2-dimensional numerical modeling of active magnetic regeneration
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Pryds, Nini; Smith, Anders;
2009-01-01
Various aspects of numerical modeling of Active Magnetic Regeneration (AMR) are presented. Using a 2-dimensional numerical model for solving the unsteady heat transfer equations for the AMR system, a range of physical effects on both idealized and non-idealized AMR are investigated. The modeled...... system represents a linear, parallel-plate based AMR. The idealized version of the model is able to predict the theoretical performance of AMR in terms of cooling power and temperature span. This is useful to a certain extent, but a model reproducing experiments to a higher degree is desirable. Therefore...
Development of a numerical 2-dimensional beach evolution model
DEFF Research Database (Denmark)
Baykal, Cüneyt
2014-01-01
This paper presents the description of a 2-dimensional numerical model constructed for the simulation of beach evolution under the action of wind waves only over the arbitrary land and sea topographies around existing coastal structures and formations. The developed beach evolution numerical mode...... groin, and a series of offshore breakwaters. The numerical model gave results in agreement with the measurements both qualitatively and quantitatively and reflected the physical concepts well for the selected conceptual cases.......This paper presents the description of a 2-dimensional numerical model constructed for the simulation of beach evolution under the action of wind waves only over the arbitrary land and sea topographies around existing coastal structures and formations. The developed beach evolution numerical model...... is composed of 4 submodels: a nearshore spectral wave transformation model based on an energy balance equation including random wave breaking and diffraction terms to compute the nearshore wave characteristics, a nearshore wave-induced circulation model based on the nonlinear shallow water equations...
Energy Technology Data Exchange (ETDEWEB)
Park, Ju Yeop; In, Wang Kee; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Taejeon (Korea)
2000-02-01
The development of orthogonal 2-dimensional numerical code is made. The present code contains 9 kinds of turbulence models that are widely used. They include a standard k-{epsilon} model and 8 kinds of low Reynolds number ones. They also include 6 kinds of numerical schemes including 5 kinds of low order schemes and 1 kind of high order scheme such as QUICK. To verify the present numerical code, pipe flow, channel flow and expansion pipe flow are solved by this code with various options of turbulence models and numerical schemes and the calculated outputs are compared to experimental data. Furthermore, the discretization error that originates from the use of standard k-{epsilon} turbulence model with wall function is much more diminished by introducing a new grid system than a conventional one in the present code. 23 refs., 58 figs., 6 tabs. (Author)
Antarctic ice sheet GLIMMER model test and its simplified model on 2-dimensional ice flow
Institute of Scientific and Technical Information of China (English)
Xueyuan Tang; Zhanhai Zhang; Bo Sun; Yuansheng Li; Na Li; Bangbing Wang; Xiangpei Zhang
2008-01-01
The 3-dimensional finite difference thermodynamic coupled model on Antarctic ice sheet, GLIMMER model, is described. An ide-alized ice sheet numerical test was conducted under the EISMINT-I benchmark, and the characteristic curves of ice sheets under steady state were obtained. Based on this, this model was simplified from a 3-dimensional one to 2-dimensional one. Improvement of the dif-ference method and coordinate system was proposed. Evolution of the 2-dimensional ice flow was simulated under coupled temperature field conditions. The results showed that the characteristic curves deriving from the conservation of the mass, momentum and energy agree with the results of ice sheet profile simulated with GLIMMER model and with the theoretical results. The application prospect of the simplified 2-dimensional ice flow model to simulate the relation of age-depth-accumulation in Dome A region was discussed.
Damage spreading in 2-dimensional isotropic and anisotropic Bak-Sneppen models
Bakar, Burhan; Tirnakli, Ugur
2007-01-01
We implement the damage spreading technique on 2-dimensional isotropic and anisotropic Bak-Sneppen models. Our extensive numerical simulations show that there exists a power-law sensitivity to the initial conditions at the statistically stationary state (self-organized critical state). Corresponding growth exponent $\\alpha$ for the Hamming distance and the dynamical exponent $z$ are calculated. These values allow us to observe a clear data collapse of the finite size scaling for both versions...
Damage spreading in 2-dimensional isotropic and anisotropic Bak-Sneppen models
Bakar, B.; Tirnakli, U.
2008-03-01
We implement the damage spreading technique on 2-dimensional isotropic and anisotropic Bak-Sneppen models. Our extensive numerical simulations show that there exists a power-law sensitivity to the initial conditions at the statistically stationary state (self-organized critical state). Corresponding growth exponent α for the Hamming distance and the dynamical exponent z are calculated. These values allow us to observe a clear data collapse of the finite size scaling for both versions of the Bak-Sneppen model. Moreover, it is shown that the growth exponent of the distance in the isotropic and anisotropic Bak-Sneppen models is strongly affected by the choice of the transient time.
Towards automatic calibration of 2-dimensional flood propagation models
Directory of Open Access Journals (Sweden)
P. Fabio
2009-11-01
Full Text Available Hydraulic models for flood propagation description are an essential tool in many fields, e.g. civil engineering, flood hazard and risk assessments, evaluation of flood control measures, etc. Nowadays there are many models of different complexity regarding the mathematical foundation and spatial dimensions available, and most of them are comparatively easy to operate due to sophisticated tools for model setup and control. However, the calibration of these models is still underdeveloped in contrast to other models like e.g. hydrological models or models used in ecosystem analysis. This has basically two reasons: first, the lack of relevant data against the models can be calibrated, because flood events are very rarely monitored due to the disturbances inflicted by them and the lack of appropriate measuring equipment in place. Secondly, especially the two-dimensional models are computationally very demanding and therefore the use of available sophisticated automatic calibration procedures is restricted in many cases. This study takes a well documented flood event in August 2002 at the Mulde River in Germany as an example and investigates the most appropriate calibration strategy for a full 2-D hyperbolic finite element model. The model independent optimiser PEST, that gives the possibility of automatic calibrations, is used. The application of the parallel version of the optimiser to the model and calibration data showed that a it is possible to use automatic calibration in combination of 2-D hydraulic model, and b equifinality of model parameterisation can also be caused by a too large number of degrees of freedom in the calibration data in contrast to a too simple model setup. In order to improve model calibration and reduce equifinality a method was developed to identify calibration data with likely errors that obstruct model calibration.
A 2-Dimensional Fluid Model for an Argon Rf Discharge
Passchier, J. D. P.; W. J. Goedheer,
1993-01-01
A fluid model for an argon rf discharge in a cylindrical discharge chamber is presented. The model contains the particle balances for electrons and ions and the electron energy balance. A nonzero autobias voltage is obtained by imposing the condition that the time-averaged current toward the powered
Localized Solutions in a 2 Dimensional Landau-Lifshitz Model
Piette, B.; Zakrzewski, W. J.
1996-01-01
We demonstrate the existence of stable time dependent solutions of the Landau-Lifshitz model with a constant external magnetic field. We find such solutions in all topological sectors, including N=0. We discuss some of their properties.
Directory of Open Access Journals (Sweden)
Bingtuan Gao
2014-04-01
Full Text Available The 2-Dimensional Translational Oscillators with Rotating Actuator (2DTORA is a novel underactuated system which has one actuated rotor and two unactuated translational carts. This paper focuses on dynamical modelling and simulation analysis of the underactuated 2DTORA on a slope. Based on Lagrange equations, the dynamics of the 2DTORA is achieved by selecting a transverse position of a cart, a travelling position of a cart, and the rotor angle as the general coordinates and torque acting on the rotor as the general force. When the slope angle is set to zero, the dynamics of 2DTORA on a slope is reduced to that of 2DTORA on the horizontal plane. Moreover, by eliminating one degree of translational cart motion, the dynamics of 2DTORA is reduced to that of TORA which is a benchmark of underactuated systems. In addition, the equilibrium and controllability of the 2DTORA system on a slop are discussed. Finally, numerical simulations are performed to verify the feasibility of the developed dynamic models.
Signature change in 2-dimensional black-hole models of loop quantum gravity
Bojowald, Martin
2016-01-01
Signature change has been identified as a generic consequence of holonomy modifications in spherically symmetric models of loop quantum gravity with real connections, which includes modified Schwarzschild solutions. Here, this result is extended to 2-dimensional dilaton models and to different choices of canonical variables, including in particular the Callan-Giddings-Harvey-Strominger (CGHS) solution. New obstructions are found to coupling matter and to including operator-ordering effects in an anomaly-free manner.
Dynamical analysis and simulation of a 2-dimensional disease model with convex incidence
Yu, Pei; Zhang, Wenjing; Wahl, Lindi M.
2016-08-01
In this paper, a previously developed 2-dimensional disease model is studied, which can be used for both epidemiologic modeling and in-host disease modeling. The main attention of this paper is focused on various dynamical behaviors of the system, including Hopf and generalized Hopf bifurcations which yield bistability and tristability, Bogdanov-Takens bifurcation, and homoclinic bifurcation. It is shown that the Bogdanov-Takens bifurcation and homoclinic bifurcation provide a new mechanism for generating disease recurrence, that is, cycles of remission and relapse such as the viral blips observed in HIV infection.
Numerical Modelling of Streams
DEFF Research Database (Denmark)
Vestergaard, Kristian
In recent years there has been a sharp increase in the use of numerical water quality models. Numeric water quality modeling can be divided into three steps: Hydrodynamic modeling for the determination of stream flow and water levels. Modelling of transport and dispersion of a conservative...
DEFF Research Database (Denmark)
Henriquez, Vicente Cutanda
This thesis describes the development of a numerical model of the propagation of sound waves in fluids with viscous and thermal losses, with application to the simulation of acoustic transducers, in particular condenser microphones for measurement. The theoretical basis is presented, numerical...... that are allowable in this case: linear variations, absence of flow, harmonic time variation, thermodynamical equilibrium and physical dimensions much larger than the molecular mean free path. A formulation of the BEM is also developed with an improvement designed to cope with the numerical difficulty associated...... with very close surfaces, as found in condenser microphones, where the membrane has a backplate very close behind. This improvement could be useful for many other problems where the BEM is applied. The numerical implementation that includes both viscous and thermal effects is then worked out. Some numerical...
Numerical transducer modelling
DEFF Research Database (Denmark)
Cutanda, Vicente
1999-01-01
Numerical modelling is of importance for the design, improvement and study of acoustic transducers such as microphones and accelerometers. Techniques like the boundary element method and the finite element method are the most common supplement to the traditional empirical and analytical approaches...... errors and instabilities in the computations of numerical solutions. An investigation to deal with this narrow-gap problem has been carried out....
Buczko, U.; Gerke, H. H.; Hangen, E.; Hüttl, R. F.
2003-04-01
Water balances of forest sites are often estimated using 1-dimensional numerical models and tensiometer data from different depths. The magnitude of groundwater recharge calculated in such a way in most cases cannot be verified experimentally. In heterogeneous soils, water flows are spatially highly variable. The objective of this contribution is to compare the flow and deep percolation within a reclaimed mine soil which was calculated with a 1D numerical model, with seepage water collected, spatially-resolved, in-situ. Further, it is aimed at improving the methodology for calculating water balances and element budgets on heterogeneous mine soils, using 2D models with spatial variability. At the study site “Bärenbrück” near Cottbus, a lignitic mine soil afforested in 1982 with Pinus nigra, the components of the water balance were simulated with a 1D numerical model (SOIL/COUP) for a period from May 1995 to September 2001, using meteorological data and measured water tensions in soil depths 15, 60, and 100 cm. At the same site, soil water percolates were extracted continually in-situ at a soil depth of 110 cm from June 2000 until September 2001 within the framework of a cell-lysimeter study. 2D simulations were performed with the numerical model HYDRUS-2D, using evapotranspiration data obtained with the 1D-model. In the balance period between 4/96 and 3/99, the simulated deep percolation ranges between 30.4 and 35.2 mm per year, whereas during the dryer years 6/1999 5/2000 and 6/2000 5/2001 it amounts to 6.6 mm and 1.5 mm, respectively. The average deep percolation based on the in-situ suction plate data during the same period was 11 mm for the period 6/1999 5/2000 and 24.3 mm for 6/2000 5/2001, although spatially highly variable. Consequently, for the period 6/2000 5/2001, groundwater recharge based on measured in-situ data is by one order of magnitude higher than those simulated with the 1D model. The 2D numerical simulations are used to explain this
Performance Of Bathymetric Lidar On Flow Properties Predicted With A 2-Dimensional Hydraulic Model
Tonina, D.; McKean, J. A.; Wright, C. W.
2014-12-01
Increased computer processing speeds and new computational fluid dynamics codes have significantly improved numerical modeling of flow and sediment transport over large domains of streams, up to several kilometers in length. Recent developments in remote sensing technologies have also greatly improved our ability to map the morphology of streams over similar spatial extents. However, limited information is available on whether the remote sensing methods can map channel topography with sufficient accuracy to define the flow boundary necessary for a fluid dynamics model. We assessed the ability of a second generation airborne bathymetric sensor, the Experimental Advanced Airborne Research Lidar (EAARL-B), to support a two dimensional fluid dynamics model of a small morphologically-complex mountain stream. We compared flow model predictions using the lidar bathymetry with those made using a total station field survey of the channel. In this riverscape, results suggest EAARL bathymetric lidar can map channel topography with sufficient accuracy to support a two dimensional computational flow model.
Numerical modeling of creep in metals: numerical results
International Nuclear Information System (INIS)
A 2-dimensional initial strain direct boundary element method was proposed to numerically model the creep behaviour of metals. The boundary of the body was discretized into quadratic elements and the domain into quadratic quadrilaterals. The variables were also assumed to have a quadratic variation over the elements. Due to the time-dependent nature of creep, the solution was derived over increments of time. Backward Euler method and automatic time incrementation technique for updating the variables were implemented to assure stability and accuracy of results. An algorithm had been developed to implement this method. The results for a square plate under biaxial load were compared to analytical solutions and showed to be in good agreement with errors of 4.17% and 1.91% for effective creep strain and creep strain in the xx-direction, respectively. Parametric study of the effects of varying the initial time step, tolerance range and convergence criteria on the numerical results were also carried out. (Author)
A restricted dimer model on a 2-dimensional random causal triangulation
Ambjorn, J; Wheater, J F
2014-01-01
We introduce a restricted hard dimer model on a random causal triangulation that is exactly solvable and generalizes a model recently proposed by Atkin and Zohren. We show that the latter model exhibits unusual behaviour at its multicritical point; in particular, its Hausdorff dimension equals 3 and not 3/2 as would be expected from general scaling arguments. When viewed as a special case of the generalized model introduced here we show that this behaviour is not generic and therefore is not likely to represent the true behaviour of the full dimer model on a random causal triangulation.
An effective depression filling algorithm for DEM-based 2-dimensional surface flow modelling
Zhu, D.; Ren, Q.; Xuan, Y.; Y. Chen; Cluckie, I.
2012-01-01
The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D) diffusive wave approximation to described by grid based digital elevation models (DEMs). However, a serious problem of this approach may arise when using a 2-D surface flow model which exchanges flows through adjacent cells, or conventional rink removal algorithms which also allow flow to be exchanged along diagonal directions, due to the existence of artificial depression in ...
An effective depression filling algorithm for DEM-based 2-dimensional surface flow modelling
Directory of Open Access Journals (Sweden)
D. Zhu
2012-09-01
Full Text Available The surface runoff process in fluvial/pluvial flood modelling is often simulated employing a two-dimensional (2-D diffusive wave approximation to described by grid based digital elevation models (DEMs. However, a serious problem of this approach may arise when using a 2-D surface flow model which exchanges flows through adjacent cells, or conventional rink removal algorithms which also allow flow to be exchanged along diagonal directions, due to the existence of artificial depression in DEMs. This study firstly analyses the two types of depressions in DEMs and reviews the current depression filling algorithms with a medium sized basin in South-East England, the Upper Medway Catchment (220 km^{2} used to demonstrate the depression issue in 2-D surface runoff simulation by MIKE SHE with different DEM resolutions (50 m, 100 m and 200 m. An alternative depression-filling algorithm for 2-D overland flow modelling is developed and evaluated by comparing the simulated flows at the outlet of the catchment. This result suggests that the depression estimates at different grid resolution of DEM highly influences overland flow estimation and the new depression filling algorithm is shown to be effective in tackling this issue when comparing simulations in sink-dominated and sink-free digital elevation models, especially for depressions in relatively flat areas on digital land surface models.
Modeling of leachate generation from MSW landfills by a 2-dimensional 2-domain approach.
Fellner, Johann; Brunner, Paul H
2010-11-01
The flow of water through Municipal Solid Waste (MSW) landfills is highly non-uniform and dominated by preferential pathways. Thus, concepts to simulate landfill behavior require that a heterogeneous flow regime is considered. Recent models are based on a 2-domain approach, differentiating between channel domain with high hydraulic conductivity, and matrix domain of slow water movement with high water retention capacity. These models focus on the mathematical description of rapid water flow in channel domain. The present paper highlights the importance of water exchange between the two domains, and expands the 1-dimensional, 2-domain flow model by taking into account water flows in two dimensions. A flow field consisting of a vertical path (channel domain) surrounded by the waste mass (matrix domain) is defined using the software HYDRUS-2D. When the new model is calibrated using data sets from a MSW-landfill site the predicted leachate generation corresponds well with the observed leachate discharge. An overall model efficiency in terms of r(2) of 0.76 was determined for a simulation period of almost 4 years. The results confirm that water in landfills follows a preferential path way characterized by high permeability (K(s)=300 m/d) and zero retention capacity, while the bulk of the landfill (matrix domain) is characterized by low permeability (K(s)=0.1m/d) and high retention capacity. The most sensitive parameters of the model are the hydraulic conductivities of the channel domain and the matrix domain, and the anisotropy of the matrix domain. PMID:20385480
Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models
Bakar, Burhan; Tirnakli, Ugur
2008-01-01
The conventional Hamming distance measurement captures only the short-time dynamics of the displacement between the uncorrelated random configurations. The minimum difference technique introduced by Tirnakli and Lyra [Int. J. Mod. Phys. C 14, 805 (2003)] is used to study the short-time and long-time dynamics of the two distinct random configurations of the isotropic and anisotropic Bak-Sneppen models on a square lattice. Similar to 1-dimensional case, the time evolution of the displacement is...
Investigation of two different anoxia models by 2-dimensional gel electrophoresis
DEFF Research Database (Denmark)
Wulff, Tune; Jessen, Flemming; Hoffmann, Else Kay
2006-01-01
This study presents a broad investigation of the effects of different types of anoxia in the Rainbow Trout Hypodermal Fibroblasts cell line, including a comparison of two widely used anoxia models. Anoxia was obtained either by flushing with N2 (FN) or by adding NaN3 to the medium, since chemical...... of molecular masses from 10 to 120 kDa and pI values from 4 to 7. In response to 24 h of anoxia obtained by FN we found that the sexpression of more than 30 proteins changed, including proteins involved in cell metabolism as well as protective proteins. Chemical anoxia for 30 minutes and subsequent...
Convergence dynamics of 2-dimensional isotropic and anisotropic Bak Sneppen models
Bakar, Burhan; Tirnakli, Ugur
2008-09-01
The conventional Hamming distance measurement captures only short-time dynamics of the displacement between uncorrelated random configurations. The minimum difference technique introduced by Tirnakli and Lyra [U. Tirnakli, M.L. Lyra. Int. J. Mod. Phys. C 14 (2003) 805] is used to study short-time and long-time dynamics of the two distinct random configurations of isotropic and anisotropic Bak-Sneppen models on a square lattice. Similar to a 1-dimensional case, the time evolution of the displacement is intermittent. The scaling behavior of the jump activity rate and waiting time distribution reveal the absence of typical spatial-temporal scales in the mechanism of displacement jumps used to quantify convergence dynamics.
Numerical modeling of gas hydrate emplacements in oceanic sediments
Schnurle, Philippe; Liu, Char-Shine
2011-01-01
We have implemented a 2-dimensional numerical model for simulating gas hydrate and free gas accumulation in marine sediments. The starting equations are those of the conservation of the transport of momentum, energy, and mass, as well as those of the thermodynamics of methane hydrate stability and methane solubility in the pore-fluid. These constitutive equations are then integrated into a finite element in space, finite-difference in time scheme. We are then able to examine the formation and...
Numerical modeling of economic uncertainty
DEFF Research Database (Denmark)
Schjær-Jacobsen, Hans
2007-01-01
Representation and modeling of economic uncertainty is addressed by different modeling methods, namely stochastic variables and probabilities, interval analysis, and fuzzy numbers, in particular triple estimates. Focusing on discounted cash flow analysis numerical results are presented, comparisons...... are made between alternative modeling methods, and characteristics of the methods are discussed....
Numerical Modeling of Shoreline Undulations
DEFF Research Database (Denmark)
Kærgaard, Kasper Hauberg
The present thesis considers undulations on sandy shorelines. The aim of the study is to determine the physical mechanisms which govern the morphologic evolution of shoreline undulations, and thereby to be able to predict their shape, dimensions and evolution in time. In order to do so a numerical...... model has been developed which describes the longshore sediment transport along arbitrarily shaped shorelines. The numerical model is based on a spectral wave model, a depth integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model. First the theoretical...... length of the shoreline undulations is determined in the linear regime using a shoreline stability analysis based on the numerical model. The analysis shows that the length of the undulations in the linear regime depends on the incoming wave conditions and on the coastal profile. For larger waves...
Numerical modeling of parallel-plate based AMR
DEFF Research Database (Denmark)
In this work we present an improved 2-dimensional numerical model of a parallel-plate based AMR. The model includes heat transfer in ﬂuid and magnetocaloric domains respectively. The domains are coupled via inner thermal boundaries. The MCE is modeled either as an instantaneous change between high...... the direction not resolved through a realistic description of the thermal resistance between localized points in the bed and the ambient. The results show that the additions to the model place numerical modeling of AMR very close to the corresponding experimental results. Thus, the model is veriﬁed by...... direct comparison with experiment. This is used as a ﬁrm basis for predicting and optimizing performance of a large variety of regenerator conﬁgurations in order to study and learn the trends, tendencies and even absolute values of temperature span and cooling powers for the optimal (and buildable...
Numerical Modeling of LCROSS experiment
Sultanov, V. G.; Kim, V. V.; Matveichev, A. V.; Zhukov, B. G.; Lomonosov, I. V.
2009-06-01
The mission objectives of the Lunar Crater Observation and Sensing Satellite (LCROSS) include confirming the presence or absence of water ice in a permanently shadowed crater in the Moon's polar regions. In this research we present results of numerical modeling of forthcoming LCROSS experiment. The parallel FPIC3D gas dynamic code with implemented realistic equations of state (EOS) and constitutive relations [1] was used. New wide--range EOS for lunar ground was developed. We carried out calculations of impact of model body on the lunar surface at different angels. Situations of impact on dry and water ice--contained lunar ground were also taken into account. Modeling results are given for crater's shape and size along with amount of ejecta. [4pt] [1] V.E. Fortov, V.V. Kim, I.V. Lomonosov, A.V. Matveichev, A.V. Ostrik. Numerical modeling of hypervelocity impacts, Intern J Impact Engeneering, 33, 244-253 (2006)
Numerical models for differential problems
Quarteroni, Alfio
2014-01-01
In this text, we introduce the basic concepts for the numerical modelling of partial differential equations. We consider the classical elliptic, parabolic and hyperbolic linear equations, but also the diffusion, transport, and Navier-Stokes equations, as well as equations representing conservation laws, saddle-point problems and optimal control problems. Furthermore, we provide numerous physical examples which underline such equations. We then analyze numerical solution methods based on finite elements, finite differences, finite volumes, spectral methods and domain decomposition methods, and reduced basis methods. In particular, we discuss the algorithmic and computer implementation aspects and provide a number of easy-to-use programs. The text does not require any previous advanced mathematical knowledge of partial differential equations: the absolutely essential concepts are reported in a preliminary chapter. It is therefore suitable for students of bachelor and master courses in scientific disciplines, an...
Numerical Modelling of Scramjet Combustor
Directory of Open Access Journals (Sweden)
M. Deepu
2007-07-01
Full Text Available Numerical modelling of turbulent-reacting flow field of supersonic combustion ramjet(scramjet combustors are presented. The developed numerical procedure is based on the implicittreatment of chemical source terms by preconditioning and solved along with unstedy turbulentNavier-Stokes equations explicitly. Reaction is modelled using an eight-step hydrogen-airchemistry. Code is validated against a standard wall jet experimental data and is successfullyused to model the turbulent-reacting flow field resulting due to the combustion of hydrogeninjected from diamond-shaped strut and also in the wake region of wedge-shaped strut placedin the heated supersonic airstream. The analysis could demonstrate the effect of interaction ofoblique shock wave with a supersonic stream of hydrogen in its (fuel-air mixing and reactionfor strut-based scramjet combustors.
Numerical modeling and analysis of the active magnetic regenerator
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein
In this thesis the active magnetic regenerator (AMR) is analyzed using various numerical tools and experimental devices. A 2-dimensional transient numerical model of the AMR is developed and implemented and it is used to investigate the in uence of a range of parameters on the performance...... expressed as temperature span versus cooling power is mapped as a function of the central parameters. Since regenerators built of several magnetic materials distinguished by their respective magnetic transition temperatures are reported to perform better than single-material AMRs this concept has been...... investigated using the numerical AMR model. The results show indeed that the performance may be enhanced signicantly and it may thus be concluded that the performance of the AMR is dependent on a vast number of parameters (material composition, magnetic eld source, regenerator geometry, regenerator eciency...
Numerical modelling of rapid solidification
DEFF Research Database (Denmark)
Pryds, Nini; Hattel, Jesper Henri
1997-01-01
A mathematical model of the melt spinning process has been developed based on the control-volume finite-difference method. The model avoids some of the limitations of the previous models, for example including the effect of the wheel in the heat how calculations and the temperature dependence of ...... with increasing thermal conductivity of the wheel. The observed increase in the wheel surface temperature suggests the importance of including the wheel in the numerical calculations, especially for a wheel made of a low-conductive material...
Numerical Modelling of Overburden Deformations
Directory of Open Access Journals (Sweden)
J. Barták
2002-01-01
Full Text Available This paper focuses on the application and verification of mathematical models of the effect of supporting measures on the reduction of overburden deformations. The study of the behaviour of the models is divided into three parts: reduction of the tunnelling effects on the Minorit monastery by means of a jet-grouting curtain; the behaviour of the Hvížďalka backfilled tunnel and a numerical analysis of the supporting measures affecting the tunnel deformations of the Mrázovka tunnel in Prague.
Numerical modeling of foam flows
International Nuclear Information System (INIS)
Liquid foam flows are involved in numerous applications, e.g. food and cosmetics industries, oil extraction, nuclear decontamination. Moreover, their study leads to fundamental knowledge: as it is easier to manipulate and analyse, foam is used as a model material to understand the flow of emulsions, polymers, pastes, or cell aggregates, all of which display both solid and liquid behaviour. Systematic experiments performed by Francois Graner et al. provide precise data that emphasize the non Newtonian properties of the foam. Meanwhile, Pierre Saramito proposed a visco-elasto-plastic continuous tensorial model, akin to predict the behaviour of the foam. The goal of this thesis is to understand this complex behaviour, using these two elements. We have built and validated a resolution algorithm based on a bidimensional finite elements methods. The numerical solutions are in excellent agreement with the spatial distribution of all measured quantities, and confirm the predictive capabilities of the model. The dominant parameters have been identified and we evidenced the fact that the viscous, elastic, and plastic contributions to the flow have to be treated simultaneously in a tensorial formalism. We provide a substantial contribution to the understanding of foams and open the path to realistic simulations of complex VEP flows for industrial applications. (author)
Numerical models of complex diapirs
Podladchikov, Yu.; Talbot, C.; Poliakov, A. N. B.
1993-12-01
Numerically modelled diapirs that rise into overburdens with viscous rheology produce a large variety of shapes. This work uses the finite-element method to study the development of diapirs that rise towards a surface on which a diapir-induced topography creeps flat or disperses ("erodes") at different rates. Slow erosion leads to diapirs with "mushroom" shapes, moderate erosion rate to "wine glass" diapirs and fast erosion to "beer glass"- and "column"-shaped diapirs. The introduction of a low-viscosity layer at the top of the overburden causes diapirs to develop into structures resembling a "Napoleon hat". These spread lateral sheets.
NUMERICAL MODELING OF THE RIVER POLLUTION
Directory of Open Access Journals (Sweden)
M. M. Biliaiev
2009-04-01
Full Text Available The 2D numerical model to simulate the pollutant dispersion in rivers is offered. The model is based on the equation of potential flow and the transport model. The results of numerical experiment are presented.
Numerical methods used in fusion science numerical modeling
Yagi, M.
2015-04-01
The dynamics of burning plasma is very complicated physics, which is dominated by multi-scale and multi-physics phenomena. To understand such phenomena, numerical simulations are indispensable. Fundamentals of numerical methods used in fusion science numerical modeling are briefly discussed in this paper. In addition, the parallelization technique such as open multi processing (OpenMP) and message passing interface (MPI) parallel programing are introduced and the loop-level parallelization is shown as an example.
Numerical modeling of water waves
Lin, Pengzhi
2008-01-01
Modelling large-scale wave fields and their interaction with coastal and offshore structures has become much more feasible over the last two decades with increases in computer speeds. Wave modelling can be viewed as an extension of wave theory, a mature and widely published field, applied to practical engineering through the use of computer tools. Information about the various wave models which have been developed is often widely scattered in the literature, and consequently this is one of the first books devoted to wave models and their applications. At the core of the book is an introduction to various types of wave models. For each model, the theoretical assumptions, the application range, and the advantages and limitations are elaborated. The combined use of different wave models from large-scale to local-scale is highlighted with a detailed discussion of the application and matching of boundary conditions. At the same time the book provides a grounding in hydrodynamics, wave theory, and numerical methods...
Numerical Modeling of Ocean Circulation
Miller, Robert N.
2007-01-01
The modelling of ocean circulation is important not only for its own sake, but also in terms of the prediction of weather patterns and the effects of climate change. This book introduces the basic computational techniques necessary for all models of the ocean and atmosphere, and the conditions they must satisfy. It describes the workings of ocean models, the problems that must be solved in their construction, and how to evaluate computational results. Major emphasis is placed on examining ocean models critically, and determining what they do well and what they do poorly. Numerical analysis is introduced as needed, and exercises are included to illustrate major points. Developed from notes for a course taught in physical oceanography at the College of Oceanic and Atmospheric Sciences at Oregon State University, this book is ideal for graduate students of oceanography, geophysics, climatology and atmospheric science, and researchers in oceanography and atmospheric science. Features examples and critical examination of ocean modelling and results Demonstrates the strengths and weaknesses of different approaches Includes exercises to illustrate major points and supplement mathematical and physical details
Numerical modelling of fuel sprays
Energy Technology Data Exchange (ETDEWEB)
Bergstroem, C.
1999-06-01
The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs
Numerical Modeling of Nanoelectronic Devices
Klimeck, Gerhard; Oyafuso, Fabiano; Bowen, R. Chris; Boykin, Timothy
2003-01-01
Nanoelectronic Modeling 3-D (NEMO 3-D) is a computer program for numerical modeling of the electronic structure properties of a semiconductor device that is embodied in a crystal containing as many as 16 million atoms in an arbitrary configuration and that has overall dimensions of the order of tens of nanometers. The underlying mathematical model represents the quantummechanical behavior of the device resolved to the atomistic level of granularity. The system of electrons in the device is represented by a sparse Hamiltonian matrix that contains hundreds of millions of terms. NEMO 3-D solves the matrix equation on a Beowulf-class cluster computer, by use of a parallel-processing matrix vector multiplication algorithm coupled to a Lanczos and/or Rayleigh-Ritz algorithm that solves for eigenvalues. In a recent update of NEMO 3-D, a new strain treatment, parameterized for bulk material properties of GaAs and InAs, was developed for two tight-binding submodels. The utility of the NEMO 3-D was demonstrated in an atomistic analysis of the effects of disorder in alloys and, in particular, in bulk In(x)Ga(l-x)As and in In0.6Ga0.4As quantum dots.
Experimental and numerical analysis of a knee endoprosthesis numerical model
Directory of Open Access Journals (Sweden)
L. Zach
2016-07-01
Full Text Available The aim of this study is to create and verify a numerical model for a Medin Modular orthopedic knee-joint implant by investigating contact pressure, its distribution and contact surfaces. An experiment using Fuji Prescale pressure sensitive films and a finite element analysis (FEA using Abaqus software were carried out. The experimental data were evaluated using a special designed program and were compared with the results of the analysis. The designed evaluation program had been constructed on the basis of results obtained from a supplementary calibration experiment. The applicability of the numerical model for the real endoprosthesis behavior prediction was proven on the basis of their good correlation.
Numerical Modeling of Microelectrochemical Systems
DEFF Research Database (Denmark)
Adesokan, Bolaji James
of the paper shows that the response current in a cyclic voltammetry increases proportionally to the electrolyte concentration. In the second paper we present an experiment of an electrochemical system in a microfluidc system and compare the result to the numerical solutions. We investigate how the position...... the flow condition. The numerical results show promising agreement with experimental findings which could be critical in designing highly sensitive electrochemical systems. The last paper explores the numerical solution which describes the non-linear transient responses to a large applied potential...
Application of numerical models and codes
Vyzikas, Thomas
2014-01-01
This report indicates the importance of numerical modelling in the modelling process, gradually builds the essential background theory in the fields of fluid mechanics, wave mechanics and numerical modelling, discusses a list of commonly used software and finally recommends which models are more suitable for different engineering applications in a marine renewable energy project.
Numerical modeling of slow shocks
International Nuclear Information System (INIS)
This paper reviews previous attempt and the present status of efforts to understand the structure of slow shocks by means of time dependent numerical calculations. Studies carried out using MHD or hybrid-kinetic codes have demonstrated qualitative agreement with theory. A number of unresolved issues related to hybrid simulations of the internal shock structure are discussed in some detail. 43 refs., 8 figs
Numerical Modelling of Jets and Plumes
DEFF Research Database (Denmark)
Larsen, Torben
1993-01-01
An overview on numerical models for prediction of the flow and mixing processes in turbulent jets and plumes is given. The overview is structured to follow an increasing complexity in the physical and numerical principles. The various types of models are briefly mentioned, from the one...
Explicit BCJ numerators of nonlinear sigma model
Du, Yi-Jian
2016-01-01
In this paper, we investigate the color-kinematics duality in nonlinear sigma model (NLSM). We present explicit polynomial expressions for the kinematic numerators (BCJ numerators). The calculation is done separately in two parametrization schemes of the theory using Kawai-Lewellen-Tye relation inspired technique, both lead to polynomial numerators. We summarize the calculation in each case into a set of rules that generates BCJ numerators for all multilplicities. In Cayley parametrization we find the numerator is described by a particularly simple formula solely in terms of momentum kernel.
Verification of A Numerical Harbour Wave Model
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A numerical model for wave propagation in a harbour is verified by use of physical models. The extended time-dependent mild slope equation is employed as the governing equation, and the model is solved by use of ADI method containing the relaxation factor. Firstly, the reflection coefficient of waves in front of rubble-mound breakwaters under oblique incident waves is determined through physical model tests, and it is regarded as the basis for simulating partial reflection boundaries of the numerical model. Then model tests on refraction, diffraction and reflection of waves in a harbour are performed to measure wave height distribution. Comparative results between physical and numerical model tests show that the present numerical model can satisfactorily simulate the propagation of regular and irregular waves in a harbour with complex topography and boundary conditions.
Survey of numerical electrostimulation models
Reilly, J. Patrick
2016-06-01
This paper evaluates results of a survey of electrostimulation models of myelinated nerve. Participants were asked to determine thresholds of excitation for 18 cases involving different characteristics of the neuron, the stimulation waveform, and the electrode arrangement. Responses were received from 7 investigators using 10 models. Excitation thresholds differed significantly among these models. For example, with a 2 ms monophasic stimulus pulse and an electrode/fiber distance of 1 cm, thresholds from the least to greatest value differed by a factor of 8.3; with a 5 μs pulse, thresholds differed by the factor 3.8. Significant differences in reported simulations point to the need for experimental validation. Additional efforts are needed to develop computational models for unmyelinated C-fibers, A-delta fibers, CNS neurons, and CNS Synapses.
Numerical modelling of elastic space tethers
DEFF Research Database (Denmark)
Kristiansen, Kristian Uldall; Palmer, P. L.; Roberts, R. M.
2012-01-01
In this paper the importance of the ill-posedness of the classical, non-dissipative massive tether model on an orbiting tether system is studied numerically. The computations document that via the regularisation of bending resistance a more reliable numerical integrator can be produced. Furthermo...
Numerical modeling of microwave heating
Directory of Open Access Journals (Sweden)
Shukla A.K.
2010-01-01
Full Text Available The present study compares the temperature distribution within cylindrical samples heated in microwave furnace with those achieved in radiatively-heated (conventional furnace. Using a two-dimensional finite difference approach the thermal profiles were simulated for cylinders of varying radii (0.65, 6.5, and 65 cm and physical properties. The influence of susceptor-assisted microwave heating was also modeled for the same. The simulation results reveal differences in the heating behavior of samples in microwaves. The efficacy of microwave heating depends on the sample size and its thermal conductivity.
Fundamentals of Numerical Modelling of Casting Processes
DEFF Research Database (Denmark)
Pryds, Nini; Thorborg, Jesper; Lipinski, Marek;
Fundamentals of Numerical Modelling of Casting Processes comprises a thorough presentation of the basic phenomena that need to be addressed in numerical simulation of casting processes. The main philosophy of the book is to present the topics in view of their physical meaning, whenever possible......) presents the most important aspects of solidification theory related to modelling. Part III (Chapter 5) describes the fluid flow phenomena and in part IV (Chapter 6) the stress-strain analysis is addressed. For all parts, both numerical formulations as well as some important analytical solutions...
Wave Numerical Model for Shallow Water
Institute of Scientific and Technical Information of China (English)
徐福敏; 严以新; 张长宽; 宋志尧; 茅丽华
2000-01-01
The history of forecasting wind waves by wave energy conservation equation is briefly described. Several currently used wave numerical models for shallow water based on different wave theories are discussed. Wave energy conservation models for the simulation of shallow water waves are introduced,with emphasis placed on the SWAN model, which takes use of the most advanced wave research achievements and has been applied to several theoretical and field conditions. The characteristics and applicability of the model, the finite difference numerical scheme of the action balance equation and its source terms computing methods are described in detail. The model has been verified with the propagation refraction numerical experiments for waves propagating in following and opposing currents; finally, the model is applied to the Haian Gulf area to simulate the wave height and wave period field there, and the results are compared with observed data.
Numerical 3-D Modelling of Overflows
DEFF Research Database (Denmark)
Larsen, Torben; Nielsen, L.; Jensen, B.;
2008-01-01
The present study uses laboratory experiments to evaluate the reliability of two types of numerical models of sewers systems: - 1-dimensional model based on the extended Saint-Venant equation including the term for curvature of the water surface (the so-called Boussinesq approximation) - 2- and 3......-dimensional so-called Volume of Fluid Models (VOF-models) based on the full Navier-Stokes equations (named NS3 and developed by DHI Water & Environment) As a general conclusion, the two numerical models show excellent results when compared with measurements. However, considerable errors occur when...... inappropriate boundary conditions and grid resolutions are chosen. The paper describes the used physical and numerical models and summarises the results....
Ferrofluids: Modeling, numerical analysis, and scientific computation
Tomas, Ignacio
This dissertation presents some developments in the Numerical Analysis of Partial Differential Equations (PDEs) describing the behavior of ferrofluids. The most widely accepted PDE model for ferrofluids is the Micropolar model proposed by R.E. Rosensweig. The Micropolar Navier-Stokes Equations (MNSE) is a subsystem of PDEs within the Rosensweig model. Being a simplified version of the much bigger system of PDEs proposed by Rosensweig, the MNSE are a natural starting point of this thesis. The MNSE couple linear velocity u, angular velocity w, and pressure p. We propose and analyze a first-order semi-implicit fully-discrete scheme for the MNSE, which decouples the computation of the linear and angular velocities, is unconditionally stable and delivers optimal convergence rates under assumptions analogous to those used for the Navier-Stokes equations. Moving onto the much more complex Rosensweig's model, we provide a definition (approximation) for the effective magnetizing field h, and explain the assumptions behind this definition. Unlike previous definitions available in the literature, this new definition is able to accommodate the effect of external magnetic fields. Using this definition we setup the system of PDEs coupling linear velocity u, pressure p, angular velocity w, magnetization m, and magnetic potential ϕ We show that this system is energy-stable and devise a numerical scheme that mimics the same stability property. We prove that solutions of the numerical scheme always exist and, under certain simplifying assumptions, that the discrete solutions converge. A notable outcome of the analysis of the numerical scheme for the Rosensweig's model is the choice of finite element spaces that allow the construction of an energy-stable scheme. Finally, with the lessons learned from Rosensweig's model, we develop a diffuse-interface model describing the behavior of two-phase ferrofluid flows and present an energy-stable numerical scheme for this model. For a
Numerical modelling of Bose-Einstein correlations
Utyuzh, O. V.; Wilk, G.; Wlodarczyk, Z.
2001-01-01
We propose extension of the algorithm for numerical modelling of Bose-Einstein correlations (BEC), which was presented some time ago in the literature. It is formulated on quantum statistical level for a single event and uses the fact that identical particles subjected to Bose statistics do bunch themselves, in a maximal possible way, in the same cells in phase-space. The bunching effect is in our case obtained in novel way allowing for broad applications and fast numerical calculations. Firs...
Numerical methods and modelling for engineering
Khoury, Richard
2016-01-01
This textbook provides a step-by-step approach to numerical methods in engineering modelling. The authors provide a consistent treatment of the topic, from the ground up, to reinforce for students that numerical methods are a set of mathematical modelling tools which allow engineers to represent real-world systems and compute features of these systems with a predictable error rate. Each method presented addresses a specific type of problem, namely root-finding, optimization, integral, derivative, initial value problem, or boundary value problem, and each one encompasses a set of algorithms to solve the problem given some information and to a known error bound. The authors demonstrate that after developing a proper model and understanding of the engineering situation they are working on, engineers can break down a model into a set of specific mathematical problems, and then implement the appropriate numerical methods to solve these problems. Uses a “building-block” approach, starting with simpler mathemati...
Some Experiences with Numerical Modelling of Overflows
DEFF Research Database (Denmark)
Larsen, Torben; Nielsen, L.; Jensen, B.;
2007-01-01
Overflows are commonly applied in storm sewer systems to control flow and water surface level. Therefore overflows play a central role in the control of discharges of pollutants from sewer systems to the environment. The basic hydrodynamic principle of an overflow is the so-called critical flow...... and reliable formulas for the estimation of overflows have been derived. Numerical modelling of overflows is significantly more complicated than standard 1-dimensional river or sewer modelling. The problem is usually managed by incorporating the mentioned empirical formulas in the numerical models...
Amorphous track models: A numerical comparison study
DEFF Research Database (Denmark)
Greilich, Steffen; Grzanka, L.; Bassler, N.;
2010-01-01
We present an open-source code library for amorphous track modelling which is suppose to faciliate the application and numerical comparability as well as serve as a frame-work for the implementation of new models. We show an example of using the library indicating the choice of submodels has a si...
Simple numerical techniques for mesoscale polymer models
E.A. Koopman
2014-01-01
There exist various numerical techniques for modeling polymer behavior on small time and length scales. This work introduces some new techniques in this field, and shows novel new combinations of existing techniques. Among the new techniques are multiple new thermostats, a way of modeling polymers i
Numerical FEM modeling in dental implantology
Roateşi, Iulia; Roateşi, Simona
2016-06-01
This paper is devoted to a numerical approach of the stress and displacement calculation of a system made up of dental implant, ceramic crown and surrounding bone. This is the simulation of a clinical situation involving both biological - the bone tissue, and non-biological - the implant and the crown, materials. On the other hand this problem deals with quite fine technical structure details - the threads, tapers, etc with a great impact in masticatory force transmission. Modeling the contact between the implant and the bone tissue is important to a proper bone-implant interface model and implant design. The authors proposed a three-dimensional numerical model to assess the biomechanical behaviour of this complex structure in order to evaluate its stability by determining the risk zones. A comparison between this numerical analysis and clinical cases is performed and a good agreement is obtained.
Numerical modelling of swirling diffusive flames
Parra-Santos Teresa; Perez Ruben; Szasz Robert Z.; Gutkowski Artur N.; Castro Francisco
2016-01-01
Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing...
Numerical modelling of Bose-Einstein correlations
Utyuzh, O V; Wlodarczyk, Z
2001-01-01
We propose extension of the algorithm for numerical modelling of Bose-Einstein correlations (BEC), which was presented some time ago in the literature. It is formulated on quantum statistical level for a single event and uses the fact that identical particles subjected to Bose statistics do bunch themselves, in a maximal possible way, in the same cells in phase-space. The bunching effect is in our case obtained in novel way allowing for broad applications and fast numerical calculations. First comparison with $e^+e^-$ annihilations data performed by using simple cascade hadronization model is very encouraging.
From Numeric Models to Granular System Modeling
Directory of Open Access Journals (Sweden)
Witold Pedrycz
2015-03-01
To make this study self-contained, we briefly recall the key concepts of granular computing and demonstrate how this conceptual framework and its algorithmic fundamentals give rise to granular models. We discuss several representative formal setups used in describing and processing information granules including fuzzy sets, rough sets, and interval calculus. Key architectures of models dwell upon relationships among information granules. We demonstrate how information granularity and its optimization can be regarded as an important design asset to be exploited in system modeling and giving rise to granular models. With this regard, an important category of rule-based models along with their granular enrichments is studied in detail.
High performance computing and numerical modelling
,
2014-01-01
Numerical methods play an ever more important role in astrophysics. This is especially true in theoretical works, but of course, even in purely observational projects, data analysis without massive use of computational methods has become unthinkable. The key utility of computer simulations comes from their ability to solve complex systems of equations that are either intractable with analytic techniques or only amenable to highly approximative treatments. Simulations are best viewed as a powerful complement to analytic reasoning, and as the method of choice to model systems that feature enormous physical complexity such as star formation in evolving galaxies, the topic of this 43rd Saas Fee Advanced Course. The organizers asked me to lecture about high performance computing and numerical modelling in this winter school, and to specifically cover the basics of numerically treating gravity and hydrodynamics in the context of galaxy evolution. This is still a vast field, and I necessarily had to select a subset ...
Numerical modelling errors in electrical impedance tomography.
Dehghani, Hamid; Soleimani, Manuchehr
2007-07-01
Electrical impedance tomography (EIT) is a non-invasive technique that aims to reconstruct images of internal impedance values of a volume of interest, based on measurements taken on the external boundary. Since most reconstruction algorithms rely on model-based approximations, it is important to ensure numerical accuracy for the model being used. This work demonstrates and highlights the importance of accurate modelling in terms of model discretization (meshing) and shows that although the predicted boundary data from a forward model may be within an accepted error, the calculated internal field, which is often used for image reconstruction, may contain errors, based on the mesh quality that will result in image artefacts.
Numerical modelling of steel arc welding
International Nuclear Information System (INIS)
Welding is a highly used assembly technique. Welding simulation software would give access to residual stresses and information about the weld's microstructure, in order to evaluate the mechanical resistance of a weld. It would also permit to evaluate the process feasibility when complex geometrical components are to be made, and to optimize the welding sequences in order to minimize defects. This work deals with the numerical modelling of arc welding process of steels. After describing the industrial context and the state of art, the models implemented in TransWeld (software developed at CEMEF) are presented. The set of macroscopic equations is followed by a discussion on their numerical implementation. Then, the theory of re-meshing and our adaptive anisotropic re-meshing strategy are explained. Two welding metal addition techniques are investigated and are compared in terms of the joint size and transient temperature and stresses. The accuracy of the finite element model is evaluated based on experimental results and the results of the analytical solution. Comparative analysis between experimental and numerical results allows the assessment of the ability of the numerical code to predict the thermomechanical and metallurgical response of the welded structure. The models limitations and the phenomena identified during this study are finally discussed and permit to define interesting orientations for future developments. (author)
Numerical Modelling of Wind Waves. Problems, Solutions, Verifications, and Applications
Polnikov, Vladislav
2011-01-01
The time-space evolution of the field is described by the transport equation for the 2-dimensional wave energy spectrum density, S(x,t), spread in the space, x, and time, t. This equation has the forcing named the source function, F, depending on both the wave spectrum, S, and the external wave-making factors: local wind, W(x, t), and local current, U(x, t). The source function contains certain physical mechanisms responsible for a wave spectrum evolution. It is used to distinguish three terms in function F: the wind-wave energy exchange mechanism, In; the energy conservative mechanism of nonlinear wave-wave interactions, Nl; and the wave energy loss mechanism, Dis. Differences in mathematical representation of the source function terms determine general differences between wave models. The problem is to derive analytical representations for the source function terms said above from the fundamental wave equations. Basing on publications of numerous authors and on the last two decades studies of the author, th...
Numerical modeling of fires on gas pipelines
International Nuclear Information System (INIS)
When natural gas is released through a hole on a high-pressure pipeline, it disperses in the atmosphere as a jet. A jet fire will occur when the leaked gas meets an ignition source. To estimate the dangerous area, the shape and size of the fire must be known. The evolution of the jet fire in air is predicted by using a finite-volume procedure to solve the flow equations. The model is three-dimensional, elliptic and calculated by using a compressibility corrected version of the k - ξ turbulence model, and also includes a probability density function/laminar flamelet model of turbulent non-premixed combustion process. Radiation heat transfer is described using an adaptive version of the discrete transfer method. The model is compared with the experiments about a horizontal jet fire in a wind tunnel in the literature with success. The influence of wind and jet velocity on the fire shape has been investigated. And a correlation based on numerical results for predicting the stoichiometric flame length is proposed. - Research highlights: → We developed a model to predict the evolution of turbulent jet diffusion flames. → Measurements of temperature distributions match well with the numerical predictions. → A correlation has been proposed to predict the stoichiometric flame length. → Buoyancy effects are higher in the numerical results. → The radiative heat loss is bigger in the experimental results.
Numerical Modeling of Piezoelectric Transducers Using Physical Parameters
Cappon, H.; Keesman, K.J.
2012-01-01
Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and experimen
Numerical Modelling Of Pumpkin Balloon Instability
Wakefield, D.
Tensys have been involved in the numerical formfinding and load analysis of architectural stressed membrane structures for 15 years. They have recently broadened this range of activities into the `lighter than air' field with significant involvement in aerostat and heavy-lift hybrid airship design. Since early 2004 they have been investigating pumpkin balloon instability on behalf of the NASA ULDB programme. These studies are undertaken using inTENS, an in-house finite element program suite based upon the Dynamic Relaxation solution method and developed especially for the non-linear analysis and patterning of membrane structures. The paper describes the current state of an investigation that started with a numerical simulation of the lobed cylinder problem first studied by Calladine. The influence of material properties and local geometric deformation on stability is demonstrated. A number of models of complete pumpkin balloons have then been established, including a 64-gore balloon with geometry based upon Julian Nott's Endeavour. This latter clefted dramatically upon initial inflation, a phenomenon that has been reproduced in the numerical model. Ongoing investigations include the introduction of membrane contact modelling into inTENS and correlation studies with the series of large-scale ULDB models currently in preparation.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems. PMID:26986435
Numerical modeling in materials science and engineering
Rappaz, Michel; Deville, Michel
2003-01-01
This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.
