WorldWideScience

Sample records for 2-d lmfbr disassembly

  1. Disassembly

    OpenAIRE

    McLellen, Todd

    2012-01-01

    My interest in the real has always been present and I try to mix my work with that. In my series disassembly, I have used old items that are no longer used by the masses and often found on the street curbs heading for disposal. All of the items in the photographs were in working order. The interesting part was the fact that they were all so well built, and most likely put together by hand. I envisioned all the enjoyment these pieces had given many people for many years, all to be replaced by ...

  2. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approximately 1,000 g/m3), high turbulence, and high temperature (approximately 20000C); and aerosol transport through various leak paths. These studies have shown that tittle, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building. (author)

  3. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approx. 1000 g/m3), high turbulence, and high temperature (approx. 20000C); and aerosol transport through various leak paths. These studies have shown that little, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building

  4. LMFBR fuel component costs

    International Nuclear Information System (INIS)

    A significant portion of the cost of fabricating LMFBR fuels is in the non-fuel components such as fuel pin cladding, fuel assembly ducts and end fittings. The contribution of these to fuel fabrication costs, based on FFTF experience and extrapolated to large LMFBR fuel loadings, is discussed. The extrapolation considers the expected effects of LMFBR development programs in progress on non-fuel component costs

  5. LMFBR plant parameters

    International Nuclear Information System (INIS)

    This document contains up-to-date data on existing or firmly decided prototype or demonstration LMFBR reactors (Table I), on planned commercial size LMFBR according to the present status of design (Table II) and on experimental fast reactors such as BOR-60, DFR, EBR-II, FERMI, FFTF, JOYO, KNK-II, PEC, RAPSODIE-FORTISSIMO (Table III). Only corrected and revised parameters submitted by the countries participating in the IWGFR are included in this document

  6. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo

    1996-06-21

    In an LMFBR type reactor, partitions are disposed to a coolant channel at positions lower than the free liquid level, and the width of the partitions is adapted to have a predetermined condition. Namely, when low temperature fluid overflowing the wall of the coolant channel, flows down and collided against the free liquid surface in the coolant channel, since the dropping speed thereof is reduced abruptly, large pressure waves are caused by kinetic force of the low temperature fluid. However, if appropriate numbers of partitions having an appropriate shape are formed, the dropping speed of the low temperature fluid is moderated to reduce the pressure waves. In addition, since the pressure waves are dispersed to the circumferential and lateral directions of the coolant flow channel respectively, the propagation of the pressure waves can be prevented effectively. Further, when the flow of the low temperature fluid is changed to the circumferential direction, for example, by earthquakes, since the partitions act as members resisting against the circumferential change of the low temperature fluid, the change of the direction can be suppressed. (N.H.)

  7. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1997-04-04

    An LMFBR type reactor comprises a plurality of reactor cores in a reactor container. Namely, a plurality of pot containing vessels are disposed in the reactor vessel and a plurality of reactor cores are formed in a state where an integrated-type fuel assembly is each inserted to a pot, and a coolant pipeline is connected to each of the pot containing-vessel to cool the reactor core respectively. When fuels are exchanged, the integrated-type fuel assembly is taken out together with the pot from the reactor vessel in a state where the integrated-type fuel assembly is immersed in the coolants in the pot as it is. Accordingly, coolants are supplied to each of the pot containing-vessel connected with the coolant pipeline and circulate while cooling the integrated-type fuel assembly for every pot. Then, when the fuels are exchanged, the integrated type fuel assembly is taken out to the outside of the reactor together with the pot by taking up the pot from the pot-containing vessel. Then, neutron economy is improved to thereby improve reactor power and the breeding ratio. (N.H.)

  8. LMFBR plant parameters 1991

    International Nuclear Information System (INIS)

    The document has been prepared on the basis of information provided by the members of the IAEA International Working Group on Fast Reactors (IWGFR). It contains updated parameters of 27 experimental, prototype and commercial size liquid metal fast breeder reactors (LMFBRs). Most of the reactors are currently in operation, under construction or in an advanced planning stage. Parameters of the Clinch River Breeder Reactor (USA), PEC (Italy), RAPSODIE (France), DFR (UK) and EFFBR (USA) are included in the report because of their important role in the development of LMFBR technology from first LMFBRs to the prototype size fast reactors. Two more reactors appeared in the list: European Fast Reactor (EFR) and PRISM (USA). Parameters of these reactors included in this publication are based on the data from the papers presented at the 23rd Annual Meeting of the IWGFR. All in all more than four hundred corrections and additions have been made to update the document. The report is intended for specialists and institutions in industrialized and developing countries who are responsible for the design and operation of liquid metal fast breeder reactors

  9. Mechanism of ciliary disassembly.

    Science.gov (United States)

    Liang, Yinwen; Meng, Dan; Zhu, Bing; Pan, Junmin

    2016-05-01

    As motile organelles and sensors, cilia play pivotal roles in cell physiology, development and organ homeostasis. Ciliary defects are associated with a class of cilia-related diseases or developmental disorders, termed ciliopathies. Even though the presence of cilia is required for diverse functions, cilia can be removed through ciliary shortening or resorption that necessitates disassembly of the cilium, which occurs normally during cell cycle progression, cell differentiation and in response to cellular stress. The functional significance of ciliary resorption is highlighted in controlling the G1-S transition during cell cycle progression. Internal or external cues that trigger ciliary resorption initiate signaling cascades that regulate several downstream events including depolymerization of axonemal microtubules, dynamic changes in actin and the ciliary membrane, regulation of intraflagellar transport and posttranslational modifications of ciliary proteins. To ensure ciliary resorption, both the active disassembly of the cilium and the simultaneous inhibition of ciliary assembly must be coordinately regulated. PMID:26869233

  10. TRIO a general computer code for reactor 3-D flows analysis. Application to a LMFBR hot plenum

    International Nuclear Information System (INIS)

    TRIO is a code developed at CEA to investigate general incompressible 2D and 3D viscous flows. Two calculations are presented: the lid driven cubic cavity at Re=400; steady state (velocity and temperature field) of a LMFBR hot plenum, carried out in order to prepare the calculation of a cold shock consecutive to a reactor scram. 8 refs., 26 figs.

