WorldWideScience

Sample records for 2-hydroxy-3-methoxy benzaldehyde thiosemicarbazone

  1. Benzaldehyde thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Xiu-Ping Ju

    2008-12-01

    Full Text Available The title compound, C8H9N3S, contains two molecules in the asymmetric unit. One molecule is close to being planar (r.m.s. deviation from the mean plane = 0.06 Å for the non-H atoms, while the other exhibits a dihedral angle of 21.7 (1° between the benzene ring and the mean plane of the thiosemicarbazone unit. Intermolecular N—H...S hydrogen bonds link the molecules into layers parallel to the (010 plane.

  2. Antitrypanosomal Activity of Novel Benzaldehyde-Thiosemicarbazone Derivatives from Kaurenoic Acid †

    Directory of Open Access Journals (Sweden)

    Cecília M. A. de Oliveira

    2011-01-01

    Full Text Available A series of new thiosemicarbazones derived from natural diterpene kaurenoic acid were synthesized and tested against the epimastigote forms of Trypanosoma cruzi to evaluate their antitrypanosomal potential. Seven of the synthesized thiosemicarbazones were more active than kaurenoic acid with IC50 values between 2-24.0 mM. The o-nitro-benzaldehyde-thiosemicarbazone derivative was the most active compound with IC50 of 2.0 mM. The results show that the structural modifications accomplished enhanced the antitrypanosomal activity of these compounds. Besides, the thiocyanate, thiosemicarbazide and the p- methyl, p-methoxy, p-dimethylamine, m-nitro and o-chlorobenzaldehyde-thiosemicarbazone derivatives displayed lower toxicity for LLMCK2 cells than kaurenoic acid, exhibing an IC50 of 59.5 mM.

  3. Structure and Luminescence Property of a Hexanuclear Silver(Ⅰ) Cluster Containing Benzaldehyde Thiosemicarbazone

    Institute of Scientific and Technical Information of China (English)

    SUN Qiao-Zhen

    2011-01-01

    A new hexanuclear silver (I) compound 2 containing thiosemicarbazone with the group of benzene was synthesized and structurally characterized by single-crystal X-ray diffraction, elemental analysis and fluorescence spectrum. The title compound crystallizes in triclinic, space group P with a = 11.611(3), b = 15.610(5), c = 15.624(7) , α = 113.942(6), β = 104.520(6), γ = 104.230(4)°, V = 2304.1(14) 3, C60H77Ag6N22O4.5S6, Mr = 2018.02, Dc = 1.454 g/cm3, μ(MoKα) = 1.435 mm-1, F(000) = 1005, Z = 1, the final R = 0.0468 and wR = 0.1474 for 6608 observed reflections (I 2σ(I)). In the structure, the S atom of the ligand L2 (L2 = benzaldehyde thiosemicarbazone) served as a triply bridged chelator to connect the six silver atoms into a Ag6L26 cluster. The luminescence property of compound 2 was investigated at room temperature.

  4. Benzaldehyde thiosemicarbazone derived from limonene complexed with copper induced mitochondrial dysfunction in Leishmania amazonensis.

    Directory of Open Access Journals (Sweden)

    Elizandra Aparecida Britta

    Full Text Available BACKGROUND: Leishmaniasis is a major health problem that affects more than 12 million people. Treatment presents several problems, including high toxicity and many adverse effects, leading to the discontinuation of treatment and emergence of resistant strains. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated the in vitro antileishmanial activity of benzaldehyde thiosemicarbazone derived from limonene complexed with copper, termed BenzCo, against Leishmania amazonensis. BenzCo inhibited the growth of the promastigote and axenic amastigote forms, with IC(50 concentrations of 3.8 and 9.5 µM, respectively, with 72 h of incubation. Intracellular amastigotes were inhibited by the compound, with an IC(50 of 10.7 µM. BenzCo altered the shape, size, and ultrastructure of the parasites. Mitochondrial membrane depolarization was observed in protozoa treated with BenzCo but caused no alterations in the plasma membrane. Additionally, BenzCo induced lipoperoxidation and the production of mitochondrial superoxide anion radicals in promastigotes and axenic amastigotes of Leishmania amazonensis. CONCLUSION/SIGNIFICANCE: Our studies indicated that the antileishmania activity of BenzCo might be associated with mitochondrial dysfunction and oxidative damage, leading to parasite death.

  5. Vibrational, NMR and UV-visible spectroscopic investigation and NLO studies on benzaldehyde thiosemicarbazone using computational calculations

    Science.gov (United States)

    Moorthy, N.; Prabakar, P. C. Jobe; Ramalingam, S.; Pandian, G. V.; Anbusrinivasan, P.

    2016-04-01

    In order to investigate the vibrational, electronic and NLO characteristics of the compound; benzaldehyde thiosemicarbazone (BTSC), the XRD, FT-IR, FT-Raman, NMR and UV-visible spectra were recorded and were analysed with the calculated spectra by using HF and B3LYP methods with 6-311++G(d,p) basis set. The XRD results revealed that the stabilized molecular systems were confined in orthorhombic unit cell system. The cause for the change of chemical and physical properties behind the compound has been discussed makes use of Mulliken charge levels and NBO in detail. The shift of molecular vibrational pattern by the fusing of ligand; thiosemicarbazone group with benzaldehyde has been keenly observed. The occurrence of in phase and out of phase molecular interaction over the frontier molecular orbitals was determined to evaluate the degeneracy of the electronic energy levels. The thermodynamical studies of the temperature region 100-1000 K to detect the thermal stabilization of the crystal phase of the compound were investigated. The NLO properties were evaluated by the determination of the polarizability and hyperpolarizability of the compound in crystal phase. The physical stabilization of the geometry of the compound has been explained by geometry deformation analysis.

  6. Benzaldehyde thiosemicarbazone monohydrate

    Directory of Open Access Journals (Sweden)

    Sheng-Jiu Gu

    2008-08-01

    Full Text Available In the title compound, C8H9N3S·H2O, intramolecular N—H...N hydrogen bonding contributes to the molecular conformation. Water molecules are involved in intermolecular N—H...O and O—H...S hydrogen bonds, which link the molecules into ribbons extended along the a axis. Weak intermolecular N—H...S hydrogen bonds link these ribbons into layers parallel to the ab plane with the phenyl rings pointing up and down.

  7. Spectrophotometric determination of platinum(IV) in alloys, complexes, environmental, and pharmaceutical samples using 4-[N,N-(diethyl)amino] benzaldehyde thiosemicarbazone.

    Science.gov (United States)

    Naik, P Parameshwara; Karthikeyan, J; Shetty, A Nityananda

    2010-12-01

    4-[N,N-(Diethyl)amino] benzaldehyde thiosemicarbazone (DEABT) is proposed as an analytical reagent for the spectrophotometric determination of platinum(IV). The DEABT forms 1:2 yellow complex with Pt(IV), which is sparingly soluble in water and completely soluble in water-ethanol-DMF medium. The Pt(IV)-DEABT complex shows maximum absorbance at 405 nm. Beer's law is valid up to 7.80 μg cm(-3), and optimum concentration range for the determination of platinum(IV) is 0.48-7.02 μg cm(-3). The molar absorptivity and Sandell's sensitivity of the method are found to be 1.755 × 10(4) dm(3) mol(-1) cm(-1) and 0.0012 μg cm(-2), respectively. The relative error and coefficient of variation (n=6) for the method does not exceed ± 0.43% and 0.35%, respectively. Since the method tolerates a number of metal ions commonly associated with platinum, it can be employed for the determination of platinum in environmental samples, pharmaceutical samples, alloys, catalysts, and complexes. The method is rapid as the Pt(IV)-DEABT complex is soluble in water-ethanol-DMF medium and not requiring any time consuming extraction method for the complex.

  8. Corrosion inhibition of 6061 Al-15 vol. pct. SiC(p) composite and its base alloy in a mixture of sulphuric acid and hydrochloric acid by 4-(N,N-dimethyl amino) benzaldehyde thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, Geetha Mable [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025, Mangalore, Karnataka (India); Nayak, Jagannath [Department of Metallurgical and Materials Engineering, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025, Karnataka (India); Shetty, A. Nityananda, E-mail: nityashreya@gmail.com [Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Srinivasnagar 575 025, Mangalore, Karnataka (India)

    2011-02-15

    Research highlights: {yields} Corrosion inhibition of Al-SiC composite. {yields} DMABT as corrosion inhibitor. {yields} Inhibition through physisorption of DMABT. - Abstract: The corrosion inhibition characteristics of 4-(N,N-dimethylamino) benzaldehyde thiosemicarbazone (DMABT) on the corrosion behavior of 6061 Al-15 vol. pct. SiC(p) composite and its base alloy were studied at different temperatures in acid mixture medium containing varying concentrations of hydrochloric acid and sulphuric acid using Tafel extrapolation technique and ac impedance spectroscopy (EIS). The effect of inhibitor concentration, temperature and concentration of the acid mixture media on the inhibitor action was investigated. It was found that inhibition efficiencies increase with the increase in inhibitor concentration, but decrease with the increase in temperature and with the increase in concentration of the acid media. Thermodynamic parameters for dissolution process were determined. The adsorption of DMABT on both the composite and base alloy was found to be through physisorption obeying Freundlich adsorption isotherm.

  9. Evaluation of DNA-binding, DNA cleavage, antioxidant and cytotoxic activity of mononuclear ruthenium(II) carbonyl complexes of benzaldehyde 4-phenyl-3-thiosemicarbazones

    Science.gov (United States)

    Sampath, Krishnan; Sathiyaraj, Subbaiyan; Jayabalakrishnan, Chinnasamy

    2013-11-01

    Two 4-phenyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-phenylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-phenylhydrazinecarbothioamide (HL2), and its ruthenium(II) complexes were synthesized and characterized by physico-chemical and spectroscopic methods. The Schiff bases act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the compounds was investigated by absorption spectroscopy which indicated that the compounds bind to DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes assayed against HeLa and MCF-7 cell lines showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  10. Mixed ligand ruthenium(III) complexes of benzaldehyde 4-methyl-3-thiosemicarbazones with triphenylphosphine/triphenylarsine co-ligands: Synthesis, DNA binding, DNA cleavage, antioxidative and cytotoxic activity

    Science.gov (United States)

    Sampath, K.; Sathiyaraj, S.; Raja, G.; Jayabalakrishnan, C.

    2013-08-01

    The new ruthenium(III) complexes with 4-methyl-3-thiosemicarbazone ligands, (E)-2-(2-chlorobenzylidene)-N-methylhydrazinecarbothioamide (HL1) and (E)-2-(2-nitrobenzylidene)-N-methylhydrazinecarbothioamide (HL2), were prepared and characterized by various physico-chemical and spectroscopic methods. The title compounds act as bidentate, monobasic chelating ligands with S and N as the donor sites and are preferably found in the thiol form in all the complexes studied. The molecular structure of HL1 and HL2 were determined by single crystal X-ray diffraction method. DNA binding of the ligands and complexes were investigated by absorption spectroscopy and IR spectroscopy. It reveals that the compounds bind to nitrogenous bases of DNA via intercalation. The oxidative cleavage of the complexes with CT-DNA inferred that the effects of cleavage are dose dependent. Antioxidant study of the ligands and complexes showed the significant antioxidant activity against DPPH radical. In addition, the in vitro cytotoxicity of the ligands and complexes against MCF-7 cell line was assayed which showed higher cytotoxic activity with the lower IC50 values indicating their efficiency in killing the cancer cells even at low concentrations.

  11. Thiosemicarbazone complexes of the platinum metals. A story of variable coordination modes

    Indian Academy of Sciences (India)

    Indrani Pal; Falguni Basuli; Samaresh Bhattacharya

    2002-08-01

    Salicylaldehyde thiosemicarbazone (H2saltsc) reacts with [M(PPh3)3X2] (M = Ru, Os; X = Cl, Br) to afford complexes of type [M(PPh3)2(Hsaltsc)2], in which the salicylaldehyde thiosemicarbazone ligand is coordinated to the metal as a bidentate N,S-donor forming a four-membered chelate ring. Reaction of benzaldehyde thiosemicarbazones (Hbztsc-R) with [M(PPh3)3X2] also affords complexes of similar type, viz. [M(PPh3)2(bztsc-R)2], in which the benzaldehyde thiosemicarbazones have also been found to coordinate the metal as a bidentate N,S-donor forming a fourmembered chelate ring as before. Reaction of the Hbztsc-R ligands has also been carried out with [M(bpy)2X2] (M = Ru, Os; X = Cl, Br), which has afforded complexes of type [M(bpy)2(bztsc-R)]+, which have been isolated as perchlorate salts. Coordination mode of bztsc-R has been found to be the same as before. Structure of the Hbztsc-OMe ligand has been determined and some molecular modelling studies have been carried out determine the reason for the observed mode of coordination. Reaction of acetone thiosemicarbazone (Hactsc) has then been carried out with [M(bpy)2X2] to afford the [M(bpy)2(actsc)]ClO4 complexes, in which the actsc ligand coordinates the metal as a bidentate N,S-donor forming a five-membered chelate ring. Reaction of H2saltsc has been carried out with [Ru(bpy)2Cl2] to prepare the [Ru(bpy)2(Hsaltsc)]ClO4 complex, which has then been reacted with one equivalent of nickel perchlorate to afford an octanuclear complex of type [{Ru(bpy)2(saltsc-H)}4Ni4](ClO4)4.

  12. ANTIMICROBIAL ACTIVITY OF DIFFERENT THIOSEMICARBAZONE COMPOUNDS AGAINST MICROBIAL PATHOGENS

    Directory of Open Access Journals (Sweden)

    Negi Parul

    2012-05-01

    Full Text Available Thiosemicarbazone belongs to a large group of thiourea derivatives, whose biological activities are a function of parent aldehyde or ketone moiety. They have been evaluated over the last 50 year as antiviral, antibacterial, antifungal, antimalarial, anticancer, leprosy, rheumatism, trypanosomiasis and coccidiodis. Thiosemicarbazones were prepared by simple process in which N4-thiosemicarbazone moiety was replaced by aliphatic, arylic and cyclic amines. Present study reported the anti-microbial activity of different thiosemicarbazone compounds against certain bacterial and fungal pathogens viz. Bacillus cereus, Staphylococcus epidermis, Moraxella cattarhalis, Staph. Saprophyticus, Candida albicans and Aspergillus flavans.

  13. Structural and cytotoxic studies of cationic thiosemicarbazones

    Science.gov (United States)

    Sinniah, Saravana Kumar; Sim, Kae Shin; Ng, Seik Weng; Tan, Kong Wai

    2017-06-01

    Schiff bases from the thiosemicarbazones family with variable N4 substituents are known to show enhanced growth inhibitory properties. In view of these facts and as a part of our continuous interest in cationic Schiff bases, we have developed several Schiff base ligands from (3-formyl-4-hydroxyphenyl)methyltriphenylphosphonium (T) in present study. The compounds were characterized by various spectroscopic methods (infrared spectra, 1H NMR, 13C NMR, HRESIMS and X-ray crystallography). Three of the N4 substituents, namely P(tsc)T, FP(tsc)T and EP(tsc)T exerted strong growth inhibitory properties by inhibiting the highly metastasis prostate cancer growth (PC-3). The thiosemicarbazone with ethylphenyl (EP) moiety displayed most potent activity against all cell lines tested. The MTT data obtained from analysis establishes that phenyl substituent enhances the growth inhibitory properties of the compound. The result affirms that EP(tsc)T would serve as a lead scaffold for rational anticancer agent development.

  14. Synthesis and biochemical evaluation of benzoylbenzophenone thiosemicarbazone analogues as potent and selective inhibitors of cathepsin L

    DEFF Research Database (Denmark)

    Parker, Erica N; Song, Jiangli; Kishore Kumar, G D;

    2015-01-01

    studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1......,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9nM, 14.4nM, and 8.1nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were...... selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10μM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5μ...

  15. Crystal structure of N-(4-hydroxybenzylacetone thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Saray Argibay-Otero

    2017-09-01

    Full Text Available The structure of the title compound, C11H15N3OS, shows the flexibility due to the methylene group at the thioamide N atom in the side chain, resulting in the molecule being non-planar. The dihedral angle between the plane of the benzene ring and that defined by the atoms of the thiosemicarbazide arm is 79.847 (4°. In the crystal, the donor–acceptor hydrogen-bond character of the –OH group dominates the intermolecular associations, acting as a donor in an O—H...S hydrogen bond, as well as being a double acceptor in a centrosymmetric cyclic bridging N—H...O,O′ interaction [graph set R22(4]. The result is a one-dimensional duplex chain structure, extending along [111]. The usual N—H...S hydrogen-bonding association common in thiosemicarbazone crystal structures is not observed.

  16. Reactions of supercritical water and supercritical methanol with benzaldehyde; Chorinkaisui oyobi chorinkai methanol to benzaldehyde tono hanno

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, C.; Yasuda, T.; Nishi, K.; Takahashi, S. [Tohoku University, Sendai (Japan). Institute for Chemical Reaction Science

    1996-11-01

    The reactions of supercritical water and supercritical methanol with benzaldehyde have been examined in the temperature range from 553 to 693 K, and the reaction pathways have been examined from the temporal variations of the reaction products. For the reaction of benzaldehyde with supercritical water, the major product was benzene, which was formed from the pyrolysis of benzaldehyde. The benzoic acid and benzyl alcohol were the by-products, produced from the Cannizzaro-type disproportionation reaction of benzaldehyde with the hydrate formed from the reaction with water and benzaldehyde. The major product for the reaction of benzaldehyde with supercritical methanol was benzyl alcohol, and the by-product were dimethylacetal, benzene, and methyl benzoic acid. Under the reaction conditions of this study, a significant amount of acetal was produced from benzaldehyde and methanol. The pyrolysis of acetal yielded benzyl alcohol. 29 refs., 6 figs., 4 tabs.

  17. Synthesis, characterization, and antifungal activity of boron-containing thiosemicarbazones.

    Science.gov (United States)

    Hicks, Justin W; Kyle, Christian B; Vogels, Christopher M; Wheaton, Susan L; Baerlocher, Felix J; Decken, Andreas; Westcott, Stephen A

    2008-11-01

    Addition of thiosemicarbazide, 4-allylthiosemicarbazide, and 4-phenylthiosemicarbazide to (formylphenyl)boronic acids affords a series of thiosemicarbazones containing boronic acids. Addition of 2-formylphenylboronic acid to the thiosemicarbazides gave the corresponding cyclic 2,3,1-benzodiazaborines. All new compounds have been investigated for potential antifungal activity.

  18. Structural Studies of 2,6-Diacetyl- and 2,6-Diformylpyridine Bis(thiosemicarbazones

    Directory of Open Access Journals (Sweden)

    Brown Christine A.

    2002-01-01

    Full Text Available Although a large number of crystal structures of heterocyclic thiosemicarbazones have recently appeared in the literature, few structures of heterocyclic bis(thiosemicarbazones or their metal complexes have been reported. Complexes of iron(II, indium(III, tin(IV, bismuth(III involve bis(thiosemicarbazones coordinating as N3S2 pentadentate ligands, often resulting in 7-coordinate complexes. In contrast, complexes with zinc(II are often binuclear with thiosemicarbazone moieties of a bis(thiosemicarbazone coordinating to two different zinc centers. Also included in this study is the structure of the first complex with a 2,6-diformylpyridine bis(thiosemicarbazone ligand, a 4-coordinate nickel(II complex with unusual coordination.

  19. Photoelectrochemical detection of benzaldehyde in foodstuffs

    Energy Technology Data Exchange (ETDEWEB)

    LaCourse, W.R.; Krull, I.S.

    1987-01-01

    Photoelectrochemical detection (PED) coupled with high performance liquid chromatography was used to quantitatively determine benzaldehyde in extracts, beverages, and foodstuffs. Photoelectrochemical detection is responsive to alkyl and aryl ketones and aldehydes and offers the advantages of 2-3 orders of magnitude linearity, 5-1-ng limits of detection, and a high degree of selectivity without chemical derivatization. This is the first application of the PED to sample analysis.

  20. Direct Spectrophotometric Assay for Benzaldehyde Lyase Activity

    Directory of Open Access Journals (Sweden)

    Dessy Natalia

    2011-01-01

    Full Text Available Benzaldehyde lyase from Pseudomonas fluorescens Biovar I. (BAL, EC 4.1.2.38 is a versatile catalyst for the organic synthesis of chiral α-hydroxy ketones. To allow fast assessment of enzyme activity, a direct spectrophotometric assay is desirable. Here, a new robust and easy-to-handle assay based on UV absorption is presented. The assay developed is based on the ligation of the α-hydroxy ketone (R-2,2′-furoin from 2-furaldehyde. A robust assay with direct monitoring of the product is facilitated with a convenient concentration working range minimising experimental associated with low concentrations.

  1. Adsorption, mobility, and dimerization of benzaldehyde on Pt(111)

    DEFF Research Database (Denmark)

    Rasmussen, Anton Michael Havelund; Hammer, Bjørk

    2012-01-01

    Building on results for the adsorption of benzene on Pt(111), the adsorption of benzaldehyde is investigated using density functional theory. Benzaldehyde is found to chemisorb preferentially with its aromatic ring in the flat-lying bridge geometry that is also preferred for benzene. Across the i...

  2. Synthesis and Structure of Bis(4-nitrobenzaldehyde thiosemicarbazone) Cadmium Iodide

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The title complex, bis(4-nitrobenzaldehyde thiosemicarbazone) cadmium iodide (C16H16CdI2N8O4S2) crystallizes in the triclinic system, space group P1 with a=9.632(2), b=11.227(2), c=14.031(3), α= 67.50(3), β= 86.99(3), γ= 66.64(3)°, V=1278.13, Z = 2, Dc = 2.117gcm-3, F(000) = 772, μ =3.472mm-1 MoKα radiation (λ=0.71073), R = 0.0443, wR= 0.1425 for 4529 observed reflections [I>2σ(I)] of 4731 independent reflections. The result shows that the structure contains CdL2I2 (where L = 4-nitrobenzaldehyde thiosemicarbazone) distorted tetrahedral units in which the two ligands are S-bonded as monodentate to cadmium ion; the two iodide ions are also coordinated to Cd(II).

  3. Improved cytotoxicity of pyridyl-substituted thiosemicarbazones against MCF-7 when used as metal ionophores.

    Science.gov (United States)

    Akladios, Fady N; Andrew, Scott D; Parkinson, Christopher J

    2016-02-01

    Zinc is the second most abundant transition metal in the human body, between 3 and 10% of human genes encoding for zinc binding proteins. We have investigated the interplay of reactive oxygen species and zinc homeostasis on the cytotoxicity of the thiosemicarbazone chelators against the MCF-7 cell line. The cytotoxicity of thiosemicarbazone chelators against MCF-7 can be improved through supplementation of ionic zinc provided the zinc ion is at a level exceeding the thiosemicarbazone concentration. Elimination of the entire cell population can be accomplished with this regime, unlike the plateau of cytotoxicity observed on thiosemicarbazone monotherapy. The cytotoxic effects of copper complexes of the thiosemicarbazone are not enhanced by zinc supplementation, displacement of copper from the complex being disfavoured. Treatment of MCF-7 with uncomplexed thiosemicarbazone initiates post G1 blockade alongside the induction of apoptosis, cell death being abrogated through subsequent supplementation with zinc ion after drug removal. This would implicate a metal depletion mechanism in the cytotoxic effect of the un-coordinated thiosemicarbazone. The metal complexes of the species, however, fail to initiate similar G1 blockade and apparently exert their cytotoxic effect through generation of reactive oxygen species, suggesting that multiple mechanisms of cytotoxicity can be associated with the thiosemicarbazones dependant on the level of metal ion association.

  4. CHARACTERIZATION AND ANTIPARASITIC ACTIVITY OF BENZOPHENONE THIOSEMICARBAZONES ON Trypanosoma brucei brucei

    Directory of Open Access Journals (Sweden)

    Georges C. Accrombessi

    2011-02-01

    Full Text Available The structure of four synthesized thiosemicarbazones, substituted or not, of benzophenone has been confirmed by spectrometrical analysis IR, NMR 1H and 13C. Their anti-trypanosomal activities were evaluated on Trypanosoma brucei brucei. Among these compounds, benzophenone 4 phenyl-3-thiosemicarbazone 4 has the highest activity with the half-inhibitory concentration (IC50 = 8.48 micromolar (µM. Benzophenone 4-methyl-3-thiosemicarbazone 3 and benzophenone thiosemicarbazone 1 showed moderate anti-trypanosomal activity with IC50 values equal to 23.27 µM and 67.17 µM respectively. Benzophenone 2 methyl-3-thiosemicarbazone 2 showed no activity up to IC50 = 371.74 µM.

  5. Benzaldehyde suppresses murine allergic asthma and rhinitis.

    Science.gov (United States)

    Jang, Tae Young; Park, Chang-Shin; Kim, Kyu-Sung; Heo, Min-Jeong; Kim, Young Hyo

    2014-10-01

    To evaluate the antiallergic effects of oral benzaldehyde in a murine model of allergic asthma and rhinitis, we divided 20 female BALB/c mice aged 8-10 weeks into nonallergic (intraperitoneally sensitized and intranasally challenged to normal saline), allergic (intraperitoneally sensitized and intranasally challenged to ovalbumin), and 200- and 400-mg/kg benzaldehyde (allergic but treated) groups. The number of nose-scratching events in 10 min, levels of total and ovalbumin-specific IgE in serum, differential counts of inflammatory cells in bronchoalveolar lavage (BAL) fluid, titers of Th2 cytokines (IL-4, IL-5, IL-13) in BAL fluid, histopathologic findings of lung and nasal tissues, and expressions of proteins involved in apoptosis (Bcl-2, Bax, caspase-3), inflammation (COX-2), antioxidation (extracellular SOD, HO-1), and hypoxia (HIF-1α, VEGF) in lung tissue were evaluated. The treated mice had significantly fewer nose-scratching events, less inflammatory cell infiltration in lung and nasal tissues, and lower HIF-1α and VEGF expressions in lung tissue than the allergic group. The number of eosinophils and neutrophils and Th2 cytokine titers in BAL fluid significantly decreased after the treatment (Pbenzaldehyde exerts antiallergic effects in murine allergic asthma and rhinitis, possibly through inhibition of HIF-1α and VEGF.

  6. The antimicrobial activity of lapachol and its thiosemicarbazone and semicarbazone derivatives

    Directory of Open Access Journals (Sweden)

    Marina Azevedo Souza

    2013-05-01

    Full Text Available Lapachol was chemically modified to obtain its thiosemicarbazone and semicarbazone derivatives. These compounds were tested for antimicrobial activity against several bacteria and fungi by the broth microdilution method. The thiosemicarbazone and semicarbazone derivatives of lapachol exhibited antimicrobial activity against the bacteria Enterococcus faecalis and Staphylococcus aureus with minimal inhibitory concentrations (MICs of 0.05 and 0.10 µmol/mL, respectively. The thiosemicarbazone and semicarbazone derivatives were also active against the pathogenic yeast Cryptococcus gattii (MICs of 0.10 and 0.20 µmol/mL, respectively. In addition, the lapachol thiosemicarbazone derivative was active against 11 clinical isolates of Paracoccidioides brasiliensis, with MICs ranging from 0.01-0.10 µmol/mL. The lapachol-derived thiosemicarbazone was not cytotoxic to normal cells at the concentrations that were active against fungi and bacteria. We synthesised, for the first time, thiosemicarbazone and semicarbazone derivatives of lapachol. The MICs for the lapachol-derived thiosemicarbazone against S. aureus, E. faecalis, C. gattii and several isolates of P. brasiliensis indicated that this compound has the potential to be developed into novel drugs to treat infections caused these microbes.

  7. Benzaldehyde dehydrogenase from chitosan-treated Sorbus aucuparia cell cultures.

    Science.gov (United States)

    Gaid, Mariam M; Sircar, Debabrata; Beuerle, Till; Mitra, Adinpunya; Beerhues, Ludger

    2009-09-01

    Cell cultures of Sorbus aucuparia respond to the addition of chitosan with the accumulation of the biphenyl phytoalexin aucuparin. The carbon skeleton of this inducible defense compound is formed by biphenyl synthase (BIS) from benzoyl-CoA and three molecules of malonyl-CoA. The formation of benzoyl-CoA proceeds via benzaldehyde as an intermediate. Benzaldehyde dehydrogenase (BD), which converts benzaldehyde into benzoic acid, was detected in cell-free extracts from S. aucuparia cell cultures. BD and BIS were induced by chitosan treatment. The preferred substrate for BD was benzaldehyde (K(m)=49 microM). Cinnamaldehyde and various hydroxybenzaldehydes were relatively poor substrates. BD activity was strictly dependent on the presence of NAD(+) as a cofactor (K(m)=67 microM).

  8. The determination of furaldehyde and benzaldehyde in plum brandy

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2005-01-01

    Full Text Available Among all alcohol liqueurs, brandies from drupaceous plants are characterized with the highest level of hydro cyanic acid, benzaldehyde and ethylcarbamate. In fruit brandies ethylcarbamate mainly originates from hydro cyanic acid during the processes of alcohol fermentation of crushed fruit and its preservation, distillation and ripening of the brandy. Hydro cyanic acid and benzaldehyde arise from the hydrolysis of amygdaline that is found exist in the heart of fruit stones and seeds, as well as from the hydrolysis of prunasine from the skin and flesh of drupaceous plants. The content of amygdaline and prunazine depends on the type of fruit, which corresponds to the potential content of hydro cyanic acid and benzaldehyde in the brandy that corresponds the stoichiometric ratio 1:3.94. The content of the aldehydes: furfural and benzaldehyde in plum brandy, strong plum brandy, young brandy, of domestic production in the various regions of Serbia were analyzed in this paper.

  9. Involvement of snapdragon benzaldehyde dehydrogenase in benzoic acid biosynthesis.

    Science.gov (United States)

    Long, Michael C; Nagegowda, Dinesh A; Kaminaga, Yasuhisa; Ho, Kwok Ki; Kish, Christine M; Schnepp, Jennifer; Sherman, Debra; Weiner, Henry; Rhodes, David; Dudareva, Natalia

    2009-07-01

    Benzoic acid (BA) is an important building block in a wide spectrum of compounds varying from primary metabolites to secondary products. Benzoic acid biosynthesis from L-phenylalanine requires shortening of the propyl side chain by two carbons, which can occur via a beta-oxidative pathway or a non-beta-oxidative pathway, with benzaldehyde as a key intermediate. The non-beta-oxidative route requires benzaldehyde dehydrogenase (BALDH) to convert benzaldehyde to BA. Using a functional genomic approach, we identified an Antirrhinum majus (snapdragon) BALDH, which exhibits 40% identity to bacterial BALDH. Transcript profiling, biochemical characterization of the purified recombinant protein, molecular homology modeling, in vivo stable isotope labeling, and transient expression in petunia flowers reveal that BALDH is capable of oxidizing benzaldehyde to BA in vivo. GFP localization and immunogold labeling studies show that this biochemical step occurs in the mitochondria, raising a question about the role of subcellular compartmentalization in BA biosynthesis.

  10. Fluorescence Quenching of Benzaldehyde in Water by Hydrogen Atom Abstraction.

    Science.gov (United States)

    Fletcher, Katharyn; Bunz, Uwe H F; Dreuw, Andreas

    2016-09-01

    We computed the mechanism of fluorescence quenching of benzaldehyde in water through relaxed potential energy surface scans. Time-dependent density functional theory calculations along the protonation coordinate from water to benzaldehyde reveal that photoexcitation to the bright ππ* (S3 ) state is immediately followed by ultrafast decay to the nπ* (S1 ) state. Evolving along this state, benzaldehyde (BA) abstracts a hydrogen atom, resulting in a BAH(.) and OH(.) radical pair. Benzaldehyde does not act as photobase in water, but abstracts a hydrogen atom from a nearby solvent molecule. The system finally decays back to the ground state by non-radiative decay and an electron transfers back to the OH(.) radical. Proton transfer from BAH(+) to OH(-) restores the initial situation, BA in water.

  11. Dynamic Combinatorial Chemistry and Organocatalysis with Thiosemicarbazones and Organocatalysts for Hydrazone and Oxime Bioconjugations

    DEFF Research Database (Denmark)

    Larsen, Dennis

    is presented. This represents the first use, to the best of the author’s knowledge, of thiosemicarbazones for organocatalysis. Guided by kinetics studies, a range of catalysts were developed and evaluated, and this showed that thiosemicarbazone catalysts are highly tuneable. The best thiosemicarbazone catalyst......The first part of this thesis describes the use of thiosemicarbazones for dynamic combinatorial chemistry. Building blocks incorporating thiosemicarbazides and acetalprotected aldehydes were synthesised and conditions where these building blocks formed dynamic combinatorial libraries under...... gave a 50-fold higher second-order rate constant than the best thiourea catalyst reported for this transformation. A dual Hammett plot analysis and interaction studies by NMR spectroscopy lends support to a reaction mechanism proceeding via an asynchronous [2+2] cycloaddition. The third and final part...

  12. Palladium(II Complexes of NS Donor Ligands Derived from Steroidal Thiosemicarbazones as Antibacterial Agents

    Directory of Open Access Journals (Sweden)

    Abdullah M. Asiri

    2010-07-01

    Full Text Available We have investigated the antibacterial activity of some new steroidal thiosemicarbazones and their Pd(II metal complexes were prepared by the reaction of the thiosemicarbazones with [Pd(DMSO2Cl2]. The steroidal thiosemicarbazones were prepared by the reaction of thiosemicarbazides with a steroidal ketone. The structures of these compounds were elucidated by IR, 1H-NMR, 13C-NMR, FAB mass spectroscopic methods, elemental analyses and TGA analysis. The antibacterial activity of these compounds were tested in vitro by the disk diffusion assay against two Gram-positive and two Gram-negative bacteria. The results showed that steroidal complexes are better inhibitors of both types of the bacteria (Gram-positive and Gram-negative as compared to steroidal thiosemicarbazones. Compound Ia displays remarkable antibacterial activity as compared to amoxicillin.

  13. Synthesis and cytotoxicity evaluation of thiosemicarbazones and their thiazole derivatives

    Directory of Open Access Journals (Sweden)

    Saulo Feheiberg Pinto Braga

    Full Text Available ABSTRACT The aims of this study were to synthesize a series of thiosemicarbazones and their thiazole derivatives, to investigate their cytotoxic activity against three human cancers and normal (Vero cells cell lines, and to evaluate the pro-apoptotic potential of the most active compounds. Materials and Methods: The thiosemicarbazones were obtained by reacting an aromatic aldehyde with thiosemicarbazide (yield 71-96%, which were subjected to a cyclization with α-bromoacetophenone to yield the required thiazole heterocycles (yield 63-100%. All the synthesized compounds were screened at 50 µM concentration against three cell lines representing HL60 (promyelocytic leukemia, Jurkat (acute lymphoblastic leukemia, and MCF-7 (breast cancer. The pro-apoptotic effect was measured by flow cytometry as the percentage of cells with hypodiploid DNA. Results: Three thiazole compounds showed activity against at least one tumor cell line (IC50 = 43-76 µM and low cytotoxicity against Vero cells (IC50 > 100 M. The most active compound of this series induced 91% and 51% DNA fragmentation in HL60 and MCF-7 cell lines, respectively, suggesting that this compound triggered apoptosis in these cells. Conclusion: Among the synthesized compounds, one in particular was found to exert antiproliferative and pro-apoptotic activity on tumor cells and can be considered promising as a lead molecule for the design of new analogues with improved activity.

  14. Influence of anthraquinone scaffold on E/Z isomer distribution of two thiosemicarbazone derivatives. 2D NMR and DFT studies

    Science.gov (United States)

    Marković, Violeta; Joksović, Milan D.; Marković, Svetlana; Jakovljević, Ivan

    2014-01-01

    A distribution of possible isomeric and tautomeric forms of two tautomerizable anthraquinone-thiosemicarbazones with pronounced cytotoxic potential was investigated using 2D NMR and DFT studies. Conformational analysis of the E and Z isomers of both thiosemicarbazones was performed to find out the most stable conformation for each molecule. It was found that superior stability of E-isomers results from ten-membered intramolecular hydrogen bond between thiosemicarbazone N2H and anthraquinone carbonyl group. This hydrogen bond is stronger than that between thiosemicarbazone N2H and ester oxygen, owing to the large partial negative charge on the anthraquinone oxygen.

  15. Adsorption of Benzaldehyde on Granular Activated Carbon: Kinetics, Equilibrium, and Thermodynamic

    OpenAIRE

    Rajoriya, R.K.; Prasad, B; Mishra, I.M.; Wasewar, K. L.

    2007-01-01

    Adsorption isotherms of benzaldehyde from aqueous solutions onto granular activated carbon have been determined and studied the effect of dosage of granular activated carbon, contact time, and temperature on adsorption. Optimum conditions for benzaldehyde removal were found adsorbent dose 4 g l–1 of solution and equilibrium time t 4 h. Percent removal of benzaldehyde increases with the increase in adsorbent dose for activated carbon, however, it decreases with increase in benzaldehyde m...

  16. Calorimetric study of benzaldehyde interaction with acetic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.M.; Ivanova, L.A.

    1978-03-01

    Benzaldehyde conversion to benzylidene diacetate, a side reaction reducing the selectivity of benzaldehyde oxidation to acetylbenzoyl peroxide, studied at 6/sup 0/-50/sup 0/C, was an irreversible third-order reaction catalyzed by beryllium sulfate or by succinnic, chloroacetic, and particularly sulfuric and perchloric acids. In the presence of organic solvents, (e.g., benzene, hexane, or cyclohexane), the process was complicated by acidolysis and parallel C-acylation reactions, and the catalyst rapidly deactivated. A microcalorimetric method was developed to determine kinetic parameters of the process in the absence of the solvents. Tables and graphs.

  17. Investigation of the Biological Properties of (HeteroAromatic Thiosemicarbazones

    Directory of Open Access Journals (Sweden)

    Jaroslaw Polanski

    2012-11-01

    Full Text Available Two series of thiosemicarbazone-based iron chelators (twenty-seven compounds were designed and synthesized using a microwave-assisted approach. Quinoline and halogenated phenyl were selected as parent scaffolds on the basis of a similarity search. The lipophilicity of the synthesized compounds was measured using HPLC and then calculated. Primary in vitro screening of the synthesized compounds was performed against eight pathogenic fungal strains. Only a few compounds showed moderate activity against fungi, and (E-2-(quinolin-2-ylvinyl-N,N-dimethylhydrazine-carbothioamide appeared to be more effective than fluconazole against most of the fungal strains tested. Antiproliferative activity was measured using a human colon cancer cell line (HCT-116. Several of the tested compounds showed submicromolar antiproliferative activity. Compounds were also tested for their activity related to the inhibition of photosynthetic electron transport (PET in spinach (Spinacia oleracea L. chloroplasts. The structure-activity relationships are discussed for all of the compounds.

  18. Enzymatic (R)-phenylacetylcarbinol production in benzaldehyde emulsions.

    Science.gov (United States)

    Rosche, B; Leksawasdi, N; Sandford, V; Breuer, M; Hauer, B; Rogers, P

    2002-10-01

    (R)-Phenylacetylcarbinol [(R)-PAC)] is the chiral precursor for the production of the pharmaceuticals ephedrine and pseudoephedrine. Reaction conditions were improved to achieve increased (R)-PAC levels in a simple batch biotransformation of benzaldehyde emulsions and pyruvate, using partially purified pyruvate decarboxylase (PDC) from the filamentous fungus Rhizopus javanicus NRRL 13161 as the catalyst. Lowering the temperature from 23 degrees C to 6 degrees C decreased initial rates but increased final (R)-PAC concentrations. Addition of ethanol, which increases benzaldehyde solubility, was not beneficial for (R)-PAC production. It was established that proton uptake during biotransformation increases the pH above 7 thereby limiting (R)-PAC production. For small-scale studies, biotransformations were buffered with 2-2.5 M MOPS (initial pH 6.5). High concentrations of MOPS as well as some alcohols and KCl stabilised PDC. A balance between PDC and substrate concentrations was determined with regards to ( R)-PAC production and yields on enzyme and substrates. R. javanicus PDC (7.4 U/ml) produced 50.6 g/l (337 mM) ( R)-PAC in 29 h at 6 degrees C with initial 400 mM benzaldehyde and 600 mM pyruvate. Molar yields on consumed benzaldehyde and pyruvate were 97% and 59%, respectively, with 17% pyruvate degraded and 24% converted into acetaldehyde and acetoin; 43% PDC activity remained, indicating reasonable enzyme stability at high substrate and product concentrations.

  19. The Kinetic Behavior of Benzaldehyde under Hydrothermal Conditions

    Science.gov (United States)

    Fecteau, K.; Gould, I.; Hartnett, H. E.; Williams, L. B.; Shock, E.

    2013-12-01

    Aldehydes represent an intermediate redox state between alcohols and carboxylic acids and are likely intermediates in the transformation of organic compounds in natural systems. We have conducted kinetic studies of a model aldehyde, benzaldehyde, in high-temperature water (250-350 °C, saturation pressure) in clear fused quartz (CFQ) autoclaves. Under these conditions, benzaldehyde is observed to undergo a disproportionation reaction to benzyl alcohol and benzoic acid reminiscent of the base-catalyzed Cannizzaro reaction known to occur at cooler temperatures. Benzene is also produced via decarbonylation of the aldehyde. We have obtained pseudo second-order rate constants for the decomposition of benzaldehyde at 250, 300, and 350 °C. Rates derived via repeated heating phases and subsequent quantitative 13C-NMR spectroscopy of a single NMR-compatible CFQ tube containing isotopically labeled benzaldehyde are consistent with those obtained by analysis of product suites from individual timed experiments via gas chromatography. Arrhenius parameters for these rate constants are consistent with published values for the reaction under supercritical conditions from one study (Tsao et al. 1992) yet the pre-exponential factor is approximately 7 orders of magnitude smaller than that derived from another study (Ikushima et al. 2001). Moreover, fitting our rate constants with the Eyring equation yields an entropy of activation (ΔS‡) of -26.6 kcal mol-1 K-1, which is consistent for a bimolecular transition state at the rate-limiting step. In contrast, the rates of Ikushima et al. yield a positive value of ΔS‡, which is inconsistent with the putative mechanism for the reaction. The linear Arrhenius behavior of the decomposition of benzaldehyde from high-temperature liquid to supercritical conditions demonstrates the potential for extrapolating experimentally derived rates of reactions for organic functional group transformations to conditions where diagenesis, alteration

  20. Reduction of benzaldehyde by methoxide ion in aqueous methanol

    Energy Technology Data Exchange (ETDEWEB)

    Swain, C.G.; Powell, A.L.; Lynch, T.J.; Alpha, S.R.; Dunlap, R.P.

    1979-06-20

    In contrast to previous studies of the Cannizzaro reaction using isotopically labeled reactants, the benzyl alcohol from reaction of 0.60 M benzaldehyde-..cap alpha..-d and 0.25 M NaOH in 74% CH/sub 3/OH to 26% H/sub 2/O solution at 100/sup 0/C includes a substantial percentage of benzyl-..cap alpha..-d/sub 1/ alcohol (21% after half consumption of hydroxide ion) rather than only benzyl-..cap alpha..-d/sub 2/ alcohol. Products from C/sub 6/H/sub 5/CHO in CH/sub 3/OH, CH/sub 3/OH solutions indicate that the side reactions responsible for hydrogen exchanges and adding to the yield of benzyl alcohol are (1) bimolecular hydride transfer to benzaldehyde from methoxide ion, (2) a nearly equal amount of crossed Cannizzaro reaction from the resulting formaldehyde, (3) a smaller amount of hydride transfer to benzaldehyde from the resulting sodium formate leading to sodium carbonate, and (4) a less frequent combination of two benzaldehydes plus methoxide ion leading to benzaldehyde dimethyl acetal. Decreasing the initial concentration of C/sub 6/H/sub 5/CHO to 5 x 10/sup -4/ M decreases the relative contributions of the three termolecular reactions and causes the bimolecular hydride transfer (1) to become the dominant reaction. Its k/sub CH/sub 3/O/sup -///k/sub CD/sub 3/O/sup -// isotope effect is 2.2 +- 0.2. 1 table.

  1. Second-order Optical Nonlinearity of the ⅡB - Group Complexes from Thiosemicarbazone Derivative%ⅡB族氨基硫脲衍生配合物的二阶非线性光学性质

    Institute of Scientific and Technical Information of China (English)

    田玉鹏; 吴杰颖; 张胜义; 马文; 李胜利; 谢复新

    2000-01-01

    设计合成了三种含三种不同取代基(-N(CH3)2,-OCH3,-NO2)氨基硫脲衍生物配体及其ⅡB族配合物M(Ⅱ)X2L2(M=Zn,Cd;X=Cl,Br,I),并通过元素分析和IR光谱进行了表征。测试了它们的粉末SHG效应。在此基础上结合理论计算和以前的工作,讨论了该类配合物产生SHG效应的微观原因。最后,对NLO(nonlinear optical)配合物的分子设计及配合物产生宏观微观NLO效应的联系进行了探讨。%Three kinds of ligands were designed. The ligands are derivatives from thiosemicarbazone, and with different benzaldehyde containing - N(CH3)2, - OCH3, - NO2 group, which abbreviated as L1, L2, L3, respectively. The three new thiosemicarbazone derivative ligands and their ⅡB group complexes M(Ⅱ)X2 L2(M=Zn, Cd;X=Cl, Br, I) were also synthesized in this work. The complexes have been characterized by spectroscopic techniques and elemental analysis. At last, general guidance for the molecular design of metal complexes for nonlinear optics was postulated based on second harmonic generation powder determination and theoretical calculation.

  2. Spectral studies of copper(II) complexes of 6-(3-thienyl) pyridine-2-thiosemicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Mahjoub, Omima Abdalla; Farina, Yang [School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2014-09-03

    Two novel copper(II) complexes [Cu(HL)Cl]Cl.H{sub 2}O (1) and [Cu(L)NO{sub 3}]Ðœ‡H{sub 2}O (2) of the three NNS donor thiosemicarbazone ligand 6-(3-thienyl) pyridine-2-thiosemicarbazone have been synthesized. The ligand and its copper(II) complexes were characterized by elemental analysis (C, H, N, and S), FT-IR, UV-visible, magnetic susceptibility and molar conductance. The thiosemicarbazone is present either as the thione form in complex 1 or as thiol form in complex 2 and is coordinated to copper(II) atom via the pyridine nitrogen atom, the azomethine nitrogen atom and the sulfur atom. The physicochemical and spectral data suggest square planar geometry for copper(II) atoms.

  3. Intermolecular interaction of thiosemicarbazone derivatives to solvents and a potential Aedes aegypti target

    Science.gov (United States)

    da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.

    2015-08-01

    DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.

  4. Stereoselective Synthesis of a New cis Monocyclic β-lactam Bearing a Sugar Moiety at Its N1 Position and Its Physical Characterization

    Directory of Open Access Journals (Sweden)

    Parvaneh Alvand

    2007-05-01

    Full Text Available Synthesis of a new monocyclic β-lactam containing a sugar moiety at its N1 position via [2+2] cycloaddition reaction of ketene and imine is described. Reaction of achiral phenoxy ketene with chiral aldimine derived from chiral 2, 3, 4, 6-tetra-O-acetyl-β-D-galactopyranosylamine and 2-hydroxy-3-methoxy benzaldehyde resulted in the formation of 2 as a single diastereomer. Then its physical characterization has been determined at the AM1 level of theory.

  5. Muonium adducts of benzaldehyde: Structural correlation with nitroxides

    Energy Technology Data Exchange (ETDEWEB)

    Rhodes, C.J. [John Moores University, School of Pharmacy and Chemistry (United Kingdom); Reid, I.D. [Paul Scherrer Institute (Switzerland); Jackson, R.A. [University of Sussex, School of Chemistry and Molecular Sciences (United Kingdom)

    1997-04-15

    We have formed adduct radicals (ArCHOMu{center_dot}) by muonium addition to the carbonyl group of benzaldehyde and its derivatives. The muon coupling is found to be highly sensitive to the nature of substituents in the benzene ring, being increased by electron releasing groups. Similarly, the {sup 14}N coupling in a series of nitroxides [ArN(O{center_dot})OSiEt{sub 3}], measured using ESR spectroscopy, is increased by electron releasing substituents and a linear correlation is found between the two; their connected nature is discussed.For the radical derived from benzaldehyde itself, a strong dependence is also found on the solvent in which it is solved. We suggest that this may be used in the study of solvent effects, particularly H-bonding, pertinent to organic and bioorganic media.

  6. Infrared Spectra and Hydrogen Bonds of Biologically Active Benzaldehydes

    Science.gov (United States)

    Tolstorozhev, G. B.; Skornyakov, I. V.; Belkov, M. V.; Shimko, A. N.; Shadyro, O. I.; Brinkevich, S. D.; Samovich, S. N.

    2013-09-01

    IR-Fourier spectra of solutions and crystals of biologically active benzaldehyde derivatives were studied. Specific features of the formation of intra- and intermolecular hydrogen bonds were analyzed. Spectral signatures that characterized participation of the hydroxyl OH group and also the OCH3 and C=O groups in the formation of intramolecular hydrogen bonds of the three different types O-H···O-H, O-H···O-CH3, and O-H···O=C were revealed. Intramolecular hydrogen bonds of the types O-H···O-H and O-H···O-CH3 were absent for benzaldehyde derivatives in the crystal phase. Only hydroxyl and carbonyl groups participated in intermolecular interactions. This resulted in the formation of linear intermolecular dimers. Seven various configurations of the linear dimers were identified in solutions and crystals.

  7. Biomass pyrolysis: Thermal decomposition mechanisms of furfural and benzaldehyde

    Science.gov (United States)

    Vasiliou, AnGayle K.; Kim, Jong Hyun; Ormond, Thomas K.; Piech, Krzysztof M.; Urness, Kimberly N.; Scheer, Adam M.; Robichaud, David J.; Mukarakate, Calvin; Nimlos, Mark R.; Daily, John W.; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G. Barney

    2013-09-01

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  8. [A new benzaldehyde from aerial part of Rehmannia glutinosa].

    Science.gov (United States)

    Zou, Yan; Zhang, Lei; Xu, Jie-kun; Cheng, Qian; Ye, Xian-sheng; Li, Ping; Zhang, Wei-ku; Li, Yong-ji

    2015-04-01

    A new benzaldehyde, 3-hydroxy-4-(4-(2-hydroxyethyl) phenoxy) henzaldehyde(1), together with six known compounds, including isovanillic acid(2), pyrocatechol(3), glutinosalactone A(4), chrysoeriol(5), apigenin(6) and luteolin(7) were isolated from aerial part of Rehmannia glutinosa. The compounds were isolated by macroporous resin, silica gel, Sephadex LH-20 and HPLC chromatographies. The chemical structures of 1-7 were elucidated on the basis of spectral analysis (MS, 1D NMR and 2D NMR).

  9. Biomass pyrolysis: thermal decomposition mechanisms of furfural and benzaldehyde.

    Science.gov (United States)

    Vasiliou, AnGayle K; Kim, Jong Hyun; Ormond, Thomas K; Piech, Krzysztof M; Urness, Kimberly N; Scheer, Adam M; Robichaud, David J; Mukarakate, Calvin; Nimlos, Mark R; Daily, John W; Guan, Qi; Carstensen, Hans-Heinrich; Ellison, G Barney

    2013-09-14

    The thermal decompositions of furfural and benzaldehyde have been studied in a heated microtubular flow reactor. The pyrolysis experiments were carried out by passing a dilute mixture of the aromatic aldehydes (roughly 0.1%-1%) entrained in a stream of buffer gas (either He or Ar) through a pulsed, heated SiC reactor that is 2-3 cm long and 1 mm in diameter. Typical pressures in the reactor are 75-150 Torr with the SiC tube wall temperature in the range of 1200-1800 K. Characteristic residence times in the reactor are 100-200 μsec after which the gas mixture emerges as a skimmed molecular beam at a pressure of approximately 10 μTorr. Products were detected using matrix infrared absorption spectroscopy, 118.2 nm (10.487 eV) photoionization mass spectroscopy and resonance enhanced multiphoton ionization. The initial steps in the thermal decomposition of furfural and benzaldehyde have been identified. Furfural undergoes unimolecular decomposition to furan + CO: C4H3O-CHO (+ M) → CO + C4H4O. Sequential decomposition of furan leads to the production of HC≡CH, CH2CO, CH3C≡CH, CO, HCCCH2, and H atoms. In contrast, benzaldehyde resists decomposition until higher temperatures when it fragments to phenyl radical plus H atoms and CO: C6H5CHO (+ M) → C6H5CO + H → C6H5 + CO + H. The H atoms trigger a chain reaction by attacking C6H5CHO: H + C6H5CHO → [C6H6CHO]* → C6H6 + CO + H. The net result is the decomposition of benzaldehyde to produce benzene and CO.

  10. Photocatalytic oxidation of toluene to benzaldehyde by molecular oxygen

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Y.; Bakac, A. [Ames LAb., IA (United States)]|[Iowa State Univ., Ames, IA (United States)

    1996-03-07

    The visible light irradiation of aqueous solutions containing toluene, uranyl(VI) ions, and O{sub 2} results in the formation of benzaldehyde as a major product. Small amounts of PhCH{sub 2}OH are also formed. The yields of benzaldehyde are 3 times greater for toluene-h{sub 8} than for toluene-d{sub 8}, but the kinetic isotope effect for the quenching of the excited state {sup *}UO{sub 2}{sup 2+} by toluene is negligible (k{sub toluene-h(8)}/k{sub toluene-d(8)}=1.2). This and other evidence indicate that the quenching takes place in two parallel pathways. The major one involves the aromatic portion of tolune and leads to the recovery of the reactants. The minor, productive path takes place by hydrogen atom abstraction from the methyl group, followed by the oxidation of PhCH{sub 2}{sup {center_dot}}. Cumene, benzyl alcohol, and benzaldehyde react similarly. 31 refs., 5 figs., 1 tab.

  11. Identification of isotopically manipulated cinnamic aldehyde and benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Culp, R.A.; Noakes, J.E. (Univ. of Georgia, Athens (USA))

    1990-05-01

    Cinnamic aldehyde and benzaldehyde samples were isolated from botanical sources and compared to labeled isolates from natural origins and those synthetically produced. Products synthesized from petrochemical precursors yielded {delta}{sup 13}C and {delta}D values uniquely different from those of botanical derivation. Upon further comparison with the radiocarbon ({sup 14}C) activities it was possible to define average {delta}{sup 13}C and {delta}D isotopic values for the naturally derived cinnamic aldehyde ({minus}27.6 {plus minus} 0.6 and {minus}116 {plus minus} 8, respectively) and benzaldehyde samples ({minus}28.6 {plus minus} 0.5 and {minus}105 {plus minus} 5, respectively) and the synthetically derived cinnamic aldehyde ({minus}25.4 {plus minus} 0.3 and 517 {plus minus} 52, respectively, via toluene oxidation) and benzaldehyde samples ({minus}29.2 {plus minus} 0.8 and {minus}54 {plus minus} 11, respectively, via benzal chloride and {minus}26.1 {plus minus} 0.6 and 576 {plus minus} 73, respectively, via toluene oxidation). It is also revealed by comparison of isotopic values for certain synthetically derived compounds that {sup 14}C manipulation of simulated natural products has occurred.

  12. Synthesis of new hyodeoxycholic acid thiosemicarbazone derivatives under solvent-free conditions using microwave

    Institute of Scientific and Technical Information of China (English)

    Zhi Chuan Shi; Zhi Gang Zhao; Xing Li Liu; Yu Chen

    2011-01-01

    An efficient and simple method for synthesis of new hyodeoxycholic acid thiosemicarbazone derivatives under solvent-free conditions using microwave has been developed. Its main advantages are short reaction times, good conversions and the environmentally friendly nature of the process. The preliminary results indicate that some of these compounds possess inhibitory effects against E. coli.

  13. An Expedient Method for the Synthesis of Thiosemicarbazones under Microwave Irradiation in Solvent-free Medium

    Institute of Scientific and Technical Information of China (English)

    LI, Jian-Ping; ZHENG, Peng-Zhi; ZHU, Jun-Ge; LIU, Rui-Jie; QU, Gui-Rong

    2006-01-01

    A simple, efficient and eco-friendly method for the synthesis of thiosemicarbazones from thiosemicarbazides and aldehyde under microwave irradiation has been reported, and no solvent and catalyst were used. And the technique of microwave irradiation coupled with solvent-free condition proved to be a quite valuable method in the organic synthesis.

  14. Synthesis and Crystal Structure of a Mn(Ⅱ) Complex with Thiosemicarbazone Derivative of Pyridine-3-carbaldehyde Showing Unusual Coordination Mode of Tridentate Thiosemicarbazone

    Institute of Scientific and Technical Information of China (English)

    LI Ming-Xue; ZHOU Jing; WANG Jing-Ping; WANG Zi-Liang

    2006-01-01

    The title complex Mn(HL)4(NCS)2(CH3CH2OH)2 has been achieved via selfassembly by incorporating manganese(Ⅱ) into pyridine-3-carbaldehyde thiosemicarbazonate ligand,and characterized by elemental analysis and single-crystal X-ray diffraction study. The crystal crystallizes in triclinic, space group P1 with a = 8.896(2), b = 9.530(2), c = 14.520(4) (A), α =87.035(4), β= 88.112(4), γ= 69.434(4)°, V= 1150.9(5) (A)3, Z = 1, Mr = 984.17, Dc = 1.420 g/cm3,μ(MoKα) = 0.612 mm-1, F(000) = 511, the final R = 0.0574 and wR = 0.1547 for 2855 observed reflections with I > 2σ(I). The complex contains one six-coordinated manganese ion connected by two thiosemicarbazide ligands, in which the thiosemicarbazone ligand acts as a monodentate ligand and coordinates to the center metal atoms via the pyridyl nitrogen atoms, two ethanol molecules and two isothiocyanic anions to give rise to a mononuclear structure. The coordination of a potentially tridentate thiosemicarbazone in manganese(Ⅱ) complex without using its sulfur and imine nitrogen sites is unusual. Hydrogen bonds existing in the complex link the different components to stabilize the crystal structure.

  15. Synthesis and structure-activity relationship study of a new series of antiparasitic aryloxyl thiosemicarbazones inhibiting Trypanosoma cruzi cruzain.

    Science.gov (United States)

    Espíndola, José Wanderlan Pontes; Cardoso, Marcos Veríssimo de Oliveira; Filho, Gevanio Bezerra de Oliveira; Oliveira E Silva, Dayane Albuquerque; Moreira, Diogo Rodrigo Magalhaes; Bastos, Tanira Matutino; Simone, Carlos Alberto de; Soares, Milena Botelho Pereira; Villela, Filipe Silva; Ferreira, Rafaela Salgado; Castro, Maria Carolina Accioly Brelaz de; Pereira, Valéria Rego Alves; Murta, Silvane Maria Fonseca; Sales Junior, Policarpo Ademar; Romanha, Alvaro José; Leite, Ana Cristina Lima

    2015-08-28

    The discovery of new antiparasitic compounds against Trypanosoma cruzi, the etiological agent of Chagas disease, is necessary. Novel aryloxy/aryl thiosemicarbazone-based conformationally constrained analogs of thiosemicarbazones (1) and (2) were developed as potential inhibitors of the T. cruzi protease cruzain, using a rigidification strategy of the iminic bond of (1) and (2). A structure-activity relationship analysis was performed in substituents attached in both aryl and aryloxy rings. This study indicated that apolar substituents or halogen atom substitution at the aryl position improved cruzain inhibition and antiparasitic activity in comparison to unsubstituted thiosemicarbazone. Two of these compounds displayed potent inhibitory antiparasitic activity by inhibiting cruzain and consequently were able to reduce the parasite burden in infected cells and cause parasite cell death through necrosis. In conclusion, we demonstrated that conformational restriction is a valuable strategy in the development of antiparasitic thiosemicarbazones.

  16. Conformational restriction of aryl thiosemicarbazones produces potent and selective anti-Trypanosoma cruzi compounds which induce apoptotic parasite death.

    Science.gov (United States)

    Magalhaes Moreira, Diogo Rodrigo; de Oliveira, Ana Daura Travassos; Teixeira de Moraes Gomes, Paulo André; de Simone, Carlos Alberto; Villela, Filipe Silva; Ferreira, Rafaela Salgado; da Silva, Aline Caroline; dos Santos, Thiago André Ramos; Brelaz de Castro, Maria Carolina Accioly; Pereira, Valéria Rego Alves; Leite, Ana Cristina Lima

    2014-03-21

    Chagas disease, caused by Trypanosoma cruzi, is a life-threatening infection leading to approximately 12,000 deaths per year. T. cruzi is susceptible to thiosemicarbazones, making this class of compounds appealing for drug development. Previously, the homologation of aryl thiosemicarbazones resulted in an increase in anti-T. cruzi activity in comparison to aryl thiosemicarbazones without a spacer group. Here, we report the structural planning, synthesis and anti-T. cruzi evaluation of new aryl thiosemicarbazones (9a-x), designed as more conformationally restricted compounds. By varying substituents attached to the phenyl ring, substituents were observed to retain, enhance or greatly increase the anti-T. cruzi activity, in comparison to the nonsubstituted derivative. In most cases, hydrophobic and bulky substituents, such as bromo, biphenyl and phenoxyl groups, greatly increased antiparasitic activity. Specifically, thiosemicarbazones were identified that inhibit the epimastigote proliferation and were toxic for trypomastigotes without affecting mouse splenocytes viability. The most potent anti-T. cruzi thiosemicarbazones were evaluated against cruzain. However, inhibition of this enzyme was not observed, suggesting that the compounds work through another mechanism. In addition, examination of T. cruzi cell death showed that these thiosemicarbazones induce apoptosis. In conclusion, the structural design executed within the series of aryl thiosemicarbazones (9a-x) led to the identification of new potent anti-T. cruzi agents, such as compounds (9h) and (9r), which greatly inhibited epimastigote proliferation, and demonstrated a toxicity for trypomastigotes, but not for splenocytes. Mechanistically, these compounds do not inhibit the cruzain, but induce T. cruzi cell death by an apoptotic process.

  17. Thiosemicarbazone modification of 3-acetyl coumarin inhibits Aβ peptide aggregation and protect against Aβ-induced cytotoxicity.

    Science.gov (United States)

    Ranade, Dnyanesh S; Bapat, Archika M; Ramteke, Shefali N; Joshi, Bimba N; Roussel, Pascal; Tomas, Alain; Deschamps, Patrick; Kulkarni, Prasad P

    2016-10-01

    Aggregation of amyloid β peptide (Aβ) is an important event in the progression of Alzheimer's disease. Therefore, among the available therapeutic approaches to fight with disease, inhibition of Aβ aggregation is widely studied and one of the promising approach for the development of treatments for Alzheimer's disease. Thiosemicarbazone compounds are known for their variety of biological activities. However, the potential of thiosemicarbazone compounds towards inhibition of Aβ peptide aggregation and the subsequent toxicity is little explored. Herein, we report synthesis and x-ray crystal structure of novel compound 3-acetyl coumarin thiosemicarbazone and its efficacy toward inhibition of Aβ(1-42) peptide aggregation. Our results indicate that 3-acetyl coumarin thiosemicarbazone inhibits Aβ(1-42) peptide aggregation up to 80% compared to the parent 3-acetyl coumarin which inhibits 52%. Further, 3-acetyl coumarin thiosemicarbazone provides neuroprotection against Aβ-induced cytotoxicity in SH-SY5Y cell line. These findings indicate that thiosemicarbazone modification renders 3-acetyl coumarin neuroprotective properties.

  18. Serotonin mediates a learned increase in attraction to high concentrations of benzaldehyde in aged C. elegans.

    Science.gov (United States)

    Tsui, David; van der Kooy, Derek

    2008-11-01

    We utilized olfactory-mediated chemotaxis in Caenorhabditis elegans to examine the effect of aging on information processing and animal behavior. Wild-type (N2) young adults (day 4) initially approach and eventually avoid a point source of benzaldehyde. Aged adult animals (day 7) showed a stronger initial approach and a delayed avoidance to benzaldehyde compared with young adults. This delayed avoidance is due to an increased attraction rather than a decreased avoidance to benzaldehyde because (1) aged odr-3 mutants that are defective in odor attraction showed no delayed benzaldehyde avoidance, and (2) the delay in avoidance was also observed with another attractant diacetyl, but not the repellent octanol. Interestingly, the stronger expression of attractive behavior was only observed at benzaldehyde concentrations of 1% or higher. When worms were grown on nonbacterial growth media instead of Escherichia coli, thus removing the contingency between odors released from the food and the food itself, the increase in attraction to benzaldehyde disappeared. The increased attraction recovered after reinitiating the odor-food contingency by returning animals to E. coli food or supplementing axenic media with benzaldehyde. Moreover, serotonin-deficient mutants showed a deficit in the age-enhanced attraction. These results suggest that the increased attraction to benzaldehyde in aged worms is (1) serotonin mediated, (2) specific to high concentration of odorants, and (3) dependent on a learned association of odor metabolites with the presence of food. We propose that associative learning may selectively modify pathways at or downstream from a low-affinity olfactory receptor.

  19. Synthesis, Crystal Structural Investigations, and DFT Calculations of Novel Thiosemicarbazones

    Directory of Open Access Journals (Sweden)

    Brian J. Anderson

    2016-02-01

    Full Text Available The crystal and molecular structures of three new thiosemicarbazones, 2-[1-(2-hydroxy-5-methoxyphenylethylidene]-N-methyl-hydrazinecarbothioamide monohydrate (1, 2-[1-(2-hydroxy-5-methoxyphenylethylidene]-N-ethyl-hydrazinecarbothioamide (2 and 2-[1-(2-hydroxy-4-methoxyphenylethylidene]-N-ethyl-hydrazinecarbothioamide acetonitrile solvate (3, are reported and confirmed by single crystal X-ray diffraction, NMR and UV-vis spectroscopic data. Compound (1, C11H15N3O2S·H2O, crystallizes in the monoclinic with space group P21/c, with cell parameters a = 8.2304(3 Å, b = 16.2787(6 Å, c = 9.9708(4 Å, and β = 103.355(4°. Compound (2, C12H17N3O2S, crystallizes in the C2/c space group with cell parameters a = 23.3083(6 Å, b = 8.2956(2 Å, c = 13.5312(3 Å, β = 91.077(2°. Compound (3, C11H15N3O2S·C2H3N, crystallizes in the triclinic P-1 space group with cell constants a = 8.9384(7 Å, b = 9.5167(8 Å, c = 10.0574(8 Å, α = 110.773(7°, β = 92.413(6°, and γ = 90.654(7°. DFT B3LYP/6-31(G geometry optimized molecular orbital calculations were also performed and frontier molecular orbitals of each compound are displayed. The correlations between the calculated molecular orbital energies (eV for the surfaces of the frontier molecular orbitals to the electronic excitation transitions from the absorption spectra of each compound have been proposed. Additionally, similar correlations observed among three closely related compounds, (4, 2-[1-(2-hydroxy-4-methoxyphenylethylidene]-N-methyl-hydrazinecarbothioamide, (5, 2-[1-(2-hydroxy-6-methoxyphenylethylidene]-N-methyl-hydrazinecarbothioamide acetonitrile monosolvate and (6, 2-[1-(2-hydroxy-6-methoxyphenylethylidene]-N-ethyl-hydrazinecarbothioamide, examining structural differences from the substitution of the methoxy group from the phenyl ring (4, 5, or 6 position and the substitution of the terminal amine (methyl or ethyl to their frontier molecular orbital surfaces and from their Density Functional

  20. Oscillatory oxidation of benzaldehyde by air. 1. Experimental observations

    Energy Technology Data Exchange (ETDEWEB)

    Colussi, A.J.; Ghibaudi, E.; Yuan, Zhi; Noyes, R.M. (Univ. of Oregon, Eugene (USA))

    1990-11-21

    In 90% aqueous acetic acid at 70 C, the oxidation of benzaldehyde to benzoic acid by air is catalyzed by a mixture of cobalt(II) and bromide. Jensen has shown that the concentration of cobalt(III) undergoes major oscillations during the reaction. Consistent with these prior observations, the authors find that the rate of formation of cobalt(III) increases exponentially until at about 10{sup {minus}5} M s{sup {minus}1} it becomes comparable to the maximum rate at which O{sub 2} can be transported from atmosphere to solution. A virtually discontinuous change of behavior then causes the concentration of cobalt(III) to decrease at about 10{sup {minus}4} M s{sup {minus}1}; the rate of this decrease is almost constant and independent of (Co{sup III}) until most of this species has been consumed. The authors have examined most of the subsystems that they could prepare and study independently. Among other observations, they find that increasing acidity increases the rate at which bromide catalyzes the oxidation of benzaldehyde by cobalt(III).

  1. Kinetic secondary deuterium isotope effects for substituted benzaldehyde cyanohydrin formation

    Energy Technology Data Exchange (ETDEWEB)

    Okano, V.; do Amaral, L.; Cordes, E.H.

    1976-07-07

    ..cap alpha.. secondary deuterium isotope effects have been measured for the observed rate constants for addition of cyanide ion to a series of substituted benzaldehydes in aqueous solution at 25/sup 0/C. Under the experimental conditions employed, these reactions did not proceed to completion, and the observed isotope effects were corrected to account for the influence of the reverse reaction employing measured equilibrium constants for cyanohydrin formation and previously determined secondary deuterium isotope effect for the equilibrium constant for 4-methoxybenzaldehyde cyanohydrin formation. In the four cases studied, values of k/sub D//k/sub H/ varied from 1.15 to 1.20, only slightly lower than the calculated maximal value for complete formation of the anionic tetrahedral species which is the immediate product of the rate-determining step, 1.21. A trend in isotope effect as a function of substrate reactivity could not be definitively established. The results suffice to establish that addition of cyanide to benzaldehydes proceeds via transition states in which rehybridization of carbonyl carbon to the tetrahedral geometry is nearly complete.

  2. Reactions of benzaldehyde with trialkylsilyl metal carbonyl complexes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.L.; Gladysz, J.A.

    1979-10-10

    The use of trialkylsilyl metal carbonyl complexes as reagents for organometallic synthesis was investigated. In this communication it was reported that the metal silanes (CO)/sub 5/MnSi(CH/sub 3/)/sub 3/(1), (CO)/sub 4/Fe(SiCH/sub 3/)/sub 3/)/sub 2/(2), and (CO/sub 4/)FeSi(CH/sub 3/)/sub 2/(CH/sub 2/CH/sub 2/Si(CH/sub 3/)/sub 2/(3) undergo reactions with benzaldehyde which result, under appropriate conditions, in the formation of ..cap alpha..-silyloxybenzyl- and benzylidene-derived ligands. It was reported that a strongly oxygenophilic group must be present on manganese in order for a benzaldehyde adduct to be detectably formed. The catalytic hydrosilyation of aldehydes and ketones has been postulated to involve a similar carbonyl group addition by a catalytically active L/sb n/M(H)SiR/sub 3/ species. The presence of chelating disilane ligand enables the chemistry of 3 to dramaticaly diverge from that of 2. With aliphatic aldehydes and ketones, 1 and 2 react differently. (DP)

  3. Synthesis, biological evaluation and molecular docking of N-phenyl thiosemicarbazones as urease inhibitors.

    Science.gov (United States)

    Hameed, Abdul; Khan, Khalid Mohammed; Zehra, Syeda Tazeen; Ahmed, Ramasa; Shafiq, Zahid; Bakht, Syeda Mahwish; Yaqub, Muhammad; Hussain, Mazhar; de la Vega de León, Antonio; Furtmann, Norbert; Bajorath, Jürgen; Shad, Hazoor Ahmad; Tahir, Muhammad Nawaz; Iqbal, Jamshed

    2015-08-01

    Urease is an important enzyme which breaks urea into ammonia and carbon dioxide during metabolic processes. However, an elevated activity of urease causes various complications of clinical importance. The inhibition of urease activity with small molecules as inhibitors is an effective strategy for therapeutic intervention. Herein, we have synthesized a series of 19 benzofurane linked N-phenyl semithiocarbazones (3a-3s). All the compounds were screened for enzyme inhibitor activity against Jack bean urease. The synthesized N-phenyl thiosemicarbazones had varying activity levels with IC50 values between 0.077 ± 0.001 and 24.04 ± 0.14 μM compared to standard inhibitor, thiourea (IC50 = 21 ± 0.11 μM). The activities of these compounds may be due to their close resemblance of thiourea. A docking study with Jack bean urease (PDB ID: 4H9M) revealed possible binding modes of N-phenyl thiosemicarbazones.

  4. Complexes of 3dn Metal Ions with Thiosemicarbazones: Synthesis and Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Tudor Rosu

    2007-04-01

    Full Text Available The chelating behavior of the thiosemicarbazone derivatives of 2-hydroxy-8-R-tricyclo[7.3.1.0.2,7]tridecane-13-one (where R = H, CH3, C6H5 towards Co(II, Ni(II and Cu(II has been investigated by elemental analysis, molar conductivity measurements, UV-VIS, IR, ESR spectroscopy and thermal studies. It was deduced from the experiments performed that the ligands coordinate to metal ions in different ways – neutral bidentate or mononegative bidentate – depending on the nature of R. Also, if metal acetates are used instead of metal chlorides, the ligands coordinate in a mononegative bidentate fashion, regardless of the nature of R or the thiosemicarbazone type ligand. The antimicrobial activity of the ligands and of the complexes towards samples of Acinetobacter boumanii, Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa was determined.

  5. The versatility of salicylaldehyde thiosemicarbazone in the determination of copper in blood using adsorptive stripping voltammetry.

    Science.gov (United States)

    Mahajan, Rakesh Kumar; Walia, T P S; Sumanjit; Lobana, T S

    2005-10-15

    The adsorptive cathodic stripping voltammetry technique (AdCSV) is used to determine copper(II) using salicylaldehyde thiosemicarbazone (N, S- donor) as a complexing agent on hanging mercury drop electrode at pH 9.3. Variable factors affecting the response, i.e. the concentration of ligand, pH, adsorption potential and adsorption time are assessed and optimized. The adsorbed complex of copper(II) and salicylaldehyde thiosemicarbazone gives a well defined cathodic stripping peak current at -0.35 V, which has been used for the determination of copper in the concentration range of 7.85 x 10(-9) to 8.00 x 10(-6)M with accumulation time of 360 s at -0.1 V versus Ag/AgCl. This technique has been applied for the determination of copper in various digested samples of whole blood at trace levels.

  6. Deposition of rod-shaped antimony sulfide thin films from single-source antimony thiosemicarbazone precursors

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jasmine B.; Sawant, Narayan V. [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai - 400 098 (India); Garje, Shivram S., E-mail: ssgarje@chem.mu.ac.i [Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai - 400 098 (India)

    2010-04-02

    Antimony sulfide thin films were deposited on glass substrates by aerosol assisted chemical vapour deposition technique using single source precursors, namely, antimony(III) thiosemicarbazones, SbCl{sub 3}(L) (L = thiosemicarbazones of thiophene-2-carboxaldehyde (1) and cinnamaldehyde (2)). The deposited films were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis and UV-visible spectroscopy in order to identify their phases, morphologies, compositions and optical properties respectively. These characterizations revealed that the films were comprised of rod-shaped particles of orthorhombic stibnite (Sb{sub 2}S{sub 3}) with a Sb:S stoichiometry of {approx} 1:1.3. The calculated optical band gap from UV-vis absorption spectrum is found to be 3.48 eV.

  7. Palladium complexes of pyrrole-2-aldehyde thiosemicarbazone: Synthesis, structure and spectral properties

    Indian Academy of Sciences (India)

    Piyali Paul; Samaresh Bhattacharya

    2014-09-01

    Reaction of pyrrole-2-aldehyde thiosemicarbazone (abbreviated as H2L, where H2 stands for the two potentially dissociable protons) with [Pd(PPh3)2Cl2] in ethanol in the presence of NEt3 afforded two complexes, [Pd(PPh3)(HLNS)Cl] and [Pd(PPh3)(LNNS)], where the thiosemicarbazone ligand is coordinated to the metal centre respectively as monoanionic N,S-donor (depicted by HLNS) and dianionic N,N,S-donor (depicted by LNNS). Similar reaction with Na2[PdCl4] afforded a bis-complex, [Pd(HLNS)2]. Crystal structures of all the three complexes have been determined.With reference to the structure of the uncoordinated thiosemicarbazone (H2L), the N,S-coordinationmode observed in [Pd(PPh3)(HLNS)Cl] and [Pd(HLNS)2] is associated with a geometrical change around the imine bond.While the N,N,S-mode of binding observed in [Pd(PPh3)(LNNS)] takes place without any such geometrical change. All three complexes display intense absorptions in the visible and ultraviolet regions, which have been analyzed by TDDFT method.

