaginosis and Its Clearance in HIV-Infected and HIV-Uninfected Women

    Directory of Open Access Journals (Sweden)

    Phyllis Losikoff

    2007-01-01

    Full Text Available Genital tract infections and cytokine perturbations are associated with increased HIV acquisition and transmission. We measured the relationship between bacterial vaginosis (BV and concentrations of Interleukin-8 (IL-8, Interleukin-1β (IL-1β, and Interleukin-6 (IL-6 in cervicovaginal lavage (CVL specimens collected longitudinally from 16 HIV-infected and 8 HIV-uninfected high-risk women. CVL samples were analyzed when women presented with BV, and at their next visit, after successful treatment, when BV was cleared. A subset of participants had cytokine levels evaluated at three consecutive clinic visits: before developing BV, at the time of BV diagnosis, and after clearing BV. Significantly higher IL-8, but not IL-1β or IL-6 levels were present when women had active BV compared to when BV was absent. Trends in cytokine levels were similar for HIV-infected and HIV-uninfected women. BV in these women was associated with significantly higher concentrations of genital tract IL-8 which decreased 2.4 fold when BV was cleared.

  12. A Study of Relationship between Polymorphisms of Interleukin-8 and Risk of Breast Cancer in Chinese Population%IL-8基因多态性与中国人群乳腺癌关系的研究

    Institute of Scientific and Technical Information of China (English)

    刘继永; 翟祥军; 靳光付; 胡志斌; 马红霞; 钮菊英; 徐耀初; 沈洪兵

    2007-01-01

    [目的]研究IL-8(Interleukin-8)基因-251、IL-8RA+860位点基因多态性与乳腺癌发生的关系.[方法]用PCR-RFLP分析方法检测647名健康对照人群和426例乳腺癌患者的IL-8基因多态性.用Logistic回归模型计算各种基因型的乳腺癌风险(OR)及其95%可信区间.[结果]乳腺癌患者的IL-8-251AA基因型携带者患乳腺癌的风险比IL-8-251TT基因型降低了16%(OR=0.84,95%CI=0.58~1.23),而携带IL-8RA+860GC/CC基因型可以增加乳腺癌发病风险28%(OR=1.28,95%CI=0.91~1.78),但两者联系均未达到统计学显著性水平.[结论]IL-8-251和IL-8RA+860位点等位基因多态性可能与我国女性人群乳腺癌的发生存在一定的联系,值得进一步研究.

  13. Interleukin-8 upregulates integrin β3 expression and promotes estrogen receptor-negative breast cancer cell invasion by activating the PI3K/Akt/NF-κB pathway.

    Science.gov (United States)

    Shao, Nan; Lu, Zhenhai; Zhang, Yunjian; Wang, Mian; Li, Wen; Hu, Ziye; Wang, Shenming; Lin, Ying

    2015-08-10

    Interleukin-8 (IL-8) possesses tumorigenic and proangiogenic properties and is overexpressed in many human cancers. The integrin family regulates a diverse array of cellular functions crucial to the initiation, progression and metastasis of solid tumors. However, the mechanisms of action of IL-8 and integrin in estrogen receptor-negative breast cancer are largely unknown. In this study, IL-8 and integrin β3 expression in human breast cancer cells and tissues was examined by real-time PCR, Western blot and immunochemistry analysis. Integrin β3 expression, invasive ability and the activation of PI3K/Akt and NF-κB pathways in IL-8 knockdown breast cancer cells were evaluated. In addition, reporter assay and ChIP were performed to assess integrin β3 promoter activity in IL-8 knockdown cells. We observed a positive correlation between integrin β3 and IL-8 expression, which was inversely correlated with ER status in breast cancer cell lines and tissues. IL-8 siRNA decreased the invasion and integrin β3 expression in human breast cancer cells. Moreover, IL-8 siRNA attenuated the phosphorylation of PI3K and Akt and inhibited NF-κB activity and binding on integrin β3 promoter. IL-8 siRNA diminished NF-κB nuclear translocation via blocking IκB phosphorylation in the cytoplasm. In conclusion, IL-8 activates the PI3K/Akt pathway, which in turn activates NF-κB, resulting in the upregulation of integrin β3 expression and increased invasion of estrogen receptor-negative breast cancer cells. IL-8/PI3K/Akt/NF-κB/integrin β3 axis may be exploited for therapeutic intervention to breast cancer metastasis.

  14. The effect of early treatment by cerivastatin on the serum level of C-reactive protein, interleukin-6, and interleukin-8 in the patients with unstable angina and non-Q-wave myocardial infarction.

    Science.gov (United States)

    Ostadal, Petr; Alan, David; Hajek, Petr; Horak, David; Vejvoda, Jiri; Trefanec, Jiri; Mates, Martin; Vojacek, Jan

    2003-04-01

    The aim of our study was to evaluate whether a single dose of cerivastatin at the time of admission of patients with unstable angina pectoris (UAP) or non-Q-wave myocardial infarction (NQMI) can influence the serum level of C-reactive protein (CRP), interleukin-6 (IL-6) and interleukin-8 (IL-8) 24 h later. Forty-four patients with rest chest pain and subendocardial ischemia on ECG were randomized to receive cerivastatin 0.3 mg at the time of admission (group C+) to standard therapy or to remain just on standard therapy (group C-). Blood samples for determination of troponin I (TI), CRP, IL-6 and IL-8 were collected at admission (entry level) and 24 h later (final level). Patients with non-physiological baseline levels of TI, as well as patients with progression to Q wave MI were excluded. All baseline, clinical and demographic data and final values of TI were comparable in the two groups. In patients treated with cerivastatin (group C+, n = 13) we observed decrease in the CRP level (-6.73 +/- 3.93 mg/L); on the other hand, in group C- (n = 17) the CRP level increased (+7.92 +/- 2.77 mg/L, p = 0.004). Similar differences were observed also in IL-6: in group C+ the level was significantly reduced as compared with the increase in group C- (-0.76 +/- 0.52 vs. 4.58 +/- 1.49 ng/L, p = 0.005). The level of IL-8 was not affected. Our results suggest that early treatment with cerivastatin can decrease the serum level of CRP and IL-6 in patients with UAP/NQMI; this might positively influence their prognosis. Nevertheless, further studies are needed to support this hypothesis.

  15. Oxidative stress by layered double hydroxide nanoparticles via an SFK-JNK and p38-NF-κB signaling pathway mediates induction of interleukin-6 and interleukin-8 in human lung epithelial cells

    Directory of Open Access Journals (Sweden)

    Choi SJ

    2015-04-01

    Full Text Available Soo-Jin Choi, Hee-Jeong Paek, Jin YuDepartment of Food Science and Technology, Seoul Women’s University, Seoul, Republic of KoreaAbstract: Anionic nanoclays are layered double hydroxide nanoparticles (LDH-NPs that have been shown to exhibit toxicity by inducing reactive oxidative species and a proinflammatory mediator in human lung epithelial A549 cells. However, the molecular mechanism responsible for this LDH-NP-induced toxicity and the relationship between oxidative stress and inflammatory events remains unclear. In this study, we focused on intracellular signaling pathways and transcription factors induced in response to oxidative stress caused by exposure to LDH-NPs in A549 cells. Mitogen-activated protein kinase (MAPK cascades, such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase (JNK, and p38, were investigated as potential signaling mechanisms responsible for regulation of oxidative stress and cytokine release. Src family kinases (SFKs, which are known to mediate activation of MAPK, together with redox-sensitive transcription factors, including nuclear factor kappa B and nuclear factor-erythroid 2-related factor-2, were also investigated as downstream events of MAPK signaling. The results obtained suggest that LDH-NP exposure causes oxidative stress, leading to expression of antioxidant enzymes, such as catalase, glucose reductase, superoxide dismutase, and heme oxygenase-1, via a SFK-JNK and p38-nuclear factor kappa B signaling pathway. Further, activation of this signaling was also found to regulate release of inflammatory cytokines, including interleukin-6 and interleukin-8, demonstrating the inflammatory potential of LDH-NP.Keywords: layered double hydroxide, mitogen-activated protein kinases, Src family kinases, nuclear factor kappa B, oxidative stress, inflammatory cytokine

  16. Specific inhibition of Mdm2-mediated neddylation by Tip60

    DEFF Research Database (Denmark)

    Dohmesen, Christoph; Koeppel, Max; Dobbelstein, Matthias

    2007-01-01

    Tip60 is a histone acetyl transferase (HAT) and a cofactor of transcription, but also an interaction partner of the Mdm2 oncoprotein. The functional consequences of this interaction are only partially understood and were further explored in this study. We found that Tip60 is capable of selectively...... inhibiting the Mdm2- mediated conjugation of Nedd8 to p53, whereas it did not affect p53 ubiquitination. In contrast, the known Mdm2 antagonist p14arf preferentially blocked Ubiquitin conjugation by Mdm2. To identify underlying mechanisms, we studied the intracellular localization of Tip60 and Mdm2. Both...... proteins relocalized each other to the PML nuclear bodies, but a similar localization pattern was observed even in the absence of PML. Analysis of Tip60 deletion mutants revealed that some mutants, while still interacting with Mdm2, failed to relocalize it and to inhibit Mdm2-mediated neddylation...

  17. Expression of interleukin-8 in uterus and embryo of mouse during preimplantation%白细胞介素8在着床前小鼠子宫及胚卵的表达

    Institute of Scientific and Technical Information of China (English)

    宋芳; 岳淑芬; 赵紫薇; 郝奋; 黄世琪; 何金鑫; 王玲

    2011-01-01

    目的:观察着床前小鼠子宫及胚卵白细胞介素8(IL-8)的表达.方法:免疫组织化学显色及图像分析技术,对IL-8蛋白在妊娠1~4 d小鼠子宫及胚卵的表达进行定位及半定量分析;用RT-PCR技术检测妊娠1~4 d小鼠子宫及胚卵IL-8mRNA的表达情况.结果:与未孕小鼠相比,妊娠各天小鼠子宫中IL-8蛋白和mRNA表达明显升高,于妊娠4d表达最强.IL-8蛋白和mRNA均在妊娠2 d(Ⅱ细胞期)的胚卵表达最弱,妊娠4d(胚泡期)的胚卵表达最强.结论:妊娠1~4 d小鼠子宫及胚卵持续表达IL-8蛋白和mRNA,尤其是在着床前表达量升高,提示它们可能参与小鼠胚泡的着床过程.%Objective:To study the expression of interleukin-8 (IL-8) in the mouse uterus and embryo, during preimplanta-tioa Methods: The mRNA and protein expressions of IL-18 in uterus and embryo of mouse from pregnant day 1 to day 4 were detected by RT-PCR and immunohistochemistry, respectively. Results: Compared to non-pregnant mice, the mRNA and protein expressions of IL-18 in uterus of pregnant mice were significant up-regulated, and up to peak at pregnant day 4. Additionally, expression of IL-18 protein and mRNA was weak on day 2 (2-cell stage), and strongest on day 4 (blasto-cyst stage). Conclusion: IL-8 protein and IL-8 mRNA are expressed persistently in mouse uterus and embryo on day 1-4 of pregnancy, especially increase in preimplantatioa It suggests that IL-8 could participate in the process of blastocyst implantation in mouse.

  18. Duodenal ulcer promoting gene 1 (dupA1 is associated with A2147G clarithromycin-resistance mutation but not interleukin-8 secretion from gastric mucosa in Iraqi patients

    Directory of Open Access Journals (Sweden)

    N.R. Hussein

    2015-07-01

    Full Text Available Helicobacter pylori causes peptic ulceration and gastric adenocarcinoma. The aims were to study the influence of dupA1 positivity upon interleukin-8 (IL-8 secretion from gastric mucosa and determine the prevalence of mutations responsible for clarithromycin and fluoroquinolone resistance. DNA was extracted from 74 biopsies and the virulence factors were studied. Levels of IL-8 in gastric mucosa were measured using ELISA and the mutations responsible for clarithromycin and fluoroquinolone resistance were determined using a GenoType-HelicoDR assay. The prevalence of cagA in strains isolated from gastric ulcer (GU and duodenal ulcer (DU was significantly higher than those isolated from non-ulcer disease (NUD (90% and 57.9% versus 33.3%; p 0.01. The vacA s1m1 genotype was more prevalent in patients with DU (73.7% and GU (70% than in those with NUD (13.3% (p 0.01. The prevalence of dupA1 was higher in DU patients (36.8% than those with GU (10% and NUD (8.9% (p 0.01. Multivariate analysis showed that a cagA+/vacA s1i1m2 virulence gene combination was independently associated with the developing peptic ulcer disease (PUD with increased odds of developing PUD (p 0.03; OR = 2.1. We found no significant difference in the levels of IL-8 secretion in gastric mucosa infected with H. pylori dupA-negative and H. pylori dupA1-positive strains (dupA-negative: mean ± median: 28 ± 26 versus 30 ± 27.1 for dupA1; p 0.6. While 12 strains were clarithromycin resistant, only three isolates were levofloxacin resistant. A significant association was found between dupA1 genotype and A2147G clarithromycin resistance mutation (p <0.01. Further study is needed to explore the relationship between virulence factors and disease process and treatment failure.

  19. The clinical significance of interleukin-8 gene expression in breast cancer%乳腺癌白介素8基因表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    朱江; 赵春英; 顾伟英; 董选; 罗光华; 郑璐

    2005-01-01

    目的探讨乳腺癌组织中白介素8(interleukin-8,IL-8)基因表达及其临床意义.方法建立实时定量RT-PCR方法,检测122例乳腺肿瘤及其邻近正常乳腺组织中的IL-8 mRNA及内参GAPDH的表达水平,以IL-8 N=(IL-8拷贝数/GAPDH拷贝数)来计算IL-8表达水平,并计算同一患者肿瘤组织与正常组织中IL-8 N比值,定义为T/N比值,分析IL-8基因表达(T/N)与临床病理参数的关系.结果102例乳腺癌组织中IL-8 N明显高于其周围邻近的正常乳腺组织(P<0.01),而8例乳腺良性肿瘤组织与其相应的正常乳腺组织中IL-8 N水平无统计学差异(P=0.37).乳腺癌组织中IL-8 N及T/N比值明显高于乳腺良性肿瘤,且T/N比值与淋巴结转移呈正相关,而与绝经状态、雌激素受体(ER)及孕激素受体(PR)状态呈负相关.结论乳腺癌组织高表达IL-8,实时定量RT-PCR技术检测乳腺癌组织中IL-8表达水平可作为评价乳腺癌进展及判断预后的指标.

  20. Expression of the pro-angiogenic factors vascular endothelial growth factor and interleukin-8/CXCL8 by human breast carcinomas is responsive to nutrient deprivation and endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Abcouwer Steve F

    2004-01-01

    Full Text Available Abstract Background The expression of pro-angiogenic cytokines, such as vascular endothelial growth factor (VEGF and interleukin-8/CXCL8 (IL-8, plays an important role in tumor growth and metastasis. Low oxygen tension within poorly-vascularized tumors is thought to be the prime stimulus causing the secretion of VEGF. The expression of IL-8 by solid tumors is thought to be primarily due to intrinsic influences, such as constitutive activation of nuclear factor kappa B (NF-κB. However, VEGF expression is responsive to glucose deprivation, suggesting that low concentrations of nutrients other than oxygen may play a role in triggering the pro-angiogenic phenotype. Glucose deprivation causes endoplasmic reticulum (ER stress and alters gene expression through the unfolded protein response (UPR signaling pathway. A branch of the UPR, known as the ER overload response (EOR, can cause NF-κB activation. Thus, we hypothesized that treatments that cause ER stress and deprivation of other nutrients, such as amino acids, would trigger the expression of angiogenic cytokines by breast cancer cell lines. Results We found that glutamine deprivation and treatment with a chemical inducer of ER stress (tunicamycin caused a marked induction of the secretion of both VEGF and IL-8 protein by a human breast adenocarcinoma cell line (TSE cells. Glutamine deprivation, glucose deprivation and several chemical inducers of ER stress increased VEGF and IL-8 mRNA expression in TSE and other breast cancer cell lines cultured under both normoxic and hypoxic conditions, though hypoxia generally diminished the effects of glucose deprivation. Of all amino acids tested, ambient glutamine availability had the largest effect on VEGF and IL-8 mRNA expression. The induction of VEGF mRNA expression, but not IL-8, was sustained and closely corresponded with the upregulated expression of the ER stress-responsive genes glucose-regulated protein 78 (GRP78 and growth arrest and DNA damage

  1. Duodenal ulcer promoting gene 1 (dupA1) is associated with A2147G clarithromycin-resistance mutation but not interleukin-8 secretion from gastric mucosa in Iraqi patients

    Science.gov (United States)

    Hussein, N.R.; Tunjel, I.; Majed, H.S.; Yousif, S.T.; Aswad, S.I.; Assafi, M.S.

    2015-01-01

    Helicobacter pylori causes peptic ulceration and gastric adenocarcinoma. The aims were to study the influence of dupA1 positivity upon interleukin-8 (IL-8) secretion from gastric mucosa and determine the prevalence of mutations responsible for clarithromycin and fluoroquinolone resistance. DNA was extracted from 74 biopsies and the virulence factors were studied. Levels of IL-8 in gastric mucosa were measured using ELISA and the mutations responsible for clarithromycin and fluoroquinolone resistance were determined using a GenoType-HelicoDR assay. The prevalence of cagA in strains isolated from gastric ulcer (GU) and duodenal ulcer (DU) was significantly higher than those isolated from non-ulcer disease (NUD) (90% and 57.9% versus 33.3%; p 0.01). The vacA s1m1 genotype was more prevalent in patients with DU (73.7%) and GU (70%) than in those with NUD (13.3%) (p 0.01). The prevalence of dupA1 was higher in DU patients (36.8%) than those with GU (10%) and NUD (8.9%) (p 0.01). Multivariate analysis showed that a cagA+/vacA s1i1m2 virulence gene combination was independently associated with the developing peptic ulcer disease (PUD) with increased odds of developing PUD (p 0.03; OR = 2.1). We found no significant difference in the levels of IL-8 secretion in gastric mucosa infected with H. pylori dupA-negative and H. pylori dupA1-positive strains (dupA-negative: mean ± median: 28 ± 26 versus 30 ± 27.1 for dupA1; p 0.6). While 12 strains were clarithromycin resistant, only three isolates were levofloxacin resistant. A significant association was found between dupA1 genotype and A2147G clarithromycin resistance mutation (p <0.01). Further study is needed to explore the relationship between virulence factors and disease process and treatment failure. PMID:26042186

  2. Induction of Interleukin-8 Release from Human Umbilical Vein Endothelial Cells by Trypsin%胰蛋白酶诱导人脐静脉内皮细胞分泌白细胞介素-8

    Institute of Scientific and Technical Information of China (English)

    牛青霞; 陈卓毅; 林洁莲; 郑坚

    2011-01-01

    研究胰蛋白酶对IL-8释放的影响.方法:分离、培养人脐静脉内皮细胞(human umbilical vein endothelial cells,HUVECs)、倒置显微镜观察形态变化,流式细胞术检测内皮细胞标志和蛋白酶活化受体-2(proteinase-activated receptor-2,PAR-2)表达,ELISA检测HUVECs培养上清中IL8水平.结果:HUVECs表达内皮细胞标志和PAR-2.刺激16h,1 g/ml胰蛋白酶和100M PAR-2激活肽组HUVECs单层均匀性降低.胰蛋白酶能够显著刺激HUVECs释放IL-8,PAR-2激活肽也诱导IL-8水平升高.蛋白酶抑制剂和PAR-2抑制肽均能够显著抑制胰蛋白酶诱导的IL-8释放.PAR-2激活肽和胰蛋白酶诱导升高的IL-8水平之间成正相关性.结论:胰蛋白酶很可能通过PAR-2激活促进血管内皮细胞释放IL-8.%Objective: To investigate the effects of trypsin on interleukin-8 release. Methods: Human umbilical vein endothelial cells (HUVECs) were solated, cultured, and the monolayers in apperance were observed by inverted microscope. Expression of endothelial markers and proteinase-activated receptor-2(PAR-2) was detected by flow cytometry, and the IL-8 levels in culture supernants from HUVECs by ELISA. Results: There was the expression of endothelial markers and proteinase-activated receptor-2 (PAR-2). The uniformity of monolayers decreased in HUVECs treated with 1 g/ml trypsin and 100 M PAR-2 peptide. Trypsin was able to up-regulate IL-8 release. A PAR-2 agonist peptide also significantly enhanced IL-8 release. Trypsin-induced IL-8 release was inhibited by proteinase inhibitors, and an inhibitor peptide. There was positive correlation between the IL-8 levels induced by trypsin and PAR-2 agonist peptide. Conclusion: Trypsin promotes IL-8 release most likely through PAR-2 activation.

  3. СHARACTERISTICS OF THE HEART FATTY ACID-BINDING PROTEIN, INTERLEUKIN-6 AND INTERLEUKIN-8 AS ALTERNATIVE MARKERS OF DIABETIC NEPHROPATHY PROGRESSION IN PATIENTS WITH TYPE 1 DIABETES MELLITUS

    Directory of Open Access Journals (Sweden)

    Yu. A. Ryzhikova

    2015-01-01

    Full Text Available The aim of this work was to study the levels of the heart fatty acid-binding protein (h-FABP, interleukin6 (IL-6 and interleukin-8 (IL-8, in diabetic nephropathy (DN in patients with type 1 diabetes mellitus (T1DM. Material and methods. We examined 87 patients aged 18 to 54 with T1DM within the study group. 30 patients with type 1 diabetes were diagnosed with normoalbuminuria, 29 patients – with microalbuminuria and 28 patients – with proteinuria. The control group consisted of 24 healthy donor aged 22 to 29. The comparison group included 22 patients aged 20 to 42 with verified diagnosis of essential arterial hypertension (AH without carbohydrate metabolism disorders. The daily urinary albumin excretion was determined by immunoturbidimetric technique. 30 patients with type 1 diabetes were diagnosed with normoalbuminuria, 29 patients – with microalbuminuria and 28 patients with proteinuria.Calculation of glomerular filtration rate was performed according to the Hoek formula with the use of cystatinС serum concentrations. Contents of h-FABP, IL-6 and cystatin C in serum and h-FABP, IL-8 inurine were determined by enzyme-linked immunosorbent assay. Results. Analysis of the h-FABP content in serum showed that the concentration of this marker in individuals with T1DM was higher than in patients of the control group and the comparison group. Analysis of the h-FABP content in the urine revealed that individuals with essential hypertension showed an increased level of h-FABP while patients with T1DM demonstrated the highest concentration of h-FABP. The concentration of IL-6 inindividuals with T1DM and in individuals with AH significantly exceeded the control values. The contents of h-FABP and IL-6 inserum and h-FABP and IL-8 inurine increased with the progression of DN and reached maximum in individuals of the proteinuria subgroup. At the same time, the levels of h-FABP and IL-8 inthe urine of patients in the microalbuminuria (MAU subgroup were

  4. Interleukin-19 contributes as a protective factor in experimental Th2-mediated colitis.

    Science.gov (United States)

    Fujimoto, Yasuyuki; Azuma, Yasu-Taka; Matsuo, Yukiko; Kuwamura, Mitsuru; Kuramoto, Nobuyuki; Miki, Mariko; Azuma, Naoki; Teramoto, Midori; Nishiyama, Kazuhiro; Izawa, Takeshi; Nakajima, Hidemitsu; Takeuchi, Tadayoshi

    2017-03-01

    Inflammatory bowel disease results from chronic dysregulation of the mucosal immune system and aberrant activation of both the innate and adaptive immune responses. IL-19 is a member of the IL-10 family, and IL-10 plays an important role in inflammatory bowel disease. We have previously shown that IL-19 knockout mice are more susceptible to innate-mediated colitis. Next, we ask whether IL-19 contributes to T cells-mediated colitis. Here, we investigated the role of IL-19 in a mouse model of Th2 cell-mediated colitis. Inflammatory responses in IL-19-deficient mice were assessed using a Th2-mediated colitis induced by oxazolone. The colitis was evaluated by analyzing the body weight loss and histology of the colon. Lymph node cells were cultured in vitro to determine cytokine production. IL-19 knockout mice exacerbated oxazolone-induced colitis by stimulating the transport of inflammatory cells into the colon, and by increasing IgE production and the number of circulating eosinophil. The exacerbation of oxazolone-induced colonic inflammation following IL-19 knockout mice was accompanied by an increased production of IL-4 and IL-9, but no changes in the expression of IL-5 and IL-13 in lymph node cells. IL-19 plays an anti-inflammatory role in the Th2-mediated colitis model, suggesting that IL-19 may represent a potential therapeutic target for reducing colonic inflammation.

  5. Ketamine inhibits transcription factors activator protein 1 and nuclear factor-kappaB, interleukin-8 production, as well as CD11b and CD16 expression: studies in human leukocytes and leukocytic cell lines.

    NARCIS (Netherlands)

    Welters, I.D.; Hafer, G.; Menzebach, A.; Muhling, J.; Neuhauser, C.; Browning, P.; Goumon, Y.

    2010-01-01

    BACKGROUND: Recent data indicate that ketamine exerts antiinflammatory actions. However, little is known about the signaling mechanisms involved in ketamine-induced immune modulation. In this study, we investigated the effects of ketamine on lipopolysaccharide-induced activation of transcription

  6. Ketamine inhibits transcription factors activator protein 1 and nuclear factor-kappaB, interleukin-8 production, as well as CD11b and CD16 expression: studies in human leukocytes and leukocytic cell lines.

    NARCIS (Netherlands)

    Welters, I.D.; Hafer, G.; Menzebach, A.; Muhling, J.; Neuhauser, C.; Browning, P.; Goumon, Y.

    2010-01-01

    BACKGROUND: Recent data indicate that ketamine exerts antiinflammatory actions. However, little is known about the signaling mechanisms involved in ketamine-induced immune modulation. In this study, we investigated the effects of ketamine on lipopolysaccharide-induced activation of transcription fac

  7. Expression and clinical significance of serum interleukin-8 level in patients with oral squamous cell carcinoma%口腔鳞状细胞癌患者血清IL-8的表达及临床意义

    Institute of Scientific and Technical Information of China (English)

    顾文莉; 杨佳佳

    2011-01-01

    PURPOSE: To explore the clinical significance of serum interleukin-8 (IL-8) level in patients with oral squamous cell carcinoma (OSCC). METHODS: Twenty-seven serum specimens pathologically confirmed as OSCC were tested, 10 healthy serum specimens were used as control. The expression of serum IL-8 was measured by ELISA.Data was presented as mean ± standard error. Statistical analysis was performed by SPSS 13.0 software package and two-tailed independent sample t test was used to determine the difference between the two groups. RESULTS: The level of serum IL-8 in OSCC patients was significantly higher than that in the control (P<0.01). The high expression of IL-8 correlated with clinical pathologic stage(P<0.01) and lymph node metastasis (P<0.05). CONCLUSIONS: The expression of serum IL-8 correlates significantly with the biological behavior of OSCC, and it can be used as a prognostic molecular marker for OSCC. Supported by the Third Session of Excellent Youth Foundation of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine.%目的:观察免疫趋化因子白细胞介素8(IL-8)在口腔鳞状细胞癌(oral squamous cell carcinoma,OSCC)患者血清中的表达,探讨其与OSCC临床病理因素的相关性.方法:应用酶联免疫反应(enzyme-linked immunosorbent assay,ELISA)测定27例处于不同临床分期的OSCC患者和10例健康体检者血清中的IL-8水平.检测结果以-x±s表示,应用SPSS 13.0软件包对数据进行t检验.结果:OSCC肿瘤组患者血清IL-8水平显著高于对照组(P<0.01),临床Ⅲ、Ⅳ期OSCC患者血清IL-8水平显著高于Ⅰ、Ⅱ期患者(P<0.01);有颈淋巴结转移的OSCC患者,血清IL-8水平显著高于无转移者(P<0.01).结论:血清IL-8水平与口腔鳞状细胞癌的病理分级、临床分期及淋巴结转移等密切相关,是一种具有应用潜力的OSCC临床检测指标.

  8. 白细胞介素-8-251A/T多态性与宫颈癌的相关性%Association between -251A/T polymorphism of interleukin-8 gene and cervical cancer

    Institute of Scientific and Technical Information of China (English)

    曹党恩; 贺国洋; 鲁霞

    2011-01-01

    Objective To investigate the association between interleukin-8(IL-8) -251A/T polymorphism and cervical cancer. Methods The polymorphism of IL-8 -251A/T were analyzed in 219 patients with cervical cancer (cervical cancer group) and 295 healthy person( control group) by polymerase chain reaction restriction fragment length polymorphism. Results The genetypes of TT, AT and AA were present in both cervical cancer group and control group for IL-8 -251 A/T gene polymorphism. The frequency of each genetype was 31. 1% (TT) ,49. 3% (AT) and 19. 6% ( AA) ,and frequency of each allele was 44.3%(A) and55.7%(T) in cervical cancer group. The frequency of each genetype was 42.7% (TT) ,45. 1% (AT) and 12.2% ( AA) ,and frequency of each allele was 34. 7% (A) and 65. 3% (T) in control group. There were significant differences in genetype and allele frequencies of the IL-8 -251 A/T polymorphism between two groups (χ2 =0.953,572.428; P - 0.09,0.000). Conclusion IL-8 -251 A/T polymorphism may be associated with cervical cancer.%目的 探讨白细胞介素-8(IL-8)-251A/T多态性及mRNA与宫颈癌发病的相关性.方法 采用聚合酶链反应-限制性片段长度多态性方法检测219例宫颈癌患者(宫颈癌组)和295例健康对照者(对照组)IL-8-251A/T多态性.结果 宫颈癌组和对照组均发现IL-8-251A/T位点基因多态性,均可见TT、AT和AA基因型;宫颈癌组TT、AT、AA基因型频率分别为31.1%、49.3%和19.6%,A、T等位基因频率分别为44.3%和55.7%;对照组TT、AT、AA基因型频率分别为42.7%、45.1%和12.2%,T、A等位基因频率分别为65.3%和34.7%;宫颈癌组IL-8-251A/T基因型及等位基因频率与对照组比较,差别有统计学意义(x2=0.953,572.428;P=0.009,0.000).结论 IL-8-251A/T多态性与宫颈癌的发病具有相关性.

  9. Ptch2 mediates the Shh response in Ptch1-/- cells.

    Science.gov (United States)

    Alfaro, Astrid C; Roberts, Brock; Kwong, Lina; Bijlsma, Maarten F; Roelink, Henk

    2014-09-01

    The Hedgehog (Hh) signaling response is regulated by the interaction of three key components that include the sonic hedgehog (Shh) ligand, its receptor patched 1 (Ptch1) and the pathway activator smoothened (Smo). Under the prevailing model of Shh pathway activation, the binding of Shh to Ptch1 (the key Shh receptor) results in the release of Ptch1-mediated inhibition of Smo, leading to Smo activation and subsequent cell-autonomous activation of the Shh response. Consistent with this model, Ptch1(-/-) cells show a strong upregulation of the Shh response. Our finding that this response can be inhibited by the Shh-blocking antibody 5E1 indicates that the Shh response in Ptch1(-/-) cells remains ligand dependent. Furthermore, we find that Shh induces a strong response in Ptch1(-/-);Shh(-/-) cells, and that Ptch1(-/-) fibroblasts retain their ability to migrate towards Shh, demonstrating that Ptch1(-/-) cells remain sensitive to Shh. Expression of a dominant-negative Ptch1 mutant in the developing chick neural tube had no effect on Shh-mediated patterning, but expression of a dominant-negative form of patched 2 (Ptch2) caused an activation of the Shh response. This indicates that, at early developmental stages, Ptch2 functions to suppress Shh signaling. We found that Ptch1(-/-);Ptch2(-/-) cells cannot further activate the Shh response, demonstrating that Ptch2 mediates the response to Shh in the absence of Ptch1.

  10. Inflammatory Signals Enhance Piezo2-Mediated Mechanosensitive Currents

    Directory of Open Access Journals (Sweden)

    Adrienne E. Dubin

    2012-09-01

    Full Text Available Heightened nociceptor function caused by inflammatory mediators such as bradykinin (BK contributes to increased pain sensitivity (hyperalgesia to noxious mechanical and thermal stimuli. Although it is known that sensitization of the heat transducer TRPV1 largely subserves thermal hyperalgesia, the cellular mechanisms underlying mechanical hyperalgesia have been elusive. The role of the mechanically activated (MA channel piezo2 (known as FAM38B present in mammalian sensory neurons is unknown. We test the hypothesis that piezo2 activity is enhanced by BK, an algogenic peptide that induces mechanical hyperalgesia within minutes. Piezo2 current amplitude is increased and inactivation is slowed by bradykinin receptor beta 2 (BDKRB2 activation in heterologous expression systems. Protein kinase A (PKA and protein kinase C (PKC agonists enhance piezo2 activity. BDKRB2-mediated effects are abolished by PKA and PKC inhibitors. Finally, piezo2-dependent MA currents in a class of native sensory neurons are enhanced 8-fold by BK via PKA and PKC. Thus, piezo2 sensitization may contribute to PKA- and PKC-mediated mechanical hyperalgesia.

  11. Determinants of Sir2-Mediated, Silent Chromatin Cohesion.

    Science.gov (United States)

    Chen, Yu-Fan; Chou, Chia-Ching; Gartenberg, Marc R

    2016-08-01

    Cohesin associates with distinct sites on chromosomes to mediate sister chromatid cohesion. Single cohesin complexes are thought to bind by encircling both sister chromatids in a topological embrace. Transcriptionally repressed chromosomal domains in the yeast Saccharomyces cerevisiae represent specialized sites of cohesion where cohesin binds silent chromatin in a Sir2-dependent fashion. In this study, we investigated the molecular basis for Sir2-mediated cohesion. We identified a cluster of charged surface residues of Sir2, collectively termed the EKDK motif, that are required for cohesin function. In addition, we demonstrated that Esc8, a Sir2-interacting factor, is also required for silent chromatin cohesion. Esc8 was previously shown to associate with Isw1, the enzymatic core of ISW1 chromatin remodelers, to form a variant of the ISW1a chromatin remodeling complex. When ESC8 was deleted or the EKDK motif was mutated, cohesin binding at silenced chromatin domains persisted but cohesion of the domains was abolished. The data are not consistent with cohesin embracing both sister chromatids within silent chromatin domains. Transcriptional silencing remains largely intact in strains lacking ESC8 or bearing EKDK mutations, indicating that silencing and cohesion are separable functions of Sir2 and silent chromatin.

  12. A Manganese Superoxide Dismutase (SOD2)-Mediated Adaptive Response

    Science.gov (United States)

    Grdina, David J.; Murley, Jeffrey S.; Miller, Richard C.; Mauceri, Helena J.; Sutton, Harold G.; Thirman, Michael J.; Li, Jian Jian; Woloschak, Gayle E.; Weichselbaum, Ralph R.

    2013-01-01

    Very low doses of ionizing radiation, 5 to 100 mGy, can induce adaptive responses characterized by elevation in cell survival and reduction in micronuclei formation. Utilizing these end points, RKO human colon carcinoma and transformed mouse embryo fibroblasts (MEF), wild-type or knockout cells missing TNF receptors 1 and 2 (TNFR1−R2−), and C57BL/6 and TNFR1−R2− knockout mice, we demonstrate that intact TNF signaling is required for induction of elevated manganese superoxide dismutase (SOD2) activity (P adaptive responses when cells are challenged at a later time with 2 Gy. In contrast, amifostine’s free thiol form WR1065 can directly activate NF-κB giving rise to elevated SOD2 activity 24 h later and induce an adaptive response in both MEF wild-type and TNF signaling defective TNFR1−R2− cells. Transfection of cells with SOD2 siRNA completely abolishes both the elevation in SOD2 activity and expression of the adaptive responses. These results were confirmed in vivo using a micronucleus assay in splenocytes derived from C57BL/6 and TNFR1−R2− knockout mice that were exposed to 100 mGy or 400 mg/kg amifostine 24 h prior to exposure to a 2 Gy whole-body dose. A dose of 100 mGy also conferred enhanced protection to C57BL/6 mice exposed 24 h later to 100 mg/kg of N-Ethyl-N-nitrosourea (ENU). While very low radiation doses require an intact TNF signaling process to induce a SOD2-mediated adaptive response, amifostine can induce a similar adaptive response in both TNF receptor competent and knockout cells, respectively. PMID:23237540

  13. Expression of interleukin 8 in breast cancer tissue and its clinical significance%乳腺癌组织中白细胞介素8表达及其临床意义

    Institute of Scientific and Technical Information of China (English)

    胡紫叶; 周昱; 尼加提·艾尔肯; 匡夏颖; 张晋; 林颖

    2016-01-01

    目的:探讨乳腺癌组织中IL-8表达与临床病理特征的关系及其对患者长期预后的影响。方法回顾性分析1995年1月至2007年12月中山大学附属第一医院296例术前未经过任何治疗的浸润性乳腺癌患者的临床资料。同时收集患者的石蜡标本制作组织芯片,但在芯片制作过程中,有79例因组织块过小或脱落未能获得准确数据,故实际纳入分析的样本量为217例。利用组织芯片技术及免疫组织化学染色方法检测217例乳腺癌组织中IL-8的表达,并采用χ2检验分析IL-8表达与乳腺癌临床病理特征的关系,用Kaplan-Meier法进行生存分析,用Log-rank检验分析IL-8阳性者与阴性者之间DFS及OS的差异,用多因素Cox回归分析IL-8表达对患者DFS的影响。结果217例乳腺癌组织中, IL-8表达阳性者共59例,约占27.2%(59/217)。乳腺癌组织中IL-8的表达与患者肿瘤T分期、淋巴结转移状态、ER和PR状态存在联系(χ2=11.208、5.516、55.642、19.706, P均<0.050)。单因素分析显示,IL-8阳性乳腺癌患者5年及10年DFS率分别为83.6%和66.7%,而IL-8阴性乳腺癌患者5年及10年DFS 率分别为95.4%和87.2%。 IL-8阳性者 DFS 率明显低于 IL-8阴性者(χ2=8.564, P=0.003),但IL-8表达对患者OS的影响尚不明确(χ2=2.460,P=0.117)。多因素分析显示,IL-8是影响乳腺癌患者DFS的独立危险因素( HR=2.450,95%CI:1.117~5.376,P=0.025)。并且,在已绝经的乳腺癌患者中,IL-8阳性患者较阴性患者具有更大的疾病进展风险( HR=4.526,95%CI:1.706~12.006, P=0.002)。结论 IL-8可以作为判断乳腺癌患者预后的参考指标之一。 IL-8阳性者提示预后较差,并且在绝经后的乳腺癌患者中其参考价值更大。%Objective To investigate the correlation between interleukin-8 ( IL-8 ) in breast cancer tissue and clinicopathological

  14. AAV2-mediated in vivo immune gene therapy of solid tumours

    LENUS (Irish Health Repository)

    Collins, Sara A

    2010-12-20

    Abstract Background Many strategies have been adopted to unleash the potential of gene therapy for cancer, involving a wide range of therapeutic genes delivered by various methods. Immune therapy has become one of the major strategies adopted for cancer gene therapy and seeks to stimulate the immune system to target tumour antigens. In this study, the feasibility of AAV2 mediated immunotherapy of growing tumours was examined, in isolation and combined with anti-angiogenic therapy. Methods Immune-competent Balb\\/C or C57 mice bearing subcutaneous JBS fibrosarcoma or Lewis Lung Carcinoma (LLC) tumour xenografts respectively were treated by intra-tumoural administration of AAV2 vector encoding the immune up-regulating cytokine granulocyte macrophage-colony stimulating factor (GM-CSF) and the co-stimulatory molecule B7-1 to subcutaneous tumours, either alone or in combination with intra-muscular (IM) delivery of AAV2 vector encoding Nk4 14 days prior to tumour induction. Tumour growth and survival was monitored for all animals. Cured animals were re-challenged with tumourigenic doses of the original tumour type. In vivo cytotoxicity assays were used to investigate establishment of cell-mediated responses in treated animals. Results AAV2-mediated GM-CSF, B7-1 treatment resulted in a significant reduction in tumour growth and an increase in survival in both tumour models. Cured animals were resistant to re-challenge, and induction of T cell mediated anti-tumour responses were demonstrated. Adoptive transfer of splenocytes to naïve animals prevented tumour establishment. Systemic production of Nk4 induced by intra-muscular (IM) delivery of Nk4 significantly reduced subcutaneous tumour growth. However, combination of Nk4 treatment with GM-CSF, B7-1 therapy reduced the efficacy of the immune therapy. Conclusions Overall, this study demonstrates the potential for in vivo AAV2 mediated immune gene therapy, and provides data on the inter-relationship between tumour

  15. Tailored ceria nanoparticles for CO2 mediated ethylbenzene dehydrogenation

    NARCIS (Netherlands)

    Kovacevic, M.

    2016-01-01

    Styrene production via ethylbenzene dehydrogenation (EBDH) is one of the ten most important petrochemical processes. Possessing highly reactive double bond which facilitates self-polymerization and polymerization with other monomers, styrene is the fourth utmost essential bulk monomer at present.

  16. N6-isopentenyladenosine and analogs activate the NRF2-mediated antioxidant response

    Directory of Open Access Journals (Sweden)

    Alice Dassano

    2014-01-01

    Full Text Available N6-isopentenyladenosine (i6A, a naturally occurring modified nucleoside, inhibits the proliferation of human tumor cell lines in vitro, but its mechanism of action remains unclear. Treatment of MCF7 human breast adenocarcinoma cells with i6A or with three synthetic analogs (allyl6A, benzyl6A, and butyl6A inhibited growth and altered gene expression. About 60% of the genes that were differentially expressed in response to i6A treatment were also modulated by the analogs, and pathway enrichment analysis identified the NRF2-mediated oxidative stress response as being significantly modulated by all four compounds. Luciferase reporter gene assays in transfected MCF7 cells confirmed that i6A activates the transcription factor NRF2. Assays for cellular production of reactive oxygen species indicated that i6A and analogs had antioxidant effects, reducing basal levels and inhibiting the H2O2- or 12-O-tetradecanoylphorbol-13-acetate (TPA-induced production in MCF7 or dHL-60 (HL-60 cells induced to differentiate along the neutrophilic lineage cell lines, respectively. In vivo, topical application of i6A or benzyl6A to mouse ears prior to TPA stimulation lessened the inflammatory response and significantly reduced the number of infiltrating neutrophils. These results suggest that i6A and analogs trigger a cellular response against oxidative stress and open the possibility of i6A and benzyl6A being used as topical anti-inflammatory drugs.

  17. Nod2-mediated recognition of the microbiota is critical for mucosal adjuvant activity of cholera toxin

    Science.gov (United States)

    Kim, Donghyun; Kim, Yun-Gi; Seo, Sang-Uk; Kim, Dong-Jae; Kamada, Nobuhiko; Prescott, Dave; Philpott, Dana J.; Rosenstiel, Philip; Inohara, Naohiro; Núñez, Gabriel

    2016-01-01

    Cholera toxin (CT) is a potent adjuvant for inducing mucosal immune responses. However, the mechanism by which CT induces adjuvant activity remains unclear. Here we show that the microbiota is critical for inducing antigen-specific IgG production after intranasal immunization. After mucosal vaccination with CT, both antibiotic-treated mice and germ-free (GF) had reduced antigen-specific IgG, recall-stimulated cytokine responses, an impaired follicular helper T (TFH) response and reduced plasma cells. Recognition of symbiotic bacteria via Nod2 in CD11c+ cells was required for the adjuvanticity of CT. Reconstitution of GF mice with a Nod2 agonist or Staphylococcus sciuri having high Nod2-stimulatory activity was sufficient to promote robust CT adjuvant activity whereas bacteria with low Nod2-stimulatory activity did not. Mechanistically, CT enhanced Nod2-mediated cytokine production in DCs via intracellular cAMP. These results show an important role for the microbiota and the intracellular receptor Nod2 in promoting the mucosal adjuvant activity of CT. PMID:27064448

  18. 急性A型主动脉夹层血清白细胞介素-6、8的变化及其与急性肺损伤的相关性%Variation of interleukin -6, interleukin-8 in serum of patients with acute type A aortic dissection, and its relationship with acute lung injury

    Institute of Scientific and Technical Information of China (English)

    黄相; 何黎; 王科科

    2016-01-01

    Objective To investigate the variation of interleukin-6, interleukin-8 in serum of patients with acute type A aortic dissection, and the relationship between the occurrence of acute lung injury and level of interleukin-6, interleukin-8. Methods 85 patients with acute type A aortic dissection cured in our hospital from Jun 2014 to May 2016 were divided into acute lung injury group ( 26 cases, oxygenation index≤200 mmHg ) and non-lung injury group ( 59 cases, oxygenation index>200 mmHg) according to the oxygenation index of static oxygen(PaO2/FiO2).The serum interleukin-6, interleukin-8 of all patients was detected every 4 hours after admitted to the hospital, and the Spearman correlation analysis was conducted. Results On admission, the difference of serum interleukin-6, interleukin-8 between two groups was not significant ( P >0.05).The peak levels of IL-6, IL-8 in patients with acute lung injury were significantly higher than those in non-lung injury group (P<0.05).The serum interleukin -6, IL-8 level of acute type A aortic dissection patients was closely related with lung injury (r=-8.564, r=-7.544, P<0.05).Conclusion The abnormal expression of serum interleukin -6,8 will increase the risk of acute lung injury of patients with acute type A aortic dissection .%目的:探讨急性A型主动脉夹层患者血清中白细胞介素IL-6,IL-8的变化及其与急性肺损伤的相关性。方法将2014年6月至2016年5月在我院诊治的85例急性主动脉夹层患者,按静态吸氧状态下氧合指数( PaO2/FiO2)分为急性肺损伤组26例(氧合指数≤200 mmHg,1 mmHg=0.133 kPa)及非肺损伤组59例(氧合指数>200 mmHg)。所有患者入院后每4 h检测IL-6、IL-8、氧合指数,并进行Spearman相关性分析。结果入院时两组IL-6、IL-8水平差异均无统计学意义( P>0.05);急性肺损伤组IL-6、IL-8峰值水平均显著高于非肺损伤组( P<0.05)。急性A型主动脉夹层患者血清IL-6

  19. Glucose availability is a decisive factor for Nrf2-mediated gene expression

    Directory of Open Access Journals (Sweden)

    Elke H. Heiss

    2013-01-01

    Full Text Available Activation of the transcription factor Nrf2 (nuclear factor-erythroid 2-related factor 2 is one of the major cellular defense lines against oxidative and xenobiotic stress, but also influences genes involved in lipid and glucose metabolism. It is unresolved whether the cytoprotective and metabolic responses mediated by Nrf2 are connected or separable events in non-malignant cells. In this study we show that activation of Nrf2, either by the small molecule sulforaphane or knockout of the Nrf2 inhibitor Keap1, leads to increased cellular glucose uptake and increased glucose addiction in fibroblasts. Upon Nrf2 activation glucose is preferentially metabolized through the pentose phosphate pathway with increased production of NADPH. Interference with the supply of glucose or the pentose phosphate pathway and NADPH generation not only hampers Nrf2-mediated detoxification of reactive oxygen species on the enzyme level but also Nrf2-initiated expression of antioxidant defense proteins, such as glutathione reductase and heme-oxygenase1. We conclude that the Nrf2-dependent protection against oxidative stress relies on an intact pentose phosphate pathway and that there is crosstalk between metabolism and detoxification already at the level of gene expression in mammalian cells.

  20. Gut Microbiota Promotes Obesity-Associated Liver Cancer through PGE2-Mediated Suppression of Antitumor Immunity.

    Science.gov (United States)

    Loo, Tze Mun; Kamachi, Fumitaka; Watanabe, Yoshihiro; Yoshimoto, Shin; Kanda, Hiroaki; Arai, Yuriko; Nakajima-Takagi, Yaeko; Iwama, Atsushi; Koga, Tomoaki; Sugimoto, Yukihiko; Ozawa, Takayuki; Nakamura, Masaru; Kumagai, Miho; Watashi, Koichi; Taketo, Makoto M; Aoki, Tomohiro; Narumiya, Shuh; Oshima, Masanobu; Arita, Makoto; Hara, Eiji; Ohtani, Naoko

    2017-05-01

    Obesity increases the risk of cancers, including hepatocellular carcinomas (HCC). However, the precise molecular mechanisms through which obesity promotes HCC development are still unclear. Recent studies have shown that gut microbiota may influence liver diseases by transferring its metabolites and components. Here, we show that the hepatic translocation of obesity-induced lipoteichoic acid (LTA), a Gram-positive gut microbial component, promotes HCC development by creating a tumor-promoting microenvironment. LTA enhances the senescence-associated secretory phenotype (SASP) of hepatic stellate cells (HSC) collaboratively with an obesity-induced gut microbial metabolite, deoxycholic acid, to upregulate the expression of SASP factors and COX2 through Toll-like receptor 2. Interestingly, COX2-mediated prostaglandin E2 (PGE2) production suppresses the antitumor immunity through a PTGER4 receptor, thereby contributing to HCC progression. Moreover, COX2 overexpression and excess PGE2 production were detected in HSCs in human HCCs with noncirrhotic, nonalcoholic steatohepatitis (NASH), indicating that a similar mechanism could function in humans.Significance: We showed the importance of the gut-liver axis in obesity-associated HCC. The gut microbiota-driven COX2 pathway produced the lipid mediator PGE2 in senescent HSCs in the tumor microenvironment, which plays a pivotal role in suppressing antitumor immunity, suggesting that PGE2 and its receptor may be novel therapeutic targets for noncirrhotic NASH-associated HCC. Cancer Discov; 7(5); 522-38. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 443. ©2017 American Association for Cancer Research.

  1. Pulmonary Proteases in the Cystic Fibrosis Lung Induce Interleukin 8 Expression from Bronchial Epithelial Cells via a Heme/Meprin/Epidermal Growth Factor Receptor/Toll-like Receptor Pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2011-03-04

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from ΔF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, α(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  2. Pulmonary proteases in the cystic fibrosis lung induce interleukin 8 expression from bronchial epithelial cells via a heme/meprin/epidermal growth factor receptor/Toll-like receptor pathway.

    LENUS (Irish Health Repository)

    Cosgrove, Sonya

    2012-02-01

    A high intrapulmonary protease burden is characteristic of cystic fibrosis (CF), and the resulting dysregulation of the protease\\/anti-protease balance has serious implications for inflammation in the CF lung. Because of this inflammation, micro-bleeds can occur releasing hemoglobin into the lung. The aim of this study was to investigate the effect of the protease-rich environment of the CF lung on human hemoglobin and to assess the proinflammatory effect of heme on CF bronchial epithelium. Here, we show that the Pseudomonas proteases (Pseudomonas elastase and alkaline protease) and the neutrophil proteases (neutrophil elastase (NE) and proteinase-3) are capable of almost complete degradation of hemoglobin in vitro but that NE is the predominant protease that cleaves hemoglobin in vivo in CF bronchoalveolar lavage fluid. One of the effects of this is the release of heme, and in this study we show that heme stimulates IL-8 and IL-10 protein production from DeltaF508 CFBE41o(-) bronchial epithelial cells. In addition, heme-induced IL-8 expression utilizes a novel pathway involving meprin, EGF receptor, and MyD88. Meprin levels are elevated in CF cell lines and bronchial brushings, thus adding to the proinflammatory milieu. Interestingly, alpha(1)-antitrypsin, in addition to its ability to neutralize NE and protease-3, can also bind heme and neutralize heme-induced IL-8 from CFBE41o(-) cells. This study illustrates the proinflammatory effects of micro-bleeds in the CF lung, the process by which this occurs, and a potential therapeutic intervention.

  3. The influences on gingival sulcus Crevicularinterleuin-1β and interleukin-8 by porcelain fused to metal crown%简述非贵金属烤瓷冠对龈沟内白细胞介素-1β和白细胞介素-8的影响

    Institute of Scientific and Technical Information of China (English)

    宫海环; 宋艾阳; 方滕姣子; 朱红华; 孙晗; 鞠昊; 张宇娜

    2015-01-01

    In the clinical application of porcelain fused to metal crown, the situation like bleeding gums, swelling, gingival discoloration and bad breath often happens. Recently, the researchers study and compare the effects of metal on regional tissue from different angles. Because of PFM alloy casting release ions and deposit on the surface of teeth and gums, may cause certain stimulation to the periodontal tissue where contact with the PFM alloy casting, promote the development of gingival inflammation, this is the important factors causing the periodontal damage after repair. In this case, the quantity and quality of gingival crevicular fluid is very important which is one of periodontal health status indicators. In recent years, researchers detect a variety of inflammatory medium and regulating inflammation factors, including Crevicularinterleuin-1β(IL-1β) which has been recognized play a very important role in periodontal disease. Other researchers study found:, The level of Interleukin 8 (interleukin - 8, IL - 8) in the periodontal pathogen carriers’ gingival crevicular fluid is significant correlation with gingivitis, periodontal pocket depth and bleeding index. The present application of PFM crown, the effect of PFM crown to IL-1βand IL – 8 in gingival crevicular fluid and the impact on the periodontal tissue are reviewed in this article.%烤瓷熔附金属全冠对局部牙龈在临床应用中出现修复后牙龈出血、红肿、龈缘变黑及口腔异味等情况,使近来学者从各个角度来研究和比较各金属对局部牙龈的影响。由于烤瓷铸造合金在口腔内可释放出离子并沉积于牙体表面和牙龈,对与其接触的牙周组织造成一定的刺激,促进牙龈炎症发展,这是引起修复后牙周损伤的重要因素。而作为牙周组织健康状态指标之一的龈沟液在这种情况下的量与质也非常重要。近年来已有许多学者在龈沟液内检测出多种炎症介质和炎症调节

  4. Microscopic evidence for Ca(2+) mediated pectin-pectin interactions in carrot-based suspensions.

    Science.gov (United States)

    Kyomugasho, Clare; Willemsen, Katleen L D D; Christiaens, Stefanie; Van Loey, Ann M; Hendrickx, Marc E

    2015-12-01

    This study explored the use of fluorescently labeled pectin to obtain evidence for Ca(2+) mediated pectin-pectin interactions in situ. Specifically, carrots were either blanched at low temperature (LTB) or blanched at high temperature (HTB) to activate or inactivate endogenous pectin methylesterase, respectively. Consequently, pectin in tissue particles of LTB and HTB carrots exhibited low degree of methylesterification (DM) and high DM, respectively. Pectin present in the LTB carrot serum exhibited a lower DM, was more branched, and showed a higher molar mass compared to HTB carrot serum pectin. Ca(2+) mediated pectin-pectin interactions were influenced by serum pectin molecular structure, increased with increasing pH and Ca(2+) concentration, and decreasing DM. Presence of more linear pectin in the serum created a competition, leading to less intense interactions between labeled pectin and pectin at tissue particle surfaces. Generally, the most intense Ca(2+) mediated pectin-pectin interactions were observed for pectin of LTB carrot particles.

  5. Interleukin-5 modulates interleukin-8 secretion in eosinophilic inflammation

    Directory of Open Access Journals (Sweden)

    L. H. Faccioli

    1998-01-01

    Full Text Available Serum and BALF (bronchoalveolar lavage fluid IL-8 levels and serum levels were investigated in Tox ocara canis infected guinea-pigs and the role of IL-5 as a modulator of cytokine secretion was studied. Serum levels increased early in infected animals, exceeding control levels 4 h after infection, peaked between days 6 and 18, and continued to exceed control levels after 48 days of infection. Serum and BALF IL-8 levels showed the same profile as blood eosinophilia, increasing 6 days post-infection and peaking between days 18 and 24. Treatment of infected animals with anti-IL-5 Ab suppressed eosinophilia with a parallel increase in blood IL-8 levels, whereas no change was found in levels. To support our in vivo observation we carried out experiments in vitro using guinea-pig LPS-stimulated adherent peritoneal cells which release large amounts of IL-8 into the supernatants. When rIL-5 was added to LPS-stimulated cells, 65% inhibition of IL-8 release into the supernatants was observed. Pre-incubation of cells with anti-IL-5 Ab prevented the inhibition of IL-8 release into the supernatants induced by rIL-5. Our results demonstrate for the first time that TNF- α and IL-8 are released concomitant with or after IL-5 in the eosinophilic inflammation induced by T. canis . Moreover, in addition to showing that IL-5 is fundamental for the induction of blood eosinophilia, the present results suggest that this cytokine may play a new biological role by acting as modulator of IL-8 secretion.