  11. Cilium assembly and disassembly

    Science.gov (United States)

    2016-01-01

    The primary cilium is an antenna-like, immotile organelle present on most types of mammalian cells, which interprets extracellular signals that regulate growth and development. Although once considered a vestigial organelle, the primary cilium is now the focus of considerable interest. We now know that ciliary defects lead to a panoply of human diseases, termed ciliopathies, and the loss of this organelle may be an early signature event during oncogenic transformation. Ciliopathies include numerous seemingly unrelated developmental syndromes, with involvement of the retina, kidney, liver, pancreas, skeletal system and brain. Recent studies have begun to clarify the key mechanisms that link cilium assembly and disassembly to the cell cycle, and suggest new possibilities for therapeutic intervention. PMID:27350441

  12. AGC-2 Disassembly Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes

    2014-05-01

    The Next Generation Nuclear Plant (NGNP) Graphite Research and Development (R&D) Program is currently measuring irradiated material properties for predicting the behavior and operating performance of new nuclear graphite grades available for use within the cores of new very high temperature reactor designs. The Advanced Graphite Creep (AGC) experiment, consisting of six irradiation capsules, will generate irradiated graphite performance data for NGNP reactor operating conditions. The AGC experiment is designed to determine the changes to specific material properties such as thermal diffusivity, thermal expansion, elastic modulus, mechanical strength, irradiation induced dimensional change rate, and irradiation creep for a wide variety of nuclear grade graphite types over a range of high temperature, and moderate doses. A series of six capsules containing graphite test specimens will be used to expose graphite test samples to a dose range from 1 to 7 dpa at three different temperatures (600, 900, and 1200°C) as described in the Graphite Technology Development Plan. Since irradiation induced creep within graphite components is considered critical to determining the operational life of the graphite core, some of the samples will also be exposed to an applied load to determine the creep rate for each graphite type under both temperature and neutron flux. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR). AGC-1 and AGC-2 will be irradiated in the south flux trap and AGC-3–AGC-6 will be irradiated in the east flux trap. The change in flux traps is due to NGNP irradiation priorities requiring the AGC experiment to be moved to accommodate Fuel irradiation experiments. After irradiation, all six AGC capsules will be cooled in the ATR Canal, sized for shipment, and shipped to the Materials and Fuels Complex (MFC) where the capsule will be disassembled in the Hot Fuel Examination Facility (HFEF). During disassembly, the metallic

  13. Use of reliability in the LMFBR industry

    International Nuclear Information System (INIS)

    This mission of a Reliability Program for an LMFBR should be to enhance the design and operational characteristics relative to safety and to plant availability. Successful accomplishment of this mission requires proper integration of several reliability engineering tasks--analysis, testing, parts controls and program controls. Such integration requires, in turn, that the program be structured, planned and managed. This paper describes the technical integration necessary and the management activities required to achieve mission success for LMFBR's

  14. Gamma heating in LMFBR media

    International Nuclear Information System (INIS)

    State-of-the-art approaches for the calculation of gamma heating in LMFBR core, blanket and reflector regions have been evaluated, with particular emphasis on coupled neutron-gamma methods/cross section sets. The major source of calculational error was found to be the apparent failure to impose a mass-energy balance on total gamma energy yield from neutron capture and other interactions in the preparation of representative neutron-gamma cross section sets. The applicability of many simplifying assumptions was demonstrated, including: volume-weighted homogenization, insensitivity to the shape of the gamma-source-spectrum, gamma energy deposition equal to gamma energy source more than 10 cm inside large zones of uniform composition, and the negligible effect of bremsstrahlung. A simple one-group method was developed to permit rapid, accurate estimation of the large (factor of 2) changes in the gamma energy deposition-to-source ratio possible near region interfaces. The approach, which also ensures conservation of mass-energy, was used in conjunction with coupled neutron-gamma computations to verify that previous experimental measurements of gamma heating in an LMFBR blanket mockup at M. I. T. were in accord with theoretical expectations within the experimental precision of +-10%

  15. Gamma heating in LMFBR media

    Energy Technology Data Exchange (ETDEWEB)

    Kalra, M.S.; Drisoll, M.J.

    1976-02-01

    State-of-the-art approaches for the calculation of gamma heating in LMFBR core, blanket and reflector regions have been evaluated, with particular emphasis on coupled neutron-gamma methods/cross section sets. The major source of calculational error was found to be the apparent failure to impose a mass-energy balance on total gamma energy yield from neutron capture and other interactions in the preparation of representative neutron-gamma cross section sets. The applicability of many simplifying assumptions was demonstrated, including: volume-weighted homogenization, insensitivity to the shape of the gamma-source-spectrum, gamma energy deposition equal to gamma energy source more than 10 cm inside large zones of uniform composition, and the negligible effect of bremsstrahlung. A simple one-group method was developed to permit rapid, accurate estimation of the large (factor of 2) changes in the gamma energy deposition-to-source ratio possible near region interfaces. The approach, which also ensures conservation of mass-energy, was used in conjunction with coupled neutron-gamma computations to verify that previous experimental measurements of gamma heating in an LMFBR blanket mockup at M. I. T. were in accord with theoretical expectations within the experimental precision of +-10%.

  16. LMFBR thermal-striping evaluation

    International Nuclear Information System (INIS)

    Thermal striping is defined as the fluctuating temperature field that is imposed on a structure when fluid streams at different temperatures mix in the vicinity of the structure surface. Because of the uncertainty in structural damage in LMFBR structures subject to thermal striping, EPRI has funded an effort for the Rockwell International Energy Systems Group to evaluate this problem. This interim report presents the following information: (1) a Thermal Striping Program Plan which identifies areas of analytic and experimental needs and presents a program of specific tasks to define damage experienced by ordinary materials of construction and to evaluate conservatism in the existing approach; (2) a description of the Thermal Striping Test Facility and its operation; and (3) results from the preliminary phase of testing to characterize the fluid environment to be applied in subsequent thermal striping damage experiments

  17. CORTRAN code user manual. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Cheatham, R.L.; Crawford, S.L.; Khan, E.U.