Numerical model for atomtronic circuit analysis
Chow, Weng W; Anderson, Dana Z
2015-01-01
A model for studying atomtronic devices and circuits based on finite temperature Bose-condensed gases is presented. The approach involves numerically solving equations of motion for atomic populations and coherences, derived using the Bose-Hubbard Hamiltonian and the Heisenberg picture. The resulting cluster expansion is truncated at a level giving balance between physics rigor and numerical demand mitigation. This approach allows parametric studies involving time scales that cover both the rapid population dynamics relevant to non-equilibrium state evolution, as well as the much longer time durations typical for reaching steady-state device operation. The model is demonstrated by studying the evolution of a Bose-condensed gas in the presence of atom injection and extraction in a double-well potential. In this configuration phase-locking between condensates in each well of the potential is readily observed, and its influence on the evolution of the system is studied.
Lattice Boltzmann model for numerical relativity.
Ilseven, E; Mendoza, M
2016-02-01
In the Z4 formulation, Einstein equations are written as a set of flux conservative first-order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for numerical relativity and validate it with well-established tests, also known as "apples with apples." Furthermore, we find that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improve. Finally, in order to show the potential of our approach, a linear scaling law for parallelization with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Numerical Modeling and Investigation of Boiling Phenomena
Kunkelmann, Christian
2011-01-01
The subject of the present thesis is the numerical modeling and investigation of boiling phenomena. The heat transfer during boiling is highly efficient and therefore used for many applications in power generation, process engineering and cooling of high performance electronics. The precise knowledge of particular boiling processes, their relevant parameters and limitations is of utmost importance for an optimized application. Therefore, the fundamentals of boiling heat transfer have been...
A numerical model of coastal overwash
Donnelly, Chantal; Hanson, Hans; Larson, Magnus
2009-01-01
Overwash, the flow of water and sediment over the crest of a beach, contributes to flooding and the deposition of sand landward of the beach crest. Washover, the sand deposited by overwash, contributes to the sediment budget and migration of barrier islands. The ability to predict the occurrence, location, and thickness of overwash deposits is important for coastal residents, coastal town planners, environmental planners, and engineers alike. In this study, a numerical model that simulates th...
Numerical Modeling of Laterally Loaded Piles
S. T. Kok; B. B.k. Huat
2008-01-01
Design of laterally loaded piles due to soil movement relies on a number of theoretical and numerical approaches. However, the magnitude of soil movement is difficult to estimate with reasonable confidence and accuracy. Finite Element Analysis (FEA) offers an excellent alternative to study pile-soil interaction and piles response under lateral loading due to soil movement. This research presents published analytical results and case history modeled in a 2D finite element environment in the ca...
Advanced Numerical Model for Irradiated Concrete
Energy Technology Data Exchange (ETDEWEB)
Giorla, Alain B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2015-03-01
In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some
Efficient numerical integrators for stochastic models
De Fabritiis, G; Español, P; Coveney, P V
2006-01-01
The efficient simulation of models defined in terms of stochastic differential equations (SDEs) depends critically on an efficient integration scheme. In this article, we investigate under which conditions the integration schemes for general SDEs can be derived using the Trotter expansion. It follows that, in the stochastic case, some care is required in splitting the stochastic generator. We test the Trotter integrators on an energy-conserving Brownian model and derive a new numerical scheme for dissipative particle dynamics. We find that the stochastic Trotter scheme provides a mathematically correct and easy-to-use method which should find wide applicability.
Numerical modelling of swirling diffusive flames
Directory of Open Access Journals (Sweden)
Parra-Santos Teresa
2016-01-01
Full Text Available Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.
Numerical modelling of swirling diffusive flames
Parra-Santos, Teresa; Perez, Ruben; Szasz, Robert Z.; Gutkowski, Artur N.; Castro, Francisco
2016-03-01
Computational Fluid Dynamics has been used to study the mixing and combustion of two confined jets whose setup and operating conditions are those of the benchmark of Roback and Johnson. Numerical model solves 3D transient Navier Stokes for turbulent and reactive flows. Averaged velocity profiles using RNG swirl dominated k-epsilon model have been validated with experimental measurements from other sources for the non reactive case. The combustion model is Probability Density Function. Bearing in mind the annular jet has swirl number over 0.5, a vortex breakdown appears in the axis of the burner. Besides, the sudden expansion with a ratio of 2 in diameter between nozzle exits and the test chamber produces the boundary layer separation with the corresponding torus shape recirculation. Contrasting the mixing and combustion models, the last one produces the reduction of the vortex breakdown.
Numerical modelling of mixed-sediment consolidation
Grasso, Florent; Le Hir, Pierre; Bassoullet, Philippe
2015-04-01
Sediment transport modelling in estuarine environments, characterised by cohesive and non-cohesive sediment mixtures, has to consider a time variation of erodibility due to consolidation. Generally, validated by settling column experiments, mud consolidation is now fairly well simulated; however, numerical models still have difficulty to simulate accurately the sedimentation and consolidation of mixed sediments for a wide range of initial conditions. This is partly due to the difficulty to formulate the contribution of sand in the hindered settling regime when segregation does not clearly occur. Based on extensive settling experiments with mud-sand mixtures, the objective of this study was to improve the numerical modelling of mixed-sediment consolidation by focusing on segregation processes. We used constitutive relationships following the fractal theory associated with a new segregation formulation based on the relative mud concentration. Using specific sets of parameters calibrated for each test—with different initial sediment concentration and sand content—the model achieved excellent prediction skills for simulating sediment height evolutions and concentration vertical profiles. It highlighted the model capacity to simulate properly the segregation occurrence for mud-sand mixtures characterised by a wide range of initial conditions. Nevertheless, calibration parameters varied significantly, as the fractal number ranged from 2.64 to 2.77. This study investigated the relevance of using a common set of parameters, which is generally required for 3D sediment transport modelling. Simulations were less accurate but remained satisfactory in an operational approach. Finally, a specific formulation for natural estuarine environments was proposed, simulating correctly the sedimentation-consolidation processes of mud-sand mixtures through 3D sediment transport modelling.
Numerical modeling of the laser heated solenoid
International Nuclear Information System (INIS)
A numerical model of the interaction of laser radiation with the magnetically confined plasma in an infinitive solenoid was given. An approximate solution which includes the balance of total pressure instead of momentum equation was also developed. Thus, the time step in computing is not bounded by the characteristics given by the Alfven speed. This approximation approach makes the efficient computing of this problem possible. The results of the approximate solution agree very well with those of the exact solution. They have the same final steady state solution
NUMERICAL MODELING OF COMPOUND CHANNEL FLOWS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
A numerical model capable of predicting flow characteristics in a compound channel was established with the 3-D steady continuity and momentum equations along with the transport equations for turbulence kinetic energy and dissipation rate. Closure was achieved with the aid of algebraic relations for turbulent shear stresses. The above equations were discretized with implicit difference approach and solved with a step method along the flow direction. The computational results showing the lateral distribution of vertical average velocities and the latio of total flow in the compound channel agree well with the available experimental data.
Numerical modeling of atmospheric washout processes
International Nuclear Information System (INIS)
For the washout of particles from the atmosphere by clouds and rain one has to distinguish between processes which work in the first phase of cloud development, when condensation nuclei build up in saturated air (Nucleation Aerosol Scavenging, NAS) and those processes which work at the following cloud development. In the second case particles are taken off by cloud droplets or by falling rain drops via collision (Collision Aerosol Scavenging, CAS). The physics of both processes is described. For the CAS process a numerical model is presented. The report contains a documentation of the mathematical equations and the computer programs (FORTRAN). (KW)
NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN
Directory of Open Access Journals (Sweden)
Petr Chmátal
2016-04-01
Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.
Numerical simulations of stellar winds polytropic models
Keppens, R
1999-01-01
We discuss steady-state transonic outflows obtained by direct numerical solution of the hydrodynamic and magnetohydrodynamic equations. We make use of the Versatile Advection Code, a software package for solving systems of (hyperbolic) partial differential equations. We proceed stepwise from a spherically symmetric, isothermal, unmagnetized, non-rotating Parker wind to arrive at axisymmetric, polytropic, magnetized, rotating models. These represent 2D generalisations of the analytical 1D Weber-Davis wind solution, which we obtain in the process. Axisymmetric wind solutions containing both a `wind' and a `dead' zone are presented. Since we are solving for steady-state solutions, we efficiently exploit fully implicit time stepping. The method allows us to model thermally and/or magneto-centrifugally driven stellar outflows. We particularly emphasize the boundary conditions imposed at the stellar surface. For these axisymmetric, steady-state solutions, we can use the knowledge of the flux functions to verify the...
Numerical modeling of materials under extreme conditions
Brown, Eric
2014-01-01
The book presents twelve state of the art contributions in the field of numerical modeling of materials subjected to large strain, high strain rates, large pressure and high stress triaxialities, organized into two sections. The first part is focused on high strain rate-high pressures such as those occurring in impact dynamics and shock compression related phenomena, dealing with material response identification, advanced modeling incorporating microstructure and damage, stress waves propagation in solids and structures response under impact. The latter part is focused on large strain-low strain rates applications such as those occurring in technological material processing, dealing with microstructure and texture evolution, material response at elevated temperatures, structural behavior under large strain and multi axial state of stress.
Partial Differential Equations Modeling and Numerical Simulation
Glowinski, Roland
2008-01-01
This book is dedicated to Olivier Pironneau. For more than 250 years partial differential equations have been clearly the most important tool available to mankind in order to understand a large variety of phenomena, natural at first and then those originating from human activity and technological development. Mechanics, physics and their engineering applications were the first to benefit from the impact of partial differential equations on modeling and design, but a little less than a century ago the Schrödinger equation was the key opening the door to the application of partial differential equations to quantum chemistry, for small atomic and molecular systems at first, but then for systems of fast growing complexity. Mathematical modeling methods based on partial differential equations form an important part of contemporary science and are widely used in engineering and scientific applications. In this book several experts in this field present their latest results and discuss trends in the numerical analy...
Global Tectonics of Enceladus: Numerical Model
Czechowski, Leszek
2016-10-01
Introduction: Enceladus, a satellite of Saturn, is the smallest celestial body in the Solar System where volcanic and tectonic activities are observed. Every second, the mass of 200 kg is ejected into space from the South Polar Terrain (SPT) – [1]. The loss of matter from the body's interior should lead to global compression of the crust. Typical effects of compression are: thrust faults, folding and subduction. However, such forms are not dominant on Enceladus. We propose here special tectonic process that could explain this paradox. Our hypotheses states that the mass loss from SPT is the main driving mechanism of the following tectonic processes: subsidence of SPT, flow in the mantle and motion of adjacent tectonic plates. The hypotheses is presented in [2], [3] and[4].We suggest that the loss of the volatiles results in a void, an instability, and motion of solid matter to fill the void. The motion is presented at the Fig.1 and includes:Subsidence of the 'lithosphere' of SPT.Flow of the matter in the mantle.Motion of plates adjacent to SPT towards the active regionMethods and results: The numerical model of processes presented is developed. It is based on the equations of continuous media..If emerging void is being filled by the subsidence of SPT only, then the velocity of subsidence is 0.05 mmyr-1. However, numerical calculations indicate that all three types of motion are usually important. The role of a given motion depends on the viscosity distribution. Generally, for most of the models the subsidence is 0.02 mmyr-1, but mantle flow and plates' motion also play a role in filling the void. The preliminary results of the numerical model indicate also that the velocity of adjacent plates could be 0.02 mmyr-1 for the Newtonian rheology.Note that in our model the reduction of the crust area is not a result of compression but it is a result of the plate sinking. Therefore the compressional surface features do not have to be dominant. The SPT does not have to be
Directory of Open Access Journals (Sweden)
Rapp Piotr
2016-03-01
Full Text Available The subject of the paper is related to problems with numerical errors in the finite difference method used to solve equations of the theory of elasticity describing 2- dimensional adhesive joints in the plane stress state. Adhesive joints are described in terms of displacements by four elliptic partial differential equations of the second order with static and kinematic boundary conditions. If adhesive joint is constrained as a statically determinate body and is loaded by a self-equilibrated loading, the finite difference solution is sensitive to kinematic boundary conditions. Displacements computed at the constraints are not exactly zero. Thus, the solution features a numerical error as if the adhesive joint was not in equilibrium. Herein this phenomenon is called numerical non-equilibrium. The disturbances in displacements and stress distributions can be decreased or eliminated by a correction of loading acting on the adhesive joint or by smoothing of solutions based on Dirichlet boundary value problem.
Submarine sand volcanos: experiments and numerical modelling
Philippe, P.; Ngoma, J.; Delenne, J.
2012-12-01
Fluid overpressure at the bottom of a soil layer may generate fracturation in preferential paths for a cohesive material. But the case of sandy soils is rather different: a significant internal flow is allowed within the material and can potentially induce hydro-mechanical instabilities whose most common example is fluidization. Many works have been devoted to fluidization but very few have the issue of initiation and development of a fluidized zone inside a granular bed, prior entire fluidization of the medium. In this contribution, we report experimental results and numerical simulations on a model system of immersed sand volcanos generated by a localized upward spring of liquid, injected at constant flow-rate at the bottom of a granular layer. Such a localized state of fluidization is relevant for some industrial processes (spouted bed, maintenance of navigable waterways,…) and for several geological issues (kimberlite volcano conduits, fluid venting, oil recovery in sandy soil, More precisely, what is presented here is a comparison between experiments, carried out by direct visualization throughout the medium, and numerical simulations, based on DEM modelling of the grains coupled to resolution of NS equations in the liquid phase (LBM). There is a very good agreement between the experimental phenomenology and the simulation results. When the flow-rate is increased, three regimes are successively observed: static bed, fluidized cavity that does not extend to the top of the layer, and finally fluidization over the entire height of layer that creates a fluidized chimney. A very strong hysteretic effect is present here with an extended range of stability for fluidized cavities when flow-rate is decreased back. This can be interpreted in terms force chains and arches. The influences of grain diameter, layer height and injection width are studied and interpreted using a model previously developed by Zoueshtiagh [1]. Finally, growing rate of the fluidized zone and
Numerical modelling of ion transport in flames
Han, Jie
2015-10-20
This paper presents a modelling framework to compute the diffusivity and mobility of ions in flames. The (n, 6, 4) interaction potential is adopted to model collisions between neutral and charged species. All required parameters in the potential are related to the polarizability of the species pair via semi-empirical formulas, which are derived using the most recently published data or best estimates. The resulting framework permits computation of the transport coefficients of any ion found in a hydrocarbon flame. The accuracy of the proposed method is evaluated by comparing its predictions with experimental data on the mobility of selected ions in single-component neutral gases. Based on this analysis, the value of a model constant available in the literature is modified in order to improve the model\\'s predictions. The newly determined ion transport coefficients are used as part of a previously developed numerical approach to compute the distribution of charged species in a freely propagating premixed lean CH4/O2 flame. Since a significant scatter of polarizability data exists in the literature, the effects of changes in polarizability on ion transport properties and the spatial distribution of ions in flames are explored. Our analysis shows that changes in polarizability propagate with decreasing effect from binary transport coefficients to species number densities. We conclude that the chosen polarizability value has a limited effect on the ion distribution in freely propagating flames. We expect that the modelling framework proposed here will benefit future efforts in modelling the effect of external voltages on flames. Supplemental data for this article can be accessed at http://dx.doi.org/10.1080/13647830.2015.1090018. © 2015 Taylor & Francis.
Numerical Modeling of Ocular Dysfunction in Space
Nelson, Emily S.; Mulugeta, Lealem; Vera, J.; Myers, J. G.; Raykin, J.; Feola, A. J.; Gleason, R.; Samuels, B.; Ethier, C. R.
2014-01-01
Upon introduction to microgravity, the near-loss of hydrostatic pressure causes a marked cephalic (headward) shift of fluid in an astronaut's body. The fluid shift, along with other factors of spaceflight, induces a cascade of interdependent physiological responses which occur at varying time scales. Long-duration missions carry an increased risk for the development of the Visual Impairment and Intracranial Pressure (VIIP) syndrome, a spectrum of ophthalmic changes including posterior globe flattening, choroidal folds, distension of the optic nerve sheath, kinking of the optic nerve and potentially permanent degradation of visual function. In the cases of VIIP found to date, the initial onset of symptoms occurred after several weeks to several months of spaceflight, by which time the gross bodily fluid distribution is well established. We are developing a suite of numerical models to simulate the effects of fluid shift on the cardiovascular, central nervous and ocular systems. These models calculate the modified mean volumes, flow rates and pressures that are characteristic of the altered quasi-homeostatic state in microgravity, including intracranial and intraocular pressures. The results of the lumped models provide initial and boundary data to a 3D finite element biomechanics simulation of the globe, optic nerve head and retrobulbar subarachnoid space. The integrated set of models will be used to investigate the evolution of the biomechanical stress state in the ocular tissues due to long-term exposure to microgravity.
Ocean wave prediction using numerical and neural network models
Digital Repository Service at National Institute of Oceanography (India)
Mandal, S.; Prabaharan, N.
This paper presents an overview of the development of the numerical wave prediction models and recently used neural networks for ocean wave hindcasting and forecasting. The numerical wave models express the physical concepts of the phenomena...
Modeling Biodegradation and Reactive Transport: Analytical and Numerical Models
Energy Technology Data Exchange (ETDEWEB)
Sun, Y; Glascoe, L
2005-06-09
The computational modeling of the biodegradation of contaminated groundwater systems accounting for biochemical reactions coupled to contaminant transport is a valuable tool for both the field engineer/planner with limited computational resources and the expert computational researcher less constrained by time and computer power. There exists several analytical and numerical computer models that have been and are being developed to cover the practical needs put forth by users to fulfill this spectrum of computational demands. Generally, analytical models provide rapid and convenient screening tools running on very limited computational power, while numerical models can provide more detailed information with consequent requirements of greater computational time and effort. While these analytical and numerical computer models can provide accurate and adequate information to produce defensible remediation strategies, decisions based on inadequate modeling output or on over-analysis can have costly and risky consequences. In this chapter we consider both analytical and numerical modeling approaches to biodegradation and reactive transport. Both approaches are discussed and analyzed in terms of achieving bioremediation goals, recognizing that there is always a tradeoff between computational cost and the resolution of simulated systems.
NUMERICAL MODEL FOR FLOW MOTION WITH VEGETATION
Institute of Scientific and Technical Information of China (English)
ZHANG Jian-tao; SU Xiao-hui
2008-01-01
A set of governing equations for turbulent flows in vegetated area were derived with the assumption that vegetation is of straight and rigid cylinder. The effect of vegetation on flow motion was represented by additional inertial and drag forces. The new model was validated by available experimental data for open channel flows passing through vegetated areas with different vegetation size, density and distribution. Numerical results are in good agreement with the experimental data. Finally, the flow around a supposed isolated vegetated pile was simulated and the effects of vegetation density on the wake flow were discussed. It is found that the presence of vegetation, even at a very low density, has the pronounced influence on the dissipation of flow energy, both inside the vegetation domain and outside it in the wake flow region.
Mathematical models and numerical simulation in electromagnetism
Bermúdez, Alfredo; Salgado, Pilar
2014-01-01
The book represents a basic support for a master course in electromagnetism oriented to numerical simulation. The main goal of the book is that the reader knows the boundary-value problems of partial differential equations that should be solved in order to perform computer simulation of electromagnetic processes. Moreover it includes a part devoted to electric circuit theory based on ordinary differential equations. The book is mainly oriented to electric engineering applications, going from the general to the specific, namely, from the full Maxwell’s equations to the particular cases of electrostatics, direct current, magnetostatics and eddy currents models. Apart from standard exercises related to analytical calculus, the book includes some others oriented to real-life applications solved with MaxFEM free simulation software.
Numerical linearized MHD model of flapping oscillations
Korovinskiy, D. B.; Ivanov, I. B.; Semenov, V. S.; Erkaev, N. V.; Kiehas, S. A.
2016-06-01
Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component Bz are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small Bz up to values ˜ 0.05 of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the Bz component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the Vz velocity.
Numerical modeling capabilities to predict repository performance
Energy Technology Data Exchange (ETDEWEB)
1979-09-01
This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used.
Numerical modeling capabilities to predict repository performance
International Nuclear Information System (INIS)
This report presents a summary of current numerical modeling capabilities that are applicable to the design and performance evaluation of underground repositories for the storage of nuclear waste. The report includes codes that are available in-house, within Golder Associates and Lawrence Livermore Laboratories; as well as those that are generally available within the industry and universities. The first listing of programs are in-house codes in the subject areas of hydrology, solute transport, thermal and mechanical stress analysis, and structural geology. The second listing of programs are divided by subject into the following categories: site selection, structural geology, mine structural design, mine ventilation, hydrology, and mine design/construction/operation. These programs are not specifically designed for use in the design and evaluation of an underground repository for nuclear waste; but several or most of them may be so used
Numerical Modelling of Flow and Settling in Secondary Settling Tanks
DEFF Research Database (Denmark)
Dahl, Claus Poulsen
This thesis discusses the development of a numerical model for the simulation of secondary settling tanks. In the first part, the status on the development of numerical models for settling tanks and a discussion of the current design practice are presented. A study of the existing numerical models...... and design practice proved a demand for further development to include numerical models in the design of settling tanks, thus improving the future settling tanks....
Numerical Modeling of Suspension HVOF Spray
Jadidi, M.; Moghtadernejad, S.; Dolatabadi, A.
2016-02-01
A three-dimensional two-way coupled Eulerian-Lagrangian scheme is used to simulate suspension high-velocity oxy-fuel spraying process. The mass, momentum, energy, and species equations are solved together with the realizable k-ɛ turbulence model to simulate the gas phase. Suspension is assumed to be a mixture of solid particles [mullite powder (3Al2O3·2SiO2)], ethanol, and ethylene glycol. The process involves premixed combustion of oxygen-propylene, and non-premixed combustion of oxygen-ethanol and oxygen-ethylene glycol. One-step global reaction is used for each mentioned reaction together with eddy dissipation model to compute the reaction rate. To simulate the droplet breakup, Taylor Analogy Breakup model is applied. After the completion of droplet breakup, and solvent evaporation/combustion, the solid suspended particles are tracked through the domain to determine the characteristics of the coating particles. Numerical simulations are validated against the experimental results in the literature for the same operating conditions. Seven or possibly eight shock diamonds are captured outside the nozzle. In addition, a good agreement between the predicted particle temperature, velocity, and diameter, and the experiment is obtained. It is shown that as the standoff distance increases, the particle temperature and velocity reduce. Furthermore, a correlation is proposed to determine the spray cross-sectional diameter and estimate the particle trajectories as a function of standoff distance.
Numerical modeling of vertical stratification of Lake Shira in summer
Belolipetsky, P.; Belolipetsky, V.M.; Genova, S.N.; Mooij, W.M.
2010-01-01
A one-dimensional numerical model and a two-dimensional numerical model of the hydrodynamic and thermal structure of Lake Shira during summer have been developed, with several original physical and numerical features. These models are well suited to simulate the formation and dynamics of vertical st
Numerical Models of Ophiolite Genesis and Obduction
Guilmette, C.; Beaumont, C.; Jamieson, R.
2013-12-01
Ophiolites are relics of oceanic lithosphere tectonically emplaced in continental settings. They are diagnostic features of continental suture zones, where they mark past plate boundaries. Even after having been studied for more than 40 years, the mechanisms involved in the genesis and subsequent obduction of ophiolites over continental margins are still debated. We present the results of 2D thermal-mechanical numerical models that successfully reproduce characteristics of natural examples like the Semail, Bay of Islands, Yarlung-Zangbo, and Coast Range ophiolites. The numerical models are upper mantle scale and use pressure-, temperature- and strain-dependent viscous-plastic rheologies. Both divergent and convergent velocity boundary conditions are used and tectonic boundary forces are monitored. The models start with the rifting of a stable continent, followed by development of an ocean ridge and accretion of oceanic lithosphere at a total rate of 3 cm/y. Once a specified ocean size/age is achieved, the velocity boundary conditions are reversed leading to convergence and the spontaneous inception of a suduction zone at the mid-ocean ridge. We present results for models including different ages of oceans (40 to 90 Ma) and different convergence velocities (5 to 15 cm/y). The interaction between the lower plate passive margin and the oceanic upper plate results in 5 different tectonic styles. These differ mainly by the presence or absence of oceanic spreading in the upper plate (back-arc basin), leading to supra-subduction zone ophiolites vs. MORB-type, and by the behaviour of the oceanic slab, e.g., slab rollback vs. breakoff. The evolution of effective slab pull is interpreted to be the major control on the resulting tectonic style. Low effective slab pull models (young oceans and fast convergence rates) fail to obduct an ophiolite. Strong effective slab pull models (old oceans and lower convergence rates) result in subduction zone retreat and spontaneous oceanic
Numerical modeling of subaqueous sand dune morphodynamics
Doré, Arnaud; Bonneton, Philippe; Marieu, Vincent; Garlan, Thierry
2016-03-01
The morphodynamic evolution of subaqueous sand dunes is investigated, using a 2-D Reynolds-averaged Navier-Stokes numerical model. A laboratory experiment where dunes are generated under stationary unidirectional flow conditions is used as a reference case. The model reproduces the evolution of the erodible bed until a state of equilibrium is reached. In particular, the simulation exhibits the different stages of the bed evolution, e.g., the incipient ripple generation, the nonlinear bed form growing phase, and the dune field equilibrium phase. The results show good agreement in terms of dune geometrical dimensions and time to equilibrium. After the emergence of the first ripple field, the bed growth is driven by cascading merging sequences between bed forms of different heights. A sequence extracted from the simulation shows how the downstream bed form is first eroded before merging with the upstream bed form. Superimposed bed forms emerge on the dune stoss sides during the simulation. An analysis of the results shows that they emerge downstream of a slight deflection on the dune profile. The deflection arises due to a modification of the sediment flux gradient consecutive to a reduction in the turbulence relaxation length while the upstream bed form height decreases. As they migrate, superimposed bed forms grow on the dune stoss side and eventually provoke the degeneration of the dune crest. Cascading merging sequences and superimposed bed forms dynamics both influence the dune field evolution and size and therefore play a fundamental role in the dune field self-organization process.
Numerical modeling of fluidic flow meters
Choudhury, D.; Patel, B. R.
1992-05-01
The transient fluid flow in fluidic flow meters has been modeled using Creare.x's flow modeling computer program FLUENT/BFC that solves the Navier-Stokes equations in general curvilinear coordinates. The numerical predictions of fluid flow in a fluidic flow meter have been compared with the available experimental results for a particular design, termed the PC-4 design. Overall flow structures such as main jet bending, and primary and secondary vortices predicted by FLUENT/BFC are in excellent agreement with flow visualization results. The oscillation frequencies of the PC-4 design have been predicted for a range of flow rates encompassing laminar and turbulent flow and the results are in good agreement with experiments. The details of the flow field predictions reveal that an important factor that determines the onset of oscillations in the fluidic flow meter is the feedback jet momentum relative to the main jet momentum. The insights provided by the analysis of the PC-4 fluidic flow meter design have led to an improved design. The improved design has sustained oscillations at lower flow rates compared with the PC-4 design and has a larger rangeability.
A numerical model of aerosol scavenging
International Nuclear Information System (INIS)
Using a three-dimensional numerical cloud/smoke-plume model, we have simulated the burning of a large, mid-latitude city following a nuclear exchange. The model includes 18 dynamic and microphysical equations that predict the fire-driven airflow, cloud processes, and smoke-cloud interactions. In the simulation, the intense heating from the burning city produces a firestorm with updraft velocities exceeding 60 m/s. Within 15 minutes of ignition, the smoke plume penetrates the tropopause. The updraft triggers a cumulonimbus cloud that produces significant quantities of ice, snow, and hail. These solid hydrometeors, as well as cloud droplets and rain, interact with the smoke particles from the fire. At the end of the one-hour simulation, over 20% of the smoke is in slowly falling snowflakes. If the snow reaches the ground before the flakes completely sublimate (or melt and then evaporate), then only approximately 50% of the smoke will survive the scavenging processes and remain in the atmosphere to affect the global climate
Large scale experiments as a tool for numerical model development
DEFF Research Database (Denmark)
Kirkegaard, Jens; Hansen, Erik Asp; Fuchs, Jesper;
2003-01-01
for improvement of the reliability of physical model results. This paper demonstrates by examples that numerical modelling benefits in various ways from experimental studies (in large and small laboratory facilities). The examples range from very general hydrodynamic descriptions of wave phenomena to specific......Experimental modelling is an important tool for study of hydrodynamic phenomena. The applicability of experiments can be expanded by the use of numerical models and experiments are important for documentation of the validity of numerical tools. In other cases numerical tools can be applied...... hydrodynamic interaction with structures. The examples also show that numerical model development benefits from international co-operation and sharing of high quality results....
Understanding Etna flank instability through numerical models
Apuani, Tiziana; Corazzato, Claudia; Merri, Andrea; Tibaldi, Alessandro
2013-02-01
As many active volcanoes, Mount Etna shows clear evidence of flank instability, and different mechanisms were suggested to explain this flank dynamics, based on the recorded deformation pattern and character. Shallow and deep deformations, mainly associated with both eruptive and seismic events, are concentrated along recognised fracture and fault systems, mobilising the eastern and south-eastern flank of the volcano. Several interacting causes were postulated to control the phenomenon, including gravity force, magma ascent along the feeding system, and a very complex local and/or regional tectonic activity. Nevertheless, the complexity of such dynamics is still an open subject of research and being the volcano flanks heavily urbanised, the comprehension of the gravitative dynamics is a major issue for public safety and civil protection. The present research explores the effects of the main geological features (in particular the role of the subetnean clays, interposed between the Apennine-Maghrebian flysch and the volcanic products) and the role of weakness zones, identified by fracture and fault systems, on the slope instability process. The effects of magma intrusions are also investigated. The problem is addressed by integrating field data, laboratory tests and numerical modelling. A bi- and tri-dimensional stress-strain analysis was performed by a finite difference numerical code (FLAC and FLAC3D), mainly aimed at evaluating the relationship among geological features, volcano-tectonic structures and magmatic activity in controlling the deformation processes. The analyses are well supported by dedicated structural-mechanical field surveys, which allowed to estimate the rock mass strength and deformability parameters. To take into account the uncertainties which inevitably occur in a so complicated model, many efforts were done in performing a sensitivity analysis along a WNW-ESE section crossing the volcano summit and the Valle del Bove depression. This was
Mathematical modelling and numerical simulation of casting processes
DEFF Research Database (Denmark)
Hattel, Jesper Henri
1998-01-01
The control volume method applied to numerical modelling of castning. Analytical solutions based on the error function.Riemann-temperature. Modelling of release of latent heat with the enthalpy method.......The control volume method applied to numerical modelling of castning. Analytical solutions based on the error function.Riemann-temperature. Modelling of release of latent heat with the enthalpy method....
Numerical Modelling of Sediment Transport in Combined Sewer Systems
DEFF Research Database (Denmark)
Schlütter, Flemming
A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed.......A conceptual sediment transport model has been developed. Through a case study a comparison with other numerical models is performed....
Precise numerical modeling of next generation multimode fiber based links
Maksymiuk, L.; Stepniak, G.
2015-12-01
In order to numerically model modern multimode fiber based links we are required to take into account modal and chromatic dispersion, profile dispersion and spectral dependent coupling. In this paper we propose a complete numerical model which not only is precise but also versatile. Additionally to the detailed mathematical description of the model we provide also a bunch of numerical calculations performed with the use of the model.
Numerical modelling of nearshore wave transformation
Digital Repository Service at National Institute of Oceanography (India)
Chandramohan, P.; Nayak, B.U.; SanilKumar, V.
A software has been developed for numerical refraction study based on finite amplitude wave theories. Wave attenuation due to shoaling, bottom friction, bottom percolation and viscous dissipation has also been incorporated. The software...
Numerical models for high beta magnetohydrodynamic flow
International Nuclear Information System (INIS)
The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs
Speckle Patterns and 2-Dimensional Brownian Motion
International Nuclear Information System (INIS)
We present the results of a Monte Carlo simulation of Brownian Motion on a 2-dimensional lattice with nearest-neighbor interactions described by a linear model. These nearest-neighbor interactions lead to a spatial variance structure on the lattice. The resulting Brownian pattern fluctuates in value from point to point in a manner characteristic of a stationary stochastic process. The value at a lattice point is interpreted as an intensity level. The difference in values in neighboring cells produces a fluctuating intensity pattern on the lattice. Changing the size of the mesh changes the relative size of the speckles. Increasing the mesh size tends to average out the intensity in the direction of the mean of the stationary process. (Author)
Deterministic combination of numerical and physical coastal wave models
DEFF Research Database (Denmark)
Zhang, H.W.; Schäffer, Hemming Andreas; Jakobsen, K.P.
2007-01-01
the interface between the numerical and physical models. The link between numerical and physical models is given by an ad hoc unified wave generation theory which is devised in the study. This wave generation theory accounts for linear dispersion and shallow water non-linearity. Local wave phenomena (evanescent......A deterministic combination of numerical and physical models for coastal waves is developed. In the combined model, a Boussinesq model MIKE 21 BW is applied for the numerical wave computations. A piston-type 2D or 3D wavemaker and the associated control system with active wave absorption provides...
Numerical Modeling of Earthquake Dynamic Rupture : Requirements for Realistic Modeling
Fukuyama, Eiichi
2003-01-01
I propose a strategy to make a numerical computation applicable to the realistic modeling of an earthquake dynamic rupture process.To do this, it is important to introduce any observables into the simulation as initial and boundary conditions.As an initial condition, distribution of total stress before the dynamic rupture, and as boundary conditions, fault constitutive relation and geometry of the fault are necessary.The initial stress distribution would be obtained by both in-situ measuremen...
Masonry constructions mechanical models and numerical applications
Lucchesi, Massimiliano; Padovani, Cristina
2008-01-01
Numerical methods for the structural analysis of masonry constructions can be of great value in assessing the safety of artistically important masonry buildings and optimizing potential operations of maintenance and strengthening in terms of their cost-effectiveness, architectural impact and static effectiveness. This monograph firstly provides a detailed description of the constitutive equation of masonry-like materials, clearly setting out its most important features. It then goes on to provide a numerical procedure to solve the equilibrium problem of masonry solids. A large portion of the w
When Lagrangian stochastic models for turbulent dispersion are applied to complex flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behavior in the numerical solution. This paper discusses numerical considerations when solving the Langevin-based particle velo...
Numerical model of compressible gas flow in soil pollution control
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Based on the theory of fluid dynamics in porous media, a numerical model of gas flow in unsaturated zone is developed with the consideration of gas density change due to variation of air pressure. This model is characterized of its wider range of availability. The accuracy of this numerical model is analyzed through comparison with modeling results by previous model with presumption of little pressure variation and the validity of this numerical model is shown. Thus it provides basis for the designing and management of landfill gas control system or soil vapor ex.action system in soil pollution control.
NUMERICAL MODELING OF FINE SEDIMENT PHYSICAL PROCESSES.
Schoellhamer, David H.
1985-01-01
Fine sediment in channels, rivers, estuaries, and coastal waters undergo several physical processes including flocculation, floc disruption, deposition, bed consolidation, and resuspension. This paper presents a conceptual model and reviews mathematical models of these physical processes. Several general fine sediment models that simulate some of these processes are reviewed. These general models do not directly simulate flocculation and floc disruption, but the conceptual model and existing functions are shown to adequately model these two processes for one set of laboratory data.
Numerical Modeling in Geodynamics: Success, Failure and Perspective
Ismail-Zadeh, A.
2005-12-01
A real success in numerical modeling of dynamics of the Earth can be achieved only by multidisciplinary research teams of experts in geodynamics, applied and pure mathematics, and computer science. The success in numerical modeling is based on the following basic, but simple, rules. (i) People need simplicity most, but they understand intricacies best (B. Pasternak, writer). Start from a simple numerical model, which describes basic physical laws by a set of mathematical equations, and move then to a complex model. Never start from a complex model, because you cannot understand the contribution of each term of the equations to the modeled geophysical phenomenon. (ii) Study the numerical methods behind your computer code. Otherwise it becomes difficult to distinguish true and erroneous solutions to the geodynamic problem, especially when your problem is complex enough. (iii) Test your model versus analytical and asymptotic solutions, simple 2D and 3D model examples. Develop benchmark analysis of different numerical codes and compare numerical results with laboratory experiments. Remember that the numerical tool you employ is not perfect, and there are small bugs in every computer code. Therefore the testing is the most important part of your numerical modeling. (iv) Prove (if possible) or learn relevant statements concerning the existence, uniqueness and stability of the solution to the mathematical and discrete problems. Otherwise you can solve an improperly-posed problem, and the results of the modeling will be far from the true solution of your model problem. (v) Try to analyze numerical models of a geological phenomenon using as less as possible tuning model variables. Already two tuning variables give enough possibilities to constrain your model well enough with respect to observations. The data fitting sometimes is quite attractive and can take you far from a principal aim of your numerical modeling: to understand geophysical phenomena. (vi) If the number of
Stochastic Analysis Method of Sea Environment Simulated by Numerical Models
Institute of Scientific and Technical Information of China (English)
刘德辅; 焦桂英; 张明霞; 温书勤
2003-01-01
This paper proposes the stochastic analysis method of sea environment simulated by numerical models, such as wave height, current field, design sea levels and longshore sediment transport. Uncertainty and sensitivity analysis of input and output factors of numerical models, their long-term distribution and confidence intervals are described in this paper.
Numerical Modelling of Electromagnetic Field in a Tornado
Directory of Open Access Journals (Sweden)
Pavel Fiala
2008-01-01
Full Text Available This study deals with the numerical model of both the physical and the chemical processes in the tornado. Within the paper, a basic theoretical model and a numerical solution are presented. We prepared numerical models based on the combined finite element method (FEM and the finite volume method (FVM. The model joins the magnetic, electric and current fields, the flow field and a chemical nonlinear ion model. The results were obtained by means of the FEM/FVM as a main application in ANSYS software.
Topological 2-Dimensional Quantum Mechanics
Dasnières de Veigy, A; Veigy, Alain Dasnieres de; Ouvry, Stephane
1993-01-01
We define a Chern- Simons Lagrangian for a system of planar particles topologically interacting at a distance. The anyon model appears as a particular case where all the particles are identical. We propose exact N-body eigenstates, set up a perturbative algorithm, discuss the case where some particles are fixed on a lattice, and also consider curved manifolds. PACS numbers: 05.30.-d, 11.10.-z
Forecast Jointed Rock Mass Compressive Strength Using a Numerical Model
Directory of Open Access Journals (Sweden)
Protosenya Anatoliy
2016-01-01
Full Text Available The method of forecasting the strength of the jointed rock mass by numerical modeling of finite element method in ABAQUS was described. The paper presents advantages of this method to solve the problem of determining the mechanical characteristics of jointed rock mass and the basic steps of creating a numerical geomechanical model of jointed rock mass and numerical experiment. Numerical simulation was carried out with jointed rock mass in order to obtain the ratio of strain and stress while loading the numerical model, determining parameters of quantitative assessment of the impact of the discontinuities orientation on the value of the compressive strength, compressive strength anisotropy. The results of the numerical experiment are compared with the data of experimental studies investigations. Innovative materials and structures are analyzed in this paper. The results that were obtained by calculation show qualitative agreement with the results of laboratory experiments of jointed rock mass.
Stiffness of Carpentry Connections - Numerical Modelling vs. Experimental Test
Kekeliak, Miloš; Gocál, Jozef; Vičan, Josef
2015-12-01
In this paper, numerical modelling of the traditional carpentry connection with mortise and tenon is presented. Numerical modelling is focused on its stiffness and the results are compared to results of experimental tests carried out by (Feio, 2005) [6]. To consider soft behaviour of wood in carpentry connections, which are related to its surface roughness and geometrical accuracy of the contact surfaces, the characteristics of the normal contact stiffness, determined experimentally, are introduced in the numerical model. Parametric study by means of numerical modelling with regard to the sensitivity of connection stiffness to contact stiffness is presented. Based on the study results, in conclusion there are presented relevant differences between the results of numerical modelling and experimental tests (Feio, 2005) [6].
Stiffness of Carpentry Connections – Numerical Modelling vs. Experimental Test
Directory of Open Access Journals (Sweden)
Kekeliak Miloš
2015-12-01
Full Text Available In this paper, numerical modelling of the traditional carpentry connection with mortise and tenon is presented. Numerical modelling is focused on its stiffness and the results are compared to results of experimental tests carried out by (Feio, 2005 [6]. To consider soft behaviour of wood in carpentry connections, which are related to its surface roughness and geometrical accuracy of the contact surfaces, the characteristics of the normal contact stiffness, determined experimentally, are introduced in the numerical model. Parametric study by means of numerical modelling with regard to the sensitivity of connection stiffness to contact stiffness is presented. Based on the study results, in conclusion there are presented relevant differences between the results of numerical modelling and experimental tests (Feio, 2005 [6].
MATHEMATICAL MODELS AND NUMERICAL SIMULATION FOR DENSE PARTICULATE FLOWS
Institute of Scientific and Technical Information of China (English)
WU Chun-liang
2004-01-01
Sedimentation of particles in inclined and vertical vessels is numerically simulated by the Eulerian two-fluid model. The numerical results show an interesting phenomenon with two circulation vortexes in a vertical vessel but one in the inclined vessel. Sensitivity tests indicate that the boundary layer effect is the key to induce this phenomenon. A numerical method based on 2D unstructured meshes is presented to solve the hard-sphere discrete particle model. Several applications show the numerical method has a good performance to simulate dense particulate flows in irregular domains without regard to element types of the mesh.
A numerical model for multigroup radiation hydrodynamics
Vaytet, N M H; Dubroca, B; Delahaye, F
2011-01-01
We present in this paper a multigroup model for radiation hydrodynamics to account for variations of the gas opacity as a function of frequency. The entropy closure model (M1) is applied to multigroup radiation transfer in a radiation hydrodynamics code. In difference from the previous grey model, we are able to reproduce the crucial effects of frequency-variable gas opacities, a situation omnipresent in physics and astrophysics. We also account for the energy exchange between neighbouring groups which is important in flows with strong velocity divergence. These terms were computed using a finite volume method in the frequency domain. The radiative transfer aspect of the method was first tested separately for global consistency (reversion to grey model) and against a well established kinetic model through Marshak wave tests with frequency dependent opacities. Very good agreement between the multigroup M1 and kinetic models was observed in all tests. The successful coupling of the multigroup radiative transfer...
A numerical model of the VKS experiment
Gissinger, Christophe
2009-01-01
We present numerical simulations of the magnetic field generated by the flow of liquid sodium driven by two counter-rotating impellers (VKS experiment). Using a dynamo kinematic code in cylindrical geometry, it is shown that different magnetic modes can be generated depending on the flow configuration. While the time averaged axisymmetric mean flow generates an equatorial dipole, our simulations show that an axial field of either dipolar or quadrupolar symmetry can be generated by taking into account non-axisymmetric components of the flow. Moreover, we show that by breaking a symmetry of the flow, the magnetic field becomes oscillatory. This leads to reversals of the axial dipole polarity, involving a competition with the quadrupolar component.
Numerical MHD Codes for Modeling Astrophysical Flows
Koldoba, A V; Lii, P S; Comins, M L; Dyda, S; Romanova, M M; Lovelace, R V E
2015-01-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
Characterisation of the Bahía Blanca estuary by data analysis and numerical modelling
Campuzano, Francisco Javier; Pierini, Jorge O.; Leitão, Paulo C.; Gómez, Eduardo A.; Neves, Ramiro J.
2014-01-01
The Bahía Blanca estuary is a complex system of channels and tidal flats where the most important deep water harbour system of Argentina is located. The main goal of the present work was to obtain a hydrodynamic conceptual model for the Bahía Blanca coastal area. For this reason, a combined analysis of observed data and numerical modelling has been performed for the whole area. The gained knowledge on the system hydrodynamics could aid in the decision support for navigation security, waste water discharges management, sediment dredging and rejection operations among other applications. Due to the Bahía Blanca coastal vast area, hydrodynamic observations are scarce and located near the populated areas. In order to describe the hydrodynamics of such a complex and large system, the analysed tidal and current data from different periods have been completed through numerical modelling. Data analysis served to determine the main processes governing the Bahía Blanca hydrodynamics, to characterise the area using general descriptors, to provide inputs for the numerical model and to aid in evaluating its performance. In addition, a 2-dimensional application was set up using the MOHID water modelling system for the Bahía Blanca estuary. This application aimed to gain a better understanding of the system dynamics, to explain and test the consistency of the observed data and to reproduce the processes taking place. Model results were in good agreement with the analysed data and served to confirm an inconsistency found on the sea level observations. The combination of both methodologies served to further describe the hydrodynamic processes governing this coastal area and also to obtain a conceptual model for the water and property circulation in the Bahía Blanca estuary.
Numerical Modelling of Wave Run-Up
DEFF Research Database (Denmark)
Ramirez, Jorge Robert Rodriguez; Frigaard, Peter; Andersen, Thomas Lykke;
2011-01-01
Wave loads are important in problems related to offshore structure, such as wave run-up, slamming. The computation of such wave problems are carried out by CFD models. This paper presents one model, NS3, which solve 3D Navier-Stokes equations and use Volume of Fluid (VOF) method to treat the free...
Koster, T.; Peelen, W.; Larbi, J.; Rooij, M. de; Polder, R.
2010-01-01
A mathematical model is being developed to describe a repair method in concrete, called cathodic protection (CP). The model is in principle also useful to describe electrodeposition in concrete, e.g. the process of re-precipitation of Ca(OH)_{2} invoked by an electrical current. In CP, the c
Traffic Flow Models and Their Numerical Solutions
Jin, Wenlong
2004-01-01
In this thesis, Riemann problems and Godunov methods are developed for higher order traffic flow models. A rigorous analysis of the first order traffic flow model of inhomogeneous road is presented. A two-level simulation framework of network vehicular traffic is proposed as a Godunov-type finite difference system with the supply-demand method as an alternative of Riemann solver.
Amorphous track models: a numerical comparison study
DEFF Research Database (Denmark)
Greilich, Steffen; Grzanka, Leszek; Hahn, Ute;
Amorphous track models such as Katz' Ion-Gamma-Kill (IGK) approach [1, 2] or the Local Effect Model (LEM) [3, 4] had reasonable success in predicting the response of solid state dosimeters and radiobiological systems. LEM is currently applied in radiotherapy for biological dose optimization in ca...
Numerical evaluation of turbulence models for dense to dilute gas-solid flows in vertical conveyor
Institute of Scientific and Technical Information of China (English)
Salar Azizi; Dariush Mowla; Goodarz Ahmadi
2012-01-01
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas-solid flows in vertical pneumatic conveyor.An axisymmetric 2-dimensional,vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain,same to that used for experimentation in the literature.The chosen particles are spherical,of diameter 1.91 mm and density 2500 kg/m3.Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles.Flow regimes transition and pressure drop were predicted.Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe.It was found that the voidage has a minimum,and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime.Slug length and pressure fluctuation reduction were predicted with increasing gas velocity,too.It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.
The influence of numerical models on determining the drag coefficient
Directory of Open Access Journals (Sweden)
Dobeš Josef
2014-03-01
Full Text Available The paper deals with numerical modelling of body aerodynamic drag coefficient in the transition from laminar to turbulent flow regimes, where the selection of a suitable numerical model is problematic. On the basic problem of flow around a simple body – sphere selected computational models are tested. The values obtained by numerical simulations of drag coefficients of each model are compared with the graph of dependency of the drag coefficient vs. Reynolds number for a sphere. Next the dependency of Strouhal number vs. Reynolds number is evaluated, where the vortex shedding frequency values for given speed are obtained numerically and experimentally and then the values are compared for each numerical model and experiment. The aim is to specify trends for the selection of appropriate numerical model for flow around bodies problem in which the precise description of the flow field around the obstacle is used to define the acoustic noise source. Numerical modelling is performed by finite volume method using CFD code.
Dependent Risk Modelling and Ruin Probability: Numerical Computation and Applications
Zhao, Shouqi
2014-01-01
In this thesis, we are concerned with the finite-time ruin probabilities in two alternative dependent risk models, the insurance risk model and the dual risk model, including the numerical evaluation of the explicit expressions for these quantities and the application of the probabilistic results obtained. We first investigate the numerical properties of the formulas for the finite-time ruin probability derived by Ignatov and Kaishev (2000, 2004) and Ignatov et al. (2001) for a generalized in...
Computational numerical modelling of plasma focus
International Nuclear Information System (INIS)
Several models for calculation of the dynamics of Plasma Focus have been developed. All of them begin from the same physic principle: the current sheet run down the anode length, ionizing and collecting the gas that finds in its way.This is known as snow-plow model.Concerning pinch's compression, a MHD model is proposed.The plasma is treated as a fluid , particularly as a high ionized gas.However, there are not many models that, taking into account thermal equilibrium inside the plasma, make approximated calculations of the maximum temperatures reached in the pinch.Besides, there are no models which use those temperatures to estimate the termofusion neutron yield for the Deuterium or Deuterium-Tritium gas filled cases.In the PLADEMA network (Dense Magnetized Plasmas) a code was developed with the objective of describe the plasma focus dynamics, in a conceptual engineering stage.The codes calculates the principal variables (currents, time to focus, etc) and estimates the neutron yield in Deuterium-filled plasma focus devices.It can be affirmed that the code's experimental validation, in its axial and radial stages, was very successfully. However, it was accepted that the compression stage should be formulated again, to find a solution for a large variation of a parameter related with velocity profiles for the particles trapped inside the pinch.The objectives of this work can be stated in the next way : - Check the compression's model hypothesis. Develop a new model .- Implement the new model in the code. Compare results against experimental data of Plasma Focus devices from all around the world
Numerical Poisson-Boltzmann Model for Continuum Membrane Systems.
Botello-Smith, Wesley M; Liu, Xingping; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2013-01-01
Membrane protein systems are important computational research topics due to their roles in rational drug design. In this study, we developed a continuum membrane model utilizing a level set formulation under the numerical Poisson-Boltzmann framework within the AMBER molecular mechanics suite for applications such as protein-ligand binding affinity and docking pose predictions. Two numerical solvers were adapted for periodic systems to alleviate possible edge effects. Validation on systems ranging from organic molecules to membrane proteins up to 200 residues, demonstrated good numerical properties. This lays foundations for sophisticated models with variable dielectric treatments and second-order accurate modeling of solvation interactions.
Bailey, Brian N.
2016-07-01
When Lagrangian stochastic models for turbulent dispersion are applied to complex atmospheric flows, some type of ad hoc intervention is almost always necessary to eliminate unphysical behaviour in the numerical solution. Here we discuss numerical strategies for solving the non-linear Langevin-based particle velocity evolution equation that eliminate such unphysical behaviour in both Reynolds-averaged and large-eddy simulation applications. Extremely large or `rogue' particle velocities are caused when the numerical integration scheme becomes unstable. Such instabilities can be eliminated by using a sufficiently small integration timestep, or in cases where the required timestep is unrealistically small, an unconditionally stable implicit integration scheme can be used. When the generalized anisotropic turbulence model is used, it is critical that the input velocity covariance tensor be realizable, otherwise unphysical behaviour can become problematic regardless of the integration scheme or size of the timestep. A method is presented to ensure realizability, and thus eliminate such behaviour. It was also found that the numerical accuracy of the integration scheme determined the degree to which the second law of thermodynamics or `well-mixed condition' was satisfied. Perhaps more importantly, it also determined the degree to which modelled Eulerian particle velocity statistics matched the specified Eulerian distributions (which is the ultimate goal of the numerical solution). It is recommended that future models be verified by not only checking the well-mixed condition, but perhaps more importantly by checking that computed Eulerian statistics match the Eulerian statistics specified as inputs.
Reduction of large-scale numerical ground water flow models
Vermeulen, P.T.M.; Heemink, A.W.; Testroet, C.B.M.