  6. Epithelial interleukin-8 responses to oral bacterial biofilms.

    Science.gov (United States)

    Peyyala, R; Kirakodu, S; Novak, K F; Ebersole, J L

    2011-10-01

    An in vitro model of bacterial biofilms on rigid gas-permeable contact lenses (RGPLs) was developed to challenge oral epithelial cells. This novel model provided seminal data on oral biofilm-host cell interactions, and with selected bacteria, the biofilms were more effective than their planktonic counterparts at stimulating host cell responses.

  7. Identification of interleukin-8 converting enzyme as cathepsin L.

    Science.gov (United States)

    Ohashi, Kensaku; Naruto, Masanobu; Nakaki, Toshio; Sano, Emiko

    2003-06-26

    IL-8 is produced by various cells, and the NH(2)-terminal amino acid sequence of IL-8 displays heterogeneity among cell types. The mature form of IL-8 has 72 amino acids (72IL-8), while a precursor form (77IL-8) of IL-8 has five additional amino acids to the 72IL-8 NH(2)-terminal. However, it has been unclear how IL-8 is processed to yield the mature form. In this study, converting enzyme was purified as a single 31-kDa band on silver-stained polyacrylamide gel from 160 l of cultured fibroblast supernatant by sequential chromatography. NH(2)-terminal amino acid sequence analysis revealed a sequence, EAPRSVDWRE, which was identified as a partial sequence of cathepsin L. Polyclonal antibodies raised against cathepsin L recognized the purified converting enzyme on Western blot. Moreover, human hepatic cathepsin L cleaved 77IL-8 between Arg(5) and Ser(6), which is the same cleavage site as the putative converting enzyme, resulting in 72IL-8 formation. These data indicate that the converting enzyme of the partially purified fraction of the human fibroblast culture supernatant was cathepsin L. Furthermore, 72IL-8 was sevenfold more potent than 77IL-8 in a neutrophil chemotaxis assay. These results show that cathepsin L is secreted from human fibroblasts in response to external stimuli and plays an important role in IL-8 processing in inflammatory sites.

  8. Interleukin-8 enhances the effect of colchicine on cell death.

    Science.gov (United States)

    Yokoyama, Chikako; Yajima, Chika; Machida, Tetsuro; Kawahito, Yuji; Uchida, Marie; Hisatomi, Hisashi

    2017-03-25

    Pro-inflammatory cytokines are known to be generated in tumors and play important roles in angiogenesis, mitosis, and tumor progression. However, few studies have investigated the synergistic effects of pro-inflammatory cytokines and anticancer drugs on cell death. In the present study, we examined the combined effects of pro-inflammatory cytokines and colchicine on cell death of cancer cells. Colchicine induces G2/M arrest in the cell cycle by binding to tubulin, one of the main constituents of microtubules. SUIT-2 human pancreatic cancer cell line cells overexpressing pro-inflammatory cytokines, including interleukin (IL)-1β, IL-8, and tumor necrosis factor (TNF)-α, were treated with colchicine. The effect of colchicine on cell death was enhanced in cells overexpressing IL-8. Moreover, the effect of colchicine on cell death was enhanced in cells overexpressing two IL-8 up-regulators, NF-κB and IL-6, but not in cells overexpressing an IL-8 down-regulator, splicing factor proline/glutamine-rich (SFPQ). Synergistic effects of IL-8 and colchicine were also observed in cells overexpressing IL-8 isoforms lacking the signal peptide. Therefore, IL-8 appeared to function as an enhancer of cell death in cancer cells treated with colchicine. The present results suggest a new role for IL-8 related to cell death of cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Effect of protease inhibitor on interleukin -8,SIRS score and leucocytes during perioperative period in patients receiving cardiac surgery with extracorporeal circulation%体外循环心脏手术中蛋白酶抑制剂对围术期IL -8、SIRS评分及白细胞的影响

    Institute of Scientific and Technical Information of China (English)

    石佳; 张喆; 李军; 吕红; 何爱霞; 薛庆华; 王古岩; 肖文静; 李立环

    2012-01-01

    目的 探讨体外循环心脏手术中蛋白酶抑制剂对围术期白细胞介素-8(IL-8)、全身炎症反应综合征(SIRS)评分及白细胞计数和分类的影响.方法 300例择期体外循环冠脉旁路移植术或瓣膜置换术患者,随机分为2组各150例.试验组于麻醉诱导后、肝素化后以及鱼精蛋白中和后,分别给予乌司他丁各100万单位,对照组则给予等量生理盐水.2组分别于手术开始前(T1)、手术结束即刻(T2)、术后8 h(T3)、术后16 h(T4)、术后24 h(T5)、术后48 h(T6)和术后72 h(T7)使用ELISA方法检验血浆IL-8浓度、评估患者SIRS评分并检验白细胞计数和中性粒细胞百分比.结果 IL-8浓度自T2即开始显著升高.在2组中的达峰时间分别为T4和T5.至术后72 h,试验组IL -8浓度降至术前水平,对照组IL-8浓度仍显著高于术前水平.自T3至T7试验组IL-8浓度均显著低于对照组.SIRS评分自T2开始升高,至T3达到峰值后逐渐下降.至T7,SIRS评分仍显著高于术前水平.自T3至T6,试验组SIRS评分始终显著低于对照组.白细胞计数自T2即显著升高,至T3达到峰值,随后逐渐下降.中性粒细胞比例自T2即显著升高,且持续至T7未有显著下降.自T3至T6,试验组白细胞计数显著低于对照组,自T3至T7,试验组中性粒细胞百分比显著低于对照组.结论 乌司他丁可显著降低体外循环心脏手术围术期IL-8浓度、SIRS评分及白细胞计数和中性粒细胞比例.%To evaluate the impact of protease inhibitor on interleukin -8, systemic inflammatory response syndrome (SIRS) score and white blood cell count and classification in patients receiving cardiac surgery with extracorporeal circulation. Methods A total of 300 elective patients receiving on - pump coronary artery bypass grafting or valve replacement were randomly assigned to two groups; trial group (n = 150) and control group (n = 150). The patients in trial group was administered ulinastatin 1 000 000 units

  10. The significance of exhaled nitric oixde and interleukin-8 in exhaled breath condensate in the chronic obstructive pulmonary disease%检测呼出气一氧化氮和呼出气冷凝液中白介素-8在慢性阻塞性肺疾病中的临床意义

    Institute of Scientific and Technical Information of China (English)

    刘冬; 许西琳; 辛雯艳; 将雪龙; 鲁德玕

    2016-01-01

    目的:探讨呼出气一氧化氮(fraction of exhaled nitric oxide,FeNO)和呼出气冷凝液(exhaled breath condensate,EBC)中白介素-8(interleukin-8,IL-8)在慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)病情评估中的意义.方法:选择81例COPD急性加重期到COPD稳定期患者作为观察组,78例健康者为对照组,比较两组肺功能,FeNO水平和EBC中的IL-8的水平.结果:观察组中COPD急性加重期FeNO、IL-8水平均高于稳定期(P<0.05);COPD稳定期FeNO、IL-8水平均高于对照组(P<0.05);观察组FeNO、IL-8水平均高于对照组(P<0.05);相关分析发现FeNO与IL-8呈正相关.结论:FeNO、EBC中的IL-8可能在COPD的发生及发展过程中起到重要作用,可能成为反映COPD患者病情严重程度的指标.

  11. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    Science.gov (United States)

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8–/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8–/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  12. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology.

    Directory of Open Access Journals (Sweden)

    Yashaswini Kannan

    2016-08-01

    Full Text Available Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8-/-mice was observed in mice with myeloid cell-specific (LysM deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8-/-M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis.

  13. Solar photolysis versus TiO2-mediated solar photocatalysis: a kinetic study of the degradation of naproxen and diclofenac in various water matrices.

    Science.gov (United States)

    Kanakaraju, Devagi; Motti, Cherie A; Glass, Beverley D; Oelgemöller, Michael

    2016-09-01

    Given that drugs and their degradation products are likely to occur as concoctions in wastewater, the degradation of a mixture of two nonsteroidal anti-inflammatory drugs (NSAIDs), diclofenac (DCF) and naproxen (NPX), was investigated by solar photolysis and titanium dioxide (TiO2)-mediated solar photocatalysis using an immersion-well photoreactor. An equimolar ratio (1:1) of both NSAIDs in distilled water, drinking water, and river water was subjected to solar degradation. Solar photolysis of the DCF and NPX mixture was competitive particularly in drinking water and river water, as both drugs have the ability to undergo photolysis. However, the addition of TiO2 in the mixture significantly enhanced the degradation rate of both APIs compared to solar photolysis alone. Mineralization, as measured by chemical oxygen demand (COD), was incomplete under all conditions investigated. TiO2-mediated solar photocatalytic degradation of DCF and NPX mixtures produced 15 identifiable degradants corresponding to degradation of the individual NSAIDs, while two degradation products with much higher molecular weight than the parent NSAIDs were identified by liquid chromatography mass spectrometry (LC-MS) and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). This study showed that the solar light intensity and the water matrix appear to be the main factors influencing the overall performance of the solar photolysis and TiO2-mediated solar photocatalysis for degradation of DCF and NPX mixtures.

  14. Cigarette smoke regulates VEGFR2-mediated survival signaling in rat lungs

    Directory of Open Access Journals (Sweden)

    Stevenson Christopher S

    2010-02-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF and VEGF receptor 2 (VEGFR2-mediated survival signaling is critical to endothelial cell survival, maintenance of the vasculature and alveolar structure and regeneration of lung tissue. Reduced VEGF and VEGFR2 expression in emphysematous lungs has been linked to increased endothelial cell death and vascular regression. Previously, we have shown that CS down-regulated the VEGFR2 and its downstream signaling in mouse lungs. However, the VEGFR2-mediated survival signaling in response to oxidants/cigarette smoke (CS is not known. We hypothesized that CS exposure leads to disruption of VEGFR2-mediated endothelial survival signaling in rat lungs. Methods Adult male Sprague-Dawley rats were exposed CS for 3 days, 8 weeks and 6 months to investigate the effect of CS on VEGFR2-mediated survival signaling by measuring the Akt/PI3-kinase/eNOS downstream signaling in rat lungs. Results and Discussion We show that CS disrupts VEGFR2/PI3-kinase association leading to decreased Akt and eNOS phosphorylation. This may further alter the phosphorylation of the pro-apoptotic protein Bad and increase the Bad/Bcl-xl association. However, this was not associated with a significant lung cell death as evidenced by active caspase-3 levels. These data suggest that although CS altered the VEGFR2-mediated survival signaling in the rat lungs, but it was not sufficient to cause lung cell death. Conclusion The rat lungs exposed to CS in acute, sub-chronic and chronic levels may be representative of smokers where survival signaling is altered but was not associated with lung cell death whereas emphysema is known to be associated with lung cell apoptosis.

  15. Multidrug Resistance-Associated Protein 2 (MRP2) Mediated Transport of Oxaliplatin-Derived Platinum in Membrane Vesicles.

    Science.gov (United States)

    Myint, Khine; Li, Yan; Paxton, James; McKeage, Mark

    2015-01-01

    The platinum-based anticancer drug oxaliplatin is important clinically in cancer treatment. However, the role of multidrug resistance-associated protein 2 (MRP2) in controlling oxaliplatin membrane transport, in vivo handling, toxicity and therapeutic responses is unclear. In the current study, preparations of MRP2-expressing and control membrane vesicles, containing inside-out orientated vesicles, were used to directly characterise the membrane transport of oxaliplatin-derived platinum measured by inductively coupled plasma mass spectrometry. Oxaliplatin inhibited the ATP-dependent accumulation of the model MRP2 fluorescent probe, 5(6)-carboxy-2,'7'-dichlorofluorescein, in MRP2-expressing membrane vesicles. MRP2-expressing membrane vesicles accumulated up to 19-fold more platinum during their incubation with oxaliplatin and ATP as compared to control membrane vesicles and in the absence of ATP. The rate of ATP-dependent MRP2-mediated active transport of oxaliplatin-derived platinum increased non-linearly with increasing oxaliplatin exposure concentration, approaching a plateau value (Vmax) of 2680 pmol Pt/mg protein/10 minutes (95%CI, 2010 to 3360 pmol Pt/mg protein/10 minutes), with the half-maximal platinum accumulation rate (Km) at an oxaliplatin exposure concentration of 301 μM (95% CI, 163 to 438 μM), in accordance with Michaelis-Menten kinetics (r2 = 0.954). MRP2 inhibitors (myricetin and MK571) reduced the ATP-dependent accumulation of oxaliplatin-derived platinum in MRP2-expressing membrane vesicles in a concentration-dependent manner. To identify whether oxaliplatin, or perhaps a degradation product, was the likely substrate for this active transport, HPLC studies were undertaken showing that oxaliplatin degraded slowly in membrane vesicle incubation buffer containing chloride ions and glutathione, with approximately 95% remaining intact after a 10 minute incubation time and a degradation half-life of 2.24 hours (95%CI, 2.08 to 2.43 hours). In

  16. Identification of microRNAs that regulate TLR2-mediated trophoblast apoptosis and inhibition of IL-6 mRNA.

    Directory of Open Access Journals (Sweden)

    Manish Garg

    Full Text Available While infection-induced placental inflammation is a common mechanism of adverse pregnancy outcome, some pathogens can also trigger placental apoptosis, and Toll-like receptors (TLRs mediate this response. Treatment of human first trimester trophoblast cells with bacterial peptidoglycan (PDG reduces their constitutive secretion of IL-6 protein and induces apoptosis. This apoptotic response is dependent upon the cell's expression of TLR1, TLR2 and TLR10, and their lack of TLR6, such that ectopic expression of TLR6 prevents PDG-induced apoptosis and restores IL-6 production. In this current study we have identified three microRNAs (miRs that regulate TLR2-mediated responses in the human trophoblast. Herein we report that miR-329 plays a pivotal role in mediating PDG-induced trophoblast apoptosis and inhibition of IL-6 mRNA expression by targeting the NF-κB subunit, p65. TLR2 activation by PDG upregulates miR-329 expression and inhibits NF-κB p65 and IL-6 mRNA, and this is reversed by the presence of TLR6. Moreover, inhibition of miR-329 prevents PDG-induced inhibition of NF-κB p65 and IL-6 mRNA expression, and restores cell survival. In addition, we have found miR-23a and let-7c to directly regulate PDG-mediated inhibition of IL-6 mRNA. TLR2 activation by PDG upregulates miR23a and let-7c expression and this is reversed by the presence of TLR6. Furthermore, inhibition of both miR23a and let-7c prevents PDG-inhibition of trophoblast IL-6 mRNA expression. Together, our findings suggest that multiple miRs are involved in the molecular regulation of TLR2-mediated responses in the trophoblast towards gram-positive bacterial components.

  17. Simplified dark matter models with a spin-2 mediator at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, Sabine [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Laa, Ursula [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); LAPTh, Universite Savoie Mont Blanc, CNRS, B.P.110, Annecy Cedex (France); Mawatari, Kentarou [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Brussels (Belgium); Yamashita, Kimiko [Ochanomizu University, Department of Physics, Graduate School of Humanities and Sciences, and Program for Leading Graduate Schools, Tokyo (Japan)

    2017-05-15

    We consider simplified dark matter models where a dark matter candidate couples to the standard model (SM) particles via an s-channel spin-2 mediator, and study constraints on the model parameter space from the current LHC data. Our focus lies on the complementarity among different searches, in particular monojet and multijet plus missing-energy searches and resonance searches. For universal couplings of the mediator to SM particles, missing-energy searches can give stronger constraints than WW, ZZ, dijet, dihiggs, t anti t, b anti b resonance searches in the low-mass region and/or when the coupling of the mediator to dark matter is much larger than its couplings to SM particles. The strongest constraints, however, come from diphoton and dilepton resonance searches. Only if these modes are suppressed, missing-energy searches can be competitive in constraining dark matter models with a spin-2 mediator. (orig.)

  18. Reversal of in vitro cellular MRP1 and MRP2 mediated vincristine resistance by the flavonoid myricetin

    NARCIS (Netherlands)

    Zanden, van J.J.; Mul, de A.; Wortelboer, H.M.; Usta, M.; Bladeren, van P.J.; Rietjens, I.M.C.M.; Cnubben, N.H.P.

    2005-01-01

    In the present study, the effects of myricetin on either MRP1 or MRP2 mediated vincristine resistance in transfected MDCKII cells were examined. The results obtained show that myricetin can inhibit both MRP1 and MRP2 mediated vincristine efflux in a concentration dependent manner. The IC50 values fo

  19. Analysis of Effects of Inhalation of Budesonide and Formoterol and TNF-Levels in Patients with Stable COPD Induced Sputum Interleukin-8%吸入布地奈德福莫特罗对稳定期COPD患者诱导痰白介素-8、TNF-α水平的影响

    Institute of Scientific and Technical Information of China (English)

    韩桂枝; 黄树红; 勾洪良; 周主华; 张冬梅

    2015-01-01

    Objective To observe the influence of inhalation budesonide and formoterol to the stable chronic obstructive pulmonary disease(COPD)patients in induced sputum interleukin-8,TNF-αlevel. Methods 58 patients were chosen with stable COPD,and a group of 26 cases were chosen to the health control.Patients who were diagnosed with stable COPD inhaled budesonide and formoterol,and 3 months was for a course of treatment.To test the patients before and after treatment with sputum induction levels of TNF-α,IL-8 and pulmonary function.Results After a period of treatment,patients with COPD in induced sputum supernatant of TNF-α,IL-8 levels significantly decreased ( <0.01),compared with treatment before.The pulmonary function index (FEFV1%pre,FEV1/FVC%,PEF)of the patients improved significantly ( <0.01)after the treatment.Conclusion Inhaling budesonide formoterol obviously improves the pulmonary function in patients with stable COPD,and reduces the expression levels of TNF-αand IL-8.%目的观察吸入布地奈德福莫特罗对稳定期慢性阻塞性肺疾病(COPD)患者诱导痰中白介素-8、TNF-α水平的影响。方法选择COPD稳定期患者58例,健康对照组26例。 COPD稳定期患者吸入布地奈德福莫特罗,3个月为1疗程。检测患者治疗前后诱导痰中TNF-a、IL-8水平并进行肺功能测定。结果1个疗程后,与治疗前相比,COPD患者诱导痰上清液中TNF-a、IL-8的水平明显降低(<0.01)。治疗后患者肺功能指标(FEFV1%pre,FEV1/FVC%,PEF)明显改善(<0.01)。结论吸入布地奈德福莫特罗可明显改善稳定期COPD患者的肺功能,降低IL-8、TNF-a的表达水平。

  20. 红霉素抑制A549细胞中鼻病毒14介导的白介素8和MUC5AC的分泌%Inhibition of erythromycin on rhinovirus-14-induced interleukin-8 and MUC5AC secretion in A549 cells

    Institute of Scientific and Technical Information of China (English)

    吴超民; 罗志兵; 沈策

    2009-01-01

    Objective To examine the effect of erythromycin on rhinovirus-14 (RV14)-induced cytokines and airway mucin hypersecretion. Methods A549 cells were pre-incubated with medium containing 10 μmol/L erythromycin for three hours before RV14 infection. Immunoreactive interleukin-8 (IL-8) and MUC5AC were quantitated using dual antibody ELISA kits according to the manufacturer's protocol. And activated p44/42MAPK was tested by Western blot. Results Erythromycin blocked the hypersecretion of IL-8 and MUC5AC protein, and the activation of p44/42MAPK induced by RV14 in the A549 cells.Conclusions Erythromyein may inhibit RV14-indueed IL-8 and MUC5AC hypersecretion by blocking the p44/42MAPK pathway or its upstream regulators.%目的 探讨红霉素是否对鼻病毒14(RV14)介导的细胞因子产生和气道黏液高分泌有抑制作用.方法 EM预处理肺泡Ⅱ型上皮细胞A549 3h后,用RV14刺激细胞,然后采用酶联免疫吸附试验法检测细胞培养上清中细胞因子白介素8和细胞裂解液中黏液蛋白MUC5AC的浓度,并用Western blot检测磷酸化p44/42MAPK信号分子变化情况.结果 红霉索明显抑制RV14介导的白介素8和MUC5AC的产生和分泌,并且对RV14介导的p44/42MAPK的激活也有抑制作用.结论 红霉素可有效抑制RV14介导的细胞因子和黏液蛋白的产生和分泌,并且这种抑制作用可能是通过阻断p44/42MAPK信号分子的激活来实现的.

  1. 白细胞介素-8基因781C/T多态性与迟发性阿尔茨海默病遗传易感性的关系研究%The relationship study between interleukin-8 gene polymorphism and genetic susceptibility of late-onset Alzheimer's disease

    Institute of Scientific and Technical Information of China (English)

    刘梅; 张玲; 贺飞燕

    2012-01-01

    Objective To explore the relationship between interleukin-8( IL-8 ) gene 781C/T polymorphism and late-onset Alzheimer' s disease( LOAD ). Methods Polymorphism distribution of IL-8 gene 781 C/T in 80 cases LOAD and 80 normal controls were detected by polymerase chain reaction-restriction fragment length polymorphism ( PCR-RFLP )analysis. Results ① Genotype frequencies of IL-8 gene 781 C/T: CC, CT and TT genotypes in LOAD group were 26. 3% , 38. 8% and 34. 9% , respectively, they were 26. 3% , 43. 6% and 30. 1% in the control group respectively, comparison with two groups, there were significant difference ( x2 =0. 550, P =0. 760 ). ② Allele frequencies of IL-8 gene 781 C/T,in LOAD group C and T allele frequencies were 45. 6% and 54. 4% , and in control group C and T were 48. 1% and 51. 9% respectively, comparison with two groups, there were significant difference ( x2 =0- 201, P =0. 654 ). Conclusion IL-8 gene 781 C/T polymorphism probably has no relation with LOAD.%目的 探讨白细胞介素-8(IL-8)基因781C/T多态性与新疆汉族迟发性阿尔茨海默病(LOAD)遗传易感性的关系.方法 采用聚合酶链反应-限制性片段长度多态性(PCR-RFLP)方法检测80例LOAD患者与80例正常人IL-8基因781C/T多态性分布.结果 ①在IL-8 基因781C/T基因型频率分布:LOAD组CC、CT、TT基因型分别为26.3%、38.8%、34.9%,对照组CC、CT、TT基因型分别为26.3%、43.6%、30.1%,两组比较差异无统计学意义(χ2=0.550,P=0.760);② LOAD组C、T等位基因频率分别为45.6%、54.4%,对照组C、T分别为48.1%、51.9%,两组比较差异无统计学意义(χ2=0.201,P=0.654).结论 IL-8基因781C/T多态性可能与LOAD易感性无关.

  2. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis.

    Science.gov (United States)

    Nemoto, Eiji; Ebe, Yukari; Kanaya, Sousuke; Tsuchiya, Masahiro; Nakamura, Takashi; Tamura, Masato; Shimauchi, Hidetoshi

    2012-06-15

    Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through β-catenin-dependent canonical and β-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent pathway.

  3. Wnt5a signaling is a substantial constituent in bone morphogenetic protein-2-mediated osteoblastogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Nemoto, Eiji, E-mail: e-nemoto@dent.tohoku.ac.jp [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Ebe, Yukari; Kanaya, Sousuke [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tsuchiya, Masahiro [Department of Aging and Geriatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Nakamura, Takashi [Department of Pediatric Dentistry, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan); Tamura, Masato [Department of Biochemistry and Molecular Biology, Hokkaido University Graduate School of Dentistry, Sapporo 060-8586 (Japan); Shimauchi, Hidetoshi [Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, Sendai 980-8575 (Japan)

    2012-06-15

    Highlights: Black-Right-Pointing-Pointer Wnt5a is identified in osteoblasts in tibial growth plate and bone marrow. Black-Right-Pointing-Pointer Osteoblastic differentiation is associated with increased expression of Wnt5a/Ror2. Black-Right-Pointing-Pointer Wnt5a/Ror2 signaling is important for BMP-2-mediated osteoblastic differentiation. Black-Right-Pointing-Pointer Wnt5a/Ror2 operates independently of BMP-Smad pathway. -- Abstract: Wnts are secreted glycoproteins that mediate developmental and post-developmental physiology by regulating cellular processes including proliferation, differentiation, and apoptosis through {beta}-catenin-dependent canonical and {beta}-catenin-independent noncanonical pathway. It has been reported that Wnt5a activates noncanonical Wnt signaling through receptor tyrosine kinase-like orphan receptor 2 (Ror2). Although it appears that Wnt5a/Ror2 signaling supports normal bone physiology, the biological significance of noncanonical Wnts in osteogenesis is essentially unknown. In this study, we identified expression of Wnt5a in osteoblasts in the ossification zone of the tibial growth plate as well as bone marrow of the rat tibia as assessed by immunohistochemistry. In addition, we show that osteoblastic differentiation mediated by BMP-2 is associated with increased expression of Wnt5a and Ror2 using cultured pre-osteoblasts, MC3T3-E1 cells. Silencing gene expression of Wnt5a and Ror2 in MC3T3-E1 cells results in suppression of BMP-2-mediated osteoblastic differentiation, suggesting that Wnt5a and Ror2 signaling are of substantial importance for BMP-2-mediated osteoblastic differentiation. BMP-2 stimulation induced phosphorylation of Smad1/5/8 in a similar fashion in both siWnt5a-treated cells and control cells, suggesting that Wnt5a was dispensable for the phosphorylation of Smads by BMP-2. Taken together, our results suggest that Wnt5a/Ror2 signaling appears to be involved in BMP-2-mediated osteoblast differentiation in a Smad independent

  4. The Fusarium oxysporum effector Six6 contributes to virulence and suppresses I-2-mediated cell death.

    Science.gov (United States)

    Gawehns, F; Houterman, P M; Ichou, F Ait; Michielse, C B; Hijdra, M; Cornelissen, B J C; Rep, M; Takken, F L W

    2014-04-01

    Plant pathogens secrete effectors to manipulate their host and facilitate colonization. Fusarium oxysporum f. sp. lycopersici is the causal agent of Fusarium wilt disease in tomato. Upon infection, F. oxysporum f. sp. lycopersici secretes numerous small proteins into the xylem sap (Six proteins). Most Six proteins are unique to F. oxysporum, but Six6 is an exception; a homolog is also present in two Colletotrichum spp. SIX6 expression was found to require living host cells and a knockout of SIX6 in F. oxysporum f. sp. lycopersici compromised virulence, classifying it as a genuine effector. Heterologous expression of SIX6 did not affect growth of Agrobacterium tumefaciens in Nicotiana benthamiana leaves or susceptibility of Arabidopsis thaliana toward Verticillium dahliae, Pseudomonas syringae, or F. oxysporum, suggesting a specific function for F. oxysporum f. sp. lycopersici Six6 in the F. oxysporum f. sp. lycopersici- tomato pathosystem. Remarkably, Six6 was found to specifically suppress I-2-mediated cell death (I2CD) upon transient expression in N. benthamiana, whereas it did not compromise the activity of other cell-death-inducing genes. Still, this I2CD suppressing activity of Six6 does not allow the fungus to overcome I-2 resistance in tomato, suggesting that I-2-mediated resistance is independent from cell death.

  5. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells.

    Science.gov (United States)

    Shin, Min Hwa; He, Yunlong; Marrogi, Eryney; Piperdi, Sajida; Ren, Ling; Khanna, Chand; Gorlick, Richard; Liu, Chengyu; Huang, Jing

    2016-02-01

    The inactivation of p53 creates a major challenge for inducing apoptosis in cancer cells. An attractive strategy is to identify and subsequently target the survival signals in p53 defective cancer cells. Here we uncover a RUNX2-mediated survival signal in p53 defective cancer cells. The inhibition of this signal induces apoptosis in cancer cells but not non-transformed cells. Using the CRISPR technology, we demonstrate that p53 loss enhances the apoptosis caused by RUNX2 knockdown. Mechanistically, RUNX2 provides the survival signal partially through inducing MYC transcription. Cancer cells have high levels of activating histone marks on the MYC locus and concomitant high MYC expression. RUNX2 knockdown decreases the levels of these histone modifications and the recruitment of the Menin/MLL1 (mixed lineage leukemia 1) complex to the MYC locus. Two inhibitors of the Menin/MLL1 complex induce apoptosis in p53 defective cancer cells. Together, we identify a RUNX2-mediated epigenetic mechanism of the survival of p53 defective cancer cells and provide a proof-of-principle that the inhibition of this epigenetic axis is a promising strategy to kill p53 defective cancer cells.

  6. Regulation of DNA Methylation Patterns by CK2-Mediated Phosphorylation of Dnmt3a

    Directory of Open Access Journals (Sweden)

    Rachel Deplus

    2014-08-01

    Full Text Available DNA methylation is a central epigenetic modification that is established by de novo DNA methyltransferases. The mechanisms underlying the generation of genomic methylation patterns are still poorly understood. Using mass spectrometry and a phosphospecific Dnmt3a antibody, we demonstrate that CK2 phosphorylates endogenous Dnmt3a at two key residues located near its PWWP domain, thereby downregulating the ability of Dnmt3a to methylate DNA. Genome-wide DNA methylation analysis shows that CK2 primarily modulates CpG methylation of several repeats, most notably of Alu SINEs. This modulation can be directly attributed to CK2-mediated phosphorylation of Dnmt3a. We also find that CK2-mediated phosphorylation is required for localization of Dnmt3a to heterochromatin. By revealing phosphorylation as a mode of regulation of de novo DNA methyltransferase function and by uncovering a mechanism for the regulation of methylation at repetitive elements, our results shed light on the origin of DNA methylation patterns.

  7. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Xuemei Liao

    Full Text Available Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1 in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2. Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  8. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Science.gov (United States)

    Liao, Xuemei; Zhou, Xuelin; Mak, Nai-ki; Leung, Kwok-nam

    2013-01-01

    Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1) in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2). Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  9. TLR2 mediates gap junctional intercellular communication through connexin-43 in intestinal epithelial barrier injury.

    Science.gov (United States)

    Ey, Birgit; Eyking, Annette; Gerken, Guido; Podolsky, Daniel K; Cario, Elke

    2009-08-14

    Gap junctional intercellular communication (GJIC) coordinates cellular functions essential for sustaining tissue homeostasis; yet its regulation in the intestine is not well understood. Here, we identify a novel physiological link between Toll-like receptor (TLR) 2 and GJIC through modulation of Connexin-43 (Cx43) during acute and chronic inflammatory injury of the intestinal epithelial cell (IEC) barrier. Data from in vitro studies reveal that TLR2 activation modulates Cx43 synthesis and increases GJIC via Cx43 during IEC injury. The ulcerative colitis-associated TLR2-R753Q mutant targets Cx43 for increased proteasomal degradation, impairing TLR2-mediated GJIC during intestinal epithelial wounding. In vivo studies using mucosal RNA interference show that TLR2-mediated mucosal healing depends functionally on intestinal epithelial Cx43 during acute inflammatory stress-induced damage. Mice deficient in TLR2 exhibit IEC-specific alterations in Cx43, whereas administration of a TLR2 agonist protects GJIC by blocking accumulation of Cx43 and its hyperphosphorylation at Ser368 to prevent spontaneous chronic colitis in MDR1alpha-deficient mice. Finally, adding the TLR2 agonist to three-dimensional intestinal mucosa-like cultures of human biopsies preserves intestinal epithelial Cx43 integrity and polarization ex vivo. In conclusion, Cx43 plays an important role in innate immune control of commensal-mediated intestinal epithelial wound repair.

  10. A RUNX2-Mediated Epigenetic Regulation of the Survival of p53 Defective Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Min Hwa Shin

    2016-02-01

    Full Text Available The inactivation of p53 creates a major challenge for inducing apoptosis in cancer cells. An attractive strategy is to identify and subsequently target the survival signals in p53 defective cancer cells. Here we uncover a RUNX2-mediated survival signal in p53 defective cancer cells. The inhibition of this signal induces apoptosis in cancer cells but not non-transformed cells. Using the CRISPR technology, we demonstrate that p53 loss enhances the apoptosis caused by RUNX2 knockdown. Mechanistically, RUNX2 provides the survival signal partially through inducing MYC transcription. Cancer cells have high levels of activating histone marks on the MYC locus and concomitant high MYC expression. RUNX2 knockdown decreases the levels of these histone modifications and the recruitment of the Menin/MLL1 (mixed lineage leukemia 1 complex to the MYC locus. Two inhibitors of the Menin/MLL1 complex induce apoptosis in p53 defective cancer cells. Together, we identify a RUNX2-mediated epigenetic mechanism of the survival of p53 defective cancer cells and provide a proof-of-principle that the inhibition of this epigenetic axis is a promising strategy to kill p53 defective cancer cells.

  11. Contribution of basophils to cutaneous immune reactions and Th2-mediated allergic responses

    Directory of Open Access Journals (Sweden)

    Atsushi eOtsuka

    2015-08-01

    Full Text Available Basophils are potent effector cells of innate immunity and also play a role in T helper 2 (Th2-mediated allergic responses. But, although their in vitro functions are well studied, their in vivo functions remain largely unknown. However, several mouse models of basophil depletion have recently been developed and used to investigate basophil functions. For example, in a croton oil-induced model of irritant contact dermatitis in conditionally basophil-depleted transgenic mice, we found that basophils rapidly infiltrate inflamed skin and subsequently induce infiltration of eosinophils. We also showed that basophils induce Th2 skewing upon epicutaneous sensitization with various haptens and peptide antigens. Intriguingly, basophils also promoted Th2 polarization upon protein antigen exposure in the presence of dendritic cells (DCs. The dermal DC subset associated with Th2 skewing was recently identified as CD301b+ DC. Such studies with basophil-deficient mouse models have significantly improved our understanding of the mechanisms involved in human immune-related diseases. In this review, we will focus on the relative contribution of basophils and DCs to Th2-mediated allergic responses.

  12. Influence of HNO3/H3PO4-NANO2 mediated oxidation on the structure and properties of cellulose fibers.

    Science.gov (United States)

    Xu, Yunhui; Liu, Xin; Liu, Xuelan; Tan, Jiulong; Zhu, Hongling

    2014-10-13

    The bamboo pulp cellulose fiber was oxidized with HNO3/H3PO4-NaNO2 mixture to obtain oxidized cellulose containing different levels of carboxyl content and with high yields. The effects of HNO3/H3PO4-NaNO2 mediated oxidation on structure and properties of the fiber were investigated. The results showed that an increase in carboxyl content and weight loss of oxidized fibers appeared with increasing oxidation time. Compared with the original cellulose, the oxidized fibers had lower crystallinity (29-40%) and thermal stability. The patterns of (13)C NMR, X-ray diffraction and other testing methods revealed that the oxidation mostly occurred at C6 primary hydroxyl groups of cellulose. Moreover, an oxidized fiber with 94.14-98.59% of high yields and 1.13-3.56% of carboxyl content was obtained in the range of oxidation time from 15 to 60 min, while its mechanical properties did not change significantly. This work presented some detailed information about structure-property correlations of oxidized bamboo pulp cellulose fibers and was useful in planning applications of these products.

  13. AGE-RAGE interaction in the TGFβ2-mediated epithelial to mesenchymal transition of human lens epithelial cells.

    Science.gov (United States)

    Raghavan, Cibin T; Nagaraj, Ram H

    2016-08-01

    Basement membrane (BM) proteins accumulate chemical modifications with age. One such modification is glycation, which results in the formation of advanced glycation endproducts (AGEs). In a previous study, we reported that AGEs in the human lens capsule (BM) promote the TGFβ2-mediated epithelial-to-mesenchymal transition (EMT) of lens epithelial cells, which we proposed as a mechanism for posterior capsule opacification (PCO) or secondary cataract formation. In this study, we investigated the role of a receptor for AGEs (RAGE) in the TGFβ2-mediated EMT in a human lens epithelial cell line (FHL124). RAGE was present in FHL124 cells, and its levels were unaltered in cells cultured on either native or AGE-modified BM or upon treatment with TGFβ2. RAGE overexpression significantly enhanced the TGFβ2-mediated EMT responses in cells cultured on AGE-modified BM compared with the unmodified matrix. In contrast, treatment of cells with a RAGE antibody or EN-RAGE (an endogenous ligand for RAGE) resulted in a significant reduction in the TGFβ2-mediated EMT response. This was accompanied by a reduction in TGFβ2-mediated Smad signaling and ROS generation. These results imply that the interaction of matrix AGEs with RAGE plays a role in the TGFβ2-mediated EMT of lens epithelial cells and suggest that the blockade of RAGE could be a strategy to prevent PCO and other age-associated fibrosis.

  14. LIM and SH3 protein-1 modulates CXCR2-mediated cell migration.

    Directory of Open Access Journals (Sweden)

    Dayanidhi Raman

    Full Text Available BACKGROUND: The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as "CXCR2 chemosynapse". Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1, binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2. CONCLUSIONS/SIGNIFICANCE: We demonstrate here for the first time that LASP-1 is a key component of the "CXCR2 chemosynapse" and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and

  15. LIM and SH3 protein-1 modulates CXCR2-mediated cell migration.

    Science.gov (United States)

    Raman, Dayanidhi; Sai, Jiqing; Neel, Nicole F; Chew, Catherine S; Richmond, Ann

    2010-04-19

    The chemokine receptor CXCR2 plays a pivotal role in migration of neutrophils, macrophages and endothelial cells, modulating several biological responses such as angiogenesis, wound healing and acute inflammation. CXCR2 is also involved in pathogenesis of chronic inflammation, sepsis and atherosclerosis. The ability of CXCR2 to associate with a variety of proteins dynamically is responsible for its effects on directed cell migration or chemotaxis. The dynamic network of such CXCR2 binding proteins is termed as "CXCR2 chemosynapse". Proteomic analysis of proteins that co-immunoprecipitated with CXCR2 in neutrophil-like dHL-60 cells revealed a novel protein, LIM and SH3 protein 1 (LASP-1), binds CXCR2 under both basal and ligand activated conditions. LASP-1 is an actin binding cytoskeletal protein, involved in the cell migration. We demonstrate that CXCR2 and LASP-1 co-immunoprecipitate and co-localize at the leading edge of migrating cells. The LIM domain of LASP-1 directly binds to the carboxy-terminal domain (CTD) of CXCR2. Moreover, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4. Using a site-directed and deletion mutagenesis approach, Iso323-Leu324 of the conserved LKIL motif on CXCR2-CTD was identified as the binding site for LASP-1. Interruption of the interaction between CXCR2-CTD and LIM domain of LASP-1 by dominant negative and knock down approaches inhibited CXCR2-mediated chemotaxis. Analysis for the mechanism for inhibition of CXCR2-mediated chemotaxis indicated that LASP-1/CXCR2 interaction is essential for cell motility and focal adhesion turnover involving activation of Src, paxillin, PAK1, p130CAS and ERK1/2. We demonstrate here for the first time that LASP-1 is a key component of the "CXCR2 chemosynapse" and LASP-1 interaction with CXCR2 is critical for CXCR2-mediated chemotaxis. Furthermore, LASP-1 also directly binds the CTD of CXCR1, CXCR3 and CXCR4, suggesting that LASP-1 is a general mediator of CXC chemokine mediated chemotaxis

  16. FASN, ErbB2-mediated glycolysis is required for breast cancer cell migration.

    Science.gov (United States)

    Zhou, Lan; Jiang, Sufang; Fu, Qiang; Smith, Kelly; Tu, Kailing; Li, Hua; Zhao, Yuhua

    2016-05-01

    Both fatty acid synthase (FASN) and ErbB2 have been shown to promote breast cancer cell migration. However, the underlying molecular mechanism remains poorly understood and there is no reported evidence that directly links glycolysis to breast cancer cell migration. In this study, we investigated the role of FASN, ErbB2-mediated glycolysis in breast cancer cell migration. First, we compared lactate dehydrogenase A (LDHA) protein levels, glycolysis and cell migration between FASN, ErbB2-overexpressing SK-BR-3 cells and FASN, ErbB2-low-expressing MCF7 cells. Then, SK-BR-3 cells were treated with cerulenin (Cer), an inhibitor of FASN, and ErbB2, LDHA protein levels, glycolysis, and cell migration were detected. Next, we transiently transfected ErbB2 plasmid into MCF7 cells and detected FASN, LDHA protein levels, glycolysis and cell migration. Heregulin-β1 (HRG-β1) is an activator of ErbB2 and 2-deoxyglucose (2-DG) and oxamate (OX) are inhibitors of glycolysis. MCF7 cells were treated with HRG-β1 alone, HRG-β1 plus 2-DG, OX or cerulenin and glycolysis, and cell migration were measured. We found that FASN, ErbB2-high-expressing SK-BR-3 cells displayed higher levels of glycolysis and migration than FASN, ErbB2-low-expressing MCF7 cells. Inhibition of FASN by cerulenin impaired glycolysis and migration in SK-BR-3 cells. Transient overexpression of ErbB2 in MCF7 cells promotes glycolysis and migration. Moreover, 2-deoxyglucose (2-DG), oxamate (OX), or cerulenin partially reverses heregulin-β1 (HRG-β1)-induced glycolysis and migration in MCF7 cells. In conclusion, this study demonstrates that FASN, ErbB2-mediated glycolysis is required for breast cancer cell migration. These novel findings indicate that targeting FASN, ErbB2-mediated glycolysis may be a new approach to reverse breast cancer cell migration.

  17. Effects of Celecoxib on Interleukin-6 and Interleukin-8 Levels in Xenografted Nude Mice with Human Triple-negative Breast Cancer%塞来昔布对人三阴性乳腺癌裸鼠体内白细胞介素6和白细胞介素8水平的影响

    Institute of Scientific and Technical Information of China (English)

    王玲; 李杰; 张璟; 曹娜娜; 单保恩

    2012-01-01

    Objective To evaluate the effects of celecoxib on interleukin-6 (IL-6) and interleukin-8 (IL-8 ) expression in established nude mice with human triple-negative breast cancer (TNBC). Methods Human TNBC MDA-MB-231 cells were injected into BALB/c nude mice subcutaneously. The mice were randomly divided into 4 groups,including the control group and three celecoxib groups (receiving 25,50,100 mg·kg-1·d-1,respectively). On the 42nd day,the tumor volume and tumor weight were measured and growth curves were analyzed. The serum level of IL-6 and IL-8 was detected by ELBA assay. The mRNAs and protein levels of IL-6 and IL-8 in tumor tissues were measured by RT-PCR and immunohistochemistry, respectively. Results Compared with control group, celecoxib at doses of 25,50 and 100 mg ·kg-1·d-' inhibited the tumor growth significantly (P < 0.05). The serum levels of IL-6 and IL-8 were notably decreased in different cele- coxib treatment groups. Meanwhile, the gene expression of IL-6 and IL-8 in tumor tissues was also markedly suppressed after celecoxib treatment. Conclusion Celecoxib can inhibit the secretion and expression of IL-6 and IL-8, thus preventing the progress of TNBC in vivo.%目的探讨塞来昔布对人三阴性乳腺癌(TNBC)裸鼠体内白细胞介素6(IL-6)和IL-8水平的影响.方法 人TNBC细胞MDA-MB-231接种于裸鼠背部皮下,建立人TNBC裸鼠移植瘤模型.随机分为对照组和塞来昔布低、中、高剂量组.42 d后观察裸鼠一般状况的变化、用药前后肿瘤生长情况及肿瘤质量变化;ELISA法检测各组裸鼠血清中IL-6和IL-8含量的变化;RT-PCR检测肿瘤组织中IL-6和IL-8 mRNA的变化;免疫组化法检测肿瘤组织中IL-6和IL-8蛋白表达的变化.结果 塞来昔布各组肿瘤大小和瘤重较对照组均明显减小,差异均有统计学意义(P<0.05).经塞来昔布治疗后,塞来昔布低、中、高剂量组裸鼠血清中IL-6和IL-8的含量明显降低,与对照组

  18. IL-6、IL-8在不同潮气量单肺通气肺癌根治术中的表达%Effect of One-lung Ventilation of Different Tidal Volume on the Expressions of Interleukin-6 and Interleukin-8 in Lung Cancer Patients during Radical Operation

    Institute of Scientific and Technical Information of China (English)

    林飞; 潘灵辉; 钱卫; 黄宇; 杜学柯; 裴圣林

    2012-01-01

    目的 观察在肺癌根治术中不同潮气量(VT)的单肺通气(OLV)对血IL-6、IL-8表达的影响.方法 30例行肺癌根治术患者,用随机数字表法分为3组.行双腔支气管插管麻醉,术中单肺通气期间在保持分钟通气量不变的情况下,A组VT=10 ml/kg,呼吸频率(f)=12次/min,B组VT=8 ml/kg,f=15次/min,C组VT=6 ml/kg,f=20次/min.在OLV前(T1)、OLV后30 min(T2)、60 min(T3)、OLV结束前(T4)检测血IL-6、IL-8的表达.结果 3组在T2、T3、T4时点的IL-6、IL-8表达均明显高于T1(P<0.05),且随OLV时间延长而逐渐升高;OLV后随设定的潮气量减低,IL-6及IL-8表达逐渐降低; A组的IL-6、IL-8表达显著高于B、C组(P<0.05).结论 在单肺通气的肺癌根治术中,采用小潮气量的通气模式可减少肺内炎症反应.%Objective To study effect of one-lung ventilation( OLV ) of different tidal volume( VT ) on the expressions of serum interleukin-6( IL-6 ) and interleukin-8( IL-8 ) in lung cancer patients during radical operation. Methods Thirty lung cancer patients undergoing radical operation were enrolled in the study. All the patients received double-lumen endobronchial intubation anesthesia, and were randomly divided into three groups after one-lung ventilation during radical operation: Group A( VT = 10 ml/kg, respiratory frequency( f ) = 12/min ), Group B( VT = 8 ml/kg, f = 12/min ), Group C( VT =6 ml/kg,f = 12/min ). The expressions of serum IL-6,IL-8 were detected before OLV( T1 ),30 min after OLV ( T2 ),60 min after OLV ( T3 ),1 min before OLV ending( T4 ). Results Compared with T1 ,the expressions of IL-6,IL-8 on T2 ,T3 ,T4 significantly increased in three groups( P <0. 05 ),and the increase was in a time-dependent manner. The expressions of IL-6, IL-8 gradually decreased with VT reduction during OLV. The expressions of IL-6, IL-8 in Group A were significantly higher than those in Group B, C( P < 0. 05 ). Conclusion The ventilation mode of low tidal volume can reduce the pulmonary

  19. 3种金属烤瓷冠修复后龈沟液中白细胞介素-8水平动态测定%Determination of the dynamic levels of interleukin-8 in gingival crevicular fluid of porcelain teeth with three different alloys

    Institute of Scientific and Technical Information of China (English)

    许卫星; 苏俭生

    2012-01-01

    目的 探讨镍铬合金、钴铬合金、金合金3组金属烤瓷冠修复前后不同时期龈沟液(GCF)内白细胞介素-8(IL-8)水平变化,了解这3种金属烤瓷冠在不同时期对牙龈的刺激程度.方法 临床随机选择3种金属烤瓷冠修复患者共45例,每组各15例,测定在修复前以及修复后1、3、6个月GCF量,并采用双抗体夹心酶联免疫吸附法检测同期GCF中IL-8总量、IL-8含量.结果 镍铬合金烤瓷冠在修复1、3、6个月后GCF量、IL-8总量与修复前相比差异均有统计学意义(P<0.05).钴铬合金、金合金烤瓷冠在修复3个月后回复到修复前水平.3种金属烤瓷冠IL-8含量在不同时期差异均无统计学意义.结论 IL-8参与炎症的免疫调节,可作为评价不同金属烤瓷冠对牙龈组织刺激程度的指标,不同合金烤瓷冠内冠材料对牙龈存在不同的长期刺激,临床金属烤瓷冠修复时对内冠材料的选择应予以关注.%Objective To study the interleukin-8 (IL-8) levels in gingival crevicular fluid (GCF) of porcelain teeth coated with Ni-Cr, Co-Cr or gold alloy at different time periods, and to uncover the degree of stimulation by these alloys on gingiva at different time periods. Methods 45 cases of porcelain teeth coated with Ni-Cr, Co-Cr or gold alloy were selected randomly, with 15 cases in each group. Sandwich enzyme-linked immunosorbent assay (ELISA) was used to determine the concentration and total amount of IL-8 in GCF. The assay was done before treatment, as well as at 1, 3 and 6 months post-treatment. Results The total amounts of IL-8 and GCF volume in the Ni-Cr alloy coated porcelain teeth were higher in different time period than those before treatment (P<0.05). However, the IL-8 levels in Co-Cr and gold alloy coated porcelain teeth returned to pre-dental restoration after 3 months. Otherwise, the levels of IL-8 concentration in GCF showed no significant difference among the three different alloys coating at different

  20. Salmonella Disrupts Host Endocytic Trafficking by SopD2-Mediated Inhibition of Rab7

    Directory of Open Access Journals (Sweden)

    Vanessa M. D’Costa

    2015-09-01

    Full Text Available Intracellular bacterial pathogens of a diverse nature share the ability to evade host immunity by impairing trafficking of endocytic cargo to lysosomes for degradation, a process that is poorly understood. Here, we show that the Salmonella enterica type 3 secreted effector SopD2 mediates this process by binding the host regulatory GTPase Rab7 and inhibiting its nucleotide exchange. Consequently, this limits Rab7 interaction with its dynein- and kinesin-binding effectors RILP and FYCO1 and thereby disrupts host-driven regulation of microtubule motors. Our study identifies a bacterial effector capable of directly binding and thereby modulating Rab7 activity and a mechanism of endocytic trafficking disruption that may provide insight into the pathogenesis of other bacteria. Additionally, we provide a powerful tool for the study of Rab7 function, and a potential therapeutic target.

  1. Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling

    DEFF Research Database (Denmark)

    Baljinnyam, Erdene; Umemura, Masanari; Chuang, Christine

    2014-01-01

    Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma....... Therefore, we examined whether Epac1 regulates FGF2-mediated cell-cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase...... in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached...

  2. Recent Progress in TiO2-Mediated Solar Photocatalysis for Industrial Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Tong Zhang

    2014-01-01

    Full Text Available The current paper reviews the application of TiO2-mediated solar photocatalysis for industrial wastewater treatment, starting with a brief introduction on the background of industrial wastewater and the development of wastewater treatment processes, especially advanced oxidation processes (AOPs. We, then, discuss the application of solar TiO2 photocatalysis in treating different kinds of industrial wastewater, such as paper mill wastewater, textile wastewater, and olive mill wastewater. In the end, we compare solar TiO2 photocatalysis with other AOPs in terms of effectiveness, energy, and chemical consumption. Personal perspectives are also given, which may provide new insights to the future development of TiO2 photocatalysis for industrial wastewater.

  3. Muscle metaboreflex activation during dynamic exercise evokes epinephrine release resulting in β2-mediated vasodilation.

    Science.gov (United States)

    Kaur, Jasdeep; Spranger, Marty D; Hammond, Robert L; Krishnan, Abhinav C; Alvarez, Alberto; Augustyniak, Robert A; O'Leary, Donal S

    2015-03-01

    Muscle metaboreflex-induced increases in mean arterial pressure (MAP) during submaximal dynamic exercise are mediated principally by increases in cardiac output. To what extent, if any, the peripheral vasculature contributes to this rise in MAP is debatable. In several studies, we observed that in response to muscle metaboreflex activation (MMA; induced by partial hindlimb ischemia) a small but significant increase in vascular conductance occurred within the nonischemic areas (calculated as cardiac output minus hindlimb blood flow and termed nonischemic vascular conductance; NIVC). We hypothesized that these increases in NIVC may stem from a metaboreflex-induced release of epinephrine, resulting in β2-mediated dilation. We measured NIVC and arterial plasma epinephrine levels in chronically instrumented dogs during rest, mild exercise (3.2 km/h), and MMA before and after β-blockade (propranolol; 2 mg/kg), α1-blockade (prazosin; 50 μg/kg), and α1 + β-blockade. Both epinephrine and NIVC increased significantly from exercise to MMA: 81.9 ± 18.6 to 141.3 ± 22.8 pg/ml and 33.8 ± 1.5 to 37.6 ± 1.6 ml·min(-1)·mmHg(-1), respectively. These metaboreflex-induced increases in NIVC were abolished after β-blockade (27.6 ± 1.8 to 27.5 ± 1.7 ml·min(-1)·mmHg(-1)) and potentiated after α1-blockade (36.6 ± 2.0 to 49.7 ± 2.9 ml·min(-1)·mmHg(-1)), while α1 + β-blockade also abolished any vasodilation (33.7 ± 2.9 to 30.4 ± 1.9 ml·min(-1)·mmHg(-1)). We conclude that MMA during mild dynamic exercise induces epinephrine release causing β2-mediated vasodilation.

  4. Insights into the molecular mechanism of RGL2-mediated inhibition of seed germination in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Stamm Petra

    2012-10-01

    Full Text Available Abstract Background Seed germination is of immense significance for agriculture and has been studied for centuries. Yet, our understanding of the molecular mechanisms underlying regulation of dormancy and germination is still in its infancy. Gibberellins are the key phytohormones that promote germination, and the DELLA protein RGL2 is the main signalling intermediate involved in this response. Germination is completely inhibited if functional RGL2 is overexpressed and/or stabilized; however, the molecular mechanisms of RGL2 function are still largely unknown. We therefore attempted to shed light onto some of the genetic events downstream of RGL2. Results Gene ontology of the transcriptome differentially regulated by RGL2, as well as extensive cross-comparison with other available microarray data indicates that RGL2-mediated inhibition of germination causes seeds to enter a state of dormancy. RGL2 also appears to differentially regulate a number of transcription factors, many of which are known to be involved in light- or phytohormone-mediated aspects of germination. A promoter analysis of differentially expressed genes identified an enrichment of several motifs that can be bound by specific transcription factors, for example GAMYB, ARF1, or Dof-type zinc fingers. We show that Dof-binding motifs indeed play a role in RGL2-mediated transcription. Using Chromatin Immunoprecipitation (ChIP, we show that RGL2 directly downregulates at least one cell wall modifying enzyme, which is predicted to constrain cell growth thereby leading to inhibition of seed germination. Conclusions Our results reveal that RGL2 controls various aspects of germination. Through the repression of cell wall modifying enzymes, cell growth is directly constrained to inhibit germination. Furthermore, RGL2 likely interacts with various types of proteins to regulate transcription, and differentially regulates several transcription factors. Collectively, our data indicate that

  5. Chikungunya virus non-structural protein 2-mediated host shut-off disables the unfolded protein response.

    Science.gov (United States)

    Fros, Jelke J; Major, Lee D; Scholte, Florine E M; Gardner, Joy; van Hemert, Martijn J; Suhrbier, Andreas; Pijlman, Gorben P

    2015-03-01

    The unfolded protein response (UPR) is a cellular defence mechanism against high concentrations of misfolded protein in the endoplasmic reticulum (ER). In the presence of misfolded proteins, ER-transmembrane proteins PERK and IRE1α become activated. PERK phosphorylates eIF2α leading to a general inhibition of cellular translation, whilst the expression of transcription factor ATF4 is upregulated. Active IRE1α splices out an intron from XBP1 mRNA, to produce a potent transcription factor. Activation of the UPR increases the production of several proteins involved in protein folding, degradation and apoptosis. Here, we demonstrated that transient expression of chikungunya virus (CHIKV) (family Togaviridae, genus Alphavirus) envelope glycoproteins induced the UPR and that CHIKV infection resulted in the phosphorylation of eIF2α and partial splicing of XBP1 mRNA. However, infection with CHIKV did not increase the expression of ATF4 and known UPR target genes (GRP78/BiP, GRP94 and CHOP). Moreover, nuclear XBP1 was not observed during CHIKV infection. Even upon stimulation with tunicamycin, the UPR was efficiently inhibited in CHIKV-infected cells. Individual expression of CHIKV non-structural proteins (nsPs) revealed that nsP2 alone was sufficient to inhibit the UPR. Mutations that rendered nsP2 unable to cause host-cell shut-off prevented nsP2-mediated inhibition of the UPR. This indicates that initial UPR induction takes place in the ER but that expression of functional UPR transcription factors and target genes is efficiently inhibited by CHIKV nsP2.