    1981-02-01

    CORTRAN has been developed as a relatively fast running design code for core-wide steady-state and transient analysis of Liquid Metal Fast Breeder Reactor (LMFBR) cores. The preliminary version of this computer program uses subchannel analysis techniques to compute the velocity and temperature fields on a multiassembly basis for three types of transient forcing functions: total power, total flow, and inlet coolant temperature. Interassembly heat transfer, intra-assembly heat transfer, and intra-assembly flow redistribution due to buoyancy are taken into account. Heat generation within the fuel rods and assembly duct walls is also included. Individual pin radial peaking factors (peak to average for each assembly) can be either read in or calculated from specified normalized neutronic power densities (six per assembly).

  18. Material effects in LMFBR sodium systems

    International Nuclear Information System (INIS)

    The operating conditions of commercial LMFBR's can result in material performance problems. Corrosion, radiation damage, temperature requirements, plastic deformation, and the superposition of these effects have been defined as important limiting factors for the design of components. A detailed knowledge of the various parameters which can influence the behavior of materials under LMFBR conditions is therefore necessary. The objective of the paper is to identify the influence of the sodium environment on the most important properties of materials which are used for the construction of heat transfer components. The paper considers the fuel cladding, the IHX, and the steam generator to be the major heat exchange units to be evaluated

  19. RESEARCH ON PROCESS AND PLAN OF DISASSEMBLY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With the viewpoint of integrating all phases of product life cycle,product disassembly problem is discussed. An kind of logical net methodology for product disassembly modeling is presented. An channel of converting product assembly model into disassembly model,such as logical net, is proposed,and the minimization cost problem and its linear programming model are given.

  20. Leakage effects on LMFBR cell liners

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.; Gartling, D.K.; Nickell, R.E.

    1978-01-01

    The thermostructural effects of a molten sodium spill onto a Liquid Metal Fast Breeder Reactor (LMFBR) cell liner are investigated utilizing a geometrically simple finite element model. The sodium spill is considered for various flow rate regimes. Because the actual characteristics of a spill are unknown, a parametric analysis was performed with the size of spill and heat transfer coefficient as variables.

  1. Physical modeling of thermohydraulic phenomena in LMFBR

    International Nuclear Information System (INIS)

    A simulation method of thermohydraulic problems in LMFBR is illustrated by a dimensional analysis of the different equations. For steady state and transient regimes on the reactor, it is shown how some experiments on small scale models with usual fluid permit a tentative solution to these problems

  2. Sensitivity of the power distribution in large heterogeneous LMFBR designs

    Energy Technology Data Exchange (ETDEWEB)

    Tzanos, C.P.; Barthold, W.P.

    1977-01-01

    In heterogeneous LMFBR designs consisting of consecutive core and blanket zones, the power distribution is very sensitive to enrichment distribution changes in the core zones. The purpose of the paper is to analyze this sensitivity in heterogeneous LMFBR designs of different degrees of coupling among the core zones.

  3. Elastoplastic fracture mechanics approach for LMFBR

    International Nuclear Information System (INIS)

    The structural materials used for LMFBR are austenitic steels from Type AISI 304, 316, or steels which are similar. Investigations show that a leak-before-break concept can be established for LMFBR piping systems and components, due to the ductile behaviour of these steels and operating conditions. A major element of this concept is the knowledge of fatigue crack growth patterns. The experiments which were carried out show that initial flaws will only grow slowly during the lifetime. The investigations should be extended into the plastic range. A test facility is under construction, where components such as nozzles, elbows and bellows can be tested under operational conditions with specified flaws in stress concentration areas. (author)

  4. LMFBR with booster pump in pumping loop

    Science.gov (United States)

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  5. Disassemblability modeling technology of configurable product based on disassembly constraint relation weighted design structure matrix(DSM)

    Science.gov (United States)

    Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng

    2014-05-01

    The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.

  6. Multicell slug flow heat transfer analysis of finite LMFBR bundles

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, M.K.; Wolf, L.

    1978-12-01

    An analytical two-dimensional, multi-region, multi-cell technique has been developed for the thermal analysis of LMFBR rod bundles. Local temperature fields of various unit cells were obtained for 7, 19, and 37-rod bundles of different geometries and power distributions. The validity of the technique has been verified by its excellent agreement with the THTB calculational result. By comparing the calculated fully-developed circumferential clad temperature distribution with those of the experimental measurements, an axial correction factor has been derived to account for the entrance effect for practical considerations. Moreover, the knowledge of the local temperature field of the rod bundle leads to the determination of the effective mixing lengths L/sub ij/ for adjacent subchannels of various geometries. It was shown that the implementation of the accurately determined L/sub ij/ into COBRA-IIIC calculations has fairly significant effects on intersubchannel mixing. In addition, a scheme has been proposed to couple the 2-D distributed and lumped parameter calculation by COBRA-IIIC such that the entrance effect can be implanted into the distributed parameter analysis. The technique has demonstrated its applicability for a 7-rod bundle and the results of calculation were compared to those of three-dimensional analyses and experimental measurements.

  7. STUDY ON HUMAN-COMPUTER SYSTEM FOR STABLE VIRTUAL DISASSEMBLY

    Institute of Scientific and Technical Information of China (English)

    Guan Qiang; Zhang Shensheng; Liu Jihong; Cao Pengbing; Zhong Yifang

    2003-01-01

    The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disassembly is built, and the corresponding human-computer system for stable virtual disassembly is developed. In this system, an immersive and interactive virtual disassembly environment has been created to provide planners with a more visual working scene. For cooperative disassembly, an intelligent module of stability analysis of disassembly operations is embedded into the human-computer system to assist planners to implement disassembly tasks better. The supporting matrix for stability analysis of disassembly operations is defined and the method of stability analysis is detailed. Based on the approach, the stability of any disassembly operation can be analyzed to instruct the manual virtual disassembly. At last, a disassembly case in the virtual environment is given to prove the validity of above ideas.