2002-01-01
Numerical models are often used for simulating ground water flow. Written in state space form, the dimension of these models is of the order of the number of model cells and can be very high (> million). As a result, these models are computationally very demanding, especially if many different scena
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Energy Technology Data Exchange (ETDEWEB)
Gunzburger, Max [Florida State Univ., Tallahassee, FL (United States)
2015-02-17
We have treated the modeling, analysis, numerical analysis, and algorithmic development for nonlocal models of diffusion and mechanics. Variational formulations were developed and finite element methods were developed based on those formulations for both steady state and time dependent problems. Obstacle problems and optimization problems for the nonlocal models were also treated and connections made with fractional derivative models.
Numerical modeling of transformer inrush currents
Cardelli, E.; Faba, A.
2014-02-01
This paper presents an application of a vector hysteresis model to the prediction of the inrush current due the arbitrary initial excitation of a transformer after a fault. The approach proposed seems promising in order to predict the transient overshoot in current and the optimal time to close the circuit after the fault.
Numerical modeling of transformer inrush currents
Energy Technology Data Exchange (ETDEWEB)
Cardelli, E. [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy); Faba, A., E-mail: faba@unipg.it [Department of Industrial Engineering, University of Perugia, I-06125 Perugia (Italy); Center for Electric and Magnetic Applied Research (Italy)
2014-02-15
This paper presents an application of a vector hysteresis model to the prediction of the inrush current due the arbitrary initial excitation of a transformer after a fault. The approach proposed seems promising in order to predict the transient overshoot in current and the optimal time to close the circuit after the fault.
Analytical and Numerical Modeling for Flexible Pipes
Institute of Scientific and Technical Information of China (English)
WANG Wei; CHEN Geng
2011-01-01
The unbonded flexible pipe of eight layers,in which all the layers except the carcass layer are assumed to have isotropic properties,has been analyzed.Specifically,the carcass layer shows the orthotropic characteristics.The effective elastic moduli of the carcass layer have been developed in terms of the influence of deformation to stiffness.With consideration of the effective elastic moduli,the structure can be properly analyzed.Also the relative movements of tendons and relative displacements of wires in helical armour layer have been investigated.A three-dimensional nonlinear finite element model has been presented to predict the response of flexible pipes under axial force and torque.Further,the friction and contact of interlayer have been considered.Comparison between the finite element model and experimental results obtained in literature has been given and discussed,which might provide practical and technical support for the application of unbonded flexible pipes.
Numerical modelling of instantaneous plate tectonics
Minster, J. B.; Haines, E.; Jordan, T. H.; Molnar, P.
1974-01-01
Assuming lithospheric plates to be rigid, 68 spreading rates, 62 fracture zones trends, and 106 earthquake slip vectors are systematically inverted to obtain a self-consistent model of instantaneous relative motions for eleven major plates. The inverse problem is linearized and solved iteratively by a maximum-likelihood procedure. Because the uncertainties in the data are small, Gaussian statistics are shown to be adequate. The use of a linear theory permits (1) the calculation of the uncertainties in the various angular velocity vectors caused by uncertainties in the data, and (2) quantitative examination of the distribution of information within the data set. The existence of a self-consistent model satisfying all the data is strong justification of the rigid plate assumption. Slow movement between North and South America is shown to be resolvable.
Numerical and physical model study of a vertical slot fishway
Directory of Open Access Journals (Sweden)
Bombač Martin
2014-06-01
Full Text Available This paper presents the results of an experimental and numerical study of a vertical slot fishway (VSF. A 2-D depth-averaged shallow water numerical model PCFLOW2D coupled with three different turbulent models (constant eddy viscosity, Smagorinsky and k - ε was used. A detailed analysis of numerical parameters needed for a correct simulation of the phenomenon was carried out. Besides the velocity field, attention was paid to important hydraulic parameters such as maximum velocity in the slot region and energy dissipation rate ε in order to evaluate the performance of VSF. A scaled physical hydraulic model was built to ensure reliable experimental data for the validation of the numerical model. Simulations of variant configurations of VSF showed that even small changes in geometry can produce more fishfriendly flow characteristics in pools. The present study indicates that the PCFLOW2D program is an appropriate tool to meet the main demands of the VSF design.
Numerical Modelling and Measurement in a Test Secondary Settling Tank
DEFF Research Database (Denmark)
Dahl, C.; Larsen, Torben; Petersen, O.
1994-01-01
sludge. Phenomena as free and hindered settling and the Bingham plastic characteristic of activated sludge suspensions are included in the numerical model. Further characterisation and test tank experiments are described. The characterisation experiments were designed to measure calibration parameters......A numerical model and measurements of flow and settling in activated sludge suspension is presented. The numerical model is an attempt to describe the complex and interrelated hydraulic and sedimentation phenomena by describing the turbulent flow field and the transport/dispersion of suspended...... and for comparing measured and calculated result. The numerical model could, fairly accuratly, predict the measured results and both the measured and the calculated results showed a flow field pattern identical to flow fields in full-scale secondary setling tanks. A specific calibration of the Bingham plastic...
Mathematical and numerical foundations of turbulence models and applications
Chacón Rebollo, Tomás
2014-01-01
With applications to climate, technology, and industry, the modeling and numerical simulation of turbulent flows are rich with history and modern relevance. The complexity of the problems that arise in the study of turbulence requires tools from various scientific disciplines, including mathematics, physics, engineering, and computer science. Authored by two experts in the area with a long history of collaboration, this monograph provides a current, detailed look at several turbulence models from both the theoretical and numerical perspectives. The k-epsilon, large-eddy simulation, and other models are rigorously derived and their performance is analyzed using benchmark simulations for real-world turbulent flows. Mathematical and Numerical Foundations of Turbulence Models and Applications is an ideal reference for students in applied mathematics and engineering, as well as researchers in mathematical and numerical fluid dynamics. It is also a valuable resource for advanced graduate students in fluid dynamics,...
Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project
DEFF Research Database (Denmark)
Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano;
2011-01-01
Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....
Summary of Numerical Modeling for Underground Nuclear Test Monitoring Symposium
International Nuclear Information System (INIS)
This document contains the Proceedings of the Numerical Modeling for Underground Nuclear Test Monitoring Symposium held in Durango, Colorado on March 23-25, 1993. The symposium was sponsored by the Office of Arms Control and Nonproliferation of the United States Department of Energy and hosted by the Source Region Program of Los Alamos National Laboratory. The purpose of the meeting was to discuss state-of-the-art advances in numerical simulations of nuclear explosion phenomenology for the purpose of test ban monitoring. Another goal of the symposium was to promote discussion between seismologists and explosion source-code calculators. Presentation topics include the following: numerical model fits to data, measurement and characterization of material response models, applications of modeling to monitoring problems, explosion source phenomenology, numerical simulations and seismic sources
Complexities in coastal sediment transport studies by numerical modelling
Digital Repository Service at National Institute of Oceanography (India)
Ilangovan, D.; ManiMurali, R.
Marine environmental studies related to erosion, accretion, pollution transport, dredge disposal, location of seawater intake, effluent disposal, etc., involve sediment transport studies. Numerical models use set of well linked mathematical...
Numerical Modelling of the Mining Induced Horizontal Displacement
Tajduś, Krzysztof
2015-12-01
The paper presents results of numerical calculations and modeling of mining-induced surface deformation based on Finite Element Method (FEM). Applying the numerical method discussed to calculations allows us to assume a larger number of factors, such as rock mass structure, fracture network, rock properties, etc., which essentially affect the results obtained. On the basis of an elastic transversely isotropic model, an analysis of horizontal displacement distribution and surface subsidence was carried out for two sample regions of mines. The results of numerical calculations were later compared with the measured values. Such an analysis proved that the applied numerical model properly described distribution and values of subsidence and slope of subsidence trough, though there were serious differences in the values of calculated horizontal displacement, especially in areas of far influence range. In order to improve the matching, the influence of boundary conditions of the model on the value of calculated horizontal displacement was analyzed. The results are presented in graphs.
Numerical modeling of 3-D terrain effect on MT field
Institute of Scientific and Technical Information of China (English)
徐世浙; 阮百尧; 周辉; 陈乐寿; 徐师文
1997-01-01
Using the boundary element method, the numerical modeling problem of three-dimensional terrain effect on magnetotelluric (MT) field is solved. This modeling technique can be run on PC in the case of adopting special net division. The result of modeling test for 2-D terrain by this modeling technique is basically coincident with that by 2-D modeling technique, but there is a great difference between the results of 3-D and 2-D modeling for 3-D terrain.
Numerical Modelling of Embankment on Soft Clay
Nujid, M. M.; Taha, M. R.
2016-07-01
This paper aims to predict deformation of embankment on soft clay of Muar. The prediction performance focusing on displacement at critical fill height of 5.5 m. The study was based on reported result in 1992. With the aid of computer intelligence, the advanced constitutive soil models could be adopted to analyze the soft clay behavior. The COMSOL Multiphysics (v4.4) has been used to simulate the problem with coupled physics available in the software. The vertical displacements are in good agreement close to published result.
Terrane accretion: Insights from numerical modelling
Vogt, Katharina; Gerya, Taras
2016-04-01
The oceanic crust is not homogenous, but contains significantly thicker crust than norm, i.e. extinct arcs, spreading ridges, detached continental fragments, volcanic piles or oceanic swells. These (crustal) fragments may collide with continental crust and form accretionary complexes, contributing to its growth. We analyse this process using a thermo-mechanical computer model (i2vis) of an ocean-continent subduction zone. In this model the oceanic plate can bend spontaneously under the control of visco-plastic rheologies. It moreover incorporates effects such as mineralogical phase changes, fluid release and consumption, partial melting and melt extraction. Based on our 2-D experiments we suggest that the lithospheric buoyancy of the downgoing slab and the rheological strength of crustal material may result in a variety of accretionary processes. In addition to terrane subduction, we are able to identify three distinct modes of terrane accretion: frontal accretion, basal accretion and underplating plateaus. We show that crustal fragments may dock onto continental crust and cease subduction, be scrapped off the downgoing plate, or subduct to greater depth prior to slab break off and subsequent exhumation. Direct consequences of these processes include slab break off, subduction zone transference, structural reworking, formation of high-pressure terranes, partial melting and crustal growth.
Piezometria-80 numerical model of aquiferous layer
Energy Technology Data Exchange (ETDEWEB)
Rogoz, M.; Solik-Heliasz, E.
1988-01-01
Discusses the PIEZOMETRIA-80 subsystem for mathematical modeling (by means of the finite difference method) of aquifers consisting of a single water-bearing layer under conditions of unstable filtration. The subsystem consists of four programs+: PREMOD-80 for reading data on perforated tapes and cards, interpolation and extrapolation of data and generating tables that correspond with the assumed discretization of a modeled area; PRZEWODNOSC-80 for solving inverse problem of filtration (e.g. determining rock permeability to water); PIEZO-80 for calculating coordinates of a water level at given time intervals; WYNIK-80 for graphical presentation of calculation results on maps and diagrams. The PIEZOMETRIA subsystem is developed in two language versions: Algol 1204 version A and Fortran 1900 version F for the Odra 1204 and Odra 1325 computers. Use of calculation methods and algorithms for the following purposes is discussed: development of schemes of hydrogeologic conditions, discretization of space and time, assignment of boundary conditions, determining parameters of aquifers. 3 refs.
Numerical modelling of concentrated leak erosion during Hole Erosion Tests
Mercier, F.; S. Bonelli; Golay, F.; Anselmet, F; Philippe, P.; Borghi, R.
2015-01-01
This study focuses on the numerical modelling of concentrated leak erosion of a cohesive soil by a turbulent flow in axisymmetrical geometry, with application to the Hole Erosion Test (HET). The numerical model is based on adaptive remeshing of the water/soil interface to ensure accurate description of the mechanical phenomena occurring near the soil/water interface. The erosion law governing the interface motion is based on two erosion parameters: the critical shear stress and the erosion co...
Numerical solution of dynamic equilibrium models under Poisson uncertainty
DEFF Research Database (Denmark)
Posch, Olaf; Trimborn, Timo
2013-01-01
We propose a simple and powerful numerical algorithm to compute the transition process in continuous-time dynamic equilibrium models with rare events. In this paper we transform the dynamic system of stochastic differential equations into a system of functional differential equations of the retar...... solution to Lucas' endogenous growth model under Poisson uncertainty are used to compute the exact numerical error. We show how (potential) catastrophic events such as rare natural disasters substantially affect the economic decisions of households....
Complexities in coastal sediment transport studies by numerical modeling
Dandayudapani, I.; M. Murali
2013-01-01
Marine environmental studies related to erosion, accretion, pollution transport, dredge disposal, location of seawater intake, effluent disposal, etc., involve sediment transport studies. Numerical models use set of well linked mathematical equations arrived based on scientific principles as all natural phenomena are governed by certain rules which can be explained by scientific principles. Efficiency of numerical modeling greatly depends on quality of input parameters. When input parameters ...
Comparisons of numerical modelling of the Selective Laser Melting
Van Belle, Laurent; Vansteenkiste, Guillaume; Boyer, Jean-Claude
2012-01-01
International audience Selective laser melting (SLM) first developed for rapid prototyping (RP) is now used for rapid manufacturing of parts with inner complex shapes that cannot be made by more conventional routes. For example, production of injection moulds with cooling channels is of special interest. In this paper, a numerical model of SLM process was investigated to simulate the genesis of residual stresses. The proposed numerical modelling is based upon a double meshing with a multi-...
Vasquez, D. A.; Swift, J. N.; Tan, S.; Darrah, T. H.
2013-12-01
The integration of precise geochemical analyses with quantitative engineering modeling into an interactive GIS system allows for a sophisticated and efficient method of reservoir engineering and characterization. Geographic Information Systems (GIS) is utilized as an advanced technique for oil field reservoir analysis by combining field engineering and geological/geochemical spatial datasets with the available systematic modeling and mapping methods to integrate the information into a spatially correlated first-hand approach in defining surface and subsurface characteristics. Three key methods of analysis include: 1) Geostatistical modeling to create a static and volumetric 3-dimensional representation of the geological body, 2) Numerical modeling to develop a dynamic and interactive 2-dimensional model of fluid flow across the reservoir and 3) Noble gas geochemistry to further define the physical conditions, components and history of the geologic system. Results thus far include using engineering algorithms for interpolating electrical well log properties across the field (spontaneous potential, resistivity) yielding a highly accurate and high-resolution 3D model of rock properties. Results so far also include using numerical finite difference methods (crank-nicholson) to solve for equations describing the distribution of pressure across field yielding a 2D simulation model of fluid flow across reservoir. Ongoing noble gas geochemistry results will also include determination of the source, thermal maturity and the extent/style of fluid migration (connectivity, continuity and directionality). Future work will include developing an inverse engineering algorithm to model for permeability, porosity and water saturation.This combination of new and efficient technological and analytical capabilities is geared to provide a better understanding of the field geology and hydrocarbon dynamics system with applications to determine the presence of hydrocarbon pay zones (or
The Numerical Modeling of Transient Regimes of Diesel Generator Sets
Directory of Open Access Journals (Sweden)
Cristian Roman
2010-07-01
Full Text Available This paper deals with the numerical modeling of a diesel generator set used as amain energy source in isolated areas and as a back-up energy source in the case ofrenewable energy systems. The numerical models are developed using a Matlab/Simulinksoftware package and they prove to be a powerful tool for the computer aided design ofcomplex hybrid power systems. Several operation regimes of the equipment are studied.The numerical study is completed with experimental measurements on a Kipor type dieselelectricgenerator set.
Numerical Models of Blackbody-Dominated GRBs
Cuesta-Martínez, Carlos F; Mimica, Petar; Thöne, Christina C; de Ugarte-Postigo, Antonio
2015-01-01
Blackbody-dominated (BBD) gamma-ray bursts (GRBs) are events characterized by the absence of a typical afterglow, long durations and the presence of a significant thermal component following the prompt gamma-ray emission. GRB 101225A (the `Christmas burst') is a prototype of this class. A plausible progenitor system for it, and for the BBD-GRBs, is the merger of a neutron star (NS) and a helium core of an evolved, massive star. Using relativistic hydrodynamic simulations we model the propagation of an ultrarelativistic jet through the enviroment created by such a merger and we compute the whole radiative signature, both thermal and non-thermal, of the jet dynamical evolution. We find that the thermal emission originates from the interaction between the jet and the hydrogen envelope ejected during the NS/He merger.
Seismoelectric numerical modeling on a grid
Haines, S.S.; Pride, S.R.
2006-01-01
Our finite-difference algorithm provides a new method for simulating how seismic waves in arbitrarily heterogeneous porous media generate electric fields through an electrokinetic mechanism called seismoelectric coupling. As the first step in our simulations, we calculate relative pore-fluid/grain-matrix displacement by using existing poroelastic theory. We then calculate the electric current resulting from the grain/fluid displacement by using seismoelectric coupling theory. This electrofiltration current acts as a source term in Poisson's equation, which then allows us to calculate the electric potential distribution. We can safely neglect induction effects in our simulations because the model area is within the electrostatic near field for the depth of investigation (tens to hundreds of meters) and the frequency ranges (10 Hz to 1 kHz) of interest for shallow seismoelectric surveys.We can independently calculate the electric-potential distribution for each time step in the poroelastic simulation without loss of accuracy because electro-osmotic feedback (fluid flow that is perturbed by generated electric fields) is at least 105 times smaller than flow that is driven by fluid-pressure gradients and matrix acceleration, and is therefore negligible. Our simulations demonstrate that, distinct from seismic reflections, the seismoelectric interface response from a thin layer (at least as thin as one-twentieth of the seismic wavelength) is considerably stronger than the response from a single interface. We find that the interface response amplitude decreases as the lateral extent of a layer decreases below the width of the first Fresnel zone. We conclude, on the basis of our modeling results and of field results published elsewhere, that downhole and/or crosswell survey geometries and time-lapse applications are particularly well suited to the seismoelectric method. ?? 2006 Society of Exploration Geophysicists.
A modular approach to numerical human body modeling
Forbes, P.A.; Griotto, G.; Rooij, L. van
2007-01-01
The choice of a human body model for a simulated automotive impact scenario must take into account both accurate model response and computational efficiency as key factors. This study presents a "modular numerical human body modeling" approach which allows the creation of a customized human body mod
Numerical Modelling of Induction Heating Process for Testing Plant
HRENIUC Ruslan Ovidiu; TIURBE Cristian
2012-01-01
This paper presents the numerical modelling of electromagnetic and thermal fields in the induction heating of a 2 kW testing plant, made by the author. The purpose of this modelling is to analyze thedevelopment of heating process, to notice any changes required to increase its efficiency. Modelling is performed by means of FLUX software package.
Stepped spillway optimization through numerical and physical modeling
Directory of Open Access Journals (Sweden)
Hamed Sarkardeh, Morteza Marosi, Raza Roshan
2015-01-01
Full Text Available The spillway is among the most important structures of a dam. It is importance for the spillway to be designed properly and passes flood flow safely with more energy dissipation. The zone which ogee spillway crest and stepped chute profile are joined with each other is important in design view. In the present study, a physical model as well as a numerical model was employed on a case study of stepped spillway to modify the transitional zone and improve flow pattern over the spillway. Many alternatives were examined and optimized. Finally, the performance of the selected alternative was checked for different flow conditions, air entrainment and energy dissipation. To simulate the turbulence phenomenon, RNG model and for free surface VOF model was selected in the numerical model. Results of the numerical and physical models were compared and good agreement concluded in flow conditions and energy dissipation.
Numerical model for learning concepts of streamflow simulation
DeLong, L.L.; ,
1993-01-01
Numerical models are useful for demonstrating principles of open-channel flow. Such models can allow experimentation with cause-and-effect relations, testing concepts of physics and numerical techniques. Four PT is a numerical model written primarily as a teaching supplement for a course in one-dimensional stream-flow modeling. Four PT options particularly useful in training include selection of governing equations, boundary-value perturbation, and user-programmable constraint equations. The model can simulate non-trivial concepts such as flow in complex interconnected channel networks, meandering channels with variable effective flow lengths, hydraulic structures defined by unique three-parameter relations, and density-driven flow.The model is coded in FORTRAN 77, and data encapsulation is used extensively to simplify maintenance and modification and to enhance the use of Four PT modules by other programs and programmers.
Development of TVD numerical models: II. Shallow-water equations
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong-Wook; Cho, Yong-Sik [Hanyang University, Seoul(Korea)
2001-04-30
In this study, a numerical model describing the shallow-water equations is newly developed by using a TVD scheme. The model has a second-order accuracy in time and space and is free from nonphysical oscillations, even in the vicinity of large gradients. Because a upwind based TVD scheme requires a Riemann solver, the HLLC scheme is employed in this model. To calibrate the applicability and accuracy, the developed model is used to simulate dam-break waves in an ideal channel and a sloshing flow in a paraboloidal basin. Agreements between numerical predictions and analytical solutions are very reasonable. (author). 14 refs., 7 figs.
Numerical modeling of shoreline undulations part 1: Constant wave climate
DEFF Research Database (Denmark)
Kærgaard, Kasper Hauberg; Fredsøe, Jørgen
2013-01-01
This paper presents a numerical study of the non-linear development of alongshore undulations up to fully developed quasi-steady equilibrium. A numerical model which describes the longshore sediment transport along arbitrarily shaped shorelines is applied, based on a spectral wave model, a depth...... integrated flow model, a wave-phase resolving sediment transport description and a one-line shoreline model.First the length of the shoreline undulations is determined in the linear regime using a stability analysis. Next the further evolution from the linear to the fully non-linear regime is described. In...
Numerical simulations of a reduced model for blood coagulation
Pavlova, Jevgenija; Fasano, Antonio; Sequeira, Adélia
2016-04-01
In this work, the three-dimensional numerical resolution of a complex mathematical model for the blood coagulation process is presented. The model was illustrated in Fasano et al. (Clin Hemorheol Microcirc 51:1-14, 2012), Pavlova et al. (Theor Biol 380:367-379, 2015). It incorporates the action of the biochemical and cellular components of blood as well as the effects of the flow. The model is characterized by a reduction in the biochemical network and considers the impact of the blood slip at the vessel wall. Numerical results showing the capacity of the model to predict different perturbations in the hemostatic system are discussed.
Multiphysics Numerical Modeling of a Fin and Tube Heat Exchanger
DEFF Research Database (Denmark)
Singh, Shobhana; Sørensen, Kim; Condra, Thomas Joseph
2015-01-01
In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM). For the ......In the present research work, a modeling effort to predict the performance of a liquid-gas type fin and tube heat exchanger design is made. Three dimensional (3D) steady state numerical model is developed using commercial software COMSOL Multiphysics based on finite element method (FEM...
Quantitative comparisons of numerical models of brittle wedge dynamics
Buiter, Susanne
2010-05-01
Numerical and laboratory models are often used to investigate the evolution of deformation processes at various scales in crust and lithosphere. In both approaches, the freedom in choice of simulation method, materials and their properties, and deformation laws could affect model outcomes. To assess the role of modelling method and to quantify the variability among models, we have performed a comparison of laboratory and numerical experiments. Here, we present results of 11 numerical codes, which use finite element, finite difference and distinct element techniques. We present three experiments that describe shortening of a sand-like, brittle wedge. The material properties of the numerical ‘sand', the model set-up and the boundary conditions are strictly prescribed and follow the analogue setup as closely as possible. Our first experiment translates a non-accreting wedge with a stable surface slope of 20 degrees. In agreement with critical wedge theory, all models maintain the same surface slope and do not deform. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge in a sandbox-like setup, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. We show that we successfully simulate sandbox-style brittle behaviour using different numerical modelling techniques and that we obtain the same styles of deformation behaviour in numerical and laboratory experiments at similar levels of variability. The GeoMod2008 Numerical Team: Markus Albertz, Michelle Cooke, Tony Crook, David Egholm, Susan Ellis, Taras Gerya, Luke Hodkinson, Boris Kaus, Walter Landry, Bertrand Maillot, Yury Mishin
Local Duality for 2-Dimensional Local Ring
Indian Academy of Sciences (India)
Belgacem Draouil
2008-11-01
We prove a local duality for some schemes associated to a 2-dimensional complete local ring whose residue field is an -dimensional local field in the sense of Kato–Parshin. Our results generalize the Saito works in the case =0 and are applied to study the Bloch–Ogus complex for such rings in various cases.
Numerical Modeling and Mechanical Analysis of Flexible Risers
Directory of Open Access Journals (Sweden)
J. Y. Li
2015-01-01
Full Text Available ABAQUS is used to create a detailed finite element model for a 10-layer unbonded flexible riser to simulate the riser’s mechanical behavior under three load conditions: tension force and internal and external pressure. It presents a technique to create detailed finite element model and to analyze flexible risers. In FEM model, all layers are modeled separately with contact interfaces; interaction between steel trips in certain layers has been considered as well. FEM model considering contact interaction, geometric nonlinearity, and friction has been employed to accurately simulate the structural behavior of riser. The model includes the main features of the riser geometry with very little simplifying assumptions. The model was solved using a fully explicit time-integration scheme implemented in a parallel environment on an eight-processor cluster and 24 G memory computer. There is a very good agreement obtained from numerical and analytical comparisons, which validates the use of numerical model here. The results from the numerical simulation show that the numerical model takes into account various details of the riser. It has been shown that the detailed finite element model can be used to predict riser’s mechanics behavior under various load cases and bound conditions.
A Semi-implicit Numerical Scheme for a Two-dimensional, Three-field Thermo-Hydraulic Modeling
Energy Technology Data Exchange (ETDEWEB)
Hwang, Moonkyu; Jeong, Jaejoon
2007-07-15
The behavior of two-phase flow is modeled, depending on the purpose, by either homogeneous model, drift flux model, or separated flow model, Among these model, in the separated flow model, the behavior of each flow phase is modeled by its own governing equation, together with the interphase models which describe the thermal and mechanical interactions between the phases involved. In this study, a semi-implicit numerical scheme for two-dimensional, transient, two-fluid, three-field is derived. The work is an extension to the previous study for the staggered, semi-implicit numerical scheme in one-dimensional geometry (KAERI/TR-3239/2006). The two-dimensional extension is performed by specifying a relevant governing equation set and applying the related finite differencing method. The procedure for employing the semi-implicit scheme is also described in detail. Verifications are performed for a 2-dimensional vertical plate for a single-phase and two-phase flows. The calculations verify the mass and energy conservations. The symmetric flow behavior, for the verification problem, also confirms the momentum conservation of the numerical scheme.
Numerical modelling of river morphodynamics: Latest developments and remaining challenges
Siviglia, Annunziato; Crosato, Alessandra
2016-07-01
Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.
Numerical modeling in electroporation-based biomedical applications
Pavšelj, Nataša; Miklavčič, Damijan
2015-01-01
Background. Numerous experiments have to be performed before a biomedical application is put to practical use in clinical environment. As a complementary work to in vitro, in vivo and medical experiments, we can use analytical and numerical models to represent, as realistically as possible, real biological phenomena of, in our case, electroporation. In this way we canevaluate different electrical parameters in advance, such as pulse amplitude, duration, number of pulses, or different electrod...
Numerical modeling in electroporation-based biomedical applications:
Miklavčič, Damijan; Pavšelj, Nataša
2008-01-01
Background. Numerous experiments have to be performed before a biomedical application is put to practical use in clinical environment. As a complementary work to in vitro, in vivo and medical experiments, we can use analytical and numerical models to represent, as realistically as possible, real biological phenomena of, in our case, electroporation. In this way we canevaluate different electrical parameters in advance, such as pulse amplitude, duration, number of pulses, or different electrod...
Numerical modeling of surf beat generated by moving breakpoint
Institute of Scientific and Technical Information of China (English)
DONG GuoHai; MA XiaoZhou; TENG Bin
2009-01-01
As an important hydrodynamic phenomenon in the nearshore zone, the cross-shore surf beat is nu-merically studied in this paper with a fully nonlinear Boussinesq-type model, which resolves the pri-mary wave motion as well as the long waves. Compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics. Wave breaking and run-up in the swash zone are included in the numerical model. Mutual interactions between short waves and long waves are inherent in the model. The numerical study of long waves is based on bichromatic wave groups with a wide range of mean frequencies, group frequencies and modulation rates. The cross-shore variation in the amplitudes of short waves and long waves is investigated. The model results are compared with laboratory experiments from the literature and good agreement is found.
Numerical modeling of surf beat generated by moving breakpoint
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
As an important hydrodynamic phenomenon in the nearshore zone, the cross-shore surf beat is numerically studied in this paper with a fully nonlinear Boussinesq-type model, which resolves the primary wave motion as well as the long waves. Compared with the classical Boussinesq equations, the equations adopted here allow for improved linear dispersion characteristics. Wave breaking and run-up in the swash zone are included in the numerical model. Mutual interactions between short waves and long waves are inherent in the model. The numerical study of long waves is based on bichromatic wave groups with a wide range of mean frequencies, group frequencies and modulation rates. The cross-shore variation in the amplitudes of short waves and long waves is investigated. The model results are compared with laboratory experiments from the literature and good agreement is found.
Numerical Modeling of Electromagnetic Field Effects on the Human Body
Directory of Open Access Journals (Sweden)
Zuzana Psenakova
2006-01-01
Full Text Available Interactions of electromagnetic field (EMF with environment and with tissue of human beings are still under discussion and many research teams are investigating it. The human simulation models are used for biomedical research in a lot of areas, where it is advantage to replace real human body (tissue by the numerical model. Biological effects of EMF are one of the areas, where numerical models are used with many advantages. On the other side, this research is very specific and it is always quite hard to simulate realistic human tissue. This paper deals with different possibilities of numerical modelling of electromagnetic field effects on the human body (especially calculation of the specific absorption rate (SAR distribution in human body and thermal effect.
Numerical modelling of tunnel construction in anisotropic foliated soft rock
Markovič, Jernej
2009-01-01
The present work focuses on the influence on tunnelling in the anisotropic foliated soft rock. The excavation initiates stress redistribution around an opening and thus causes the deformation to occur. The numerical problem of the tunnel excavation was modelled in the Plaxis 2D code using different soil constitutive models for modelling the rock mass behaviour. A parametric study was performed to obtain the model response to alteration of the rock mass parameters. The analysis was divided int...
Numerical modeling to investigate slopes and mass flow phenomena
Institute of Scientific and Technical Information of China (English)
Heinz Konietzky; Lei NIE; Youhong SUN
2006-01-01
An overview is given about up-to-date techniques for slope stability and deformation analysis as well as mass flow phenomena simulation. The paper concentrates on a few aspects in respect to the use of numerical modeling techniques, especially in relation to the shear strength reduction techniques, discontinuum modeling, probabilistic concepts, the combination of GIS and numerical modeling as well as sophisticated hydro-mechanical coupling with time-dependent material behavior. At present these topics are preferred topics of scientific and technical research.
Numerical modelling of the jet nozzle enrichment process
International Nuclear Information System (INIS)
A numerical model was developed for the simulation of the isotopic enrichment produced by the jet nozzle process. The flow was considered stationary and under ideal gas conditions. The model calculates, for any position of the skimmer piece: (a) values of radial mass concentration profiles for each isotopic species and (b) values of elementary separation effect (Σ sub(A)) and uranium cut (theta). The comparison of the numerical results obtained with the experimental values given in the literature proves the validity of the present work as an initial step in the modelling of the process. (Author)
Hysteresis model of magnetostrictive actuators and its numerical realization
Institute of Scientific and Technical Information of China (English)
TANG Zhi-feng; LV Fu-zai; XIANG Zhan-qin
2007-01-01
This paper presents two numerical realization of Preisach model by Density Function Method (DFM) and F Function Method (FFM) for a giant magnetostrictive actuator (GMA). Experiment and simulation showed that FFM is better than DFM for predicting precision of hysteresis loops. Lagrange bilinear interpolation algorithm is used in Preisach numerical realization to enhance prediction performance. A set of hysteresis loops and higher order reversal curves are predicted and experimentally verified. The good agreement between the measured and predicted curves shows that the classical Preisach model is effective for modelling the quasi-static hysteresis of the GMA.
A Climate System Model, Numerical Simulation and Climate Predictability
Institute of Scientific and Technical Information of China (English)
ZENG Qingcun; WANG Huijun; LIN Zhaohui; ZHOU Guangqing; YU Yongqiang
2007-01-01
@@ The implementation of the project has lasted for more than 20 years. As a result, the following key innovative achievements have been obtained, ranging from the basic theory of climate dynamics, numerical model development and its related computational theory to the dynamical climate prediction using the climate system models:
Modeling of ECC materials using numerical formulations based on plasticity
DEFF Research Database (Denmark)
Dick-Nielsen, Lars; Stang, Henrik; Poulsen, Peter Noe
2006-01-01
This paper discusses the considerations for the establishment of a damage model for ECC. Three different length scales are used in the approach for deriving the damage model. On each length scale important phenomena are investigated by use of numerical and analytical calculations. On the micro sc...
Numerical equilibrium analysis for structured consumer resource models
de Roos, A.M.; Diekmann, O.; Getto, P.; Kirkilionis, M.A.
2010-01-01
In this paper, we present methods for a numerical equilibrium and stability analysis for models of a size structured population competing for an unstructured resource. We concentrate on cases where two model parameters are free, and thus existence boundaries for equilibria and stability boundaries c
Numerical modelling of damage evolution in ingot forging
DEFF Research Database (Denmark)
Christiansen, Peter; Martins, Paulo A.F.; Bay, Niels Oluf;
2015-01-01
The ingot forging process is numerically simulated applying both the Shima-Oyane porous plasticity model as a coupled damage model and the uncoupled normalized Cockcroft & Latham criterion. Four different cases including two different lower die angles (120º and 180º) and two different sizes of fe...
Numerical human model for impact and seating comfort
Hoof, J.F.A.M. van; Lange, R. de; Verver, M.M.
2003-01-01
This paper presents a detailed numerical model of the human body that can be used to evaluate both safety and comfort aspects of vehicle interiors. The model is based on a combination of rigid body and finite element techniques to provide an optimal combination of computational efficiency and accura
Numerical modeling of geochemical variations caused by crustal relamination
Vogt, Katharina; Castro, Antonio; Gerya, Taras
2013-01-01
Geochemical consequences of composite diapirs formed in subduction zones have been studied using a thermomechanical numerical model of an ocean-continent subduction zone. This model includes dehydration of subducted crust, aqueous fluid transport, partial melting, and melt emplacement. Subduction of
PROBABILITY MODELS FOR OBTAINING NON-NUMERICAL DATA
Directory of Open Access Journals (Sweden)
Orlov A. I.
2015-01-01
Full Text Available The statistics of objects of non-numerical nature (statistics of non-numerical objects, non-numerical data statistics, non-numeric statistics is the area of mathematical statistics, devoted to the analysis methods of non-numeric data. Basis of applying the results of mathematical statistics are probabilistic-statistical models of real phenomena and processes, the most important (and often only which are models for obtaining data. The simplest example of a model for obtaining data is the model of the sample as a set of independent identically distributed random variables. In this article we have considered the basic probabilistic models for obtaining non-numeric data. Namely, the models of dichotomous data, results of paired comparisons, binary relations, ranks, the objects of general nature. We have discussed the various options of probabilistic models and their practical use. For example, the basic probabilistic model of dichotomous data - Bernoulli vector (Lucian i.e. final sequence of independent Bernoulli trials, for which the probabilities of success may be different. The mathematical tools of solutions of various statistical problems associated with the Bernoulli vectors are useful for the analysis of random tolerances; random sets with independent elements; in processing the results of independent pairwise comparisons; statistical methods for analyzing the accuracy and stability of technological processes; in the analysis and synthesis of statistical quality control plans (for dichotomous characteristics; the processing of marketing and sociological questionnaires (with closed questions like "yes" - "no"; the processing of socio-psychological and medical data, in particular, the responses to psychological tests such as MMPI (used in particular in the problems of human resource management, and analysis of topographic maps (used for the analysis and prediction of the affected areas for technological disasters, distributing corrosion
Ensemble-type numerical uncertainty information from single model integrations
Energy Technology Data Exchange (ETDEWEB)
Rauser, Florian, E-mail: florian.rauser@mpimet.mpg.de; Marotzke, Jochem; Korn, Peter
2015-07-01
We suggest an algorithm that quantifies the discretization error of time-dependent physical quantities of interest (goals) for numerical models of geophysical fluid dynamics. The goal discretization error is estimated using a sum of weighted local discretization errors. The key feature of our algorithm is that these local discretization errors are interpreted as realizations of a random process. The random process is determined by the model and the flow state. From a class of local error random processes we select a suitable specific random process by integrating the model over a short time interval at different resolutions. The weights of the influences of the local discretization errors on the goal are modeled as goal sensitivities, which are calculated via automatic differentiation. The integration of the weighted realizations of local error random processes yields a posterior ensemble of goal approximations from a single run of the numerical model. From the posterior ensemble we derive the uncertainty information of the goal discretization error. This algorithm bypasses the requirement of detailed knowledge about the models discretization to generate numerical error estimates. The algorithm is evaluated for the spherical shallow-water equations. For two standard test cases we successfully estimate the error of regional potential energy, track its evolution, and compare it to standard ensemble techniques. The posterior ensemble shares linear-error-growth properties with ensembles of multiple model integrations when comparably perturbed. The posterior ensemble numerical error estimates are of comparable size as those of a stochastic physics ensemble.
Exercises in 80223 Numerical Modelling of Thermal Processing of Materials
DEFF Research Database (Denmark)
Frandsen, Jens Ole
, guidelines are given on how to write the report which has to be handed in at the end of the course. The exercise book is a updated version of the exercise book from 1999. The exercise book is used in the course 42224 'Numerical Process Modelling' which earlier was called 80223 'Numerical Modelling of Thermal......This exercise book contains exercise instructions for the 7 compulsory exercises (Exercise 1-7) and the final exercise (Exercise 8) in the course 80223 'Numerical Modelling of Thermal Processing of Materials'. The exercise book also contains written program examples in 'C' and 'Pascal'. Finally...... Processing of Materials'. The original copy is kept in the archives of TM on the ground floor of building 425. A copy of the exercise book can be made available by contacting the secretary on the ground floor of building 425. Please give the following number: TM 00.01 (TM = Thermal processing of Materials)...
NUMERICAL MODELLING OF DISCONTINUOUS ROCK MASS IN THE ELASTIC DOMAIN
Directory of Open Access Journals (Sweden)
Biljana Kovačević-Zelić
1995-12-01
Full Text Available Constitutive relationships of rock materials are an important component of the numerical modelling, it is not possible to find a generally acceptable constitutive law for rock materials, because of their complex nature. In this paper, the applicability of some models within the framework of theory of elasticity are examined. The analyses are carried out using next models: isotropic and transversely isotropic model, and 'equivalent' material approach The parametric study is also made to examine the influence of discontinuities on the parameters of the equivalent materials the comparison of above mentioned models is made through numerical modelling of the direct shear test. The analysis were performed with finite difference code FLAC (the paper is published in Croatian.
Numerical models for evaluation thermal conductivity of coatings
Directory of Open Access Journals (Sweden)
Švantner M.
2008-12-01
Full Text Available This paper is dealing with simulation and model development for the evaluation of thermal conductivity of coatings by the Laser Quasistatic Thermography (LQT method. The main principles of the measurement method are introduced and the process of thermal conductivity evaluation based on numerical simulation is presented. The evaluation requires special procedure to simulate thermal process induced by laser pulse in coating on some substrate. The thickness of the coating is manifold less than the thickness of the substrate and total sample surface. In numerical system Cosmos/M there are created two suitable models: "Shell-Clink-Solid" model and model based on physical similarity. In this paper there are also described characteristics of both models and their comparison with classical axisymmetric and volume models.
Numerical modeling of complex heat transfer phenomena in cooling applications
Hou, Xiaofei
2015-01-01
Multiphase and multicomponent flows are frequently encountered in the cooling applications due to combined heat transfer and phase change phenomena. Two-fluid and homogeneous mixture models are chosen to numerically study these flows in the cooling phenomena. Therefore this work is divided in two main parts. In the first part, a two-fluid model algorithm for free surface flows is presented. The two fluid model is usually used as a tool to simulate dispersed flow. With its extension, it may al...
Development of TVD numerical models: I. Linear advection equation
Energy Technology Data Exchange (ETDEWEB)
Lee, Jong-Wook; Cho, Yong-Sik; Yoon, Tae-Hoon [Hanyang University, Seoul(Korea); Yoon, Kwang-Seok [Korea Institute of Construction Technology, Koyang(Korea)
2001-04-30
By using the total variation diminishing (TVD) condition, accurate and upwind based schemes are firstly introduced to develop numerical models free from nonphysical oscillations in the vicinity of large gradients. These models are then applied to both abruptly and smoothly varying initial conditions. By comparing computed predictions to analytical solutions, it is clearly shown that the first-order upwind scheme produces the numerical viscosity and the second-order Lax-Wendroff scheme produces the spurious oscillations. However, the TVD scheme gives the most reasonable results. (author). 22 refs., 6 figs.
Numerical Models of Sewage Dispersion and Statistica Bathing Water Standards
DEFF Research Database (Denmark)
Petersen, Ole; Larsen, Torben
1991-01-01
As bathing water standards usually are founded in statistical methods, the numerical models used in outfall design should reflect this. A statistical approach, where stochastic variations in source strength and bacterial disappearance is incorporated into a numerical dilution model is presented....... It is demonstrated for a specific outfall how the method can be used to estimate the bathing water quality. The ambition with the paper has been to demonstrate how stochastic variations in a simple manner can be included in the analysis of water quality....
Numerical Modeling of Micro Fluidics of Polymer Melts
DEFF Research Database (Denmark)
Marin, José Manuel Román; Rasmussen, Henrik K.
2008-01-01
film on a hard substrate. The numerical method is based on a Lagrangian kinematics description of the fluid, where the (Cartesian) coordinate system attached to the particles is discretized by ten-node quadratic tetrahedral elements. The time integral in the K-BKZ model is discretized by a quadratic......A new Galerkin finite element scheme for the numerical simulation of three-dimensional time-dependent flow of K-BKZ fluids has been developed. The scheme was used to model the polymer melt flow in nano imprint lithography (NIL). In NIL a sub micrometer pattern is hot pressed onto a thin polymer...
Feedbacks Between Numerical and Analytical Models in Hydrogeology
Zlotnik, V. A.; Cardenas, M. B.; Toundykov, D.; Cohn, S.
2012-12-01
Hydrogeology is a relatively young discipline which combines elements of Earth science and engineering. Mature fundamental disciplines (e.g., physics, chemistry, fluid mechanics) have centuries-long history of mathematical modeling even prior to discovery of Darcy's law. Thus, in hydrogeology, relatively few classic analytical models (such those by Theis, Polubarinova-Kochina, Philip, Toth, Henry, Dagan, Neuman) were developed by the early 1970's. The advent of computers and practical demands refocused mathematical models towards numerical techniques. With more diverse but less mathematically-oriented training, most hydrogeologists shifted from analytical methods to use of standardized computational software. Spatial variability in internal properties and external boundary conditions and geometry, and the added complexity of chemical and biological processes will remain major challenges for analytical modeling. Possibly, analytical techniques will play a subordinate role to numerical approaches in many applications. On the other hand, the rise of analytical element modeling of groundwater flow is a strong alternative to numerical models when data demand and computational efficiency is considered. The hallmark of analytical models - transparency and accuracy - will remain indispensable for scientific exploration of complex phenomena and for benchmarking numerical models. Therefore, there will always be feedbacks and complementarities between numerical and analytical techniques, as well as a certain ideological schism among various views to modeling. We illustrate the idea of feedbacks by reviewing evolution of Joszef Toth's analytical model of gravity driven flow systems. Toth's (1963) approach was to reduce the flow domain to a rectangle which allowed for closed-form solution of the governing equations. Succeeding numerical finite-element models by Freeze and Witherspoon (1966-1968) explored the effects of geometry and heterogeneity on regional groundwater flow
Numerical model of Fanuc AM100iB robot
Cholewa, A.; Świder, J.; Zbilski, A.
2016-08-01
The article presents a numerical model of Fanuc AM 100iB robot, prepared in the form of a block diagram in Simulink software, using the SimMechanics toolbox. The main task of the numerical model of Fanuc AM 100iB robot is to calculate the value of torques putting a load on motor shafts, and to calculate the values of kinematic parameters of the robot's arms in real time and in interactive mode. The values and format of torques putting a load on subsequent joints, and then on the motor shafts, resulted from the effect of the simultaneous action of all torques and the delay, resulting from the implementation of numerical calculations in real time. The numerical model developed is a result of design focused on recreating the effects of simultaneous action of all these factors, which are present in the actual drives and affect the consumption of electricity. A very important criterion, taken into account when designing the model, was also its computational efficiency. In addition, the model was used to visualise the work of the tested machine in three-dimensional space.
Numerical Model of Radical Photopolymerization Based on Interdiffusion
Directory of Open Access Journals (Sweden)
Shuhei Yoshida
2014-01-01
Full Text Available An accurate reaction model is required to analyze the characteristics of photopolymers. For this purpose, we propose a numerical model for radical photopolymerization. In the proposed model, elementary reactions such as initiation, propagation, and termination are considered, and we assume interdiffusion for each component in the material. We analyzed the diffraction characteristics of a radical photopolymer based on the proposed interdiffusion model with the beam propagation method. Moreover, we also performed hologram-recording experiments and evaluated the diffraction characteristics of the photopolymer medium. By comparing the numerical and experimental results, medium parameters such as reaction rate and diffusion coefficient can be estimated. We confirmed that the interdiffusion model can reproduce the experimental results and showed that the medium parameters affect the diffraction characteristics.
Non-stationary iterative methods for solving macroeconomic numeric models
Directory of Open Access Journals (Sweden)
Bogdan OANCEA
2006-01-01
Full Text Available Macroeconometric modeling was influenced by the development of new and efficient computational techniques. Rational Expectations models, a particular class of macroeconometric models, give raise to very large systems of equations, the solution of which requires heavy computations. Therefore, such models are an interesting testing ground for the numerical methods addressed in this research. The most difficult problem is to obtain the solution of the linear system that arises during the Newton step. As an alternative to the direct methods, we propose non-stationary iterative methods, also called Krylov methods, to solve these models. Numerical experiments conducted by authors confirm the interesting features of these methods: low computational complexity and storage requirements.
Numerical modeling of turbulent combustion and flame spread
Energy Technology Data Exchange (ETDEWEB)
Yan Zhenghua
1999-01-01
Theoretical models have been developed to address several important aspects of numerical modeling of turbulent combustion and flame spread. The developed models include a pyrolysis model for charring and non-charring solid materials, a fast narrow band radiation property evaluation model (FASTNB) and a turbulence model for buoyant flow and flame. In the pyrolysis model, a completely new algorithm has been proposed, where a moving dual mesh concept was developed and implemented. With this new concept, it provides proper spatial resolution for both temperature and density and automatically considers the regression of the surface of the non-charring solid material during its pyrolysis. It is simple, very efficient and applicable to both charring and non-charring materials. FASTNB speeds up significantly the evaluation of narrow band spectral radiation properties and thus provides a potential of applying narrow band model in numerical simulations of practical turbulent combustion. The turbulence model was developed to improve the consideration of buoyancy effect on turbulence and turbulent transport. It was found to be simple, promising and numerically stable. It has been tested against both plane and axisymmetric thermal plumes and an axisymmetric buoyant diffusion flame. When compared with the widely used standard buoyancy-modified {kappa} - {epsilon} model, it gives significant improvement on numerical results. These developed models have been fully incorporated into CFD (Computational Fluid Dynamics) code and coupled with other CFD sub-models, including the DT (Discrete Transfer) radiation model, EDC (Eddy Dissipation Concept) combustion model, flamelet combustion model, various soot models and transpired wall function. Comprehensive numerical simulations have been carried out to study soot formation and oxidation in turbulent buoyant diffusion flames, flame heat transfer and flame spread in fires. The gas temperature and velocity, soot volume fraction, wall
Frame Design and Reality of Numerical Model for Sculptured Part Machining
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
The importance of the numerical model for sculptured part machining based on virtual environment is introduced. Meanwhile, the general frame of the numerical model is proposed, and the techniques of developing the numerical model are discussed in detail.
Development, validation and application of numerical space environment models
Honkonen, Ilja
2013-10-01
Currently the majority of space-based assets are located inside the Earth's magnetosphere where they must endure the effects of the near-Earth space environment, i.e. space weather, which is driven by the supersonic flow of plasma from the Sun. Space weather refers to the day-to-day changes in the temperature, magnetic field and other parameters of the near-Earth space, similarly to ordinary weather which refers to changes in the atmosphere above ground level. Space weather can also cause adverse effects on the ground, for example, by inducing large direct currents in power transmission systems. The performance of computers has been growing exponentially for many decades and as a result the importance of numerical modeling in science has also increased rapidly. Numerical modeling is especially important in space plasma physics because there are no in-situ observations of space plasmas outside of the heliosphere and it is not feasible to study all aspects of space plasmas in a terrestrial laboratory. With the increasing number of computational cores in supercomputers, the parallel performance of numerical models on distributed memory hardware is also becoming crucial. This thesis consists of an introduction, four peer reviewed articles and describes the process of developing numerical space environment/weather models and the use of such models to study the near-Earth space. A complete model development chain is presented starting from initial planning and design to distributed memory parallelization and optimization, and finally testing, verification and validation of numerical models. A grid library that provides good parallel scalability on distributed memory hardware and several novel features, the distributed cartesian cell-refinable grid (DCCRG), is designed and developed. DCCRG is presently used in two numerical space weather models being developed at the Finnish Meteorological Institute. The first global magnetospheric test particle simulation based on the
Mathematical modeling and numerical simulation of Czochralski Crystal Growth
Energy Technology Data Exchange (ETDEWEB)
Jaervinen, J.; Nieminen, R. [Center for Scientific Computing, Espoo (Finland)
1996-12-31
A detailed mathematical model and numerical simulation tools based on the SUPG Finite Element Method for the Czochralski crystal growth has been developed. In this presentation the mathematical modeling and numerical simulation of the melt flow and the temperature distribution in a rotationally symmetric crystal growth environment is investigated. The temperature distribution and the position of the free boundary between the solid and liquid phases are solved by using the Enthalpy method. Heat inside of the Czochralski furnace is transferred by radiation, conduction and convection. The melt flow is governed by the incompressible Navier-Stokes equations coupled with the enthalpy equation. The melt flow is numerically demonstrated and the temperature distribution in the whole Czochralski furnace. (author)
Physical and numerical modeling of Joule-heated melters
Energy Technology Data Exchange (ETDEWEB)
Eyler, L.L.; Skarda, R.J.; Crowder, R.S. III; Trent, D.S.; Reid, C.R.; Lessor, D.L.
1985-10-01
The Joule-heated ceramic-lined melter is an integral part of the high level waste immobilization process under development by the US Department of Energy. Scaleup and design of this waste glass melting furnace requires an understanding of the relationships between melting cavity design parameters and the furnace performance characteristics such as mixing, heat transfer, and electrical requirements. Developing empirical models of these relationships through actual melter testing with numerous designs would be a very costly and time consuming task. Additionally, the Pacific Northwest Laboratory (PNL) has been developing numerical models that simulate a Joule-heated melter for analyzing melter performance. This report documents the method used and results of this modeling effort. Numerical modeling results are compared with the more conventional, physical modeling results to validate the approach. Also included are the results of numerically simulating an operating research melter at PNL. Physical Joule-heated melters modeling results used for qualiying the simulation capabilities of the melter code included: (1) a melter with a single pair of electrodes and (2) a melter with a dual pair (two pairs) of electrodes. The physical model of the melter having two electrode pairs utilized a configuration with primary and secondary electrodes. The principal melter parameters (the ratio of power applied to each electrode pair, modeling fluid depth, electrode spacing) were varied in nine tests of the physical model during FY85. Code predictions were made for five of these tests. Voltage drops, temperature field data, and electric field data varied in their agreement with the physical modeling results, but in general were judged acceptable. 14 refs., 79 figs., 17 tabs.