  8. Organotin(IV) complexes of 2-pyridineformamide-derived thiosemicarbazones: antimicrobial and cytotoxic effects.

    Science.gov (United States)

    Mendes, Isolda C; Moreira, Juliana P; Ardisson, José D; Santos, Raquel Gouvea Dos; da Silva, Paulo Roberto O; Garcia, Isabel; Castiñeiras, Alfonso; Beraldo, Heloisa

    2008-07-01

    Reaction of n-butyltin trichloride [(n-Bu)SnCl(3)] with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me) and N(4)-ethyl (H2Am4Et) derivatives gave [(n-Bu)Sn(2Am4DH)Cl(2)] (1), [(n-Bu)Sn(2Am4Me)Cl(2)] (2), and [(n-Bu)Sn(2Am4Et)Cl(2)] (3). Thiosemicarbazones as well as their tin complexes are active as antimicrobials against the growth of Candida albicans and Salmonella typhimurium and were highly active against malignant glioblastoma. The cytotoxic activity of complexes 1-3 is similar. Among the studied compounds [(n-Bu)Sn(2Am4DH)Cl(2)] (1) was the most active as antiproliferative (cytostatic) agent. Thiosemicarbazones and their tin(IV) complexes proved to be more potent as cytotoxic agents than cisplatin. All the compounds were able to induce apoptosis.

  9. Complexes of 2-acetyl-gamma-butyrolactone and 2-furancarbaldehyde thiosemicarbazones: antibacterial and antifungal activity.

    Science.gov (United States)

    Rodríguez-Argüelles, María C; Tourón-Touceda, Patricia; Cao, Roberto; García-Deibe, Ana M; Pelagatti, Paolo; Pelizzi, Corrado; Zani, Franca

    2009-01-01

    Cobalt, nickel, copper and zinc coordination compounds of two thiosemicarbazones with general composition ML(2) (L: monodeprotonated ligand corresponding to 2-acetyl-gamma-butyrolactone thiosemicarbazone, HL(1), and 2-furancarbaldehyde thiosemicarbazone, HL(2)) and also complexes with general composition MCl(2)(HL(2)) were synthesized (except [NiCl(2)(HL(2))] and [Co(L(2))(2)]). The interaction of CuCl(2) with HL(2) gave [CuCl(HL(2))], a copper(I) complex. The ligands and metal complexes were characterized by IR, (1)H and (13)C NMR spectroscopy, and magnetic susceptibility measurements. The crystal structure of [Ni(L(2))(2)]x 2dmso was determined and a trans-square planar coordination of the two kappa(2)-N,S chelate rings forming polymeric strips through H-bonds with dmso was observed. Actually, in all the reported complexes both ligands behaved as kappa(2)-N,S chelates, except in the case of [Co(L(1))(2)] in which HL(1) is tridentate kappa(3)-N,S,O. The antimicrobial properties of all compounds were studied using a wide spectrum of bacterial and fungal strains. The copper complexes of HL(2) were the most active against all strains, including dermatophytes and phytopathogenic fungi. Most of the studied compounds, especially [Cu(L(1))(2)], presented good activity against Haemophilus influenzae, a very harmful bacterium to humans.

  10. Stereochemical trends of metal derivatives of some heterocyclic-2-thiones and thiosemicarbazones

    Indian Academy of Sciences (India)

    Tarlok S Lobana

    2000-06-01

    The interaction of heterocyclic thiones/thiosemicarbazones with metals has been the subject of several investigations as these ligands contain chemically active groups, -N(H)-C(=S)- -N=C(-SH)- ,and are useful model compounds for sulphur-containing analogues of purine and pyrimidine bases. Heterocylic-2-thiones bind to metals in several ways and lead to the formation of monomeric or polymeric complexes. For example, the simplest prototype of heterocylic-2-thiones, namely, pyridine-2-thione has several ways of binding, notably, terminal S-bonding and S-bridging (in neutral form), while in anionic form the modes are terminal S-bonding, S-bridging, N,S-chelation, N,S-bridging, N,S-chelation-cum-S-bridging and N,S-bridging-cum-S-bridging. Similarly, thiosemicarbazones bind to metals as S-bonded unidentates or N,S-chelates. In this paper, the chemistry of pyridine-2-thione, its N-oxide, 2-(benzylthio)pyridine-1-oxide thione with metals like iron(II), ruthenium(II), nickel(II), palladium(II), platinum(II), copper(I), copper(II), silver(I) and mercury(II) is briefly described. As regards thiosemicarbazones, focus is only on two compounds, namely organomercury(II) and organothallium(III). A variety of new molecules, well characterised by NMR and X-ray crystallography, is introduced.

  11. In vivo anticancer activity of vanillin, benzophenone and acetophenone thiosemicarbazones on Swiss albino mice

    Institute of Scientific and Technical Information of China (English)

    Sha Md. Shahan Shahriar; Shaikh M Mohsin Ali; Mele Jesmin; Md. Khairul Islam; Sarozit Mondal

    2014-01-01

    Objective: To study the anticancer activities of three schiff bases viz. vanillin thiosemicarbazone, benzophenone thiosemicarbazone and acetophenone thiosemicarbazone against Ehrlich ascites carcinoma (EAC) cells in Swiss albino mice. Methods: Synthesized compounds have administrated into the intraperitoneal cavity of the EAC inoculated mice at two doses. The anticancer activities have studied by monitoring the parameters such as cell growth inhibition, tumor weight measurement, survival time of EAC bearing mice as well as the changes in depleted hematological parameters due to tumorgenesis. All such data have been compared with those of a known standard drug bleomycin at the dose of 0.3 mg/kg (i.p.).Results:It has been found that these bases enhanced life span, reduced average tumor weight and inhibited tumor cell growth of EAC cell bearing mice remarkably. The results were similar in potency to those obtained with bleomycin. It was also found that the depleted hematological parameters (red blood count, white blood count and haemoglobin content) were found to be restored gradually towards normal within few weeks after ceasing the treatment.Conclusions:The compounds can be primarily considered more or less as potent anticancer agents.

  12. In vitro antiparasitic activity of new thiosemicarbazones in strains of Trypanosoma cruzi.

    Science.gov (United States)

    Moreno-Rodríguez, Adriana; Salazar-Schettino, Paz María; Bautista, Juan Luis; Hernández-Luis, Francisco; Torrens, Hugo; Guevara-Gómez, Yolanda; Pina-Canseco, Socorro; Torres, Martha Bucio; Cabrera-Bravo, Margarita; Martinez, Cesar Mendoza; Pérez-Campos, Eduardo

    2014-11-24

    In this study thiosemicarbazones derivatives of 5-[(trifluoromethyl)phenylthio]-2-furaldehyde were synthesized and evaluated in terms of their efficiency in challenging the growth of epimastigote forms of Trypanosoma cruzi, the etiological agent of Chagas' disease. A number of compounds were synthesized from 5-bromo-2-furfuraldehyde using nucleophilic aromatic substitution, with a series of trifluoromethyl thiolates, followed by condensation reactions with thiosemicarbazide. Their molecular structures were determined by (1)H, (13)C and (19)F NMR, MS and IR spectroscopy. When tested with T. cruzi, they showed a stronger reaction, similar to nifurtimox and benznidazole, with the 5-[nitro-4-(trifluoromethyl)phenyltio]-2-furaldehyde thiosemicarbazone (compound 4) showing the highest antiparasitic activity. This improved activity may be explained due to the nitro group present in the molecule, which potentiates its activity. The thiosemicarbazone derivatives in this study showed no apoptosis in platelets or monocytes, nor did they induce platelet activation. The trypanocidal activity of these substances represents a good starting point for a medicinal chemistry program aimed at therapy for Chagas' disease.

  13. In vitro antioxidant, antiinflammatory and in silico molecular docking studies of thiosemicarbazones

    Science.gov (United States)

    Subhashree, G. R.; Haribabu, J.; Saranya, S.; Yuvaraj, P.; Anantha Krishnan, D.; Karvembu, R.; Gayathri, D.

    2017-10-01

    A series of 5-methoxysalicylaldehyde appended thiosemicarbazones (1-4) and 2-hydroxy-1-naphthaldehyde appended thiosemicarbazones (5-8) was obtained from the reactions between 5-methoxysalicylaldehyde/2-hydroxy-1-naphthaldehyde and (un)substituted thiosemicarbazides with the view to ascertain their biological properties brought about by the change in substitution at N-terminal position of the thiosemicarbazide derivatives. The compounds were fully characterized by elemental analyses, and various spectroscopic techniques (UV-Visible, FT-IR, NMR and mass). The solid-state structure of three compounds (1, 2 and 7) was determined by single crystal X-ray diffraction method. The compounds (1, 2 and 7) have adopted a monoclinic crystal system with P21/c (1 and 2) or C2/c (7) space group. Antioxidant and non-haemolysis activities of the compounds (1-8) were analyzed by in vitro DPPH and haemolysis assays, respectively. Antiinflammatory potential was verified by in vitro PLA2 inhibition assay and in silico molecular docking study. In vitro and in silico studies revealed promising antiinflammatory potential of the thiosemicarbazone derivatives. Compounds 2, 4, 6, 7 and 8 showed significant antiinflammatory activity.

  14. Cherry-flavoured electronic cigarettes expose users to the inhalation irritant, benzaldehyde.

    Science.gov (United States)

    Kosmider, Leon; Sobczak, Andrzej; Prokopowicz, Adam; Kurek, Jolanta; Zaciera, Marzena; Knysak, Jakub; Smith, Danielle; Goniewicz, Maciej L

    2016-04-01

    Many non-cigarette tobacco products, including e-cigarettes, contain various flavourings, such as fruit flavours. Although many flavourings used in e-cigarettes are generally recognised as safe when used in food products, concerns have been raised about the potential inhalation toxicity of these chemicals. Benzaldehyde, which is a key ingredient in natural fruit flavours, has been shown to cause irritation of respiratory airways in animal and occupational exposure studies. Given the potential inhalation toxicity of this compound, we measured benzaldehyde in aerosol generated in a laboratory setting from flavoured e-cigarettes purchased online and detected benzaldehyde in 108 out of 145 products. The highest levels of benzaldehyde were detected in cherry-flavoured products. The benzaldehyde doses inhaled with 30 puffs from flavoured e-cigarettes were often higher than doses inhaled from a conventional cigarette. Levels in cherry-flavoured products were >1000 times lower than doses inhaled in the workplace. While e-cigarettes seem to be a promising harm reduction tool for smokers, findings indicate that using these products could result in repeated inhalation of benzaldehyde, with long-term users risking regular exposure to the substance. Given the uncertainty surrounding adverse health effects stemming from long-term inhalation of flavouring ingredients such as benzaldehyde, clinicians need to be aware of this emerging risk and ask their patients about use of flavoured e-cigarettes.

  15. Microwave synthesis of mixed ligand diimine-thiosemicarbazone complexes of ruthenium(II): biophysical reactivity and cytotoxicity.

    Science.gov (United States)

    Beckford, Floyd A; Shaloski, Michael; Leblanc, Gabriel; Thessing, Jeffrey; Lewis-Alleyne, Lesley C; Holder, Alvin A; Li, Liya; Seeram, Navindra P

    2009-12-28

    A novel microwave-assisted synthetic method has been used to synthesise a series of mixed ligand ruthenium(II) compounds containing diimine as well as bidentate thiosemicarbazone ligands. The compounds contain the diimine 1,10-phenanthroline (phen) or 2,2'-bipyridine (bpy) and the thiosemicarbazone is derived from 9-anthraldehyde. Based on elemental analyses and spectroscopic data, the compounds are best formulated as [(phen)(2)Ru(thiosemicarbazone)](PF(6))(2) and [(phen)(2)Ru(thiosemicarbazone)](PF(6))(2) where thiosemicarbazone = 9-anthraldehydethiosemicarbazone, 9-anthraldehyde-N(4)-methylthiosemicarbazone, and 9-anthraldehyde-N(4)-ethylthiosemicarbazone. Fluorescence competition studies with ethidium bromide, along with viscometric measurements suggests that the complexes bind calf thymus DNA (CTDNA) relatively strongly via an intercalative mode possibly involving the aromatic rings of the diimine ligands. The complexes show good cytotoxic profiles against MCF-7 and MDA-MB-231 (breast adenocarcinoma) as well as HCT 116 and HT-29 (colorectal carcinoma) cell lines.

  16. Polycondensation of pyrrole and benzaldehyde catalyzed by Maghnite–H+

    Directory of Open Access Journals (Sweden)

    2007-07-01

    Full Text Available Rapid synthesis of poly[(pyrrole-2,5-diyl-co-(benzylidene] was achieved under microwave irradiation via the condensation of pyrrole and benzaldehyde in 1,2-dichloroethane using acid exchanged montmorillonite clay called Maghnite–H+ (Mag–H+ as an efficient catalyst. The effect of the amount of catalyst and of time on the polymerization yield and on the viscosity of the polymers was studied. Compared with conventional static interfacial polymerization, the microwave-radiation polymerization reaction proceeded rapidly and was completed within 35 s. The conjugated polymer was characterized by means of 1H-NMR, X-ray diffraction, FT-IR spectroscopy and AFM. The X-ray data showed the presence of a backbone form of the [(pyrrole-2,5-diyl-co-(benzylidene] formed.

  17. (E-Benzaldehyde (2,4,6-trichlorophenylhydrazone

    Directory of Open Access Journals (Sweden)

    Yan-Lan Huang

    2011-02-01

    Full Text Available The title compound, C13H9Cl3N2, was obtained from a condensation reaction of benzaldehyde and 2,4,6-trichlorophenylhydrazine. The molecule assumes an E configuration with the phenyl ring and trichlorophenyl ring located on opposite sides of the C=N bond. The phenyl ring is oriented at a dihedral angle of 42.58 (12° with respect to the tricholorophenyl ring. In the crystal, the molecules are linked via N—H...N hydrogen bonds, forming supramolecular chains running along the c axis. π–π stacking is present between parallel trichlorophenyl rings of adjacent molecules, the face-to-face and centroid–centroid distances being 3.369 (14 and 3.724 (2 Å, respectively.

  18. Explorations of Crystalline Effects on 4-(Benzyloxy)Benzaldehyde Properties

    Science.gov (United States)

    Harismah, Kun; Ozkendir, O. Murat; Mirzaei, Mahmoud

    2015-12-01

    The properties of 4-(benzyloxy)benzaldehyde (BBA), as a pharmaceutically important compound, have been investigated through the density functional theory (DFT) calculations. The properties of original crystalline and optimised gaseous structures have been evaluated to recognise the crystalline effects. In addition to the structural properties, nuclear magnetic resonance (NMR) properties have also been evaluated for both investigated systems to better detect the effects in atomic levels. The results indicated that the structural shape of BBA is significantly changed in the optimised gaseous system, showing significant crystalline effects on the geometrical positions. Moreover, the magnitudes for energies and dipole moments indicate notable effects on the electronic properties. The evaluated NMR properties also show that the atoms of aromatic systems detect significant changes more than the atoms of aliphatic systems in the investigated BBA. And finally, the oxygen bridge atom plays a dominant role in combining two benzene rings of BBA.

  19. Strong effect of copper(II) coordination on antiproliferative activity of thiosemicarbazone-piperazine and thiosemicarbazone-morpholine hybrids.

    Science.gov (United States)

    Bacher, Felix; Dömötör, Orsolya; Chugunova, Anastasia; Nagy, Nóra V; Filipović, Lana; Radulović, Siniša; Enyedy, Éva A; Arion, Vladimir B

    2015-05-21

    In this study, 2-formylpyridine thiosemicarbazones and three different heterocyclic pharmacophores were combined to prepare thiosemicarbazone–piperazine mPip-FTSC (HL1) and mPip-dm-FTSC (HL2), thiosemicarbazone–morpholine Morph-FTSC (HL3) and Morph-dm-FTSC (HL4), thiosemicarbazone–methylpyrrole-2-carboxylate hybrids mPyrr-FTSC (HL5) and mPyrr-dm-FTSC (HL6) as well as their copper(II) complexes [CuCl(mPipH-FTSC-H)]Cl (1 + H)Cl, [CuCl(mPipH-dm-FTSC-H)]Cl (2 + H)Cl, [CuCl(Morph-FTSC-H)] (3), [CuCl(Morph-dm-FTSC-H)] (4), [CuCl(mPyrr-FTSC-H)(H2O)] (5) and [CuCl(mPyrr-dm-FTSC-H)(H2O)] (6). The substances were characterized by elemental analysis, one- and two-dimensional NMR spectroscopy (HL1–HL6), ESI mass spectrometry, IR and UV–vis spectroscopy and single crystal X-ray diffraction (1–5). All compounds were prepared in an effort to generate potential antitumor agents with an improved therapeutic index. In addition, the effect of structural alterations with organic hybrids on aqueous solubility and copper(II) coordination ability was investigated. Complexation of ligands HL2 and HL4 with copper(II) was studied in aqueous solution by pH-potentiometry, UV–vis spectrophotometry and EPR spectroscopy. Proton dissociation processes of HL2 and HL4 were also characterized in detail and microscopic constants for the Z/E isomers were determined. While the hybrids HL5, HL6 and their copper(II) complexes 5 and 6 proved to be insoluble in aqueous solution, precluding antiproliferative activity studies, the thiosemicarbazone–piperazine and thiosemicarbazone–morpholine hybrids HL1–HL4, as well as copper(II) complexes 1–4 were soluble in water enabling cytotoxicity assays. Interestingly, the metal-free hybrids showed very low or even a lack of cytotoxicity (IC50 values > 300 μM) in two human cancer cell lines HeLa (cervical carcinoma) and A549 (alveolar basal adenocarcinoma), whereas their copper(II) complexes were cytotoxic showing IC50 values from 25.5 to 65.1

  20. Bioproduction of benzaldehyde in a solid-liquid two-phase partitioning bioreactor using Pichia pastoris.

    Science.gov (United States)

    Jain, Ashu N; Khan, Tanya R; Daugulis, Andrew J

    2010-11-01

    The bioproduction of benzaldehyde from benzyl alcohol using Pichia pastoris was examined in a solid-liquid two-phase partitioning bioreactor (TPPB) to reduce substrate and product inhibition. Rational polymer selection identified Elvax 40W as an effective sequestering phase, possessing partition coefficients for benzyl alcohol and benzaldehyde of 3.5 and 35.4, respectively. The use of Elvax 40W increased the overall mass of benzaldehyde produced by approx. 300% in a 5 l bioreactor, relative to a single phase biotransformation. The two-phase system had a molar yield of 0.99, indicating that only minor losses occurred. These results provide a promising starting point for solid-liquid TPPBs to enhance benzaldehyde production, and suggest that multiple, targeted polymers may provide relief for transformations characterized by multiple inhibitory substrates/product/by-products.

  1. Isotope effect in the reaction of cumyl peroxide radical with benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Simonov, M.A.; Opeida, I.A.; Romantsevich, A.M.

    1986-08-01

    The rate constants for reaction of cumyl peroxide with benzaldehyde and benzaldehyde-D/sub 1/ have been measured; k /SUP H/ = 10 /SUP 7.61+or-0.18/ exp((-9.2 + or - 0.3)/RT) and k /SUP D/ = 10 /SUP 7.31+or-0.40/ exp ((-10.8 + or - 0.6)/RT) liter/mole.sec, respectively.

  2. Benzaldehyde as an insecticidal, antimicrobial, and antioxidant compound produced by Photorhabdus temperata M1021.

    Science.gov (United States)

    Ullah, Ihsan; Khan, Abdul Latif; Ali, Liaqat; Khan, Abdur Rahim; Waqas, Muhammad; Hussain, Javid; Lee, In-Jung; Shin, Jae-Ho

    2015-02-01

    The Photorhabdus temperata M1021 secretes toxic compounds that kill their insect hosts by arresting immune responses. Present study was aimed to purify the insecticidal and antimicrobial compound(s) from the culture extract of P. temperata M1021 through bioassay guided fractionation. An ethyl acetate (EtOAc) extract of the P. temperata M1021 exhibited 100% mortality in Galleria mellonella larvae within 72 h. In addition, EtOAc extract and bioactive compound 1 purified form the extract through to column chromatography, showed phenol oxidase inhibition up to 60% and 80% respectively. The analysis of (1)H and (13)C NMR spectra revealed the identity of pure compound as "benzaldehyde". The benzaldehyde showed insecticidal activity against G. mellonella in a dose-dependent manner and 100% insect mortality was observed at 108 h after injection of 8 mM benzaldehyde. In a PO inhibition assay, 4, 6, and 8 mM concentrations of benzaldehyde were found to inhibit PO activity about 15%, 42%, and 80% respectively. In addition, nodule formation was significantly (P benzaldehyde as compare to control. Moreover, benzaldehyde was found to have great antioxidant activity and maximum antioxidant activity was 52.9% at 8 mM benzaldehyde as compare to control. Antimicrobial activity was assessed by MIC values ranged from 6 mM 10 mM for bacterial strains and 8 mM to 10 mM for fungal strains. The results suggest that benzaldehyde could be applicable for developing novel insecticide for agriculture use.

  3. Influence of Photosensitive Group Concentration on Birefringence Induced in Benzaldehyde Polymers

    Science.gov (United States)

    Mahilny, U. V.; Stankevich, A. I.; Trofimova, A. V.

    2014-01-01

    Induction of optical anisotropy in benzaldehyde polymer layers by linearly polarized UV radiation was investigated experimentally. Negative dichroism in absorption spectra and strong negative birefringence (-2 · 10-3) were related to the presence of an oriented ensemble of residual benzaldehyde groups. The thermal stability of photoinduced birefringence at high photosensitive group concentration was associated with a high density of photocross-links formed between macromolecules.

  4. Synthesis, Spectral and Thermal Properties of Some Penta-Coordinated Complexes of Oxovanadium(IV) Derived from Thiosemicarbazones of 4-Aminoantipyrine

    OpenAIRE

    Agarwal, Ram K. [رام اجراول; Prasad, Surendra; GAHLOT, Neetu

    2004-01-01

    The paper reports the synthesis of crystalline oxovanadium(IV), VO2+, complexes of thiosemicarbazones, i.e. 4[N-(4'-nitrobenzalidene)amino]antipyrine thiosemicarbazone (4'-NO2BAAPTS) and 4[N-(furan-2'-aldimine)amino]antipyrine thiosemicarbazone (FFAAPTS) with general composition VOX2L (X = Cl, Br, I, NO3 or NCS) and VO(ClO4)2(L)H2O (L = 4'-NO2BAAPTS or FFAAPTS). All the complexes were characterized by elemental analyses, molar mass, molar conductance, magnetic susc...

  5. Coordination Chemistry of Polyaromatic Thiosemicarbazones 2: Synthesis and Biological Activity of Zinc, Cobalt, and Copper Complexes of 1-(Naphthalene-2-ylethanone Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Marc-Andre LeBlanc

    2011-01-01

    Full Text Available A novel thiosemicarbazone from 2-acetonaphthone (represented as acnTSC has been synthesized and its basic coordination chemistry with zinc(II, cobalt(II, and copper(II explored. The complexes were characterized by elemental analysis and various spectroscopic techniques and are best formulated as [M(acnTSC2Cl2] with the metal likely in an octahedral environment. The anticancer activity of the complexes was determined against a panel of human colon cancer cells (HCT-116 and Caco-2. The compounds bind to DNA via an intercalative mode with binding constants of 9.7×104 M-1, 1.8×105 M-1, and 9.5×104 M-1 for the zinc, cobalt, and copper complexes, respectively.

  6. 1-Pyrenecarboxaldehyde thiosemicarbazone:A novel fluorescent molecular sensor towards mercury(Ⅱ)ion

    Institute of Scientific and Technical Information of China (English)

    Xue Mei Wang; Hua Yan; Xin Lu Feng; Yong Chen

    2010-01-01

    A novel and simple fluorescent molecular sensor,1-pyrenecarboxaldehyde thiosemicarbazone(Hpytsc),was synthesized.Its higher sensitivity and selectivity to mercury(Ⅱ)ion were studied through absorption and emission channels.The UV-vis spectra show that the increasing mercury(Ⅱ)ion concentrations result in the decreasing absorption intensity.The fluorescence monomer emission of Hpytsc is enhanced upon binding mercury(Ⅱ)ion,which should be due to the 1:1 complex formation between Hpytsc and metal ion.

  7. Synthesis of New Thiazine and Thiosemicarbazone Derivatives from D-Xylose

    Institute of Scientific and Technical Information of China (English)

    Xiao Ming JI; He Ping SUN; Hai Wei XU; Hong Min LIU

    2006-01-01

    1,2-O-Isopropylidene-5-O-p-toluenesulfonyl-α-D-erythro-pentofuranos-3-ulose 1 was treated with thiourea and aminothiourea to give a D-ribose derivative 2 bearing a 2-amino 1,3-thiazine ring and a thiosemicarbazone derivative 5, respectively. 2 was acylated with Ac2O and propandioic acid to afford two acylation derivatives 3 and 4, respectively. Reduction of 5with NaBH4 in methanol produced a hydrothiosemicarbazone derivative 6. The absolute configuration of 2 was confirmed by X-ray crystallographic analysis. The structures of all products were elucidated by IR, NMR and HRMS spectra.

  8. Electrosynthesis in room-temperature ionic liquids: benzaldehyde reduction

    Energy Technology Data Exchange (ETDEWEB)

    Doherty, Andrew P.; Brooks, Claudine A

    2004-09-15

    The electrochemical reduction of benzaldehyde at Pt microelectrodes in 1-butyl-1-methyl pyrrolidinium triflimide ([Bmpyr][NTF{sub 2}]) room temperature ionic liquid is reported. At high potential sweep rates (>1000 V s{sup -1}) reduction occurs as two reversible one-electron reduction processes corresponding to the reversible formation of the radical anion (at -1.6 V versus Pt) and the dianion species (at -2.2 V versus Pt). The second order rate constant for radical anion-radical anion dimerisation was 1.4x10{sup 4} mol{sup -1} dm{sup 3} s{sup -1}, while the pseudo-first-order rate constant for the subsequent formation of the alcohol (or electroinactive alcoholate) was 1000 s{sup -1}. Kinetically, the electrochemistry is similar to that in acetonitrile or alkaline ethanol. At lower potential sweep rates, a third irreversible reduction occurs which appears to be the reduction of the pyrrolidinium cation as an ion-associated species with the anion products of the initial reductions.

  9. Mechanism of benzaldehyde lyase studied via thiamin diphosphate-bound intermediates and kinetic isotope effects.

    Science.gov (United States)

    Chakraborty, Sumit; Nemeria, Natalia; Yep, Alejandra; McLeish, Michael J; Kenyon, George L; Jordan, Frank

    2008-03-25

    Direct spectroscopic observation of thiamin diphosphate-bound intermediates was achieved on the enzyme benzaldehyde lyase, which carries out reversible and highly enantiospecific conversion of ( R)-benzoin to benzaldehyde. The key enamine intermediate could be observed at lambda max 393 nm in the benzoin breakdown direction and in the decarboxylase reaction starting with benzoylformate. With benzaldehyde as substrate, no intermediates could be detected, only formation of benzoin at 314 nm. To probe the rate-limiting step in the direction of ( R)-benzoin synthesis, the (1)H/ (2)H kinetic isotope effect was determined for benzaldehyde labeled at the aldehyde position and found to be small (1.14 +/- 0.03), indicating that ionization of the C2alphaH from C2alpha-hydroxybenzylthiamin diphosphate is not rate limiting. Use of the alternate substrates benzoylformic and phenylpyruvic acids (motivated by the observation that while a carboligase, benzaldehyde lyase could also catalyze the slow decarboxylation of 2-oxo acids) enabled the observation of the substrate-thiamin covalent intermediate via the 1',4'-iminopyrimidine tautomer, characteristic of all intermediates with a tetrahedral C2 substituent on ThDP. The reaction of benzaldehyde lyase with the chromophoric substrate analogue ( E)-2-oxo-4(pyridin-3-yl)-3-butenoic acid and its decarboxylated product ( E)-3-(pyridine-3-yl)acrylaldehyde enabled the detection of covalent adducts with both. Neither adduct underwent further reaction. An important finding of the studies is that all thiamin-related intermediates are in a chiral environment on benzaldehyde lyase as reflected by their circular dichroism signatures.

  10. Microwave-assisted synthesis of new N4-[bi-(4-fluorophenyl)-methyl]-piperazine thiosemicarbazones under solvent-free conditions

    Institute of Scientific and Technical Information of China (English)

    Qing Han Li; Zhi Gang Zhao

    2008-01-01

    Six new N4-[bi-(4-fluorophenyl)-methyl]-piperazine thiosemicarbazones 3a-f have been prepared starting from [bi-(4-fluor-ophenyl)-methyl]-piperazine in solvent-free condition under microwave irradiation with excellent yields. Their structures have been determined by elemental analysis, IR, MS and 1H NMR data.

  11. Lanthanum(III) and praseodymium(III) complexes with isatin thiosemicarbazones

    Science.gov (United States)

    Rai, Anita; Sengupta, Soumitra K.; Pandey, Om P.

    2005-09-01

    Ten new lanthanum(III) and praseodymium(III) complexes of the general formula Na[La(L) 2H 2O] (Ln = La(III) or Pr(III); LH 2 = thiosemicarbazones) derived from the condensation of isatin with 4-phenyl thiosemicarbazide, 4-(4-chlorophenyl) thiosemicarbazide, 4-(2-nitrophenyl) thiosemicarbazide, 4-(2-bromophenyl) thiosemicarbazide and 4-(2-methylphenyl) thiosemicarbazide, have been synthesized in methanol in presence of sodium hydroxide. The XRD spectra of the complexes were monitored to verify complex formation. The complexes have also been characterized by elemental analysis, molar conductance, electronic absorption and fluorescence, infrared, far infrared, 1H and 13C NMR spectral studies. Thermal studies of these complexes have been carried out in the temperature range 25-800 °C using TG, DTG and DTA techniques. All these complexes decompose gradually with the formation of Ln 2O 3 as the end product. The Judd-ofelt intensity parameter, oscillator strength, transition probability, stimulated emission cross section for different transitions of Pr 3+ for 4-phenyl thiosemicarbazones have been calculated.

  12. 2-Hydroxy-4-n-butoxy-5-bromoacetophenone thiosemicarbazone as an extractive spectrophotometric reagent for nickel

    Directory of Open Access Journals (Sweden)

    K. N. Patel

    2011-05-01

    Full Text Available 2-hydroxy-4-n-butoxy-5-bromoacetophenone thiosemicarbazone (HBBrAT is spectrophotometric reagent for nickel (II in chloroform. The metal ion reacts with 2-hydroxy-4-n-butoxy-5-bromoacetophenone thiosemicarbazone (HBBrAT forming a dark brown coloured complex in the pH range 7.0-11.0. The complex shows maximum absorption at 440 nm. Beer’s law is obeyed in the range 2.74-6.86 µg/mL. The molar absorptivity and Sandell’s sensitivity are found to be 5229 Lmol-1cm-1 and 0.0105 µgcm-2, respectively. The solid complex have been isolated and characterized on the basis of elemental analysis, UV, IR, NMR and Mass spectra. HBBrAT is found to be a selective and strong chelating agent for nickel. The results deduced from Job’s method of continuous variation, the mole ratio and the slope ratio method showed that metal: ligand ratio in the complex to be 1:2. The stability constant of the complex found to be 1.92 X 107. The free energy change for the complex formation reaction is found to be -10.158 K cal/mole at 32 0C. The complex is fairly stable for about 24 h and up to 55 oC.

  13. Cytotoxic gallium complexes containing thiosemicarbazones derived from 9-anthraldehyde: Molecular docking with biomolecules

    Science.gov (United States)

    Beckford, Floyd A.; Brock, Alyssa; Gonzalez-Sarrías, Antonio; Seeram, Navindra P.

    2016-10-01

    We have synthesized a trio of gallium complexes bearing 9-anthraldehyde thiosemicarbazones. The complexes were assessed for their anticancer activity and their biophysical reactivity was also investigated. The three complexes displayed good cytotoxic profiles against two human colon cancer cell lines, HCT-116 and Caco-2. The IC50 ranged from 4.7 to 44.1 μM with the complex having an unsubstituted amino group on the thiosemicarbazone being the most active. This particular complex also showed a high therapeutic index. All three complexes bind strongly to DNA via intercalation with binding constants ranging from 7.46 × 104 M-1 to 3.25 × 105 M-1. The strength of the binding cannot be directly related to the level of anticancer activity. The complexes also bind strongly to human serum albumin with binding constants on the order of 104-105 M-1 as well. The complexes act as chemical nucleases as evidenced by their ability to cleave pBR322 plasmid DNA. The binding constants along with the cleavage results may suggest that the extent of DNA interaction is not directly correlated with anticancer activity. The results of docking studies with DNA, ribonucleotide reductase and human serum albumin, however showed that the complex with the best biological activity had the largest binding constant to DNA.

  14. Anaerobic degradation of benzaldehyde in methanogenic granular sludge: the influence of additional substrates

    Energy Technology Data Exchange (ETDEWEB)

    Todini, O. (Environment Protection Dept., Eniricerche S.p.A., Rome (Italy)); Pol, L.H. (Wageningen Agricultural Univ. (Netherlands). Dept. of Environmental Technology)

    1992-12-01

    The degradation of benzaldehyde in methaogenic granular sludge was investigated in batch and in upflow anaerobic sludge blanked (UASB) reactors. The effect due to the presence of co-substrates, such as H[sub 2], sodium butyrate and sucrose, was studied using formaldehyde as a reference compound. The additional substrates enhanced the activity of benzaldehyde- and formaldehyde-degrading microorganisms (ACT[sub bdm] and ACT[sub fdm], respectively) and increased the transient production of benzyl alcohol and methanol. As a consequence, the concentrations of benzaldehyde and formaldehyde that caused 50% inhibition of the methanogenic activity (50% IC[sub m]) on sucrose were 3133 and 254 mg chemical oxygen demand (COD)/1 respectively, three times higher than the literature data values on acetate. Experiments performed in UASB reactors on benzaldehyde showed that the replacement of volatile fatty acids with sucrose as co-substrate improved the treatment capacity of the system from 0.73 to 4.36 kg COD benzaldehyde.m[sup -3].day[sup -1]. (orig.).

  15. Production of L-phenylacetylcarbinol (L-PAC) from benzaldehyde using partially purified pyruvate decarboxylase (PDC).

    Science.gov (United States)

    Shin, H S; Rogers, P L

    1996-01-05

    Biotransformation of benzaldehyde to L-phenylacetylcarbinol (L-PAC) as a key intermediate for L-ephedrine synthesis has been evaluated using pyruvate decarboxylase (PDC) partially purified from Candida utilis. PDC activity was enhanced by controlled fermentative metabolism and pulse feeding of glucose prior to the enzyme purification. With partially purified PDC, several enzymatic reactions occurred simultaneously and gave rise to by-products (acetaldehyde and acetoin) as well as L-PAC production. Optimal reaction conditions were determined for temperature, pH, addition of ethanol, PDC activity, benzaldehyde, and pyruvate:benzaldehyde ratio to maximize L-PAC, and minimize by-products. The highest L-PAC concentration of 28.6 g/L (190.6 mM) was achieved at 7 U/mL PDC activity and 200 mM benzaldehyde with 2.0 molar ratio of pyruvate to benzaldehyde in 40 mM potassium phosphate buffer (pH 7.0) containing 2.0 M ethanol at 4 degrees C.

  16. delta(13)C and delta(2)H isotope ratios in amphetamine synthesized from benzaldehyde and nitroethane.

    Science.gov (United States)

    Collins, Michael; Salouros, Helen; Cawley, Adam T; Robertson, James; Heagney, Aaron C; Arenas-Queralt, Andrea

    2010-06-15

    Previous work in these laboratories and by Butzenlechner et al. and Culp et al. has demonstrated that the delta(2)H isotope value of industrial benzaldehyde produced by the catalytic oxidation of toluene is profoundly positive, usually in the range +300 per thousand to +500 per thousand. Synthetic routes leading to amphetamine, methylamphetamine or their precursors and commencing with such benzaldehyde may be expected to exhibit unusually positive delta(2)H values. Results are presented for delta(13)C and delta(2)H isotope values of 1-phenyl-2-nitropropene synthesized from an industrial source of benzaldehyde, having a positive delta(2)H isotope value, by a Knoevenagel condensation with nitroethane. Results are also presented for delta(13)C and delta(2)H isotope values for amphetamine prepared from the resulting 1-phenyl-2-nitropropene. The values obtained were compared with delta(13)C and delta(2)H isotope values obtained for an amphetamine sample prepared using a synthetic route that did not involve benzaldehyde. Finally, results are presented for samples of benzaldehyde, 1-phenyl-2-nitropropene and amphetamine that had been seized at a clandestine amphetamine laboratory.

  17. 3nπ* spectra of benzaldehyde II. In methylcyclohexane

    Science.gov (United States)

    Goodman, Lionel; Lamotte, Michel; Koyanagi, Mitohiko

    1980-04-01

    Two active nontotally symmetric coupling modes, v26 and v36 (the out-of-plane aldehyde carbon—hydrogen wagging, and torsional vibrations, respectively) are observed in the 3nπ* TS o spectra of isotopic benzaldehydes at 4.2 K in polycrystalline α-phase methylcyclohexane and β-phase methylcyclohexane- d14. The single quantum band strengths are in the order I(36 01 ≫ I(26 10), I(26 10 ≫ I(26 01, and I(26 10 ≫ I(36 10). The much greater intensity of the double quantum band 26 02 ( I(26 02) ≫ I(26 01)) is largely accounted for by the large frequency difference ω 26 ( 3nπ*)-ω 26(S 0 ≈ -600 cm -1. Displacement factors are found for the principal Franck-Condon modes, v25, v7, v8, v9 and v17. The T ← S 0 spectra dramatically broaden at ≈ 400 cm -1 above the 3nπ* origin with much of the spectra up to ≈ 1200 cm -1 above 0-0 unique to each isomer in each host. Above 1200 cm -1 intense narrow bands are again observed for which counterparts in each of the isomers can be found. Important medium dependencies of the 1.3nπ* 0 point interval, and the OO band CHO → CDO deuterium shift (+25 cm -1 and + 10 cm -1, respectively) are found on going from the vapor to methylcyclohexane. The spectra and medium shifts are interpreted as arising from intersection of zero order nπ* and ππ* potential surfaces. Several excited state ( 3nπ*) vibrational frequencies including ω' 7 = 1316, ω' 17 = 1181, ω' 8 and/or ω' 9 = 1540, 1466 ω' 15 = 1295 and ω' 25 (δCHO) = 190 cm -1 in MCH and ω' 26 = 419 cm -1 in MCH- d14 are established.

  18. Identification of differential anti-neoplastic activity of copper bis(thiosemicarbazones) that is mediated by intracellular reactive oxygen species generation and lysosomal membrane permeabilization.

    Science.gov (United States)

    Stefani, Christian; Al-Eisawi, Zaynab; Jansson, Patric J; Kalinowski, Danuta S; Richardson, Des R

    2015-11-01

    Bis(thiosemicarbazones) and their copper (Cu) complexes possess unique anti-neoplastic properties. However, their mechanism of action remains unclear. We examined the structure-activity relationships of twelve bis(thiosemicarbazones) to elucidate factors regarding their anti-cancer efficacy. Importantly, the alkyl substitutions at the diimine position of the ligand backbone resulted in two distinct groups, namely, unsubstituted/monosubstituted and disubstituted bis(thiosemicarbazones). This alkyl substitution pattern governed their: (1) Cu(II/I) redox potentials; (2) ability to induce cellular (64)Cu release; (3) lipophilicity; and (4) anti-proliferative activity. The potent anti-cancer Cu complex of the unsubstituted bis(thiosemicarbazone) analog, glyoxal bis(4-methyl-3-thiosemicarbazone) (GTSM), generated intracellular reactive oxygen species (ROS), which was attenuated by Cu sequestration by a non-toxic Cu chelator, tetrathiomolybdate, and the anti-oxidant, N-acetyl-l-cysteine. Fluorescence microscopy suggested that the anti-cancer activity of Cu(GTSM) was due, in part, to lysosomal membrane permeabilization (LMP). For the first time, this investigation highlights the role of ROS and LMP in the anti-cancer activity of bis(thiosemicarbazones).

  19. Biotransformation of Benzaldehyde to L-Phenylacetylcarbinol (L-PAC) by Free Cells of Torulaspora delbrueckii in presence of Beta-Cyclodextrin

    OpenAIRE

    Shukla,Vilas. B.; Kulkarni,Pushpa R.

    2002-01-01

    Studies were carried out to explore the possibility of decreasing the toxic and inhibitory effects of the substrate benzaldehyde during its biotransformation to L-PAC by free cells of Torulaspora delbrueckii using beta -cyclodextrin (beta -CD). Use of various levels of benzaldehyde and acetaldehyde in presence of 2% of beta -CD showed that, in presence of beta -CD, the organism could tolerate higher levels of benzaldehyde and acetaldehyde. Semi-continuous feeding of benzaldehyde and acetaldeh...

  20. β-Cyclodextrin Promoted Oxidation of Cinnamaldehyde to Natural Benzaldehyde in Water

    Institute of Scientific and Technical Information of China (English)

    陈鸿雁; 纪红兵

    2011-01-01

    A facile and efficient procedure has been developed systematically for the oxidative cleavage of cinna-maldehyde to benzaldehyde by sodium hypochlorite with water as the only solvent in the presence of β-cyclodextrin (abbreviated as β-CD). Different factors influencing cinnamaldehyde oxidation e.g. reaction temperature, the amount of catalyst and oxidant, have been investigated. The yield of benzaldehyde reaches 76% under the optimum conditions (333 K, 4 h, molar ratio of cinnamaldehyde to β-CD is 1:1). Furthermore, a feasible reaction mecha-nism including the formation of benzaldehyde and the two main byproducts (phenylacetaldehyde and epoxide of cinnamaldehyde) has been proposed.

  1. Benzaldehyde in cherry flavour as a precursor of benzene formation in beverages.

    Science.gov (United States)

    Loch, Christine; Reusch, Helmut; Ruge, Ingrid; Godelmann, Rolf; Pflaum, Tabea; Kuballa, Thomas; Schumacher, Sandra; Lachenmeier, Dirk W

    2016-09-01

    During sampling and analysis of alcohol-free beverages for food control purposes, a comparably high contamination of benzene (up to 4.6μg/L) has been detected in cherry-flavoured products, even when they were not preserved using benzoic acid (which is a known precursor of benzene formation). There has been some speculation in the literature that formation may occur from benzaldehyde, which is contained in natural and artificial cherry flavours. In this study, model experiments were able to confirm that benzaldehyde does indeed degrade to benzene under heating conditions, and especially in the presence of ascorbic acid. Analysis of a large collective of authentic beverages from the market (n=170) further confirmed that benzene content is significantly correlated to the presence of benzaldehyde (r=0.61, pbenzaldehyde in combination with ascorbic acid should be avoided.

  2. A Kinetic Model for Toluene Oxidation Comprising Benzylperoxy Benzoate Ester as Reactive Intermediate in the Formation of Benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Alsters, P.L.; Versteeg, G.F.

    2005-01-01

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  3. A kinetic model for toluene oxidation comprising benzylperoxy benzoate ester as reactive intermediate in the formation of benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Alsters, P. L.; Versteeg, G. F.

    2005-01-01

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  4. A kinetic model for toluene oxidation comprising benzylperoxy benzoate ester as reactive intermediate in the formation of benzaldehyde

    NARCIS (Netherlands)

    Hoorn, J.A.A.; Alsters, P. L.; Versteeg, G. F.

    2005-01-01

    During the oxidation of toluene under semibatch conditions, the formation of benzyl alcohol is initially equal to the rate of formation of benzaldehyde. As the overall conversion increases the benzyl alcohol concentration at first decreases much faster than benzaldehyde, but this decrease slows down

  5. Adsorption of benzaldehyde at the surface of ice, studied by experimental method and computer simulation.

    Science.gov (United States)

    Petitjean, Mélanie; Hantal, György; Chauvin, Coline; Mirabel, Philippe; Le Calvé, Stéphane; Hoang, Paul N M; Picaud, Sylvain; Jedlovszky, Pál

    2010-06-15

    Adsorption study of benzaldehyde on ice surfaces is performed by combining experimental and theoretical approaches. The experiments are conducted over the temperature range 233-253 K using a coated wall flow tube coupled to a mass spectrometric detector. Besides the experimental way, the adsorption isotherm is also determined by performing a set of grand canonical Monte Carlo simulations at 233 K. The experimental and calculated adsorption isotherms show a very good agreement within the corresponding errors. Besides, both experimental and theoretical studies permit us to derive the enthalpy of adsorption of benzaldehyde on ice surfaces DeltaH(ads), which are in excellent agreement: DeltaH(ads) = -61.4 +/- 9.7 kJ/mol (experimental) and DeltaH(ads) = -59.4 +/- 5.1 kJ/mol (simulation). The obtained results indicate a much stronger ability of benzaldehyde of being adsorbed at the surface of ice than that of small aliphatic aldehydes, such as formaldehyde or acetaldehyde. At low surface coverages the adsorbed molecules exclusively lie parallel with the ice surface. With increasing surface coverage, however, the increasing competition of the adsorbed molecules for the surface area to be occupied leads to the appearance of two different perpendicular orientations relative to the surface. In the first orientation, the benzaldehyde molecule turns its aldehyde group toward the ice phase, and, similarly to the molecules in the lying orientation, forms a hydrogen bond with a surface water molecule. In the other perpendicular orientation the aldehyde group turns to the vapor phase, and its O atom interacts with the delocalized pi system of the benzene ring of a nearby lying benzaldehyde molecule of the second molecular layer. In accordance with this observed scenario, the saturated adsorption layer, being stable in a roughly 1 kJ/mol broad range of chemical potentials, contains, besides the first molecular layer, also traces of the second molecular layer of adsorbed

  6. GRAFTED STYRENE-DIVINYLBENZENE COPOLYMERS CONTAINING BENZALDEHYDES AND THEIR WITTIG REACTIONS WITH VARIOUS PHOSPHONIUM SALTS

    Institute of Scientific and Technical Information of China (English)

    Adriana Popa; Gheorghe Ilia; Aurelia Pascariu; Smaranda Iliescu; Nicoleta Plesu

    2005-01-01

    A chloromethylated styrene-divinylbenzene copolymer support system functionalized with 4-benzaldehyde and 2-benzaldehyde was prepared. The degree of functionalization with aldehyde groups is well suited for the subsequent use of the products as Wittig reagents. The polymer bound aldehyde was reacted with Wittig reagents to give olefin groups grafted on styrene-divinylbenzene copolymers. The reactions were carried out in phase transfer catalysis conditions. A simple procedure for the calculation of the degree of functionalization and the statistical modeling of the structural repetitive unit of the copolymer are reported.

  7. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Directory of Open Access Journals (Sweden)

    Mahoney Noreen

    2011-05-01

    Full Text Available Abstract Background Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. Natural phenolic compounds can serve as potent redox cyclers that inhibit microbial growth through destabilization of cellular redox homeostasis and/or antioxidation systems. The aim of this study was to identify benzaldehydes that disrupt the fungal antioxidation system. These compounds could then function as chemosensitizing agents in concert with conventional drugs or fungicides to improve antifungal efficacy. Methods Benzaldehydes were tested as natural antifungal agents against strains of Aspergillus fumigatus, A. flavus, A. terreus and Penicillium expansum, fungi that are causative agents of human invasive aspergillosis and/or are mycotoxigenic. The yeast Saccharomyces cerevisiae was also used as a model system for identifying gene targets of benzaldehydes. The efficacy of screened compounds as effective chemosensitizers or as antifungal agents in formulations was tested with methods outlined by the Clinical Laboratory Standards Institute (CLSI. Results Several benzaldehydes are identified having potent antifungal activity. Structure-activity analysis reveals that antifungal activity increases by the presence of an ortho-hydroxyl group in the aromatic ring. Use of deletion mutants in the oxidative stress-response pathway of S. cerevisiae (sod1Δ, sod2Δ, glr1Δ and two mitogen-activated protein kinase (MAPK mutants of A. fumigatus (sakAΔ, mpkCΔ, indicates antifungal activity of the benzaldehydes is through disruption of cellular antioxidation. Certain benzaldehydes, in combination with phenylpyrroles, overcome tolerance of A. fumigatus MAPK mutants to this agent and/or increase sensitivity of fungal pathogens to mitochondrial respiration inhibitory agents. Synergistic chemosensitization greatly lowers minimum inhibitory (MIC or fungicidal (MFC

  8. Facile Synthesis of Benzaldehyde-Functionalized Ionic Liquids and Their Flexible Functional Group Transformations

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    2012-01-01

    Full Text Available Three benzaldehyde-functionalized ionic liquids were readily synthesized by quaternization of N-alkylimidazole with benzaldehyde-functionalized alkyl bromides under microwave irradiation in good yield. These aldehyde-functionalized ionic liquids could easily be oxidized in the presence of H2O2/KOH or be reduced by NaBH4 leading to the formation of the corresponding carboxyl-functionalized ionic liquids or benzylic alcohol-functionalized ionic liquids. In addition, the condensations of these functionalized ones with hydrazine hydrate and with aniline under reductive amination conditions were demonstrated.

  9. Synthesis and Structure-Activity Correlation Studies of Metal Complexes of α-N-heterocyclic Carboxaldehyde Thiosemicarbazones in Shewanella oneidensis

    Directory of Open Access Journals (Sweden)

    Quintell Tillison

    2005-04-01

    Full Text Available This investigation involved the synthesis of metal complexes to test the hypothesis that structural changes and metal coordination in pyridine thiosemicarbazones affect cell growth and cell proliferation in vitro. Thiosemicarbazones are well known to possess antitumor, antiviral, antibacterial, antimalarial, and other activities. Extensive research has been carried out on aliphatic, aromatic, heterocyclic and other types of thiosemicarbazones and their metal complexes. Due to the pronounced reactivity exhibited by metal complexes of heterocyclic thiosemicarbazones, synthesis and structural characterization of di-2-pyridylketone 4N-phenyl thiosemicarbazone and diphenyl tin (Sn and platinum (Pt complexes were undertaken. Shewanella oneidensis MR-1, a metal ion-reducing bacterium, was used as a model organism to explore the biological activity under aerobic conditions. A comparision of the cytotoxic potential of selected ligand and metal-complex thiosemicarbazones on cell growth in wild type MR-1 and mutant DSP-010 Shewanella oneidensis strains at various concentrations (0, 5, 10, 15, 20 or 25 ppm was performed. The wild type (MR-1 grown in the presence of increasing concentrations of Sn- thiosemicarbazone complexes was comparatively more sensitive (mean cell number = 4.8 X 108 + 4.3 X 107 SD than the DSP-010, a spontaneous rifampicillin derivative of the parent strain (mean cell number = 5.6 x 108 + 6.4 X 107 SD under comparable aerobic conditions (p=0.0004. No differences were observed in the sensitivity of the wild and mutant types when exposed to various concentrations of diphenyl Pt- thiosemicarbazone complex (p= 0.425 or the thiosemicarbazone ligand (p=0.313. Growth of MR-1 in the presence of diphenyl Sn- thiosemicarbazone was significantly different among treatment groups (p=0.012. MR-1 cell numbers were significantly higher at 5ppm than at 10 to 20ppm (p = 0.05. The mean number of DSP-010 variant strain cells also differed among diphenyl Sn

  10. Novel aldehyde and thiosemicarbazone derivatives: Synthesis, spectroscopic characterization, structural studies and molecular docking studies

    Science.gov (United States)

    Karakurt, Tuncay; Tahtaci, Hakan; Subasi, Nuriye Tuna; Er, Mustafa; Ağar, Erbil

    2016-12-01

    In this study our purpose is that, synthesis and characterization of compounds containing the aldehyde and thiosemicarbazone groups and comparison of the theoretical results with the experimental results. The structures of all synthesized compounds were elucidated by IR, 1H NMR, 13C NMR, elemental analyses techniques. The structure of compound (4) (C9H8N4O2S) was also elucidated by X-ray diffraction analysis. In addition, the theoretical IR spectrum, 1H NMR and 13C NMR chemical shift values, frontier molecular orbital values (FMO) of these molecules were analyzed by using Becke-3- Lee-Yang-Parr (B3LYP) method with LanL2DZ basis set. Finally, molecular docking studies were performed on synthesized compounds using the 4DKI beta-lactam protein structure to determine the potential binding mode of inhibitors.

  11. Syntheses and Supramolecular Structures of Two Nickel(Ⅱ) Compounds Based on Two Thiosemicarbazone Ligands

    Institute of Scientific and Technical Information of China (English)

    LI Cheng-juan; FENG Ze-jing; ZHAO Xiao-juan; WANG Su-na; DOU Jian-min

    2013-01-01

    Two new compounds,[Ni2(L1)(Py)6]Py·CH3OH(1) and [Ni3(L2)2(Py)4]·2DMF(2)(H4L1=N,N'-bisalicylbisthiocarbamide; H3L2=3-hydroxyl-2-naphthalene thiosemicarbazide; Py=pyridine; DMF=dimethyl fumarate),based upon two thiosemicarbazone ligands have been obtained and characterized by elemental analysis,Fourier transform infrared(FTIR) and X-ray diffraction(XRD).Compound 1 possesses a binuclear cluster,in which the bisalicylbisthiocarbamide acts as a hexadentate bridge.Compound 2 exhibits a linear trinuclear cluster with the triply-deprotonated ligand acting as pentadentate bridge.C—H…O,C—H…π and C—H…S weak interactions further link these molecules to form interesting supramolecular networks.

  12. Synthesis, spectral characterization and eukaryotic DNA degradation of thiosemicarbazones and their platinum(IV) complexes

    Science.gov (United States)

    Al-Hazmi, G. A.; El-Metwally, N. M.; El-Gammal, O. A.; El-Asmy, A. A.

    2008-01-01

    The condensation products of acetophenone (or its derivatives), salicylaldehyde and o-hydroxy- p-methoxybenzophenone with thiosemicarbazide and ethyl- or phenyl-thiosemicarbazide are the investigated thiosemicarbazones. Their reactions with H 2PtCl 6 produced Pt(IV) complexes characterized by elemental, thermal, mass, IR and electronic spectral studies. The coordination modes were found mononegative bidentate in the acetophenone derivatives and binegative tridentate in the salicylaldehyde derivatives. The complexes were analyzed thermogravimetrically and found highly stable. Some ligands and their complexes were screened against Sarcina sp. and E. coli using the cup-diffusion technique. [Pt( oHAT)(OH)Cl] shows higher activity against E. coli than the other compounds. The degradation power of the tested compounds on the calf thymus DNA supports their selectivity against bacteria and not against the human or related eukaryotic organisms.

  13. Synthesis and crystal structure of [chlorobis(triphenylphospino) (p-chlorobenzaldehyde thiosemicarbazone)] copper(I) complex

    Indian Academy of Sciences (India)

    Ashiq Khan; Poonam Sharma; Rajnikant; Vivek K Gupta; Naresh Padha; Rekha Sharma

    2016-02-01

    Reactions of copper(I) halides with p-chlorobenzaldehyde thiosemicarbazone (H1L) and triphenylphosphine in 1 : 1 : 2 molar ratio yielded complexes of stoichiometry, [CuX(1-S- H1L)(Ph3P)2] (X = I, 1: Br, 2; Cl, 3). All the three complexes were characterized using analytical (CHNS) and spectroscopic (IR, 1H NMR) techniques. The structure of complex 3 was confirmed by X-ray crystallography. It has been found to crystallize in the triclinic system with space group P-1 and unit cell parameters: a = 10.207(5) Å, b = 13.027(5) Å, c = 16.269(5) Å, = 100.054(5)°, = 99.228(5)° and = 97.234(5)°. This complex has distorted tetrahedral geometry with two phosphorus atoms from two triphenylphosphine ligands, thione sulfur of thiosemicarbazone ligand and chloride ion occupying the four corners of the tetrahedron. The structure of complex 3 was in contrast to sulfur-bridged dinuclear complex of copper(I) chloride with benzaldehydethiosemicarbazone, [Cu2Cl2(2-S-Hbtsc)2(Ph3P)2]·2H2O. The intermolecular H-bonding, Cl· · ·HCph, 2.733 Å and interactions, {CHph · · · , 2.796; 2.776 Å} in this complex led to the formation of 1D chain. Two such 1D chains were cross-linked via, Cl· · ·HCph, 2.896 Å H-bonding to form a 2D network.

  14. Ruthenium (II) complexes of thiosemicarbazone: Synthesis, biosensor applications and evaluation as antimicrobial agents

    Energy Technology Data Exchange (ETDEWEB)

    Yildirim, Hatice [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Guler, Emine [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Yavuz, Murat, E-mail: myavuz@dicle.edu.tr [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Dicle University, Faculty of Science, Department of Chemistry, 21280 Diyarbakir (Turkey); Ozturk, Nurdan; Kose Yaman, Pelin [Dokuz Eylul University, The Graduate School of Natural and Applied Sciences, Department of Chemistry, 35160 Buca, Izmir (Turkey); Subasi, Elif; Sahin, Elif [Dokuz Eylul University, Faculty of Science, Department of Chemistry, 35160 Buca, Izmir (Turkey); Timur, Suna [Ege University, Faculty of Science, Department of Biochemistry, 35100 Bornova, Izmir (Turkey); Ege University, Institute on Drug Abuse, Toxicology and Pharmaceutical Science (BATI), 35100 Bornova, Izmir (Turkey)

    2014-11-01

    A conformationally rigid half-sandwich organoruthenium (II) complex [(η{sup 6}-p-cymene)RuClTSC{sup N–S}]Cl, (1) and carbonyl complex [Ru(CO)Cl(PPh{sub 3}){sub 2}TSC{sup N–S}] (2) have been synthesized from the reaction of [{(η"6-p-cymene)RuCl}{sub 2}(μ-Cl){sub 2}] and [Ru(H)(Cl)(CO)(PPh{sub 3}){sub 3}] with thiophene-2-carboxaldehyde thiosemicarbazon (TSC) respectively and both novel ruthenium (II) complexes have been characterized by elemental analysis, FT-IR and NMR spectroscopy. The peripheral TSC in the complexes acts as an electrochemical coupling unit providing the ability to carry out electrochemical deposition (ED) and to form an electro-deposited film on a graphite electrode surface. The biosensing applicability of complexes 1 and 2 was investigated by using glucose oxidase (GOx) as a model enzyme. Electrochemical measurements at − 0.9 V versus Ag/AgCl electrode by following the ED Ru(II) reduction/oxidation due to from the enzyme activity, in the presence of glucose substrate. The designed biosensor showed a very good linearity for 0.01–0.5 mM glucose. The in vitro antimicrobial activities of complexes 1 and 2 were also investigated against nine bacterial strains and one fungus by the disc diffusion test method. No activity was observed against the Gram-negative strains and fungus, whereas complex 1 showed moderate antibacterial activities against Gram-positive bacterial strains. - Highlights: • Novel Ru (II) thiosemicarbazone complexes were synthesized and characterized. • Electrochemical depositions were performed. • Rigid half-sandwich Ru (II) complex showed enhanced antibacterial activity.

  15. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics.

    Science.gov (United States)

    Park, Kyung Chan; Fouani, Leyla; Jansson, Patric J; Wooi, Danson; Sahni, Sumit; Lane, Darius J R; Palanimuthu, Duraippandi; Lok, Hiu Chuen; Kovačević, Zaklina; Huang, Michael L H; Kalinowski, Danuta S; Richardson, Des R

    2016-09-01

    Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.

  16. Synthesis of biological active thiosemicarbazone and characterization of the interaction with human serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Wangshu; Shi, Lei; Hui, Guangquan [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China); Cui, Fengling, E-mail: fenglingcui@hotmail.com [College of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007 (China)

    2013-02-15

    The synthesis of a new biological active reagent, 2-((1,4-dihydroxy)-9,10-anthraquinone) aldehyde thiosemicarbazone (DHAQTS), was designed. The interaction between DHAQTS and HSA was studied by fluorescence spectroscopy in combination with molecular modeling under simulation of physiological conditions. According to the results of fluorescence measurements, the quenching mechanism was suggested to be static. The thermodynamic parameters are calculated by van't Hoff equation, which demonstrated that hydrophobic interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, DHAQTS was confirmed to be located in site I of HSA. The binding distance r=2.83 nm between the donor HSA and acceptor DHAQTS was obtained according to Foerster's non-radiative energy transfer theory. The three-dimensional fluorescence spectral results showed the conformation and microenvironment of HSA changed in the presence of DHAQTS. The effects of common ions on the binding of DHAQTS to HSA were also evaluated. The experimental results were in agreement with the results obtained via a molecular docking study. - Highlights: Black-Right-Pointing-Pointer 2-((1,4-dihydroxy)-9,10-anthraquinone)aldehyde thiosemicarbazone (DHAQTS) was synthesized. Black-Right-Pointing-Pointer DHAQTS can quench the fluorescence of human serum albumin (HSA) by static quenching mechanism. Black-Right-Pointing-Pointer Hydrophobic interactions were the predominant intermolecular forces. Black-Right-Pointing-Pointer The competitive experiment was carried out to identify the DHAQTS binding site on HSA. Black-Right-Pointing-Pointer Three-dimensional spectra confirmed DHAQTS caused the conformational change of HSA.

  17. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    Directory of Open Access Journals (Sweden)

    Marjan Rafiee

    2015-09-01

    Full Text Available Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect.

  18. Chiral diethanolamines and their lithium alcoholates as catalysts in the enantioselective alkylation of benzaldehyde by diethylzinc

    NARCIS (Netherlands)

    De Vries, E.F.J.; Brussee, J.; Knise, Chris G.; Van Der Gen, A.

    1993-01-01

    The enantioselective alkylation of benzaldehyde by diethylzinc in the presence of catalytic amounts of bis-erythro diethanolamines and their lithium alcoholates was studied. The extent of asymmetric induction was found to depend strongly upon subtle changes in the structure of the catalyst used.

  19. Catalytic Enantioselective Alkylation of Benzaldehyde with Diethylzinc Using Chiral Nonracemic (Thio)-phosphoramidates

    NARCIS (Netherlands)

    Hulst, Ron; Heres, Hero; Fitzpatrick, Kevin; Peper, Nathalie C.M.W.; Kellogg, Richard M.

    1996-01-01

    Two chiral nonracemic γ-amino alcohols, ephedrine thiol and the corresponding (thio)-phosphoramidates have been examined as catalysts for the enantioselective alkylation of benzaldehyde by diethylzinc. Addition of titanium tetraisopropoxide increases the yield as well as the enantioselectivity; 1-ph

  20. OPTIMIZATION OF TIME REACTION AND HYDROXIDE ION CONCENTRATION ON FLAVONOID SYNTHESIS FROM BENZALDEHYDE AND ITS DERIVATIVES

    Directory of Open Access Journals (Sweden)

    Sri Handayani

    2010-06-01

    Full Text Available The aim of this research is to determine the optimum time of reaction and concentration of hydroxide ion on chalcone, 4-methoxychalcone and 3,4-dimethoxychalcone synthesis. Chalcone and its derivatives were synthesized by dissolving KOH in ethanol followed by dropwise addition of acetophenone and benzaldehyde. Then, the mixture was stirred for several hours. Three benzaldehydes has been used, i.e : benzaldehyde, p-anysaldehyde and veratraldehyde. The time of reaction was varied for, 12, 18, 24, 30 and 36 hours. Furthermore, on the optimum reaction time for each benzaldehyde the hydroxyl ion concentration was varied from 5,7,9,11 and 13%(w/v. The results of this research suggested that the optimum time of chalchone synthesis was 12 hours, while, 4-methoxychalcone and 3,4-dimethoxychalcone were 30 hours. The optimum concentration of hydroxide ion of chalcone synthesis was 13% and for 4-methoxychalcone and 3,4-dimethoxychalcone were 11%. Keywords: Chalcone synthesis, time of reaction, hydroxide ion concentration.

  1. Regioselective Protection of the 4-Hydroxyl of 3,4-Dihydroxy-benzaldehyde

    Directory of Open Access Journals (Sweden)

    Randy R. Spaetzel

    2003-09-01

    Full Text Available The regioselective protection of the 4-hydroxyl group of 3,4-dihydroxy-benzaldehyde was accomplished with seven different protecting groups (benzyl, p-methoxybenzyl, o-nitrobenzyl, 2,6-dichlorobenzyl, 3,4-dichlorobenzyl, vinyl and propargyl in yields ranging between 67-75%.

  2. A theoretical study of benzaldehyde derivatives as tyrosinase inhibitors using Ab initio calculated NQCC parameters

    Science.gov (United States)

    Rafiee, Marjan; Javaheri, Masoumeh

    2015-01-01

    Tyrosinase is a multifunctional copper-containing enzyme. It can catalyze two distinct reactions of melanin synthesis and benzaldehyde derivatives, which are potential tyrosinase inhibitors. To find the relationships between charge distributions of benzaldehyde and their pharmaceutical behavior, the present study aimed at investigating nuclear quadrupole coupling constants of quadrupolare nuclei in the functional benzaldehyde group and calculating some its derivatives. In addition, the differences between the electronic structures of various derivatives of this depigmenting drug were examined. All ab initio calculations were carried out using Gaussian 03. The results predicted benzaldehyde derivatives to be bicentral inhibitors; nevertheless, the oxygen or hydrogen contents of the aldehyde group were not found to be the only active sites. Furthermore with the presence of the aldehyde group, the terminal methoxy group in C4 was found to contribute to tyrosinase inhibitory activities. In addition, an oxygen atom with high charge density in the side chain was found to play an important role in its inhibitory effect. PMID:27844007

  3. Serotonin Mediates a Learned Increase in Attraction to High Concentrations of Benzaldehyde in Aged "C. elegans"

    Science.gov (United States)

    Tsui, David; van der Kooy, Derek

    2008-01-01

    We utilized olfactory-mediated chemotaxis in "Caenorhabditis elegans" to examine the effect of aging on information processing and animal behavior. Wild-type (N2) young adults (day 4) initially approach and eventually avoid a point source of benzaldehyde. Aged adult animals (day 7) showed a stronger initial approach and a delayed avoidance to…

  4. Biotransformation of benzaldehyde into (R)-phenylacetylcarbinol by filamentous fungi or their extracts.

    Science.gov (United States)

    Rosche, B; Sandford, V; Breuer, M; Hauer, B; Rogers, P

    2001-10-01

    Extracts of 14 filamentous fungi were examined regarding their potential for production of (R)-phenylacetylcarbinol [(R)-PAC], which is the chiral precursor in the manufacture of the pharmaceuticals ephedrine and pseudoephedrine. Benzaldehyde and pyruvate were transformed at a scale of 1.2 ml into PAC by cell-free extracts of all selected strains, covering the broad taxonomic spectrum of Ascomycota, Zygomycota and Basidiomycota. Highest final PAC concentrations were obtained with the extracts of Rhizopus javanicus and Fusarium sp. [78-84 mM (11.7-12.6 g/l) PAC within 20 h from initial substrate concentrations of 100 mM benzaldehyde and 150 mM pyruvate]. (R)-PAC was in about 90-93% enantiomeric excess. Rhizopus javanicus had the advantage of faster growth than Fusarium sp. Rhizopus javanicus mycelia were used as an example in a biotransformation process based on whole cells and benzaldehyde and glucose as substrates. The substrate pyruvate was generated through the fungal fermentation of glucose. Only 19 mM PAC (2.9 g/l) were produced within 8 h from 80 mM benzaldehyde. with evidence of significant benzyl alcohol production.

  5. Deoxygenation of benzoic acid on metal oxides. I. The selective pathway to benzaldehyde

    NARCIS (Netherlands)

    Lange, de M.W.; Ommen, van J.G.; Lefferts, L.

    2001-01-01

    The mechanism of the selective deoxygenation of benzoic acid to benzaldehyde was studied on ZnO and ZrO2. The results show conclusively that the reaction proceeds as a reverse type of Mars and van Krevelen mechanism consisting of two steps: hydrogen activates the oxide by reduction resulting in the

  6. Catalytic Enantioselective Alkylation of Benzaldehyde with Diethylzinc Using Chiral Nonracemic (Thio)-phosphoramidates

    NARCIS (Netherlands)

    Hulst, Ron; Heres, Hero; Fitzpatrick, Kevin; Peper, Nathalie C.M.W.; Kellogg, Richard M.

    1996-01-01

    Two chiral nonracemic γ-amino alcohols, ephedrine thiol and the corresponding (thio)-phosphoramidates have been examined as catalysts for the enantioselective alkylation of benzaldehyde by diethylzinc. Addition of titanium tetraisopropoxide increases the yield as well as the enantioselectivity; 1-ph

  7. Antifungal activity of redox-active benzaldehydes that target cellular antioxidation

    Science.gov (United States)

    Many pathogenic fungi are becoming resistant to currently available drugs. Disruption of cellular antioxidation systems should be an effective method for control of fungal pathogens. Such disruption can be achieved with redox-active compounds. The aim of this study was to identify benzaldehydes that...

  8. Chemo-sensitization of fungal pathogens to antimicrobial agents using benzaldehyde analogs

    Science.gov (United States)

    Activity of conventional antifungal agents, fludioxonil, strobilurin and antimycinA, which target the oxidative and osmotic stress response systems, was elevated by co-application of certain analogs of benzaldehyde. Fungal tolerance to 2,3-dihydroxybenzaldehyde or 2,3-dihydroxybenzoic acid was foun...

  9. Thiosemicarbazones: preparation methods, synthetic applications and biological importance; Tiossemicarbazonas: metodos de obtencao, aplicacoes sinteticas e importancia biologica

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio, Romulo P.; Goes, Alexandre J.S. [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Antibioticos]. E-mail: ajsg@ufpe.br; Lima, Jose G. de; Faria, Antonio R. de; Alves, Antonio J.; Aquino, Thiago M. de [Universidade Federal de Pernambuco, Recife, PE (Brazil). Dept. de Ciencias Farmaceuticas

    2005-11-15

    Thiosemicarbazones are a class of compounds known by their chemical and biological properties, such as antitumor, antibacterial, antiviral and antiprotozoal activity. Their ability to form chelates with metals has great importance in their biological activities. Their synthesis is very simple, versatile and clean, usually giving high yields. They are largely employed as intermediates, in the synthesis of others compounds. This article is a survey of some of these characteristics showing their great importance to organic and medicinal chemistry. (author)

  10. Molecular and supramolecular properties of nitroaromatic thiosemicarbazones: Synthesis, spectroscopy, X-ray structure elucidation and DFT calculations

    Science.gov (United States)

    Dias, L. C.; de Lima, G. M.; Pinheiro, C. B.; Nascimento, M. A. C.; Bitzer, R. S.

    2017-03-01

    The reactions of 6-nitropiperonal with H2Nsbnd NHsbnd C(S)sbnd NHR, R = Me, Et, Ph or H, afforded four nitroaromatic thiosemicarbazones 1-4, respectively. 1-4 were characterized by elemental analysis (CHN), FTIR, and 1H and 13C{1H} NMR spectroscopy. In addition, the crystal structures of 2 and 3 were determined by single-crystal X-ray diffraction. Our X-ray structural results have shown that the nitropiperonal and thiosemicarbazone moieties exhibit an almost coplanar arrangement for both 2 and 3. Moreover, they establish 2-D networks along the [111] base vector by means of classical and nonclassical hydrogen bonds. Electronic and spectroscopic properties of 1-4 were investigated at the DFT B3LYP/6-311G** level of calculation. The Cdbnd S group of 1-4 constitutes a nucleophilic region, whereas the NO2 group defines an electrophilic centre, as expected. Furthermore, a DFT vibrational analysis of 4 allowed a reliable assignment of the thiosemicarbazone-based vibrations. Also, a good agreement between theoretical and experimental 13C chemical shift values was obtained for 1-4.

  11. Copper(II) complexes with 2-pyridineformamide-derived thiosemicarbazones: Spectral studies and toxicity against Artemia salina

    Science.gov (United States)

    Ferraz, Karina O.; Wardell, Solange M. S. V.; Wardell, James L.; Louro, Sonia R. W.; Beraldo, Heloisa

    2009-07-01

    The copper(II) complexes [Cu(H2Am4DH)Cl 2] ( 1), [Cu(H2Am4Me)Cl 2] ( 2), [Cu(H2Am4Et)Cl 2] ( 3) and [Cu(2Am4Ph)Cl] ( 4) with 2-pyridineformamide thiosemicarbazone (H2Am4DH) and its N(4)-methyl (H2Am4Me), N(4)-ethyl (H2Am4Et) and N(4)-phenyl (H2Am4Ph) derivatives were studied by means of infrared and EPR spectral techniques. The crystal structure of 4 was determined. The studied compounds proved to be toxic to Artemia salina, suggesting that they could present cytotoxic activity against solid tumors. Among the free thiosemicarbazones H2Am4Ph presented higher toxicity than all other compounds, which showed comparable effects. In the case of complexes 2 and 3 toxicity is probably attributable to the complex as an entity or to a synergistic effect involving the thiosemicarbazone and copper. H2Am4Ph and complexes 2 and 3 revealed to be the most promising compounds as potential antineoplasic agents.

  12. 4-nitroacetophenone-derived thiosemicarbazones and their copper(II) complexes with significant in vitro anti-trypanosomal activity.

    Science.gov (United States)

    Pérez-Rebolledo, Anayive; Teixeira, Letícia R; Batista, Alzir A; Mangrich, Antonio S; Aguirre, Gabriela; Cerecetto, Hugo; González, Mercedes; Hernández, Paola; Ferreira, Ana M; Speziali, Nivaldo L; Beraldo, Heloisa

    2008-05-01

    N(4)-methyl-4-nitroacetophenone thiosemicarbazone (H4NO(2)Ac4M, 1), N(4),N(4)-dimethyl-4-nitroacetophenone thiosemicarbazone (H4NO(2)Ac4DM, 2) and N(4)-piperidyl-4-nitroacetophenone thiosemicarbazone (H4NO(2)Ac4Pip, 3) and their copper(II) complexes [Cu(4NO(2)Ac4M)(2)] (4), [Cu(4NO(2)Ac4DM)(2)] (5) and [Cu(4NO(2)Ac4Pip)(2)] (6) were tested for their in vitro ability to inhibit the growth of Trypanosoma cruzi epimastigote forms. H4NO(2)Ac4DM (2), [Cu(4NO(2)Ac4M)(2)] (4) and [Cu(4NO(2)Ac4DM)(2)] (5) proved to be as active as the clinical reference drugs nifurtimox and benznidazol. Taking into consideration the serious side effects and the poor efficacy of the reference drugs, as well as the appearance of resistance during treatment, the studied compounds could constitute a new class of anti-trypanosomal drug candidates.

  13. Pinacol Coupling Reaction of Benzaldehyde Mediated by TiCl3-Zn in Basic Media Under Ultrasound Irradiation

    Directory of Open Access Journals (Sweden)

    Wang Shu-Xiang

    2005-01-01

    Full Text Available Pinacol coupling of benzaldehyde mediated by TiCl3-Zn in basic media under ultrasound irradiation can lead to the corresponding pinacol rapidly. The optimum reaction condition is chosen.

  14. FT-IR spectroscopy and DFT calculation study on the solvent effects of benzaldehyde in organic solvents.

    Science.gov (United States)

    Li, Yi; Zhang, Hui; Liu, Qing

    2012-02-01

    FT-IR spectra of benzaldehyde in 11 different organic solvents were recorded and analyzed. The density functional theory (DFT) B3LYP/6-31G* method was chosen to calculate the infrared spectrum of benzaldehyde in gaseous state. The electrostatic effects of different solvents in benzaldehyde solutions were calculated using DFT with the self-consistent isodensity polarizable continuum model (SCI-PCM). Two remarkable carbonyl (C=O) peaks of benzaldehyde were observed by FT-IR in alcohol solvents, which were caused by different hydrogen bond species and explained by ab initio calculation. The results showed that the combination of SCI-PCM model and ab initio calculation could give excellent agreements with FT-IR spectra of title compound in solutions.

  15. Lignin-derived oxygenate reforming on a bimetallic surface: The reaction of benzaldehyde on Zn/Pt(111)

    Science.gov (United States)

    Shi, Daming; Vohs, John M.

    2016-08-01

    Temperature programmed desorption (TPD) and high-resolution electron energy loss spectroscopy (HREELS) were used to characterize the adsorption and reaction of benzaldehyde (C6H5CHO) on hydrogen-covered Pt(111) and Zn-modified Pt(111) surfaces. Benzaldehyde was found to interact with Pt(111) via both the phenyl ring and carbonyl of the aldehyde group. This bonding configuration facilitates unselective decomposition of the benzaldehyde to produce CO, H2, and small hydrocarbon fragments at relatively low temperatures. On the other hand, benzaldehyde was found to bond to Zn-decorated Pt(111) surface exclusively via the carbonyl group in an η2(C, O) configuration, with the phenyl ring tilted away from the surface. This configuration weakens Csbnd O bond in the carbonyl facilitating its cleavage and helps prevent hydrogenation of the phenyl ring.

  16. Feasibility of gas/solid carboligation: conversion of benzaldehyde to benzoin using thiamine diphosphate-dependent enzymes.