  8. CEC activities in the field of LMFBR safety

    International Nuclear Information System (INIS)

    The aim of the ECC is to reach a common LMFBR Safety strategy in Europe. To this end the Commission promotes collaboration between the different fast reactor projects in the Community through working groups and collaborative arrangements and contributes with a research activity executed in its Joint Research Centre Ispra. A short description is given of the activity in the working groups and of the Ispra programme on LMFBR Safety. This programme covers: LMFBR thermohydraulics, fuel coolant interactions, dynamic structure loading and response, safety related material properties and whole core accident code development

  9. Preliminary study: isotopic safeguards techniques (IST). LMFBR fuel cycles

    International Nuclear Information System (INIS)

    This memorandum presents the preliminary results of the effort to investigate the applicability of isotope correlation techniques (ICT), formulated for the LWR system, to the LMFBR fuel cycle. The detailed isotopic compositional changes with burnup developed for the CRBR was utilized as the reference case. This differs from the usual LMFBR design studies in that the core uranium is natural uranium rather than depleted. Nevertheless, the general isotopic behavior should not differ significantly and does allow an initial insight into the expected behavior of isotopic correlations for the LMFBR power systems such as: the U.K. PFR and reprocessing plant; the French Phenix and Superphenix; and the US reference conceptual design studies (CDS) of homogeneous and heterogeneous LMFBR systems as they are developed

  10. Binary Code Disassembly for Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Marius Popa

    2013-01-01

    Full Text Available The disassembly of binary file is used to restore the software application code in a readable and understandable format for humans. Further, the assembly code file can be used in reverse engineering processes to establish the logical flows of the computer program or its vulnerabilities in real-world running environment. The paper highlights the features of the binary executable files under the x86 architecture and portable format, presents issues of disassembly process of a machine code file and intermediate code, disassembly algorithms which can be applied to a correct and complete reconstruction of the source file written in assembly language, and techniques and tools used in binary code disassembly.

  11. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  12. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.; Golay, M.W.; Wold, L.

    1981-02-01

    Four tasks are reported on: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)

  13. Pressure-sensitive fasteners for active disassembly

    OpenAIRE

    PEETERS Jef; Van den Bossche, Wannes; Devoldere, Tom; Vanegas, Paul; Dewulf, Wim; Duflou, Joost

    2015-01-01

    This paper presents a number of novel active fasteners developed to significantly lower disassembly costs during reconditioning, remanufacturing, and recycling of products. In the initial stage of the fastener development process, the applicability of distinct trigger signals for active disassembly (AD) is evaluated. Based on this evaluation, the high robustness of using a pressure increase or decrease as a nondestructive trigger for AD is demonstrated. Since previously ...

  14. Sequence of operations: TFTR assembly and disassembly

    International Nuclear Information System (INIS)

    A conceptual sequence of operations necessary to complete initial assembly of the Tokamak Fusion Test Reactor (TFTR) are described along with subsequent disassembly operations and special techniques planned for use during radioactive disassembly. Special attention is given in this report to techniques, personnel exposure, and equipment needed to effect the opening and closing of a vacuum vessel port and the installation of the vacuum vessel seal weld cutting machine under radioactive conditions

  15. Selection of the design basis leak for LMFBR steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, R A; Pfefferlen, H C; Roberts, J M; Sane, J O

    1977-11-01

    Steam generator tube failure mechanisms that have been observed in experiments or that have been postulated are discussed. The DBL for CRBRP and a proposed DBL for future large LMFBR steam generators are described. Safety considerations and philosophy in selection of Design Basis Leaks (DBL) are presented. A discussion of the Large Leak Test Rig (LLTR) Series II program support of the DBL selection for future large LMFBR steam generators is included.

  16. Disassembling iron availability to phytoplankton

    Directory of Open Access Journals (Sweden)

    Yeala eShaked

    2012-04-01

    Full Text Available The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO2 drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability - the acquisition of Fe-substrate by phytoplankton - and added levels of complexity involving interactions among organisms, iron and ecosystem processes. We first examine how phytoplankton acquire free and organically-bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotes and eukaryotes. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as spectrum rather than an absolute all or nothing. We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe compounds and environments, and for gauging the contribution of various Fe substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species.

  17. First insights into disassembled "evapotranspiration"

    Science.gov (United States)

    Chormański, Jarosław; Kleniewska, Małgorzata; Berezowski, Tomasz; Szporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatyłowicz, Jan; Batelaan, Okke

    2015-04-01

    In this work we present an initial data analysis obtained from a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them fromthe total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its component transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project

  18. Reactor control rod timing system. [LMFBR

    Science.gov (United States)

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  19. Low cycle fatigue of irradiated LMFBR materials

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, L D

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data.

  20. Microprocessor-based integrated LMFBR core surveillance

    International Nuclear Information System (INIS)

    This report results from a joint study of KfK and INTERATOM. The aim of this study is to explore the advantages of microprocessors and microelectronics for a more sophisticated core surveillance, which is based on the integration of separate surveillance techniques. Due to new developments in microelectronics and related software an approach to LMFBR core surveillance can be conceived that combines a number of measurements into a more intelligent decision-making data processing system. The following techniques are considered to contribute essentially to an integrated core surveillance system: - subassembly state and thermal hydraulics performance monitoring, - temperature noise analysis, - acoustic core surveillance, - failure characterization and failure prediction based on DND- and cover gas signals, and - flux tilting techniques. Starting from a description of these techniques it is shown that by combination and correlation of these individual techniques a higher degree of cost-effectiveness, reliability and accuracy can be achieved. (orig./GL)

  1. D-amino acids trigger biofilm disassembly.

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  2. Illustrating the disassembly of 3D models

    KAUST Repository

    Guo, Jianwei

    2013-10-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces between each pair of neighboring parts. The contact faces are then used to compute the possible moving directions of each part. We then present a simple algorithm for clustering the sets of the individual parts into meaningful sub-assemblies, which can be used for a hierarchical decomposition. We take the stability of sub-assemblies into account during the decomposition process by considering the upright orientation of the input models. Our framework also provides a user-friendly interface to enable the superimposition of the constraints for the decomposition. Finally, we visualize the disassembly process by generating an animated sequence. The experiments demonstrate that our framework works well for a variety of complex models. © 2013 Elsevier Ltd.