Integrating Numerical Groundwater Modeling Results With Geographic Information Systems
Witkowski, M. S.; Robinson, B. A.; Linger, S. P.
2001-12-01
Many different types of data are used to create numerical models of flow and transport of groundwater in the vadose zone. Results from water balance studies, infiltration models, hydrologic properties, and digital elevation models (DEMs) are examples of such data. Because input data comes in a variety of formats, for consistency the data need to be assembled in a coherent fashion on a single platform. Through the use of a geographic information system (GIS), all data sources can effectively be integrated on one platform to store, retrieve, query, and display data. In our vadoze zone modeling studies in support of Los Alamos National Laboratory's Environmental Restoration Project, we employ a GIS comprised of a Raid storage device, an Oracle database, ESRI's spatial database engine (SDE), ArcView GIS, and custom GIS tools for three-dimensional (3D) analysis. We store traditional GIS data, such as, contours, historical building footprints, and study area locations, as points, lines, and polygons with attributes. Numerical flow and transport model results from the Finite Element Heat and Mass Transfer Code (FEHM) are stored as points with attributes, such as fluid saturation, or pressure, or contaminant concentration at a given location. We overlay traditional types of GIS data with numerical model results, thereby allowing us to better build conceptual models and perform spatial analyses. We have also developed specialized analysis tools to assist in the data and model analysis process. This approach provides an integrated framework for performing tasks such as comparing the model to data and understanding the relationship of model predictions to existing contaminant source locations and water supply wells. Our process of integrating GIS and numerical modeling results allows us to answer a wide variety of questions about our conceptual model design: - Which set of locations should be identified as contaminant sources based on known historical building operations
Numerical Modeling of Wheat Seeds in Microwave Field
Directory of Open Access Journals (Sweden)
COMAN Ovidiu
2014-05-01
Full Text Available The main objective of our research was to develop a model using the numerical simulation software - Comsol Multiphysics for the drying process of wheat seeds. A number of simulations were made in order to analyze the increase of temperature calculated in the dielectric material, the electric field intensity and total absorbed power.
Numerical modeling, calibration, and validation of an ultrasonic separator
Cappon, H.J.; Keesman, K.J.
2013-01-01
Our overall goal is to apply acoustic separation technology for the recovery of valuable particulate matter from wastewater in industry. Such large-scale separator systems require detailed design and evaluation to optimize the system performance at the earliest stage possible. Numerical models can f
Numerical modelling and experimental assessment of concrete spalling in fire
Shamalta, M.; Breunese, A.; Peelen, W.; Fellinger, J.
2005-01-01
In this paper, the phenomenon of spalling of concrete in fire has been studied using a numerical model. Spalling is the violent or non-violent breaking off of layers or pieces of concrete when it is exposed to high temperatures as experienced in fires. The types and mechanisms of spalling have been
Numerical modeling of piezoelectric transducers using physical parameters.
Cappon, Hans; Keesman, Karel J
2012-05-01
Design of ultrasonic equipment is frequently facilitated with numerical models. These numerical models, however, need a calibration step, because usually not all characteristics of the materials used are known. Characterization of material properties combined with numerical simulations and experimental data can be used to acquire valid estimates of the material parameters. In our design application, a finite element (FE) model of an ultrasonic particle separator, driven by an ultrasonic transducer in thickness mode, is required. A limited set of material parameters for the piezoelectric transducer were obtained from the manufacturer, thus preserving prior physical knowledge to a large extent. The remaining unknown parameters were estimated from impedance analysis with a simple experimental setup combined with a numerical optimization routine using 2-D and 3-D FE models. Thus, a full set of physically interpretable material parameters was obtained for our specific purpose. The approach provides adequate accuracy of the estimates of the material parameters, near 1%. These parameter estimates will subsequently be applied in future design simulations, without the need to go through an entire series of characterization experiments. Finally, a sensitivity study showed that small variations of 1% in the main parameters caused changes near 1% in the eigenfrequency, but changes up to 7% in the admittance peak, thus influencing the efficiency of the system. Temperature will already cause these small variations in response; thus, a frequency control unit is required when actually manufacturing an efficient ultrasonic separation system.
Design of advanced industrial furnaces using numerical modeling method
Dong, Wei
2000-01-01
This doctoral thesis describes the fundamentals ofmathematical modeling for the industrial furnaces and boilersand presents the results from the numerical simulations of sometypical applications in advanced industrial furnaces andboilers. The main objective of this thesis work is to employcomputational fluid dynamics (CFD) technology as an effectivecomputer simulation tool to study and develop the newcombustion concepts, phenomena and processes in advancedindustrial furnaces and boilers. The ...
Numerical Modeling of a Wave Energy Point Absorber
DEFF Research Database (Denmark)
Hernandez, Lorenzo Banos; Frigaard, Peter; Kirkegaard, Poul Henning
2009-01-01
The present study deals with numerical modelling of the Wave Star Energy WSE device. Hereby, linear potential theory is applied via a BEM code on the wave hydrodynamics exciting the floaters. Time and frequency domain solutions of the floater response are determined for regular and irregular seas...
Numerical Modelling of Rubber Vibration Isolators: identification of material parameters
Beijers, Clemens; Noordman, Bram; Boer, de André
2004-01-01
Rubber vibration isolators are used for vibration isolation of engines at high frequencies. To make a good prediction regarding the characteristics of a vibration isolator in the design process, numerical models can be used. However, for a reliable prediction of the dynamic behavior of the isolator,
Numerical modelling of the shear strength between concrete layers
Dias-da-Costa, D.; Alfaiate, J.; Júlio, E.; Sluys, L.J.
2009-01-01
Some of the most used strengthening techniques for reinforced concrete structures include the increase of existing cross-sections. The monolithic behaviour of the strengthened elements depends basically on the interface between the substrate and the new concrete layer. A complete numerical model cap
Numerical modeling of secondary side thermohydraulics of horizontal steam generator
Energy Technology Data Exchange (ETDEWEB)
Melikhov, V.I.; Melikhov, O.I.; Nigmatulin, B.I. [Research and Engineering Centre of LWR Nuclear Plants Safety, Moscow (Russian Federation)
1995-12-31
A mathematical model for the transient three-dimensional secondary side thermal hydraulics of the horizontal steam generator has been developed. The calculations of the steam generator PGV-1000 and PGV-4 nominal regimes and comparison of numerical and experimental results have been carried out. 7 refs.
Accounting for Errors in Model Analysis Theory: A Numerical Approach
Sommer, Steven R.; Lindell, Rebecca S.
2004-09-01
By studying the patterns of a group of individuals' responses to a series of multiple-choice questions, researchers can utilize Model Analysis Theory to create a probability distribution of mental models for a student population. The eigenanalysis of this distribution yields information about what mental models the students possess, as well as how consistently they utilize said mental models. Although the theory considers the probabilistic distribution to be fundamental, there exists opportunities for random errors to occur. In this paper we will discuss a numerical approach for mathematically accounting for these random errors. As an example of this methodology, analysis of data obtained from the Lunar Phases Concept Inventory will be presented. Limitations and applicability of this numerical approach will be discussed.
A comprehensive numerical model of wind-blown sand
Kok, Jasper F
2009-01-01
Wind-blown sand, or "saltation", ejects dust aerosols into the atmosphere, creates sand dunes, and erodes geological features. We present a comprehensive numerical model of steady-state saltation that, in contrast to most previous studies, can simulate saltation over mixed soils. Our model simulates the motion of saltating particles due to gravity, fluid drag, particle spin, fluid shear, and turbulence. Moreover, the model explicitly accounts for the retardation of the wind due to drag from saltating particles. We also developed a physically-based parameterization of the ejection of surface particles by impacting saltating particles which matches experimental results. Our numerical model is the first to reproduce measurements of the wind shear velocity at the impact threshold (i.e., the lowest shear velocity for which saltation is possible) and of the aerodynamic roughness length in saltation. It also correctly predicts a wide range of other saltation processes, including profiles of the wind speed and partic...
Assessing Accuracy of Waveform Models against Numerical Relativity Waveforms
Pürrer, Michael; LVC Collaboration
2016-03-01
We compare currently available phenomenological and effective-one-body inspiral-merger-ringdown models for gravitational waves (GW) emitted from coalescing black hole binaries against a set of numerical relativity waveforms from the SXS collaboration. Simplifications are used in the construction of some waveform models, such as restriction to spins aligned with the orbital angular momentum, no inclusion of higher harmonics in the GW radiation, no modeling of eccentricity and the use of effective parameters to describe spin precession. In contrast, NR waveforms provide us with a high fidelity representation of the ``true'' waveform modulo small numerical errors. To focus on systematics we inject NR waveforms into zero noise for early advanced LIGO detector sensitivity at a moderately optimistic signal-to-noise ratio. We discuss where in the parameter space the above modeling assumptions lead to noticeable biases in recovered parameters.
Numeral eddy current sensor modelling based on genetic neural network
Institute of Scientific and Technical Information of China (English)
Yu A-Long
2008-01-01
This paper presents a method used to the numeral eddy current sensor modelling based on the genetic neural network to settle its nonlinear problem. The principle and algorithms of genetic neural network are introduced. In this method, the nonlinear model parameters of the numeral eddy current sensor are optimized by genetic neural network (GNN) according to measurement data. So the method remains both the global searching ability of genetic algorithm and the good local searching ability of neural network. The nonlinear model has the advantages of strong robustness,on-line modelling and high precision.The maximum nonlinearity error can be reduced to 0.037% by using GNN.However, the maximum nonlinearity error is 0.075% using the least square method.
Interaction of tide and salinity barrier: Limitation of numerical model
Suphat Vongvisessomjai; Phairot Chatanantavet2; Patchanok Srivihok
2008-01-01
Nowadays, the study of interaction of the tide and the salinity barrier in an estuarine area is usually accomplished vianumerical modeling, due to the speed and convenience of modern computers. However, numerical models provide littleinsight with respect to the fundamental physical mechanisms involved. In this study, it is found that all existing numericalmodels work satisfactorily when the barrier is located at some distance far from upstream and downstream boundary conditions.Results are co...
Numerical Detection of Ergodicity Breaking in a Glass Model
Sasaki, Munetaka; Hukushima, Koji
2016-07-01
We present a numerical method of directly detecting ergodicity breaking in glassy systems. To examine the validity of the proposed method, we applied it to the Biroli-Mézard glass model on a regular random graph. The obtained results clearly indicate that the model exhibits a dynamical transition with ergodicity breaking at an occupation density, that is consistent with the prediction obtained by the cavity method. The present method is applicable to glassy systems in finite dimensions.
Climate system model, numerical simulation and climate predictability
Institute of Scientific and Technical Information of China (English)
2010-01-01
@@ Thanks to its work of past more than 20 years,a research team led by Prof.ZENG Qingcun and Prof.WANG Huijun from the CAS Institute of Atmospheric Physics (IAP) has scored innovative achievements in their studies of basic theory of climate dynamics,numerical model development,its related computational theory,and the dynamical climate prediction using the climate system models.Their work received a second prize of the National Award for Natural Sciences in 2005.
Numerical optimisation for model evaluation in combustion kinetics
Fischer, Marc; Jiang, Xi
2015-01-01
Numerical optimisation related to the estimation of kinetic parameters and model evaluation is playing an increasing role in combustion as well as in other areas of applied energy research. The present work aims at presenting the current probability-based approaches along applications to real problems of combustion chemical kinetics. The main methods related to model and parameter evaluation have been explicated. An in-house program for the systematic adjustment of kinetic parameters to exper...
Numerical modeling of oil spills in continental and estuarine waters
International Nuclear Information System (INIS)
The application of the European Water Framework Directive on water quality for human consumption and industrial activities creates a need for water quality assessment and monitoring systems. The MIGR'HYCAR research project (http://www.migrhycar.com) was initiated to provide decisional tools for risks connected to oil spills in continental waters (rivers, lakes and estuaries), which represent more than 50% of accidental spills in France. Within the framework of this project, a new numerical oil spill model has been developed, as part of the TELEMAC hydro-informatics system (http://www.opentelemac.org), by combining Lagrangian and Eulerian methods. The Lagrangian model describes the transport of an oil spill near the free surface. The oil spill model enables to simulate the main processes driving oil plumes: advection, diffusion, oil beaching, oil re-floating, evaporation, dissolution, spreading and volatilization. Though generally considered as a minor process, dissolution is important from the point of view of toxicity. To model dissolved oil in water, an Eulerian advection-diffusion model is used. The fraction of dissolved oil is represented by a passive tracer. This approach is able to follow dissolved hydrocarbons in the water column. Laboratory experiments were conducted to characterise the numerous kinetics of the processes listed above. In addition, meso-scale dynamic experiments in artificial channels and test cases derived from the literature are used to validate the numerical model. (author)
Numerical modelling of air movement in road tunnels
International Nuclear Information System (INIS)
The objective of the Mechanical Ventilation Systems (MVS) in highway tunnels is to provide tunnel patrons with a reasonable degree of comfort during normal operation and to assist in keeping tunnels safe during emergencies. Temperature, humidity, and air velocity are among the parameters that determine the tunnel environment and indicate the level of MVS performance. To investigate the performance of the current emergency ventilation strategies for an existing tunnel system in the event of a fire, a research project is being conducted at the National Research Council of Canada. The primary objectives of the study are: a) to assess and validate the ability of in-place emergency ventilation strategies to control smoke spread and minimize the impact of smoke on tunnel users; and b) to recommend guidelines for improving ventilation operation to maximize intervention effectiveness. This will allow future development of an intelligent ventilation system based on a pre-established scenario of ventilation activated using automatic fire detection. The research study includes two phases, numerical and experimental phases. The numerical phase will use a CFD model (Solvent) to study smoke ventilation in the tunnel. The experimental phase will be used to calibrate and validate the CFD model and to establish the boundary conditions for the numerical model. Solvent was used to model a ventilation scenario using existing data. The current paper presents the initial efforts to validate the CFD model against onsite flow measurements conducted in the tunnel. The CFD model included aerodynamically significant physical features of the tunnel. (author)
Numerical modelling of solidification process using interval boundary element method
Directory of Open Access Journals (Sweden)
A. Piasecka Belkhayat
2008-12-01
Full Text Available In this paper an application of the interval boundary element method for solving problems with interval thermal parameters and interval source function in a system casting-mould is presented. The task is treated as a boundary-initial problem in which the crystallization model proposed by Mehl-Johnson-Avrami-Kolmogorov has been applied. The numerical solution of the problem discussed has been obtained on the basis of the interval boundary element method (IBEM. The interval Gauss elimination method with the decomposition procedure has been applied to solve the obtained interval system of equations. In the final part of the paper, results of numerical computations are shown.
Modelling of multidimensional quantum systems by the numerical functional integration
Energy Technology Data Exchange (ETDEWEB)
Lobanov, Yu.Yu.; Zhidkov, E.P. (Joint Inst. for Nuclear Research, Dubna (USSR)); Shahbagian, R.R. (Yerevan Physics Inst., Erevan (USSR))
1990-01-01
The employment of the numerical functional integration for the description of multidimensional systems in quantum and statistical physics is considered. For the multiple functional integrals with respect to Gaussian measures in the full separable metric spaces the new approximation formulas exact on a class of polynomial functionals of a given summary degree are constructed. The use of the formulas is demonstrated on example of computation of the Green function and the ground state energy in multidimensional Calogero model. The comparison of numerical results with the data obtained by the other authors which used the Monte Carlo method combined with iterative algorithms indicates that our formulas provide the higher efficiency of computations.
Numerical modeling and simulation of flow through porous fabric surface
Gao, Zheng; Li, Xiaolin
We designed a numerical scheme to model the permeability of the fabric surface in an incompressible fluid by coupling the projection method with the Ghost Fluid Method in the front tracking framework. The pressure jump condition is obtained by adding a source term to the Poisson's equation in the projection step without modifications on its coefficients. The numerical results suggest that this approach has the ability to reproduce the relationship between pressure drop and relative velocity observed in the experiments. We use this algorithm to study the effects of porosity on the drag force and stability of parachutes during its inflation and deceleration.
Numerical and experimental modelling of the radial compressor stage
Syka, Tomáš; Matas, Richard; LuÅáček, Ondřej
2016-06-01
This article deals with the description of the numerical and experimental model of the new compressor stage designed for process centrifugal compressors. It's the first member of the new stages family developed to achieve the state of the art thermodynamic parameters. This stage (named RTK01) is designed for high flow coefficient with 3D shaped impeller blades. Some interesting findings were gained during its development. The article is focused mainly on some interesting aspects of the development methodology and numerical simulations improvement, not on the specific stage properties. Conditions and experimental equipment, measured results and their comparison with ANSYS CFX and NUMECA FINE/Turbo CFD simulations are described.
Numerical Modelling of Electric Conductance of a thin Sheet
Directory of Open Access Journals (Sweden)
Jaroslav Franek
2006-01-01
Full Text Available In this paper the numeric modelling of total resistance of a thin sheet, with local conductivity in randomlydistributed grains higher then is that of the basic matrix, is presented. The 2D model is formed by a structure of longitudinaland transversal conductors interconnected in nodes of a square net. In all nodes, using iteration procedure, the potential isdetermined from which the conductance of sheet is computed between two touching electrodes. The described model can beused to imitate the behaviour of heterogeneous thin conducting sheets prepared by different techniques. The model wasverified in some cases where the net resistance is well known from the theory.
Validated numerical simulation model of a dielectric elastomer generator
Foerster, Florentine; Moessinger, Holger; Schlaak, Helmut F.
2013-04-01
Dielectric elastomer generators (DEG) produce electrical energy by converting mechanical into electrical energy. Efficient operation requires homogeneous deformation of each single layer. However, by different internal and external influences like supports or the shape of a DEG the deformation will be inhomogeneous and hence negatively affect the amount of the generated electrical energy. Optimization of the deformation behavior leads to improved efficiency of the DEG and consequently to higher energy gain. In this work a numerical simulation model of a multilayer dielectric elastomer generator is developed using the FEM software ANSYS. The analyzed multilayer DEG consists of 49 active dielectric layers with layer thicknesses of 50 μm. The elastomer is silicone (PDMS) while the compliant electrodes are made of graphite powder. In the simulation the real material parameters of the PDMS and the graphite electrodes need to be included. Therefore, the mechanical and electrical material parameters of the PDMS are determined by experimental investigations of test samples while the electrode parameters are determined by numerical simulations of test samples. The numerical simulation of the DEG is carried out as coupled electro-mechanical simulation for the constant voltage energy harvesting cycle. Finally, the derived numerical simulation model is validated by comparison with analytical calculations and further simulated DEG configurations. The comparison of the determined results show good accordance with regard to the deformation of the DEG. Based on the validated model it is now possible to optimize the DEG layout for improved deformation behavior with further simulations.
Numerical weather prediction model tuning via ensemble prediction system
Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.
2011-12-01
This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.
The Numerical Scheme Development of a Simplified Frozen Soil Model
Institute of Scientific and Technical Information of China (English)
LI Qian; SUN Shufen; DAI Qiudan
2009-01-01
In almost all frozen soil models used currently,three variables of temperature,ice content and moisture content are used as prognostic variables and the rate term,accounting for the contribution of the phase change between water and ice,is shown explicitly in both the energy and mass balance equations.The models must be solved by a numerical method with an iterative process,and the rate term of the phase change needs to be pre-estimated at the beginning in each iteration step.Since the rate term of the phase change in the energy equation is closely related to the release or absorption of the great amount of fusion heat,a small error in the rate term estimation will introduce greater error in the energy balance,which will amplify the error in the temperature calculation and in turn,cause problems for the numerical solution convergence.In this work,in order to first reduce the trouble,the methodology of the variable transformation is applied to a simplified frozen soil model used currently,which leads to new frozen soil scheme used in this work.In the new scheme,the enthalpy and the total water equivalent are used as predictive variables in the governing equations to replace temperature,volumetric soil moisture and ice content used in many current models.By doing so,the rate terms of the phase change are not shown explicitly in both the mass and energy equations and its pre-estimation is avoided.Secondly,in order to solve this new scheme more functionally,the development of the numerical scheme to the new scheme is described and a numerical algorithm appropriate to the numerical scheme is developed.In order to evaluate the new scheme of the frozen soil model and its relevant algorithm,a series of model evaluations are conducted by comparing numerical results from the new model scheme with three observational data sets.The comparisons show that the results from the model are in good agreement with these data sets in both the change trend of variables and their
Lecture notes on 2-dimensional defect TQFT
Carqueville, Nils
2016-01-01
These notes offer an introduction to the functorial and algebraic description of 2-dimensional topological quantum field theories `with defects', assuming only superficial familiarity with closed TQFTs in terms of commutative Frobenius algebras. The generalisation of this relation is a construction of pivotal 2-categories from defect TQFTs. We review this construction in detail, flanked by a range of examples. Furthermore we explain how open/closed TQFTs are equivalent to Calabi-Yau categories and the Cardy condition, and how to extract such data from pivotal 2-categories.
Partial differential equations modeling, analysis and numerical approximation
Le Dret, Hervé
2016-01-01
This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems. .
Numerical modeling of core-collapse supernovae and compact objects
Sumiyoshi, K
2012-01-01
Massive stars (M> 10Msun) end their lives with spectacular explosions due to gravitational collapse. The collapse turns the stars into compact objects such as neutron stars and black holes with the ejection of cosmic rays and heavy elements. Despite the importance of these astrophysical events, the mechanism of supernova explosions has been an unsolved issue in astrophysics. This is because clarification of the supernova dynamics requires the full knowledge of nuclear and neutrino physics at extreme conditions, and large-scale numerical simulations of neutrino radiation hydrodynamics in multi-dimensions. This article is a brief overview of the understanding (with difficulty) of the supernova mechanism through the recent advance of numerical modeling at supercomputing facilities. Numerical studies with the progress of nuclear physics are applied to follow the evolution of compact objects with neutrino emissions in order to reveal the birth of pulsars/black holes from the massive stars.
Numerical Modeling and Experimental Testing of a Wave Energy Converter
DEFF Research Database (Denmark)
Zurkinden, Andrew Stephen; Kramer, Morten; Ferri, Francesco;
The objective of this document is to summarize the outcome of the research which has been carried out during the period Mai 2011 until June 2012 i.e. during the first year of the PhD study. The work has been done in collaboration with the co-authors. The aim of the project was primarily to provid......) validate the numerical model and b) preform stochastic analysis. The latter technique is introduced in order to optimize the control parameters of the power take off system....... numerical values for comparison with the experimental test results which were carried out in the same time. It is for this reason why Chapter 4 does consist exclusively of numerical values. Experimental values and measured time series of wave elevations have been used throughout the report in order to a...
Forecasts of time averages with a numerical weather prediction model
Roads, J. O.
1986-01-01
Forecasts of time averages of 1-10 days in duration by an operational numerical weather prediction model are documented for the global 500 mb height field in spectral space. Error growth in very idealized models is described in order to anticipate various features of these forecasts and in order to anticipate what the results might be if forecasts longer than 10 days were carried out by present day numerical weather prediction models. The data set for this study is described, and the equilibrium spectra and error spectra are documented; then, the total error is documented. It is shown how forecasts can immediately be improved by removing the systematic error, by using statistical filters, and by ignoring forecasts beyond about a week. Temporal variations in the error field are also documented.
Numerical modelling of flow and transport in rough fractures
Institute of Scientific and Technical Information of China (English)
Scott Briggs; Bryan W. Karney; Brent E. Sleep
2014-01-01
Simulation of flow and transport through rough walled rock fractures is investigated using the lattice Boltzmann method (LBM) and random walk (RW), respectively. The numerical implementation is developed and validated on general purpose graphic processing units (GPGPUs). Both the LBM and RW method are well suited to parallel implementation on GPGPUs because they require only next-neighbour communication and thus can reduce expenses. The LBM model is an order of magnitude faster on GPGPUs than published results for LBM simulations run on modern CPUs. The fluid model is verified for parallel plate flow, backward facing step and single fracture flow;and the RW model is verified for point-source diffusion, Taylor-Aris dispersion and breakthrough behaviour in a single fracture. Both algorithms place limitations on the discrete displacement of fluid or particle transport per time step to minimise the numerical error that must be considered during implementation.
Customer requirement modeling and mapping of numerical control machine
Directory of Open Access Journals (Sweden)
Zhongqi Sheng
2015-10-01
Full Text Available In order to better obtain information about customer requirement and develop products meeting customer requirement, it is necessary to systematically analyze and handle the customer requirement. This article uses the product service system of numerical control machine as research objective and studies the customer requirement modeling and mapping oriented toward configuration design. It introduces the conception of requirement unit, expounds the customer requirement decomposition rules, and establishes customer requirement model; it builds the house of quality using quality function deployment and confirms the weight of technical feature of product and service; it explores the relevance rules between data using rough set theory, establishes rule database, and solves the target value of technical feature of product. Using economical turning center series numerical control machine as an example, it verifies the rationality of proposed customer requirement model.
Oscillation threshold of a clarinet model: a numerical continuation approach
Karkar, Sami; Cochelin, Bruno; 10.1121/1.3651231
2012-01-01
This paper focuses on the oscillation threshold of single reed instruments. Several characteristics such as blowing pressure at threshold, regime selection, and playing frequency are known to change radically when taking into account the reed dynamics and the flow induced by the reed motion. Previous works have shown interesting tendencies, using analytical expressions with simplified models. In the present study, a more elaborated physical model is considered. The influence of several parameters, depending on the reed properties, the design of the instrument or the control operated by the player, are studied. Previous results on the influence of the reed resonance frequency are confirmed. New results concerning the simultaneous influence of two model parameters on oscillation threshold, regime selection and playing frequency are presented and discussed. The authors use a numerical continuation approach. Numerical continuation consists in following a given solution of a set of equations when a parameter varie...
NUMERICAL VALIDATION OF COMPUTATIONAL MODEL FOR SHEET CAVITATING FLOWS
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
A computational modeling for the sheet cavitating flows is presented. The cavitation model is implemented in a viscous Navier-Stokes solver. The cavity interface and shape are determined using an iterative procedure matching the cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient on the wall, is taken into account in updating the cavity shape iteratively. Numerical computations are performed for the sheet cavitating flows at a range of cavitation numbers across the hemispheric headform/cylinder body with different grid numbers. The influence of the relaxation factor in the cavity shape updating scheme for the algorithm accuracy and reliability is conducted through comparison with other two cavity shape updating numerical schemes.The results obtained are reasonable and the iterative procedure of cavity shape updating is quite stable, which demonstrate the superiority of the proposed cavitation model and algorithms.
Numerical Modeling of Plasmas in which Nanoparticles Nucleate and Grow
Agarwal, Pulkit
Dusty plasmas refer to a broad category of plasmas. Plasmas such as argon-silane plasmas in which particles nucleate and grow are widely used in semiconductor processing and nanoparticle manufacturing. In such dusty plasmas, the plasma and the dust particles are strongly coupled to each other. This means that the presence of dust particles significantly affects the plasma properties and vice versa. Therefore such plasmas are highly complex and they involve several interesting phenomena like nucleation, growth, coagulation, charging and transport. Dusty plasma afterglow is equally complex and important. Especially, residual charge on dust particles carries special significance in several industrial and laboratory situations and it has not been well understood. A 1D numerical model was developed of a low-pressure capacitively-coupled plasma in which nanoparticles nucleate and grow. Polydispersity of particle size distributions can be important in such plasmas. Sectional method, which is well known in aerosol literature, was used to model the evolving particle size and charge distribution. The numerical model is transient and one-dimensional and self consistently accounts for nucleation, growth, coagulation, charging and transport of dust particles and their effect on plasma properties. Nucleation and surface growth rates were treated as input parameters. Results were presented in terms of particle size and charge distribution with an emphasis on importance of polydispersity in particle growth and dynamics. Results of numerical model were compared with experimental measurements of light scattering and light emission from plasma. Reasonable qualitative agreement was found with some discrepancies. Pulsed dusty plasma can be important for controlling particle production and/or unwanted particle deposition. In this case, it is important to understand the behavior of the particle cloud during the afterglow following plasma turn-off. Numerical model was modified to self
Handling geophysical flows: Numerical modelling using Graphical Processing Units
Garcia-Navarro, Pilar; Lacasta, Asier; Juez, Carmelo; Morales-Hernandez, Mario
2016-04-01
Computational tools may help engineers in the assessment of sediment transport during the decision-making processes. The main requirements are that the numerical results have to be accurate and simulation models must be fast. The present work is based on the 2D shallow water equations in combination with the 2D Exner equation [1]. The resulting numerical model accuracy was already discussed in previous work. Regarding the speed of the computation, the Exner equation slows down the already costly 2D shallow water model as the number of variables to solve is increased and the numerical stability is more restrictive. On the other hand, the movement of poorly sorted material over steep areas constitutes a hazardous environmental problem. Computational tools help in the predictions of such landslides [2]. In order to overcome this problem, this work proposes the use of Graphical Processing Units (GPUs) for decreasing significantly the simulation time [3, 4]. The numerical scheme implemented in GPU is based on a finite volume scheme. The mathematical model and the numerical implementation are compared against experimental and field data. In addition, the computational times obtained with the Graphical Hardware technology are compared against Single-Core (sequential) and Multi-Core (parallel) CPU implementations. References [Juez et al.(2014)] Juez, C., Murillo, J., & Garca-Navarro, P. (2014) A 2D weakly-coupled and efficient numerical model for transient shallow flow and movable bed. Advances in Water Resources. 71 93-109. [Juez et al.(2013)] Juez, C., Murillo, J., & Garca-Navarro, P. (2013) . 2D simulation of granular flow over irregular steep slopes using global and local coordinates. Journal of Computational Physics. 225 166-204. [Lacasta et al.(2014)] Lacasta, A., Morales-Hernndez, M., Murillo, J., & Garca-Navarro, P. (2014) An optimized GPU implementation of a 2D free surface simulation model on unstructured meshes Advances in Engineering Software. 78 1-15. [Lacasta
A Mechanistic Stochastic Ricker Model: Analytical and Numerical Investigations
Gadrich, Tamar; Katriel, Guy
The Ricker model is one of the simplest and most widely-used ecological models displaying complex nonlinear dynamics. We study a discrete-time population model, which is derived from simple assumptions concerning individual organisms’ behavior, using the “site-based” approach, developed by Brännström, Broomhead, Johansson and Sumpter. In the large-population limit the model converges to the Ricker model, and can thus be considered a mechanistic version of the Ricker model, derived from basic ecological principles, and taking into account the demographic stochasticity inherent to finite populations. We employ several analytical and precise numerical methods to study the model, showing how each approach contributes to understanding the model’s dynamics. Expressing the model as a Markov chain, we employ the concept of quasi-stationary distributions, which are computed numerically, and used to examine the interaction between complex deterministic dynamics and demographic stochasticity, as well as to calculate mean times to extinction. A Gaussian Markov chain approximation is used to obtain quantitative asymptotic approximations for the size of fluctuations of the stochastic model’s time series around the deterministic trajectory, and for the correlations between successive fluctuations. Results of these approximations are compared to results obtained from quasi-stationary distributions and from direct simulations, and are shown to be in good agreement.
Numerical methods for modeling photonic-crystal VCSELs
DEFF Research Database (Denmark)
Dems, Maciej; Chung, Il-Sug; Nyakas, Peter;
2010-01-01
We show comparison of four different numerical methods for simulating Photonic-Crystal (PC) VCSELs. We present the theoretical basis behind each method and analyze the differences by studying a benchmark VCSEL structure, where the PC structure penetrates all VCSEL layers, the entire top-mirror DBR......, a fraction of the top-mirror DBR or just the VCSEL cavity. The different models are evaluated by comparing the predicted resonance wavelengths and threshold gains for different hole diameters and pitches of the PC. The agreement between the models is relatively good, except for one model, which corresponds...
Modeling and Direct Numerical Simulation of Ternary Fluid Flows
Kim, Jun-Seok; Lowengrub, John; Longmire, Ellen
2001-06-01
In this talk, we will present a physically-based model of flows involving three liquid components. The components may exhibit preferential miscibility with one another. The flows we consider are characterized by the presence of interfaces separating immiscible flow components with pinchoff and reconnection of interfaces being important features of the flow. In our model, these topological transitions are handled smoothly without explicit interface reconstruction. In addition, we model the diffusion of miscible components in the bulk and across the interfaces. To illustrate the method, we present numerical simulations of remediation of a contaminant-laden fluid using liquid/liquid extraction.
Numerical Modeling of Unsteady Thermofluid Dynamics in Cryogenic Systems
Majumdar, Alok
2003-01-01
A finite volume based network analysis procedure has been applied to model unsteady flow without and with heat transfer. Liquid has been modeled as compressible fluid where the compressibility factor is computed from the equation of state for a real fluid. The modeling approach recognizes that the pressure oscillation is linked with the variation of the compressibility factor; therefore, the speed of sound does not explicitly appear in the governing equations. The numerical results of chilldown process also suggest that the flow and heat transfer are strongly coupled. This is evident by observing that the mass flow rate during 90-second chilldown process increases by factor of ten.
Numerical analysis and geotechnical assessment of mine scale model
Institute of Scientific and Technical Information of China (English)
Khanal Manoj; Adhikary Deepak; Balusu Rao
2012-01-01
Various numerical methods are available to model,simulate,analyse and interpret the results; however a major task is to select a reliable and intended tool to perform a realistic assessment of any problem.For a model to be a representative of the realistic mining scenario,a verified tool must be chosen to perform an assessment of mine roof support requirement and address the geotechnical risks associated with longwall mining.The dependable tools provide a safe working environment,increased production,efficient management of resources and reduce environmental impacts of mining.Although various methods,for example,analytical,experimental and empirical are being adopted in mining,in recent days numerical tools are becoming popular due to the advancement in computer hardware and numerical methods.Empirical rules based on past experiences do provide a general guide,however due to the heterogeneous nature of mine geology (i.e.,none of the mine sites are identical),numerical simulations of mine site specific conditions would lend better insights into some underlying issues.The paper highlights the use of a continuum mechanics based tool in coal mining with a mine scale model.The continuum modelling can provide close to accurate stress fields and deformation.The paper describes the use of existing mine data to calibrate and validate the model parameters,which then are used to assess geotechnical issues related with installing a new high capacity longwall mine at the mine site.A variety of parameters,for example,chock convergences,caveability of overlying sandstones,abutment and vertical stresses have been estimated.
Numerical Modeling of Fracture Propagation in Naturally Fractured Formations
Wang, W.; Prodanovic, M.; Olson, J. E.; Schultz, R.
2015-12-01
Hydraulic fracturing consists of injecting fluid at high pressure and high flowrate to the wellbore for the purpose of enhancing production by generating a complex fracture network. Both tensile failure and shear failure occur during the hydraulic fracturing treatment. The shear event can be caused by slip on existing weak planes such as faults or natural fractures. From core observation, partially cemented and fully cemented opening mode natural fractures, often with considerable thickness are widely present. Hydraulic fractures can propagate either within the natural fracture (tensile failure) or along the interface between the natural fracture and the rock matrix (tensile/shear failure), depending on the relative strength of cement and rock matrix materials, the bonding strength of interface, as well as the presence of any heterogeneities. In this study, we evaluate the fracture propagation both experimentally and numerically. We embed one or multiple inclusions of different mechanical properties within synthetic hydrostone samples in order to mimic cemented natural fractures and rock. A semi-circular bending test is performed for each set of properties. A finite element model built with ABAQUS is used to mimic the semi-circular bending test and study the fracture propagation path, as well as the matrix-inclusion bonding interface status. Mechanical properties required for the numerical model are measured experimentally. The results indicate that the match between experiment and modeling fracture path are extremely sensitive to the chosen interface (bonding) model and related parameters. The semi-circular bending test is dry and easily conducted, providing a good platform for validating numerical approaches. A validated numerical model will enable us to add pressurized fluid within the crack and simulate hydraulic fracture-natural fracture interaction in the reservoir conditions, ultimately providing insights into the extent of the fracture network.
Comparison between analytical and numerical solution of mathematical drying model
Shahari, N.; Rasmani, K.; Jamil, N.
2016-02-01
Drying is often related to the food industry as a process of shifting heat and mass inside food, which helps in preserving food. Previous research using a mass transfer equation showed that the results were mostly concerned with the comparison between the simulation model and the experimental data. In this paper, the finite difference method was used to solve a mass equation during drying using different kinds of boundary condition, which are equilibrium and convective boundary conditions. The results of these two models provide a comparison between the analytical and the numerical solution. The result shows a close match between the two solution curves. It is concluded that the two proposed models produce an accurate solution to describe the moisture distribution content during the drying process. This analysis indicates that we have confidence in the behaviour of moisture in the numerical simulation. This result demonstrated that a combined analytical and numerical approach prove that the system is behaving physically. Based on this assumption, the model of mass transfer was extended to include the temperature transfer, and the result shows a similar trend to those presented in the simpler case.
Temperature sensitivity of a numerical pollen forecast model
Scheifinger, Helfried; Meran, Ingrid; Szabo, Barbara; Gallaun, Heinz; Natali, Stefano; Mantovani, Simone
2016-04-01
Allergic rhinitis has become a global health problem especially affecting children and adolescence. Timely and reliable warning before an increase of the atmospheric pollen concentration means a substantial support for physicians and allergy suffers. Recently developed numerical pollen forecast models have become means to support the pollen forecast service, which however still require refinement. One of the problem areas concerns the correct timing of the beginning and end of the flowering period of the species under consideration, which is identical with the period of possible pollen emission. Both are governed essentially by the temperature accumulated before the entry of flowering and during flowering. Phenological models are sensitive to a bias of the temperature. A mean bias of -1°C of the input temperature can shift the entry date of a phenological phase for about a week into the future. A bias of such an order of magnitude is still possible in case of numerical weather forecast models. If the assimilation of additional temperature information (e.g. ground measurements as well as satellite-retrieved air / surface temperature fields) is able to reduce such systematic temperature deviations, the precision of the timing of phenological entry dates might be enhanced. With a number of sensitivity experiments the effect of a possible temperature bias on the modelled phenology and the pollen concentration in the atmosphere is determined. The actual bias of the ECMWF IFS 2 m temperature will also be calculated and its effect on the numerical pollen forecast procedure presented.
Performance benchmarks for a next generation numerical dynamo model
Matsui, Hiroaki; Heien, Eric; Aubert, Julien; Aurnou, Jonathan M.; Avery, Margaret; Brown, Ben; Buffett, Bruce A.; Busse, Friedrich; Christensen, Ulrich R.; Davies, Christopher J.; Featherstone, Nicholas; Gastine, Thomas; Glatzmaier, Gary A.; Gubbins, David; Guermond, Jean-Luc; Hayashi, Yoshi-Yuki; Hollerbach, Rainer; Hwang, Lorraine J.; Jackson, Andrew; Jones, Chris A.; Jiang, Weiyuan; Kellogg, Louise H.; Kuang, Weijia; Landeau, Maylis; Marti, Philippe; Olson, Peter; Ribeiro, Adolfo; Sasaki, Youhei; Schaeffer, Nathanaël.; Simitev, Radostin D.; Sheyko, Andrey; Silva, Luis; Stanley, Sabine; Takahashi, Futoshi; Takehiro, Shin-ichi; Wicht, Johannes; Willis, Ashley P.
2016-05-01
Numerical simulations of the geodynamo have successfully represented many observable characteristics of the geomagnetic field, yielding insight into the fundamental processes that generate magnetic fields in the Earth's core. Because of limited spatial resolution, however, the diffusivities in numerical dynamo models are much larger than those in the Earth's core, and consequently, questions remain about how realistic these models are. The typical strategy used to address this issue has been to continue to increase the resolution of these quasi-laminar models with increasing computational resources, thus pushing them toward more realistic parameter regimes. We assess which methods are most promising for the next generation of supercomputers, which will offer access to O(106) processor cores for large problems. Here we report performance and accuracy benchmarks from 15 dynamo codes that employ a range of numerical and parallelization methods. Computational performance is assessed on the basis of weak and strong scaling behavior up to 16,384 processor cores. Extrapolations of our weak-scaling results indicate that dynamo codes that employ two-dimensional or three-dimensional domain decompositions can perform efficiently on up to ˜106 processor cores, paving the way for more realistic simulations in the next model generation.
Numerical modeling of seasonally freezing ground and permafrost
Nicolsky, Dmitry J.
2007-12-01
This thesis represents a collection of papers on numerical modeling of permafrost and seasonally freezing ground dynamics. An important problem in numerical modeling of temperature dynamics in permafrost and seasonally freezing ground is related to parametrization of already existing models. In this thesis, a variation data assimilation technique is presented to find soil properties by minimizing the discrepancy between in-situ measured temperatures and those computed by the models. The iterative minimization starts from an initial approximation of the soil properties that are found by solving a sequence of simple subproblems. In order to compute the discrepancy, the temperature dynamics is simulated by a new implementation of the finite element method applied to the heat equation with phase change. Despite simplifications in soil physics, the presented technique was successfully applied to recover soil properties, such as thermal conductivity, soil porosity, and the unfrozen water content, at several sites in Alaska. The recovered properties are used in discussion on soil freezing/thawing and permafrost dynamics in other parts of this thesis. Another part of this thesis concerns development of a numerical thermo-mechanical model of seasonal soil freezing on the lateral scale of several meters. The presented model explains observed differential frost heave occurring in non-sorted circle ecosystems north of the Brooks Range in the Alaskan tundra. The model takes into account conservation principles for energy, linear momentum and mass of three constituents: liquid water, ice and solid particles. The conservation principles are reduced to a computationally convenient system of coupled equations for temperature, liquid water pressure, porosity, and the velocity of soil particles in a three-dimensional domain with cylindrical symmetry. Despite a simplified rheology, the model simulates the ground surface motion, temperature, and water dynamics in soil and explains
Numerical models for the phenomenological study of flameless combustion
Directory of Open Access Journals (Sweden)
Bernardo Argemiro Herrera Múnera
2010-07-01
Full Text Available Flameless combustion is a technique which offers environmental advantages such as lower than 100 ppm NOx and CO emis- sions due to below 200 K temperature gradients. Flameless combustion also supplies higher than 70% energy efficiency. Knowledge of the phenomena in this combustion regime has been facilitated by using numerical simulation. This paper reviewed the specialised literature about the most commonly used turbulence, combustion, heat transfer and NOx formation models in modelling flameless combustion with CFD codes. The review concluded that the k-ε standard model is the most used for turbu- lence. Finite rate/eddy dissipation with modified constants and eddy dissipation concept models are suitable for combustion reac- tions, discrete ordinates and weighted sum gray gas (WSGG models are used for radiation and thermal, prompt and N2O inter- mediate models are used for NOx.
Mathematical analysis and numerical simulation of a model of morphogenesis.
Muñoz, Ana I; Tello, José Ignacio
2011-10-01
We consider a simple mathematical model of distribution of morphogens (signaling molecules responsible for the differentiation of cells and the creation of tissue patterns). The mathematical model is a particular case of the model proposed by Lander, Nie and Wan in 2006 and similar to the model presented in Lander, Nie, Vargas and Wan 2005. The model consists of a system of three equations: a PDE of parabolic type with dynamical boundary conditions modelling the distribution of free morphogens and two ODEs describing the evolution of bound and free receptors. Three biological processes are taken into account: diffusion, degradation and reversible binding. We study the stationary solutions and the evolution problem. Numerical simulations show the behavior of the solution depending on the values of the parameters.
Integrating Numerical Computation into the Modeling Instruction Curriculum
Caballero, Marcos D; Aiken, John M; Douglas, Scott S; Scanlon, Erin M; Thoms, Brian; Schatz, Michael F
2012-01-01
We describe a way to introduce physics high school students with no background in programming to computational problem-solving experiences. Our approach builds on the great strides made by the Modeling Instruction reform curriculum. This approach emphasizes the practices of "Developing and using models" and "Computational thinking" highlighted by the NRC K-12 science standards framework. We taught 9th-grade students in a Modeling-Instruction-based physics course to construct computational models using the VPython programming environment. Numerical computation within the Modeling Instruction curriculum provides coherence among the curriculum's different force and motion models, links the various representations which the curriculum employs, and extends the curriculum to include real-world problems that are inaccessible to a purely analytic approach.
New Trends in Model Coupling Theory, Numerics and Applications
Energy Technology Data Exchange (ETDEWEB)
Coquel, F. [CMAP Ecole Polytech, CNRS, UMR 7641, F-91128 Palaiseau (France); Godlewski, E. [UPMC Univ Paris 6, UMR 7598, Lab Jacques Louis Lions, F-75005 Paris (France); Herard, J. M. [EDF RD, F-78400 Chatou (France); Segre, J. [CEA Saclay, DEN, DM2S, F-91191 Gif Sur Yvette (France)
2010-07-01
This special issue comprises selected papers from the workshop New Trends in Model Coupling, Theory, Numerics and Applications (NTMC'09) which took place in Paris, September 2 - 4, 2009. The research of optimal technological solutions in a large amount of industrial systems requires to perform numerical simulations of complex phenomena which are often characterized by the coupling of models related to various space and/or time scales. Thus, the so-called multi-scale modelling has been a thriving scientific activity which connects applied mathematics and other disciplines such as physics, chemistry, biology or even social sciences. To illustrate the variety of fields concerned by the natural occurrence of model coupling we may quote: meteorology where it is required to take into account several turbulence scales or the interaction between oceans and atmosphere, but also regional models in a global description, solid mechanics where a thorough understanding of complex phenomena such as propagation of cracks needs to couple various models from the atomistic level to the macroscopic level; plasma physics for fusion energy for instance where dense plasmas and collisionless plasma coexist; multiphase fluid dynamics when several types of flow corresponding to several types of models are present simultaneously in complex circuits; social behaviour analysis with interaction between individual actions and collective behaviour. (authors)
NUMERICAL MODELING OF SUSPENDED SEDIMENT TRANSPORT IN CHANNEL BENDS
Institute of Scientific and Technical Information of China (English)
HUANG Sui-liang; JIA Y. F.; WANG Sam S. Y.
2006-01-01
An algorithm to compute three-dimensional sediment transport effect was proposed in this paper to enhance the capability of depth-averaged numerical models. This algorithm took into account of non-uniform distributions of flow velocities and suspended sediment concentrations along water depth, it significantly enhanced the applicability of 2D models in simulating open channel flows, especially in channel bends. Preliminary numerical experiments in a U-shaped and a sine-generated experimental channel indicate that the proposed method performs quite well in predicting the change of bed-deformation in channel bends due to suspended sediment transport. This method provides an effective alternative for the simulations of channel morphodynamic changes.
OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING
Directory of Open Access Journals (Sweden)
Soňa Benešová
2013-09-01
Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.
OPTIMIZATION OF HEATING OF GEAR WHEEL USING NUMERICAL MODELING
Directory of Open Access Journals (Sweden)
Sona Benesova
2013-05-01
Full Text Available Successful heat treating and carburizing of gear wheels for wind turbine gear boxes requires that plastic deformation in the wheel is minimized. Numerical modeling using the DEFORM software was aimed at exploring the effects of the base, on which the gear wheel rests during heating, on the heating process. Homogeneous heating was assumed. It was found that the base heats up more quickly than the workpiece. It is the consequence of the base's shape and volume. As a result, the base expands and slides against the wheel, predominantly at the first heating stage. Later on, it prevents the gear wheel from expanding, causing plastic deformation in the wheel. The findings were used for designing new heating schedules to minimize these undesirable interactions and to reduce the plastic deformation to a negligible magnitude. In addition, this paper presents an example of a practical use of numerical modeling in the DEFORM software.
Elements of Constitutive Modelling and Numerical Analysis of Frictional Soils
DEFF Research Database (Denmark)
Jakobsen, Kim Parsberg
on the stress level and is generally difficult to describe by constitutive models. Thus, under drained conditions considerable irrecoverable volumetric strain is developed as the mean effective stress or the shear stress is increased. In the tests it is observed that the sand skeleton initially contracts......This thesis deals with elements of elasto-plastic constitutive modelling and numerical analysis of frictional soils. The thesis is based on a number of scientific papers and reports in which central characteristics of soil behaviour and applied numerical techniques are considered. The development...... path followed. However, theoretical considerations imply that the characteristic state obtained at a constant mean normal effective stress is similar to a state, known as the state of phase transformation, observed under undrained conditions. Under undrained conditions the phase transformation occurs...
The Removal of Numerical Drift from Scientific Models
Directory of Open Access Journals (Sweden)
John Collins
2013-04-01
Full Text Available Computer programs often behave differently under different compilers or in different computingenvironments. Relative debugging is a collection of techniques by which these differences are analysed.Differences may arise because ofdifferent interpretations of errors in the code, because of bugs in thecompilers or because of numerical drift, and all of these were observed in the present study. Numericaldrift arises when small and acceptable differences in values computed by different systems areintegrated, so that the results drift apart. This is well understood and need not degrade the validity of theprogram results. Coding errors and compiler bugs may degrade the results and should be removed. Thispaper describes a technique for the comparison of two program runs which removes numerical drift andtherefore exposes coding and compiler errors. The procedure is highly automated and requires very littleintervention by the user. The technique is applied to the Weather Research and Forecasting model, themost widely used weather and climate modelling code
AEETES: A solar reflux receiver thermal performance numerical model
Hogan, R. E., Jr.
1991-12-01
Reflux solar receivers for dish-Stirling electric power generation systems are currently being investigated by several companies and laboratories. In support of these efforts, the AEETES thermal performance numerical model has been developed to predict thermal performance of pool-boiler and heat-pipe reflux receivers. The formulation of the AEETES numerical model, which is applicable to axisymmetric geometries with asymmetric incident fluxes, is presented in detail. Thermal efficiency predictions agree to within 4.1 percent with test data from on-sun tests of a pool-boiler reflux receiver. Predicted absorber and sidewall temperatures agree with thermocouple data to within 3.3. percent and 7.3 percent, respectively. The importance of accounting for the asymmetric incident fluxes is demonstrated in comparisons with predictions using azimuthally averaged variables. The predicted receiver heat losses are characterized in terms of convective, solar and infrared radiative, and conductive heat transfer mechanisms.
On Numerical Considerations for Modeling Reactive Astrophysical Shocks
Papatheodore, Thomas L
2013-01-01
Simulating detonations in astrophysical environments is often complicated by numerical approximations to shock structure. A common prescription to ensure correct detonation speeds and associated quantities is to prohibit burning inside the numerically broadened shock (Fryxell et al. 1989). We have performed a series of simulations to verify the efficacy of this approximation and to understand how resolution and dimensionality might affect its use. Our results show that, in one dimension, prohibiting burning in the shock is important wherever the carbon burning length is not resolved, in keeping with the results of Fryxell et al. (1989). In two dimensions, we find that the prohibition of shock burning effectively inhibits the development of cellular structure for all but the most highly-resolved cases. We discuss the possible impacts this outcome may have on sub-grid models and detonation propagation in models of Type Ia supernovae, including potential impacts on observables.
Numerical Modeling of a Ducted Rocket Combustor With Experimental Validation
Hewitt, Patrick
2008-01-01
The present work was conducted with the intent of developing a high-fidelity numerical model of a unique combustion flow problem combining multi-phase fuel injection with substantial momentum and temperature into a highly complex turbulent flow. This important problem is very different from typical and more widely known liquid fuel combustion problems and is found in practice in pulverized coal combustors and ducted rocket ramjets. As the ducted rocket engine cycle is only now finding wides...