    Science.gov (United States)

    Mikolajek, R; Spiess, A C; Büchs, J

    2007-05-10

    A carboligation was investigated for the first time as an enzymatic gas phase reaction, where benzaldehyde was converted to benzoin using thiamine diphosphate (ThDP)-dependent enzymes, namely benzaldehyde lyase (BAL) and benzoylformate decarboxylase (BFD). The biocatalyst was immobilized per deposition on non-porous support. Some limitations of the gas/solid biocatalysis are discussed based on this carboligation and it is also demonstrated that the solid/gas system is an interesting tool for more volatile products.

  17. Model studies on the oxygen-induced formation of benzaldehyde from phenylacetaldehyde using pyrolysis GC-MS and FTIR.

    Science.gov (United States)

    Chu, Fong Lam; Yaylayan, Varoujan A

    2008-11-26

    Benzaldehyde, a potent aroma chemical of bitter almond, can also be formed thermally from phenylalanine and may contribute to the formation of off-aroma. To identify the precursors involved in its generation during Maillard reaction, various model systems containing phenylalanine, phenylpyruvic acid, phenethylamine, or phenylacetaldehyde were studied in the presence and absence of moisture using oxidative and nonoxidative Py-GC-MS. Analysis of the data indicated that phenylacetaldehyde, the Strecker aldehyde of phenylalanine, is the most effective precursor and that both air and water significantly enhanced the rate of benzaldehyde formation from phenylacetaldehyde. Phenylpyruvic acid was the most efficient precursor under nonoxidative conditions. Phenethylamine, on the other hand, needed the presence of a carbonyl compound to generate benzaldehyde only under oxidative conditions. On the basis of the results obtained, a free radical initiated oxidative cleavage of the carbon-carbon double bond of the enolized phenylacetaldehyde was proposed as a possible major mechanism for benzaldehyde formation, and supporting evidence was provided through monitoring of the evolution of the benzaldehyde band from heated phenylacetaldehyde in the presence and absence of 1,1'-azobis(cyclohexanecarbonitrile) on the ATR crystal of an FTIR spectrophotometer. In the presence of the free radical initiator, the enol band of the phenylacetaldehyde centered at 1684 cm(-1) formed and increased over time, and after 18 min of heating time the benzaldehyde band centered at 1697 cm(-1) formed and increased at the expense of the enol band of phenylacetaldehyde, indicating a precursor product relationship.

  18. Kinetics of the Benzaldehyde-Inhibited Oxidation of Sulfite by Chlorine Dioxide.

    Science.gov (United States)

    Pan, Changwei; Gao, Qingyu; Stanbury, David M

    2016-01-04

    There has been steady interest in the aqueous reaction of ClO2• with sulfur(IV) since the 1950s, and a wide variety of rate laws and mechanisms have been proposed. In neutral-to-alkaline media, the reaction is challenging to study because of its great rate. Here it is shown that benzaldehyde can be used as an additive to slow the reaction and make its rates more amenable to study. The rates can be quantitatively modeled by a mechanism that includes reversible binding of sulfur(IV) by benzaldehyde and a rate-limiting mixed second-order reaction of ClO2• with SO3(2-). The latter reaction occurs through parallel electron transfer from SO3(2-) to ClO2• and oxygen-atom transfer from ClO2• to SO3(2-).

  19. Selectivity modulation in the consecutive hydrogenation of benzaldehyde via functionalization of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Yonghua Zhou; Jing Liu; Xingyun Li; Xiulian Pan; Xinhe Bao

    2012-01-01

    Hydrogenation of benzaldehyde is a typical consecutive reaction,since the intermediate benzyl alcohol is apt to be further hydrogenated.Here we demonstrate that the selectivity of benzyl alcohol can be tuned via functionalization of carbon nanotubes (CNTs),which are used as the support of Pd.With the original CNTs,the selectivity of benzyl alcohol is 88% at a 100% conversion of benzaldehyde.With introduction of oxygen-containing groups onto CNTs,it drops to 27%.In contrast,doping CNTs with N atoms,the selectivity reaches 96% under the same reaction conditions.The kinetic study shows that hydrogenation of benzyl alcohol is significantly suppressed,which can be attributed to weakened adsorption of benzyl alcohol.This is most likely related to the modified electronic structure of Pd species via interaction with functionalized CNTs,as shown by XPS characterization.

  20. Removal of benzaldehyde from a water/ethanol mixture by applying scavenging techniques

    DEFF Research Database (Denmark)

    Mitic, Aleksandar; Skov, Thomas; Gernaey, Krist V.

    2017-01-01

    derivatization agents as the scavengers. Discovery chemistry is performed in the beginning as a screening procedure, followed by the process design of a small-scale continuous process for benzaldehyde removal with in-line real-time monitoring. Applications of tris(hydroxymethyl) aminomethane (TRIS) are found......A presence of carbonyl compounds is very common in the food industry. The nature of such compounds is to be reactive and thus many products involve aldehydes/ketones in their synthetic routes. By contrast, the high reactivity of carbonyl compounds could also lead to formation of undesired compounds......, such as genotoxic impurities. It can therefore be important to remove carbonyl compounds by implementing suitable removal techniques, with the aim of protecting final product quality. This work is focused on benzaldehyde as a model component, studying its removal from a water/ethanol mixture by applying different...

  1. Oxidation of benzyl alcohol by K2FeO4 to benzaldehyde over zeolites

    Science.gov (United States)

    Wang, Yuan-Yuan; Song, Hua; Song, Hua-Lin; Jin, Zai-Shun

    2016-10-01

    A novel and green procedure for benzaldehyde synthesis by potassium ferrate oxidation of benzyl alcohol employing zeolite catalysts was studied. The prepared oxidant was characterized by SEM and XRD. The catalytic activity of various solid catalysts was studied using benzyl alcohol as a model compound. USY was found to be a very efficient catalyst for this particular oxidation process. Benzaldehyde yields up to 96.0% could be obtained at the following optimal conditions: 0.2 mL of benzyl alcohol, 4 mmol of K2FeO4, 0.5 g of USY zeolite; 20 mL of cyclohexene, 0.3 mL of acetic acid (36 wt %), 30°C temperature, 4 h reaction time.

  2. Proton transfer reactions between nitric acid and acetone, hydroxyacetone, acetaldehyde and benzaldehyde in the solid phase.

    Science.gov (United States)

    Lasne, Jérôme; Laffon, Carine; Parent, Philippe

    2012-12-01

    The heterogeneous and homogeneous reactions of acetone, hydroxyacetone, acetaldehyde and benzaldehyde with solid nitric acid (HNO(3)) films have been studied with Reflection-Absorption Infrared Spectroscopy (RAIRS) under Ultra-High Vacuum (UHV) conditions in the 90-170 K temperature range. In the bulk or at the surface of the films, nitric acid transfers its proton to the carbonyl function of the organic molecules, producing protonated acetone-H(+), hydroxyacetone-H(+), acetaldehyde-H(+) and benzaldehyde-H(+), and nitrate anions NO(3)(-), a reaction not observed when nitric acid is previously hydrated [J. Lasne, C. Laffon and Ph. Parent, Phys. Chem. Chem. Phys., 2012, 14, 697]. This provides a molecular-scale description of the carbonyl protonation reaction in an acid medium, the first step of the acid-catalyzed condensation of carbonyl compounds, fuelling the growth of secondary organic aerosols (SOA) in the atmosphere.

  3. Synergistic extraction of Th(IV) by 2-hydroxy-1-naphthaldehyde thiosemicarbazone and neutral donors

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, S.; Basu, S. [Nuclear and Analytical Chemistry Lab., Dept. of Chemistry, The Univ. of Burdwan, Burdwan (India)

    2003-07-01

    The extraction behaviour of Th(IV) from aqueous nitric acid medium employing 2-hydroxy-1-naphthaldehyde thiosemicarbazone has been studied in the presence of various donors, like trioctyl phosphine oxide (TOPO), calix[3]OH[3]OMe[6]arene, trioctyl amine (TOA), dimethyl sulphoxide (DMSO) in ethylacetate solvent. The constants (log k{sub ex}) for the binary complex in organic phase [Th(A)(NO{sub 3}){sub 3}], where A is the ligand, was found to be 3.99, which was by far the largest amongst the corresponding values known for the other thiosemicarbazones. The overall equilibrium constants (log K) for the ternary species [Th(A)TOPO(NO{sub 3}){sub 3}], [Th(A)TOA(NO{sub 3}){sub 3}], [Th(A)Calix[3]OH[3]OMe[6]arene(NO{sub 3}){sub 3}], [Th(A)DMSO(NO{sub 3}){sub 3}] were estimated to be 8.287, 8.862, 8.415, 6.921 respectively. The trend in equilibrium constants were in accordance with the substitution of the donor. The extraction of Th{sup 4+} by the ligand-donor combination was maximum at pH = 1 and extraction decreases with increase in pH. It has been found that the extent of extraction of Th{sup 4+} in the organic phase as the binary as well as ternary complex [Th(A)(NO{sub 3}){sub 3}] and [Th(A)(NO{sub 3}){sub 3}S], where S is the donor, increases with increase in the concentration of the ligand. Similar trend is obtained in the extraction by donors in absence of ligand. In case of ternary extraction, using different donors, amines are found to perform best compared to the other donors. The trend is as follows: TOA > calix[3]OH[3]OMe[6]arene > TOPO > DMSO. In addition, the effect of different diluents on extraction was also studied and the observed trend was methyl salicylate > ethyl acetate > methyl isobutyl ketone > ethyl benzoate. (orig.)

  4. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde

    Directory of Open Access Journals (Sweden)

    Hongling Han

    2015-07-01

    Full Text Available A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  5. A New Poly-substituted Benzaldehyde from the Leaves of Lysimachia fordiana Oliv.

    Directory of Open Access Journals (Sweden)

    Wen-di Deng

    2007-01-01

    Full Text Available A new poly-substituted benzaldehyde, 1, and a known compound quercetin (2 were isolated from the leaves of Lysimachia fordiana Oliv. The structure of compound 1, named fordianol, was determined as 2-heptyl-3,6-dihydroxy-4- methoxybenzaldehyde on the basis of spectroscopic methods. Fordianol did not inhibit the growth of SWO-38 (human brain neuroglioma, MCF-7 (human breast cancer or HeLa (human cervical carcinoma cell lines.

  6. Synthesis of mutagenic 2,4-dinitro-[7-[sup 14]C]benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Miki; Kozuka, Hiroshi; Honda, Takashi (Toyama Medical and Pharmaceutical Univ. (Japan)); Mori, Masaaki (Kyushu Univ., Fukuoka (Japan). School of Health Sciences); Sayama, Michio (Toyama Univ. (Japan))

    1994-07-01

    2,4-Dinitro-[7-[sup 14]C]benzaldehyde (4), a mutagenic substance which may have unique metabolic activating pathways, was synthesized as a tracer for the detection of adducts of 4 with macromolecules. The preparation was performed in four steps from [7-[sup 14]C]toluene to give an overall radiochemical yield of 20% after purifying by TLC. The radiochemical purity was over 98%. (Author).

  7. VOC measurements in the Grenoble area and study of the benzaldehyde behaviour in simulation chamber

    Energy Technology Data Exchange (ETDEWEB)

    Foster, P.; Laffond, M.; Baussand, P.; Jacob, V.; Denis, I. (Grenoble-1 Univ., 38 (FR))

    1991-07-01

    The main results of three measurement campaigns carried out in the Grenoble area and concerning 22 volatile organic compounds (VOC) are presented; highly volatile organic compounds follow-up is also analyzed. The effects of two irradiation powers and two types of particles (muscovite and fly ashes) on benzaldehyde degradation in presence of OH radicals are studied. The presence of particles is shown to increase the reaction kinetic constant and modify the composition of the reaction medium.

  8. Cu and Boron Doped Carbon Nitride for Highly Selective Oxidation of Toluene to Benzaldehyde.

    Science.gov (United States)

    Han, Hongling; Ding, Guodong; Wu, Tianbin; Yang, Dexin; Jiang, Tao; Han, Buxing

    2015-07-13

    A novel Cu and boron doped graphitic carbon nitride catalyst (Cu-CNB) was synthesized using cheap precursors and systematically characterized. The selective oxidation of toluene proceeded very smoothly over the catalyst at 70 °C using tert-butyl hydroperoxide (TBHP) as the oxidant to exclusively afford benzaldehyde. The catalyst can be used for at least five cycles without decrease in activity and selectivity.

  9. PREPARATION AND CHARACTERIZATION OF SOME SILICON (IV COMPLEXES

    Directory of Open Access Journals (Sweden)

    Z.F DAWOOD

    2008-06-01

    Full Text Available Silicon(IV complexes containing mixed ligands: Shiff-bases (AH {derived from 2- or 3- amino-pyridine with 2-hydroxy- or 3-me- thoxy- or 2-hydroxy-3-methoxy-benzaldehyde} and benzalde- hyde semicarbazone (BSCH, have been prepared. The resulted complexes have been characterized by elemental analysis, molar conductance values, infrared and electronic spectral data. Complexes of the type [Si(BSCH2(AH]Cl4, [Si(BSC2(AnH]Cl2 and [Si(BSC2(A]Cl (where n=2 or 3, A=deprotonated Schiff-base ligands , BSC= deprotonated semicarbazone have been proposed in neutral and basic medium, respectively.

  10. Spectroscopic study and structure of ( E)-2-[(2-chlorobenzylimino)methyl]methoxyphenol

    Science.gov (United States)

    Ünver, Hüseyin; Yıldız, Mustafa; Özay, Hava; Durlu, Tahsin Nuri

    2009-12-01

    ( E)-2-[(2-Chlorobenzylimino)methyl]methoxyphenol has been synthesized from the reaction of 2-hydroxy-3-methoxy-1-benzaldehyde( o-vanillin) with 2-chlorobenzylamine. The title compound has been characterized by using elemental analysis, FT-IR, 1H NMR, 13C NMR and UV-vis spectroscopic techniques. The crystal structure of the title compound has also been examined cyrstallographically. It crystallizes in the orthorhombic space group Pbca with unit cell parameters: a = 7.208(1) Å, b = 13.726(2) Å, c = 27.858(4) Å, V = 2756.0(1) Å 3, Dc = 1.18 g cm -3 and Z = 8. The crystal structure was solved by direct methods and refined by full-matrix least squares to a find R = 0.046 for 2773 observed reflections.

  11. Studies on the Synthesis, Characterization and Antibacterial Activity of Rare Earth Complexes with Schiff Base Derived from o-Vanillin and Adamantaneamine%金刚烷胺邻香兰素Schiff碱稀土配合物的合成、表征及抗菌活性研究

    Institute of Scientific and Technical Information of China (English)

    赵国良; 张萍华; 冯云龙

    2005-01-01

    The new solid complexes [LnL2(NO3)2]NO3 (L=C18H23NO2, N-2-hydroxy-3-methoxy-benzaldehyde-1-aminoadamanantane, Ln=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y) of rare earth nitrates with Schiff base derived from o-vanillin and adamantaneamine have been synthesized in non-aqueous system and characterized by elemental analysis, molar conductance, infrared spectra,1H NMR spectra, thermal analysis. The coordination modes of the bonding in these complexes were discussed and the possible structure were proposed.Every central Ln(m) ion in the complexes coordinates with both two Schiff base ligands via four oxygen atoms of the phenol hydroxy groups and methoxy groups and two nitrates via their four oxygen atoms. Their coordination numbers are eight. In addition, the antibacterial activity of the Schiff base ligand and the complexes were studied.

  12. Reactions of supercritical water with benzaldehyde, benzylidenebenzylamine, benzyl alcohol and benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Tsao, C.C.; Zhou, Y.; Liu, X.; Houser, T.J. (Western Michigan University, Kalamazoo, MI (USA). Dept. of Chemistry)

    1992-06-01

    This paper describes the results of reaction of benzaldehyde, benzyl alcohol, benzoic acid, and benzylidenebenzylamine with supercritical water (SW) since these compounds were determined or assumed to be major intermediates in the reaction of benzylamine with SW. Supplementary information was obtained from the benzyl benzoate-SW reaction. The kinetics of the benzaldehyde-SW reaction were found to be complex, second-order in benzaldehyde, and inhibited by product(s). The Arrhenius parameters for the second-order rate constant are an activation energy of 179 kJ mol[sup -1] and preexponential factor of 1.6 x 10 (10) M[sup -1]s[sup -1]. In addition, the influences of ammonia and dihydroanthracene on some of the product distributions and extents of reaction were determined. Of particular interest is the reaction pathway leading to the formation of benzene and related products which requires an oxidation/hydrolysis sequence, terminated by decarboxylation to form hydrocarbons. The mechanistic significance of the benzene/tpluene product-yield ratios is discussed.

  13. Lanthanide-surfactant-combined catalysts for the allylation of benzaldehyde with tetraallyltin in aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Deleersnyder, Karen; Shi Danzhao; Binnemans, Koen [Katholieke Universiteit Leuven, Department of Chemistry, Laboratory of Coordination Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium); Parac-Vogt, Tatjana N. [Katholieke Universiteit Leuven, Department of Chemistry, Laboratory of Coordination Chemistry, Celestijnenlaan 200F, B-3001 Leuven (Belgium)], E-mail: Tatjana.Vogt@chem.kuleuven.be

    2008-02-28

    Metal-surfactant-combined catalysts having the general formula M(DOS){sub x} (DOS = dodecylsulfate), x = 1-3, can be used for the efficient allylation of benzaldehyde with tetraallyltin in water. Due to the formation of micelles the reaction proceeds in the absence of organic solvents. Examination of a series of lanthanide(III) and divalent transition-metal dodecylsulfates as catalysts for the reaction between benzaldehyde and tetraallyltin revealed that the highest yields can be obtained when lanthanide(III) and copper(II) salts are used. Within 6 h at room temperature nearly quantitative conversion of benzaldehyde to 1-phenyl-3-buten-1-ol was achieved in the presence of 10 mol% of Cu(DOS){sub 2} or Yb(DOS){sub 3}. The influence of the amount of catalyst and tetraallyltin on the reaction yield was investigated. Different alkylsulfates, alkylsulfonates and arylsulfonates metal salts were prepared and tested as catalysts in the allylation reaction. The highest yields were obtained with ytterbium(III) alkylsulfates and ytterbium(III) arylsulfonates, while ytterbium(III) alkylsulfonates were found to be poor allylation catalysts. The results show that both the nature of the metal cation as well as the length and the nature of anionic surfactant chain are crucial for the activity of the metal-surfactant-combined catalysts in water.

  14. Oscillations and complex mechanisms: O/sub 2/ oxidation of benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Roelofs, M.G.; Wasserman, E.; Jensen, J.H.

    1987-07-08

    The oxidation of benzaldehyde catalyzed by cobalt and bromine is an oscillating reaction in which the concentrations of Co(III) and of dissolved oxygen vary periodically with time. A mechanistic model is proposed in which the reaction alternates between two stages. In stage I the dissolved oxygen concentration is appreciable and benzoyl radicals combine with oxygen, ultimately oxidizing Co(II) to Co(III). In stage II dissolved oxygen is depleted, and benzoyl radicals are oxidized by Co(III). The model gives satisfactory agreement with a number of qualitative and quantitative features. These include the composition of the steady states and the amplitude and period of oscillation for different concentrations of cobalt, bromide, and benzaldehyde. Specific measurements were also made of the kinetics of the reduction of cobalt(III) by mixtures of benzaldehyde and sodium bromide, the stability of a cobalt-bromide complex, and the consumption of /sup 18/O/sub 2/. This last study demonstrates the presence of two major pathways to benzoic acid which differ in the source of oxygen.

  15. Crystal structures of crotonaldehyde semicarbazone and crotonaldehyde thiosemicarbazone from X-ray powder diffraction data

    Directory of Open Access Journals (Sweden)

    Atef Arfan

    2015-02-01

    Full Text Available Crotonaldehyde semicarbazone {systematic name: (E-2-[(E-but-2-en-1-ylidene]hydrazinecarboxamide}, C5H9N3O, (I, and crotonaldehyde thiosemicarbazone {systematic name: (E-2-[(E-but-2-en-1-yldene]hydrazinecarbothioamide}, C5H9N3S, (II, show the same E conformation around the imine C=N bond. Compounds (I and (II were obtained by the condensation of crotonaldehyde with semicarbazide hydrochloride and thiosemicarbazide, respectively. Each molecule has an intramolecular N—H...N hydrogen bond, which generates an S(5 ring. In (I, the crotonaldehyde fragment is twisted by 2.59 (5° from the semicarbazide mean plane, while in (II the corresponding angle (with the thiosemicarbazide mean plane is 9.12 (5°. The crystal packing is different in the two compounds: in (I intermolecular N—H...O hydrogen bonds link the molecules into layers parallel to the bc plane, while weak intermolecular N—H...S hydrogen bonds in (II link the molecules into chains propagating in [110].

  16. Structure and Luminescence Property of a Hexanuclear Silver(I) Cluster Containing Pyridine-3-carboxaldehyde Thiosemicarbazone

    Institute of Scientific and Technical Information of China (English)

    SUN Qiao-Zhen; CHAI Li-Yuan

    2012-01-01

    A new hexanuclear silver(I) compound containing thiosemicarbazone with group of 3-pyridine was synthesized and structurally characterized by single-crystal X-ray diffraction,elemental analysis and fluorescence spectrum.The title compound 3 crystallizes in monoclinic,space group C2/m with a = 18.6523(9),b = 24.7519(11),c = 22.4542(15) ,β = 93.4960(10)°,V = 10347.4(10)3,C68H104Ag6N30O8S6,Mr = 2309.39,Dc = 1.482g/cm3,μ(MoKα) = 1.293 mm-1,F(000) = 4656,Z = 4,the final R = 0.0544 and wR = 0.1580 for 6733 observed reflections(I 〉 2σ(I)).In the structure,two Ag6L36(L3 = pyridine-3-carboxaldehyde thiosemicarbazone) clusters are contained.In each cluster,the S atom of ligand L3 served as a triply bridged chelator to connect the six silver atoms into a Ag6L36 cluster.Luminescence investigation revealed that the band at 630 nm was attributed to cluster-centered(CC) electron transfer,and those at 493 and 530 nm to the LMCT and CC transitions,respectively.

  17. Synthesis, Structure and Comparison of Luminescent Property between Two Hexanuclear Silver(I) Thiosemicarbazone Clusters

    Institute of Scientific and Technical Information of China (English)

    SUN Qiao-Zhen; LIAO Song-Yi; CHAI Li-Yuan; XU Xiao-Wen3; YAO Jun-Jun; FANG Qiong-Jia-Li

    2012-01-01

    A new silver(Ⅰ) compound 4 containing thiosemicarbazone with group 2-quinoline was synthesized and structurally characterized by single-crystal X-ray diffraction, elemental analysis and fluorescence spectrum. Compound 4 crystallizes in triclinic, space group P1 with a = 12.2710(9), b = 16.9281(13), c = 17.2984(13), α = 112.8500(10), β = 103.4890(10), γ = 102.6860(10)°, V = 3020.9(4) 3, C80H94Ag6N28O6S6, Mr = 2383.41, Dc = 1.310 g/cm3, μ(MoKα) = 1.108 mm-1, F(000) = 1196, Z = 1, the final R = 0.0567 and wR = 0.1368 for 5112 observed reflections (I 〉 2σ(I)). Similar to the structure of compound 2 we have reported, compound 4 also exhibits a hexanuclear silver(Ⅰ) cluster. In the cluster, the S atom of ligand L4 (L4 = 2-quinolinecarboxaldehyde thiosemicarbazone) serves as a triply bridged chelator to connect the six silver atoms into a Ag6L46 cluster. The luminescence property of 4 is investigated at room temperature and compared with that of 2.

  18. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB.

    Directory of Open Access Journals (Sweden)

    Jörg Schröder

    Full Text Available Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas' disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.

  19. Identification of semicarbazones, thiosemicarbazones and triazine nitriles as inhibitors of Leishmania mexicana cysteine protease CPB.

    Science.gov (United States)

    Schröder, Jörg; Noack, Sandra; Marhöfer, Richard J; Mottram, Jeremy C; Coombs, Graham H; Selzer, Paul M

    2013-01-01

    Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas' disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.

  20. Copper complexes containing thiosemicarbazones derived from 6-nitropiperonal: Antimicrobial and biophysical properties

    Science.gov (United States)

    Beckford, Floyd A.; Webb, Kelsey R.

    2017-08-01

    A series of four thiosemicarbazones from 6-nitropiperonal along with the corresponding copper complexes were synthesized. The biophysical characteristics of the complexes were investigated by the binding to DNA and human serum albumin. The binding to DNA is moderate; the binding constants run from (0.49-7.50) × 104 M- 1. In relation to HSA, the complexes interact strongly with binding constants on the order of 105 M- 1. The complexes also display antioxidant behavior as determined by the ability to scavenge diphenylpicrylhydrazyl (dpph) and nitric oxide radicals. The antimicrobial profiles of the compounds, tested against a panel of microbes including five of the ESKAPE pathogens (Staphylococcus aureus, MRSA, Escherichia coli, Klebsiella pneumoniae, MDR, Acinetobacter baumannii, Pseudomonas aeruginosa) and two yeasts (Candida albicans and Cryptococcus neoformans var. grubii), are also described. The compounds contain a core moiety that is similar to oxolinic acid, a quinolone antibiotic that targets DNA gyrase and topoisomerase (IV). The binding interaction between the complexes and these important antibacterial targets were studied by computational methods, chiefly docking studies. The calculated dissociation constants for the interaction with DNA gyrase B (from Staphylococcus aureus) range from 4.32 to 24.65 μM; the binding was much stronger to topoisomerase IV, with dissociation constants ranging from 0.37 to 1.27 μM.

  1. Synthesis and Evaluation of New Benzodioxole- Based Thiosemicarbazone Derivatives as Potential Antitumor Agents

    Directory of Open Access Journals (Sweden)

    Mehlika Dilek Altıntop

    2016-11-01

    Full Text Available New benzodioxole-based thiosemicarbazone derivatives were synthesized and evaluated for their cytotoxic effects on A549 human lung adenocarcinoma, C6 rat glioma and NIH/3T3 mouse embryonic fibroblast cells. In order to examine the correlation between anticancer activity and cholinesterases, the compounds were evaluated for their inhibitory effects on AChE and BuChE. The most effective anticancer agents were investigated for their effects on DNA synthesis, apoptosis and mitochondrial membrane potential. 4-(1,3-Benzodioxol-5-yl-1-([1,1′-biphenyl]-4-ylmethylenethiosemicarbazide (5 was identified as the most promising anticancer agent against C6 and A549 cell lines due to its inhibitory effects on C6 and A549 cells and low toxicity to NIH/3T3 cells. Compound 5 increased early and late apoptosis in A549 and C6 cells. Compound 5 also caused disturbance on mitochondrial membrane potential and showed DNA synthesis inhibitory activity in A549 and C6 cells. Compound 5 was investigated for SIRT1 inhibitory activity to provide mechanistic insight and for that purpose docking studies were also performed for this compound on SIRT1. On the other hand, compound 5 did not show any inhibitory activity against AChE and BuChE. This outcome pointed out that there is no relationship between anticancer activity of compound 5 and cholinesterases.

  2. Synthesis and In Vitro Evaluation of New Thiosemicarbazone Derivatives as Potential Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Zafer Asım Kaplancıklı

    2016-01-01

    Full Text Available In an effort to develop potent antimicrobial agents, new thiosemicarbazone derivatives were synthesized via the reaction of 4-[4-(trifluoromethylphenyl]thiosemicarbazide with aromatic aldehydes. The compounds were evaluated for their inhibitory effects on pathogenic bacteria and yeasts using the CLSI broth microdilution method. Microplate Alamar Blue Assay was also carried out to determine the antimycobacterial activities of the compounds against Mycobacterium tuberculosis H37Rv. Among these derivatives, compounds 5 and 11 were more effective against Enterococcus faecalis (ATCC 29212 than chloramphenicol, whereas compounds 1, 2, and 12 and chloramphenicol showed the same level of antibacterial activity against E. faecalis. Moreover, compound 2 and chloramphenicol exhibited the same level of antibacterial activity against Staphylococcus aureus. On the other hand, the most potent anticandidal derivatives were found as compounds 2 and 5. These derivatives and ketoconazole exhibited the same level of antifungal activity against Candida glabrata. According to the Microplate Alamar Blue Assay, the tested compounds showed weak to moderate antitubercular activity.

  3. Intracellular reduction/activation of a disulfide switch in thiosemicarbazone iron chelators

    Science.gov (United States)

    Akam, Eman A.; Chang, Tsuhen M.; Astashkin, Andrei V.

    2014-01-01

    Iron scavengers (chelators) offer therapeutic opportunities in anticancer drug design by targeting the increased demand for iron in cancer cells as compared to normal cells. Prochelation approaches are expected to avoid systemic iron depletion as chelators are liberated under specific intracellular conditions. In the strategy described herein, a disulfide linkage is employed as a redox-directed switch within the binding unit of an antiproliferative thiosemicarbazone prochelator, which is activated for iron coordination following reduction to the thiolate chelator. In glutathione redox buffer, this reduction event occurs at physiological concentrations and half-cell potentials. Consistent with concurrent reduction and activation, higher intracellular thiol concentrations increase cell susceptibility to prochelator toxicity in cultured cancer cells. The reduction of the disulfide switch and intracellular iron chelation are confirmed in cell-based assays using calcein as a fluorescent probe for paramagnetic ions. The resulting low-spin Fe(III) complex is identified in intact Jurkat cells by EPR spectroscopy measurements, which also document a decreased concentration of active ribonucleotide reductase following exposure to the prochelator. Cell viability and fluorescence-based assays show that the iron complex presents low cytotoxicity and does not participate in intracellular redox chemistry, indicating that this antiproliferative chelation strategy does not rely on the generation of reactive oxygen species. PMID:25100578

  4. Cyclopentanone thiosemicarbazone, a new complexing agent for copper determination in biological samples by adsorptive stripping voltammetry.

    Science.gov (United States)

    Mahajan, Rakesh Kumar; Walia, T P S; Sumanjit; Lobana, T S

    2006-03-01

    A selective and sensitive stripping voltammetric method for the determination of trace amounts of copper(II) with cyclopentanone thiosemicarbazone (CPTSC) is presented. The method is based on the adsorptive accumulation of the resulting copper-CPTSC complex on a hanging mercury drop electrode, followed by the stripping voltammetric measurements at the reduction current of the adsorbed complex at -0.37 V vs. Ag/AgCl. The optimal conditions for the stripping analysis of copper include pH 9.3, deposition time of 120 s, and a deposition potential of -0.1 V (vs. Ag/AgCl). The peak current is linearly proportional to the copper concentration over a range 3.14 x 10(-9) M to 1.57 x 10(-6) M with a limit of detection of 1.57 x 10(-9) M. The technique has been applied to the determination of copper in biological samples, like urine and whole blood.

  5. 2-Acetylpyridine N4-Phenyl- Thiosemicarbazone as a new tool for tumour diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marcella Araugio; Pesquero, Jorge Luiz [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Fisiologia e Biofisica], e-mail: marcellaaraugio@yahoo.com.br; Costa, Pryscila R. da; Mendes, Isolda M.C.; Beraldo, Heloisa; Santos, Raquel Gouvea dos [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: santosr@cdtn.br

    2009-07-01

    The aim of this work was to determine in vivo biodistribution of radiolabelled 2-acetylpyridine N4 phenyl thiosemicarbazone (Ph) and to evaluate its applicability for tumour diagnosis. Ph was labelled with {sup 125}I using lactoperoxidase method and radiochemical analysis was performed by chromatography. {sup 125}I-Ph production was successful with 86 {+-} 9.2% of radiochemical purity and high specific activity (17.6 TBq /mmol). {sup 125}I-Ph was used for biodistribution and pharmacokinetics studies on Swiss mice bearing Ehrlich solid tumour. {sup 125}I-Ph presented a rapid blood clearance (T{sub 1/2}= 97.2 min.) and the kidneys were the main excretion pathway (CL0.01 mL/min). {sup 125}I-Ph uptake was significant in tumour (2.5%ID/g) and tumour-to-normal tissue uptake was more than 20-fold higher depending on the organ. The uptake by the organs like heart, lungs, stomach and liver followed the blood perfusion. Our results suggest that {sup 125}I-Ph possess indispensable characteristics for an efficient radiopharmaceutical for tumour diagnosis. The next step will be to evaluate the quality of tumour SPECT images provided by {sup 131}I-Ph. (author)

  6. Structural and biological evaluation of some metal complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2013-12-01

    The synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II) and U(VI)O2 complexes of vanillin-4N-(2-pyridyl) thiosemicarbazone (H2PVT) are reported. Theoretical calculations have been performed to obtain IR spectra of ligand and its complexes using AM1, Zindo/1, MM+ and PM3, methods. The Schiff base and its metal complexes have been screened for antibacterial Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis and Staphylococcus saprophyticus. H2VPT shows no apparent digestion effect on the egg albumin while Mn(II), Hg(II) and Cu(II) complexes exhibited a considerable digestion effect following the order Cu(II) > Mn(II) > Hg(II). Moreover, Ni(II) and Co(II) complexes revealed strong digestion effect. Fe(II), Mn(II), Cu(II), Zn(II) and Ni(II) acted as metal co- SOD enzyme factors, which are located in different compartments of the cell.

  7. Induction of intrinsic and extrinsic apoptosis through oxidative stress in drug-resistant cancer by a newly synthesized Schiff base copper chelate.

    Science.gov (United States)

    Banerjee, Kaushik; Basu, Soumya; Das, Satyajit; Sinha, Abhinaba; Biswas, Manas Kumar; Choudhuri, Soumitra Kumar

    2016-01-01

    Multidrug resistance (MDR) in cancer represents a variety of strategies employed by tumor cells to evade the beneficial cytotoxic effects of structurally different anticancer drugs and thus confers impediments to the successful treatment of cancers. Efflux of drugs by MDR protein-1, functional P-glycoprotein and elevated level of reduced glutathione confer resistance to cell death or apoptosis and thus provide a possible therapeutic target for overcoming MDR in cancer. Previously, we reported that a Schiff base ligand, potassium-N-(2-hydroxy 3-methoxy-benzaldehyde)-alaninate (PHMBA) overcomes MDR in both in vivo and in vitro by targeting intrinsic apoptotic/necrotic pathway through induction of reactive oxygen species (ROS). The present study describes the synthesis and spectroscopic characterization of a copper chelate of Schiff base, viz., copper (II)-N-(2-hydroxy-3-methoxy-benzaldehyde)-alaninate (CuPHMBA) and the underlying mechanism of cell death induced by CuPHMBA in vitro. CuPHMBA kills both the drug-resistant and sensitive cell types irrespective of their drug resistance phenotype. The cell death induced by CuPHMBA follows apoptotic pathway and moreover, the cell death is associated with intrinsic mitochondrial and extrinsic receptor-mediated pathways. Oxidative stress plays a pivotal role in the process as proved by the fact that antioxidant enzyme; polyethylene glycol conjugated-catalase completely blocked CuPHMBA-induced ROS generation and abrogated cell death. To summarize, the present work provides a compelling rationale for the future clinical use of CuPHMBA, a redox active copper chelate in the treatment of cancer patients, irrespective of their drug-resistance status.

  8. Biotransformation of Benzaldehyde to L-Phenylacetylcarbinol (L-PAC by Free Cells of Torulaspora delbrueckii in presence of Beta-Cyclodextrin

    Directory of Open Access Journals (Sweden)

    Vilas. B. Shukla

    2002-09-01

    Full Text Available Studies were carried out to explore the possibility of decreasing the toxic and inhibitory effects of the substrate benzaldehyde during its biotransformation to L-PAC by free cells of Torulaspora delbrueckii using beta -cyclodextrin (beta -CD. Use of various levels of benzaldehyde and acetaldehyde in presence of 2% of beta -CD showed that, in presence of beta -CD, the organism could tolerate higher levels of benzaldehyde and acetaldehyde. Semi-continuous feeding of benzaldehyde and acetaldehyde was found to increase the yield of L-PAC in comparison with one time feeding.

  9. Enhanced benzaldehyde tolerance in Zymomonas mobilis biofilms and the potential of biofilm applications in fine-chemical production.

    Science.gov (United States)

    Li, Xuan Zhong; Webb, Jeremy S; Kjelleberg, Staffan; Rosche, Bettina

    2006-02-01

    Biotransformation plays an increasingly important role in the industrial production of fine chemicals due to its high product specificity and low energy requirement. One challenge in biotransformation is the toxicity of substrates and/or products to biocatalytic microorganisms and enzymes. Biofilms are known for their enhanced tolerance of hostile environments compared to planktonic free-living cells. Zymomonas mobilis was used in this study as a model organism to examine the potential of surface-associated biofilms for biotransformation of chemicals into value-added products. Z. mobilis formed a biofilm with a complex three-dimensional architecture comprised of microcolonies with an average thickness of 20 microm, interspersed with water channels. Microscopic analysis and metabolic activity studies revealed that Z. mobilis biofilm cells were more tolerant to the toxic substrate benzaldehyde than planktonic cells were. When exposed to 50 mM benzaldehyde for 1 h, biofilm cells exhibited an average of 45% residual metabolic activity, while planktonic cells were completely inactivated. Three hours of exposure to 30 mM benzaldehyde resulted in sixfold-higher residual metabolic activity in biofilm cells than in planktonic cells. Cells inactivated by benzaldehyde were evenly distributed throughout the biofilm, indicating that the resistance mechanism was different from mass transfer limitation. We also found that enhanced tolerance to benzaldehyde was not due to the conversion of benzaldehyde into less toxic compounds. In the presence of glucose, Z. mobilis biofilms in continuous cultures transformed 10 mM benzaldehyde into benzyl alcohol at a steady rate of 8.11 g (g dry weight)(-1) day(-1) with a 90% molar yield over a 45-h production period.

  10. Targeting triple negative breast cancer cells by N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their metal complexes

    Science.gov (United States)

    Afrasiabi, Zahra; Stovall, Preston; Finley, Kristen; Choudhury, Amitava; Barnes, Charles; Ahmad, Aamir; Sarkar, Fazlul; Vyas, Alok; Padhye, Subhash

    2013-10-01

    Novel N3-substituted 9,10-Phenanthrenequinone thiosemicarbazones and their copper, nickel and palladium complexes are structurally characterized and reported along with the single crystal X-ray structures of three ligands and one nickel complex. All compounds were evaluated for their antiproliferative potential against Triple Negative Breast Cancer (TNBC) cells which have poor prognosis and no effective drugs to treat with. All compounds exhibited antiproliferative activity against these cells. Among the metal complexes evaluated, redox active copper complexes were found to be more potent. The possible mechanism for such enhanced activity can be attributed to the generation of oxidative stress, which was amenable for targeting through metal complexation.

  11. Mass spectra of benzaldehyde using time resolved ion trapping mass spectrometer. Jikan bunkai ion trapping shitsuryo bunsekikei ni yoru benzaldehyde no mass spector

    Energy Technology Data Exchange (ETDEWEB)

    Ishigane, M.; Isa, K. (Fukui Univ., Fukui (Japan). Faculty of Education); Nishioka, K. (Fukui Univ., Fukui (Japan). Faculty of Engineering)

    1991-12-28

    An ion trapping mass spectrometer for time resolved analysis has been set up. The time resolved analysis function of this system is excellent and the ion detecting sensitivity is also high. Benzaldehyde is used as the specimen for the measurement of the A group of the mass spectra (m/z 105 106 and 107) by this system and similar mass spectra are obtained at delay time zero to those reported by now. Big changes are observed in the spectra when the delay times are varied. It is found that mass spectra which are different from those reported already are obtained when the mass spectrometer is pulse operated. In other words it can be said that the time dependence of the data on ion decomposition ( fragmentation) and ion/molecule reactions can be obtained in the state where solvent has no influence if this new system is adopted. 6 refs. 12 figs.

  12. Probing the Active Center of Benzaldehyde Lyase with Substitutions and the Pseudosubstrate Analogue Benzoylphosphonic Acid Methyl Ester

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Gabriel S.; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J.; Yep, Alejandra; Kenyon, George L.; Petsko, Gregory A.; Jordan, Frank; Ringe, Dagmar (Rutgers); (Michigan); (Brandeis)

    2008-07-28

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of (R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg{sup 2+} as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 {angstrom} (Protein Data Bank entry 3D7K) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  13. Probing the active center of benzaldehyde lyase with substitutions and the pseudosubstrate analogue benzoylphosphonic acid methyl ester.

    Science.gov (United States)

    Brandt, Gabriel S; Nemeria, Natalia; Chakraborty, Sumit; McLeish, Michael J; Yep, Alejandra; Kenyon, George L; Petsko, Gregory A; Jordan, Frank; Ringe, Dagmar

    2008-07-22

    Benzaldehyde lyase (BAL) catalyzes the reversible cleavage of ( R)-benzoin to benzaldehyde utilizing thiamin diphosphate and Mg (2+) as cofactors. The enzyme is important for the chemoenzymatic synthesis of a wide range of compounds via its carboligation reaction mechanism. In addition to its principal functions, BAL can slowly decarboxylate aromatic amino acids such as benzoylformic acid. It is also intriguing mechanistically due to the paucity of acid-base residues at the active center that can participate in proton transfer steps thought to be necessary for these types of reactions. Here methyl benzoylphosphonate, an excellent electrostatic analogue of benzoylformic acid, is used to probe the mechanism of benzaldehyde lyase. The structure of benzaldehyde lyase in its covalent complex with methyl benzoylphosphonate was determined to 2.49 A (Protein Data Bank entry 3D7K ) and represents the first structure of this enzyme with a compound bound in the active site. No large structural reorganization was detected compared to the complex of the enzyme with thiamin diphosphate. The configuration of the predecarboxylation thiamin-bound intermediate was clarified by the structure. Both spectroscopic and X-ray structural studies are consistent with inhibition resulting from the binding of MBP to the thiamin diphosphate in the active centers. We also delineated the role of His29 (the sole potential acid-base catalyst in the active site other than the highly conserved Glu50) and Trp163 in cofactor activation and catalysis by benzaldehyde lyase.

  14. Cyclometallated ruthenium(II) carbonyl complexes with 1-pyrenaldehyde 4-R-3-thiosemicarbazones: Regioselective ruthenation of the 1-pyrenyl group

    Indian Academy of Sciences (India)

    Rupesh Narayana Prabhu; Samudranil Pal

    2015-04-01

    A facile method for the synthesis of a series of cyclometallated ruthenium(II) carbonyl complexes with 1-pyrenaldehyde 4-R-3-thiosemicarbazones (H2Ln where the two H’s represent the dissociable thioamide and pyrenyl protons; R = H, Me and Ph) has been described. The characterization of the complexes having the general molecular formula trans-[Ru(Ln)(CO)(EPh33)2] (where E = P or As) were accomplished by elemental (CHN) analysis, magnetic susceptibility and spectroscopic (ESI-MS, IR, UV-Vis, emission and 1H-NMR) measurements. Electronic spectra of the complexes display multiple strong absorptions in the range 440–224 nm due to intraligand transitions. All the complexes exhibit emission bands that are characteristic of ligand centred emissive states. X-ray diffraction studies with representative complexes reveal a pincer-like 5,5-membered fused chelate rings forming CNS coordination mode of the thiosemicarbazonate ligand (Ln)2− via regioselective activation of 1-pyrenyl ortho C–H and formation of a distorted octahedral C2NSE2 coordination sphere around the ruthenium(II) centre.

  15. In vitro cytotoxic, antibacterial, antifungal and urease inhibitory activities of some N4- substituted isatin-3-thiosemicarbazones.

    Science.gov (United States)

    Pervez, Humayun; Iqbal, Mohammad S; Tahir, Muhammad Younas; Nasim, Faiz-ul-Hassan; Choudhary, Muhammad Iqbal; Khan, Khalid Mohammed

    2008-12-01

    A series of 15 previously reported N(4)-substituted isatin-3-thiosemicarbazones 3a-o has been screened for cytotoxic, antibacterial, antifungal and urease inhibitory activities. Compounds 3b, 3e and 3n proved to be active in cytotoxicity assay; 3e exhibited a high degree of cytotoxic activity (LD(50) = 1.10 x 10(-5) M). Compound 3h exhibited significant antibacterial activity against B. subtilis, whereas compounds 3a, 3k and 3l displayed significant antifungal activity against one or more fungal strains i.e. T. longifusus, A. flavus and M. canis. In human urease enzyme inhibition assay, compounds 3g, 3k and 3m proved to be the most potent inhibitors, exhibiting relatively pronounced inhibition of the enzyme. These compounds, being non-toxic, could be potential candidates for orally effective therapeutic agents to treat certain clinical conditions induced by bacterial ureases like H. pylori urease. This study presents the first example of inhibition of urease by isatin-thiosemicarbazones and as such provides a solid basis for further research on such compounds to develop more potent inhibitors.

  16. Comparative evaluation of Bis(thiosemicarbazone)- Biotin and Met-ac-TE3A for tumor imaging

    Science.gov (United States)

    Singh, Sweta; Tiwari, Anjani K.; Varshney, Raunak; Mathur, R.; Shukla, Gauri; Bag, N.; Singh, B.; Mishra, Anil K.

    2016-01-01

    2,2‧,2″-(11-(2-((4-mercapto-1-methoxy-1-oxobutan-2-yl)amino)-2-oxoethyl)-1,4,8,11-tetraaza cyclotetradecane-1,4,8-triyl)triacetic acid, Met-ac-TE3A and (E)-N-methyl-2-((E)-3-(2-(2-(5-((3aS,4S,6aR)-2-oxohexahydro-1H-thieno[3,4-d]imidazol-4-yl)pentanoyl)hydrazinecarbono-thioyl)hydrazonobutan-2-ylidene)hydrazinecarbothioamide, Bis(thiosemicarbazone)- Biotin were synthesized and evaluated for imaging application. The pharmacokinetics of these ligands were determined by tracer methods. In vitro human serum stability of 99mTc Met-ac-TE3A/99mTc Bis(thiosemicarbazone)-Biotin after 24 h was found to be 96.5% and 97.0% respectively. Blood kinetics of both ligands in normal rabbits showed biphasic clearance pattern. Ex vivo biodistribution study revealed significant initial tumor uptake and high tumor/muscles ratio which is a pre-requisite condition for a ligand to work as SPECT-radiopharmaceutical for tumor imaging.

  17. Reactions of Chlorine Gas on Benzaldehyde-di-n-alkyl Acetals

    Directory of Open Access Journals (Sweden)

    A. Edwin Vasu

    2008-01-01

    Full Text Available Reactions of chlorine gas on six aromatic acetals, the benzaldehyde di-n-alkyl acetals, C6H4-CH(OR2 where R=ethyl (1a, n-propyl (2a, n-butyl (3a, isobutyl (4a, n-amyl (5a and isoamyl (6a were studied. The products were analyzed by IR and 1H NMR spectroscopic techniques and were found to be ring chlorinated alkyl benzoates. A plausible mechanism has been proposed based on the experimental observations and the effect of the alkyl groups on the product yield.

  18. Kinetics and mechanism of the thermal decomposition of unsaturated aldehydes: benzaldehyde, 2-butenal, and 2-furaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Grela, M.A.; Colussi, A.J.

    1986-01-30

    The thermal unimolecular decomposition of benzaldehyde (BA), crotonaldehyde (CA), and furfural (FA) have been investigated in a flow reactor at very low pressures by modulated beam mass spectrometry above 1040 K. Each reaction proceeds by a different mechanism. Whereas BA decomposes by C(O)-H bond fission CA readily undergoes decarbonylation to propene via a three-center transition-state reaction. FA decomposition into vinylketene and CO involves ring opening followed by H-atom transfer in the resulting biradical. Overall high-pressure Arrhenius parameters for the three reactions are derived from kinetic data. 26 references, 4 figures, 1 table.

  19. The effect of metal-support interactions on the hydrogenation of benzaldehyde and benzyl alcohol

    Energy Technology Data Exchange (ETDEWEB)

    Vannice, M.A.; Poondi, D. [Pennsylvania State Univ., University Park, PA (United States)

    1997-07-01

    The hydrogenation of benzaldehyde hydrogenation on Pt/TiO{sub 2} after a high-temperature reduction (HTR) step, compared to either Pt/TiO{sub 2} after a low-temperature reduction (LTR) step, Pt/SiO{sub 2} or Pt/Al{sub 2}O{sub 3} is discussed. Pt/TiO{sub 2} (HTR) retained a selectivity to benzyl alcohol of 100% up to conversions of 80%, whereas significant amounts of toluene and benzene began to be formed at conversions above 20% with the other Pt catalysts, including Pt powder. 39 refs., 6 figs., 7 tabs.

  20. Synthesis of Aminophosphine Ligands with Binaphthyl Backbones for Silver(I)-catalyzed Enantioselective Allylation of Benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    WANG,Yi(王以); JI,Bao-Ming(吉保明); DING,Kui-Ling(丁奎岭)

    2002-01-01

    A series of aminophosphine ligands was synthesized from 2amino-2′-hydroxy-1,1′-binaphthyl (NOBIN). Their asymmetric induction efficiency was examined for silver(I)catalyzed enantioselective allylation reaction of benzaldehyde with allyltributyltin.Under the optimized reaction conditions,quantitative yield as well as moderate ee value (54.5% ee)of product was achieved by the catalysis with silver(I)/3 complex. The effects of the binaphthyl backbone and the substituted situated at chelating N, Patoms on enantioselectivity of the reaction were also discussed.

  1. A Novel Acetate Selective UV-Vis Chemosensor Containing a Tripodal Benzaldehydic-phenylhydrazone

    Institute of Scientific and Technical Information of China (English)

    QIAO Yan-Hong; LIN Hai; SHAO Jie; LIN Hua-Kuan

    2008-01-01

    A new colorimetric chemosensor 1 based on a tripodal benzaldehydic-phenylhydrazone selectively sensing acetate ion has been synthesized. The highly selective binding ability of receptor I to acetate ion over other studied anions was demonstrated by UV-Vis absorption spectroscopy in DMSO. Compared with other anions studied, its sorption spectrum change has occurred when receptor 1 was treated with other different guest anions (F-, Cl-, Br-,I-, H2PO4- and OH-). The Kass of receptor 1 binding with acetate ion is 1.69×104.

  2. Engineering NiO sensitive materials and its ultra-selective detection of benzaldehyde.

    Science.gov (United States)

    Yang, Fuchao; Guo, Zhiguang

    2016-04-01

    Ongoing interest in oxide semiconductor as components of gas sensing devices is motivated by environmental monitoring and intelligent control. NiO with different precursor solution were synthesized by aqueous chemical deposition and pyrolysis process. Here the method is quite facile, green and free of surfactant. Their morphology, crystal structure and chemical composition have been systemically characterized by various techniques. Interestingly, the microstructures of NiO can be engineered by different nickel salt (nitrate or chloride). These NiO based gas sensors showed substantially enhanced responses to benzaldehyde target analyte and exhibited fast response-recover feature. The observed gas sensing behavior is explained in terms of oxygen ionosorption mechanism.

  3. Crystal structure of 4-(4-meth-oxy-phen-oxy)benzaldehyde.

    Science.gov (United States)

    Schäfer, Andreas; Iovkova-Berends, Ljuba; Gilke, Stefan; Kossmann, Paul; Preut, Hans; Hiersemann, Martin

    2015-12-01

    The title compound, C14H12O3, was synthesized via the nucleophilic addition of 4-meth-oxy-phenol to 4-fluoro-benzaldehyde. The dihedral angle between the least-squares planes of the benzene rings is 71.52 (3)° and the C-O-C angle at the central O atom is 118.82 (8)°. In the crystal, weak C-H⋯O hydrogen bonds link the molecules to generate supra-molecular layers in the bc plane. The layers are linked by weak C-H⋯π inter-actions.

  4. Aqueous high-temperature chemistry of carbo- and heterocycles. 2. Monosubstituted benzenes: Benzyl alcohol, benzaldehyde, and benzoic acid

    Energy Technology Data Exchange (ETDEWEB)

    Katritzky, A.R.; Balasubramanian, M. (Univ. of Florida, Gainesville (USA)); Siskin, M. (Exxon Research and Engineering Company, Annandale, NJ (USA))

    Benzyl alcohol is not very reactive under aquathermolysis conditions, except in the presence of acids. Almost all the products are formed by ionic pathways. It undergoes reversible dehydration to dibenzyl ether, disproportionation to benzaldehyde and toluene, and self-benzylation to 2- and 4-benzylbenzyl alcohols. These benzylbenzyl alcohols can react further, but major amounts of polyalkylated products are formed by the mono- and dibenzylation of toluene to give a range of dibenzyltoluenes and (benzylbenzyl)toluenes. Small amounts of diphenylmethane and bibenzyl and their benzylated products are also formed. The behavior of benzyl alcohol in the presence of phenol, pyridine, benzaldehyde, and benzene is also studied and rationalized. Benzaldehyde is much less reactive, except in the presence of formaldehyde, and especially in the presence of formic acid, when considerable formation of benzyl alcohol occurs and siphoning into this reaction matrix is observed. Benzoic acid is still less reactive.

  5. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(alpha-Me)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, R; Broxterman, QB; Kamphuis, Johan; Formaggio, F; Crisma, M; Toniolo, C; Kellogg, RM

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (alpha Me)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented. (C)

  6. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(αMe)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, Ron; Broxterman, Quirinus B.; Kamphuis, Johan; Formaggio, Fernando; Crisma, Marco; Toniolo, Claudio; Kellogg, Richard M.

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (αMe)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented.

  7. Catalytic enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxybenzaldehyde using cyclo-His-(alpha-Me)Phe as catalyst

    NARCIS (Netherlands)

    Hulst, R; Broxterman, QB; Kamphuis, J; Formaggio, F; Crisma, M; Toniolo, C; Kellogg, RM

    1997-01-01

    Two cyclo-dipeptides based on His and the unnatural (alpha Me)Phe have been examined as catalysts in the enantioselective addition of hydrogen cyanide to benzaldehyde and p-methoxy-benzaldehyde. The synthesis, catalytic activity and NMR study towards the mechanism of this reaction are presented. (C)

  8. Electropolymerized fluorinated aniline-based fiber for headspace solid-phase microextraction and gas chromatographic determination of benzaldehyde in injectable pharmaceutical formulations.

    Science.gov (United States)

    Mohammadi, Ali; Mohammadi, Somayeh; Bayandori Moghaddam, Abdolmajid; Masoumi, Vahideh; Walker, Roderick B

    2014-10-01

    In this study, a simple method was developed and validated to detect trace levels of benzaldehyde in injectable pharmaceutical formulations by solid-phase microextraction coupled with gas chromatography-flame ionization detector. Polyaniline was electrodeposited on a platinum wire in trifluoroacetic acid solvent by cyclic voltammetry technique. This fiber shows high thermal and mechanical stability and high performance in extraction of benzaldehyde. Extraction and desorption time and temperature, salt effect and gas chromatography parameters were optimized as key parameters. At the optimum conditions, the fiber shows good linearity between peak area ratio of benzaldehyde/3-chlorobenzaldehyde and benzaldehyde concentration in the range of 50-800 ng/mL with percent relative standard deviation values ranging from 0.75 to 8.64% (n = 3). The limits of quantitation and detection were 50 and 16 ng/mL, respectively. The method has the requisite selectivity, sensitivity, accuracy and precision to assay benzaldehyde in injectable pharmaceutical dosage forms.

  9. Synthesis, spectral and computational analysis of 2-(N-bromoalkoxy)-5-(phenylazo)benzaldehydes and their oximes

    Science.gov (United States)

    Balachander, R.; Manimekalai, A.

    2017-04-01

    2-(N-Bromoalkoxy)-5-(phenylazo)benzaldehydes 1-3, 2-(3-bromomethylbenzyloxy)-5-(phenylazo)benzaldehyde 4 and their oximes 5-8 were synthesized and characterized by FT-IR, GC-MS, 1H, 13C and 2D NMR spectroscopy. The favoured conformations of aldehydes 1-4 and oximes 5-8 were predicted theoretically by geometry optimization and potential energy scan (PES) studies. Selected geometrical parameters and molecular properties such as AIM, NBO, HOMO-LUMO and MEP surfaces were derived from optimized structures. IR, 1H and 13C NMR data were also computed using Gaussian-03 package and compared with the observed values.

  10. Enhancement of reaction rates for catalytic benzaldehyde hydrogenation and sorbitol dehydration in water solvent by addition of carbon dioxide

    Indian Academy of Sciences (India)

    Masayuki Shirai; Osamu Sato; Norihito Hiyoshi; Aritomo Yamaguchi

    2014-03-01

    The effect of pressured carbon dioxide on heterogeneous hydrogenation of benzaldehyde and homogeneous dehydration of sorbitol in water solvent was studied. Initial hydrogenation rates of benzaldehyde over a charcoal-supported palladium catalyst in water at 313 K were enhanced by the addition of carbon dioxide. The initial rate increased with an increase in carbon dioxide pressure and became a maximum at 5 MPa. Dehydration of sorbitol proceeded in water phase at 500 K and initial dehydration rates were enhanced by addition of 30 MPa of carbon dioxide.

  11. Two photon dissociation of benzene, phenylacetylene, and benzaldehyde at 243 nm: translational energy releases in the H atom channel

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Seung Keun; Kim, Hong Lae [Kangwon National Univ., Chuncheon (Korea, Republic of); Park, Chan Ryang [Kookmin Univ., Seoul (Korea, Republic of)

    2002-02-01

    Hydrogen atom production channels from photodissociation of benzene, phenylacetylene, and benzaldehyde at 243 nm have been investigated by detecting H atoms using two photon absorption at 243.2 nm and induced fluorescence at 121.6 nm. Translational energies of the H atoms were measured by Doppler broadened H atom spectra. By absorption of two photons at 243 nm, the H atoms are statistically produced from benzene and phenylacetylene whereas the H atoms from the aldehyde group in benzaldehyde are produced from different pathways. The possible dissociation mechanisms are discussed from the measured translational energy releases.

  12. The effect of solvent on the kinetics of the oxidation of benzaldehydes by quinolinium chlorochromate in aqueous organic solvent media

    Directory of Open Access Journals (Sweden)

    G. FATIMA JEYANTHI

    2002-12-01

    Full Text Available The kinetics of the oxidation of benzaldehyde and para-substituted benzaldehydes by quinolinium chlorochromate in water-dimethylformamide mixtures has been studied under pseudo-first-order conditions at 25±0.2°C. The operation of non-specific and specific solvent-solute interactions was explored by correlating the rate data with solvent parameters through a correlation analysis technique. Both electron-releasing and electron-withdrawing substitutents enhance the rate of oxidation and the Hammett plot shows a break in the reactivity order indicating the applicability of a dual mechanism.

  13. Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni-W alloys

    Science.gov (United States)

    Pramod Kumar, U.; Kennady, C. Joseph

    2015-10-01

    The effect of different concentrations of benzaldehyde on the electrodeposition of Ni-W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline bath (pH 8.0) contained stoichiometric amounts of nickel sulfate, sodium tungstate, and trisodium citrate as precursors. The corrosion resistance of the Ni-W-alloy-coated specimens in 0.2 mol/L H2SO4 was studied using various electrochemical techniques. Tafel polarization studies reveal that the alloy coatings obtained from the bath containing 50 ppm benzaldehyde exhibit a protection efficiency of 95.33%. The corrosion rate also decreases by 21.5 times compared with that of the blank. A higher charge-transfer resistance of 1159.40 Ω·cm2 and a lower double-layer capacitance of 29.4 μF·cm-2 further confirm the better corrosion resistance of the alloy coating. X-ray diffraction studies reveal that the deposits on the mild steel surface are consisted of nanocrystals. A lower surface roughness value ( R max) of the deposits is confirmed by atomic force microscopy.

  14. Growth of 4-(dimethylamino) benzaldehyde doped triglycine sulphate single crystals and its characterization

    Energy Technology Data Exchange (ETDEWEB)

    Rai, Chitharanjan, E-mail: raichitharanjan@gmail.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India); Kalpataru First Grade Science College, Tiptur 572 202 (India); Sreenivas, K. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Dharmaprakash, S.M., E-mail: smdharma@yahoo.co [Department of Physics, Mangalore University, Mangalagangotri 574 199 (India)

    2009-11-15

    Single crystals of triglycine sulphate (TGS) doped with 1 mol% of 4-(dimethylamino) benzaldehyde (DB) have been grown from aqueous solution at ambient temperature by slow evaporation technique. The effect of dopant on the crystal growth and dielectric, pyroelectric and mechanical properties of TGS crystal have been investigated. X-ray powder diffraction pattern for pure and doped TGS was collected to determine the lattice parameters. FTIR spectra were employed to confirm the presence of 4-(dimethylamino) benzaldehyde in TGS crystal, qualitatively. The dielectric permittivity has been studied as a function of temperature by cooling the sample at a rate of 1 deg. C/min. An increase in the Curie temperature T{sub c}=51 deg. C (for pure TGS, T{sub c}=48.5 deg. C) and decrease in maximum permittivity has been observed for doped TGS when compared to pure TGS crystal. Pyroelectric studies on doped TGS were carried out to determine pyroelectric coefficient. The Vickers's hardness of the doped TGS crystals along (0 1 0) face is higher than that of pure TGS crystal for the same face. Domain patterns on b-cut plates were observed using scanning electron microscope. The low dielectric constant, higher pyroelectric coefficient and higher value of hardness suggest that doped TGS crystals could be a potential material for IR detectors.

  15. Stereocontrol of the Schiff Base of Substituted Benzaldehyde to Staudinger Cycloaddition Reaction

    Institute of Scientific and Technical Information of China (English)

    齐传民; 杨凌春; 孙彭利

    2003-01-01

    Syntheses of 4 novel chiral azetidin-2-one derivatives,which were characterized by 1H NMR,IR,specific rotation and elemental analysis,through Staudinger cycloaddition reaction of Schiff base of benzaldehyde with chlorine substitution at different position in benzene ring,were described.For the first time,this type of 3S,4R configuration azetidin-2-one monocrystals with many chiral centers [(3S,4R)-3-hydroxy-N-[(S)-(1-phenyl)ethyl]-4-(2''-chlorophenyl)-azetidin-2-one monocrystal]were obtained,the structures of which were determined by X-ray diffraction analysis.The effects of Schiff base of benzaldehyde with chlorine substitution at different position in benzene ring on stereoselectivity of Staudinger cycloaddition reaction products were discussed and the results are showed as below:2-chlorophenyl Schiff base favored to yield 3S,4R configuration product,but 4-chlorophenyl Schiff base favored to yield 3R,4S configuration product.The reaction orientation of 2,4-dichlorophenyl Schiff base was determined by corporate effect of 2- and 4-chlorine,and that of the 4-chlorine was more obvious.In contrast to 4-chlorophenyl,although the main product was 3R,4S configuration,3-chlorophenyl owned lower selectivity.

  16. Benzoxyl radical decomposition kinetics: formation of benzaldehyde + H, phenyl + CH2O, and benzene + HCO.

    Science.gov (United States)

    da Silva, Gabriel; Bozzelli, Joseph W

    2009-06-25

    The kinetics of benzoxyl radical decomposition was studied using ab initio computational chemistry and RRKM rate theory. The benzoxyl radical is an important but short-lived intermediate in the combustion of toluene and other alkylated aromatic hydrocarbons. A theoretical study of the thermochemistry and kinetics to products over a range of temperatures and pressures for benzoxyl decomposition is reported. Ab initio calculations with the G3X theoretical method reveal low-energy pathways from the benzoxyl radical to benzaldehyde + H and the phenyl radical + formaldehyde (CH(2)O), as well as a novel mechanism to benzene + the formyl radical (HC(*)O). RRKM simulations were performed for benzoxyl decomposition as a function of temperature and pressure. Benzaldehyde formation constitutes more than 80% of the total reaction products at temperatures below 1000 K, decreasing to around 50% at 2000 K. Formation of benzene + HC(*)O and phenyl + CH(2)O is of similar importance, each accounting for 5-10% of the decomposition products at around 1000 K, increasing to 20-30% at 2000 K. The results presented here should lead to improved kinetic models for the oxidation of alkylated aromatic hydrocarbons, particularly for the formation of benzene as a direct oxidation product of toluene. Re-evaluation of the phenyl radical heat of formation leads us to suggest a benzene C-H bond dissociation energy in the range of 113.5-114.5 kcal mol(-1).

  17. Coupled electron and proton transfer processes in 4-dimethylamino-2-hydroxy-benzaldehyde.

    Science.gov (United States)

    Zgierski, Marek Z; Fujiwara, Takashige; Lim, Edward C

    2011-09-08

    TDDFT calculations, picosecond transient absorption, and time-resolved fluorescence studies of 4-dimethylamino-2-hydroxy-benzaldehyde (DMAHBA) have been carried out to study the electron and proton transfer processes in polar (acetonitrile) and nonpolar (n-hexane) solvents. In n-hexane, the transient absorption (TA) as well as the fluorescence originate from the ππ* state of the keto form (with the carbonyl group in the benzaldehyde ring), which is produced by an intramolecular proton transfer from the initially excited ππ* state of the enol form (OH group in the ring). The decay rate of TA and fluorescence are essentially identical in n-hexane. In acetonitrile, on the other hand, the TA exhibits features that can be assigned to the highly polar twisted intramolecular charge transfer (TICT) states of enol forms, as evidenced by the similarity of the absorption to the TICT-state absorption spectra of the closely related 4-dimethylaminobenzaldehyde (DMABA). As expected, the decay rate of the TICT-state of DMAHBA is different from the fluorescence lifetime of the ππ* state of the keto form. The occurrence of the proton and electron transfers in acetonitrile is in good agreement with the predictions of the TDDFT calculations. The very short-lived (∼1 ps) fluorescence from the ππ* state of the enol form has been observed at about 380 nm in n-hexane and at about 400 nm in acetonitrile.

  18. Investigation of the l-phenylacetylcarbinol process to substituted benzaldehydes of interest.

    Science.gov (United States)

    Maroney, Kerrie Anne N; Culshaw, Peter N; Wermuth, Urs D; Cresswell, Sarah L

    2014-02-01

    The large scale industrial manufacture of the nasal decongestant pseudoephedrine is typically carried out by the reductive amination of l-phenylacetylcarbinol (l-PAC), which in turn is produced via the biotransformation of benzaldehyde using yeast. In recent years there has been increasing legislative control of the supply of pseudoephedrine due to it being diverted for the clandestine production of methylamphetamine and there is some evidence that a number of clandestine drug laboratory chemists have considered the application of the l-PAC process to manufacture their own pseudoephedrine. This work examined the use of a number of substituted benzaldehydes for the manufacture of the corresponding substituted l-PAC analogue followed by reductive amination to the corresponding substituted pseudoephedrine/ephedrine analogues. These substituted pseudoephedrine/ephedrine analogues were either reduced or oxidised to determine the feasibility of producing the corresponding methylamphetamine or methcathinone analogues. As a result, the l-PAC process was identified as a viable route for synthesis of substituted methylamphetamines and methcathinones. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  19. Effect of benzaldehyde on the electrodeposition and corrosion properties of Ni–W alloys

    Institute of Scientific and Technical Information of China (English)

    U. Pramod Kumar; C. Joseph Kennady

    2015-01-01

    The effect of different concentrations of benzaldehyde on the electrodeposition of Ni–W alloy coatings on a mild steel substrate from a citrate electrolyte was investigated in this study. The electrolytic alkaline bath (pH 8.0) contained stoichiometric amounts of nickel sulfate, sodium tungstate, and trisodium citrate as precursors. The corrosion resistance of the Ni–W-alloy-coated specimens in 0.2 mol/L H2SO4 was studied using various electrochemical techniques. Tafel polarization studies reveal that the alloy coatings obtained from the bath containing 50 ppm benzaldehyde exhibit a protection efficiency of 95.33%. The corrosion rate also decreases by 21.5 times compared with that of the blank. A higher charge-transfer resistance of 1159.40?·cm2 and a lower double-layer capacitance of 29.4 μF·cm?2 further confirm the better corrosion resistance of the alloy coating. X-ray diffraction studies reveal that the deposits on the mild steel surface are consisted of nanocrystals. A lower surface roughness value (Rmax) of the deposits is confirmed by atomic force microscopy.

  20. Purification and characterization of benzyl alcohol- and benzaldehyde- dehydrogenase from Pseudomonas putida CSV86.

    Science.gov (United States)

    Shrivastava, Rahul; Basu, Aditya; Phale, Prashant S

    2011-08-01

    Pseudomonas putida CSV86 utilizes benzyl alcohol via catechol and methylnaphthalenes through detoxification pathway via hydroxymethylnaphthalenes and naphthaldehydes. Based on metabolic studies, benzyl alcohol dehydrogenase (BADH) and benzaldehyde dehydrogenase (BZDH) were hypothesized to be involved in the detoxification pathway. BADH and BZDH were purified to apparent homogeneity and were (1) homodimers with subunit molecular mass of 38 and 57 kDa, respectively, (2) NAD(+) dependent, (3) broad substrate specific accepting mono- and di-aromatic alcohols and aldehydes but not aliphatic compounds, and (4) BADH contained iron and magnesium, while BZDH contained magnesium. BADH in the forward reaction converted alcohol to aldehyde and required NAD(+), while in the reverse reaction it reduced aldehyde to alcohol in NADH-dependent manner. BZDH showed low K (m) value for benzaldehyde as compared to BADH reverse reaction. Chemical cross-linking studies revealed that BADH and BZDH do not form multi-enzyme complex. Thus, the conversion of aromatic alcohol to acid is due to low K (m) and high catalytic efficiency of BZDH. Phylogenetic analysis revealed that BADH is a novel enzyme and diverged during the evolution to gain the ability to utilize mono- and di-aromatic compounds. The wide substrate specificity of these enzymes enables strain to detoxify methylnaphthalenes to naphthoic acids efficiently.

  1. Quantification of brown dog tick repellents, 2-hexanone and benzaldehyde, and release from tick-resistant beagles, Canis lupus familiaris

    Science.gov (United States)

    We have recently shown that repellency of the tick Rhipicephalus sanguineus sensu lato by the tick resistant dog breed Beagle is mediated by volatile organic compounds 2-hexanone and benzaldehyde present in Beagle dog odour. Ectoparasite location on animal hosts is affected by variation in odour com...

  2. Production of the flavor compound benzaldehyde by lactic acid bacteria: role of manganese and its transport systems in Lactobacillus plantarum

    NARCIS (Netherlands)

    Nierop Groot, M.N.

    2001-01-01

    One of the aims of the research described in this thesis (Chapter 1 and 2) was to investigate the conversion of phenylalanine to the aromatic flavor compound benzaldehyde in lactic acid bacteria (LAB) (Chapter 3). Lactobacillus plantarum was used as the model organism to study p

  3. Kinetic evaluation of biotransformation of benzaldehyde to L-phenylacetylcarbinol by immobilized pyruvate decarboxylase from Candida utilis.

    Science.gov (United States)

    Shin, H S; Rogers, P L

    1996-02-20

    Biotransformation of benzaldehyde to L-phenylacetylcarbinol (L-PAC) as a key intermediate for L-ephedrine has been evaluated using immobilized pyruvate decarboxylase (PDC) from Candida utilis. PDC immobilized in spherical polyacrylamide beads was found to have a longer half-life compared with free enzyme. In a batch process, the immobilized PDC generally produced lower L-PAC than free enzyme at the same concentrations of substrates due to increased by-products acetaldehyde and acetoin and reduced benzaldehyde uptake. With immobilized PDC, L-PAC formation occurred at higher benzaldehyde concentrations (up to 300 mM) with the highest L-PAC concentration being 181 mM (27.1 g/L). For a continuous process, when 50 mM benzaldehyde and 100 mM sodium pyruvate were fed into a packed-bed reactor at 4 degrees C and pH 6.5, a productivity of 3.7 mM/h (0.56 g/L . h) L-PAC was obtained at an average concentration of 30 mM (4.5 g/L). The half-life of immobilized PDC reactor was 32 days. (c) 1996 John Wiley & Sons, Inc.

  4. Production of the flavor compound benzaldehyde by lactic acid bacteria: role of manganese and its transport systems in Lactobacillus plantarum

    NARCIS (Netherlands)

    Nierop Groot, M.N.

    2001-01-01

    One of the aims of the research described in this thesis (Chapter 1 and 2) was to investigate the conversion of phenylalanine to the aromatic flavor compound benzaldehyde in lactic acid bacteria (LAB) (Chapter 3). Lactobacillus plantarum was used as the model organism to study phenylalanine degradat

  5. Production of the flavor compound benzaldehyde by lactic acid bacteria: role of manganese and its transport systems in Lactobacillus plantarum

    NARCIS (Netherlands)

    Nierop Groot, M.N.

    2001-01-01

    One of the aims of the research described in this thesis (Chapter 1 and 2) was to investigate the conversion of phenylalanine to the aromatic flavor compound benzaldehyde in lactic acid bacteria (LAB) (Chapter 3). Lactobacillus plantarum was used as the model organism to study

  6. Preparation and characterization of new and improved soluble-starches, -amylose, and -amylopectin by reaction with benzaldehyde/zinc chloride.

    Science.gov (United States)

    Johnston, David A; Mukerjea, Rupendra; Robyt, John F

    2011-12-13

    Seven different starches from potato, rice, maize, waxymaize, amylomaize-VII, shoti, and tapioca, and potato amylose and potato amylopectin have been reacted with benzaldehyde, catalyzed by ZnCl(2), to give new water-soluble starches and water soluble-amylose and soluble-amylopectin. In contrast to the native starches, aqueous solutions of the modified starches could not be precipitated with 2-, 3-, or 4-volumes of ethanol. β-Amylase gave no reaction with the modified starches, in contrast to the native starches, indicating that the modification occurred exclusively at the nonreducing-ends, giving 4,6-benzylidene-D-glucopyranose at the nonreducing-ends. Reactions of α-amylase with native and modified potato and rice starches gave a decrease in the triiodide blue color and an increase in the reducing-value that were similar for the native- and modified-starches, indicating the modified starches had not been significantly altered by the modification. The benzaldehyde-modified starches and benzaldehyde-modified potato amylose and potato amylopectin components, therefore, have a starch structure very much like their native counterparts, in contrast to the Lintner, Small, and the alcohol/acid-hydrolyzed soluble-starches that have undergone acid hydrolysis. The benzaldehyde-modified starches and starch components have significantly higher water solubility than their native counterparts even though the structures of the modified starches had only been slightly altered from the structures of their native counterparts. They all gave crystal-clear solutions that did not retrograde.

  7. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes.

    Science.gov (United States)

    Gaffer, Hatem E; Khalifa, Mohamed E

    2015-12-09

    The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1-3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4-6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl)-thiazole dyes 7-9 was then prepared by diazo coupling of thiazole derivatives 4-6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.

  8. Thermodynamics of the complexation between salicylaldehyde thiosemicarbazone with Cu2+ ion in methanol +1,4-dioxane binary solutions

    Directory of Open Access Journals (Sweden)

    Biswas Rashmidipta

    2014-01-01

    Full Text Available The complexation reaction between salicylaldehyde thiosemicarbazone, abbreviated as STSC, with Cu2+ ion was studied in the binary mixtures of methanol + 1,4-dioxane binary by using UV-Visible spectrophotometric and conductometric methods at different temperatures. The formation constants (Kf for the 1:1 complex, Cu2+-STSC, were calculated from computer fitting of the absorbance and molar conductance data against various mole ratios (cM:cL or cL:cM in different binary solvent mixtures. A non-linear correlation was observed for the variation of logKf for the complex against the solvent compositions. Various thermodynamic parameters (ΔH, ΔS and ΔG for the formation of Cu2+-STSC complex were also determined from the temperature dependence of the stability constants (Kf. The results showed that the complexation reaction is affected by the nature and composition of the mixed solvents.

  9. Spectroscopic, thermal and antibacterial studies on Mn(II and Co(II complexes derived from thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    SULEKH CHANDRA

    2009-08-01

    Full Text Available Mn(II and Co(II complexes having the general composition [M(L2X2] (where L = 2-pyridinecarboxaldehyde thiosemicarbazone, M = Mn(II and Co(II, X = Cl- and NO3- were synthesized. All the metal complexes were characterized by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, EPR, electronic spectral studies and thermogravimetric analysis (TG. Based on the spectral studies, an octahedral geometry was assigned for all the complexes. Thermal studies of the compounds suggest that the complexes are more stable than the free ligand. This fact was supported by the kinetic parameters calculated using the Horowitz–Metzger (H–M and Coats–Redfern (C–R equations. The antibacterial properties of the ligand and its metal complexes were also examined and it was observed that the complexes are more potent bactericides than the free ligand.

  10. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes

    Directory of Open Access Journals (Sweden)

    Hatem E. Gaffer

    2015-12-01

    Full Text Available The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1–3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4–6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl-thiazole dyes 7–9 was then prepared by diazo coupling of thiazole derivatives 4–6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.