  3. D-Amino Acids Trigger Biofilm Disassembly

    OpenAIRE

    Kolodkin-Gal, Illana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-01-01

    Bacteria form communities known as biofilms, which disassemble over time. Here we found that prior to biofilm disassembly Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofi...

  4. Disassembling and decontamination techniques for JPDR

    Energy Technology Data Exchange (ETDEWEB)

    Yasunaka, Hideo (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1990-08-01

    The report addresses the development and testing of decontamination techniques that have been carried out at JPDR by the Japan Atomic Energy Research Institute. The reactor's primary system, fuel pools and waste liquid tanks are decontaminated before disassembling. Chemical techniques are mainly used for the decontamination of the primary system while high-pressure jets, blasting and peelable coatings are used for pools and tanks. The techniques employed at JPDR for the systems decontamination prior to disassembling include the Can-Decon method, a modified NP/NS-1 method, redox method, and flow polishing. About 40,000-50,000 tons of metal waste is released from a disassembled large-size nuclear power facility, about 20 percent of which is contaminated with radioactive substances. Most of the waste can be decontaminated by appropriate techniques such as electrolytic polishing, immersion in chemical decontamination agents, and grid blasting. The ultimate goal of post-disassembling decontamination is complete removal of radioactive contaminants from the surface of metal waste to permit its reutilization. (N.K.).

  5. Safety consequences of local initiating events in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, R.M.; Marr, W.W.; Padilla, A. Jr.; Wang, P.Y.

    1975-12-01

    The potential for fuel-failure propagation in an LMFBR at or near normal conditions is examined. Results are presented to support the conclusion that although individual fuel-pin failure may occur, rapid failure-propagation spreading among a large number of fuel pins in a subassembly is unlikely in an operating LMFBR. This conclusion is supported by operating experience, mechanistic analyses of failure-propagation phenomena, and experiments. In addition, some of the consequences of continued operation with defected fuel are considered.

  6. Status of gamma-ray heating characterization in LMFBR

    International Nuclear Information System (INIS)

    Efforts to define gamma-ray heating in Liquid Metal Fast Breeder Reactor (LMFBR) environments have been surveyed. Emphasis is placed on both current practice for the Experimental Breeder Reactor-II (EBR-II) and future needs of the Fast Flux Test Facility (FFTF). Experimental and theoretical work are included in this preliminary survey for both high and low power environments. Current ''state-of-the-art'' accuracies and limitations are assessed. On this basis, it is concluded that a broad and sustained effort be initiated to meet requested FFTF goal accuracies. To this end, recommendations are advanced for improving the current status of gamma heating characterization and temperature measurements in LMFBR

  7. A Novel Disassemble Algorithm Designed for Malicious File

    Directory of Open Access Journals (Sweden)

    Di Sun

    2013-02-01

    Full Text Available In order to avoid being static analyzed, hacker rely on various obfuscation techniques to hide its malicious characters. These techniques are very effective against common disassembles, preventing binary file from being disassembled correctly. The study presents novel disassemble algorithm which based on analyzed Control Flow Graph (CFG and Data Flow Graph (DFG information improve the ability of the disassembly. The proposed algorithm was verified on varied binary files. The experiment shows that the method not only improves the accuracy of disassemble but also greatly deal with malicious files.

  8. Moving hot cell for LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1994-09-16

    A moving hot cell for an LMFBR type reactor is made movable on a reactor operation floor between a position just above the reactor container and a position retreated therefrom. Further, it comprises an overhung portion which can incorporate a spent fuel just thereunder, and a crane for moving a fuel assembly between a spent fuel cask and a reactor container. Further, an opening/closing means having a shielding structure is disposed to the bottom portion and the overhung portion thereof, to provide a sealing structure, in which only the receiving port for the spent fuel cask faces to the inner side, and the cask itself is disposed at the outside. Upon exchange of fuels, the movable hot cell is placed just above the reactor to take out the spent fuels, so that a region contaminated with primary sodium is limited within the hot cell. On the other hand, upon maintenance and repair for equipments, the hot cell is moved, thereby enabling to provide a not contaminated reactor operation floor. (N.H.).

  9. Review of PRA methodology for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.E

    1999-02-01

    Probabilistic Risk Assessment (PRA) has been widely used as a tool to evaluate the safety of NPPs (Nuclear Power Plants), which are in the design stage as well as in operation. Recently, PRA becomes one of the licensing requirements for many existing and new NPPs. KALIMER is a Liquid Metal Fast Breeder Reactor (LMFBR) being developed by KAERI. Since the design concept of KALIMER is similar to that of the PRISM plant developed by GE, it would be appropriate to review the PRA methodology of PRISM as the first step of KALIMER PRA. Hence, in this report summarizes the PRA methodology of PRISM plant, and the required works for the PSA of KALIMER based on the reviewed results. The PRA technology of PRISM plant consists of following five major tasks: (1) development of initiating event list, (2) development of system event tree, (3) development of core response event tree, (4) development of containment response event tree, and (5) consequences and risk estimation. The estimated individual and societal risk measures show that the risk from a PRISM module is substantially less than the NRC goal. Each task is compared to the PRA methodology of Light Water Reactor (LWR)/Pressurized Heavy Water Reactor (PHWR). In the report, each task of PRISM PRA methodology is reviewed and compared to the corresponding part of LWR/PHWR PSA performed in Korea. The parts that are not modeled appropriately in PRISM PRA are identified, and the recommendations for KALIMER PRA are stated. (author). 14 refs., 9 tabs., 4 figs.