Numerical modelling and analysis of friction contact for turbine blades
Afzal, Mohammad
2015-01-01
High cycle fatigue failure of turbine and compressor blades due to resonance in the operating frequency range is one of the main problems in the design of gas turbine engines. To suppress excessive vibrations in the blades and prevent high cycle fatigue, dry friction dampers are used by the engine manufacturers. However, due to the nonlinear nature of friction contact, analysis of such systems becomes complicated. This work focuses on the numerical modelling of friction contact and a 3D frict...
Numerical Models for the Study of Electromagnetic Shielding
Directory of Open Access Journals (Sweden)
POPA Monica
2012-10-01
Full Text Available The paper presents 2D and 3D models for the study of electromagnetic shielding of a coil. The magnetic fields are computed for defining the shielding effectiveness. Parametrized numerical studies were performed in order to established the influence of shield thickness and height on magnetic field in certain points located in the exterior of coil – shield setup and on induced power within the shield.
Numerical modelling of solidification process using interval boundary element method
A. Piasecka Belkhayat
2008-01-01
In this paper an application of the interval boundary element method for solving problems with interval thermal parameters and interval source function in a system casting-mould is presented. The task is treated as a boundary-initial problem in which the crystallization model proposed by Mehl-Johnson-Avrami-Kolmogorov has been applied. The numerical solution of the problem discussed has been obtained on the basis of the interval boundary element method (IBEM). The interval Gauss elimination m...
NUMERICAL MODELING OF HARDENING OF UNINTERRUPTEDLY-CASTED BRONZE CASTING
Directory of Open Access Journals (Sweden)
E. I. Marukovich
2009-01-01
Full Text Available The three-dimensional numerical model for calculation of thermal fields during solidification of continuously casted bronze casting is developed. Coefficients of heat transfer on borders of calculation areas on the basis of the solution of inverse heat transfer conduction problem are determined. The analysis of thermal fields, depending on loop variables of drawing and the sizes of not cooled zone of crystallizer is curried out.
Numerical models of rotating accretion flows around black holes
Igumenshchev, I V
1999-01-01
Numerical, two-dimensional, time-dependent hydrodynamical models of geometrically thick accretion discs around black holes are presented. Accretion flows with non-effective radiation cooling (ADAFs) can be both convectively stable or unstable depending on the value of the viscosity parameter \\alpha. The high viscosity flows (\\alpha~1) are stable and have a strong equatorial inflow and bipolar outflows. The low viscosity flows (\\alpha<0.1) are convectively unstable and this induces quasi-periodic variability.
APPLICATION OF NUMERICAL MODELLING TO BIOMASS GRATE FURNACES
Mehrabian, Ramin
2015-01-01
The direct combustion of the biomass is the most advanced and mature technology in the field of energetic biomass utilisation. The legislations on the amount of emitted pollutants and the plant efficiency of biomass combustion systems are continually being restricted. Therefore constant improvement of the plant efficiency and emission reduction is required Numerical modelling is gaining increasing importance for the development of biomass combustion technologies. In this paper an overview abo...
Numerical Modeling and Prediction of Bubbling Fluidized Beds
England, Jonas Andrew
2011-01-01
Numerical modeling and prediction techniques are used to determine pressure drop, minimum fluidization velocity and segregation for bubbling fluidized beds. The computational fluid dynamics (CFD) code Multiphase Flow with Interphase eXchange (MFIX) is used to study a two-stage reactor geometry with a binary mixture. MFIX is demonstrated to accurately predict pressure drop versus inlet gas velocity for binary mixtures. A new method is developed to predict the pressure drop versus inlet gas v...
Numerical modelling investigation of rock mass behaviour under gravity dams
Alshkane, Younis Mustafa Ali
2015-01-01
The study of rock mass behaviour is a broad subject in the rock mechanics field which still needs more research and investigation, especially for geotechnical issues associated with dam construction. Since it is difficult to study rock mass behaviour at a large scale in the laboratory, the numerical modelling technique is an alternative method which can be used efficiently in this field. In this thesis two codes have been selected for this purpose. The first code was a continuum code FLAC (Fa...
Numerical study on a disordered model for DNA denaturation transition
Coluzzi, Barbara
2005-01-01
We study numerically a disordered version of the model for DNA denaturation transition (DSAW-DNA) consisting of two interacting SAWs in 3d, which undergoes a first order transition in the homogeneous case. The two possible values eAT and eGC of the interactions between base pairs are taken as quenched random variables distributed with equal probability along the chain. We measure quantities averaged over disorder such as the energy density, the specific heat and the probability distribution o...
Site characterization alternatives for numerical models of a deep excavation
Sau, Núria; Arroyo Alvarez de Toledo, Marcos; Gens Solé, Antonio
2012-01-01
A cut-and-cover railway tunnel site on the outskirts of Barcelona benefited from an extensive site investigation campaign. During the construction of the tunnel, the displacement of the wall as well as the of soil beneath was recorded. A 2D numerical model of the excavation sequence was established. The large amount of site investigation data allowed a systematic comparative approach. Four different soil characterization strategies were mimicked, deliberately ignoring one or another subset...
Fast Numerically Based Modeling for Ground Penetrating Radar
Sassen, D. S.; Everett, M. E.
2007-05-01
There is a need for computationally fast GPR numerical modeling. This includes circumstances where real time performance is needed, for example discrimination of landmines or UXO's, and in circumstances that require a high number of successive forward problems, for example inversion or imaging. Traditional numerical techniques such as finite difference or finite element are too slow for these applications, but they provide results from general scenarios such as scattering from very complicated shapes with high contrast. Neural networks may fit in the niche between analytical techniques and traditional numerical techniques. Our concept is training a neural network to associate the model inputs of electromagnetic properties of the background and targets, and the size and shape of the targets, with the output generated by a 3-D finite difference model. Successive examples from various electromagnetic properties and targets are displayed to the neural network, until the neural network has adapted itself though optimization. The trained neural network is now used as the forward model by displaying new input parameters and the neural network then generates the appropriate output. The results from the neural network are then compared to results from finite difference models to see how well the neural networks is performing and at what point it breaks down. Areas of poor fit can be addressed through further training. The neural network GPR model can be adapted by displaying additional finite difference results to the neural network, and can also be adapted to a specific field area by actual field data examples. Because of this adaptation ability the neural network GPR model can be optimized for specific environments and applications.
Numerical bifurcation analysis of the bipedal spring-mass model
Merker, Andreas; Kaiser, Dieter; Hermann, Martin
2015-01-01
The spring-mass model and its numerous extensions are currently one of the best candidates for templates of human and animal locomotion. However, with increasing complexity, their applications can become very time-consuming. In this paper, we present an approach that is based on the calculation of bifurcations in the bipedal spring-mass model for walking. Since the bifurcations limit the region of stable walking, locomotion can be studied by computing the corresponding boundaries. Originally, the model was implemented as a hybrid dynamical system. Our new approach consists of the transformation of the series of initial value problems on different intervals into a single boundary value problem. Using this technique, discontinuities can be avoided and sophisticated numerical methods for studying parametrized nonlinear boundary value problems can be applied. Thus, appropriate extended systems are used to compute transcritical and period-doubling bifurcation points as well as turning points. We show that the resulting boundary value problems can be solved by the simple shooting method with sufficient accuracy, making the application of the more extensive multiple shooting superfluous. The proposed approach is fast, robust to numerical perturbations and allows determining complete manifolds of periodic solutions of the original problem.
2-D Composite Model for Numerical Simulations of Nonlinear Waves
Institute of Scientific and Technical Information of China (English)
2000-01-01
－ A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.
Numerical solution of High-kappa model of superconductivity
Energy Technology Data Exchange (ETDEWEB)
Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)
1996-12-31
We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.
Numerical modeling of bubble dynamics in viscoelastic media with relaxation
Warnez, M. T.; Johnsen, E.
2015-06-01
Cavitation occurs in a variety of non-Newtonian fluids and viscoelastic materials. The large-amplitude volumetric oscillations of cavitation bubbles give rise to high temperatures and pressures at collapse, as well as induce large and rapid deformation of the surroundings. In this work, we develop a comprehensive numerical framework for spherical bubble dynamics in isotropic media obeying a wide range of viscoelastic constitutive relationships. Our numerical approach solves the compressible Keller-Miksis equation with full thermal effects (inside and outside the bubble) when coupled to a highly generalized constitutive relationship (which allows Newtonian, Kelvin-Voigt, Zener, linear Maxwell, upper-convected Maxwell, Jeffreys, Oldroyd-B, Giesekus, and Phan-Thien-Tanner models). For the latter two models, partial differential equations (PDEs) must be solved in the surrounding medium; for the remaining models, we show that the PDEs can be reduced to ordinary differential equations. To solve the general constitutive PDEs, we present a Chebyshev spectral collocation method, which is robust even for violent collapse. Combining this numerical approach with theoretical analysis, we simulate bubble dynamics in various viscoelastic media to determine the impact of relaxation time, a constitutive parameter, on the associated physics. Relaxation time is found to increase bubble growth and permit rebounds driven purely by residual stresses in the surroundings. Different regimes of oscillations occur depending on the relaxation time.
Numerical algorithm of distributed TOPKAPI model and its application
Institute of Scientific and Technical Information of China (English)
Deng Peng; Li Zhijia; Liu Zhiyu
2008-01-01
The TOPKAPI (TOPographic Kinematic APproximation and Integration) model is a physically based rainfall-runoff model derived from the integration in space of the kinematic wave model. In the TOPKAPI model, rainfall-runoff and runoff routing processes are described by three nonlinear reservoir differential equations that are structurally similar and describe different hydrological and hydraulic processes. Equations are integrated over grid cells that describe the geometry of the catchment, leading to a cascade of nonlinear reservoir equations. For the sake of improving the model's computation precision, this paper provides the general form of these equations and describes the solution by means of a numerical algorithm, the variable-step fourth-order Runge-Kutta algorithm. For the purpose of assessing the quality of the comprehensive numerical algorithm, this paper presents a case study application to the Buliu River Basin, which has an area of 3 310 km2, using a DEM (digital elevation model) grid with a resolution of 1 km. The results show that the variable-step fourth-order Runge-Kutta algorithm for nonlinear reservoir equations is a good approximation of subsurface flow in the soil matrix, overland flow over the slopes, and surface flow in the channel network, allowing us to retain the physical properties of the original equations at scales ranging from a few meters to 1 km.
Interaction of tide and salinity barrier: Limitation of numerical model
Directory of Open Access Journals (Sweden)
Suphat Vongvisessomjai1
2008-07-01
Full Text Available Nowadays, the study of interaction of the tide and the salinity barrier in an estuarine area is usually accomplished vianumerical modeling, due to the speed and convenience of modern computers. However, numerical models provide littleinsight with respect to the fundamental physical mechanisms involved. In this study, it is found that all existing numericalmodels work satisfactorily when the barrier is located at some distance far from upstream and downstream boundary conditions.Results are considerably underestimate reality when the barrier is located near the downstream boundary, usually theriver mouth. Meanwhile, this analytical model provides satisfactory output for all scenarios. The main problem of thenumerical model is that the effects of barrier construction in creation of reflected tide are neglected when specifying thedownstream boundary conditions; the use of the boundary condition before construction of the barrier which are significantlydifferent from those after the barrier construction would result in an error outputs. Future numerical models shouldattempt to account for this deficiency; otherwise, using this analytical model is another choice.
Motte, Fabrice; Bugler-Lamb, Samuel L.; Falcoz, Quentin
2015-07-01
The attraction of solar energy is greatly enhanced by the possibility of it being used during times of reduced or non-existent solar flux, such as weather induced intermittences or the darkness of the night. Therefore optimizing thermal storage for use in solar energy plants is crucial for the success of this sustainable energy source. Here we present a study of a structured bed filler dedicated to Thermocline type thermal storage, believed to outweigh the financial and thermal benefits of other systems currently in use such as packed bed Thermocline tanks. Several criterions such as Thermocline thickness and Thermocline centering are defined with the purpose of facilitating the assessment of the efficiency of the tank to complement the standard concepts of power output. A numerical model is developed that reduces to two dimensions the modeling of such a tank. The structure within the tank is designed to be built using simple bricks harboring rectangular channels through which the solar heat transfer and storage fluid will flow. The model is scrutinized and tested for physical robustness, and the results are presented in this paper. The consistency of the model is achieved within particular ranges for each physical variable.
Mathematical and Numerical Analyses of Peridynamics for Multiscale Materials Modeling
Energy Technology Data Exchange (ETDEWEB)
Du, Qiang [Pennsylvania State Univ., State College, PA (United States)
2014-11-12
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of which is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next
A Physical Numerical Ionospheric Model and Its Simulation Results
Institute of Scientific and Technical Information of China (English)
ZHANG Man-Lian; Radicella Sandro M.; SHANG She-Ping
2004-01-01
This paper describes the construction of a one-dimensional time-dependent theoretical ionospheric model,which is based onnumerical solution of continuity and momentum equations for O+, O+2, N+2, and NO+. The model is designed to have an option to incorporate the observational ionospheric characteristic parameters into the numerical model to indirectly determine the upper boundary condition when solving the transport equations of O+. A preliminary simulation result of the model when used to simulate the ionosphere during April 18 ～ May 10, 1998, which includes both quiet and disturbed periods, showed that the model constructed is able to reproduce the observational results reasonably well both for quiet and disturbed periods.
Numerical modelling of coal spontaneous combustion with moisture included
Energy Technology Data Exchange (ETDEWEB)
Arisoy, A. [Istanbul Technical University, Istanbul (Turkey). Mechanical Engineering Faculty
2005-07-01
A mathematical model for spontaneous combustion of coal with moisture included is presented. The one-dimensional unsteady state model consists of conservation equations for oxygen, water vapour and inherent moisture of coal and energy for both gaseous and solid phases. A first order Arrhenius reaction rate for oxidation under both pore diffusion and chemically controlled reaction regime is considered. The rate of evaporation or condensation is also considered as a function of temperature of coal, water content of coal and gas streams. The equation of the model is solved numerically by the finite difference technique. Influences of different parameters on the process of spontaneous combustion can be examined by using this model. Also the model can be used to simulate full-scale storage conditions. 4 refs., 5 figs., 1 tab.
Numerical modeling of oil containment by a boom
International Nuclear Information System (INIS)
A hydrodynamic model of a boom for oil containment was developed. The physical phenomena which relate to oil containment were analysed. The important parameters from the analysis were used to develop a numerical model of interfacial instabilities for a two-phase system consisting of a layer of oil on top of a uniform flowing water stream. Vortex sheets were used to represent interfaces (air-water, air-oil, oil-water) and solid boundaries (boom, bottom). Flow velocities were calculated using Biot-Savart's law. The objective was to use the model to analyse oil containment failure mechanisms causing substantial loss of oil under the boom. Model calculations were found to be stable and accurate. Applications of the model to realistic cases of oil containment by a boom were presented. 33 refs., 12 figs
Laser modeling a numerical approach with algebra and calculus
Csele, Mark Steven
2014-01-01
Offering a fresh take on laser engineering, Laser Modeling: A Numerical Approach with Algebra and Calculus presents algebraic models and traditional calculus-based methods in tandem to make concepts easier to digest and apply in the real world. Each technique is introduced alongside a practical, solved example based on a commercial laser. Assuming some knowledge of the nature of light, emission of radiation, and basic atomic physics, the text:Explains how to formulate an accurate gain threshold equation as well as determine small-signal gainDiscusses gain saturation and introduces a novel pass
One numerical procedure for two risk factors modeling
Cocozza, Rosa; De Simone, Antonio
2011-01-01
We propose a numerical procedure for the pricing of financial contracts whose contingent claims are exposed to two sources of risk: the stock price and the short interest rate. More precisely, in our pricing framework we assume that the stock price dynamics is described by the Cox, Ross Rubinstein (CRR, 1979) binomial model under a stochastic risk free rate, whose dynamics evolves over time accordingly to the Black, Derman and Toy (BDT, 1990) one-factor model. To this aim, we set the hypothes...
Numerical model of multilayer organic light-emitting devices
Institute of Scientific and Technical Information of China (English)
Hu Yue; Rao Hai-Bo
2009-01-01
A numerical model of multilayer organic light-emitting devices is presented in this article.This model is based on the drift-diffusion equations which include charge injection,transport,space charge effects,trapping,heterojunction interface and recombination process.The device structure in the simulation is ITO/CuPc(20 nm)/NPD(40 nm)/Alq3(60 nm)/LiF/Al.There are two heterojunctions which should be dealt with in the simulation.The Ⅰ-Ⅴ characteristics,carrier distribution and recombination rate of a device are calculated.The simulation results and measured data are in good agreement.
Standards and Guidelines for Numerical Models for Tsunami Hazard Mitigation
Titov, V.; Gonzalez, F.; Kanoglu, U.; Yalciner, A.; Synolakis, C. E.
2006-12-01
An increased number of nations around the workd need to develop tsunami mitigation plans which invariably involve inundation maps for warning guidance and evacuation planning. There is the risk that inundation maps may be produced with older or untested methodology, as there are currently no standards for modeling tools. In the aftermath of the 2004 megatsunami, some models were used to model inundation for Cascadia events with results much larger than sediment records and existing state-of-the-art studies suggest leading to confusion among emergency management. Incorrectly assessing tsunami impact is hazardous, as recent events in 2006 in Tonga, Kythira, Greece and Central Java have suggested (Synolakis and Bernard, 2006). To calculate tsunami currents, forces and runup on coastal structures, and inundation of coastlines one must calculate the evolution of the tsunami wave from the deep ocean to its target site, numerically. No matter what the numerical model, validation (the process of ensuring that the model solves the parent equations of motion accurately) and verification (the process of ensuring that the model used represents geophysical reality appropriately) both are an essential. Validation ensures that the model performs well in a wide range of circumstances and is accomplished through comparison with analytical solutions. Verification ensures that the computational code performs well over a range of geophysical problems. A few analytic solutions have been validated themselves with laboratory data. Even fewer existing numerical models have been both validated with the analytical solutions and verified with both laboratory measurements and field measurements, thus establishing a gold standard for numerical codes for inundation mapping. While there is in principle no absolute certainty that a numerical code that has performed well in all the benchmark tests will also produce correct inundation predictions with any given source motions, validated codes
Constitutive Modeling and Numerical Simulation of Frp Confined Concrete Specimens
Smitha, Gopinath; Ramachandramurthy, Avadhanam; Nagesh, Ranganatha Iyer; Shahulhameed, Eduvammal Kunhimoideen
2014-09-01
Fiber-reinforced polymer (FRP) composites are generally used for the seismic retrofit of concrete members to enhance their strength and ductility. In the present work, the confining effect of Carbon Fiber-Reinforced Polymer (CFRP) composite layers has been investigated by numerical simulation. The numerical simulation has been carried out using nonlinear finite element analysis (FEA) to predict the response behaviour of CFRP-wrapped concrete cylinders. The nonlinear behaviour of concrete in compression and the linear elastic behaviour of CFRP has been modeled using an appropriate constitutive relationship. A cohesive model has been developed for modeling the interface between the concrete and CFRP. The interaction and damage failure criteria between the concrete to the cohesive element and the cohesive element to the CFRP has also been accounted for in the modeling. The response behaviour of the wrapped concrete specimen has been compared with the proposed interface model and with a perfectly bonded condition. The results obtained from the present study showed good agreement with the experimental load-displacement response and the failure pattern in the literature. Further, a sensitivity analysis has been carried out to study the effect of the number of layers of CFRP on the concrete specimens. It has been observed that wrapping with two layers was found to be the optimum, beyond which the response becomes flexible but with a higher load-carrying capacity
EOS Development and Numerical Modeling of CL-20 Compaction
Brundage, A. L.
2009-12-01
The response of low-density pressings (64-70% theoretical maximum density) of CL-20 (Hexanitrohexaazaisowurtzitane) to shock impact has been investigated with numerical simulation using BN (Baer-Nunziato) multiphase modeling. Validation data for the modeling was acquired from wave profiles measured with VISAR from low-velocity impact gas-gun experiments. Previously unreported equation of state (EOS) data for CL-20 was determined to support the numerical modeling. An intergranular stress relationship, which was needed for the multiphase modeling, was determined from the dynamic loading data. Additionally, a Mie-Grüneisen equation of state for crystalline CL-20 was constructed from previously reported diamond anvil cell (DAC) isothermal compression experiments. The predictions of the observed elastic wave precursors and compaction wave profiles were in good agreement with the data over the range of impact velocities reported herein. A multiphase model is needed to describe the deflagration-to-detonation transition (DDT) in porous CL-20 samples initiated by dynamic compaction.
Numerical algorithm of distributed TOPKAPI model and its application
Directory of Open Access Journals (Sweden)
Deng Peng
2008-12-01
Full Text Available The TOPKAPI (TOPographic Kinematic APproximation and Integration model is a physically based rainfall-runoff model derived from the integration in space of the kinematic wave model. In the TOPKAPI model, rainfall-runoff and runoff routing processes are described by three nonlinear reservoir differential equations that are structurally similar and describe different hydrological and hydraulic processes. Equations are integrated over grid cells that describe the geometry of the catchment, leading to a cascade of nonlinear reservoir equations. For the sake of improving the model’s computation precision, this paper provides the general form of these equations and describes the solution by means of a numerical algorithm, the variable-step fourth-order Runge-Kutta algorithm. For the purpose of assessing the quality of the comprehensive numerical algorithm, this paper presents a case study application to the Buliu River Basin, which has an area of 3 310 km2, using a DEM (digital elevation model grid with a resolution of 1 km. The results show that the variable-step fourth-order Runge-Kutta algorithm for nonlinear reservoir equations is a good approximation of subsurface flow in the soil matrix, overland flow over the slopes, and surface flow in the channel network, allowing us to retain the physical properties of the original equations at scales ranging from a few meters to 1 km.
Influence of clearance model on numerical simulation of centrifugal pump
Wang, Z.; Gao, B.; Yang, L.; Du, W. Q.
2016-05-01
Computing models are always simplified to save the computing resources and time. Particularly, the clearance that between impeller and pump casing is always ignored. But the completer model is, the more precise result of numerical simulation is in theory. This paper study the influence of clearance model on numerical simulation of centrifugal pump. We present such influence via comparing performance, flow characteristic and pressure pulsation of two cases that the one of two cases is the model pump with clearance and the other is not. And the results show that the head decreases and power increases so that efficiency decreases after computing with front and back cavities. Then no-leakage model would improve absolute velocity magnitude in order to reach the rated flow rate. Finally, more disturbance induced by front cavity flow and wear-ring flow would change the pressure pulsation of impeller and volute. The performance of clearance flow is important for the whole pump in performance, flow characteristic, pressure pulsation and other respects.
A dynamic spar numerical model for passive shape change
Calogero, J. P.; Frecker, M. I.; Hasnain, Z.; Hubbard, J. E., Jr.
2016-10-01
A three-dimensional constraint-driven dynamic rigid-link numerical model of a flapping wing structure with compliant joints (CJs) called the dynamic spar numerical model is introduced and implemented. CJs are modeled as spherical joints with distributed mass and spring-dampers with coupled nonlinear spring and damping coefficients, which models compliant mechanisms spatially distributed in the structure while greatly reducing computation time compared to a finite element model. The constraints are established, followed by the formulation of a state model used in conjunction with a forward time integrator, an experiment to verify a rigid-link assumption and determine a flapping angle function, and finally several example runs. Modeling the CJs as coupled bi-linear springs shows the wing is able to flex more during upstroke than downstroke. Coupling the spring stiffnesses allows an angular deformation about one axis to induce an angular deformation about another axis, where the magnitude is proportional to the coupling term. Modeling both the leading edge and diagonal spars shows that the diagonal spar changes the kinematics of the leading edge spar verses only considering the leading edge spar, causing much larger axial rotations in the leading edge spar. The kinematics are very sensitive to CJ location, where moving the CJ toward the wing root causes a stronger response, and adding multiple CJs on the leading edge spar with a CJ on the diagonal spar allows the wing to deform with larger magnitude in all directions. This model lays a framework for a tool which can be used to understand flapping wing flight.
Numerical heat conduction in hydrodynamical models of colliding hypersonic flows
Parkin, E R
2010-01-01
Hydrodynamical models of colliding hypersonic flows are presented which explore the dependence of the resulting dynamics and the characteristics of the derived X-ray emission on numerical conduction and viscosity. For the purpose of our investigation we present models of colliding flow with plane-parallel and cylindrical divergence. Numerical conduction causes erroneous heating of gas across the contact discontinuity which has implications for the rate at which the gas cools. We find that the dynamics of the shocked gas and the resulting X-ray emission are strongly dependent on the contrast in the density and temperature either side of the contact discontinuity, these effects being strongest where the postshock gas of one flow behaves quasi-adiabatically while the postshock gas of the other flow is strongly radiative. Introducing additional numerical viscosity into the simulations has the effect of damping the growth of instabilities, which in some cases act to increase the volume of shocked gas and can re-he...
Numerical modelling of extreme waves by Smoothed Particle Hydrodynamics
Directory of Open Access Journals (Sweden)
M. H. Dao
2011-02-01
Full Text Available The impact of extreme/rogue waves can lead to serious damage of vessels as well as marine and coastal structures. Such extreme waves in deep water are characterized by steep wave fronts and an energetic wave crest. The process of wave breaking is highly complex and, apart from the general knowledge that impact loadings are highly impulsive, the dynamics of the breaking and impact are still poorly understood. Using an advanced numerical method, the Smoothed Particle Hydrodynamics enhanced with parallel computing is able to reproduce well the extreme waves and their breaking process. Once the waves and their breaking process are modelled successfully, the dynamics of the breaking and the characteristics of their impact on offshore structures could be studied. The computational methodology and numerical results are presented in this paper.
Mathematical modelling and numerical simulation of oil pollution problems
2015-01-01
Written by outstanding experts in the fields of marine engineering, atmospheric physics and chemistry, fluid dynamics and applied mathematics, the contributions in this book cover a wide range of subjects, from pure mathematics to real-world applications in the oil spill engineering business. Offering a truly interdisciplinary approach, the authors present both mathematical models and state-of-the-art numerical methods for adequately solving the partial differential equations involved, as well as highly practical experiments involving actual cases of ocean oil pollution. It is indispensable that different disciplines of mathematics, like analysis and numerics, together with physics, biology, fluid dynamics, environmental engineering and marine science, join forces to solve today’s oil pollution problems. The book will be of great interest to researchers and graduate students in the environmental sciences, mathematics and physics, showing the broad range of techniques needed in order to solve these poll...
Numerical modeling of spray combustion with an advanced VOF method
Chen, Yen-Sen; Shang, Huan-Min; Shih, Ming-Hsin; Liaw, Paul
1995-01-01
This paper summarizes the technical development and validation of a multiphase computational fluid dynamics (CFD) numerical method using the volume-of-fluid (VOF) model and a Lagrangian tracking model which can be employed to analyze general multiphase flow problems with free surface mechanism. The gas-liquid interface mass, momentum and energy conservation relationships are modeled by continuum surface mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed flow regimes. The objectives of the present study are to develop and verify the fractional volume-of-fluid cell partitioning approach into a predictor-corrector algorithm and to demonstrate the effectiveness of the present approach by simulating benchmark problems including laminar impinging jets, shear coaxial jet atomization and shear coaxial spray combustion flows.
Numerical and experimental verification of physical blast thermodynamic model
Chorowski, Maciej; Iluk, Artur; Grabowski, Maciej; Jędrusyna, Artur
2015-12-01
Helium inventory in big cryogenic systems may be of the order of hundred tons. During the warm up of the machine the helium has to be stored in warm pressurized tanks. A potential rupture of the tank may create a danger to adjacent objects. In order to formulate recommendations concerning storage of compressed gases in close vicinity of nuclear installations, a thermodynamic model of physical blast has been formulated. The model has been experimentally verified in a laboratory scale test rig. To simulate rupture of compressed gas storage tanks, plastic tanks have been used. Scaling of the results to real cases like ITER compressed gas inventory requires good understanding of potential rupture of high volume gas storage tanks. Numerical model of tanks rupture have been elaborated and verified against experimental results. The model allows scaling of thermodynamic simplified description to real gas storage installations.
2D numerical modelling of meandering channel formation
Indian Academy of Sciences (India)
Y Xiao; G Zhou; F S Yang
2016-03-01
A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-loadtransport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numericalpredictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under differentscenarios and improve understanding of patterning processes.
Heterogeneous individuals' behavioral biases model and numerical simulation
Institute of Scientific and Technical Information of China (English)
ZHANG Da-yong; LIANG Guo-wei
2010-01-01
A model of the relationships between individual cognitive biases and individual decision-making based on the analysis of cognitive biases of bonded rationality individual,has been established in this paper by introducing a set of new variables callod overconfidence coefficient and attribution bias coefficient to the sentiment model.The irrational expectation and irrational risk aversion as two inseparable aspects of bonded rationality are expressed in an unified model,and a method of measuring individual cognitive biases is proposed,which overcomes the shortcomings of traditional normative models that can not describe the differences of behaviors among heterogeneous individuals.As a result,numerical simulations show that individual cognitive risk is a positive interaction with overconfidence coefficient,and a negative interaction with attribution bias coefficient.
Two-dimensional Numerical Modeling Research on Continent Subduction Dynamics
Institute of Scientific and Technical Information of China (English)
WANG Zhimin; XU Bei; ZHOU Yaoqi; XU Hehua; HUANG Shaoying
2004-01-01
Continent subduction is one of the hot research problems in geoscience. New models presented here have been set up and two-dimensional numerical modeling research on the possibility of continental subduction has been made with the finite element software, ANSYS, based on documentary evidence and reasonable assumptions that the subduction of oceanic crust has occurred, the subduction of continental crust can take place and the process can be simplified to a discontinuous plane strain theory model. The modeling results show that it is completely possible for continental crust to be subducted to a depth of 120 km under certain circumstances and conditions. At the same time, the simulations of continental subduction under a single dynamical factor have also been made, including the pull force of the subducted oceanic lithosphere, the drag force connected with mantle convection and the push force of the mid-ocean ridge. These experiments show that the drag force connected with mantle convection is critical for continent subduction.
NATO Advanced Study Institute on Advanced Physical Oceanographic Numerical Modelling
1986-01-01
This book is a direct result of the NATO Advanced Study Institute held in Banyuls-sur-mer, France, June 1985. The Institute had the same title as this book. It was held at Laboratoire Arago. Eighty lecturers and students from almost all NATO countries attended. The purpose was to review the state of the art of physical oceanographic numerical modelling including the parameterization of physical processes. This book represents a cross-section of the lectures presented at the ASI. It covers elementary mathematical aspects through large scale practical aspects of ocean circulation calculations. It does not encompass every facet of the science of oceanographic modelling. We have, however, captured most of the essence of mesoscale and large-scale ocean modelling for blue water and shallow seas. There have been considerable advances in modelling coastal circulation which are not included. The methods section does not include important material on phase and group velocity errors, selection of grid structures, advanc...
Parallelism and optimization of numerical ocean forecasting model
Xu, Jianliang; Pang, Renbo; Teng, Junhua; Liang, Hongtao; Yang, Dandan
2016-10-01
According to the characteristics of Chinese marginal seas, the Marginal Sea Model of China (MSMC) has been developed independently in China. Because the model requires long simulation time, as a routine forecasting model, the parallelism of MSMC becomes necessary to be introduced to improve the performance of it. However, some methods used in MSMC, such as Successive Over Relaxation (SOR) algorithm, are not suitable for parallelism. In this paper, methods are developedto solve the parallel problem of the SOR algorithm following the steps as below. First, based on a 3D computing grid system, an automatic data partition method is implemented to dynamically divide the computing grid according to computing resources. Next, based on the characteristics of the numerical forecasting model, a parallel method is designed to solve the parallel problem of the SOR algorithm. Lastly, a communication optimization method is provided to avoid the cost of communication. In the communication optimization method, the non-blocking communication of Message Passing Interface (MPI) is used to implement the parallelism of MSMC with complex physical equations, and the process of communication is overlapped with the computations for improving the performance of parallel MSMC. The experiments show that the parallel MSMC runs 97.2 times faster than the serial MSMC, and root mean square error between the parallel MSMC and the serial MSMC is less than 0.01 for a 30-day simulation (172800 time steps), which meets the requirements of timeliness and accuracy for numerical ocean forecasting products.
Enthalpy benchmark experiments for numerical ice sheet models
Directory of Open Access Journals (Sweden)
T. Kleiner
2014-06-01
Full Text Available We present benchmark experiments to test the implementation of enthalpy and the corresponding boundary conditions in numerical ice sheet models. The first experiment tests particularly the functionality of the boundary condition scheme and the basal melt rate calculation during transient simulations. The second experiment addresses the steady-state enthalpy profile and the resulting position of the cold–temperate transition surface (CTS. For both experiments we assume ice flow in a parallel-sided slab decoupled from the thermal regime. Since we impose several assumptions on the experiment design, analytical solutions can be formulated for the proposed numerical experiments. We compare simulation results achieved by three different ice flow-models with these analytical solutions. The models agree well to the analytical solutions, if the change in conductivity between cold and temperate ice is properly considered in the model. In particular, the enthalpy gradient at the cold side of the CTS vanishes in the limit of vanishing conductivity in the temperate ice part as required from the physical jump conditions at the CTS.
Numerical modeling of an end-plugged theta pinch
International Nuclear Information System (INIS)
Analytical and numerical studies of an end-plugged theta pinch are described. The analytical model treats the ablated plug plasma in the quasi-static limit where radiation losses balance energy flowing from the main plasma. This model is used to calculate the enhancement in energy confinement due to an ablating end plug for various plug species. The numerical model employs a one-dimensional, time-dependent magnetohydro-dynamic code. Results of calculations simulating the Scylla IV-P end-plugged theta pinch experiment are presented. The calculations achieve good agreement with the observed decay time of the energy line density. Moreover, the observed tendency toward longer decay times at lower atomic number is also predicted. However, certain notable discrepancies are found. For Si plugs, the calculations indicate a somewhat longer decay time than observed with SiO2 plugs. In addition, an axial compression wave driven by plug ablation causes the calculated energy line density to rise after 15 to 20 μsec which was not observed in the experiments. This is believed to be a feature of the one radial cell model which forbids axial wave dispersion; such dispersion would tend to mute the appearance of such waves. For fusion reactor scale plasma, the calculations predict that higher atomic number leads to negligible enhancements in confinement time
Automated smoother for the numerical decoupling of dynamics models
Directory of Open Access Journals (Sweden)
Santos Helena
2007-08-01
Full Text Available Abstract Background Structure identification of dynamic models for complex biological systems is the cornerstone of their reverse engineering. Biochemical Systems Theory (BST offers a particularly convenient solution because its parameters are kinetic-order coefficients which directly identify the topology of the underlying network of processes. We have previously proposed a numerical decoupling procedure that allows the identification of multivariate dynamic models of complex biological processes. While described here within the context of BST, this procedure has a general applicability to signal extraction. Our original implementation relied on artificial neural networks (ANN, which caused slight, undesirable bias during the smoothing of the time courses. As an alternative, we propose here an adaptation of the Whittaker's smoother and demonstrate its role within a robust, fully automated structure identification procedure. Results In this report we propose a robust, fully automated solution for signal extraction from time series, which is the prerequisite for the efficient reverse engineering of biological systems models. The Whittaker's smoother is reformulated within the context of information theory and extended by the development of adaptive signal segmentation to account for heterogeneous noise structures. The resulting procedure can be used on arbitrary time series with a nonstationary noise process; it is illustrated here with metabolic profiles obtained from in-vivo NMR experiments. The smoothed solution that is free of parametric bias permits differentiation, which is crucial for the numerical decoupling of systems of differential equations. Conclusion The method is applicable in signal extraction from time series with nonstationary noise structure and can be applied in the numerical decoupling of system of differential equations into algebraic equations, and thus constitutes a rather general tool for the reverse engineering of
Numerical model for thermal parameters in optical materials
Sato, Yoichi; Taira, Takunori
2016-04-01
Thermal parameters of optical materials, such as thermal conductivity, thermal expansion, temperature coefficient of refractive index play a decisive role for the thermal design inside laser cavities. Therefore, numerical value of them with temperature dependence is quite important in order to develop the high intense laser oscillator in which optical materials generate excessive heat across mode volumes both of lasing output and optical pumping. We already proposed a novel model of thermal conductivity in various optical materials. Thermal conductivity is a product of isovolumic specific heat and thermal diffusivity, and independent modeling of these two figures should be required from the viewpoint of a clarification of physical meaning. Our numerical model for thermal conductivity requires one material parameter for specific heat and two parameters for thermal diffusivity in the calculation of each optical material. In this work we report thermal conductivities of various optical materials as Y3Al5O12 (YAG), YVO4 (YVO), GdVO4 (GVO), stoichiometric and congruent LiTaO3, synthetic quartz, YAG ceramics and Y2O3 ceramics. The dependence on Nd3+-doping in laser gain media in YAG, YVO and GVO is also studied. This dependence can be described by only additional three parameters. Temperature dependence of thermal expansion and temperature coefficient of refractive index for YAG, YVO, and GVO: these are also included in this work for convenience. We think our numerical model is quite useful for not only thermal analysis in laser cavities or optical waveguides but also the evaluation of physical properties in various transparent materials.
Numerical Analysis and Centrifuge Modeling of Shallow Foundations
Institute of Scientific and Technical Information of China (English)
罗强; 栾茂田; 杨蕴明; 王忠涛; 赵守正
2014-01-01
The influence of non-coaxial constitutive model on predictions of dense sand behavior is investigated in this paper. The non-coaxial model with strain softening plasticity is applied into finite-element program ABAQUS, which is first used to predict the stress-strain behavior and the non-coaxial characteristic between the orientations of the principal stress and principal plastic strain rate in simple shear tests. The model is also used to predict load settlement responses and bearing capacity factors of shallow foundations. A series of centrifuge tests for shallow foundations on saturated dense sand are performed under drained conditions and the test results are compared with the corresponding numerical results. Various footing dimensions, depths of embedment, and footing shapes are considered in these tests. In view of the load settlement relationships, the stiffness of the load-displacement curves is significantly affected by the non-coaxial model compared with those predicted by the coaxial model, and a lower value of non-coaxial modulus gives a softer response. Considering the soil behavior at failure, the coaxial model predictions of bearing capacity factors are more advanced than those of centrifuge test results and the non-coaxial model results;besides, the non-coaxial model gives better predictions. The non-coaxial model predictions are closer to those of the centrifuge results when a proper non-coaxial plastic modulus is chosen.
John (Jack) P. Riegel III; David Davison
2016-01-01
Historically, there has been little correlation between the material properties used in (1) empirical formulae, (2) analytical formulations, and (3) numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderso...
Photometry of dark atmosphereless planetary bodies: an efficient numerical model
Wilkman, Olli; Muinonen, Karri; Peltoniemi, Jouni
2015-12-01
We present a scattering model for regolith-covered Solar System bodies. It can be used to compute the intensity of light scattered by a surface consisting of packed, mutually shadowing particles. Our intention is to provide a model in which other researchers can apply in studies of Solar System photometry. Our model is a Lommel-Seeliger type model, representing a medium composed of individual scatterers with small single-scattering albedo. This means that it is suitable for dark regolith surfaces such as the Moon and many classes of asteroids. Our model adds an additional term which takes into account the mutual shadowing between the scatterers. The scatterers can have an arbitrary phase function. We use a numerical ray-tracing simulation to compute the shadowing contribution. We present the model in a form which makes implementing it in existing software straightforward and fast. The model in practice is implemented as files containing pre-computed values of the surface reflection coefficient, which can be loaded into a user's program and used to compute the scattering in the desired viewing geometries. As the usage requires only a little simple arithmetic and a table look-up, it is as fast to use as common analytical models.
Radial mixing in protoplanetary accretion disks VII. 2-dimensional transport of tracers
Wehrstedt, Michael
2008-01-01
The detection of significant concentrations of crystalline silicates in comets indicates an extensive radial mixing in the primordial solar nebula. In studying the radial transport of matter within protoplanetary disks by numerical model calculations it is essential to resolve the vertical disk structure since matter is mixed radially inward and outward by a complex 2-dimensional flow pattern that is superposed on the global inward directed accretion flow. A numerical model calculation for a protoplanetary accretion disks with radial and vertical mixing is performed in the 1+1-dimensional approximation. The global 2D velocity field of the disk is calculated from an analytical solution for the meridional flow pattern, that exhibits an inward drift in the upper layers and an outward drift in the midplane in most parts of the disk. The disk model is based on the $\\beta$-prescription of viscosity and considers vertical self-gravitation of the disk. The mixing processes are studied for the following species: amorp...
Numerical modeling of flexible insect wings using volume penalization
Engels, Thomas; Kolomenskiy, Dmitry; Schneider, Kai; Sesterhenn, Joern
2012-11-01
We consider the effects of chordwise flexibility on the aerodynamic performance of insect flapping wings. We developed a numerical method for modeling viscous fluid flows past moving deformable foils. It extends on the previously reported model for flows past moving rigid wings (J Comput Phys 228, 2009). The two-dimensional Navier-Stokes equations are solved using a Fourier pseudo-spectral method with the no-slip boundary conditions imposed by the volume penalization method. The deformable wing section is modeled using a non-linear beam equation. We performed numerical simulations of heaving flexible plates. The results showed that the optimal stroke frequency, which maximizes the mean thrust, is lower than the resonant frequency, in agreement with the experiments by Ramananarivo et al. (PNAS 108(15), 2011). The oscillatory part of the force only increases in amplitude when the frequency increases, and at the optimal frequency it is about 3 times larger than the mean force. We also study aerodynamic interactions between two heaving flexible foils. This flow configuration corresponds to the wings of dragonflies. We explore the effects of the phase difference and spacing between the fore- and hind-wing.
Numerical Methods for the Lévy LIBOR model
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Skovmand, David
The aim of this work is to provide fast and accurate approximation schemes for the Monte-Carlo pricing of derivatives in the Lévy LIBOR model of Eberlein and Özkan (2005). Standard methods can be applied to solve the stochastic differential equations of the successive LIBOR rates but the methods ...... reduce this growth from exponential to quadratic in an approximation using truncated expansions of the product terms. We include numerical illustrations of the accuracy and speed of our method pricing caplets, swaptions and forward rate agreements....
Numerical Modeling of Multi-Material Active Magnetic Regeneration
DEFF Research Database (Denmark)
Nielsen, Kaspar Kirstein; Engelbrecht, Kurt; Bahl, Christian Robert Haffenden;
2009-01-01
Magnetic refrigeration is a potentially environmentally-friendly alternative to vapour compression technology that is presented in this paper. The magnetocaloric effect in two magnetocaloric compounds in the La(Fe,Co,Si)13 series is presented in terms of their adiabatic temperature change...... and the specific heat as a function of temperature at constant magnetic field. A 2.5-dimensional numerical model of an active magnetic regenerative (AMR) refrigerator device is presented. The experimental AMR located at Risø DTU has been equipped with a parallel-plate based regenerator made of the two materials...
Numerical Simulation Model of Laminar Hydrogen/Air Diffusion Flame
Institute of Scientific and Technical Information of China (English)
于溯源; 吕雪峰
2002-01-01
A numerical simulation model is developed for a laminar hydrogen/air diffusion flame. Nineteen species and twenty chemical reactions are considered. The chemical kinetics package (CHEMKIN) subroutines are employed to calculate species thermodynamic properties and chemical reaction rate constants. The flow field is calculated by simultaneously solving a continuity equation, an axial momentum equation and an energy equation in a cylindrical coordinate system. Thermal diffusion and Brownian diffusion are considered in the radial direction while they are neglected in the axial direction. The results suggest that the main flame is buoyancy-controlled.
Numerical modelling of channel migration with application to laboratory rivers
Institute of Scientific and Technical Information of China (English)
Jian SUN; Bin-liang LIN; Hong-wei KUANG
2015-01-01
The paper presents the development of a morphological model and its application to experimental model rivers. The model takes into account the key processes of channel migration, including bed deformation, bank failure and wetting and drying. Secondary flows in bends play an important role in lateral sediment transport, which further affects channel migration. A new formula has been derived to predict the near-bed secondary flow speed, in which the magnitude of the speed is linked to the lateral water level gradient. Since only non-cohesive sediment is considered in the current study, the bank failure is modelled based on the concept of submerged angle of repose. The wetting and drying process is modelled using an existing method. Comparisons between the numerical model predictions and experimental observations for various discharges have been made. It is found that the model predicted channel planform and cross-sectional shapes agree generally well with the laboratory observations. A scenario analysis is also carried out to investigate the impact of secondary flow on the channel migration process. It shows that if the effect of secondary flow is ignored, the channel size in the lateral direction will be seriously underestimated.
Numerical modeling of dish-Stirling reflux solar receivers
Hogan, R. E.
Using reflux solar receivers to collect solar energy for dish-Stirling electric power generation systems is currently being investigated by several organizations, including Sandia National Laboratories, Albuquerque, New Mexico. In support of this program, Sandia has developed two numerical models describing the energy transfer within and thermal performance of pool-boiler and heat-pipe receivers. Both models are applicable to axisymmetric geometries and they both consider the radiative and convective energy transfer within the receiver cavity, the conductive and convective energy transfer within the receiver cavity, the conductive and convective energy transfer from the receiver housing, and the energy transfer to the receiver working fluid. In these models, the radiative transfer within the receiver is analyzed using a two-band (solar and infrared) net-radiation formulation for enclosure radiation. Empirical convective correlations describe the convective heat transfer from the cavity to the surroundings. The primary difference between the models is the level of detail in modeling the heat conduction through the receiver walls. The more detailed model uses a two-dimensional finite control volume method, whereas the simpler model uses a one-dimensional thermal resistance approach.
Collision and Break-off : Numerical models and surface observables
Bottrill, Andrew; van Hunen, Jeroen; Allen, Mark
2013-04-01
The process of continental collision and slab break-off has been explored by many authors using a number of different numerical models and approaches (Andrews and Billen, 2009; Gerya et al., 2004; van Hunen and Allen, 2011). One of the challenges of using numerical models to explore collision and break-off is relating model predictions to real observables from current collision zones. Part of the reason for this is that collision zones by their nature destroy a lot of potentially useful surface evidence of deep dynamics. One observable that offers the possibility for recording mantle dynamics at collision zones is topography. Here we present topography predictions from numerical models and show how these can be related to actual topography changes recoded in the sedimentary record. Both 2D and 3D numerical simulation of the closure of a small oceanic basin are presented (Bottrill et al., 2012; van Hunen and Allen, 2011). Topography is calculated from the normal stress at the surface applied to an elastic beam, to give a more realist prediction of topography by accounting for the expected elasticity of the lithosphere. Predicted model topography showed a number of interesting features on the overriding plate. The first is the formation of a basin post collision at around 300km from the suture. Our models also showed uplift postdating collision between the suture and this basin, caused by subduction of buoyant material. Once break-off has occurred we found that this uplift moved further into the overriding plate due to redistribution of stresses from the subducted plate. With our 3D numerical models we simulate a collision that propagates laterally along a subduction system. These models show that a basin forms, similar to that found in our 2D models, which propagates along the system at the same rate as collision. The apparent link between collision and basin formation leads to the investigation into the stress state in the overriding lithosphere. Preliminary
An exploratory numerical model of rocky shore profile evolution
Matsumoto, Hironori; Dickson, Mark E.; Kench, Paul S.
2016-09-01
Rocky shores occur along much of the world's coastline and include a wide range of coastal morphologies, such as intertidal shore platforms. Considerable research effort has been placed on trying to understand developmental processes on rocky shores, but progress has been forestalled because these landscapes develop slowly and preserve little evidence of evolution through time. This paper presents a new exploratory numerical model developed to study long-term shore profile evolution on rock coasts. The model purposely considers only a limited number of processes, each represented in a highly abstracted way. Despite these simplifications, the model exhibits a large range of emergent shore profile shapes. This behavior is enabled both by broader spatial representation of the driving erosion forces and the flexibility provided by a grid discretization scheme. Initial model testing shows the development of varied rocky profile geometries, ranging from steep plunging cliffs, cliffs with narrow benches, and cliffs with a variety of shore platform shapes. Most of the model geometries are similar to those observed in the field, and model behavior is robust and internally consistent across a relatively large parameter space. This paper provides a detailed description of the new model and its subsequent testing. Emphasis is placed on comparison of model results with published field observations in which morphometric relationships are described between shore platform gradient and tidal range, and platform elevation and platform width. The model adequately simulates these morphometric relationships, while retaining its ability to simulate a wide range of profile shapes. The simplicity of process representations, and the limited number of processes implemented, means that model outputs can be interpreted reasonably easily. Hence, an opportunity is now provided, following the testing described in this paper, to use the model to systematically investigate the broader controlling
Analysis of single ring infiltrometer test by direct numerical modeling
Réfloch, Aurore; Oxarango, Laurent; Rossier, Yvan; Gaudet, Jean Paul
2016-04-01
The well field of the Lyon metropolitan area provides drinking water to approximately 1,300,000 inhabitants. It is equipped with 12 infiltration basins. These basins have two main goals: sustaining the water table in times of peak demand for water, and preventing a possible contamination from the Rhône river by inverting groundwater flow direction. The water infiltration under the basins is thus crucial for the overall hydrogeologic behavior of the site. In order to characterize this phenomenon, a set of infiltrometer tests were performed to estimate the soil hydraulic properties. The soil is a coarse alluvial deposits. In order to deal with its sparse granulometric curve, a large single ring infiltrometer (1 meter in diameter) was used. A constant hydraulic head (=0.07 m) was imposed during the test. Two kinds of data are recorded: the amount of water infiltrated over time and the extension of the moisture stain around the ring. The main hydraulic properties are estimated using Richard's equation in a 2D axi-symmetric configuration. Simulations are performed using a finite element commercial software package (Comsol Multiphysics 5.1). According to simplified numerical models, an average homogeneous saturated permeability of the alluvial deposits is estimated at 5.0 10-6 m.s-1. However, such a simple model is not able to represent accurately the moisture stain at the soil surface. More complex models introduce anisotropy of permeability in the alluvium layer, with mono or bi-layer domain. In these cases, experimental and modeling results are consistent, both for the amount of water infiltrated over time and the extension of the moisture stain around the ring. The hydraulic anisotropy in the soil could be due to the stratified nature of alluvial deposits and to soil compaction during the construction of infiltration basins. Keywords: Single ring infiltrometer test, artificial aquifer recharge, numerical modeling.
Method of Numerical Modeling for Constitutive Relations of Clay
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
In order to study the method of numerical modeling for constitutive relations of clay, on the basis of the principle of interaction between plastic volumetric strain and plastic generalized shear strain, the two constitutive functionals that include the function of stress path were used as the basic framework of the constitutive model, which are able to demonstrate the dependence of stress path.The two partial differential cross terms appear in the expression of stress-strain increment relation, which are used to demonstrate the interaction between plastic volumetric strain and plastic generalized shear strain.The elasoplastic constitutive models of clay under two kinds of stress paths, CTC and TC, have been constructed using the triaxial test results.The three basic characteristics of deformation of soils, pressure sensitivity, dilatancy, and dependence of stress path, are well explained using these two models.Using visualization, the three-dimensional surfaces of shear and volume strains in the whole stress field under stress paths of CTC and TC are given.In addition, the two families of shear and volumetric yield loci under CTC and TC paths are plotted respectively.By comparing the results of deformation under these two stress paths, it has been found that, there are obvious differences in the strain peaks, the shapes of strain surfaces, and the trends of variation of volumetric yield loci, however both families of shear yield loci are similar.These results demonstrate that the influences of stress path on the constitutive relations of clay are considerably large and not negligible.The numerical modeling method that can sufficiently reflect the dependence of stress path is superior to the traditional one.