  11. New Copper(Ⅱ) and Nickel(Ⅱ) Complexes of 4-Morpholinoacetophenone Thiosemicarbazone: Structural, Electrochemical and Antimicrobial Studies

    Institute of Scientific and Technical Information of China (English)

    BINGOL Haluk; COSKUN Ahmet; AKGEMCI Emine Guler; KAYA Basturk; ATALAY Tevfik

    2007-01-01

    4-Morpholinoacetophenone thiosemicarbazone, MAPT, and its nickel(Ⅱ) and copper(Ⅱ) complexes have been prepared and characterized by elemental analysis, magnetic susceptibility, spectral methods (FT-IR, 1H NMR) and cyclic voltammetry. Electrochemical behaviors of the complexes have been studied by cyclic voltammetry in DMF media showing metal centered reduction processes for both of them. The redox properties, nature of the electrode processes and the stability of the complexes were discussed. [Cu(MAPT)2]Cl2 complex shows Cu(Ⅱ)/Cu(I) couple and quasi-reversible wave associated with the Cu(Ⅲ)/Cu(Ⅱ) process. The reduction/oxidation potential values depend on the structures of complexes. Also, the antimicrobial activities of these complexes were determined against S. aureus, E. coli and B. subtilis.

  12. Microwave gallium-68 radiochemistry for kinetically stable bis(thiosemicarbazone) complexes: structural investigations and cellular uptake under hypoxia.

    Science.gov (United States)

    Alam, Israt S; Arrowsmith, Rory L; Cortezon-Tamarit, Fernando; Twyman, Frazer; Kociok-Köhn, Gabriele; Botchway, Stanley W; Dilworth, Jonathan R; Carroll, Laurence; Aboagye, Eric O; Pascu, Sofia I

    2016-01-07

    We report the microwave synthesis of several bis(thiosemicarbazones) and the rapid gallium-68 incorporation to give the corresponding metal complexes. These proved kinetically stable under 'cold' and 'hot' biological assays and were investigated using laser scanning confocal microscopy, flow cytometry and radioactive cell retention studies under normoxia and hypoxia. (68)Ga complex retention was found to be 34% higher in hypoxic cells than in normoxic cells over 30 min, further increasing to 53% at 120 min. Our data suggests that this class of gallium complexes show hypoxia selectivity suitable for imaging in living cells and in vivo tests by microPET in nude athymic mice showed that they are excreted within 1 h of their administration.

  13. Chemical reactivity and skin sensitization potential for benzaldehydes: can Schiff base formation explain everything?

    Science.gov (United States)

    Natsch, Andreas; Gfeller, Hans; Haupt, Tina; Brunner, Gerhard

    2012-10-15

    Skin sensitizers chemically modify skin proteins rendering them immunogenic. Sensitizing chemicals have been divided into applicability domains according to their suspected reaction mechanism. The widely accepted Schiff base applicability domain covers aldehydes and ketones, and detailed structure-activity-modeling for this chemical group was presented. While Schiff base formation is the obvious reaction pathway for these chemicals, the in silico work was followed up by limited experimental work. It remains unclear whether hydrolytically labile Schiff bases can form sufficiently stable epitopes to trigger an immune response in the living organism with an excess of water being present. Here, we performed experimental studies on benzaldehydes of highly differing skin sensitization potential. Schiff base formation toward butylamine was evaluated in acetonitrile, and a detailed SAR study is presented. o-Hydroxybenzaldehydes such as salicylaldehyde and the oakmoss allergens atranol and chloratranol have a high propensity to form Schiff bases. The reactivity is highly reduced in p-hydroxy benzaldehydes such as the nonsensitizing vanillin with an intermediate reactivity for p-alkyl and p-methoxy-benzaldehydes. The work was followed up under more physiological conditions in the peptide reactivity assay with a lysine-containing heptapeptide. Under these conditions, Schiff base formation was only observable for the strong sensitizers atranol and chloratranol and for salicylaldehyde. Trapping experiments with NaBH₃CN showed that Schiff base formation occurred under these conditions also for some less sensitizing aldehydes, but the reaction is not favored in the absence of in situ reduction. Surprisingly, the Schiff bases of some weaker sensitizers apparently may react further to form stable peptide adducts. These were identified as the amides between the lysine residues and the corresponding acids. Adduct formation was paralleled by oxidative deamination of the parent

  14. Cu(II) bis(thiosemicarbazone) radiopharmaceutical binding to serum albumin: further definition of species dependence and associated substituent effects

    Energy Technology Data Exchange (ETDEWEB)

    Basken, Nathan E. [Division of Nuclear Pharmacy, Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States); Green, Mark A. [Division of Nuclear Pharmacy, Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, IN 47907 (United States)], E-mail: magreen@purdue.edu

    2009-07-15

    Introduction: The pyruvaldehyde bis(N{sup 4}-methylthiosemicarbazonato)copper(II) (Cu-PTSM) and diacetyl bis(N{sup 4}-methylthiosemicarbazonato)copper(II) (Cu-ATSM) radiopharmaceuticals exhibit strong, species-dependent binding to the IIA site of human serum albumin (HSA), while the related ethylglyoxal bis(thiosemicarbazonato)copper(II) (Cu-ETS) radiopharmaceutical appears to exhibit only nonspecific binding to HSA and animal serum albumins. Methods: To further probe the structural basis for the species dependence of this albumin binding interaction, we examined protein binding of these three radiopharmaceuticals in solutions of albumin and/or serum from a broader array of mammalian species (rat, sheep, donkey, rabbit, cow, pig, dog, baboon, mouse, cat and elephant). We also evaluated the albumin binding of several copper(II) bis(thiosemicarbazone) chelates offering more diverse substitution of the ligand backbone. Results: Cu-PTSM and Cu-ATSM exhibit a strong interaction with HSA that is not apparent with the albumins of other species, while the binding of Cu-ETS to albumin is much less species dependent. The strong interaction of Cu-PTSM with HSA does not appear to simply correlate with variation, relative to the animal albumins, of a single amino acid lining HSA's IIA site. Those agents that selectively interact with HSA share the common feature of only methyl or hydrogen substitution at the carbon atoms of the diimine fragment of the ligand backbone. Conclusions: The interspecies variations in albumin binding of Cu-PTSM and Cu-ATSM are not simply explained by unique amino acid substitutions in the IIA binding pocket of the serum albumins. However, the specific affinity for this region of HSA is disrupted when substituents bulkier than a methyl group appear on the imine carbons of the copper bis(thiosemicarbazone) chelate.

  15. Synthèse, Caractérisation et Application dans l’Environnement d’un Nouveau Ligand, dérivé de la Thiosemicarbazone.

    OpenAIRE

    BENAYAD, HOUARI

    2014-01-01

    Les travaux réalisés dans ce mémoire ont pour but de tester un ligand organique dans le but d’éliminer des métaux lourds par complexation. Le choix du ligand Thiosemicarbazone de l’imidazole-3-carboxaldéhyde été effectué vu sa structure polydentate, possédant plusieurs sites potentiels donneurs susceptible de chélater les métaux lourds dans l’eau. Les cinétiques d’adsorption étudiées sur la thiosemicarbazone de l’imidazole-3-carboxaldéhyde, montrent que ce ligand est un bon ...

  16. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light.

    Science.gov (United States)

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-14

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%.

  17. Heats of formation and protonation thermochemistry of gaseous benzaldehyde, tropone and quinone methides

    Science.gov (United States)

    Bouchoux, Guy

    2010-08-01

    Quantum chemistry calculations using composite G3B3, G3MP2B3 and CBS-QB3 methods were performed for benzaldehyde, 1, tropone, 2, ortho-quinone methide, 3, para-quinone methide, 4, their protonated forms 1H+- 4H+ and the isomeric meta-hydroxybenzyl cation 5H+. The G3B3 298 K heats of formation values obtained in this work are: -39, 61, 52, 39, 661, 679, 699, 680 and 733 kJ mol -1 for 1- 4, 1H+- 5H+, respectively. At the same level of theory, computed proton affinities are equal to 834, 916, 887 and 892 kJ mol -1 for molecules 1- 4. These results allow to correct discrepancies on the previously reported thermochemistry of molecules 2- 4 and cations 2H+- 5H+.

  18. Heterocyclyl linked anilines and benzaldehydes as precursors for biologically significant new chemical entities

    Indian Academy of Sciences (India)

    Raman K Verma; Vijay Kumar; Prithwish Ghosh; Lalit K Wadhwa

    2012-09-01

    Benzylidene and benzyl thiazolidinediones, oxazolidinediones, isoxazolidinediones and their acyclic analogs like alpha alkylthio/alkoxy phenylpropanoic acids, beta-keto esters and tyrosine-based compounds possess broad therapeutic potential in general and as Peroxisome Proliferator Activated Receptors (PPARs) agonists in particular in the management of hyperglycemia and hyperlipidaemia for the treatment of Type 2 Diabetes (T2D). We have synthesised and characterized some novel and suitably substituted heterocyclyl linked benzaldehydes and anilines, which can be easily and very readily derivatized to all the above mentioned classes to generate new chemical entities of broader biological significance. Synthesis of their benzylidene thiazolidinedione and diethyl malonate and also benzyl diethyl malonate and alpha-bromoesters derivatives is reported in some of the cases in the present work.

  19. Kinetics, thermodynamics, and mechanism of the formation of benzaldehyde-S(IV) adducts

    Energy Technology Data Exchange (ETDEWEB)

    Olson, T.M.; Boyce, S.D.; Hoffmann, M.R.

    1986-05-22

    The kinetics and mechanism of the formation of ..cap alpha..-hydroxyphenylmethanesulfonate (HPMS) by the addition of bisulfite to benzaldehyde were studied at low pH. A three-term rate law was observed as d(HPMS)/dt - (k/sub 1/..cap alpha../sub 2/ + (k/sub 2/ + k/sub 3/K/sub H-/(H/sup +/))..cap alpha../sub 1/)(S(IV))/sub t/(C/sub 6/H/sub 5/CHO) where ..cap alpha../sub 1/ = (HSO/sub 2//sup -/)/(S(IV)), ..cap alpha../sub 3/ = (SO/sub 2//sup 2 -/)/(S(IV)), and K/sub H/ is the proton association constant of benzaldehyde. The rate-limiting steps of each term appeared to be the nucleophilic attack of SO/sub 3//sup 2 -/ on the carbonyl carbon of benzaldehyde, the attack of HSO/sub 3//sup -/ on the carbonyl carbon, and the attack by HSO/sub 3//sup -/ on the protonated carbon of the carbocation, C/sub 6/H/sub 5/C/sup +/H(OH), respectively. Over the pH range of most natural systems, only the k/sub 1/ and k/sub 2/ steps contribute to adduct formation while the k/sub 3/ term becomes important for pH < 1. At 25/sup 0/C and ..mu.. = 1.0 M, the intrinsic rate constants were determined to be k/sub 1/ = (2.15 +- 0.09) x 10/sup 4/ M/sup -1/ s/sup -1/, k/sub 2/ = (0.71 +- 0.03) M/sup -1/ s/sup -1/, k/sub 3/ approx. 2.5 x 10/sup 7/ M/sup -1/ s/sup -1/. Para-substitution on the benzaldehyde ring resulted in a slight increase in reactivity for p-NO/sub 2/- and p-Cl-, and a decrease for p-OH-, p-OCH/sub 3/-, and p-CH/sub 3/-C/sub 6/H/sub 5/CHO. The equilibrium association constant, K = (C/sub 6/H/sub 5/CH(OH)SO/sub 3//sup -/)/(HSO/sub 3//sup -/)(C/sub 6/H/sub 5/CHO), at 25/sup 0/C was determined to be 4.8 (+-0.8) x 10/sup 3/ at ..mu.. = 0.1 M and 0.98 (+- 0.11) x 10/sup 3/ M/sup -1/ at ..mu.. = 1.0 M. ..delta..H/sup 0/ and ..delta..S/sup 0/ was determined to be -64.6 kJ mol/sup -1/ and -146 J mol/sup -1/ deg/sup -1/, respectively.

  20. Study of the modification of coal-tar pitch with p-methyl benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Qilang Lin; Tiehu Li; Yongbin Ji; Wenzhi Wang; Xiaoxian Wang [Northwestern Polytechnical University, Xi' an (China). Department of Materials Science and Engineering

    2005-02-01

    Coal-tar pitch is modified with p-methyl benzaldehyde (PMB) in the presence of p-toluene sulfonic acid (PTS). The main characteristics of the modified pitches such as coking value, softening point and solubility are studied in this paper. The molecular structures of the modified pitches are studied using FT-IR and {sup 1}H-NMR spectroscopy techniques. In addition, the morphologies of the modified pitches are inspected with SEM, and the optical textures of resultant semi-cokes are characterized by polarized-light microscopy. Results show that the modified pitches have much higher coking value and {beta}-resins content than the parent pitch. There exist many microfibers with a uniform distribution in the modified pitches. Moreover, the modification results in an improvement in the optical textures of resultant semi-cokes. 28 refs., 6 figs., 1 tab.

  1. Synthesis of 1-methyl-2-phenyl-4-arylphthalazinium salts and their reaction with benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikova, I.G.; Pavlova, L.A.; Samartseva, I.V.

    1986-10-01

    1-Methyl-2-phenyl-4-arylphthalazinium perchorates, which exhibit the characteristics of CH acids, were obtained by the action of methylmagnesium iodide on 1-oxo-2-phenyl-4-aryl-1,2-dihydrophthalazines (Ar = C/sub 6/H/sub 5/, p-CH/sub 3/C/sub 6/H/sub 4/, p-C/sub 2/H/sub 5/OC/sub 6/H/sub 4/, p-FC/sub 6/H/sub 4/, p-ClC/sub 6/H/sub 4/, p-BrC/sub 6/H/sub 4/) followed by decomposition of the reaction mass with 57% perchloric acid. The 1-methylphthalazinium salts condense with benzaldehyde, giving 1-styryl-2-phenyl-4-arylphthalazinium perchlorates.

  2. Suppression of electroreductive dimerization of benzaldehyde by addition of. cap alpha. -cyclodextrin

    Energy Technology Data Exchange (ETDEWEB)

    Matsue, T.; Tasaki, C.; Fujihira, M.; Osa, T.

    1983-05-01

    Electrochemical reduction of carbonyl compounds to the corresponding alcohols is an important subject in organic electrochemistry. The effect of ..cap alpha..-cyclodextrin (..cap alpha..-CD) on the electroreduction of benzaldehyde was investigated. The reduction in aqueous system produces benzyl alcohol and 1,2-diphenyl-1,2-ethanediol (hydrobenzoin, dimerization product). The addition of ..cap alpha..-CD caused the decrease in the yield of hydrobenzoin. This suppression effect was observed both in the controlled potential and controlled current electrolyses. This is accounted for by the retardation of the dimerization rate between the neutral radicals, since inclusion of substrate provides severe steric hindrance around the reaction site. The addition had only a small influence on the stereochemistry of hydrobenzoin formed by the dimerization.

  3. Radiation chemical study on benzaldehyde-chlorobenzene system. A novel radiation chemical route for benzophenone formation

    Energy Technology Data Exchange (ETDEWEB)

    Sife-Eldeen, Kh.A. [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt)

    2009-07-01

    The effects of reactants molar ratio, absorbed dose, and absorbed dose rate were studied on benzaldehyde-chlorobenzene system. Irradiation products were identified by GC/MS analysis and their quantities were determined by GC analysis. Study of the reactants molar ratio effect indicates important aspects of the radiation chemistry of this system. It was observed that the yields of the major products increase as absorbed dose increase. On the other hand, these yields decrease as dose rate increases. Which reflects that the major products are formed via inter-spur reactions i.e. in the bulk of the medium. The mechanisms of the formation of the products were suggested. Benzophenone is one of the main products of this system. Therefore, this study gives a spot of light on a novel radiation chemical route for benzophenone formation. The radiation chemical yield (G-value) of benzophenone was determined at different dose rates. (orig.)

  4. Electronic excitation energies, three-state intersections, and photodissociation mechanisms of benzaldehyde and acetophenone

    Science.gov (United States)

    Cui, Ganglong; Lu, You; Thiel, Walter

    2012-06-01

    We report a theoretical study on the electronically excited states and the mechanisms of photodissociation of C6H5CHO and C6H5COCH3. For both molecules, we find an S1/T2/T1 three-state intersection region, which allows for an efficient S1 → T1 intersystem crossing via the T2 state that acts as a relay. Consequently, T1 reactions become the major radical photodissociation channels. According to the computed energy profiles, T1 photodissociation mainly yields phenyl and formyl radicals in the case of benzaldehyde, and benzoyl and methyl radicals in the case of acetophenone, with different C-C bonds being cleaved preferentially. The computational results agree well with the available experimental data.

  5. STUDY ON THE TREATMENT OF 3—PHENOXY—BENZALDEHYDE INDUSTRIAL WASTEWATER WITH POLYMERIC ADSORBENT

    Institute of Scientific and Technical Information of China (English)

    ZhuShiyun; ChenJinlong; 等

    1998-01-01

    In this paper,the two effluents from PBA (3-phenoxy-benzaldehyde) production process were treated by polymeric adsorbent CHA-111.PBA or PBC (3-phenoxy-benzoic acid) was recovered from the wastewater in the process of neutralization.As a secondary treatment method,adsorption with CHA-111 showed better efficiency than photocatolytic decomposition and solvent extraction.The optimal technological parameters were:adsorption:current velocity:2.0BV/hr(bed volume per hour),room temperature;desorption:current velocity:2.0BV/hr(bed volume per hour),room temperature;desorption:current velocity:1.0 BV/hr,80℃,8% sodium hydroxide aqueous solutions.In conclusion,99.9% COD in the neutralizing wastewater and 98.4% COD in the hydrolysis wastewater are removed successfully.

  6. DNA-binding, catalytic oxidation, C—C coupling reactions and antibacterial activities of binuclear Ru(II thiosemicarbazone complexes: Synthesis and spectral characterization

    Directory of Open Access Journals (Sweden)

    Arumugam Manimaran

    2012-07-01

    Full Text Available New hexa-coordinated binuclear Ru(II thiosemicarbazone complexes of the type {[(B(EPh3(COClRu]2L} (where, E = P or As; B = PPh3 or AsPh3 or pyridine; L = mononucleating NS donor of N-substituted thiosemicarbazones have been synthesized and characterized by elemental analysis, FT-IR, UV–vis and 31P{1H} NMR cyclic voltammetric studies. The DNA-binding studies of Ru(II complexes with calf thymus DNA (CT-DNA were investigated by UV–vis, viscosity measurements, gel-electrophoresis and fluorescence spectroscopy. The new complexes have been used as catalysts in C—C coupling reaction and in the oxidation of alcohols to their corresponding carbonyl compounds by using NMO as co-oxidant and molecular oxygen (O2 atmosphere at ambient temperature. Further, the new binucleating thiosemicarbazone ligands and their Ru(II complexes were also screened for their antibacterial activity against Klebsiella pneumoniae, Shigella sp., Micrococcus luteus, Escherichia coli and Salmonella typhi. From this study, it was found out that the activity of the complexes almost reaches the effectiveness of the conventional bacteriocide.

  7. Copper(II) complexes with highly water-soluble L- and D-proline-thiosemicarbazone conjugates as potential inhibitors of Topoisomerase IIα.

    Science.gov (United States)

    Bacher, Felix; Enyedy, Éva A; Nagy, Nóra V; Rockenbauer, Antal; Bognár, Gabriella M; Trondl, Robert; Novak, Maria S; Klapproth, Erik; Kiss, Tamás; Arion, Vladimir B

    2013-08-05

    Two proline-thiosemicarbazone bioconjugates with excellent aqueous solubility, namely, 3-methyl-(S)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [L-Pro-FTSC or (S)-H2L] and 3-methyl-(R)-pyrrolidine-2-carboxylate-2-formylpyridine thiosemicarbazone [D-Pro-FTSC or (R)-H2L], have been synthesized and characterized by elemental analysis, one- and two-dimensional (1)H and (13)C NMR spectroscopy, and electrospray ionization mass spectrometry. The complexation behavior of L-Pro-FTSC with copper(II) in an aqueous solution and in a 30% (w/w) dimethyl sulfoxide/water mixture has been studied via pH potentiometry, UV-vis spectrophotometry, electron paramagnetic resonance, (1)H NMR spectroscopy, and spectrofluorimetry. By the reaction of copper(II) acetate with (S)-H2L and (R)-H2L in water, the complexes [Cu(S,R)-L] and [Cu(R,S)-L] have been synthesized and comprehensively characterized. An X-ray diffraction study of [Cu(S,R)-L] showed the formation of a square-pyramidal complex, with the bioconjugate acting as a pentadentate ligand. Both copper(II) complexes displayed antiproliferative activity in CH1 ovarian carcinoma cells and inhibited Topoisomerase IIα activity in a DNA plasmid relaxation assay.

  8. Novel thiosemicarbazones of the ApT and DpT series and their copper complexes: identification of pronounced redox activity and characterization of their antitumor activity.

    Science.gov (United States)

    Jansson, Patric J; Sharpe, Philip C; Bernhardt, Paul V; Richardson, Des R

    2010-08-12

    The novel chelators 2-acetylpyridine-4,4-dimethyl-3-thiosemicarbazone (HAp44mT) and di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (HDp44mT) have been examined to elucidate the structure-activity relationships necessary to form copper (Cu) complexes with pronounced antitumor activity. Electrochemical studies demonstrated that the Cu complexes of these ligands had lower redox potentials than their iron complexes. Moreover, the Cu complexes where the ligand/metal ratio was 1:1 rather than 2:1 had significantly higher intracellular oxidative properties and antitumor efficacy. Interestingly, the 2:1 complex was shown to dissociate to give significant amounts of the 1:1 complex that could be the major cytotoxic effector. Both types of Cu complex showed significantly more antiproliferative activity than the ligand alone. We also demonstrate the importance of the inductive effects of substituents on the carbonyl group of the parent ketone, which influence the Cu(II/I) redox potentials because of their proximity to the metal center. The structure-activity relationships described are important for the design of potent thiosemicarbazone Cu complexes.

  9. Light-Induced Bistability in Iron(III) Spin-Transition Compounds of 5 X-Salicylaldehyde Thiosemicarbazone (X=H, Cl, Br).

    Science.gov (United States)

    Yemeli, Eddy W T; Blake, Graeme R; Douvalis, Alexios P; Bakas, Thomas; Alberda van Ekenstein, Gert O R; van Koningsbruggen, Petra J

    2010-10-19

    The iron(III) spin-crossover compounds [Fe(Hthsa)(thsa)]⋅H2 O (1), [Fe(Hth5Clsa)(th5Clsa)2 ]⋅H2 O (2), and [Fe(Hth5Brsa)(th5Brsa)2 ]⋅H2 O (3) (H2 thsa=salicylaldehyde thiosemicarbazone, H2 th5Clsa=5-chlorosalicylaldehyde thiosemicarbazone, and H2 th5Brsa=5-bromosalicylaldehyde thiosemicarbazone) have been synthesized and their spin-transition properties investigated by magnetic susceptibility, Mössbauer spectroscopy, and differential scanning calorimetry measurements. The three compounds exhibit an abrupt spin transition with a thermal hysteresis effect. The more polarizable the substituent on the salicylaldehyde moiety, the more complete is the transition at room temperature with an increased degree of cooperativity. The molecular structures of 1 and 2 in the high-spin state are revealed. The occurrence of the light-induced excited-spin-state trapping phenomenon appears to be dependent on the substituent incorporated into the 5-position of the salicylaldehyde subunit. Whereas the compounds with an electron-withdrawing group (-Br or -Cl) exhibit light-induced trapped excited high-spin states with great longevity of metastability, the halogen-free compound does not, even though strong intermolecular interactions (such as hydrogen-bonding networks and π stacking) operate in the system. For compound 2, the surface level of photoconversion is less than 35 %. In contrast, compound 3 displays full photoexcitation.

  10. Biocidal polymers: synthesis and antimicrobial properties of benzaldehyde derivatives immobilized onto amine-terminated polyacrylonitrile

    Directory of Open Access Journals (Sweden)

    Alamri Abdullah

    2012-10-01

    Full Text Available Abstract Background The design and applications of antimicrobial polymers is a growing field. Antimicrobial polymers can help to solve the problems associated with the use of conventional antimicrobial agents. Polymers with active functional groups can act as a carrier system for antimicrobial agents. In our study, we aim to prepare and develop some antimicrobial polymers for biomedical applications and water treatment. Results The antimicrobial polymers based on polyacrylonitrile (PAN were prepared. Functional groups were created onto polyacrylonitrile via amination using different types of diamines such as ethylenediamine (EDA and hexamethylenediamine (HMDA to yield amine-terminated polymers. Antimicrobial polymers were obtained by immobilization of benzaldehyde and its derivatives which include, 4-hydroxybenzaldehyde and 2,4-dihydroxybenzaldehyde onto amine-terminated polymers. The antimicrobial activity of the prepared polymers against different types of microorganisms including Gram-positive bacteria (Staphylococcus aureus, Gram-negative bacteria (Pseudomonas aeruginosa; Escherichia coli; and Salmonella typhi as well as fungi (Aspergillus flavus, Aspergillus niger, Candida albicans, Cryptpcoccus neoformans were explored by the cut plug method and viable cell counting methods. Conclusions Amine-terminated polyacrylonitrile were used as a novel polymeric carrier for benzaldehyde derivatives as antimicrobial agents. The prepared polymers can inhibit the growth of the microorganisms. The activity was varied according to the tested microorganism as well as the polymer microstructure. It was found that the activity increased with increasing the number phenolic hydroxyl group of the bioactive group. Finally, it is anticipated that the prepared antimicrobial polymers would be of great help in the field of biomedical applications and biological water treatment.

  11. The selective oxidation of toluene to benzaldehyde applying a fuel cell system in the gas phase

    Energy Technology Data Exchange (ETDEWEB)

    Otsuka, K.; Ishizuka, K.; Yamanaka, I.; Hatano, M. (Dept. of Chemical Engineering, Tokyo Inst. of Technology, Ookayama, Meguro-ku, Tokyo 152 (JP))

    1991-11-01

    This paper discusses a fuel cell system used for the synthesis of benzaldehyde from toluene in the gas phase. The cell system (anode: Pd-black with added graphite/H{sub 3}PO{sub 4}(aq.)/cathode: Pt-black with added graphite) operated at ca. 373 K under short-circuit conditions and produced the partial oxidation products benzaldehyde (PhCHO) and benzoic acid (PhCOOH). The addition of chlorides such as HCl, NaCl, MgCl{sub 2}, etc., to the anode remarkably improved the selectivity of the sum of PhCHO and PhCOOH. In the presence of chlorides, CO{sub 2} was not produced at all. Among the chlorides tested, NaCl is the best additive for the synthesis of PhCHO. Kinetic results on the reaction with the NaCl-added anode have shown that decreasing temperatures and increasing pressures of the reactants (toluene and O{sub 2}) favor the oxidation to PhCHO. The oxidation of toluene under an externally applied potential showed a product distribution similar to that observed under short-circuit conditions. The turnover number grater than unite (2.4) indicates catalytic cycling of the Pd in the anode. The current efficiency was improved by cyclic short- and open-circuit operation of the cell. A reaction mechanism assuming a {pi} allylbenzyl-Pd{sup 2+} (ligand){sub x} complex as the reaction intermediate explains the kinetic results and the favorable effect of chloride. The intermediate complex may be generated through the electrochemical oxidation of Pd and toluene. The subsequent competitive formations of PhCHO and CO{sub 2} from this complex proceed nonelectrochemically.

  12. Simple grinding-induced reactions of 2-aminobenzyl alcohol and benzaldehyde derivatives, a rapid synthetic route to 3,1-benzoxazines

    Directory of Open Access Journals (Sweden)

    I. B. Masesane

    2014-05-01

    Full Text Available The grinding-induced reactions of 2-aminobenzyl alcohol and benzaldehyde derivatives in the presence of 30 mol% of acetic acid to give 3,1-benzoxazines are described. The reactions were performed at room temperature affording 3,1-benzoxazines in yields above 95% and high purity when benzaldehyde and its chloro and nitro derivatives were used. DOI: http://dx.doi.org/10.4314/bcse.v28i2.14

  13. The Production of Benzaldehyde by Rhizopus oligosporus USM R1 in a Solid State Fermentation (SSF System of Soy Bean Meal: Rice Husks

    Directory of Open Access Journals (Sweden)

    Norliza, A. W.

    2005-01-01

    Full Text Available The cultivation of Rhizopus oligosporus USM R1 for the production of benzaldehyde, a bitter cherry almond flavour was performed using soya bean meal and rice husks as the substrates. The identification of R. oligosporus USM R1 was performed based on the observation made under light microscope and scanning electron microscope (SEM. The optimum conditions for the SSF in a 250-ml Erlenmeyer flask system were 40% (v/w water content, substrate particle size of 0.7 mm; inoculum size of 1 x 10^5 spores/g substrate; incubation temperature of 30C; substrate amount of 7 g and the ratio of soy bean meal: rice husks of 50:50%. A maximum benzaldehyde production was obtained when the substrate was agitated after 48 hour for a 96 hour fermentation time. The highest benzaldehyde production obtained after 96 hour cultivation was 5.47 mg g-1 substrate. The supplementation of carbon and nitrogen sources in the substrate mixture revealed an enhancement in the growth and benzyldehyde production. A maximum production of benzaldehyde was obtained with the supplementation of L-phenylalanine, a precursor for benzaldehyde biosynthesis which gave 38.69 mg benzaldehyde/g substrate. This is approximately 6-folds higher compared to the substrates without the supplementation of L-phenylalanine.

  14. Large-scale synthesis of ultrathin tungsten oxide nanowire networks: an efficient catalyst for aerobic oxidation of toluene to benzaldehyde under visible light

    Science.gov (United States)

    Bai, Hua; Yi, Wencai; Liu, Jingyao; Lv, Qing; Zhang, Qing; Ma, Qiang; Yang, Haifeng; Xi, Guangcheng

    2016-07-01

    As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%.As a very important chemical raw material, the selective formation of benzaldehyde from toluene at preparative or industrial levels requires the use of highly corrosive chlorine and high reaction temperatures, which severely corrodes equipment, pollutes the environment, and consumes a lot of energy. Herein, we report a robust and highly active catalyst for the benzaldehyde evolution reaction that is constructed by the surfactant-free growth of oxygen vacancy-rich W18O49 ultrathin nanowire networks. Under atmospheric pressure and visible-light irradiation, the new catalyst can selectively (92% selectivity) catalyze the aerobic oxidation of toluene to benzaldehyde with yields of above 95%. Electronic supplementary information (ESI) available: Experimental procedure, XRD patterns, TEM and HRTEM images, energy-dispersive X-ray spectra, UV-vis spectra, X-ray photoelectron spectroscopy (XPS), and EDS. See DOI: 10.1039/c6nr02949c

  15. Real-Time Detection of Traces of Benzaldehyde in Benzyl Alcohol as a Solvent by a Flexible Lanthanide Microporous Metal-Organic Framework.

    Science.gov (United States)

    Zhang, Huan; Chen, Diming; Ma, Huili; Cheng, Peng

    2015-10-26

    Luminescent 3D lanthanide metal-organic framework (Ln-MOF) {[Tb2 (TATAB)2 ]⋅4 H2 O⋅6 DMF}n (1) was synthesized under solvothermal conditions by using flexible ligand 4,4',4''-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB). A phase transition was observed between low temperature and room temperature. The luminescence of 1 could be enhanced by formaldehyde and quenched efficiently by trace amounts of benzaldehyde in solvents such as benzyl alcohol (0.01-2.0 vol %) and ethanol (0.01-2.5 vol %). This is the first use of a Ln-MOF as chemical sensor for both formaldehyde and benzaldehyde. The high sensitivity and selectivity of the luminescence response of 1 to benzaldehyde allows it to be used as an excellent sensor for identifying benzaldehyde and provides a simple and convenient method for detecting traces of benzaldehyde in benzyl alcohol based injections. This work establishes a new strategy for detection of benzaldehyde in benzyl alcohol by luminescent MOFs.

  16. SYNTHESIS OF SOME CINNAMIC ACID DERIVATIVES: EFFECT OF GROUPS ATTACHED ON AROMATIC RING TO THE REACTIVITY OF BENZALDEHYDE

    Directory of Open Access Journals (Sweden)

    Marcellino Rudyanto

    2010-06-01

    Full Text Available Synthesis of cinnamic acid and its six derivatives has been done by employing Knoevenagel reaction. Benzaldehyde, 4-butylbenzaldehyde, 4-t-butylbenzaldehyde, 4-butoxybenzaldehyde, 4-phenylbenzaldehyde, 5-bromo-2,4-dimethoxybenzaldehyde, and 5-bromo-2,3-dimethoxybenzaldehyde were reacted with malonic acid in pyridine – piperidine to give cinnamic acid (85,3%, 4-butylcinnamic acid (69,3%, 4-t-butylcinnamic acid (77,7%, 4-butoxycinnamic acid (64,5%, 4-phenylcinnamic acid (65,5%, 5-bromo-2,4-dimethoxycinnamic acid (53,2% and 5-bromo-2,4-dimethoxycinnamic acid (57,2%, respectively. It was disclosed that 4-alkyl, 4-alkoxy, 4-aryl, dan 2-alkoxy groups decrease the reactivity of carbonyl carbon of benzaldehyde.   Keywords: cinnamic acid, cinnamic acid derivatives, Knoevenagel reaction

  17. Gas phase proton affinities of molecules in excited electronic states by ion cyclotron resonance spectroscopy. [Benzaldehyde, cyanobenzene, and pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Freiser, B.S.; Beauchamp, J.L.

    1976-01-07

    Ion cyclotron resonance spectroscopy is proposed as a method to determine acid-base properties of molecules in excited electronic states. Proton affinity in the excited state can be determined from the proton affinity in the ground state plus the difference in excitation energies of the base and its conjugate acid. The difference in excitation energies may be determined by analyzing the absorption spectra of the base and the photodissociation spectra of its conjugate acid. Gas phase absorption spectra of benzaldehyde, cyanobenzene and pyradine and their respective conjugate acids were presented and discussed. The greatest increase of proton affinity was reported in the excitation state of benzaldehyde with lesser increases reported for the excitation states of cyanobenzene and pyridine. (DDA)

  18. Polydopamine-Coated TiO2 Nanotubes for Selective Photocatalytic Oxidation of Benzyl Alcohol to Benzaldehyde Under Visible Light.

    Science.gov (United States)

    Tripathy, Jyotsna; Loget, Gabriel; Altomare, Marco; Schmuki, Patrik

    2016-05-01

    TiO2 nanotube arrays grown by anodization were coated with thin layers of polydopamine as visible light sensitizer. The PDA-coated TiO2 scaffolds were used as photocatalyst for selective oxidation of benzyl alcohol under monochromatic irradiation at 473 nm. Benzaldehyde was selectively formed and no by-products could be detected. A maximized reaction yield was obtained in O2-saturated acetonitrile. A mechanism is proposed that implies firstly the charge carrier generation in polydopamine as a consequence of visible light absorption. Secondly, photo-promoted electrons are injected in TiO2 conduction band, and subsequently transferred to dissolved O2 to form O*2- radicals. These radicals react with benzyl alcohol and lead to its selective dehydrogenation oxidation towards benzaldehyde.

  19. Studies on crystal growth and physical properties of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline single crystal

    Science.gov (United States)

    Jebin, R. P.; Suthan, T.; Rajesh, N. P.; Vinitha, G.; Dhas, S. A. Britto

    2016-07-01

    The organic material 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline has been grown by slow evaporation technique. Single crystal and Powder X-ray diffraction studies have been carried out to conform the grown crystal. FTIR and FT-Raman spectra were recorded to identify the functional groups present in the crystal. The optical property of the grown crystal was analysed by UV-Vis-NIR measurement. The thermal property of the grown crystal was analysed by thermogravimetric (TG) and differential thermal analyses (DTA). Thermal diffusivity of the grown crystal was analysed by Photo acoustic spectroscopic (PAS) studies. The third order nonlinear optical properties of 4-(dimethylamino)benzaldehyde-2,4-dinitroaniline was measured by the Z-scan technique using 532 nm diode pumped continuous wave (CW) Nd:YAG laser. The mechanical property of the grown crystal was analysed by using microhardness studies.

  20. Influence of substituted benzaldehydes and their derivatives as inhibitors for hydrogen evolution in lead/acid batteries

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, H. [Technische Univ. Dresden, Inst. fuer Physikalische Chemie und Elektrochemie (Germany); Hoogestraat, G. [DETA-Akkumulatorenwerk GmbH, Bad Lauterberg (Germany); Laibach, S. [Kurt-Schwabe-Inst. fuer Mess- und Sensortechnik e.V., Meinsberg (Germany); Borstel, D. von [DETA-Akkumulatorenwerk GmbH, Bad Lauterberg (Germany); Wiesener, K. [Kurt-Schwabe-Inst. fuer Mess- und Sensortechnik e.V., Meinsberg (Germany)

    1995-02-01

    The influence of substituted benzaldehydes and their derivatives (e.g. vanillin) as inhibitors for hydrogen evolution on smooth and porous negative electrodes of the lead/acid system is investigated by cyclic voltammetric measurements. The experiments have been carried out with and without the presence of antimony. The effect of the inhibitors can be distinguished by a moderate and a strong inhibiting action. Use of these inhibitors in flooded lead/acid batteries can reduce water loss during cycling by 50%. (orig.)

  1. Benzaldehyde is a precursor of phenylpropylamino alkaloids as revealed by targeted metabolic profiling and comparative biochemical analyses in Ephedra spp.

    Science.gov (United States)

    Krizevski, Raz; Bar, Einat; Shalit, O R; Levy, Asaf; Hagel, Jillian M; Kilpatrick, Korey; Marsolais, Frédéric; Facchini, Peter J; Ben-Shabat, Shimon; Sitrit, Yaron; Lewinsohn, Efraim

    2012-09-01

    Ephedrine and pseudoephedrine are phenylpropylamino alkaloids widely used in modern medicine. Some Ephedra species such as E. sinica Stapf (Ephedraceae), a widely used Chinese medicinal plant (Chinese name: Ma Huang), accumulate ephedrine alkaloids as active constituents. Other Ephedra species, such as E. foeminea Forssk. (syn. E. campylopoda C.A. Mey) lack ephedrine alkaloids and their postulated metabolic precursors 1-phenylpropane-1,2-dione and (S)-cathinone. Solid-phase microextraction analysis of freshly picked young E. sinica and E. foeminea stems revealed the presence of increased benzaldehyde levels in E. foeminea, whereas 1-phenylpropane-1,2-dione was detected only in E. sinica. Soluble protein preparations from E. sinica and E. foeminea stems catalyzed the conversion of benzaldehyde and pyruvate to (R)-phenylacetylcarbinol, (S)-phenylacetylcarbinol, (R)-2-hydroxypropiophenone (S)-2-hydroxypropiophenone and 1-phenylpropane-1,2-dione. The activity, termed benzaldehyde carboxyligase (BCL) required the presence of magnesium and thiamine pyrophosphate and was 40 times higher in E. sinica as compared to E. foeminea. The distribution patterns of BCL activity in E. sinica tissues correlates well with the distribution pattern of the ephedrine alkaloids. (S)-Cathinone reductase enzymatic activities generating (1R,2S)-norephedrine and (1S,1R)-norephedrine were significantly higher in E. sinica relative to the levels displayed by E. foeminea. Surprisingly, (1R,2S)-norephedrine N-methyltransferase activity which is a downstream enzyme in ephedrine biosynthesis was significantly higher in E. foeminea than in E. sinica. Our studies further support that benzaldehyde is the metabolic precursor to phenylpropylamino alkaloids in E. sinica.

  2. Inhibitory Kinetics of p-Substituted Benzaldehydes on Polyphenol Oxidase from the Fifth Instar of Pieris Rapae L.

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Polyphenol oxidase (PPO) is the enzyme responsible for enzymatic browning during the growth of insects. It is also involved in defense reactions and is related with immunities in insects. PPO,a metalloenzyme oxidase, catalyzes the oxidation of o-diphenol to o-quinone. The present paper describes the effects of benzaldehyde and its p-substituted derivatives on the activity of PPO from the fifth instar of Pieris rapae L. PPO from the fifth instar of Pieris rapae L. was purified using ammonium sulfate fractionation and chromatography on Sephadex G-100. The enzyme kinetics was characterized using L-3,4-dihydroxyphenylalanine (L-DOPA) as substrate. The results show that benzaldehyde, p-hydroxybenzaldehyde, p-chlorobenzaldehyde, and p-cyanobenzaldehyde can inhibit the PPO activity for the oxidation of L-DOPA. The inhibitor concentration leading to 50% activity lost, IC50, was estimated to be 5.90, 5.62, 2.83, and 2.91 mmol/L for the four tested inhibitors, respectively. Kinetic analyses show that the inhibitory effects of these compounds are reversible. Benzaldehyde, p-hydroxybenzaldehyde, and p-chlorobenzaldehyde are noncompetitive inhibitors while p-cyanobenzaldehyde is a mixed-type inhibitor. The inhibition constants were determined for all four inhibitors.p-chlorobenzaldehyde and p-cyanobenzaldehyde were more potent inhibitors than the other compounds. These results provide a basis for developing PPO inhibition-based pesticides.

  3. Structure of the ThDP-dependent enzyme benzaldehyde lyase refined to 1.65 Å resolution

    Energy Technology Data Exchange (ETDEWEB)

    Maraite, Andy; Schmidt, Thomas; Ansörge-Schumacher, Marion B. [Department of Biotechnology, Faculty of Natural Sciences, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany); Brzozowski, A. Marek; Grogan, Gideon, E-mail: grogan@ysbl.york.ac.uk [Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5YW (United Kingdom); Department of Biotechnology, Faculty of Natural Sciences, RWTH Aachen University, Worringerweg 1, 52074 Aachen (Germany)

    2007-07-01

    The X-ray crystal structure of the ThDP-dependent enzyme benzaldehyde lyase has been refined to 1.65 Å. Benzaldehyde lyase (BAL; EC 4.1.2.38) is a thiamine diphosphate (ThDP) dependent enzyme that catalyses the enantioselective carboligation of two molecules of benzaldehyde to form (R)-benzoin. BAL has hence aroused interest for its potential in the industrial synthesis of optically active benzoins and derivatives. The structure of BAL was previously solved to a resolution of 2.6 Å using MAD experiments on a selenomethionine derivative [Mosbacher et al. (2005 ▶), FEBS J.272, 6067–6076]. In this communication of parallel studies, BAL was crystallized in an alternative space group (P2{sub 1}2{sub 1}2{sub 1}) and its structure refined to a resolution of 1.65 Å, allowing detailed observation of the water structure, active-site interactions with ThDP and also the electron density for the co-solvent 2-methyl-2,4-pentanediol (MPD) at hydrophobic patches of the enzyme surface.

  4. Quantification of brown dog tick repellents, 2-hexanone and benzaldehyde, and release from tick-resistant beagles, Canis lupus familiaris.

    Science.gov (United States)

    de Oliveira Filho, Jaires Gomes; Sarria, André Lucio Franceschini; Ferreira, Lorena Lopes; Caulfield, John C; Powers, Stephen J; Pickett, John A; de León, Adalberto A Pérez; Birkett, Michael A; Borges, Lígia Miranda Ferreira

    2016-06-01

    We have recently shown that repellency of the tick Rhipicephalus sanguineus sensu lato by the tick resistant dog breed, the beagle, is mediated by volatile organic compounds (VOCs) 2-hexanone and benzaldehyde present in beagle odour. Ectoparasite location of animal hosts is affected by variation in these odour components and their ratios. The aim of this study was to quantify the release rate, and the ratio, of 2-hexanone and benzaldehyde from beagles. The odour of three beagles was collected, for four days, over one week (day 0, day 1, day 4 and day 7). The compounds were identified using coupled high-resolution gas chromatography-mass spectrometry (GC-MS), and authentic standards of compounds were used to generate external calibration curves for quantification. Both compounds were found in all dogs on all days. The amount of benzaldehyde was always higher than that of 2-hexanone and so their ratio varied from unity, on average (over time) being 3.128±0.365, 1.902±0.390, 1.670±0.671ngmL(-1) for beagle 1, 2 and 3, respectively. There was no significant (pbenzaldehyde in beagle odour samples covering a 7-day period. This knowledge enables development of repellents to protect dogs from R. sanguineus s. l. infestation.

  5. Structure of vanadium oxide on supports as measure by the benzaldehyde-ammonia titration method

    Energy Technology Data Exchange (ETDEWEB)

    Niwa, M.; Matsuoka, Y.; Murakami, Y.

    1987-08-13

    In order to clarify the structure of vanadium oxide on supports, the benzaldehyde-ammonia titration (BAT) method was applied to various supported vanadium oxide catalysts. Prior to the measurements, an infrared study of the adsorbed benzoate ion on TiO/sub 2/, ZrO/sub 2/, and CeO/sub 2/ was carried out to justify the BAT method to measure surface cus sites. The exposed surface area of the supports Al/sub 2/O/sub 3/, TiO/sub 2/, and ZrO/sub 2/ with different crystal phases was then measured, and the surface area of vanadium oxide supported was calculated by the difference between BET and exposed surfaced areas. On the other hand, the surface area of vanadium oxide on SiO/sub 2/ was measured after reduction on 773 K, because benzaldehyde was adsorbed on the reduced V/sub 2/O/sub 3/ but not on SiO/sub 2/. Based on these measurements, the relationship between percent coverage on support and surface V/sub 2/O/sub 5/ concentration was obtained. The structure of supported V/sub 2/O/sub 5/ thus determined depended on the kind of support, but not significantly on the crystal phase. Except in small concentration on Al/sub 2/O/sub 3/ and SiO/sub 2/, vanadium oxide formed a multilayer. The support surface at Al/sub 2/O/sub 3/(..gamma..) was covered most effectively, and the average thickness of V/sub 2/O/sub 5/ in 100% of the coverage was 3 layers. To the contrary, the SiO/sub 2/ surface was not covered effectively, and the average thickness attained up to 50 layers. Furthermore, ZrO/sub 2/ and TiO/sub 2/ showed intermediate behavior between these supports. It is shown that the coverage efficiency and thickness of the formed metal oxides are correlated with the electronegativity of the cations of supports.

  6. Synthesis, characterization and antibacterial studies of ruthenium(III) complexes derived from chitosan schiff base.

    Science.gov (United States)

    Vadivel, T; Dhamodaran, M

    2016-09-01

    Chitosan can be modified chemically by condensation reaction of deacetylated chitosan with aldehyde in homogeneous phase. This condensation is carried by primary amine (NH2) with aldehyde (CHO) to form corresponding schiff base. The chitosan biopolymer schiff base derivatives are synthesized with substituted aldehydes namely 4-hydroxy-3-methoxy benzaldehyde, 2-hydroxy benzaldehyde, and 2-hydroxy-3-methoxy benzaldehyde, becomes a complexing agent or ligand. The Ruthenium(III) complexes were obtained by complexation of Ruthenium with schiff base ligands and this product exhibits as an excellent solubility and more biocompatibility. The novel series of schiff base Ruthenium(III) complexes are characterized by Elemental analysis, FT-IR spectroscopy, and Thermo-gravimetric analysis (TGA). The synthesized complexes have been subjected to antibacterial study. The antibacterial results indicated that the antibacterial activity of the complexes were more effective against Gram positive and Gram negative pathogenic bacteria. These findings are giving suitable support for developing new antibacterial agent and expand our scope for applications.

  7. Flow Injection Analysis of Mercury Using 4-(Dimethylamino Benzaldehyde-4-Ethylthiosemicarbazone as the Ionophore of a Coated Wire Electrode

    Directory of Open Access Journals (Sweden)

    Sulaiman Ab Ghani

    2012-11-01

    Full Text Available A flow injection analysis (FIA incorporating a thiosemicarbazone-based coated wire electrode (CWE was developed method for the determination of mercury(II. A 0.1 M KNO3 carrier stream with pH between 1 and 5 and flow rate of 1 mL·min−1 were used as optimum parameters. A linear plot within the concentration range of 5 × 10−6–0.1 M Hg(II, slope of 27.8 ± 1 mV per decade and correlation coefficient (R2 of 0.984 were obtained. The system was successfully applied for the determination of mercury(II in dental amalgam solutions and spiked environmental water samples. Highly reproducible measurements with relative standard deviation (RSD < 1% (n = 3 were obtained, giving a typical throughput of 30 samples·h−1.

  8. Kinetics and catalysis in co-oxidation of benzaldehyde with alkylaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A.M. (Chernovisty State Univ. Ukr. S.S.R.); Chervinskii, K.A.; Mikhailovskaya, T.N.; Pluzhnikov, V.A.; Galabitskii, B.V.; Ivanova, L.A.; Pavlyuk, G.V.

    1978-01-01

    The presence of aldehydes increases the rates of liquid-phase oxidation of alkylaromatic hydrocarbons (AAH), e.g., cumene, ethylbenzene, p-xylene, or toluene, by molecular oxygen at 20/sup 0/-60/sup 0/C to values characteristic for oxidation of AAH alone at 100/sup 0/-120/sup 0/C. Kinetic studies showed that aldehydes cause rapid chain propagation via the formation of R radicals from RH and conversion of relatively unreactive RO/sub 2/ radicals to hydroperoxides. Due to self-inhibition by phenols formed in the chain oxidation of aromatic aldehydes, e.g., benzaldehyde, the process follows steady-state kinetics, which ensures a much larger induction factor for AAH co-oxidation with aromatic than with aliphatic aldehydes, which oxidize in a self-accelerating regime. Although salts of transition metals (mainly cobalt) favor the self-accelerating regime and thus reduce the induction factor, they catalyze oxidation of oxygen compounds present in the system by hydroperoxides (HPO), which, together with the induced HPO decomposition, are the main reactions preventing HPO accumulation.

  9. Continuous transformation of benzaldehyde to benzyl alcohol by Rhodotorula mucilaginosa immobilized in an ultrafiltration cell

    Energy Technology Data Exchange (ETDEWEB)

    Wisniewski, J.; Winnicki, T.; Majewska, K.

    1982-06-01

    Microbiological transformation of benzaldehyde accomplished by the fungus Rhodotorula mucilaginosa immobilized in the ultrafiltration cell was studied. A polysulfone membrane formed on a sintered PVC support was used for the separation of the transformation product from the cellular material. Kinetic investigations have led to results which are typical of continuously fed stirred tank reactors (CFSTR)-the value of the maximum reaction rate (Vmax) and apparent Michaelis constant (K'm) are practically independent of the substrate retention time (calculated in terms of the flow intensity value). A strong relationship was found to occur between Vmax and biomass concentration in the reactor. Study of the apparent enzyme stability shows that the decrease in the biocatalyst activity is chiefly caused by penetration of the cells through the membrane. The experimental results were approximated in terms of the adopted mathematical model. Based on this model, the half-lives (t1/2) of enzyme activities were determined. The t1/2 value varies from 35 to 82 days and depends both on the permeate flux through the membrane and on the separation properties of the membrane. (Refs. 15).

  10. Polyoxometalate coordinated transition metal complexes as catalysts: Oxidation of styrene to benzaldehyde/benzoic acid

    Indian Academy of Sciences (India)

    Srinivasa Rao Amanchi; Anjali Patel; Samar K Das

    2014-11-01

    Oxidation of styrene is carried out by using heptamolybdate coordinated transition metal (Co2+, Zn2+) complexes, [2-ampH]4[{Co(H2O)5}Mo7O24]·9H2O (1), [3-ampH]4[{Co(H2O)5}Mo7O24]·9H2O (2), [2-ampH]4[{Zn(H2O)5}Mo7O24]·4H2O (3) and [3-ampH]4[{Zn(3-ampy)(H2O)4}Mo7O24]·4H2O (4) as catalysts and H2O2 as an oxidant at 80°C. The leaching study has been carried out to check the quality of catalyst and it has been reused for three times with good percentage of conversion. For the first two catalysts (compounds 1 and 2), the major product obtained is benzaldehyde, and benzoic acid is the major product for next two catalysts (compounds 3 and 4). Stability of the catalysts has been analyzed by IR, UV-spectroscopy and powder X-ray crystallography.

  11. Amorphous metal-aluminophosphate catalysts for aldol condensation of n-heptanal and benzaldehyde to jasminaldehyde

    Institute of Scientific and Technical Information of China (English)

    A. Hamza; N. Nagaraju

    2015-01-01

    Amorphous aluminophosphate (AlP) and metal‐aluminophosphates (MAlPs, where M=2.5 mol%Cu, Zn, Cr, Fe, Ce, or Zr) were prepared by coprecipitation method. Their surface properties and catalytic activity for the synthesis of jasminaldehyde through the aldol condensation of n‐heptanal and benzaldehyde were investigated. The nitrogen adsorption‐desorption isotherms showed that the microporosity exhibited by the aluminophosphate was changed to a mesoporous and macroporous structure which depended on the metal incorporated, with a concomitant change in the surface area. Temperature‐programmed desorption of NH3 and CO2 revealed that the materials possessed both acidic and basic sites. The acidic strength of the material was either increased or decreased depending on the nature of the metal. The basicity was increased compared to AlP. All the materials were X‐ray amorphous and powder X‐ray diffraction studies indicated the absence of metal oxide phases. The Fourier transform infrared analysis confirmed the presence of phosphate groups and also the absence of any M‐O moieties in the materials. The selected organic reaction occurred only in the presence of the AlP and MAlPs. The selectivity for the jasminaldehyde product was up to 75%with a yield of 65%. The best conversion of n‐heptanal with a high selectivity to jasminaldehyde was obtained with FeAlP as the catalyst, and this material was characterized to have less weak acid sites and more basic sites.

  12. Assessment of cytotoxic and apoptotic effects of benzaldehyde using different assays.

    Science.gov (United States)

    Ulker, Z; Alpsoy, L; Mihmanli, A

    2013-08-01

    Benzaldehyde (BA) occurs naturally in a number of plants, including cherry, fig and peach fruit and carnation flowers at therapeutic doses. In addition, it is used in cosmetics, personal care products and food as a preservative. In this study, we aimed to determine the cytotoxic and apoptotic effects of different concentrations of BA on cultured human lymphocytes using lactate dehydrogenase assay, cell proliferation (water-soluble tetrazolium salts-1) assay and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) test (apoptotic test) as a group of cytotoxicity tests at 6th and 24th h on human lymphocyte cell culture. The cytotoxicity increased when cells were treated with 10, 25 and 50 μg/mL concentrations of BA (p < 0.05). Moreover, treatment of the cells with the same concentrations significantly decreased the cell number at the 6th and 24th hours (p < 0.05). TUNEL assay results also show that the concentration of BA at 10, 25 and 50 μg/mL caused DNA damage significantly (p < 0.05). According to our results, the toxic and genotoxic effects of BA have to be further evaluated before using in cosmetic and food products.

  13. Synthesis, thermal and antitumour studies of Th(IV complexes with furan-2-carboxaldehyde4-phenyl-3-thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    VINO T. CHERIYAN

    2010-06-01

    Full Text Available Thorium(IV complexes with the Schiff base furan-2-carboxaldehyde4-phenyl-3-thiosemicarbazone (L were synthesised and characterized. The composition and structure of the metal complexes were proposed based on elemental analysis, molar conductivity measurements, FTIR and 1H-NMR spectroscopy. The Schiff base behaves as a neutral bidentate ligand coordinating through the azomethine N and the thioketo S atoms. From various studies, complexes were ascertained the general formula [ThL2X4] and [ThL2Y2], where X represents NO3–, NCS–, CH3COO–, CH3CHOHCOO–, ClO4– and Y SO42–and C2O42–. The thermal behaviour of the nitrato and oxalato complexes was studied and kinetic and thermodynamic parameters were calculated using the Coats-Redfern Equation. The ligand and a representative complex [ThL2(NO34] were screened in vitro for their antitumour activity against the human cervical cancer cell line (HeLa.

  14. Growth, spectral, optical, thermal, crystallization perfection and nonlinear optical studies of novel nonlinear optical crystal—Urea thiosemicarbazone monohydrate

    Science.gov (United States)

    Hanumantharao, Redrothu; Kalainathan, S.; Bhagavannarayana, G.

    2012-06-01

    Single crystals of organic nonlinear material urea thiosemicarbazone monohydrate (UTM) have been grown by slow evaporation method. The grown crystals were characterized by single crystal X-ray diffraction analysis reveals that sample crystallized in triclinic system with noncentrosymmetric space group P1. Powder XRD pattern confirmed that grown crystal posses highly crystalline nature. FTIR spectrum was recorded to identify the presence of functional groups and molecular structure was confirmed by 1H NMR spectrum. Material confirmation of title compound has been performed by using mass spectroscopic analysis. Elemental composition of grown crystal was confirmed by energy-dispersive spectrometry (EDS). To study the crystalline perfection of the grown crystals, high-resolution X-ray diffraction (HR-XRD) study was carried out. Thermogravimetric and differential thermal analyses were employed to understand the thermal and physio-chemical stability of the synthesized compound. UV-Vis-NIR spectrum revealed the transmission properties of the crystal specimen. Relative SHG efficiency is measured by Kurtz and Perry method and found to about 0.89 times that of standard potassium dihydrogen phosphate (KDP) crystals.

  15. Synthesis and evaluation of simple naked-eye colorimetric chemosensors for anions based on azo dye-thiosemicarbazones.

    Science.gov (United States)

    Radchatawedchakoon, Widchaya; Sangsuwan, Withsakorn; Kruanetr, Senee; Sakee, Uthai

    2014-01-01

    A series of novel, highly selective azo dye-thiosemicarbazones based anion sensors (3e-f) have been synthesized from the condensation reaction between thiosemicarbazide and six different azo salicylaldehydes. The structure of the sensors was confirmed by spectroscopic methods. The selectivity and sensitivity in the recognition for acetate anion over other anions such as fluoride, chloride, iodide and dihydrogenphosphate anions were determined by naked-eyes and UV-vis spectra. The color of the solution containing sensor had an obvious change from light yellow to orange only after the addition of acetate anion in aqueous solution (water/dimethylsulfoxide, 7:3, v/v) while other anions did not cause obvious color change. The anion recognition property of the receptor via proton-transfer is monitored by UV-vis titration and (1)H NMR spectroscopy. Under condition in aqueous solution of sensor 3e (water/dimethylsulfoxide, 7:3, v/v), linearity range for the quantification of acetate anion was 1-22 μM and limit of detection (LOD) of acetate anion was 0.71 μM.

  16. Synthesis, structural characterization and biological activities of organotin(IV) complexes with 5-allyl-2-hydroxy-3-methoxybenzaldehyde-4-thiosemicarbazone

    Indian Academy of Sciences (India)

    Rosenani A Haque; M A Salam

    2015-09-01

    The organotin(IV) complexes [MeSnCl(L)] (2), [BuSnCl(L)] (3), [PhSnCl(L)] (4) and [Me2Sn(L)] (5) were synthesized by reacting organotin(IV) chloride(s) with 5-allyl-2-hydroxy-3-methoxybenzaldehyde- 4-thiosemicarbazone [H2L], (1)] in presence of KOH in 1:2:1 molar ratio (metal salt: base:ligand). All the complexes have been characterized by elemental analyses, UV-Vis, FT-IR, 1H, 13C and 119Sn NMR spectral studies. The molecular structure of complex 5 has been confirmed by single crystal X-ray diffraction analysis. The ligand, H2L coordinates to Sn(IV) in thiolate form through phenoxide-O, azomethine-N and thiolate-S atoms. The C-Sn-C angle measured from coupling constant 1 (119Sn, 13C) for dimethyltin(IV) complex 5 is 123.4°. The 2 (119Sn, 1H) coupling constant values for complex 2 and 5 are 72.4 and 76.3 Hz, respectively. Proposed geometry for five coordinated Sn(IV) atom is a strongly distorted trigonal bipyramid. Biological studies were preformed in vitro against four bacterial strains which have shown better activities and potential as antibacterial agents.

  17. Transition metal complexes of Vanillin- 4N-(2-pyridyl) thiosemicarbazone (H 2VPT); thermal, structural and spectroscopic studies

    Science.gov (United States)

    El-Reash, Gaber Abu; El-Ayaan, Usama; Gabr, I. M.; El-Rachawy, El-Bastawesy

    2010-04-01

    The present work carried out a study on the ligational behavior of the new ligand, Vanillin- 4N-(2-pyridyl) thiosemicarbazone (H 2VPT) 1 towards some transition metal ions namely, Mn 2+, Co 2+, Ni 2+, Cu 2+, Zn 2+,Cd 2+, Hg 2+ and U 6+. These complexes namely [Mn(HVPT)Cl] 2, [Co(VPT)(H 2O)] 2H 2O 3, [Ni(HVPT)Cl(H 2O)] 4, [Cu(HVPT)Cl(H 2O)] 5, [Zn(VPT)(H 2O)]H 2O 6, [Cd(HVPT)Cl(H 2O)] 7, [Hg(VPT)(H 2O)]H 2O 8 and [UO 2(H 2VPT)(OAc) 2]H 2O 9, were characterized by elemental analysis, spectral (IR, 1H NMR and UV-vis) and magnetic moment measurements. The suggested structures were confirmed by applying geometry optimization and conformational analysis. Thermal properties and decomposition kinetics of all compounds are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters ( E, A, Δ H, Δ S and Δ G) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. ESR spectra of [Cu(HVPT)Cl]H 2O at room temperature show broad signal, indicating spin-exchange interactions between copper(II) ions.

  18. A 119Sn Mössbauer Study of Tin(IV) Complexes of 2- and 4-Benzoylpyridine Thiosemicarbazone and 4-Benzoylpyridine Semicarbazone

    Science.gov (United States)

    Pérez-Rebolledo, Anayive; Ardisson, José D.; de Lima, Geraldo M.; Macedo, Waldemar A. A.; Beraldo, Heloisa

    2005-06-01

    A 119Sn Mössbauer study was carried out of tin(IV) complexes with 2-benzoylpyridine thiosemicarbazone (H2Bz4DH) and its N(4)-methyl (H2Bz4M) and N(4)-phenyl (H2Bz4Ph) derivatives: [Sn(2Bz4DH)Cl3] (1), [Sn(2Bz4DH)PhCl2] (2), [Sn(2Bz4M)Cl3] (3), [H22Bz4M]2[Ph2SnCl4] (4), [Sn(2Bz4Ph)PhCl2] (5), [Sn(2Bz4Ph)Ph2Cl] (6), in which H2Bz4R stands for the neutral ligand and 2Bz4R stands for the anionic thiosemicarbazone. In addition, 119Sn Mössbauer studies of the tin(IV) complexes [Sn(H4Bz4DH)2Cl4H2O] (7), [Sn(H4BzPS)2Cl4H2O] (8) with 4-benzoylpyridine thiosemicarbazone (H4Bz4DH) and the correspondent semicarbazone (H4BzPS) were performed. The isomer shifts decrease upon coordination due to the variation in the percentage of s character as tin changes from approximately sp3 hybridization in the tin salts to sp3d2 in the octahedral or sp3d3 in the heptahedral complexes. The Mössbauer parameters of compound (4) showed the existence of two tin(IV) sites, which have been attributed to the presence of the cis and trans isomers.

  19. A {sup 119}Sn Moessbauer Study of Tin(IV) Complexes of 2- and 4-Benzoylpyridine Thiosemicarbazone and 4-Benzoylpyridine Semicarbazone

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Rebolledo, Anayive [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Ardisson, Jose D., E-mail: jdr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear, Laboratorio de Fisica Aplicada (LFA/CDTN) (Brazil); Lima, Geraldo M. de [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil); Macedo, Waldemar A. A. [Centro de Desenvolvimento da Tecnologia Nuclear, Laboratorio de Fisica Aplicada (LFA/CDTN) (Brazil); Beraldo, Heloisa, E-mail: hberaldo@ufmg.br [Universidade Federal de Minas Gerais, Departamento de Quimica (Brazil)

    2005-06-15

    A {sup 119}Sn Moessbauer study was carried out of tin(IV) complexes with 2-benzoylpyridine thiosemicarbazone (H2Bz4DH) and its N(4)-methyl (H2Bz4M) and N(4)-phenyl (H2Bz4Ph) derivatives: [Sn(2Bz4DH)Cl{sub 3}] (1), [Sn(2Bz4DH)PhCl{sub 2}] (2), [Sn(2Bz4M)Cl{sub 3}] (3), [H{sub 2}2Bz4M]{sub 2}[Ph{sub 2}SnCl{sub 4}] (4), [Sn(2Bz4Ph)PhCl{sub 2}] (5), [Sn(2Bz4Ph)Ph{sub 2}Cl] (6), in which H2Bz4R stands for the neutral ligand and 2Bz4R stands for the anionic thiosemicarbazone. In addition, {sup 119}Sn Moessbauer studies of the tin(IV) complexes [Sn(H4Bz4DH){sub 2}Cl{sub 4}H{sub 2}O] (7), [Sn(H4BzPS){sub 2}Cl{sub 4}H{sub 2}O] (8) with 4-benzoylpyridine thiosemicarbazone (H4Bz4DH) and the correspondent semicarbazone (H4BzPS) were performed. The isomer shifts decrease upon coordination due to the variation in the percentage of s character as tin changes from approximately sp{sup 3} hybridization in the tin salts to sp{sup 3}d{sup 2} in the octahedral or sp{sup 3}d{sup 3} in the heptahedral complexes. The Moessbauer parameters of compound (4) showed the existence of two tin(IV) sites, which have been attributed to the presence of the cis and trans isomers.

  20. Synthesis and characterization of mixed-ligand diimine-piperonal thiosemicarbazone complexes of ruthenium(II): Biophysical investigations and biological evaluation as anticancer and antibacterial agents.

    Science.gov (United States)

    Beckford, Floyd A; Thessing, Jeffrey; Shaloski, Michael; Mbarushimana, P Canisius; Brock, Alyssa; Didion, Jacob; Woods, Jason; Gonzalez-Sarrías, Antonio; Seeram, Navindra P

    2011-04-19

    We have used a novel microwave-assisted method developed in our laboratories to synthesize a series of ruthenium-thiosemicarbazone complexes. The new thiosemicarbazone ligands are derived from benzo[d][1,3]dioxole-5-carbaldehyde (piperonal) and the complexes are formulated as [(diimine)(2)Ru(TSC)](PF(6))(2) (where the TSC is the bidentate thiosemicarbazone ligand). The diimine in the complexes is either 2,2'-bipyridine or 1,10-phenanthroline. The complexes have been characterized by spectroscopic means (NMR, IR and UV-Vis) as well as by elemental analysis. We have studied the biophysical characteristics of the complexes by investigating their anti-oxidant ability as well as their ability to disrupt the function of the human topoisomerase II enzyme. The complexes are moderately strong binders of DNA with binding constants of 10(4) M(-1). They are also strong binders of human serum albumin having binding constants on the order of 10(4) M(-1). The complexes show good in vitro anticancer activity against human colon cancer cells, Caco-2 and HCT-116 and indeed show some cytotoxic selectivity for cancer cells. The IC(50) values range from 7 - 159 μM (after 72 h drug incubation). They also have antibacterial activity against Gram-positive strains of pathogenic bacteria with IC(50) values as low as 10 μM; little activity was seen against Gram-negative strains. It has been established that all the compounds are catalytic inhibitors of human topoisomerase II.

  1. SPECTROSCOPIC AND BIOLOGICAL STUDIES ON NEWLY SYNTHESIZED COPPER (II AND NICKEL (II COMPLEXES WITH p -DIMETHYLAMINOBANZALDEHYDE SEMICARBAZONE AND p -DIMETHYLAMINOBANZALDEHYDE THIOSEMICARBAZONE

    Directory of Open Access Journals (Sweden)

    Sulekh Chandra

    2012-08-01

    Full Text Available Cu (II and Ni (II complexes of general composition [ML2]X2(M = Cu(II, Ni(II; X = Cl-, NO3- weresynthesized by the condensation of metal salts with semicarbazone / thiosemicarbazone derived from p-dimethylaminobanzaldehyde. The metal complexes were characterized by elemental analysis, molar conductance, magneticsusceptibility measurements, IR and atomic absorption spectral studies. On the basis of electronic and infrared spectralstudies, the metal complexes were found to have tetrahedral geometry. The Schiff bases and their metal complexeswere tested for their antibacterial and antioxidant activities

  2. A nanoporous 3D zinc(II) metal–organic framework for selective absorption of benzaldehyde and formaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Moradpour, Tahereh [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Abbasi, Alireza, E-mail: aabbassi@khayam.ut.ac.ir [School of Chemistry, College of Science, University of Tehran, Tehran (Iran, Islamic Republic of); Van Hecke, Kristof [XStruct, Department of Inorganic and Physical Chemistry, Ghent University, Krigslaan 281-S3, Ghent B-9000 (Belgium)

    2015-08-15

    A new 3D nanoporous metal–organic framework (MOF), [[Zn{sub 4}O(C{sub 24}H{sub 15}N{sub 6}O{sub 6}){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O·DMF]{sub n} (1) based on 4,4′,4″-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB) ligand was solvothermally synthesized and characterized by single–crystal X-ray diffraction, Powder X-ray diffraction (PXRD), infrared spectroscopy (IR) and Brunauer–Emmett–Teller (BET) analyses. X-ray single crystal diffraction analysis reveals that 1 exhibits a 3D network with new kvh1 topology. Semi-empirical (AM1) calculations were carried out to obtain stable conformers for TATAB ligand. In addition, the absorption of two typical aldehydes (benzaldehyde and formaldehyde) in the presence of 1 was investigated and the effect of the aldehyde concentration, exposure time and temperature was studied. It was found that compound 1 has a potential for the absorption of aldehydes under mild conditions. - Graphical abstract: Absorption of two typical aldehydes (formaldehyde and benzaldehyde) by solvothermally synthesized of a 3D nano-porous MOF based on TATAB tricarboxylate ligand and Zn (NO{sub 3}){sub 2}·6H{sub 2}O. - Highlights: • We present a 3D Zn(II)-MOF with TATAB linker by solvothermal method. • The framework possesses a new kvh1 topology. • The framework displays formaldehyde and benzaldehyde absorption property. • Conformational analysis was performed to determine the stable linker geometry.

  3. Isolation of liver aldehyde oxidase containing fractions from different animals and determination of kinetic parameters for benzaldehyde

    Directory of Open Access Journals (Sweden)

    Kadam R

    2008-01-01

    Full Text Available Aldehyde oxidase activity containing fractions from rabbit, guinea pig, rat and mouse livers were obtained by heat treatment and ammonium sulfate precipitation. Aldehyde oxidase activity was observed in rabbit and guinea pig livers, while aldehyde oxidase activity was absent in rat and mouse liver fractions. Enzyme kinetic parameters, K m and V max , were determined for the oxidation of benzaldehyde to benzoic acid by rabbit and guinea pig liver fractions, by spectrophotometric method, with potassium ferricyanide as the electron acceptor. The K m values obtained for both animal liver fractions were in the range of 10.3-19.1 µM.

  4. Synthesis of diverse dihydropyrimidine-related scaffolds by fluorous benzaldehyde-based Biginelli reaction and post-condensation modifications

    Directory of Open Access Journals (Sweden)

    Bruno Piqani

    2011-09-01

    Full Text Available Dihydropyrimidinones and dihydropyrimidinethiones generated from the Biginelli reactions of perfluorooctanesulfonyl-attached benzaldehydes are used as common intermediates for post-condensation modifications such as cycloaddition, Liebeskind–Srogl reaction and Suzuki coupling to form biaryl-substituted dihydropyrimidinone, dihydropyrimidine, and thiazolopyrimidine compounds. The high efficiency of the diversity-oriented synthesis is achieved by conducting a multicomponent reaction for improved atom economy, under microwave heating for fast reaction, and with fluorous solid-phase extractions (F-SPE for ease of purification.

  5. Correlation analysis of the /sup 13/C NMR spectra of some para-substituted benzaldehyde oximes and their anions

    Energy Technology Data Exchange (ETDEWEB)

    Rutkovskii, G.V.; Zmeikov, V.P.

    1987-06-20

    For the case of the /sup 13/C NMR spectra of a series of para-substituted benzaldehyde oximes and their anions it was shown that to describe the chemical shifts of all the carbon atoms of the benzene ring and the exocyclic CH group it is necessary to use three-parameter equations with the parameters F and R (which characterize the inductive and resonance effects respectively of the substituents), and Q (which corresponds to the paramagnetic interaction between the substituents and the carbon atoms).

  6. Role of catalyst characteristics in electrocatalytic hydrogenation: Reduction of benzaldehyde and acetophenone on carbon felt/Pd electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Polcaro, A.M.; Palmas, S.; Dernini, S. (Univ. di Cagliari, Piazza D' Armi Cagliari (Italy). Dipartimento di Ingegneria Chimica e Materiali)

    1993-07-01

    The hydrogenation of benzaldehyde and acetophenone was investigated at two carbon felt-supported Pd electrocatalysts, prepared by two different methods. The faradaic yield and the selectivity of the reaction were found to be greatly affected by the preparation conditions of the catalyst. A model, based on a reaction electrocatalytic mechanism, involving two parallel steps through which alcohol and hydrocarbon are generated from the reactant adsorbed on different active sites, was performed. The kinetics was described by means of the Langmuir-Hinshelwood rate equations, and the kinetic and equilibrium parameters were determined for both electrocatalysts.

  7. Spectroelectrochemical investigations of the reduction of benzaldehyde and p-cyano- and p-phenylbenzaldehyde in sulfolane

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, N.R. (Sandia Labs., Albuquerque, NM); Quinn, R.K.; Vanderborgh, N.E.

    1977-04-07

    Spectroelectrochemical investigations are presented for the reduction of benzaldehyde and p-cyano- and p-phenylbenzaldehyde in the solvent sulfolane. Two reduction intermediates were observed for the p-cyanobenzaldehyde reduction. One intermediate was the radical anion which was consumed in a dimerization reaction, k/sub 2/ = 85--88 M/sup -1/ s/sup -1/. The other intermediate was the electrochemically inactive complex between the radical anion and the unreduced parent. The verification of this complexation clarifies previous voltammetric studies of this type of reduction mechanism.

  8. Determination of {sup 19} F - {sup 13} C coupling constants and their use in mono fluoro benzaldehyde derivatives conformational analysis

    Energy Technology Data Exchange (ETDEWEB)

    Villar, Jose Daniel Figueroa [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil). Inst. de Quimica

    1995-12-31

    The element fluorine is extremely important in medicinal chemistry. In order to research the possible molecular alterations introduced for the substitution of hydrogen for fluorine, the study of {sup 19} F-{sup 13} C coupling constants is necessary. In this work, ortho- and para-fluorine-substituted benzaldehydes and some other aromatic fluoro compounds were studied using {sup 1} H, {sup 13} C and {sup 19} F NMR. The long range C-F coupling constants were measured from the PND spectra and compared with the long range values of H-C coupling constants, so as to, at first, determine their importance in conformational analysis 5 refs., 2 figs., 3 tabs.

  9. β-cyclodextrin functionalized on glass micro-particles: A green catalyst for selective oxidation of toluene to benzaldehyde

    Science.gov (United States)

    Tahir, M. Nazir; Nielsen, Thorbjørn T.; Larsen, Kim L.

    2016-12-01

    Oxidation of toluene is considered an important process which often requires high temperatures and specific conditions along with heavy-metals based catalysts. In this study, we have developed a green catalyst by functionalizing beta-cyclodextrin onto glass micro-particle surfaces. All surfaces were characterized by X-ray photoelectron spectroscopy and applied to catalyze the selective oxidation of toluene into benzaldehyde (82% yield) at room temperature. The catalyst was stable and could be used repeatedly for several cycles without losing efficiency.

  10. 4-{Phenyl[4-(6-phenyl-2,2′-bipyridin-4-ylphenyl]amino}benzaldehyde

    Directory of Open Access Journals (Sweden)

    Yu-yang Zhang

    2014-08-01

    Full Text Available The title molecule, C35H25N3O, is a triphenylamine derivative with the 4-position substituted by an aldehyde group, and the 4′-position substituted by a 6-phenyl-2,2′-bipyridine group. The whole molecule is non-planar and the dihedral angle between the core benzene and pyridine rings is 36.96 (5°. The dihedral angle between the phenyl and benzaldehyde groups bonded to the amine N atom is 70.86 (5°.

  11. Toluene oxidization to benzaldehyde in subcritical water%近临界水中甲苯氧化生成苯甲醛

    Institute of Scientific and Technical Information of China (English)

    朱宪; 王倩

    2006-01-01

    Effects of reaction parameter on yield of benzaldehyde produced from toluene oxidization using hydrogen peroxide in subcriti cal water are investigated. The experimental results show that if the molar ratio of hydrogen peroxide to toluene is controlled within a reasonable range, the by-products may be neglected. The optimum technology of toluene oxidization to benzaldehyde is reaction time 60 min,reaction temperature 350 ℃, molar ratio of hydrogen peroxide to toluene 3.5. The yield of benzaldehyde can reach 17.2% under the optimum condition. Research results of chemical reaction kinetics show that the consecutive reaction consists of two first-order reaction, and activation energy of these two reactions are 89 kJ· mol-1 and 76 kJ· mol-1 respectively.