  10. Coolant mixing in the LMFBR outlet plenum

    International Nuclear Information System (INIS)

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds Number (Re) values of 33000 and 70000 in a 1/15-scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet velocity field, upon the degree of inlet turbulence, and upon the turbulence momentum exchange model used in the calculations. It is found in the FFTF geometry that the TEACH-T predictions are better than that of VARR-II, and in the CRBR geometry neither code provides a good prediction of the observed behavior. From the sensitivity analysis, it is found that the production and dissipation of turbulence are the dominant terms in the transport equations for turbulent kinetic energy and turbulent energy dissipation rate, and the diffusion terms are relatively small. From the same study a new set of empirical constants for the turbulence model is evolved for the prediction of plenum flows

  11. Core-seis: a code for LMFBR core seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chellapandi, P.; Ravi, R.; Chetal, S.C.; Bhoje, S.B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Reactor Group

    1995-12-31

    This paper deals with a computer code CORE-SEIS specially developed for seismic analysis of LMFBR core configurations. For demonstrating the prediction capability of the code, results are presented for one of the MONJU reactor core mock ups which deals with a cluster of 37 subassemblies kept in water. (author). 3 refs., 7 figs., 2 tabs.

  12. Experimental determination of LMFBR seismic equivalent core model

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, B.; Buland, P.; Fegeant, O.; Gantenbein, F. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1995-12-31

    The main phenomena which influence an LMFBR core seismic response are the fluid structure interaction and the impacts between subassemblies. To study the core behaviour seismic tests and calculations have been performed on the core mock-up RAPSODIE in air or in water and for different excitation levels. (author). 2 refs., 6 figs.

  13. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, September 1, 1980-November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1981-02-01

    Four tasks are reported: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)

  14. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  15. A Scatter Search Approach for Multiobjective Selective Disassembly Sequence Problem

    Directory of Open Access Journals (Sweden)

    Xiwang Guo

    2014-01-01

    Full Text Available Disassembly sequence has received much attention in recent years. This work proposes a multiobjective optimization of model for selective disassembly sequences and maximizing disassembly profit and minimizing disassembly time. An improved scatter search (ISS is adapted to solve proposed multiobjective optimization model, which embodies diversification generation of initial solutions, crossover combination operator, the local search strategy to improve the quality of new solutions, and reference set update method. To analyze the effect on the performance of ISS, simulation experiments are conducted on different products. The validity of ISS is verified by comparing the optimization effects of ISS and nondominated sorting genetic algorithm (NSGA-II.

  16. Postulated accident scenarios in weapons disassembly

    Energy Technology Data Exchange (ETDEWEB)

    Payne, S.S. [Dept. of Energy, Albuquerque, NM (United States)

    1997-06-01

    A very brief summary of three postulated accident scenarios for weapons disassembly is provided in the paper. The first deals with a tetrahedral configuration of four generic pits; the second, an infinite planar array of generic pits with varying interstitial water density; and the third, a spherical shell with internal mass suspension in water varying the size and mass of the shell. Calculations were performed using the Monte Carlo Neutron Photon transport code MCNP4A. Preliminary calculations pointed to a need for higher resolution of small pit separation regimes and snapshots of hydrodynamic processes of water/plutonium mixtures.

  17. LMFBR steam generators in the United Kingdom

    International Nuclear Information System (INIS)

    Experience has been gained in the UK on the operation of LMFBR Steam Generator Units (SGU) over a period of 20 years from the Dounreay Fast Reactor (DFR) and the Prototype Fast Reactor (PFR). The DFR steam generator featured a double barrier and therefore did not represent a commercial design. PFR, however, faced the challenge of a single wall design and it is experience from this which is most valuable. The PFR reactor went critical in March 1974 and the plant operating history since then has been dominated by experience with leaks in the tube to tube plate welds of the high performance U-tubes SGU's. Operation at high power using the full complement of three secondary sodium circuits was delayed until July 1976 by the occurrence of leaks in the tube to tube plate welds of the superheater and reheater units which are fabricated in stainless steel. Repairs were carried out to the two superheaters and they were returned to service. The reheater tube bundle was removed from circuit after sodium was found to have entered the steam side. When the sodium had been removed and inspection carried out it was decided not to recover the unit. Since 1976 the remaining five stainless steel units have operated satisfactorily. This year a replacement reheater unit has been installed. This is of a new design in 9-Cr-Mo ferritic steel using a sleeve through which the steam tube passes to eliminate the tube to tube plate weld. Despite a few early leaks in evaporator tube to tube plate welds up to 1979, these failures did not initially present a major problem. However, in 1980 the rate of evaporator weld failures increased and despite the successful application of a shot peening process to eliminate stress corrosion failures from the water side of the weld, failures traced to the sodium side continued. A sleeving process was developed for application to complete evaporator units on a production basis with the objective of bypassing the welds at each end of the 500 tubes. The decision

  18. An analytical tool for PIN contact incident of LMFBR fuel-subassembly

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoshi, Hiroyuki; Haga, Kazuo [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-12-01

    A subchannel computer code COBRA-41 was modified for LMFBR local faults analysis. Calculational results to a pin contact condition were compared with experimental ones and trial calculations were made to an LMFBR fuel-subassembly geometry. 8 refs., 8 figs., 2 tabs.

  19. Biological behavior of mixed LMFBR-fuel-sodium aerosols in rodents

    International Nuclear Information System (INIS)

    Clearance of 239Pu from lung and other tissues was determined after nose-only exposure of rats to mixed aerosols of sodium-LMFBR fuel or to LMFBR fuels only. The rates of clearance from lung and from total body were both higher after exposure to the mixed sodium-fuel than after exposure to fuel-only aerosols

  20. Cost-competitive, inherently safe LMFBR pool plant

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, J.S.; Brunings, J.E.; Chang, Y.I.; Seidensticker, R.W.; Hren, R.R.

    1984-01-01

    The Cost-Competitive, Inherently Safe LMFBR Pool Plant design was prepared in GFY 1983 as a joint effort by Rockwell International and the Argonne National Laboratory with major contributions from the Bechtel Group, Inc.; Combustion Engineering, Inc.; the Chicago Bridge and Iron Company; and the General Electric Company. Using current LMFBR technology, many innovative features were developed and incorporated into the design to meet the ultimate objectives of the Breeder Program, i.e., energy costs competitive with LWRs and inherent safety features to maintain the plant in a safe condition following assumed accidents without requiring operator action. This paper provides a description of the principal features that were incorporated into the design to achieve low cost and inherent safety.