Numerical models for prestressing tendons in containment structures
International Nuclear Information System (INIS)
Two modified stress-strain relations for bonded and unbonded internal tendons are proposed. The proposed relations can simulate the post-cracking behavior and tension stiffening effect in prestressed concrete containment structures. In the case of the bonded tendon, tensile forces between adjacent cracks are transmitted from a bonded tendon to concrete by bond forces. Therefore, the constitutive law of a bonded tendon stiffened by grout needs to be determined from the bond-slip relationship. On the other hand, a stress increase beyond the effective prestress in an unbonded tendon is not section-dependent but member-dependent. It means that the tendon stress unequivocally represents a uniform distribution along the length when the friction loss is excluded. Thus, using a strain reduction factor, the modified stress-strain curve of an unbonded tendon is derived by successive iterations. In advance, the prediction of cracking behavior and ultimate resisting capacity of prestressed concrete containment structures using the introduced numerical models are succeeded, and the need for the consideration of many influencing factors such as the tension stiffening effect, plastic hinge length and modification of stress-strain relation of tendon is emphasized. Finally, the developed numerical models are applied to prestressed concrete containment structures to verify the efficiency and applicability in simulating the structural behavior with bonded and/or unbonded tendons
Scotia Plate Dynamics: insights from seismotectonics and numerical modeling
Sue, C.; Branellec, M.; Mazuel, A.; Ghiglione, M.; Maia, M.
2012-04-01
The Scotia plate and surrounding areas is a beautiful and complex geodynamic system, which accommodates the large-scale sinistral strike-slip motion between South-America and Antarctica plates. It comprises active and fossil oceanic spreading, arc-shaped orogenic belts at the periphery of the system, crustal strike-slips and transform zones, extensional basins, and subductions. A careful structural analysis of the larger Scotia area based on ETOPO1 dataset, together with a new seismotectonic synthesis including stress inversion (CMT dataset), and finite elements numerical modeling (SHELL code), allow to better characterize the current strain and stress states of this complex system. Comparisons between the actual states of strain and stress provided by focal mechanism inversions in homogeneous sectors, and the states of strain and stress modelized using numerous test-configurations, led us to investigate both the kinematic conditions at the boundaries of the system and the role of rheological parameters. This study provides a new regionalization and quantification of the stress variations in the larger Scotia plate system. It rises up the matter of regional evolution from compressional zones (Ande, Sandwich subduction front), to strike-slip (Nord and South Scotia ridges), and extensional areas (Bransfield basin, Sandwich subduction extrado), and provides new constrains to discuss the related geodynamic processes.
Monte Carlo Numerical Models for Nuclear Logging Applications
Directory of Open Access Journals (Sweden)
Fusheng Li
2012-06-01
Full Text Available Nuclear logging is one of most important logging services provided by many oil service companies. The main parameters of interest are formation porosity, bulk density, and natural radiation. Other services are also provided from using complex nuclear logging tools, such as formation lithology/mineralogy, etc. Some parameters can be measured by using neutron logging tools and some can only be measured by using a gamma ray tool. To understand the response of nuclear logging tools, the neutron transport/diffusion theory and photon diffusion theory are needed. Unfortunately, for most cases there are no analytical answers if complex tool geometry is involved. For many years, Monte Carlo numerical models have been used by nuclear scientists in the well logging industry to address these challenges. The models have been widely employed in the optimization of nuclear logging tool design, and the development of interpretation methods for nuclear logs. They have also been used to predict the response of nuclear logging systems for forward simulation problems. In this case, the system parameters including geometry, materials and nuclear sources, etc., are pre-defined and the transportation and interactions of nuclear particles (such as neutrons, photons and/or electrons in the regions of interest are simulated according to detailed nuclear physics theory and their nuclear cross-section data (probability of interacting. Then the deposited energies of particles entering the detectors are recorded and tallied and the tool responses to such a scenario are generated. A general-purpose code named Monte Carlo N– Particle (MCNP has been the industry-standard for some time. In this paper, we briefly introduce the fundamental principles of Monte Carlo numerical modeling and review the physics of MCNP. Some of the latest developments of Monte Carlo Models are also reviewed. A variety of examples are presented to illustrate the uses of Monte Carlo numerical models
Laboratory and Numerical Modeling of Smoke Characteristics for Superfog Formation
Bartolome, C.; Lu, V.; Tsui, K.; Princevac, M.; Venkatram, A.; Mahalingam, S.; Achtemeier, G.; Weise, D.
2011-12-01
Land management techniques in wildland areas include prescribed fires to promote biodiversity and reduce risk of severe wildfires across the United States. Several fatal car pileups have been associated with smoke-related visibility reduction from prescribed burns. Such events have occurred in year 2000 on the interstate highways I-10 and I-95, 2001 on the I-4, 2006 on the I-95, and 2008 on the I-4 causing numerous fatalities, injuries, and damage to property. In some of the cases visibility reduction caused by smoke and fog combinations traveling over roadways have been reported to be less than 3 meters, defined as superfog. Our research focuses on delineating the conditions that lead to formation of the rare phenomena of superfog and creating a tool to enable land managers to effectively plan prescribed burns and prevent tragic events. It is hypothesized that the water vapor from combustion, live fuels, soil moisture, and ambient air condense onto the cloud condensation nuclei (CCN) particles emitted from low intensity smoldering fires. Physical and numerical modeling has been used to investigate these interactions. A physical model in the laboratory has been developed to characterize the properties of smoke resulting from smoldering pine needle litters at the PSW Forest Service in Riverside, CA. Temporal measurements of temperature, relative humidity, sensible heat flux, radiation heat flux, convective heat flux, particulate matter concentrations and visibilities have been measured for specific cases. The size distribution and number concentrations of the fog droplets formed inside the chamber by mixing cool dry and moist warm air masses to produce near superfog visibilities were measured by a Phase Doppler Particle Analyzer. Thermodynamic modeling of smoke and ambient air was conducted to estimate liquid water contents (LWC) available to condense into droplets and form significant reductions in visibility. The results show that LWC of less than 2 g m-3 can be
Numerical modelling of nonlinear full-wave acoustic propagation
International Nuclear Information System (INIS)
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed
Numerical Verification of the Weak Turbulent Model for Swell Evolution
Korotkevich, A O; Resio, D; Zakharov, V E
2007-01-01
We performed numerical simulation of an ensemble of nonlinearly interacting free gravity waves (swell) by two different methods: solution of primordial dynamical equations describing potential flow of the ideal fluid with a free surface and, solution of the kinetic Hasselmann equation, describing the wave ensemble in the framework of the theory of weak turbulence. Comparison of the results demonstrates applicability of the weak turbulent approach. In both cases we observed effects predicted by this theory: frequency downshift, angular spreading and formation of Zakharov-Filonenko spectrum $I_{\\omega} \\sim \\omega^{-4}$. One of the results of our article consists in the fact that physical processes in finite size laboratory wave tanks and in the ocean are quite different, and the results of such laboratory experiments can be applied to modeling of the ocean phenomena with extra care. We also present the estimate on the minimum size of the laboratory installation, allowing to model open ocean surface wave dynami...
A guide to numerical modelling in systems biology
Deuflhard, Peter
2015-01-01
This book is intended for students of computational systems biology with only a limited background in mathematics. Typical books on systems biology merely mention algorithmic approaches, but without offering a deeper understanding. On the other hand, mathematical books are typically unreadable for computational biologists. The authors of the present book have worked hard to fill this gap. The result is not a book on systems biology, but on computational methods in systems biology. This book originated from courses taught by the authors at Freie Universität Berlin. The guiding idea of the courses was to convey those mathematical insights that are indispensable for systems biology, teaching the necessary mathematical prerequisites by means of many illustrative examples and without any theorems. The three chapters cover the mathematical modelling of biochemical and physiological processes, numerical simulation of the dynamics of biological networks, and identification of model parameters by means of comparisons...
A finite-element numerical approach for modeling tsunamis
Directory of Open Access Journals (Sweden)
A. Piatanesi
1994-06-01
Full Text Available A numerical scheme suitable for modeling tsunamis is developed and tested against available analytical solutions. The governing equations are the shallow water nonlinear nondispersive equations that are known to be appropriate for tsunami generation and propagation in coastal waters. The integration scheme is based on a finite-element space discretization, where the basic elements are triangles and the shape functions are linear. The time integration is a double step algorithm that is accurate to the second order in the time step ?t. The boundary conditions are pure reflectivity and complete transmissivity on the solid and open boundaries respectively and are implemented by modifying the time integration scheme in a suitable way. The model performance is evaluated by comparing the results with the analytical solutions in selected cases and is quite satisfactory, even when the grid has a coarse spatial resolution.
Supersymmetric Theory of Stochastic ABC Model: A Numerical Study
Ovchinnikov, Igor V; Ensslin, Torsten A; Wang, Kang L
2016-01-01
In this paper, we investigate numerically the stochastic ABC model, a toy model in the theory of astrophysical kinematic dynamos, within the recently proposed supersymmetric theory of stochastics (STS). STS characterises stochastic differential equations (SDEs) by the spectrum of the stochastic evolution operator (SEO) on elements of the exterior algebra or differentials forms over the system's phase space, X. STS can thereby classify SDEs as chaotic or non-chaotic by identifying the phenomenon of stochastic chaos with the spontaneously broken topological supersymmetry that all SDEs possess. We demonstrate the following three properties of the SEO, deduced previously analytically and from physical arguments: the SEO spectra for zeroth and top degree forms never break topological supersymmetry, all SDEs possesses pseudo-time-reversal symmetry, and each de Rahm cohomology class provides one supersymmetric eigenstate. Our results also suggests that the SEO spectra for forms of complementary degrees, i.e., k and ...
Numerical modelling of nonlinear full-wave acoustic propagation
Energy Technology Data Exchange (ETDEWEB)
Velasco-Segura, Roberto, E-mail: roberto.velasco@ccadet.unam.mx; Rendón, Pablo L., E-mail: pablo.rendon@ccadet.unam.mx [Grupo de Acústica y Vibraciones, Centro de Ciencias Aplicadas y Desarrollo Tecnológico, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apartado Postal 70-186, C.P. 04510, México D.F., México (Mexico)
2015-10-28
The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.
Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment
Turner, M. W.; Hawk, C. W.; Litchford, R. J.
2009-01-01
Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.
Advanced numerical modelling of a fire. Final report
Energy Technology Data Exchange (ETDEWEB)
Heikkilae, L.; Keski-Rahkonen, O. [VTT Building Technology, Espoo (Finland)
1996-03-01
Experience and probabilistic risk assessments show that fires present a major hazard in a nuclear power plant (NPP). The PALOME project (1988-92) improved the quality of numerical simulation of fires to make it a useful tool for fire safety analysis. Some of the most advanced zone model fire simulation codes were acquired. The performance of the codes was studied through literature and personal interviews in earlier studies and BRI2 code from the Japanese Building Research Institute was selected for further use. In PALOME 2 project this work was continued. Information obtained from large-scale fire tests at the German HDR facility allowed reliable prediction of the rate of heat release and was used for code validation. BRI2 code was validated particularly by participation in the CEC standard problem `Prediction of effects caused by a cable fire experiment within the HDR-facility`. Participation in the development of a new field model code SOFIE specifically for fire applications as British-Swedish-Finnish cooperation was one of the goals of the project. SOFIE code was implemented at VTT and the first results of validation simulations were obtained. Well instrumented fire tests on electronic cabinets were carried out to determine source terms for simulation of room fires and to estimate fire spread to adjacent cabinets. The particular aim of this study was to measure the rate of heat release from a fire in an electronic cabinet. From the three tests, differing mainly in the amount of the fire load, data was obtained for source terms in numerical modelling of fires in rooms containing electronic cabinets. On the basis of these tests also a simple natural ventilation model was derived. (19 refs.).
Numerical modelling of cooling tower plumes: comparison with experimental data
International Nuclear Information System (INIS)
To validate the numerical models of cooling tower plumes used in impact studies, EDF has effected a major testing program in the vicinity of the BUGEY nuclear power station, including sets of fine measurements taken from aircraft, teledetection readings and routine measurements effected over a very period (photographs of plumes, micro-meteorological network). The data recorded have allowed two types of models to be validaded: 1) The aim of the first type is to establish statistics of the morphological characteristics of plumes (length, height, etc.) and the resulting micro-climatic changes (i.e. reduction of the duration of sunshine and attenuation of the intensity of overall radiation. This type of model was validated on the basis of the routine measurements carried out over a long period. 2) The second type (a three - dimensional model and a microphysical model of the spectrum), mainly designed for the study of the dynamic and thermodynamic structure of plumes, has been validated on the basis of measurements made during intensive measurements campaigns (formation of artificial cumulus, interaction of the plume with a cloud formation)
Reproduction of hypopnea phenomenon using a physical and numerical model
Chouly, F; Lagrée, P Y; Pelorson, X; Payan, Y; Chouly, Franz; Hirtum, Annemie Van; Lagr\\'{e}e, Pierre-Yves; Pelorson, Xavier; Payan, Yohan
2004-01-01
Obstructive sleep apnea syndrome is now considered as a major health care topic. An in-vitro setup which reproduces and simplifies upper airway geometry has been the basis to study the fluid/walls interaction that leads to an apnea. It consists of a rigid pipe (the pharynx) in contact with a deformable latex cylinder filled with water (the tongue). Air flows out of the rigid pipe and induces pressure forces on the cylinder. We present a numerical model of this setup: a finite element model of the latex cylinder is in interaction with a fluid model. Simulation of an hypopnea (partial collapsus of the airway) has been possible and in agreement with observations from the in-vitro setup. The same phenomenon has been simulated on a soft palate model obtained from a patient sagittal radiography. These first results encourage us to improve the model so as it could reproduce the complete apnea phenomenon, and be used for a planification purpose in sleep apnea surgery.
A numerical model for dynamic wave rotor analysis
Paxson, D. E.
1995-01-01
A numerical model has been developed which can predict the dynamic (and steady state) performance of a wave rotor, given the geometry and time dependent boundary conditions. The one-dimensional, perfect gas, CFD based code tracks the gasdynamics in each of the wave rotor passages as they rotate past the various ducts. The model can operate both on and off-design, allowing dynamic behavior to be studied throughout the operating range of the wave rotor. The model accounts for several major loss mechanisms including finite passage opening time, fluid friction, heat transfer to and from the passage walls, and leakage to and from the passage ends. In addition, it can calculate the amount of work transferred to and from the fluid when the flow in the ducts is not aligned with the passages such as occurs in off-design operation. Since it is one-dimensional, the model runs reasonably fast on a typical workstation. This paper will describe the model and present the results of some transient calculations for a conceptual four port wave rotor designed as a topping cycle for a small gas turbine engine.
Mechanical Interaction in Pressurized Pipe Systems: Experiments and Numerical Models
Directory of Open Access Journals (Sweden)
Mariana Simão
2015-11-01
Full Text Available The dynamic interaction between the unsteady flow occurrence and the resulting vibration of the pipe are analyzed based on experiments and numerical models. Waterhammer, structural dynamic and fluid–structure interaction (FSI are the main subjects dealt with in this study. Firstly, a 1D model is developed based on the method of characteristics (MOC using specific damping coefficients for initial components associated with rheological pipe material behavior, structural and fluid deformation, and type of anchored structural supports. Secondly a 3D coupled complex model based on Computational Fluid Dynamics (CFD, using a Finite Element Method (FEM, is also applied to predict and distinguish the FSI events. Herein, a specific hydrodynamic model of viscosity to replicate the operation of a valve was also developed to minimize the number of mesh elements and the complexity of the system. The importance of integrated analysis of fluid–structure interaction, especially in non-rigidity anchored pipe systems, is equally emphasized. The developed models are validated through experimental tests.
Numerical modelling of blue mussel (Mytilus edulis) bacterial contamination
Dabrowski, Tomasz; Doré, William J.; Lyons, Kieran; Nolan, Glenn D.
2014-05-01
Bivalve shellfish such as oysters and mussels can concentrate human pathogens when grown in areas impacted by municipal wastewater. Under EU regulation this risk to consumers is controlled by determining the sanitary quality of bivalve shellfish production areas based on the concentration of Escherichia coli present in shellfish flesh. The authors present a modelling approach to simulate an uptake of E. coli from seawater and subsequent depuration by Mytilus edulis. The model that dynamically predicts E. coli concentration in the mussel tissue is embedded within a 3-D numerical modelling system comprising hydrodynamic, biogeochemical, shellfish ecophysiological and the newly proposed microbial modules. The microbial module has two state variables, namely, the concentrations of E. coli in water and in the mussel tissue. Novel formulations to calculate the filtration rates by mussels and the resulting uptake of bacteria are proposed; these rates are updated at every computational time step. Concentrations of E. coli in seawater are also updated accordingly taking into account the amounts ingested by mussels. The model has been applied to Bantry Bay in the south-west of Ireland. The results indicate that the model is capable of reproducing the official classification of shellfish waters in the bay based on monthly sampling at several stations. The predicted filtration rates and ratios of E. coli in water and mussels also compare well with the literature. The model thus forms a tool that may be used to assist in the classification of shellfish waters at much greater spatial and temporal detail than that offered by a field monitoring programme. Moreover, it can also aid in designing an efficient monitoring programme. The model can also be utilised to determine the contribution of individual point sources of pollution on the microbial loading in mussels and, when incorporated into an operational framework, it can provide a short-term forecasting of microbial
A compact introduction to the numerical modeling of multiphase flows
Energy Technology Data Exchange (ETDEWEB)
Woerner, M.
2003-11-01
This report represents the handouts of an eight hour lecture held on occasion of the ''International Summer School on Computational Modeling of Combustion and Multiphase Flows in Energy Systems''. This summer school took place in Neptun-Olimp, Romania, in the period of July 21 - 25, 2003. The purpose of this report is to give students that are already familiar with the physics and numerical computation of single phase flow a compact introduction into the computational modeling of multiphase flows. The report is restricted to the hydrodynamics of multiphase flow and does not consider heat transfer, mass transfer and phase change. The report gives first an insight in the fundamental hydrodynamical phenomena of multiphase flows. It then presents the most popular modeling concepts for multiphase flows and points out their achievements and limitations. It details the continuous or interpenetrating field formulation of two-phase flow based on a volume averaging procedure and presents the related models as there are the homogeneous model, the diffusion model and drift flux model, and the two-fluid model. The report also discusses the Euler-Lagrange approach for disperse flow as well as interface resolving simulation methods such as the volume-of-fluid method, the level-set method and the front-tracking method. (orig.) [German] Der vorliegende Bericht stellt eine ergaenzende schriftliche Unterlage zu einer acht Stunden umfassenden Vorlesung dar, die im Rahmen der ''International Summer School on Computational Modeling of Combustion and Multiphase Flows in Energy Systems'' gehalten wurde. Die Sommer-Schule fand vom 21.-25. Juli 2003 in Neptun-Olimp, Rumaenien, statt. Das Ziel dieses Berichtes ist es, Studenten, die bereits ueber Kenntnisse zur Physik und zur numerischen Berechnung einphasiger Stroemungen verfuegen, eine kompakte Einfuehrung in die numerische Modellierung von Mehrphasenstroemungen zu geben. Der Bericht beschraenkt sich
Numerical Modeling for Yield Pillar Design: A Case Study
Li, Wenfeng; Bai, Jianbiao; Peng, Syd; Wang, Xiangyu; Xu, Ying
2015-01-01
Two single-entry gateroad systems employing a yield pillar for bump control in a Chinese coal mine were introduced. The overburden depth of the longwall panels was approximately 390 m. When the width/height (W/H) ratio of the yield pillar was 2.67, coal bumps in the tailgate occurred in front of the longwall retreating face. However, in another panel, the coal bump was eliminated because the W/H ratio was reduced to 1.67. Under this condition, instrumentation results indicated that the roof-to-floor and rib-to-rib convergences reached 1,050 and 790 mm, respectively, during longwall retreat. The numerical model was used to back-analyze the two cases of yield pillar application in the hope to find the principle for yield pillar design. In order to improve the reliability of the numerical model, the strain-hardening gob and strain-softening pillar materials were meticulously calibrated, and the coal/rock interface strength was determined by laboratory direct shear tests. The results of the validated model indicate that if the W/H ratio of the yield pillar equals 1.67, the peak vertical stress in the panel rib (37.7 MPa) is much larger than that in the yield pillar (21.1 MPa); however, the peak vertical stress in the panel rib (30.87 MPa) is smaller than that in the yield pillar (36 MPa) when the W/H ratio of yield pillar is 2.67. These findings may be helpful to the design of yield pillars for bump control.
Numerical modeling of sodium fire—Part I: Spray combustion
International Nuclear Information System (INIS)
Highlights: • A CFD based method is proposed for the simulation of sodium spray combustion. • A pre-ignition model is proposed which is based on combustion mass transfer and reaction kinetics approach. • The proposed method is validated against single droplet experiments of Miyahara and Ara. • The predictions obtained using the proposed method is in good agreement with the experiments. - Abstract: A sodium cooled fast reactor is one of the fourth generation advanced reactor designs. Liquid sodium is used as a coolant in such a reactor as it has excellent thermophysical properties. However liquid sodium can react violently when exposed to air or water. A sodium-air reaction typically occurs in two dominant modes: spray and pool. Typically, the spray mode of burning is considered as more severe than the pool model of burning. The focus of this paper is on sodium spray combustion. For the safety of a sodium cooled fast reactor, sodium-air reactions should be avoided. To avoid and to mitigate the consequences if a sodium fire occurs, it is essential to understand various physical phenomena involved in a sodium-air reaction. Computational fluid dynamics based numerical methods can be used for this purpose as they are known to resolve all spatial and temporal scales and simulate various physical processes governing sodium-air reaction. The goal of the work presented within this paper is to propose a numerical method to simulate sodium spray combustion and validate this method against experiments. A single sodium droplet combustion experiments is used for the validation. The model predictions of falling velocity and burned mass are in good agreement with experimental data. Additionally, parametric studies were performed to investigate the effects of initial droplet diameter, temperature and oxygen concentration on burning rate and on ignition time delay. Once sufficiently validated, the present method can be used for safety evaluation of a sodium fast reactor
3-D numerical modeling of plume-induced subduction initiation
Baes, Marzieh; Gerya, taras; Sobolev, Stephan
2016-04-01
Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.
Rivers on Titan - numerical modelling of sedimentary structures
Misiura, Katarzyna; Czechowski, Leszek
2016-07-01
On Titan surface we can expect a few different geomorphological forms, e.g. fluvial valley and river channels. In our research we use numerical model of the river to determine the limits of different fluvial parameters that play important roles in evolution of the rivers on Titan and on Earth. We have found that transport of sediments as suspended load is the main way of transport for Titan [1]. We also determined the range of the river's parameters for which braided river is developed rather than meandering river. Similar, parallel simulations for rivers deltas are presented in [2]. Introduction Titan is a very special body in the Solar System. It is the only moon that has dense atmosphere and flowing liquid on its surface. The Cassini-Huygens mission has found on Titan meandering rivers, and indicated processes of erosion, transport of solid material and its sedimentation. This work is aimed to investigate the similarity and differences between these processes on Titan and the Earth. Numerical model The dynamical analysis of the considered rivers is performed using the package CCHE modified for the specific conditions on Titan. The package is based on the Navier-Stokes equations for depth-integrated two dimensional, turbulent flow and three dimensional convection-diffusion equation of sediment transport. For more information about equations see [1]. Parameters of the model We considered our model for a few different parameters of liquid and material transported by a river. For Titan we consider liquid corresponding to a Titan's rain (75% methane, 25% nitrogen), for Earth, of course, the water. Material transported in rivers on Titan is water ice, for Earth - quartz. Other parameters of our model are: inflow discharge, outflow level, grain size of sediments etc. For every calculation performed for Titan's river similar calculations are performed for terrestrial ones. Results and Conclusions The results of our simulation show the differences in behaviour of the
Institute of Scientific and Technical Information of China (English)
黄丙远; 赵坤
2012-01-01
The local existence of smooth solution with the periodic initial value condition is firstly obtained by using Galerkin method. Based on it, the global existence of the smooth solution for the 2 -dimensional Landau -Lifshitz - Darwin coupled system with small initial data is further derived by making a priori estimate globally in time.%利用Galerkin方法得到了周期边值问题的局部光滑解,然后在小初值的条件下对光滑解做关于时间的整体先验估计,得到了二维Landau-Lifshitz-Darwin方程组在小初值条件下的整体光滑解.
Comparison of Laboratory Experimental Data to XBeach Numerical Model Output
Demirci, Ebru; Baykal, Cuneyt; Guler, Isikhan; Sogut, Erdinc
2016-04-01
Coastal zones are living and constantly changing environments where both the natural events and the human-interaction results come into picture regarding to the shoreline behavior. Both the nature of the coastal zone and the human activities shape together the resultants of the interaction with oceans and coasts. Natural extreme events may result in the need of human interference, such as building coastal structures in order to prevent from disasters or any man-made structure throughout a coastline may affect the hydrodynamics and morphology in the nearshore. In order to understand and cope with this cycle of cause and effect relationship, the numerical models developed. XBeach is an open-source, 2DH, depth average numerical model including the hydrodynamic processes of short wave transformation (refraction, shoaling and breaking), long wave (infragravity wave) transformation (generation, propagation and dissipation), wave-induced setup and unsteady currents, as well as overwash and inundation and morphodynamic processes of bed load and suspended sediment transport, dune face avalanching, bed update and breaching (Roelvink et al., 2010). Together with XBeach numerical model, it is possible to both verify and visualize the resultant external effects to the initial shorelines in coastal zones. Recently, Baykal et al. (2015) modelled the long term morphology changes with XBeach near Kızılırmak river mouth consisting of one I-shaped and one Y-shaped groins. In order to investigate the nature of the shoreline and near shore hydrodynamic conditions and morphology, the five laboratory experiments are conducted in the Largescale Sediment Transport Facility at the U.S. Army Engineer Research and Development Center in order to be used to improve longshore sand transport relationships under the combined influence of waves and currents and the enhancement of predictive numerical models of beach morphology evolution. The first series of the experiments were aimed at
Comparison of Laboratory Experimental Data to XBeach Numerical Model Output
Demirci, Ebru; Baykal, Cuneyt; Guler, Isikhan; Sogut, Erdinc
2016-04-01
Coastal zones are living and constantly changing environments where both the natural events and the human-interaction results come into picture regarding to the shoreline behavior. Both the nature of the coastal zone and the human activities shape together the resultants of the interaction with oceans and coasts. Natural extreme events may result in the need of human interference, such as building coastal structures in order to prevent from disasters or any man-made structure throughout a coastline may affect the hydrodynamics and morphology in the nearshore. In order to understand and cope with this cycle of cause and effect relationship, the numerical models developed. XBeach is an open-source, 2DH, depth average numerical model including the hydrodynamic processes of short wave transformation (refraction, shoaling and breaking), long wave (infragravity wave) transformation (generation, propagation and dissipation), wave-induced setup and unsteady currents, as well as overwash and inundation and morphodynamic processes of bed load and suspended sediment transport, dune face avalanching, bed update and breaching (Roelvink et al., 2010). Together with XBeach numerical model, it is possible to both verify and visualize the resultant external effects to the initial shorelines in coastal zones. Recently, Baykal et al. (2015) modelled the long term morphology changes with XBeach near Kızılırmak river mouth consisting of one I-shaped and one Y-shaped groins. In order to investigate the nature of the shoreline and near shore hydrodynamic conditions and morphology, the five laboratory experiments are conducted in the Largescale Sediment Transport Facility at the U.S. Army Engineer Research and Development Center in order to be used to improve longshore sand transport relationships under the combined influence of waves and currents and the enhancement of predictive numerical models of beach morphology evolution. The first series of the experiments were aimed at
A numerical scheme for coastal morphodynamic modelling on unstructured grids
Guerin, Thomas; Bertin, Xavier; Dodet, Guillaume
2016-08-01
Over the last decade, modelling systems based on unstructured grids have been appearing increasingly attractive to investigate the dynamics of coastal zones. However, the resolution of the sediment continuity equation to simulate bed evolution is a complex problem which often leads to the development of numerical oscillations. To overcome this problem, addition of artificial diffusion or bathymetric filters are commonly employed methods, although these techniques can potentially over-smooth the bathymetry. This study aims to present a numerical scheme based on the Weighted Essentially Non-Oscillatory (WENO) formalism to solve the bed continuity equation on unstructured grids in a finite volume formulation. The new solution is compared against a classical method, which combines a basic node-centered finite volume method with artificial diffusion, for three idealized test cases. This comparison reveals that a higher accuracy is obtained with our new method while the addition of diffusion appears inappropriate mainly due to the arbitrary choice of the diffusion coefficient. Moreover, the increased computation time associated with the WENO-based method to solve the bed continuity equation is negligible when considering a fully-coupled simulation with tides and waves. Finally, the application of the new method to the pluri-monthly evolution of an idealized inlet subjected to tides and waves shows the development of realistic bed features (e.g. secondary flood channels, ebb-delta sandbars, or oblique sandbars at the adjacent beaches), that are smoothed or nonexistent when using additional diffusion.
CDIAC catalog of numeric data packages and computer model packages
International Nuclear Information System (INIS)
The Carbon Dioxide Information Analysis Center acquires, quality-assures, and distributes to the scientific community numeric data packages (NDPs) and computer model packages (CMPs) dealing with topics related to atmospheric trace-gas concentrations and global climate change. These packages include data on historic and present atmospheric CO2 and CH4 concentrations, historic and present oceanic CO2 concentrations, historic weather and climate around the world, sea-level rise, storm occurrences, volcanic dust in the atmosphere, sources of atmospheric CO2, plants' response to elevated CO2 levels, sunspot occurrences, and many other indicators of, contributors to, or components of climate change. This catalog describes the packages presently offered by CDIAC, reviews the processes used by CDIAC to assure the quality of the data contained in these packages, notes the media on which each package is available, describes the documentation that accompanies each package, and provides ordering information. Numeric data are available in the printed NDPs and CMPs, in CD-ROM format, and from an anonymous FTP area via Internet. All CDIAC information products are available at no cost
Merging AI and numerical modeling for accelerator control
International Nuclear Information System (INIS)
The authors report the beginnings of an experiment to evaluate the power and limitations of artificial intelligence techniques combined with beam-line modeling for solving problems in accelerator control. Using the Knowledge Engineering Environment (KEE) system, they have built a knowledge base that describes the characteristics and the relationships of about 30 devices in a typical accelerator beam line. Each device in the line is categorized and pertinent attributes for each category are defined. Specific values for each device are assigned in the knowledge base to represent static characteristics. Device-specific slots are also provided for dynamic attributes. The definition of these slots reflects the data type and any limitations or restrictions on the range of the data. The authors model relationships between the various beam-line devices using the techniques of rules, active values, and object-oriented models. The knowledge base provides a framework for analyzing faults and offering suggestions to assist in tuning, based on information provided by the accelerator physicists (domain experts) responsible for designing and tuning this beam line. Our knowledge base has a powerful graphical interface. It allows the operator to mouse on an icon for a particular icon in the schematic of the beam line and obtain device-specific information and control over that device. The beam optics code Transport is used to model the beam line numerically. 11 refs., 7 figs
Numerical Modeling of the Evolving Stable Boundary Layer
Sorbjan, Z.
2013-12-01
A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.
Numeric modeling of fire suppression by organophosphorous inhibitors
Makhviladze, G M; Zykov, A P
2008-01-01
Numerical calculations of the effect of organophosphorous inhibitor (CF3CH2O)3P and its mixtures with carbon dioxide on propane flames are carried out using the three dimensional Reynolds-averaged Navier-Stokes (RANS) equations in the low Mach number approximation. The k-e model of turbulence, the EDC combustion model and the weighted-sum-of-gray-gases model of radiation are used. The Westbrook global-kinetic scheme with fractional order of reaction was used for the calculation of chemical reaction rate of propane combustion. The empirical expression for the correction factor for the chemical reaction rate was used to model the effect of organophosphorous inhibitor no the reaction. Two series of test calculations for different values of the correction factor are carried out. Dependences of the minimum extinguishing concentration of the inhibitor per carbon dioxide volume concentration in the extinguishing mixtures were obtained. The results of test calculations are shown to agree reasonably with the experimen...
A Numerical Model for the Microcirculation in Skeletal Muscle Fascia
Jacobitz, Frank G.; Schmid-Schönbein, Geert W.
2002-11-01
A numerical model for blood flow in a microvascular network has been developed. The model uses the complete network topology of rat spinotrapezius muscle fascia that was reconstructed from microscopic images. The fascia's network is composed of a feeding arterial network, a collecting venous network, and bundles of capillaries. The flow in the network's vessels is characterized by low Reynolds and Womersley numbers. The model consideres that the microvessels are distensible by pressure and that the arterioles are actively contractile. The blood has non-Newtonian apparent viscosity and blood cells are distributed at bifurcations according to the flow rates into the side branches. These properties have previously been determined experimentally. The method of indefinite admittances is used to compute the flow in the network. The apparent viscosity is computed from local values of hematocrit, shear, and vessel diameter. The model provides detailed information about the flow in all of the network's vessels. Statistical properties of the network, such as the overall flowrate through the network or distributions of pressure, shear stress, and hematocrit in the network are determined. Results for the flow in arterial, venous, and capillary vessels are compared.
Modelling human actions on lightweight structures: experimental and numerical developments
Directory of Open Access Journals (Sweden)
Živanović S.
2015-01-01
Full Text Available This paper presents recent, numerical and experimental, developments in modelling dynamic loading generated by humans. As modern structures with exposure to human-induced loading, such as footbridges, building floors and grandstands, are becoming ever lighter and more slender, they are increasingly susceptible to vibration under human-induced dynamic excitation, such as walking, jumping, running and bobbing, and their vibration serviceability assessment is often a deciding factor in the design process. While simplified modelling of the human using a harmonic force was sufficient for assessment of vibration performance of more robust structures a few decades ago, the higher fidelity models are required in the contemporary design. These models are expected not only to describe both temporal and spectral features of the force signal more accurately, but also to capture the influence, psychological and physiological, of human-structure and human-human interaction mechanisms on the human kinematics, and consequently on the force generated and the resulting vibration response. Significant advances have been made in both the research studies and design guidance. This paper reports the key developments and identifies the scope for further research.
Numerical modeling of rapidly varying flows using HEC-RAS and WSPG models.
Rao, Prasada; Hromadka, Theodore V
2016-01-01
The performance of two popular hydraulic models (HEC-RAS and WSPG) for modeling hydraulic jump in an open channel is investigated. The numerical solutions are compared with a new experimental data set obtained for varying channel bottom slopes and flow rates. Both the models satisfactorily predict the flow depths and location of the jump. The end results indicate that the numerical models output is sensitive to the value of chosen roughness coefficient. For this application, WSPG model is easier to implement with few input variables.
Numerical modeling of the SNS H- ion source
Veitzer, Seth A.; Beckwith, Kristian R. C.; Kundrapu, Madhusudhan; Stoltz, Peter H.
2015-04-01
Ion source rf antennas that produce H- ions can fail when plasma heating causes ablation of the insulating coating due to small structural defects such as cracks. Reducing antenna failures that reduce the operating capabilities of the Spallation Neutron Source (SNS) accelerator is one of the top priorities of the SNS H- Source Program at ORNL. Numerical modeling of ion sources can provide techniques for optimizing design in order to reduce antenna failures. There are a number of difficulties in developing accurate models of rf inductive plasmas. First, a large range of spatial and temporal scales must be resolved in order to accurately capture the physics of plasma motion, including the Debye length, rf frequencies on the order of tens of MHz, simulation time scales of many hundreds of rf periods, large device sizes on tens of cm, and ion motions that are thousands of times slower than electrons. This results in large simulation domains with many computational cells for solving plasma and electromagnetic equations, short time steps, and long-duration simulations. In order to reduce the computational requirements, one can develop implicit models for both fields and particle motions (e.g. divergence-preserving ADI methods), various electrostatic models, or magnetohydrodynamic models. We have performed simulations using all three of these methods and have found that fluid models have the greatest potential for giving accurate solutions while still being fast enough to perform long timescale simulations in a reasonable amount of time. We have implemented a number of fluid models with electromagnetics using the simulation tool USim and applied them to modeling the SNS H- ion source. We found that a reduced, single-fluid MHD model with an imposed magnetic field due to the rf antenna current and the confining multi-cusp field generated increased bulk plasma velocities of > 200 m/s in the region of the antenna where ablation is often observed in the SNS source. We report
Exercises in 80223 Numerical Modelling of Thermal Processing of Materials
DEFF Research Database (Denmark)
Frandsen, Jens Ole
This exercise book contains exercise instructions for the 7 compulsory exercises (Exercise 1-7) and the final exercise (Exercise 8) in the course 80223 'Numerical Modelling of Thermal Processing of Materials'. The exercise book also contains written program examples in 'C' and 'Pascal'. Finally......, guidelines are given on how to write the report which has to be handed in at the end of the course. The exercise book exists in a newer, updated version from 2000. The original copy is kept in the archives of TM on the ground floor of building 425. A copy of the exercise book can be made available...... by contacting the secretary on the ground floor of building 425. Please give the following number: TM 99.05 (TM = Thermal processing of Materials)...
Experimental measurements and numerical modelling of a green roof
Energy Technology Data Exchange (ETDEWEB)
Lazzarin, Renato M.; Castellotti, Francesco; Busato, Filippo [Padova Univ., Dept. of Management and Engineering, Vicenza (Italy)
2005-12-15
Green roof utilisation has been known since ancient times both in hot and cold climates. Nowadays, it has been reconsidered at issue of energy saving and pollution reduction. In this paper, some measurement sessions on a green roof installed by the Vicenza Hospital are described. A data logging system with temperature, humidity, rainfall, radiation, etc. sensors surveyed both the parameters related to the green roof and to the rooms underneath. The aim is to evaluate the passive cooling, stressing the evapotranspiration role in summer time. Furthermore, the enhanced insulating properties have been tested during winter time. A predictive numerical model has been developed in a building simulation software (TRNSYS) to calculate thermal and energy performances of a building with a green roof, varying the meteorological dataset for a specific geographic zone. (Author)
Numerical Model based Reliability Estimation of Selective Laser Melting Process
DEFF Research Database (Denmark)
Mohanty, Sankhya; Hattel, Jesper Henri
2014-01-01
Selective laser melting is developing into a standard manufacturing technology with applications in various sectors. However, the process is still far from being at par with conventional processes such as welding and casting, the primary reason of which is the unreliability of the process. While...... of the selective laser melting process. A validated 3D finite-volume alternating-direction-implicit numerical technique is used to model the selective laser melting process, and is calibrated against results from single track formation experiments. Correlation coefficients are determined for process input...... parameters such as laser power, speed, beam profile, etc. Subsequently, uncertainties in the processing parameters are utilized to predict a range for the various outputs, using a Monte Carlo method based uncertainty analysis methodology, and the reliability of the process is established....
Numerical modeling of boiling heat transfer in porous media
International Nuclear Information System (INIS)
Theoretical models were developed and validated to investigate boiling heat transfer in porous layers with and without the presence of chimneys. The critical heat flux and distributions of temperature, liquid saturation, liquid and vapor pressures, and liquid and vapor velocities were predicted numerically under typical PWR conditions. The results indicate that a porous layer produces a higher heat transfer coefficient in the nucleate boiling regime, as is well-known, and could potentially yield a much higher critical heat flux than a plain surface does. Moreover, a chimney-type porous layer can have a better thermal performance, i.e., heat transfer coefficient and critical heat flux than a homogeneous one, primarily due to the presence of chimneys providing pathways for vapor to escape from the porous layer with less resistance
Characterizing uniform discharge in atmospheric helium by numerical modelling
Institute of Scientific and Technical Information of China (English)
Lü Bo; Wang Xin-Xin; Luo Hai-Yun; Liang Zhuo
2009-01-01
One-dimensional fluid model of dielectric barrier discharge (DBD) in helium at atmospheric pressure was estab-lished and the discharge was numerically simulated. It was found that not only the spatial distributions of the internal parameters such as the electric field, the electron density and ion density are similar to those in a low-pressure glow discharge, but also the visually apparent attribute (light emission) is exactly the same as the observable feature of a low-pressure glow discharge. This confirms that the uniform DBD in atmosphcric helium is a glow type discharge. The fact that the thickness of the cathode fall layer is about 0.5 ram, much longer than that of a normal glow dischargc in helium at atmospheric pressure, indicates the discharge being a sub-normal glow discharge close to normal one. The multipulse phenomenon was reproduced in the simulation and a much less complicated explanation for this phenomenon was given.
Numerical modeling of size effect in micro hydromechanical deep drawing
Sato, Hideki; Manabe, Ken-ichi; Wei, Dongbin; Jiang, Zhengyi
2013-12-01
A modeling of tribological size effects in micro deep drawing (MDD) and micro hydromechanical deep drawing (MHDD) is a main focus in this study. The inner and outer pockets in which the different friction coefficients can be applied at different lubrication conditions are considered on the blank surface. The ratio of the area of outer pockets to inner pockets is changed with the decrease in the size. The low friction coefficient at the outer pockets is assumed in MHDD by considering the lubrication effect of fluid medium. The numerical analysis is performed under six lubrication conditions. The analytical results of punch force-stroke curves are in good agreement with the experimental values. The friction force decreases in MHDD with the decrease in the size although it increases in MDD. The friction coefficient at die shoulder significantly influences the friction force due to high contact pressure in MHDD.
Numerical modelling of unsaturated flow in multilayer soil covers
International Nuclear Information System (INIS)
When dealing with the closure of waste disposal sites, multilayer soil cover systems with various type of soils are often use to secure the area and to control fluid motion. The hydraulic conditions in the cover, which usually involve different grain size materials and unsaturated flows are quite difficult to evaluate because of the non-linearity of the constitutive laws involved. This paper presents the results of a numerical study of unsaturated flow conditions in systems that comprise 2 (silt over sand) and 3 (sand -silt -sand) distinct layers and a simulation of the flow conditions using a commercially available finite-element code (SEEP/W). Five and two different cases were modelled with the 2 and 3 layers systems, respectively. The results demonstrate the importance of using materials with very different hydraulic properties. The laboratory and field works are briefly described. (J.S.). 51 refs., 12 figs., 1 tab
Using a Numerical Weather Model to Improve Geodesy
Niell, A
2004-01-01
The use of a Numerical Weather Model (NWM) to provide in situ atmosphere information for mapping functions of atmosphere delay has been evaluated using Very Long Baseline Interferometry (VLBI) data spanning eleven years. Parameters required by the IMF mapping functions (Niell 2000, 2001) have been calculated from the NWM of the National Centers for Environmental Prediction (NCEP) and incorporated in the CALC/SOLVE VLBI data analysis program. Compared with the use of the NMF mapping functions (Niell 1996) the application of IMF for global solutions demonstrates that the hydrostatic mapping function, IMFh, provides both significant improvement in baseline length repeatability and noticeable reduction in the amplitude of the residual harmonic site position variations at semidiurnal to long-period bands. For baseline length repeatability the reduction in the observed mean square deviations achieves 80 of the maximum that is expected for the change from NMF to IMF. On the other hand, the use of the wet mapping fun...
Numerical modeling of a high power terahertz source in Shanghai
Institute of Scientific and Technical Information of China (English)
DAI Jin-Hua; DENG Hai-Xiao; DAI Zhi-Min
2012-01-01
On the basis of an energy-recovery linac,a terahertz source with a potential for kilowatts of average power is proposed in Shanghai,which will serve as an effective tool for material and biological sciences,In this paper,the physical design of two free electron laser (FEL) oscillators,in a frequency range of 2-10 THz and 0.5-2 THz respectively,are presented.By using three-dimensional,time-dependent numerical modeling of GENESIS in combination with a paraxial optical propagation code,the THz oscillator performance,the detuning effects,and the tolerance requirements on the electron beam,the undulator field and the cavity alignment are given.
Numerical method of slope failure probability based on Bishop model
Institute of Scientific and Technical Information of China (English)
SU Yong-hua; ZHAO Ming-hua; ZHANG Yue-ying
2008-01-01
Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution.
Numerical and physical modelling of oil spreading in broken ice
Energy Technology Data Exchange (ETDEWEB)
Gjoesteen, Janne K. Oekland
2002-07-01
The present work focuses on oil spreading in broken ice and the content of this thesis falls into three categories: 1) The physical and numerical modelling of oil spreading in ice. 2) Ice models and parameters describing the ice cover. 3) Experiments on oil spreading in broken ice. A background study was carried out to investigate existing models for simulating oil in broken ice. Most of them describe motion of oil simply as a function of the ice motion and do not take advantage of the possibilities that recent ice models provide. We decided to choose another direction, starting from scratch with equations describing the flow of oil on top of a water surface. The equations were implemented numerically, including proper boundary conditions to account for the presence of physical restrictions in the form of ice floes in the simulation area. The implementation was designed to be able to apply data on ice motion calculated by an existing dynamic ice model. A first validation of the model was carried out using existing experimental data. As those data were obtained in a different setting, the recorded parameters and set-up of the experiment were not ideal for our purpose. However, we were able to conclude that our model behaviour was reasonable. We have carried out statistical analysis on meteorological data of wind speeds, temperatures, flow sizes and ice thickness to obtain probability distributions describing the parameters. Those data has been collected in the Pechora Sea. Wind and temperature had been recorded for a period of 30-40 years. For this region we also had available Argos satellite data from four buoys drifting in the ice in April-June 1998. The Argos data were carefully analysed to suggest probability distributions and return periods for certain speeds. (Indoor basin tests were carried out to obtain data on spreading of oil in broken ice. A set of 20 tests was conducted, each with different type of oil, ice concentration, slush concentration or ice
A numerical model of coastline deformation for sandy beach at downstream of a jetty
Institute of Scientific and Technical Information of China (English)
SUN Linyun; PAN Junning; XING Fu; LIU Jiaju
2004-01-01
A reformed numerical model based on the "one-line theory" for beach deformation is presented. In this model, thechange of beach slope during coastline procession is eonsidered. A wave numerical model combined with wave re-fraction, diffraction and reflection is used to simulate wave climate to increase numerical accuracy. The results showthat the numerical model has a good precision based on the adequate field data. The results can be applied to practical engineering.
Numerical study of similarity in prototype and model pumped turbines
International Nuclear Information System (INIS)
Similarity study of prototype and model pumped turbines are performed by numerical simulation and the partial discharge case is analysed in detail. It is found out that in the RSI (rotor-stator interaction) region where the flow is convectively accelerated with minor flow separation, a high level of similarity in flow patterns and pressure fluctuation appear with relative pressure fluctuation amplitude of model turbine slightly higher than that of prototype turbine. As for the condition in the runner where the flow is convectively accelerated with severe separation, similarity fades substantially due to different topology of flow separation and vortex formation brought by distinctive Reynolds numbers of the two turbines. In the draft tube where the flow is diffusively decelerated, similarity becomes debilitated owing to different vortex rope formation impacted by Reynolds number. It is noted that the pressure fluctuation amplitude and characteristic frequency of model turbine are larger than those of prototype turbine. The differences in pressure fluctuation characteristics are discussed theoretically through dimensionless Navier-Stokes equation. The above conclusions are all made based on simulation without regard to the penstock response and resonance
Numerical modeling of magnetic moments for UXO applications
Sanchez, V.; Li, Y.; Nabighian, M.; Wright, D.
2006-01-01
The surface magnetic anomaly observed in UXO clearance is mainly dipolar and, consequently, the dipole is the only magnetic moment regularly recovered in UXO applications. The dipole moment contains information about intensity of magnetization but lacks information about shape. In contrast, higher-order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and its potential utility in UXO clearance, we present a 3D numerical modeling study for highly susceptible metallic objects. The basis for the modeling is the solution of a nonlinear integral equation describing magnetization within isolated objects. A solution for magnetization distribution then allows us to compute magnetic moments of the object, analyze their relationships, and provide a depiction of the surface anomaly produced by different moments within the object. Our modeling results show significant high-order moments for more asymmetric objects situated at depths typical of UXO burial, and suggest that the increased relative contribution to magnetic gradient data from these higher-order moments may provide a practical tool for improved UXO discrimination.
Numerical modeling of higher order magnetic moments in UXO discrimination
Sanchez, V.; Yaoguo, L.; Nabighian, M.N.; Wright, D.L.
2008-01-01
The surface magnetic anomaly observed in unexploded ordnance (UXO) clearance is mainly dipolar, and consequently, the dipole is the only magnetic moment regularly recovered in UXO discrimination. The dipole moment contains information about the intensity of magnetization but lacks information about the shape of the target. In contrast, higher order moments, such as quadrupole and octupole, encode asymmetry properties of the magnetization distribution within the buried targets. In order to improve our understanding of magnetization distribution within UXO and non-UXO objects and to show its potential utility in UXO clearance, we present a numerical modeling study of UXO and related metallic objects. The tool for the modeling is a nonlinear integral equation describing magnetization within isolated compact objects of high susceptibility. A solution for magnetization distribution then allows us to compute the magnetic multipole moments of the object, analyze their relationships, and provide a depiction of the anomaly produced by different moments within the object. Our modeling results show the presence of significant higher order moments for more asymmetric objects, and the fields of these higher order moments are well above the noise level of magnetic gradient data. The contribution from higher order moments may provide a practical tool for improved UXO discrimination. ?? 2008 IEEE.
In Marriage of Model and Numerics, Glimpses of the Future
Nejadmalayeri, Alireza; Vasilyev, Oleg V.; Vezolainen, Alexei
2012-11-01
A newly defined concept of m-refinement (model-refinement), which provides two-way coupling of physical models and numerical methods, is employed to study the Reynolds scaling of SCALES with constant levels of fidelity. Within the context of wavelet-based methods, this new hybrid methodology provides a hierarchical space/time dynamically adaptive automatic smooth transition from resolving the Kolmogorov length-scale (WDNS) to decomposing deterministic-coherent/stochastic-incoherent modes (CVS) to capturing more/less energetic structures (SCALES). This variable fidelity turbulence modeling approach utilizes a unified single solver framework by means of a Lagrangian spatially varying thresholding technique. The fundamental findings of this computational complexity study are summarized as follows: 1) SCALES can achieve the objective of ``controlling the captured flow-physics as desired'' by profoundly small number of spatial modes; 2) Reynolds scaling of constant-dissipation SCALES is the same regardless of fidelity of the simulations; 3) the number of energy containing structures at a fixed level of resolved turbulent kinetic energy scales linearly with Re; and 4) the fractal dimension of coherent energy containing structures is close to unity. This work was supported by NSF under grant No. CBET-0756046.
Numerical modelling of an oil spill in the northern Adriatic
Directory of Open Access Journals (Sweden)
Marin Paladin
2012-04-01
Full Text Available Hypothetical cases of oil spills, caused by ship failure in the northern Adriatic, are analysed with the aim of producing three-dimensional models of sea circulation and oil contaminant transport. Sea surface elevations, sea temperature and salinity fields are applied as a forcing argument on the model's open boundaries.The Aladin-HR model with a spatial resolution of 8 km and a time interval of 3 hours is used for atmospheric forcing. River discharges along the coastline in question are introduced as point source terms and are assumed to have zero salinity at their respective locations. The results of the numerical modelling of physical oceanography parameters are validated by measurements carried out in the ‘Adriatic Sea monitoring programme’ in a series of current meter and CTD stations in the period from 1 January 2008 to 15 November 2008.The oil spill model uses the current field obtained from a circulation model.Besides the convective dispersive transport of oil pollution (Lagrangian model of discrete particles, the model takes into account a number of reactive processes such as emulsification, dissolution, evaporation and heat balance between the oil,sea and atmosphere. An actual event took place on 6 February 2008,when the ship `Und Adriyatik' caught fire in the vicinity of the town of Rovinj (Croatia en route from Istanbul (Turkey to Trieste (Italy. At the time the fire broke out, the ship was carrying around 800 tons of oil. Thanks to the rapid intervention of the firedepartment, the fire was extinguished during the following 12 hours,preventing possible catastrophic environmental consequences. Based on this occurrence, five hypothetical scenarios of ship failure with a consequent spill of 800 tons of oil over 12 hours were analysed. The main distinction between the simulated scenarios is the time of the start of the oil spill, corresponding to the times when stronger winds were blowing (>7 m s-1 with a minimum duration of 24 h
Mechanisms of deep slab hydration: numerical modeling and implications
Faccenda, M.; Gerya, T.; Burlini, L.