  6. Collagen advanced glycation inhibits its Discoidin Domain Receptor 2 (DDR2)-mediated induction of lysyl oxidase in osteoblasts.

    Science.gov (United States)

    Khosravi, Roozbeh; Sodek, Katharine L; Faibish, Michael; Trackman, Philip C

    2014-01-01

    Diabetes increases the risk of bone fracture. Organic and inorganic bone extracellular matrix components determine bone strength. Previous studies indicate that in diabetes, glycation of collagen causes abnormal arrangements of collagen molecules and fragile bones. Diabetic bone fragility is additionally attributed to reduced levels of lysyl oxidase enzyme-dependent collagen cross-links. The mechanism underlying the presence of lower enzymatic collagen cross-links in diabetic bone has not been directly investigated. Here we determine in primary osteoblast cultures the regulation of lysyl oxidase protein by type I collagen and collagen modified by carboxymethylation (CML-collagen), a form of advanced glycation endproducts. Data indicate that non-glycated collagen up-regulates lysyl oxidase levels both in primary non-differentiated and in differentiating mouse and rat osteoblast cultures, while CML-collagen fails to regulate lysyl oxidase in these cells. Collagen binding to Discoidin Domain Receptor-2 (DDR2) mediates lysyl oxidase increases, determined in DDR2 shRNA knockdown studies. DDR2 binding and activation were disrupted by collagen glycation, pointing to a mechanism for the diminished levels of lysyl oxidase and consequently low lysyl oxidase-derived cross-links in diabetic bone. Our studies indicate that collagen-integrin interactions may not play a major role in up-regulating lysyl oxidase. Furthermore, non-collagenous ligands for the receptor for advanced glycation end products (RAGE) failed to alter lysyl oxidase levels. Taken together with published studies a new understanding emerges in which diabetes- and age-dependent inhibition of normal collagen-stimulated DDR2- and integrin-signaling, and independent advanced glycation-stimulated RAGE-signaling, each contributes to different aspects of diabetic osteopenia.

  7. 白念珠菌磷脂甘露聚糖对单核细胞产生白介素-6、白介素-8的影响%Effect of Phospholipomannan of Candida Albicans on the Production of Interleukin-6 and Interleukin-8 in Monocytes

    Institute of Scientific and Technical Information of China (English)

    陈青; 李岷; 唐荣才; 刘维达; 周武庆; 沈永年; 吕桂霞

    2011-01-01

    目的 研究白念珠菌磷脂甘露聚糖( PLM)诱导人急性单核细胞白血病细胞系细胞(THP-1)产生的炎症反应是否依赖Toll样受体(TLR)2.方法 实时荧光定量逆转录PCR分析PLM体外刺激THP-1细胞TLR2、TLR4、前炎症因子[白介素(IL)-6]和趋化因子(IL-8)的mRNA表达水平.酶联免疫吸附法检测IL-6、IL-8分泌含量.免疫印迹法分析TLR2的蛋白表达.结果 PLM可升高THP-1细胞的IL-6和IL-8 mRNA表达和分泌水平(均P=0.0000).PLM上调THP-1细胞的TLR2 mRNA和蛋白表达水平(P=0.0000),但对TLR4 mRNA表达无影响.PLM经β-D-甘露糖苷水解酶处理后,不能诱导上述受体及因子的表达.TLR2中和抗体能抑制PLM诱导的IL-6和IL-8产生(P =0.0003,P=0.0010).结论 白念珠菌胞壁PLM依赖TLP2介导激活人THP-1细胞产生炎症反应.%Objective To investigate whether Candida albicans-native phospholipomannan ( PLM ) induce an inflammation response through Toll-like receptor ( TLR) 2 in human acute monocytic leukemia cell line ( THP-1 ) cells. Methods Human THP-1 monocytes were challenged with PLM in vitro. The mRNA expressions of TLR2, TLR4, proinflammatory cytokine [ interleukin (IL)-6], and chemokine (IL-8) were assayed by real time reverse transcription polymerase chain reaction. The secretions of IL-6 and IL-8 were measured by enzyme-linked immunosorbent assay. The expression of TLR2 was analyzed with Western blot. Results PLM increased the mRNA expressions and secretions of proinflammatory cytokines ( IL-6) and che-mokines (IL-8) in THP-1 cells (all P-0.0000). PLM up-regulated the mRNA and protein levels of TLR2 (P = 0. 0000), whereas the mRNA level of TLR4 was not altered. PLM hydrolyzed with |J-D-mannosidemannohydrolase failed to induce gene and protein expressions of TLR2, IL-6, and IL-8. Anti-TLR2-neutralizing antibody blocked the PLM-induced secretions of IL-6 and IL-8 in THP-1 cells ( P = 0. 0003, P = 0.0010). Conclusion Candida alblcans-native PLM may contribute to the inflammatory responses during Candida infection in a TLR2-dependent manner.

  8. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27

    Science.gov (United States)

    Lu, Kuan-Ta; Wang, Bing-Yen; Chi, Wan-Yu; Chang-Chien, Ju; Yang, Jiann-Jou; Lee, Hsueh-Te; Tzeng, Yew-Min; Chang, Wen-Wei

    2016-01-01

    Cancer stem/progenitor cells (CSCs) are a subpopulation of cancer cells involved in tumor initiation, resistance to therapy and metastasis. Targeting CSCs has been considered as the key for successful cancer therapy. Ovatodiolide (Ova) is a macrocyclic diterpenoid compound isolated from Anisomeles indica (L.) Kuntze with anti-cancer activity. Here we used two human breast cancer cell lines (AS-B145 and BT-474) to examine the effect of Ova on breast CSCs. We first discovered that Ova displayed an anti-proliferation activity in these two breast cancer cells. Ova also inhibited the self-renewal capability of breast CSCs (BCSCs) which was determined by mammosphere assay. Ova dose-dependently downregulated the expression of stemness genes, octamer-binding transcription factor 4 (Oct4) and Nanog, as well as heat shock protein 27 (Hsp27), but upregulated SMAD ubiquitin regulatory factor 2 (SMURF2) in mammosphere cells derived from AS-B145 or BT-474. Overexpression of Hsp27 or knockdown of SMURF2 in AS-B145 cells diminished the therapeutic effect of ovatodiolide in the suppression of mammosphere formation. In summary, our data reveal that Ova displays an anti-CSC activity through SMURF2-mediated downregulation of Hsp27. Ova could be further developed as an anti-CSC agent in the treatment of breast cancer. PMID:27136586

  9. Ovatodiolide Inhibits Breast Cancer Stem/Progenitor Cells through SMURF2-Mediated Downregulation of Hsp27

    Directory of Open Access Journals (Sweden)

    Kuan-Ta Lu

    2016-04-01

    Full Text Available Cancer stem/progenitor cells (CSCs are a subpopulation of cancer cells involved in tumor initiation, resistance to therapy and metastasis. Targeting CSCs has been considered as the key for successful cancer therapy. Ovatodiolide (Ova is a macrocyclic diterpenoid compound isolated from Anisomeles indica (L. Kuntze with anti-cancer activity. Here we used two human breast cancer cell lines (AS-B145 and BT-474 to examine the effect of Ova on breast CSCs. We first discovered that Ova displayed an anti-proliferation activity in these two breast cancer cells. Ova also inhibited the self-renewal capability of breast CSCs (BCSCs which was determined by mammosphere assay. Ova dose-dependently downregulated the expression of stemness genes, octamer-binding transcription factor 4 (Oct4 and Nanog, as well as heat shock protein 27 (Hsp27, but upregulated SMAD ubiquitin regulatory factor 2 (SMURF2 in mammosphere cells derived from AS-B145 or BT-474. Overexpression of Hsp27 or knockdown of SMURF2 in AS-B145 cells diminished the therapeutic effect of ovatodiolide in the suppression of mammosphere formation. In summary, our data reveal that Ova displays an anti-CSC activity through SMURF2-mediated downregulation of Hsp27. Ova could be further developed as an anti-CSC agent in the treatment of breast cancer.

  10. Novel Hematopoietic Target Genes in the NRF2-Mediated Transcriptional Pathway

    Directory of Open Access Journals (Sweden)

    Michelle R. Campbell

    2013-01-01

    Full Text Available Nuclear factor- (erythroid-derived 2 like 2 (NFE2L2, NRF2 is a key transcriptional activator of the antioxidant response pathway and is closely related to erythroid transcription factor NFE2. Under oxidative stress, NRF2 heterodimerizes with small Maf proteins and binds cis-acting enhancer sequences found near oxidative stress response genes. Using the dietary isothiocyanate sulforaphane (SFN to activate NRF2, chromatin immunoprecipitation sequencing (ChIP-seq identified several hundred novel NRF2-mediated targets beyond its role in oxidative stress. Activated NRF2 bound the antioxidant response element (ARE in promoters of several known and novel target genes involved in iron homeostasis and heme metabolism, including known targets FTL and FTH1, as well as novel binding in the globin locus control region. Five novel NRF2 target genes were chosen for followup: AMBP, ABCB6, FECH, HRG-1 (SLC48A1, and TBXAS1. SFN-induced gene expression in erythroid K562 and lymphoid cells were compared for each target gene. NRF2 silencing showed reduced expression in lymphoid, lung, and hepatic cells. Furthermore, stable knockdown of NRF2 negative regulator KEAP1 in K562 cells resulted in increased NQO1, AMBP, and TBXAS1 expression. NFE2 binding sites in K562 cells revealed similar binding profiles as lymphoid NRF2 sites in all potential NRF2 candidates supporting a role for NRF2 in heme metabolism and erythropoiesis.

  11. BdorOBP83a-2 Mediates Responses of the Oriental Fruit Fly to Semiochemicals

    Science.gov (United States)

    Wu, Zhongzhen; Lin, Jintian; Zhang, He; Zeng, Xinnian

    2016-01-01

    The oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae), is one of the most destructive pests throughout tropical and subtropical regions in Asia. This insect displays remarkable changes during different developmental phases in olfactory behavior between sexually immature and mated adults. The olfactory behavioral changes provide clues to examine physiological and molecular bases of olfactory perception in this insect. We comparatively analyzed behavioral and neuronal responses of B. dorsalis adults to attractant semiochemicals, and the expression profiles of antenna chemosensory genes. We found that some odorant-binding proteins (OBPs) were upregulated in mated adults in association with their behavioral and neuronal responses. Ligand-binding assays further showed that one of OBP83a orthologs, BdorOBP83a-2, binds with high affinity to attractant semiochemicals. Functional analyses confirmed that the reduction in BdorOBP83a-2 transcript abundance led to a decrease in neuronal and behavioral responses to selected attractants. This study suggests that BdorOBP83a-2 mediates behavioral responses to attractant semiochemicals and could be a potential efficient target for pest control. PMID:27761116

  12. Escape, or Vanish: Control the Fate of p53 through MDM2-Mediated Ubiquitination.

    Science.gov (United States)

    Wei, Jinlian; Yang, Yingrui; Lu, Mengchen; Xu, Lili; Liu, Fang; Yuan, Zhenwei; Bao, Qichao; Jiang, Zhengyu; Xu, Xiaoli; Guo, Xiaoke; Zhang, Xiaojin; You, Qidong; Sun, Haopeng

    2015-01-01

    p53 protein is a prominent tumor suppressor to induce cell cycle arrest, apoptosis and senescence, which attracts significant interest to cancer treatment. Therefore, it would be particularly important to restore the wild-type p53 that retains latent functions in the approximately 50% of tumors. MDM2 (murine double minute 2), the principal cellular antagonist of p53, has long been believed to suppress p53 activity through two main mechanisms: promoting degradation via its E3 ligase activity and masking p53 transcriptional activation by direct binding. Targeting MDM2 E3 ligase activity is becoming a potential antitumor strategy resulting from MDM2's decisive role in controlling the fate of p53: p53 is going to degradation when entrapped into MDM2-mediated ubiquitination, where p53 can escape by abrogating MDM2 E3 ligase activity using regulators. The intensive focus on regulating MDM2 ubiquitin E3 ligase activity has led to the rapid progress of its inhibitors, which may be possible to help p53 escape from degradation and restore its function to control tumor growth. This review summarizes the current inhibitors of MDM2 E3 ligase in cancer therapy based on the understanding the regulation of MDM2 E3 ubiquitin ligase activity, including post-translational modification, interactions between MDM2 and its cofactors, and regulation of MDM2 stability.

  13. Preparation of Cu(2+)-mediated magnetic imprinted polymers for the selective sorption of bovine hemoglobin.

    Science.gov (United States)

    Gao, Ruixia; Cui, Xihui; Hao, Yi; He, Gaiyan; Zhang, Min; Tang, Yuhai

    2016-04-01

    In this work, a novel Cu(2+)-mediated core-shell bovine hemoglobin imprinted superparamagnetic polymers were synthesized. First, carboxyl group directly-functionalized Fe3O4 nanoparticles were produced by a facile one-pot hydrothermal method. Next, copper ions were introduced to chelate with carboxyl groups and further bonded with template bovine hemoglobin as co-functional monomer. Then, functional monomers 3-aminopropyltriethoxylsilane and octyltrimethoxysilane were adopted to form the thin polymer layers. Finally, after removal of the templates, the imprinting shells with specific recognition cavities for bovine hemoglobin were obtained on Fe3O4 nanoparticles. The resultant molecularly imprinted polymers have high adsorption capacity and satisfactory selectivity for bovine hemoglobin with the help of copper ions. The obtained magnetic nanomaterials were characterized by transmission electron microscopy, Fourier-transform infrared spectra, X-ray diffraction, and vibrating sample magnetometer. The measurements demonstrated that the as-synthesized nanomaterials exhibited good dispersion, high crystallinity, and satisfactory superparamagnetic properties. The feasibility of this method was further confirmed by using the imprinted nanomaterials to specifically extract bovine hemoglobin from real bovine blood samples.

  14. BdorOBP83a-2 mediates responses of the oriental fruit fly to semiochemicals

    Directory of Open Access Journals (Sweden)

    Zhongzhen Wu

    2016-10-01

    Full Text Available The oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae, is one of the most destructive pests throughout tropical and subtropical regions in Asia. This insect displays remarkable changes during different developmental phases in olfactory behavior between sexually immature and mated adults. The olfactory behavioral changes provide clues to examine physiological and molecular bases of olfactory perception in this insect. We comparatively analyzed behavioral and neuronal responses of B. dorsalis adults to attractant semiochemicals, and the expression profiles of antenna chemosensory genes. We found that some odorant-binding proteins (OBPs were upregulated in mated adults in association with their behavioral and neuronal responses. Ligand-binding assays further showed that one of OBP83a orthologues, BdorOBP83a-2, binds with high affinity to attractant semiochemicals. Functional analyses confirmed that the reduction in BdorOBP83a-2 transcript abundance led to a decrease in neuronal and behavioral responses to selected attractants. This study suggests that BdorOBP83a-2 mediates behavioral responses to attractant semiochemicals and could be a potential efficient target for pest control.

  15. Conservation of the Nrf2-Mediated Gene Regulation of Proteasome Subunits and Glucose Metabolism in Zebrafish

    Directory of Open Access Journals (Sweden)

    Vu Thanh Nguyen

    2016-01-01

    Full Text Available The Keap1-Nrf2 system is an evolutionarily conserved defense mechanism against oxidative and xenobiotic stress. Besides the exogenous stress response, Nrf2 has been found to regulate numerous cellular functions, including protein turnover and glucose metabolism; however, the evolutionary origins of these functions remain unknown. In the present study, we searched for novel target genes associated with the zebrafish Nrf2 to answer this question. A microarray analysis of zebrafish embryos that overexpressed Nrf2 revealed that 115 candidate genes were targets of Nrf2, including genes encoding proteasome subunits and enzymes involved in glucose metabolism. A real-time quantitative PCR suggested that the expression of 3 proteasome subunits (psma3, psma5, and psmb7 and 2 enzymes involved in glucose metabolism (pgd and fbp1a were regulated by zebrafish Nrf2. We thus next examined the upregulation of these genes by an Nrf2 activator, diethyl maleate, using Nrf2 mutant zebrafish larvae. The results of real-time quantitative PCR and whole-mount in situ hybridization showed that all of these 5 genes were upregulated by diethyl maleate treatment in an Nrf2-dependent manner, especially in the liver. These findings implied that the Nrf2-mediated regulation of the proteasome subunits and glucose metabolism is evolutionarily conserved among vertebrates.

  16. SRA-domain proteins required for DRM2-mediated de novo DNA methylation.

    Directory of Open Access Journals (Sweden)

    Lianna M Johnson

    2008-11-01

    Full Text Available De novo DNA methylation and the maintenance of DNA methylation in asymmetrical sequence contexts is catalyzed by homologous proteins in plants (DRM2 and animals (DNMT3a/b. In plants, targeting of DRM2 depends on small interfering RNAs (siRNAs, although the molecular details are still unclear. Here, we show that two SRA-domain proteins (SUVH9 and SUVH2 are also essential for DRM2-mediated de novo and maintenance DNA methylation in Arabidopsis thaliana. At some loci, SUVH9 and SUVH2 act redundantly, while at other loci only SUVH2 is required, and this locus specificity correlates with the differing DNA-binding affinity of the SRA domains within SUVH9 and SUVH2. Specifically, SUVH9 preferentially binds methylated asymmetric sites, while SUVH2 preferentially binds methylated CG sites. The suvh9 and suvh2 mutations do not eliminate siRNAs, suggesting a role for SUVH9 and SUVH2 late in the RNA-directed DNA methylation pathway. With these new results, it is clear that SRA-domain proteins are involved in each of the three pathways leading to DNA methylation in Arabidopsis.

  17. CRY Drives Cyclic CK2-Mediated BMAL1 Phosphorylation to Control the Mammalian Circadian Clock.

    Directory of Open Access Journals (Sweden)

    Teruya Tamaru

    Full Text Available Intracellular circadian clocks, composed of clock genes that act in transcription-translation feedback loops, drive global rhythmic expression of the mammalian transcriptome and allow an organism to anticipate to the momentum of the day. Using a novel clock-perturbing peptide, we established a pivotal role for casein kinase (CK-2-mediated circadian BMAL1-Ser90 phosphorylation (BMAL1-P in regulating central and peripheral core clocks. Subsequent analysis of the underlying mechanism showed a novel role of CRY as a repressor for protein kinase. Co-immunoprecipitation experiments and real-time monitoring of protein-protein interactions revealed that CRY-mediated periodic binding of CK2β to BMAL1 inhibits BMAL1-Ser90 phosphorylation by CK2α. The FAD binding domain of CRY1, two C-terminal BMAL1 domains, and particularly BMAL1-Lys537 acetylation/deacetylation by CLOCK/SIRT1, were shown to be critical for CRY-mediated BMAL1-CK2β binding. Reciprocally, BMAL1-Ser90 phosphorylation is prerequisite for BMAL1-Lys537 acetylation. We propose a dual negative-feedback model in which a CRY-dependent CK2-driven posttranslational BMAL1-P-BMAL1 loop is an integral part of the core clock oscillator.

  18. Adipocyte JAK2 mediates growth hormone–induced hepatic insulin resistance

    Science.gov (United States)

    Corbit, Kevin C.; Camporez, João Paulo G.; Tran, Jennifer L.; Wilson, Camella G.; Lowe, Dylan A.; Nordstrom, Sarah M.; Ganeshan, Kirthana; Perry, Rachel J.; Weiss, Ethan J.

    2017-01-01

    For nearly 100 years, growth hormone (GH) has been known to affect insulin sensitivity and risk of diabetes. However, the tissue governing the effects of GH signaling on insulin and glucose homeostasis remains unknown. Excess GH reduces fat mass and insulin sensitivity. Conversely, GH insensitivity (GHI) is associated with increased adiposity, augmented insulin sensitivity, and protection from diabetes. Here, we induce adipocyte-specific GHI through conditional deletion of Jak2 (JAK2A), an obligate transducer of GH signaling. Similar to whole-body GHI, JAK2A mice had increased adiposity and extreme insulin sensitivity. Loss of adipocyte Jak2 augmented hepatic insulin sensitivity and conferred resistance to diet-induced metabolic stress without overt changes in circulating fatty acids. While GH injections induced hepatic insulin resistance in control mice, the diabetogenic action was absent in JAK2A mice. Adipocyte GH signaling directly impinged on both adipose and hepatic insulin signal transduction. Collectively, our results show that adipose tissue governs the effects of GH on insulin and glucose homeostasis. Further, we show that JAK2 mediates liver insulin sensitivity via an extrahepatic, adipose tissue–dependent mechanism. PMID:28194444

  19. Unconventional EGF-induced ERK1/2-mediated Kv1.3 endocytosis.

    Science.gov (United States)

    Martínez-Mármol, Ramón; Comes, Núria; Styrczewska, Katarzyna; Pérez-Verdaguer, Mireia; Vicente, Rubén; Pujadas, Lluís; Soriano, Eduardo; Sorkin, Alexander; Felipe, Antonio

    2016-04-01

    The potassium channel Kv1.3 plays roles in immunity, neuronal development and sensory discrimination. Regulation of Kv1.3 by kinase signaling has been studied. In this context, EGF binds to specific receptors (EGFR) and triggers tyrosine kinase-dependent signaling, which down-regulates Kv1.3 currents. We show that Kv1.3 undergoes EGF-dependent endocytosis. This EGF-mediated mechanism is relevant because is involved in adult neural stem cell fate determination. We demonstrated that changes in Kv1.3 subcellular distribution upon EGFR activation were due to Kv1.3 clathrin-dependent endocytosis, which targets the Kv1.3 channels to the lysosomal degradative pathway. Interestingly, our results further revealed that relevant tyrosines and other interacting motifs, such as PDZ and SH3 domains, were not involved in the EGF-dependent Kv1.3 internalization. However, a new, and yet undescribed mechanism, of ERK1/2-mediated threonine phosphorylation is crucial for the EGF-mediated Kv1.3 endocytosis. Our results demonstrate that EGF triggers the down-regulation of Kv1.3 activity and its expression at the cell surface, which is important for the development and migration of adult neural progenitors.

  20. EFN-4 functions in LAD-2-mediated axon guidance in Caenorhabditis elegans.

    Science.gov (United States)

    Dong, Bingyun; Moseley-Alldredge, Melinda; Schwieterman, Alicia A; Donelson, Cory J; McMurry, Jonathan L; Hudson, Martin L; Chen, Lihsia

    2016-04-01

    During development of the nervous system, growing axons rely on guidance molecules to direct axon pathfinding. A well-characterized family of guidance molecules are the membrane-associated ephrins, which together with their cognate Eph receptors, direct axon navigation in a contact-mediated fashion. InC. elegans, the ephrin-Eph signaling system is conserved and is best characterized for their roles in neuroblast migration during early embryogenesis. This study demonstrates a role for the C. elegans ephrin EFN-4 in axon guidance. We provide both genetic and biochemical evidence that is consistent with the C. elegans divergent L1 cell adhesion molecule LAD-2 acting as a non-canonical ephrin receptor to EFN-4 to promote axon guidance. We also show that EFN-4 probably functions as a diffusible factor because EFN-4 engineered to be soluble can promote LAD-2-mediated axon guidance. This study thus reveals a potential additional mechanism for ephrins in regulating axon guidance and expands the repertoire of receptors by which ephrins can signal.

  1. Dimerization of DOCK2 is essential for DOCK2-mediated Rac activation and lymphocyte migration.

    Directory of Open Access Journals (Sweden)

    Masao Terasawa

    Full Text Available The migratory properties of lymphocytes depend on DOCK2, an atypical Rac activator predominantly expressed in hematopoietic cells. Although DOCK2 does not contain the Dbl homology domain typically found in guanine nucleotide exchange factors (GEFs, DOCK2 mediates the GTP-GDP exchange reaction for Rac via its DOCK homology region (DHR-2 (also known as CZH2 or Docker domain. DOCK2 DHR-2 domain is composed of three lobes, and Rac binding site and catalytic center are generated entirely from lobes B and C. On the other hand, lobe A has been implicated in dimer formation, yet its physiological significance remains unknown. Here, we report that lobe A-mediated DOCK2 dimerization is crucial for Rac activation and lymphocyte migration. We found that unlike wild-type DOCK2, DOCK2 mutant lacking lobe A failed to restore motility and polarity when expressed in thymoma cells and primary T cells lacking endogenous expression of DOCK2. Similar results were obtained with the DOCK2 point mutant having a defect in dimerization. Deletion of lobe A from the DHR-2 domain did not affect Rac GEF activity in vitro. However, fluorescence resonance energy transfer analyses revealed that lobe A is required for DOCK2 to activate Rac effectively during cell migration. Our results thus indicate that DOCK2 dimerization is functionally important under the physiological condition where only limited amounts of DOCK2 and Rac are localized to the plasma membrane.

  2. P-glycoprotein- and mrp2-mediated octreotide transport in renal proximal tubule

    Science.gov (United States)

    Gutmann, Heike; Miller, David S; Droulle, Agathe; Drewe, Jürgen; Fahr, Alfred; Fricker, Gert

    2000-01-01

    Transepithelial transport of a fluorescent derivative of octreotide (NBD-octreotide) was studied in freshly isolated, functionally intact renal proximal tubules from killifish (Fundulus heteroclitus). Drug accumulation in the tubular lumen was visualized by means of confocal microscopy and was measured by image analysis. Secretion of NBD-octreotide into the tubular lumen was demonstrated and exhibited the all characteristics of specific and energy-dependent transport. Steady state luminal fluorescence averaged about five times cellular fluorescence and was reduced to cellular levels when metabolism was inhibited by NaCN. NBD-octreotide secretion was inhibited in a concentration-dependent manner by unlabelled octreotide, verapamil and leukotriene C4 (LTC4). Conversely, unlabelled octreotide reduced in a concentration dependent manner the p-glycoprotein (Pgp)-mediated secretion of a fluorescent cyclosporin A derivative (NBDL-CS) and the mrp2-mediated secretion of fluorescein methotrexate (FL-MTX). This inhibition was not due to impaired metabolism or toxicity since octreotide had no influence on the active transport of fluorescein (FL), a substrate for the classical renal organic anion transport system. The data are consistent with octreotide being transported across the brush border membrane of proximal kidney tubules by both Pgp and mrp2. PMID:10694230

  3. Skp2-mediated stabilization of MTH1 promotes survival of melanoma cells upon oxidative stress.

    Science.gov (United States)

    Wang, Jia Yu; Liu, Guang Zhi; Wilmott, James S; La, Ting; Feng, Yu Chen; Yari, Hamed; Yan, Xu Guang; Thorne, Rick F; Scolyer, Richard A; Zhang, Xu Dong; Jin, Lei

    2017-09-25

    MTH1 helps prevent misincorporation of ROS-damaged dNTPs into genomic DNA, however, there is little understanding of how MTH1 itself is regulated. Here we report that MTH1 is regulated by polyubiquitination mediated by the E3 ligase Skp2. In melanoma cells, MTH1 was upregulated commonly mainly due to its improved stability caused by K63-linked polyubiquitination. While Skp2 along with other components of the Skp1-cullin-F-box (SCF) ubiquitin ligase complex were physically associated with MTH1, blocking the SCF function ablated MTH1 ubiquitination and expression. Conversely, overexpressing Skp2 elevated levels of MTH1 associated with an increase in its K63-linked ubiquitination. In melanoma cell lines and patient specimens, we observed a positive correlation of Skp2 and MTH1 expression. Mechanistic investigations showed that Skp2 limited DNA damage and apoptosis triggered by oxidative stress and that MAPK upregulated Skp2 and MTH1 to render cells more resistant to such stress. Collectively, our findings identify Skp2-mediated K63-linked polyubiquitination as a critical regulatory mechanism responsible for MTH1 upregulation in melanoma, with potential implications to target the MAPK/Skp2/MTH1 pathway to improve its treatment. Copyright ©2017, American Association for Cancer Research.

  4. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry.

    Science.gov (United States)

    Yamauchi, Saori; Obara, Keisuke; Uchibori, Kenya; Kamimura, Akiko; Azumi, Kaoru; Kihara, Akio

    2015-01-01

    Plasma membrane lipid asymmetry is important for various membrane-associated functions and is regulated by membrane proteins termed flippases and floppases. The Rim101 pathway senses altered lipid asymmetry in the yeast plasma membrane. The mutant lem3Δ cells, in which lipid asymmetry is disturbed owing to the inactivation of the plasma membrane flippases, showed a severe growth defect when the Rim101 pathway was impaired. To identify factors involved in the Rim101-pathway-dependent adaptation to altered lipid asymmetry, we performed DNA microarray analysis and found that Opt2 induced by the Rim101 pathway plays an important role in the adaptation to altered lipid asymmetry. Biochemical investigation of Opt2 revealed its localization to the plasma membrane and the Golgi, and provided several lines of evidence for the Opt2-mediated exposure of phospholipids. In addition, Opt2 was found to be required for the maintenance of vacuolar morphology and polarized cell growth. These results suggest that Opt2 is a novel factor involved in cell homeostasis by regulating lipid asymmetry.

  5. Pyrimidine-based compounds modulate CXCR2-mediated signaling and receptor turnover.

    Science.gov (United States)

    Ha, Helen; Neamati, Nouri

    2014-07-07

    Chemokine receptor CXCR2 is expressed on various immune cells and is essential for neutrophil recruitment and angiogenesis at sites of acute and chronic inflammation caused by tissue injury or infection. Because of its role in inflammation, it has been implicated in a number of immune-mediated inflammatory diseases such as psoriasis, arthritis, COPD, cystic fibrosis, asthma, and various types of cancer. CXCR2 and its ligands are up-regulated in cancer cells as well as the tumor microenvironment, promoting tumor growth, angiogenesis, and invasiveness. Although pharmaceutical companies have pursued the development of CXCR2-specific small-molecule inhibitors as anti-inflammatory agents within the last decades, there are currently no clinically approved CXCR2 inhibitors. Using a high-throughput, cell-based assay specific for CXCR2, we screened an in-house library of structurally diverse compounds and identified a class of pyrimidine-based compounds that alter CXCR2-mediated second messenger signaling. Our lead compound, CX797, inhibited IL8-mediated cAMP signaling and receptor degradation while specifically up-regulating IL8-mediated β-arrestin-2 recruitment. CX797 also inhibited IL8-mediated cell migration. Mechanistic comparison of CX797 and a previously reported CXCR2 inhibitor, SB265610, show these two classes of compounds have a distinct mechanism of action on CXCR2.

  6. Effect of low-dose erythromycin estolate on sputum neutrophils and serum interleukin-8, interleukin-17 in children with asthma%小剂量依托红霉素对哮喘患儿痰液中性粒细胞及血清白介素-8、白介素-17的影响

    Institute of Scientific and Technical Information of China (English)

    涂国华; 钱金强; 易阳; 季德成; 熊建新; 丁翠君; 钱琴芬; 邓素丹; 王丽晴

    2012-01-01

    Objective To explore the effeet of low-dose erythromycin estolate on sputum neutrophils (PMN) and serum levels of interleukin-8 and interleukin-17 in children with asthma. Methods From January 2007 to January 2009, 24 children with asthma were randomly divided into non-erythromycin eslolate group and erythromycin estolate group, twelve children for each group. Two groups of children received regular treatment including regular inhaled corticosteroids and intermittent inhaled B2 agonists, meanwhile erythromyoin estolate group was taken orally erythromyoin estolate 3-5 mg/(kg·d) for four weeks. During both nf the acute and convalescent periods, cell sorting from induced sputum was processed , the serum conentratibDs of IL-8 and IL-17 were tested by ELISA and lung functions were detected in the two groups. Results In two groups, the PMN of induced sputum in convaleseent period was significantly lower than that in acute period (P < 0.001). The PMN in convalescent period was significantly lower in erythromycin estolate group than that in non-erythromycin estolate group (P= 0.001). The serum levels of IL-8 and IL-17 in two groups in convalescent period were significantly lower than those of during acute period (P

  7. The expression of von Willebrand factor and interleukin-8 in severe pulmonary contusion patients%严重肺挫伤患者冯·维勒布兰德因子,白介素8的动态变化及其意义

    Institute of Scientific and Technical Information of China (English)

    钱进先; 陆骏灏; 陆士奇; 赵益明

    2011-01-01

    Objective To study the clinical changes of von Willebrand factor( vWF) and interleukin-8 (IL-8) in patients with severe pulmonary contusion. Methods Sixty-three patients with severe pulmonary contusion were divided into three different classifications for the sake of comparison in different respects, namely (1) severe pulmonary contusion with ARDS group and severe pulmonary contusion without ARDS group, (2) survival group and non-survival group, and (3) ISS score <20 group and ISS scored 20 group. In addition, the normal control group was set up. The levels of plasma vWF and serum IL-8 were respectively detected by double-antibody sandwich enzyme-linked immunosorbent assay (ELISA) within 24 hours of injury and 1,3,5 and 7days after injury. The regularity of their changes was observed and the correlation factors were analyzed from the data. Results Compared with normal controls, the concentrations of plasma vWF and serum IL-8 were significantly increased in patients with severe pulmonary contusion in all intervals of detection. The concentrations of plasma vWF escalated gradually in severe pulmonary contusion with ARDS, and reached significantly higher levels in 5 days and 7 days after injury compared with those without ARDS group (P <0. 05). The increase in concentrations of serum IL-8 peaked in 5day after injury, and then declined. The levels of serum IL-8 were higher in patients with severe pulmonary contusion with ARDS group than those in this kind of patients without ARDS group. The levels of plasma vWF and serum IL-8 were higher in non - survival group than those in survival group (P < 0.05). The increase in levels of plasma vWF and serum IL-8 peaked and then declined in 5 days in ISS score 3:20 group, whereas it peaked and declined in 3 days after injury in ISS score < 20 group. The level of plasma vWF was positively correlated with platelets and negatively correlated with oxygenation index. The levels of serum IL-8 was positively correlated with white blood

  8. IL-8、 MMP-9、 INF-γ的检测对结核性脑膜炎及病毒性脑膜炎发病的意义%Detection of interleukin-8, matrix metalloproteinase-9 and interferon gamma levels in the cerebrospinal fluid of patients with tuberculous meningitis and viral meningitis

    Institute of Scientific and Technical Information of China (English)

    朱飞; 张家堂; 邢小微; 贺路星; 赵威; 郎森阳; 于生元

    2012-01-01

    目的 探讨脑脊液中白细胞介素-8(IL-8)、基质金属蛋白酶-9(MMP-9)、干扰素-γ(INF-γ)含量的检测对结核性脑膜炎及病毒性脑膜炎的临床诊断价值. 方法 选取解放军总医院、解放军第三0九医院自2010年8月至2011年11月住院的患者,其中结核性脑膜炎组20例,病毒性脑膜炎组15例,非感染性神经系统疾病组20例.用ELISA法检测3组患者脑脊液IL-8、MMP-9、INF-γ含量,并进行比较分析. 结果 结核性脑膜炎组患者脑脊液中IL-8、MMP-9、INF-γ的含量高于病毒性脑膜炎组和非感染性神经系统疾病组差异有统计学意义(P<0.05).病毒性脑膜炎组患者脑脊液中IL-8、MMP-9含量高于非感染性神经系统组(P<0.05).病毒性脑膜炎组患者脑脊液中INF-γ含量与非感染性神经系统疾病组比较差异无统计学意义(P>0.05). 结论 脑脊液中IL-8、MMP-9、INF-γ含量的检测对结核性脑膜炎具有一定的辅助诊断意义.IL-8、MMP-9在病毒性脑膜炎的发病和进展中亦起到一定作用.临床上若在患者脑脊液中检测到高水平的INF-γ,较之IL-8、MMP-9对于结核性脑膜炎更具诊断价值.%Objective To investigate the diagnostic values of interleukin-8 (IL-8), matrix metalloproteinase-9 (MMP-9) and interferon gamma (INF-γ) levels in patients with tuberculous meningitis and viral meningitis by detecting the contents of these biomarkers in the cerebrospinal fluid (CSF). Methods Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of IL-8,MMP-9 and INF-γ in the CSF of patients with tuberculous meningitis (n=20),viral meningitis (n=15) and noninfectious neurologic diseases (n=20) who admitted to our hospital from August 2010 to November 2011. Results The IL-8,MMP-9 and INF-γlevels in the samples from the tuberculous meningitis patients were significantly higher than those from either viral meningitis or noninfectious neurologic diseases (P<0.05).The contents of IL-8

  9. Effects of different degree of intermittent hypoxia on serum levels of inflammatory cytokine interleukin-8 and interleukin-10 in rats%不同程度间歇低氧对大鼠血清炎性细胞因子白介素8、白介素10的影响

    Institute of Scientific and Technical Information of China (English)

    李硕; 陈宝元; 周伟; 万南生; 张祯; 郭润

    2011-01-01

    目的 探讨不同程度间歇低氧对大鼠血清炎性细胞因子白介素8(IL-8)和抗炎细胞因子IL-10水平的影响.方法 160只雄性Wistar大鼠随机分为5组:5%,7.5%,10%间歇低氧组,10%持续低氧对照组和常氧对照组各32只,分别于低氧暴露第2周、第4周、第6周和第8周每组随机抽取8只大鼠,应用酶联免疫吸附试验法检测血清IL-8和IL-10浓度.结果 各间歇低氧组和持续低氧组血清IL-8水平均随低氧时间呈明显升高(F=6.42,P<0.01),IL-10水平明显降低(F=5.787,P<0.01).在低氧6周时所有间歇低氧组出现明显的峰值,5%,7.5%,10%间歇低氧组IL-8水平明显高于10%持续低氧对照组和常氧对照组(P值均<0.01),而IL-10水平明显低于10%持续低氧对照和常氧对照组(P<0.01).其中5%间歇低氧组血清IL-8水平明最高于10%间歇低氧组(F=34.68,P=0.046).结论 间歇性低氧和持续性低氧均可造成促炎性细胞因子IL-8的升高和抗炎性细胞因子IL-10的降低.间歇低氧可能比持续低氧引起更严重的炎性损伤反应,且炎性因子的释放存在明显的低氧程度依赖性和低氧时间依赖性.%Objective To investigate the effects of different degree of intermittent hypoxia on serum levels of pre-inflammatory cytokines interleukin-8 (IL-8) and anti-inflammatory cytokines IL-10 in rats.Methods One hundred and sixty male Wistar rats were divided randomly into the five groups: 5%,7. 5%, 10% of intermittent hypoxia group, 10% sustained hypoxia control group and the normal oxygen control group. At the second, fourth, sixth, and eighth weeks, 8 rats under different environmental stimulation hypoxia in each group were sacrificed to collect serum. Enzyme Linked Immuno Sorbent Assay (ELISA) assay were used to detect the concentration of serum IL-8 and IL-10. Results Serum level of IL-8 was found to be significantly increased in intermittent hypoxia and sustained hypoxia groups ( F =6. 42, P <0. 01) with progression of

  10. Green Synthesis and Regioselective Control of Sn/I2 Mediated Allylation of Carbonyl Compounds with Crotyl Halide in Water

    Institute of Scientific and Technical Information of China (English)

    ZHANG,Yan; ZHA,Zhang-Gen; ZHOU,Yu-Qing; WANG,Zhi-Yong

    2004-01-01

    @@ Barbier-type carbonyl allylation is particularly useful due to ease of operation and the availability and tractability of allylic substrates,[1] Metals such as indium, zinc and tin are often used as the mediator. Here we present a green approach toward the synthesis, that is, Sn/I2 mediated allylation of carbonyl compounds with crotyl halide in water.

  11. Spinal cord interneurons expressing the gastrin releasing peptide receptor convey itch through VGLUT2-mediated signaling.

    Science.gov (United States)

    Aresh, Bejan; Freitag, Fabio B; Perry, Sharn; Blümel, Edda; Lau, Joey; Franck, Marina C M; Lagerström, Malin C

    2017-02-01

    Itch is a sensation that promotes the desire to scratch, which can be evoked by mechanical and chemical stimuli. In the spinal cord, neurons expressing the gastrin releasing peptide receptor (GRPR) have been identified as specific mediators of itch. However, our understanding of the GRPR-population in the spinal cord, and thus how these neurons exercise their functions, is limited. For this purpose, we constructed a Cre line designed to target the GRPR population of neurons (Grpr-Cre). Our analysis revealed that Grpr-Cre cells in the spinal cord are predominantly excitatory interneurons that are found in the dorsal lamina, especially in lamina II-IV. Application of the specific agonist gastrin releasing peptide (GRP) induced spike responses in 43.3% of the patched Grpr-Cre neurons, where the majority of the cells displayed a tonic firing property. Additionally, our analysis showed that the Grpr-Cre population expresses Vglut2 mRNA and mice ablated of Vglut2 in Grpr-Cre cells (Vglut2-lox;Grpr-Cre mice) displayed less spontaneous itch, and attenuated responses to both histaminergic and non-histaminergic agents. We could also show that application of the itch-inducing peptide natriuretic polypeptide b (NPPB) induces calcium influx in a sub-population of Grpr-Cre neurons. To summarize, our data indicate that the Grpr-Cre spinal cord neural population is composed of interneurons that use VGLUT2-mediated signaling for transmitting chemical and spontaneous itch stimuli to the next, currently unknown, neurons in the labeled line of itch.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  12. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis.

    Directory of Open Access Journals (Sweden)

    Duane Delimont

    Full Text Available It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.

  13. CCL2 Mediates Neuron-Macrophage Interactions to Drive Proregenerative Macrophage Activation Following Preconditioning Injury.

    Science.gov (United States)

    Kwon, Min Jung; Shin, Hae Young; Cui, Yuexian; Kim, Hyosil; Thi, Anh Hong Le; Choi, Jun Young; Kim, Eun Young; Hwang, Dong Hoon; Kim, Byung Gon

    2015-12-01

    CNS neurons in adult mammals do not spontaneously regenerate axons after spinal cord injury. Preconditioning peripheral nerve injury allows the dorsal root ganglia (DRG) sensory axons to regenerate beyond the injury site by promoting expression of regeneration-associated genes. We have previously shown that peripheral nerve injury increases the number of macrophages in the DRGs and that the activated macrophages are critical to the enhancement of intrinsic regeneration capacity. The present study identifies a novel chemokine signal mediated by CCL2 that links regenerating neurons with proregenerative macrophage activation. Neutralization of CCL2 abolished the neurite outgrowth activity of conditioned medium obtained from neuron-macrophage cocultures treated with cAMP. The neuron-macrophage interactions that produced outgrowth-promoting conditioned medium required CCL2 in neurons and CCR2/CCR4 in macrophages. The conditioning effects were abolished in CCL2-deficient mice at 3 and 7 d after sciatic nerve injury, but CCL2 was dispensable for the initial growth response and upregulation of GAP-43 at the 1 d time point. Intraganglionic injection of CCL2 mimicked conditioning injury by mobilizing M2-like macrophages. Finally, overexpression of CCL2 in DRGs promoted sensory axon regeneration in a rat spinal cord injury model without harmful side effects. Our data suggest that CCL2-mediated neuron-macrophage interaction plays a critical role for amplification and maintenance of enhanced regenerative capacity by preconditioning peripheral nerve injury. Manipulation of chemokine signaling mediating neuron-macrophage interactions may represent a novel therapeutic approach to promote axon regeneration after CNS injury.

  14. Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Chhavi Aggarwal

    Full Text Available Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC, PI3-kinase (PI3K and PI4-kinase (PI4K on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca(2+ ((c signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca(2+ ((c rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca(2+ signaling during movements.

  15. Phosphoinositides play differential roles in regulating phototropin1- and phototropin2-mediated chloroplast movements in Arabidopsis.

    Science.gov (United States)

    Aggarwal, Chhavi; Labuz, Justyna; Gabryś, Halina

    2013-01-01

    Phototropins are UVA/blue-light receptors involved in controlling the light-dependent physiological responses which serve to optimize the photosynthetic activity of plants and promote growth. The phototropin-induced phosphoinositide (PI) metabolism has been shown to be essential for stomatal opening and phototropism. However, the role of PIs in phototropin-induced chloroplast movements remains poorly understood. The aim of this work is to determine which PI species are involved in the control of chloroplast movements in Arabidopsis and the nature of their involvement. We present the effects of the inactivation of phospholipase C (PLC), PI3-kinase (PI3K) and PI4-kinase (PI4K) on chloroplast relocations in Arabidopsis. The inhibition of the phosphatidylinositol 4,5-bisphospahte [PI(4,5)P2]-PLC pathway, using neomycin and U73122, suppressed the phot2-mediated chloroplast accumulation and avoidance responses, without affecting movement responses controlled by phot1. On the other hand, PI3K and PI4K activities are more restricted to phot1- and phot2-induced weak-light responses. The inactivation of PI3K and PI4K by wortmannin and LY294002 severely affected the weak blue-light-activated accumulation response but had little effect on the strong blue-light-activated avoidance response. The inhibitory effect observed with PI metabolism inhibitors is, at least partly, due to a disturbance in Ca(2+) ((c)) signaling. Using the transgenic aequorin system, we show that the application of these inhibitors suppresses the blue-light-induced transient Ca(2+) ((c)) rise. These results demonstrate the importance of PIs in chloroplast movements, with the PI(4,5)P2-PLC pathway involved in phot2 signaling while PI3K and PI4K are required for the phot1- and phot2-induced accumulation response. Our results suggest that these PIs modulate cytosolic Ca(2+) signaling during movements.

  16. Estrogen plays a critical role in AAV2-mediated gone transfer in ovarian cancer

    Institute of Scientific and Technical Information of China (English)

    Wen-fang SHI; Jeffrey S BARTLETT

    2008-01-01

    Aim: The aim of our study was to develop an effective gone delivery system for ovarian cancer gone therapy. Methods: The expression of heparin sulfate proteoglycan (HSPG) and integrins αvβ3 and αvβ5 were analyzed with flow cytometry on 2 human ovarian cancer cell lines (OVCAR-3 and SKOV-3ip). The gone transduction efficiencies were evaluated with recombinant adeno-associated viral vector (rAAV)2-green fluorescent protein or rAAV2-1actase Z followed by flow eytometry or cytohistochemistry staining. The effect of 17β-estradiol on ovarian cancer cell proliferation, HSPG, the expressions of integrins αvβ3 and αvβ5, and adeno-associated viral vector (AAV)2-mediated gone transduction were determined. Results: In the present study, we found: (1) a variation in HSPG and the expressions of integrins αvβ3 and αvβ5 between OVCAR-3 and SKOV-3ip; (2) that 1713-estradiol was shown to significantly stimulate cell proliferation and integrin β5 expression in certain ovarian cancer cell lines; and (3) integrin-targeted A520/N584RGD-rAAV2, which has alternative interactivity with integrins and abrogates the binding capacity HSPG, showed much higher gone transduction efficiency in ovarian cancer cells than rAAV2 in the presence/ absence of 17β-estradiol. Moreover, this RGD-modified rAAV2 exerted more efficient transduction in ovarian cancer cells in response to 17β-estradiol. Conclusion: Our findings implied that A520/N584RGD-rAAV2 may offer great potential for ovarian cancer treatment in vivo.

  17. Laminin α2-mediated focal adhesion kinase activation triggers Alport glomerular pathogenesis.

    Science.gov (United States)

    Delimont, Duane; Dufek, Brianna M; Meehan, Daniel T; Zallocchi, Marisa; Gratton, Michael Anne; Phillips, Grady; Cosgrove, Dominic

    2014-01-01

    It has been known for some time that laminins containing α1 and α2 chains, which are normally restricted to the mesangial matrix, accumulate in the glomerular basement membranes (GBM) of Alport mice, dogs, and humans. We show that laminins containing the α2 chain, but not those containing the α1 chain activates focal adhesion kinase (FAK) on glomerular podocytes in vitro and in vivo. CD151-null mice, which have weakened podocyte adhesion to the GBM rendering these mice more susceptible to biomechanical strain in the glomerulus, also show progressive accumulation of α2 laminins in the GBM, and podocyte FAK activation. Analysis of glomerular mRNA from both models demonstrates significant induction of MMP-9, MMP-10, MMP-12, MMPs linked to GBM destruction in Alport disease models, as well as the pro-inflammatory cytokine IL-6. SiRNA knockdown of FAK in cultured podocytes significantly reduced expression of MMP-9, MMP-10 and IL-6, but not MMP-12. Treatment of Alport mice with TAE226, a small molecule inhibitor of FAK activation, ameliorated fibrosis and glomerulosclerosis, significantly reduced proteinuria and blood urea nitrogen levels, and partially restored GBM ultrastructure. Glomerular expression of MMP-9, MMP-10 and MMP-12 mRNAs was significantly reduced in TAE226 treated animals. Collectively, this work identifies laminin α2-mediated FAK activation in podocytes as an important early event in Alport glomerular pathogenesis and suggests that FAK inhibitors, if safe formulations can be developed, might be employed as a novel therapeutic approach for treating Alport renal disease in its early stages.

  18. Luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.

    Directory of Open Access Journals (Sweden)

    Poyil Pratheeshkumar

    Full Text Available Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis.

  19. Genes encoding phospholipases A2 mediate insect nodulation reactions to bacterial challenge.

    Science.gov (United States)

    Shrestha, Sony; Park, Yoonseong; Stanley, David; Kim, Yonggyun

    2010-03-01

    We propose that expression of four genes encoding secretory phospholipases A(2) (sPLA(2)) mediates insect nodulation responses to bacterial infection. Nodulation is the quantitatively predominant cellular defense reaction to bacterial infection. This reaction is mediated by eicosanoids, the biosynthesis of which depends on PLA(2)-catalyzed hydrolysis of arachidonic acid (AA) from cellular phospholipids. Injecting late instar larvae of the red flour beetle, Tribolium castaneum, with the bacterium, Escherichia coli, stimulated nodulation reactions and sPLA(2) activity in time- and dose-related manners. Nodulation was inhibited by pharmaceutical inhibitors of enzymes involved in eicosanoid biosynthesis, and the inhibition was rescued by AA. We cloned five genes encoding sPLA(2) and expressed them in E. coli cells to demonstrate these genes encode catalytically active sPLA(2)s. The recombinant sPLA(2)s were inhibited by sPLA(2) inhibitors. Injecting larvae with double-stranded RNAs specific to each of the five genes led to reduced expression of the corresponding sPLA(2) genes and to reduced nodulation reactions to bacterial infections for four of the five genes. The reduced nodulation was rescued by AA, indicating that expression of four genes encoding sPLA(2)s mediates nodulation reactions. A polyclonal antibody that reacted with all five sPLA(2)s showed the presence of the sPLA(2) enzymes in hemocytes and revealed that the enzymes were more closely associated with hemocyte plasma membranes following infection. Identifying specific sPLA(2) genes that mediate nodulation reactions strongly supports our hypothesis that sPLA(2)s are central enzymes in insect cellular immune reactions. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  20. 比例辅助通气对重症胎粪吸入幼兔肺组织肿瘤坏死因子-α和白细胞介素-8水平的影响%Changes of tumor necrosis factor-αand interleukin-8 in severe meconium injured young rabbits treated by proportional assist ventilation

    Institute of Scientific and Technical Information of China (English)

    武荣; 周海燕; 李娜; 刘石

    2012-01-01

    Objective To observe the changes of tumor necrosis factor-a ( TNF-a ) and interleukin-8 (1L-8) in severe meconium-injured young rabbits treated by proportional assist ventilation ( PAV). Methods Thirty 20 -30 days rabbits were randomly assigned into four groups; implementation of PAV after instillation of meconium ( PAV group), implementation of synchronized intermittent mandatory ventilation after meconium instillation ( S1MV group), and no ventilation after meconium instillation ( MAS group) and the saline irrigation with no ventilation group (control group). The animals in each group were sacrificed after 8 hours, iungs and trachea were excised. Levels of TNF-a,IL-8 in lung homogenate and bronchoalveolar lavage (BAL) fluid were measured by enzyme-link immunosorbent assay( EI.ISA). Results (1) The lung wet/dry weight ratio of PAV group(7. 81 ±0. 52), SIMV group (8. 79 ±0. 96)and MAS group(7. 12±0. 74) were higher than that of control group(4. 22 ±0. 30) , that of SIMV group was higher than that of PAV and MAS group, the difference were statistically significant (P <0. 05); There was no significant difference between PAV and MAS group. (2) The levels of both TNF-a(pg/rnl)[(644.4±89. 3)vs. (787. 1 ±100.6) vs. (536. 0 ±28. 5) ] and IL-8(pg/ml) [ (787. 0 ±89. 3) vs. (872. 9 ±87. 0) vs. (641. 4 ±60. 3) ] in the lung homogenate of PAV group, SIMV group and MAS group were higher than that of control group [(401. 1 ±74.5) vs. (381.3 ±63.3)]. that of SIMV group was higher than that of PAV and MAS group, the difference were statistically significant (P <0. 05) ; That of PAV group were higher than that of MAS group, the difference were significant (P < 0.05). (3) The levels of TNF-o in the BALF of PAV group(644. 4 ± 89. 3), SIMV group (787. 1 ± 100. 6)and MAS group(536. 0 ±28. 5) were higher than that of control group(301. 8 ±75. 9). That of SIMV group was higher than that of PAV group, the difference were significant ( P <0. 05 ) ; The levels of IL-8 in the

  1. O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Via della Vasca Navale 79, I-00146 Roma (Italy); National Institute for Infectious Diseases I.R.C.C.S. ' Lazzaro Spallanzani' , Via Portuense 292, I-00149 Roma (Italy); Gullotta, Francesca; Gioia, Magda; Coletta, Massimo [Department of Experimental Medicine and Biochemical Sciences, University of Roma ' Tor Vergata' , Via Montpellier 1, I-00133 Roma (Italy); Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Piazza Umberto I 1, I-87100 Bari (Italy); Fasano, Mauro [Department of Structural and Functional Biology, and Center of Neuroscience, University of Insubria, Via Alberto da Giussano 12a, I-21052 Busto Arsizio, VA (Italy)

    2011-03-04

    Research highlights: {yields} Human serum heme-albumin displays globin-like properties. {yields} O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin. {yields} Allosteric modulation of human serum heme-albumin reactivity. {yields} Rifampicin is an allosteric effector of human serum heme-albumin. {yields} Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O{sub 2}-mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10{sup -5} and 8.3 x 10{sup -4} s{sup -1}, and h = 1.3 x 10{sup -4} and 8.5 x 10{sup -4} s{sup -1}, in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 {sup o}C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O{sub 2} does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O{sub 2}-mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  2. Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1.