  1. Seismic analysis of a large-pool type LMFBR concept

    International Nuclear Information System (INIS)

    The reactor assembly structure of a large pool-type LMFBR constitutes the primary structural boundary and support for the reactor system and sodium coolant. It must satisfy the conflicting requirements of structural flexibility to minimize thermal stress and structural stiffness to minimize seismic response and withstand seismic loading on a wide range of nuclear plant sites. In addition, fluid-structure interaction involving submerged components (e.g., reactor core and assembly, lower internals structures, upper internal structure, etc.) and the interface between the fluid and the thin-walled vessel must be addressed. This paper describes the preliminary analytic approach to the seismic analysis of a large pool-type LMFBR. This approach uses the response spectra model analysis method with an axisymmetric finite element shell model. The model comprises structural and fluid finite elements in order to account for the fluid-structure interaction

  2. Transient analysis of LMFBR reinforced/prestressed concrete containment

    International Nuclear Information System (INIS)

    The use of prestressed concrete reactor vessels (PCRVs) for LMFBR containment creates a need for analytical methods for treating the transient response of such structures, for LMFBR containment must be capable of sustaining the dynamic effects which arise in a hypothetical core disruptive accident (HCDA). These analyses require several unique features: a model of concrete which includes tensile cracking, a methodology for representing the prestressing tendons and for simulating the prestressing operation, and an efficient computational tool for treating the transient response. For the purpose of treating the transient response, a finite element program with explicit time integration was chosen. For the purpose of illustrating the applicability of these techniques and the validity of the models for concrete and the prestressing tendons, several example solutions are presented and compared with experimental results

  3. LMFBR Blanket Physics Project progress report No. 6

    International Nuclear Information System (INIS)

    Progress is summarized in experimental and analytical investigations of the neutronics and photonics of benchmark mockups of LMFBR blankets. During the reporting period work was devoted primarily to a wide range of analytical/numerical investigations, including blanket fuel management/economics studies, evaluation of improved blanket designs, and assessment of state-of-the-art methods for gamma heating calculations. Experimental work included preparations for resumption of MIT Reactor operations, primarily fabrication of improved steel reflector assemblies for blanket mockups, and development of an improved radiophotoluminescent readout device for LiF thermoluminescent detectors. The most significant finding was that the neutronic and economic performance of radial blanket assemblies are essentially independent of core size (rating) for radially-power-flattened cores. Hence the methodology and results of current experiments and calculations should be valid for the large commercial LMFBR's of the future

  4. LMFBR Blanket Physics Project progress report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J. (ed.)

    1975-06-30

    Progress is summarized in experimental and analytical investigations of the neutronics and photonics of benchmark mockups of LMFBR blankets. During the reporting period work was devoted primarily to a wide range of analytical/numerical investigations, including blanket fuel management/economics studies, evaluation of improved blanket designs, and assessment of state-of-the-art methods for gamma heating calculations. Experimental work included preparations for resumption of MIT Reactor operations, primarily fabrication of improved steel reflector assemblies for blanket mockups, and development of an improved radiophotoluminescent readout device for LiF thermoluminescent detectors. The most significant finding was that the neutronic and economic performance of radial blanket assemblies are essentially independent of core size (rating) for radially-power-flattened cores. Hence the methodology and results of current experiments and calculations should be valid for the large commercial LMFBR's of the future.

  5. LMFBR Blanket Physics Project progress report No. 2

    International Nuclear Information System (INIS)

    This is the second annual report of an experimental program for the investigation of the neutronics of benchmark mock-ups of LMFBR blankets. Work was devoted primarily to measurements on Blanket Mock-Up No. 2, a simulation of a typical large LMFBR radial blanket and its steel reflector. Activation traverses and neutron spectra were measured in the blanket; calculations of activities and spectra were made for comparison with the measured data. The heterogeneous self-shielding effect for 238U capture was found to be the most important factor affecting the comparison. Optimization and economic studies were made which indicate that the use of a high-albedo reflector material such as BeO or graphite may improve blanket neutronics and economics

  6. Asymmetric disassembly and robustness in declining networks.

    Science.gov (United States)

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2008-10-28

    Mechanisms that enable declining networks to avert structural collapse and performance degradation are not well understood. This knowledge gap reflects a shortage of data on declining networks and an emphasis on models of network growth. Analyzing >700,000 transactions between firms in the New York garment industry over 19 years, we tracked this network's decline and measured how its topology and global performance evolved. We find that favoring asymmetric (disassortative) links is key to preserving the topology and functionality of the declining network. Based on our findings, we tested a model of network decline that combines an asymmetric disassembly process for contraction with a preferential attachment process for regrowth. Our simulation results indicate that the model can explain robustness under decline even if the total population of nodes contracts by more than an order of magnitude, in line with our observations for the empirical network. These findings suggest that disassembly mechanisms are not simply assembly mechanisms in reverse and that our model is relevant to understanding the process of decline and collapse in a broad range of biological, technological, and financial networks.

  7. Effect of operating temperature on LMFBR core performance

    International Nuclear Information System (INIS)

    The purpose of the study is to provide an engineering evaluation of high and low temperature LMFBR core designs. The study was conducted by C-E supported by HEDL expertise in the areas of materials behavior, fuel performance and fabrication/fuel cycle cost. The evaluation is based primarily on designs and analyses prepared by AI, GE and WARD during Phase I of the PLBR studies

  8. Impact of LMFBR operating experience on PFBR design

    International Nuclear Information System (INIS)

    PFBR is a 500 MWe, sodium cooled, pool type, fast breeder reactor currently under detailed design. It is essential to reduce the capital cost of PFBR in order to make it competitive with thermal reactors. Operating experience of LMFBRs provides a vital input towards simplification of the design, improving its reliability, enhancing safety and achieving overall cost reduction. This paper includes a summary of LMFBR operating experience and details the design features of PFBR as influenced by operating experience of LMFBRs. (author)

  9. Cover-gas seals: 11-LMFBR seal-test program

    Energy Technology Data Exchange (ETDEWEB)

    Steele, O.P. III; Horton, P.H.