  12. Rapid and sensitive determination of benzaldehyde arising from benzyl alcohol used as preservative in an injectable formulation solution using dispersive liquid-liquid microextraction followed by gas chromatography.

    Science.gov (United States)

    Mashayekhi, Hossein Ali; Rezaee, Mohammad; Garmaroudi, Shirin Sadeghi; Montazeri, Naser; Ahmadi, Seyed Javad

    2011-01-01

    A rapid and sensitive method has been developed for the determination of benzaldehyde, a toxic oxidation product of the widely used preservative and co-solvent benzyl alcohol in injectable formulations of non-steroidal anti-inflammatory drugs, diclofenac, vitamin B-complex and Voltaren injection solutions by using dispersive liquid-liquid microextraction followed by gas chromatography. This method involves the use of an appropriate mixture of extraction solvent (43.0 µL 1,2-dichloroethane) and disperser solvent (1.0 mL acetonitrile) for the formation of a cloudy solution in a 5.0-mL aqueous sample containing benzaldehyde. The linear range was 1.0-1000 µg L(-1), and the limit of detection was 0.2 µg L(-1) for benzaldehyde.

  13. Redox activation of Fe(III)-thiosemicarbazones and Fe(III)-bleomycin by thioredoxin reductase: specificity of enzymatic redox centers and analysis of reactive species formation by ESR spin trapping.

    Science.gov (United States)

    Myers, Judith M; Cheng, Qing; Antholine, William E; Kalyanaraman, Balaraman; Filipovska, Aleksandra; Arnér, Elias S J; Myers, Charles R

    2013-07-01

    Thiosemicarbazones such as Triapine (Tp) and Dp44mT are tridentate iron (Fe) chelators that have well-documented antineoplastic activity. Although Fe-thiosemicarbazones can undergo redox cycling to generate reactive species that may have important roles in their cytotoxicity, there is only limited insight into specific cellular agents that can rapidly reduce Fe(III)-thiosemicarbazones and thereby promote their redox activity. Here we report that thioredoxin reductase-1 (TrxR1) and glutathione reductase (GR) have this activity and that there is considerable specificity to the interactions between specific redox centers in these enzymes and various Fe(III) complexes. Site-directed variants of TrxR1 demonstrate that the selenocysteine (Sec) of the enzyme is not required, whereas the C59 residue and the flavin have important roles. Although TrxR1 and GR have analogous C59/flavin motifs, TrxR is considerably faster than GR. For both enzymes, Fe(III)(Tp)2 is reduced faster than Fe(III)(Dp44mT)2. This reduction promotes redox cycling and the generation of hydroxyl radical (HO) in a peroxide-dependent manner, even with low-micromolar levels of Fe(Tp)2. TrxR also reduces Fe(III)-bleomycin and this activity is Sec-dependent. TrxR cannot reduce Fe(III)-EDTA at significant rates. Our findings are the first to demonstrate pro-oxidant reductive activation of Fe(III)-based antitumor thiosemicarbazones by interactions with specific enzyme species. The marked elevation of TrxR1 in many tumors could contribute to the selective tumor toxicity of these drugs by enhancing the redox activation of Fe(III)-thiosemicarbazones and the generation of reactive oxygen species such as HO.

  14. Antitumor Metallothiosemicarbazonate:Synthesis,Crystal Structure,Spectra and Antitumor Studies of Co(Ⅲ) Complex with Thiosemicarbazone Derivative of 2-Benzoylpyridine

    Institute of Scientific and Technical Information of China (English)

    LI Ming-Xue; ZHOU Jing; WANG Zi-Liang; WANG Jing-Ping

    2008-01-01

    The title complex[Co(L)2]Cl·4H2O I has been achieved via self-assembly by incorporating cobalt into 2-benzoylpyridine thiosemicarbazonate ligand,and characterized by elemental analysis,infrared spectra,mass spectra and single-crystal X-ray diffraction study.The crystal crystallizes in monoclinic,space group P21/n,with a=10.227(3),b=17.363(4),c=17.459(4)(A),β=100.408(4)°,V=3049.2(13)(A)3,z=4,Mr=677.08,Dc=1.475 g/cm3,μ(MoKα)=0.834 mm-1,F(000)=1400,the final R=0.0747 and wR=0.0896 for 1663 observed reflections with Ⅰ>2σ(Ⅰ).The complex contains one six-coordinated cobalt ion connected by two thiosemicarbazone ligands which act as a tridentate ligand to coordinate with the center metal atoms via two pyridyl nitrogen atoms,two imine nitrogen atoms and two sulfur atoms giving rise to a mononuclear structure.Hydrogen bonds existing in the complex link the different components to stabilize the crystal structure.The antitumor activity of the title complex Was tested against A549 lung cancer cell line.Complex Ⅰ exhibits antitumor activity.

  15. A novel fluorinated thiosemicarbazone derivative- 2-(3,4-difluorobenzylidene) hydrazinecarbothioamide induces apoptosis in human A549 lung cancer cells via ROS-mediated mitochondria-dependent pathway.

    Science.gov (United States)

    Zhao, Yue; Guo, Chuanlong; Wang, Lijun; Wang, Shuaiyu; Li, Xiangqian; Jiang, Bo; Wu, Ning; Guo, Shuju; Zhang, Renshuai; Liu, Kun; Shi, Dayong

    2017-09-09

    Thiosemicarbazone, a class of compounds with excellent biological activity, especially antitumor activity, have attracted wide attention. In this study, a novel fluorinated thiosemicarbazone derivative, 2-(3,4-difluorobenzylidene) hydrazinecarbothioamide (compound 1) was synthesized and its antitumor activities were further investigated on a non-small cell lung cancer cell line (A549) along with its underlying mechanisms. Compound 1 showed significant anti-proliferative activity on A549 cells, which was further proved by colony formation experiment. Compound 1 also inhibits the invasion of A549 cells in a trans-well culture system. Moreover, compound 1 markedly induced apoptosis on A549 cells, and the ratio of Bcl-2/Bax was decreased while the amount of p53, Cleaved-Caspase 3 and Cleaved-PARP expression were increased significantly. Compound 1 decreased the mitochondrial membrane potential, while the content of reactive oxygen was increased obviously. It is revealed that compound 1 mediated cell cycle arrest in G0/G1 phase by reducing G1 phase dependent proteins, CDK4 and Cyclin D1. As a result, it is indicated that compound 1 induced apoptosis on A549 cells was realized by regulating ROS-mediated mitochondria-dependent signaling pathway. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Cinnamaldehyde and cuminaldehyde thiosemicarbazones and their copper(II) and nickel(II) complexes: a study to understand their biological activity.

    Science.gov (United States)

    Bisceglie, Franco; Pinelli, Silvana; Alinovi, Rossella; Goldoni, Matteo; Mutti, Antonio; Camerini, Alessandro; Piola, Lorenzo; Tarasconi, Pieralberto; Pelosi, Giorgio

    2014-11-01

    This paper reports the synthesis and characterization of trans-cinnamaldehyde thiosemicarbazone (Htcin), cuminaldehyde thiosemicarbazone (Htcum) and their copper and nickel complexes. All the compounds, which on healthy cells (human fibroblasts) show a neglectable cytotoxicity, were screened in vitro in cell line U937 for their antileukemic activity. These compounds, in spite of their molecular similarity, present variegated behaviors. Htcin shows no inhibition activity in U935 cells, while both its metal complexes inhibit proliferation with IC50 at μM concentrations. The other ligand, Htcum, and its metal complexes, besides inhibiting proliferation, induce apoptosis. The cell cycle analysis highlights a G2/M checkpoint stop suggesting a possible direct action on DNA or on topoisomerase IIa. From CD and UV spectroscopy experiments, the DNA results to be not the main target of all these molecules, while both copper complexes are effective topoisomerase IIa inhibitors. All of these molecules activate caspase-9 and caspase-3, while caspase-8 activity is significantly induced by both cinnamaldehyde metal complexes. Tests on PgP and intracellular metal concentrations (determined by mean of atomic absorption spectrometry) show that the compounds tend to accumulate in the cytoplasm and that the cells do not manage to pump out copper and nickel ions.

  17. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA

    Directory of Open Access Journals (Sweden)

    Artavazd Badalyan

    2014-11-01

    Full Text Available Biosensors for the detection of benzaldehyde and g-aminobutyric acid (GABA are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below −0.15 V (vs. Ag|AgCl, 1 M KCl. The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A “reagentless” biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10–150 µM and the detection limit of 5 µM (signal to noise ratio 3:1 of benzaldehyde. The relative standard deviation in a series (n = 13 for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T and PaoABC in the osmium containing redox polymer.

  18. 氨基磺酸催化合成苯甲醛乙二醇缩醛%Synthesis of Benzaldehyde Ethylene Glycol Acetal with Aminosulfonic Acid as Catalyst

    Institute of Scientific and Technical Information of China (English)

    王俏; 张玉琦; 魏清勃

    2013-01-01

    The benzaldehyde ethylene glycol acetal was synthesized from benzaldehyde and ethylene glycol in the presence of aminosulfonic acid which was used as catalyst.The effects of molar ratio of benzaldehyde to ethylene glycol,reaction time,amount of catalyst and water carrying agent,etc.on the yield of benzaldehyde ethylene glycol acetal were investigated.The best reaction conditions were found as follows:n(benzaldehyde):n (ethylene glycol)=1:1.5,the mass ratio of aminosulfonic acid was 1.5% of total reactants,the water carrying agent was 16mL (2.18% of total reactants) and the reaction time was 1.5h.Under these conditions,the yield of benzaldehyde ethylene glycol acetal could reach 83.73%.%以氨基磺酸为催化剂合成了苯甲醛乙二醇缩醛,考察了醛醇摩尔比,反应时间,催化剂用量,带水剂用量等因素对苯甲醛乙二醇缩醛收率的影响.结果表明:最适宜的工艺条件是:n(苯甲醛):n(乙二醇)=1:1.5,催化剂用量占反应物总质量的1.5%,带水剂环己烷用量为16mL(占反应物总质量的2.18%),反应时间1.5h,上述条件下,苯甲醛乙二醇缩醛收率可达到83.73%.

  19. Electrical Wiring of the Aldehyde Oxidoreductase PaoABC with a Polymer Containing Osmium Redox Centers: Biosensors for Benzaldehyde and GABA.

    Science.gov (United States)

    Badalyan, Artavazd; Dierich, Marlen; Stiba, Konstanze; Schwuchow, Viola; Leimkühler, Silke; Wollenberger, Ulla

    2014-12-01

    Biosensors for the detection of benzaldehyde and γ-aminobutyric acid (GABA) are reported using aldehyde oxidoreductase PaoABC from Escherichia coli immobilized in a polymer containing bound low potential osmium redox complexes. The electrically connected enzyme already electrooxidizes benzaldehyde at potentials below -0.15 V (vs. Ag|AgCl, 1 M KCl). The pH-dependence of benzaldehyde oxidation can be strongly influenced by the ionic strength. The effect is similar with the soluble osmium redox complex and therefore indicates a clear electrostatic effect on the bioelectrocatalytic efficiency of PaoABC in the osmium containing redox polymer. At lower ionic strength, the pH-optimum is high and can be switched to low pH-values at high ionic strength. This offers biosensing at high and low pH-values. A "reagentless" biosensor has been formed with enzyme wired onto a screen-printed electrode in a flow cell device. The response time to addition of benzaldehyde is 30 s, and the measuring range is between 10-150 µM and the detection limit of 5 µM (signal to noise ratio 3:1) of benzaldehyde. The relative standard deviation in a series (n = 13) for 200 µM benzaldehyde is 1.9%. For the biosensor, a response to succinic semialdehyde was also identified. Based on this response and the ability to work at high pH a biosensor for GABA is proposed by coimmobilizing GABA-aminotransferase (GABA-T) and PaoABC in the osmium containing redox polymer.

  20. Polymer characterization and optimization of conditions for the enhanced bioproduction of benzaldehyde by Pichia pastoris in a two-phase partitioning bioreactor.

    Science.gov (United States)

    Craig, Tom; Daugulis, Andrew J

    2013-04-01

    Benzaldehyde, with its apricot and almond-like aroma, is the second most abundantly used molecule in the flavor industry, and is most commonly produced via chemical routes, such as by the oxidation of toluene. Biologically produced benzaldehyde, whether by extraction of plant material or via microbial biotransformation, commands a substantial price advantage, and greater consumer acceptance. Methylotrophic yeast, such as Pichia pastoris, contain the enzyme alcohol oxidase (AOX), which, in the presence of alcohols other than methanol, are able to yield aldehydes as dead-end products, for example, benzaldehyde from benzyl alcohol. In this work, we have determined that benzaldehyde, and not benzyl alcohol, is inhibitory to the transformation reaction by P. pastoris, prompting the development of a selection strategy for identifying sequestering polymers for use in a partitioning bioreactor that was based on the ratio of partition coefficients (PCs) for the two target molecules. Additionally, we have now confirmed for the first time, that the mechanism of solute uptake by amorphous polymers is via absorption, not adsorption. Finally, we have adopted a common strategy used for the production of heterologous proteins by P. pastoris, namely the use of a mixed methanol/glycerol feed for inducing the required AOX enzyme, while reducing the time required for high density biomass generation. All of these components were combined in a final experiment in which 10% of the polymer Kraton D1102K, whose PC ratio of benzaldehyde to benzyl alcohol was 14.9, was used to detoxify the biotransformation in a 5 L partitioning bioreactor, resulting in a 3.4-fold increase in benzaldehyde produced (14.4 g vs. 4.2 g) relative to single phase operation, at more than double the volumetric productivity (97 mg L(-1) h(-1) vs. 41 mg L(-1) h(-1) ).

  1. Effects of butane-2,3-dione thiosemicarbazone oxime on testicular damage induced by cadmium in mice.

    Science.gov (United States)

    de Freitas, Mayara Lutchemeyer; Dalmolin, Laíza; Oliveira, Lia Pavelacki; da Rosa Moreira, Laís; Roman, Silvane Souza; Soares, Félix Alexandre Antunes; Bresolin, Leandro; Duarte, Marta Maria Medeiros Frescura; Brandão, Ricardo

    2012-01-01

    Our group of studies investigated the action of butane-2,3-dione thiosemicarbazone oxime against the testicular damage caused by cadmium chloride (CdCl(2)) in mice. Mice received a single injection of CdCl(2 )(5 mg/kg, intraperitoneally) and, after thirty minutes, the oxime (10 mg/kg, subcutaneously) was administered. Twenty four hours after the last administration, the animals were killed by cervical dislocation and the testes and serum were removed for analysis. The parameters determined were δ-aminolevulinate dehydratase (δ-ALA-D), myeloperoxidase (MPO), glutathione-S-transferase (GST) and glutathione peroxidase (GPx) activities. The levels of thiobarbituric acid-reactive substances (TBARS), nonprotein thiols (NPSH), ascorbic acid, cadmium and testosterone were also determined. In addition, histological analysis and cytokines quantification (IL-1, IL-6, IL-10, TNF-α and IFN-γ) were performed. Our results demonstrated that the oxime was effective in restoring the inhibition in δ-ALA-D activity induced by CdCl(2). The activation of MPO and increase in IL-1, IL-6, TNF-α and IFN-γ levels induced by CdCl(2) were also reduced by oxime. IL-10, which was reduced by cadmium, was restored by oxime administration. In addition, the oxime was effective in restoring the increase in TBARS levels and the reduction on NPSH levels induced by CdCl(2). Our results demonstrated that oxime was effective in containing the histological alterations induced by CdCl(2). In addition, oxime was able to increase the testosterone levels, reduced by cadmium exposure. In conclusion, the oxime tested was effective in reducing the testicular damage induced by CdCl(2) in mice. The beneficial effects of this oxime are related to its antioxidant and anti-inflammatory action.

  2. Evaluation of anti-inflammatory effect of derivative (E)-N-(4-bromophenyl)-2-(thiophen-2-ylmethylene)-thiosemicarbazone.

    Science.gov (United States)

    de Oliveira, Jamerson Ferreira; Nonato, Fabiana Regina; Zafred, Rafael Rosolen Teixeira; Leite, Nayara Maria Siqueira; Ruiz, Ana Lúcia Tasca Gois; de Carvalho, João Ernesto; da Silva, Anekécia Lauro; de Moura, Ricardo Olímpio; Alves de Lima, Maria do Carmo

    2016-05-01

    The present study aimed to further investigate the anti-inflammatory activity of (E)-N-(4-bromophenyl)-2-(thiophen-2-ylmethylene)-thiosemicarbazone (BTTSC) as well as its antinociceptive effects. The anti-inflammatory activity was assessed using the model of ear edema induced by croton oil-induced and also evaluated in models of paw edema carrageenan-induced and by compound 48/80. Evaluation of the antinociceptive effect was performed through formalin test. In the nociception test induced by formalin the BTTSC showed activity in both phases of the pain, highlighting inflammatory pain, where it was able to reduce the time to paw lick 62.3, 84.30 and 100% at doses of 30, 100 and 300mgkg(-1). The anti-inflammatory activity was performed ear edema induced by croton oil, where none of the doses tested was capable of significantly regress edema. The paw edema carrageenan-induced showed activity compound, where the edema was reduced by 81.9 and 83.2% in the first two times of the experiment at the highest dose used. The paw edema assay induced by compound 48/80, showed that BTTSC after 15min of the inoculum phlogistic agent showed significant reduction of edema with values of 56.53% at a dose of 30mgkg(-1). Our results suggesting this compound exerts its antinociception effects connected with peripheral mechanisms. Furthermore, the compound was able to act in two phases of inflammation carrageenan-induced, highlighting the initial phase. This suggests an action on the early mediators of inflammation. The paw edema assay induced by compound 48/80 confirmed our hypothesis indicating action of the compound via histamine.

  3. Pterostilbene carboxaldehyde thiosemicarbazone, a resveratrol derivative inhibits 17β-Estradiol induced cell migration and proliferation in HUVECs.

    Science.gov (United States)

    Nikhil, Kumar; Sharan, Shruti; Wishard, Rohan; Palla, Srinivasa Rao; Krishna Peddinti, Rama; Roy, Partha

    2016-04-01

    Angiogenesis plays important roles in tumor growth and metastasis, thus development of a novel angiogenesis inhibitor is essential for the improvement of therapeutics against cancer. Thrombospondins-1 (TSP-1) is a potent endogenous inhibitor of angiogenesis that acts through direct effects on endothelial cell migration, proliferation, survival, and activating apoptotic pathways. TSP-1 has been shown to disrupt estrogen-induced endothelial cell proliferation and migration. Here we investigated the potential of pterostilbene carboxaldehyde thiosemicarbazone (PTERC-T), a novel resveratrol (RESV) derivative, to inhibit angiogenesis induced by female sex steroids, particularly 17β-Estradiol (E2), on Human umbilical vein endothelial cells (HUVECs) and to elucidate the involvement of TSP-1 in PTERC-T action. Our results showed that PTERC-T significantly inhibited 17β-E2-stimulated proliferation of HUVECs and induced apoptosis as determined by annexin V/propidium iodide staining and cleaved caspase-3 expression. Furthermore, PTERC-T also inhibited endothelial cell migration, and invasion in chick chorioallantoic membrane (CAM) assay. In contrast, RESV failed to inhibit 17β-E2 induced HUVECs proliferation and invasion at similar dose. PTERC-T was also found to increase TSP-1 protein expression levels in a dose-dependent manner which, however, was counteracted by co-incubation with p38MAPK or JNK inhibitors, suggesting involvement of these pathways in PTERC-T action. These results suggest that the inhibitory effect of PTERC-T on 17β-E2 induced angiogenesis is associated, at least in part, with its induction of endothelial cell apoptosis and inhibition of cell migration through targeting TSP-1. Thus, PTERC-T could be considered as a potential lead compound for developing a class of new drugs targeting angiogenesis-related diseases.

  4. 2-Phenyl-tetrahydropyrimidine-4(1H-ones – cyclic benzaldehyde aminals as precursors for functionalised β2-amino acids

    Directory of Open Access Journals (Sweden)

    Markus Nahrwold

    2009-09-01

    Full Text Available Novel procedures have been developed to condense benzaldehyde effectively with β-amino acid amides to cyclic benzyl aminals. Double carbamate protection of the heterocycle resulted in fully protected chiral β-alanine derivatives. These serve as universal precursors for the asymmetric synthesis of functionalised β2-amino acids containing acid-labile protected side chains. Diastereoselective alkylation of the tetrahydropyrimidinone is followed by a chemoselective two step degradation of the heterocycle to release the free β2-amino acid. In the course of this study, an L-asparagine derivative was condensed with benzaldehyde and subsequently converted to orthogonally protected (R-β2-homoaspartate.

  5. Effects of HCl and HNO3 on the oxidation of toluene to benzaldehyde by H2O2 over TS-1 modified with Al in aqueous phase

    Directory of Open Access Journals (Sweden)

    Paricha Pongjirawat

    2014-09-01

    Full Text Available This research studies effects of HCl and HNO3 in aqueous solution on the oxidation reaction between toluene and hydrogen peroxide to benzaldehyde over titanium silicalite-1 catalyst modified with Al. The reaction was carried out at reaction temperature 120°C in a pressurized autoclave reactor. The research found that the addition of HCl and HNO3 not only increases the concentration of toluene in the aqueous phase but also increases the formation of benzaldehyde as main product in the reaction.

  6. Fe(III)-photocatalytic partial oxidation of benzyl alcohol to benzaldehyde under UV-solar simulated radiation.

    Science.gov (United States)

    Spasiano, Danilo; Marotta, Raffaele; Di Somma, Ilaria; Andreozzi, Roberto; Caprio, Vincenzo

    2013-11-01

    A great deal of interest is recorded among researchers in the identification of new catalytic systems that make possible the selective oxidation of organic species in the presence of non-toxic solvents, primarily water, through the use of inexpensive catalysts. The possibility to selectively oxidize benzyl alcohol to benzaldehyde is studied in the present work by using ferric ions as homogeneous catalysts and oxygen as an oxidant under UV-solar simulated radiation. Due to the possibility that Fe(III) aquo-complex photolysis could generate undesired reactive OH radicals with the consequent occurrence of side reactions, most of the runs are carried out at pH = 0.5 at which these events have a reduced incidence. The results indicate that benzyl alcohol can be partially converted into benzaldehyde with yield and selectivity values higher than 40% and 80% respectively for the conditions adopted, with a minor occurrence of benzoic acid formation. Reaction schemes to account for the experimental observations are provided.

  7. Kinetic. cap alpha. secondary deuterium isotope effects for O-ethyl S-phenyl benzaldehyde acetal hydrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Ferraz, J.P.; Cordes, E.H.

    1979-03-14

    The rate of hydrolysis of O-ethyl S-phenyl benzaldehyde acetal at 25/sup 0/C in 20% dioxane--80% water is independent of pH over the range pH6-12; k/sub obsd/ = 1.9 x 10/sup -7/s/sup -1/. Under more acidic conditions, the rate increases linearly with the activity of the hydrated proton; k/sub 2/ = 2.95 x 10/sup -2/M/sup -1/s/sup -1/. The kinetic ..cap alpha.. secondary deuterium isotope effect for acid-catalyzed hydrolysis of O-ethyl S-phenyl benzaldehyde acetal, measured at 25/sup 0/C in 20% aqueous dioxane containing 0.05 M HCl, is k/sub H//k/sub D/ = 1.038 +- 0.008, a value consistent with a transition state in which the C--S bond is stretched rather little. In contrast, the corresponding isotope effect for the pH-independent hydrolysis of this substrate, measured at 42.5/sup 0/C in 20% dioxane, is 1.13 +- 0.02, a value consistent with complete C--S bond cleavage in the transition state and rate-determining diffusion apart of the ion-pair formed as the initial intermediate, in accord with the suggestion of Jensen and Jencks. 1 figure, 4 tables.

  8. Synthesis, complexation, spectral, antibacterial and antifungal activity of 2,4-dihydroxy-5-[(E-phenyldiazenyl]benzaldehyde oxime

    Directory of Open Access Journals (Sweden)

    MÜKERREM KURTOGLU

    2010-09-01

    Full Text Available A new substituted salicylaldoxime ligand containing an azo (–N=N– group, 2,4-dihydroxy-5-[(E-phenyldiazenyl]benzaldehyde oxime (H3salox (2, was synthesized by the reaction of 2,4-dihydroxy-5-[(E-phenyldiazenyl]benzaldehyde (1 with hydroxylamine in ethanolic solution at room temperature. Mononuclear complexes of (H3salox (2, a bidentate hydroxyaldoxime ligand, were synthesized by reaction with nickel(II, cobalt(II and copper(II chloride salts. The complexes, [Ni(H2salox2] (3, [Cu(H2salox2] (4 and [Co(H2salox2] (5 were characterized by elemental analyses (C, H, N, conductivity measurements and infrared and electronic spectral studies. The 1H-NMR spectrum of the H3salox (2 ligand was also recorded. The mononuclear Ni(II, Co(II and Cu(II complexes of the ligand, (H3salox, have a metal:ligand ratio of 1:2 and the ligand coordinates through the N and O atoms, as is the case with most hydroxyaldoximes. The molar conductivities in DMF solution indicate the non-electrolytic nature of the metal chelates. The antimicrobial activities of the ligand and its metal complexes were estimated for eight bacteria, i.e., Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Mycobacterium smegmatis, Pseudomonas aeruginosa, Enterococcus cloacae, Bacillus megaterium and Micrococcus luteus and three fungi, i.e., Kluyveromyces fragilis, Rhodotorula rubra and Saccharomyces cerevisiae.

  9. Thiol and Disulfide Derivatives of Ephedra Alkaloids 2 : A Mechanistic Study of Their Effect on the Addition of Diethyl Zinc to Benzaldehyde

    NARCIS (Netherlands)

    Fitzpatrick, Kevin; Hulst, Ron; Kellogg, Richard M.

    1995-01-01

    Thiol and disulfide derivatives of ephedrine have been shown previously to catalyse in high enantiomeric excess (ee) the reaction of diethyl zinc with benzaldehyde. We find that this reaction involves non-linear correlations between the ee of product and catalyst. Osmotic measurements indicate a hig

  10. Preparation of benzyl-[alpha]-D[sub 1]-alcohol by the reduction of benzaldehyde with Raney alloys in an alkaline deuterium oxide solution

    Energy Technology Data Exchange (ETDEWEB)

    Tsukinoki, Takehito; Mataka, Shuntaro; Tashiro, Masashi (Kyushu Univ. (Japan). Inst. of Advanced Material Study); Ishimoto, Keiko (Kyushu Univ. (Japan). Graduate School of Engineering Sciences); Tsuzuki, Hirohisa (Kyushu Univ., Fukuoka (Japan). Center of Advanced Instrumental Analysis)

    1993-10-01

    Benzyl-[alpha]-d[sub 1]-alcohol was prepared in high isotopic purity by the reduction of benzaldehyde with Raney Cu-Al alloy in 10% Na[sub 2]CO[sub 3]-D[sub 2]O solution using ultrasonic irradiation. (Author).

  11. Variable coordinating activity of sulfur in silver(I) complexes with thiophene based N¹ -substituted thiosemicarbazones: First case of thiopheneyl-thione sulfur bridging in a dinuclear complex

    Indian Academy of Sciences (India)

    REKHA SHARMA; TARLOK S LOBANA; MANVIR KAUR; NEERAJ THATHAI; GEETA HUNDAL; JERRY P JASINSKI; RAY J BUTCHER

    2016-07-01

    Thiophene-2-carbaldehyde / acetaldehyde-N¹-substituted thiosemicarbazones {R¹R²C² = N³ - N(H)- C¹(=S)N¹HR; R¹, R², R : C₄H₃S, H, Me, Httsc- NMe; C₄H₃S, H, Et, Httsc-NEt; C₄H₃S, H, Ph, Httsc-NPh; C₄H₃S, Me, Et, Hattsc-NEt} and furan-2-carbaldehyde-N-ethyl thiosemicarbazone (C₄H₃O, H, Et, Hftsc-NEt) were reacted with silver(I) halides/silver(I) acetate in presence of triphenylphosphine in organic solvents. These reactions yielded a series of dinuclear [Ag₂(μ-Br)₂ (κ-S-Httsc-NEt)2(PPh3)2]·2MeOH 1, [Ag2Cl2(κ1-SHttsc-NPh)2(μ-S,S-Httsc-NPh)2] 2, [Ag2Cl2(μ-S-Hftsc-NEt)2(κ1-S-Hftsc-NEt)2] 4, [Ag2(μ3-N3,S-ttsc-NMe)2 (Ph3P)2]·2(CH3)2CO 5, [Ag2 (μ3-N3,S-attsc-NEt)2(Ph3P)2]·0.5(CH3)2CO 6 and mononuclear [AgBr(κ1-SHttsc-NPh)(PPh3)2]· MeCN 3 complexes, all of which have been characterized using analytical techniques, IRand NMR spectroscopy, and X-ray crystallography. Thio-ligands bind in neutral form in complexes 1-4 and in anionic form in complexes 5-6. Further, the sulfur donor atoms have shown variable coordination modes incomplexes, namely, κ1-S in 1 and 3; κ1-S, μ-S in 4; κ1-S, μ-S,S (thiopheneyl-thione) in 2 and μ3- N3, S in 5 and 6. Tertiary-phosphine (PPh3) showed dual function of ligation/de-ligation towards silver(I) chloride during the synthesis of complexes 2 and 4. The bridge bonding of Httsc-NPh in 2 through thiopheneyl ring sulfur andthione sulfur is unprecedented in metal-thiosemicarbazone chemistry.

  12. Enhanced sensitivity of self-assembled-monolayer-based SPR immunosensor for detection of benzaldehyde using a single-step multi-sandwich immunoassay.

    Science.gov (United States)

    Gobi, K Vengatajalabathy; Matsumoto, Kiyoshi; Toko, Kiyoshi; Ikezaki, Hidekazu; Miura, Norio

    2007-04-01

    This paper describes the fabrication and sensing characteristics of a self-assembled monolayer (SAM)-based surface plasmon resonance (SPR) immunosensor for detection of benzaldehyde (BZ). The functional sensing surface was fabricated by the immobilization of a benzaldehyde-ovalbumin conjugate (BZ-OVA) on Au-thiolate SAMs containing carboxyl end groups. Covalent binding of BZ-OVA on SAM was found to be dependent on the composition of the base SAM, and it is improved very much with the use of a mixed monolayer strategy. Based on SPR angle measurements, the functional sensor surface is established as a compact monolayer of BZ-OVA bound on the mixed SAM. The BZ-OVA-bound sensor surface undergoes immunoaffinity binding with anti-benzaldehyde antibody (BZ-Ab) selectively. An indirect inhibition immunoassay principle has been applied, in which analyte benzaldehyde solution was incubated with an optimal concentration of BZ-Ab for 5 min and injected over the sensor chip. Analyte benzaldehyde undergoes immunoreaction with BZ-Ab and makes it inactive for binding to BZ-OVA on the sensor chip. As a result, the SPR angle response decreases with an increase in the concentration of benzaldehyde. The fabricated immunosensor demonstrates a low detection limit (LDL) of 50 ppt (pg mL(-1)) with a response time of 5 min. Antibodies bound to the sensor chip during an immunoassay could be detached by a brief exposure to acidic pepsin. With this surface regeneration, reusability of the same sensor chip for as many as 30 determination cycles has been established. Sensitivity has been enhanced further with the application of an additional single-step multi-sandwich immunoassay step, in which the BZ-Ab bound to the sensor chip was treated with a mixture of biotin-labeled secondary antibody, streptavidin and biotin-bovine serum albumin (Bio-BSA) conjugate. With this approach, the SPR sensor signal increased by ca. 12 times and the low detection limit improved to 5 ppt with a total response

  13. Benzaldehyde Schiff bases regulation to the metabolism, hemolysis, and virulence genes expression in vitro and their structure-microbicidal activity relationship.

    Science.gov (United States)

    Xia, Lei; Xia, Yu-Fen; Huang, Li-Rong; Xiao, Xiao; Lou, Hua-Yong; Liu, Tang-Jingjun; Pan, Wei-Dong; Luo, Heng

    2015-06-05

    There is an urgent need to develop new antibacterial agents because of multidrug resistance by bacteria and fungi. Schiff bases (aldehyde or ketone-like compounds) exhibit intense antibacterial characteristics, and are therefore, promising candidates as antibacterial agents. To investigate the mechanism of action of newly designed benzaldehyde Schiff bases, a series of high-yielding benzaldehyde Schiff bases were synthesized, and their structures were determined by NMR and MS spectra data. The structure-microbicidal activity relationship of derivatives was investigated, and the antibacterial mechanisms were investigated by gene assays for the expression of functional genes in vitro using Escherichia coli, Staphylococcus aureus, and Bacillus subtilis. The active compounds were selective for certain active groups. The polar substitution of the R2 group of the amino acids in the Schiff bases, affected the antibacterial activity against E. coli and S. aureus; specific active group at the R3 or R4 groups of the acylhydrazone Schiff bases could improve their inhibitory activity against these three tested organisms. The antibacterial mechanism of the active benzaldehyde Schiff bases appeared to regulate the expression of metabolism-associated genes in E. coli, hemolysis-associated genes in B. subtilis, and key virulence genes in S. aureus. Some benzaldehyde Schiff bases were bactericidal to all the three strains and appeared to regulate gene expression associated with metabolism, hemolysis, and virulence, in vitro. The newly designed benzaldehyde Schiff bases possessed unique antibacterial activity and might be potentially useful for prophylactic or therapeutic intervention of bacterial infections.

  14. Microwave Synthesis and Antimicrobial Activity of some Copper (II, Cobalt (II, Nickel (II and Chromium (III Complexes with Schiff Base 2, 6-Pyridinedi carboxaldehyde-Thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Dr.Mohammed.Fakruddin Ali Ahmed

    2014-03-01

    Full Text Available Some novel Schiff base metal complexes of Cr(III, Co(II, Ni(II andCu(II derived from 2, 6-pyridinedicarboxaldehyde-Thiosemicarbazone(PDCTC was synthesized by conventional as well as microwavemethods. This compound wascharacterized by elemental analysis, FT-IR, Mass, molar conductanceand magneticsusceptibilitymeasurements analyses. Analytical data revealed that all the complexesexhibited 1:1 (metal: ligand ratio with a coordination number of six.The IR data showed that the ligand coordinates with the metal ions in ahexa-dentate manner. The solid state electricalconductivity of the metal complexes was also measured. Solid state electricalconductivity studies reflected a semi-conducting nature of the complexes. The Schiff base and metal complexes displayed good activity againstthe Gram-positive bacteria Staphylococcus aureus, the Gram-negative bacteriaEscherichia coli and the fungi AspergillusnigerandCandida albicans. The antimicrobialresults also indicated that the metal complexes displayed betterantimicrobial activity as compared to the Schiff bases.

  15. THE INFLUENCE OF THIOSEMICARBAZONE 2,3-DIHYDROXYBENZALDEHYDE ON CATALYTIC CURRENTS IN THE SYSTEM MOLYBDENUM (VI – POTASSIUM CHLORATE IN ACID SULFATE SOLUTIONS

    Directory of Open Access Journals (Sweden)

    Ludmila Chiriac

    2011-06-01

    Full Text Available The polarographic catalytic current in acid solutions of Mo(VI, thiosemicarbazone 2,3-dihydroxybenzaldehyde (TSC 2,3-DHBA and chlorate ions has been investigated. The scheme of reactions, taking place in the solutions and on the electrode, has been proposed. The increase of the catalytic current is explained by the formation of an active intermediate complex [Mo(V×TSC 2,3-DHBA (ClO-3]. The rate constant of this complex formation K = 2.56 × 106 mol-1×dm3×s-1, the activation energy Ea = 15.9 kcal×mol-1 and the reaction activation entropy ∆Sa¹ = -23.5 e.u. have been calculated.

  16. Synthesis of Co9S8 and CoS nanocrystallites using Co(II) thiosemicarbazone complexes as single-source precursors

    Indian Academy of Sciences (India)

    Amol S Pawar; Shivram S Garje

    2015-12-01

    Cubic Co9S8 and hexagonal CoS nanocrystallites were prepared by pyrolysis and solvothermal decomposition methods using Co(LH)2Cl2 and CoL2 (where LH = thiosemicarbazones of furfuraldehyde, cinnamaldehyde and 4-fluoro-acetophenone) as single-source precursors. These nanocrystallites were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), selected area electron diffraction, UV–Vis, PL and Raman spectroscopic techniques. From TEM images, the average grain size of asprepared cobalt sulphide nanocrystallites was found to be 7–10 nm. Depending on experimental conditions, various morphologies such as spherical, pyramidal, hollow spheres, etc. are observed in the TEM images.

  17. Synthesis and antimicrobial activities of new 4-thiazolidones derived from formipyridine thiosemicarbazones; Sintese e avaliacao da atividade antimicrobiana de novas 4-tiazolidinonas obtidas a partir de formilpiridina tiossemicarbazonas

    Energy Technology Data Exchange (ETDEWEB)

    Vercoza, George Leonardo; Feitoza, Danniel Delmondes; Alves, Antonio Jose; Aquino, Thiago Mendonca de; Lima, Jose Gildo de [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Ciencias Farmaceuticas], e-mail: jgildolima@gmail.com; Araujo, Janete Magali; Cunha, Ivana Glaucia B.; Goes, Alexandre Jose da Silva [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Dept. de Antibioticos

    2009-07-01

    Twelve novel 4-thiazolidinone derivatives (2a-l) have been synthesized by reacting formylpyridine thiosemicarbazones (1a-l) and anhydride maleic in toluene. Their chemical structures were confirmed by IR, {sup 1}H and {sup 13}C NMR. The new compounds were submitted to in vitro evaluation against pathogenic Gram-positive, Gram-negative bacteria and yeasts. The findings obtained showed that the compounds 2a, 2d, 2e and 2g were effective against some of the bacterial strains used, whereas the compounds 2d, 2e and 2i exhibited a moderate antifungal activity against the yeast strains evaluated. An initial structure activity relationship (SAR) was established. (author)

  18. Anti-parasitic action and elimination of intracellular Toxoplasma gondii in the presence of novel thiosemicarbazone and its 4-thiazolidinone derivatives

    Directory of Open Access Journals (Sweden)

    C.S. Carvalho

    2010-02-01

    Full Text Available Toxoplasma, which infects all eukaryotic cells, is considered to be a good system for the study of drug action and of the behavior of infected host cells. In the present study, we asked if thiosemicarbazone derivatives can be effective against tachyzoites and which morphological and ultrastructural features of host cells and parasites are associated with the destruction of Toxoplasma. The compounds were tested in infected Vero cell culture using concentration screens (0.1 to 20 mM. The final concentration of 1 mM was chosen for biological assay. The following results were obtained: 1 These new derivatives decreased T. gondii infection with an in vitro parasite IC50% of 0.2-0.7 mM, without a significant effect on host cells and the more efficient compounds were 2, 3 (thiosemicarbazone derivatives and 4 (thiazolidinone derivative; 2 The main feature observed during parasite elimination was continuous morphological disorganization of the tachyzoite secretory system, progressive organelle vesiculation, and then complete disruption; 3 Ultrastructural assays also revealed that progressive vesiculation in the cytoplasm of treated parasites did not occur in the host cell; 4 Vesiculation inside the parasite resulted in death, but this feature occurred asynchronously in different intracellular tachyzoites; 5 The death and elimination of T. gondii was associated with features such as apoptosis-like stage, acidification and digestion of parasites into parasitophorous vacuoles. Our results suggest that these new chemical compounds are promising for the elimination of intracellular parasites by mainly affecting tachyzoite development at 1 mM concentration for 24 h of treatment.

  19. SYNTHESIS AND ANTITUMOR ACTIVITY OF COPPER, NICKEL AND COBALT COORDINATION COMPOUNDS WITH 1-(2-HYDROXYPHENYLETHANONE N(4-ALLYL-3-THIOSEMICARBAZONE

    Directory of Open Access Journals (Sweden)

    Vasilii GRAUR

    2015-12-01

    Full Text Available The paper presents the synthesis of the ligand 1-(2-hydroxyphenylethanone N(4-allyl-3-thiosemicarbazone (H2L and six coordination compounds of copper, nickel and cobalt with this ligand. The structure of thiosemicarbazone H2L was studied using 1H and 13С NMR spectroscopy. The synthesized coordination compounds were studied using elemental analysis, gravimetric analysis of water content, molar conductivity, and magnetochemistry. For H2L the antitumor activity towards human leukemia HL-60 cells and cervical cancer HeLa cells was determined. It was established that the substitution of hydrogen atom with methyl group in the azomethinic fragment leads to the growth of antitumor activity.SINTEZA ŞI ACTIVITATEA ANTITUMORALĂ A COMPUŞILOR COMPLECŞI AI CUPRULUI, NICHELULUI ŞI COBALTULUI CU N(4-ALIL-3-TIOSEMICARBAZONA 1-(2-HIDROXIFENILETANONEILucrarea conţine descrierea sintezei N(4-alil-3-tiosemicarbazonei 1-(2-hidroxifeniletanonei (H2L şi a şase compuşi coordinativi ai cuprului, nichelului şi cobaltului cu acest ligand. Structura tiosemicarbazonei H2L a fost stabilită în baza datelor spectroscopiei RMN 1H şi 13C. Compuşi coordinativi au fost studiaţi cu ajutorul analizei elementale, analizei gravimetrice a conţinutului de apă, conductivitaţii molare şi magnetochimiei. Pentru H2L a fost determinată activitatea antitumorală faţă de celulele leucemiei umane HL-60 şi ale cancerului cervical HeLa. S-a stabilit că înlocuirea atomului de hidrogen cu o grupare metil în fragmentul azomethinic conduce la creşterea activitaţii antitumorale.

  20. Application of solid-liquid TPPBs to the production of L-phenylacetylcarbinol from benzaldehyde using Candida utilis.

    Science.gov (United States)

    Khan, Tanya R; Daugulis, Andrew J

    2010-11-01

    The biotransformation of benzaldehyde and glucose to L-phenylacetylcarbinol (PAC) using Candida utilis was demonstrated in a solid-liquid two-phase partitioning bioreactor (TPPB) with the aim of reducing substrate, product, and by-product toxicity via sequestration. Previous work in the field had used octanol as the sequestering phase of liquid-liquid TPPBs but was limited by the toxic effects of octanol on C. utilis. To improve solvent selection in any future studies, the critical log P of C. utilis was determined in the current study to be 4.8 and can be used to predict biocompatible solvents. Bioavailability tests showed alkanes and alkenes to be non-bioavailable. As polymers are biocompatible and non-bioavailable, a wide range of commercially available polymers was screened and it was demonstrated that polymer softness plays a key role in absorptive capability. The polymer Hytrel G3548L was selected as the second phase to sequester benzaldehyde, PAC, and benzyl alcohol, with partition coefficients of 35, 7.5, and 10, respectively. With a 9% by volume partitioning phase, 13.6 g/L biomass of C. utilis achieved an overall PAC concentration of 11 g/L, a 1.9-fold improvement over the single-phase case. Benzyl alcohol concentration was 4.5 g/L, a 1.6-fold reduction. The volumetric productivity was 0.85 g/L h, a 1.2-fold improvement over the single-phase system. These results demonstrate a promising starting point for solid-liquid TPPBs for PAC production. © 2010 Wiley Periodicals, Inc.

  1. Reaction pathway and transition state of the Zn-promoted Barbier-type reactions of benzaldehyde and benzophenone with allylic iodides

    Energy Technology Data Exchange (ETDEWEB)

    Yamataka, Hiroshi; Nishikawa, Kazuyoshi; Hanafusa, Terukiyo (Osaka Univ., Ibaraki (Japan). Inst. of Scientific and Industrial Research)

    1994-01-01

    The carbonyl-[sup 14]C kinetic isotope effects and the substituent effects on the reactivity of the Zn-promoted Barbier-type reaction of allyl iodide (3-iodo-1-propene) with benzaldehyde and benzophenone were determined in THF at 25degC. The observed normal carbon isotope effects as well as positive Hammett [rho] values suggest that the reactions go through a direct nucleophilic addition mechanism. No indication of the occurrence of electron transfer was obtained by enone isomerization and dehalogenation probe experiments. Diastereoselectivity in the reaction of crotyl iodide (1-iodo-2-butene) with benzaldehyde was low and independent of the substituent on aldehyde, consistent with the six-membered cyclic transition state. (author).

  2. Selective oxidation of toluene to benzaldehyde by O{sub 2} with visible light in barium(2+)- and calcium(2+)-exchanged zeolite Y

    Energy Technology Data Exchange (ETDEWEB)

    Sun, H.; Blatter, F.; Frei, H. [Lawrence Berkeley Lab., CA (United States)

    1994-08-24

    High selectivity has been demonstrted upon visible light induced oxygenation of toluene to benzaldehyde in alkaline earth exchanged zeolite Y. We attribute the tight product control to mainly two factors. One is access to the C{sub 6}H{sub 5}CH{sub 3}-O{sub 2} excited charge-transfer state by light of sufficiently long wavelength to prevent loss of product control by photofragmentation of primary products or by homolysis of the proposed hydroperoxide intermediate. The second is confinement of benzyl/HO{sub 2} radical pairs to the zeolite matrix cage, which suppresses indiscriminate attack of these radicals and forces them to combine. The Co{sup 3+}-catalyzed radical oxidation of toluene by O{sub 2} in solution used currently in an industrial process for benzaldehyde synthesis lacks this selectivity, mainly because of continued oxidation of the aldehyde to benzoic acid. 24 refs., 2 figs.

  3. The effects of polymer phase ratio and feeding strategy on solid-liquid TPPBs for the production of L-phenylacetylcarbinol from benzaldehyde using Candida utilis.

    Science.gov (United States)

    Khan, Tanya R; Daugulis, Andrew J

    2011-01-01

    To increase the bioproduction of L-phenylacetylcarbinol (PAC), a precursor molecule in the synthesis of the decongestants ephedrine and pseudoephedrine and which suffers from substrate, product, and by-product inhibition, by ensuring that the delivery of the substrate, benzaldehyde, is maintained within a strict concentration window. Beads of the commercial polymer, Hytrel G3548L, can act as a sequestering phase to reduce inhibitory effects to cells of Candida utilis while creating a reservoir for high concentrations of products. In this work we varied the polymer phase volume ratio (from 3 to 15%), and modified the benzaldehyde feeding strategy to further improve on system performance, resulting in greater than 100% increase in the PAC productivity relative to a single phase control, as well as robust operation of the two-phase bioreactor with minimal operator intervention.

  4. Enantiopure inherently chiral calix[4]arene derivatives containing quinolin-2-yl-methanol moiety:Synthesis and application in the catalytic asymmetric addition of diethylzinc to benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A series of novel N,O-type chiral ligands derived from enantiopure inherently chiral calix[4]arenes containing quinolin-2-yl-methanol moiety in the cone or partialcone conformation have been synthe-sized and characterized. Moreover,they have been applied to the catalytic asymmetric addition of diethylzinc to benzaldehyde,which represents the first example that the inherently chiral calixarene can be used as the chiral ligands for the catalytic asymmetric synthesis.

  5. Fe-catalyzed novel domino isomerization/cyclodehydration of substituted 2-[(indoline-3-ylidene)(methyl)]benzaldehyde derivatives: an efficient approach toward benzo[b]carbazole derivatives.

    Science.gov (United States)

    Paul, Kartick; Bera, Krishnendu; Jalal, Swapnadeep; Sarkar, Soumen; Jana, Umasish

    2014-04-18

    A new and efficient protocol to synthesize substituted benzo[b]carbazole derivatives has been demonstrated involving iron-catalyzed domino isomerization/cyclodehydration sequences from substituted 2-[(indoline-3-ylidene)(methyl)]benzaldehyde derivatives. The substrates could be easily made via Pd-catalyzed domino Heck-Suzuki coupling from 2-bromo-N-propargylanilide derivatives in high yields. Notably, the generality and efficiency of this two-stage domino strategy was further exemplified by the synthesis of a polycyclic benzofuran derivative.

  6. Gas Phase Selective Catalytic Oxidation of Toluene to Benzaldehyde on V2O5-Ag2O/η-Al2O3 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Tonglai Zhang; Liqiu Mao; Weihua Liu

    2004-01-01

    Gas phase selective catalytic oxidation of toluene to benzaldehyde was studied on V2O5-Ag2O/η-Al2O3 catalyst prepared by impregnation. The catalyst was characterized by XRD, XPS, TEM,and FT-IR. The catalytic results showed that toluene conversion and selectivity for benzaldehyde on catalyst sample No.4 (V/(V+Ag)=0.68) was higher than other catalysts with different V/Ag ratios. This was attributed to the higher surface area, larger pore volume and pore diameter of the catalyst sample No.4 than the other catalysts. The XRD patterns recorded from the catalyst before and after the oxidation reaction revealed that the new phases were developed, and this suggested that silver had entered the vanadium lattice. XPS results showed that the vanadium on the surface of No.4 and No.5 sample was more than that in the bulk, thus forming a vanadium rich layer on the surface. It was noted that when the catalyst was doped by potassium promoter, the toluene conversion and selectivity for benzaldehyde were higher than those on the undoped catalyst. This was attributed to the disordered structure of V2O5 lattice of the K-doped catalyst and a better interfacial contact between the particles.

  7. Selective liquid phase oxidation of benzyl alcohol to benzaldehyde by tert-butyl hydroperoxide over γ-Al2O3 supported copper and gold nanoparticles

    Science.gov (United States)

    Ndolomingo, Matumuene Joe; Meijboom, Reinout

    2017-03-01

    Benzyl alcohol oxidation to benzaldehyde was performed by tert-butyl hydroperoxide (TBHP) in the absence of any solvent using γ-Al2O3 supported copper and gold nanoparticles. Li2O and ionic liquids were used as additive and stabilizers for the synthesis of the catalysts. The physico-chemical properties of the catalysts were characterized by atomic absorption spectroscopy (AAS), X-ray diffraction spectroscopy (XRD), N2 absorption/desorption (BET), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and temperature programmed reduction (TPR), whereas, the oxidation reaction was followed by gas chromatography with a flame ionization detector (GC-FID). The as prepared catalysts exhibited good catalytic performance in terms of conversion and selectivity towards benzaldehyde. The performance of the Au-based catalysts is significantly higher than that of the Cu-based catalysts. For both Cu and Au catalysts, the conversion of benzyl alcohol increased as the reaction proceeds, while the selectivity for benzaldehyde decreased. Moreover, the catalysts can be easily recycled and reused with neither significant loss of activity nor selectivity. A kinetic study for the Cu and Au-catalyzed oxidation of benzyl alcohol to benzyldehyde is reported. The rate at which the oxidation of benzyl alcohol is occurring as a function of catalyst and oxidant amounts was investigated, with the apparent rate constant, kapp being proportional to the amount of nano catalyst and oxygen present in the system.

  8. Suitable combination of promoter and micellar catalyst for kilo fold rate acceleration on benzaldehyde to benzoic acid conversion in aqueous media at room temperature: a kinetic approach.

    Science.gov (United States)

    Ghosh, Aniruddha; Saha, Rumpa; Ghosh, Sumanta K; Mukherjee, Kakali; Saha, Bidyut

    2013-05-15

    The kinetics of oxidation of benzaldehyde by chromic acid in aqueous and aqueous surfactant (sodium dodecyl sulfate, SDS, alkyl phenyl polyethylene glycol, Triton X-100 and N-cetylpyridinium chloride, CPC) media have been investigated in the presence of promoter at 303 K. The pseudo-first-order rate constants (kobs) were determined from a logarithmic plot of absorbance as a function time. The rate constants were found to increase with introduction of heteroaromatic nitrogen base promoters such as Picolinic acid (PA), 2,2'-bipyridine (bipy) and 1,10-phenanthroline (phen). The product benzoic acid has been characterized by conventional melting point experiment, NMR, HRMS and FTIR spectral analysis. The mechanism of both unpromoted and promoted reaction path has been proposed for the reaction. In presence of the anionic surfactant SDS, cationic surfactant CPC and neutral surfactant TX-100 the reaction can undergo simultaneously in both aqueous and micellar phase with an enhanced rate of oxidation in the micellar phase. Both SDS and TX-100 produce normal micellar effect whereas CPC produce reverse micellar effect in the presence of benzaldehyde. The observed net enhancement of rate effects has been explained by considering the hydrophobic and electrostatic interaction between the surfactants and reactants. SDS and bipy combination is the suitable one for benzaldehyde oxidation.

  9. A study of catalytic activity, constituent, and structure of V-Ag catalyst for selective oxidation of toluene to benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Hui-Liang, Zhang; Wei, Zhong; Xiang, Duan; Xian-Cai, Fu (Nanjing Univ. (China))

    1991-06-01

    A series of V-Ag mixed oxide catalysts with various atomic ratios of V and Ag were prepared by a solution-mixing method. XRD, TEM, SMEA (surface micro-area element analysis), ESR, FT-IR, etc., were used to study the physicochemical properties of the catalysts. The experimental results showed that when silver was introduced into the vanadium pentoxide, the V{double bond}O bond was weakened, and the specific activity of the sample increased. When the atomic ratios of V/Ag were set between 3/1 and 1/1, the selectivity for benzaldehyde increased. In particular, when the V/Ag ratio equaled 2.16, the selectivity for benzaldehyde was greatest, the absorption peak of 900 cm{sup {minus}1} in FT-IR shifted to lower energy, and the relative quantity of V{sup 4 {minus}} measured with ESR appeared the highest. After reaction, XRD showed the main phases of the catalyst to exist as Ag{sub 0{center dot}80}V{sub 2}O{sub 5}, and Ag{sub 0{center dot}68}V{sub 2}O{sub 5}, with a minor Ag phase. Small amounts of VO{sub 2} and V{sub 2}O{sub 4} were also detected. On the two component oxides of vanadium-silver, the toluene oxidation appeared to proceed through two parallel reaction paths: side-chain oxidation of toluene and oxidation coupling. The sample of pure silver promoted cleavage of the carbon ring of toluene and produced deep-oxidation products in large quantity, while the sample of pure V{sub 2}O{sub 5} promoted the oxidative coupling of toluene. After the addition of silver to V{sub 2}O{sub 5}, however the oxidative coupling reaction was depressed, and the silver-vanadium oxide phases, Ag{sub 0{center dot}80}V{sub 2}O{sub 5} and Ag{sub 0{center dot}68}V{sub 2}O{sub 5} were formed. These two phases are responsible for the selective oxidation of toluene.

  10. 4-Methylbenzaldehyde thiosemicarbazone

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2009-09-01

    Full Text Available The title compound, C9H11N3S, was prepared by reacting 4-methylbenzaldehyde with thiosemicarbazide. An intramolecular N—H...N hydrogen bond helps to establish the observed molecular conformation. The crystal packing is realized by intermolecular N—H...S hydrogen bonds.

  11. Simultaneous determination of paracetamol, 4-Aminophenol, 4-Chloroacetanilid, Benzyl alcohol,Benzaldehyde and EDTA by HPLC methodin paracetamol injection ampoule

    Directory of Open Access Journals (Sweden)

    Ali Merrikhi Khosroshahi

    2016-06-01

    Full Text Available Paracetamol that is known as acetaminophen have the most consume as an analgesic and antipyretic drug in the world. That is formulated in single compound or mixture at many forms such as tablets, syrups, suspensions and drops. The last form is intravenous injections. Paracetamol derived from 4-minophenol which is synthesized by acylated the P-acetaminophenol and acetic anhydride. 4-aminophenol is the main impurity at manufacturing of paracetamol which could produce by hydrolysis during storage or synthesis under normal conditions (temperature, pH, etc.. Also, 4-chloroacetanilid may be observed as an impurity in the raw material of paracetamol synthesis. Benzyl alcohol is a preservative that used in Paracetamol for injection. It will be very important if there are analytical techniques to measuring paracetamol and its degradation products accurately and easily. Undoubtedly the most important and widely used, separation technique is chromatography. There are several reports about separation and quantitative determination of paracetamol lonely or simultaneous determination of paracetamol and 4-aminophenol. In this paper investigated simultaneous determination of paracetamol, 4-aminophenol, 4-chloroacetanilid, benzyl alcohol, benzaldehyde, and EDTA in paracetamol for injection ampoules by high performance liquid chromatography. By changing the ratio of mixing methanol and acetonitrile as mobile phase at the wavelength of 215 nm and pH=3 separation of all compounds were completely done.

  12. The Cytotoxicity of Benzaldehyde Nitrogen Mustard-2-Pyridine Carboxylic Acid Hydrazone Being Involved in Topoisomerase IIα Inhibition

    Directory of Open Access Journals (Sweden)

    Yun Fu

    2014-01-01

    Full Text Available The antitumor property of iron chelators and aromatic nitrogen mustard derivatives has been well documented. Combination of the two pharmacophores in one molecule in drug designation is worth to be explored. We reported previously the syntheses and preliminary cytotoxicity evaluation of benzaldehyde nitrogen mustard pyridine carboxyl acid hydrazones (BNMPH as extended study, more tumor cell lines (IC50 for HepG2: 26.1 ± 3.5 μM , HCT-116: 57.5 ± 5.3 μM, K562: 48.2 ± 4.0 μM, and PC-12: 19.4 ± 2.2 μM were used to investigate its cytotoxicity and potential mechanism. In vitro experimental data showed that the BNMPH chelating Fe2+ caused a large number of ROS formations which led to DNA cleavage, and this was further supported by comet assay, implying that ROS might be involved in the cytotoxicity of BNMPH. The ROS induced changes of apoptosis related genes, but the TFR1 and NDRG1 metastatic genes were not obviously regulated, prompting that BNMPH might not be able to deprive Fe2+ of ribonucleotide reductase. The BNMPH induced S phase arrest was different from that of iron chelators (G1 and alkylating agents (G2. BNMPH also exhibited its inhibition of human topoisomerase IIα. Those revealed that the cytotoxic mechanism of the BNMPH could stem from both the topoisomerase II inhibition, ROS generation and DNA alkylation.

  13. Using heavy atom rare gas matrix to control the reactivity of 4-methoxybenzaldehyde: A comparison with benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Kus, Nihal [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Department of Physics, Anadolu University, 26470 Eskisehir (Turkey); Sharma, Archna; Reva, Igor; Fausto, Rui [Department of Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal); Lapinski, Leszek [Institute of Physics, Polish Academy of Sciences, Warsaw (Poland)

    2012-04-14

    Different patterns of photochemical behavior were observed for 4-methoxybenzaldehyde (p-anisaldehyde) isolated in xenon and in argon matrices. Monomers of the compound isolated in solid Xe decarbonylate upon middle ultraviolet irradiation, yielding methoxybenzene (anisole), and CO. On the other hand, p-anisaldehyde isolated in an Ar matrix and subjected to identical irradiation, predominantly isomerizes to the closed-ring isomeric ketene (4-methoxycyclohexa-2,4-dien-1-ylidene) methanone. Experimental detection of a closed-ring ketene photoproduct, generated from an aromatic aldehyde, constitutes a rare observation. The difference between the patterns of photochemical transformations of p-anisaldehyde isolated in argon and xenon environments can be attributed to the external heavy-atom effect, where xenon enhances the rate of intersystem crossing from the singlet to the triplet manifold in which decarbonylation (via p-methoxybenzoyl radical) takes place. The parent compound, benzaldehyde, decarbonylates (to benzene + CO) when subjected to middle ultraviolet irradiation in both argon and xenon matrices. This demonstrates the role of the methoxy p-anisaldehyde substituent in activation of the reaction channel leading to the formation of the ketene photoproduct.

  14. Manufacturing by-products from, and stereochemical outcomes of the biotransformation of benzaldehyde used in the synthesis of methamphetamine.

    Science.gov (United States)

    Cox, Matthew; Klass, Gunter; Koo, Christina Wei Min

    2009-08-10

    Clandestine synthesis of methamphetamine in Australia has predominantly started from pseudoephedrine extracted from over the counter cold and flu medications. However, recently introduced restrictions on the sale of these products have made pseudoephedrine much more difficult to obtain. As a result clandestine chemists have had to resort to other means of obtaining the necessary chemical precursors. A recent drug raid (Adelaide, January 2008) resulted in the seizure of an unusual reaction mixture that indicated a novel approach involving the fermentation of glucose by yeast in the presence of benzaldehyde to give 1-hydroxy-1-phenylpropanone, also known as l-phenylacetylcarbinol (l-PAC), a known precursor to ephedrine and pseudoephedrine and hence methamphetamine. A study was undertaken into this process with the aim of determining the characteristic reaction by-products associated with methamphetamine made in this way. The study also looked at the stereochemical selectivity of the fermentation reaction and the stereochemistry of the subsequent reaction products, ephedrine and pseudoephedrine, and the final methamphetamine.

  15. Synthesis, X-ray structure analysis, thermodynamic and electronic properties of 4-acetamido benzaldehyde using vibrational spectroscopy and DFT calculations

    Science.gov (United States)

    Jeeva Jasmine, N.; Arunagiri, C.; Subashini, A.; Stanley, N.; Thomas Muthiah, P.

    2017-02-01

    Theoretical Spectrograms, namely, FT-Raman (3500-50 cm-1) and FT-Infrared (4000-400 cm-1) spectra have been studied for 4-acetamido benzaldehyde (4ABA) and are assigned to different normal modes of the molecule. Vibrational spectral analysis was compared with the experimental and theoretical, FT-IR and FT-Raman spectra. The effect of polarity on the Harmonic vibrational frequencies, intensities, optimized geometrical parameters and several thermodynamic parameters in the ground state have been computed by the B3LYP method using 6-311 + G(d,p) basis set. The results of the optimized molecular structure is presented and compared with the XRD values. The global chemical reactivity relate to some parameters, such as HOMO, LUMO, gap energy (ΔE) and other parameters, including electronegativity (χ) and global hardness (η). The values of the reactivity descriptors indicated that the interaction between 4ABA molecules reduced its reactivity in comparison with the exhibited in gas phase. In addition, the local reactivity has been analyzed through the Fukui function and condensed softness indices.

  16. A nanoporous 3D zinc(II) metal-organic framework for selective absorption of benzaldehyde and formaldehyde

    Science.gov (United States)

    Moradpour, Tahereh; Abbasi, Alireza; Van Hecke, Kristof

    2015-08-01

    A new 3D nanoporous metal-organic framework (MOF), [[Zn4O(C24H15N6O6)2(H2O)2]·6H2O·DMF]n (1) based on 4,4‧,4″-s-triazine-1,3,5-triyltri-p-aminobenzoate (TATAB) ligand was solvothermally synthesized and characterized by single-crystal X-ray diffraction, Powder X-ray diffraction (PXRD), infrared spectroscopy (IR) and Brunauer-Emmett-Teller (BET) analyses. X-ray single crystal diffraction analysis reveals that 1 exhibits a 3D network with new kvh1 topology. Semi-empirical (AM1) calculations were carried out to obtain stable conformers for TATAB ligand. In addition, the absorption of two typical aldehydes (benzaldehyde and formaldehyde) in the presence of 1 was investigated and the effect of the aldehyde concentration, exposure time and temperature was studied. It was found that compound 1 has a potential for the absorption of aldehydes under mild conditions.

  17. The cytotoxicity of benzaldehyde nitrogen mustard-2-pyridine carboxylic acid hydrazone being involved in topoisomerase IIα inhibition.

    Science.gov (United States)

    Fu, Yun; Zhou, Sufeng; Liu, Youxun; Yang, Yingli; Sun, Xingzhi; Li, Changzheng

    2014-01-01

    The antitumor property of iron chelators and aromatic nitrogen mustard derivatives has been well documented. Combination of the two pharmacophores in one molecule in drug designation is worth to be explored. We reported previously the syntheses and preliminary cytotoxicity evaluation of benzaldehyde nitrogen mustard pyridine carboxyl acid hydrazones (BNMPH) as extended study, more tumor cell lines (IC50 for HepG2: 26.1 ± 3.5 μM, HCT-116: 57.5 ± 5.3 μM, K562: 48.2 ± 4.0 μM, and PC-12: 19.4 ± 2.2 μM) were used to investigate its cytotoxicity and potential mechanism. In vitro experimental data showed that the BNMPH chelating Fe(2+) caused a large number of ROS formations which led to DNA cleavage, and this was further supported by comet assay, implying that ROS might be involved in the cytotoxicity of BNMPH. The ROS induced changes of apoptosis related genes, but the TFR1 and NDRG1 metastatic genes were not obviously regulated, prompting that BNMPH might not be able to deprive Fe(2+) of ribonucleotide reductase. The BNMPH induced S phase arrest was different from that of iron chelators (G1) and alkylating agents (G2). BNMPH also exhibited its inhibition of human topoisomerase IIα. Those revealed that the cytotoxic mechanism of the BNMPH could stem from both the topoisomerase II inhibition, ROS generation and DNA alkylation.

  18. Growth and characterization of benzaldehyde 4-nitro phenyl hydrazone (BPH) single crystal: A proficient second order nonlinear optical material

    Science.gov (United States)

    Saravanan, M.; Abraham Rajasekar, S.

    2016-04-01

    The crystals (benzaldehyde 4-nitro phenyl hydrazone (BPH)) appropriate for NLO appliance were grown by the slow cooling method. The solubility and metastable zone width measurement of BPH specimen was studied. The material crystallizes in the monoclinic crystal system with noncentrosymmetric space group of Cc. The optical precision in the whole visible region was found to be excellent for non-linear optical claim. Excellence of the grown crystal is ascertained by the HRXRD and etching studies. Laser Damage Threshold and Photoluminescence studies designate that the grown crystal contains less imperfection. The mechanical behaviour of BPH sample at different temperatures was investigated to determine the hardness stability of the grown specimen. The piezoelectric temperament and the relative Second Harmonic Generation (for diverse particle sizes) of the material were also studied. The dielectric studies were executed at varied temperatures and frequencies to investigate the electrical properties. Photoconductivity measurement enumerates consummate of inducing dipoles due to strong incident radiation and also divulge the nonlinear behaviour of the material. The third order nonlinear optical properties of BPH crystals were deliberate by Z-scan method.

  19. Growth and characterization of novel organic 3-Hydroxy Benzaldehyde-N-methyl 4 Stilbazolium Tosylate crystals for NLO applications

    Science.gov (United States)

    Jagannathan, K.; Umarani, P.; Ratchagar, V.; Ramesh, V.; Kalainathan, S.

    2016-01-01

    The 3-Hydroxy Benzaldehyde-N-methyl 4-Stilbazolium Tosylate (3- HBST) is a new organic NLO crystal and it is a new derivative in stilbazolium tosylate family. In this work we have synthesized 3-HBST and the single crystal was grown by conventional slow cooling method. The structure and lattice parameters of the grown crystal were determined by the single crystal X-ray diffraction (XRD) technique and it is exhibiting good crystalline nature which is observed from the powder XRD. In order to check the crystalline quality the rocking curve was recorded using multi crystal X-ray diffractometer. The functional groups were identified from both FTIR and NMR spectral analyses. The π-π* and n-π* optical transition energy levels were estimated from the absorption peaks. The NLO property was confirmed by measuring relative SHG efficiency by Kurtz powder test; it shows 24 times higher SHG efficiency than that of urea. In order to test the mechanical stability the Vickers and Knoop micro hardness measurement were carried out and found that the micro hardness number decreases with increasing load. The melting point was determined from Differential Scanning Colorimetry (DSC).

  20. Preparation,Characterization and Crystal Structure Determination of a Nickel Complex[Ni(ftsc)2NO3]NO3(Hftsc=Furan-2-carbaldehyde Thiosemicarbazone)

    Institute of Scientific and Technical Information of China (English)

    BAI Yan; PAN Xiao-Jing; DANG Dong-Bin; JIN Ya-Nan; WANG Jing-Ping

    2008-01-01

    A new Ni(Ⅱ)complex,[Ni(ftsc)2NO3]NO3(Hftsc=furan-2-carbaldehyde thiosemicarbazone),has been synthesized and characterized by IR,UV spectra and single-crystal X-ray diffraction analysis.It crystallizes in a monoclinic system,space group P21/n,with a=10.5203(13),b=9.2094(11),c=20.829(3)(A),β=91.518(2)°,V=2017.3(5)(A)3,Z=4,F(000)=1064,Dc=1.716 g/cm3,and wR=0.0800.The complex contains a six-coordinated nickel(Ⅱ)center which is bound to two imine nitrogen atoms and two thiolato sulfur atoms of two ligands as well as two oxygen atoms from a nitrate anion to assume a distorted octahedral coordination geometry.In addition,intermolecular N-H…O and C-H…O hydrogen bonds between adjacent molecules link the molecules together to form a three-dimensional structure.

  1. DNA binding, antioxidant, cytotoxicity (MTT, lactate dehydrogenase, NO), and cellular uptake studies of structurally different nickel(II) thiosemicarbazone complexes: synthesis, spectroscopy, electrochemistry, and X-ray crystallography.

    Science.gov (United States)

    Prabhakaran, R; Kalaivani, P; Huang, R; Poornima, P; Vijaya Padma, V; Dallemer, F; Natarajan, K

    2013-02-01

    Three new nickel(II) thiosemicarbazone complexes have been synthesized and characterized by analytical, spectral, and single-crystal X-ray diffraction studies. In complex 1, the ligand 2-hydroxy-1-naphthaldehydethiosemicarbazone coordinated as a monobasic tridentate donor, whereas in complexes 2 and 3, the ligands salicylaldehyde-4(N)-ethylthiosemicarbazone and 2-hydroxy-1-naphthaldehyde-4(N)-ethylthiosemicarbazone coordinated as a dibasic tridentate donor. The DNA binding ability of the complexes in calf thymus DNA was explored by absorption and emission titration experiments. The antioxidant property of the new complexes was evaluated to test their free-radical scavenging ability. In vitro cytotoxicity assays were performed for the new complexes in A549 and HepG2 cell lines. The new compounds overcome cisplatin resistance in the A549 cell line and they were also active in the HepG2 cell line. The cellular uptake study showed the accumulation of the complexes in tumor cells depended on the nature of the ligand attached to the nickel ion.

  2. Development of an extractive spectrophotometric method for the determination of copper(II) in leafy vegetable and pharmaceutical samples using pyridoxal-4-phenyl-3-thiosemicarbazone (PPT).

    Science.gov (United States)

    Sarma, L Subramanyam; Kumar, J Rajesh; Reddy, K Janardhan; Reddy, A Varada

    2005-07-13

    A highly sensitive extractive spectrophotometric method has been developed for the determination of copper(II) using pyridoxal-4-phenyl-3-thiosemicarbazone(PPT) as an analytical reagent. The PPT forms reddish brown species of copper(II) at a pH range of 3.0-5.5, and the complex was extracted into n-butanol. The Cu(II)-PPT complex shows maximum absorbance at 440 nm, with molar absorptivity and Sandell's sensitivity being 2.16 x 10(4) L mol(-1) cm(-1) and 2.94 x 10(-3) microg cm(-2), respectively. The system obeys Beer's law in the range of 0.2-5.0 mg/L. The regression coefficient of the Beer's law straight line is 0.338, and the correlation coefficient is 0.96. The detection limit of the method is 0.0065 microg mL(-1). Most of the common metal ions generally found associated with copper do not interfere. The repeatability of the method was checked by finding the relative standard deviation. The developed method has been successfully employed for the determination of copper(II) in leafy vegetable and pharmaceutical samples. The method is evaluated by analyzing samples from the Bureau of Analyzed Samples (BCS 233, 266, 216/1, 207, and 179) and by intercomparison of experimental values using AAS.

  3. Highly efficient ultrasonic-assisted removal of Hg(II) ions on graphene oxide modified with 2-pyridinecarboxaldehyde thiosemicarbazone: Adsorption isotherms and kinetics studies.

    Science.gov (United States)

    Tadjarodi, Azadeh; Moazen Ferdowsi, Somayeh; Zare-Dorabei, Rouholah; Barzin, Ahmad

    2016-11-01

    A novel adsorbent, based on modifying graphene oxide (GO) chemically with 2-pyridinecarboxaldehyde thiosemicarbazone (2-PTSC) as ligand, was designed by facile process for removal of Hg(II) from aqueous solution. Characterization of the adsorbent was performed using various techniques, such as FT-IR, XRD, XPS, SEM and AFM analysis. The adsorption capacity was affected by variables such as adsorbent dosage, pH solution, Hg(2+) initial concentration and sonicating time. These variables were optimized by rotatable central composite design (CCD) under response surface methodology (RSM). The predictive model for Hg(II) adsorption was constructed and applied to find the best conditions at which the responses were maximized. In this conditions, the adsorption capacity of this adsorbent for Hg(2+) ions was calculated to be 309mgg(-1) that was higher than that of GO. Appling the ultrasound power combined with adsorption method was very efficient in shortening the removal time of Hg(2+) ions by enhancing the dispersion of adsorbent and metal ions in solution and effective interactions among them. The adsorption process was well described by second-order kinetic and Langmuir isotherm model in which the maximum adsorption capacity (Qm) was found to be 555mgg(-1) for adsorption of Hg(2+) ions over the obtained adsorbent. The performance of adsorbent was examined on the real wastewaters and confirmed the applicability of adsorbent for practical applications.

  4. Simultaneous spectrophotometric determination of copper, cobalt, nickel and iron in foodstuffs and vegetables with a new bis thiosemicarbazone ligand using chemometric approaches.

    Science.gov (United States)

    Rohani Moghadam, Masoud; Poorakbarian Jahromi, Sayedeh Maria; Darehkordi, Ali

    2016-02-01

    A newly synthesized bis thiosemicarbazone ligand, (2Z,2'Z)-2,2'-((4S,5R)-4,5,6-trihydroxyhexane-1,2-diylidene)bis(N-phenylhydrazinecarbothioamide), was used to make a complex with Cu(2+), Ni(2+), Co(2+) and Fe(3+) for their simultaneous spectrophotometric determination using chemometric methods. By Job's method, the ratio of metal to ligand in Ni(2+) was found to be 1:2, whereas it was 1:4 for the others. The effect of pH on the sensitivity and selectivity of the formed complexes was studied according to the net analyte signal (NAS). Under optimum conditions, the calibration graphs were linear in the ranges of 0.10-3.83, 0.20-3.83, 0.23-5.23 and 0.32-8.12 mg L(-1) with the detection limits of 2, 3, 4 and 10 μg L(-1) for Cu(2+), Co(2+), Ni(2+) and Fe(3+) respectively. The OSC-PLS1 for Cu(2+) and Ni(2+), the PLS1 for Co(2+) and the PC-FFANN for Fe(3+) were selected as the best models. The selected models were successfully applied for the simultaneous determination of elements in some foodstuffs and vegetables.

  5. LIQUID-LIQUID EXTRACTION AND SPECTROPHOTOMETRIC DETERMINATION OF IRON USING ACETOPHENONE 2’,5’-DIHYDROXY THIOSEMICARBAZONE (ADHTS AS A NEW ANALYTICAL REAGENT

    Directory of Open Access Journals (Sweden)

    Prabhakar S. Navarkar

    2012-09-01

    Full Text Available Acetophenone 2’,5’-dihydroxy thiosemicarbazone (ADHTS is proposed as a new sensitive and selective reagent for the Spectrophotometric determination of trace amount of Iron. The optimum extraction conditions were evaluated by studying various parameters like pH, solvent, reagent concentration, equilibration time and stability of extracted complex. The reagent reacts with Iron to form a yellow colored 1:2 chelate, at the pH 3.6.The complex is extracted in n-Butanol. The absorption spectrum shows maxima at 430 nm. Beer’s law is obeyed in the concentration range 1 to 8 ppm for Iron. The molar absorptivity is 646.06 L mol-1cm–1 and Sandell’s sensitivity is 0.0869μg cm-2 The Limit of Detection for the proposed method was found to be 0.561 ppm. The proposed method is highly sensitive, selective, simple, rapid, accurate, and has been satisfactorilyapplied for the determination of Iron in the synthetic mixtures, and real samples.

  6. Concomitant Effects of Transition Metal Chelation and Solvent Polarity on the First Molecular Hyperpolarizability of 4-Methoxyacetophenone Thiosemicarbazone: A DFT Study

    Directory of Open Access Journals (Sweden)

    Nyiang Kennet Nkungli

    2016-01-01

    Full Text Available Nonlinear optical (NLO properties of organic and metal-organic materials are of considerable interest to emerging optoelectronic and photonic technologies. Much work has been carried out on the former materials but the latter ones have received less attention till date. Herein, a density functional theory (DFT study on the combined effects of transition metal chelation and solvent polarity on the first hyperpolarizability (βtot of 4-methoxyacetophenone thiosemicarbazone (MAPTSC is reported. MAPTSC exhibits a tautomeric form with higher optical nonlinearity rendering its NLO response in polar solvents potentially switchable. Our results have revealed significant modifications of the first hyperpolarizability of MAPTSC upon complexation with different transition metal chlorides in the presence of solvents with varying dielectric constants. Therefore, its second-order NLO response is highly tunable by the synergy of transition metal chelation and solvent polarity. MAPTSC and its Zn(II and Pt(II chloride complexes are promising NLO materials because their gas-phase βtot values are larger than those of the prototype push-pull molecules, para-nitroaniline (PNA and urea, by factors of about 1.40–1.76 and 19.57–37.24, respectively; these factors greatly increase in polar solvent medium. Moreover, they possess high optical transparencies in the visible region of the electromagnetic spectrum which mitigate transparency/nonlinearity trade-offs, thereby increasing the likelihood of broad band NLO response.