    Science.gov (United States)

    Lin, Kuo-I; Kao, Yeong-Yi; Kuo, Hui-Kai; Yang, Wen-Bin; Chou, Alice; Lin, Hsin-Hung; Yu, Alice L; Wong, Chi-Huey

    2006-08-25

    The polysaccharides of Ganoderma lucidum (Reishi) possess immunomodulation activities; however, their mode of molecular action in regulating each cellular subset in the immune system is still not clear. Here, we investigate the function of the main polysaccharide fraction of Reishi (Reishi-F3) in B lymphocyte activation/differentiation. We find that Reishi-F3 causes mouse splenic B cell activation and differentiation to IgM-secreting plasma cells, and the process depends on Reishi-F3-mediated induction of Blimp-1, a master regulator capable of triggering the changes of a cascade of gene expression during plasmacytic differentiation. In human peripheral B lymphocytes, although Reishi-F3 fails to induce their activation, it is able to enhance antibody secretion, which is associated with Blimp-1 mRNA induction. The function of Reishi-F3 depends on the Toll-like receptors TLR4/TLR2 as neutralizing antibodies against TLR4/TLR2 block Reishi-F3-mediated induction of Blimp-1 mRNA and Ig secretion. We have shown that interaction of Reishi-F3 with TLR4/TLR2 followed by signaling through p38 MAPK is involved in the induction of Blimp-1 mRNA, whereas signaling through ERK, p38 MAPK, JNK, and IKK complex is involved in Reishi-F3-mediated Ig secretion. Furthermore, the differential mechanism of Reishi-F3 in mouse and human B cell activation is probably due to the presence of Blimp-1 regulatory site in human CD86 promoter. These results establish the signaling and molecular mechanisms of Reishi-F3 on promoting antibody secretion.

  3. Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion

    OpenAIRE

    Borodina, Irina; Siebring, Jeroen; Zhang, Jie; Smith, Colin P; van Keulen, Geertje; Dijkhuizen, Lubbert; Nielsen, Jens

    2008-01-01

    Streptomycetes are exploited for production of a wide range of secondary metabolites, and there is much interest in enhancing the level of production of these metabolites. Secondary metabolites are synthesized in dedicated biosynthetic routes, but precursors and co-factors are derived from the primary metabolism. High level production of antibiotics in streptomycetes therefore requires engineering of the primary metabolism. Here we demonstrate this by targeting a key enzyme in glycolysis, pho...

  4. Obesity Suppresses Estrogen Receptor Beta Expression in Breast Cancer Cells via a HER2-Mediated Pathway.

    Science.gov (United States)

    Bowers, Laura W; Wiese, Megan; Brenner, Andrew J; Rossi, Emily L; Tekmal, Rajeshwar R; Hursting, Stephen D; deGraffenried, Linda A

    2015-01-01

    Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERβ) expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERβ expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB): ≥30 kg/m2; normal weight (N): 18.5-24.9 kg/m2). Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231) and mammary tumor cells from MMTV-neu mice were used. ERβ expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu) following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERβ, was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERβ gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERβ modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERβ expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERβ was silenced or the cells were modified to overexpress ERβ. Based on this data, we conclude that obesity-associated systemic factors suppress ERβ expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s) mediating this effect could provide important insights into how ERβ expression is regulated as well as how obesity promotes a more aggressive disease.

  5. Obesity Suppresses Estrogen Receptor Beta Expression in Breast Cancer Cells via a HER2-Mediated Pathway.

    Directory of Open Access Journals (Sweden)

    Laura W Bowers

    Full Text Available Obesity is associated with a worse breast cancer prognosis, while greater breast tumor estrogen receptor beta (ERβ expression is correlated with improved therapy response and survival. The objective of this study was to determine the impact of obesity on breast cancer cell ERβ expression, which is currently unknown. We utilized an in vitro model of obesity in which breast cancer cells were exposed to patient serum pooled by body mass index category (obese (OB: ≥30 kg/m2; normal weight (N: 18.5-24.9 kg/m2. Four human mammary tumor cell lines representing the major breast cancer subtypes (SKBR3, MCF-7, ZR75, MDA-MB-231 and mammary tumor cells from MMTV-neu mice were used. ERβ expression, assessed by qPCR and western blotting, was suppressed in the two HER2-overexpressing cell lines (SKBR3, MMTV-neu following OB versus N sera exposure, but did not vary in the other cell lines. Expression of Bcl-2 and cyclin D1, two genes negatively regulated by ERβ, was elevated in SKBR3 cells following exposure to OB versus N sera, but this difference was eliminated when the ERβ gene was silenced with siRNA. Herceptin, a HER2 antagonist, and siRNA to HER2 were used to evaluate the role of HER2 in sera-induced ERβ modulation. SKBR3 cell treatment with OB sera plus Herceptin increased ERβ expression three-fold. Similar results were obtained when HER2 expression was silenced with siRNA. OB sera also promoted greater SKBR3 cell viability and growth, but this variance was not present when ERβ was silenced or the cells were modified to overexpress ERβ. Based on this data, we conclude that obesity-associated systemic factors suppress ERβ expression in breast cancer cells via a HER2-mediated pathway, leading to greater cell viability and growth. Elucidation of the mechanism(s mediating this effect could provide important insights into how ERβ expression is regulated as well as how obesity promotes a more aggressive disease.

  6. Prostaglandin E2 mediates proliferation and chloride secretion in ADPKD cystic renal epithelia

    Science.gov (United States)

    Liu, Yu; Rajagopal, Madhumitha; Lee, Kim; Battini, Lorenzo; Flores, Daniel; Gusella, G. Luca; Pao, Alan C.

    2012-01-01

    Prostaglandin E2 (PGE2) contributes to cystogenesis in genetically nonorthologous models of autosomal dominant polycystic kidney disease (ADPKD). However, it remains unknown whether PGE2 induces the classic features of cystic epithelia in genetically orthologous models of ADPKD. We hypothesized that, in ADPKD epithelia, PGE2 induces proliferation and chloride (Cl−) secretion, two archetypal phenotypic features of ADPKD. To test this hypothesis, proliferation and Cl− secretion were measured in renal epithelial cells deficient in polycystin-1 (PC-1). PC-1-deficient cells increased in cell number (proliferated) faster than PC-1-replete cells, and this proliferative advantage was abrogated by cyclooxygenase inhibition, indicating a role for PGE2 in cell proliferation. Exogenous administration of PGE2 increased proliferation of PC-1-deficient cells by 38.8 ± 5.2% (P PGE2-specific E prostanoid (EP) receptor agonists induce intracellular cAMP and downstream β-catenin activation. PGE2 and EP4 receptor agonism (TCS 2510) increased intracellular cAMP concentration and the abundance of active β-catenin in PC-1-deficient cells, suggesting a mechanism for PGE2-mediated proliferation. Consistent with this hypothesis, antagonizing EP4 receptors reverted the growth advantage of PC-1-deficient cells, implicating a central role for the EP4 receptor in proliferation. To test whether PGE2-dependent Cl− secretion is also enhanced in PC-1-deficient cells, we used an Ussing chamber to measure short-circuit current (Isc). Addition of PGE2 induced a fivefold higher increase in Isc in PC-1-deficient cells compared with PC-1-replete cells. This PGE2-induced increase in Isc in PC-1-deficient cells was blocked by CFTR-172 and flufenamic acid, indicating that PGE2 activates CFTR and calcium-activated Cl− channels. In conclusion, PGE2 activates aberrant signaling pathways in PC-1-deficient epithelia that contribute to the proliferative and secretory phenotype characteristic of ADPKD

  7. NFAT2 mediates high glucose-induced glomerular podocyte apoptosis through increased Bax expression

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruizhao, E-mail: liruizhao1979@126.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Li, E-mail: Zhanglichangde@163.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Southern Medical University, Guangzhou, Guangdong (China); Shi, Wei, E-mail: shiwei.gd@139.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Zhang, Bin, E-mail: zhangbinyes@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liang, Xinling, E-mail: xinlingliang@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Liu, Shuangxin, E-mail: mplsxi@yahoo.com.cn [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China); Wang, Wenjian, E-mail: wwjph@yahoo.com [Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan No. 2 Road, Guangzhou, 510080 (China)

    2013-04-15

    Background: Hyperglycemia promotes podocyte apoptosis and plays a key role in the pathogenesis of diabetic nephropathy. However, the mechanisms that mediate hyperglycemia-induced podocyte apoptosis is still far from being fully understood. Recent studies reported that high glucose activate nuclear factor of activated T cells (NFAT) in vascular smooth muscle or pancreatic β-cells. Here, we sought to determine if hyperglycemia activates NFAT2 in cultured podocyte and whether this leads to podocyte apoptosis. Meanwhile, we also further explore the mechanisms of NFAT2 activation and NFAT2 mediates high glucose-induced podocyte apoptosis. Methods: Immortalized mouse podocytes were cultured in media containing normal glucose (NG), or high glucose (HG) or HG plus cyclosporine A (a pharmacological inhibitor of calcinerin) or 11R-VIVIT (a special inhibitor of NFAT2). The activation of NFAT2 in podocytes was detected by western blotting and immunofluorescence assay. The role of NFAT2 in hyperglycemia-induced podocyte apoptosis was further evaluated by observing the inhibition of NFAT2 activation by 11R-VIVIT using flow cytometer. Intracellular Ca{sup 2+} was monitored in HG-treated podcocytes using Fluo-3/AM. The mRNA and protein expression of apoptosis gene Bax were measured by real time-qPCR and western blotting. Results: HG stimulation activated NFAT2 in a time- and dose-dependent manner in cultured podocytes. Pretreatment with cyclosporine A (500 nM) or 11R-VIVIT (100 nM) completely blocked NFAT2 nuclear accumulation. Meanwhile, the apoptosis effects induced by HG were also abrogated by concomitant treatment with 11R-VIVIT in cultured podocytes. We further found that HG also increased [Ca{sup 2+}]i, leading to activation of calcineurin, and subsequent increased nuclear accumulation of NFAT2 and Bax expression in cultured podocytes. Conclusion: Our results identify a new finding that HG-induced podocyte apoptosis is mediated by calcineurin/NFAT2/Bax signaling pathway

  8. / production

    Indian Academy of Sciences (India)

    François Arleo; Pol-Bernard Gossiaux; Thierry Gousset; Jörg Aichelin

    2003-04-01

    For more than 25 years /Ψ production has helped to sharpen our understanding of QCD. In proton induced reaction some observations are rather well understood while others are still unclear. The current status of the theory of /Ψ production will be sketched, paying special attention to the issues of formation time and /Ψ re-interaction in a nuclear medium.

  9. Antibiotic overproduction in Streptomyces coelicolor A3(2) mediated by phosphofructokinase deletion

    NARCIS (Netherlands)

    Borodina, Irina; Siebring, Jeroen; Zhang, Jie; Smith, Colin P.; van Keulen, Geertje; Dijkhuizen, Lubbert; Nielsen, Jens

    2008-01-01

    Streptomycetes are exploited for production of a wide range of secondary metabolites, and there is much interest in enhancing the level of production of these metabolites. Secondary metabolites are synthesized in dedicated biosynthetic routes, but precursors and co-factors are derived from the prima

  10. Apigenin induces apoptosis via tumor necrosis factor receptor- and Bcl-2-mediated pathway and enhances susceptibility of head and neck squamous cell carcinoma to 5-fluorouracil and cisplatin.

    Science.gov (United States)

    Chan, Leong-Perng; Chou, Tzung-Han; Ding, Hsiou-Yu; Chen, Pin-Ru; Chiang, Feng-Yu; Kuo, Po-Lin; Liang, Chia-Hua

    2012-07-01

    Apigenin, a natural plant flavone, may have chemopreventive and therapeutic potentials for anti-inflammatory, antioxidant, and anti-cancer. Nevertheless, the anti-tumor effect of apigenin on human head and neck squamous cell carcinoma (HNSCC) is not fully understood. The antioxidant capacity and protective effects of apigenin against oxidative stress in murine normal embryonic liver BNLCL2 cells are examined. Cell viability, morphologic change, clonogenic survival, cell cycle distribution, reactive oxygen species (ROS) production, glutathione formation, and death receptors- and Bcl-2-mediated caspase pathways of HNSCC SCC25 cells and A431 cells with apigenin are investigated. Apigenin inhibits the growth of SCC25 and A431 cells and induces cell cycle arrest in the G2/M phase. Apigenin has an antioxidant capacity as well as the ability to inhibit lipid peroxidation. It protects BNLCL2 cells against oxidative damage, and is potentially able to prevent cancer. Apigenin increases intracellular ROS levels and reduces levels of glutathione; it also induces cell apoptosis via tumor necrosis factor receptor (TNF-R)-, TNF-related apoptosis-inducing ligand receptor (TRAIL-R)-, and Bcl-2-mediated caspase-dependent cell death pathways in SCC25 cells. The combination of apigenin with 5-fluorouracil (5-Fu) or cisplatin induces the dramatic death of SCC25 cells. Apigenin induces SCC25 cell apoptosis via the up-regulation of both TNF-R and TRAIL-R signaling pathways, and has a synergistic effect on the inhibition of cell proliferation in combination with 5-Fu or cisplatin. These analytical findings suggest that apigenin may be a good therapeutic agent against HNSCC cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    Directory of Open Access Journals (Sweden)

    Chen-Chen Lee

    2015-01-01

    Full Text Available This study investigated the immunomodulatory effects of ferulic acid (FA on antigen-presenting dendritic cells (DCs in vitro and its antiallergic effects against ovalbumin- (OVA- induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS stimulation induced a high level of interleukin- (IL- 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF- α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4, MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13, and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN- γ production in bronchoalveolar lavage fluid (BALF and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model.

  12. I2-Mediated 2H-indazole synthesis via halogen-bond-assisted benzyl C-H functionalization.

    Science.gov (United States)

    Yi, Xiangli; Jiao, Lei; Xi, Chanjuan

    2016-10-18

    I2-Mediated benzyl C-H functionalization has been developed for the synthesis of 2H-indazoles, which features high efficiency, simple conditions and no need for metals. Mechanistic experiments and DFT calculations have revealed halogen bond assistance and a radical chain process for this reaction. The azo group and the bound iodine cooperate in the hydrogen abstraction step, which circumvents the thermodynamic disfavor of direct hydrogen abstraction by a simple iodine radical.

  13. SmI(2)-mediated carbon-carbon bond fragmentation in alpha-aminomethyl malonates.

    Science.gov (United States)

    Xu, Qiongfeng; Cheng, Bin; Ye, Xinshan; Zhai, Hongbin

    2009-09-17

    A new and efficient samarium diiodide-promoted carbon-carbon bond fragmentation reaction of alpha-aminomethyl malonates, taking place normally at room temperature and generating the corresponding deaminomethylation products in 74-94% yields, is reported. The presence of the amino group is necessary for the success of the current transformation.

  14. Inhibition of complex I of the electron transport chain causes O2-. -mediated mitochondrial outgrowth

    NARCIS (Netherlands)

    Koopman, W.J.H.; Verkaart, S.A.J.; Visch, H.J.; Westhuizen, F.H. van der; Murphy, M.; Heuvel, L.W. van den; Smeitink, J.A.M.; Willems, P.H.G.M.

    2005-01-01

    Recent evidence indicates that oxidative stress is central to the pathogenesis of a wide variety of degenerative diseases, aging, and cancer. Oxidative stress occurs when the delicate balance between production and detoxification of reactive oxygen species is disturbed. Mammalian cells respond to th

  15. Endothelin and calciotropic hormones share regulatory pathways in multidrug resistance protein 2-mediated transport

    NARCIS (Netherlands)

    Wever, K.E.; Masereeuw, R.; Miller, D.S.; Hang, X.M.; Flik, G.

    2006-01-01

    The kidney of vertebrates plays a key role in excretion of endogenous waste products and xenobiotics. Active secretion in the proximal nephron is at the basis of this excretion, mediated by carrier proteins including multidrug resistance protein 2 (Mrp2). We previously showed that Mrp2 function is

  16. Antibiotic overproduction in Streptomyces coelicolor A3 2 mediated by phosphofructokinase deletion.

    Science.gov (United States)

    Borodina, Irina; Siebring, Jeroen; Zhang, Jie; Smith, Colin P; van Keulen, Geertje; Dijkhuizen, Lubbert; Nielsen, Jens

    2008-09-12

    Streptomycetes are exploited for production of a wide range of secondary metabolites, and there is much interest in enhancing the level of production of these metabolites. Secondary metabolites are synthesized in dedicated biosynthetic routes, but precursors and co-factors are derived from the primary metabolism. High level production of antibiotics in streptomycetes therefore requires engineering of the primary metabolism. Here we demonstrate this by targeting a key enzyme in glycolysis, phosphofructokinase, leading to improved antibiotic production in Streptomyces coelicolor A3(2). Deletion of pfkA2 (SCO5426), one of three annotated pfkA homologues in S. coelicolor A3(2), resulted in a higher production of the pigmented antibiotics actinorhodin and undecylprodigiosin. The pfkA2 deletion strain had an increased carbon flux through the pentose phosphate pathway, as measured by (13)C metabolic flux analysis, establishing the ATP-dependent PfkA2 as a key player in determining the carbon flux distribution. The increased pentose phosphate pathway flux appeared largely because of accumulation of glucose 6-phosphate and fructose 6-phosphate, as experimentally observed in the mutant strain. Through genome-scale metabolic model simulations, we predicted that decreased phosphofructokinase activity leads to an increase in pentose phosphate pathway flux and in flux to pigmented antibiotics and pyruvate. Integrated analysis of gene expression data using a genome-scale metabolic model further revealed transcriptional changes in genes encoding redox co-factor-dependent enzymes as well as those encoding pentose phosphate pathway enzymes and enzymes involved in storage carbohydrate biosynthesis.

  17. Anti-Melanogenic Activities of Heracleum moellendorffii via ERK1/2-Mediated MITF Downregulation

    Directory of Open Access Journals (Sweden)

    Md Badrul Alam

    2016-11-01

    Full Text Available In this study, the anti-melanogenic effects of Heracleum moellendorffii Hance extract (HmHe and the mechanisms through which it inhibits melanogenesis in melan-a cells were investigated. Mushroom tyrosinase (TYR activity and melanin content as well as cellular tyrosinase activity were measured in the cells. mRNA and protein expression of microphthalmia-associated transcription factor (MITF, tyrosinase (TYR, TYR-related protein-1 (TYRP-1 and -2 were also examined. The results demonstrate that treatment with HmHe significantly inhibits mushroom tyrosinase activity. Furthermore, HmHe also markedly inhibits melanin production and intracellular tyrosinase activity. By suppressing the expression of TYR, TYRP-1, TYRP-2, and MITF, HmHe treatment antagonized melanin production in melan-a cells. Additionally, HmHe interfered with the phosphorylation of extracellular signal-regulated kinase (ERK 1/2, with reversal of HmHe-induced melanogenesis inhibition after treatment with specific inhibitor U0126. In summary, HmHe can be said to stimulate ERK1/2 phosphorylation and subsequent degradation of MITF, resulting in suppression of melanogenic enzymes and melanin production, possibly due to the presence of polyphenolic compounds.

  18. Nox2 Mediates Skeletal Muscle Insulin Resistance Induced by a High Fat Diet*

    Science.gov (United States)

    Souto Padron de Figueiredo, Alvaro; Salmon, Adam B.; Bruno, Francesca; Jimenez, Fabio; Martinez, Herman G.; Halade, Ganesh V.; Ahuja, Seema S.; Clark, Robert A.; DeFronzo, Ralph A.; Abboud, Hanna E.; El Jamali, Amina

    2015-01-01

    Inflammation and oxidative stress through the production of reactive oxygen species (ROS) are consistently associated with metabolic syndrome/type 2 diabetes. Although the role of Nox2, a major ROS-generating enzyme, is well described in host defense and inflammation, little is known about its potential role in insulin resistance in skeletal muscle. Insulin resistance induced by a high fat diet was mitigated in Nox2-null mice compared with wild-type mice after 3 or 9 months on the diet. High fat feeding increased Nox2 expression, superoxide production, and impaired insulin signaling in skeletal muscle tissue of wild-type mice but not in Nox2-null mice. Exposure of C2C12 cultured myotubes to either high glucose concentration, palmitate, or H2O2 decreases insulin-induced Akt phosphorylation and glucose uptake. Pretreatment with catalase abrogated these effects, indicating a key role for H2O2 in mediating insulin resistance. Down-regulation of Nox2 in C2C12 cells by shRNA prevented insulin resistance induced by high glucose or palmitate but not H2O2. These data indicate that increased production of ROS in insulin resistance induced by high glucose in skeletal muscle cells is a consequence of Nox2 activation. This is the first report to show that Nox2 is a key mediator of insulin resistance in skeletal muscle. PMID:25825489

  19. Conjugation of gold nanoparticles and recombinant human endostatin modulates vascular normalization via interruption of anterior gradient 2-mediated angiogenesis.

    Science.gov (United States)

    Pan, Fan; Yang, Wende; Li, Wei; Yang, Xiao-Yan; Liu, Shuhao; Li, Xin; Zhao, Xiaoxu; Ding, Hui; Qin, Li; Pan, Yunlong

    2017-07-01

    Several studies have revealed the potential of normalizing tumor vessels in anti-angiogenic treatment. Recombinant human endostatin is an anti-angiogenic agent which has been applied in clinical tumor treatment. Our previous research indicated that gold nanoparticles could be a nanoparticle carrier for recombinant human endostatin delivery. The recombinant human endostatin-gold nanoparticle conjugates normalized vessels, which improved chemotherapy. However, the mechanism of recombinant human endostatin-gold nanoparticle-induced vascular normalization has not been explored. Anterior gradient 2 has been reported to be over-expressed in many malignant tumors and involved in tumor angiogenesis. To date, the precise efficacy of recombinant human endostatin-gold nanoparticles on anterior gradient 2-mediated angiogenesis or anterior gradient 2-related signaling cohort remained unknown. In this study, we aimed to explore whether recombinant human endostatin-gold nanoparticles could normalize vessels in metastatic colorectal cancer xenografts, and we further elucidated whether recombinant human endostatin-gold nanoparticles could interrupt anterior gradient 2-induced angiogenesis. In vivo, it was indicated that recombinant human endostatin-gold nanoparticles increased pericyte expression while inhibit vascular endothelial growth factor receptor 2 and anterior gradient 2 expression in metastatic colorectal cancer xenografts. In vitro, we uncovered that recombinant human endostatin-gold nanoparticles reduced cell migration and tube formation induced by anterior gradient 2 in human umbilical vein endothelial cells. Treatment with recombinant human endostatin-gold nanoparticles attenuated anterior gradient 2-mediated activation of MMP2, cMyc, VE-cadherin, phosphorylation of p38, and extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) in human umbilical vein endothelial cells. Our findings demonstrated recombinant human endostatin-gold nanoparticles might normalize

  20. Development of an additive-controlled, SmI2-mediated stereoselective sequence: Telescoped spirocyclisation, lactone reduction and Peterson elimination

    Directory of Open Access Journals (Sweden)

    Brice Sautier

    2013-07-01

    Full Text Available Studies on SmI2-mediated spirocyclisation and lactone reduction culminate in a telescoped sequence in which additives are used to “switch on” individual steps mediated by the electron transfer reagent. The sequence involves the use of two activated SmI2 reagent systems and a silicon stereocontrol element that exerts complete diastereocontrol over the cyclisation and is removed during the final stage of the sequence by Peterson elimination. The approach allows functionalised cyclopentanols containing two vicinal quaternary stereocentres to be conveniently prepared from simple starting materials.

  1. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity.

    Science.gov (United States)

    Chopin, Michaël; Preston, Simon P; Lun, Aaron T L; Tellier, Julie; Smyth, Gordon K; Pellegrini, Marc; Belz, Gabrielle T; Corcoran, Lynn M; Visvader, Jane E; Wu, Li; Nutt, Stephen L

    2016-04-13

    Plasmacytoid dendritic cells (pDCs) represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections.

  2. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity

    Directory of Open Access Journals (Sweden)

    Michaël Chopin

    2016-04-01

    Full Text Available Plasmacytoid dendritic cells (pDCs represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections.

  3. Antibiotic Overproduction in Steptomyces coelicolor A3(2) Mediated by Phosphofructokinase Deletion

    DEFF Research Database (Denmark)

    Borodina, Irina; Siebring, Jeroen; Zhang, Jie

    2008-01-01

    . Through genome-scale metabolic model simulations, we predicted that decreased phosphofructokinase activity leads to an increase in pentose phosphate pathway flux and in flux to pigmented antibiotics and pyruvate. Integrated analysis of gene expression data using a genome-scale metabolic model further...... of pfkA2 (SCO5426), one of three annotated pfkA homologues in S. coelicolor A3(2), resulted in a higher production of the pigmented antibiotics actinorhodin and undecylprodigiosin. The pfkA2 deletion strain had an increased carbon flux through the pentose phosphate pathway, as measured by C-13 metabolic...... flux analysis, establishing the ATP-dependent PfkA2 as a key player in determining the carbon flux distribution. The increased pentose phosphate pathway flux appeared largely because of accumulation of glucose 6-phosphate and fructose 6-phosphate, as experimentally observed in the mutant strain...

  4. Organic extract contaminants from drinking water activate Nrf2-mediated antioxidant response in a human cell line.

    Science.gov (United States)

    Wang, Shu; Zhang, Hao; Zheng, Weiwei; Wang, Xia; Andersen, Melvin E; Pi, Jingbo; He, Gengsheng; Qu, Weidong

    2013-05-07

    Traditional risk assessment methods face challenges in estimating risks from drinking waters that contain low-levels of large numbers of contaminants. Here, we evaluate the toxicity of organic contaminant (OC) extracts from drinking water by examining activation of nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant response. In HepG2 cells, the Nrf2-mediated antioxidant response-measured as Nrf2 protein accumulation, expression of antioxidant response element (ARE)-regulated genes and ARE-luciferase reporter gene assays were activated by OC extracts from drinking water sources that detected 25 compounds in 9 classification groups. Individual OCs induced oxidative stress at concentrations much higher than their environmental levels; however, mixtures of contaminants induced oxidative stress response at only 8 times the environmental levels. Additionally, a synthetic OC mixture prepared based on the contamination profiling of drinking water induced ARE activity to the same extent as the real-world mixture, reinforcing our conclusion that these mixture exposures produce responses relevant for human exposure situations. Our study tested the possibility of assessing toxicity of OCs of drinking water using a specific ARE-pathway measurement. This approach should be broadly useful in assisting risk assessment of mixed environmental exposure.

  5. NOX2-Mediated TFEB Activation and Vacuolization Regulate Lysosome-Associated Cell Death Induced by Gypenoside L, a Saponin Isolated from Gynostemma pentaphyllum.

    Science.gov (United States)

    Zheng, Kai; Jiang, Yingchun; Liao, Chenghui; Hu, Xiaopeng; Li, Yan; Zeng, Yong; Zhang, Jian; Wu, Xuli; Wu, Haiqiang; Liu, Lizhong; Wang, Yifei; He, Zhendan

    2017-08-09

    Downregulation of apoptotic signal pathway and activation of protective autophagy mainly contribute to the chemoresistance of tumor cells. Therefore, exploring efficient chemotherapeutic agents or isolating novel natural products that can trigger nonapoptotic and nonautophagic cell death such as lysosome-associated death is emergently required. We have recently extracted a saponin, gypenoside L (Gyp-L), from Gynostemma pentaphyllum and showed that Gyp-L was able to induce nonapoptotic cell death of esophageal cancer cells associated with lysosome swelling. However, contributions of vacuolization and lysosome to cell death remain unclear. Herein, we reveal a critical role for NADPH oxidase NOX2-mediated vacuolization and transcription factor EB (TFEB) activation in lysosome-associated cell death. We found that Gyp-L initially induced the abnormal enlarged and alkalized vacuoles, which were derived from lipid rafts dependent endocytosis. Besides, NOX2 was activated to promote vacuolization and mTORC1-independent TFEB-mediated lysosome biogenesis. Finally, raising lysosome pH could enhance Gyp-L induced cell death. These findings suggest a protective role of NOX2-TFEB-mediated lysosome biogenesis in cancer drug resistance and the tight interaction between lipid rafts and vacuolization. In addition, Gyp-L can be utilized as an alternative option to overcome drug-resistance though inducing lysosome associated cell death.

  6. Seasonal heat stress affects adipose tissue proteome toward enrichment of the Nrf2-mediated oxidative stress response in late-pregnant dairy cows.

    Science.gov (United States)

    Zachut, M; Kra, G; Livshitz, L; Portnick, Y; Yakoby, S; Friedlander, G; Levin, Y

    2017-03-31

    Environmental heat stress and metabolic stress during transition from late gestation to lactation are main factors limiting production in dairy cattle, and there is a complex interaction between them. Many proteins expressed in adipose tissue are involved in metabolic responses to stress. We aimed to investigate the effects of seasonal heat stress on adipose proteome in late-pregnant cows, and to identify biomarkers of heat stress. Late pregnant cows during summer heat stress (S, n=18), or during the winter season (W, n=12) were used. Subcutaneous adipose tissue biopsies sampled 14days prepartum from S (n=10) and W (n=8) were analyzed by intensity-based, label-free, quantitative shotgun proteomics (nano-LC-MS/MS). Plasma concentrations of malondialdehyde and cortisol were higher in S than in W cows. Proteomic analysis revealed that 107/1495 proteins were differentially abundant in S compared to W (Padipose were Nrf2-mediated oxidative stress response, acute-phase response, and FXR/RXR and LXR/RXR activation. Novel biomarkers of heat stress in adipose tissue were found. These findings indicate that seasonal heat stress has a unique effect on adipose tissue in late-pregnant cows. This work shows that seasonal heat stress increases plasma concentrations of the oxidative stress marker malondialdehyde and cortisol in transition dairy cows. As many proteins expressed in the adipose tissue are involved in metabolic responses to stress, we investigated the effects of heat stress on the proteome of adipose tissue from late-pregnant cows during summer or winter seasons. We demonstrated that heat stress enriches several stress-related pathways, such as the Nrf2-mediated oxidative stress response and the acute-phase response in adipose tissues. Thus, environmental heat stress has a unique effect on adipose tissue in late-pregnant cows, as part of the regulatory adaptations to chronic heat load during the summer season. In addition, this study presents the widest available

  7. Procyanidin dimer B2-mediated IRAK-M induction negatively regulates TLR4 signaling in macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Nak-Yun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Yang, Mi-So [Department of Microbiology, Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon (Korea, Republic of); Song, Du-Sub [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Park, Hyun-Jin [School of life sciences and Biotechnology, Korea University 5-ka, Anam-Dong, Sungbuk-ku, Seoul 136-701 (Korea, Republic of); Kim, Jae-Hun [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Baek, E-mail: ebbyun80@kaeri.re.kr [Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185 (Korea, Republic of); Byun, Eui-Hong, E-mail: ehbyun80@kongju.ac.k [Department of Food Science and Technology, Kongju National University, Yesan 340-800 (Korea, Republic of)

    2013-08-16

    Highlights: •Pro B2 elevated the expression of IRAK-M, a negative regulator of TLR signaling. •LPS-induced expression of cell surface molecules was inhibited by Pro B2. •LPS-induced production of pro-inflammatory cytokines was inhibited by Pro B2. •Pro B2 inhibited LPS-induced activation of MAPKs and NF-κB through IRAK-M. •Pro B2 inactivated naïve T cells by inhibiting LPS-induced cytokines via IRAK-M. -- Abstract: Polyphenolic compounds have been found to possess a wide range of physiological activities that may contribute to their beneficial effects against inflammation-related diseases; however, the molecular mechanisms underlying this anti-inflammatory activity are not completely characterized, and many features remain to be elucidated. In this study, we investigated the molecular basis for the down-regulation of toll-like receptor 4 (TLR4) signal transduction by procyanidin dimer B2 (Pro B2) in macrophages. Pro B2 markedly elevated the expression of the interleukin (IL)-1 receptor-associated kinase (IRAK)-M protein, a negative regulator of TLR signaling. Lipopolysaccharide (LPS)-induced expression of cell surface molecules (CD80, CD86, and MHC class I/II) and production of pro-inflammatory cytokines (tumor necrosis factor-α, IL-1β, IL-6, and IL-12p70) were inhibited by Pro B2, and this action was prevented by IRAK-M silencing. In addition, Pro B2-treated macrophages inhibited LPS-induced activation of mitogen-activated protein kinases such as extracellular signal-regulated kinase 1/2, p38, and c-Jun N-terminal kinase and the translocation of nuclear factor κB and p65 through IRAK-M. We also found that Pro B2-treated macrophages inactivated naïve T cells by inhibiting LPS-induced interferon-γ and IL-2 secretion through IRAK-M. These novel findings provide new insights into the understanding of negative regulatory mechanisms of the TLR4 signaling pathway and the immune-pharmacological role of Pro B2 in the immune response against the development

  8. Dexamethasone improves redox state in ataxia telangiectasia cells by promoting an NRF2-mediated antioxidant response.

    Science.gov (United States)

    Biagiotti, Sara; Menotta, Michele; Orazi, Sara; Spapperi, Chiara; Brundu, Serena; Fraternale, Alessandra; Bianchi, Marzia; Rossi, Luigia; Chessa, Luciana; Magnani, Mauro

    2016-11-01

    Ataxia telangiectasia (A-T) is a rare incurable neurodegenerative disease caused by biallelic mutations in the gene for ataxia-telangiectasia mutated (ATM). The lack of a functional ATM kinase leads to a pleiotropic phenotype, and oxidative stress is considered to have a crucial role in the complex physiopathology. Recently, steroids have been shown to reduce the neurological symptoms of the disease, although the molecular mechanism of this effect is largely unknown. In the present study, we have demonstrated that dexamethasone treatment of A-T lymphoblastoid cells increases the content of two of the most abundant antioxidants [glutathione (GSH) and NADPH] by up to 30%. Dexamethasone promoted the nuclear accumulation of the transcription factor nuclear factor (erythroid-derived 2)-like 2 to drive expression of antioxidant pathways involved in GSH synthesis and NADPH production. The latter effect was via glucose 6-phosphate dehydrogenase activation, as confirmed by increased enzyme activity and enhancement of the pentose phosphate pathway rate. This evidence indicates that glucocorticoids are able to potentiate antioxidant defenses to counteract oxidative stress in ataxia telangiectasia, and also reveals an unexpected role for dexamethasone in redox homeostasis and cellular antioxidant activity. © 2016 The Authors. The FEBS Journal published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.

  9. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti

    Science.gov (United States)

    Zhang, Hongwei; Dong, Shengzhang; Chen, Xi; Stanley, David; Beerntsen, Brenda; Feng, Qili; Song, Qisheng

    2017-01-01

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs β), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. Here, we investigated the hypothesis that bursicon homodimers act in prophylactic immunity in insects, and possibly arthropods, generally, using the mosquito, Aedes aegypti. We found that burs α and burs β are expressed in larvae, pupae and newly emerged adults. Treating newly emerged Ae. aegypti and D. melanogaster adults with recombinant bursicon (r-bursicon) heterodimer led to cuticle tanning in both species. Treating larvae and adults with r-bursicon homodimers led to up-regulation of five anti-microbial peptide (AMP) genes, noting the possibility that bursicon heterodimers also lead to up-regulation of these genes can not been excluded. The induced AMPs effectively suppressed the growth of bacteria in vitro. RNAi knock-down of the transcriptional factor Relish2 abolished the influence of r-bursicon homodimers on AMP production. We infer the bursicon homodimers induce expression of AMP genes via Relish2 in Ae. aegypti, as prophylactic immunity to protect mosquitoes during the vulnerable stages of each molt. PMID:28225068

  10. A secretory phospholipase A2-mediated neuroprotection and anti-apoptosis

    Directory of Open Access Journals (Sweden)

    Howells David W

    2009-09-01

    Full Text Available Abstract Background Phospholipase A2 liberates free fatty acids and lysophospholipids upon hydrolysis of phospholipids and these products are often associated with detrimental effects such as inflammation and cerebral ischemia. The neuroprotective effect of neutral phospholipase from snake venom has been investigated. Results A neutral anticoagulant secretory phospholipase A2 (nPLA from the venom of Naja sputatrix (Malayan spitting cobra has been found to reduce infarct volume in rats subjected to focal transient cerebral ischemia and to alleviate the neuronal damage in organotypic hippocampal slices subjected to oxygen-glucose deprivation (OGD. Real-time PCR based gene expression analysis showed that anti-apoptotic and pro-survival genes have been up-regulated in both in vivo and in vitro models. Staurosporine or OGD mediated apoptotic cell death in astrocytoma cells has also been found to be reduced by nPLA with a corresponding reduction in caspase 3 activity. Conclusion We have found that a secretory phospholipase (nPLA purified from snake venom could reduce infarct volume in rodent stroke model. nPLA, has also been found to reduce neuronal cell death, apoptosis and promote cell survival in vitro ischemic conditions. In all conditions, the protective effects could be seen at sub-lethal concentrations of the protein.

  11. Complement receptor 2-mediated targeting of complement inhibitors to sites of complement activation.

    Science.gov (United States)

    Song, Hongbin; He, Chun; Knaak, Christian; Guthridge, Joel M; Holers, V Michael; Tomlinson, Stephen

    2003-06-01

    In a strategy to specifically target complement inhibitors to sites of complement activation and disease, recombinant fusion proteins consisting of a complement inhibitor linked to a C3 binding region of complement receptor (CR) 2 were prepared and characterized. Natural ligands for CR2 are C3 breakdown products deposited at sites of complement activation. Fusion proteins were prepared consisting of a human CR2 fragment linked to either the N terminus or C terminus of soluble forms of the membrane complement inhibitors decay accelerating factor (DAF) or CD59. The targeted complement inhibitors bound to C3-opsonized cells, and all were significantly more effective (up to 20-fold) than corresponding untargeted inhibitors at protecting target cells from complement. CR2 fusion proteins also inhibited CR3-dependent adhesion of U937 cells to C3 opsonized erythrocytes, indicating a second potential anti-inflammatory mechanism of CR2 fusion proteins, since CR3 is involved in endothelial adhesion and diapedesis of leukocytes at inflammatory sites. Finally, the in vivo validity of the targeting strategy was confirmed by the demonstration that CR2-DAF, but not soluble DAF, targets to the kidney in mouse models of lupus nephritis that are associated with renal complement deposition.

  12. Cox7a2 mediates steroidogenesis in TM3 mouse Leydig cells

    Institute of Scientific and Technical Information of China (English)

    Liang Chen; Zhong-Cheng Xin; Xin Li; Long Tian; Yi-Ming Yuan; Gang Liu; Xue-Jun Jiang; Ying-Lu Guo

    2006-01-01

    Aim: To investigate the regulatory function of Cox7a2 on steroidogenesis and the mechanism involved in TM3 mouse Leydig cells. Methods: The cDNA of Cox7a2 was cloned from TM3 mouse Leydig cells. It was subcloned to pDsRedExpress-N1 and transfected back into TM3 mouse Leydig cells for Cox7a2 overexpression by transient gene transfection.Steroidogenesis affected by overexpressed Cox7a2 was studied by ELISA. To elicit the mechanism of this effect,expression of steroidogenic acute regulatory (StAR) protein and reactive oxygen species (ROS) were examined by Western blot and fluorometer, respectively. Results: The cDNA of Cox7a2 (249 bp) was cloned from Leydig cells and confirmed by DNA sequencing. After constructed pDsRed-Express-Nl-Cox7a2 was transfected back into TM3 mouse Leydig cells, Cox7a2 inhibited not only luteinizing hormone (LH)-induced secretion of testosterone but also the expression of StAR protein. At the same time, Cox7a2 increased the activity of ROS in TM3 mouse Leydig cells. Conclusion:Cox7a2 inhibited LH-induced StAR protein expression, and consequent testosterone production, at least in part, by increasing ROS activity in TM3 mouse Leydig cells.

  13. Relish2 mediates bursicon homodimer-induced prophylactic immunity in the mosquito Aedes aegypti.

    Science.gov (United States)

    Zhang, Hongwei; Dong, Shengzhang; Chen, Xi; Stanley, David; Beerntsen, Brenda; Feng, Qili; Song, Qisheng

    2017-02-22

    Bursicon is a neuropeptide hormone consisting of two cystine-knot proteins (burs α and burs β), responsible for cuticle tanning and other developmental processes in insects. Recent studies show that each bursicon subunit forms homodimers that induce prophylactic immunity in Drosophila melanogaster. Here, we investigated the hypothesis that bursicon homodimers act in prophylactic immunity in insects, and possibly arthropods, generally, using the mosquito, Aedes aegypti. We found that burs α and burs β are expressed in larvae, pupae and newly emerged adults. Treating newly emerged Ae. aegypti and D. melanogaster adults with recombinant bursicon (r-bursicon) heterodimer led to cuticle tanning in both species. Treating larvae and adults with r-bursicon homodimers led to up-regulation of five anti-microbial peptide (AMP) genes, noting the possibility that bursicon heterodimers also lead to up-regulation of these genes can not been excluded. The induced AMPs effectively suppressed the growth of bacteria in vitro. RNAi knock-down of the transcriptional factor Relish2 abolished the influence of r-bursicon homodimers on AMP production. We infer the bursicon homodimers induce expression of AMP genes via Relish2 in Ae. aegypti, as prophylactic immunity to protect mosquitoes during the vulnerable stages of each molt.

  14. Activated human T cells secrete exosomes that participate in IL-2 mediated immune response signaling.

    Directory of Open Access Journals (Sweden)

    Jessica Wahlgren

    Full Text Available It has previously been shown that nano-meter sized vesicles (30-100 nm, exosomes, secreted by antigen presenting cells can induce T cell responses thus showing the potential of exosomes to be used as immunological tools. Additionally, activated CD3⁺ T cells can secrete exosomes that have the ability to modulate different immunological responses. Here, we investigated what effects exosomes originating from activated CD3⁺ T cells have on resting CD3⁺ T cells by studying T cell proliferation, cytokine production and by performing T cell and exosome phenotype characterization. Human exosomes were generated in vitro following CD3⁺ T cell stimulation with anti-CD28, anti-CD3 and IL-2. Our results show that exosomes purified from stimulated CD3⁺ T cells together with IL-2 were able to generate proliferation in autologous resting CD3⁺ T cells. The CD3⁺ T cells stimulated with exosomes together with IL-2 had a higher proportion of CD8⁺ T cells and had a different cytokine profile compared to controls. These results indicate that activated CD3⁺ T cells communicate with resting autologous T cells via exosomes.

  15. Supercritical CO{sub 2} mediated synthesis and catalytic activity of graphene/Pd nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Lulu [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Nguyen, Van Hoa [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of); Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang (Viet Nam); Shim, Jae-Jin, E-mail: jjshim@yu.ac.kr [School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeoungbuk 712-749 (Korea, Republic of)

    2015-11-15

    Highlights: • RGO/Pd composite was efficiently prepared via a facile method in supercritical CO{sub 2}. • Graphene sheets were coated uniformly with Pd nanoparticles with a size of ∼8 nm. • Composites exhibited excellent catalytic activity in the Suzuki reaction even after 10 cycles. - Abstract: Graphene sheets were decorated with palladium nanoparticles using a facile and efficient method in supercritical CO{sub 2}. The nanoparticles were formed on the graphene sheets by the simple hydrogen reduction of palladium(II) hexafluoroacetylacetonate precursor in supercritical CO{sub 2}. The product was characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. Highly dispersed nanoparticles with various sizes and shapes adhered well to the graphene sheets. The composites showed high catalytic activities for the Suzuki reaction under aqueous and aerobic conditions within 5 min. The effects of the different Pd precursor loadings on the catalytic activities of the composites were also examined.

  16. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition

    Science.gov (United States)

    Gao, Lu; Rabbitt, Elizabeth H.; Condon, Jennifer C.; Renthal, Nora E.; Johnston, John M.; Mitsche, Matthew A.; Chambon, Pierre; Xu, Jianming; O’Malley, Bert W.; Mendelson, Carole R.

    2015-01-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A–deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2–deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2–deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2–deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2–dependent production of SP-A and PAF is crucial for this process. PMID:26098214

  17. Steroid receptor coactivators 1 and 2 mediate fetal-to-maternal signaling that initiates parturition.

    Science.gov (United States)

    Gao, Lu; Rabbitt, Elizabeth H; Condon, Jennifer C; Renthal, Nora E; Johnston, John M; Mitsche, Matthew A; Chambon, Pierre; Xu, Jianming; O'Malley, Bert W; Mendelson, Carole R

    2015-07-01

    The precise mechanisms that lead to parturition are incompletely defined. Surfactant protein-A (SP-A), which is secreted by fetal lungs into amniotic fluid (AF) near term, likely provides a signal for parturition; however, SP-A-deficient mice have only a relatively modest delay (~12 hours) in parturition, suggesting additional factors. Here, we evaluated the contribution of steroid receptor coactivators 1 and 2 (SRC-1 and SRC-2), which upregulate SP-A transcription, to the parturition process. As mice lacking both SRC-1 and SRC-2 die at birth due to respiratory distress, we crossed double-heterozygous males and females. Parturition was severely delayed (~38 hours) in heterozygous dams harboring SRC-1/-2-deficient embryos. These mothers exhibited decreased myometrial NF-κB activation, PGF2α, and expression of contraction-associated genes; impaired luteolysis; and elevated circulating progesterone. These manifestations also occurred in WT females bearing SRC-1/-2 double-deficient embryos, indicating that a fetal-specific defect delayed labor. SP-A, as well as the enzyme lysophosphatidylcholine acyltransferase-1 (LPCAT1), required for synthesis of surfactant dipalmitoylphosphatidylcholine, and the proinflammatory glycerophospholipid platelet-activating factor (PAF) were markedly reduced in SRC-1/-2-deficient fetal lungs near term. Injection of PAF or SP-A into AF at 17.5 days post coitum enhanced uterine NF-κB activation and contractile gene expression, promoted luteolysis, and rescued delayed parturition in SRC-1/-2-deficient embryo-bearing dams. These findings reveal that fetal lungs produce signals to initiate labor when mature and that SRC-1/-2-dependent production of SP-A and PAF is crucial for this process.

  18. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages.

    Directory of Open Access Journals (Sweden)

    Yun Jeong Kim

    Full Text Available Botulinum neurotoxin type A (BoNT/A is the most potent protein toxin and causes fatal flaccid muscle paralysis by blocking neurotransmission. Application of BoNT/A has been extended to the fields of therapeutics and biodefense. Nevertheless, the global response of host immune cells to authentic BoNT/A has not been reported. Employing microarray analysis, we performed global transcriptional profiling of RAW264.7 cells, a murine alveolar macrophage cell line. We identified 70 genes that were modulated following 1 nM BoNT/A treatment. The altered genes were mainly involved in signal transduction, immunity and defense, protein metabolism and modification, neuronal activities, intracellular protein trafficking, and muscle contraction. Microarray data were validated with real-time RT-PCR for seven selected genes including tlr2, tnf, inos, ccl4, slpi, stx11, and irg1. Proinflammatory mediators such as nitric oxide (NO and tumor necrosis factor alpha (TNFα were induced in a dose-dependent manner in BoNT/A-stimulated RAW264.7 cells. Increased expression of these factors was inhibited by monoclonal anti-Toll-like receptor 2 (TLR2 and inhibitors specific to intracellular proteins such as c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK, and p38 mitogen-activated protein kinase (MAPK. BoNT/A also suppressed lipopolysaccharide-induced NO and TNFα production from RAW264.7 macrophages at the transcription level by blocking activation of JNK, ERK, and p38 MAPK. As confirmed by TLR2-/- knock out experiments, these results suggest that BoNT/A induces global gene expression changes in host immune cells and that host responses to BoNT/A proceed through a TLR2-dependent pathway, which is modulated by JNK, ERK, and p38 MAPK.

  19. 4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes.

    Science.gov (United States)

    López-Bernardo, Elia; Anedda, Andrea; Sánchez-Pérez, Patricia; Acosta-Iborra, Bárbara; Cadenas, Susana

    2015-11-01

    4-Hydroxy-2-nonenal (HNE) is a highly cytotoxic product of lipid peroxidation. Nevertheless, at low concentrations, it is able to mediate cell signaling and to activate protective pathways, including that of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2). In addition, HNE activates uncoupling proteins (UCPs), mitochondrial inner membrane proteins that mediate uncoupling of oxidative phosphorylation and have been proposed to protect against oxidative stress. It is not known, however, whether HNE might induce UCP expression via Nrf2 to cause mitochondrial uncoupling. We investigated the effects of HNE on UCP3 expression in mouse cardiomyocytes and the involvement of Nrf2. HNE induced the nuclear accumulation of Nrf2 and enhanced UCP3 expression, effects prevented by the antioxidant N-acetylcysteine. ChIP assays indicated that Nrf2 bound to the Ucp3 promoter after HNE treatment, increasing its expression. Cardiomyocytes treated with Nrf2- or UCP3-specific siRNA were less tolerant to HNE as reflected by increased cell death, and Nrf2 siRNA prevented HNE-induced UCP3 upregulation. The treatment with HNE greatly altered cardiomyocyte bioenergetics, increasing the proton leak across the inner mitochondrial membrane and severely decreasing the maximal respiratory capacity and the respiratory reserve capacity. These findings confirm that low HNE doses activate Nrf2 in cardiomyocytes and provide the first evidence of Nrf2 binding to the Ucp3 promoter in response to HNE, leading to increased protein expression. These results suggest that the upregulation of UCP3 mediated by Nrf2 in response to HNE might be important in the protection of the heart under conditions of oxidative stress such as ischemia-reperfusion.

  20. Palmitic acid (16:0) competes with omega-6 linoleic and omega-3 ɑ-linolenic acids for FADS2 mediated Δ6-desaturation.

    Science.gov (United States)

    Park, Hui Gyu; Kothapalli, Kumar S D; Park, Woo Jung; DeAllie, Christian; Liu, Lei; Liang, Allison; Lawrence, Peter; Brenna, J Thomas

    2016-02-01

    Sapienic acid, 16:1n-10 is the most abundant unsaturated fatty acid on human skin where its synthesis is mediated by FADS2 in the sebaceous glands. The FADS2 product introduces a double bond at the Δ6, Δ4 and Δ8 positions by acting on at least ten substrates, including 16:0, 18:2n-6, and 18:3n-3. Our aim was to characterize the competition for accessing FADS2 mediated Δ6 desaturation between 16:0 and the most abundant polyunsaturated fatty acids (PUFA) in the human diet, 18:2n-6 and 18:3n-3, to evaluate whether competition may be relevant in other tissues and thus linked to metabolic abnormalities associated with FADS2 or fatty acid levels. MCF7 cells stably transformed with FADS2 biosynthesize 16:1n-10 from exogenous 16:0 in preference to 16:1n-7, the immediate product of SCD highly expressed in cancer cell lines, and 16:1n-9 via partial β-oxidation of 18:1n-9. Increasing availability of 18:2n-6 or 18:3n-3 resulted in decreased bioconversion of 16:0 to 16:1n-10, simultaneously increasing the levels of highly unsaturated products. FADS2 cells accumulate the desaturation-elongation products 20:3n-6 and 20:4n-3 in preference to the immediate desaturation products 18:3n-6 and 18:4n-3 implying prompt/coupled elongation of the nascent desaturation products. MCF7 cells incorporate newly synthesized 16:1n-10 into phospholipids. These data suggest that excess 16:0 due to, for instance, de novo lipogenesis from high carbohydrate or alcohol consumption, inhibits synthesis of highly unsaturated fatty acids, and may in part explain why supplemental preformed EPA and DHA in some studies improves insulin resistance and other factors related to diabetes and metabolic syndrome aggravated by excess calorie consumption.

  1. Prostaglandin receptor EP2 mediates PGE2 stimulated hypercalcemia in mice in vivo.

    Science.gov (United States)

    Li, Xiaodong; Tomita, Masato; Pilbeam, Carol C; Breyer, Richard M; Raisz, Lawrence G

    2002-04-01

    Prostaglandin E2 (PGE2) can stimulate bone resorption by a cyclic AMP-dependent pathway. Two PGE2 receptors, EP2 and EP4 have been shown to play a role in PGE2 stimulation of osteoclast formation. In primary osteoblastic cell cultures from EP2 wild type (EP2 +/+) mice, PGE2 (0.1 microM) increased cyclic AMP production 3.5-fold, but PGE2 had no effect on cells from mice in which the EP2 receptor had been deleted (EP2 -/-). To examine the role of the EP2 receptor in the resorption response in vivo we injected PGE2 in EP2 -/- mice, and compared them with EP2 +/+ mice. Injection of PGE2 (3 mg/kg, four times daily for three days) in 9- to 12-month-old male mice on a 129 SvEv background increased serum calcium from 9.8 +/- 0.5 to 10.7 +/- 0.3 mg/dl (P < 0.01) in EP2 +/+ mice but not in EP2 -/- mice (10.1 +/- 0.3 vs. 10.2 +/- 0.3 mg/dl). PGE2 injection (6 mg/kg twice a day for three days) in 3-4 month old male mice on a C57 BL/6 X 129 SvEv background increased calcium from 8.2 +/- 0.1 to 9.0 +/- 0.3 mg/dl (P < 0.05) in EP2 +/+ mice but had no effect in EP2-/- mice (8.4 +/- 0.1 vs. 8.3 +/- 0.2 mg/dl). Injection of PGE2 over the calvariae of EP2 +/+ and EP2-/- mice increased the expression of receptor activator of nuclear factor kappaB ligand (RANKL) both locally and in the tibia, but RANKL responses were lower in EP2 -/- mice. We conclude that EP2 receptor plays a role in the hypercalcemic response to PGE2. This impaired response in EP2 -/- mice may be due to decreased ability to stimulate cyclic AMP and in part, to a smaller increase in the expression of RANKL mRNA.

  2. Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer.

    Science.gov (United States)

    Doherty, Glen A; Byrne, Sinead M; Molloy, Eamonn S; Malhotra, Vikrum; Austin, Sandra C; Kay, Elaine W; Murray, Frank E; Fitzgerald, Desmond J

    2009-06-26

    Prostaglandin E2 (PGE2) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE2 cell surface receptors (EP 1-4) to examine the mechanisms by which PGE2 regulates tumour progression. Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue. EP4 was the most abundant subtype of PGE2 receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE2 generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 microM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE2 (1 microM). G0/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21WAF1/CIP1 expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21WAF1/CIP1 was also seen with PD153025 (1 microM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted. COX-2 regulates cell cycle transition via EP4 receptor and altered p21WAF1/CIP1 expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative to COX-2 inhibition in the chemoprevention of CRC.

  3. The peptide sequence of diacyl lipopeptides determines dendritic cell TLR2-mediated NK activation.

    Science.gov (United States)

    Azuma, Masahiro; Sawahata, Ryoko; Akao, Yuusuke; Ebihara, Takashi; Yamazaki, Sayuri; Matsumoto, Misako; Hashimoto, Masahito; Fukase, Koichi; Fujimoto, Yukari; Seya, Tsukasa

    2010-09-02

    Natural killer (NK) cells are lymphocyte effectors that are activated to control certain microbial infections and tumors. Many NK-activating and regulating receptors are involved in regulating NK cell function. In addition, activation of naïve NK cells is fundamentally triggered by cytokines or myeloid dendritic cells (mDC) in various modes. In this study, we synthesized 16 S-[2,3-bis(palmitoyl)propyl]cysteine (Pam2Cys) lipopeptides with sequences designed from lipoproteins of Staphylococcus aureus, and assessed their functional properties using mouse (C57BL/6) bone marrow-derived DC (BMDC) and NK cells. NK cell activation was evaluated by three criteria: IFN-gamma production, up-regulation of NK activation markers and cytokines, and NK target (B16D8 cell) cytotoxicity. The diacylated lipopeptides acted as TLR2 ligands, inducing up-regulation of CD25/CD69/CD86, IL-6, and IL-12p40, which represent maturation of BMDC. Strikingly, the Pam2Cys lipopeptides induced mouse NK cell activation based on these criteria. Cell-cell contact by Pam2Cys peptide-stimulated BMDC and NK cells rather than soluble mediators released by stimulated BMDC induced activation of NK cells. For most lipopeptides, the BMDC TLR2/MyD88 pathway was responsible for driving NK activation, while some slightly induced direct activation of NK cells via the TLR2/MyD88 pathway in NK cells. The potential for NK activation was critically regulated by the peptide primary sequence. Hydrophobic or proline-containing sequences proximal to the N-terminal lipid moiety interfered with the ability of lipopeptides to induce BMDC-mediated NK activation. This mode of NK activation is distinctly different from that induced by polyI:C, which is closely associated with type I IFN-inducing pathways of BMDC. These results imply that the MyD88 pathway of BMDC governs an alternative NK-activating pathway in which the peptide sequence of TLR2-agonistic lipopeptides critically affects the potential for NK activation.