2009-12-01
Water is a fundamental component of the Earth, affecting its internal structures and dynamics. Sea-water enters the subduction factory via slab hydration that occurs mainly at the trench and is subsequently released in the upper mantle wedge because of slab warming and de-hydration. In the last decades, the scientific research has focused mainly on geophysical processes related to the de-hydration of the slab. However, not much is known on how and to which extent the subducting oceanic plate get hydrated. In order to investigate hydration of the slab, we performed 2D numerical models of a spontaneously bending oceanic plate using I2ELVIS code that account for visco-elasto-plastic rheologies and where fluid flow is regulated by Darci’s law. At the outer rise, bending-related slab faulting occurs, providing a pathway for water percolation in the slab. Faults generally deep trenchward, but antithetic faults are also common. Downward deep fluid flow establishes during brittle extensional deformation at the trench outer rise producing strong variation of the tectonic pressure and causing sub-hydrostatic or even negative pressure gradients along bending related normal faults through which fluids are pumped. The results of the numerical experiment indicate that water can be transported down and stored in the bending area via serpentinization of the normal faults. Deep slab hydration has important implications for the rheological structure, seismicity and seismic anisotropy of the upper mantle because: 1) more water can be stored in the slab producing more enhanced weakening of the mantle wedge, 2) intermediate and deep intra-slab earthquakes can be triggered by slab de-hydration, 3) DHMS phases, able to bring fluids down to the transition zone and lower mantle, could form in the cold core of the slab, 4) the slab could acquire a strong anisotropic fabric responsible for the anisotropic patterns observed at subduction zones.
Numerical Modeling of Tube Forming by HPTR Cold Pilgering Process
Sornin, D.; Pachón-Rodríguez, E. A.; Vanegas-Márquez, E.; Mocellin, K.; Logé, R.
2016-09-01
For new fast-neutron sodium-cooled Generation IV nuclear reactors, the candidate cladding materials for the very strong burn-up are ferritic and martensitic oxide dispersion strengthened grades. Classically, the cladding tube is cold formed by a sequence of cold pilger milling passes with intermediate heat treatments. This process acts upon the geometry and the microstructure of the tubes. Consequently, crystallographic texture, grain sizes and morphologies, and tube integrity are highly dependent on the pilgering parameters. In order to optimize the resulting mechanical properties of cold-rolled cladding tubes, it is essential to have a thorough understanding of the pilgering process. Finite Element Method (FEM) models are used for the numerical predictions of this task; however, the accuracy of the numerical predictions depends not only on the type of constitutive laws but also on the quality of the material parameters identification. Therefore, a Chaboche-type law which parameters have been identified on experimental observation of the mechanical behavior of the material is used here. As a complete three-dimensional FEM mechanical analysis of the high-precision tube rolling (HPTR) cold pilgering of tubes could be very expensive, only the evolution of geometry and deformation is addressed in this work. The computed geometry is compared to the experimental one. It is shown that the evolution of the geometry and deformation is not homogeneous over the circumference. Moreover, it is exposed that the strain is nonhomogeneous in the radial, tangential, and axial directions. Finally, it is seen that the dominant deformation mode of a material point evolves during HPTR cold pilgering forming.
Numerical Modeling of Tube Forming by HPTR Cold Pilgering Process
Sornin, D.; Pachón-Rodríguez, E. A.; Vanegas-Márquez, E.; Mocellin, K.; Logé, R.
2016-07-01
For new fast-neutron sodium-cooled Generation IV nuclear reactors, the candidate cladding materials for the very strong burn-up are ferritic and martensitic oxide dispersion strengthened grades. Classically, the cladding tube is cold formed by a sequence of cold pilger milling passes with intermediate heat treatments. This process acts upon the geometry and the microstructure of the tubes. Consequently, crystallographic texture, grain sizes and morphologies, and tube integrity are highly dependent on the pilgering parameters. In order to optimize the resulting mechanical properties of cold-rolled cladding tubes, it is essential to have a thorough understanding of the pilgering process. Finite Element Method (FEM) models are used for the numerical predictions of this task; however, the accuracy of the numerical predictions depends not only on the type of constitutive laws but also on the quality of the material parameters identification. Therefore, a Chaboche-type law which parameters have been identified on experimental observation of the mechanical behavior of the material is used here. As a complete three-dimensional FEM mechanical analysis of the high-precision tube rolling (HPTR) cold pilgering of tubes could be very expensive, only the evolution of geometry and deformation is addressed in this work. The computed geometry is compared to the experimental one. It is shown that the evolution of the geometry and deformation is not homogeneous over the circumference. Moreover, it is exposed that the strain is nonhomogeneous in the radial, tangential, and axial directions. Finally, it is seen that the dominant deformation mode of a material point evolves during HPTR cold pilgering forming.
Numerical issues for coupling biological models with isopycnal mixing schemes
Gnanadesikan, Anand
1999-01-01
In regions of sloping isopycnals, isopycnal mixing acting in conjunction with biological cycling can produce patterns in the nutrient field which have negative values of tracer in light water and unrealistically large values of tracer in dense water. Under certain circumstances, these patterns can start to grow unstably. This paper discusses why such behavior occurs. Using a simple four-box model, it demonstrates that the instability appears when the isopycnal slopes exceed the grid aspect ratio ( Δz/ Δx). In contrast to other well known instabilities of the CFL type, this instability does not depend on the time step or time-stepping scheme. Instead it arises from a fundamental incompatibility between two requirements for isopycnal mixing schemes, namely that they should produce no net flux of passive tracer across an isopycnal and everywhere reduce tracer extrema. In order to guarantee no net flux of tracer across an isopycnal, some upgradient fluxes across certain parts of an isopycnal are required to balance downgradient fluxes across other parts of the isopycnal. However, these upgradient fluxes can cause local maxima in the nutrient field to become self-reinforcing. Although this is less of a problem in larger domains, there is still a strong tendency for isopycnal mixing to overconcentrate tracer in the dense water. The introduction of eddy-induced advection is shown to be capable of counteracting the upgradient fluxes of nutrient which cause problems, stabilizing the solution. The issue is not simply a numerical curiosity. When used in a GCM, different parameterizations of eddy mixing result in noticeably different distributions of nutrient and large differences in biological production. While much of this is attributable to differences in convection and circulation, the numerical errors described here may also play an important role in runs with isopycnal mixing alone.
Physical and numerical modeling of seawater intrusion in coastal aquifers
Crestani, Elena; Camporese, Matteo; Salandin, Paolo
2016-04-01
Seawater intrusion in coastal aquifers is a worldwide problem caused, among others factors, by aquifer overexploitation, rising sea levels, and climate changes. To limit the deterioration of both surface water and groundwater quality caused by saline intrusion, in recent years many research studies have been developed to identify possible countermeasures, mainly consisting of underground barriers. In this context, physical models are fundamental to study the saltwater intrusion, since they provide benchmarks for numerical model calibrations and for the evaluation of the effectiveness of general solutions to contain the salt wedge. This work presents a laboratory experiment where seawater intrusion was reproduced in a specifically designed sand-box. The physical model, built at the University of Padova, represents the terminal part of a coastal aquifer and consists of a flume 500 cm long, 30 cm wide and 60 cm high, filled for an height of 49 cm with glass beads characterized by a d50 of 0.6 mm and a uniformity coefficient d60/d10 ≈ 1.5. The resulting porous media is homogeneous, with porosity of about 0.37 and hydraulic conductivity of about 1.3×10‑3 m/s. Upstream from the sand-box, a tank filled by freshwater provides the recharge to the aquifer. The downstream tank simulates the sea and red food dye is added to the saltwater to easily visualize the salt wedge. The volume of the downstream tank is about five times the upstream one, and, due to the small filtration discharge, salt concentration variations (i.e., water density variations) due to the incoming freshwater flow are negligible. The hydraulic gradient during the tests is constant, due to the fixed water level in the two tanks. Water levels and discharged flow rate are continuously monitored. The experiment presented here had a duration of 36 h. For the first 24 h, the saltwater wedge was let to evolve until quasi stationary condition was obtained. In the last 12 h, water withdrawal was carried out at
Numerical models of carbonate hosted gold mineralization, Great Basin Nevada
Person, M.; Hofstra, A.; Gao, Y.; Sweetkind, D.; Banerjee, A.
2006-12-01
The Great Basin, Nevada contains many modern hydrothermal system and world class gold deposits hosted within Paleozoic carbonate rocks. Temperature profiles, fluid inclusion studies, and isotopic evidence suggest that modern geothermal and fossil hydrothermal systems associated with gold mineralization share many common features including the absence of a clear magmatic source, flow restricted to fault zones, and remarkably high temperatures at shallow depth. While the plumbing of these systems is not well understood, geochemical and isotopic data suggest that fluid circulation along fault zones is relatively deep (greater than 5 km) and comprised of relatively unexchanged Pleistocene meteoric water with small (less than 2.5 per mill) shifts from the MWL. Many fossil ore-forming systems were also dominated by meteoric water, but are usually exhibit shifts of 5 to 15 per mill from the MWL. Here we present two-dimensional numerical models to reconstruct the plumbing of modern geothermal and Tertiary hydrothermal systems in the Great Basin. Multiple tracers are used in our models, including O- and C-isotopic compositions of fluids/rocks, silica transport/ precipitation, and temperature anomalies, to constrain the plumbing of these systems. Our results suggest that both fossil hydrothermal and modern geothermal systems were probably driven by natural convection cells associated with localized high basal heating. We conclude that the fault controlled flow systems responsible for the genesis of Carlin gold mineralization and modern geothermal systems had to be transient in nature. Permeability changes within the carbonate reservoir was probably associated with extensional tectonic events.
Numerical models of black body dominated GRBs: II. Emission properties
Cuesta-Martínez, Carlos F; Mimica, Petar; Thöne, Christina C; de Ugarte-Postigo, Antonio
2014-01-01
We extend an existing theoretical model to explain the class of Black-Body Dominated (BBD) gamma-ray bursts (GRBs), long lasting events characterized by the presence of a significant thermal component trailing the GRB prompt emission, and also by an absence of a traditional afterglow. GRB 101225A, the Christmas Burst, is a prototype of such class. It has been suggested that BBD-GRBs could be observed after a merger in a binary system consisting of a neutron star and a Helium core of a main sequence star. Using detailed relativistic hydrodynamic numerical simulations we model the propagation of ultrarelativistic jets through the environments created by such mergers. In this paper we focus on explaining the emission properties of the jet evolution computing the whole radiative signature (both thermal and non-thermal) of the jet dynamical evolution. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic spectra and light curves are compared with the observational data...
Numerical modeling of seismic waves using frequency-adaptive meshes
Hu, Jinyin; Jia, Xiaofeng
2016-08-01
An improved modeling algorithm using frequency-adaptive meshes is applied to meet the computational requirements of all seismic frequency components. It automatically adopts coarse meshes for low-frequency computations and fine meshes for high-frequency computations. The grid intervals are adaptively calculated based on a smooth inversely proportional function of grid size with respect to the frequency. In regular grid-based methods, the uniform mesh or non-uniform mesh is used for frequency-domain wave propagators and it is fixed for all frequencies. A too coarse mesh results in inaccurate high-frequency wavefields and unacceptable numerical dispersion; on the other hand, an overly fine mesh may cause storage and computational overburdens as well as invalid propagation angles of low-frequency wavefields. Experiments on the Padé generalized screen propagator indicate that the Adaptive mesh effectively solves these drawbacks of regular fixed-mesh methods, thus accurately computing the wavefield and its propagation angle in a wide frequency band. Several synthetic examples also demonstrate its feasibility for seismic modeling and migration.
Explicit Numerical Modeling of Heat Transfer in Glacial Channels
Jarosch, A. H.; Zwinger, T.
2015-12-01
Turbulent flow and heat transfer of water in englacial channels is explicitly modelelled and the numerical results are compared to the most commonly used heat transfer parameterization in glaciology, i.e. the Dittus-Boelter equation. The three-dimensional flow is simulated by solving the incompressible Navier-Stokes equations utilizing a variational multiscale method (VMS) turbulence model and the finite-element method (i.e. Elmer-FEM software), which also solves the heat equation. By studying a wide range of key parameters of the system, e.g. channel diameter, Reynolds number, water flux, water temperature and Darcy-Weisbach wall roughness (which is explicitly represented on the wall geometry), it is found that the Dittus-Boelter equation is inadequate for glaciological applications and a new, highly suitable heat transfer parameterization for englacial/subglacial channels will be presented. This new parameterization utilizes a standard combination of dimensionless numbers describing the flow and channel (i.e. Reynolds number, Prandtl number and Darcy-Weisbach roughness) to predict a suitable Nusselt number describing the effective heat transfer and thus can be readily used in existing englacial/subglacial hydrology models.
The numerical modelling of a driven nonlinear oscillator
Energy Technology Data Exchange (ETDEWEB)
Shew, C.
1995-11-01
The torsional oscillator in the Earth Sciences Division was developed at Lawrence Livermore National Laboratory and is the only one of its kind. It was developed to study the way rocks damp vibrations. Small rock samples are tested to determine the seismic properties of rocks, but unlike other traditional methods that propagate high frequency waves through small samples, this machine forces the sample to vibrate at low frequencies, which better models real-life properties of large masses. In this particular case, the rock sample is tested with a small crack in its middle. This forces the rock to twist against itself, causing a {open_quotes}stick-slip{close_quotes} friction, known as stiction. A numerical model that simulates the forced torsional osillations of the machine is currently being developed. The computer simulation implements the graphical language LabVIEW, and is looking at the nonlinear spring effects, the frictional forces, and the changes in amplitude and frequency of the forced vibration. Using LabVIEW allows for quick prototyping and greatly reduces the {open_quotes}time to product{close_quotes} factor. LabVIEW`s graphical environment allows scientists and engineers to use familiar terminology and icons (e.g. knobs, switches, graphs, etc.). Unlike other programming systems that use text-based languages, such as C and Basic, LabVIEW uses a graphical programming language to create programs in block diagram form.
Numerical study on the perception-based network formation model
Jo, Hang-Hyun
2015-01-01
In order to understand the evolution of social networks in terms of perception-based strategic link formation, we numerically study a perception-based network formation model. Here each individual is assumed to have his/her own perception of the actual network, and use it to decide whether to create a link to other individual. An individual with the least perception accuracy can benefit from updating his/her perception using that of the most accurate individual via a new link. This benefit is compared to the cost of linking in decision making. Once a new link is created, it affects the accuracies of other individuals' perceptions, leading to a further evolution of the actual network. The initial actual network and initial perceptions are modeled by Erd\\H{o}s-R\\'enyi random networks but with different linking probabilities. Then the stable link density of the actual network is found to show discontinuous transitions or jumps according to the cost of linking. The effect of initial conditions on the complexity o...
Numerical models of trench migration in continental collision zones
Directory of Open Access Journals (Sweden)
V. Magni
2012-03-01
Full Text Available Continental collision is an intrinsic feature of plate tectonics. The closure of an oceanic basin leads to the onset of subduction of buoyant continental material, which slows down and eventually stops the subduction process. We perform a parametric study of the geometrical and rheological influence on subduction dynamics during the subduction of continental lithosphere. In 2-D numerical models of a free subduction system with temperature and stress-dependent rheology, the trench and the overriding plate move self-consistently as a function of the dynamics of the system (i.e. no external forces are imposed. This setup enables to study how continental subduction influences the trench migration. We found that in all models the trench starts to advance once the continent enters the subduction zone and continues to migrate until few million years after the ultimate slab detachment. Our results support the idea that the trench advancing is favoured and, in part provided by, the intrinsic force balance of continental collision. We suggest that the trench advance is first induced by the locking of the subduction zone and the subsequent steepening of the slab, and next by the sinking of the deepest oceanic part of the slab, during stretching and break-off of the slab. The amount of trench advancing ranges from 40 to 220 km and depends on the dip angle of the slab before the onset of collision.
FEM numerical model study of electrosurgical dispersive electrode design parameters.
Pearce, John A
2015-08-01
Electrosurgical dispersive electrodes must safely carry the surgical current in monopolar procedures, such as those used in cutting, coagulation and radio frequency ablation (RFA). Of these, RFA represents the most stringent design constraint since ablation currents are often more than 1 to 2 Arms (continuous) for several minutes depending on the size of the lesion desired and local heat transfer conditions at the applicator electrode. This stands in contrast to standard surgical activations, which are intermittent, and usually less than 1 Arms, but for several seconds at a time. Dispersive electrode temperature rise is also critically determined by the sub-surface skin anatomy, thicknesses of the subcutaneous and supra-muscular fat, etc. Currently, we lack fundamental engineering design criteria that provide an estimating framework for preliminary designs of these electrodes. The lack of a fundamental design framework means that a large number of experiments must be conducted in order to establish a reasonable design. Previously, an attempt to correlate maximum temperatures in experimental work with the average current density-time product failed to yield a good match. This paper develops and applies a new measure of an electrode stress parameter that correlates well with both the previous experimental data and with numerical models of other electrode shapes. The finite element method (FEM) model work was calibrated against experimental RF lesions in porcine skin to establish the fundamental principle underlying dispersive electrode performance. The results can be used in preliminary electrode design calculations, experiment series design and performance evaluation. PMID:26736814
A numerical model for meltwater channel evolution in glaciers
Directory of Open Access Journals (Sweden)
A. H. Jarosch
2011-10-01
Full Text Available Meltwater channels form an integral part of the hydrological system of a glacier. Better understanding of how meltwater channels develop and evolve is required to fully comprehend supraglacial and englacial meltwater drainage. Incision of supraglacial stream channels and subsequent roof closure by ice deformation has been proposed in recent literature as a possible englacial conduit formation process. Field evidence for supraglacial stream incision has been found in Svalbard and Nepal. In Iceland, where volcanic activity provides meltwater with temperatures above 0 °C, rapid enlargement of supraglacial channels has been observed. By coupling, for the first time, a numerical ice dynamic model to a hydraulic model which includes heat transfer, we investigate the evolution of meltwater channels and their incision behaviour. We present results for different, constant meltwater fluxes, different channel slopes, different meltwater temperatures as well as temporal variations in meltwater flux. The key parameters governing incision rate and depth are the channel slope and the meltwater temperature loss to the ice. Meltwater flux controls channel width and to a lesser degree incision behaviour. Calculated Nusselt numbers suggest that turbulent forced convection is the main heat transfer mechanism in the studied meltwater channels.
InSAR and Numeric Modeling for Land Subsidence
Wulamu, A.; Grzovic, M.
2015-12-01
Monitoring land subsidence due to coal mining is a function of several controlling factors, including: depth of the mine, stratigraphy, presence or absence of faults, thickness of mineral seam, mining method used, and hydrogeological conditions. Numerical modeling, e.g., finite element modeling (FEM), provides a comprehensive tool to simulate three-dimensional deformation at specific locations. The basis of the FEM is the representation of a body or a structure by an assemblage of subdivisions called finite elements, which requires the availability of site specific environmental and physical characteristics. The lack of availability of the necessary data leads to large uncertainties in subsidence estimates. With the use of InSAR, many of the needed controlling parameters for improving mine subsidence rate estimates can be identified. Coupling InSAR with FEM can further improve subsidence rate estimates through additional analysis yielding information on the relative importance of various controlling parameters contributing to the mine subsidence, the key mechanisms of failure associated with these parameters, and the surface expressions of these processes. In this contribution, we show that utilizing InSAR and FEM leads to an overall enhanced understanding of mine behavior, including the physical mechanisms that lead to mine subsidence through understanding the rheological behavior of the material over the mine in response to wide range of physical and environmental conditions.
A FINITE ELEMENT MODEL FOR NUMERICAL SIMULATION OF THERMO-MECHANICAL FRICTIONAL CONTACT PROBLEMS
Institute of Scientific and Technical Information of China (English)
张洪武; 韩炜; 陈金涛; 段庆林
2003-01-01
Two kinds of variational principles for numerical simulation of heat transfer and contact analyses are respectively presented. A finite element model for numerical simulation of the thermal contact problems is developed with a pressure dependent heat transfer constitutive model across the contact surface. The numerical algorithm for the finite element analysis of the thermomechanical contact problems is thus developed. Numerical examples are computed and the results demonstrate the validity of the model and algorithm developed.
Interaction between subducting plates: results from numerical and analogue modeling
Kiraly, Agnes; Capitanio, Fabio A.; Funiciello, Francesca; Faccenna, Claudio
2016-04-01
The tectonic setting of the Alpine-Mediterranean area is achieved during the late Cenozoic subduction, collision and suturing of several oceanic fragments and continental blocks. In this stage, processes such as interactions among subducting slabs, slab migrations and related mantle flow played a relevant role on the resulting tectonics. Here, we use numerical models to first address the mantle flow characteristic in 3D. During the subduction of a single plate the strength of the return flow strongly depends on the slab pull force, that is on the plate's buoyancy, however the physical properties of the slab, such as density, viscosity or width, do not affect largely the morphology of the toroidal cell. Instead, dramatic effects on the geometry and the dynamics of the toroidal cell result in models where the thickness of the mantle is varied. The vertical component of the vorticity vector is used to define the characteristic size of the toroidal cell, which is ~1.2-1.3 times the mantle depth. This latter defines the range of viscous stress propagation through the mantle and consequent interactions with other slabs. We thus further investigate on this setup where two separate lithospheric plates subduct in opposite sense, developing opposite polarities and convergent slab retreat, and model different initial sideways distance between the plates. The stress profiles in time illustrate that the plates interacts when slabs are at the characteristic distance and the two slabs toroidal cells merge. Increased stress and delayed slab migrations are the results. Analogue models of double-sided subduction show similar maximum distance and allow testing the additional role of stress propagated through the plates. We use a silicon plate subducting on its two opposite margins, which is either homogeneous or comprises oceanic and continental lithospheres, differing in buoyancy. The modeling results show that the double-sided subduction is strongly affected by changes in plate
Numerical Models for Sound Propagation in Long Spaces
Lai, Chenly Yuen Cheung
Both reverberation time and steady-state sound field are the key elements for assessing the acoustic condition in an enclosed space. They affect the noise propagation, speech intelligibility, clarity index, and definition. Since the sound field in a long space is non diffuse, classical room acoustics theory does not apply in this situation. The ray tracing technique and the image source methods are two common models to fathom both reverberation time and steady-state sound field in long enclosures nowadays. Although both models can give an accurate estimate of reverberation times and steady-state sound field directly or indirectly, they often involve time-consuming calculations. In order to simplify the acoustic consideration, a theoretical formulation has been developed for predicting both steady-state sound fields and reverberation times in street canyons. The prediction model is further developed to predict the steady-state sound field in a long enclosure. Apart from the straight long enclosure, there are other variations such as a cross junction, a long enclosure with a T-intersection, an U-turn long enclosure. In the present study, an theoretical and experimental investigations were conducted to develop formulae for predicting reverberation times and steady-state sound fields in a junction of a street canyon and in a long enclosure with T-intersection. The theoretical models are validated by comparing the numerical predictions with published experimental results. The theoretical results are also compared with precise indoor measurements and large-scale outdoor experimental results. In all of previous acoustical studies related to long enclosure, most of the studies are focused on the monopole sound source. Besides non-directional noise source, many noise sources in long enclosure are dipole like, such as train noise and fan noise. In order to study the characteristics of directional noise sources, a review of available dipole source was conducted. A dipole was
GEOCHEMICAL RECOGNITION OF SPILLED SEDIMENTS USED IN NUMERICAL MODEL VALIDATION
Institute of Scientific and Technical Information of China (English)
Jens R.VALEUR; Steen LOMHOLT; Christian KNUDSEN
2004-01-01
A fixed link (tunnel and bridge,in total 16 km) was constructed between Sweden and Denmark during 1995-2000.As part of the work,approximately 16 million tonnes of seabed materials (limestone and clay till) were dredged,and about 0.6 million tonnes of these were spilled in the water.Modelling of the spreading and sedimentation of the spilled sediments took place as part of the environmental monitoring of the construction activities.In order to verify the results of the numerical modelling of sediment spreading and sedimentation,a new method with the purpose of distinguishing between the spilled sediments and the naturally occurring sediments was developed.Because the spilled sediments tend to accumulate at the seabed in areas with natural sediments of the same size,it is difficult to separate these based purely on the physical properties.The new method is based on the geo-chemical differences between the natural sediment in the area and the spill.The basic properties used are the higher content of calcium carbonate material in the spill as compared to the natural sediments and the higher Ca/Sr ratio in the spill compared to shell fragments dominating the natural calcium carbonate deposition in the area.The reason for these differences is that carbonate derived from recent shell debris can be discriminated from Danien limestone,which is the material in which the majority of the dredging took place,on the basis of the Ca/Sr ratio being 488 in Danien Limestone and 237 in shell debris.The geochemical recognition of the origin of the sediments proved useful in separating the spilled from the naturally occurring sediments.Without this separation,validation of the modelling of accumulation of spilled sediments would not have been possible.The method has general validity and can be used in many situations where the origin ora given sediment is sought.
Numerical modelling of granular flows: a reality check
Windows-Yule, C. R. K.; Tunuguntla, D. R.; Parker, D. J.
2016-07-01
Discrete particle simulations provide a powerful tool for the advancement of our understanding of granular media, and the development and refinement of the multitudinous techniques used to handle and process these ubiquitous materials. However, in order to ensure that this tool can be successfully utilised in a meaningful and reliable manner, it is of paramount importance that we fully understand the degree to which numerical models can be trusted to accurately and quantitatively recreate and predict the behaviours of the real-world systems they are designed to emulate. Due to the complexity and diverse variety of physical states and dynamical behaviours exhibited by granular media, a simulation algorithm capable of closely reproducing the behaviours of a given system may be entirely unsuitable for other systems with different physical properties, or even similar systems exposed to differing control parameters. In this paper, we focus on two widely used forms of granular flow, for which discrete particle simulations are shown to provide a full, quantitative replication of the behaviours of real industrial and experimental systems. We identify also situations for which quantitative agreement may fail are identified, but important general, qualitative trends are still recreated, as well as cases for which computational models are entirely unsuitable. By assembling this information into a single document, we hope not only to provide researchers with a useful point of reference when designing and executing future studies, but also to equip those involved in the design of simulation algorithms with a clear picture of the current strengths and shortcomings of contemporary models, and hence an improved knowledge of the most valuable areas on which to focus their work.
Numerical Models of Subduction to Collision in Taiwan.
Lavier, L. L.; Wu, F. T.; Okaya, D.; McIntosh, K.
2007-12-01
The Island of Taiwan is formed by the collision of the Philippine Sea plate with the Eurasian plate. In the south, the Philippine Sea plate overlies a seismically active subduction zone. On the other hand the Central Range is underlain by only crustal seismicity. Does the Asian continent actively subduct into the upper mantle under the Central Range or does it underplate the Luzon arc? Do the resulting large-scale structures provide the dynamic forces to explain the pattern of deformation observed across Taiwan? We study the dynamic evolution of the Taiwanese orogeny using 2D elastic-plastic and viscoelastic numerical models of deformation of the lithosphere. We drive this modeling exercise from the assumption that the present day structure and motion depend on the long-term stress and strain history of the lithosphere. We start the models from the subduction of the Eurasian plate under the Philippine Sea plate and let it evolve to the collision of the Eurasian plate with the Luzon arc. We find that whether or not the Asian crust is dragged in the mantle is dependent on the crustal structure of the South China Sea margin. If the ocean continent transition there is mainly formed of thinned continental crust the accumulated buoyancy of the thickened crust during collision generates forces large enough to tear the subducting slab off the margin. If it consists of accreted oceanic crust the margin is dragged into the upper mantle and the slab stays attached to the Asian plate. Both scenarios lead to predictions on the type of structures and motions that should be observed by future seismic experiments in Taiwan.
International Nuclear Information System (INIS)
Three versions of a site descriptive model (SDM) have been completed for the Forsmark area. Version 0 established the state of knowledge prior to the start of the site investigation programme. Version 1.1 was essentially a training exercise and was completed during 2004. Version 1.2 was a preliminary site description and concluded the initial site investigation work (ISI) in June 2005. Three modelling stages are planned for the complete site investigation work (CSI). These are labelled stage 2.1, 2.2 and 2.3, respectively. An important component of each of these stages is to address and continuously try to resolve discipline-specific uncertainties of importance for repository engineering and safety assessment. Stage 2.1 included an updated geological model for Forsmark and aimed to provide a feedback from the modelling working group to the site investigation team to enable completion of the site investigation work. Stage 2.2 described the conceptual understanding and the numerical modelling of the bedrock hydrogeology in the Forsmark area based on data freeze 2.2. The present report describes the modelling based on data freeze 2.3, which is the final data freeze in Forsmark. In comparison, data freeze 2.3 is considerably smaller than data freeze 2.2. Therefore, stage 2.3 deals primarily with model confirmation and uncertainty analysis, e.g. verification of important hypotheses made in stage 2.2 and the role of parameter uncertainty in the numerical modelling. On the whole, the work reported here constitutes an addendum to the work reported in stage 2.2. Two changes were made to the CONNECTFLOW code in stage 2.3. These serve to: 1) improve the representation of the hydraulic properties of the regolith, and 2) improve the conditioning of transmissivity of the deformation zones against single-hole hydraulic tests. The changes to the modelling of the regolith were made to improve the consistency with models made with the MIKE SHE code, which involved the introduction
Micro-macro models for viscoelastic fluids:modelling,mathematics and numerics
Institute of Scientific and Technical Information of China (English)
LE; BRIS; Claude; LELIVRE; Tony
2012-01-01
This paper is an introduction to the modelling of viscoelastic fluids,with an emphasis on micromacro(or multiscale) models.Some elements of mathematical and numerical analysis are provided.These notes closely follow the lectures delivered by the second author at the Chinese Academy of Science during the Workshop "Stress Tensor E?ects on Fluid Mechanics" in January 2010.
Numerical Modeling of Large-Scale Rocky Coastline Evolution
Limber, P.; Murray, A. B.; Littlewood, R.; Valvo, L.
2008-12-01
Seventy-five percent of the world's ocean coastline is rocky. On large scales (i.e. greater than a kilometer), many intertwined processes drive rocky coastline evolution, including coastal erosion and sediment transport, tectonics, antecedent topography, and variations in sea cliff lithology. In areas such as California, an additional aspect of rocky coastline evolution involves submarine canyons that cut across the continental shelf and extend into the nearshore zone. These types of canyons intercept alongshore sediment transport and flush sand to abyssal depths during periodic turbidity currents, thereby delineating coastal sediment transport pathways and affecting shoreline evolution over large spatial and time scales. How tectonic, sediment transport, and canyon processes interact with inherited topographic and lithologic settings to shape rocky coastlines remains an unanswered, and largely unexplored, question. We will present numerical model results of rocky coastline evolution that starts with an immature fractal coastline. The initial shape is modified by headland erosion, wave-driven alongshore sediment transport, and submarine canyon placement. Our previous model results have shown that, as expected, an initial sediment-free irregularly shaped rocky coastline with homogeneous lithology will undergo smoothing in response to wave attack; headlands erode and mobile sediment is swept into bays, forming isolated pocket beaches. As this diffusive process continues, pocket beaches coalesce, and a continuous sediment transport pathway results. However, when a randomly placed submarine canyon is introduced to the system as a sediment sink, the end results are wholly different: sediment cover is reduced, which in turn increases weathering and erosion rates and causes the entire shoreline to move landward more rapidly. The canyon's alongshore position also affects coastline morphology. When placed offshore of a headland, the submarine canyon captures local sediment
Numerical modelling of a turbulent bluff-body flow with Reynolds stress turbulent models
Institute of Scientific and Technical Information of China (English)
LI Guoxiu; Dirk ROEKAERTS
2005-01-01
Numerical modelling of a turbulent bluff-body flow has been performed using differential Reynolds stress models (DRSMs). To clarify the applicability of the existing DRSMs in this complex flow, several typical DRSMs, including LRR-IP model, JM model, SSG model, as well as a modified LRR-IP model, have been validated and evaluated. The performance difference between various DRSMs is quite significant. Most of the above mentioned DRSMs cannot provide overall satisfactory predictions for this challenging test case. Motivated by the deficiency of the existing approaches, a new modification of LRR-IP model has been proposed. A very significant improvement of the prediction of flow field is obtained.
Strain localisation in mechanically Layered Rocks, insights from numerical modelling
Directory of Open Access Journals (Sweden)
L. Le Pourhiet
2012-09-01
Full Text Available Small scale deformation in stratified rocks displays a large diversity of micro-structures, from the microscopic scale to the scale of orogens. We have designed a series of fully dynamic numerical simulations aimed at assessing which parameters control this structural diversity and which underlying mechanisms lead to strain localisation. The influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying the initial dip of inherited layering versus the large scale imposed simple shear. The detailed study of the models indicates that (1 the results are length-scale independent, (2 the new shear zones are always compatible with the kinematics imposed at the boundary (3 micro-structures formed encompass the full diversity of micro-structures observed in the field and chiefly depend on the direction of the initial anisotropy versus shear direction, (4 depending on the orientation of the anisotropy, the layers may deform along subtractive or additive shear bands, (5 the deformation in anisotropic media results in non-lithostatic pressure values that are on the order of the deviatoric stress in the strong layers and (6 the introduction of brittle rheology is necessary to form localised shear bands in the ductile regime.
Numerical models for afterburning of TNT detonation products in air
Donahue, L.; Zhang, F.; Ripley, R. C.
2013-11-01
Afterburning occurs when fuel-rich explosive detonation products react with oxygen in the surrounding atmosphere. This energy release can further contribute to the air blast, resulting in a more severe explosion hazard particularly in confined scenarios. The primary objective of this study was to investigate the influence of the products equation of state (EOS) on the prediction of the efficiency of trinitrotoluene (TNT) afterburning and the times of arrival of reverberating shock waves in a closed chamber. A new EOS is proposed, denoted the Afterburning (AB) EOS. This EOS employs the JWL EOS in the high pressure regime, transitioning to a Variable-Gamma (VG) EOS at lower pressures. Simulations of three TNT charges suspended in a explosion chamber were performed. When compared to numerical results using existing methods, it was determined that the Afterburning EOS delays the shock arrival times giving better agreement with the experimental measurements in the early to mid time. In the late time, the Afterburning EOS roughly halved the error between the experimental measurements and results obtained using existing methods. Use of the Afterburning EOS for products with the Variable-Gamma EOS for the surrounding air further significantly improved results, both in the transient solution and the quasi-static pressure. This final combination of EOS and mixture model is recommended for future studies involving afterburning explosives, particularly those in partial and full confinement.
Biomechanics of Growing Trees: Mathematical Model, Numerical Resolution and Perspectives
Fourcaud, Thierry; Guillon, Thomas; Dumont, Yves
2011-09-01
The growth of trees is characterized by the elongation and thickening of its axes. New cells are formed at the periphery of the existing body, the properties of the older inner material being unchanged. The calculation of the progressive deflection of a growing stem is not a classical problem in mechanics for three main reasons: 1- the hypothesis of mass conservation is not valid; 2- the new material added at the periphery of the existing and deformed structure does not participate retroactively to the total equilibrium and tends to "fix" the actual shape; 3- an initial reference configuration corresponding to the unloaded structure cannot be classically defined to formulate the equilibrium equations. This paper proposes a theoretical framework that allows bypassing these difficulties. Equations adapted from the beam theory and considering the strong dependencies between space and time are given. A numerical scheme based on the finite element method is proposed to solve these equations. The model opens new research perspectives both in mathematics and plant biology.
Energy Technology Data Exchange (ETDEWEB)
Follin, Sven (SF GeoLogic AB, Taeby (Sweden)); Hartley, Lee; Jackson, Peter; Roberts, David (Serco TAP (United Kingdom)); Marsic, Niko (Kemakta Konsult AB, Stockholm (Sweden))
2008-05-15
Three versions of a site descriptive model (SDM) have been completed for the Forsmark area. Version 0 established the state of knowledge prior to the start of the site investigation programme. Version 1.1 was essentially a training exercise and was completed during 2004. Version 1.2 was a preliminary site description and concluded the initial site investigation work (ISI) in June 2005. Three modelling stages are planned for the complete site investigation work (CSI). These are labelled stage 2.1, 2.2 and 2.3, respectively. An important component of each of these stages is to address and continuously try to resolve discipline-specific uncertainties of importance for repository engineering and safety assessment. Stage 2.1 included an updated geological model for Forsmark and aimed to provide a feedback from the modelling working group to the site investigation team to enable completion of the site investigation work. Stage 2.2 described the conceptual understanding and the numerical modelling of the bedrock hydrogeology in the Forsmark area based on data freeze 2.2. The present report describes the modelling based on data freeze 2.3, which is the final data freeze in Forsmark. In comparison, data freeze 2.3 is considerably smaller than data freeze 2.2. Therefore, stage 2.3 deals primarily with model confirmation and uncertainty analysis, e.g. verification of important hypotheses made in stage 2.2 and the role of parameter uncertainty in the numerical modelling. On the whole, the work reported here constitutes an addendum to the work reported in stage 2.2. Two changes were made to the CONNECTFLOW code in stage 2.3. These serve to: 1) improve the representation of the hydraulic properties of the regolith, and 2) improve the conditioning of transmissivity of the deformation zones against single-hole hydraulic tests. The changes to the modelling of the regolith were made to improve the consistency with models made with the MIKE SHE code, which involved the introduction
Numerical Modelling of Subduction Zones: a New Beginning
Ficini, Eleonora; Dal Zilio, Luca; Doglioni, Carlo; Gerya, Taras V.
2016-04-01
Subduction zones are one of the most studied although still controversial geodynamic process. Is it a passive or an active mechanism in the frame of plate tectonics? How subduction initiates? What controls the differences among the slabs and related orogens and accretionary wedges? The geometry and kinematics at plate boundaries point to a "westerly" polarized flow of plates, which implies a relative opposed flow of the underlying Earth's mantle, being the decoupling located at about 100-200 km depth in the low-velocity zone or LVZ (Doglioni and Panza, 2015 and references therein). This flow is the simplest explanation for determining the asymmetric pattern of subduction zones; in fact "westerly" directed slabs are steeper and deeper with respect to the "easterly or northeasterly" directed ones, that are less steep and shallower, and two end members of orogens associated to the downgoing slabs can be distinguished in terms of topography, type of rocks, magmatism, backarc spreading or not, foredeep subsidence rate, etc.. The classic asymmetry comparing the western Pacific slabs and orogens (low topography and backarc spreading in the upper plate) and the eastern Pacific subduction zones (high topography and deep rocks involved in the upper plate) cannot be ascribed to the age of the subducting lithosphere. In fact, the same asymmetry can be recognized all over the world regardless the type and age of the subducting lithosphere, being rather controlled by the geographic polarity of the subduction. All plate boundaries move "west". Present numerical modelling set of subduction zones is based on the idea that a subducting slab is primarily controlled by its negative buoyancy. However, there are several counterarguments against this assumption, which is not able to explain the global asymmetric aforementioned signatures. Moreover, petrological reconstructions of the lithospheric and underlying mantle composition, point for a much smaller negative buoyancy than predicted
Numerical Modeling of Seismoelectric Fields through Thin-Beds
Grobbe, N.; Slob, E. C.
2014-12-01
The seismoelectric effect might help improving our knowledge of the subsurface. This complex physical phenomenon can be described by Biot's poroelasticity equations coupled to Maxwell's electromagnetic equations. Besides simultaneously offering seismic resolution and electromagnetic sensitivity, the coefficient coupling these two types of fields can in principal provide us with direct information on important medium parameters like porosity and permeability. Two types of seismoelectric coupling can be distinguished: 1) localized coupling generating an electromagnetic field that is present inside the seismic wave and travels with its velocity, referred to as the coseismic field 2) An independent electromagnetic field diffusing with electromagnetic velocity, referred to as the seismoelectric conversion, providing us with information at depth. One of the major challenges of seismoelectrics is the very weak signal-to-noise ratio of especially the seismoelectric conversion. In order to make seismoelectrics applicable in the field, we need to find ways to improve the signal-to-noise ratio of this second order effect. Can nature help us? It is well-known that a seismic wave travelling through a package of thin-beds, can experience amplitude-tuning effects that result in anomalously high amplitudes for the seismic signal. Can similar enhancing signal effects occur for seismoelectric phenomena? Using our analytically based, numerical modeling code ESSEMOD (ElectroSeismic and Seismoelectric Modeling), we investigate what effects thin-beds can have on the seismoelectric signal, thereby focusing especially on the seismoelectric conversion. We will highlight the factors that play a role in the possible enhancement of the seismoelectric signal-to-noise ratio by thin-beds. We show that the seismoelectric method is sensitive to changes in medium parameters on a spatial scale that is much smaller than the seismic resolution. Acknowledgements: This research was funded as a Shell
Numerical models of slab migration in continental collision zones
Directory of Open Access Journals (Sweden)
V. Magni
2012-09-01
Full Text Available Continental collision is an intrinsic feature of plate tectonics. The closure of an oceanic basin leads to the onset of subduction of buoyant continental material, which slows down and eventually stops the subduction process. In natural cases, evidence of advancing margins has been recognized in continental collision zones such as India-Eurasia and Arabia-Eurasia. We perform a parametric study of the geometrical and rheological influence on subduction dynamics during the subduction of continental lithosphere. In our 2-D numerical models of a free subduction system with temperature and stress-dependent rheology, the trench and the overriding plate move self-consistently as a function of the dynamics of the system (i.e. no external forces are imposed. This setup enables to study how continental subduction influences the trench migration. We found that in all models the slab starts to advance once the continent enters the subduction zone and continues to migrate until few million years after the ultimate slab detachment. Our results support the idea that the advancing mode is favoured and, in part, provided by the intrinsic force balance of continental collision. We suggest that the advance is first induced by the locking of the subduction zone and the subsequent steepening of the slab, and next by the sinking of the deepest oceanic part of the slab, during stretching and break-off of the slab. These processes are responsible for the migration of the subduction zone by triggering small-scale convection cells in the mantle that, in turn, drag the plates. The amount of advance ranges from 40 to 220 km and depends on the dip angle of the slab before the onset of collision.
Numerical Modeling of Flow in a Horizontal Sand Filter
Directory of Open Access Journals (Sweden)
Ruth Mossad
2010-01-01
Full Text Available Problem statement: Horizontal sand filters may offer some advantage over vertical sand filters as they could be used for in-line treatment of wastewaters. Horizontal pipelines of tens and if not hundreds of meters length, filled with ordinary sand or permeable reactive media such as activated carbon or natural zeolite or iron filings, may be used to remove impurities from mine drainage waters, sewer and storm waters. Approach: However, in reality, in industrial-scale applications, the sand filled horizontal structures are almost always avoided due to the fact that water seeks out the path of least resistance. Once such a path is created, the vast majority of the water channels towards the least resistance zone and very small percentage of the water will go through the sand. Results: This study, applying numerical modeling using FLUENT software, which is based on the integral control volume approach, explores a number of geometries to identify a design that helps the inlet water to sweep the entire sand with the least channeling. The Navier Stokes equations for laminar and incompressible flow through porous media (i.e., the sand including the viscous resistance were solved. Retention time of a fluid with properties similar to water, called tracer, were also estimated using Eulerian unsteady two phase flow analysis. Conclusion: The results of the models showed that the geometries involving a pipe with spiral protrusions or plate (baffles inside, would be partially successful in drawing the water away from the channeling zone and moving it through the sand, however the geometry with the spiral protrusions uses much less power than the one with the baffles.
Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts
DEFF Research Database (Denmark)
Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten
2015-01-01
We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...
Big Blocks and River Incision: A Numerical Modeling Perspective
Shobe, C. M.; Tucker, G. E.; Anderson, R. S.
2015-12-01
Sediment supply dynamics affect fluvial erosion in steep landscapes. Workers have explored the effects of changing sediment flux and uniform grain size on incision processes and distribution of alluvial cover. However, sediment supplied to real rivers is often highly heterogeneous in size, especially in rapidly eroding landscapes where supply processes may range from landslides to rockfall to moraine incision. We hypothesize that the pace of landscape evolution depends on the sediment size distribution supplied to rapidly eroding channels. Rivers that quickly cut steep-walled canyons may incite a negative feedback on incision by receiving an increased supply of large, immobile blocks from the canyon walls that shield significant portions of the bed from erosion. We use a 1-D numerical model that combines mass-flux continuum treatment of several grain size classes with tracking of discrete large blocks to explore fluvial response to changing grain size distribution. We compare simulations with and without a feedback between channel incision rate and the supply rate of large blocks from adjacent hillslopes. This reflects the hypothesis that slopes will be steeper and more prone to releasing large blocks when the channel at their base is eroding rapidly. Comparing model predictions with field observations shows that our models can successfully reproduce the distribution of blocks in natural channels. Results suggest that in landscapes with access to large blocks, fluvial incision may be slowed as increasing amounts of immobile material are supplied from adjacent hillslopes and canyon walls. This can act to stall knickpoint retreat in such rivers and slow the pace of landscape adjustment. The importance of channel armoring by blocks is governed by competition between two timescales: the time required for significant block cover to accumulate in the channel and the time required for blocks to abrade, fragment, or weather down to transportable sizes. Model results also
Numerical Results of 3-D Modeling of Moon Accumulation
Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr
2014-05-01
For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity
Numerical modeling of Thermal Response Tests in Energy Piles
Franco, A.; Toledo, M.; Moffat, R.; Herrera, P. A.
2013-05-01
conductivity of the soil is the most determinant parameter that affects the estimated thermal conductivity. For example, we observed differences of up to 50% from the expected value at the end of 100 hours of simulation for values of thermal conductivity of the soil in the range of 1 to 6 W/mK. Additionally, we observed that the results of the synthetic TRT depend upon several other parameters such as the boundary conditions used to model the interaction of the top face of the pile with the surrounding media. For example, Simulations with a constant temperature boundary condition tended to overestimate the total thermal conductivity of the whole system. This analysis demonstrates that numerical modeling is a useful tool to model energy pile systems and to interpret and design tests to evaluate their performance. Furthermore, it also reveals that the results of thermal response tests interpreted with analytical models must be evaluated with care for the assessment of the potential of low enthalpy systems, because their results depend upon a variety of factors which are neglected in the analytical models.
Model validation for the numerical simulation of the Double Punch Test
Pros Parés, Alba; Díez, Pedro; Molins i Borrell, Climent
2008-01-01
The Double Punch test, an indirect traction test, is simulated numerically considering two different models (the nonlocal Mazars damage model and an heuristic crack model with joint elements). The test was designed to measure indirectly the tensile strength of concrete, hence, through these two numerical models, we are able to assess the tensile strength numerically. Experimental results present scattering when assessing the tensile strength, therefore, other tests are needed to set all...
Numerical Investigation of the Entropy Crisis in Model Glass Formers
Brumer, Yisroel; Reichman, David R.
2004-01-01
We investigate numerically the low temperature equilibration of glassy systems via non-local Monte Carlo methods. We re-examine several systems that have been studied previously and investigate new systems in order to test the performance of such methods near the putative Kauzmann temperature, $T_K$, where the configurational entropy is presumed to vanish. Our results suggest that previous numerical claims in favor of and against a thermodynamic transition at a finite $T_K$ must be re-evaluat...
Numerical Methods for the Lévy LIBOR Model
DEFF Research Database (Denmark)
Papapantoleon, Antonis; Skovmand, David
are generally slow. We propose an alternative approximation scheme based on Picard iterations. Our approach is similar in accuracy to the full numerical solution, but with the feature that each rate is, unlike the standard method, evolved independently of the other rates in the term structure. This enables...... simultaneous calculation of derivative prices of different maturities using parallel computing. We include numerical illustrations of the accuracy and speed of our method pricing caplets....
Numerical models of Oort Cloud formation and comet delivery
Kaib, Nathan A.
I use a newly designed numerical algorithm to simulate the dynamics of the Oort Cloud. The processes I model are the formation of the cloud, the current delivery of comets to the planetary region, and long-period comet production during comet showers. Concerning the cloud's formation, I find that the Sun's birth environment dramatically affects the structure of the inner Oort Cloud as well as the amount of material trapped in this region. In addition, the structure of this reservoir is also sensitive to the Sun's orbital history in the Milky Way. This raises the possibility that constraining our inner Oort Cloud's properties can constrain the Sun's dynamical history. In this regard, I use my simulations of comet delivery to better understand what the population of comets passing through the planetary region can tell us about the inner Oort Cloud. I find that the inner Oort Cloud (rather than the scattered disk) dominates the production of planet-crossing TNOs with perihelia beyond 15 AU and semimajor axes greater than a few hundred AU. My results indicate that two objects representing this population (2000 00 67 and 2006 SQ 372 ) have already been detected, and the detection of many analogous objects can constrain the inner Oort Cloud. In addition, these simulations of comet delivery also demonstrate that, contrary to previous understanding, the inner Oort Cloud is a significant and perhaps the dominant source of known long-period comets. This result can be used to place the first observationally motivated upper limit on the inner Oort Cloud's population. Finally, with this maximum population value, I use my comet shower simulations to show that comet showers are unlikely to be responsible for more than one minor extinction event since the Cambrian Explosion.
Turco, Emilio; dell'Isola, Francesco; Cazzani, Antonio; Rizzi, Nicola Luigi
2016-08-01
Hencky (Über die angenäherte Lösung von Stabilitätsproblemen im Raum mittels der elastischen Gelenkkette. Ph.D. thesis, Engelmann, 1921) proposed a discrete model for elasticae by introducing rigid bars and rotational springs. Hencky (Proc R Soc Lond A Math Phys Eng Sci 472(2185), 2016) approach has been introduced to heuristically motivate the need of second gradient continua. Here, we present a novel numerical code implementing directly the discrete Hencky-type model which is robust enough to solve the problem of the determination of equilibrium configurations in the large deformation and displacement regimes. We apply this model to study some potentially applicable problems, and we compare its performances with those of the second gradient continuum model. The numerical evidence presented supports the conjecture that Hencky-type converges to second gradient model.
Numerical Results of Earth's Core Accumulation 3-D Modelling
Khachay, Yurie; Anfilogov, Vsevolod
2013-04-01
For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in
Numerical Modeling to Support Floodplain Mapping in Coastal Areas
Cydzik, K.; Shrestha, P. L.; Hamilton, D.; Rezakhani, M.; Scheffner, N.; Lenaburg, R.