  7. A DFT Study of Some Structural and Spectral Properties of 4-Methoxyacetophenone Thiosemicarbazone and Its Complexes with Some Transition Metal Chlorides: Potent Antimicrobial Agents

    Directory of Open Access Journals (Sweden)

    Julius Numbonui Ghogomu

    2016-01-01

    Full Text Available Recent studies have shown that 4-methoxyacetophenone thiosemicarbazone (MAPTSC and its complexes with some transition metal chlorides are potent antimicrobial agents. To deepen the understanding of their structure-activity relationships necessary for rational drug design, their structural and spectral properties, along with thione-thiol tautomerism of MAPTSC, have been studied herein using the density functional theory (DFT. From our results, the thione tautomer of MAPTSC is more stable than the thiol counterpart in ethanolic solution, and thione-to-thiol tautomerization is highly precluded at ambient temperature (25°C by a high barrier height ≈46.41 kcal/mol. MAPTSC can therefore exist as a mixture of the thione (major and thiol (minor tautomers in ethanolic solution at room and higher temperatures. Conformational analysis has revealed five possible conformers of the thione tautomer, of which two are stable enough to be isolated at 25°C. Based on our computed values of MAPTSC-metal(II binding energies, enthalpies, and Gibbs free energies, the thione tautomer of MAPTSC exhibits a higher affinity for the d8 metal ions Ni(II, Pd(II, and Pt(II and can therefore efficiently chelate them in chemical and biological systems. Natural population analysis has revealed ligand-metal charge transfer in the MAPTSC complexes studied. A good agreement has been found between calculated and experimentally observed spectral properties (IR, UV-Vis, and NMR.

  8. 4-Nitrobenzaldehyde thiosemicarbazone: a new compound derived from S-(-)-limonene that induces mitochondrial alterations in epimastigotes and trypomastigotes of Trypanosoma cruzi.

    Science.gov (United States)

    Britta, Elizandra Aparecida; Scariot, Débora Botura; Falzirolli, Hugo; da Silva, Cleuza Conceição; Ueda-Nakamura, Tânia; Dias Filho, Benedito Prado; Borsali, Redouane; Nakamura, Celso Vataru

    2015-06-01

    Trypanosoma cruzi is the causative agent of Chagas' disease, a parasitic disease that remains a serious health concern with unsatisfactory treatment. Drugs that are currently used to treat Chagas' disease are partially effective in the acute phase but ineffective in the chronic phase of the disease. The aim of the present study was to evaluate the antitrypanosomal activity and morphological, ultrastructural and biochemical alterations induced by a new molecule, 4-nitrobenzaldehyde thiosemicarbazone (BZTS), derived from S-(-)-limonene against epimastigote, trypomastigote and intracellular amastigote forms of T. cruzi. BZTS inhibited the growth of epimastigotes (IC50 = 9·2 μ m), intracellular amastigotes (IC50 = 3·23 μ m) and inhibited the viability of trypomastigotes (EC50 = 1·43 μ m). BZTS had a CC50 of 37·45 μ m in LLCMK2 cells. BZTS induced rounding and distortion of the cell body and severely damaged parasite mitochondria, reflected by extensive swelling and disorganization in the inner mitochondrial membrane and the presence of concentric membrane structures inside the organelle. Cytoplasmic vacuolization, endoplasmic reticulum that surrounded organelles, the loss of mitochondrial membrane potential, and increased mitochondrial O2 •- production were also observed. Our results suggest that BZTS alters the ultrastructure and physiology of mitochondria, which could be closely related to parasite death.

  9. Effects on rat testes of the thiosemicarbazone derivative Schiff base (4-(1-phenylmethylcyclobutane-3-yl)-2-(2-hydroxybenzylidenehydrazino)thiazole) and its cadmium(II) complex.

    Science.gov (United States)

    Oner, Hakan; Karatepe, Mustafa; Karatas, Fikret; Oner, Jale; Yilmaz, Ibrahim; Cukurovali, Alaaddin

    2005-01-01

    The aim of this study was to investigate structural and biochemical changes in testes of rats treated with the thiosemicarbazone derivative thiazole ring Schiff base, (4-(1-phenyl-methylcyclobutane-3-yl)-2-(2-hydroxybenzylidene-hydrazino) thiazole (L), and its Cd(II) complex (CdL(2)). The animals were divided into three groups. Group I was designated as control. The rats in groups II and III were injected subcutaneously with L or CdL(2) respectively at 150-mg kg(-1) doses at 3-day intervals for 15 days. At the end of the study, blood samples were collected for biochemical analysis, and testes were removed for histological examinations. Serum levels of vitamin A, E and MDA of the L-injected group were similar to the control group. While CdL(2) treatment decreased serum vitamin A and E levels, it increased the MDA level compared to other groups. Histologically, the testes structures of L-treated animals were similar to the control. Spermatogenic cells in seminiferous tubules of CdL(2)-treated animals displayed necrosis. Nuclei of spermatogonia and primary spermatocytes were pyknotic and heterochromatic. Homogenous pink particles were present in place of the spermatids. The interstitial areas were oedematous and intertubular vessels were plugged. In conclusion, the present results indicate that L does not cause biochemical and morphological alterations, but its Cd(II) complex has degenerative effects in normal rat testes.

  10. Thiosemicarbazone p-Substituted Acetophenone Derivatives Promote the Loss of Mitochondrial Δψ, GSH Depletion, and Death in K562 Cells

    Science.gov (United States)

    Pessoto, Felipe S.; Yokomizo, Cesar H.; Prieto, Tatiana; Fernandes, Cleverton S.; Silva, Alan P.; Kaiser, Carlos R.; Basso, Ernani A.; Nantes, Iseli L.

    2015-01-01

    A series of thiosemicarbazone (TSC) p-substituted acetophenone derivatives were synthesized and chemically characterized. The p-substituents appended to the phenyl group of the TSC structures were hydrogen, fluor, chlorine, methyl, and nitro, producing compounds named TSC-H, TSC-F, TSC-Cl, TSC-Me, and TSC-NO2, respectively. The TSC compounds were evaluated for their capacity to induce mitochondrial permeability, to deplete mitochondrial thiol content, and to promote cell death in the K562 cell lineage using flow cytometry and fluorescence microscopy. TSC-H, TSC-F, and TSC-Cl exhibited a bell-shaped dose-response curve for the induction of apoptosis in K562 cells due to the change from apoptosis to necrosis as the principal mechanism of cell death at the highest tested doses. TSC-Me and TSC-NO2 exhibited a typical dose-response profile, with a half maximal effective concentration of approximately 10 µM for cell death. Cell death was also evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which revealed lower toxicity of these compounds for peripheral blood mononuclear cells than for K562 cells. The possible mechanisms leading to cell death are discussed based on the observed effects of the new TSC compounds on the cellular thiol content and on mitochondrial bioenergetics. PMID:26075034

  11. Thiosemicarbazone p-Substituted Acetophenone Derivatives Promote the Loss of Mitochondrial Δψ, GSH Depletion, and Death in K562 Cells

    Directory of Open Access Journals (Sweden)

    Felipe S. Pessoto

    2015-01-01

    Full Text Available A series of thiosemicarbazone (TSC p-substituted acetophenone derivatives were synthesized and chemically characterized. The p-substituents appended to the phenyl group of the TSC structures were hydrogen, fluor, chlorine, methyl, and nitro, producing compounds named TSC-H, TSC-F, TSC-Cl, TSC-Me, and TSC-NO2, respectively. The TSC compounds were evaluated for their capacity to induce mitochondrial permeability, to deplete mitochondrial thiol content, and to promote cell death in the K562 cell lineage using flow cytometry and fluorescence microscopy. TSC-H, TSC-F, and TSC-Cl exhibited a bell-shaped dose-response curve for the induction of apoptosis in K562 cells due to the change from apoptosis to necrosis as the principal mechanism of cell death at the highest tested doses. TSC-Me and TSC-NO2 exhibited a typical dose-response profile, with a half maximal effective concentration of approximately 10 µM for cell death. Cell death was also evaluated using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay, which revealed lower toxicity of these compounds for peripheral blood mononuclear cells than for K562 cells. The possible mechanisms leading to cell death are discussed based on the observed effects of the new TSC compounds on the cellular thiol content and on mitochondrial bioenergetics.

  12. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells.

    Science.gov (United States)

    Jagadeesh, M; Kalangi, Suresh K; Sivarama Krishna, L; Reddy, A Varada

    2014-01-24

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1=2.1228, g2=2.0706 and g3=2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  13. Halo-substituted thiosemicarbazones and their copper(II), nickel(II) complexes: Detailed spectroscopic characterization and study of antitumour activity against HepG2 human hepatoblastoma cells

    Science.gov (United States)

    Jagadeesh, M.; Kalangi, Suresh K.; Sivarama Krishna, L.; Reddy, A. Varada

    2014-01-01

    Copper(II) and nickel(II) complexes of two different halogen substituted thiosemicarbazone ligands were synthesized. The ligands 3,4-difluoroacetophenone thiosemicarbazone (1) and 2-bromo-4'-chloroacetophenone thiosemicarbazone (2) were characterized and confirmed spectroscopically by FT-IR, FT-Raman, UV-vis and fluorescence spectral analysis, while the respective copper(II) complexes [Cu(C9H9N3F2S)2Cl2] (1a), [Cu(C9H9N3ClBrS)2Cl2] (2a) and nickel(II) complexes [Ni(C9H9N3F2S)2] (1b), [Ni(C9H9N3ClBrS)2] (2b) were characterized by FT-IR, UV-vis and electron paramagnetic spectroscopy (EPR). The EPR spectra of the Cu(II) complexes provided the rhombic octahedral and axial symmetry of the complexes 1a and 2a respectively. For the complex 1a, the g values calculated as g1 = 2.1228, g2 = 2.0706 and g3 = 2.001 between 2900 and 3300 G. While for the complex 2a, a set of two resonance absorptions were observed. The synthesized compounds were tested for antitumor activity and showed that the ability to kill liver cancer cells significantly. Out of all the synthesized compounds, copper(II) complexes 1a and 2a showed high cytotoxic effect on liver cancer cells with 67.51% and 42.77% of cytotoxicity respectively at 100 μM.

  14. Effects of support and modifiers on catalytic performance of zinc oxide for hydrogenation of methyl benzoate to benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Lu Weijing; Lu Guanzhong; Liu Xu; Guo Yanglong; Wang Junsong; Guo Yun

    2003-09-28

    The ZnO supported on {gamma}-Al{sub 2}O{sub 3}, SiO{sub 2}, MCM-41, and {beta}-zeolite were prepared and examined in the hydrogenation of methyl benzoate (MB). ZnO supported on {gamma}-Al{sub 2}O{sub 3} had a higher activity than ZnO. ZnO/{gamma}-Al{sub 2}O{sub 3} modified with 23 ppm lithium had a high catalytic activity (97%) and high selectivity to benzaldehyde (BD, 87%) in a fixed-bed reactor at atmospheric pressure and 400 deg. C. Chromium oxide modified ZnO/{gamma}-Al{sub 2}O{sub 3} also had a high selectivity to BD. Hydrogenolysis of MB occurred over copper modified catalysts. X-ray powder diffraction (XRD) revealed that in the ZnO/{gamma}-Al{sub 2}O{sub 3} catalysts, the ZnO, ZnAl{sub 2}O{sub 4} and {gamma}-Al{sub 2}O{sub 3} phases exited mainly, the border of ZnO and ZnAl{sub 2}O{sub 4} might be important for the hydrogenation of MB to BD. XPS and FT-IR revealed that the chemical environment of ZnO on the ZnO/{gamma}-Al{sub 2}O{sub 3} catalyst is different to ZnO and other supported ZnO catalysts, which gives the ZnO/{gamma}-Al{sub 2}O{sub 3} catalyst having a higher activity than ZnO or ZnO on SiO{sub 2}, MCM-41 or {beta}-zeolite. The presence of third metal (Li, Cr or Cu) oxide in ZnO/{gamma}-Al{sub 2}O{sub 3} could change the electronic structure of Zn and the chemical phenomena of Zn-Al in catalyst and lead to change of the catalytic performance.

  15. Evidence for a solvent-induced change in rate-limiting step in the hydrolysis of benzaldehyde dimethyl acetal

    Energy Technology Data Exchange (ETDEWEB)

    Young, P.R.; Bogseth, R.C.; Rietz, E.G.

    1980-09-24

    Secondary deuterium isotope effects for the hydrolysis of the dimethyl acetal of benzaldehyde-formyl-d have been determined in mixed water-dioxane solvents varying between pure water and 70% dioxane, 30% water, by volume. Between 0 and 20% dioxane, the isotope effect (k/sup H//k/sup D/) decreases from 1.12 to 1.06. Between 20 and 70% added dioxane, the isotope effects increase regularly from 1.06 to 1.15. The decrease in the apparent isotope effect at low concentrations of dioxane may be an artifact of the biphasic kinetics observed due to hemiacetal buildup in the more aqueous media. The increases in k/sup H//k/sup D/ that are observed between 20 and 70% dioxane are interpreted in terms of a change in rate-limiting step from C-O bond cleavage in water to rate-limiting diffusion apart of the alcohol-oxocarbonium ion encounter pair in high concentrations of dioxane. On the basis of this assumption, ratios of the rate constants for internal return and diffusional separation of the complex are estimated. The steady decrease in rho and rho/sup r/ within the series water and 50 and 70% dioxane also suggests an increase in cationic character in the rate-limiting transition state. Isolated resonance structure-reactivity parameters (rho/sup r//rho/sub eq//sup r/) provide estimates of sp/sup 2/ character in rate-limiting transition states that are essentially identical with the estimates obtained from the secondary isotope effect studies.

  16. Evidence of coupled photoinduced proton transfer and intramolecular charge transfer reaction in para-N,N-dimethylamino orthohydroxy benzaldehyde: Spectroscopic and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Mahanta, Subrata; Singh, Rupashree Balia; Kar, Samiran [Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India); Guchhait, Nikhil [Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India)], E-mail: nguchhait@yahoo.com

    2008-12-10

    Steady state and time resolved fluorescence spectroscopy and quantum chemical calculations have been used to study excited state properties of para-N,N-dimethylamino orthohydroxy benzaldehyde (PDOHBA). Spectral characteristics of PDOHBA support the existence of both donor-acceptor charge transfer (CT) and proton transfer (PT) reaction in the excited state. Structural calculations at Hartree Fock and Density Functional Theory (DFT) levels and theoretical potential energy surfaces (PESs) along the proton transfer and donor twisting coordinates using DFT and Time Dependent Density Functional Theory point towards the possibility of barrierless PT and CT reaction in the first excited state of PDOHBA.

  17. The Production of Benzaldehyde by Rhizopus oligosporus USM R1 in a Solid State Fermentation (SSF) System of Soy Bean Meal: Rice Husks

    OpenAIRE

    Norliza, A. W.; Ibrahim, C. O.

    2005-01-01

    The cultivation of Rhizopus oligosporus USM R1 for the production of benzaldehyde, a bitter cherry almond flavour was performed using soya bean meal and rice husks as the substrates. The identification of R. oligosporus USM R1 was performed based on the observation made under light microscope and scanning electron microscope (SEM). The optimum conditions for the SSF in a 250-ml Erlenmeyer flask system were 40% (v/w) water content, substrate particle size of 0.7 mm; inoculum size of 1 x 10^5 s...

  18. Influence of basic properties of Mg,Al-mixed oxides on their catalytic activity in knoevenagel condensation between benzaldehyde and phenylsulfonylacetonitrile

    Directory of Open Access Journals (Sweden)

    Caridad Noda Pérez

    2009-01-01

    Full Text Available The catalytic performance of Mg,Al-mixed oxides (MO20, MO25 and MO33 derived from hydrotalcites was evaluated in the Knoevenagel reaction between benzaldehyde and phenylsulfonylacetonitrile at 373 and 383 K. The best results were obtained for the sample MO20 that presented the highest basic sites density and external area and the smallest crystallite sizes. The relative amount of basic sites with weak to intermediate strength also played an important role on catalytic performance. By increasing the catalyst content from 1 to 5 wt.% at 383 K, a complete conversion of the reactants is attained, producing α-phenylsulfonylcinnamonitrile with a selectivity of 100%.

  19. Density, Viscosity, Sound Speed, and Thermoacoustical Parameters of Benzaldehyde with Chlorobenzene or Nitrobenzene at 303.15 K, 308.15 K, and 313.15 K

    Science.gov (United States)

    Lavanya, T. G.; Saravanakumar, K.; Baskaran, R.; Kubendran, T. R.

    2013-07-01

    The values of the density, viscosity, and speed of sound for binary liquid mixtures of benzaldehyde with chlorobenzene or nitrobenzene have been measured over the entire range of composition at (303.15, 308.15, and 313.15) K. These values have been used to calculate the excess molar volume (), and excess free volume (). McAllister's three-body interaction model is used for correlating the kinematic viscosity of binary mixtures. The thermophysical properties (density, viscosity, and ultrasonic velocity) under study were fit to the Jouyban-Acree model.

  20. Pestalols A-E, new alkenyl phenol and benzaldehyde derivatives from endophytic fungus Pestalotiopsis sp. AcBC2 isolated from the Chinese mangrove plant Aegiceras corniculatum.

    Science.gov (United States)

    Sun, Jian-Fan; Lin, Xiuping; Zhou, Xue-Feng; Wan, Junting; Zhang, Tianyu; Yang, Bin; Yang, Xian-Wen; Tu, Zhengchao; Liu, Yonghong

    2014-06-01

    Five alkenyl phenol and benzaldehyde derivatives, pestalols A-E (1-5), as well as seven known compounds (6-12), were isolated from endophytic fungus Pestalotiopsis sp. AcBC2 derived from the Chinese mangrove plant Aegiceras corniculatum. Their structures were determined by spectroscopic analyses. Compounds 2 and 3 showed cytotoxicity against a panel of 10 tumor cell lines. Compounds 1-5, 8, 9, 11, and 12 showed inhibitory activities against Influenza A virus subtype (H3N2) and Swine Flu (H1N1) viruses. Compound 2 also showed inhibitory activity against tuberculosis.

  1. Vibrational spectroscopy (FT-IR and Laser-Raman) investigation, and computational (M06-2X and B3LYP) analysis on the structure of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone.

    Science.gov (United States)

    Sert, Yusuf; Miroslaw, Barbara; Çırak, Çağrı; Doğan, Hatice; Szulczyk, Daniel; Struga, Marta

    2014-07-15

    In this study, the experimental and theoretical vibrational spectral analysis of 4-(3-fluorophenyl)-1-(propan-2-ylidene)-thiosemicarbazone have been carried out. The experimental FT-IR (4000-400 cm(-1)) and Laser-Raman spectra (4000-100 cm(-1)) have been recorded for the solid state samples. The theoretical vibrational frequencies and the optimized geometric parameters (bond lengths and angles) have been calculated for gas phase using density functional theory (DFT/B3LYP: Becke, 3-parameter, Lee-Yang-Parr) and M06-2X (the highly parametrized, empirical exchange correlation function) quantum chemical methods with 6-311++G(d,p) basis set. The diversity in molecular geometry of fluorophenyl substituted thiosemicarbazones has been discussed based on the X-ray crystal structure reports and theoretical calculation results from the literature. The assignments of the vibrational frequencies have been done on the basis of potential energy distribution (PED) analysis by using VEDA4 software. A good correlation was found between the computed and experimental geometric and vibrational data. In addition, the highest occupied (HOMO) and lowest unoccupied (LUMO) molecular orbital energy levels and other related molecular energy values of the compound have been determined using the same level of theoretical calculations.

  2. Metal complexes of 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone: cytotoxic activity and investigation on the mode of action of the gold(III) complex.

    Science.gov (United States)

    Sâmia, Luciana B P; Parrilha, Gabrieli L; Da Silva, Jeferson G; Ramos, Jonas P; Souza-Fagundes, Elaine M; Castelli, Silvia; Vutey, Venn; Desideri, Alessandro; Beraldo, Heloisa

    2016-06-01

    Complexes [Au(PyCT4BrPh)Cl]Cl (1), [Pt(PyCT4BrPh)Cl]0.5KCl (2), and [Pd(PyCT4BrPh)Cl]KCl (3) were obtained with 3-(4-bromophenyl)-1-pyridin-2-ylprop-2-en-1-one thiosemicarbazone (HPyCT4BrPh). Although complexes (2) and (3) did not exhibit potent cytotoxic activity, HPyCT4BrPh and its gold(III) complex (1) proved to be highly cytotoxic against HL-60 (human promyelocytic leukemia) and THP-1 (human monocytic leukemia) cells, and against MDA-MB 231 and MCF-7 (human breast adenocarcinoma) solid tumor cells. Except for HL-60 cells, upon coordination to gold(III) a 2- to 3-fold increase in the cytotoxic effect was observed. An investigation on the possible biological targets of the gold(III) complex was carried out. Complex (1) but not the free thiosemicarbazone inhibits the enzymatic activity of thioredoxin reductase (TrxR). The affinity of 1 for TrxR suggests metal binding to a selenol residue in the active site of the enzyme. While HPyCT4BrPh was inactive, 1 was able to inhibit topoisomerase IB (Topo IB) activity. Hence, inhibition of TrxR and Topo IB could contribute to the mechanism of cytotoxic action of complex (1).

  3. Ligational behavior of thiosemicarbazone, semicarbazone and thiocarbohydrazone ligands towards VO(IV), Ce(III), Th(IV) and UO 2(VI) ions: Synthesis, structural characterization and biological studies

    Science.gov (United States)

    Shebl, M.; Seleem, H. S.; El-Shetary, B. A.

    2010-01-01

    Mono- and binuclear VO(IV), Ce(III), Th(IV) and UO 2(VI) complexes of thiosemicarbazone, semicarbazone and thiocarbohydrazone ligands derived from 4,6-diacetylresorcinol were synthesized. The structures of these complexes were elucidated by elemental analyses, IR, UV-vis, ESR, 1H NMR and mass spectra as well as conductivity and magnetic susceptibility measurements and thermal analyses. The thiosemicarbazone (H 4L 1) and the semicarbazone (H 4L 2) ligands behave as dibasic pentadentate ligands in case of VO(IV) and UO 2(VI) complexes, tribasic pentadentate in case of Ce(III) complexes and monobasic pentadentate in case of Th(IV) complexes. However, the thiocarbohydrazone ligand (H 3L 3) acts as a monobasic tridentate ligand in all complexes except the VO(IV) complex in which it acts as a dibasic tridentate ligand. The antibacterial and antifungal activities were also tested against Rhizobium bacteria and Fusarium-Oxysporium fungus. The metal complexes of H 4L 1 ligand showed a higher antibacterial effect than the free ligand while the other ligands (H 4L 2 and H 3L 3) showed a higher effect than their metal complexes. The antifungal effect of all metal complexes is lower than the free ligands.

  4. N-methylisatin-beta-thiosemicarbazone derivative (SCH 16 is an inhibitor of Japanese encephalitis virus infection in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Sriram D

    2008-05-01

    Full Text Available Abstract Background During the early and mid part of 20th century, several reports described the therapeutic effects of N-methylisatin-β-Thiosemicarbazone (MIBT against pox viruses, Maloney leukemia viruses and recently against HIV. However, their ability to inhibit flavivirus replication has not been investigated. Hence the present study was designed to evaluate the antiviral activity of 14 MIBT derivatives against Flaviviruses that are prevalent in India such as Japanese Encephalitis Virus (JEV, Dengue-2 (Den-2 and West Nile viruses (WNV. Results Amongst the fourteen Mannich bases of MIBT derivatives tested one compound – SCH 16 was able to completely inhibit in vitro Japanese encephalitis virus (JEV and West Nile virus (WNV replication. However no antiviral activity of SCH 16 was noted against Den-2 virus replication. This compound was able to inhibit 50% of the plaques (IC50 produced by JEV and WNV at a concentration of 16 μgm/ml (0.000025 μM and 4 μgm/ml (0.000006 μM respectively. Furthermore, SCH 16 at a concentration of 500 mg/kg body weight administered by oral route twice daily was able to completely (100% prevent mortality in mice challenged with 50LD50 JEV by the peripheral route. Our experiments to understand the mechanism of action suggest that SCH 16 inhibited JEV replication at the level of early protein translation. Conclusion Only one of the 14 isatin derivatives -SCH 16 exhibited antiviral action on JEV and WNV virus infection in vitro. SCH 16 was also found to completely inhibit JEV replication in vivo in a mouse model challenged peripherally with 50LD50 of the virus. These results warrant further research and development on SCH 16 as a possible therapeutic agent.

  5. Development of a highly sensitive extractive spectrophotometric method for the determination of nickel(II) from environmental matrices using N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone.

    Science.gov (United States)

    Ramachandraiah, C; Rajesh Kumar, J; Janardhan Reddy, K; Lakshmi Narayana, S; Varada Reddy, A

    2008-09-01

    Nickel(II) reacts with N-ethyl-3-carbazolecarboxaldehyde-3-thiosemicarbazone (ECCT) and forms a yellow colored complex, which was extracted into n-butanol from sodium acetate and acetic acid buffer at pH 6.0. The absorbance value of the Ni(II)-ECCT complex was measured at different intervals of time at 400 nm, to ascertain the time stability of the complex. The extraction of the complex into the solvent was instantaneous and stable for more than 72 h. The system obeyed Beer's law in the concentration range of 1.2-5.6 microg ml(-1) of nickel(II), with an excellent linearity and a correlation coefficient of 0.999. The molar absorptivity and Sandell's sensitivity of the extracted species were found to be 1.114 x 10(4)L mol(-1)cm(-1) and 5.29 x 10(-3)microg cm(-2) at 400 nm, respectively. Hence, a detailed study of the extraction of nickel(II) with ECCT has been undertaken with a view to developing a rapid and sensitive extractive spectrophotometric method for the determination of nickel(II) when present alone or in the presence of diverse ions which are usually associated with nickel(II) in environmental matrices like soil and industrial effluents. Various standard alloy samples (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are comparable with those from atomic absorption spectrometry and were found to be in good agreement.

  6. Development of highly sensitive extractive spectrophotometric determination of nickel(II) in medicinal leaves, soil, industrial effluents and standard alloy samples using pyridoxal-4-phenyl-3-thiosemicarbazone.

    Science.gov (United States)

    Sarma, Loka Subramanyam; Kumar, Jyothi Rajesh; Reddy, Koduru Janardhan; Thriveni, Thenepalli; Reddy, Ammireddy Varada

    2008-01-01

    Pyridoxal-4-phenyl-3-thiosemicarbazone (PPT) is proposed as a new sensitive reagent for the extractive spectrophotometric determination of nickel(II). PPT reacts with nickel(II) in the pH range 4.0-6.0 to form a reddish brown colored complex, which was well-extracted into n-butanol. The absorbance value of the Ni(II)-PPT complex was measured at different time intervals at 430nm, to ascertain the stability of the complex. The system obeyed Beer's law up to 0.5-5.0microgmL(-1) of nickel(II), with an excellent linearity in terms of the correlation coefficient value of 0.99. The molar absorptivity and Sandell's sensitivity of the extracted species are 1.92 x 10(4)Lmol(-1)cm(-1) and 0.003057microgcm(-2) respectively at 430nm. The detection limit of the method is 0.069microgmL(-1). To assess precision and accuracy of the developed method, determinations were carried out at different concentrations. The relative standard deviation of all measurements does not exceed 2.62%. The developed method has been satisfactorily applied for the determination of nickel(II), when present alone or in the presence of diverse ions, which are usually associated with nickel(II) in medicinal leaves, soil and industrial effluent samples. Various standard and certified reference materials (CM 247 LC, IN 718, BCS 233, 266, 253 and 251) have also been tested for the determination of nickel for the purpose of validation of the present method. The results of the proposed method are compared with those obtained from an atomic absorption spectrometer (AAS).

  7. Studies of zinc(II in pharmaceutical and biological samples by extractive spectrophotometry: using pyridoxal-4-phenyl-3-thiosemicarbazone as chelating reagent

    Directory of Open Access Journals (Sweden)

    Sarma L. Subramanyam

    2006-01-01

    Full Text Available Pyridoxal-4-phenyl-3-thiosemicarbazone (PPT is proposed as a new sensitive reagent for the sensitive extractive spectrophotometric determination of zinc(II. PPT reacts with zinc(II in the pH range 5.0-6.0 to form a yellow colored complex, which was well extracted into n-butanol. The absorbance value of Zn(II-PPT complex was measured at different intervals of time at 430 nm, to ascertain the stability of the complex. It was observed that the color development was instantaneous and stable for more than 48 h. The system obeyed Beer's law up to 6.0 µg mL-1 of zinc(II, with an excellent linearity in terms of correlation coefficient value of 0.999. The molar absorptivity and Sandell's sensitivity of the extracted species is 1.6 X 10(4 L mol-1 cm-1 and 4.085 X 10-3 µg cm-2 at 430 nm. The detection limit of the method is 0.04 µg mL-1. To assess precision of the method, determinations were carried out at different concentrations; the relative standard deviation does not exceed 3.1%. The composition of the zinc(II complex with PPT was studied by the method of Job's continuous variation, molar ratio method, Asmus' method and slope ratio method. It has been satisfactorily applied for the determination of zinc(II, when present alone or in presence of diverse ions, which are usually associated with zinc(II in pharmaceutical and biological samples. Various certified reference materials (NIST 1573, NBS 1572 and NIST SRM 8435 have been tested for the determination of zinc for evaluating the accuracy of the developed method. The results of the proposed method are in agreement with flame atomic absorption spectometry.

  8. Effect of manganese and potassium addition on CeO2-Al2O3 catalyst for hydrogenation of benzoic acid to benzaldehyde

    Institute of Scientific and Technical Information of China (English)

    CHENG; Dangguo; HOU; Chunyang; CHEN; Fengqiu; ZHAN; Xiaol

    2009-01-01

    A series of Mn/CeO2-Al2O3 and K/CeO2-Al2O3 catalysts for hydrogenation of benzoic acid to benzaldehyde were prepared to in-vestigate the effect of Mn, K addition on CeO2-Al2O3 catalyst. X-ray diffraction (XRD) and H2-temperature-programmed reduction (H2-TPR) results suggested that the interaction between CeO2 and MnOx enhanced the reducibility of catalysts and therefore benzoic acid conversion.The addition of K increased the number of basic number on the catalyst which leads to a high selectivity to benzaldehyde, but excessive addition imposed negative effects on the catalyst performance. A Mn-K/CeO2Al2O3 catalyst was developed and investigated in the reaction. The simul-taneous addition of Mn and K enhanced not only the catalytic activity but also the capacity to resist the coke formation over catalyst.

  9. [Application of gas chromatography-high resolution quadrupole time of flight mass spectrometry to the analysis of benzaldehyde, benzyl alcohol acetophenone and phenylacetaldehyde in complex aromatic samples].

    Science.gov (United States)

    Liu, Junyan; Cao, Zhe; Li, Jiwen; Wang, Zheming; Wang, Chuan; Gu, Songyuan

    2015-02-01

    The study focuses on the quantitative analytical characterization of benzaldehyde, benzyl alcohol, acetophenone and phenylacetaldehyde in complex aromatic samples by gas chromatography-high resolution quadrupole time of flight mass spectrometry (GC-QTOF MS). The four compounds in real sample were accurately qualified and quantified through a comprehensive analysis of the GC retention times and the accurate masses of the ion fragments obtained by the high resolution MS. The new method therefore effectively avoids the interference of the real sample substrate, which reduces the accuracy of the analysis results. The peak area of the characteristic ion fragment for each compound was used for quantitation calculation. The MS signal responses of the four compounds showed good linear relationships with the corresponding mass concentrations and the linear regression coefficients were greater than 0. 99. The method recoveries were 87. 97% - 103.01%. The limits of detection (LODs) were 0. 01, 0. 03, 0. 02 and 0. 01 mg/L for benzaldehyde, benzyl alcohol, acetophenone and phenylacetaldehyde respectively. The contents of the four compounds in three real samples were analyzed. The study provided a new strategy for oxygenate analysis in complex aromatic samples using GC-QTOF MS. By measuring the accurate masses, the new method reduces the reliance on chromatographic separation ability and makes up the shortcomings of the traditional GC-MS methods.

  10. Enzymatic reduction of 4-(dimethylamino)benzaldehyde with carrot bits (Daucus carota): a simple experiment for understanding biocatalysis; Reducao enzimatica do 4-(dimetilamino)benzaldeido com pedacos de cenoura (Daucus carota): um experimento simples na compreensao da biocatalise

    Energy Technology Data Exchange (ETDEWEB)

    Omori, Alvaro Takeo; Portas, Viviane Barbosa; Oliveira, Camila de Souza de, E-mail: alvaro.omori@ufabc.edu.br [Centro de Ciencias Naturais e Humanas, Universidade Federal do ABC, SP (Brazil)

    2012-07-01

    The present paper describes a simple, low-costly and environmentally friendly procedure for reduction of 4-(dimethylamino)benzaldehyde using carrot bits in water. This interdisciplinary experiment can be used to introduce the concepts of biocatalysis and green chemistry to undergraduate students. (author)

  11. OZONE REACTION WITH N-ALDEHYDES (N=4-10), BENZALDEHYDE, ETHANOL, ISOPROPANOL, AND N-PROPANOL ADSORBED ON A DUAL-BED GRAPHITIZED CARBON/CARBON MOLECULAR SIEVE ADSORBENT CARTRIDGE

    Science.gov (United States)

    Ozone reacts with n-aldehydes (n = 4 - 10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon/carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some samp...

  12. Microwave and traditional solvothermal syntheses, crystal structures, mass spectrometry and magnetic properties of Co(II)4O4 cubes.

    Science.gov (United States)

    Zhang, Kun; Dai, Jun; Wang, Yun-Hong; Zeng, Ming-Hua; Kurmoo, Mohamedally

    2013-04-21

    We report a study of the comparative solvothermal syntheses, using traditional and microwave ovens, of two complexes [Co4(μ3-OMe)4(L)4(MeOH)4], where (HL = Hhmb, 2-hydroxy-3-methoxy-benzaldehyde (1) or Hheb = 2-hydroxy-3-ethoxy-benzaldehyde (2)), their crystal structures and magnetic properties in the solid state and the ESI-MS of the solutions. The microwave heating is more efficient in time and quality of crystals than the traditional one where what is achieved per minute by the former takes an hour by the latter. The structures consist of stacks of high-symmetry [Co4(μ3-OMe)4] cubanes in tetragonal space groups. The inner cores of the clusters have almost the same geometry but the distances between them are longer for the ethoxy than the methoxy derivative. The magnetic interaction within the cluster is ferromagnetic in both cases but spin-orbit competes with it. The different isothermal magnetizations at low temperatures may be due to different intercluster coupling. Electrospray ionization mass spectrometry (ESI-MS) from methanol solution reveals an exchange of methoxide for hydroxide and in ethanol of methoxide for ethoxide at different proportions suggesting a probable "step by step" substitution. Interestingly, besides the [Co4] cubane a number of higher nuclearity species [Co5] and [Co7] were also observed but are not expected under electrospray conditions. This can easily happen by the re-assembly of the smaller fragments produced by ionization process. This unique feature opens up new possibilities for the systematic screening of reactions in search for new cluster architectures, which may then be realised in the solid state.

  13. Thiosemicarbazone Cu(II) and Zn(II) complexes as potential anticancer agents: syntheses, crystal structure, DNA cleavage, cytotoxicity and apoptosis induction activity.

    Science.gov (United States)

    Shao, Jia; Ma, Zhong-Ying; Li, Ang; Liu, Ya-Hong; Xie, Cheng-Zhi; Qiang, Zhao-Yan; Xu, Jing-Yuan

    2014-07-01

    Four novel thiosemicarbazone metal complexes, [Cu(Am4M)(OAc)]·H2O (1), [Zn(HAm4M)Cl2] (2), [Zn2(Am4M)2Br2] (3) and [Zn2(Am4M)2(OAc)2]·2MeOH (4) [HAm4M=(Z)-2-(amino(pyridin-2-yl)methylene)-N-methylhydrazinecarbothioamide], have been synthesized and characterized by X-ray crystallography, elemental analysis, ESI-MS and IR. X-ray analysis revealed that complexes 1 and 2 are mononuclear, which possess residual coordination sites for Cu(II) ion in 1 and good leaving groups (Cl(-)) for Zn(II) ion in 2. Both 3 and 4 displayed dinuclear units, in which the metal atoms are doubly bridged by S atoms of two Am4M(-) ligands in 3 and by two acetate ions in bi- and mono-dentate forms, respectively, in 4. Their antiproliferative activities on human epithelial cervical cancer cell line (HeLa), human liver hepatocellular carcinoma cell line (HepG-2) and human gastric cancer cell line (SGC-7901) were screened. Inspiringly, IC50 value (11.2±0.9 μM) of complex 1 against HepG-2 cells was nearly 0.5 fold of that against human hepatic cell lines LO2, showing a lower toxicity to human liver cells. Additionally, it displayed a stronger inhibition on the viability of HepG-2 cells than cisplatin (IC50=25±3.1 μM), suggesting complex 1 might be a potential high efficient antitumor agent. Furthermore, fluorescence microscopic observation and flow cytometric analysis revealed that complex 1 could significantly suppress HepG-2 cell viability and induce apoptosis. Several indexes, such as DNA cleavage, reactive oxygen species (ROS) generation, comet assay and cell cycle analysis indicated that the antitumor mechanism of complex 1 on HepG-2 cells might be via ROS-triggered apoptosis pathway. Copyright © 2014. Published by Elsevier Inc.

  14. Stability of the resistance to the thiosemicarbazone derived from 5,6-dimethoxy-1-indanone, a non-nucleoside polymerase inhibitor of bovine viral diarrhea virus.

    Directory of Open Access Journals (Sweden)

    Eliana F Castro

    Full Text Available Bovine viral diarrhea virus (BVDV is the prototype Pestivirus. BVDV infection is distributed worldwide and causes serious problems for the livestock industry. The thiosemicarbazone of 5,6-dimethoxy-1-indanone (TSC is a non-nucleoside polymerase inhibitor (NNI of BVDV. All TSC-resistant BVDV variants (BVDV-TSCr T1-5 present an N264D mutation in the NS5B gene (RdRp whereas the variant BVDV-TSCr T1 also presents an NS5B A392E mutation. In the present study, we carried out twenty passages of BVDV-TSCr T1-5 in MDBK cells in the absence of TSC to evaluate the stability of the resistance. The viral populations obtained (BVDV R1-5 remained resistant to the antiviral compound and conserved the mutations in NS5B associated with this phenotype. Along the passages, BVDV R2, R3 and R5 presented a delay in the production of cytopathic effect that correlated with a decrease in cell apoptosis and intracellular accumulation of viral RNA. The complete genome sequences that encode for NS2 to NS5B, Npro and Erns were analyzed. Additional mutations were detected in the NS5B of BVDV R1, R3 and R4. In both BVDV R2 and R3, most of the mutations found were localized in NS5A, whereas in BVDV R5, the only mutation fixed was NS5A V177A. These results suggest that mutations in NS5A could alter BVDV cytopathogenicity. In conclusion, the stability of the resistance to TSC may be due to the fixation of different compensatory mutations in each BVDV-TSCr. During their replication in a TSC-free medium, some virus populations presented a kind of interaction with the host cell that resembled a persistent infection: decreased cytopathogenicity and viral genome synthesis. This is the first report on the stability of antiviral resistance and on the evolution of NNI-resistant BVDV variants. The results obtained for BVDV-TSCr could also be applied for other NNIs.

  15. Synthesis of naphthalene-naphthol-benzaldehyde pitch resin%萘-萘酚-苯甲醛沥青树脂的合成研究

    Institute of Scientific and Technical Information of China (English)

    周广明; 赖仕全; 岳莉; 赵雪飞; 李小侠; 王荣荣

    2012-01-01

    Naphthalene -naphtho]-berzaldlehyde three components pitch resin has been synthesized by cationic polymerization in the presence of concentrated sulfuric acid, in which the naphtho] molecule was introduced lo the molecular chains of naphthalene -benzaldehyde two components pitch resin. The structure of the pitch resin obtained was characterized by Fourier transform infrared spectnoscopy (VI - IR). The effects of synthesis conditions on the properties of the pitch resin such as softening point, coking value and bond strength were investigated by single factor experiments. Experimental results showed that the suitable technology conditions of synthesizing the naphthalene-naphthol-benzaldehyde pilch resin were: the amount of subatance ratio of naphthalene, naphthol and benzaldehyde 0.67*0.33:1, the reaction temperature 160 ℃, the reaction time 300 min and the usage of catalyst 10%. Under the optimal conditions, the pitch resin exhibits the softening point of 87,5 ℃, coking value of 32.1% and the bond strength of 41.1. The naphthalene - naphthol - benzaldehyde three components pilch resin with different bond properties can be obtained by controlling the substance amount of naphthol in reaction system.%在浓硫酸的催化作用下,采用阳离子聚合法在萘-苯甲醛二元组分沥青树脂分子链上引入了萘酚分子,合成了萘-萘酚-苯甲醛三元组分沥青树脂.用FT-IR光谱仪表征了合成树脂的结构.通过单因素实验,考察了合成条件对沥青树脂软化点、结焦值和黏结强度等黏结性能的影响规律.实验结果表明,合成萘-萘酚-苯甲醛沥青树脂适宜的工艺条件:萘、萘酚和苯甲醛的物质的量比为0.67:0.33:1,反应温度为160℃,反应时间为300 min,催化剂用量为10%.在此条件下,合成沥青树脂的软化点为87.5℃,结焦值为32.1%,黏结强度为41.1.改变反应体系中萘酚的物质的量,能获得具有不同黏结性能的萘-萘酚-苯甲醛三元组分沥青树脂.

  16. Densities and volumetric properties of binary mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with benzaldehyde at T = (298.15 to 313.15) K

    Energy Technology Data Exchange (ETDEWEB)

    Gao Haiyan; Qi Feng [School of Chemical and Material Engineering, Jiangnan University, Road of Lihu, Wuxi, Jiangsu 214122 (China); Wang Haijun [School of Chemical and Material Engineering, Jiangnan University, Road of Lihu, Wuxi, Jiangsu 214122 (China)], E-mail: wanghj329@hotmail.com

    2009-07-15

    The densities of the binary mixtures formed by 1-butyl-3-methylimidazolium tetrafluoroborate [bmim][BF{sub 4}] with aromatic compound (benzaldehyde) have been determined over the full range of compositions at the temperature range from (298.15 to 313.15) K and at atmospheric pressure using a vibrating-tube densimeter (DMA4500). Excess molar volumes (V{sub m}{sup E}) have been obtained from these experimental results, and been fitted by the fourth-order Redlich-Kister equation. In addition, partial molar volumes, apparent molar volumes, and partial molar volumes at infinite dilution have been calculated for each component. Our results show V{sub m}{sup E} decreases slightly when temperature increases in the systems studied. The results have been interpreted in terms of ion-dipole interactions and structural factors of the ionic liquid and these organic molecular liquids.

  17. Synthesis, Physical Characterization of M(III Transition Metal Complexes Derived from Thiodihydrazide and 5-tert-Butyl-2-hydroxy-3-(3-phenylpent-3-yl Benzaldehyde

    Directory of Open Access Journals (Sweden)

    Gajendra Kumar

    2012-01-01

    Full Text Available A Schiff base ligand was synthesized by reacting 5-tert-butl-2-hydroxy-3-(3-phenylpent-3-yl benzaldehyde and thiodihydrazide (2:1 and a series of metal complexes with this new ligand were synthesized by reaction with Cr (III, Mn (III, and Fe (III metal salt in methanolic medium. The Schiff base ligand and its complexes have been characterized with the help of elemental analysis, conductance measurements, magnetic measurements and their structure configuration have been determined by various spectroscopic (electronic, IR, 1H NMR, 13C NMR, GCMS techniques. Electronic and magnetic moments of the complexes indicate that the geometries of the metal centers were octahedral. IR spectral data suggest that ligand behaves as a tetradentate ligand with ONNO donor sequence towards the metal ion.

  18. Inner-shell spectroscopy of benzaldehyde, terephthalaldehyde, ethyl benzoate, terephthaloyl chloride, and phosgene: Models for core excitation of poly(ethylene terephthalate)

    Energy Technology Data Exchange (ETDEWEB)

    Hitchcock, A.P.; Urquhart, S.G. [McMaster Univ., Ontario (Canada); Rightor, E.G. [Texas Polymer Centre, Freeport, TX (United States)

    1992-10-29

    Oscillator strengths for C 1s and O 1s excitation of terephthalaldehyde, benzaldehyde, and ethyl benzoate and C 1s, O 1s and Cl 2p excitation of terephthaloyl chloride and phosgene have been derived from electron energy loss spectra recorded under scattering conditions where electric dipole transitions dominate. Extended Hueckel molecular orbital (EHMO) calculations were used to aid interpretation of the core excitation spectra of these multifunctional organic molecules. The experimental molecular spectra and EHMO calculations were used to estimate the C 1s and O 1s core excitation spectra of poly(ethylene terephthalate) (PET). Comparisons to the C 1s and O 1s energy loss spectra of PET recorded in an electron microscope have demonstrated that gas-phase spectra and theoretical studies of molecular analogues are useful in interpreting the core excitation spectra of polymers. 48 refs., 14 figs., 13 tabs.

  19. Active-Site Engineering of Benzaldehyde Lyase Shows That a Point Mutation Can Confer Both New Reactivity and Susceptibility to Mechanism-Based Inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Gabriel S.; Kneen, Malea M.; Petsko, Gregory A.; Ringe, Dagmar; McLeish, Michael J. (Brandeis); (IUPUI)

    2010-02-11

    Benzaldehyde lyase (BAL) from Pseudomonas putida is a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the breakdown of (R)-benzoin. Here we report that a point mutant, BAL A28S, not only catalyzes the decarboxylation of benzoylformate but, like benzoylformate decarboxylase (BFDC), is also inactivated by the benzoylformate analogues methyl benzoylphosphonate (MBP) and benzoylphosphonate (BP). The latter has no effect on wild-type BAL, and the inactivation of the A28S variant is shown to result from phosphorylation of the newly introduced serine residue. This lends support to the proposal that an appropriately placed nucleophile facilitates the expulsion of carbon dioxide from the active site in many ThDP-dependent decarboxylases.

  20. A closed concept of extractive whole cell microbial transformation of benzaldehyde into L-phenylacetylcarbinol by Saccharomyces cerevisiae in novel polyethylene-glycol-induced cloud-point system.

    Science.gov (United States)

    Wang, Zhilong; Liang, Rui; Xu, Jian-He; Liu, Yubo; Qi, Hanshi

    2010-03-01

    Extractive microbial transformation of benzaldehyde into L-phenylacetylcarbinol (L-PAC) by Saccharomyces cerevisiae (Baker's yeast) has been carried out in a novel polyethylene-glycol-induced cloud-point system (PEG-CPS). The extractive microbial transformation in the PEG-CPS and a downstream process for stripping of the product from the microbial transformation broth with microemulsion extraction are demonstrated. The results indicate that the PEG-CPS maintains the advantage of CPS for in situ extraction of polar product in the microbial transformation. At the same time, the utilization of hydrophilic nonionic surfactant in the PEG-CPS is favorable for stripping of product from the nonionic surfactant in the microbial transformation broth by Winsor I microemulsion extraction. Thus, a closed concept of in situ extraction of polar product in microbial transformation and its downstream process of product recovery are fulfilled at the same time.

  1. MCM-41 supported 12-tungstophosphoric acid mesoporous materials: Preparation, characterization, and catalytic activities for benzaldehyde oxidation with H2O2

    Science.gov (United States)

    Chen, Ya; Zhang, Xiao-Li; Chen, Xi; Dong, Bei-Bei; Zheng, Xiu-Cheng

    2013-10-01

    Mesoporous molecular sieves MCM-41 and bulk 12-tungstophosphoric acid (HPW) were synthesized and employed to prepare 5-45 wt.% HPW/MCM-41 mesoporous materials. Characterization results suggested the good dispersion of HPW within MCM-41 when the loading of HPW was less than 35 wt.% and HPW/MCM-41 retained the typical mesopore structure of the supports. The results of the catalytic oxidation of benzaldehyde to benzoic acid with 30% H2O2, in the absence of any organic solvent and co-catalysts, indicated that HPW/MCM-41 was an efficient catalyst and 30 wt.% HPW/MCM-41 sample exhibited the highest catalytic activity among these materials.

  2. A Helical Polyphenylacetylene Having Amino Alcohol Moieties Without Chiral Side Groups as a Chiral Ligand for the Asymmetric Addition of Diethylzinc to Benzaldehyde.

    Science.gov (United States)

    Liu, Lijia; Long, Qing; Aoki, Toshiki; Zhang, Geng; Kaneko, Takashi; Teraguchi, Masahiro; Zhang, Chunhong; Wang, Yudan

    2015-08-01

    One-handed helical polyphenylacetylenes having achiral amino alcohol moieties, but no chiral side groups, were synthesized by the helix-sense-selective copolymerization of an achiral phenylacetylene having an amino alcohol side group with a phenylacetylene having two hydroxyl groups. Since the resulting helical copolymers were successfully utilized as chiral ligands for the enantioselective alkylation of benzaldehyde with diethylzinc, we can conclude that the main-chain chirality based on the one-handed helical conformation is useful for the chiral catalysis of an asymmetric reaction for the first time. The enantioselectivities of the reaction were controlled by the optical purities of the helical polymer ligands. In addition, the polymer ligands could be easily recovered by precipitation after the reaction.

  3. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn{sub 2}S{sub 4} microspheres under visible light irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zhixin, E-mail: czx@fzu.edu.cn [State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002 (China); Xu, Jingjing; Ren, Zhuyun [State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); He, Yunhui; Xiao, Guangcan [State Key Laboratory Breeding Base of Photocatalysis, College of Chemistry and Chemical Engineering, Fuzhou University, Fuzhou 350002 (China); Instrumental Measurement and Analysis Center, Fuzhou University, Fuzhou 350002 (China)

    2013-09-15

    Hexagonal ZnIn{sub 2}S{sub 4} samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet–visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption–desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn{sub 2}S{sub 4} microspheres. The visible light photocatalytic activities of the ZnIn{sub 2}S{sub 4} have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn{sub 2}S{sub 4} prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn{sub 2}S{sub 4} prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn{sub 2}S{sub 4} is proposed and discussed. - Graphical abstract: Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. The high visible photocatalytic activities of ZnIn{sub 2}S{sub 4} were evaluated by selective oxidation of benzyl alcohol to benzaldehyde under mild conditions. Display Omitted - Highlights: • Marigold-like ZnIn{sub 2}S{sub 4} microspheres were synthesized by a solvothermal method. • The solvents have a remarkably influence on the morphology and properties of samples. • It is the first time to apply ZnIn{sub 2}S{sub 4} for selective oxidation of benzyl alcohol. • ZnIn{sub 2}S{sub 4} shows high photocatalytic activity for selective oxidation of benzyl alcohol.

  4. Structural, spectral, electrochemistry, thermal properties and theoretical studies on 4-[N, N-di(4-tolyl)amino] benzaldehyde-2-chloro benzoylhydrazone

    Science.gov (United States)

    Lizeng, Liu; Wei, Li; Xianfang, Meng; Dongzhi, Liu; Gongfeng, Xu; Zhengchen, Bai

    2014-11-01

    The title compound 4-[N, N-di(4-tolyl)amino] benzaldehyde-2-chloro benzoylhydrazone (C28H24ClN3O, Mr = 453.96) was synthesized by the reaction of 4-[N, N-di(4-tolyl)amino] benzaldehyde with 2-chlorobenzohydrazide, and its structure was characterized by IR, 1H NMR, 13H NMR, high-resolution mass spectrometry and single-crystal X-ray diffraction. The crystal belongs to Monoclinic, space group P2(1)/n with a = 12.626(3), b = 12.609(3), c = 15.837(3) Å, β = 90.00(3)°, Z = 5, V = 2512.5(9) Å3, Mr = 453.95, Dc = 1.280 g/cm3, μ = 0.183 mm-1, F(0 0 0) = 1024, R = 0.0432 and wR = 0.1087. X-ray analysis revealed that one of the benzene ring and acylhydrazone were essentially planar, the 2-chloro benzene ring and amide were non-planar, the torsion angles C(1)sbnd C(6)sbnd C(7)sbnd O(1) and C(5)sbnd C(6)sbnd C(7)sbnd O(1) are 61.4(5)° and -114.4(4)°. The thermal stability studies indicate that the title compound is stable up to 341.1 °C. The spectral, electrochemistry properties and theoretical studies show that the title compound is a good candidate for the charge-transporting materials.

  5. Synthesis, structure and antifungal activity of thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) and nickel(II), copper(II) and cadmium(II) complexes: unsymmetrical coordination mode of nickel complex.

    Science.gov (United States)

    Alomar, Kusaï; Landreau, Anne; Allain, Magali; Bouet, Gilles; Larcher, Gérald

    2013-09-01

    The reaction of nickel(II), copper(II) chlorides and cadmium(II) chloride and bromide with thiophene-2,3-dicarboxaldehyde bis(thiosemicarbazone) (2,3BTSTCH2) leads to a series of new complexes: [Ni(2,3BTSTCH)]Cl, [Cu(2,3BTSTC)], [CdCl2(2,3BTSTCH2)] and [CdBr2(2,3BTSTCH2)]. The crystal structures of the ligand and of [Ni(2,3BTSTCH)]Cl complex have been determined. In this case, we remark an unusual non-symmetrical coordination mode for the two functional groups: one acting as a thione and the second as a deprotonated thiolate. All compounds have been tested for their antifungal activity against human pathogenic fungi: Candida albicans, Candida glabrata and Aspergillus fumigatus, the cadmium complexes exhibit the highest antifungal activity. Cytotoxicity was evaluated using two biological methods: human MRC5 cultured cells and brine shrimp Artemia salina bioassay.

  6. Study on Complexes of 2-Acetylpyridene Thiosemicarbazone with Cu (Ⅱ) and Their Antibacterial Activities%2-乙酰吡啶缩氨基硫脲铜配合物的合成及其抑菌活性研究

    Institute of Scientific and Technical Information of China (English)

    宋兴民

    2002-01-01

    The complexes[CuLX](X=Br,I,NCS) of 2-acetylpyridine thiosemicarbazone(HL) have been isolated and characterized by elemental analyses, molar conductance, magnetic moment and IR spectra. Antibacterial activities of ligand and complexes have been evaluated against S. aureus,B. sugtilis and E. coli.%合成了2-乙酰呲啶缩氨基硫脲与铜Cu(Ⅱ)配合物[CuLX](X=Br,I,NCS),并通过元素分析、摩尔电导、磁矩和红外光谱进行了表征.抑菌实验研究表明,配合物的活性明显高于配体本身,且[CuLI]对三种细菌完全抑制.

  7. Solid phase extraction of Cd, Cu, and Ni from leafy vegetables and plant leaves using amberlite XAD-2 functionalized with 2-hydroxy-acetophenone-thiosemicarbazone (HAPTSC) and determination by inductively coupled plasma atomic emission spectroscopy.

    Science.gov (United States)

    Rao, G Purna Chandra; Seshaiah, Kalluru; Rao, Yerra Koteswara; Wang, M C

    2006-04-19

    A method for solid phase extraction of trace metals, namely, Cd, Cu, and Ni, using Amberlite XAD-2 functionalized with a new chelating ligand, 2-hydroxy-acetophenone-3-thiosemicarbazone (Amberlite XAD-2-HAPTSC), has been developed. The optimum experimental conditions for the quantitative sorption of three metals, pH, effect of flow rate, concentration of eluent, sorption capacity, kinetics of sorption, and the effect of diverse ions on the sorption of analytes have been investigated. The chelating resin could be reused for more than 20 cycles of sorption-desorption without any significant change (<1.5%). The accuracy of the proposed procedure was evaluated by standard reference materials. The proposed method was applied for the determination of trace metal ions in leafy vegetable samples collected from different sources and medicinal plant leaves.

  8. Efficient and versatile catalysis of N-alkylation of heterocyclic amines with alcohols and one-pot synthesis of 2-aryl substituted benzazoles with newly designed ruthenium(II) complexes of PNS thiosemicarbazones.

    Science.gov (United States)

    Ramachandran, Rangasamy; Prakash, Govindan; Selvamurugan, Sellappan; Viswanathamurthi, Periasamy; Malecki, Jan Grzegorz; Ramkumar, Venkatachalam

    2014-06-07

    Ruthenium(II) carbonyl complexes with phosphine-functionalized PNS type thiosemicarbazone ligands [RuCl(CO)(EPh3)(L)] (1-6) (E = P or As, L = 2-(2-(diphenylphosphino)benzylidene) thiosemicarbazone (PNS-H), 2-(2-(diphenylphosphino)benzylidene)-N-methylthiosemicarbazone (PNS-Me), 2-(2-(diphenylphosphino)benzylidene)-N-phenylthiosemicarbazone (PNS-Ph)) have been synthesized and characterized by elemental analysis and spectroscopy (IR, UV-Vis, (1)H, (13)C, (31)P-NMR) as well as ESI mass spectrometry. The molecular structures of complexes 1, 2 and 6 were identified by means of single-crystal X-ray diffraction analysis. The analysis revealed that all the complexes possess a distorted octahedral geometry with the ligand coordinating in a uni-negative tridentate PNS fashion. All the ruthenium complexes (1-6) were tested as catalyst for N-alkylation of heteroaromatic amines with alcohols. Notably, complex 2 was found to be a very efficient and versatile catalyst towards N-alkylation of a wide range of heterocyclic amines with alcohols. Complex 2 can also catalyze the direct amination of 2-nitropyridine with benzyl alcohol to the corresponding secondary amine. Furthermore, a preliminary examination of performance for N,N-dialkylation of diamine showed promising results, giving good conversion and high selectivity. In addition, N-alkylation of ortho-substituted anilines (-NH2, -OH and -SH) led to the one-pot synthesis of 2-aryl substituted benzimidazoles, benzoxazoles and benzothiazoles, also revealing the catalytic activity of complex 2.

  9. Characterization of the anti tumoral activity of the thiosemicarbazones derived from N(4)-methyl-tolyl-2acetylpyridine And 2-pyridinoformamide and its metal complex: evaluation of the radiopharmaceutical potential; Caracterizacao da atividade antitumoral das tiossemicarbazonas derivadas de N(4)-metil-toluil-2-acetilpiridina e 2-piridinoformamida e seus complexos metalicos: avaliacao do potencial radiofarmaceutico

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Paulo Roberto Ornelas da

    2008-07-01

    Thiosemicarbazones have attracted great pharmacological interest because of their biological properties, such as cytotoxic activity against multiple strains of human tumors. The most studied compounds are pyridine-based because of their resemblance to pyridoxal metabolites that attach to co-enzyme B{sub 6}-dependant enzymes. This work aimed the characterization of the anti tumoral effect of N(4)-methyl-tolyl-2-acetylpyridine and 2-pyridinoformamide-derived thiosemicarbazones and the development of a radiopharmaceutical based on a thiosemicarbazone metal complex for positron emission tomography. In the first phase of this study were synthesized twenty-one thiosemicarbazones, derived from N(4)methyl-2 acetylpyridine and 2-pyridine formamide, as well as their metal complexes (Sn, Ga and Cu). Their cytotoxic potential were evaluated against brain and breast tumor cells in vitro. Our results showed all of them presented powerful cytotoxic and antiproliferative activities against glioblastoma multiform and breast adenocarcinoma at very low concentrations (nanomolar range). Morphological alterations characteristic of apoptosis, such as cell shrinkage, chromatin condensation were observed. Copper chloride was used as control and has presented IC50 at millimolar range suggesting that copper complexation with thiosemicarbazone significantly increases (more than 1 million) the anti tumoral effect of this metal. Due to the potent anti tumoral activity of N(4)-methyl-tolyl-2-acetylpyridine derived thiosemicarbazones and the excellent properties of {sup 64}Cu (T{sub 1/2} = 12.7 hours, {beta}{sup +}, {beta}{sup -}, and EC decay), at the second part for this work it was developed a new imaging agent (radiopharmaceutical) for tumor detection by positron emission tomography (PET). The radiopharmaceuticals were produced in the nuclear reactor TRIGA-IPR-R1 from CDTN, via neutron capture reaction {sup 63}Cu (n,{gamma}) {sup 64}Cu, of the copper complex N(4)-ortho-toluyl-2

  10. 苯甲醛在光催化反应中氧化还原选择性的理论研究%Theoretical Study on the Selective Redox Mechanism of Benzaldehyde in Photo-catalyzed Reaction†

    Institute of Scientific and Technical Information of China (English)

    黄晓; 甘汉麟; 彭亮; 顾凤龙

    2016-01-01

    采用密度泛函理论方法在 M06-2X/6-311G*水平上模拟了不同反应条件下, TiO2对苯甲醛的光催化还原和氧化的反应。计算结果表明,苯甲醛的光催化还原和氧化反应均可在常温下发生;在缺氧但有乙醇存在的条件下,乙醇分子可与氧化性物质发生反应,生成醇自由基,苯甲醛主要发生光催化还原反应生成苯甲醇;在有氧气但无乙醇存在条件下,还原性的光生电子被氧气捕获,避免了苯甲醛被还原,主要发生光催化氧化反应生成苯甲酸。%The photoelectron and photohole could be generated on the surface of TiO2 under the UV irradiation. Some reactive species could be produced indirectly. The photoelectron could be trapped by oxygen leading to yield the superoxide anion radicals, while the photohole can react with the solvent molecules to generate the hydroxyl radical and alcohol radical. The substrate may be reduced by the photoelectron directly, or by alcohol radicals. And it may be oxidized by the photohole directly, or by the reactive species of hydroxyl radicals and superoxide anion radicals. The M06-2X/ 6-311G* method was employed to investigate the selective redox mechanism of benzaldehyde in solution, which was reduced or oxidized by the reactive species generated during the photo-catalyzed process in different reaction conditions. According to the computation results, the photo-redox reaction of benzaldehyde would be happened in room temperature. In oxygen-free ethanol solvent, the ethanol molecules could react with the oxidizing species to yield the alcohol radicals, while benzaldehyde could be mainly reduced to benzyl alcohol. In oxygen-rich without ethanol condition, the reductive photoelectron is trapped by oxygen to prohibit the reduction of benzaldehyde, so benzaldehyde is mainly oxidized to benzoic acid.

  11. Ab-initio and DFT calculations on molecular structure, NBO, HOMO-LUMO study and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde.

    Science.gov (United States)

    Rocha, Mariana; Di Santo, Alejandro; Arias, Juan Marcelo; Gil, Diego M; Ben Altabef, Aída

    2015-02-05

    The experimental and theoretical study on the molecular structure and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde (DMABA) is presented. The IR and Raman spectra were recorded in solid state. Optimized geometry, vibrational frequencies and various thermodynamic parameters of the title compound were calculated using DFT methods and are in agreement with the experimental values. A detailed interpretation of the IR and Raman spectra of the title compound were reported. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using NBO analysis and AIM approach. The HOMO and LUMO analysis were used to determine the charge transfer within the molecule and some molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, hardness, softness and global electrophilicity index. The TD-DFT approach was applied to assign the electronic transitions observed in the UV-visible spectrum measured experimentally. Molecular electrostatic potential map was performed by the DFT method. According to DSC measurements, the substance presents a melting point of 72.34°C and decomposes at temperatures higher than 193°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Continuous irradiation induced luminescence from benzophenone, 4,4{prime}-dichlorobenzophenone, and 4-(dimethylamino)benzaldehyde in solid environments and its pressure dependence

    Energy Technology Data Exchange (ETDEWEB)

    Dreger, Z.A.; Drickamer, H.G. [Univ. of Illinois, Urbana, IL (United States)

    1997-02-20

    We report a strong emission change induced by continuous light irradiation in two ketones, benzophenone and 4,4{prime}-dichlorobenzophenone, and an aldehyde, 4-(dimethylamino)benzaldehyde, in their crystalline state as well as dissolved in solid polymers. With prolonged laser irradiation, a time evolution of the emission intensity shows complex features, but two clear competing trends can be distinguished: an increase and/or decrease of the emission intensity. It is shown that these trends may be a result of creation of either an emissive or a nonemissive species. The relative importance of these two pathways is significantly dependent on the type of medium and external pressure. The most characteristic feature of these dependencies is the fact that in crystalline environments, in contrast to polymers, the emission intensity at all pressures only decreases. A kinetic model is developed that assumes the lowest triplet state as the origin of the high photoreactivity of these molecules, causing their emission intensity change. This model embraces the observations either in crystalline or polymeric environments and is solved for two limiting cases: a predominance of the hydrogen abstraction reaction from the polymer or a predominance of the ionization due to biphotonic excitation of the triplet state. These processes are assumed responsible, respectively, for the creation of emissive and nonemissive photoproducts. 29 refs., 19 figs., 2 tabs.

  13. Ursolic acid benzaldehyde chalcone leads to inhibition of cell proliferation and arrests cycle in G1/G0 phase in ovarian cancer

    Directory of Open Access Journals (Sweden)

    Yan Jia

    2015-06-01

    Full Text Available In the present study, the effect of ursolic acid benzaldehyde chalcone (UABC on ovarian carcinoma cells was studied. The results revealed that ovarian carcinoma cells on UABC treatment increased Sub-G1 cell population, increased rate of cell apoptosis and morphological changes in mitochondrial membrane. In OVCAR 432 cells treatment with UABC increased the Sub-G1 cell population to 72.3% and growth inhibition rate of >72%. Treatment with 20 µM of UABC for 48 hours, led to an induction of apoptosis in 67.2% and induced morphological changes in OVCAR 432 cells. The Western blot results showed high concentration of cytochrome c in the cell cytosol after 48 hours of UABC treatment. Treatment of RMS-13 cells with UABC resulted in inhibition of GLI1, GLI2, PTCH1, and IGF2 genes. In addition, we found a significant reduction in hedgehog activity of RMS-13 cells after UABC treatment by means of a hedgehog-responsive reporter assay. Therefore, UABC can be a promising agent for the treatment of ovarian carcinoma.

  14. The influence of reduction methods and conditions on the activity of alumina-supported platinum catalysts for the liquid phase hydrogenation of benzaldehyde in ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Arai, M.; Obata, A.; Nishiyama, Y. [Tohoku Univ., Sendai (Japan)

    1997-02-01

    The activities of supported metal catalysts depend on various preparation variables, including the method of reduction. A variety of reduction procedures can be applied to the preparation of supported metal catalysts. Previously, the authors used a solid-liquid reduction by sodium tetrahydroborate solution for preparing supported platinum catalysts. In this reduction, platinum precursors adsorbed on supports were brought into contact with the reducing solution. The alumina-supported platinum catalysts prepared in this way were found to display interesting activities in the liquid-phase hydrogenation of {alpha},{beta}-unsaturated aldehydes; they were highly selective to the formation of unsaturated alcohols. The selective hydrogenation of C=O bonds of {alpha},{beta}-unsaturated aldehydes is difficult to achieve with platinum catalysts without using some additives like tin and iron. The maximum temperature that the supported platinum catalysts went through was 110{degrees}C, required for the removal of water. This thermal history is a possible reason for the catalytic activity observed. Following those observations, in the present work, the authors have further examined the influence of reduction procedures by using hydrazine as well as sodium tetrahydroborate and different temperatures common during gas-phase reduction with hydrogen. The catalytic activity has been tested by the liquid-phase hydrogenation of benzaldehyde (BAL) in ethanol under mild conditions. 12 refs., 3 figs.

  15. Extractive spectrophotometric determination of copper(II in water and alloy samples with 3-methoxy-4-hydroxy benzaldehyde-4-bromophenyl hydrazone (3,4-MHBBPH

    Directory of Open Access Journals (Sweden)

    D. REKHA

    2007-03-01

    Full Text Available A facile, sensitive and selective extractive spectrophotometricmethod was developed for the determination of copper(II in various water and alloy samples using a newly synthesized reagent, 3-methoxy-4-hydroxy benzaldehyde 4-bromophenyl hydrazone (3,4-MHBBPH. Copper(II forms a orange colored complex with (3,4-MHBBPH in acetate buffermedium (pH 4 which increases the sensitivity and the complexwas extracted into chloroform. Under optimum conditions, the maximum absorption of the chloroform extract was measured at 462 nm. The Beer law was obeyed in the range of 0.20 to 4.0 mg ml-1 of copper. The molar absorptivity and the Sandell's sensitivity of the complex were 2.0520 ´ 104 mol-1 cm-1 and 0.2540 mg cm-2, respectively. The detection limit was found to be 0.0270 mg mL-1. Adetailed study of various interfering ions made the method more sensitive. The method was successfully applied for the determination of Cu(II in water and alloy samples. The performance of the present method was evaluated in terms of Student 't' test and Variance ratio 'f ' test, which indicate the significance of the present method over reported methods.

  16. Effect of environment on pressure-induced emission of benzophenone, 4,4{prime}-dichlorobenzophenone, and 4-(dimethylamino)benzaldehyde in solid media

    Energy Technology Data Exchange (ETDEWEB)

    Dreger, Z.A.; Drickamer, H.G. [Univ. of Illinois, Urbana, IL (United States)

    1997-02-20

    The pressure-induced emission of three aromatic carbonyls - benzophenone (BP), 4,4{prime}-dichlorobenzophenone (DCBP), and 4-(dimethylamino)benzaldehyde (DMABA) - dissolved in solid polymers and also in their crystalline state has been studied. Under pressure all compounds dissolved in polymers reveal a significant enhancement of the luminescence emission in the low-pressure region. The degree of increase is strongly dependent on the type of polymer. DMABA exhibits both fluorescence and phosphorescence, whereas BP and DCBP molecules show only phosphorescence. For all these molecules a model based on the increase with increasing pressure of the amount of {pi},{pi}{sup *} character in the initially predominately n,{pi}{sup *} triplet state is proposed to account for the observed increase of the emission intensity. In the case of DMABA it is proposed that the increase of the {pi},{pi}{sup *} character in the triplet state increases the emission intensity in two concurrent steps: by an increase of the radiative rate from the triplet state and by a decrease of the intersystem crossing rate between singlet and triplet states. The first factor increases phosphorescence intensity, and the second one effects the fluorescence. In the case of BP and DCBP, where the intersystem crossing process is very fast, the increase of pressure increases mainly the radiative rate of the lowest triplet state. 22 refs., 8 figs.

  17. Crystal Structures of Two Calix[4]arene Isomers with Benzaldehyde Moiety and Their Photophysical Properties with Terbium(Ⅲ) Ions

    Institute of Scientific and Technical Information of China (English)

    王浩; 张衡益; 刘育

    2005-01-01

    Two calix[4]arene isomers with benzaldehyde moieties, i.e., 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(o-formyl-phenoxy)ethoxy]-26,28-dihydroxycalix[4]arene (3) and 5,11,17,23-tetra-tert-butyl-25,27-bis[2-(p-formylphenoxy)-ethoxy]-26,28-dihydroxycalix[4]arene (4), were synthesized according to a newly designed route in high yields, and their crystal structures have been determined by X-ray crystallographic study. The photophysical behavior on complexation of calix[4]arene derivatives 3 and 4 with terbium(Ⅲ) nitrate was investigated in anhydrous acetonitrile at 25℃ by UV-Vis and fluorescence spectroscopies. The crystallographic structure of 3 indicated that the eight oxygen atoms formed a preorganized ionophoric cavity due to intramolecular π-π stacking, which could encapsulate lanthanide ions tightly. In sharp contrast, the compound 4 formed a linear array by intermolecular π-π stacking, hence the oxygen atoms of pendant arms could not coordinate with metal ions, giving a poor binding ability to Tb3+. The absorption spectra of 3 with Tb3+ showed clearly a new broad intense absorption at 385nm. Interestingly, the narrow emission line spectrum has also been observed for compound 3 with Tb3+, and the results obtained were discussed from the viewpoint of energy transfer mechanism between host structures and the properties of lanthanide ions.

  18. Investigation of antitumor potential of Ni(II) complexes with tridentate PNO acylhydrazones of 2-(diphenylphosphino)benzaldehyde and monodentate pseudohalides.

    Science.gov (United States)

    Čobeljić, Božidar; Milenković, Milica; Pevec, Andrej; Turel, Iztok; Vujčić, Miroslava; Janović, Barbara; Gligorijević, Nevenka; Sladić, Dušan; Radulović, Siniša; Jovanović, Katarina; Anđelković, Katarina

    2016-04-01

    Square-planar azido Ni(II) complex with condensation product of 2-(diphenylphosphino)benzaldehyde and Girard's T reagent was synthesized and its crystal structure was determined. Cytotoxic activity of the azido complex and previously synthesized isothiocyanato, cyanato and chlorido Ni(II) complexes with this ligand was examined on six tumor cell lines (HeLa, A549, K562, MDA-MB-453, MDA-MB-361 and LS-174) and two normal cell line (MRC-5 and BEAS-2B). All the investigated nickel(II) complexes were cytotoxic against all tumor cell lines. The newly synthesized azido complex showed selectivity to HeLa and A549 tumor cell lines compared to the normal cells (for A549 IC50 was similar to that of cisplatin). Azido complex interferes with cell cycle phase distribution of A549 and HeLa cells and possesses nuclease activity towards supercoiled DNA. The observed selectivity of the azido complex for some tumor cell lines can be connected with its strong DNA damaging activity.

  19. High efficient photocatalytic selective oxidation of benzyl alcohol to benzaldehyde by solvothermal-synthesized ZnIn2S4 microspheres under visible light irradiation

    Science.gov (United States)

    Chen, Zhixin; Xu, Jingjing; Ren, Zhuyun; He, Yunhui; Xiao, Guangcan

    2013-09-01

    Hexagonal ZnIn2S4 samples have been synthesized by a solvothermal method. Their properties have been determined by X-ray diffraction, ultraviolet-visible-light diffuse reflectance spectra, field emission scanning electron microscopy, nitrogen adsorption-desorption and X-ray photoelectron spectra. These results demonstrate that ethanol solvent has significant influence on the morphology, optical and electronic nature for such marigold-like ZnIn2S4 microspheres. The visible light photocatalytic activities of the ZnIn2S4 have been evaluated by selective oxidation of benzyl alcohol to benzaldehyde using molecular oxygen as oxidant. The results show that 100% conversion along with >99% selectivity are reached over ZnIn2S4 prepared in ethanol solvent under visible light irradiation (λ>420 nm) of 2 h, but only 58% conversion and 57% yield are reached over ZnIn2S4 prepared in aqueous solvent. A possible mechanism of the high photocatalytic activity for selective oxidation of benzyl alcohol over ZnIn2S4 is proposed and discussed.

  20. Ab-initio and DFT calculations on molecular structure, NBO, HOMO-LUMO study and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde

    Science.gov (United States)

    Rocha, Mariana; Di Santo, Alejandro; Arias, Juan Marcelo; Gil, Diego M.; Altabef, Aída Ben

    2015-02-01

    The experimental and theoretical study on the molecular structure and a new vibrational analysis of 4-(Dimethylamino) Benzaldehyde (DMABA) is presented. The IR and Raman spectra were recorded in solid state. Optimized geometry, vibrational frequencies and various thermodynamic parameters of the title compound were calculated using DFT methods and are in agreement with the experimental values. A detailed interpretation of the IR and Raman spectra of the title compound were reported. The stability of the molecule arising from hyper-conjugative interactions and charge delocalization has been analyzed using NBO analysis and AIM approach. The HOMO and LUMO analysis were used to determine the charge transfer within the molecule and some molecular properties such as ionization potential, electron affinity, electronegativity, chemical potential, hardness, softness and global electrophilicity index. The TD-DFT approach was applied to assign the electronic transitions observed in the UV-visible spectrum measured experimentally. Molecular electrostatic potential map was performed by the DFT method. According to DSC measurements, the substance presents a melting point of 72.34 °C and decomposes at temperatures higher than 193 °C.

  1. Synthesis, spectroscopic investigations and computational study of 4-((9,10-dioxo-9,10-dihydroanthracen-1-yl)oxy)benzaldehyde

    Science.gov (United States)

    Kanaani, A.; Ajloo, D.; Kiyani, H.; Farahani, M.