  4. The peptide sequence of diacyl lipopeptides determines dendritic cell TLR2-mediated NK activation.

    Directory of Open Access Journals (Sweden)

    Masahiro Azuma

    Full Text Available Natural killer (NK cells are lymphocyte effectors that are activated to control certain microbial infections and tumors. Many NK-activating and regulating receptors are involved in regulating NK cell function. In addition, activation of naïve NK cells is fundamentally triggered by cytokines or myeloid dendritic cells (mDC in various modes. In this study, we synthesized 16 S-[2,3-bis(palmitoylpropyl]cysteine (Pam2Cys lipopeptides with sequences designed from lipoproteins of Staphylococcus aureus, and assessed their functional properties using mouse (C57BL/6 bone marrow-derived DC (BMDC and NK cells. NK cell activation was evaluated by three criteria: IFN-gamma production, up-regulation of NK activation markers and cytokines, and NK target (B16D8 cell cytotoxicity. The diacylated lipopeptides acted as TLR2 ligands, inducing up-regulation of CD25/CD69/CD86, IL-6, and IL-12p40, which represent maturation of BMDC. Strikingly, the Pam2Cys lipopeptides induced mouse NK cell activation based on these criteria. Cell-cell contact by Pam2Cys peptide-stimulated BMDC and NK cells rather than soluble mediators released by stimulated BMDC induced activation of NK cells. For most lipopeptides, the BMDC TLR2/MyD88 pathway was responsible for driving NK activation, while some slightly induced direct activation of NK cells via the TLR2/MyD88 pathway in NK cells. The potential for NK activation was critically regulated by the peptide primary sequence. Hydrophobic or proline-containing sequences proximal to the N-terminal lipid moiety interfered with the ability of lipopeptides to induce BMDC-mediated NK activation. This mode of NK activation is distinctly different from that induced by polyI:C, which is closely associated with type I IFN-inducing pathways of BMDC. These results imply that the MyD88 pathway of BMDC governs an alternative NK-activating pathway in which the peptide sequence of TLR2-agonistic lipopeptides critically affects the potential for NK

  5. Proneoplastic effects of PGE2 mediated by EP4 receptor in colorectal cancer.

    LENUS (Irish Health Repository)

    Doherty, Glen A

    2009-01-01

    BACKGROUND: Prostaglandin E2 (PGE2) is the major product of Cyclooxygenase-2 (COX-2) in colorectal cancer (CRC). We aimed to assess PGE2 cell surface receptors (EP 1-4) to examine the mechanisms by which PGE2 regulates tumour progression. METHODS: Gene expression studies were performed by quantitative RT-PCR. Cell cycle was analysed by flow cytometry with cell proliferation quantified by BrdU incorporation measured by enzyme immunoassay. Immunohistochemistry was employed for expression studies on formalin fixed paraffin embedded tumour tissue. RESULTS: EP4 was the most abundant subtype of PGE2 receptor in HT-29 and HCA7 cells (which show COX-2 dependent PGE2 generation) and was consistently the most abundant transcript in human colorectal tumours (n = 8) by qRT-PCR (ANOVA, p = 0.01). G0\\/G1 cell cycle arrest was observed in HT-29 cells treated with SC-236 5 microM (selective COX-2 inhibitor) for 24 hours (p = 0.02), an effect abrogated by co-incubation with PGE2 (1 microM). G0\\/G1 arrest was also seen with a specific EP4 receptor antagonist (EP4A, L-161982) (p = 0.01). Treatment of HT-29 cells with either SC-236 or EP4A caused reduction in intracellular cAMP (ANOVA, p = 0.01). Early induction in p21WAF1\\/CIP1 expression (by qRT-PCR) was seen with EP4A treatment (mean fold increase 4.4, p = 0.04) while other genes remained unchanged. Similar induction in p21WAF1\\/CIP1 was also seen with PD153025 (1 microM), an EGFR tyrosine kinase inhibitor, suggesting EGFR transactivation by EP4 as a potential mechanism. Additive inhibition of HCA7 proliferation was observed with the combination of SC-236 and neutralising antibody to amphiregulin (AR), a soluble EGFR ligand. Concordance in COX-2 and AR localisation in human colorectal tumours was noted. CONCLUSION: COX-2 regulates cell cycle transition via EP4 receptor and altered p21WAF1\\/CIP1 expression. EGFR pathways appear important. Specific targeting of the EP4 receptor or downstream targets may offer a safer alternative

  6. Regulation of Yersina pestis Virulence by AI-2 Mediated Quorum Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Segelke, B; Hok, S; Lao, V; Corzett, M; Garcia, E

    2010-03-29

    used to regulate virulence in Y. pestis. It is known that many bacteria use intercellular signaling molecules to orchestrate gene expression and cellular function. A fair amount is known about production and uptake of signaling molecules, but very little is known about how intercellular signaling regulates other pathways. Although several studies demonstrate that intercellular signaling plays a role in regulating virulence in other pathogens, the link between signaling and regulation of virulence has not been established. Very little work had been done directly with Y. pestis intercellular signaling apart from the work carried out at LLNL. The research we proposed was intended to both establish a causative link between AI-2 intercellular signaling and regulation of virulence in Y. pestis and elucidate the fate of the AI-2 signaling molecule after it is taken up and processed by Y. pestis. Elucidating the fate of AI-2 was expected to lead directly to the understanding of how AI-2 signal processing regulates other pathways as well as provide new insights in this direction.

  7. Taurine Chloramine Stimulates Efferocytosis Through Upregulation of Nrf2-Mediated Heme Oxygenase-1 Expression in Murine Macrophages: Possible Involvement of Carbon Monoxide.

    Science.gov (United States)

    Kim, Wonki; Kim, Hoon-Ui; Lee, Ha-Na; Kim, Seung Hyeon; Kim, Chaekyun; Cha, Young-Nam; Joe, Yeonsoo; Chung, Hun Taeg; Jang, Jaebong; Kim, Kyeojin; Suh, Young-Ger; Jin, Hyeon-Ok; Lee, Jin Kyung; Surh, Young-Joon

    2015-07-10

    To examine the pro-resolving effects of taurine chloramine (TauCl). TauCl injected into the peritoneum of mice enhanced the resolution of zymosan A-induced peritonitis. Furthermore, when the macrophages obtained from peritoneal exudates were treated with TauCl, their efferocytic ability was elevated. In the murine macrophage-like RAW264.7 cells exposed to TauCl, the proportion of macrophages engulfing the apoptotic neutrophils was also increased. In these macrophages treated with TauCl, expression of heme oxygenase-1 (HO-1) was elevated along with increased nuclear translocation of the nuclear factor E2-related factor 2 (Nrf2). TauCl binds directly to Kelch-like ECH association protein 1 (Keap1), which appears to retard the Keap1-driven degradation of Nrf2. This results in stabilization and enhanced nuclear translocation of Nrf2 and upregulation of HO-1 expression. TauCl, when treated to peritoneal macrophages isolated from either Nrf2 or HO-1 wild-type mice, stimulated efferocytosis (phagocytic engulfment of apoptotic neutrophils by macrophages), but not in the macrophages from Nrf2 or HO-1 knockout mice. Furthermore, transcriptional expression of some scavenger receptors recognizing the phosphatidylserines exposed on the surface of apoptotic cells was increased in RAW264.7 cells treated with TauCl. Pharmacologic inhibition of HO-1 activity or knockdown of HO-1 gene in RAW264.7 cells abolished the TauCl-induced efferocytosis, whereas both overexpression of HO-1 and treatment with carbon monoxide (CO), the product of HO, potentiated the efferocytic activity of macrophages. This work provides the first evidence that TauCl stimulates efferocytosis by macrophages. The results of this study suggest the therapeutic potential of TauCl in the management of inflammatory disorders. TauCl can facilitate resolution of inflammation by increasing the efferocytic activity of macrophages through Nrf2-mediated HO-1 upregulation and subsequent production of CO.

  8. Relative role of upstream regulators of Akt, ERK and CREB in NCAM- and FGF2-mediated signalling

    DEFF Research Database (Denmark)

    Ditlevsen, D.K.; Owczarek, S.; Berezin, V.

    2008-01-01

    demonstrated previously to be involved in NCAM signalling. For comparison, we also evaluated the role of upstream signalling cascades on fibroblast growth factor 2 (FGF2)-mediated phosphorylation of ERK, Akt, and CREB and found that FGF2 required the activity of both FGFR and Src-family kinases...... for phosphorylation of ERK, Akt, and CREB. MEK was required for phosphorylation of ERK and CREB, but not Akt, whereas G(0)/G(i)-proteins were necessary for phosphorylation of Akt and CREB, and cGMP was necessary for Akt phosphorylation. We thus demonstrate that even though NCAM and FGF2 have many signalling features...... in common, and even though both are known to activate FGFR, there are a number of differences in the intracellular signalling network activated by the NCAM ligand C3d and the FGFR ligand FGF2....

  9. Synthetic resveratrol aliphatic acid inhibits TLR2-mediated apoptosis and an involvement of Akt/GSK3beta pathway.

    Science.gov (United States)

    Chen, Lin; Zhang, Yi; Sun, Xiuli; Li, Hui; LeSage, Gene; Javer, Avani; Zhang, Xiumei; Wei, Xinbing; Jiang, Yulin; Yin, Deling

    2009-07-01

    As resveratrol derivatives, resveratrol aliphatic acids were synthesized in our laboratory. Previously, we reported the improved pharmaceutical properties of the compounds compared to resveratrol, including better solubility in water and much tighter binding with human serum albumin. Here, we investigate the role of resveratrol aliphatic acids in Toll-like receptor 2 (TLR2)-mediated apoptosis. We showed that resveratrol aliphatic acid (R6A) significantly inhibits the expression of TLR2. In addition, overexpression of TLR2 in HEK293 cells caused a significant decrease in apoptosis after R6A treatment. Moreover, inhibition of TLR2 by R6A decreases serum deprivation-reduced the levels of phosphorylated Akt and phosphorylated glycogen synthase kinase 3beta (GSK3beta). Our study thus demonstrates that the resveratrol aliphatic acid inhibits cell apoptosis through TLR2 by the involvement of Akt/GSK3beta pathway.

  10. Core Binding Factor β Protects HIV, Type 1 Accessory Protein Viral Infectivity Factor from MDM2-mediated Degradation.

    Science.gov (United States)

    Matsui, Yusuke; Shindo, Keisuke; Nagata, Kayoko; Yoshinaga, Noriyoshi; Shirakawa, Kotaro; Kobayashi, Masayuki; Takaori-Kondo, Akifumi

    2016-11-25

    HIV, type 1 overcomes host restriction factor apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (APOBEC3) proteins by organizing an E3 ubiquitin ligase complex together with viral infectivity factor (Vif) and a host transcription cofactor core binding factor β (CBFβ). CBFβ is essential for Vif to counteract APOBEC3 by enabling the recruitment of cullin 5 to the complex and increasing the steady-state level of Vif protein; however, the mechanisms by which CBFβ up-regulates Vif protein remains unclear. Because we have reported previously that mouse double minute 2 homolog (MDM2) is an E3 ligase for Vif, we hypothesized that CBFβ might protect Vif from MDM2-mediated degradation. Co-immunoprecipitation analyses showed that Vif mutants that do not bind to CBFβ preferentially interact with MDM2 and that overexpression of CBFβ disrupts the interaction between MDM2 and Vif. Knockdown of CBFβ reduced the steady-state level of Vif in MDM2-proficient cells but not in MDM2-null cells. Cycloheximide chase analyses revealed that Vif E88A/W89A, which does not interact with CBFβ, degraded faster than wild-type Vif in MDM2-proficient cells but not in MDM2-null cells, suggesting that Vif stabilization by CBFβ is mainly caused by impairing MDM2-mediated degradation. We identified Vif R93E as a Vif variant that does not bind to MDM2, and the virus with this substitution mutation was more resistant to APOBEC3G than the parental virus. Combinatory substitution of Vif residues required for CBFβ binding and MDM2 binding showed full recovery of Vif steady-state levels, supporting our hypothesis. Our data provide new insights into the mechanism of Vif augmentation by CBFβ.

  11. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    Science.gov (United States)

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor.

  12. Discoidin Domain Receptor 2 Mediates Collagen-Induced Activation of Membrane-Type 1 Matrix Metalloproteinase in Human Fibroblasts.

    Science.gov (United States)

    Majkowska, Iwona; Shitomi, Yasuyuki; Ito, Noriko; Gray, Nathanael S; Itoh, Yoshifumi

    2017-03-07

    Membrane-Type 1 Matrix Metalloproteinase (MT1-MMP) is a membrane-bound MMP that is highly expressed in cells with invading capacity including fibroblasts and invasive cancer cell. A potential physiological stimulus for MT1-MMP expression is fibrillar collagen, and it has been shown that it upregulates both MT1-MMP gene and functions in various cell types. However, the mechanisms of collagen-mediated MT1-MMP activation is not clearly understood. In this study we identified discoidin domain receptor 2 (DDR2) as a crucial receptor that mediates this process in human fibroblasts. Knocking down DDR2, but not β1 integrin subunit, a common subunit for all collagen-binding integrins, inhibited collagen-induced activation of proMMP-2 and upregulation of MT1-MMP at the gene and protein level. Interestingly DDR2 knockdown or pharmacological inhibition of DDR2 also inhibited MT1-MMP-dependent cellular degradation of collagen film, suggesting that cell surface collagen degradation by MT1-MMP involves DDR2-mediated collagen signalling. This DDR2-mediated mechanism is only present in non-transformed mesenchymal cells, as collagen-induced MT1-MMP activation in HT1080 fibrosarcoma cells and MT1-MMP function in MDA-MB231 breast cancer cells were not affected by DDR kinase inhibition. DDR2 activation was found to be noticeably more effective when cells were stimulated by collagen without non-helical telopeptides region compared to intact collagen fibrils. Those data suggest that DDR2 is a microenvironmental sensor that regulates fibroblasts migration in collagen-rich environment.

  13. The influence of theobromine on angiogenic activity and proangiogenic cytokines production of human ovarian cancer cells.

    Science.gov (United States)

    Barcz, E; Sommer, E; Sokolnicka, I; Gawrychowski, K; Roszkowska-Purska, K; Janik, P; Skopinska-Rózewska, E

    1998-01-01

    Angiogenesis plays an important role in ovarian cancer growth and metastasis formation. Adenosine is one of the most potent stimulator of neovascularisation. The aim of present study was to determine if theobromine, adenosine receptor antagonist, influences angiogenic activity and proangiogenic cytokines production. Theobromine caused significant inhibition of angiogenic activity of ovarian cancer cells. In in vivo and in vitro cultures theobromine diminished vascular endothelial growth factor (VEGF) production. Production of basic fibroblast growth factor (bFGF) and interleukin-8 (IL-8) was not altered by the examined drug. These findings suggest that theobromine might be a potent inhibitor of angiogenesis induced by ovarian cancer cells and its mechanism of action is related to inhibition of VEGF production.

  14. CYP2S1 depletion enhances colorectal cell proliferation is associated with PGE2-mediated activation of β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Chao [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); College of Life Science, Anhui Normal University, Wuhu 241000, Anhui (China); Li, Changyuan [College of Life Science, Anhui Normal University, Wuhu 241000, Anhui (China); Li, Minle; Tong, Xuemei [Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Hu, Xiaowen; Yang, Xuhan [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); Yan, Xiaomei [School of Life Sciences & Biotechnology, Shanghai JiaoTong University, Shanghai 200240 (China); He, Lin, E-mail: helinhelin@gmail.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China); Wan, Chunling, E-mail: clwan@sjtu.edu.cn [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai 200030 (China)

    2015-02-15

    Colorectal epithelial cancer is one of the most common cancers in the world and its 5-year survival rate is still relatively low. Cytochrome P450 (CYP) enzymes in epithelial cells lining the alimentary tract play an important role in the oxidative metabolism of a wide range of xenobiotics, including (pro-)carcinogens and endogenous compounds. Although CYP2S1, a member of CYP family, strongly expressed in many extrahepatic tissues, the role of CYP2S1 in cancer remains unclear. To investigate whether CYP2S1 involves in colorectal carcinogenesis, cell proliferation was analyzed in HCT116 cells depleted of CYP2S1 using small hairpin interfering RNA. Our data show that CYP2S1 knockdown promotes cell proliferation through increasing the level of endogenous prostaglandin E2(PGE2). PGE2, in turn, reduces phosphorylation of β-catenin and activates β-catenin signaling, which contributes to the cell proliferation. Furthermore, CYP2S1 knockdown increase tumor growth in xenograft mouse model. In brief, these results demonstrate that CYP2S1 regulates colorectal cancer growth through associated with PGE2-mediated activation of β-catenin signaling. - Highlights: • Knockdown of CYP2S1 expression improve HCT116 cell proliferation in vitro and in vivo. • Elevate PGE2 production in CYP2S1 knockdown cell is associated with its proliferation. • Elevate PGE2 level in CYP2S1 knockdown cells enhance β-catenin accumulation. • β-catenin activate TCF/LEF and target gene expression thus promote cell proliferation.

  15. Thymosin beta-4 promotes mesenchymal stem cell proliferation via an interleukin-8-dependent mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Byung-Joon [Department of Plastic and Reconstructive Surgery, Korea University Medical Center, Gojan 1-dong, Danwon-gu, Ansan-si, Gyeonggi-do 425-707 (Korea, Republic of); Yang, Yoolhee; Kyung Shim, Su [Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Yang, Heung-Mo [Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-gu, Seoul 135-710 (Korea, Republic of); Cho, Daeho, E-mail: cdhkor@sookmyung.ac.kr [Department of Life Science, Sookmyung Women' s University, Hyochangwon-gil 52, Yongsan-gu, Seoul 140-742 (Korea, Republic of); Ik Bang, Sa, E-mail: si55.bang@samsung.com [Department of Plastic Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Ilwon-dong, Gangnam-gu, Seoul 135-710 (Korea, Republic of)

    2013-10-15

    Mesenchymal stem cells (MSCs) hold great promise for the field of tissue regeneration. Because only a limited number of MSCs can be obtained from each donor site, it is important to establish standard methods for MSC expansion using growth and trophic factors. Thymosin β4 (Tβ4) is a novel trophic factor that has antimicrobial effects and the potential to promote tissue repair. Tβ4 is a ubiquitous, naturally-occurring peptide in the wound bed. Therefore, the relationship between Tβ4 and MSCs, especially adjacent adipose tissue-derived stem cells (ASCs), merits consideration. Exogenous Tβ4 treatment enhanced the proliferation of human ASCs, resulting in prominent nuclear localization of PCNA immunoreactivity. In addition, exogenous Tβ4 also increased IL-8 secretion and blocking of IL-8 with neutralizing antibodies decreased Tβ4-induced ASC proliferation, suggesting that IL-8 is a critical mediator of Tβ4-enhanced proliferation. Moreover, Tβ4 activated phosphorylation of ERK1/2 and increased the nuclear translocation of NF-κB. These observation provide that Tβ4 promotes the expansion of human ASCs via an IL-8-dependent mechanism that involves the ERK and NF-κB pathways. Therefore, Tβ4 could be used as a tool for MSC expansion in cell therapeutics. - Highlights: • This is fundamental information required to correlate Tβ4 with MSC expansion. • MSC expansion by Tβ4 is involved in enhancement of IL-8 and ERK/NF-κB pathway. • Tβ4 could be used as a tool for MSC expansion in cell therapeutics.

  16. Serum levels of interleukin-6 and interleukin-8 as diagnostic markers of acute pyelonephritis in children

    Directory of Open Access Journals (Sweden)

    Abolfazl Mahyar

    2013-05-01

    Full Text Available &lt;b&gt;Purpose:&lt;/b&gt; Early diagnosis and treatment of acute pyelonephritis in children is of special importance in order to prevent serious complications. This study was conducted to determine the diagnostic value of serum interleukin (IL-6 and IL-8 in children with acute pyelonephritis. &lt;b&gt;Methods:&lt;/b&gt; Eighty seven patients between 1 month to 12 years old with urinary tract infection (UTI were divided into 2 groups based on the result of 99m-technetium dimercapto-succinic acid (DMSA renal scan: acute pyelonephritis (n=37 and lower UTI (n=50 groups. White blood cell (WBC count, neutrophil (Neutl count, erythrocyte sedimentation rate (ESR, C-reactive protein (CRP concentration, platelet count, and serum IL-6 and IL-8 concentrations of both groups were measured and compared . &lt;b&gt;Results:&lt;/b&gt; There was a significant difference between two groups regarding WBC count, Neutl count, ESR, and CRP concentration (P&lt;0.05. In addition, the difference between the two groups regarding serum IL-6 and IL-8 concentrations was not significant (IL-6, 60 and 35.4 pg/mL and IL-8, 404 and 617 pg/mL, respectively. The sensitivity and specificity of serum IL-6 and IL-8 for diagnosis of acute pyelonephritis were 73%, 42% and 78%, 32%, respectively. Sensitivity, specificity, negative and positive predictive values of serum IL-6 and IL-8 were less than those of acute phase serum reactants such as CRP. &lt;b&gt;Conclusion:&lt;/b&gt; This study showed that there was no significant difference between acute pyelonephritis and lower UTI groups regarding serum IL-6 and IL-8 levels. Therefore, despite confirming results of previous studies, it seems that IL-6 and IL-8 are not suitable markers for differentiating between acute pyelonephritis and lower UTI.

  17. Interleukin 8 in progression of hormone-dependent early breast cancer

    Indian Academy of Sciences (India)

    JELENA MILOVANOVIĆ; NATAŠA TODOROVIĆ-RAKOVIĆ; TIJANA VUJASINOVIĆ; ZAKI ABU RABI

    2017-06-01

    The only way to perceive the real clinical course of disease and the prognostic significance of potential biomarkers is follow-up of patients who did not receive any kind of adjuvant therapy. Many studies have confirmed high levels ofinterleukin 8 (IL8) in HER2-enriched and basal-like (ER–) primary breast tumours, but less is known about thesignificance of IL8 in hormone-dependent breast cancer. The aim of this study was to evaluate the prognostic significance of IL8 and clinicopathological parameters in hormone-dependent breast cancer, and to examine possible associations between them that might imply possible biological dependence. The study included 91 early-stage breastcancer patients with detectable levels of hormone receptors (ER>0, PR>0). None of the patients received adjuvanttherapy according to valid protocol at that time. HER2 status was determined on paraffin-embedded tumour tissue sections by CISH. IL8 levels were determined by ELISA in cytosol tumour extracts of 65 patients with long-term follow-up (144 months). Nonparametric statistical tests were used for data analyses. Patients with low IL8 levels(M<88.8 pg/mg) had significantly longer relapse-free survival (RFS) compared to patients with high IL8 levels(M≥88.82 pg/mg) (Log rank test, p=0.002). Patients with ERhighIL8low phenotype had significantly longer RFScompared to those with ERhighIL8high and ERlowIL8high phenotypes (p=0.04 and p=0.02, respectively); patientswith PRlowIL8low phenotype had significantly longer RFS compared to those with PRlowIL8high and PRhighIL8-high phenotypes (p=0.003 and p=0.02, respectively); patients with HER2-IL8low phenotype had significantly longerRFS compared to those with HER2-IL8high and HER2+IL8high phenotypes (p=0.01 and p=0.02, respectively). Ourresults indicate significant contribution of IL8 on survival of hormone-dependent early-stage breast cancer patientsand association with established parameters such as ER/PR and HER2.

  18. Expression of interleukine-8 as an independent prognostic factor for sporadic colon cancer dissemination.

    Science.gov (United States)

    Nastase, A; Paslaru, L; Herlea, V; Ionescu, M; Tomescu, D; Bacalbasa, N; Dima, S; Popescu, I

    2014-06-15

    The aim of our study was to investigate the gene and serum protein expression profiles of IL-8 in colon cancer and associated hepatic metastasis and to correlate these results with clinicopathologic variables of the patients. IL-8 was evaluated by qPCR and ELISA in a total number of 62 colon cancer patients (n=42 by qPCR and n=20 by ELISA) in normal and tumoral tissue specimens and serum samples respectively. Additionally synchronous metastasis from 5 of these patients were also collected at the time of surgery and analyzed by qPCR. IL-8 was up regulated in all analyzed tumoral samples compared with normal tissue (P-value = 0.01) and higher expressed in metastatic tissues compared with tumoral tissues (P -value= 0.03). The median expression of IL-8 in patients over 60 years old was found to be higher compared with the median expression of IL8 in patients less than 60 years old (3.89 compared with 14.69, P -value= 0.005). According to tumor grading, we found that IL-8 in tumors with well differentiated adenocarcinoma have a median mRNA expression of 9.78 compared with a median mRNA IL8 expression of 26.63 in moderate or poor differentiated adenocarcinoma. Levels of IL-8 determined in serum were statistically significant correlated with preoperative carcinoembryonic antigen level (P -value= 0.003, R=0.57) and with distant metastasis (P-value =0.008). Serum level of IL-8 increased proportionally along with TNM tumor stage and was found to be statistically significant correlated with C-reactive protein (P -value, R=0.64). Colon cancer patients had higher IL-8 levels as determined by ELISA (median value= 29.64 pg/ml) compared with healthy controls (median value= 4.86 pg/ml). Our results provide additional support for the role of inflammation in colon cancer and indicate that IL-8 could be further validated in association with other already used markers for prognostic and diagnostic of evolutional disease in colon cancer patients.

  19. Increased levels of interleukins 8 and 10 as findings of canine inflammatory mammary cancer.

    Science.gov (United States)

    de Andrés, Paloma Jimena; Illera, Juan Carlos; Cáceres, Sara; Díez, Lucía; Pérez-Alenza, Maria Dolores; Peña, Laura

    2013-04-15

    Inflammatory mammary cancer (IMC) is a distinct form of mammary cancer that affects dogs and women [in humans, IMC is known as inflammatory breast cancer (IBC)], and is characterized by a sudden onset and an aggressive clinical course. Spontaneous canine IMC shares epidemiologic, histopathological and clinical characteristics with the disease in humans and has been proposed as the best spontaneous animal model for studying IBC, although several aspects remain unstudied. Interleukins (ILs) play an important role in cancer as potential modulators of angiogenesis, leukocyte infiltration and tumor growth. The aims of the present study were to assess serum and tumor levels of several ILs (IL-1α, IL-1β, IL-6, IL-8 and IL-10) by enzyme-immunoassay in dogs bearing benign and malignant mammary tumors, including dogs with IMC, for a better understanding of this disease. Forty-eight dogs were prospectively included. Animals consisted of 7 healthy Beagles used as donors for normal mammary glands (NMG) and serum controls (SCs), 10 dogs with hyperplasias and benign mammary tumors (HBMT), 24 with non-inflammatory malignant mammary tumors (non-IMC MMT) and 7 dogs with clinical and pathological IMC. IL-8 (serum) and IL-10 (serum and tissue homogenate) levels were higher in the dogs with IMC compared with the non-IMC MMT group. ILs were increased with tumor malignancy as follows: in tumor homogenates IL-6 levels were higher in malignant tumors (IMC and non-IMC MMT) versus HBMT and versus NMG and tumor IL-8 was increased in malignant tumors versus NMG; in serum, IL-1α and IL-8 levels were higher in the malignant groups respect to HBMT and SCs; interestingly, IL-10 was elevated only in the serum of IMC animals. To the best of our knowledge, this is the first report that analyzes ILs in IMC and IL-10 in canine mammary tumors. Our results indicate a role for IL-6, IL-8 and IL-10 in canine mammary malignancy and specific differences in ILs content in IMC versus non-IMC MMT that could have future diagnostic and therapeutic implications, to be confirmed in a larger series of IMC cases. These results help to support the validity of the IMC canine model for the study of human IBC and provide insight into this uncommon malignancy in dogs.

  20. Interleukin-8 reduces post-surgical lymphedema formation by promoting lymphatic vessel regeneration.

    Science.gov (United States)

    Choi, Inho; Lee, Yong Suk; Chung, Hee Kyoung; Choi, Dongwon; Ecoiffier, Tatiana; Lee, Ha Neul; Kim, Kyu Eui; Lee, Sunju; Park, Eun Kyung; Maeng, Yong Sun; Kim, Nam Yun; Ladner, Robert D; Petasis, Nicos A; Koh, Chester J; Chen, Lu; Lenz, Heinz-Josef; Hong, Young-Kwon

    2013-01-01

    Lymphedema is mainly caused by lymphatic obstruction and manifested as tissue swelling, often in the arms and legs. Lymphedema is one of the most common post-surgical complications in breast cancer patients and presents a painful and disfiguring chronic illness that has few treatment options. Here, we evaluated the therapeutic potential of interleukin (IL)-8 in lymphatic regeneration independent of its pro-inflammatory activity. We found that IL-8 promoted proliferation, tube formation, and migration of lymphatic endothelial cells (LECs) without activating the VEGF signaling. Additionally, IL-8 suppressed the major cell cycle inhibitor CDKN1C/p57(KIP2) by downregulating its positive regulator PROX1, which is known as the master regulator of LEC-differentiation. Animal-based studies such as matrigel plug and cornea micropocket assays demonstrated potent efficacy of IL-8 in activating lymphangiogenesis in vivo. Moreover, we have generated a novel transgenic mouse model (K14-hIL8) that expresses human IL-8 in the skin and then crossed with lymphatic-specific fluorescent (Prox1-GFP) mouse. The resulting double transgenic mice showed that a stable expression of IL-8 could promote embryonic lymphangiogenesis. Moreover, an immunodeficient IL-8-expressing mouse line that was established by crossing K14-hIL8 mice with athymic nude mice displayed an enhanced tumor-associated lymphangiogenesis. Finally, when experimental lymphedema was introduced, K14-hIL8 mice showed an improved amelioration of lymphedema with an increased lymphatic regeneration. Together, we report that IL-8 can activate lymphangiogenesis in vitro and in vivo with a therapeutic efficacy in post-surgical lymphedema.

  1. Interleukin-8 derived from local tissue-resident stromal cells promotes tumor cell invasion.

    Science.gov (United States)

    Welte, Gabriel; Alt, Eckhard; Devarajan, Eswaran; Krishnappa, Srinivasalu; Jotzu, Constantin; Song, Yao-Hua

    2012-11-01

    The aim of this study is to evaluate the role of adipose tissue resident stromal cells on tumor cell invasion. Our data show that a subpopulation of adipose tissue derived stromal cells expressing Nestin, NG2, α-smooth muscle actin and PDGFR-α migrate toward the cancer cells. Microarray analysis revealed the upregulation of IL-8 in the migrated cells. We demonstrated that stromal cell derived IL-8 promote the invasion and the anchorage-independent growth of cancer cells. We conclude that human breast cancer cells attract a subpopulation of stromal cells that secrete IL-8 to promote tumor cell invasion in a paracrine fashion.

  2. Influence of interleukin 1b, interleukin 8 and interferon gamma responses on PRRS virus persistence

    Science.gov (United States)

    Infection with Porcine Reproductive and Respiratory Syndrome virus (PRRSV) elicits a weak immune response that is weakly protective and results in persistent infection in a subset of pigs. We investigated the intensity and timing of the early cytokine responses to PRRSV infection to determine their ...

  3. Interleukin-8 and Its Role During EMT | Center for Cancer Research

    Science.gov (United States)

    The switch of cancer cells from an epithelial to a mesenchymal-like phenotype, designated as epithelial-to-mesenchymal transition or EMT, is known to induce cell motility and invasiveness and appears to be critical for the dissemination of solid tumors and drug resistance. An understanding of the signaling events that induce tumor EMT could lead to novel ways to prevent metastasis.

  4. Rationale and Means to Target Pro-Inflammatory Interleukin-8 (CXCL8 Signaling in Cancer

    Directory of Open Access Journals (Sweden)

    Laura M. Campbell

    2013-08-01

    Full Text Available It is well established that chronic inflammation underpins the development of a number of human cancers, with pro-inflammatory signaling within the tumor microenvironment contributing to tumor progression and metastasis. CXCL8 is an ELR+ pro-inflammatory CXC-chemokine which mediates its effects via signaling through two G protein-coupled receptors, CXCR1 and CXCR2. Elevated CXCL8-CXCR1/2 signaling within the tumor microenvironment of numerous cancers is known to enhance tumor progression via activation of signaling pathways promoting proliferation, angiogenesis, migration, invasion and cell survival. This review provides an overview of established roles of CXCL8-CXCR1/2 signaling in cancer and subsequently, discusses the possible strategies of targeting CXCL8-CXCR1/2 signaling in cancer, covering indirect strategies (e.g., anti-inflammatories, NFκB inhibitors and direct CXCL8 or CXCR1/2 inhibition (e.g., neutralizing antibodies, small molecule receptor antagonists, pepducin inhibitors and siRNA strategies. Reports of pre-clinical cancer studies and clinical trials using CXCL8-CXCR1/2-targeting strategies for the treatment of inflammatory diseases will be discussed. The future translational opportunities for use of such agents in oncology will be discussed, with emphasis on exploitation in stratified populations.

  5. Interleukin 8 i matriksne metaloproteinaze 2 i 9 kao markeri invazivnosti u hormonski zavisnom karcinomu dojke

    OpenAIRE

    Jelena R. Milovanović

    2014-01-01

    Ekspresija receptora za estrogen (ER) i receptora za progesteron (PR) je preduslov hormonske zavisnosti karcinoma dojke. Hormonski receptori su još uvek jedni od najpouzdanijih parametara prognoze i predikcije ovog karcinoma, mada su klinički ishod pacijentkinja i odgovor na hormonsku terapiju varijabilni. Uključivanje receptora za humani epidermalni faktor rasta 2 (HER2) u klasifikaciju karcinoma dojke zajedno sa hormonskim receptorima, samo je donekle doprinelo utvrđivanju pr...

  6. 99mTc-labeled interleukin-8 for imaging of infection and inflammation

    NARCIS (Netherlands)

    Rennen, H.J.J.M.

    2004-01-01

    Patients with presumed or established inflammatory disorders may pose a diagnostic problem to their physicians. Rapid and accurate detection of inflammatory foci may have important implications for the treatment of these patients. Over the last 30 years various approaches to visualize inflammatory f

  7. Increased cerebrospinal fluid interleukin-8 in bipolar disorder patients associated with lithium and antipsychotic treatment.

    Science.gov (United States)

    Isgren, Anniella; Jakobsson, Joel; Pålsson, Erik; Ekman, Carl Johan; Johansson, Anette G M; Sellgren, Carl; Blennow, Kaj; Zetterberg, Henrik; Landén, Mikael

    2015-01-01

    Inflammation has been linked to the pathophysiology of bipolar disorder based on studies of inflammation markers, such as cytokine concentrations, in plasma and serum samples from cases and controls. However, peripheral measurements of cytokines do not readily translate to immunological activity in the brain. The aim of the present study was to study brain immune and inflammatory activity. To this end, we analyzed cytokines in cerebrospinal fluid from 121 euthymic bipolar disorder patients and 71 age and sex matched control subjects. Concentrations of 11 different cytokines were determined using immunoassays. Cerebrospinal fluid IL-8 concentrations were significantly higher in patients as compared to controls. The other cytokines measured were only detectable in part of the sample. IL-8 concentrations were positively associated to lithium- and antipsychotic treatment. The findings might reflect immune aberrations in bipolar disorder, or be due to the effects of medication. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Role of interleukin-8 in the progression of estrogen receptor-negative breast cancer

    Institute of Scientific and Technical Information of China (English)

    YAO Chen; LIN Ying; YE Cai-sheng; BI Jiong; ZHU Yi-fan; WANG Shen-ming

    2007-01-01

    Background Estrogen receptor (ER) is a very important biomarker of breast cancer. ER deletion has been consistently associated with tumor progression, recurrence, metastasis and poor prognosis, but the biological mechanism is still unclear. ER negative breast cancer expresses high levels of interieukin-8 (IL-8). ER expression can downregulate IL-8 promotor activity. As a multifunctional cytokine, IL-8 has many important biological activities in tumor genesis and development. With the goal of investigating the role of IL-8 in ER-negative breast cancer progression, we applied RNA interference technology to specifically knockdown the IL-8 expression in ER-negative breast cancer cell line MDA-MB-231.Methods Interfering pRNA-IL-8 and the control was transfected into ER(-) MDA-MB-231. The proliferation, cell apotosis,and invasive ability were recorded in transfected, untransfected and negative transfected cells. These cells were injected into nude mice to assess tumorigenicity, proliferation, metastasis and microvessel density (MVD).Results In vitro, decreased expression of IL-8 was associated with reduced cell invasion (P<0.001), but had no effect on cell proliferation (P>0.05). In vivo, neutrophils infiltration was significantly inhibited in pRNA-IL-8 transfected cells compared with untransfected and negatively transfected cells (P=0.001, P<0.001). Less metastasis was found in transfected cells compared with negatively transfected cells (0% vs 80%, P=0.048). Nevertheless, we observed less MVD in transfected cells compared with control in nude mice (P<0.001).Conclusions IL-8 inhibits ER-negative breast cancer cell growth and promotes its metastasis in vivo, which may be correlated with neutrophils infiltration induced by IL-8.

  9. 过表达巨噬细胞移动抑制因子对子宫颈癌SiHa细胞中白细胞介素8及基质金属蛋白酶9表达的影响%Effects of over-expression of macrophage migration inhibitory factor on the expression of interleukin-8 and martix metalloproteinase-9 of human cervical cancer SiHa cells

    Institute of Scientific and Technical Information of China (English)

    郭红霞; 吴素慧; 贾睿; 尚海霞

    2013-01-01

    Objective To investigate the effects of macrophage migration inhibitory factor (MIF) overexpression on the expression of interleukin-8 (IL-8),martix metalloproteinase-9 (MMP-9) and invasion of human cervical cancer SiHa cells.Methods Chemical synthesis MIF eDNA gene,designed primer sequence including XhoI and BamHI enzyme sites,MIF gene was amplified by polymerase chain reaction (PCR),constructed eukaryotic expression vector pEGFP-N1/MIF and transfected into SiHa cells using Lipofectamine and won over-expression of MIF.The expression of MIF in supernatant fluid was detected by ELISA,the expression of MIF,IL-8,MMP-9 in both mRNA and protein levels were detected by real-time fluorescence quantitative-PCR and immunocytochemistry respectively.The effect of over-expressed MIF on migration was detected by Boyden small chamber.Results The expression of protein in supernatant fluid transfected with pEGFP-N1/MIF was significantly increased (Fgroup =8267.564,P < 0.01),the expression of MIF,IL-8,MMP-9 in both mRNA and protein in SiHa cells transfected with pEGFP-N1/MIF were significantly increased (F values were 7019.619,2148.094,3303.540,1565.114,2807.300,523.466,P < 0.01),and there was a positive correlation among MIF,IL-8,MMP-9 expression in both mRNA and protein (r values were 0.865,0.895,0.934,0.908,P < 0.01).Invasion ability in SiHa cells transfected with pEGFP-N1/MIF was obviously increased (F=3430.898,P< 0.01).Conclusion The over-expression MIF gene in SiHa cells can promote cervical cancer cell invasion and metastasis of ability,which could be associated with the upregulation of IL-8 and MMP-9 expression.%目的 研究过表达巨噬细胞移动抑制因子(MIF)对子宫颈癌SiHa细胞中白细胞介素8(IL-8)、基质金属蛋白酶9(MMP-9)表达及细胞侵袭迁移能力的影响.方法 化学合成MIF cDNA,设计含Xhol和BamHI酶切位点的引物序列,利用聚合酶链反应(PCR)方法 扩增MIF基因片段,构建人pEGFP-N1/MIF真核表达载体,

  10. Suppression of prostaglandin E(2)-mediated c-fos mRNA induction by interleukin-4 in murine macrophages.

    Science.gov (United States)

    Zhuang, D; Kawajiri, H; Takahashi, Y; Yoshimoto, T

    2000-03-01

    When murine peritoneal macrophages were stimulated for 30 min with arachidonic acid, the growth-associated immediate early gene c-fos was induced in a concentration-dependent manner as assessed by Northern blot analysis. The arachidonic acid-induced c-fos mRNA expression was inhibited by a cyclooxygenase inhibitor, indomethacin, but not by a lipoxygenase inhibitor, nordihydroguaiaretic acid. Macrophages produced prostaglandin (PG) E(2) from arachidonic acid as determined by an enzyme immunoassay. Northern blot analysis revealed the expression of PGE receptor EP2 and EP4 subtypes, but not EP1 and EP3 in murine macrophages. PGE(2) brought about a marked elevation of cAMP, and c-fos mRNA expression was increased by PGE(2) and dibutyryl cAMP in these cells. These results suggest that arachidonic acid is transformed to PGE(2), which then binds to EP2 and EP4 receptors to increase intracellular cAMP and c-fos mRNA expression. Furthermore, the induction of c-fos by arachidonic acid, PGE(2), and cAMP was suppressed by pretreatment with interleukin (IL)-4. We also showed that the tyrosine phosphorylation of a Janus kinase, JAK3, is enhanced by IL-4 treatment, suggesting that the PGE(2)-mediated c-fos mRNA induction is inhibited by IL-4 through the tyrosine phosphorylation of JAK3.

  11. The Contribution of Allergen-Specific IgG to the Development of Th2-Mediated Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Jesse W. Williams

    2012-01-01

    Full Text Available In both human asthmatics and animal models of allergy, allergen-specific IgG can contribute to Th2-mediated allergic inflammation. Mouse models have elucidated an important role for IgG and Fc-gamma receptor (FcγR signaling on antigen presenting cells (APC for the induction of airway inflammation. These studies suggest a positive feedback loop between IgG produced by the adaptive B cell response and FcγR signaling on innate immune cells. Studies of IgG and FcγRs in humans with asthma or allergic lung disease have been more controversial. Some reports have identified associations between allergen-specific IgG and severity of allergic responses, while other studies have found associations of IgG subclass IgG4 with allergic tolerance. In this paper, we review the literature to help define the nature of IgG and FcγR signaling on innate immune cells and how it contributes to the development of allergic immune responses.

  12. Helicobacter pylori-derived Heat shock protein 60 enhances angiogenesis via a CXCR2-mediated signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chen-Si [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan (China); He, Pei-Juin; Hsu, Wei-Tung [Department of Biological Science and Technology, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Wu, Ming-Shiang [Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan (China); Wu, Chang-Jer [Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan (China); Shen, Hsiao-Wei [Institute of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsin-Chu, Taiwan (China); Hwang, Chia-Hsiang [Yung-Shin Pharmaceutical Industry Co., Ltd., Tachia, Taichung, Taiwan (China); Lai, Yiu-Kay [Department of Life Science, Institute of Biotechnology, National Tsing Hua University, Hsin-Chu, Taiwan (China); Tsai, Nu-Man [School of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung, Taiwan (China); Liao, Kuang-Wen, E-mail: kitchhen@yahoo.com.tw [Institute of Molecular Medicine and Bioengineering, National Chiao-Tung University, Hsin-Chu, Taiwan (China)

    2010-06-25

    Helicobacter pylori is a potent carcinogen associated with gastric cancer malignancy. Recently, H. pylori Heat shock protein 60 (HpHSP60) has been reported to promote cancer development by inducing chronic inflammation and promoting tumor cell migration. This study demonstrates a role for HpHSP60 in angiogenesis, a necessary precursor to tumor growth. We showed that HpHSP60 enhanced cell migration and tube formation, but not cell proliferation, in human umbilical vein endothelial cells (HUVECs). HpHSP60 also indirectly promoted HUVEC proliferation when HUVECs were co-cultured with supernatants collected from HpHSP60-treated AGS or THP-1 cells. The angiogenic array showed that HpHSP60 dramatically induced THP-1 cells and HUVECs to produce the chemotactic factors IL-8 and GRO. Inhibition of CXCR2, the receptor for IL-8 and GRO, or downstream PLC{beta}2/Ca2+-mediated signaling, significantly abolished HpHSP60-induced tube formation. In contrast, suppression of MAP K or PI3 K signaling did not affect HpHSP60-mediated tubulogenesis. These data suggest that HpHSP60 enhances angiogenesis via CXCR2/PLC{beta}2/Ca2+ signal transduction in endothelial cells.

  13. FHL2 mediates tooth development and human dental pulp cell differentiation into odontoblasts, partially by interacting with Runx2.

    Science.gov (United States)

    Du, Jianxin; Wang, Qiang; Yang, Pishan; Wang, Xiaoying

    2016-04-01

    The differentiation of mesenchymal cells in tooth germ and dental pulp cells into odontoblasts is crucial for dentin formation, and the transcription factor runt-related transcription factor (Runx2) is necessary for odontoblast differentiation. Our previous study demonstrated that four and a half LIM domains 2 (FHL2) may play an important role in tooth development and human dental pulp cell differentiation. This study aimed to determine whether FHL2 mediated the mesenchymal cells in tooth development and human dental pulp cell differentiation into odontoblasts by interacting with Runx2. The expression patterns of FHL2 and Runx2 were examined at the early stages of mouse molar development using double immunofluorescence staining. Western blot analysis and co-immunoprecipitation (Co-IP) were conducted for the preliminary study of the relationship between FHL2 and Runx2 in human dental pulp cell differentiation into odontoblasts. Results of double immunofluorescence staining showed that FHL2 and Runx2 exhibited similar expression patterns at the early stages of tooth development. Western blot analysis indicated that the expression patterns of FHL2 and Runx2 were synchronized on day 7 of induction, whereas those on day 14 differed. Co-IP analysis revealed positive bands of protein complexes, revealing the interaction of FHL2 and Runx2 on days 0, 7 and 14 of induction. Our data suggested that FHL2 might interact with Runx2 to mediate mesenchymal cell differentiation at the early stages of tooth development and human dental pulp cell differentiation.

  14. Bone Morphogenetic Protein 2 Mediates Dentin Sialophosphoprotein Expression and Odontoblast Differentiation via NF-Y Signaling*S⃞

    Science.gov (United States)

    Chen, Shuo; Gluhak-Heinrich, Jelica; Martinez, Marcos; Li, Tong; Wu, Yimin; Chuang, Hui-Hsiu; Chen, Lei; Dong, Juan; Gay, Isabel; MacDougall, Mary

    2008-01-01

    Dentin sialophosphoprotein (DSPP), an important odontoblast differentiation marker, is necessary for tooth development and mineralization. Bone morphogenetic protein 2 (BMP2) plays a vital role in odontoblast function via diverse signal transduction systems. We hypothesize that BMP2 regulates DSPP gene transcription and thus odontoblast differentiation. Here we report that expression of BMP2 and DSPP is detected during mouse odontogenesis by in situ hybridization assay, and BMP2 up-regulates DSPP mRNA and protein expression as well as DSPP-luciferase promoter activity in mouse preodontoblasts. By sequentially deleting fragments of the mouse DSPP promoter, we show that a BMP2-response element is located between nucleotides –97 and –72. By using antibody and oligonucleotide competition assays in electrophoretic mobility shift analysis and chromatin immunoprecipitation experiments, we show that the heterotrimeric transcription factor Y (NF-Y) complex physically interacts with the inverted CCAAT box within the BMP2-response element. BMP2 induces NF-Y accumulation into the nucleus increasing its recruitment to the mouse DSPP promoter in vivo. Furthermore, forced overexpression of NF-Y enhances promoter activity and increases endogenous DSPP protein levels. In contrast, mutations in the NF-Y-binding motif reduce BMP2-induced DSPP transcription. Moreover, inhibiting BMP2 signaling by Noggin, a BMP2 antagonist, results in significant inhibition of DSPP gene expression in preodontoblasts. Taken together, these results indicate that BMP2 mediates DSPP gene expression and odontoblast differentiation via NF-Y signaling during tooth development. PMID:18424784

  15. Noncanonical role of Arabidopsis COP1/SPA complex in repressing BIN2-mediated PIF3 phosphorylation and degradation in darkness.

    Science.gov (United States)

    Ling, Jun-Jie; Li, Jian; Zhu, Danmeng; Deng, Xing Wang

    2017-03-28

    The E3 ligase CONSTITUTIVELY PHOTOMORPHOGENIC 1 (COP1) has been known to mediate key signaling factors for degradation via the ubiquitin/26S proteasome pathway in both plants and animals. Here, we report a noncanonical function of Arabidopsis COP1, the central repressor of photomorphogenesis, in the form of a COP1/ SUPPRESSOR of phyA-105 (SPA) complex. We show that the COP1/SPA complex associates with and stabilizes PHYTOCHROME INTERACTING FACTOR 3 (PIF3) to repress photomorphogenesis in the dark. We identify the GSK3-like kinase BRASSINOSTEROID-INSENSITIVE 2 (BIN2) as a kinase of PIF3, which induces PIF3 degradation via 26S proteasome during skotomorphogenesis. Mutations on two typical BIN2 phosphorylation motifs of PIF3 lead to a strong stabilization of the protein in the dark. We further show that the COP1/SPA complex promotes PIF3 stability by repressing BIN2 activity. Intriguingly, without affecting BIN2 expression, the COP1/SPA complex modulates BIN2 activity through interfering with BIN2-PIF3 interaction, thereby inhibiting BIN2-mediated PIF3 phosphorylation and degradation. Taken together, our results suggest another paradigm for COP1/SPA complex action in the precise control of skotomorphogenesis.

  16. Flow injection determination of Se in dietary supplements using TiO2 mediated ultraviolet-photochemical volatile species generation

    Science.gov (United States)

    Nováková, E.; Linhart, O.; Červený, V.; Rychlovský, P.; Hraníček, J.

    2017-08-01

    This paper proposes a method for determination of selenium content in samples of dietary supplements using TiO2 mediated UV-photochemical vapor generation with quartz furnace atomic spectrometric detection. The flow-injection method was optimized for determination of selenium in the form of selenite or selenate ions. The limits of detection of the proposed method are 0.89 ng mL- 1 and 0.68 ng mL- 1 for selenite and selenate, respectively. Extraction in neutral medium was used for the leaching of selenate and NaOH solution was used for the leaching of selenite. The methods accuracy was verified against the declared amounts of Se in five different samples of over-the-counter dietary supplements and on NIST SRM 3280. The method was also compared to results achieved with determination by electrothermal atomization atomic absorption spectrometry following microwave decomposition. The recovery of selenium during sample preparation was tested by spiking the tablets prior to extraction and estimated to be approximately 100%. An interference study has been carried out to estimate the effect of concomitant elements on the methods accuracy.

  17. Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis.

    Science.gov (United States)

    Kim, Dong-Hyun; Kwon, Sanghoon; Byun, Sangwon; Xiao, Zhen; Park, Sean; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Kemper, Byron; Kemper, Jongsook Kim

    2016-07-14

    Bile acids (BAs) are recently recognized signalling molecules that profoundly affect metabolism. Because of detergent-like toxicity, BA levels must be tightly regulated. An orphan nuclear receptor, Small Heterodimer Partner (SHP), plays a key role in this regulation, but how SHP senses the BA signal for feedback transcriptional responses is not clearly understood. We show an unexpected function of a nucleoporin, RanBP2, in maintaining BA homoeostasis through SUMOylation of SHP. Upon BA signalling, RanBP2 co-localizes with SHP at the nuclear envelope region and mediates SUMO2 modification at K68, which facilitates nuclear transport of SHP and its interaction with repressive histone modifiers to inhibit BA synthetic genes. Mice expressing a SUMO-defective K68R SHP mutant have increased liver BA levels, and upon BA- or drug-induced biliary insults, these mice exhibit exacerbated cholestatic pathologies. These results demonstrate a function of RanBP2-mediated SUMOylation of SHP in maintaining BA homoeostasis and protecting from the BA hepatotoxicity.

  18. Genetic Interactions Reveal that Specific Defects of Chloroplast Translation are Associated with the Suppression of var2-Mediated Leaf Variegation

    Institute of Scientific and Technical Information of China (English)

    Xiayan Liu; Mengdi Zheng; Rui Wang; Ruijuan Wang; Lijun An; Steve R. Rodermel; Fei Yu

    2013-01-01

    Arabidopsis thaliana L. yellow variegated (var2) mutant is defective in a chloroplast FtsH family metalloprotease, AtFtsH2/VAR2, and displays an intriguing green and white leaf variegation. This unique var2-mediated leaf variegation offers a simple yet powerful tool for dissecting the genetic regulation of chloroplast development. Here, we report the isolation and characterization of a new var2 suppressor gene, SUPPRESSOR OF VARIEGATION8 (SVR8), which encodes a putative chloroplast ribosomal large subunit protein, L24. Mutations in SVR8 suppress var2 leaf variegation at ambient temperature and partially suppress the cold-induced chlorosis phenotype of var2. Loss of SVR8 causes unique chloroplast rRNA processing defects, particularly the 23S-4.5S dicistronic precursor. The recovery of the major abnormal processing site in svr8 23S-4.5S precursor indicate that it does not lie in the same position where SVR8/L24 binds on the ribosome. Surprisingly, we found that the loss of a chloroplast ribosomal small subunit protein, S21, results in aberrant chloroplast rRNA processing but not suppression of var2 variegation. These findings suggest that the disruption of specific aspects of chloroplast translation, rather than a general impairment in chloroplast translation, suppress var2 variegation and the existence of complex genetic interactions in chloroplast development.

  19. Critical role of RanBP2-mediated SUMOylation of Small Heterodimer Partner in maintaining bile acid homeostasis

    Science.gov (United States)

    Kim, Dong-Hyun; Kwon, Sanghoon; Byun, Sangwon; Xiao, Zhen; Park, Sean; Wu, Shwu-Yuan; Chiang, Cheng-Ming; Kemper, Byron; Kemper, Jongsook Kim

    2016-01-01

    Bile acids (BAs) are recently recognized signalling molecules that profoundly affect metabolism. Because of detergent-like toxicity, BA levels must be tightly regulated. An orphan nuclear receptor, Small Heterodimer Partner (SHP), plays a key role in this regulation, but how SHP senses the BA signal for feedback transcriptional responses is not clearly understood. We show an unexpected function of a nucleoporin, RanBP2, in maintaining BA homoeostasis through SUMOylation of SHP. Upon BA signalling, RanBP2 co-localizes with SHP at the nuclear envelope region and mediates SUMO2 modification at K68, which facilitates nuclear transport of SHP and its interaction with repressive histone modifiers to inhibit BA synthetic genes. Mice expressing a SUMO-defective K68R SHP mutant have increased liver BA levels, and upon BA- or drug-induced biliary insults, these mice exhibit exacerbated cholestatic pathologies. These results demonstrate a function of RanBP2-mediated SUMOylation of SHP in maintaining BA homoeostasis and protecting from the BA hepatotoxicity. PMID:27412403

  20. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination.