2009-12-01
A hurricane-induced flood mapping study was conducted for the State of Hawaii encompassing the six major Hawaiian Islands: Hawaii, Kauai, Lanai, Maui, Molokai, and Oahu. The objective of the study was to use numerical methods to compute storm surge frequency relationships using the Empirical Simulation Technique (EST). This paper describes the EST methodology. Ultimately, the storm surge frequency data and water surface elevations determined through the modeling effort define coastal inundation areas to revise Flood Insurance Rate Maps (FRIMs). Such information guides coastal development and highlights flood risks in coastal areas. To perform a realistic storm surge analysis, historical events impacting the islands in the study area were selected from the National Hurricane Center’s Eastern and Central North Pacific Basin Hurricane database. The database consists of hurricanes, tropical storms, and tropical depressions impacting the Hawaiian Islands from 1949 through 2005 and includes records of the latitude, longitude, maximum wind speed, and, often, the central pressure of the eye of the storm. For this study, candidate events were selected based on two criteria. Storms were required to pass within 200 nautical miles of at least two of the islands with maximum winds at that point of at least tropical storm-strength (39 mph.) Of the 794 storm events in the database, 11 events met these criteria and were used to generate wind and pressure fields for the modeling effort. An assumption of the EST analysis is that each of the 11 events has an equal probability of impacting the islands within the 200 nautical mile ellipse. Therefore, the 11events were translated by one Radius-to-Maximum winds across the ellipse so that each event impacted each island, generating 102 impacting events. The hypothetical events were used to generate wind and pressure fields for input to the ADvanced CIRCulation (ADCIRC) long-wave hydrodynamic model to compute storm surge at defined
Numerical modeling of Po-218 deposition in a physiologically realistic lung bifurcation model
Mously-Soroujy, Khalid Ahmad
Experimental data for lung bifurcations reveals complex geometries and distinct asymmetrical characteristic, which affects the localized distribution of particles deposited in the lung. This study is based on recently published numerical results for a symmetric physiological realistic bifurcation geometry Heistracher and Hofmann (1995) which has been extended here to the case of a asymmetric geometry. The asymmetric PRB model was used to study the flow field and the deposition of ultrafine particles for inspiratory and expiratory conditions. In the present study, we investigated the effect of different flow rates, representing human activity and deposition of different ultrafine particles representing radon daughter (Po-218), in the PRB model. Numerical results were compared with the limited available experimental and numerical data. The fluid dynamic computer program FIDAP was used for this purpose.
Modelling surface water flood risk using coupled numerical and physical modelling techniques
Green, D. L.; Pattison, I.; Yu, D.
2015-12-01
Surface water (pluvial) flooding occurs due to intense precipitation events where rainfall cannot infiltrate into the sub-surface or drain via storm water systems. The perceived risk appears to have increased in recent years with pluvial flood events seeming more severe and frequent within the UK. Surface water flood risk currently accounts for one third of all UK flood risk, with approximately two million people living in urban areas being at risk of a 1 in 200 year flood event. Surface water flooding research often focuses upon using 1D, 2D or 1D-2D coupled numerical modelling techniques to understand the extent, depth and severity of actual or hypothetical flood scenarios. Although much research has been conducted using numerical modelling, field data available for model calibration and validation is limited due to the complexities associated with data collection in surface water flood conditions. Ultimately, the data which numerical models are based upon is often erroneous and inconclusive. Physical models offer an alternative and innovative environment to collect data within. A controlled, closed system allows independent variables to be altered individually to investigate cause and effect relationships. Despite this, physical modelling approaches are seldom used in surface water flooding research. Scaled laboratory experiments using a 9m2, two-tiered physical model consisting of: (i) a mist nozzle type rainfall simulator able to simulate a range of rainfall intensities similar to those observed within the United Kingdom, and; (ii) a fully interchangeable, scaled plot surface have been conducted to investigate and quantify the influence of factors such as slope, impermeability, building density/configuration and storm dynamics on overland flow and rainfall-runoff patterns within a range of terrestrial surface conditions. Results obtained within the physical modelling environment will be compared with numerical modelling results using FloodMap (Yu & Lane, 2006
Numerical modeling of some engineering heat transfer problems
Energy Technology Data Exchange (ETDEWEB)
Eriksson, Daniel
1998-04-01
Engineering heat transfer problems are very often of a complex nature and most often no analytical solutions exist. One way to create solutions to such problems is to apply numerical methods. This study concerns heat transfer problems with coupled conduction, convection and thermal radiation. Five important but different engineering problems are considered. (1) The transient temperature distribution in a rotating cylinder which is exposed to a time varying incident heat flux, e.g. a nuclear burst, is determined. The cylinder is cooled by mixed convection and thermal radiation. The effects of the leading parameters, such as rotation speed, the cooling parameters and the physical properties of the shell are studied. (2) The cooling of a roll system which is transporting/casting a thin hot plastic film. The leading roll is heated by the hot film, cooled at the interior by forced convection and on the outside by forced convection, thermal radiation and contact with a support roll. The influence of the cooling parameters and the rotation are studied. (3) The heat and mass diffusion in pre-insulated district heating/cooling pipes. The task is to determine the effects of the gas mass transport through the casing of the pipes on the thermal behaviour and effects of condensed water due to the mass diffusion of water vapour. The importance of the density of the casing, the wall thickness of the casing, the thickness of the insulation and the surrounding temperature is revealed. (4) The development of a cooling system for an electrical unit in which a time dependent heat is generated due to the Joule effect. (5) The heat transfer from a rectangular fin in a confined space. The fin is cooled by turbulent forced convection. The turbulence model applied is a low Reynolds k-{epsilon}-model. Predicted results are compared with experimental ones, and a correlation for the Nusselt number is proposed. The effects of thermal radiation for non-participating as well as participating
Numerical Modeling of Deep Mantle Flow: Thermochemical Convection and Entrainment
Mulyukova, Elvira; Steinberger, Bernhard; Dabrowski, Marcin; Sobolev, Stephan
2013-04-01
) upwelling of the ambient material in the vicinity of the dense material (mechanism of selective withdrawal (Lister, 1989)), and (iii) cold downwellings sliding along the bottom boundary, and forcing the dense material upwards. The objective of this study is to compare the efficiency of entrainment by each of these mechanisms, and its dependence on the density and viscosity anomaly of the dense material with respect to the ambient mantle. To perform this study, we have developed a two-dimensional FEM code to model thermal convection in a hollow cylinder domain with presence of chemical heterogeneities, and using a realistic viscosity profile. We present the results of the simulations that demonstrate the entrainment mechanisms described above. In addition, we perfom numerical experiments in a Cartesian box domain, where the bottom right boundary of the box is deformed to resemble the geometry of an LLSVP edge. In some of the experiments, the bottom left part of the boundary is moving towards the right boundary, simulating a slab sliding along the core-mantle boundary towards an LLSVP. These experiments allow a detailed study of the process of entrainment, and its role in the thermochemical evolution of the Earth.
Nawaz AHMAD
2009-01-01
The thesis work aims at devising analytical thermodynamic model and numerical modeling of the compressor of a small gas turbine to be operated on producer gas with lower heating contents. The turbine will serve as a component of “EXPLORE-Biomass Based Polygeneration” project to meet the internal electrical power requirements of 2-5 KW. The gas turbine engine is of radial type (one stage radial compressor, one stage radial turbine). Small gas turbines give less electrical efficiencies especial...
Numerical solution of linear models in economics: The SP-DG model revisited
T. Andrade, G. Faria, V. Leite, F. Verona, M. Viegas; Afonso, O.; P.B. Vasconcelos
2007-01-01
In general, complex and large dimensional models are needed to solve real economic problems. Due to these characteristics, there is either no analytical solution for them or they are not attainable. As a result, solutions can be only obtained through numerical methods. Thus, the growing importance of computers in Economics is not surprising. This paper focuses on an implementation of the SP-DG model, using Matlab,developed by the students as part of the Computational Economics course. We also...
Numerical model for RF capacitive regional deep hyperthermia
International Nuclear Information System (INIS)
Full text: Regional hyperthermia is widely used as an adjuvant therapy for advanced pelvic tumors. Heat delivery to deep seated tumors, however, is much challenging: since regional hyperthermia techniques apply energy in an unfocused manner, energy is delivered to both tumor and normal tissues. Under such conditions, selective heating of tumor is only possible when heat dissipation by blood flow in normal tissues is much greater than in tumor tissue. In the RF (8 and 13.56 MHz) capacitive heating devices the patient is placed between two electrodes connected to a power generator. In the case of circular electrodes, a diameter of more than 1.5 times the space between both electrodes is needed to achieve deep uniform heating inside the human body. To smoothly attach the electrodes to the body surface, the metal plates of the electrodes are covered with flexible water pads, in which temperature-controlled water (5-10 oC) flows, so that excessive heating of the skin and subcutaneous fat can be reduced. Nevertheless, the overheating of fat layers remains one of the main disadvantages of RF capacitive heating and clinical experience suggests that this technique is not appropriate for patients with fat layers thicker than approximately 1.5-2 cm. Another considerable limitation of capacitive heating is that the distribution of current flow and power density in an electrically inhomogeneous body can lead to undesirable hot spots in normal tissues. Besides the deep SAR distribution is mainly influenced by the shielding effect of the pelvic bone that causes insufficient energy deposition in the central area with the tumor. Today it is clear that the evaluation of a capacitive hyperthermia device with an homogeneous agar phantom leads to overly optimistic results. Hence the use of numerical models to simulate the propagation and power deposition of electromagnetic waves and the temperature distribution in an anatomic patient model is fundamental for systematic research and
Modeling and Numerical Simulation of Solid Rocket Motors Internal Ballistics
CAVALLINI, ENRICO
2010-01-01
In the design and development of solid propellant rocket motors, the use of numerical tools able to simulate, predict and reconstruct the behavior of a given motor in all its operative conditions is particularly important in order to decrease all the planning times and costs. This work is devoted to present an approach to the numerical simulation of SRM internal ballistic during the entire combustion time (ignition transient, quasi steady state and tail-off) by means of a Q1D unsteady nume...
Numerical modeling of continental lithospheric weak zone over plume
Perepechko, Y. V.; Sorokin, K. E.
2011-12-01
The work is devoted to the development of magmatic systems in the continental lithosphere over diffluent mantle plumes. The areas of tension originating over them are accompanied by appearance of fault zones, and the formation of permeable channels, which are distributed magmatic melts. The numerical simulation of the dynamics of deformation fields in the lithosphere due to convection currents in the upper mantle, and the formation of weakened zones that extend up to the upper crust and create the necessary conditions for the formation of intermediate magma chambers has been carried out. Thermodynamically consistent non-isothermal model simulates the processes of heat and mass transfer of a wide class of magmatic systems, as well as the process of strain localization in the lithosphere and their influence on the formation of high permeability zones in the lower crust. The substance of the lithosphere is a rheologic heterophase medium, which is described by a two-velocity hydrodynamics. This makes it possible to take into account the process of penetration of the melt from the asthenosphere into the weakened zone. The energy dissipation occurs mainly due to interfacial friction and inelastic relaxation of shear stresses. The results of calculation reveal a nonlinear process of the formation of porous channels and demonstrate the diversity of emerging dissipative structures which are determined by properties of both heterogeneous lithosphere and overlying crust. Mutual effect of a permeable channel and the corresponding filtration process of the melt on the mantle convection and the dynamics of the asthenosphere have been studied. The formation of dissipative structures in heterogeneous lithosphere above mantle plumes occurs in accordance with the following scenario: initially, the elastic behavior of heterophase lithosphere leads to the formation of the narrow weakened zone, though sufficiently extensive, with higher porosity. Further, the increase in the width of
Ignatyev, Yu G
2014-01-01
Based on mathematical model of the statistical Fermi system with the interparticle interaction which was constructed in the previous articles, this work offers the construction and analysis of the numerical models of cosmological evolution of the single-component degenerated Fermi system of the scalar particles. The applied mathematics package Mathematica 9 is used for the numerical model construction.
Numerical investigation of the recruitment process in open marine population models
International Nuclear Information System (INIS)
The changes in the dynamics, produced by the recruitment process in an open marine population model, are investigated from a numerical point of view. The numerical method considered, based on the representation of the solution along the characteristic lines, approximates properly the steady states of the model, and is used to analyze the asymptotic behavior of the solutions of the model
Mathematical Models of Fluid Dynamics Modeling, Theory, Basic Numerical Facts An Introduction
Ansorge, Rainer
2009-01-01
Without sacrificing scientific strictness, this introduction to the field guides readers through mathematical modeling, the theoretical treatment of the underlying physical laws and the construction and effective use of numerical procedures to describe the behavior of the dynamics of physical flow. The book is carefully divided into three main parts:. - The design of mathematical models of physical fluid flow;. - A theoretical treatment of the equations representing the model, as Navier-Stokes, Euler, and boundary layer equations, models of turbulence, in order to gain qualitative as well as q
Ignat'ev, Yu G
2016-01-01
In this paper we investigate the asymptotic behavior of the cosmological model based on phantom scalar field on the ground of qualitative analysis of the system of the cosmological model's differential equations and show that as opposed to models with classical scalar field, such models have stable asymptotic solutions with constant value of the potential both in infinite past and infinite future. We also develop numerical models of the cosmological evolution models with phantom scalar field in this paper. {\\bf keywords}: cosmological model, phantom scalar field, quality analysis, asymptotic behavior, numerical simulation, numerical gravitation.\\\\ {\\bf PACS}: 04.20.Cv, 98.80.Cq, 96.50.S 52.27.Ny
Numerical Modeling of Cometary Meteoroid Streams Encountering Mars and Venus
Christou, A. A.; Vaubaillon, J.
2011-01-01
We have simulated numerically the existence of meteoroid streams that encounter the orbits of Mars and Venus, potentially producing meteor showers at those planets. We find that 17 known comets can produce such showers, the intensity of which can be determined through observations. Six of these streams contain dense dust trails capable of producing meteor outbursts.
Numerical Modelling of Regenerative Liquid Propellant Guns with Annular Piston
K. J. Daniel; D. K. Kharat; K.R. Rao; Shah, S.T.; S. C. Mitra
1997-01-01
The development of regenerative liquid propellant guns (RLPGs) needs due consideration of numerous interdependent parameters that affect its performance. To help in this task, computer simulation was undertaken to predict internal ballistics of a conceptual liquid propellant gun. The expected pressure and other important parameters are documented which serve as an aid to the hardware, design of the regenerative liquid propellant guns.
Deficiencies in numerical models of anisotropic nonlinearly elastic materials.
Ní Annaidh, A; Destrade, M; Gilchrist, M D; Murphy, J G
2013-08-01
Incompressible nonlinearly hyperelastic materials are rarely simulated in finite element numerical experiments as being perfectly incompressible because of the numerical difficulties associated with globally satisfying this constraint. Most commercial finite element packages therefore assume that the material is slightly compressible. It is then further assumed that the corresponding strain-energy function can be decomposed additively into volumetric and deviatoric parts. We show that this decomposition is not physically realistic, especially for anisotropic materials, which are of particular interest for simulating the mechanical response of biological soft tissue. The most striking illustration of the shortcoming is that with this decomposition, an anisotropic cube under hydrostatic tension deforms into another cube instead of a hexahedron with non-parallel faces. Furthermore, commercial numerical codes require the specification of a 'compressibility parameter' (or 'penalty factor'), which arises naturally from the flawed additive decomposition of the strain-energy function. This parameter is often linked to a 'bulk modulus', although this notion makes no sense for anisotropic solids; we show that it is essentially an arbitrary parameter and that infinitesimal changes to it result in significant changes in the predicted stress response. This is illustrated with numerical simulations for biaxial tension experiments of arteries, where the magnitude of the stress response is found to change by several orders of magnitude when infinitesimal changes in 'Poisson's ratio' close to the perfect incompressibility limit of 1/2 are made. PMID:23011411
Numerical Modelling by FLAC on Coal Fires in North China
Gusat, D.; Drebenstedt, C.
2009-04-01
Coal fires occur in many countries all over the world (e.g. Australia, China, India, Indonesia, USA and Russia) in underground and on surface. In China the most coal fires occur especially in the North. Economical and environmental damages are the negative effects of the coal fires: coal fires induce open fractures and fissures within the seam and neighbouring rocks. So that these are the predominant pathways for oxygen flow and exhaust gases from a coal fire. All over northern China there are a large number of coal fires, which cause and estimated yearly coal loss of between 100 and 200 million tons ([1], [2], [3]). Spontaneous combustion is a very complicated process and is influenced by number of factors. The process is an exothermic reaction in which the heat generated is dissipated by conduction to the surrounding environment, by radiation, by convection to the ventilation flow, and in some cases by evaporation of moisture from the coal [4]. The coal fires are very serious in China, and the dangerous extent of spontaneous combustion is bad which occupies about 72.9% in mining coal seams. During coal mining in China, the coal fires of spontaneous combustion are quite severity. The dangerous of coal spontaneous combustion has been in 56% of state major coalmines [5]. The 2D and 3D-simulation models describing coal fire damages are strong tools to predict fractures and fissures, to estimate the risk of coal fire propagation into neighbouring seams, to test and evaluate coal fire fighting and prevention methods. The numerical simulations of the rock mechanical model were made with the software for geomechanical and geotechnical calculations, the programs FLAC and FLAC3D [6]. To fight again the coal fires, exist several fire fighting techniques. Water, slurries or liquefied nitrogen can be injected to cool down the coal or cut of air supply with the backfill and thereby extinct the fire. Air supply also can be cut of by covering the coal by soil or sealing of the
Recent Analytical and Numerical Results for The Navier-Stokes-Voigt Model and Related Models
Larios, Adam; Titi, Edriss; Petersen, Mark; Wingate, Beth
2010-11-01
The equations which govern the motions of fluids are notoriously difficult to handle both mathematically and computationally. Recently, a new approach to these equations, known as the Voigt-regularization, has been investigated as both a numerical and analytical regularization for the 3D Navier-Stokes equations, the Euler equations, and related fluid models. This inviscid regularization is related to the alpha-models of turbulent flow; however, it overcomes many of the problems present in those models. I will discuss recent work on the Voigt-regularization, as well as a new criterion for the finite-time blow-up of the Euler equations based on their Voigt-regularization. Time permitting, I will discuss some numerical results, as well as applications of this technique to the Magnetohydrodynamic (MHD) equations and various equations of ocean dynamics.
Multilayer Numerical Modeling of Flows through Vegetation Using a Mixing-Length Turbulence Model
Directory of Open Access Journals (Sweden)
Hector Barrios-Piña
2014-07-01
Full Text Available This work focuses on the effects of vegetation on a fluid flow pattern. In this numerical research, we verify the applicability of a simpler turbulence model than the commonly used k-" model to predict the mean flow through vegetation. The novel characteristic of this turbulence model is that the horizontal mixing-length is explicitly calculated and coupled with a multi-layer approach for the vertical mixing-length, within a general three-dimensional eddy-viscosity formulation. This mixing-length turbulence model has been validated in previous works for different kinds of non-vegetated flows. The hydrodynamic numerical model used for simulations is based on the Reynolds-averaged Navier–Stokes equations for shallow water flows, where a vegetation shear stress term is considered to reproduce the effects of drag forces on flow. A second-order approximation is used for spatial discretization and a semi-implicit Lagrangian–Eulerian scheme is used for time discretization. In order to validate the numerical results, we compare them against experimental data reported in the literature. The comparisons are carried out for two cases of study: submerged vegetation and submerged and emergent vegetation, both within an open channel flow.
Fractional calculus in hydrologic modeling: A numerical perspective.
Benson, David A; Meerschaert, Mark M; Revielle, Jordan
2013-01-01
Fractional derivatives can be viewed either as handy extensions of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Lévy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Lévy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus. PMID:23524449
Fractional Calculus in Hydrologic Modeling: A Numerical Perspective
Energy Technology Data Exchange (ETDEWEB)
David A. Benson; Mark M. Meerschaert; Jordan Revielle
2012-01-01
Fractional derivatives can be viewed either as a handy extension of classical calculus or, more deeply, as mathematical operators defined by natural phenomena. This follows the view that the diffusion equation is defined as the governing equation of a Brownian motion. In this paper, we emphasize that fractional derivatives come from the governing equations of stable Levy motion, and that fractional integration is the corresponding inverse operator. Fractional integration, and its multi-dimensional extensions derived in this way, are intimately tied to fractional Brownian (and Levy) motions and noises. By following these general principles, we discuss the Eulerian and Lagrangian numerical solutions to fractional partial differential equations, and Eulerian methods for stochastic integrals. These numerical approximations illuminate the essential nature of the fractional calculus.
Numerical Modeling of Flow Distribution in Micro-Fluidics Systems
Majumdar, Alok; Cole, Helen; Chen, C. P.
2005-01-01
This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.
Velocity spectra of quantum turbulence: experiments, numerics and models
Barenghi, Carlo F.; L'vov, Victor; Roche, Philippe-E.
2013-01-01
Superfluid Turbulence is unusual and presents a challenge to fluid dynamicists because it consists of two coupled, inter penetrating turbulent fluids: the first is inviscid with quantised vorticity, the second is viscous with continuous vorticity. Despite this double nature, the observed spectra of the superfluid turbulent velocity at sufficiently large length scales are similar to those o ordinary turbulence. We present experimental, numerical and theoretical results which explain these simi...
Numerical modeling of the wind flow over a transverse dune
Araújo, Ascânio D.; Parteli, Eric J. R.; Pöschel, Thorsten; Andrade, José S.; Herrmann, Hans J.
2013-01-01
Transverse dunes, which form under unidirectional winds and have fixed profile in the direction perpendicular to the wind, occur on all celestial objects of our solar system where dunes have been detected. Here we perform a numerical study of the average turbulent wind flow over a transverse dune by means of computational fluid dynamics simulations. We find that the length of the zone of recirculating flow at the dune lee --- the {\\em{separation bubble}} --- displays a surprisingly strong dep...
Numerical Modelling Approaches for Existing Masonry and RC Structures
Costa, Aníbal; Guedes, João Miranda; Varum, Humberto; Costa, Alexandre; Quelhas, Bruno; Saraiva Esteves Pacheco de Almeida, João
2014-01-01
Assessment of existing buildings making use of numerical simulation methods, even under the hypothesis of full knowledge of current conditions and materials, it is not an easy and straightforward task due to the limitations and complexities of such analysis tools. In this chapter, a discussion of different approaches for the simulation of structural response is introduced and applied to two of the most common building typologies: masonry structures and reinforced concrete frames. Following a ...
A Numeric Predictive Failure Model for Percussive Excavation
Green, Alex Nicholas
2011-01-01
NASA is currently developing technology for future human space exploration missions. One of these technologies is percussive excavation. The presented research examines how percussion affects soil behavior during the excavation process.The purpose of this research was to develop a numeric code for the prediction of reaction forces associated with soil failure during percussive excavation. In order to achieve this objective a variety of different excavation variables were tested. Those variabl...
Two-phase numerical model for thermal conductivity and convective heat transfer in nanofluids
Kondaraju Sasidhar; Lee Joon Sang
2011-01-01
Abstract Due to the numerous applications of nanofluids, investigating and understanding of thermophysical properties of nanofluids has currently become one of the core issues. Although numerous theoretical and numerical models have been developed by previous researchers to understand the mechanism of enhanced heat transfer in nanofluids; to the best of our knowledge these models were limited to the study of either thermal conductivity or convective heat transfer of nanofluids. We have develo...
Numerical Modelling Approaches for Sediment Transport in Sewer Systems
DEFF Research Database (Denmark)
Mark, Ole
constitute the basic modelling system necessary to give a discription of the most dominant physical transport processes concerning particles and dissolved matter in sewer systems: A surface model. An advection-dispersion model. A sediment transport model.......A study of the sediment transport processes in sewers has been carried out. Based on this study a mathematical modelling system has been developed to describe the transport processes of sediments and dissolved matter in sewer systems. The modelling system consists of three sub-models which...
Numerical implementation of a state variable model for friction
Energy Technology Data Exchange (ETDEWEB)
Korzekwa, D.A. [Los Alamos National Lab., NM (United States); Boyce, D.E. [Cornell Univ., Ithaca, NY (United States)
1995-03-01
A general state variable model for friction has been incorporated into a finite element code for viscoplasticity. A contact area evolution model is used in a finite element model of a sheet forming friction test. The results show that a state variable model can be used to capture complex friction behavior in metal forming simulations. It is proposed that simulations can play an important role in the analysis of friction experiments and the development of friction models.
A participatory modelling approach to developing a numerical sediment dynamics model
Jones, Nicholas; McEwen, Lindsey; Parker, Chris; Staddon, Chad
2016-04-01
Fluvial geomorphology is recognised as an important consideration in policy and legislation in the management of river catchments. Despite this recognition, limited knowledge exchange occurs between scientific researchers and river management practitioners. An example of this can be found within the limited uptake of numerical models of sediment dynamics by river management practitioners in the United Kingdom. The uptake of these models amongst the applied community is important as they have the potential to articulate how, at the catchment-scale, the impacts of management strategies of land-use change affect sediment dynamics and resulting channel quality. This paper describes and evaluates a new approach which involves river management stakeholders in an iterative and reflexive participatory modelling process. The aim of this approach was to create an environment for knowledge exchange between the stakeholders and the research team in the process of co-constructing a model. This process adopted a multiple case study approach, involving four groups of river catchment stakeholders in the United Kingdom. These stakeholder groups were involved in several stages of the participatory modelling process including: requirements analysis, model design, model development, and model evaluation. Stakeholders have provided input into a number of aspects of the modelling process, such as: data requirements, user interface, modelled processes, model assumptions, model applications, and model outputs. This paper will reflect on this process, in particular: the innovative methods used, data generated, and lessons learnt.
A review of recent advances in numerical modelling of local scour problems
DEFF Research Database (Denmark)
Sumer, B. Mutlu
2014-01-01
A review is presented of recent advances in numerical modelling of local scour problems. The review is organized in five sections: Highlights of numerical modelling of local scour; Influence of turbulence on scour; Backfilling of scour holes; Scour around complex structures; and Scour protection...
DEFF Research Database (Denmark)
Araujo, A.L.; Mota Soares, C.M.; Moreira de Freitas, M.J.;
2000-01-01
plate response data, corresponding numerical predictions and optimisation techniques. The plate response is a set of natural frequencies of flexural vibration. The numerical model is based on the finite element method using a higher-order displacement field. The model is applied to the identification...
Pilz, Tobias; Francke, Till; Bronstert, Axel
2016-04-01
Until today a large number of competing computer models has been developed to understand hydrological processes and to simulate and predict streamflow dynamics of rivers. This is primarily the result of a lack of a unified theory in catchment hydrology due to insufficient process understanding and uncertainties related to model development and application. Therefore, the goal of this study is to analyze the uncertainty structure of a process-based hydrological catchment model employing a multiple hypotheses approach. The study focuses on three major problems that have received only little attention in previous investigations. First, to estimate the impact of model structural uncertainty by employing several alternative representations for each simulated process. Second, explore the influence of landscape discretization and parameterization from multiple datasets and user decisions. Third, employ several numerical solvers for the integration of the governing ordinary differential equations to study the effect on simulation results. The generated ensemble of model hypotheses is then analyzed and the three sources of uncertainty compared against each other. To ensure consistency and comparability all model structures and numerical solvers are implemented within a single simulation environment. First results suggest that the selection of a sophisticated numerical solver for the differential equations positively affects simulation outcomes. However, already some simple and easy to implement explicit methods perform surprisingly well and need less computational efforts than more advanced but time consuming implicit techniques. There is general evidence that ambiguous and subjective user decisions form a major source of uncertainty and can greatly influence model development and application at all stages.
Frolkovič, Peter; De Schepper, Hennie
In this paper, we present a numerical model for a problem of coupled flow and transport in porous media. We use a barycentre based finite volume method (FVM), which, in the case of convection dominated transport, is combined with suitable upwind methods, in order to avoid numerical instabilities. We present some relevant and new numerical results for the Elder problem, which offer a better understanding of mutually non-compatible results in other papers, by showing the dependence of the recirculating patterns on the level of grid refinement and on the numerical scheme, as well as on (numerical) perturbations.
Numerical model for two-dimensional hydrodynamics and energy transport
International Nuclear Information System (INIS)
The theoretical basis and computational procedure of the VECTRA computer program are presented. VECTRA (Vorticity-Energy Code for TRansport Analysis) is designed for applying numerical simulation to a broad range of intake/discharge flows in conjunction with power plant hydrological evaluation. The code computational procedure is based on finite-difference approximation of the vorticity-stream function partial differential equations which govern steady flow momentum transport of two-dimensional, incompressible, viscous fluids in conjunction with the transport of heat and other constituents
Numerical modelling of multiple scattering between two elastical particles
DEFF Research Database (Denmark)
Bjørnø, Irina; Jensen, Leif Bjørnø
1998-01-01
question of proximity thresholds for influence of multiple scattering in terms of particle properties like volume fraction, average distance between particles or other related parameters. A few available experimental data indicate a significance of multiple scattering in suspensions where the concentration...... is higher than 20 g/l of sand particles. This paper reports an attempt to illuminate and to solve the proximity threshold question, by an in-depth numerical study of the interaction of ultrasonic signals with two canonically shaped elastic particles. Introductory experimental results seem to create...
Physical and numerical modeling of labyrinth weirs with polyhedral bottom
Directory of Open Access Journals (Sweden)
J. San Mauro
2016-07-01
Full Text Available In order to comply with the new safety regulations a significant number of Spanish dam spillways must be upgraded. In this scenario and with the aim of increasing the discharge capacity with a reduced investment innovative designs become interesting solutions. One of these innovative designs are the labyrinth weirs. Project POLILAB is carrying out with the objective of optimize the design of labyrinth weirs, physical and numerical tests exposed in this article were developed within this framework. The most relevant results are related with the discharge capacity, the flow pattern and the structural reinforcement achieved by the implementation of a polyhedral bottom.
Directory of Open Access Journals (Sweden)
John (Jack P. Riegel III
2016-04-01
Full Text Available Historically, there has been little correlation between the material properties used in (1 empirical formulae, (2 analytical formulations, and (3 numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014 to show how the Effective Flow Stress (EFS strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN (Anderson and Walker, 1991 and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D = 10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a
Institute of Scientific and Technical Information of China (English)
John Jack P. RIEGEL III; David DAVISON
2016-01-01
Historically, there has been little correlation between the material properties used in (1) empirical formulae, (2) analytical formulations, and (3) numerical models. The various regressions and models may each provide excellent agreement for the depth of penetration into semi-infinite targets. But the input parameters for the empirically based procedures may have little in common with either the analytical model or the numerical model. This paper builds on previous work by Riegel and Anderson (2014) to show how the Effective Flow Stress (EFS) strength model, based on empirical data, can be used as the average flow stress in the analytical Walker–Anderson Penetration model (WAPEN) (Anderson and Walker, 1991) and how the same value may be utilized as an effective von Mises yield strength in numerical hydrocode simulations to predict the depth of penetration for eroding projectiles at impact velocities in the mechanical response regime of the materials. The method has the benefit of allowing the three techniques (empirical, analytical, and numerical) to work in tandem. The empirical method can be used for many shot line calculations, but more advanced analytical or numerical models can be employed when necessary to address specific geometries such as edge effects or layering that are not treated by the simpler methods. Developing complete constitutive relationships for a material can be costly. If the only concern is depth of penetration, such a level of detail may not be required. The effective flow stress can be determined from a small set of depth of penetration experiments in many cases, especially for long penetrators such as the L/D=10 ones considered here, making it a very practical approach. In the process of performing this effort, the authors considered numerical simulations by other researchers based on the same set of experimental data that the authors used for their empirical and analytical assessment. The goals were to establish a baseline with a full
Constructing and Characterising Seismic Models for Numerical Helioseismology
Schunker, Hannah; Gizon, Laurent; Moradi, Hamed
2011-01-01
In this paper, we construct background solar models that are stable against convection, by modifying the vertical pressure gradient of Model S (Christensen-Dalsgaard et al., 1996, Science, 272, 1286) relinquishing hydrostatic equilibrium. However, the stabilisation affects the eigenmodes that we wish to remain as close to Model S as possible. In a bid to recover the Model S eigenmodes, we choose to make additional corrections to the sound speed of Model S before stabilisation. No stabilised model can be perfectly solar-like, so we present three stabilised models with slightly different eigenmodes. The models are appropriate to study the f and p1 to p4 modes with spherical harmonic degrees in the range from 400 to 900. Background model CSM has a modified pressure gradient for stabilisation and has eigenfrequencies within 2% of Model S. Model CSM_A has an additional 10% increase in sound speed in the top 1 Mm resulting in eigenfrequencies within 2% of Model S and eigenfunctions that are, in comparison with CSM,...
The model of information retrieval based on the theory of hypercomplex numerical systems
Lande, D V; Boyarinova, Yu E
2012-01-01
The paper provided a description of a new model of information retrieval, which is an extension of vector-space model and is based on the principles of the theory of hypercomplex numerical systems. The model allows to some extent realize the idea of fuzzy search and allows you to apply in practice the model of information retrieval practical developments in the field of hypercomplex numerical systems.
The application of numerical control (NC) in manufacturing wind tunnel models
A numerically controlled milling machine with an accuracy of 0.01 to 0.02 mm adapted to the manufacturing of wind tunnel models, and a three axis measuring machine with an accuracy of 0.01 mm and a resolution of 0.05 mm on which models can be measured quickly and accurately are described. A procedure in which a given plasticine model is measured by the measuring machine to obtain the coordinates for models without numerical data is outlined.
How to Overcome Numerical Challenges to Modeling Stirling Engines
Dyson, Rodger W.; Wilson, Scott D.; Tew, Roy C.
2004-01-01
Nuclear thermal to electric power conversion carries the promise of longer duration missions and higher scientific data transmission rates back to Earth for a range of missions, including both Mars rovers and deep space missions. A free-piston Stirling convertor is a candidate technology that is considered an efficient and reliable power conversion device for such purposes. While already very efficient, it is believed that better Stirling engines can be developed if the losses inherent in current designs could be better understood. However, they are difficult to instrument and so efforts are underway to simulate a complete Stirling engine numerically. This has only recently been attempted and a review of the methods leading up to and including such computational analysis is presented. And finally it is proposed that the quality and depth of Stirling loss understanding may be improved by utilizing the higher fidelity and efficiency of recently developed numerical methods. One such method, the Ultra HI-FI technique is presented in detail.
Numerical modeling of oxygen exclusion experiments of anaerobic bioventing
Mihopoulos, Philip G.; Suidan, Makram T.; Sayles, Gregory D.; Kaskassian, Sebastien
2002-10-01
A numerical and experimental study of transport phenomena underlying anaerobic bioventing (ABV) is presented. Understanding oxygen exclusion patterns in vadose zone environments is important in designing an ABV process for bioremediation of soil contaminated with chlorinated solvents. In particular, the establishment of an anaerobic zone of influence by nitrogen injection in the vadose zone is investigated. Oxygen exclusion experiments are performed in a pilot scale flow cell (2×1.1×0.1 m) using different venting flows and two different outflow boundary conditions (open and partially covered). Injection gas velocities are varied from 0.25×10 -3 to 1.0×10 -3 cm/s and are correlated with the ABV radius of influence. Numerical simulations are used to predict the collected experimental data. In general, reasonable agreement is found between observed and predicted oxygen concentrations. Use of impervious covers can significantly reduce the volume of forcing gas used, where an increase in oxygen exclusion efficiency is consistent with a decrease in the outflow area above the injection well.
Numerical modeling of oxygen exclusion experiments of anaerobic bioventing.
Mihopoulos, Philip G; Suidan, Makram T; Sayles, Gregory D; Kaskassian, Sebastien
2002-10-01
A numerical and experimental study of transport phenomena underlying anaerobic bioventing (ABV) is presented. Understanding oxygen exclusion patterns in vadose zone environments is important in designing an ABV process for bioremediation of soil contaminated with chlorinated solvents. In particular, the establishment of an anaerobic zone of influence by nitrogen injection in the vadose zone is investigated. Oxygen exclusion experiments are performed in a pilot scale flow cell (2 x 1.1 x 0.1 m) using different venting flows and two different outflow boundary conditions (open and partially covered). Injection gas velocities are varied from 0.25 x 10(-3) to 1.0 x 10(-3) cm/s and are correlated with the ABV radius of influence. Numerical simulations are used to predict the collected experimental data. In general, reasonable agreement is found between observed and predicted oxygen concentrations. Use of impervious covers can significantly reduce the volume of forcing gas used, where an increase in oxygen exclusion efficiency is consistent with a decrease in the outflow area above the injection well. PMID:12400833
International Nuclear Information System (INIS)
Two-fluid model is still useful to simulate two-phase flow in large domain such as rod bundles. However, two-fluid model include a lot of constitutive equations, and the two-fluid model has problems that the results of analyses depend on accuracy of constitutive equations. To solve these problems, we have been developing an advanced two-fluid model. In this model, an interface tracking method is combined with the two-fluid model to predict large interface structure behavior without any constitutive equations, and constitutive equations to evaluate the effects of small bubbles or droplets are only required. In this study, we modified the advanced two-fluid model to improve the stability of the numerical simulation and reduce the computational time. In this paper, we describe the modification performed in this study and the numerical results of two-phase flow in various flow conditions are shown. (author)
Numerical simulation of LBGK model for high Reynolds number flow
Institute of Scientific and Technical Information of China (English)
Zhou Xiao-Yang; Shi Bao-Chang; Wang Neng-Chao
2004-01-01
A principle of selecting relaxation parameter was proposed to observe the limit computational capability of the incompressible LBGK models developed by Guo ZL (Guo model) and He SY (He model) for high Reynolds number flow.To the two-dimensional driven cavity flow problem, the highest Reynolds numbers covered by Guo and He models are in the range 58000-52900 and 28000-29000, respectively, at 0.3 Mach number and 1/256 lattice space. The simulation results also show that the Guo model has stronger robustness due to its higher accuracy.
A Total Generalized Optimal Velocity Model and Its Numerical Tests
Institute of Scientific and Technical Information of China (English)
ZHU Wen-xing; LIU Yun-cai
2008-01-01
A car-following model named total generalized optimal velocity model (TGOVM) was developed with a consideration of an arbitrary number of preceding vehicles before current one based on analyzing the previous models such as optimal velocity model (OVM), generalized OVM (GOVM) and improved GOVM (IGOVM). This model describes the physical phenomena of traffic flow more exactly and realistically than previous models. Also the performance of this model was checked out by simulating the acceleration and de- celeration process for a small delay time. On a single circular lane, the evolution of the traffic congestion was studied for a different number of headways and relative velocities of the preceding vehicles being taken into account. The simulation results show that TGOVM is reasonable and correct.
Numerical Analysis of Modeling Based on Improved Elman Neural Network
Directory of Open Access Journals (Sweden)
Shao Jie
2014-01-01
Full Text Available A modeling based on the improved Elman neural network (IENN is proposed to analyze the nonlinear circuits with the memory effect. The hidden layer neurons are activated by a group of Chebyshev orthogonal basis functions instead of sigmoid functions in this model. The error curves of the sum of squared error (SSE varying with the number of hidden neurons and the iteration step are studied to determine the number of the hidden layer neurons. Simulation results of the half-bridge class-D power amplifier (CDPA with two-tone signal and broadband signals as input have shown that the proposed behavioral modeling can reconstruct the system of CDPAs accurately and depict the memory effect of CDPAs well. Compared with Volterra-Laguerre (VL model, Chebyshev neural network (CNN model, and basic Elman neural network (BENN model, the proposed model has better performance.
Improved numerical modeling of morphodynamics of rivers with steep banks
Langendoen, Eddy J.; Mendoza, Alejandro; Abad, Jorge D.; Tassi, Pablo; Wang, Dongchen; Ata, Riadh; El kadi Abderrezzak, Kamal; Hervouet, Jean-Michel
2016-07-01
The flow and sediment transport processes near steep streambanks, which are commonly found in meandering, braided, and anastomosing stream systems, exhibit complex patterns that produce intricate interactions between bed and bank morphologic adjustment. Increasingly, multi-dimensional computer models of riverine morphodynamics are used to aid in the study of these processes. A number of depth-averaged two-dimensional models are available to simulate morphologic adjustment of both bed and banks. Unfortunately, these models use overly simplified conceptual models of riverbank erosion, are limited by inflexible structured mesh systems, or are unable to accurately account for the flow and sediment transport adjacent to streambanks of arbitrary geometry. A new, nonlinear model is introduced that resolves these limitations. The model combines the river morphodynamics computer models TELEMAC-2D and SISYPHE of the open source TELEMAC-MASCARET suite of solvers with the bank erosion modules of the CONCEPTS channel evolution computer model. The performance of the new model is evaluated for meander-planform initiation and development. The most important findings are: (1) the model is able to simulate a much greater variety and complexity in meander wavelengths; (2) simulated meander development agrees closely with the unified bar-bend theory of Tubino and Seminara (1990); and (3) the rate of meander planform adjustment is greatly reduced if the wavelength of alternate bars is similar to that of meanders.
Theoretical and Numerical Modeling of Acoustic Metamaterials for Aeroacoustic Applications
Directory of Open Access Journals (Sweden)
Umberto Iemma
2016-05-01
Full Text Available The advent, during the first decade of the 21st century, of the concept of acoustic metamaterial has disclosed an incredible potential of development for breakthrough technologies. Unfortunately, the extension of the same concepts to aeroacoustics has turned out to be not a trivial task, because of the different structure of the governing equations, characterized by the presence of the background aerodynamic convection. Some of the approaches recently introduced to circumvent the problem are biased by a fundamental assumption that makes the actual realization of devices extremely unlikely: the metamaterial should guarantee an adapted background aerodynamic convection in order to modify suitably the acoustic field and obtain the desired effect, thus implying the porosity of the cloaking device. In the present paper, we propose an interpretation of the metamaterial design that removes this unlikely assumption, focusing on the identification of an aerodynamically-impermeable metamaterial capable of reproducing the surface impedance profile required to achieve the desired scattering abatement. The attention is focused on a moving obstacle impinged by an acoustic perturbation induced by a co-moving source. The problem is written in a frame of reference rigidly connected to the moving object to couple the convective wave equation in the hosting medium with the inertially-anisotropic wave operator within the cloak. The problem is recast in an integral form and numerically solved through a boundary-field element method. The matching of the local wave vector is used to derive a convective design of the metamaterial applicable to the specific problem analyzed. Preliminary numerical results obtained under the simplifying assumption of a uniform aerodynamic flow reveal a considerable enhancement of the masking capability of the convected design. The numerical method developed shows a remarkable computational efficiency, completing a simulation of the entire
Numerical modeling of cooling tower plumes: comparison with experiments
International Nuclear Information System (INIS)
This chapter compares mathematical models designed to study the impact of cooling tower plumes from a nuclear power plant in France. The 3 models are an integral model for a statistical evaluation of plume characteristics and their cumulative effect (reduction of insolation); a spectral microphysical model, to study the interaction processes between a natural cloud and the plume; and a 3D plume model, involving both dynamics, microphysics and their coupling, to investigate the problems of plumes development, especially in convective situations (cumuli formation). Experimental data were obtained near the BUGEY nuclear power plant (two units of 900 MWe, two natural draft cooling towers per unit). The three models currently used are compared to the experimental data. Includes 3 tables and 3 drawings
Modelling of a rotary desiccant wheel: Numerical validation of a Variable Properties Model
International Nuclear Information System (INIS)
Desiccant cooling systems have been used since the early '30s, mainly for industrial applications in which significant economic benefits could be achieved from an accurate humidity control. The core unit of a desiccant cooling system is the desiccant wheel device, the performances of which determine size and cost of the whole system. As a result, having a good desiccant wheel mathematical model can be an useful tool to optimize the operation of the device, as well as a valuable aid in the design phase. In this paper a one-dimensional coupled heat and mass transfer desiccant wheel model was developed, taking into account the dependence of thermodynamic and transport properties of humid air with temperature (Variable Properties Model, VPM). The model has been validated using both literature and experimental data in terms of temperature and humidity profiles at the exit of the wheel, dehumidification effectiveness, dehumidification coefficient of performance and sensible energy ratio. Compared to the traditional models, significant improvements in the agreement between numerical predictions and experimental data have been observed. It was found that mean relative error between measured and VPM calculated data were always significantly lower than those between the same experimental data and values calculated according to widespread literature models which consider moist air properties constant with temperature; as a consequence, it can be inferred that neglecting variations of moist air properties with temperature leads to unacceptably low accuracy variables estimation. - Highlights: • A 1-dimensional coupled heat and mass transfer desiccant wheel model was developed. • Temperature dependence of thermodynamic and transport properties was considered. • Model simulation was carried out under a wide range of operating conditions. • Numerical results was compared with both experimental and literature data. • Major improvements in data matching were observed
Time-dependent corona models - A numerical method
Korevaar, P.; van Leer, B.
1988-07-01
A time-dependent numerical method for calculating gas flows is described. The method is implicit and especially suitable for finding stationary flow solutions. Although the method is general in its application to ideal compressible fluids, this paper applies it to a stellar atmosphere, heated to coronal temperatures by dissipation of mechanical energy. The integration scheme is based on conservative upwind spatial differencing. The upwind switching is provided by Van Leer's method of differentiable flux-splitting. It is shown that the code can handle large differences in density: up to 14 orders of magnitude. Special attention is paid to the boundary conditions, which are made completely transparent to disturbances. Besides some test-results, converged solutions for various values of the initial mechanical flux are presented which are in good agreement with previous time-independent calculations.
Numerical modeling of dimethyl ether (DME) bubble growth and breakup
Institute of Scientific and Technical Information of China (English)
ZHANG Peng; ZHANG YuSheng
2009-01-01
A numerical program is written to simulate the process of vapor bubble growth with spherical symmetry from the thermodynamic critical radius in an initially uniformly superheated liquid. The program is validated by the experimental data of superheated water. The calculated results agree with those of experiments well. The program takes into account the variations of properties with temperature precisely to simulate the DME bubble growth under flash boiling conditions. Considering the influences of pressure, surface tension and viscous stress, the linear stability analysis method is adopted to deduce the dispersion equation to represent the disturbance development during the bubble growth, and a new criterion for bubble breakup is established. The results show the bubble becomes more unstable with the increase of bubble Weber number and void fraction, and that with the increase of bubble growth rate or the decrease of initial radius ration of droplet to bubble, the breakup time of bubble becomes shorter.
Numerical modelling of the Concorde wake during ZEBRE
Energy Technology Data Exchange (ETDEWEB)
Gierens, K. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere
1997-12-31
Numerical simulations of the Concorde contrail during the ZEBRE experiment have been performed. The main goal of the simulations is to reproduce the fast vanishing of the contrail which disappeared 20-30 s after exhaust. It is difficult to evaporate ice crystals during the jet and vortex phase of the aircraft wake, when the exhaust products are trapped in the vortex cores. The trapping also excludes spatial dispersion of the ice crystals as an explanation of the short contrail lifetime. The disappearance of the contrail within 20-30 s requires that a substantial part of the exhaust gases escapes from the region that is later on trapped in the vortex cores. (author) 10 refs.
Holistic simulation of geotechnical installation processes numerical and physical modelling
2015-01-01
The book provides suitable methods for the simulations of boundary value problems of geotechnical installation processes with reliable prediction for the deformation behavior of structures in static or dynamic interaction with the soil. It summarizes the basic research of a research group from scientists dealing with constitutive relations of soils and their implementations as well as contact element formulations in FE-codes. Numerical and physical experiments are presented providing benchmarks for future developments in this field. Boundary value problems have been formulated and solved with the developed tools in order to show the effectivity of the methods. Parametric studies of geotechnical installation processes in order to identify the governing parameters for the optimization of the process are given in such a way that the findings can be recommended to practice for further use. For many design engineers in practice the assessment of the serviceability of nearby structures due to geotechnical installat...
A numerical semiconductor model applicable to organic solar cells
Minnaert, Ben; Burgelman, Marc; Heereman, Frédéric
2007-01-01
Excitons are marginally important in classical semiconductor device physics, and their treatment is not included in standard solar cell modelling. However, in organic semiconductors and solar cells, the role of excitons is essential, as the primary effect of light absorption is exciton generation, and free electrons and holes are created by exciton dissociation. First steps to include excitons in solar cell modelling were presented by Green and Zhang. We extended their model (2006), includin...
Joosten, A; Bochud, F; Moeckli, R
2014-08-21
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable
Joosten, A.; Bochud, F.; Moeckli, R.
2014-08-01
The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable
Numerical modeling of thermal evolution in hot metal coiling
Directory of Open Access Journals (Sweden)
Troyani, N.
2005-12-01
Full Text Available The use of coiling and uncoiling in the transfer table stage has important effects on the downstream temperature evolution throughout the hot bar in hot rolling, consequently, it has significant effects on both the uniformity of final mechanical properties and uniformity of final metallurgical properties. Consideration is given herein to the evolution of bar distribution of temperature in the transfer table, when coiling is present, in order to establish possible causes for the lack of the stated uniformity for eventual possible solutions. To address these issues, the mathematical equation of heat diffusion in a shape changing domain, is solved using a novel numerical strategy that uses both Finite Elements and Finite Differences. Numerical results are presented.
El uso de estrategias para el bobinado y enderezado en la etapa de la mesa de transporte tiene repercusiones importantes en la evolución de la temperatura, aguas abajo, en el planchón de metal caliente; en consecuencia, tiene efectos significativos sobre la uniformidad de las propiedades mecánicas y metalúrgicas finales una vez concluido el proceso. Este trabajo estudia la evolución de la distribución de temperatura en la etapa de la mesa de transporte, en procesos de bobinado, con el fin de establecer causas que puedan originar la ausencia de la citada uniformidad. Para el estudio se resuelve la ecuación de difusión del calor en un dominio que cambia con el tiempo en una novedosa estrategia numérica que integra Elementos Finitos y Diferencias Finitas. Se presentan resultados numéricos de la simulación.
Ultrasonic-assisted manufacturing processes: Variational model and numerical simulations
Siddiq, Amir
2012-04-01
We present a computational study of ultrasonic assisted manufacturing processes including sheet metal forming, upsetting, and wire drawing. A fully variational porous plasticity model is modified to include ultrasonic softening effects and then utilized to account for instantaneous softening when ultrasonic energy is applied during deformation. Material model parameters are identified via inverse modeling, i.e. by using experimental data. The versatility and predictive ability of the model are demonstrated and the effect of ultrasonic intensity on the manufacturing process at hand is investigated and compared qualitatively with experimental results reported in the literature. © 2011 Elsevier B.V. All rights reserved.
Numerical Treatment of the Mathematical Models for Water Pollution
Directory of Open Access Journals (Sweden)
F. B. Agusto
2007-01-01
Full Text Available To evaluate the environmental impact of pollution, mathematical models play a major role in predicting the pollution level in the regions under consideration. This paper examines the various mathematical models involving water pollutant. We also give the implicit central difference scheme in space, and a forward difference method in time for the evaluation of the generalized transport equation.
Numerical Treatment of the Mathematical Models for Water Pollution
Agusto, F. B.; O. M. Bamigbola
2007-01-01
To evaluate the environmental impact of pollution, mathematical models play a major role in predicting the pollution level in the regions under consideration. This paper examines the various mathematical models involving water pollutant. We also give the implicit central difference scheme in space, and a forward difference method in time for the evaluation of the generalized transport equation.
Numerical calculation of path integrals : The small-polaron model
Raedt, Hans De; Lagendijk, Ad
1983-01-01
The thermodynamic properties of the small-polaron model are studied by means of a discrete version of the Feynman path-integral representation of the partition function. This lattice model describes a fermion interacting with a boson field. The bosons are treated analytically, the fermion contributi
A numerical model of gas-fluidized beds
Kuipers, J.A.M.; Duin, van K.J.; Beckum, van F.P.H.; Swaaij, van W.P.M.
1992-01-01
A first-principles model for gas-fluidized bed based on the so-called "two-fluid model" (TFM) has been developed. In the TFM approach, both phases are considered to be continuous and fully interpenetrating. The equations of mass, momentum and thermal energy conservation, supplemented with the necess
The design of a numerical shallow water wave hindcast model
Herbers, T.H.C.; Booij, N.; Holthuijsen, L.H.
1984-01-01
Development of a two-dimensional model to hindcast spectral wave parameters in an estuary with tidal flats on the basis of bottom topography, current- and wind data. HISWA is a directionally decoupled parametric wave hindcast model containing bottom- and current refraction, diffraction, wave growth