    2014-04-01

    The molecular structure, vibrational frequencies, corresponding vibrational assignments of 4-((9,10-dioxo-9,10-dihydroanthracen-1-yl)oxy)benzaldehyde in “trans” and “ana” forms have been investigated by UV-Vis, FT-IR and NMR spectroscopy as well as density functional theory (DFT) B3LYP method with 6-311++G(d,p) basis set. The vibrational analysis of the two forms of cited compound was performed by means of infrared absorption spectroscopy in combination with theoretical simulations. The obtained geometrical parameters and wavenumbers of vibrational normal modes from the DFT method were in good consistency with the experimental values. The 1H and 13C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by GIAO method. Computed molecular orbital and time dependent DFT oscillator renderings agree closely with experimental observations. The stability of the molecule arising from hyper-conjugative interaction and charge delocalization has been analyzed using NBO analysis. In order to predict the reactive sites, a molecular electrostatic potential map (MEP) for the title compound was obtained. Transition structures were calculated by QST3 and IRC methods which yielded the potential energy surface and activation energy.

  2. 2,4-dihydroxy benzaldehyde derived Schiff bases as small molecule Hsp90 inhibitors: rational identification of a new anticancer lead.

    Science.gov (United States)

    Dutta Gupta, Sayan; Revathi, B; Mazaira, Gisela I; Galigniana, Mario D; Subrahmanyam, C V S; Gowrishankar, N L; Raghavendra, N M

    2015-04-01

    Hsp90 is a molecular chaperone that heals diverse array of biomolecules ranging from multiple oncogenic proteins to the ones responsible for development of resistance to chemotherapeutic agents. Moreover they are over-expressed in cancer cells as a complex with co-chaperones and under-expressed in normal cells as a single free entity. Hence inhibitors of Hsp90 will be more effective and selective in destroying cancer cells with minimum chances of acquiring resistance to them. In continuation of our goal to rationally develop effective small molecule azomethines against Hsp90, we designed few more compounds belonging to the class of 2,4-dihydroxy benzaldehyde derived imines (1-13) with our validated docking protocol. The molecules exhibiting good docking score were synthesized and their structures were confirmed by IR, (1)H NMR and mass spectral analysis. Subsequently, they were evaluated for their potential to suppress Hsp90 ATPase activity by Malachite green assay. The antiproliferative effect of the molecules were examined on PC3 prostate cancer cell lines by adopting 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay methodology. Finally, schiff base 13 emerged as the lead molecule for future design and development of Hsp90 inhibitors as anticancer agents.

  3. Thiosemicarbazones as Aedes aegypti larvicidal.

    Science.gov (United States)

    da Silva, João Bosco P; Navarro, Daniela Maria do A F; da Silva, Aluizio G; Santos, Geanne K N; Dutra, Kamilla A; Moreira, Diogo Rodrigo; Ramos, Mozart N; Espíndola, José Wanderlan P; de Oliveira, Ana Daura T; Brondani, Dalci José; Leite, Ana Cristina L; Hernandes, Marcelo Zaldini; Pereira, Valéria R A; da Rocha, Lucas F; de Castro, Maria Carolina A B; de Oliveira, Beatriz C; Lan, Que; Merz, Kenneth M

    2015-07-15

    A set of aryl- and phenoxymethyl-(thio)semicarbazones were synthetized, characterized and biologically evaluated against the larvae of Aedes aegypti (A. aegypti), the vector responsible for diseases like Dengue and Yellow Fever. (Q)SAR studies were useful for predicting the activities of the compounds not included to create the QSAR model as well as to predict the features of a new compound with improved activity. Docking studies corroborated experimental evidence of AeSCP-2 as a potential target able to explain the larvicidal properties of its compounds. The trend observed between the in silico Docking scores and the in vitro pLC50 (equals -log LC50, at molar concentration) data indicated that the highest larvicidal compounds, or the compounds with the highest values for pLC50, are usually those with the higher docking scores (i.e., greater in silico affinity for the AeSCP-2 target). Determination of cytotoxicity for these compounds in mammal cells demonstrated that the top larvicide compounds are non-toxic.

  4. Di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes multidrug resistance by a novel mechanism involving the hijacking of lysosomal P-glycoprotein (Pgp).

    Science.gov (United States)

    Jansson, Patric J; Yamagishi, Tetsuo; Arvind, Akanksha; Seebacher, Nicole; Gutierrez, Elaine; Stacy, Alexandra; Maleki, Sanaz; Sharp, Danae; Sahni, Sumit; Richardson, Des R

    2015-04-10

    Multidrug resistance (MDR) is a major obstacle in cancer treatment. More than half of human cancers express multidrug-resistant P-glycoprotein (Pgp), which correlates with a poor prognosis. Intriguingly, through an unknown mechanism, some drugs have greater activity in drug-resistant tumor cells than their drug-sensitive counterparts. Herein, we investigate how the novel anti-tumor agent di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT) overcomes MDR. Four different cell types were utilized to evaluate the effect of Pgp-potentiated lysosomal targeting of drugs to overcome MDR. To assess the mechanism of how Dp44mT overcomes drug resistance, cellular studies utilized Pgp inhibitors, Pgp silencing, lysosomotropic agents, proliferation assays, immunoblotting, a Pgp-ATPase activity assay, radiolabeled drug uptake/efflux, a rhodamine 123 retention assay, lysosomal membrane permeability assessment, and DCF (2',7'-dichlorofluorescin) redox studies. Anti-tumor activity and selectivity of Dp44mT in Pgp-expressing, MDR cells versus drug-sensitive cells were studied using a BALB/c nu/nu xenograft mouse model. We demonstrate that Dp44mT is transported by the lysosomal Pgp drug pump, causing lysosomal targeting of Dp44mT and resulting in enhanced cytotoxicity in MDR cells. Lysosomal Pgp and pH were shown to be crucial for increasing Dp44mT-mediated lysosomal damage and subsequent cytotoxicity in drug-resistant cells, with Dp44mT being demonstrated to be a Pgp substrate. Indeed, Pgp-dependent lysosomal damage and cytotoxicity of Dp44mT were abrogated by Pgp inhibitors, Pgp silencing, or increasing lysosomal pH using lysosomotropic bases. In vivo, Dp44mT potently targeted chemotherapy-resistant human Pgp-expressing xenografted tumors relative to non-Pgp-expressing tumors in mice. This study highlights a novel Pgp hijacking strategy of the unique dipyridylthiosemicarbazone series of thiosemicarbazones that overcome MDR via utilization of lysosomal Pgp transport activity.

  5. 3-methylcyclohexanone thiosemicarbazone: determination of E/Z isomerization barrier by dynamic high-performance liquid chromatography, configuration assignment and theoretical study of the mechanisms involved by the spontaneous, acid and base catalyzed processes.

    Science.gov (United States)

    Carradori, Simone; Cirilli, Roberto; Dei Cicchi, Simona; Ferretti, Rosella; Menta, Sergio; Pierini, Marco; Secci, Daniela

    2012-12-21

    Here, we report on the simultaneous direct HPLC diastereo- and enantioseparation of 3-methylcyclohexanone thiosemicarbazone (3-MCET) on a polysaccharide-based chiral stationary phase under normal-phase conditions. The optimized chromatographic system was employed in dynamic HPLC experiments (DHPLC), as well as detection technique in a batch wise approach to determine the rate constants and the corresponding free energy activation barriers of the spontaneous, base- and acid-promoted E/Z diastereomerization of 3-MCET. The stereochemical characterization of four stereoisomers of 3-MCET was fully accomplished by integrating the results obtained by chemical correlation method with those derived by theoretical calculations and experimental investigations of circular dichroism (CD). As a final goal, a deepened analysis of the perturbing effect exercised by the stationary phase on rate constant values measured through DHPLC determinations as a function of the chromatographic separation factor α of the interconverting species was successfully accomplished. This revealed quite small deviations from the equivalent kinetic values obtained by off-column batch wise procedure, and suggested a possible effective correction of rate constants measured by DHPLC approach.

  6. The preparation and characterization of Cu(II complexes with N,N’,N”,N’”-tetrakis(2-pyridylmethyl-1,4,8,11-tetraazacyclotetradecane and 2,6-diacetylpyridine bis(semi/thiosemicarbazones

    Directory of Open Access Journals (Sweden)

    GORDANA VUCKOVIC

    2004-03-01

    Full Text Available Two new Cu(II mixed-ligand complexes with octadentate N,N’,N”,N’”-tetrakis(2-pyridylmethyl-1,4,8,11-tetraazacyclotetradecane (tpmc and potentially pentadentate ligands 2,6-diacetylpyridine bis(semicarbazone (DAPsc2 or 2,6-diacetylpyridine bis(thiosemicarbazone (DAPtsc2 were prepared. The general formulas: [Cu4 DAPsc2(tpmc2]ClO48·5CH3COCH3·H2O and [Cu2 DAPtsc2(tpmc](ClO44·7C2H5OH were proposed on the basis of elemental analyses and conductometric measurements. The complexes were characterized by magnetic measurement, electronic absorption and IR spectroscopy. For the dinuclear complex, an exo coordination of Cu(II with four nitrogens from tpmc and m-bonded DAPtsc2 through sulfurs and possibly terminal hydrazinic (azomethine nitrogens is assumed. For the tetranuclear complex, it is supposed that one DAPsc2 bridges two [Cu2 tpmc]4+ units using oxygens and terminal hydrazinic nitrogens as ligators. Finally, some antibacterial activity of the complexes was found.

  7. Mn(II), Co(II), Zn(II), Fe(III) and U (VI) complexes of 2-acetylpyridine 4N-(2-pyridyl) thiosemicarbazone (HAPT); structural, spectroscopic and biological studies

    Science.gov (United States)

    El-Ayaan, Usama; Youssef, Magdy M.; Al-Shihry, Shar

    2009-11-01

    The present work carried out a study on transition metal ion complexes which have been synthesized from 2-acetylpyridine 4N-(2-pyridyl) thiosemicarbazone (HAPT) 1. These complexes namely [Zn(HAPT)Cl 2] 2, [Mn (HAPT)Cl 2] 3, [Co (HAPT)Cl 2] 4, [Fe(APT)Cl 2(H 2O)] 5 and [UO 2(HAPT)(OAc) 2] 6, were characterized by elemental analysis, spectral (IR, 1H NMR and UV-vis) and magnetic moment measurements. Thermal properties and decomposition kinetics of all compounds are investigated. The interpretation, mathematical analysis and evaluation of kinetic parameters ( E, A, Δ H, Δ S and Δ G) of all thermal decomposition stages have been evaluated using Coats-Redfern equation. The biochemical studies showed that, complexes 3 and 6 have powerful and complete degradation effect on the both DNA and protein. The SOD-like activity exhibited that complex 3 has a strong antioxidative properties. The antibacterial screening demonstrated that, the free ligand (HAPT), complexes 2, 3 and 6 have the maximum and broad activities against Gram-positive and Gram-negative bacterial strains.

  8. Synthesis and Characterization of Novel Cu(II, Pd(II and Pt(II Complexes with 8-Ethyl-2-hydroxytricyclo(7.3.1.02,7tridecan-13-one-thiosemicarbazone: Antimicrobial and in Vitro Antiproliferative Activity

    Directory of Open Access Journals (Sweden)

    Elena Pahonțu

    2016-05-01

    Full Text Available New Cu(II, Pd(II and Pt(II complexes, (Cu(L(H2O2(OAc (1, (Cu(HL(H2O2(SO4 (2, (Cu(L(H2O2(NO3 (3, (Cu(L(H2O2(ClO4 (4, (Cu(L2(H2O2 (5, (Pd(L(OAcH2O (6, and (Pt(L2 (7 were synthesized from 8-ethyl-2-hydroxytricyclo(7.3.1.02,7tridecan-13-one thiosemicarbazone (HL. The ligand and its metal complexes were characterized by IR, 1H-NMR, 13C-NMR, UV-Vis, FAB, EPR, mass spectroscopy, elemental and thermal analysis, magnetic susceptibility measurements and molar electric conductivity. The free ligand and the metal complexes have been tested for their antimicrobial activity against E. coli, S. enteritidis, S. aureus, E. faecalis, C. albicans and cytotoxicity against the NCI-H1573 lung adenocarcinoma, SKBR-3 human breast, MCF-7 human breast, A375 human melanoma and HL-60 human promyelocytic leukemia cell lines. Copper complex 2 exhibited the best antiproliferative activities against MCF-7 human breast cancer cells. A significant inhibition of malignant HL-60 cell growth was observed for copper complex 2, palladium complex 6 and platinum complex 7, with IC50 values of 1.6 µM, 6.5 µM and 6.4 µM, respectively.

  9. 超声辐射下水溶液中离子液体催化合成芳醛缩氨基硫脲%Synthesis of aromatic aldehyde thiosemicarbazones catalyzed by ionic liquid in water under ultrasound irradiation

    Institute of Scientific and Technical Information of China (English)

    刘卉闵; 崔鹏雷; 魏俊萍; 张冬暖; 张英群

    2013-01-01

    A series of aromatic aldehyde thiosemicarbazones were synthesized by the condensation reactions of aromatic aldehydes with thiosemicarbazide in water with 3-methyl-l-(3-sulfopropyl)-imidazolium trifluoro acetate as catalyst under ultrasound irradiation.The yields were ranged from 60.0%-95.0%.The structures of the products were confirmed by 1HNMR spectroscopy,IR and elemental analysis.The Bronsted acidic ionic liquid could be recycled easily.It is shown that the proposed method is easy,efficient and environmental friendly.%在超声波辐射下水相中以酸性甲基咪唑丙烷磺酸-三氟乙酸离子液体催化芳醛和氨基硫脲进行反应,合成了系列芳醛缩氨基硫脲衍生物,产率为60.0%~95.0%.产物结构经1 HNMR,IR,元素分析表征,该反应具有反应时间短、产率高、环境友好、后处理方便、催化剂可回收重复使用的优点.

  10. Effects of the aldehyde dehydrogenase inhibitor disulfiram on the plasma pharmacokinetics, metabolism, and toxicity of benzaldehyde dimethane sulfonate (NSC281612, DMS612, BEN) in mice

    Science.gov (United States)

    Parise, Robert A.; Beumer, Jan H.; Clausen, Dana M.; Rigatti, Lora H.; Ziegler, Judy A.; Gasparetto, Maura; Smith, Clayton A; Eiseman, Julie L.

    2013-01-01

    Purpose Benzaldehyde dimethane sulfonate (DMS612, NSC281612, BEN) is an alkylator with activity against renal cell carcinoma, currently in phase I trials. In blood, BEN is rapidly metabolized into its highly reactive carboxylic acid (BA), presumably the predominant alkylating species. We hypothesized that BEN is metabolized to BA by aldehyde dehydrogenase (ALDH) and aimed to increase BEN exposure in blood and tissues by inhibiting ALDH with disulfiram thereby shifting BA production from blood to tissues. Methods Female CD2F1 mice were dosed with 20 mg/kg BEN iv alone or 24 h after 300 mg/kg disulfiram ip. BEN, BA and metabolites were quantitated in plasma and urine, and toxicities were assessed. Results BEN had a plasma t½ <5 min and produced at least 12 products. The metabolite half-lives were <136 min. Disulfiram increased BEN plasma exposure 368-fold, (AUC0-inf from 0.11 to 40.5 mg/L•min), while plasma levels of BA remained similar. Urinary BEN excretion increased (1.0% to 1.5% of dose) while BA excretion was unchanged. Hematocrit, white blood cells counts and %lymphocytes decreased after BEN administration. Co-administration of disulfiram appeared to enhance these effects. Profound liver pathology was observed in mice treated with disulfiram and BEN. Conclusions BEN plasma concentrations increased after administration of disulfiram, suggesting that ALDH mediates the rapid metabolism of BEN in vivo, which may explain the increased toxicity seen with BEN after administration of disulfiram. Our results suggest that the co-administration of BEN with drugs that inhibit ALDH or to patients that are ALDH deficient may cause liver damage. PMID:24061865

  11. Core-Shell Structural CdS@SnO₂ Nanorods with Excellent Visible-Light Photocatalytic Activity for the Selective Oxidation of Benzyl Alcohol to Benzaldehyde.

    Science.gov (United States)

    Liu, Ya; Zhang, Ping; Tian, Baozhu; Zhang, Jinlong

    2015-07-01

    Core-shell structural CdS@SnO2 nanorods (NRs) were fabricated by synthesizing SnO2 nanoparticles with a solvent-assisted interfacial reaction and further anchoring them on the surface of CdS NRs under ultrasonic stirring. The morphology, composition, and microstructures of the obtained samples were characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and nitrogen adsorption-desorption. It was found that SnO2 nanoparticles can be tightly anchored on the surface of CdS NRs, and the thickness of SnO2 shells can be conveniently adjusted by simply changing the addition amount of SnO2 quantum dots. UV-vis diffuse reflectance spectrum indicated that SnO2 shell layer also can enhance the visible light absorption of CdS NRs to a certain extent. The results of transient photocurrents and photoluminescence spectra revealed that the core-shell structure can effectively promote the separation rate of electron-hole pairs and prolong the lifetime of electrons. Compared with the single CdS NRs, the core-shell structural CdS@SnO2 exhibited a remarkably enhanced photocatalytic activity for selective oxidation of benzyl alcohol (BA) to benzaldehyde (BAD) under visible light irradiation, attributed to the more efficient separation of electrons and holes, improved surface area, and enhanced visible light absorption of core-shell structure. The radical scavenging experiments proved that in acetonitrile solution, ·O2- and holes are the main reactive species responsible for BA to BAD transformation, and the lack of ·OH radicals is favorable to obtaining high reaction selectivity.

  12. Co-ETS-10 and Co-AM-6 as active catalysts for the oxidation of styrene to styrene oxide and benzaldehyde using molecular oxygen

    Institute of Scientific and Technical Information of China (English)

    Shuvo Jit Datta; Kyung Byung Yoon

    2015-01-01

    Pristine ETS-10 and AM-6 and their Co2+-exchanged forms were prepared, and their catalytic activi-ties toward the oxidation of styrene in oxygen atmosphere were studied in dimethylformamide. The catalysts were denoted as Co-E10-n (n=0, 9, 26, 68, 81) and Co-A6-m (m=0, 8, 23, 63, 79), where n and m denote the degree of Co2+exchange. The products of the oxidation process were identified as styrene epoxide (E) and benzaldehyde (B). Both the pristine forms, ETS-10 (Co-E10-0) and AM-6 (Co-A6-0), and Co2+-exchanged forms displayed catalytic activities. With increasing n or m, the con-version, and hence the rate, increased. Specifically, the rates varied from 6.1 to 12.5 mmol·g−1·h−1 with increasing n (Co-E10-n catalysts) and from 5.4 to 12.4 mmol·g−1·h−1 with increasing m (Co-A6-m catalysts). In contrast, the E/B ratio decreased with increasing n or m. More specifically, the E/B ratio decreased from 2.1 to 0.1 with increasing n from 0 to 81 (Co-E10-n catalysts) and from 1.3 to 0.1 with increasing m from 0 to 79 (Co-A6-m catalysts). Co-E10-9 displayed the highest E yield and Co-A6-79 generated the highest B yield. The highest turnover frequency obtained was 36.3 Co−1·h−1, which was the highest one obtained among those obtained for the Co2+-exchanged zeolites and mesoporous silica reference materials studied in this work.

  13. Application of the extended real associated solution (ERAS) theory to excess molar enthalpies of benzaldehyde + 1-alkanols (C{sub 1} to C{sub 5}) at T = 298.15 K

    Energy Technology Data Exchange (ETDEWEB)

    Iloukhani, H., E-mail: iloukhani@basu.ac.ir [Department of Physical Chemistry, Faculty of Chemistry, University of Bu-Ali Sina, Hamedan 65174 (Iran, Islamic Republic of); Fattahi, M. [Department of Physical Chemistry, Faculty of Chemistry, University of Bu-Ali Sina, Hamedan 65174 (Iran, Islamic Republic of)

    2011-11-15

    Highlights: > Enthalpy of binary mixtures of {l_brace}benzaldehyde + 1-alkanols{r_brace} (C{sub 1} to C{sub 5}) determined. > Excess molar enthalpy, partial molar enthalpy, and intermolecular interaction functions were calculated. > Excess molar enthalpy was correlated as a function of mole fraction by using the Redlich-Kister equation. > The experimental results have been used to test the applicability of the ERAS-model, Wilson and NRTL equations. - Abstract: This paper reports excess molar enthalpies, H{sub m}{sup E}, for the binary mixtures of {l_brace}1-alkanols (2), namely, {l_brace}methanol, ethanol, 1-propanol, 1-butanol, and 1-pentanol{r_brace} with benzaldehyde (1){r_brace} at T = 298.15 K at ambient pressure over a whole range of mole fraction. The sign of H{sub m}{sup E} for all systems are positive and the magnitude of H{sub m}{sup E} values with increasing of chain length, increase. The Redlich-Kister polynomial equation was used to correlate H{sub m}{sup E}. The excess partial molar enthalpies of benzaldehyde, H{sub m,1}{sup E}, excess partial molar enthalpies of 1-alkanols (C{sub 1} to C{sub 5}), H{sub m,2}{sup E}, and excess partial molar enthalpies at infinite dilution, H{sub m,i}{sup E,0}, are calculated according to experimental excess molar enthalpies and Redlich-Kister polynomial equation. The extracted date were used to evaluated the so-called intermolecular interaction functions {partial_derivative}H{sub m,i}{sup E}/{partial_derivative}x{sub i} and {partial_derivative}H{sub m,i}{sup E}/{partial_derivative}x{sub j} in terms of enthalpy. The ERAS, Wilson and NRTL models have been applied for describing the H{sub m}{sup E}.

  14. Synthesis, characterization, and thermal stability of novel poly(azomethine-urethane)s and polyphenol derivatives derived from 2,4-dihydroxy benzaldehyde and toluene-2,4-diisocyanate

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, Ismet, E-mail: kayaismet@hotmail.com [Canakkale Onsekiz Mart University, Faculty of Sciences and Arts, Department of Chemistry, 17020, Canakkale (Turkey); Avc Latin-Small-Letter-Dotless-I , Ali [Celal Bayar University, Faculty of Sciences and Arts, Department of Chemistry, 45040, Manisa (Turkey)

    2012-03-15

    Graphical abstract: Black-Right-Pointing-Triangle Synthesis, characterization, and thermal stability of novel poly(azomethine-urethane)s and polyphenol derivatives derived from 2,4-dihydroxy benzaldehyde and toluene-2,4-diisocyanate. Highlights: Black-Right-Pointing-Pointer New pol(azomethine-urethane)s were synthesized. Black-Right-Pointing-Pointer PAMUs were converted to their polyphenol species by oxidative polymerization reaction with NaOCl. Black-Right-Pointing-Pointer The synthesized compounds were characterized by solubility tests, TGA and DSC. Black-Right-Pointing-Pointer T{sub g} values of PAMUs were between 137 and 178 Degree-Sign C and thermal stabilities of them were very good. Black-Right-Pointing-Pointer Obtained compounds can be promising candidates for aerospace applications. - Abstract: Up to date, only a few kinds of poly(azomethine-urethane)s (PAMUs) were synthesized and studied with thermal degradation steps. However, polyphenol based PAMUs including azomethine linkages have not been investigated yet. The polyurethanes were prepared by condensation reaction of 2,4-dihydroxybenzaldehyde (2,4-DHBA) with toluene-2,4-diisocyanate (TDI) under argon atmosphere. Synthesized polyurethane was converted to its poly(azomethine urethane) species (TP-2AP, TP-3AP, and TP-4AP) by graft copolymerization reactions with amino phenols (2-amino phenol, 3-amino phenol, and 4-amino phenol). Obtained poly(azomethine urethane)s were converted to their polyphenol species (P-TP-2AP, P-TP-3AP, and P-TP-4AP) by oxidative polymerization reaction (OP) using NaOCl as the oxidant. The structures of the obtained compounds were confirmed by FT-IR, UV-vis, {sup 1}H NMR, and {sup 13}C NMR techniques. The molecular weight distribution parameters of the synthesized compounds were determined by the size exclusion chromatography (SEC). The synthesized compounds were also characterized by solubility tests, TG-DTA, and DSC. Fluorescence measurements were carried out in various

  15. Comparative study of Palladium (II using 4-Hydroxy 3, 5 dimethoxy benzaldehyde 4-hydroxy benzoyl hydrazone and Cinnamaldehyde 4-hydroxy benzoylhydrazone in presence of micellar medium by Spectrophotometry

    Directory of Open Access Journals (Sweden)

    D.Gopala Krishna,

    2010-09-01

    Full Text Available Two simple, sensitive, rapid and selective spectrophotometric methods have been developed for the determination of Palladium (II using newly synthesized reagents 4-Hdroxy3,5dimethoxy benzaldehyde-4-hydroxybenzoylhydrazone (HDMBHBH and Cinnamaldehyde 4-hydroxy benzoylhydrazone (CMHBH in presence of neutral surfactant TritonX-100-5% (micellar medium. Palladium (II forms a brown coluored water-soluble complex with HDMBHBH and CMHBH-in the pH range 1.0-6.0. The Pd (II-HDMBHBH complex shows maximum absorbance at max 373 nm in the pH range 3.0-4.0 and Pd (II-CMHBH shows at max 375 nm in thepH range 4.0-5.0. At these wavelengths (max, the complex shows maximum absorbance while the reagent blanks shows negligible absorbance. Hence, analytical studies were carried out at max 373 nm at pH 3.0 for HDMBHBH and 375 nm at pH 4.0 for CMHBH against reagent blanks. Beer's law is obeyed in the range 0.106-1.064 μg ml-1 and the optimum concentration range from ringbom plot is 0.212-0.957 g/ml of Palladium (II for both reagents. The molar absorptivity and Sandell's sensitivity for the coloured solution were found to be 7.5 x 104 L mol-1 cm-1 and 0.0015-μg. cm-2 for HDMBHBH, 6.0x104L mol-1 cm-1 , and 0.0017 -μg. cm-2 for CMHBH respectively. The interference effects of various diverse ions have been studied. Palladium (II forms 1:1 complex with HDMBHBH and CMHBH stoichiometry with stability constant 7.29 x 106 for HDMBHBH and 3.55 x 106 for CMHBH. The standard deviation in the determination of 0.638-μg ml-1 of Palladium (II is 0.003 for HDMBHBH and 0.008 for CMHBH. The Relative standard deviation is 0.71% for HDMBHBH and 2.5% for CMHBH. First and second order derivative spectroscopic methods were developed at max 422 nm and 444 nm for HDMBHBH and at 402 nm and438 nm for CMHBH respectively, for the determination of Palladium (II, which is more sensitive than the zero order method. The developed method has been employed for the determination of

  16. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione.

    Science.gov (United States)

    Singh, Ajay K; Pandey, O P; Sengupta, S K

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L=monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2(')(OOCCH3)2(H2O)2](L'=neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, (1)H NMR, and (13)C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.

  17. Ozone reaction with n-aldehydes (n=4-10), benzaldehyde, ethanol, isopropanol, and n-propanol adsorbed on a dual-bed graphitized carbon-carbon molecular sieve adsorbent cartridge.

    Science.gov (United States)

    McClenny, W A; Colón, M; Oliver, K D

    2001-09-21

    Ozone reacts with n-aldehydes (n=4-10), benzaldehyde, ethanol, isopropanol and n-propanol adsorbed on a dual-bed graphitized carbon-carbon molecular sieve adsorbent cartridge. Destruction of n-aldehydes increases with n number and with ozone concentration. In some sampling experiments both generation and destruction of n-aldehydes by ozone are observed. In field experiments the results of sample analysis for n-aldehydes and benzaldehyde are frequently not proportional to sample volume whereas results for toluene and isoprene, and sometimes for total carbon, are. A simple theory is developed to simulate the net result of three processes: the adsorption of compounds from an air stream onto a solid adsorbent, the generation of compounds by reaction of ozone with materials upstream of or on the adsorbent, and the destruction by ozone of pre-existing compounds and compounds adsorbed from the sample stream. The use of distributed volume pairs is recommended as a way to identify loss of sample integrity during air monitoring experiments.

  18. Determination of human serum semicarbazide-sensitive amine oxidase activity via flow injection analysis with fluorescence detection after online derivatization of the enzymatically produced benzaldehyde with 1,2-diaminoanthraquinone.

    Science.gov (United States)

    El-Maghrabey, Mahmoud H; Kishikawa, Naoya; Ohyama, Kaname; Imazato, Takahiro; Ueki, Yukitaka; Kuroda, Naotaka

    2015-06-30

    A fast, simple, and sensitive flow injection analysis method was developed for the measurement of semicarbazide-sensitive amine oxidase (SSAO) activity in human serum. Benzaldehyde, generated by the action of SSAO after incubation of serum with benzylamine, was derivatized with a novel aromatic aldehyde-specific reagent (1,2-diaminoanthraquinone) and the fluorescent product was measured by fluorescence detection at excitation and emission wavelengths of 390 and 570nm, respectively. Serum SSAO activity was defined as benzaldehyde (nmol) formed per milliliter serum per hour. The method was linear over SSAO activity of 0.2-150.0nmolmL(-1)h(-1) with a detection limit of 0.06nmolmL(-1)h(-1). The %RSD of intra-day and inter-day precision did not exceed 9.4% and the accuracy ranged from -6.5 to -0.6%. The method was applied for the determination of the serum SSAO activity in healthy controls (C, n=24) and diabetes mellitus patients (DM, n=18). It was demonstrated that the activity (mean±SE) of SSAO in diabetics sera was significantly higher than that in healthy subjects' ones (DM; 73.3±1.8nmolmL(-1)h(-1)vs C; 58.9±2.2nmolmL(-1)h(-1), P<0.01).

  19. Synthesis, spectral and antimicrobial activity of Zn(II) complexes with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde/2-hydroxyacetophenone/indoline-2,3-dione

    Science.gov (United States)

    Singh, Ajay K.; Pandey, O. P.; Sengupta, S. K.

    2013-09-01

    Zn(II) complexes have been synthesized by reacting zinc acetate with Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/benzaldehyde/indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non electrolytes. Elemental analyses suggest that the complexes have 1:2 metal to ligands stoichiometry of the types [ZnL2(H2O)2](L = monoanionic Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and 2-hydroxyacetophenone/indoline-2,3-dione) [ZnL2‧(OOCCH3)2(H2O)2](L‧ = neutral Schiff bases derived from 2-hydrazino-5-[substituted phenyl]-1,3,4-thiadiazole and benzaldehyde), and they were characterized by IR, 1H NMR, and 13C NMR. Particle sizes of synthesized compounds were measured with dynamic light scattering (DLS) analyser which indicates that particle diameter are of the range ca. 100-200 nm. All these Schiff bases and their complexes have also been screened for their antibacterial (Bacillus subtilis (B. subtilis), Escherichia coli (E. coli) and antifungal activities (Colletotrichum falcatum (C. falcatum), Aspergillus niger (A. niger), Fusarium oxysporium (F. oxysporium) Curvularia pallescence (C. pallescence). The antimicrobial activities have shown that upon complexation the activity increases.

  20. The DFT study on the reaction between benzaldehyde and 4-amine-4H-1,2,4-triazole and their derivatives as a source of stable hemiaminals and Schiff bases. Effect of substitution and solvation on the reaction mechanism.

    Science.gov (United States)

    Berski, Slawomir; Gordon, Agnieszka J; Ciunik, Leszek Zbigniew

    2015-03-01

    Reaction mechanism for the benzaldehyde (ald) and 4-amine-4H-1,2,4-triazole (4at) has been investigated at the DFT (B3LYP)/6-31+G(d) computational level. Three transition states (TS) have been identified. The TS1 corresponds to hydrogen transfer from the NH2 group to the C = O bond and nucleophillic attack of the carbon atom from the aldehyde group on the nitrogen atom from the NH2 group in 4at. The result of this reaction is the hemiaminal molecule. The TS2 characterises an internal rearrangement of the benzene and triazole rings in the hemiaminal molecule. The TS3 leads to breaking of the O-H bond, the elimination reaction of the H2O molecule, and formation of the C=N bond. The final product of this reaction is a Schiff base. In order to determine the most favorable conditions for hemiaminal formation, the influence of electronic structure modification on the energetic properties during the reaction of benzaldehyde and 4-amine-4H-1,2,4-triazole has been studied. Thirteen substituents: NH2, OH, OCH3, CH3, F, I, Cl, Br, COH, COOH, CF3, CN, NO2, with different Hammett's constant values (σ = -0.66-+0.78) have been considered. Finally, the reaction mechanism has been investigated in the presence of 1 to 5 water molecules.

  1. Evaluation of the potential application of 2-acetylpyridine N4- phenyl thiosemicarbazones derivatives for cancer therapy and diagnosis; Avaliacao da potencial aplicacao de derivados de 2-acetilpiridina N-4 fenil tiossemicarbazonas em terapia e diagnostico oncologico

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Marcella Araugio

    2013-08-01

    Despite the wide range of antineoplastic agents available, resistance of some types of cancer and toxicity to normal cells have been identified as the main causes of treatment failure and death. The lack of early and precise diagnosis is also responsible for reducing survival of cancer patients. In this context, the development of substances with low toxicity and therapeutic potential and/or diagnosis purpose, is the major tool in an attempt to increase the survival of patients and assure the safety and efficacy of treatment. Thiosemicarbazones (TSC) are a class of synthetic compounds that have several biological activities, including antitumor. Although several studies have shown the great potential of TSC as therapeutic and / or diagnostic agents, different chemical modifications performed on this class of molecules indicate new possibilities for applications and still require further studies. The objective of this study was to evaluate the potential applicability of 2-acetylpyridine N-4-phenyl thiosemicarbazones derivatives for cancer therapy and diagnosis. The results showed that all 13 TSC tested were cytotoxic to breast and glioblastoma tumor cell lines, presenting higher in vitro antitumor activity than etoposide, an antineoplastic and inhibitor of topoisomerase II frequently used for cancer therapy. The TSC that have halogen or nitro on ortho position showed higher antitumor activity in vitro than their isomers with halogen or nitro on meta or para position of the phenyl group. H2Ac4oFPh and H2Ac4oClPh compounds showed the highest antitumor activity among all tested compounds, with IC{sub 50} in nanomolar order. These TSC induced cell death by apoptosis and oxidative stress was responsible, at least in part, for this type of cell death. The 5 mg.kg{sup -1} H2Ac4oFPh dose, administered s.c., for 4 consecutive days, did not induce important toxicity; however, the same treatment protocol was not effective for tumor growth reduction in an animal model of brain

  2. N(4)-tolyl-2-acetylpyridine thiosemicarbazones and their platinum(II,IV) and gold(III) complexes: cytotoxicity against human glioma cells and studies on the mode of action.

    Science.gov (United States)

    Ferraz, Karina S O; Da Silva, Jeferson G; Costa, Flávia M; Mendes, Bruno M; Rodrigues, Bernardo L; dos Santos, Raquel G; Beraldo, Heloisa

    2013-10-01

    Complexes [Au(2Ac4oT)Cl][AuCl2] (1), [Au(Hpy2Ac4mT)Cl2]Cl·H2O (2), [Au(Hpy2Ac4pT)Cl2]Cl (3), [Pt(H2Ac4oT)Cl]Cl (4), [Pt(2Ac4mT)Cl]·H2O (5), [Pt(2Ac4pT)Cl] (6) and [Pt(L)Cl2OH], L = 2Ac4mT (7), 2Ac4oT (8), 2Ac4pT (9) were prepared with N(4)-ortho- (H2Ac4oT), N(4)-meta- (H2Ac4mT) and N(4)-para- (H2Ac4pT) tolyl-2-acetylpyridine thiosemicarbazone. The cytotoxic activities of all compounds were assayed against U-87 and T-98 human malignant glioma cell lines. Upon coordination cytotoxicity improved in 2, 5 and 8. In general, the gold(III) complexes were more cytotoxic than those with platinum(II,IV). Several of these compounds proved to be more active than cisplatin and auranofin used as controls. The gold(III) complexes probably act by inhibiting the activity of thioredoxin reductase enzyme whereas the mode of action of the platinum(II,IV) complexes involves binding to DNA. Cells treated with the studied compounds presented morphological changes such as cell shrinkage and blebs formation, which indicate cell death by apoptosis induction.

  3. Synthesis and evaluation of in vivo antioxidant, in vitro antibacterial, MRSA and antifungal activity of novel substituted isatin N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazones.

    Science.gov (United States)

    Thanh, Nguyen Dinh; Giang, Nguyen Thi Kim; Quyen, Tran Ha; Huong, Doan Thi; Toan, Vu Ngoc

    2016-11-10

    Some new isatin N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazones 4a-t with different substituents at 1-, 5- and 7-positions of isatin ring have been synthesized by reaction of N-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)thiosemicarbazide 2 with corresponding isatins 3a-t. Compounds 4a-t were evaluated in vivo for antioxidant activity and in vitro for anti-microorganism activities. The MIC values were found for Gram positive bacteria (MIC = 1.56-6.25 μM), for Gram negative bacteria (MIC = 12.5 μM), and for fungi Aspergillus niger (MIC = 3.12-12.5 μM), Fusarium oxysporum (MIC = 6.25-12.5 μM) and Saccharomyces cerevisiae (MIC = 6.25-12.5 μM). Regarding the antioxidant activity, the SOD, GHS-Px and catalase activities of 4c-i and 4m-r were MIC = 10.57-10.85, 0.27-0.93 and 345.45-399.75 unit/mg protein, respectively. Compounds 4e-h had MIC values of 0.78, 1.56, and 3.12 μM for three clinical MRSA isolates. Compound 4e showed the selective cytotoxic effects against some cancer (LU-1, HepG2, MCF7, P338, SW480, KB) cell lines and normal fibroblast cell line NIH/3T3.

  4. Lysosomal membrane stability plays a major role in the cytotoxic activity of the anti-proliferative agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT).

    Science.gov (United States)

    Gutierrez, Elaine M; Seebacher, Nicole A; Arzuman, Laila; Kovacevic, Zaklina; Lane, Darius J R; Richardson, Vera; Merlot, Angelica M; Lok, Hiu; Kalinowski, Danuta S; Sahni, Sumit; Jansson, Patric J; Richardson, Des R

    2016-07-01

    The potent and selective anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), localizes in lysosomes and forms cytotoxic copper complexes that generate reactive oxygen species (ROS), resulting in lysosomal membrane permeabilization (LMP) and cell death. Herein, the role of lysosomal membrane stability in the anti-tumor activity of Dp44mT was investigated. Studies were performed using molecules that protect lysosomal membranes against Dp44mT-induced LMP, namely heat shock protein 70 (HSP70) and cholesterol. Up-regulation or silencing of HSP70 expression did not affect Dp44mT-induced LMP in MCF7 cells. In contrast, cholesterol accumulation in lysosomes induced by the well characterized cholesterol transport inhibitor, 3-β-[2-(diethyl-amino)ethoxy]androst-5-en-17-one (U18666A), inhibited Dp44mT-induced LMP and markedly and significantly (peffect of U18666A in increasing lysosomal cholesterol and preventing the cytotoxic activity of Dp44mT was not due to induced autophagy. Instead, U18666A was found to decrease lysosomal turnover, resulting in autophagosome accumulation. Moreover, preincubation with U18666A did not prevent the ability of Dp44mT to induce autophagosome synthesis, indicating that autophagic initiation via Dp44mT occurs independently of LMP. These studies demonstrate the significance of lysosomal membrane stability in relation to the ability of Dp44mT to execute tumor cell death and overcome pro-survival autophagy. Hence, lysosomal-dependent cell death induced by Dp44mT serves as an important anti-tumor strategy. These results are important for comprehensively understanding the mechanism of action of Dp44mT.

  5. 对甲基苯甲醛改性煤沥青的改性机理研究%STUDY ON MODIFITION MECHANISM OF THE MODIFIED COAL TAR PITCH WITH 4-METHYL BENZALDEHYDE

    Institute of Scientific and Technical Information of China (English)

    宋士华; 魏健宁; 马明亮

    2007-01-01

    以对甲基苯甲醛(4-methyl benzaldehyde,简称4-MB)为改性剂,在对甲苯磺酸(PTS)的作用下对煤沥青(Coal Tar Pitch)进行了改性研究.采用傅立叶红外光谱(FT-IR)和核磁共振氢谱(1H-NMR)对煤沥青改性机理进行分析;采用扫描电镜(SEM)观察改性后煤沥青的形貌;采用光学显微镜观察改性沥青热解产物的光学结构.实验结果表明,对甲基苯甲醛在酸性催化剂的催化作用下与煤沥青发生亲电取代反应.

  6. Computational studies of ion pairing. 8. Ion pairing of tetraalkylammonium ions to nitrosobenzene and benzaldehyde redox species. A general binding motif for the interaction of tetraalkylammonium ions with benzenoid species.

    Science.gov (United States)

    Fry, Albert J

    2013-06-01

    Very little data is available on the detailed structures of ion pairs in solution, since few general experimental methods are available for obtaining such information. For this reason, computational methods have emerged as the method of choice for determining the structures of organic ion pairs in solution. The present study examines the ion pairs between a series of tetraalkylammonium ions and several redox forms of nitrosobenzene and a series of substituted benzaldehydes. The structures, though previously unexpected, are chemically reasonable and fit into a previous pattern of ion pairing described in previous publications in this series. To date in these studies, a total of 73 ion pairs and related species have in fact been identified having exactly the same unusual orientation of the tetraalkylammonium component with respect to the donor species. The results are pertinent to topics of general current interest, including self-assembly, molecular recognition, and supramolecular assembly.

  7. Inhibitory Effects of Benzaldehyde Derivatives from the Marine Fungus Eurotium sp. SF-5989 on Inflammatory Mediators via the Induction of Heme Oxygenase-1 in Lipopolysaccharide-Stimulated RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Kyoung-Su Kim

    2014-12-01

    Full Text Available Two benzaldehyde derivatives, flavoglaucin (1 and isotetrahydro-auroglaucin (2, were isolated from the marine fungus Eurotium sp. SF-5989 through bioassay- and 1H NMR-guided investigation. In this study, we evaluated the anti-inflammatory effects of these compounds in lipopolysaccharide (LPS-stimulated RAW264.7 macrophages. We demonstrated that compounds 1 and 2 markedly inhibited LPS-induced nitric oxide (NO and prostaglandin E2 (PGE2 production by suppressing inducible nitric oxide synthase (iNOS and cyclooxygenase-2 (COX-2 protein expression without affecting cell viability. We also demonstrated that the compounds reduced the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β and interleukin-6 (IL-6. Furthermore, compounds 1 and 2 inhibited LPS-induced nuclear factor-κB (NF-κB activation by suppressing phosphorylation of IkappaB (IκB. These results indicated that the anti-inflammatory effects of these benzaldehyde derivatives in LPS-stimulated RAW264.7 macrophages were due to the inactivation of the NF-κB pathway. In addition, compounds 1 and 2 induced heme oxygenase-1 (HO-1 expression through the nuclear transcription factor-E2–related factor 2 (Nrf2 translocation. The inhibitory effects of compounds 1 and 2 on the production of pro-inflammatory mediators and on NF-κB binding activity were reversed by HO-1 inhibitor tin protoporphyrin (SnPP. Thus, the anti-inflammatory effects of compounds 1 and 2 also correlated with their ability of inducing HO-1 expression.

  8. Inhibitory effects of benzaldehyde derivatives from the marine fungus Eurotium sp. SF-5989 on inflammatory mediators via the induction of heme oxygenase-1 in lipopolysaccharide-stimulated RAW264.7 macrophages.

    Science.gov (United States)

    Kim, Kyoung-Su; Cui, Xiang; Lee, Dong-Sung; Ko, Wonmin; Sohn, Jae Hak; Yim, Joung Han; An, Ren-Bo; Kim, Youn-Chul; Oh, Hyuncheol

    2014-12-19

    Two benzaldehyde derivatives, flavoglaucin (1) and isotetrahydro-auroglaucin (2), were isolated from the marine fungus Eurotium sp. SF-5989 through bioassay- and 1H NMR-guided investigation. In this study, we evaluated the anti-inflammatory effects of these compounds in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We demonstrated that compounds 1 and 2 markedly inhibited LPS-induced nitric oxide (NO) and prostaglandin E2 (PGE2) production by suppressing inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) protein expression without affecting cell viability. We also demonstrated that the compounds reduced the secretion of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). Furthermore, compounds 1 and 2 inhibited LPS-induced nuclear factor-κB (NF-κB) activation by suppressing phosphorylation of IkappaB (IκB). These results indicated that the anti-inflammatory effects of these benzaldehyde derivatives in LPS-stimulated RAW264.7 macrophages were due to the inactivation of the NF-κB pathway. In addition, compounds 1 and 2 induced heme oxygenase-1 (HO-1) expression through the nuclear transcription factor-E2-related factor 2 (Nrf2) translocation. The inhibitory effects of compounds 1 and 2 on the production of pro-inflammatory mediators and on NF-κB binding activity were reversed by HO-1 inhibitor tin protoporphyrin (SnPP). Thus, the anti-inflammatory effects of compounds 1 and 2 also correlated with their ability of inducing HO-1 expression.

  9. A phase I and pharmacokinetic study of oral 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP, NSC #663249) in the treatment of advanced stage solid cancers – A California Cancer Consortium Study

    Science.gov (United States)

    Chao, Joseph; Synold, Timothy W.; Morgan, Robert J.; Kunos, Charles; Longmate, Jeff; Lenz, Heinz-Josef; Lim, Dean; Shibata, Stephen; Chung, Vincent; Stoller, Ronald G.; Belani, Chandra P.; Gandara, David R.; McNamara, Mark; Gitlitz, Barbara J.; Lau, Derick H.; Ramalingam, Suresh S.; Davies, Angela; Espinoza-Delgado, Igor; Newman, Edward M.; Yen, Yun

    2012-01-01

    Background 3-aminopyridine-2-carboxaldehyde thiosemicarbazone (3-AP) is a novel small molecule ribonucleotide reductase inhibitor. This study was designed to estimate the maximum-tolerated dose (MTD) and oral bioavailability of 3-AP in patients with advanced stage solid tumors. Methods Twenty patients received one dose of intravenous and subsequent cycles of oral 3-AP following a 3+3 patient dose-escalation. Intravenous 3-AP was administered to every patient at a fixed dose of 100 mg over a 2-hour infusion 1 week prior to the first oral cycle. Oral 3-AP was administered every 12 hours for 5 consecutive doses on days 1–3, days 8–10, and days 15–17 of every 28-day cycle. 3-AP was started at 50 mg with a planned dose escalation to 100, 150, and 200 mg. Dose-limiting toxicities (DLT) and bioavailability were evaluated. Results Twenty patients were enrolled. For dose level 1 (50mg), the second of three treated patients had a DLT of grade 3 hypertension. In the dose level 1 expansion cohort, three patients had no DLTs. No further DLTs were encountered during escalation until the 200 mg dose was reached. At the 200 mg 3-AP dose level, two treated patients had DLTs of grade 3 hypoxia. One additional DLT of grade 4 febrile neutropenia was subsequently observed at the de-escalated 150 mg dose. One DLT in 6 evaluable patients established the MTD as 150 mg per dose on this dosing schedule. Responses in the form of stable disease occurred in 5 (25%) of 20 patients. The oral bioavailability of 3-AP was 67 ± 29%, and was consistent with the finding that the MTD by the oral route was 33% higher than by the intravenous route. Conclusions Oral 3-AP is well-tolerated and has an MTD similar to its intravenous form after accounting for the oral bioavailability. Oral 3-AP is associated with a modest clinical benefit rate of 25% in our treated patient population with advanced solid tumors. PMID:22105720

  10. Synthesis and Antibacterial Activity Study of Glyoxal-bis-thiosemicarbazone and Its Metal Complexes%乙二醛双缩氨基硫脲及其金属配合物的合成和抑菌活性研究

    Institute of Scientific and Technical Information of China (English)

    何冰晶; 王幸南; 石云尧

    2011-01-01

    以氨基硫脲和乙二醛为原料合成了乙二醛双缩氨基硫脲及其与Mn(Ⅱ)、Ni(Ⅱ)、Co(Ⅱ)、Sr(Ⅱ)、Zn(Ⅱ)、Cu(Ⅱ)的金属配合物,通过核磁共振氢谱,红外光谱对配体和配合物进行表征,并测定了配体和配合物的生物活性.%Glyoxal-bis-thiosemicarbazone and its metal complexes of Mn, Co, Ni, Sr, Zn, Cu were synthesized using thiosemicarbazide and glyoxal as starting materials. Ligand and corresponding metal complexes are characterized through Nuclear Magnetic Resonance Hydrogen Spectrum and Infrared Spectrum, then their antibacterial activity are determined.

  11. Study of Kinetics of Complexation Reaction of Co2+ with 2-benzoylpyridine-4-phenyl-3-thiosemicarbazone and Kinetic spectrophotometric Determination of Cobalt%Co2+与BPPT络合反应动力学及动力学光谱法测定钴

    Institute of Scientific and Technical Information of China (English)

    BINGOL,Haluk; ATALAY,Tevfik

    2006-01-01

    Kinetics of complexation reaction of Co2+ with 2-benzoylpyridine-4-phenyl-3-thiosemicarbazone (BPPT)was spectrophotometrically examined at 421 nm. The ligand that is developed for a simple kinetic-spectrophotometric determination of Co2+ is based on 1:2 complex formation between Co2+ and BPPT. The complexation reaction was carried out in ethanol-water medium at 25 ℃. Kinetic and activation parameters of the complexation reaction were calculated, and the rate equation and the reaction mechanism were proposed. The calibration graph is linear in the concentration range of 0.10~2.91 mg·L-1 for the tangent method. The species that caused interference were investigated.

  12. The study of partial and excess molar volumes for binary mixtures of nitrobenzene and benzaldehyde with xylene isomers from T = (298.15 to 318.15 K and P = 0.087 MPa

    Directory of Open Access Journals (Sweden)

    Hamid R. Rafiee

    2016-09-01

    Full Text Available Based on density measurements, partial and excess molar volumes for binary mixtures of nitrobenzene and benzaldehyde with three isomers of xylene have been measured. The whole range of composition and temperatures from T = (298.15 to 318.15 K at ambient pressure 0.087 MPa, has been considered. The excess molar volumes were negative and decreased by increasing temperature for all mixtures which are explained based on intermolecular interactions. Excess molar volumes for solutions including nitrobenzene were absolutely larger than benzaldehyde binary mixtures. The partial and excess molar volumes for each component have been appraised and reported. The excess molar volumes have been successfully fitted to Redlich–Kister equation.

  13. 苯甲醛改性双氰胺环氧固化剂的研究%Researches of benzaldehyde-modified dicyandiamide as curing agent for epoxy resin

    Institute of Scientific and Technical Information of China (English)

    程秀莲; 郭小伟; 杨艳玲

    2015-01-01

    A novel curing agent, the benzaldehyde-modified was prepared. The optimal synthesis conditions and curing conditions were studied. The results showed that the better processing conditions were as follows:pH value was 3-4,the mole ratio of dicyandiamide to benzaldehyde was 1.5:1, the reaction temperature and time were 95℃and 2 h,respectively, and the yield of modified dicyandiamide was up to 65.67%. The curing process and properties were investigated by testing the paint membrane hardness. When the modified dicyandiamide was used as the epoxy resin curing agent, the ratio of modified dicyandiamide to epoxy resin was 1 to 10, the curing temperature and time were 130℃ and 8 h, the paint membrane hardness HV1 was 47.52 and this curing temperature was 30℃ lower than that for dicyandiamide alone(160℃).%用苯甲醛对双氰胺进行改性,制备了一种新型改性双氰胺固化剂。对合成条件进行了优化,并对其固化条件进行了研究。结果表明,苯甲醛改性双氰胺的较佳工艺条件为pH值3~4,苯甲醛与双氰胺物质的量比为1∶1.5,于95℃,反应2 h,收率65.67%。通过测试涂层硬度来考察固化工艺与性能。作为环氧树脂固化剂单独使用时,与环氧树脂的质量比为1∶10,固化温度为130℃固化8 h 涂膜硬度HV1=47.52。比双氰胺体系固化温度(160℃)降低了30℃。

  14. Electronic and vibrational spectra of protonated benzaldehyde-water clusters, [BZ-(H2O)n≤5]H+: evidence for ground-state proton transfer to solvent for n ≥ 3.

    Science.gov (United States)

    Dopfer, Otto; Patzer, Alexander; Chakraborty, Shamik; Alata, Ivan; Omidyan, Reza; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe

    2014-03-28

    Vibrational and electronic photodissociation spectra of mass-selected protonated benzaldehyde-(water)n clusters, [BZ-(H2O)n]H(+) with n ≤ 5, are analyzed by quantum chemical calculations to determine the protonation site in the ground electronic state (S0) and ππ(*) excited state (S1) as a function of microhydration. IR spectra of [BZ-(H2O)n]H(+) with n ≤ 2 are consistent with BZH(+)-(H2O)n type structures, in which the excess proton is localized on benzaldehyde. IR spectra of clusters with n ≥ 3 are assigned to structures, in which the excess proton is located on the (H2O)n solvent moiety, BZ-(H2O)nH(+). Quantum chemical calculations at the B3LYP, MP2, and ri-CC2 levels support the conclusion of proton transfer from BZH(+) to the solvent moiety in the S0 state for hydration sizes larger than the critical value nc = 3. The vibronic spectrum of the S1 ← S0 transition (ππ(*)) of the n = 1 cluster is consistent with a cis-BZH(+)-H2O structure in both electronic states. The large blueshift of the S1 origin by 2106 cm(-1) upon hydration with a single H2O ligand indicates that the proton affinity of BZ is substantially increased upon S1 excitation, thus strongly destabilizing the hydrogen bond to the solvent. The adiabatic S1 excitation energy and vibronic structure calculated at the ri-CC2/aug-cc-pVDZ level agrees well with the measured spectrum, supporting the notion of a cis-BZH(+)-H2O geometry. The doubly hydrated species, cis-BZH(+)-(H2O)2, does not absorb in the spectral range of 23 000-27 400 cm(-1), because of the additional large blueshift of the ππ(*) transition upon attachment of the second H2O molecule. Calculations predict roughly linear and large incremental blueshifts for the ππ(*) transition in [BZ-(H2O)n]H(+) as a function of n. In the size range n ≥ 3, the calculations predict a proton transfer from the (H2O)nH(+) solvent back to the BZ solute upon electronic ππ(*) excitation.

  15. Electronic and vibrational spectra of protonated benzaldehyde-water clusters, [BZ-(H2O)n≤5]H+: Evidence for ground-state proton transfer to solvent for n ≥ 3

    Science.gov (United States)

    Dopfer, Otto; Patzer, Alexander; Chakraborty, Shamik; Alata, Ivan; Omidyan, Reza; Broquier, Michel; Dedonder, Claude; Jouvet, Christophe

    2014-03-01

    Vibrational and electronic photodissociation spectra of mass-selected protonated benzaldehyde-(water)n clusters, [BZ-(H2O)n]H+ with n ≤ 5, are analyzed by quantum chemical calculations to determine the protonation site in the ground electronic state (S0) and ππ* excited state (S1) as a function of microhydration. IR spectra of [BZ-(H2O)n]H+ with n ≤ 2 are consistent with BZH+-(H2O)n type structures, in which the excess proton is localized on benzaldehyde. IR spectra of clusters with n ≥ 3 are assigned to structures, in which the excess proton is located on the (H2O)n solvent moiety, BZ-(H2O)nH+. Quantum chemical calculations at the B3LYP, MP2, and ri-CC2 levels support the conclusion of proton transfer from BZH+ to the solvent moiety in the S0 state for hydration sizes larger than the critical value nc = 3. The vibronic spectrum of the S1 ← S0 transition (ππ*) of the n = 1 cluster is consistent with a cis-BZH+-H2O structure in both electronic states. The large blueshift of the S1 origin by 2106 cm-1 upon hydration with a single H2O ligand indicates that the proton affinity of BZ is substantially increased upon S1 excitation, thus strongly destabilizing the hydrogen bond to the solvent. The adiabatic S1 excitation energy and vibronic structure calculated at the ri-CC2/aug-cc-pVDZ level agrees well with the measured spectrum, supporting the notion of a cis-BZH+-H2O geometry. The doubly hydrated species, cis-BZH+-(H2O)2, does not absorb in the spectral range of 23 000-27 400 cm-1, because of the additional large blueshift of the ππ* transition upon attachment of the second H2O molecule. Calculations predict roughly linear and large incremental blueshifts for the ππ* transition in [BZ-(H2O)n]H+ as a function of n. In the size range n ≥ 3, the calculations predict a proton transfer from the (H2O)nH+ solvent back to the BZ solute upon electronic ππ* excitation.

  16. Synthesis, spectroscopic, physicochemical properties and binding site analysis of 4-(1H-phenanthro[9,10-d]-imidazol-2-yl)-benzaldehyde fluorescent probe for imaging in cell biology: Experimental and theoretical study.

    Science.gov (United States)

    Krawczyk, Przemysław; Jędrzejewska, Beata; Pietrzak, Marek; Janek, Tomasz

    2016-11-01

    In this study, the 4-(1H-phenanthro[9,10-d]-imidazol-2-yl)-benzaldehyde (PB1) was investigated as a fluorescent dye. For this reason, the spectroscopic properties in different solvents were thoroughly studied. The experimental data were supported by quantum-chemical calculations using density functional theory. Measurements and theoretical calculations showed that PB1 dye is characterized by the non-monotonic solvatochromism, strongly polar charge transfer excited state, large Stokes' shift, high fluorescence quantum yield and high fluorescence lifetime. Simulations using AutoDock presented in this study, showed that after conjugation with Concanavalin A in the active site with LYS116, the PB1 possesses the highest probability of binding affinity. The interaction between the PB1 dye and the Concanavalin A lectin has been investigated by circular dichroism spectroscopy. Conventional fluorescence microscopy imaging of Candida albicans and Yarrowia lipolytica cells, incubated with the PB1-Concanavalin A, was demonstrated. Results show that the PB1 dye is a photostable low molecular weight fluorescent probe, which emits a blue fluorescence. The results of this study have implications for designing PB1-protein conjugate as a valuable alternative to commercial probes designed for cellular labeling in biological and biomedical research. Calculated LogP value together with LogBCF show that PB1-protein conjugate is a valuable alternative to commercial probes designed for cellular labeling in biological and biomedical research. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. 5-Bromo-2-hydroxy-4-methyl-benzaldehyde inhibited LPS-induced production of pro-inflammatory mediators through the inactivation of ERK, p38, and NF-κB pathways in RAW 264.7 macrophages.

    Science.gov (United States)

    Kim, Kil-Nam; Ko, Seok-Chun; Ye, Bo-Ram; Kim, Min-Sun; Kim, Junseong; Ko, Eun-Yi; Cho, Su-Hyeon; Kim, Daekyung; Heo, Soo-Jin; Jung, Won-Kyo

    2016-10-25

    The aim of the present study was to investigate the effects of 5-bromo-2-hydroxy-4-methyl-benzaldehyde (BHMB) on inflammatory responses to lipopolysaccharide (LPS) in RAW 264.7 cells and the associated mechanism of action. BHMB concentration-dependently suppressed protein and mRNA expressions of iNOS and COX-2, thereby inhibiting the production of NO and PGE2 in LPS-stimulated RAW 264.7 cells. BHMB also reduced the mRNA expression of TNF-α, IL-6, and IL-1β in LPS-stimulated RAW 264.7 cells. To elucidate the mechanism underlying the anti-inflammatory activity of BHMB, we investigated the effects of BHMB on the mitogen-activated protein kinase and nuclear factor-kappa B (NF-κB) pathways. BHMB suppressed the phosphorylation and degradation of IκB-α and markedly inhibited the nuclear translocation of p65 and p50 in LPS-stimulated RAW 264.7 cells. The compound also inhibited the LPS-stimulated phosphorylation of ERK and p38. Taken together, these results illustrated that BHMB suppresses pro-inflammatory mediator and cytokine expression in LPS-stimulated RAW 264.7 cells by inhibiting the phosphorylation of ERK and p38 and the activation of NF-κB.

  18. Preparation, characterization and catalytic activity of CoFe2O4 nanoparticles as a magnetically recoverable catalyst for selective oxidation of benzyl alcohol to benzaldehyde and reduction of organic dyes.

    Science.gov (United States)

    Nasrollahzadeh, Mahmoud; Bagherzadeh, Mojtaba; Karimi, Hirbod

    2016-03-01

    The CoFe2O4 nanoparticles (NPs) performance was studied in the oxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH) with hydrogen peroxide as an oxidant under solvent-free conditions. The influences of reaction conditions like the amount of catalyst, the molar ratio of H2O2:BzOH, reaction temperature and times on the oxidation of BzOH by using CoFe2O4 NPs were investigated in details. Under optimum conditions, excellent result, >99% conversation of BzOH to BzH as the only product, was obtained. The nanocatalyst was also used for the reduction of 4-nitrophenol (4-NP), Congo red (CR), Methylene blue (MB) in water at room temperature. The magnetic properties of the catalyst provided a convenient and easy route for the separation of the catalyst from the reaction mixture by an external bar magnet. No obvious loss of activity was observed when the spent catalyst reused in three consecutive runs.

  19. The mechanism of the formation of the hemiaminal and Schiff base from the benzaldehyde and triazole studied by means of the topological analysis of electron localisation function and catastrophe theory

    Science.gov (United States)

    Berski, Slawomir; Zbigniew Ciunik, Leszek

    2015-04-01

    The mechanisms of reaction of benzaldehyde (ald) with 4-amine-4H-1,2,4-triazole (4at), leading to Schiff base (Sch) and water, were investigated using topological analysis of the electron localisation function and catastrophe theory. Two reactions (synthesis of hemiaminal and synthesis of Schiff base) are represented by one catastrophe sequence: ald+4at: 1-14-[FF†F†FFTS1FF†F†FF†F†CF†]-2-9-[C†FFTS3F†F†FFF]-0:Sch+H2O with only fold (F) and cusp (C) catastrophes. The first reaction, in which a molecule of the hemiaminal is formed, consists of 14 steps separated by 13 catastrophes. The mechanism is non-concerted. The covalent bond C-N is formed after the formation of the O-H bond is terminated. The Schiff base formation through the water molecule elimination in the second reaction requires nine steps with eight catastrophes. The mechanism is non-concerted because first the C-O bond is broken and then the proton transfer occurs that results in the O-H bond creation.

  20. Calcination temperature effect on catalytic properties of Cr{sub 2} O{sub 3}/Al{sub 2} O{sub 3} aerogel: mild oxidation of toluene to benzaldehyde; Effet de la temperature de calcination sur les proprietes catalytiques de l`aerogel Cr{sub 2}O{sub 3}-AI{sub 2}O{sub 3}: oxydation menagee du toluene en benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Younes, M.K.; Ghorbel, A. [Faculte des Sciences de Tunis, (Tunisia); Naccache, C. [Centre National de la Recherche Scientifique (CNRS), 69 - Villeurbanne (France). Inst. de Recherches sur la Catalyse

    1997-11-01

    The aerogel catalyst Cr{sub 2}O{sub 3}-Al{sub 2}O{sub 3}(Cr/Al = 0,05) presents a high specific surface area and an amorphous structure. The beneficial role of alumina when it is added to chromia, is related to the stabilisation of both low coordinated Cr{sup 3+} and highly oxidized Cr{sup 5+} ions. A small change of the surface state is observed under heating treatment for temperature below 700 deg C. Above this temperature the surface structure changes. The Cr{sup 3+} ions are favoured and the majority of them remains on the catalyst surface as Cr{sub 2}O{sub 3} aggregates. The other part of chromium ions seems to be inserted in the alumina network. The effect of calcination is to decrease the catalytic activities of formation of all the products obtained in the toluene oxidation reaction and improves the benzaldehyde selectivity. (authors) 18 refs.

  1. Electronic and vibrational spectra of protonated benzaldehyde-water clusters, [BZ-(H{sub 2}O){sub n≤5}]H{sup +}: Evidence for ground-state proton transfer to solvent for n ≥ 3

    Energy Technology Data Exchange (ETDEWEB)

    Dopfer, Otto, E-mail: dopfer@physik.tu-berlin.de; Patzer, Alexander; Chakraborty, Shamik [Institut für Optik und Atomare Physik, Technische Universität Berlin, Hardenbergstrasse 36, 10623 Berlin (Germany); Alata, Ivan; Omidyan, Reza; Broquier, Michel [Institut des Sciences Moleculaires d’Orsay, UMR-CNRS 8214, and Centre Laser de l’Université Paris Sud/LUMAT FR 2764, Batiment 106, l’Université Paris Sud 11, 91405 Orsay Cedex (France); Dedonder, Claude; Jouvet, Christophe [Physique des Interactions Ioniques et Moléculaires, UMR-CNRS 7345 Aix Marseille Université, Avenue Escadrille Normandie-Niémen, 13397 Marseille Cedex 20 (France)

    2014-03-28

    Vibrational and electronic photodissociation spectra of mass-selected protonated benzaldehyde-(water){sub n} clusters, [BZ-(H{sub 2}O){sub n}]H{sup +} with n ≤ 5, are analyzed by quantum chemical calculations to determine the protonation site in the ground electronic state (S{sub 0}) and ππ{sup *} excited state (S{sub 1}) as a function of microhydration. IR spectra of [BZ-(H{sub 2}O){sub n}]H{sup +} with n ≤ 2 are consistent with BZH{sup +}-(H{sub 2}O){sub n} type structures, in which the excess proton is localized on benzaldehyde. IR spectra of clusters with n ≥ 3 are assigned to structures, in which the excess proton is located on the (H{sub 2}O){sub n} solvent moiety, BZ-(H{sub 2}O){sub n}H{sup +}. Quantum chemical calculations at the B3LYP, MP2, and ri-CC2 levels support the conclusion of proton transfer from BZH{sup +} to the solvent moiety in the S{sub 0} state for hydration sizes larger than the critical value n{sub c} = 3. The vibronic spectrum of the S{sub 1} ← S{sub 0} transition (ππ{sup *}) of the n = 1 cluster is consistent with a cis-BZH{sup +}-H{sub 2}O structure in both electronic states. The large blueshift of the S{sub 1} origin by 2106 cm{sup −1} upon hydration with a single H{sub 2}O ligand indicates that the proton affinity of BZ is substantially increased upon S{sub 1} excitation, thus strongly destabilizing the hydrogen bond to the solvent. The adiabatic S{sub 1} excitation energy and vibronic structure calculated at the ri-CC2/aug-cc-pVDZ level agrees well with the measured spectrum, supporting the notion of a cis-BZH{sup +}-H{sub 2}O geometry. The doubly hydrated species, cis-BZH{sup +}-(H{sub 2}O){sub 2}, does not absorb in the spectral range of 23 000–27 400 cm{sup −1}, because of the additional large blueshift of the ππ{sup *} transition upon attachment of the second H{sub 2}O molecule. Calculations predict roughly linear and large incremental blueshifts for the ππ{sup *} transition in [BZ-(H{sub 2}O){sub n

  2. Template Synthesis of a Tetraaza Macrocycle Which Involves Benzaldehyde Rather Than Formaldehyde as a Building Block. Isolation and Structure Determination of the Open-Chain Schiff Base Intermediate Complex.

    Science.gov (United States)

    Fabbrizzi, Luigi; Licchelli, Maurizio; Manotti Lanfredi, Anna Maria; Vassalli, Omar; Ugozzoli, Franco

    1996-03-13

    The classical formaldehyde building block has been replaced by the bulkier benzaldehyde in the Cu(II) template synthesis of the cyclam-like tetraaza macrocycle of type 1, in which nitroethane operated as locking fragment. The synthetic pathway involves three distinct steps: (i) Schiff base condensation of the metal-free open-chain tetramine; (ii) Cu(II) coordination and preorientation of the Schiff base; (iii) nucleophilic attack by the deprotonated nitroethane fragment and formation of the macrocyclic complex. Both the Schiff base Cu(II) complex and the Cu(II) macrocyclic complex were isolated in a crystalline form and their molecular structures were determined: {N-[2-((E)-benzylideneamino)ethyl]-N'-[2-((Z)-benzylideneamino)ethyl]propane-1,3-diamine}copper(II) nitrate: triclinic, space group P&onemacr;, with a = 12.296(5) Å, b = 10.787(6) Å, c = 10.547(7) Å, V = 1161(1) Å(3), and Z = 2 (R = 0.055, R(w) = 0.061); [(5R,6S,7S)-6-methyl-6-nitro-5,7-diphenyl-1,4,8,11-tetraazacyclotetradecane]copper(II) perchlorate: monoclinic, space group P2(1)/n, with a = 15.246(5) Å, b = 23240(7) Å, c = 8.540(4) Å, V = 2980(2) Å(3), and Z = 4 (R = 0.095, R(w) = 0.095). This allowed us to define mechanistic details of the macrocyclization process. It is suggested that the same three-step pathway takes place in the much easier and faster one-pot template syntheses of cyclam-like macrocyles, which involve formaldehyde as a building block.

  3. 苯甲醛、2-异丁腈与丙二酸二乙酯的三组分Passerini反应%Three components Passerini reactions of Benzaldehyde, 2 -Isobutyronitrile and Diethyl Malonate

    Institute of Scientific and Technical Information of China (English)

    陈懿; 谢兵; 高斌

    2012-01-01

    The paper explores three multieomponent Passerini reactions by using diethyl malonate instead of car- boxylic acid or alcohol. The significant applied value of compounds including double functional group diethyl malonate derivative from benzaldehyde, 2 - isobutyrenitrile and diethyl malonate was synthesized by one - pot in moderate yield by using H2SO4 as catalyst at microwave and heat under free - solvent. The optimized reaction condition follows the aspects: 2mL H2SO4 as catalyst; reaction temperature was 120 ℃, power rating for micrwave was 300 W and reaction time was 40 min.%探索用丙二酸二乙酯替代羧酸或醇进行三组分Passerini反应。在无溶剂条件下,用浓硫酸作为催化剂,苯甲醛、2-异丁腈和丙二酸二乙酯通过微波辅助和加热,一锅法进行三组分Passerini反应,以中等收率得到具有重要应用价值的双官能团化合物丙二酸二乙酯衍生物。该反应的最佳条件为:以浓硫酸为催化剂,催化剂用量为2mL,反应温度为120℃,微波功率为BOOW,反应时间为40min。

  4. Redox cycling of a copper complex with benzaldehyde nitrogen mustard-2-pyridine carboxylic acid hydrazone contributes to its enhanced antitumor activity, but no change in the mechanism of action occurs after chelation.

    Science.gov (United States)

    Yang, Yinli; Li, Cuiping; Fu, Yun; Liu, Youxun; Zhang, Yu; Zhang, Yanfang; Zhou, Pingxin; Yuan, Yanbin; Zhou, Sufeng; Li, Shaoshan; Li, Changzheng

    2016-03-01

    Many anticancer drugs used in the clinical have potent metal chelating ability. The formed metal complex(es) may exhibit improved (or antagonistic) antitumor activity. However, the underlying mechanism has received limited attention. Therefore, investigation of the mechanism involved in the change upon chelation is required to extend our understanding of the effects of various drugs. In the present study, the proliferation inhibition effect of benzaldehyde nitrogen mustard-2-pyridine carboxylic acid hydrazone (BNMPH) and its copper complex on tumor cell lines was investigated. The copper chelate exhibited almost a 10-fold increase in antitumor activity (with IC50 copper complex induced reactive oxygen species (ROS) generation, and caused upregulation of caspase 8 and Bax as well as the downregulation of Bcl-2, indicating that apoptosis was involved in the cytotoxic effects. DNA fragmentation noted in the comet assay further supported ROS involvement. The present study indicated that BNMPH and its copper complex effectively induced S phase arrest and the cell cycle arrest was associated with the downregulation of cyclin D1. The formation of acidic vesicular organelles (AVOs) and an increase in cleaved LC3-II demonstrated that autophagy occurred in the HepG2 cells treated with the agents. Taken together, BNMPH and its copper complex exhibited proliferation inhibition via apoptosis, cell cycle arrest and autophagy, which was dependent on ROS. The enhanced antitumor activity of the copper complex was due to its redox-cycling ability, but the mechanism was not altered compared to BNMPH. Our findings may significantly contribute to the understanding of the anti-proliferative effect of BNMPH and its copper complex.

  5. Novel cytochrome p450 bioactivation of a terminal phenyl acetylene group: formation of a one-carbon loss benzaldehyde and other oxidative products in the presence of N-acetyl cysteine or glutathione.

    Science.gov (United States)

    Subramanian, Raju; Tam, Janet; Aidasani, Divesh; Reid, Darren L; Skiles, Gary L

    2011-05-16

    Compounds 1 (N1-(3-ethynylphenyl)-6-methyl-N5-(3-(6-(methylamino)pyrimidin-4-yl)pyridin-2-yl) isoquinoline-1,5-diamine) and 2 (N-(3-ethynylphenyl)-6,7-bis(2-methoxyethoxy)quinazolin-4-amine; Erlotinib/Tarceva) are kinase inhibitors that contain a terminal phenyl acetylene moiety. When incubated in the presence of P450 and NADPH, the anticipated phenyl acetic acid metabolite was formed. When 10 mM of N-acetyl-l-cysteine was added to the incubation mixtures, the phenyl acetic acid product was reduced and at 25 mM or higher concentration of NAC, formation of the phenyl acetic acid was abolished. Instead, the phenyl acetylene moiety lost a carbon and formed a benzaldehyde product. Other oxidation products incorporating one or more equivalents of NAC were also observed. The identities of the metabolites were characterized by MS and NMR. Addition of deferoxamine or ascorbic acid diminished the formation of the NAC influenced products. Similar products were also observed when 1 or 2 were incubated in P450 reactions supplemented with GSH, in Fenton reactions supplemented with NAC or GSH, and in peroxidase reactions supplemented with NAC. We propose the thiols act as a pro-oxidant readily undergoing a one-electron oxidation to form thiyl radicals which in turn initiates the formation of other peroxy radicals that drive the reaction to the observed products. These in vitro findings suggest that one-electron oxidation of thiols may promote the cooxidation of xenobiotic substrates.

  6. A novel azo-aldehyde and its Ni(II) chelate; synthesis, characterization, crystal structure and computational studies of 2-hydroxy-5-{(E)-[4-(propan-2-yl)phenyl]diazenyl}benzaldehyde

    Science.gov (United States)

    Eren, Tuğba; Kose, Muhammet; Sayin, Koray; McKee, Vickie; Kurtoglu, Mukerrem

    2014-05-01

    A novel azo-salicylaldeyde, 2-hydroxy-5-{(E)-[4-(propan-2-yl)phenyl]diazenyl} benzaldehyde and its Ni(II) chelate were obtained and characterized by analytical and spectral techniques. Molecular structure of the azo chromophore containing azo-aldehyde was determined by single crystal X-ray crystallography. X-ray data show that the compound crystallizes in the orthorhombic, Pbca space group with unit cell parameters a = 11.2706(9), b = 8.3993(7), c = 28.667(2) Å, V = 2713.7(4) Å3 and Z = 8. There is a strong phenol-aldehyde (OH⋯O) hydrogen bond forming a S(6) hydrogen bonding motif in the structure. There is also a weaker inter-molecular phenol-aldeyhde (OH⋯O) hydrogen bonding resulting in a dimeric structure and generating a D22(4) hydrogen bonding motif. Hydrogen bonded dimers are linked by π-π interactions within the structure. The azo-aldehyde ligand behaved as bidentate, coordinating through the nitrogen atom of the azomethine group and or oxygen atom of phenolic hydroxyl group. Additionally, optimized structures of the three possible tautomers of the compound were obtained using B3LYP method with 6-311++G(d,p), 6-31G and 3-21G basis sets in the gas phase. B3LYP/6-311++G(d,p) level is found to be the best level for calculation. The electronic spectra of the compounds in the 200-800 nm range were obtained in three organic solvents.

  7. Synthesis of Cyclohexanone Ethylene Ketal and Benzaldehyde Ethylene Acetal by Chloroaluminate Ionic Liquid%氯铝酸型离子液体催化合成环己酮(苯甲醛)乙二醇缩酮(醛)

    Institute of Scientific and Technical Information of China (English)

    胡应喜; 张彧; 潘欣欣

    2015-01-01

    Cyclohexanone ethylene ketal and benzaldehyde ethylene acetal were synthesized with chloroalu-minate ionic liquid as catalyst.The effects of catalyst amount,molar ratio of cyclohexanone(benzaldehyde)to ethylene glycol,and water-carrying agent amount on the reaction were investigated.The optimum synthetic con-ditions were obtained as follows:catalyst amount was 1.0 g,the molar ratio of cyclohexanone(benzaldehyde)to ethylene glycol was 1∶1.8,water-carrying agent amount was 30 mL.The physical property and structure of the synthetic product were characterized by elemental analysis,FTIR,refractive index and 1 HNMR.%以氯铝酸型离子液体为催化剂合成了环己酮(苯甲醛)乙二醇缩酮(醛),考察了催化剂用量、酮(醛)醇物质的量比及带水剂用量对反应的影响。确定最优合成条件为:催化剂用量1.0 g、酮(醛)醇物质的量比1∶1.8、带水剂环己烷用量30 mL。通过元素分析、红外光谱、折光率和1 HNMR 对产品进行了物性和结构表征。

  8. X-ray and DFT calculated structures of 2-(1 H-imidazol-1-yl)-1-(2-naphthyl)ethan-1-one N-phenylthiosemicarbazone and 2-(1 H-imidazol-1-yl)-1-(2-naphthyl)ethan-1-one N-(4-chlorophenyl)thiosemicarbazone

    Science.gov (United States)

    Sahin, Z. S.; Septioglu, E.; Calis, U.; Isik, S.