    Science.gov (United States)

    Liu, Yinggao; Ye, Nenghui; Liu, Rui; Chen, Moxian; Zhang, Jianhua

    2010-06-01

    H(2)O(2) is known as a signal molecule in plant cells, but its role in the regulation of aqbscisic acid (ABA) and gibberellic acid (GA) metabolism and hormonal balance is not yet clear. In this study it was found that H(2)O(2) affected the regulation of ABA catabolism and GA biosynthesis during seed imbibition and thus exerted control over seed dormancy and germination. As seen by quantitative RT-PCR (QRT-PCR), H(2)O(2) up-regulated ABA catabolism genes (e.g. CYP707A genes), resulting in a decreased ABA content during imbibition. This action required the participation of nitric oxide (NO), another signal molecule. At the same time, H(2)O(2) also up-regulated GA biosynthesis, as shown by QRT-PCR. When an ABA catabolism mutant, cyp707a2, and an overexpressing plant, CYP707A2-OE, were tested, ABA content was negatively correlated with GA biosynthesis. Exogenously applied GA was able to over-ride the inhibition of germination at low concentrations of ABA, but had no obvious effect when ABA concentrations were high. It is concluded that H(2)O(2) mediates the up-regulation of ABA catabolism, probably through an NO signal, and also promotes GA biosynthesis. High concentrations of ABA inhibit GA biosynthesis but a balance of these two hormones can jointly control the dormancy and germination of Arabidopsis seeds.

  1. Adaptor protein complex 2-mediated, clathrin-dependent endocytosis, and related gene activities, are a prominent feature during maturation stage amelogenesis.

    Science.gov (United States)

    Lacruz, Rodrigo S; Brookes, Steven J; Wen, Xin; Jimenez, Jaime M; Vikman, Susanna; Hu, Ping; White, Shane N; Lyngstadaas, S Petter; Okamoto, Curtis T; Smith, Charles E; Paine, Michael L

    2013-03-01

    Molecular events defining enamel matrix removal during amelogenesis are poorly understood. Early reports have suggested that adaptor proteins (AP) participate in ameloblast-mediated endocytosis. Enamel formation involves the secretory and maturation stages, with an increase in resorptive function during the latter. Here, using real-time PCR, we show that the expression of clathrin and adaptor protein subunits are upregulated in maturation stage rodent enamel organ cells. AP complex 2 (AP-2) is the most upregulated of the four distinct adaptor protein complexes. Immunolocalization confirms the presence of AP-2 and clathrin in ameloblasts, with strongest reactivity at the apical pole. These data suggest that the resorptive functions of enamel cells involve AP-2 mediated, clathrin-dependent endocytosis, thus implying the likelihood of specific membrane-bound receptor(s) of enamel matrix protein debris. The mRNA expression of other endocytosis-related gene products is also upregulated during maturation including: lysosomal-associated membrane protein 1 (Lamp1); cluster of differentiation 63 and 68 (Cd63 and Cd68); ATPase, H(+) transporting, lysosomal V0 subunit D2 (Atp6v0d2); ATPase, H(+) transporting, lysosomal V1 subunit B2 (Atp6v1b2); chloride channel, voltage-sensitive 7 (Clcn7); and cathepsin K (Ctsk). Immunohistologic data confirms the expression of a number of these proteins in maturation stage ameloblasts. The enamel of Cd63-null mice was also examined. Despite increased mRNA and protein expression in the enamel organ during maturation, the enamel of Cd63-null mice appeared normal. This may suggest inherent functional redundancies between Cd63 and related gene products, such as Lamp1 and Cd68. Ameloblast-like LS8 cells treated with the enamel matrix protein complex Emdogain showed upregulation of AP-2 and clathrin subunits, further supporting the existence of a membrane-bound receptor-regulated pathway for the endocytosis of enamel matrix proteins. These data

  2. AgNO2-mediated direct nitration of the quinoxaline tertiary benzylic C-H bond and direct conversion of 2-methyl quinoxalines into related nitriles.

    Science.gov (United States)

    Wu, Degui; Zhang, Jian; Cui, Jianhai; Zhang, Wei; Liu, Yunkui

    2014-09-25

    A unique method for AgNO2-mediated direct nitration of the quinoxaline tertiary C-H bond and direct conversion of 2-methyl quinoxalines into 2-quinoxaline nitriles under oxidative conditions has been developed. This protocol provides an efficient way to access quinoxaline containing nitroalkanes and nitriles depending on different substrate selection.

  3. Synthesis of 1H-indazoles and 1H-pyrazoles via FeBr3/O2 mediated intramolecular C-H amination.

    Science.gov (United States)

    Zhang, Tianshui; Bao, Weiliang

    2013-02-01

    A new synthesis of substituted 1H-indazoles and 1H-pyrazoles from arylhydrazones via FeBr(3)/O(2) mediated C-H activation/C-N bond formation reactions is reported. The corresponding 1,3-diaryl-substituted indazoles and trisubstituted pyrazoles were obtained in moderate to excellent yields under mild conditions.

  4. PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis.

    Science.gov (United States)

    Tian, Maozhen; Schiemann, William P

    2010-04-01

    The molecular mechanisms that enable cyclooxygenase-2 (COX-2) and its mediator prostaglandin E2 (PGE2) to inhibit transforming growth factor-beta (TGF-beta) signaling during mammary tumorigenesis remain unknown. We show here that TGF-beta selectively stimulated the expression of the PGE2 receptor EP2, which increased normal and malignant mammary epithelial cell (MEC) invasion, anchorage-independent growth, and resistance to TGF-beta-induced cytostasis. Mechanistically, elevated EP2 expression in normal MECs inhibited the coupling of TGF-beta to Smad2/3 activation and plasminogen activator inhibitor-1 (PAI1) expression, while EP2 deficiency in these same MECs augmented Smad2/3 activation and PAI expression stimulated by TGF-beta. Along these lines, engineering malignant MECs to lack EP2 expression prevented their growth in soft agar, restored their cytostatic response to TGF-beta, decreased their invasiveness in response to TGF-beta, and potentiated their activation of Smad2/3 and expression of PAI stimulated by TGF-beta. More important, we show that COX-2 or EP2 deficiency both significantly decreased the growth, angiogenesis, and pulmonary metastasis of mammary tumors produced in mice. Collectively, this investigation establishes EP2 as a potent mediator of the anti-TGF-beta activities elicited by COX-2/PGE2 in normal and malignant MECs. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the oncogenic activities of TGF-beta during mammary tumorigenesis.-Tian, M., Schiemann, W. P. PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-beta signaling during mammary tumorigenesis.

  5. PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-β signaling during mammary tumorigenesis

    Science.gov (United States)

    Tian, Maozhen; Schiemann, William P.

    2010-01-01

    The molecular mechanisms that enable cyclooxygenase-2 (COX-2) and its mediator prostaglandin E2 (PGE2) to inhibit transforming growth factor-β (TGF-β) signaling during mammary tumorigenesis remain unknown. We show here that TGF-β selectively stimulated the expression of the PGE2 receptor EP2, which increased normal and malignant mammary epithelial cell (MEC) invasion, anchorage-independent growth, and resistance to TGF-β-induced cytostasis. Mechanistically, elevated EP2 expression in normal MECs inhibited the coupling of TGF-β to Smad2/3 activation and plasminogen activator inhibitor-1 (PAI1) expression, while EP2 deficiency in these same MECs augmented Smad2/3 activation and PAI expression stimulated by TGF-β. Along these lines, engineering malignant MECs to lack EP2 expression prevented their growth in soft agar, restored their cytostatic response to TGF-β, decreased their invasiveness in response to TGF-β, and potentiated their activation of Smad2/3 and expression of PAI stimulated by TGF-β. More important, we show that COX-2 or EP2 deficiency both significantly decreased the growth, angiogenesis, and pulmonary metastasis of mammary tumors produced in mice. Collectively, this investigation establishes EP2 as a potent mediator of the anti-TGF-β activities elicited by COX-2/PGE2 in normal and malignant MECs. Our findings also suggest that pharmacological targeting of EP2 receptors may provide new inroads to antagonize the oncogenic activities of TGF-β during mammary tumorigenesis.—Tian, M., Schiemann, W. P. PGE2 receptor EP2 mediates the antagonistic effect of COX-2 on TGF-β signaling during mammary tumorigenesis. PMID:19897661

  6. Down-regulation of Decapping Protein 2 mediates chronic nicotine exposure-induced locomotor hyperactivity in Drosophila.

    Science.gov (United States)

    Ren, Jing; Sun, Jinghan; Zhang, Yunpeng; Liu, Tong; Ren, Qingzhong; Li, Yan; Guo, Aike

    2012-01-01

    Long-term tobacco use causes nicotine dependence via the regulation of a wide range of genes and is accompanied by various health problems. Studies in mammalian systems have revealed some key factors involved in the effects of nicotine, including nicotinic acetylcholine receptors (nAChRs), dopamine and other neurotransmitters. Nevertheless, the signaling pathways that link nicotine-induced molecular and behavioral modifications remain elusive. Utilizing a chronic nicotine administration paradigm, we found that adult male fruit flies exhibited locomotor hyperactivity after three consecutive days of nicotine exposure, while nicotine-naive flies did not. Strikingly, this chronic nicotine-induced locomotor hyperactivity (cNILH) was abolished in Decapping Protein 2 or 1 (Dcp2 or Dcp1) -deficient flies, while only Dcp2-deficient flies exhibited higher basal levels of locomotor activity than controls. These results indicate that Dcp2 plays a critical role in the response to chronic nicotine exposure. Moreover, the messenger RNA (mRNA) level of Dcp2 in the fly head was suppressed by chronic nicotine treatment, and up-regulation of Dcp2 expression in the nervous system blocked cNILH. These results indicate that down-regulation of Dcp2 mediates chronic nicotine-exposure-induced locomotor hyperactivity in Drosophila. The decapping proteins play a major role in mRNA degradation; however, their function in the nervous system has rarely been investigated. Our findings reveal a significant role for the mRNA decapping pathway in developing locomotor hyperactivity in response to chronic nicotine exposure and identify Dcp2 as a potential candidate for future research on nicotine dependence.

  7. Aurora-A controls cancer cell radio- and chemoresistance via ATM/Chk2-mediated DNA repair networks.

    Science.gov (United States)

    Sun, Huizhen; Wang, Yan; Wang, Ziliang; Meng, Jiao; Qi, Zihao; Yang, Gong

    2014-05-01

    High expression of Aurora kinase A (Aurora-A) has been found to confer cancer cell radio- and chemoresistance, however, the underlying mechanism is unclear. In this study, by using Aurora-A cDNA/shRNA or the specific inhibitor VX680, we show that Aurora-A upregulates cell proliferation, cell cycle progression, and anchorage-independent growth to enhance cell resistance to cisplatin and X-ray irradiation through dysregulation of DNA damage repair networks. Mechanistic studies showed that Aurora-A promoted the expression of ATM/Chk2, but suppressed the expression of BRCA1/2, ATR/Chk1, p53, pp53 (Ser15), H2AX, γH2AX (Ser319), and RAD51. Aurora-A inhibited the focus formation of γH2AX in response to ionizing irradiation. Treatment of cells overexpressing Aurora-A and ATM/Chk2 with the ATM specific inhibitor KU-55933 increased the cell sensitivity to cisplatin and irradiation through increasing the phosphorylation of p53 at Ser15 and inhibiting the expression of Chk2, γH2AX (Ser319), and RAD51. Further study revealed that BRCA1/2 counteracted the function of Aurora-A to suppress the expression of ATM/Chk2, but to activate the expression of ATR/Chk1, pp53, γH2AX, and RAD51, leading to the enhanced cell sensitivity to irradiation and cisplatin, which was also supported by the results from animal assays. Thus, our data provide strong evidences that Aurora-A and BRCA1/2 inversely control the sensitivity of cancer cells to radio- and chemotherapy through the ATM/Chk2-mediated DNA repair networks, indicating that the DNA repair molecules including ATM/Chk2 may be considered for the targeted therapy against cancers with overexpression of Aurora-A.

  8. A novel two mode-acting inhibitor of ABCG2-mediated multidrug transport and resistance in cancer chemotherapy.

    Directory of Open Access Journals (Sweden)

    Hui Peng

    Full Text Available BACKGROUND: Multidrug resistance (MDR is a major problem in successful treatment of cancers. Human ABCG2, a member of the ATP-binding cassette transporter superfamily, plays a key role in MDR and an important role in protecting cancer stem cells. Knockout of ABCG2 had no apparent adverse effect on the mice. Thus, ABCG2 is an ideal target for development of chemo-sensitizing agents for better treatment of drug resistant cancers and helping eradicate cancer stem cells. METHODS/PRELIMINARY FINDINGS: Using rational screening of representatives from a chemical compound library, we found a novel inhibitor of ABCG2, PZ-39 (N-(4-chlorophenyl-2-[(6-{[4,6-di(4-morpholinyl-1,3,5-triazin-2-yl]amino}-1,3-benzothiazol-2-ylsulfanyl]acetamide, that has two modes of actions by inhibiting ABCG2 activity and by accelerating its lysosome-dependent degradation. PZ-39 has no effect on ABCB1 and ABCC1-mediated drug efflux, resistance, and their expression, indicating that it may be specific to ABCG2. Analyses of its analogue compounds showed that the pharmacophore of PZ-39 is benzothiazole linked to a triazine ring backbone. CONCLUSION/SIGNIFICANCE: Unlike any previously known ABCG2 transporter inhibitors, PZ-39 has a novel two-mode action by inhibiting ABCG2 activity, an acute effect, and by accelerating lysosome-dependent degradation, a chronic effect. PZ-39 is potentially a valuable probe for structure-function studies of ABCG2 and a lead compound for developing therapeutics targeting ABCG2-mediated MDR in combinational cancer chemotherapy.

  9. DJ-1 Modulates Nuclear Erythroid 2-Related Factor-2-Mediated Protection in Human Primary Alveolar Type II Cells in Smokers.

    Science.gov (United States)

    Bahmed, Karim; Messier, Elise M; Zhou, Wenbo; Tuder, Rubin M; Freed, Curt R; Chu, Hong Wei; Kelsen, Steven G; Bowler, Russell P; Mason, Robert J; Kosmider, Beata

    2016-09-01

    Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2-related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases.

  10. Neuropilin-2 mediated β-catenin signaling and survival in human gastro-intestinal cancer cell lines.

    Directory of Open Access Journals (Sweden)

    Shaija Samuel

    Full Text Available NRP-2 is a high-affinity kinase-deficient receptor for ligands belonging to the class 3 semaphorin and vascular endothelial growth factor families. NRP-2 has been detected on the surface of several types of human cancer cells, but its expression and function in gastrointestinal (GI cancer cells remains to be determined. We sought to determine the function of NRP-2 in mediating downstream signals regulating the growth and survival of human gastrointestinal cancer cells. In human gastric cancer specimens, NRP-2 expression was detected in tumor tissues but not in adjacent normal mucosa. In CNDT 2.5 cells, shRNA mediated knockdown NRP-2 expression led to decreased migration and invasion in vitro (p<0.01. Focused gene-array analysis demonstrated that loss of NRP-2 reduced the expression of a critical metastasis mediator gene, S100A4. Steady-state levels and function of β-catenin, a known regulator of S100A4, were also decreased in the shNRP-2 clones. Furthermore, knockdown of NRP-2 sensitized CNDT 2.5 cells in vitro to 5FU toxicity. This effect was associated with activation of caspases 3 and 7, cleavage of PARP, and downregulation of Bcl-2. In vivo growth of CNDT 2.5 cells in the livers of nude mice was significantly decreased in the shNRP-2 group (p<0.05. Intraperitoneal administration of NRP-2 siRNA-DOPC decreased the tumor burden in mice (p = 0.01. Collectively, our results demonstrate that tumor cell-derived NRP-2 mediates critical survival signaling in gastrointestinal cancer cells.

  11. Interaction of dipeptide prodrugs of saquinavir with multidrug resistance protein-2 (MRP-2): evasion of MRP-2 mediated efflux.

    Science.gov (United States)

    Jain, Ritesh; Agarwal, Sheetal; Mandava, Nanda Kishore; Sheng, Ye; Mitra, Ashim K

    2008-10-01

    Saquinavir (SQV), the first protease inhibitor approved by FDA to treat HIV-1 infection. This drug is a well-known substrate for multidrug resistance protein-2 (MRP-2). The objective of this study was to investigate whether derivatization of SQV to dipeptide prodrugs, valine-valine-saquinavir (Val-Val-SQV) and glycine-valine-saquinavir (Gly-Val-SQV), targeting peptide transporter can circumvent MRP-2 mediated efflux. Uptake and transport studies were carried out across MDCKII-MRP2 cell monolayers to investigate the interaction of SQV and its prodrugs with MRP-2. In situ single pass intestinal perfusion experiments in rat jejunum were performed to calculate intestinal absorption rate constants and permeabilities of SQV, Val-Val-SQV and Gly-Val-SQV. Uptake studies demonstrated that the prodrugs have significantly lower interaction with MRP-2 relative to SQV. Transepithelial transport of Val-Val-SQV and Gly-Val-SQV across MDCKII-MRP2 cells exhibited an enhanced absorptive flux and reduced secretory flux as compared to SQV. Intestinal perfusion studies revealed that synthesized prodrugs have higher intestinal permeabilities relative to SQV. Enhanced absorption of Val-Val-SQV and Gly-Val-SQV relative to SQV can be attributed to their translocation by the peptide transporter in the jejunum. In the presence of MK-571, a MRP family inhibitor, there was a significant increase in the permeabilities of SQV and Gly-Val-SQV indicating that these compounds are probably substrates for MRP-2. However, there was no change in the permeability of Val-Val-SQV with MK-571 indicating lack of any interaction of Val-Val-SQV with MRP-2. In conclusion, peptide transporter targeted prodrug modification of MRP-2 substrates may lead to shielding of these drug molecules from MRP-2 efflux pumps.

  12. Cisd2 mediates lifespan: is there an interconnection among Ca²⁺ homeostasis, autophagy, and lifespan?

    Science.gov (United States)

    Wang, C-H; Kao, C-H; Chen, Y-F; Wei, Y-H; Tsai, T-F

    2014-09-01

    CISD2, an evolutionarily conserved novel gene, plays a crucial role in lifespan control and human disease. Mutations in human CISD2 cause type 2 Wolfram syndrome, a rare neurodegenerative and metabolic disorder associated with a shortened lifespan. Significantly, the CISD2 gene is located within a region on human chromosome 4q where a genetic component for human longevity has been mapped through a comparative genome analysis of centenarian siblings. We created Cisd2 knockout (loss-of-function) and transgenic (gain-of-function) mice to study the role of Cisd2 in development and pathophysiology, and demonstrated that Cisd2 expression affects lifespan in mammals. In the Cisd2 knockout mice, Cisd2 deficiency shortens lifespan and drives a panel of premature aging phenotypes. Additionally, an age-dependent decrease of Cisd2 expression has been detected during normal aging in mice. Interestingly, in the Cisd2 transgenic mice, we demonstrated that a persistent level of Cisd2 expression over the different stages of life gives the mice a long-lived phenotype that is linked to an extension in healthy lifespan and a delay in age-associated diseases. At the cellular level, Cisd2 deficiency leads to mitochondrial breakdown and dysfunction accompanied by cell death with autophagic features. Recent studies revealed that Cisd2 may function as an autophagy regulator involved in the Bcl-2 mediated regulation of autophagy. Furthermore, Cisd2 regulates Ca(2+) homeostasis and Ca(2+) has been proposed to have an important regulatory role in autophagy. Finally, it remains to be elucidated if and how the regulation in Ca(2+) homeostasis, autophagy and lifespan are interconnected at the molecular, cellular and organism levels.

  13. Effective immobilization of BMP-2 mediated by polydopamine coating on biodegradable nanofibers for enhanced in vivo bone formation.

    Science.gov (United States)

    Cho, Hyeong-jin; Perikamana, Sajeesh Kumar Madhurakkat; Lee, Ji-hye; Lee, Jinkyu; Lee, Kyung-Mi; Shin, Choongsoo S; Shin, Heungsoo

    2014-07-23

    Although bone morphogenic proteins (BMPs) have been widely used for bone regeneration, the ideal delivery system with optimized dose and minimized side effects is still active area of research. In this study, we developed bone morphogenetic protein-2(BMP-2) immobilized poly(l-lactide) (PLLA) nanofibers inspired by polydopamine, which could be ultimately used as membranes for guided bone regeneration, and investigated their effect on guidance of in vitro cell behavior and in vivo bone formation. Surface chemical analysis of the nanofibers confirmed successful immobilization of BMP-2 mediated by polydopamine, and about 90% of BMP-2 was stably retained on the nanofiber surface for at least 28 days. The alkaline phosphatase activity and calcium mineralization of human mesenchymal stem cells (hMSCs) after 14 days of in vitro culture was significantly enhanced on nanofibers immobilized with BMP-2. More importantly, BMP-2 at a relatively small dose was highly active following implantation to the critical-sized defect in the cranium of mice; radiographic analysis demonstrated that 77.8 ± 11.7% of newly formed bone was filled within the defect for a BMP-2-immobilized groups at the concentration of 124 ± 9 ng/cm(2), as compared to 5.9 ± 1.0 and 34.1 ± 5.5% recovery, for a defect-only and a polydopamine-only group, respectively. Scanning and transmission electron microscopy of samples from the BMP-2 immobilized group showed fibroblasts and osteoblasts with nanofiber strands in the middle of regenerated bone tissue, revealing the importance of interaction between implanted nanofibers and the neighboring extracellular environment. Taken together, our data support that the presentation of BMP-2 on the surface of nanofibers as immobilized by utilizing polydopamine chemistry may be an effective method to direct bone growth at relatively low local concentration.

  14. Protective role of p21(Waf1/Cip1) against prostaglandin A2-mediated apoptosis of human colorectal carcinoma cells.

    Science.gov (United States)

    Gorospe, M; Wang, X; Guyton, K Z; Holbrook, N J

    1996-01-01

    Prostaglandin A2 (PGA2) suppresses tumor growth in vivo, is potently antiproliferative in vitro, and is a model drug for the study of the mammalian stress response. Our previous studies using breast carcinoma MCF-7 cells suggested that p21(Waf1/Cip1) induction enabled cells to survive PGA2 exposure. Indeed, the marked sensitivity of human colorectal carcinoma RKO cells to the cytotoxicity of PGA2 is known to be associated with a lack of a PGA2-mediated increase in p21(Waf1/Cip1) expression, inhibition of cyclin-dependent kinase activity, and growth arrest. To determine if cell death following exposure to PGA2 could be prevented by forcing the expression of p21(Waf1/Cip1) in RKO cells, we utilized an adenoviral vector-based expression system. We demonstrate that ectopic expression of p21(Waf1/Cip1) largely rescued RKO cells from PGA2-induced apoptotic cell death, directly implicating p21(Waf1/Cip1) as a determinant of the cellular outcome (survival versus death) following exposure to PGA2. To discern whether p21(Waf1/Cip1)-mediated protection operates through the implementation of cellular growth arrest, other growth-inhibitory treatments were studied for the ability to attenuate PGA2-induced cell death. Neither serum depletion nor suramin (a growth factor receptor antagonist) protected RKO cells against PGA2 cytotoxicity, and neither induced p21(Waf1/Cip1) expression. Mimosine, however, enhanced p21(Waf1/Cip1) expression, completely inhibited RKO cell proliferation, and exerted marked protection against a subsequent PGA2 challenge. Taken together, our results directly demonstrate a protective role for p21(Waf1/Cip1) during PGA2 cellular stress and provide strong evidence that the implementation of cellular growth arrest contributes to this protective influence. PMID:8943319

  15. Exobiopolymer production of Ophiocordyceps dipterigena BCC 2073: optimization, production in bioreactor and characterization

    Directory of Open Access Journals (Sweden)

    Prathumpai Wai

    2010-07-01

    Full Text Available Abstract Background Biopolymers have various applications in medicine, food and petroleum industries. The ascomycetous fungus Ophiocordyceps dipterigena BCC 2073 produces an exobiopolymer, a (1→3-β-D-glucan, in low quantity under screening conditions. Optimization of O. dipterigena BCC 2073 exobiopolymer production using experimental designs, a scale-up in 5 liter bioreactor, analysis of molecular weight at different cultivation times, and levels of induction of interleukin-8 synthesis are described in this study. Results In order to improve and certify the productivity of this strain, a sequential approach of 4 steps was followed. The first step was the qualitative selection of the most appropriate carbon and nitrogen sources (general factorial design and the second step was quantitative optimization of 5 physiological factors (fractional factorial design. The best carbon and nitrogen source was glucose and malt extract respectively. From an initial production of 2.53 g·L-1, over 13 g·L-1 could be obtained in flasks under the improved conditions (5-fold increase. The third step was cultivation in a 5 L bioreactor, which produced a specific growth rate, biomass yield, exobiopolymer yield and exobiopolymer production rate of 0.014 h-1, 0.32 g·g-1 glucose, 2.95 g·g biomass-1 (1.31 g·g-1 sugar, and 0.65 g.(L·d-1, respectively. A maximum yield of 41.2 g·L-1 was obtained after 377 h, a dramatic improvement in comparison to the initial production. In the last step, the basic characteristics of the biopolymer were determined. The molecular weight of the polymer was in the range of 6.3 × 105 - 7.7 × 105 Da. The exobiopolymer, at 50 and 100. μg·mL-1, induced synthesis in normal dermal human fibroblasts of 2227 and 3363 pg·mL-1 interleukin-8 respectively. Conclusions High exobiopolymer yield produced by O. dipterigena BCC 2073 after optimization by qualitative and quantitative methods is attractive for various applications. It induced high

  16. Gain-of-function mutations in the Toll-like Receptor pathway: TPL2-mediated ERK1/ERK2 MAPK activation, a path to tumorigenesis in lymphoid neoplasms?

    Directory of Open Access Journals (Sweden)

    Simon eRousseau

    2016-05-01

    Full Text Available Lymphoid neoplasms form a family of cancers affecting B-cells, T-cells and NK cells. The Toll-Like Receptor (TLR signalling adapter molecule MYD88 is the most frequently mutated gene in these neoplasms. This signalling adaptor relays signals from TLRs to downstream effector pathways such as the Nuclear Factor kappa B (NFB and Mitogen Activated Protein Kinase (MAPK pathways to regulate innate immune responses (Kawai and Akira, 2010. Gain-of-function mutations such as MYD88[L265P] activate downstream signalling pathways in absence of cognate ligands for TLRs, resulting in increased cellular proliferation and survival. This article reports an analysis of non-synonymous somatic mutations found in the TLR signaling network in lymphoid neoplasms. In accordance with previous reports, mutations map to MYD88 pro-inflammatory signaling and not TRIF-mediated Type I IFN production. Interestingly, the analysis of somatic mutations found downstream of the core TLR-signaling network uncovered a strong association with the ERK1/2 MAPK cascade. In support of this analysis, heterologous expression of MYD88[L265P] in HEK 293 cells led to ERK1/2 MAPK phosphorylation in addition to NFB activation. Moreover, this activation is dependent on the protein kinase Tumour Promoting Locus-2 (TPL-2, activated downstream of the IKK complex. Activation of ERK1/2 would then lead to activation, amongst others, of MYC and hnRNP A1, two proteins previously shown to contribute to tumour formation in lymphoid neoplasms. Taken together, this analysis suggests that TLR-mediated tumorigenesis occurs via the TPL2-mediated ERK1/2 activation. Therefore, the hypothesis proposed is that inhibition of ERK1/2 MAPK activation would prevent tumour growth downstream of MYD88[L265]. It will be interesting to test whether pharmacological inhibitors of this pathway show efficacy in primary tumour cells derived from hematologic malignancies such as Waldenstrom’s Macroglobulinemia, where the

  17. SOD2-mediated adaptive responses induced by low-dose ionizing radiation via TNF signaling and amifostine.

    Science.gov (United States)

    Murley, J S; Baker, K L; Miller, R C; Darga, T E; Weichselbaum, R R; Grdina, D J

    2011-11-15

    Manganese superoxide dismutase (SOD2)-mediated adaptive processes that protect against radiation-induced micronucleus formation can be induced in cells after a 2-Gy exposure by previously exposing them to either low-dose ionizing radiation (10cGy) or WR1065 (40μM), the active thiol form of amifostine. Although both adaptive processes culminate in elevated levels of SOD2 enzymatic activity, the underlying pathways differ in complexity, with the tumor necrosis factor α (TNFα) signaling pathway implicated in the low-dose radiation-induced response, but not in the thiol-induced pathway. The goal of this study was the characterization of the effects of TNFα receptors 1 and 2 (TNFR1, TNFR2) on the adaptive responses induced by low-dose irradiation or thiol exposure using micronucleus formation as an endpoint. BFS-1 wild-type cells with functional TNFR1 and 2 were exposed 24h before a 2-Gy dose of ionizing radiation to either 10cGy or a 40μM dose of WR1065. BFS2C-SH02 cells, defective in TNFR1, and BFS2C-SH22 cells, defective in both TNFR1 and TNFR2 and generated from BFS2C-SH02 cells by transfection with a murine TNFR2-targeting vector and confirmed to be TNFR2 defective by quantitative PCR, were also exposed under similar conditions for comparison. A 10-cGy dose of radiation induced a significant elevation in SOD2 activity in BFS-1 (Pradiation-induced micronuclei was observed in each cell line when exposure to a 2-Gy challenge dose of radiation occurred during the period of maximal elevation in SOD2 activity. However, this adaptive effect was completely inhibited if the cells were transfected 24h before low-dose radiation or thiol exposure with SOD2 siRNA. Under the conditions tested, TNFR1 and 2 inhibition negatively affected the low-dose radiation-induced but not the thiol-induced adaptive responses observed to be mediated by elevations in SOD2 activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Schisandra chinensis regulates drug metabolizing enzymes and drug transporters via activation of Nrf2-mediated signaling pathway

    Directory of Open Access Journals (Sweden)

    He JL

    2014-12-01

    increase in the intracellular level of glutathione and total glutathione S-transferase content. SCE significantly elevated the messenger ribonucleic acid and protein levels of P-glycoprotein and multidrug resistance-associated protein 2 and 4, whereas the expression of organic anion transporting peptide 1A2 and 1B1 was significantly downregulated by SCE. Knockdown of Nrf2 by small interfering ribonucleic acid attenuated the regulatory effect of SCE on these DMEs and drug transporters. SCE significantly upregulated Nrf2 and promoted the translocation of Nrf2 from cytoplasm to the nuclei. Additionally, SCE significantly suppressed the expression of cytosolic Kelch-like ECH-associated protein 1 (the repressor of Nrf2 and remarkably increased Nrf2 stability in HepG2 cells. Taken together, our findings suggest that the hepatoprotective effects of SCE may be partially ascribed to the modulation of DMEs and drug transporters via Nrf2-mediated signaling pathway. SCE may alter the pharmacokinetics of other coadministered drugs that are substrates of these DMEs and transporters and thus cause unfavorable herb–drug interactions. Keywords: Nrf2, Keap1, HepG2 cell, drug metabolizing enzyme, drug transporter, P-gp, MRP, OATP, Schisandra chinensis

  19. Partial-Redox-Promoted Mn Cycling of Mn(II)-Doped Heterogeneous Catalyst for Efficient H2O2-Mediated Oxidation.

    Science.gov (United States)

    Li, Hai-Tao; Gao, Qiang; Han, Bo; Ren, Zheng-Hui; Xia, Kai-Sheng; Zhou, Cheng-Gang

    2017-01-11

    The development of a heterogeneous catalyst with high catalytic activity and durability for H2O2-mediated oxidation is one of the most important industrial and environmental issues. In this study, a Mn(II)-doped TiO2 heterogeneous catalyst was developed for H2O2-mediated oxidation. The TiO2 substrate-dependent partial-redox behavior of Mn was identified on the basis of our density functional theory simulations. This unique redox cycle was induced by a moderate electron transfer from Ti to Mn, which compensated for the electron loss of Mn and finally resulted in a high-efficiency cycling of Mn between its oxidized and reduced forms. In light of the theoretical results, a Mn(II)-doped TiO2 composite with well-defined morphology and large surface area (153.3 m(2) g(-1)) was elaborately fabricated through incorporating Mn(II) ions into a TiO2 nanoflower, and further tested as the catalyst for oxidative degradation of organic pollutants in the presence of H2O2. Benefiting from the remarkable textural features and excellent Mn cycling property, this composite exhibited superior catalytic performance for organic pollutant degradation. Moreover, it could retain 98.40% of its initial activity even in the fifth cycle. Our study provides an effective strategy for designing heterogeneous catalytic systems for H2O2-mediated oxidations.

  20. Inhibition of COX-2-mediated eicosanoid production plays a major role in the anti-inflammatory effects of the endocannabinoid N-docosahexaenoylethanolamine (DHEA) in macrophages

    NARCIS (Netherlands)

    Meijerink, J.; Poland, M.C.R.; Balvers, M.G.J.; Plastina, P.; Lute, C.; Dwarkasing, J.T.; Norren, van K.; Witkamp, R.F.

    2015-01-01

    Background and Purpose N-docosahexaenoylethanolamine (DHEA) is the ethanolamine conjugate of the long-chain polyunsaturated n-3 fatty acid docosahexaenoic (DHA; 22: 6n-3). Its concentration in animal tissues and human plasma increases when diets rich in fish or krill oil are consumed. DHEA displays

  1. Inhibition of COX-2-mediated eicosanoid production plays a major role in the anti-inflammatory effects of the endocannabinoid N-docosahexaenoylethanolamine (DHEA) in macrophages

    NARCIS (Netherlands)

    Meijerink, J.; Poland, M.C.R.; Balvers, M.G.J.; Plastina, P.; Lute, C.; Dwarkasing, J.T.; Norren, van K.; Witkamp, R.F.

    2015-01-01

    Background and Purpose N-docosahexaenoylethanolamine (DHEA) is the ethanolamine conjugate of the long-chain polyunsaturated n-3 fatty acid docosahexaenoic (DHA; 22: 6n-3). Its concentration in animal tissues and human plasma increases when diets rich in fish or krill oil are consumed. DHEA displays

  2. Critical role of fatty acid metabolism in ILC2-mediated barrier protection during malnutrition and helminth infection.

    Science.gov (United States)

    Wilhelm, Christoph; Harrison, Oliver J; Schmitt, Vanessa; Pelletier, Martin; Spencer, Sean P; Urban, Joseph F; Ploch, Michelle; Ramalingam, Thirumalai R; Siegel, Richard M; Belkaid, Yasmine

    2016-07-25

    Innate lymphoid cells (ILC) play an important role in many immune processes, including control of infections, inflammation, and tissue repair. To date, little is known about the metabolism of ILC and whether these cells can metabolically adapt in response to environmental signals. Here we show that type 2 innate lymphoid cells (ILC2), important mediators of barrier immunity, predominantly depend on fatty acid (FA) metabolism during helminth infection. Further, in situations where an essential nutrient, such as vitamin A, is limited, ILC2 sustain their function and selectively maintain interleukin 13 (IL-13) production via increased acquisition and utilization of FA. Together, these results reveal that ILC2 preferentially use FAs to maintain their function in the context of helminth infection or malnutrition and propose that enhanced FA usage and FA-dependent IL-13 production by ILC2 could represent a host adaptation to maintain barrier immunity under dietary restriction.

  3. recA and catalase in H sub 2 O sub 2 -mediated toxicity in Neisseria gonorrhoeae

    Energy Technology Data Exchange (ETDEWEB)

    Hassett, D.J.; Charniga, L.; Cohen, M.S. (Univ. of North Carolina, Chapel Hill (USA))

    1990-12-01

    Neisseria gonorrhoeae cells defective in the biosynthesis of the recA gene product are no more sensitive to hydrogen peroxide than wild-type cells. Although gonococci possess nearly 100-fold-greater catalase levels than Escherichia coli, they are more susceptible to hydrogen peroxide than this organism. The natural niche of gonococci undoubtedly results in exposure to oxidant stress; however, they do not demonstrate particularly efficient antioxidant defense systems.

  4. Pluronic P85/F68 Micelles of Baicalein Could Interfere with Mitochondria to Overcome MRP2-Mediated Efflux and Offer Improved Anti-Parkinsonian Activity.

    Science.gov (United States)

    Chen, Tongkai; Li, Ye; Li, Chuwen; Yi, Xiang; Wang, Ruibing; Lee, Simon Ming-Yuen; Zheng, Ying

    2017-10-02

    Overexpression of the drug efflux transporter multidrug resistance-associated protein 2 (MRP2) in the gastrointestinal tract and blood-brain barrier compromises the oral delivery of drugs to the circulation system and brain in the treatment of Parkinson's disease (PD). In this study, we aim to develop small-sized Pluronic P85/F68 micelles loaded with baicalein (B-MCs) to overcome MRP2-mediated efflux and to investigate related mechanism, as well as the anti-Parkinsonian efficacy. Spherical and sustained-release B-MCs have a mean particle size of 40.61 nm, a low critical micelle concentration (CMC) of 5.01 × 10(-3) mg/mL with an encapsulation efficiency of 95.47% and a drug loading of 7.07%. In comparison with the free baicalein, the cellular uptake and apparent permeability coefficient (Papp) of B-MCs were significantly enhanced (p < 0.01). Fluorescence resonance energy transfer (FRET) analysis indicated that micelles carrying the hydrophobic fluorophores were internalized intact, followed by a rapid release of fluorophores inside the cells, and then the released free fluorophores were transported across the cell monolayers to the basolateral side. Further study on the MRP2 inhibitory effect showed that B-MCs could reverse the MRP2-mediated efflux of baicalein via interfering with the structure and function of mitochondria, i.e., reducing mitochondrial membrane potential and intracellular ATP level and influencing the respiration chain of mitochondria. In addition, B-MCs exerted strong neuroprotective effects on zebrafish model of PD. In summary, Pluronic P85/F68 micelles could be considered as a promising drug delivery system to reverse MRP2-mediated efflux and improve the bioactivity of this MRP2 substrate, baicalein, for the treatment of PD.

  5. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Directory of Open Access Journals (Sweden)

    Jie Hong

    Full Text Available Mechanisms of the progression from Barrett's esophagus (BE to esophageal adenocarcinoma (EA are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  6. Rho Kinase ROCK2 Mediates Acid-Induced NADPH Oxidase NOX5-S Expression in Human Esophageal Adenocarcinoma Cells.

    Science.gov (United States)

    Hong, Jie; Li, Dan; Cao, Weibiao

    2016-01-01

    Mechanisms of the progression from Barrett's esophagus (BE) to esophageal adenocarcinoma (EA) are not fully understood. We have shown that NOX5-S may be involved in this progression. However, how acid upregulates NOX5-S is not well known. We found that acid-induced increase in NOX5-S expression was significantly decreased by the Rho kinase (ROCK) inhibitor Y27632 in BE mucosal biopsies and FLO-1 EA cells. In addition, acid treatment significantly increased the Rho kinase activity in FLO-1 cells. The acid-induced increase in NOX5-S expression and H2O2 production was significantly decreased by knockdown of Rho kinase ROCK2, but not by knockdown of ROCK1. Conversely, the overexpression of the constitutively active ROCK2, but not the constitutively active ROCK1, significantly enhanced the NOX5-S expression and H2O2 production. Moreover, the acid-induced increase in Rho kinase activity and in NOX5-S mRNA expression was blocked by the removal of calcium in both FLO-1 and OE33 cells. The calcium ionophore A23187 significantly increased the Rho kinase activity and NOX5-S mRNA expression. We conclude that acid-induced increase in NOX5-S expression and H2O2 production may depend on the activation of ROCK2, but not ROCK1, in EA cells. The acid-induced activation of Rho kinase may be mediated by the intracellular calcium increase. It is possible that persistent acid reflux present in BE patients may increase the intracellular calcium, activate ROCK2 and thereby upregulate NOX5-S. High levels of reactive oxygen species derived from NOX5-S may cause DNA damage and thereby contribute to the progression from BE to EA.

  7. A robust photocatalyst for 1O2-mediated oxidation of cyclopentadiene based on silica-supported platinum (Ⅱ) terpyridyl complex

    Institute of Scientific and Technical Information of China (English)

    PENG Mingli; WU Lizhu; WANG Denghui; ZHANG Liping; TONG Zhenhe

    2004-01-01

    @@ The oxo-functionalization of hydrocarbons is the most important type of reaction in organic chemical productions. Among various oxidizing reagents, more and more studies have focused on the employment of molecular oxygen as oxidizing species in order to realize innovative and economically advantageous process, and at the same time, move toward a "sustainable chemistry". However, the reactivity of O2 with most organic molecules is inhibited by spin restriction mainly due to the triplet ground state of O2 molecule. Photosensitized oxidation holds a special promise[1-4], where O2 molecule can be efficiently activated by the excited triplet state of a photocatalyst through an energy transfer process that generates highly reactive singlet oxygen (1O2). On the other hand,the production of chemicals by this type of photooxidation in a large scale is still limited. The main reasons are the stability of photosensitizers and their separation problems.Search for new photocatalysts capable of inducing high quantum yield of singlet oxygen (1O2) with environment friendly and cheap reagent represents a major target from the synthetic and industrial point of view.

  8. Nod1/Nod2-mediated recognition plays a critical role in induction of adaptive immunity to anthrax after aerosol exposure.

    Science.gov (United States)

    Loving, Crystal L; Osorio, Manuel; Kim, Yun-Gi; Nuñez, Gabriel; Hughes, Molly A; Merkel, Tod J

    2009-10-01

    Toll-like receptors and Nod-like receptors (NLR) play an important role in sensing invading microorganisms for pathogen clearance and eliciting adaptive immunity for protection against rechallenge. Nod1 and Nod2, members of the NLR family, are capable of detecting bacterial peptidoglycan motifs in the host cytosol for triggering proinflammatory cytokine production. In the current study, we sought to determine if Nod1/Nod2 are involved in sensing Bacillus anthracis infection and eliciting protective immune responses. Using mice deficient in both Nod1 and Nod2 proteins, we showed that Nod1/Nod2 are involved in detecting B. anthracis for production of tumor necrosis factor alpha, interleukin-1 alpha (IL-1 alpha), IL-1 beta, CCL5, IL-6, and KC. Proinflammatory responses were higher when cells were exposed to viable spores than when they were exposed to irradiated spores, indicating that recognition of vegetative bacilli through Nod1/Nod2 is significant. We also identify a critical role for Nod1/Nod2 in priming responses after B. anthracis aerosol exposure, as mice deficient in Nod1/Nod2 were impaired in their ability to mount an anamnestic antibody response and were more susceptible to secondary lethal challenge than wild-type mice.

  9. Na@SiO2-Mediated Addition of Organohalides to Carbonyl Compounds for the Formation of Alcohols and Epoxides

    Science.gov (United States)

    Kapoor, Mohit; Hwu, Jih Ru

    2016-11-01

    Alcohols and epoxides were generated by the addition of organohalides to carbonyl compounds in the presence of sodium metal impregnated with silica gel (Na@SiO2) in THF at 25 °C through a radical pathway. Under the same conditions, Schiff bases were also successfully converted to the corresponding amines. Furthermore, the reaction of aldehydes with α-haloesters or 4-(chloromethyl)-coumarin with the aid of Na@SiO2 generated trans epoxides. An unprecedented mechanism is proposed for their formation. The advantages associated with these new reactions include: (1) products are obtained in good-to-excellent yields, (2) reactions are completed at room temperatures in a short period of time (<2.0 h), (3) it is unnecessary to perform the reactions under anhydrous conditions, and (4) the entire process requires only simple manipulations.

  10. LRRK2 and RIPK2 variants in the NOD 2-mediated signaling pathway are associated with susceptibility to Mycobacterium leprae in Indian populations.

    Directory of Open Access Journals (Sweden)

    Patrick Marcinek

    Full Text Available In recent years, genome wide association studies have discovered a large number of gene loci that play a functional role in innate and adaptive immune pathways associated with leprosy susceptibility. The immunological control of intracellular bacteria M. leprae is modulated by NOD2-mediated signaling of Th1 responses. In this study, we investigated 211 clinically classified leprosy patients and 230 ethnically matched controls in Indian population by genotyping four variants in NOD2 (rs9302752A/G, LRRK2 (rs1873613A/G, RIPK2 (rs40457A/G and rs42490G/A. The LRRK2 locus is associated with leprosy outcome. The LRRK2 rs1873613A minor allele and respective rs1873613AA genotypes were significantly associated with an increased risk whereas the LRRK2 rs1873613G major allele and rs1873613GG genotypes confer protection in paucibacillary and leprosy patients. The reconstructed GA haplotypes from RIPK2 rs40457A/G and rs42490G/A variants was observed to contribute towards increased risk whereas haplotypes AA was observed to confer protective role. Our results indicate that a possible shared mechanisms underlying the development of these two clinical forms of the disease as hypothesized. Our findings confirm and validates the role of gene variants involved in NOD2-mediated signalling pathways that play a role in immunological control of intracellular bacteria M. leprae.

  11. Bovine embryo survival under oxidative-stress conditions is associated with activity of the NRF2-mediated oxidative-stress-response pathway.

    Science.gov (United States)

    Amin, Ahmed; Gad, Ahmed; Salilew-Wondim, Dessie; Prastowo, Sigit; Held, Eva; Hoelker, Michael; Rings, Franca; Tholen, Ernst; Neuhoff, Christiane; Looft, Christian; Schellander, Karl; Tesfaye, Dawit

    2014-06-01

    In present study, we sought to examine the ability of preimplantation bovine embryos to activate the NF-E2-related factor 2 (NRF2)-mediated oxidative-stress response under an oxidative stress environment. In vitro 2-, 4-, 8-, 16-cell-, and blastocyst-stage embryos were cultured under low (5%) or high (20%) oxygen levels. The expression of NRF2, KEAP1 (NRF2 inhibitor), antioxidants downstream of NRF2, and genes associated with embryo metabolism were analyzed between the embryo groups using real-time quantitative PCR. NRF2 and KEAP1 protein abundance, mitochondrial activity, and accumulation of reactive oxygen species (ROS) were also investigated in blastocysts of varying competence that were derived from high- or low-oxygen levels. The expression levels of NRF2 and its downstream antioxidant genes were higher in 8-cell, 16-cell, and blastocyst stages under high oxygen tension, whereas KEAP1 expression was down-regulated under the same conditions. Higher expression of NRF2 and lower ROS levels were detected in early (competent) blastocysts compared to their late (noncompetent) counterparts in both oxygen-tension groups. Similarly, higher levels of active nuclear NRF2 protein were detected in competent blastocysts compared to their noncompetent counterparts. Thus, the survival and developmental competence of embryos cultured under oxidative stress are associated with activity of the NRF2-mediated oxidative stress response pathway during bovine pre-implantation embryo development.

  12. Complex regulation of Arabidopsis AGR1/PIN2-mediated root gravitropic response and basipetal auxin transport by cantharidin-sensitive protein phosphatases

    Science.gov (United States)

    Shin, Heungsop; Shin, Hwa-Soo; Guo, Zibiao; Blancaflor, Elison B.; Masson, Patrick H.; Chen, Rujin

    2005-01-01

    Polar auxin transport, mediated by two distinct plasma membrane-localized auxin influx and efflux carrier proteins/complexes, plays an important role in many plant growth and developmental processes including tropic responses to gravity and light, development of lateral roots and patterning in embryogenesis. We have previously shown that the Arabidopsis AGRAVITROPIC 1/PIN2 gene encodes an auxin efflux component regulating root gravitropism and basipetal auxin transport. However, the regulatory mechanism underlying the function of AGR1/PIN2 is largely unknown. Recently, protein phosphorylation and dephosphorylation mediated by protein kinases and phosphatases, respectively, have been implicated in regulating polar auxin transport and root gravitropism. Here, we examined the effects of chemical inhibitors of protein phosphatases on root gravitropism and basipetal auxin transport, as well as the expression pattern of AGR1/PIN2 gene and the localization of AGR1/PIN2 protein. We also examined the effects of inhibitors of vesicle trafficking and protein kinases. Our data suggest that protein phosphatases, sensitive to cantharidin and okadaic acid, are likely involved in regulating AGR1/PIN2-mediated root basipetal auxin transport and gravitropism, as well as auxin response in the root central elongation zone (CEZ). BFA-sensitive vesicle trafficking may be required for the cycling of AGR1/PIN2 between plasma membrane and the BFA compartment, but not for the AGR1/PIN2-mediated root basipetal auxin transport and auxin response in CEZ cells.

  13. Expression of SREBP-1c Requires SREBP-2-mediated Generation of a Sterol Ligand for LXR in Livers of Mice

    Science.gov (United States)

    Rong, Shunxing; Cortés, Víctor A; Rashid, Shirya; Anderson, Norma N; McDonald, Jeffrey G; Liang, Guosheng; Moon, Young-Ah; Hammer, Robert E; Horton, Jay D

    2017-01-01

    The synthesis of cholesterol and fatty acids (FA) in the liver is independently regulated by SREBP-2 and SREBP-1c, respectively. Here, we genetically deleted Srebf-2 from hepatocytes and confirmed that SREBP-2 regulates all genes involved in cholesterol biosynthesis, the LDL receptor, and PCSK9; a secreted protein that degrades LDL receptors in the liver. Surprisingly, we found that elimination of Srebf-2 in hepatocytes of mice also markedly reduced SREBP-1c and the expression of all genes involved in FA and triglyceride synthesis that are normally regulated by SREBP-1c. The nuclear receptor LXR is necessary for Srebf-1c transcription. The deletion of Srebf-2 and subsequent lower sterol synthesis in hepatocytes eliminated the production of an endogenous sterol ligand required for LXR activity and SREBP-1c expression. These studies demonstrate that cholesterol and FA synthesis in hepatocytes are coupled and that flux through the cholesterol biosynthetic pathway is required for the maximal SREBP-1c expression and high rates of FA synthesis. DOI: http://dx.doi.org/10.7554/eLife.25015.001 PMID:28244871

  14. ScbR- and ScbR2-mediated signal transduction networks coordinate complex physiological responses in Streptomyces coelicolor.

    Science.gov (United States)

    Li, Xiao; Wang, Juan; Li, Shanshan; Ji, Junjie; Wang, Weishan; Yang, Keqian

    2015-10-07

    In model organism Streptomyces coelicolor, γ-butyrolactones (GBLs) and antibiotics were recognized as signalling molecules playing fundamental roles in intra- and interspecies communications. To dissect the GBL and antibiotic signalling networks systematically, the in vivo targets of their respective receptors ScbR and ScbR2 were identified on a genome scale by ChIP-seq. These identified targets encompass many that are known to play important roles in diverse cellular processes (e.g. gap1, pyk2, afsK, nagE2, cdaR, cprA, cprB, absA1, actII-orf4, redZ, atrA, rpsL and sigR), and they formed regulatory cascades, sub-networks and feedforward loops to elaborately control key metabolite processes, including primary and secondary metabolism, morphological differentiation and stress response. Moreover, interplay among ScbR, ScbR2 and other regulators revealed intricate cross talks between signalling pathways triggered by GBLs, antibiotics, nutrient availability and stress. Our work provides a global view on the specific responses that could be triggered by GBL and antibiotic signals in S. coelicolor, among which the main echo was the change of production profile of endogenous antibiotics and antibiotic signals manifested a role to enhance bacterial stress tolerance as well, shedding new light on GBL and antibiotic signalling networks widespread among streptomycetes.

  15. Nox-2-mediated phenotype loss of hippocampal parvalbumin interneurons might contribute to postoperative cognitive decline in aging mice

    Directory of Open Access Journals (Sweden)

    lili qiu

    2016-10-01

    Full Text Available Postoperative cognitive decline (POCD is a common complication following anesthesia and surgery, especially in elderly patients; however, the precise mechanisms of POCD remain unclear. Here, we investigated whether nicotinamide adenine dinucleotide phosphate (NADPH oxidase mediated-abnormalities in parvalbumin (PV interneurons play an important role in the pathophysiology of POCD. The animal model was established using isoflurane anesthesia and exploratory laparotomy in sixteen-month-old male C57BL/6 mice. For interventional experiments, mice were chronically treated with the NADPH oxidase inhibitor apocynin (APO. Open field and fear conditioning behavioral tests were performed on day 6 and 7 post-surgery, respectively. In a separate experiment, brain tissue was harvested and subjected to biochemical analysis. Primary hippocampal neurons challenged with lipopolysaccharide in vitro were used to investigate the mechanisms underlying the oxidative stress-induced abnormalities in PV interneurons. Our results showed that anesthesia and surgery induced significant hippocampus-dependent memory impairment, which was accompanied by PV interneuron phenotype loss and increased expression of interleukin-1β, markers of oxidative stress, and NADPH oxidase 2 (Nox2 in the hippocampus. In addition, lipopolysaccharide exposure increased Nox2 level and decreased the expression of PV and the number of excitatory synapses onto PV interneurons in the primary hippocampal neurons. Notably, treatment with APO reversed these abnormalities. Our study suggests that Nox2-derived ROS production triggers, at least in part, anesthesia- and surgery-induced hippocampal PV interneuron phenotype loss and consequent cognitive impairment in aging mice.

  16. Cannabinoid receptor 2-mediated attenuation of CXCR4-tropic HIV infection in primary CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Cristina Maria Costantino

    Full Text Available Agents that activate cannabinoid receptor pathways have been tested as treatments for cachexia, nausea or neuropathic pain in HIV-1/AIDS patients. The cannabinoid receptors (CB(1R and CB(2R and the HIV-1 co-receptors, CCR5 and CXCR4, all signal via Gαi-coupled pathways. We hypothesized that drugs targeting cannabinoid receptors modulate chemokine co-receptor function and regulate HIV-1 infectivity. We found that agonism of CB(2R, but not CB(1R, reduced infection in primary CD4+ T cells following cell-free and cell-to-cell transmission of CXCR4-tropic virus. As this change in viral permissiveness was most pronounced in unstimulated T cells, we investigated the effect of CB(2R agonism on to CXCR4-induced signaling following binding of chemokine or virus to the co-receptor. We found that CB(2R agonism decreased CXCR4-activation mediated G-protein activity and MAPK phosphorylation. Furthermore, CB(2R agonism altered the cytoskeletal architecture of resting CD4+ T cells by decreasing F-actin levels. Our findings suggest that CB(2R activation in CD4+ T cells can inhibit actin reorganization and impair productive infection following cell-free or cell-associated viral acquisition of CXCR4-tropic HIV-1 in resting cells. Therefore, the clinical use of CB(2R agonists in the treatment of AIDS symptoms may also exert beneficial adjunctive antiviral effects against CXCR4-tropic viruses in late stages of HIV-1 infection.

  17. Peanut sprout extract attenuates cisplatin-induced ototoxicity by induction of the Akt/Nrf2-mediated redox pathway.

    Science.gov (United States)

    Youn, Cha Kyung; Jo, Eu-Ri; Sim, Ju-Hwan; Cho, Sung Il

    2017-01-01

    Cisplatin is commonly used to treat solid tumors. However, permanent hearing loss is a major side effect of cisplatin chemotherapy and often results in dose reduction of the cisplatin chemotherapy. Peanut sprouts show cytoprotective properties owing to their antioxidant activities. This study was designed to investigate the effect of peanut sprout extract (PSE) on cisplatin-induced ototoxicity in an auditory cell line, HEI-OC1 cells. Cells were exposed to cisplatin for 24 h, with or without pre-treatment with PSE, cell viability was examined using the MTT assay. Apoptotic cells were identified by double staining with Hoechst 33258 and propidium iodide. Western blot analysis was performed to examine apoptotic proteins including C-PARP and C-caspase, anti-apoptotic protein Bcl-2, and Nrf2 redox system activation. Mitochondrial reactive oxygen species (ROS) were investigated to examine whether PSE could scavenge cisplatin-induced ROS. Real-time PCR analyses were performed to investigate the mRNA levels of antioxidant enzymes including NQO1, HO-1, GPx2, Gclc, and catalase. The cisplatin-treated group showed reduced cell viability, increased apoptotic properties and markers, and increased ROS levels. PSE pre-treatment before cisplatin exposure significantly increased cell viability and reduced apoptotic properties and ROS production. These effects resulted from the up-regulation of antioxidant genes, including NQO1, HO-1, GPx2, Gclc, and catalase through Akt phosphorylation and Nrf2 activation. Our results demonstrate that PSE protects from cisplatin-induced cytotoxicity by activating the antioxidant effects via the Akt/Nrf-2 pathway in this auditory cell line, and indicate that PSE may provide novel treatment to prevent cisplatin-induced ototoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Inhibition of aryl hydrocarbon receptor signaling and induction of NRF2-mediated antioxidant activity by cinnamaldehyde in human keratinocytes.