    2014-12-01

    Crystal and molecular structures of two new compounds 2-(1 H-imidazol-1-yl)-1-(2-naphthyl)ethan-1-one N-phenylthiosemicarbazone, C22H19N5S, ( I) and 2-(1 H-imidazol-1-yl)-1-(2-naphthyl)ethan-1-one N-(4-chlorophenyl)thiosemicarbazone, C22H18ClN5S, ( II) have been determined by single-crystal X-ray diffraction. Molecular geometries from X-ray experiment of I and II have been compared with those calculated using the Density Functional Theory (DFT) with B3LYP/6-31G( d, p) basis set. Both compounds crystallize in the monoclinic space group P21/ c with Z = 4: a = 13.2880(5), 14.2648(3) Å, b = 9.4122(2), 9.3892(3) Å, c = 15.6341(6), 15.6268(4) Å, β = 101.779(3)°, 104.926(2)°, for I and II, respectively. An extensive two-dimensional network of N-H⋯N hydrogen bonds and π-ring interactions are responsible for crystal stabilization in both structures.

  9. Investigation of the Lipophilicity of 2-Benzoylpyridine-Thiosemicarbazone Based on the Ion Transfer across the Liquid/Liquid Interface%液/液界面电子转移研究苯甲酰吡啶-缩氨基硫脲的亲脂性

    Institute of Scientific and Technical Information of China (English)

    AKGEMCI Emine G.; BINGOL Haluk; OZCELIK Mehmet; ERSOZ Mustafa

    2008-01-01

    The ion transfer reaction of 2-benzoylpyridine-thiosemicarbazone (HL), which has antimicrobial and antifungal properties and anticancer activity, has been studied to determine its lipophilicity by cyclic voltammetry at the water/1,2-dichloroethane (1,2-DCE) interface. The physicochemical parameters such as standard partition coefficient (IgP1) and the standard Gibbs energy of transfer (△G0,w→otr,I) of the protonated form of the ligand were measured as a function of pH in aqueous phase. The protonated form of the ligand exhibited reversible or quasi-reversible voltammograms at the 1,2-DCE in the range of pH 1-5. The protonation constants of the ligand, pKal, and pK? were determined spectrophotometrically and were found to be 12.14 and 3.24, respectively. The standard Gibbs energy of transfer (△G0,w→otr,N) and the partition coefficient of neutral species (IgPN) were also determined by the shake-flask method. The standard Gibbs energy of transfer of this compound across the water/1,2-DCE interface was evaluated as the quantitative measure of its lipophilicity. The difference between lgP1 and lgPN was related to the degree of charge delocalization and was used to evaluate qualitatively the lipophilicity of the ligand.

  10. Synthesis, characterization and thermal studies of binary and/or mixed ligand complexes of Cd(II), Cu(II), Ni(II) and Co(III) based on 2-(Hydroxybenzylidene) thiosemicarbazone: DNA binding affinity of binary Cu(II) complex.

    Science.gov (United States)

    Saif, M; Mashaly, Mahmoud M; Eid, Mohamed F; Fouad, R

    2012-06-15

    A new series of metal complexes of Cd(II), Cu(II), Ni(II) and Co(III) with Schiff base ligand, H(2)L, 2-(Hydroxybenzylidene) thiosemicarbazone were synthesized. The mixed ligand complexes were prepared by using glycine (Gly), 2-aminopyridine (2-Ampy) and 1,10-phenanthroline (Phen) as secondary ligands. The structure of these complexes was identified and confirmed by elemental analysis, molar conductivity, UV-Vis, FT-IR and (1)H NMR spectroscopy and magnetic moment measurements as well as TG-DSC technique. The discussions of the prepared complexes indicate that the ligand behaves as a monoanionic tridentate ligand through ONS donor sites. Thermal studies suggested a mechanism for the degradation of the metal complexes as a function of temperature supporting the chelation modes and showed the possibility of obtaining new complexes pyrolytically in the solid state which cannot be synthesized from the solution. The absorption studies support that the binary Cu(II) complex exhibits a significant binding affinity to HS-DNA through intercalative mode.

  11. Interaction of three new tetradentates Schiff bases containing N2O2 donor atoms with calf thymus DNA.

    Science.gov (United States)

    Ajloo, Davood; Shabanpanah, Sajede; Shafaatian, Bita; Ghadamgahi, Maryam; Alipour, Yasin; Lashgarbolouki, Taghi; Saboury, Ali Akbar

    2015-01-01

    Interaction of 1,3-bis(2-hydroxy-benzylidene)-urea (H2L1), 1,3-bis(2-hydroxy-3-methoxy-benzylidene)-urea (H2L2) and 1,3-bis(2-hydroxy-3-methoxy-benzylidene)-urea nickel(II) (NiL2) with calf-thymus DNA were investigated by UV-vis absorption, fluorescence emission and circular dichroism (CD) spectroscopy as well as cyclic voltammetry, viscosity measurements, molecular docking and molecular dynamics simulation. Binding constants were determined using UV-vis absorption and fluorescence spectra. The results indicated that studied Schiff-bases bind to DNA in the intercalative mode in which the metal derivative is more effective than non metals. Their interaction trend is further determined by molecular dynamics (MD) simulation. MD results showed that Ni derivative reduces oligonucleotide intermolecular hydrogen bond and increases solvent accessible surface area more than other compounds.

  12. STUDY ON THE PERFORMANCE OF Co-SBA-15 CATALYST FOR CATALYTIC OXIDATION OF STYRENE TO BENZALDEHYDE%Co-SBA-15催化苯乙烯氧化制苯甲醛反应性能的研究

    Institute of Scientific and Technical Information of China (English)

    白向向; 沈健

    2011-01-01

    以Co(NO3)2·6H2O为钴源制备Co-SBA-15介孔分子筛,并用XRD、BET方法对Co-SBA-15结构进行表征.结果表明,负载钴的SBA-15具有介孔分子筛的结构特征.以质量分数为30%的H2O2为氧化剂,丙酮为溶剂,对Co-SBA-15催化氧化苯乙烯反应进行研究.在苯乙烯用量5 mL、n(H2O2)∶n(苯乙烯)=2、催化剂焙烧温度500℃、Co(15 %)-SBA-15用量100mg、丙酮用量10mL、反应温度100℃、反应时间4h的条件下,苯乙烯转化率为99.12%,苯甲醛选择性为77.62%,苯甲醛收率为76.94%.%Cobalt-containing mesoporous molecular sieves Co-SBA-15 were prepared using Co(NO3) · 6H2O as cobalt source and the obtained molecular sieves were characterized by XRD and BET. Test results showed that Co-SBA-15 possessed the characteristic structural features of mesoporous molecular sieve. The performance of Co-SBA-15 for catalytic oxidation of styrene was investigated using 30% H2O2 as oxidant and acetone as solvent. Under the conditions of using 5 mL of styrene, 10 mL of acetone, 100 mg Co(15%)-SBA-15 catalyst calcined at 500 ℃ ,H2O2/styrene molar ratio of 2,a reaction temperature of 100 ℃ and a reaction time of 4 h,the conversion of styrene reached 99. 12% ,the selectivity and yield of benzaldehyde was 77. 62% and 76. 94% ,respectively.

  13. Synthesis and biological activity of Cu(II),Ag(I), Cd(II)and Pd(II)complexes of betulinal thiosemicarbazone%桦木醛缩氨基硫脲铜、银、镉、钯金属配合物的合成及其生物活性研究

    Institute of Scientific and Technical Information of China (English)

    林汉; 刘颖; 朴凤玉; 韩荣弼

    2016-01-01

    Using combination principle,two betulinal thiosemicarbazone ligands and their Cu(II),Ag(I),Cd (II)and Pd(II)metal complexes were synthesized,which were characterized by IR,1 H NMR,TGA,MAL-DI-TOF and elemental analysis.The ligands and their metal complexes were evaluated for their antimicrobial activity and cytotoxicity.The results showed that the complex Ag (L1 )2 NO3 ·3H2 O has relatively good inhibitory effects on S.aureus 4220,S.mutans 3065 and E.coli 1924.Complexes Ag(L1 )2 NO3·3H2 O and Cu(L1 )2 Cl2 can significantly inhibit the viability of Hela cell.%运用拼合原理,合成了2种桦木醛缩氨基硫脲配体以及它们的铜、银、镉、钯金属配合物,运用红外光谱、核磁共振氢谱、热重分析、飞行质谱和元素分析方法对其进行了结构表征,并测试了配体和配合物的抑菌活性和细胞毒性.结果表明:配合物 Ag(L1)2 NO3·3H2 O 对 S.aureus 4220、S.mutans 3065和 E.coli 1924有较好的抑制作用;配合物 Ag(L1)2 NO3·3H2 O 和 Cu(L1)2 Cl2能够显著抑制 Hela 细胞的生存能力.

  14. 4-[Bis(2-chloroethylamino]benzaldehyde

    Directory of Open Access Journals (Sweden)

    P. Seethalakshmi

    2017-01-01

    Full Text Available In the title compound, C11H13Cl2NO, the chloroethyl amino groups are twisted with respect to the amino group, with N—C—C—Cl torsion angles of −177.4 (4 and 179.2 (3°. The carbonyl group lies in the plane of the benzene ring to which it is attached; torsion angles Car—Car—C=O are 0.1 (8 and −178.2 (5°. In the crystal, C—H...Cl and C—H...O hydrogen bonds link the molecules, forming sheets parallel to (20-1. The sheets are linked by C—H...π interactions, forming a three-dimensional framework.

  15. 4-[5-(4-Formylphenoxypentoxy]benzaldehyde

    Directory of Open Access Journals (Sweden)

    Tomislav Balić

    2012-09-01

    Full Text Available In the title compound, C20H19O4, the benzene rings, linked via five methylene C atoms, form a dihedral angle of 77.28 (6°. In the crystal, molecules are linked via pairs of weak C—H...O interactions [graph set R22(6] into dimers that are further connected by additional weak C—H...O interactions [graph sets R22(14, R22(26 and R22(6].

  16. Overtone spectroscopy of some benzaldehyde derivatives

    Indian Academy of Sciences (India)

    P K Srivastava; D K Rai; S B Rai

    2001-06-01

    Overtone spectrum of , and -nitrobenzaldehydes and -chlorobenzaldehyde has been studied in 2000–12000 cm-1 region. Vibrational frequencies and anharmonicity constants for aryl as well as alkyl CH stretch vibrations have been determined. We have also determined the internuclear distances for the aryl CH bond in the different molecules. The small variation observed in these distances is an indication of the substitution effect. It is observed that in the case of -disubstituted benzenes, the shift in aryl CH bond is proportional to sum of the Hammet of the substituents. However in the case of -disubstituted benzenes it is only 80% of the para-substituted shift.

  17. 2-[4-(2-Formylphenoxybutoxy]benzaldehyde

    Directory of Open Access Journals (Sweden)

    Aliakbar Dehno Khalaji

    2011-09-01

    Full Text Available In the crystal structure of the title compound, C18H18O4, the full molecule is generated by the application of an inversion centre. The molecule is essentially planar, with an r.m.s. deviation of 0.017 (1 Å for all non-H atoms. The molecules are linked through intermolecular C—H...O interactions to form a molecular sheet parallel to the (overline{1}02 plane.

  18. Spectroscopic studies and structure of 3-methoxy-2 -[(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Oezay, H.; Yildiz, M., E-mail: myildiz@comu.edu.tr [Canakkale Onsekiz Mart University, Department of Chemistry, Faculty of Science and Arts (Turkey); Uenver, H.; Durlu, T. N. [Ankara University, Department of Physics, Faculty of Science (Turkey)

    2013-01-15

    The compound called 3-methoxy-2- [(2,4,4,6,6-pentachloro-1,3,5,2{lambda}{sup 5},4{lambda}{sup 5},6{lambda}{sup 5}-triazatriphosphin-2-yl)oxy] benzaldehyde has been synthesized from the reaction of 2-hydroxy-3-methoxybenzaldehyde with hexachlorocyclotriphosphazene. It has been characterized by elemental analysis, MS, IR, {sup 1}H NMR, {sup 13}C NMR, {sup 31}P NMR and UV-visible spectroscopic techniques. The structure of the title compound has been determind by X-ray analysis. Crystals are orthorhombic, space group P2{sub 1}2{sub 1}2{sub 1}, Z = 4, a = 7.705(1), b = 12.624(1), c = 17.825(2) A, R{sub 1} = 0.0390 and wR{sub 2} = 0.1074 [I > 2{sigma}(I)], respectively.

  19. Highly Selective Colorimetric Recognition of Copper Ions Based on N-Aryl Coumarin Methyl Ketone Thiosemicarbazone Receptors%N-芳基香豆素甲基酮缩氨基硫脲对Cu2+的选择性比色识别

    Institute of Scientific and Technical Information of China (English)

    魏太保; 李军舰; 林奇; 姚虹; 郭英; 白翠冰; 谢永强; 张有明

    2012-01-01

    设计合成了2种新型N-芳基香豆素甲基酮缩氨基硫脲受体分子S1和S2,利用紫外-可见(UV-Vis)吸收光谱考察了其对Fe3+,Hg2+,Ag+,Ca2+,Cu2+,Zn2+,Pb2+,Cd2+,Ni2+,Cr3+和Mg2+等阳离子的识别作用.结果表明,当加入Cu2+时,溶液颜色立刻由无色变为黄色,而加入其它阳离子则无变化,从而实现了对Cu2+的裸眼检测,具有专一选择性比色识别效果.通过计算可知,受体分子S2对Cu2+的络合常数大于S1,且主客体间形成1∶1的配合物.受体分子S2对Cu2+的检出限为2.0×10-7mol/L,稳定常数Ks=1.02×105 L/mol.另外,在EDTA存在时,配合物可以释放出Cu2+,与EDTA结合,表现出对Cu2+的“off-on”模式.%Two new A'-aryl coumarin methyl ketone thiosemicarbazone receptors were designed and synthesized. The binding properties of the receptors with cations such as Fe 3+ , Hg 2+ , Ag+ , Ca 2+ , Cu 2+, Zn 2+ , Pb 2+ , Cd2+, Ni2+, Cr3+ and Mg2+ in DMSO were investigated by UV-Vis spectroscopy. A clear color change from colorless to yellow was observed upon the addition of Cu 2+ to the solution of the two receptors in DMSO by naked-eyes and a single selectivity colorimetric recognition. The results showed that the two receptors had a better selectivity for Cu2+, but exhibited no evident binding with others cations. The data showed that the two receptors had different binding abilities with Cu2+. The UV-Vis data indicated that a 1 : 1 stoichiometry complex was formed between the receptor and Cu 2+. The detection limit of the sensor S2 toward Cu 2+ is 2. 0×l0~ mol/L and an association constant Ks of 1. 02×105 L/mol was measured. The sensing of Cu2+ by this sensor was found to be reversible, with the Cu2+-induced color being lost upon the addition of EDTA. The process of titrating sensor S2 with Cu2+ is reversible, and compound S2 could be used as an off-on switch chemosensor.

  20. Study of Thiosemicarbazone Derivative of Essential Fatty Acid

    OpenAIRE

    2014-01-01

    Essential fatty acids results in numerous health benefits. Only two fatty acids are known to be essential for human alpha-linolenic acid (an omega-3 fatty acid) and linoleic acid (an omega-6 fatty acid).The importance of omega-3 fatty acids for physical well-being has been recognised for several decades . Omega-3 fatty acids have anti-inflammatory, antithrombotic, antiarrhythmic and hypolipidaemic effects. Cannabis sativa (Hemp) is an angiosperm belonging to the cannabaceae family and cannabi...

  1. Antimalarial activity of thiosemicarbazones and purine derived nitriles

    Science.gov (United States)

    Mallari, Jeremy P.; Guiguemde, Wendyam A.; Guy, R. Kiplin

    2009-01-01

    Malaria is a devastating illness caused by multiple species of the Plasmodium genus. The parasite’s food vacuole of falcipain proteases have been extensively studied as potential drug targets. Here we report the testing of two established cysteine protease inhibitor scaffolds against both chloroquine sensitive and chloroquine resistant parasites. A subset of purine derived nitriles killed the parasite with moderate potency, and these inhibitors do not seem to exert their antiproliferative effects as cysteine protease inhibitors. Compound potency was determined to be similar against both parasite strains, indicating a low probability of cross resistance with chloroquine. These compounds represent a novel antimalarial scaffold, and a potential starting point for the development new inhibitors. PMID:19447616

  2. SBA-15负载的Cu(II)席夫碱配合物催化的苯乙烯氧化反应制备苯甲醛%Catalytic oxidation of styrene to benzaldehyde over a copper Schiff-base/SBA-15 catalyst

    Institute of Scientific and Technical Information of China (English)

    朱学成; 沈如伟; 张利雄

    2014-01-01

    The amino-modified mesoporous material SBA-15 (NH2-SBA-15) was prepared via co-condensation of tetraethylorthosilicate with 3-aminopropyltriethoxysilane in the presence of an amphiphilic triblock copolymer as a pore-directing agent under acidic conditions. The SBA-15-supported Cu Schiff-base complex (Cu-SBA-15) was then synthesized by condensation of salicylaldehyde with NH2-SBA-15, followed by the addition of a solution of Cu(NO3)2. The supported complex was sys-tematically characterized by elemental analysis, inductive coupled high frequency plasma atomic emission spectrometry, powder X-ray diffraction, Fourier transform infrared spectroscopy, ultravi-olet-visible spectroscopy, field scanning electron microscopy, transmission electron microscopy, N2 absorption-desorption, and thermo gravimetric analysis, and was used as the catalyst for the selec-tive oxidation of styrene to benzaldehyde. The influence of the reaction parameters was assessed. The maximum conversion of styrene was 84.4%and the selectivity for benzaldehyde was 83.9%, when the reaction was conducted with a 2:1 molar ratio of H2O2:styrene in the presence of 3.8 wt%catalyst at 100 °C for 8 h. The TOF was 261.1 h-1, and the catalyst could be used three times without significant loss of activity. The uniformly sized pore channels, high specific surface area, and well-distributed active centers of the catalyst may contribute to the high activity.%子筛SBA-15(NH2-SBA-15),再利用其中氨基与水杨醛的缩合反应制备SBA-15固载的席夫碱,该席夫碱与Cu(NO3)2溶液反应最终制成固定于SBA-15的Cu(II)席夫碱配合物多相催化剂Cu-SBA-15.采用X射线衍射、红外光谱仪、紫外可见分光光度计、场发射电镜、透射电镜、N2吸附-脱附、元素分析、原子发射光谱和热重分析对催化剂进行了表征,并将此催化剂用于无有机溶剂条件下催化氧化苯乙烯制备苯甲醛,考察了反应时间、反应温度、H2O2用量、水的用量

  3. 2′-硼酸基苯甲醛-7-(8-羟基-5-磺酸基)喹啉腙衍生物的合成及对Pb2+的识别%Synthesis of 2′-Borono-benzaldehyde-7- (8-hydroxy-5-sulfoacid)Qninoline Hydrazone and Recognition of Pb2 +

    Institute of Scientific and Technical Information of China (English)

    肖敏; 张丽娜; 吴芳英

    2012-01-01

    合成了2 ′,3′和4′-硼酸基苯甲醛-7-(8-羟基-5-磺酸基)喹啉腙衍生物(化合物1~3),研究了硼酸基团取代位置对主体分子识别金属离子客体性能的影响,比较了不同主体分子与Pb2+结合能力的差异.研究结果表明,在pH=7.0的KH2 PO4 -NaOH缓冲溶液中,3种腙衍生物对Pb2+均具有选择性识别作用,主客体分子间形成1∶1型的发光配合物.其中邻位取代的化合物1与Pb2+的结合能力比化合物2和3强,配合物1-P2+的最大发射波长为477 nm,稳定常数为1.1 ×103 L/mol.其它金属离子如Cu2+,Mn2+,Mg2+,Fe2+,Ca2+,C02+,Ni2+,Hg2+,Cd2+和Ag+等对主体分子荧光光谱的影响较小.同时,荧光强度的变化值与p2+浓度在0.36~ 10 μmol/L范围内呈现良好的线性关系,相关系数R=0.9976(n=16),检出限为0.23 μmol/L.将此方法用于环境水样中Pb2+的测定,回收率为92%~108%.%2', 3' and 4'-borono-benzaldehyde-7-( 8-hydroxy-5-sulfoacid) quinoline hydrazone derivatives (1-3) were synthesized. The influences of host molecules with boric acid at different replace positions on the recognition of metal ions was investigated. The combining ability of host compounds with lead ion was compared. Research results showed that 2'-borono benzaldehyde-7-(8-hydroxy-5-sulfoacid) quinoline hydrazone (1) possessed highly selective binding and recognition to Pb.2+in the KH2PO4-NaOH buffer solution with a pH value of 7. 0. The 1 : 1 complexes between host 1 and lead ion formed and they emitted strong fluorescence. The binding ability of host 1 with Pb2+ was the strongest among hosts 1-3. The emission wavelength of complex 1-Pb2+ was 477 nm and the binding constant was 1. l×l03 L/mol. The presence of the other metal ions led fluorescent spectra of hosts 1-3 little change, for example Mn2+ , Cu2+, Mg2+, Fe2+, Ca2+, Co2+, Hg2+, Ni2+, Cd2+, Ag+ and so on. Fluorescence intensity and the concentration of Pb2 + presented good linear relationship from 0. 36 μrnol/L to 10

  4. 磺酸化介孔二氧化硅的合成及催化苯甲醛和乙二醇的加成反应%Preparation of sulfo-functionlized mesoporous silica and its catalytic performance in addition of benzaldehyde and ethylene glycol

    Institute of Scientific and Technical Information of China (English)

    胡建; 夏成波; 彭静; 郑净植

    2011-01-01

    以CTAB为模板剂,通过溶胶-凝胶法制备了介孔二氧化硅,将聚(苯乙烯-二乙烯苯)包覆在介孔二氧化硅表面,并进行磺酸化制备了一种新型的固体酸催化剂;通过FT-IR、TGA、TEM等表征方法对合成的磺酸化介孔二氧化硅进行了表征.结果表明:表面聚合物基团和磺酸根基团成功地引入到了二氧化硅表面,磺酸化的介孔二氧化硅具有较好的孔道有序结构.磺酸化介孔二氧化硅对苯甲醛和乙二醇的加成反应表现出了较高的酸催化性能.%The mesoporous silica was synthesized by sol-gel method using CTAB as template, and then a novel ordered mesoporous solid acid catalyst was prepared by sulfonation of polymers coating on surface of mesoporous silica.The samples were characterized by FT-IR, TGA and TEM.The results indicated that the meso-structure of the sample was retained, and the polymer groups and -SO3H groups had been successfully incorporated on the surface of silica.The sample show high catalytic performance toward the addition reaction of benzaldehyde and ethylene glycol.

  5. Cu(II), Ni(II), and Zn(II) Complexes of Salan-Type Ligand Containing Ester Groups: Synthesis, Characterization, Electrochemical Properties, and In Vitro Biological Activities

    OpenAIRE

    Jeslin Kanaga Inba, P.; B. Annaraj; Thalamuthu, S.; Neelakantan, M.A.

    2013-01-01

    A salen ligand on reduction and N-alkylation affords a novel [N2O2] chelating ligand containing ester groups [L = diethyl-2,2′-(propane-1,3-diylbis((2-hydroxy-3-methoxy benzyl)azanediyl))diacetate]. The purity of the ligand was confirmed by NMR and HPLC chromatograms. Its Cu(II), Ni(II), and Zn(II) complexes were synthesized and characterized by a combination of elemental analysis, IR, NMR, UV-Vis, and mass spectral data, and thermogravimetric analysis (TG/DTA). The magnetic moments, UV-Vis, ...

  6. 相转移催化合成4-{2-[N-甲基-N-(2-吡啶基)]氨基乙氧基}苯甲醛%Synthesis of 4- { 2- [ N-methyl-N- (2-pyridyl) ] aminoethoxy } benzaldehyde by phase-transfer catalysis

    Institute of Scientific and Technical Information of China (English)

    秦丙昌; 张高宾; 李俊成; 靳晓宁

    2012-01-01

    以2-氯吡啶(1)、2-甲氨基乙醇(2)和4-氟苯甲醛(4)为主要原料,经2步反应合成了4-{2-[N-甲基-N-(2-吡啶基)氨基乙氧基]}苯甲醛(5).第1步反应n(2)∶n(1)=4∶1,反应温度160℃,反应时间约6h,采用减压蒸馏进行后处理,2-[N-甲基-N-(2-吡啶基)氨基]乙醇(3)的收率在93%以上,过量2的回收率在97%以上,回收的2可以重复使用.第2步反应用氢氧化钠做碱性试剂,用甲苯和水分别做为两相的溶剂,在相转移催化剂CTAB作用下进行,经优化后5的收率可达90%以上.2步反应总收率达83%以上.%4-12-[N-Methyl-N-(2-pyridyl) ] aminoethoxy | benzaldehyde(5)was synthesized by a two-steps process with 2-chloropyr-idine(l) ,2-(methylamino) ethanol(2) ,and 4-fluorobenzaldehyde(4) as principal raw materials. In first step of the process, the mole ratio of 2 to 1 was 4:1 .reaction temperature 160℃ .reaction time about 6 h,and adopted vacuum distillation in work-up procedure. Under such conditions,the yield of 2-[n-methyl-n-(2-pyridyl)amino]ethanol(3) was more than 93% ,the rate of recovery of the excess 2 was more than 97% ,and recovered 2 could be cyclically used. The second step of process was carried out with sodium hydroxide as basic reagent,toluene and water as solvent of two phases respectively ,CTAB as phase-transfer catalyst,gave 5 in more than 90% yield under optimal conditions. The above two steps gave 5 in more than 83% overall yield.

  7. O-季铵化-N-(4-十二烷氧基)壳聚糖苯甲醛席夫碱的制备及胶束pH响应性%Preparation and micelle pH response ofO-quaternary ammonium-N-(4-dodecyloxy) chitosan benzaldehyde Schiff’s bass

    Institute of Scientific and Technical Information of China (English)

    林意华; 李明春; 辛梅华; 陈燕燕

    2015-01-01

    制备双亲性的O-季铵化-N-(4-十二烷氧基)壳聚糖苯甲醛席夫碱(QA-CS-DBA),采用FTIR、1H NMR及元素分析对产物进行表征。通过超声法制备QA-CS-DBA载酮洛芬胶束,考察胶束的临界胶束浓度、粒径、Zeta电位、载药量和包封率,并对胶束在不同 pH 值条件下的药物释放行为及 Zeta 电位变化进行研究。结果表明, QA-CS-DBA能将酮洛芬包载于胶束疏水内核,载药量为39.37%,包封率为46.04%,载药胶束粒径为341nm, Zeta电位为30.8mV。胶束Zeta电位及载药胶束的药物释放行为具有pH响应性。%AmphiphilicO-quaternary ammonium-N-(4-dodecyloxy) chitosan benzaldehyde Schiff’s base (QA-CS- DBA) was prepared. FTIR,1H NMR and EA were used to confirm its structure. The micelle of QA-CS-DBA carrying ketoprofen was made by ultrasounding. The CMC,size,Zeta potential,drug loading capacity and encapsulation efficiency were studied,especially the behavior of drug release and the change of Zeta potential in different PBS buffer solution with different pH. The result shows that QA-CS-DBA could form stable drug loading micelles carrying ketoprofen with the size about 341nm. The drug loading capacity and the encapsulation efficiency are 39.37% and 46.04% respectively and the Zeta potential is 30.8mV. With pH changing between 7.40 and 6.50,the micelle shows different Zeta potentials and different behaviors in drug release.

  8. Benzaldehyde hydrogenation over titania-covered Pt powder

    Energy Technology Data Exchange (ETDEWEB)

    Vannice, M.A.; Poondi, D. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Chemical Engineering

    1998-08-15

    Titania when used as a support has been found to have a significant effect on the activity and selectivity of Pt during the hydrogenation of aldehydes and ketones. Turnover frequencies based on hydrogen adsorption sites are markedly enhanced, and rates per gram Pt (at similar dispersions) are also often increased. There are several explanations to account for this performance, at least partially. In an effort to determine the validity of these explanations, and hopefully to eliminate them as possibilities, a Pt powder was studied before and after the addition of varying amounts of TiO{sub 2} on its surface, and a physical mixture of this powder plus TiO{sub 2} was also examined and compared both to these catalysts and to Pt dispersed on TiO{sub 2}. The results follow.

  9. Triclinic polymorph of 4-[4-(4-formylphenoxybutoxy]benzaldehyde

    Directory of Open Access Journals (Sweden)

    Ivana Balić

    2013-01-01

    Full Text Available The title compound, C18H18O4, is a triclinic polymorph of the previously reported monoclinic polymorph [Han & Zhen (2005. Acta Cryst. E61, o4358–o4359]. In the crystal of the triclinic polymorph, molecules are linked by two pairs of C—H...O hydrogen bonds, forming a two-dimensional network parallel to (102, and enclosing loops with graph set motifs of R22(8 and R22(6.

  10. 2-[(4,6-Dimethoxypyrimidin-2-yloxy]benzaldehyde

    Directory of Open Access Journals (Sweden)

    Xue-Jun He

    2012-02-01

    Full Text Available In the title compound, C13H12N2O4, the dihedral angle between the benzene and pyrimidine rings is 55.57 (13°. The carbonyl group and the two methoxyl groups are approximately coplanar with the benzene ring and pyrimidine ring; the C—C—C—O, C—O—C—N and C—O—C—C torsion angles being −6.1 (5, −4.8 (4 and 179.9 (3°, respectively. In the crystal, molecules are linked via C—H...O interactions, forming chains propagating along [110].

  11. Biocatalytic oxidation of benzyl alcohol to benzaldehyde via hydrogen transfer

    NARCIS (Netherlands)

    Orbegozo, Thomas; Lavandera, Iván; Fabian, Walter M.F.; Mautner, Barbara; Vries, Johannes G. de; Kroutil, Wolfgang

    2009-01-01

    Various types of biocatalysts like oxidases, alcohol dehydrogenases, and microbial cells were tested for the oxidation of benzyl alcohol. Oxidases in combination with molecular oxygen led to low conversion. Alcohol dehydrogenases and microbial cells were tested in a hydrogen transfer reaction employ

  12. 4-{2-[2-(4-Formylphenoxyethoxy]ethoxy}benzaldehyde

    Directory of Open Access Journals (Sweden)

    Zhen Ma

    2011-06-01

    Full Text Available The title compound, C18H18O5, was obtained by the reaction of 4-hydroxybenzaldehyde with bis(2,2-dichloroethyl ether in dimethylformamide. In the crystal, the molecule lies on a twofold rotation axis that passes through the central O atom of the aliphatic chain, thus leading to one half-molecule being present per asymmetric unit. The carbonyl, aryl and O—CH2—CH2 groups are almost coplanar, with an r.m.s. deviation of 0.030 Å. The aromatic rings are approximately perpendicular to each other, forming a dihedral angle of 78.31 sh;H...O hydrogen bonds and C—H...π interactions help to consolidate the three-dimensional network.

  13. Synthesis and antituberculosis activity of indole-pyridine derived hydrazides, hydrazide-hydrazones, and thiosemicarbazones.

    Science.gov (United States)

    Velezheva, Valeriya; Brennan, Patrick; Ivanov, Pavel; Kornienko, Albert; Lyubimov, Sergey; Kazarian, Konstantin; Nikonenko, Boris; Majorov, Konstantin; Apt, Alexander

    2016-02-01

    We describe the design, synthesis, and in vitro antimycobacterial activity of a series of novel simple hybrid hydrazides and hydrazide-hydrazones combining indole and pyridine nuclei. The compounds are derivatives of 1-acetylindoxyl or substituted indole-3-carboxaldehydes tethered via a hydrazine group by simple C-N or double C=N bonds with 3- and 4-pyridines, 1-oxide 3- and 4-pyridine carbohydrazides. The most active of 15 compounds showed MICs values against an INH-sensitive strain of Mycobacterium tuberculosis H37Rv equal to that of INH (0.05-2 μg/mL). Five compounds demonstrated appreciable activity against the INH-resistant M. tuberculosis CN-40 clinical isolate (MICs: 2-5 μg/mL), providing justification for further in vivo studies.

  14. Synthesis, DNA Binding, and Antiproliferative Activity of Novel Acridine-Thiosemicarbazone Derivatives

    Directory of Open Access Journals (Sweden)

    Sinara Mônica Vitalino de Almeida

    2015-06-01

    Full Text Available In this work, the acridine nucleus was used as a lead-compound for structural modification by adding different substituted thiosemicarbazide moieties. Eight new (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide derivatives (3a–h were synthesized, their antiproliferative activities were evaluated, and DNA binding properties were performed with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopies. Both hyperchromic and hypochromic effects, as well as red or blue shifts were demonstrated by addition of ctDNA to the derivatives. The calculated binding constants ranged from 1.74 × 104 to 1.0 × 106 M−1 and quenching constants from −0.2 × 104 to 2.18 × 104 M−1 indicating high affinity to ctDNA base pairs. The most efficient compound in binding to ctDNA in vitro was (Z-2-(acridin-9-ylmethylene-N- (4-chlorophenyl hydrazinecarbothioamide (3f, while the most active compound in antiproliferative assay was (Z-2-(acridin-9-ylmethylene-N-phenylhydrazinecarbothioamide (3a. There was no correlation between DNA-binding and in vitro antiproliferative activity, but the results suggest that DNA binding can be involved in the biological activity mechanism. This study may guide the choice of the size and shape of the intercalating part of the ligand and the strategic selection of substituents that increase DNA-binding or antiproliferative properties.

  15. A one pot, three component synthesis of coumarin hybrid thiosemicarbazone derivatives and their antimicrobial evolution

    Directory of Open Access Journals (Sweden)

    Rajesh H. Vekariya

    2017-06-01

    Full Text Available A convenient, one-pot, multi-component protocol for the preparation of 2-(1-(2-oxo-2H-chromen-3-ylethylidenehydrazinecarbothioamide derivatives has been achieved. Here, firstly we have reported the synthesis of 3-acetyl-2H-chromen-2-one using starch sulfuric acid and cellulose sulfuric acid as biodegradable catalysts. Subsequently, we also carried out the reaction of isothiocynates, hydrazine hydrate and 3-acetyl-2H-chromen-2-one in the presence of catalytic amount of glacial acetic acid in refluxing ethanol to afford corresponding 2-(1-(2-oxo-2H-chromen-3-ylethylidenehydrazinecarbothioamide derivatives in high to excellent yields. All synthesized compounds were screened for antimicrobial activity. All compounds were found to show good to excellent activity against Escherichia coli MTCC 443.

  16. Tuning of the charge in octahedral ferric complexes based on pyridoxal-N-substituted thiosemicarbazone ligands

    NARCIS (Netherlands)

    Tido, Eddy W. Yemeli; Faulmann, Christophe; Roswanda, Robby; Meetsma, Auke; van Koningsbruggen, Petra J.

    2010-01-01

    Four novel mononuclear coordination compounds namely: [Fe(Hthpy)(2)](SO(4))(1/2)center dot 3.5H(2)O 1, [Fe(Hthpy)(2)]NO(3)center dot 3H(2)O 2, [Fe(H(2)mthpy)(2)](CH(3)C(6)H(4)SO(3))(3)center dot CH(3)CH(2)OH 3 and [Fe(Hethpy)(ethpy)]center dot 8H(2)O 4, (H(2)thpy = pyridoxalthiosemicarbazone,

  17. Antiviral activity of Thiosemicarbazones derived from α-amino acids against Dengue virus.

    Science.gov (United States)

    Padmanabhan, Padmapriya; Khaleefathullah, Sheriff; Kaveri, Krishansamy; Palani, Gunasekaran; Ramanathan, Giriprasath; Thennarasu, Sathiah; Tirichurapalli Sivagnanam, Uma

    2017-03-01

    The endemicity and seasonal outbreaks of Dengue disease in most tropical and subtropical countries underscores an urgent need to develop effective prevention and control measures. Development of a Dengue vaccine, which is complicated by the Antibody Dependent Enhancement effect (ADE), a viral inhibitor, seems prudent as it would inhibit the spread of the virus. In vitro methods such as MTT assay and plaque formation unit reduction assays were employed for screening the viral inhibitory property of α-amino acid based Thiosemicarbazides. The results elicits that at concentrations not exceeding the maximum non cytotoxic concentration (MNCC), these compounds completely prevented Dengue virus infection in vero cells as indicated by the absence of cytopathic effects in a dose-dependent manner. The high potency of Bz-Trp-TSC against all four types of Dengue virus infection elevates Thiosemicarbazide as a lead antiviral agent for Dengue disease. Screening small molecules for antiviral activity against the most rapidly spreading mosquito-borne viral disease is being explored by several research groups. Our findings would help to augment the efforts to identify the lead compounds for antiviral therapy to combat the Dengue disease. J. Med. Virol. 89:546-552, 2017. © 2016 Wiley Periodicals, Inc.

  18. Synthesis under Micromave Irradition and Crystal Structure of 4'-Acetylbenzo-15 -crown-5thiosemicarbazone

    Institute of Scientific and Technical Information of China (English)

    ZHANG You-ming; ZONG Guo-qiang; WEI Tai-bao

    2004-01-01

    The title compound is a bifunctional receptors including a thiourea group and a crown ether ring. Due to many possible potentials as a new class of reagents for membrane transports,ion-selective electrodes as well as reaction catalysts, the design and synthesis of bifunctional receptors for simultaneous binding of cations and anions is of ongoning interest in srprarnolecular chemistry1-5. In bifunctional receptors, the binding sites for anions and cations are covalently linked so as to exhibit allosteric or cooperative complexation where the binding affinity for anions(cations)is modified as a result of the cation(anion) complexation.Literature[6] reported that the ability of the thiourea group to bind anions is significantly enhanced when Na+ is bound to the crown moiety. To date, however only a few receptors of this class have been reported.6-8In this paper, we report an improved procedure under microwave irradiation that gives higher yields of title compound and needs fewer reaction times than traditional method.The structure of this compound was determined by IR ,element analysis and X-ray analysis.Scheme 1 The reaction equationThe crystal belongs to triclinic crystal system, P-1 space group, a=0.9547(0)nm, b=1.3637(3)nm,c=1.6029(3)nm, α =75.33(3) , β =83.62(3) , γ =70.99(3) ,Z=4,Dc=1.335g/cm3,F(000)=816,R1= 0.0557 ,wR2=0.1281. It is assembled into a three-dimensionalsupramolecule by intermolecular hydrogen bonds.

  19. Synthesis and Crystal Structural Characterization of a Thiosemicarbazone Derived from 4-Acylpyrazolone

    Institute of Scientific and Technical Information of China (English)

    LIU Guang-Fei; LIU Lang; HU Xin; JIA Dian-Zeng; YU Kai-Bei

    2006-01-01

    The reaction of 4-(p-fluobenzoyl)-2,5-dihydro-3-methyl-1-phenyl pyrazol-5-one with thiosemicarbazide in MeOH followed by recrystallization in EtOH gave rise to yellowish lamellar crystals of 4(p-fluo-α-aminothiocarbonyl hydrazonobenzal)-2,5-dihydro-3-methyl- 1 -phenyl pyrazol-5-one 1. It crystallizes in orthorhombic, space group Pbca with a = 18.445(4), b = 11.987(2),c = 19.249(4) (A), V= 4256.1(18) (A)3, Z = 8, Mr = 415.49, Dc= 1.297 g/cm3, T= 296(2) K, F(000) =1744, μ(MoKα) = 0.186 cm-1, R = 0.0521 and wR = 0.1211 for 1661 observed reflections with I >2σ(I). The compound was structurally characterized by elemental analyses, IR and 1H NMR. The intermolecular hydrogen bonds are present and a two-dimensional framework is formed by two intermolecular hydrogen bonds in the (001) plane.

  20. Bis(2-hydroxy-benzaldehyde oxime) O,O'-butane-1,4-diyldicarbonyl ether.

    Science.gov (United States)

    Etemadi, Bijan; Kia, Reza; Sharghi, Hashem; Hosseini Sarvari, Mona

    2009-05-20

    The mol-ecule of the title compound, C(20)H(20)N(2)O(6), lies across a crystallographic inversion centre, the asymmetric unit comprising one half-mol-ecule. An intra-molecular O-H⋯N hydrogen bond generates a six-membered ring, producing an S(6) ring motif. Pairs of inter-molecular C-H⋯O hydrogen bonds link neighbouring mol-ecules into a layer with R(2) (2)(38) ring motif. The crystal structure is further stabilized by the inter-molecular C-H⋯π inter-actions.

  1. Bis(2-hydroxy­benzaldehyde oxime) O,O′-butane-1,4-diyldicarbonyl ether

    Science.gov (United States)

    Etemadi, Bijan; Kia, Reza; Sharghi, Hashem; Hosseini Sarvari, Mona

    2009-01-01

    The mol­ecule of the title compound, C20H20N2O6, lies across a crystallographic inversion centre, the asymmetric unit comprising one half-mol­ecule. An intra­molecular O—H⋯N hydrogen bond generates a six-membered ring, producing an S(6) ring motif. Pairs of inter­molecular C—H⋯O hydrogen bonds link neighbouring mol­ecules into a layer with R 2 2(38) ring motif. The crystal structure is further stabilized by the inter­molecular C—H⋯π inter­actions. PMID:21583166

  2. Synthesis of Chalcone and Flavanone Compound Using Raw Material of Acetophenone and Benzaldehyde Derivative

    Directory of Open Access Journals (Sweden)

    Ismiyarto Ismiyarto

    2010-06-01

    Full Text Available Synthesis of flavanoid compounds of chalcone and flavanone groups have been conducted. Flavanoid Is one of the group natural products which is mostly found in plants and have been proved to have physiological activity as drug. In this research, chalcone proup compounds that being synthesized are: chalcone, 3,4-dimethoxychalcone, 2'-hidroxy-3,4-dimethoxychalcone where as compound of flavanone group that being synthesized is 3',4'-dimethoxyflavanone. The synthesis of chalcone group are carried out based on Claisen-Schmidt reaction by using raw material of aromatic aldehydes and aromatic ketones. The synthesis in carried out by stirring at the room temperature using alkali solution as catalyst and ethanol as solvent. The synthesis of 3',4'-dimethoxyflanone is made based on the nucleophilic 1,4 addition of the unsaturated α,β ketone. The synthesis is made by refluxing 2'-hydroxy-3,4-dimethoxychalcone in alkali condition for 12 hours. The identification of flavanoid compound is carried out by using spectroscopic IR, GC-MS and 1H-NMR methods. The result of each synthesis chalcone group are follows: chalcone as yellowish solid with m.p= 50 °C and the yield is 83.39%; 3,4-dimethoxychalcone as yellow solid with m.p= 57°C and the yield is 76.00% ; 2'-hydroxy-3,4-dimethoxychalcone as orange solid with m.p= 90 °C and the yield is 74.29%, for 3',4'-dimethoxyflavanone as pale yellow solid with m.p= 80 °C and the yield is 72.00%.

  3. Amino acid-catalysed retroaldol condensation: the production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, van der M.J.

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other alpha,beta-unsaturated aldehydes. In the presence of glycine and an elevated pH, six other alpha,beta-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as i

  4. Amino acid-catalysed retroaldol condensation : the production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, WAM; Tramper, J; van der Werf, MJ

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other alpha,beta-unsaturated aldehydes. In the presence of glycine and an elevated pH, six other alpha,beta-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as i

  5. 4-{Ethyl[(E-4-(4-pyridylvinylphenyl]amino}benzaldehyde

    Directory of Open Access Journals (Sweden)

    Dao-Fu Liu

    2008-11-01

    Full Text Available In the title molecule, C22H20N2O, the central aromatic ring forms dihedral angles of 45.30 (2 and 69.43 (2°, respectively, with the outer pyridine and benzene rings. In the crystal structure, weak intermolecular C—H...O interactions link the molecules into layers parallel to the ab plane.

  6. Amino acid-catalysed retroaldol condensation: The production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, M.J. van der

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other α,β -unsaturated aldehydes. In the presence of glycine and an elevated pH, six other α,β-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as its proposed i

  7. Heterogenized homogeneous catalyst. 3. Oxidation of benzaldehyde in a semibatch tubular wall reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, M.C.; Chou, T.C.

    1987-06-01

    The author's previous works showed that the surface of the heterogenized homogeneous catalyst significantly affects both the initiation and termination of free radicals. To minimize free-radical termination by the surface of catalyst and avoid separation of catalyst from the products in a slurry reactor, a tubular reactor was designed in this work. The termination of free radicals by the surface of catalyst is negligible when the tubular wall reactor is used. The selectivity of perbenzoic acid is very high and the maximum yield of perbenzoic acid is 63%. During the experimental period, no leakage of cobaltic ions was found.

  8. Rheological behavior of coal-tar pitch modified with p-methyl benzaldehyde

    Energy Technology Data Exchange (ETDEWEB)

    Lin Qi-lang; Li Tie-hu [Fuzhou University, Fuzhou (China). College of Materials Science and Engineering

    2007-10-15

    The chemical structures and morphologies of the pitches, including the parent coal tar pitch and the modified pitch, were analysed using Fourier-transform infrared spectroscopy (FT-IR) and scanning electron microscopy. The rheological properties of the modified pitch were measured using a rotating coaxial-cylinder viscometer. It was found that many micro-fibers are uniformly distributed in the modified pitch due to the polymerisation between coal tar pitch and p-methyl benzaldebyde (PMB). The apparent viscosity of the modified pitch is 78-548 mPa.S over the temperature range 150-210{sup o}C when the shear rate is 100 s{sup -1}, indicating that the modified pitch has good rheological properties. The viscous activation energy E of the modified pitch becomes large with the decrease of toluene- soluble content and the apparent viscosity becomes small with the increase of shear rate. 5 refs., 2 figs., 2 tabs.

  9. Amino acid-catalysed retroaldol condensation: the production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, van der M.J.

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other alpha,beta-unsaturated aldehydes. In the presence of glycine and an elevated pH, six other alpha,beta-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as i

  10. Amino acid-catalysed retroaldol condensation : the production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, WAM; Tramper, J; van der Werf, MJ

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other alpha,beta-unsaturated aldehydes. In the presence of glycine and an elevated pH, six other alpha,beta-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as i

  11. Amino acid-catalysed retroaldol condensation: The production of natural benzaldehyde and other flavour compounds

    NARCIS (Netherlands)

    Wolken, W.A.M.; Tramper, J.; Werf, M.J. van der

    2004-01-01

    The amino acid-catalysed retroaldol condensation previously described for citral has been extended to other α,β -unsaturated aldehydes. In the presence of glycine and an elevated pH, six other α,β-unsaturated aldehydes also underwent retroaldol condensation. Crotonaldehyde, as well as its proposed i

  12. Oxidation of Benzaldehyde by Quinolinium Chloro Chromate in Presence of Ctab in Sulphuric Acid Medium

    Directory of Open Access Journals (Sweden)

    Kanchan Kumar Rai

    2013-12-01

    Full Text Available The study of oxidation of organic compounds is of immense importance both from mechanistic and synthetic points of view. It has a bearing on the chemical processes of life also. Investigation of the kinetics and mechanism of redox reactions has attracted the attention of chemists world over and mechanisms of several reactions have been clearly delineated. The mechanism of a chemical reaction cannot be fully described without the determination of its rate. The kinetic study of a wide range of chemical processes is seen to be of essential importance, not only in pure research but increasingly in industrial research, development and, in some instances, in quality control and analysis as well. Kinetic methods have become an essential technique in photochemistry, enzyme chemistry, study of chemical catalysis etc.

  13. 4-[4-(1H-Tetrazol-5-ylphenoxy]benzaldehyde

    Directory of Open Access Journals (Sweden)

    Jing Lu

    2011-11-01

    Full Text Available The asymmetric unit of the title compound, C14H10N4O2, contains two independent molecules with similar structures. In one molecule, the tetrazole ring is oriented at dihedral angles of 17.71 (16 and 57.13 (17°, respectively, to the central benzene ring and the terminal benzene ring; in the other molecule, the corresponding dihedral angles are 16.46 (18 and 75.87 (18°. Intermolecular N—H...N hydrogen bonds and weak C—H...O and C—H...N hydrogen bonds occur in the crystal structure.

  14. (E-Benzaldehyde O-{[3-(pyridin-3-ylisoxazol-5-yl]methyl}oxime

    Directory of Open Access Journals (Sweden)

    Rodolfo Moreno-Fuquen

    2012-04-01

    Full Text Available The asymmetric unit of the title compound, C16H13N3O2, contains two independent molecules in which the pyridine and benzene rings form dihedral angles of 81.7 (2 and 79.8 (2°, indicating the twist in the molecules. In the crystal, weak C—H...N interactions link molecules into chains along [100].

  15. Voltammetric behavior, biocidal effect and synthesis of some new nanomeric fused cyclic thiosemicarbazones and their mercuric(II salts

    Directory of Open Access Journals (Sweden)

    M.S.T. Makki

    2014-11-01

    Full Text Available New nanomeric 3-thioxo-5-methoxy-4,5-dihydro-6-methyl-9-unsubstituted/substituted-1,2,4-triazino[5,6-b]indoles (2a–c and 3-thioxo-5-methoxy-4,5-dihydro-6,7-dihydroxy-1,2,4-triaino[5,6]-cyclobut-6-ene (3 were prepared via reaction of thiosemicarbazide with 5-unsubstitutedand/substituted-indol-2,3-diones and/or 3,4-dihydroxycyclobutane-1,2-dione in methanol–concentrated HCl at room temperature. A series of mercury(II–ligand salts e.g. compound 4b and Hg(II complexes 5a,b and 6 of cyclic Schiff base were prepared. Structures of these compounds were established by elemental analysis and spectral measurements. The redox characteristics of selected compounds were studied for use as chelating agents for stripping voltammetric determination of mercuric(II ions in aqueous media. The compounds were also screened for their use as molluscicidal agents against Biomophalaria Alexandrina Snails responsible for Bilhariziasis.

  16. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry

    Science.gov (United States)

    Shoaee, Hamta; Roshdi, Mina; Khanlarzadeh, Nasibeh; Beiraghi, Asadollah

    2012-12-01

    A cloud-point extraction process coupled to ICP-OES by using 3-nitro benzaldehyde thiosemicarbazone (3-NBT) as complexing agent was developed for the simultaneous preconcentration and determination of copper and mercury in water samples. The variables affecting the complexation and extraction steps were optimized. Under the optimum conditions (i.e. 1.5 × 10-5 mol L-1 ligand, 0.3% (v/v) Triton X-114, 55 °C equilibrium temperature, incubation time of 30 min) the calibration graphs were linear in the range of 5-120 and 10-100 ng mL-1 with enhancement factor of 82.7 and 51.3 for Cu2+ and Hg2+, respectively. The preconcentration factors were 28.6 in both cases and detection limits were obtained 0.48 for Cu and 1.1 ng mL-1 for Hg. The precisions (R.S.D.%) for five replicate determinations at 50 ng mL-1 of copper and mercury were better than 1.8% and 3.2%, respectively. The accuracy of the proposed method is validated by analyzing a certified reference material of water (RTC-QCI-049) with satisfactory results. Finally, the proposed method was utilized successfully for the determination of copper and mercury in surface water (river), tap water and bottled mineral water samples.

  17. Simultaneous preconcentration of copper and mercury in water samples by cloud point extraction and their determination by inductively coupled plasma atomic emission spectrometry.

    Science.gov (United States)

    Shoaee, Hamta; Roshdi, Mina; Khanlarzadeh, Nasibeh; Beiraghi, Asadollah

    2012-12-01

    A cloud-point extraction process coupled to ICP-OES by using 3-nitro benzaldehyde thiosemicarbazone (3-NBT) as complexing agent was developed for the simultaneous preconcentration and determination of copper and mercury in water samples. The variables affecting the complexation and extraction steps were optimized. Under the optimum conditions (i.e. 1.5×10(-5) mol L(-1) ligand, 0.3% (v/v) Triton X-114, 55 °C equilibrium temperature, incubation time of 30 min) the calibration graphs were linear in the range of 5-120 and 10-100 ng mL(-1) with enhancement factor of 82.7 and 51.3 for Cu(2+) and Hg(2+), respectively. The preconcentration factors were 28.6 in both cases and detection limits were obtained 0.48 for Cu and 1.1 ng mL(-1) for Hg. The precisions (R.S.D.%) for five replicate determinations at 50 ng mL(-1) of copper and mercury were better than 1.8% and 3.2%, respectively. The accuracy of the proposed method is validated by analyzing a certified reference material of water (RTC-QCI-049) with satisfactory results. Finally, the proposed method was utilized successfully for the determination of copper and mercury in surface water (river), tap water and bottled mineral water samples.

  18. Facile, mild and selective silica sulfuric acid catalyzed oxidation of benzylalcohols to benzaldehyde derivatives by potassium peroxodisulfate

    Directory of Open Access Journals (Sweden)

    M. K. Mohammadi

    2013-04-01

    Full Text Available An efficient, facile, and mild oxidation of a variety of primary benzylic alcohols to the corresponding aldehydes with potassium peroxodisulfate in the presence of a catalytic amount of sodium chloride and silica sulfuric acid (SSA in acetonitrile as solvent is reported. It is a renowned fact that potassium peroxodisulfate acts as a powerful oxidizing agent and the control of conditions is difficult. For this purpose, SSA as a mild, efficient and reusable solid acid catalyst was used to afford the carbonyl compounds in excellent yields and short time. The structure of all of the resulting products was confirmed by FT-IR spectroscopy.DOI: http://dx.doi.org/10.4314/bcse.v27i1.14

  19. 3-Methoxy-4-[3-(2-methyl-4-nitro-1H-imidazol-1-ylpropoxy]benzaldehyde

    Directory of Open Access Journals (Sweden)

    Lei Jin

    2009-09-01

    Full Text Available In the title molecule, C15H17N3O5, the dihedral angle between the benzene and imidazole rings is 3.69 (2°. The crystal structure is stabilized by weak intermolecular C—H...O hydrogen bonds and π–π stacking interactions with a centroid–centroid distance of 3.614 (1 Å.

  20. (E-4-[(1-Benzyl-4-benzylidene-2,5-dioxopyrrolidin-3-ylmethyl]benzaldehyde 0.25-hydrate

    Directory of Open Access Journals (Sweden)

    Tao Yu

    2012-04-01

    Full Text Available The crystal structure of the title compound, C26H21NO3·0.25H2O, reveals one stereogenic centre in the molecule. Nevertheless, due to the observed centrosymmetric space group, both enantiomers are present in the crystal packing. The water molecule of crystallisation is located on a crystallographic inversion center. The molecule contains one five-membered ring (A and three six-membered rings (benzyl ring B, benzylidene ring C and formylbenzyl ring D. All four rings are not coplanar: the dihedral angles between rings A and B, A and C, and A and D are 70.35 (9, 33.8 (1 and 60.30 (9°, respectively. In the crystal, pairs of weak C—H...O interactions lead to the formation of centrosymmetric dimers. Additional C—H...O interactions link the dimers into chains along [011].

  1. Isolation of flavonoids from Aleurites moluccana using chitosan modified with benzaldehyde (CH-Bz) as chromatographic support.

    Science.gov (United States)

    Girardi, L G J; Morsch, M; Cechinel-Filho, V; Meyre-Silva, C; Rodrigues, C A

    2003-09-01

    This paper describes the preparation, characterization and use of a derivative of chitosan as a chromatographic sorbent. Chitosan modified with benzenic ring (CH-Bz) was used to separate two flavonoids, swertisin and 2"-O-rhamnosylswertisin, from ethyl acetate fraction of Aleurites moluccana. The results showed that CH-Bz can be used as a sorbent for the separation of flavonoid compounds. The studies showed that CH-Bz in column chromatography produces goods results, separation of the flavonoid compounds.

  2. General pharmacological properties of a new non-opiate antitussive: zipeprol (3024 CERM). II. Actions on the cardiovascular system, intestinal transit and central nervous system.

    Science.gov (United States)

    Cosnier, D; Hache, J; Labrid, C; Rispat, G

    1976-01-01

    The effects of 1-(2-methoxy-2-phenyl)-ethyl-4-(2-hydroxy-3-methoxy-3-phenyl)-propyl-piperazine-dihydrochloride (zipeprol, 3024 CERM, Respilene), a new nonopiate antitussive agent, have been studied on the cardiovascular system, intestinal function and the central nervous system. Most of these studies were performed comparatively with reference antitussives, particularly codeine, whose activites in these fields are the basis of its undesirable side effects. In the dog, zipeprol showed no hypotensive or cardiac-depressant activity. It did not alter pulmonary arterial pressure. An important antiarrhythmic action was apparent in studies on rhythm disturbances induced by ouabain and coronary ligation. Intestinal function, measured by the recording of peristaltic movements in the dog and the speed of intestinal transit in the rat, was not modified by the product. Zipeprol showed no characteristic action on the central nervous system. Analgesic activity was seen only at doses just below toxic levels. Finally in the rat and the mouse, no evidence of physical dependence was seen after prolonged treatment. This together with the absence of chemical similarity to the morphinics, leads to exclude the possibility of zipeprol treatment leading to addiction. The results of these studies allow zipeprol to be clearly distinguished from the opiate antitussives.

  3. Synthesis and Structure of 1.5Zn(phen)3·L·3NO3 Supramolecule (phen = o-Phenanthroline, L = 4-Aminoacetophenone Thiosemicarbazone)

    Institute of Scientific and Technical Information of China (English)

    ZHANG Nian-You; LI Quan-Jun; LIU Ying-Ying

    2008-01-01

    A supramolecular framework, 1.5Zn(phen)3·L·3NO3 (C63H48Zn1.5N16O9S), has been synthesized.The ligand L was synthesized by the condensation of p-aminoacetophenone with thiosemicarbazide.The crystal belongs to the monoclinic system, space group C2/c, with a = 31.005(2), b = 15.114(2), c = 24.887(3) -, β = 94.260(2)o, Z = 8, V = 11630(2) -3, Dc = 1.489 g/cm3, Mr = 1303.29, λ(MoKα) = 0.71069 -, μ = 0.735 mm-1, F(000) = 5368, Rint = 0.0699, R = 0.0505 and wR = 0.0707.Two independent Zn atoms are both coordinated by six N atoms from three phen ligands.π-π and C-H…π interactions among the L ligands and Zn(phen)3 cations, π-π and C-H…π interactions among the Zn(phen)3 cations and N-H…O hydrogen bonds among the L ligands and nitrate anions connect the whole structure into a 3-D supramolecular framework.

  4. Synthesis, structural, optical band gap and biological studies on iron (III), nickel (II), zinc (II) and mercury (II) complexes of benzyl α-monoxime pyridyl thiosemicarbazone

    Science.gov (United States)

    Bedier, R. A.; Yousef, T. A.; Abu El-Reash, G. M.; El-Gammal, O. A.

    2017-07-01

    New ligand, (E)-2-((E)-2-(hydroxyimino)-1,2-diphenylethylidene)-N-(pyridin-2 yl) hydrazinecarbothioamide (H2DPPT) and its complexes [Fe(DPPT)Cl(H2O)], [Ni(H2DPPT)2Cl2], [Zn(HDPPT)(OAc)] and [Hg(HDPPT)Cl](H2O)4 were isolated and characterized by various of physico-chemical techniques. IR spectra show that H2DPPT coordinates to the metal ions as neutral NN bidentate, mononegative NNS tridentate and binegative NNSN tetradentate, respectively. From the modeling studies, the bond length, bond angle, HOMO, LUMO and dipole moment had been calculated to confirm the geometry of the ligands and their investigated complexes. The thermal studies showed the type of water molecules involved in metal complexes Furthermore, the kinetic and thermodynamic parameters for the different decomposition steps were calculated using the Coats-Redfern and Horowitz-Metzger methods. Also, the optical band gap (Eg) has been calculated to elucidate the conductivity of the isolated complexes. The optical transition energy (Eg) is direct and equals 3.34 and 3.44 ev for Ni and Fe complexes, respectively. The ligand and their metal complexes were screened for antibacterial activity against the following bacterial species, Bacillus thuringiensis, Staphylococcus aureus, Pseudomonas aeuroginosa and Escherichia coli. The results revealed that the metal complexes have more potent antibacterial compared with the ligand. Also, the degradation effect of the investigated compounds was tested showing that, Ni complex exhibited powerful and complete degradation effect on DNA.

  5. 21 CFR 582.60 - Synthetic flavoring substances and adjuvants.

    Science.gov (United States)

    2010-04-01

    ... acid (equisetic acid, citridic acid, achilleic acid). Anethole (parapropenyl anisole). Benzaldehyde.... Methyl anthranilate (methyl-2-aminobenzoate). Piperonal (3,4-methylenedioxy-benzaldehyde,...

  6. Dilution-triggered SMM behavior under zero field in a luminescent Zn2Dy2 tetranuclear complex incorporating carbonato-bridging ligands derived from atmospheric CO2 fixation.

    Science.gov (United States)

    Titos-Padilla, Silvia; Ruiz, José; Herrera, Juan Manuel; Brechin, Euan K; Wersndorfer, Wolfgang; Lloret, Francesc; Colacio, Enrique

    2013-08-19

    The synthesis, structure, magnetic, and luminescence properties of the Zn2Dy2 tetranuclear complex of formula {(μ3-CO3)2[Zn(μ-L)Dy(NO3)]2}·4CH3OH (1), where H2L is the compartmental ligand N,N',N″-trimethyl-N,N″-bis(2-hydroxy-3-methoxy-5-methylbenzyl)diethylenetriamine, are reported. The carbonate anions that bridge two Zn(μ-L)Dy units come from the atmospheric CO2 fixation in a basic medium. Fast quantum tunneling relaxation of the magnetization (QTM) is very effective in this compound, so that single-molecule magnet (SMM) behavior is only observed in the presence of an applied dc field of 1000 Oe, which is able to partly suppress the QTM relaxation process. At variance, a 1:10 Dy:Y magnetic diluted sample, namely, 1', exhibits SMM behavior at zero applied direct-current (dc) field with about 3 times higher thermal energy barrier than that in 1 (U(eff) = 68 K), thus demonstrating the important role of intermolecular dipolar interactions in favoring the fast QTM relaxation process. When a dc field of 1000 Oe is applied to 1', the QTM is almost fully suppressed, the reversal of the magnetization slightly slows, and U(eff) increases to 78 K. The dilution results combined with micro-SQUID magnetization measurements clearly indicate that the SMM behavior comes from single-ion relaxation of the Dy(3+) ions. Analysis of the relaxation data points out that a Raman relaxation process could significantly affect the Orbach relaxation process, reducing the thermal energy barrier U(eff) for slow relaxation of the magnetization.

  7. General pharmacological properties of a new non-opiate antitussive: zipeprol (3024 CERM). I. Action on respiratory function and acute toxicity.

    Science.gov (United States)

    Rispat, G; Burgi, H; Cosnier, D; Duchêne-Marullaz, P; Streichenberger, G

    1976-04-01

    1-(2-Methoxy-2-phenyl)-ethyl-4-(2-hydroxy-3-methoxy-3-phenyl)-propyl-iperazine-dihydrochloride (zipeprol, Respilene) is a substance of non-phenanthrenic chemical structure. In the cat, it antagonised cough induced by stimulation of the superior laryngeal nerve or by direct mechanical excitation of the sensitive tracheo-bronchial receptors. The efficacy of zipeprol after enteral administration made it possible both to establish good intestinal absorption and to rank it favourably in relation to several major antitussive reference products; codeine, codethyline, dextromethorphan, diphenhydramine and pentoxyverine. The activity of zipeprol was superior or equal to that of all these substances, excdept codeine. The antitussive properties appeared to be due to a central action. Other properties have been demonstrated which suggest at least a supplementary mechanism in the inhibition of cough, in addition to the central action. These consisted of slight antihistamine and anticholinergic properties, marked local-anesthetic potency and bronchospasmolytic activity. This latter property was demonstrated by the inhibition of histamine and serotonin induced bronchospasm in the guinea-pig. In vitro, using human sputum, zipeprol had a mucolytic action, shown by a decrease in sputum vis viscosity and lysis of DNA and AMPS fibrils. In the dog, at high doses, zipeprol unlike codeine, did not inhibit central stimulation of respiration by hypercapnia, in addition no modification of ventilatory dynamics or blood gases was seen. On the basis of these results, zipeprol can be considered as possessing no respiratory depressant effect even in the upper ranges of its antitussive doses.

  8. Fast and catalyst-free hydrazone ligation via ortho-halo-substituted benzaldehydes for protein C-terminal labeling at neutral pH.

    Science.gov (United States)

    Xu, Yang; Xu, Ling; Xia, Yuan; Guan, Chao-Jian; Guo, Qing-Xiang; Fu, Yao; Wang, Chen; Li, Yi-Ming

    2015-08-28

    Rapid and catalyst-free hydrazone ligation reaction between ortho-halobenzaldehyde derivatives and peptide/protein hydrazides was observed at neutral pH and room temperature. 2-Chlorobenzaldehyde exhibited the fastest reaction and highest conversion rates among the series of ortho-halobenzaldehydes. The resulting hydrazone-containing bioconjugation products were also found to be fairly stable under experimental conditions. The new ligation strategy was successfully used for protein C-terminal labeling and should provide a practical approach for the modification of proteins.

  9. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II Complexes

    Directory of Open Access Journals (Sweden)

    Ladislav Habala

    2016-12-01

    Full Text Available In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans. All copper(II complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.

  10. Synthesis of Some New Anils: Part 1. Reaction of 2-Hydroxy-benzaldehyde and 2-Hydroxynaphthaldehyde with 2-Aminopyridene and 2-Aminopyrazine

    Directory of Open Access Journals (Sweden)

    Khadija O. Badahdah

    2007-08-01

    Full Text Available New Schiff bases derived from 2-aminopyridene and 2-aminopyrazine have been synthesized. The UV-Visible spectra of the compounds have been investigated in acetonitrile and toluene. The compounds were in tautomeric equilibrium (enol-imine O– H···N, keto-amine O···H–N forms in polar and nonpolar solvents. For some derivatives the keto-amine form was observed in both toluene and acetonitrile. 1H-NMR and IR results showed that all Schiff bases studied favor the enol-imine form over the keto form in a weakly polar solvent such as deuterochloroform.

  11. Antimicrobial Activity and Urease Inhibition of Schiff Bases Derived from Isoniazid and Fluorinated Benzaldehydes and of Their Copper(II) Complexes.

    Science.gov (United States)

    Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand

    2016-12-17

    In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans. All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.

  12. A study on the condensation reaction of aryl substituted 4-amine-1,2,4-triazole with benzaldehydes: Structures and spectroscopic properties of schiff bases and stable hemiaminals

    Science.gov (United States)

    Wajda-Hermanowicz, Katarzyna; Pieniążczak, Damian; Wróbel, Robert; Zatajska, Aleksandra; Ciunik, Zbigniew; Berski, Sławomir

    2016-06-01

    A series of stable hemiaminals and Schiff bases containing 3,5-disubstituted 1,2,4-triazole derivatives were synthesized. The structure of the prepared compounds was confirmed by means of 1H NMR, 13C NMR, IR, MS and elemental analysis. The steric and electronic effects of the triazole ring substituents on the hemiaminal formation was also discussed. Single crystal X-ray diffraction studies of hemiaminals obtained from 4-amino-3,5-dipyridyn-2-yl-1,2,4- triazole (4, 5) revealed the formation of centrosymmetric dimers linked by strong O-H … .N1Tr hydrogen bonds. The Schiff bases obtained from the unsymmetrical 3-methyl,5-phenyl-1,2,4-triazole was found to be a different E-conformer which was determined through solution NMR and crystallographic diffraction analysis (13). The molecular geometry of the unsymmetrical triazole derivatives: hemiaminal (12) and Schiff base (13) were also optimized using density functional theory (DFT/M062x) method with the 6-311++G (d,p) basis set in ground state and compared with the experimental data.

  13. Electrochemical and theoretical investigation of the inhibitory effect of two Schiff bases of benzaldehyde for the corrosion of aluminium in hydrochloric acid

    Science.gov (United States)

    Naik, U. J.; Jha, P. C.; Lone, M. Y.; Shah, R. R.; Shah, N. K.

    2016-12-01

    The corrosion inhibition effect of o-Aminophenol-N-Benzylidene (o-AmphNB) and o-Anisidene-N-Benzylidene (o-AnsNB) for pure Aluminium in 1 M HCl at different concentrations of two different inhibitors were investigated by means of weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The values of Δ Gadso revealed that the adsorption mechanism of these molecules on aluminium surface is competitive phenomenon between chemical and physical adsorption. Potentiodynamic polarization parameters revealed the mixed mode of inhibition with predominance of cathodic inhibition. The impedance results showed that with increase in concentration of inhibitor, charge transfer resistance increases while double layer capacitance decreases. Quantum chemical calculations based on density functional theory (DFT) method were performed on o-AmphNB and o-AnsNB to determine the relationship between molecular structures and their inhibition efficiencies. Correlation analysis concluded that the inhibition effect of inhibitors could be explained in terms of electronic properties.

  14. Avaliação do potencial anticorrosivo de tiossemicarbazonas solubilizadas em microemulsão

    Directory of Open Access Journals (Sweden)

    Elaine Cristina M. de Moura

    2013-01-01

    Full Text Available In this paper, thiosemicarbazones 4-N-cinnamoyl-thiosemicarbazone (CTSC, 4-N-(2'-methoxycinnamoyl-thiosemicarbazone (MCTSC, and 4-N-(4'-hydroxy-3'-methoxybenzoyl- thiosemicarbazone (HMBTSC were solubilized in an oil-in-water (O/W microemulsion system (ME_OCS, forming systems CTSC_ME_OCS, MCTSC_ME_OCS and HMBTSC_ME_OCS. The effectiveness of these systems in the process of inhibiting AISI 1020 carbon steel corrosion was evaluated in a saline solution (NaCl 0.5%, using a galvanostatic method. The tested thiosemicarbazones showed higher inhibitory effects (85.7% for CTSC_ME_OCS, 84.0% for MCTSC_ME_OCS, and 83.3% for HMBTSC_ME_OCS. The surfactant OCS (dissolved in H2O and the ME_OCS system showed lower efficacies, with 71.0% for OCS and 74.0% for ME_OCS system.

  15. STUDIES ON THE SYNTHESIS OF THIOSEMICARBAZONE Schiff BASE AND INDICES OF X-RAY POWDER DIFFRACTION PATTERN%氨基硫脲Schiff碱的合成和X-射线粉末衍射数据的指标化

    Institute of Scientific and Technical Information of China (English)

    郭应臣; 钟国清; 栾绍嵘; 卓立宏

    2001-01-01

    @@ Schiff碱及其衍生物广泛地应用于化工生产和科学研究.水杨醛缩氨基硫脲Sc hiff碱的合成和结构已有报导[1],但通过X-射线粉末衍射指标化,确定其晶系和晶胞参数的工作未见报道,同样也没见报道D(+)-葡萄糖缩氨基硫脲的合成和结构表征.为了提高Schiff碱的水溶性和生物活性,我们合成了D(+)-葡萄糖缩氨基硫脲和水杨醛缩氨基硫脲,并对其进行了组成分析和结构表征.

  16. Synthesis, spectral characterization and biological evaluation of Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with thiosemicarbazone ending by pyrazole and pyridyl rings

    Science.gov (United States)

    Yousef, T. A.; Abu El-Reash, G. M.; Al-Jahdali, M.; El-Rakhawy, El-Bastawesy R.

    2014-08-01

    Here we present the synthesis of the new Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes with chelating ligand (Z)-(2-((1,3-diphenyl-1H-pyrazol-4-yl)methylene) hydrazinyl)(pyridin-2-ylamino)methanethiol. All the complexes were characterized by elemental analysis, IR, 1H NMR, UV-vis, magnetic susceptibility measurements and EPR spectral studies. IR spectra of complexes showed that the ligand behaves as NN neutral bidentate, NSN mononegative tridentate and NSNN mononegative tetradentate. The electronic spectra and the magnetic measurements suggested the octahedral geometry for all complexes as well as the EPR confirmed the tetragonal distorted octahedral for Cu(II) complex. Cd(II) complex showed the highest inhibitory antioxidant activity either using ABTS method. The SOD-like activity exhibited those Cd(II) and Zn(II) complexes have strong antioxidative properties. We tested the synthesized compounds for antitumor activity and showed that the ability to kill liver (HePG2) and breast (MCF-7) cancer cells definitely.

  17. Organometallic complexes of the platinum metals: Synthesis, structure, and catalytic applications

    Indian Academy of Sciences (India)

    Piyali Paul; Samaresh Bhattacharya

    2012-11-01

    Reaction of a group of N-(aryl)picolinamides (pic-R) with [Ru(PPh3)2(CO)2Cl2] in refluxing 2-methoxyethanol in the presence of a base affords hydrido complexes of two types (1-R and 2-R), which are geometric isomers. Similar reaction with N-(naphthyl)picolinamide (pic-nap) yields an organoruthenium complex (3) via formation of a hydrido intermediate. Reaction of 2-(arylazo)phenols (ap-R) with [Ir(PPh3)3Cl] in refluxing ethanol affords a mono-hydrido intermediate (4-R), a di-hydrido intermediate (5-R) and an organoiridium complex (6-R) as the final product, where the azo-ligand is coordinated as CNO-donor. Reaction of ap-R ligands with [Rh(PPh3)3Cl] yields organorhodium complexes (7-R) analogous to 6-R, but without any hydrido intermediate. N-(2'-hydroxyphenyl)benzaldimines (hpbz-R) react with [Rh(PPh3)3Cl] to yield a group of organorhodium complexes (8-R), where the hpbz-R ligands are coordinated in CNO-fashion. Upon interaction with [Ir(PPh3)3Cl] 2-(2',6'-dimethylphenylazo)-4-methylphenol (dmap) undergoes a methyl C-H activation and affords organoiridium complex 9, while 2-(2'-methylphenylazo)-4-methylphenol (mmap) undergoes a phenyl C-H activation and gives organoiridium complex 10. Reaction of benzaldehyde thiosemicarbazones (bztsc-R) with [Pd(PPh3)2Cl2], carried out with the expectation of inducing CNS-mode of coordination, actually has yielded complexes (11-R) where the bztsc-R is coordinated in an uncommon NS-mode forming a fivemembered chelate ring associated with a restricted rotation around the imine (C=N) bond. These palladium complexes are found to catalyse C-C cross coupling reactions very efficiently. Crystal structures of selected complexes of each type have been determined by X-ray crystallography.

  18. Crystal structure of 4-hydroxy-3-methoxybenzaldehyde 4-methylthiosemicarbazone methanol monosolvate

    Directory of Open Access Journals (Sweden)

    Adriano Bof de Oliveira

    2015-05-01

    Full Text Available In the title solvate, C15H15N3O2S·CH3OH, the thiosemicarbazone molecule is approximately planar; the maximum deviation from the mean plane is 0.4659 (14 Å and the dihedral angle between the aromatic rings is 9.83 (8°. This conformation is supported by an intramolecular N—H...N hydrogen bond. In the crystal, the thiosemicarbazone molecules are linked into dimers by pairs of N—H...S hydrogen bonds, thereby generating R22(8 loops. The methanol solvent molecule bonds to the thiosemicarbazone molecule through a bifurcated O—H...(O,O hydrogen bond and also accepts an O—H...O link from the thiosemicarbazone molecule. Together, these links generate a three-dimensional network.

  19. 固载杂多酸树脂催化合成苯甲醛正己硫醇缩醛香料%Synthesis of Benzaldehyde Hexyl Mercaptal Spice on Supported Heteropoly Acid Catalyst

    Institute of Scientific and Technical Information of China (English)

    聂国朝

    2003-01-01

    以离子交换树脂固载磷钨酸为催化剂合成了苯甲醛正己硫醇缩醛,考察了影响收率的因素.其最优条件为:苯甲醛∶正己硫醇∶催化剂∶二氯甲烷=1mol∶2.15mol∶20g∶350ml,43℃回流下进行,反应时间5.0h,收率可达86.3%,催化剂可重复使用.

  20. Synthesis of benzaldehyde hexyl mercaptal spice on supported heteropolyacid catalyst%固载杂多酸树脂催化合成苯甲醛正己硫醇缩醛

    Institute of Scientific and Technical Information of China (English)

    聂国朝

    2003-01-01

    以离子交换树脂固载磷钨酸为催化剂合成了苯甲醛正己硫醇缩醛.在考察了各种影响收率因素的基础上,得出最优工艺条件为:n(苯甲醛)∶n(正己硫醇)∶m(催化剂)∶V(二氯甲烷)=1 mol∶2.15 mol∶20 g∶350 ml,43 ℃,回流,反应时间5.0 h.在此条件下收率可达86.3%.催化剂可重复使用.