    Science.gov (United States)

    Uchi, Hiroshi; Yasumatsu, Mao; Morino-Koga, Saori; Mitoma, Chikage; Furue, Masutaka

    2017-01-01

    Dioxins and other environmental pollutants are toxic and remain in biological tissues for a long time leading to various levels of oxidative stress. Although the toxicity of these agents has been linked to activation of the aryl hydrocarbon receptor (AHR), no effective treatment has been developed. To explore novel phytochemicals that inhibit AHR activation in keratinocytes. Keratinocytes were used in this study because the skin is one of the organs most affected by dioxin and other environmental pollutants. HaCaT cells, which are a human keratinocyte cell line, and normal human epidermal keratinocytes were stimulated with benzo[a]pyrene to induce AHR activation, and the effects of traditional Japanese Kampo herbal formulae were analyzed. Quantification of mRNA, western blotting, immunofluorescence localization of molecules, siRNA silencing, and visualization of oxidative stress were performed. Cinnamomum cassia extract and its major constituent cinnamaldehyde significantly inhibited the activation of AHR. Cinnamaldehyde also activated the NRF2/HO1 pathway and significantly alleviated the production of reactive oxygen species in keratinocytes. The inhibition of AHR signaling and the activation of antioxidant activity by cinnamaldehyde operated in a mutually independent manner as assessed by siRNA methods In addition, AHR signaling was effectively inhibited by traditional Kampo formulae containing C. cassia. Cinnamaldehyde has two independent biological activities; namely, an inhibitory action on AHR activation and an antioxidant effect mediated by NRF2/HO1 signaling. Through these dual functions, cinnamaldehyde may be beneficial for the treatment of disorders related to oxidative stress such as dioxin intoxication, acne, and vitiligo. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Schisandrin B induces an Nrf2-mediated thioredoxin expression and suppresses the activation of inflammasome in vitro and in vivo.

    Science.gov (United States)

    Leong, Pou Kuan; Ko, Kam Ming

    2015-01-01

    Reactive oxygen species (ROS)-mediated activation of inflammasome is involved in the development of a wide spectrum of diseases. We aimed to investigate whether (-)schisandrin B [(-)Sch B], a phytochemical that can induce cellular antioxidant response, can suppress the inflammasome activation. Results showed that (-)Sch B can induce an nuclear factor erythroid 2-related factor 2-driven thioredoxin expression in primary peritoneal macrophages and cultured RAW264.7 macrophages. A 4-h priming of peritoneal macrophages with LPS followed by a 30-min incubation with ATP caused the activation of caspase 1 and the release of IL-1β, indicative of inflammasome activation. Although LPS/ATP did not activate inflammasome in RAW264.7 macrophages, it caused the ROS-dependent c-Jun N-terminal kinase1/2 (JNK1/2) activation and an associated lactate dehydrogenase (LDH) release in RAW264.7 macrophages, an indication of cytotoxicity. (-)Sch B suppressed the LPS/ATP-induced activation of caspase 1 and release of IL-1β in peritoneal macrophages. (-)Sch B also attenuated the LPS/ATP-induced ROS production, JNK1/2 activation and LDH release in RAW264.7 macrophages. The ability of (-)Sch B to suppress LPS/ATP-mediated inflammation in vitro was further confirmed by an animal study, in which schisandrin B treatment (2 mmol/kg p.o.) ameliorated the Imject Alum-induced peritonitis, as indicated by suppressions of caspase1 activation and plasma IL-1β level. The ensemble of results suggests that (-)Sch B may offer a promising prospect for preventing the inflammasome-mediated disorders.

  20. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis.

    Science.gov (United States)

    Olson, Gary E; Winfrey, Virginia P; Nagdas, Subir K; Hill, Kristina E; Burk, Raymond F

    2007-04-20

    Selenium is a micronutrient that is essential for the production of normal spermatozoa. The selenium-rich plasma protein selenoprotein P (Sepp1) is required for maintenance of testis selenium and for fertility of the male mouse. Sepp1 trafficking in the seminiferous epithelium was studied using conventional methods and mice with gene deletions. Immunocytochemistry demonstrated that Sepp1 is present in vesicle-like structures in the basal region of Sertoli cells, suggesting that the protein is taken up intact. Sepp1 affinity chromatography of a testicular extract followed by mass spectrometry-based identification of bound proteins identified apolipoprotein E receptor 2 (ApoER2) as a candidate testis Sepp1 receptor. In situ hybridization analysis identified Sertoli cells as the only cell type in the seminiferous epithelium with detectable ApoER2 expression. Testis selenium levels in apoER2(-/-) males were sharply reduced from those in apoER2(+/+) males and were comparable with the depressed levels found in Sepp1(-/-) males. However, liver selenium levels were unchanged by deletion of apoER2. Immunocytochemistry did not detect Sepp1 in the Sertoli cells of apoER2(-/-) males, consistent with a defect in the receptor-mediated Sepp1 uptake pathway. Phase contrast microscopy revealed identical sperm defects in apoER2(-/-) and Sepp1(-/-) mice. Co-immunoprecipitation analysis demonstrated an interaction of testis ApoER2 with Sepp1. These data demonstrate that Sertoli cell ApoER2 is a Sepp1 receptor and a component of the selenium delivery pathway to spermatogenic cells.

  1. Isoliquiritigenin-induced effects on Nrf2 mediated antioxidant defence in the HL-60 cell monocytic differentiation.

    Science.gov (United States)

    Chen, Hongmei; Zhang, Bo; Yuan, Xuan; Yao, Ying; Zhao, Hong; Sun, Xiling; Zheng, Quisheng

    2013-11-01

    To evaluate the role of redox homeostasis in differentiation in human promyelocytic leukemia cells (HL-60) induced by isoliquiritigenin (ISL) through modulation of the nuclear erythroid-related factor 2/antioxidant responsive element (Nrf2/ARE) pathway. Morphological changes, cell surface markers CD11b/CD14, and nitroblue tetrazolium (NBT)-reducing ability were used to determine the differentiation of HL-60, and 2,7-dichlorofluorescein was used to detect the level of intracellular reactive oxygen species (ROS). Thiobarbituric acid test was utilised to determine the levels of malondialdehyde production in ISL-treated HL-60. The study determines and presents the redox state of the ratio of reduced/oxidised glutathione as a consequence of progression from differentiation in HL-60. Expression levels of the Nrf2/ARE downstream target genes were determined by quantitative polymerase chain reaction. Nicotinamide adenine dinucleotide phosphate-oxidase (NADPH oxidase) inhibitors, apocynin (APO), and diphenyleneiodonium (DPI) were used for the preliminary study to determine the potential downstream targets regulated by NADPH oxidase in ISL-induced HL-60 differentiation. The data showed a strong dose-response relationship between ISL exposure and the characteristics of HL-60 differentiation, namely, morphology changes, NBT reductive activities, and expression levels of surface antigens CD11b/CD14. Intercellular redox homeostasis changes toward oxidation during drug exposure are necessary to support ISL-induced differentiation. The unique expression levels of the Nrf2/ARE downstream target genes in the differentiation of HL-60 recorded a statistically significant and dose-dependent increase (P < 0.05), which were suppressed by NADPH oxidase inhibitor, APO, and DPI. ISL as a differentiation-inducing agent with mechanisms involved in the Nrf2/ARE pathway to modulate intercellular redox homeostasis, and thus, facilitate differentiation.

  2. MDA-7/IL-24 inhibits Nrf2-mediated antioxidant response through activation of p38 pathway and inhibition of ERK pathway involved in cancer cell apoptosis.

    Science.gov (United States)

    Tian, H; Zhang, D; Gao, Z; Li, H; Zhang, B; Zhang, Q; Li, L; Cheng, Q; Pei, D; Zheng, J

    2014-10-01

    Reactive oxygen species (ROS) have a crucial role in melanoma differentiation-associated gene-7 (MDA-7)/interleukin-24 (IL-24)-induced cancer cell apoptosis. However, cancer cell has a series of protective mechanisms to resist ROS damage. Nuclear factor erythroid 2-related factor 2 (Nrf2) activates antioxidant response element (ARE)-mediated gene expression involved in cellular protection against oxidative stress. As the Nrf2 repressor, Kelch-like ECH-associated protein-1 (Keap1) sequesters Nrf2 in cytoplasm to block Nrf2 nuclear translocation. In the present study, administration of MDA-7/IL-24 by means of tumor-selective replicating adenovirus (ZD55-IL-24) was used to investigate whether ZD55-IL-24 could attenuate Nrf2-mediated oxidative stress response in cancer cell. We found that ZD55-IL-24 effectively strengthened the association between Nrf2 and Keap1 to restrict Nrf2 nuclear translocation, thereby inhibiting ARE-dependent transcriptional response. To evaluate the detailed mechanism underlying the suppression of ZD55-IL-24 on Nrf2-mediated oxidative stress response, we further tested three different mitogen-activated protein kinase (MAPK) signaling pathways in A549 and HeLa cells transfected by ZD55-IL-24. Our data showed that ZD55-IL-24 inhibited extracellular signal-regulated kinase (ERK) signal pathway but activated p38 and c-Jun-NH2-kinase (JNK) signal pathways to exert the tumor-specific apoptosis. Moreover, ERK pathway inhibitor U0126 prevented Nrf2 phosphorylation at Ser40 to retard Nrf2 nuclear translocation, thus decreasing antioxidant gene transcription. In contrast, p38 pathway inhibitor SB203580 obviously promoted the dissociation of Nrf2 from Keap1 to promote antioxidant gene transcription. However, JNK pathway had no effect on Nrf2 subcellular localization or the association of Nrf2 with Keap1. Conclusively, our results indicate that ZD55-IL-24 inhibits Nrf2-mediated oxidative stress response not only by activating p38 signal pathway to

  3. Dimerumic Acid Inhibits SW620 Cell Invasion by Attenuating H2O2-Mediated MMP-7 Expression via JNK/C-Jun and ERK/C-Fos Activation in an AP-1-Dependent Manner

    Directory of Open Access Journals (Sweden)

    Bing-Ying Ho, Yao-Ming Wu, King-Jen Chang, Tzu-Ming Pan

    2011-01-01

    Full Text Available Reactive oxygen species (ROS such as hydrogen peroxide (H2O2 in the tumor microenvironment play important roles in tumor invasion and metastasis. Recently, ROS have been reported to cause a significant increase in the production and expression of matrix metalloproteinase (MMP-7, which is closely correlated with metastatic colorectal cancer. The present study was undertaken to evaluate the scavenging activity of dimerumic acid (DMA for H2O2 isolated from Monascus-fermented rice to investigate the inhibitory effects of DMA on the invasive potential of SW620 human colon cancer cells, and to explore the mechanisms underlying both these phenomena. Our results showed that increased MMP-7 expression due to H2O2 exposure was mediated by activation of mitogen-activated protein kinases (MAPKs such as Jun N-terminal kinase (JNK, extracellular-regulated kinase (ERK, and p38 kinase. DMA pretreatment suppressed activation of H2O2-mediated MAPK pathways and cell invasion. Moreover, H2O2-triggered MMP-7 production was demonstrated via JNK/c-Jun and ERK/c-Fos activation in an activating protein 1 (AP-1-dependent manner. Taken together, these results suggest that DMA suppresses H2O2-induced cell invasion by inhibiting AP-1-mediated MMP-7 gene transcription via the JNK/c-Jun and ERK/c-Fos signaling pathways in SW620 human colon cancer cells. Our data suggest that DMA may be useful in minimizing the development of colorectal metastasis. In the future, DMA supplementation may be a beneficial antioxidant to enhance surgical outcomes.

  4. Dimethylfumarate attenuates renal fibrosis via NF-E2-related factor 2-mediated inhibition of transforming growth factor-β/Smad signaling.

    Directory of Open Access Journals (Sweden)

    Chang Joo Oh

    Full Text Available TGF-β plays a key role in the development of renal fibrosis. Suppressing the TGF-β signaling pathway is a possible therapeutic approach for preventing this disease, and reports have suggested that Nrf2 protects against renal fibrosis by inhibiting TGF-β signaling. This study examines whether dimethylfumarate (DMF, which stimulates Nrf2, prevents renal fibrosis via the Nrf2-mediated suppression of TGF-β signaling. Results showed that DMF increased nuclear levels of Nrf2, and both DMF and adenovirus-mediated overexpression of Nrf2 (Ad-Nrf2 decreased PAI-1, alpha-smooth muscle actin (α-SMA, fibronectin and type 1 collagen expression in TGF-β-treated rat mesangial cells (RMCs and renal fibroblast cells (NRK-49F. Additionally, DMF and Ad-Nrf2 repressed TGF-β-stimulated Smad3 activity by inhibiting Smad3 phosphorylation, which was restored by siRNA-mediated knockdown of Nrf2 expression. However, downregulation of the antioxidant response element (ARE-driven Nrf2 target genes such as NQO1, HO-1 and glutathione S-transferase (GST did not reverse the inhibitory effect of DMF on TGF-β-induced upregulation of profibrotic genes or extracellular matrix proteins, suggesting an ARE-independent anti-fibrotic activity of DMF. Finally, DMF suppressed unilateral ureteral obstruction (UUO-induced renal fibrosis and α-SMA, fibronectin and type 1 collagen expression in the obstructed kidneys from UUO mice, along with increased and decreased expression of Nrf2 and phospho-Smad3, respectively. In summary, DMF attenuated renal fibrosis via the Nrf2-mediated inhibition of TGF-β/Smad3 signaling in an ARE-independent manner, suggesting that DMF could be used to treat renal fibrosis.

  5. Suppression of edr2-mediated powdery mildew resistance, cell death and ethylene-induced senescence by mutations in ALD1 in Arabidopsis

    Institute of Scientific and Technical Information of China (English)

    Haozhen Nie; Yingying Wu; Chunpeng Yao; Dingzhong Tang

    2011-01-01

    EDR2 is a negative regulator of the defense response and cell death in Arabidopsis. Loss-of-function of EDR2 leads to enhanced resistance to powdery mildew. To identify new components in the EDR2 signal transduction pathway, mutations that suppress edr2 resistant phenotypes were screened. Three mutants, edts5-1, edts5-2 and edts5-3 (edr (t)wo (s)uppressor 5), were identified. The EDTS5 gene was identified by map-based cloning and previously was shown to encode an aminotransferase (ALD1). Therefore we renamed these three alleles ald1-10, ald1-11 and ald1-12, respectively. Mutations in ALD1 suppressed all edr2-mediated phenotypes, including powdery mildew resistance, programmed cell death and ethylene-induced senescence. Accumulation of hydrogen peroxide in edr2 was also suppressed by ald1 mutation. The expression of defense-related genes was up-regulated in the edr2 mutant, and the up-regulation of those genes in edr2 was suppressed in the edr2/ald1 double mutant. The ald1 single mutant displayed delayed ethylene-induced senescence. In addition, ald1 mutation suppressed edr1-mediated powdery mildew resistance, but could not suppress the edr1/edr2 double-mutant phenotype. These data demonstrate that ALD1 plays important roles in edr2-mediated defense responses and senescence, and revealed a crosstalk between ethylene and salicylic acid signaling mediated by ALD1 and EDR2.

  6. The functionalized amino acid (S-Lacosamide subverts CRMP2-mediated tubulin polymerization to prevent constitutive and activity-dependent increase in neurite outgrowth

    Directory of Open Access Journals (Sweden)

    Sarah M Wilson

    2014-07-01

    Full Text Available Activity-dependent neurite outgrowth is a highly complex, regulated process with important implications for neuronal circuit remodeling in development as well as in seizure-induced sprouting in epilepsy. Recent work has linked outgrowth to collapsin response mediator protein 2 (CRMP2, an intracellular phosphoprotein originally identified as axon guidance and growth cone collapse protein. The neurite outgrowth promoting function of CRMP2 is regulated by its phosphorylation state. In this study, depolarization (potassium chloride-driven activity increased the level of active CRMP2 by decreasing its phosphorylation by GSK3β via a reduction in priming by Cdk5. To determine the contribution of CRMP2 in activity-driven neurite outgrowth, we screened a limited set of compounds for their ability to reduce neurite outgrowth but not modify voltage-gated sodium channel (VGSC biophysical properties. This led to the identification of (S-lacosamide ((S-LCM, a stereoisomer of the clinically used antiepileptic drug (R-LCM (Vimpat®, as a novel tool for preferentially targeting CRMP2-mediated neurite outgrowth. Whereas (S-LCM was ineffective in targeting VGSCs, the presumptive pharmacological targets of (R-LCM, (S-LCM was more efficient than (R-LCM in subverting neurite outgrowth. Biomolecular interaction analyses revealed that (S-LCM bound to wildtype CRMP2 with low micromolar affinity, similar to (R-LCM. Through the use of this novel tool, the activity-dependent increase in neurite outgrowth observed following depolarization was characterized to be reliant on CRMP2 function. Knockdown of CRMP2 by siRNA in cortical neurons resulted in reduced CRMP2-dependent neurite outgrowth; incubation with (S-LCM phenocopied this effect. Other CRMP2-mediated processes were unaffected. (S-LCM subverted neurite outgrowth not by affecting the canonical CRMP2-tubulin association but rather by impairing the ability of CRMP2 to promote tubulin polymerization, events that are

  7. The nucleolar SUMO-specific protease SMT3IP1/SENP3 attenuates Mdm2-mediated p53 ubiquitination and degradation

    Energy Technology Data Exchange (ETDEWEB)

    Nishida, Tamotsu, E-mail: nishida@gene.mie-u.ac.jp [Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu 514-8507 (Japan); Yamada, Yoshiji [Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu 514-8507 (Japan)

    2011-03-11

    Research highlights: {yields} SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. {yields} SMT3IP1 competes with p53 for binding to the central acidic domain of Mdm2. {yields} SMT3IP1 binding to Mdm2 inhibits Mdm2-mediated p53 ubiquitination and degradation. {yields} We postulate that SMT3IP1 acts as a new regulator of the p53-Mdm2 pathway. -- Abstract: SUMO (small ubiquitin-like modifier) modification plays multiple roles in several cellular processes. Sumoylation is reversibly regulated by SUMO-specific proteases. SUMO-specific proteases have recently been implicated in cell proliferation and early embryogenesis, but the underlying mechanisms remain unknown. Here, we show that a nucleolar SUMO-specific protease, SMT3IP1/SENP3, controls the p53-Mdm2 pathway. We found that SMT3IP1 interacts with p53 and Mdm2, and desumoylates both proteins. Overexpression of SMT3IP1 in cells resulted in the accumulation of Mdm2 in the nucleolus and increased stability of the p53 protein. In addition, SMT3IP1 bound to the acidic domain of Mdm2, which also mediates the p53 interaction, and competed with p53 for binding. Increasing expression of SMT3IP1 suppressed Mdm2-mediated p53 ubiquitination and subsequent proteasomal degradation. Interestingly, the desumoylation activity of SMT3IP1 was not necessary for p53 stabilization. These results suggest that SMT3IP1 is a new regulator of the p53-Mdm2 pathway.

  8. Caffeic acid phenethyl ester protects 661W cells from H2O2-mediated cell death and enhances electroretinography response in dim-reared albino rats.

    Science.gov (United States)

    Chen, Hui; Tran, Julie-Thu A; Anderson, Robert E; Mandal, Md Nawajes A

    2012-01-01

    Caffeic acid phenethyl ester (CAPE), an active component of honeybee propolis, has a wide range of beneficial properties. The purpose of this study was to test the protective role of CAPE in 661W cells (in vitro) against H(2)O(2)-mediated cell death and in albino rats (in vivo) against various light conditions. The 661W cells were pretreated with CAPE and then stressed with H(2)O(2). Cell death was measured with lactate dehydrogenase (LDH) release assay, and mRNA and proteins were analyzed. Sprague Dawley rats were raised on either a control or CAPE (0.02%) diet and exposed to various light conditions for short or long periods. Retinal histology, mRNA, protein, lipid composition, and retinal function by electroretinography (ERG) were measured at the end of feeding. Pretreatment of 661W cells with CAPE reduced H(2)O(2)-mediated cell death in a dose-dependent manner and induced expression of heme oxygenase-1 (Ho1). Albino rats fed with CAPE had greater expression of Ho1 and intercellular adhesion molecule 1 (Icam1), less expression of FOS-like antigen (Fosl) and lipoxygenase 12 (Lox12) genes in the retina, less translocation of nuclear factor kappaB protein to the nucleus, and a lower molar ratio of n-3 polyunsaturated fatty acids. Further, the ERGs of the retinas of CAPE-fed rats were significantly higher than those of the control-fed rats when raised in dim light. CAPE can activate the antioxidative gene expression pathway in retinal cells in vitro and in vivo. Feeding CAPE to albino rats can enhance ERG responses and change the lipid profile in the rats' retinas.

  9. Modulation of the IL-6 Receptor α Underlies GLI2-Mediated Regulation of Ig Secretion in Waldenström Macroglobulinemia Cells.

    Science.gov (United States)

    Jackson, David A; Smith, Timothy D; Amarsaikhan, Nansalmaa; Han, Weiguo; Neil, Matthew S; Boi, Shannon K; Vrabel, Anne M; Tolosa, Ezequiel J; Almada, Luciana L; Fernandez-Zapico, Martin E; Elsawa, Sherine F

    2015-09-15

    Ig secretion by terminally differentiated B cells is an important component of the immune response to foreign pathogens. Its overproduction is a defining characteristic of several B cell malignancies, including Waldenström macroglobulinemia (WM), where elevated IgM is associated with significant morbidity and poor prognosis. Therefore, the identification and characterization of the mechanisms controlling Ig secretion are of great importance for the development of future therapeutic approaches for this disease. In this study, we define a novel pathway involving the oncogenic transcription factor GLI2 modulating IgM secretion by WM malignant cells. Pharmacological and genetic inhibition of GLI2 in WM malignant cells resulted in a reduction in IgM secretion. Screening for a mechanism identified the IL-6Rα (gp80) subunit as a downstream target of GLI2 mediating the regulation of IgM secretion. Using a combination of expression, luciferase, and chromatin immunoprecipitation assays we demonstrate that GLI2 binds to the IL-6Rα promoter and regulates its activity as well as the expression of this receptor. Additionally, we were able to rescue the reduction in IgM secretion in the GLI2 knockdown group by overexpressing IL-6Rα, thus defining the functional significance of this receptor in GLI2-mediated regulation of IgM secretion. Interestingly, this occurred independent of Hedgehog signaling, a known regulator of GLI2, as manipulation of Hedgehog had no effect on IgM secretion. Given the poor prognosis associated with elevated IgM in WM patients, components of this new signaling axis could be important therapeutic targets.

  10. Transport of diclofenac by breast cancer resistance protein (ABCG2) and stimulation of multidrug resistance protein 2 (ABCC2)-mediated drug transport by diclofenac and benzbromarone.

    Science.gov (United States)

    Lagas, Jurjen S; van der Kruijssen, Cornelia M M; van de Wetering, Koen; Beijnen, Jos H; Schinkel, Alfred H

    2009-01-01

    Diclofenac is an important analgesic and anti-inflammatory drug, widely used for treatment of postoperative pain, rheumatoid arthritis, and chronic pain associated with cancer. Consequently, diclofenac is often used in combination regimens and undesirable drug-drug interactions may occur. Because many drug-drug interactions may occur at the level of drug transporting proteins, we studied interactions of diclofenac with apical ATP-binding cassette (ABC) multidrug efflux transporters. Using Madin-Darby canine kidney (MDCK)-II cells transfected with human P-glycoprotein (P-gp; MDR1/ABCB1), multidrug resistance protein 2 (MRP2/ABCC2), and breast cancer resistance protein (BCRP/ABCG2) and murine Bcrp1, we found that diclofenac was efficiently transported by murine Bcrp1 and moderately by human BCRP but not by P-gp or MRP2. Furthermore, in Sf9-BCRP membrane vesicles diclofenac inhibited transport of methotrexate in a concentration-dependent manner. We next used MDCK-II-MRP2 cells to study interactions of diclofenac with MRP2-mediated drug transport. Diclofenac stimulated paclitaxel, docetaxel, and saquinavir transport at only 50 microM. We further found that the uricosuric drug benzbromarone stimulated MRP2 at an even lower concentration, having maximal stimulatory activity at only 2 microM. Diclofenac and benzbromarone stimulated MRP2-mediated transport of amphipathic lipophilic drugs at 10- and 250-fold lower concentrations, respectively, than reported for other MRP2 stimulators. Because these concentrations are readily achieved in patients, adverse drug-drug interactions may occur, for example, during cancer therapy, in which drug concentrations are often critical and stimulation of elimination via MRP2 may result in suboptimal chemotherapeutic drug concentrations. Moreover, stimulation of MRP2 activity in tumors may lead to increased efflux of chemotherapeutic drugs and thereby drug resistance.

  11. Rac1 Activation Caused by Membrane Translocation of a Guanine Nucleotide Exchange Factor in Akt2-Mediated Insulin Signaling in Mouse Skeletal Muscle.

    Directory of Open Access Journals (Sweden)

    Nobuyuki Takenaka

    Full Text Available Insulin-stimulated glucose uptake in skeletal muscle is mediated by the glucose transporter GLUT4, which is translocated to the plasma membrane following insulin stimulation. Several lines of evidence suggested that the protein kinase Akt2 plays a key role in this insulin action. The small GTPase Rac1 has also been implicated as a regulator of insulin-stimulated GLUT4 translocation, acting downstream of Akt2. However, the mechanisms whereby Akt2 regulates Rac1 activity remain obscure. The guanine nucleotide exchange factor FLJ00068 has been identified as a direct regulator of Rac1 in Akt2-mediated signaling, but its characterization was performed mostly in cultured myoblasts. Here, we provide in vivo evidence that FLJ00068 indeed acts downstream of Akt2 as a Rac1 regulator by using mouse skeletal muscle. Small interfering RNA knockdown of FLJ00068 markedly diminished GLUT4 translocation to the sarcolemma following insulin administration or ectopic expression of a constitutively activated mutant of either phosphoinositide 3-kinase or Akt2. Additionally, insulin and these constitutively activated mutants caused the activation of Rac1 as shown by immunofluorescent microscopy using a polypeptide probe specific to activated Rac1 in isolated gastrocnemius muscle fibers and frozen sections of gastrocnemius muscle. This Rac1 activation was also abrogated by FLJ00068 knockdown. Furthermore, we observed translocation of FLJ00068 to the cell periphery following insulin stimulation in cultured myoblasts. Localization of FLJ00068 in the plasma membrane in insulin-stimulated, but not unstimulated, myoblasts and mouse gastrocnemius muscle was further affirmed by subcellular fractionation and subsequent immunoblotting. Collectively, these results strongly support a critical role of FLJ00068 in Akt2-mediated Rac1 activation in mouse skeletal muscle insulin signaling.

  12. Rpi-blb2-Mediated Hypersensitive Cell Death Caused by Phytophthora infestans AVRblb2 Requires SGT1, but not EDS1, NDR1, Salicylic Acid-, Jasmonic Acid-, or Ethylene-Mediated Signaling

    Directory of Open Access Journals (Sweden)

    Sang-Keun Oh

    2014-09-01

    Full Text Available Potato Rpi-blb2 encodes a protein with a coiled-coil-nucleotide binding site and leucine-rich repeat (CC-NBS-LRR motif that recognizes the Phytophthora infestans AVRblb2 effector and triggers hypersensitive cell death (HCD. To better understand the components required for Rpi-blb2-mediated HCD in plants, we used virus-induced gene silencing to repress candidate genes in Rpi-blb2-transgenic Nicotiana benthamiana plants and assayed the plants for AVRblb2 effector. Rpi-blb2 triggers HCD through NbSGT1-mediated pathways, but not NbEDS1- or NbNDR1-mediated pathways. In addition, the role of salicylic acid (SA, jasmonic acid (JA, and ethylene (ET in Rpi-blb2-mediated HCD were analyzed by monitoring of the responses of NbICS1-, NbCOI1-, or NbEIN2-silenced or Rpi-blb2::NahG-transgenic plants. Rpi-blb2-mediated HCD in response to AVRblb2 was not associated with SA accumulation. Thus, SA affects Rpi-blb2-mediated resistance against P. infestans, but not Rpi-blb2-mediated HCD in response to AVRblb2. Additionally, JA and ET signaling were not required for Rpi-blb2-mediated HCD in N. benthamiana. Taken together, these findings suggest that NbSGT1 is a unique positive regulator of Rpi-blb2-mediated HCD in response to AVRblb2, but EDS1, NDR1, SA, JA, and ET are not required.

  13. Rpi-blb2-Mediated Hypersensitive Cell Death Caused by Phytophthora infestans AVRblb2 Requires SGT1, but not EDS1, NDR1, Salicylic Acid-, Jasmonic Acid-, or Ethylene-Mediated Signaling.

    Science.gov (United States)

    Oh, Sang-Keun; Kwon, Suk-Yoon; Choi, Doil

    2014-09-01

    Potato Rpi-blb2 encodes a protein with a coiled-coil-nucleotide binding site and leucine-rich repeat (CC-NBS-LRR) motif that recognizes the Phytophthora infestans AVRblb2 effector and triggers hypersensitive cell death (HCD). To better understand the components required for Rpi-blb2-mediated HCD in plants, we used virus-induced gene silencing to repress candidate genes in Rpi-blb2-transgenic Nicotiana benthamiana plants and assayed the plants for AVRblb2 effector. Rpi-blb2 triggers HCD through NbSGT1-mediated pathways, but not NbEDS1- or NbNDR1-mediated pathways. In addition, the role of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) in Rpi-blb2-mediated HCD were analyzed by monitoring of the responses of NbICS1-, NbCOI1-, or NbEIN2-silenced or Rpi-blb2::NahG-transgenic plants. Rpi-blb2-mediated HCD in response to AVRblb2 was not associated with SA accumulation. Thus, SA affects Rpi-blb2-mediated resistance against P. infestans, but not Rpi-blb2-mediated HCD in response to AVRblb2. Additionally, JA and ET signaling were not required for Rpi-blb2-mediated HCD in N. benthamiana. Taken together, these findings suggest that NbSGT1 is a unique positive regulator of Rpi-blb2-mediated HCD in response to AVRblb2, but EDS1, NDR1, SA, JA, and ET are not required.

  14. Effects of feminine hygiene products on the vaginal mucosal biome

    Directory of Open Access Journals (Sweden)

    Raina N. Fichorova

    2013-02-01

    Full Text Available Background: Over-the-counter (OTC feminine hygiene products come with little warning about possible side effects. This study evaluates in-vitro their effects on Lactobacillus crispatus, which is dominant in the normal vaginal microbiota and helps maintain a healthy mucosal barrier essential for normal reproductive function and prevention of sexually transmitted infections and gynecologic cancer. Methods: A feminine moisturizer (Vagisil, personal lubricant, and douche were purchased OTC. A topical spermicide (nonoxynol-9 known to alter the vaginal immune barrier was used as a control. L. crispatus was incubated with each product for 2 and 24h and then seeded on agar for colony forming units (CFU. Human vaginal epithelial cells were exposed to products in the presence or absence of L. crispatus for 24h, followed by epithelium-associated CFU enumeration. Interleukin-8 was immunoassayed and ANOVA was used for statistical evaluation. Results: Nonoxynol-9 and Vagisil suppressed Lactobacillus growth at 2h and killed all bacteria at 24h. The lubricant decreased bacterial growth insignificantly at 2h but killed all at 24h. The douche did not have a significant effect. At full strength, all products suppressed epithelial viability and all, except the douche, suppressed epithelial-associated CFU. When applied at non-toxic dose in the absence of bacteria, the douche and moisturizer induced an increase of IL-8, suggesting a potential to initiate inflammatory reaction. In the presence of L. crispatus, the proinflammatory effects of the douche and moisturizer were countered, and IL-8 production was inhibited in the presence of the other products. Conclusion: Some OTC vaginal products may be harmful to L. crispatus and alter the vaginal immune environment. Illustrated through these results, L. crispatus is essential in the preservation of the function of vaginal epithelial cells in the presence of some feminine hygiene products. More research should be invested

  15. Regulation of Na,K-ATPase β1-subunit in TGF-β2-mediated epithelial-to-mesenchymal transition in human retinal pigmented epithelial cells.

    Science.gov (United States)

    Mony, Sridevi; Lee, Seung Joon; Harper, Jeffrey F; Barwe, Sonali P; Langhans, Sigrid A

    2013-10-01

    Proliferative vitreo retinopathy (PVR) is associated with extracellular matrix membrane (ECM) formation on the neural retina and disruption of the multilayered retinal architecture leading to distorted vision and blindness. During disease progression in PVR, retinal pigmented epithelial cells (RPE) lose cell-cell adhesion, undergo epithelial-to-mesenchymal transition (EMT), and deposit ECM leading to tissue fibrosis. The EMT process is mediated via exposure to vitreous cytokines and growth factors such as TGF-β2. Previous studies have shown that Na,K-ATPase is required for maintaining a normal polarized epithelial phenotype and that decreased Na,K-ATPase function and subunit levels are associated with TGF-β1-mediated EMT in kidney cells. In contrast to the basolateral localization of Na,K-ATPase in most epithelia, including kidney, Na,K-ATPase is found on the apical membrane in RPE cells. We now show that EMT is also associated with altered Na,K-ATPase expression in RPE cells. TGF-β2 treatment of ARPE-19 cells resulted in a time-dependent decrease in Na,K-ATPase β1 mRNA and protein levels while Na,K-ATPase α1 levels, Na,K-ATPase activity, and intracellular sodium levels remained largely unchanged. In TGF-β2-treated cells reduced Na,K-ATPase β1 mRNA inversely correlated with HIF-1α levels and analysis of the Na,K-ATPase β1 promoter revealed a putative hypoxia response element (HRE). HIF-1α bound to the Na,K-ATPase β1 promoter and inhibiting the activity of HIF-1α blocked the TGF-β2 mediated Na,K-ATPase β1 decrease suggesting that HIF-1α plays a potential role in Na,K-ATPase β1 regulation during EMT in RPE cells. Furthermore, knockdown of Na,K-ATPase β1 in ARPE-19 cells was associated with a change in cell morphology from epithelial to mesenchymal and induction of EMT markers such as α-smooth muscle actin and fibronectin, suggesting that loss of Na,K-ATPase β1 is a potential contributor to TGF-β2-mediated EMT in RPE cells.

  16. Extracellular signal-regulated kinase 2 (ERK-2) mediated phosphorylation regulates nucleo-cytoplasmic shuttling and cell growth control of Ras-associated tumor suppressor protein, RASSF2

    Energy Technology Data Exchange (ETDEWEB)

    Kumari, Gita [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Mahalingam, S., E-mail: mahalingam@iitm.ac.in [Laboratory of Molecular Virology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad 500076 (India); Department of Biotechnology, Laboratory of Molecular Virology and Cell Biology, Indian Institute of Technology-Madras, Chennai 600 036 (India)

    2009-10-01

    Ras GTPase controls the normal cell growth through binding with an array of effector molecules, such as Raf and PI3-kinase in a GTP-dependent manner. RASSF2, a member of the Ras association domain family, is known to be involved in the suppression of cell growth and is frequently down-regulated in various tumor tissues by promoter hypermethylation. In the present study, we demonstrate that RASSF2 shuttles between nucleus and cytoplasm by a signal-mediated process and its export from the nucleus is sensitive to leptomycin B. Amino acids between 240 to 260 in the C-terminus of RASSF2 harbor a functional nuclear export signal (NES), which is necessary and sufficient for efficient export of RASSF2 from the nucleus. Substitution of conserved Ile254, Val257 and Leu259 within the minimal NES impaired RASSF2 export from the nucleus. In addition, wild type but not the nuclear export defective RASSF2 mutant interacts with export receptor, CRM-1 and exported from the nucleus. Surprisingly, we observed nucleolar localization for the nuclear export defective mutant suggesting the possibility that RASSF2 may localize in different cellular compartments transiently in a cell cycle dependent manner and the observed nuclear localization for wild type protein may be due to faster export kinetics from the nucleolus. Furthermore, our data suggest that RASSF2 is specifically phosphorylated by MAPK/ERK-2 and the inhibitors of MAPK pathway impair the phosphorylation and subsequently block the export of RASSF2 from the nucleus. These data clearly suggest that ERK-2 mediated phosphorylation plays an important role in regulating the nucleo-cytoplasmic shuttling of RASSF2. Interestingly, nuclear import defective mutant of RASSF2 failed to induce cell cycle arrest at G1/S phase and apoptosis suggesting that RASSF2 regulates cell growth in a nuclear localization dependent manner. Collectively, these data provided evidence for the first time that MAPK/ERK-2 mediated phosphorylation regulates

  17. The Co-chaperone BAG2 Mediates Cold-Induced Accumulation of Phosphorylated Tau in SH-SY5Y Cells.

    Science.gov (United States)

    de Paula, Cesar Augusto Dias; Santiago, Fernando Enrique; de Oliveira, Adriele Silva Alves; Oliveira, Fernando Augusto; Almeida, Maria Camila; Carrettiero, Daniel Carneiro

    2016-05-01

    Inclusions of phosphorylated tau (p-tau) are a hallmark of many neurodegenerative disorders classified as "tauopathy," of which Alzheimer's disease is the most prevalent form. Dysregulation of tau phosphorylation disrupts neuron structure and function, and hyperphosphorylated tau aggregates to form neurotoxic inclusions. The abundance of ubiquitin in tau inclusions suggests a defect in ubiquitin-mediated tau protein degradation by the proteasome. Under the temperature of 37 °C, the co-chaperone BAG2 protein targets phosphorylated tau for degradation via by a more-efficient, ubiquitin-independent pathway. In both in vivo and in vitro studies, cold exposure induces the accumulation of phosphorylated tau protein. The SH-SY5Y cell line differentiates into neuron-like cells on treatment with retinoic acid and is an established model for research on the effects of cold on tau phosphorylation. The aim of the present study was to investigate whether BAG2 mediates the cold-induced accumulation of phosphorylated tau protein. Our findings show that cold exposure causes a decrease in BAG2 expression in undifferentiated cells. Conversely, BAG2 expression is increased in differentiated cells exposed to cold. Further, undifferentiated cells exposed to cold had an increased proportion of p-tau to total tau, suggesting an accumulation of p-tau that is consistent with decreased levels of BAG2. Overexpression of BAG2 in cold-exposed undifferentiated cells restored levels of p-tau to those of 37 °C undifferentiated control. Interestingly, although BAG2 expression increased in differentiated cells, this increase was not accompanied by a decrease in the proportion of p-tau to total tau. Further, overexpression of BAG2 in cold exposed differentiated cells showed no significant difference in p-tau levels compared to 37 °C controls. Taken together, these data show that expression of BAG2 is differently regulated in a differentiation-dependent context. Our results suggest that

  18. Interleukin-8 in non-small cell lung carcinoma: relation with angiogenic pattern and p53 alterations.

    Science.gov (United States)

    Boldrini, Laura; Gisfredi, Silvia; Ursino, Silvia; Lucchi, Marco; Mussi, Alfredo; Basolo, Fulvio; Pingitore, Raffaele; Fontanini, Gabriella

    2005-12-01

    Progression of solid tumors, including NSCLC, is associated with increase in MVC (microvessel count), as a measure of tumor angiogenesis resulting from an imbalance between angiogenic factors and inhibitors. However, since tumor angiogenesis is a multi-step process under the control of various molecules, the mechanism of angiogenesis has not been fully clarified. Interleukin (IL)-8 has been shown to have a potential angiogenic effect in vitro and in vivo, and is overexpressed in several human solid cancers. Among the various angiogenic factors, vascular endothelial growth factor (VEGF) has been shown to correlate with a high MVC and with adverse prognosis in several human cancers, including NSCLC. Alterations of p53 suppressor gene are the most common genetic changes found in malignant tumors; several studies examined the link between aberrant p53 and angiogenesis in lung cancer, but only a few studies report data regarding a relation between p53 mutations and IL-8 expression. In this study we observed a correlation between IL-8 mRNA expression, intratumoral MVC and VEGF mRNA expression levels; furthermore, an aberrant p53 status was related to IL-8 expression. However, in our samples IL-8 levels did not significantly affect prognosis of NSCLC; more studies are required to elucidate the precise role of IL-8 in a large series of patients with non-small cell lung carcinoma.

  19. Interleukin-8 and interleukin-10, brain volume and microstructure, and the influence of calorie restriction in old rhesus macaques

    OpenAIRE

    Willette, A.A.; Coe, C.L.; Birdsill, A. C.; Bendlin, B. B.; Colman, R.J.; Alexander, A.L.; Allison, D. B.; Weindruch, R.H.; Johnson, S.C.

    2013-01-01

    Higher systemic levels of the proinflammatory cytokine interleukin-6 (IL-6) were found to be associated with lower gray matter volume and tissue density in old rhesus macaques. This association between IL-6, and these brain indices were attenuated by long-term 30 % calorie restriction (CR). To extend these findings, the current analysis determined if a CR diet in 27 aged rhesus monkeys compared to 17 normally fed controls reduced circulating levels of another proinflammatory cytokine, interle...

  20. Transforming growth factor-β2 and endotoxin interact to regulate homeostasis via interleukin-8 levels in the immature intestine

    DEFF Research Database (Denmark)

    Nguyen, Duc Ninh; Sangild, Per Torp; Østergaard, Mette Viberg

    2014-01-01

    A balance between pro- and anti-inflammatory signals from the milk and microbiota controls intestinal homeostasis just after birth, and an optimal balance is particularly important for preterm neonates that are sensitive to necrotizing enterocolis (NEC). We suggest that the intestinal cytokine IL-8...... plays an important role and hypothesize that transforming growth factor β2 (TGF-β2) acts in synergy with bacterial LPS to control IL-8 levels, thereby supporting intestinal homeostasis. Preterm pigs were fed colostrum (containing TGF-β2) or infant formula with or without antibiotics (COLOS, n = 27; ANTI...

  1. The depletion of interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells.

    Science.gov (United States)

    Shao, Nan; Chen, Liu-Hua; Ye, Run-Yi; Lin, Ying; Wang, Shen-Ming

    2013-02-15

    IL-8 is a multi-functional pro-inflammatory chemokine, which is highly expressed in cancers, such as ER-negative breast cancer. The present study demonstrates the pervasive role of IL-8 in the malignant progression of ER-negative breast cancer. IL-8 siRNA inhibited proliferation and delayed the G1 to S cell cycle progression in MDA-MB-231 and BT549 cells. IL-8 silencing resulted in the upregulation of the CDK inhibitor p27, the downregulation of cyclin D1, and the reduction of phosphorylated-Akt and NF-κB activities. IL-8 depletion also increased the chemosensitivity to docetaxel. These results indicate a role for IL-8 in promoting tumor cell survival and resistance to docetaxel and highlight the potential therapeutic significance of IL-8 depletion in ER-negative breast cancer patients.

  2. The depletion of Interleukin-8 causes cell cycle arrest and increases the efficacy of docetaxel in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Nan [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Chen, Liu-Hua [Department of Minimally Invasive Surgery Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Ye, Run-Yi [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Lin, Ying, E-mail: frostlin@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China); Wang, Shen-Ming, E-mail: shenmingwang@hotmail.com [Breast Disease Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou (China)

    2013-02-15

    Highlights: ► IL-8 depletion affects cell cycle distribution. ► Intrinsic IL-8 mediates breast cancer cell migration and invasion. ► IL-8 siRNA down regulates key factors that control survival and metastatic pathway. ► IL-8 depletion reduces integrin β3 expression. ► IL-8 depletion increases the chemosensitivity to docetaxel. -- Abstract: IL-8 is a multi-functional pro-inflammatory chemokine, which is highly expressed in cancers, such as ER-negative breast cancer. The present study demonstrates the pervasive role of IL-8 in the malignant progression of ER-negative breast cancer. IL-8 siRNA inhibited proliferation and delayed the G1 to S cell cycle progression in MDA-MB-231 and BT549 cells. IL-8 silencing resulted in the upregulation of the CDK inhibitor p27, the downregulation of cyclin D1, and the reduction of phosphorylated-Akt and NF-κB activities. IL-8 depletion also increased the chemosensitivity to docetaxel. These results indicate a role for IL-8 in promoting tumor cell survival and resistance to docetaxel and highlight the potential therapeutic significance of IL-8 depletion in ER-negative breast cancer patients.

  3. The Priming Effects of Tumor Necrosis Factor and Interleukin-1 on Canine Neutrophils Stimulated with Interleukin-8

    Science.gov (United States)

    1991-08-01

    slides were allowed to air dry prior to staining with Wright Giemsa on an Ames Hema-Tek automated slide stainer (Ames Industries, Elkhart, IN). 14 Vitamin...Natl Cancer Inst 1936;4:461-476. 22. DeChalet LR, Shirley PS, Johnson RB, Jr. Effect of phorbol myristate acetate on the oxidative metabolism of human

  4. Vectorial secretion of interleukin-8 mediates autocrine signalling in intestinal epithelial cells via apically located CXCR1

    NARCIS (Netherlands)

    Rossi, Oriana; Karczewski, Jurgen; Stolte, Ellen H; Brummer, Robert J M; van Nieuwenhoven, Michiel A; Meijerink, Marjolein; van Neerven, Joost R J; van Ijzendoorn, Sven C D; van Baarlen, Peter; Wells, Jerry M

    2013-01-01

    BACKGROUND: In the intestinal mucosa, several adaptations of TLR signalling have evolved to avoid chronic inflammatory responses to the presence of commensal microbes. Here we investigated whether polarized monolayers of intestinal epithelial cells might regulate inflammatory responses by secreting

  5. High concentrations of pepsin in bronchoalveolar lavage fluid from children with cystic fibrosis are associated with high interleukin-8 concentrations.

    LENUS (Irish Health Repository)

    McNally, P

    2011-02-01

    Gastro-oesophageal reflux is common in children with cystic fibrosis (CF) and is thought to be associated with pulmonary aspiration of gastric contents. The measurement of pepsin in bronchoalveolar lavage (BAL) fluid has recently been suggested to be a reliable indicator of aspiration. The prevalence of pulmonary aspiration in a group of children with CF was assessed and its association with lung inflammation investigated.

  6. Increased Interleukin-8 in Epithelial Lining Fluid of Collapsed Lungs During One-Lung Ventilation for Thoracotomy

    OpenAIRE

    Komatsu, Yoshimichi; Yamamoto, Hiroshi; Tsushima, Kenji; Furuya, Shino; Yoshikawa, Sumiko; Yasuo, Masanori; Kubo, Keishi; Yamazaki, Yoshitaka; Hasegawa, Joh; Eguchi, Takashi; Kondo, Ryuichi; Yoshida, Kazuo; Koizumi, Tomonobu

    2012-01-01

    The present study was designed to evaluate inflammatory changes in collapsed lungs during one-lung ventilation using the assistance of a bronchoscopic microsampling probe. Serial albumin and interleukin (IL)-8 concentrations in epithelial lining fluid (ELF) were measured in seven patients undergoing resection of lung tumors. The samples were taken after induction of anesthesia (baseline), 30 min after one-lung ventilation was started (point 2), just before resuming two-lung ventilation (point...

  7. Increased interleukin-8 in epithelial lining fluid of collapsed lungs during one-lung ventilation for thoracotomy.

    Science.gov (United States)

    Komatsu, Yoshimichi; Yamamoto, Hiroshi; Tsushima, Kenji; Furuya, Shino; Yoshikawa, Sumiko; Yasuo, Masanori; Kubo, Keishi; Yamazaki, Yoshitaka; Hasegawa, Joh; Eguchi, Takashi; Kondo, Ryuichi; Yoshida, Kazuo; Koizumi, Tomonobu

    2012-12-01

    The present study was designed to evaluate inflammatory changes in collapsed lungs during one-lung ventilation using the assistance of a bronchoscopic microsampling probe. Serial albumin and interleukin (IL)-8 concentrations in epithelial lining fluid (ELF) were measured in seven patients undergoing resection of lung tumors. The samples were taken after induction of anesthesia (baseline), 30 min after one-lung ventilation was started (point 2), just before resuming two-lung ventilation (point 3), and 30 min after two-lung ventilation was restarted (point 4). The albumin and IL-8 concentrations in ELF were significantly increased at point 2 and point 3, respectively, and remained to be high, compared to the baseline. The increase in IL-8 at point 3 was correlated with the interval of one-lung ventilation; however, none developed specific acute lung injury. These findings suggest that inflammatory changes can occur on the epithelium of a collapsed lung even in patients who underwent successful and standard thoracic surgery.

  8. Association of interleukin-6 and interleukin-8 with poor prognosis in elderly patients with chronic lymphocytic leukemia.

    Science.gov (United States)

    Yoon, Ju-Yoon; Lafarge, Sandrine; Dawe, Dave; Lakhi, Sunjay; Kumar, Rajat; Morales, Carmen; Marshall, Aaron; Gibson, Spencer B; Johnston, James B

    2012-09-01

    In population studies, the relative survival in chronic lymphocytic leukemia (CLL) decreases with age. In this study, we demonstrated in a cohort of 189 patients from a CLL clinic that overall survival was lower in the sub-cohort of patients aged ≥ 70 years, but causes of death were similar for all age groups, being progressive CLL, secondary malignancies and infections. As normal individuals age, the plasma levels of inflammatory cytokines, such as interleukin-6 (IL-6) and IL-8, can increase. In our patients with CLL, IL-6, IL-8 and tumor necrosis factor-α (TNF-α) levels increased with age to a greater degree than in normal individuals, and the levels correlated closely with plasma β(2)-microglobulin and with one another. In addition, in patients ≥ 70 years, IL-6 was found to be a better prognostic marker than immunoglobulin variable heavy chain gene (IgV(H)) status. In vitro studies demonstrated that IL-6 and IL-8 could enhance the binding of CLL cells to stromal cells, suggesting that their clinical activity may be mediated through their effects on the microenvironment. Thus, plasma IL-6 is an important prognostic marker for the elderly with CLL, and this study highlights that the utility of prognostic markers may depend on patient age.

  9. Risk modification of colorectal cancer susceptibility by interleukin-8-251T>A polymorphism in Malaysians

    Institute of Scientific and Technical Information of China (English)

    Mohd Aminudin Mustapha; Siti Nurfatimah Mohd Shahpudin; Ahmad Aizat Abdul Aziz; Ravindran Ankathil

    2012-01-01

    AIM:To investigate the allele and genotype frequencies and associated risk of interleukin (IL)-8-251T>A polymorphism on colorectal cancer (CRC) susceptibility risk.METHODS:Peripheral blood samples of 255 normal controls and 255 clinically and histopathologically confirmed CRC patients were genotyped for IL-8-251T>A polymorphism employing allele-specific polymerase chain reaction.The relative association of variant allele and genotypes with CRC susceptibility risk was determined by calculating the odds ratios (ORs).Corresponding x2 tests on the CRC patients and controls were carried out and 95% confidence intervals (CIs) were determined using Fisher's exact test.The allele frequencies and its risk association were calculated using FAMHAP,haplotype association analysis software.RESULTS:On comparing the frequencies of genotypes of patients and controls,the homozygous variant AA was significantly higher in CRC patients (P =0.002)compared to controls.Investigation on the association of the polymorphic genotypes with CRC susceptibility risk,showed that the homozygous variant IL-8-251AA had a significantly increased risk with OR 3.600 (95%CI:1.550-8.481,P =0.001).In the case of allele frequencies,variant allele A of IL-8-251 showed a significantly increased risk of CRC predisposition with OR 1.32(95% CI:1.03-1.69,P =0.003).CONCLUSION:Variant allele and genotype of IL-8 (-251T>A) was significantly associated with CRC susceptibility risk and could be considered as a high-risk variant for CRC predisposition.

  10. The role of interleukin-8 (IL-8) and IL-8 receptors in platinum response in high grade serous ovarian carcinoma.

    Science.gov (United States)

    Stronach, Euan A; Cunnea, Paula; Turner, Christina; Guney, Tankut; Aiyappa, Radhika; Jeyapalan, Senthuran; de Sousa, Camila H; Browne, Alacoque; Magdy, Nesreen; Studd, James B; Sriraksa, Ruethairat; Gabra, Hani; El-Bahrawy, Mona

    2015-10-13

    Platinum based drugs are the cornerstone of chemotherapy for ovarian cancer, however the development of chemoresistance hinders its success. IL-8 is involved in regulating several pro-survival pathways in cancer. We studied the expression of IL-8 and IL-8 receptors in platinum sensitive and resistant cell lines. Using qRT-PCR and immunohistochemistry, both platinum sensitive (PEA1, PEO14) and resistant (PEA2, PEO23) show increased expression of IL-8 and IL-8 receptors. IL-8RA shows nuclear and cytoplasmic expression, whilst IL-8RB is present solely in the cytoplasm. Knockdown of IL-8 increased sensitivity to cisplatin in platinum sensitive and reversed platinum resistance in resistant cell lines, decreased the expression of anti-apoptotic Bcl-2 and decreased inhibitory phosphorylation of pro-apoptotic Bad. IL-8 receptor antagonist treatment also enhanced platinum sensitivity. Nuclear localisation of IL-8RA was only detected in platinum resistant tumours. Inhibition of IL-8 signalling can enhance response in platinum sensitive and resistant disease. Nuclear IL-8RA may have potential as a biomarker of resistant disease.

  11. Molecular requirements for sorting of the chemokine interleukin-8/CXCL8 to endothelial Weibel-Palade bodies.

    Science.gov (United States)

    Hol, Johanna; Küchler, Axel M; Johansen, Finn-Eirik; Dalhus, Bjørn; Haraldsen, Guttorm; Oynebråten, Inger

    2009-08-28

    Sorting of proteins to Weibel-Palade bodies (WPB) of endothelial cells allows rapid regulated secretion of leukocyte-recruiting P-selectin and chemokines as well as procoagulant von Willebrand factor (VWF). Here we show by domain swap studies that the exposed aspartic acid in loop 2 (Ser(44)-Asp(45)-Gly(46)) of the CXC chemokine interleukin (IL)-8 is crucial for targeting to WPB. Loop 2 also governs sorting of chemokines to alpha-granules of platelets, but the fingerprint of the loop 2 of these chemokines differs from that of IL-8. On the other hand, loop 2 of IL-8 closely resembles a surface-exposed sequence of the VWF propeptide, the region of VWF that directs sorting of the protein to WPB. We conclude that loop 2 of IL-8 constitutes a critical signal for sorting to WPB and propose a general role for this loop in the sorting of chemokines to compartments of regulated secretion.

  12. A common polymorphism in the interleukin-8 gene promoter is associated with an increased risk for recurrent Clostridium difficile infection.

    Science.gov (United States)

    Garey, Kevin W; Jiang, Zhi-Dong; Ghantoji, Shashank; Tam, Vincent H; Arora, Vaneet; Dupont, Herbert L

    2010-12-15

    Neutrophil recruitment coordinated by intestinal interleukin (IL)-8 secretion is a key component in the pathogenesis of Clostridium difficile infection (CDI). We hypothesized that a common single-nucleotide polymorphism (SNP) in the -251 region of the IL-8 gene promoter may be predictive of recurrent CDI. This was a prospective cohort study of hospitalized adult patients with CDI who were admitted to a large, university-affiliated medical center from 2007 through 2008. Patients were monitored for 3 months after diagnosis of CDI and assessed for recurrent CDI (defined as a return of diarrhea that required treatment after initial symptom resolution). DNA was isolated from blood samples, and genetic sequencing was performed using polymerase chain reaction and pyrosequencing. The association between IL-8 genotype and recurrent CDI was assessed using univariate and multivariate statistics. Ninety-six patients with a mean (± standard deviation) age of 61 ± 16 years (54% of whom were female and 63% of whom were white) were identified. The overall incidence of recurrent CDI was 24%. IL-8 allele frequency was similar to previously reported findings (for A/A, 27%; for A/T, 53%; and for T/T, 20%). The incidence of recurrent CDI was 38% in patients with the A/A allele and 19% in all other patients (relative risk, 2.1; 95% confidence interval, 1.04-4.13) (P = .043). This study indicates that a common SNP in the IL-8 gene promoter is an independent predictor of recurrent CDI. Our results could offer risk stratification for patients at high risk for recurrent CDI.

  13. Interleukin-8 responses of multi-layer gingival epithelia to subgingival biofilms: role of the "red complex" species.

    Directory of Open Access Journals (Sweden)

    Georgios N Belibasakis

    Full Text Available Periodontitis is an infectious inflammatory disease that results in the destruction of the tooth-supporting (periodontal tissues. The Gram-negative anaerobic species Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola, (also known as the "red complex" species are highly associated with subgingival biofilms at periodontitis-affected sites. A major chemokine produced by the gingival epithelium in response to biofilm challenge, is interleukin (IL-8. The aim of this in vitro study was to investigate the relative effect of the "red complex" species as constituents of subgingival biofilms, on the regulation of IL-8 by gingival epithelia. Multi-layered organotypic human gingival epithelial cultures were challenged with a 10-species in vitro subgingival biofilm model, or its 7-species variant, excluding the "red complex". IL-8 gene expression and secretion analyses were performed by qPCR and ELISA, respectively. After 3 h, both biofilms up-regulated IL-8 gene expression, but the presence of the "red complex" resulted in 3-fold greater response. IL-8 secretion was also up-regulated by both biofilms, with no differences between them. After 24 h, the 10-species biofilm reduced IL-8 secretion to 50% of the control, but this was not affected when the "red complex" was absent. In conclusion, as part of biofilms, "red complex" species differentially regulate IL-8 in gingival epithelia, potentially affecting the chemotactic responses of the tissue.

  14. Molecular Characterization of Pro-Inflammatory Cytokines Interleukin-1β and Interleukin-8 in Asian Elephant (Elephas maximus).

    Science.gov (United States)

    Swami, Shelesh Kumar; Vijay, Anushri; Nagarajan, Govindasamy; Kaur, Ramneek; Srivastava, Meera

    2016-01-01

    Interleukin (IL)-1β and IL-8 are pro-inflammatory cytokines produced primarily by monocytes and macrophages in response to a variety of microbial and nonmicrobial agents. As yet, no molecular data have been reported for IL-1β and IL-8 of the Asian elephant. In the present study, we have cloned and sequenced the cDNA encoding IL-1β and IL-8 of the Asian elephant. The open reading frame (ORF) of Asian elephant IL-1β is 789 bp in length, encoded a propeptide of 263 amino acid polypeptide. The predicted protein revealed the presence of IL-1 family signature motif and an ICE cut site. Whereas, IL-8 contained 321 bp of open reading frame. Interestingly, the predicted protein sequence of 106 aa, contains an ELR motif immediately upstream of the CQC residues, common in all vertebrate IL-8 molecules. Identity levels of the nucleic acid and deduced amino acid sequences of Asian elephant IL-1β ranged from 68.48 (Squirrel monkey) to 98.57% (African elephant), and 57.78 (Sheep) to 98.47% (African elephant), respectively, whereas that of IL-8 ranged from 72.9% (Human) to 87.8% (African elephant), and 63.2 (human, gorilla, chimpanzee) to 74.5% (African elephant, buffalo), respectively. The phylogenetic analysis based on deduced amino acid sequenced showed that the Asian elephant IL-1β and IL-8 were most closely related to African elephant. Molecular characterization of these two cytokines, IL-1β and IL-8, in Asian elephant provides fundamental information necessary to progress the study of functional immune responses in this animal and gives the potential to use them to manipulate the immune response as recombinant proteins.

  15. Individualized significance of the -251 A/T single nucleotide polymorphism of interleukin-8 in severe infections

    NARCIS (Netherlands)

    Georgitsi, M.D.; Vitoros, V.; Panou, C.; Tsangaris, I.; Aimoniotou, E.; Gatselis, N.K.; Chasou, E.; Kouliatsis, G.; Leventogiannis, K.; Velissaris, D.; Belesiotou, E.; Dioritou-Aggaliadou, O.; Giannitsioti, E.; Netea, M.G.; Giamarellos-Bourboulis, E.J.; Giannikopoulos, G.; Alexiou, Z.; Voloudakis, N.; Koutsoukou, A.

    2016-01-01

    Based on the concept of the individualized nature of sepsis, we investigated the significance of the -251 A/T (rs4073) single nucleotide polymorphism (SNP) of interleukin (IL)-8 in relation to the underlying infection. Genotyping was performed in 479 patients with severe acute pyelonephritis (UTI, n

  16. Genetic and biochemical evidences reveal novel insights into the mechanism underlying Saccharomyces cerevisiae Sae2-mediated abrogation of DNA replication stress

    Indian Academy of Sciences (India)

    INDRAJEET GHODKE; K MUNIYAPPA

    2016-12-01

    In Saccharomyces cerevisiae, the Mre11-Rad50-Xrs2 (MRX) protein complex plays pivotal roles in double-strandbreak (DSB) repair, replication stress and telomere length maintenance. Another protein linked to DSB repair is Sae2,which regulates MRX persistence at DSBs. However, very little is known about its role in DNA replication stress andrepair. Here, we reveal a crucial role for Sae2 in DNA replication stress. We show that different mutant alleles of SAE2cause hypersensitivity to genotoxic agents, and when combined with Δmre11 or nuclease-defective mre11 mutantalleles, the double mutants are considerably more sensitive suggesting that the sae2 mutations synergize with mre11mutations. Biochemical studies demonstrate that Sae2 exists as a dimer in solution, associates preferentially withsingle-stranded and branched DNA structures, exhibits structure-specific endonuclease activity and cleaves thesesubstrates from the 5′ end. Furthermore, we show that the nuclease activity is indeed intrinsic to Sae2. Interestingly,sae2G270D protein possesses DNA-binding activity, but lacks detectable nuclease activity. Altogether, our data suggesta direct role for Sae2 nuclease activity in processing of the DNA structures that arise during replication and DNAdamage and provide insights into the mechanism underlying Mre11-Sae2-mediated abrogation of replication stress-relateddefects in S. cerevisiae.

  17. Pharmacologic inhibition of the CK2-mediated phosphorylation of B23/NPM in cancer cells selectively modulates genes related to protein synthesis, energetic metabolism, and ribosomal biogenesis.

    Science.gov (United States)

    Perera, Yasser; Pedroso, Seidy; Borras-Hidalgo, Orlando; Vázquez, Dania M; Miranda, Jamilet; Villareal, Adelaida; Falcón, Viviana; Cruz, Luis D; Farinas, Hernán G; Perea, Silvio E

    2015-06-01

    B23/NPM is a multifunctional nucleolar protein frequently overexpressed, mutated, or rearranged in neoplastic tissues. B23/NPM is involved in diverse biological processes and is mainly regulated by heteroligomer association and posttranslational modification, phosphorylation being a major posttranslational event. While the role of B23/NPM in supporting and/or driving malignant transformation is widely recognized, the particular relevance of its CK2-mediated phosphorylation remains unsolved. Interestingly, the pharmacologic inhibition of such phosphorylation event by CIGB-300, a clinical-grade peptide drug, was previously associated to apoptosis induction in tumor cell lines. In this work, we sought to identify the biological processes modulated by CIGB-300 in a lung cancer cell line using subtractive suppression hybridization and subsequent functional annotation clustering. Our results indicate that CIGB-300 modulates a subset of genes involved in protein synthesis (ES = 8.4, p NPM in cancer cells, revealing at the same time the potentialities of its pharmacological manipulation for cancer therapy. Finally, this work also suggests several candidate gene biomarkers to be evaluated during the clinical development of the anti-CK2 peptide CIGB-300.

  18. TiO2-Mediated Photocatalytic Mineralization of a Non-Ionic Detergent: Comparison and Combination with Other Advanced Oxidation Procedures

    Directory of Open Access Journals (Sweden)

    Péter Hegedűs

    2015-01-01

    Full Text Available Triton X-100 is one of the most widely-applied man-made non-ionic surfactants. This detergent can hardly be degraded by biological treatment. Hence, a more efficient degradation method is indispensable for the total mineralization of this pollutant. Application of heterogeneous photocatalysis based on a TiO2 suspension is a possible solution. Its efficiency may be improved by the addition of various reagents. We have thoroughly examined the photocatalytic degradation of Triton X-100 under various circumstances. For comparison, the efficiencies of ozonation and treatment with peroxydisulfate were also determined under the same conditions. Besides, the combination of these advanced oxidation procedures (AOPs were also studied. The mineralization of this surfactant was monitored by following the TOC and pH values, as well as the absorption and emission spectra of the reaction mixture. An ultra-high-performance liquid chromatography (UHPLC method was developed and optimized for monitoring the degradation of Triton X-100. Intermediates were also detected by GC-MS analysis and followed during the photocatalysis, contributing to the elucidation of the degradation mechanism. This non-ionic surfactant could be efficiently degraded by TiO2-mediated heterogeneous photocatalysis. However, surprisingly, its combination with the AOPs applied in this study did not enhance the rate of the mineralization. Moreover, the presence of persulfate hindered the photocatalytic degradation.

  19. Umbelliferone and daphnetin ameliorate carbon tetrachloride-induced hepatotoxicity in rats via nuclear factor erythroid 2-related factor 2-mediated heme oxygenase-1 expression.

    Science.gov (United States)

    Mohamed, Mohamed R; Emam, Manal A; Hassan, Nahla S; Mogadem, Abeer I

    2014-09-01

    Among various phytochemicals, coumarins comprise a very large class of plant phenolic compounds that have good nutritive value, in addition to their antioxidant effects. The purpose of the present study was to investigate the protective effects of two coumarin derivatives, umbelliferone and daphnetin, against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats and elucidate the underlying mechanism. Treatment of rats with either umbelliferone or daphnetin significantly improved the CCl4-induced biochemical alterations. In addition, both compounds alleviated the induced-lipid peroxidation and boosted the antioxidant defense system. Moreover, the investigated compounds attenuated CCl4-induced histopathological alterations of the liver. Finally, umbelliferone and daphnetin induced the nuclear translocation of the nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), thereby inducing the expression and activity of the cytoprotective heme oxygenase-1 (HO-1). These results suggest that umbelliferone and daphnetin ameliorate oxidative stress-related hepatotoxicity via their ability to augment cellular antioxidant defenses by activating Nrf2-mediated HO-1 expression.

  20. Blocking RhoA/ROCK inhibits the pathogenesis of pemphigus vulgaris by suppressing oxidative stress and apoptosis through TAK1/NOD2-mediated NF-κB pathway.

    Science.gov (United States)

    Liang, Junqin; Zeng, Xuewen; Halifu, Yilinuer; Chen, Wenjing; Hu, Fengxia; Wang, Peng; Zhang, Huan; Kang, Xiaojing

    2017-06-12

    Oxidative stress and apoptosis play critical roles in pemphigus vulgaris (PV). The main aim of the present study was to investigate the effects of RhoA/ROCK signaling on UVB-induced oxidative damage, and to delineate the molecular mechanisms involved in the UVB-mediated inflammatory and apoptotic response. In HaCaT cells, we observed that blockage of RhoA/ROCK signaling with the inhibitor CT04 or Y27632 greatly inhibited the UVB-mediated increase in intracellular reactive oxygen species (ROS). Additionally, inhibition of RhoA/ROCK signaling reduced UVB-induced apoptosis, as exemplified by a reduction in DNA fragmentation, and also elevated anti-apoptotic Bcl-2 protein, concomitant with reduced levels of pro-apoptotic protein Bax, caspase-3 cleavage and decreased PARP-1 protein. The release of inflammatory mediators TNF-α, IL-1β, and IL-6 was also attenuated. Mechanically, we observed that blockage of RhoA/ROCK repressed the TAK1/NOD2-mediated NF-κB pathway in HaCaT cells exposed to UVB. Taken together, these data reveal that RhoA/ROCK signaling is one of the regulators contributing to oxidative damage and apoptosis in human keratinocytes, suggesting that RhoA/ROCK signaling has strong potential to be used as a useful therapeutic target in skin diseases including PV.

  1. Small molecule XIAP inhibitors cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells and overcome Bcl-2-mediated resistance.

    Science.gov (United States)

    Fakler, Melanie; Loeder, Sandra; Vogler, Meike; Schneider, Katja; Jeremias, Irmela; Debatin, Klaus-Michael; Fulda, Simone

    2009-02-19

    Defects in apoptosis contribute to poor outcome in pediatric acute lymphoblastic leukemia (ALL), calling for novel strategies that counter apoptosis resistance. Here, we demonstrate for the first time that small molecule inhibitors of the antiapoptotic protein XIAP cooperate with TRAIL to induce apoptosis in childhood acute leukemia cells. XIAP inhibitors at subtoxic concentrations, but not a structurally related control compound, synergize with TRAIL to trigger apoptosis and to inhibit clonogenic survival of acute leukemia cells, whereas they do not affect viability of normal peripheral blood lymphocytes, suggesting some tumor selectivity. Analysis of signaling pathways reveals that XIAP inhibitors enhance TRAIL-induced activation of caspases, loss of mitochondrial membrane potential, and cytochrome c release in a caspase-dependent manner, indicating that they promote a caspase-dependent feedback mitochondrial amplification loop. Of note, XIAP inhibitors even overcome Bcl-2-mediated resistance to TRAIL by enhancing Bcl-2 cleavage and Bak conformational change. Importantly, XIAP inhibitors kill leukemic blasts from children with ALL ex vivo and cooperate with TRAIL to induce apoptosis. In vivo, they significantly reduce leukemic burden in a mouse model of pediatric ALL engrafted in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice. Thus, XIAP inhibitors present a promising novel approach for apoptosis-based therapy of childhood ALL.

  2. Proteomic Identification of Nrf2-Mediated Phase II Enzymes Critical for Protection of Tao Hong Si Wu Decoction against Oxygen Glucose Deprivation Injury in PC12 Cells

    Directory of Open Access Journals (Sweden)

    Hong-yi Qi

    2014-01-01

    Full Text Available Chinese herbal medicine formula Tao Hong Si Wu decoction (THSWD is traditionally used in China for cerebrovascular diseases. However, the molecular mechanisms of THSWD associated with the cerebral ischemia reperfusion injury are largely unknown. The current study applied the two-dimensional gel electrophoresis-based proteomics to investigate the different protein profiles in PC12 cells with and without the treatment of THSWD. Twenty-six proteins affected by THSWD were identified by MALDI-TOF mass spectrometry. Gene ontology analysis showed that those proteins participated in several important biological processes and exhibited diverse molecular functions. In particular, six of them were found to be phase II antioxidant enzymes, which were regulated by NF-E2-related factor-2 (Nrf2. Quantitative PCR further confirmed a dose-dependent induction of the six phase II enzymes by THSWD at the transcription level. Moreover, the individual ingredients of THSWD were discovered to synergistically contribute to the induction of phase II enzymes. Importantly, THSWD’s protection against oxygen-glucose deprivation-reperfusion (OGD-Rep induced cell death was significantly attenuated by antioxidant response element (ARE decoy oligonucleotides, suggesting the protection of THSWD may be likely regulated at least in part by Nrf2-mediated phase II enzymes. Thus, our data will help to elucidate the molecular mechanisms underlying the neuroprotective effect of THSWD.

  3. The depletion of ATM inhibits colon cancer proliferation and migration via B56γ2-mediated Chk1/p53/CD44 cascades.

    Science.gov (United States)

    Liu, Rui; Tang, Jiajia; Ding, Chaodong; Liang, Weicheng; Zhang, Li; Chen, Tianke; Xiong, Yan; Dai, Xiaowei; Li, Wenfeng; Xu, Yunsheng; Hu, Jin; Lu, Liting; Liao, Wanqin; Lu, Xincheng

    2017-04-01

    Ataxia-telangiectasia mutated (ATM) protein kinase is a major guardian of genomic stability, and its well-established function in cancer is tumor suppression. Here, we report an oncogenic role of ATM. Using two isogenic sets of human colon cancer cell lines that differed only in their ATM status, we demonstrated that ATM deficiency significantly inhibits cancer cell proliferation, migration, and invasion. The tumor-suppressive function of ATM depletion is not modulated by the compensatory activation of ATR, but it is associated with B56γ2-mediated Chk1/p53/CD44 signaling pathways. Under normal growth conditions, the depletion of ATM prevents B56γ2 ubiquitination and degradation, which activates PP2A-mediated Chk1/p53/p21 signaling pathways, leading to senescence and cell cycle arrest. CD44 was validated as a novel ATM target based on its ability to rescue cell migration and invasion defects in ATM-depleted cells. The activation of p53 induced by ATM depletion suppresses CD44 transcription, thus resulting in epithelial-mesenchymal transition (EMT) and cell migration suppression. Our study suggests that ATM has tumorigenic potential in post-formed colon neoplasia, and it supports ATM as an appealing target for improving cancer therapy.

  4. Pharmacological Modulation of Dopamine Receptor D2-Mediated Transmission Alters the Metabolic Phenotype of Diet Induced Obese and Diet Resistant C57Bl6 Mice

    Directory of Open Access Journals (Sweden)

    J. E. de Leeuw van Weenen

    2011-01-01

    Full Text Available High fat feeding induces a variety of obese and lean phenotypes in inbred rodents. Compared to Diet Resistant (DR rodents, Diet Induced Obese (DIO rodents are insulin resistant and have a reduced dopamine receptor D2 (DRD2 mediated tone. We hypothesized that this differing dopaminergic tone contributes to the distinct metabolic profiles of these animals. C57Bl6 mice were classified as DIO or DR based on their weight gain during 10 weeks of high fat feeding. Subsequently DIO mice were treated with the DRD2 agonist bromocriptine and DR mice with the DRD2 antagonist haloperidol for 2 weeks. Compared to DR mice, the bodyweight of DIO mice was higher and their insulin sensitivity decreased. Haloperidol treatment reduced the voluntary activity and energy expenditure of DR mice and induced insulin resistance in these mice. Conversely, bromocriptine treatment tended to reduce bodyweight and voluntary activity, and reinforce insulin action in DIO mice. These results show that DRD2 activation partly redirects high fat diet induced metabolic anomalies in obesity-prone mice. Conversely, blocking DRD2 induces an adverse metabolic profile in mice that are inherently resistant to the deleterious effects of high fat food. This suggests that dopaminergic neurotransmission is involved in the control of metabolic phenotype.

  5. Sex- and tissue-specific effects of waterborne estrogen on estrogen receptor subtypes and E2-mediated gene expression in the reproductive axis of goldfish.

    Science.gov (United States)

    Marlatt, Vicki L; Lakoff, Josh; Crump, Kate; Martyniuk, Chris J; Watt, Jennifer; Jewell, Linda; Atkinson, Susanna; Blais, Jules M; Sherry, Jim; Moon, Thomas W; Trudeau, Vance L

    2010-05-01

    This research examined the gene expression profile of three goldfish estrogen receptor (ER) subtypes in multiple tissues in relation to mRNA levels of aromatase B and vitellogenin (VTG) following waterborne estrogen exposures. The protocol consisted of: i) adult male goldfish in late gonadal recrudescence exposed to 1 nM 17beta-estradiol (E2); ii) adult male and female goldfish in early sexual regression exposed to 1 nM E2 for 3, 6, 12 and 24h; and, iii) sexually mature, adult male goldfish exposed to 0.3 nM 17alpha-ethynylestradiol (EE2) for 24h. Liver produced the most consistent response with up-regulation of ERalpha in sexually regressed, mature and recrudescing males and in sexually regressed females. The dose and length of exposure, reproductive state and sex affected the auto-regulation of ERbeta1 by E2. ERbeta2 was not affected in any experiments suggesting it may not be auto-regulated by E2. Aromatase B and VTG gene expression were affected by E2, but also by other experimental conditions. EE2 induced liver ERalpha and VTG mRNA levels indicating that high environmental EE2 levels induce E2-mediated gene expression in a model teleost. These studies reveal a more complicated action of estrogenic compounds that has important implications on estrogenic endocrine disruptors in teleosts. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Effects of sodium bicarbonate and ammonium chloride pre-treatments on PEPT2 (SLC15A2) mediated renal clearance of cephalexin in healthy subjects.

    Science.gov (United States)

    Liu, Rui; Tang, Audrey May Yi; Tan, Yen Ling; Limenta, Lie Michael George; Lee, Edmund Jon Deoon

    2011-01-01

    PEPT2 mediates the H(+) gradient-driving reabsorption of di- and tri-peptides, and various peptidomimetic compounds in the kidney. This study examines the influence of urinary pH modification through sodium bicarbonate and ammonium chloride pre-treatments on the function of PEPT2 in healthy subjects, using cephalexin as the probe drug. Sixteen male subjects received a single oral dose of 1000 mg cephalexin under ammonium chloride and sodium bicarbonate treatment, respectively, with a wash-out period of one week. The study subjects were genotyped for PEPT2 polymorphic variants. Cephalexin concentrations in plasma and urine were determined by high performance liquid chromatography. The mean renal clearance of cephalexin was significantly higher under ammonium chloride treatment than that under sodium bicarbonate treatment (P < 0.01). This difference was significant for PEPT2*2/*2 (P = 0.017) but not for PEPT2*1/*1 (P = 0.128). No differences were observed for other pharmacokinetic parameters. The findings of this study suggest that urinary pH changes may alter the pharmacokinetics of PEPT2's substrates. This effect was more obvious for the PEPT2*2/*2.

  7. Synthesis of Cu(2+)-mediated nano-sized salbutamol-imprinted polymer and its use for indirect recognition of ultra-trace levels of salbutamol.

    Science.gov (United States)

    Alizadeh, Taher; Fard, Leyla Abolghasemi

    2013-03-26

    Cu(2+)-mediated salbutamol-imprinted polymer nanoparticles, synthesized by precipitation polymerization, were mixed with graphite powder and n-eicosane in order to fabricate a modified carbon paste electrode. This electrode was then applied for indirect differential pulse voltammetry determination of salbutamol. In the presence of Cu(2+) ions, the formed Cu(2+)-salbutamol complex was adsorbed in to the pre-designed cavities of the MIP particles, situated on the electrode surface. Since the electrochemical signal of salbutamol was intrinsically small, the oxidation peak of the participant Cu(2+), after reduction step, was recorded and used as an indication of salbutamol amount, adsorbed in the electrode. Different variables influencing the sensor performance were studied and the best conditions were chosen for the determination purpose. Correlation between the sensor response to salbutamol and its concentration was linear in the range of 1.0×10(-9)-5.5×10(-8) M. Detection limit was calculated equal to 6.0×10(-10) M (S/N). Five replicated determination of salbutamol (1×10(-8) M) resulted in standard error of 3.28%, meaning a satisfactory precision of the determination method. The prepared sensor was applied for real sample analysis. In order to minimize the interference effect, the synthesized polymer was successfully used as a solid phase sorbent for salbutamol extraction, before analysis of real samples by the developed sensor.

  8. Role of the guanine nucleotide exchange factor in Akt2-mediated plasma membrane translocation of GLUT4 in insulin-stimulated skeletal muscle.

    Science.gov (United States)

    Takenaka, Nobuyuki; Yasuda, Naoto; Nihata, Yuma; Hosooka, Tetsuya; Noguchi, Tetsuya; Aiba, Atsu; Satoh, Takaya

    2014-11-01

    The small GTPase Rac1 plays a key role in insulin-promoted glucose uptake mediated by the GLUT4 glucose transporter in skeletal muscle. Our recent studies have demonstrated that the serine/threonine protein kinase Akt2 is critically involved in insulin-dependent Rac1 activation. The purpose of this study is to clarify the role of the guanine nucleotide exchange factor FLJ00068 in Akt2-mediated Rac1 activation and GLUT4 translocation in mouse skeletal muscle and cultured myocytes. Constitutively activated FLJ00068 induced GLUT4 translocation in a Rac1-dependent and Akt2-independent manner in L6 myocytes. On the other hand, knockdown of FLJ00068 significantly reduced constitutively activated Akt2-triggered GLUT4 translocation. Furthermore, Rac1 activation and GLUT4 translocation induced by constitutively activated phosphoinositide 3-kinase were inhibited by knockdown of FLJ00068. In mouse gastrocnemius muscle, constitutively activated FLJ00068 actually induced GLUT4 translocation to the sarcolemma. GLUT4 translocation by constitutively activated FLJ00068 was totally abolished in rac1 knockout mouse gastrocnemius muscle. Additionally, we were successful in detecting the activation of Rac1 following the expression of constitutively activated FLJ00068 in gastrocnemius muscle by immunofluorescence microscopy using an activation-specific probe. Collectively, these results strongly support the notion that FLJ00068 regulates Rac1 downstream of Akt2, leading to the stimulation of glucose uptake in skeletal muscle.

  9. Nrf2-Mediated HO-1 Induction Contributes to Antioxidant Capacity of a Schisandrae Fructus Ethanol Extract in C2C12 Myoblasts

    Directory of Open Access Journals (Sweden)

    Ji Sook Kang

    2014-12-01

    Full Text Available This study was designed to confirm the protective effect of Schisandrae Fructus, which are the dried fruits of Schisandra chinensis (Turcz. Baill, against oxidative stress-induced cellular damage and to elucidate the underlying mechanisms in C2C12 myoblasts. Preincubating C2C12 cells with a Schisandrae Fructus ethanol extract (SFEE significantly attenuated hydrogen peroxide (H2O2-induced inhibition of growth and induced scavenging activity against intracellular reactive oxygen species (ROS induced by H2O2. SFEE also inhibited comet tail formation and phospho-histone γH2A.X expression, suggesting that it prevents H2O2-induced cellular DNA damage. Furthermore, treating C2C12 cells with SFEE significantly induced heme oxygenase-1 (HO-1 and phosphorylation of nuclear factor-erythroid 2 related factor 2 (Nrf2. However, zinc protoporphyrin IX, a potent inhibitor of HO-1 activity, significantly reversed the protective effects of SFEE against H2O2-induced growth inhibition and ROS generation in C2C12 cells. Additional experiments revealed that the potential of the SFEE to induce HO-1 expression and protect against H2O2-mediated cellular damage was abrogated by transient transfection with Nrf2-specific small interfering RNA, suggesting that the SFEE protected C2C12 cells against oxidative stress-induced injury through the Nrf2/HO-1 pathway.

  10. The intracellular juxtamembrane domain of discoidin domain receptor 2 (DDR2) is essential for receptor activation and DDR2-mediated cancer progression.

    Science.gov (United States)

    Kim, Daehwan; Ko, Panseon; You, Eunae; Rhee, Sangmyung

    2014-12-01

    Discoidin domain receptors (DDRs) are unusual receptor tyrosine kinases (RTKs) that are activated by fibrillar collagens instead of soluble growth factors. DDRs play an important role in various cellular functions and disease processes, including malignant progression. Compared to other RTKs, DDRs have relatively long juxtamembrane domains, which are believed to contribute to receptor function. Despite this possibility, the function and mechanism of the juxtamembrane domain of DDRs have not yet been fully elucidated. In this study, we found that the cytoplasmic juxtamembrane 2 (JM2) region of DDR2 contributed to receptor dimerization, which is critical for receptor activation in response to collagen stimulation. A collagen-binding assay showed that JM2 was required for efficient binding of collagen to the discoidin (DS) domain. Immunohistochemical analysis of DDR2 expression using a tissue microarray demonstrated that DDR2 was overexpressed in several carcinoma tissues, including bladder, testis, lung, kidney, prostate and stomach. In H1299 cells, inhibition of DDR2 activity by overexpressing the juxtamembrane domain containing JM2 suppressed collagen-induced colony formation, cell proliferation and invasion via the inhibition of matrix metalloproteinase-2 and matrix metalloproteinase-9. Taken together, our results suggest that JM2-mediated dimerization is likely to be essential for DDR2 activation and cancer progression. Thus, inhibition of DDR2 function using a JM2-containing peptide might be a useful strategy for the treatment of DDR2-positive cancers.

  11. ERK2-mediated phosphorylation of transcriptional coactivator binding protein PIMT/NCoA6IP at Ser298 augments hepatic gluconeogenesis.

    Science.gov (United States)

    Kapadia, Bandish; Viswakarma, Navin; Parsa, Kishore V L; Kain, Vasundhara; Behera, Soma; Suraj, Sashidhara Kaimal; Babu, Phanithi Prakash; Kar, Anand; Panda, Sunanda; Zhu, Yi-jun; Jia, Yuzhi; Thimmapaya, Bayar; Reddy, Janardan K; Misra, Parimal

    2013-01-01

    PRIP-Interacting protein with methyl transferase domain (PIMT) serves as a molecular bridge between CREB-binding protein (CBP)/ E1A binding protein p300 (Ep300) -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1) and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser(298) and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMT(S298D)) suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMT(S298D) but not PIMT(S298A) augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser(298) phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser(298) is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia.

  12. ERK2-mediated phosphorylation of transcriptional coactivator binding protein PIMT/NCoA6IP at Ser298 augments hepatic gluconeogenesis.

    Directory of Open Access Journals (Sweden)

    Bandish Kapadia

    Full Text Available PRIP-Interacting protein with methyl transferase domain (PIMT serves as a molecular bridge between CREB-binding protein (CBP/ E1A binding protein p300 (Ep300 -anchored histone acetyl transferase and the Mediator complex sub-unit1 (Med1 and modulates nuclear receptor transcription. Here, we report that ERK2 phosphorylates PIMT at Ser(298 and enhances its ability to activate PEPCK promoter. We observed that PIMT is recruited to PEPCK promoter and adenoviral-mediated over-expression of PIMT in rat primary hepatocytes up-regulated expression of gluconeogenic genes including PEPCK. Reporter experiments with phosphomimetic PIMT mutant (PIMT(S298D suggested that conformational change may play an important role in PIMT-dependent PEPCK promoter activity. Overexpression of PIMT and Med1 together augmented hepatic glucose output in an additive manner. Importantly, expression of gluconeogenic genes and hepatic glucose output were suppressed in isolated liver specific PIMT knockout mouse hepatocytes. Furthermore, consistent with reporter experiments, PIMT(S298D but not PIMT(S298A augmented hepatic glucose output via up-regulating the expression of gluconeogenic genes. Pharmacological blockade of MAPK/ERK pathway using U0126, abolished PIMT/Med1-dependent gluconeogenic program leading to reduced hepatic glucose output. Further, systemic administration of T4 hormone to rats activated ERK1/2 resulting in enhanced PIMT ser(298 phosphorylation. Phosphorylation of PIMT led to its increased binding to the PEPCK promoter, increased PEPCK expression and induction of gluconeogenesis in liver. Thus, ERK2-mediated phosphorylation of PIMT at Ser(298 is essential in hepatic gluconeogenesis, demonstrating an important role of PIMT in the pathogenesis of hyperglycemia.

  13. Hepatic co-cultures in vitro reveal suitable to detect Nrf2-mediated oxidative stress responses on the bladder carcinogen o-anisidine.

    Science.gov (United States)

    Wewering, Franziska; Jouy, Florent; Caliskan, Sükran; Kalkhof, Stefan; von Bergen, Martin; Luch, Andreas; Zellmer, Sebastian

    2017-04-01

    The azo dye o-anisidine is known as an industrial and environmental pollutant. Metabolites of o-anisidine remain in the liver for >24h. However, the toxicological impact of o-anisidine on the liver and its individual cell types, e.g., hepatocytes and immune cells, is currently poorly understood. A novel co-culture system, composed of HepG2 or Huh-7 cells, and differentiated THP-1 cells was used to study the metabolic capacity towards o-anisidine, and compared to primary murine hepatocytes which express high enzyme activities. As model compounds the carcinogenic arylamine o-anisidine and its non-carcinogenic isomer, p-anisidine, as well as caffeine were used. Global proteome analysis revealed an activation of eIF2 and Nrf2-mediated oxidative stress response pathways only in co-cultures after treatment with o-anisidine. This was confirmed via detection of reactive oxygen species. In addition, the mitochondrial membrane potential decreased already after 3h treatment of cells, which correlated with a decrease of ATP levels (R(2)>0.92). In the supernatant of co-cultured, but not single-cultured HepG2 and Huh-7 cells, o-anisidine caused increases of damage-associated proteins, such as HMGB1 (high mobility group box-1) protein. In summary, only co-cultures of HepG2 and THP-1 cells predict o-anisidine induced stress responsive pathways, since the system has a higher sensitivity compared to single cultured cells.

  14. Telmisartan increases systemic exposure to rosuvastatin after single and multiple doses, and in vitro studies show telmisartan inhibits ABCG2-mediated transport of rosuvastatin.

    Science.gov (United States)

    Hu, Miao; Lee, Hon-Kit; To, Kenneth K W; Fok, Benny S P; Wo, Siu-Kwan; Ho, Chung-Shun; Wong, Chun-Kwok; Zuo, Zhong; Chan, Thomas Y K; Chan, Juliana C N; Tomlinson, Brian

    2016-12-01

    The ATP-binding cassette transporter G2 (ABCG2) plays an important role in the disposition of rosuvastatin. Telmisartan, a selective angiotension-II type 1 (AT1) receptor blocker, inhibits the transport capacity of ABCG2, which may result in drug interactions. This study investigated the pharmacokinetic interaction between rosuvastatin and telmisartan and the potential mechanism. In this two-phase fixed-order design study, healthy subjects received single doses of 10 mg rosuvastatin at baseline and after telmisartan 40 mg daily for 14 days. Patients with hyperlipidaemia who had been taking rosuvastatin 10 mg daily for at least 4 weeks were given telmisartan 40 mg daily for 14 days together with rosuvastatin. Plasma concentrations of rosuvastatin were measured over 24 h before and after telmisartan administration. In vitro experiments using a bidirectional transport assay were performed to investigate the involvement of ABCG2 in the interaction. Co-administration of telmisartan significantly increased the maximum plasma concentration (C max) and the area under the plasma concentration-time curve (AUC) of rosuvastatin by 71 and 26 %, respectively. The T max values were reduced after administration of telmisartan. There was no significant difference in the interaction of rosuvastatin with telmisartan between healthy volunteers and patients receiving long-term rosuvastatin therapy or among subjects with the different ABCG2 421 C>A genotypes. The in vitro experiment demonstrated that telmisartan inhibited ABCG2-mediated efflux of rosuvastatin. This study demonstrated that telmisartan significantly increased the systemic exposure to rosuvastatin after single and multiple doses.

  15. Mn(2+)-mediated homogeneous Fenton-like reaction of Fe(III)-NTA complex for efficient degradation of organic contaminants under neutral conditions.

    Science.gov (United States)

    Li, Yifan; Sun, Jianhui; Sun, Sheng-Peng

    2016-08-05

    In this work, we report a novel Mn(2+)-mediated Fenton-like process based on Fe(III)-NTA complex that is super-efficient at circumneutral pH range. Kinetics experiments showed that the presence of Mn(2+) significantly enhanced the effectiveness of Fe(III)-NTA complex catalyzed Fenton-like reaction. The degradation rate constant of crotamiton (CRMT), a model compound, by the Fe(III)- NTA_Mn(2+) Fenton-like process was at least 1.6 orders of magnitude larger than that in the absence of Mn(2+). Other metal ions such as Ca(2+), Mg(2+), Co(2+) and Cu(2+) had no impacts or little inhibitory effect on the Fe(III)-NTA complex catalyzed Fenton-like reaction. The generation of hydroxyl radical (HO) and superoxide radical anion (O2(-)) in the Fe(III)-NTA_Mn(2+) Fenton-like process were suggested by radicals scavenging experiments. The degradation efficiency of CRMT was inhibited significantly (approximately 92%) by the addition of HO scavenger 2-propanol, while the addition of O2(-) scavenger chloroform resulted in 68% inhibition. Moreover, the results showed that other chelating agents such as EDTA- and s,s-EDDS-Fe(III) catalyzed Fenton-like reactions were also enhanced significantly by the presence of Mn(2+). The mechanism involves an enhanced generation of O2(-) from the reactions of Mn(2+)-chelates with H2O2, indirectly promoting the generation of HO by accelerating the reduction rate of Fe(III)-chelates to Fe(II)- chelates. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. miR-144 functions as a tumor suppressor in breast cancer through inhibiting ZEB1/2-mediated epithelial mesenchymal transition process

    Directory of Open Access Journals (Sweden)

    Pan Y

    2016-10-01

    Full Text Available Yuliang Pan,1,2 Jun Zhang,1 Huiqun Fu,1 Liangfang Shen2 1Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 2Department of Oncology Radiotherapy, Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China Abstract: Breast cancer is the most common cancer in women worldwide. Local invasion, metastasis, and chemotherapy resistance are the obstacles for treatment of breast cancer. In this study, we aim to investigate the role of miR-144 in breast cancer. We demonstrate that the expression of miR-144 is downregulated in breast cancer and cell lines, and lower miR-144 expression is associated with poor differentiation, higher clinical stage, and lymph node metastasis in patients with breast cancer. The rescue of miR-144 expression is able to inhibit the cell proliferation and the ability of cell migration and invasion. In addition, we show that miR-144 can directly target at 3'-untranslation region of zinc finger E-box-binding homeobox 1 and 2, that is, ZEB1 and ZEB2, and regulate their expression at transcriptional and translational levels. Moreover, we also demonstrate that ectopic expression of miR-144 can inhibit the process of epithelial mesenchymal transition in MCF-7 and MDA-MB-231 cells. Thus, we here demonstrate that miR-144 functions as a tumor suppressor in breast cancer at least partly through inhibiting ZEB1/2-mediated epithelial mesenchymal transition process. Our findings indicate that the miR-144-ZEB1/2 signaling could represent a promising therapeutic target for breast cancer treatment. Keywords: breast cancer, miR-144, ZEB1, ZEB2, epithelial mesenchymal transition

  17. Nrf2-mediated haeme oxygenase-1 up-regulation induced by cobalt protoporphyrin has antinociceptive effects against inflammatory pain in the formalin test in mice.

    Science.gov (United States)

    Rosa, Angelo O; Egea, Javier; Lorrio, Silvia; Rojo, Ana I; Cuadrado, Antonio; López, Manuela G

    2008-07-15

    This study investigated the effect of haeme oxygenase-1 (HO-1) in nociception induced by formalin injection in the mice hind paw. Intraperitoneal (i.p.) administration of cobalt protoporphyrin (CoPP, an HO-1 inducer, 5mg/kg) 24h before the test, inhibited the nociceptive response during the second phase, but not during the first phase of the formalin test. The effect of CoPP was prevented by treatment with tin protoporphyrin (SnPP, an inhibitor of HO-1 activity) administered either by i.p. (25mg/kg, 30 min before the test) or intraplantar (400 nmol/paw, 5 min before the test) routes. Human embryonic kidney (HEK) 293T cells treated with 10 microM CoPP expressed 20-fold higher HO-1 levels when compared to controls; this effect was suppressed by transfection with the dominant negative for the nuclear factor-erythroid 2-related factor 2 (Nrf2). Western blot analysis also revealed that CoPP treatment induced a similar 20-fold increase in HO-1 expression in the paw; this effect was attenuated in knockout mice for Nrf2. CoPP treatment of wild-type, but not in Nrf2 knockout mice, resulted in a striking increase of HO-1 stained cells surrounding the muscular tissues of the hind limbs. HO-1 positive cells were scarce in wild-type and in Nrf2 knockout untreated mice. CoPP-induced HO-1 expression in Nrf2 knockout mice was lost and correlated with the loss of antinociceptive effects. In conclusion, Nrf2-mediated HO-1 expression induced an antinociceptive effect at peripheral sites. These results suggest that HO-1 modulates the inflammatory pain pathways. Hence, the development of drugs that could raise peripheral HO-1 could be relevant in inflammatory pain treatment.

  18. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway

    Science.gov (United States)

    Jiang, Kang-feng; Zhao, Gan; Deng, Gan-zhen; Wu, Hai-chong; Yin, Nan-nan; Chen, Xiu-ying; Qiu, Chang-wei; Peng, Xiu-li

    2017-01-01

    Recent studies show that Polydatin (PD) extracted from the roots of Polygonum cuspidatum Sieb, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. In this study, we investigated the anti-inflammatory effects of PD on Staphylococcus aureus-induced mastitis in mice and elucidated the potential mechanisms. In mice with S aureus-induced mastitis, administration of PD (15, 30, 45 mg/kg, ip) or dexamethasone (Dex, 5 mg/kg, ip) significantly suppressed the infiltration of inflammatory cells, ameliorated the mammary structural damage, and inhibited the activity of myeloperoxidase, a biomarker of neutrophils accumulation. Furthermore, PD treatment dose-dependently decreased the levels of TNF-α, IL-1β, IL-6 and IL-8 in the mammary gland tissues. PD treatment also dose-dependently decreased the expression of TLR2, MyD88, IRAK1, IRAK4 and TRAF6 as well as the phosphorylation of TAK1, MKK3/6, p38 MAPK, IκB-α and NF-κB in the mammary gland tissues. In mouse mammary epithelial cells (mMECs) infected by S aureus in vitro, pretreatment with PD dose-dependently suppressed the upregulated pro-inflammatory cytokines and signaling proteins, and the nuclear translocation of NF-κB p65 and AP-1. A TLR2-neutralizing antibody mimicked PD in its suppression on S aureus-induced upregulation of MyD88, p-p38 and p-p65 levels in mMECs. PD (50, 100 μg/mL) affected neither the growth of S aureus in vitro, nor the viability of mMECs. In conclusion, PD does not exhibit antibacterial activity against S aureus, its therapeutic effects in mouse S aureus-induced mastitis depend on its ability to down-regulate pro-inflammatory cytokine levels via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB signaling pathway. PMID:27890916

  19. [Ru(bpy){sub 3}]{sup 2+}-mediated photoelectrochemical detection of bisphenol A on a molecularly imprinted polypyrrole modified SnO{sub 2} electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Bintian [State Key Laboratory of Structures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China); Lu, Lili; Huang, Feng [Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China); Lin, Zhang, E-mail: zlin@fjirsm.ac.cn [State Key Laboratory of Structures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 (China)

    2015-08-05

    A ruthenium-mediated photoelectrochemical sensor was developed for the detection of BPA, using molecularly imprinted polymers (MIPs) as the recognition element, a tin oxide (SnO{sub 2}) nanoparticle-modified ITO as the electrode, and a blue 473-nm LED as the excitation light source. Photoelectrochemical oxidation of BPA on SnO{sub 2} electrode was achieved by [Ru(bpy){sub 3}]{sup 2+} under the irradiation of light. It was found that BPA was oxidized by Ru{sup 3+} species produced in the photoelectrochemical reaction, resulting in the regeneration of Ru{sup 2+} and the concomitant photocurrent enhancement. MIPs film was prepared by electropolymerization of pyrrole on SnO{sub 2} electrode using BPA as the template. Surface morphology and properties of the as-prepared electrode were characterized by SEM, electrochemical impedance spectroscopy, and photocurrent measurement. In the presence of BPA, an enhanced photocurrent was observed, which was dependent on the amount of BPA captured on the electrode. A detection limit of 1.2 nM was obtained under the optimized conditions, with a linear range of 2–500 nM. Selectivity of the sensor was demonstrated by measuring five BPA analogs. To verify its practicality, this sensor was applied to analyze BPA spiked tap water and river water. With advantages of high sensitivity and selectivity, low-cost instrument, and facile sensor preparation procedure, this sensor is potentially suitable for the rapid monitoring of BPA in real environmental samples. Moreover, the configuration of this sensor is universal and can be extended to organic molecules that can be photoelectrochemically oxidized by Ru{sup 3+}. - Highlights: • [Ru(bpy){sub 3}]{sup 2+}-mediated photoelectrochemical sensor was developed for BPA detection. • Molecularly imprinted polypyrrole was modified on a SnO{sub 2} electrode as the recognition element. • The measurement was realized using a visible light source. • This sensor was highly sensitive and

  20. Polydatin ameliorates Staphylococcus aureus-induced mastitis in mice via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB pathway.

    Science.gov (United States)

    Jiang, Kang-Feng; Zhao, Gan; Deng, Gan-Zhen; Wu, Hai-Chong; Yin, Nan-Nan; Chen, Xiu-Ying; Qiu, Chang-Wei; Peng, Xiu-Li

    2017-02-01

    Recent studies show that Polydatin (PD) extracted from the roots of Polygonum cuspidatum Sieb, a widely used traditional Chinese remedies, possesses anti-inflammatory activity in several experimental models. In this study, we investigated the anti-inflammatory effects of PD on Staphylococcus aureus-induced mastitis in mice and elucidated the potential mechanisms. In mice with S aureus-induced mastitis, administration of PD (15, 30, 45 mg/kg, ip) or dexamethasone (Dex, 5 mg/kg, ip) significantly suppressed the infiltration of inflammatory cells, ameliorated the mammary structural damage, and inhibited the activity of myeloperoxidase, a biomarker of neutrophils accumulation. Furthermore, PD treatment dose-dependently decreased the levels of TNF-α, IL-1β, IL-6 and IL-8 in the mammary gland tissues. PD treatment also dose-dependently decreased the expression of TLR2, MyD88, IRAK1, IRAK4 and TRAF6 as well as the phosphorylation of TAK1, MKK3/6, p38 MAPK, IκB-α and NF-κB in the mammary gland tissues. In mouse mammary epithelial cells (mMECs) infected by S aureus in vitro, pretreatment with PD dose-dependently suppressed the upregulated pro-inflammatory cytokines and signaling proteins, and the nuclear translocation of NF-κB p65 and AP-1. A TLR2-neutralizing antibody mimicked PD in its suppression on S aureus-induced upregulation of MyD88, p-p38 and p-p65 levels in mMECs. PD (50, 100 μg/mL) affected neither the growth of S aureus in vitro, nor the viability of mMECs. In conclusion, PD does not exhibit antibacterial activity against S aureus, its therapeutic effects in mouse S aureus-induced mastitis depend on its ability to down-regulate pro-inflammatory cytokine levels via inhibiting TLR2-mediated activation of the p38 MAPK/NF-κB signaling pathway.

  1. Bridging cancer biology with the clinic: relative expression of a GRHL2-mediated gene-set pair predicts breast cancer metastasis.

    Directory of Open Access Journals (Sweden)

    Xinan Yang

    Full Text Available Identification and characterization of crucial gene target(s that will allow focused therapeutics development remains a challenge. We have interrogated the putative therapeutic targets associated with the transcription factor Grainy head-like 2 (GRHL2, a critical epithelial regulatory factor. We demonstrate the possibility to define the molecular functions of critical genes in terms of their personalized expression profiles, allowing appropriate functional conclusions to be derived. A novel methodology, relative expression analysis with gene-set pairs (RXA-GSP, is designed to explore the potential clinical utility of cancer-biology discovery. Observing that Grhl2-overexpression leads to increased metastatic potential in vitro, we established a model assuming Grhl2-induced or -inhibited genes confer poor or favorable prognosis respectively for cancer metastasis. Training on public gene expression profiles of 995 breast cancer patients, this method prioritized one gene-set pair (GRHL2, CDH2, FN1, CITED2, MKI67 versus CTNNB1 and CTNNA3 from all 2717 possible gene-set pairs (GSPs. The identified GSP significantly dichotomized 295 independent patients for metastasis-free survival (log-rank tested p = 0.002; severe empirical p = 0.035. It also showed evidence of clinical prognostication in another independent 388 patients collected from three studies (log-rank tested p = 3.3e-6. This GSP is independent of most traditional prognostic indicators, and is only significantly associated with the histological grade of breast cancer (p = 0.0017, a GRHL2-associated clinical character (p = 6.8e-6, Spearman correlation, suggesting that this GSP is reflective of GRHL2-mediated events. Furthermore, a literature review indicates the therapeutic potential of the identified genes. This research demonstrates a novel strategy to integrate both biological experiments and clinical gene expression profiles for extracting and elucidating the genomic

  2. Activation of platelet-activating factor receptor in SZ95 sebocytes results in inflammatory cytokine and prostaglandin E2 production.

    Science.gov (United States)

    Zhang, Qiwei; Seltmann, Holger; Zouboulis, Christos C; Travers, Jeffrey B

    2006-10-01

    Platelet-activating factor (PAF) is a group of phosphocholines with various biological effects mediated by the PAF receptor (PAF-R). Activation of the epidermal PAF-R induces the expression of inflammatory mediators, including cyclooxygenase-2 (COX-2) and prostaglandin E(2) (PGE(2)). The upregulation of COX-2 expression has been shown to be involved in sebocyte proliferation, sebaceous gland inflammation and carcinogenesis. The present study was designed to investigate whether PAF-R activation could induce the expression of COX-2 and production of PGE(2), as well as secretion of the inflammatory cytokine, interleukin-8 (IL-8), in the immortalized sebaceous gland cell line SZ95. Using calcium mobilization studies, we first confirmed that PAF can signal through PAF-R in SZ95 sebocytes. We then found that the production of IL-8 was induced following treatment with PAF-R agonist, however blocked by a specific PAF-R antagonist. Induction of COX-2 expression and increased PGE(2) production were observed in SZ95 sebocytes after PAF-R activation. Finally, it was demonstrated that the production of PGE(2), induced by PAF-R activation and mediated by COX-2 expression, was blocked following PAF-R antagonism in SZ95 sebocytes. These studies suggest that SZ95 sebocytes express functional PAF-Rs and PAF-Rs are involved in regulating the expression of inflammatory mediators, including COX-2, PGE(2) and IL-8.

  3. Heparin-like polymers modulate proinflammatory cytokine production by lipopolysaccharide-stimulated human monocytes.

    Science.gov (United States)

    Anastase-Ravion, Sylvie; Carreno, Marie-Paule; Blondin, Catherine; Ravion, Olivier; Champion, Jacqueline; Chaubet, Frédéric; Haeffner-Cavaillon, Nicole; Letourneur, Didier

    2002-06-05

    The search for heparin-like materials remains an intensive field of research. In this context, we studied the immunomodulatory properties of semisynthetic dextran derivatives and naturally occurring sulfated polysaccharides present in brown seaweed (fucans). In this study, we investigated the functional potencies of fucan and dextran derivatives by analyzing their effects on the release of proinflammatory cytokines by resting or lipopolysaccharide (LPS)-stimulated human monocytes and their interactions on monocyte surfaces. The results showed that fucan, dextran derivatives, and heparin differentially (1) triggered interleukin-1alpha, tumor necrosis factor alpha, interleukin-6, and interleukin-8 production by monocytes in a dose-dependent manner, (2) modulated cytokine production by LPS-stimulated monocytes, and (3) specifically inhibited the binding of biotinylated LPS to monocyte membranes. Taken together, these data indicated that fucan and dextran derivatives displayed interesting immunomodulatory effects on human blood cells that could be relevant as new drugs or biomaterial coatings. Indeed, such polysaccharides, by regulating monocyte activation, could contribute to the improved biocompatibility of implants.

  4. Purine-Metabolizing Ectoenzymes Control IL-8 Production in Human Colon HT-29 Cells

    Directory of Open Access Journals (Sweden)

    Fariborz Bahrami

    2014-01-01

    Full Text Available Interleukin-8 (IL-8 plays key roles in both chronic inflammatory diseases and tumor modulation. We previously observed that IL-8 secretion and function can be modulated by nucleotide (P2 receptors. Here we investigated whether IL-8 release by intestinal epithelial HT-29 cells, a cancer cell line, is modulated by extracellular nucleotide metabolism. We first identified that HT-29 cells regulated adenosine and adenine nucleotide concentration at their surface by the expression of the ectoenzymes NTPDase2, ecto-5′-nucleotidase, and adenylate kinase. The expression of the ectoenzymes was evaluated by RT-PCR, qPCR, and immunoblotting, and their activity was analyzed by RP-HPLC of the products and by detection of Pi produced from the hydrolysis of ATP, ADP, and AMP. In response to poly (I:C, with or without ATP and/or ADP, HT-29 cells released IL-8 and this secretion was modulated by the presence of NTPDase2 and adenylate kinase. Taken together, these results demonstrate the presence of 3 ectoenzymes at the surface of HT-29 cells that control nucleotide levels and adenosine production (NTPDase2, ecto-5′-nucleotidase and adenylate kinase and that P2 receptor-mediated signaling controls IL-8 release in HT-29 cells which is modulated by the presence of NTPDase2 and adenylate kinase.

  5. Role of Porphyromonas gingivalis SerB in gingival epithelial cell cytoskeletal remodeling and cytokine production.

    Science.gov (United States)

    Hasegawa, Yoshiaki; Tribble, Gena D; Baker, Henry V; Mans, Jeffrey J; Handfield, Martin; Lamont, Richard J

    2008-06-01

    The SerB protein of Porphyromonas gingivalis is a HAD family serine phosphatase that plays a critical role in entry and survival of the organism in gingival epithelial cells. SerB is secreted by P. gingivalis upon contact with epithelial cells. Here it is shown by microarray analysis that SerB impacts the transcriptional profile of gingival epithelial cells, with pathways involving the actin cytoskeleton and cytokine production among those significantly overpopulated with differentially regulated genes. Consistent with the transcriptional profile, a SerB mutant of P. gingivalis exhibited defective remodeling of actin in epithelial cells. Interaction between gingival epithelial cells and isolated SerB protein resulted in actin rearrangement and an increase in the F/G actin ratio. SerB protein was also required for P. gingivalis to antagonize interleukin-8 accumulation following stimulation of epithelial cells with Fusobacterium nucleatum. SerB is thus capable of modulating host cell signal transduction that impacts the actin cytoskeleton and cytokine production.

  6. In vitro reporter gene assays for assessment of PPAR- and Nrf2-mediated health effects of tomato and its bioactive constituents

    NARCIS (Netherlands)

    Gijsbers, L.

    2013-01-01

    The consumption of food products with health-promoting properties, such as for example margarines with plant sterols, fruit juice enriched with calcium and cereals with (soluble) fibre, has increased rapidly during the last years. The present thesis provides proof-of-principle that reporter gene ass

  7. In vitro reporter gene assays for assessment of PPAR- and Nrf2-mediated health effects of tomato and its bioactive constituents

    NARCIS (Netherlands)

    Gijsbers, L.

    2013-01-01

    The consumption of food products with health-promoting properties, such as for example margarines with plant sterols, fruit juice enriched with calcium and cereals with (soluble) fibre, has increased rapidly during the last years. The present thesis provides proof-of-principle that reporter gene ass

  8. In vitro reporter gene assays for assessment of PPAR- and Nrf2-mediated health effects of tomato and its bioactive constituents

    NARCIS (Netherlands)

    Gijsbers, L.

    2013-01-01

    The consumption of food products with health-promoting properties, such as for example margarines with plant sterols, fruit juice enriched with calcium and cereals with (soluble) fibre, has increased rapidly during the last years. The present thesis provides proof-of-princip