    1977-01-01

    The objective of the Cover Gas Seal Material Development Program is to perform the engineering development required to provide reliable seals for LMFBR application. Specific objectives are to verify the performance of commercial solid cross-section and inflatable seals under reactor environments including radiation, to develop advanced materials and configurations capable of achieving significant improvement in radioactive gas containment and seal temperature capabilities, and to optimize seal geometry for maximum reliability and minimal gas permeation.

  10. Mitotic lamin disassembly is triggered by lipid-mediated signaling.

    Science.gov (United States)

    Mall, Moritz; Walter, Thomas; Gorjánácz, Mátyás; Davidson, Iain F; Nga Ly-Hartig, Thi Bach; Ellenberg, Jan; Mattaj, Iain W

    2012-09-17

    Disassembly of the nuclear lamina is a key step during open mitosis in higher eukaryotes. The activity of several kinases, including CDK1 (cyclin-dependent kinase 1) and protein kinase C (PKC), has been shown to trigger mitotic lamin disassembly, yet their precise contributions are unclear. In this study, we develop a quantitative imaging assay to study mitotic lamin B1 disassembly in living cells. We find that CDK1 and PKC act in concert to mediate phosphorylation-dependent lamin B1 disassembly during mitosis. Using ribonucleic acid interference (RNAi), we showed that diacylglycerol (DAG)-dependent PKCs triggered rate-limiting steps of lamin disassembly. RNAi-mediated depletion or chemical inhibition of lipins, enzymes that produce DAG, delayed lamin disassembly to a similar extent as does PKC inhibition/depletion. Furthermore, the delay of lamin B1 disassembly after lipin depletion could be rescued by the addition of DAG. These findings suggest that lipins activate a PKC-dependent pathway during mitotic lamin disassembly and provide evidence for a lipid-mediated mitotic signaling event.

  11. CNS myelin wrapping is driven by actin disassembly.

    Science.gov (United States)

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  12. Alignment Pins for Assembling and Disassembling Structures

    Science.gov (United States)

    Campbell, Oliver C.

    2008-01-01

    Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw

  13. Disassembly and Sanitization of Classified Matter

    International Nuclear Information System (INIS)

    The Disassembly Sanitization Operation (DSO) process was implemented to support weapon disassembly and disposition by using recycling and waste minimization measures. This process was initiated by treaty agreements and reconfigurations within both the DOD and DOE Complexes. The DOE is faced with disassembling and disposing of a huge inventory of retired weapons, components, training equipment, spare parts, weapon maintenance equipment, and associated material. In addition, regulations have caused a dramatic increase in the need for information required to support the handling and disposition of these parts and materials. In the past, huge inventories of classified weapon components were required to have long-term storage at Sandia and at many other locations throughout the DoE Complex. These materials are placed in onsite storage unit due to classification issues and they may also contain radiological and/or hazardous components. Since no disposal options exist for this material, the only choice was long-term storage. Long-term storage is costly and somewhat problematic, requiring a secured storage area, monitoring, auditing, and presenting the potential for loss or theft of the material. Overall recycling rates for materials sent through the DSO process have enabled 70 to 80% of these components to be recycled. These components are made of high quality materials and once this material has been sanitized, the demand for the component metals for recycling efforts is very high. The DSO process for NGPF, classified components established the credibility of this technique for addressing the long-term storage requirements of the classified weapons component inventory. The success of this application has generated interest from other Sandia organizations and other locations throughout the complex. Other organizations are requesting the help of the DSO team and the DSO is responding to these requests by expanding its scope to include Work-for- Other projects. For example

  14. Disassembler mezikódu jazyka Java

    OpenAIRE

    Macháček, Ondřej

    2013-01-01

    Tato práce se zabývá popisem struktury mezikódu jazyka Java a disassemblováním instrukcí mezikódu jazyka Java. Součástí této práce je knihovna pro disassemblování souborů tříd jazyka Java. Knihovna umožňuje zobrazit veškeré disassemblované informace uložené v souboru tříd. Pro ukázku práce s knihovnou byla napsána i jednoduchá aplikace s grafickým uživatelským rozhraním. This thesis focus on the structure of Java class file and disassembling bytecode instructions of Java language. Part of ...

  15. Montmorillonite-induced Bacteriophage φ6 Disassembly

    Science.gov (United States)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  16. Lectures on 2D gravity and 2D string theory

    International Nuclear Information System (INIS)

    This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions

  17. End-of-life vehicle recycling based on disassembly

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang; QIN Ye; CHEN Ming; WANG Cheng-tao

    2005-01-01

    The end-of-life vehicle recycling was studied based on the disassembly. The end-of-life recycling and the disassembly were reviewed and discussed. A disassembly experiment of an end-of-life engine was carried out, which strictly recorded the process of dismantling. Based on the results, a model of the end-of-life recycling was presented. In this model, the end-of-life parts were classified by three ways which included to recycle directly, to recycleafter remanufacturing and to discard. By using this model, the dismantling efficiency and the recycling rate can be improved. Also, it obtains a good result after used in a dismantling factory.

  18. DESIGN OF MACHINES FOR ASSEMBLY, DISASSEMBLY AND REVERSE LOGISTICS

    Directory of Open Access Journals (Sweden)

    Ryszard ROHATYŃSKI

    2014-03-01

    Full Text Available The paper deals with the new problems of machine and other industrial products design that result from reverse logistics needs. Postulate to close the material cycle in economy poses for designer teams new, other than heretofore issues. Design for assembly that principles, methodology, and co-ordination in the frame of concurrent design already exist, does not meet demands of reverse logistics. There is a need for taking into consideration disassembly processes. The disassembly should take into regard material recovery processes and the reverse logistics requirements. In the paper general principles of the design for disassembly with allowing for these processes have been formulated.

  19. 2D-hahmoanimaation toteuttamistekniikat

    OpenAIRE

    Smolander, Aku

    2009-01-01

    Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...

  20. Fission and corrosion products behavior in primary circuits of LMFBR's

    International Nuclear Information System (INIS)

    Most of the 20 presented papers report items belonging to more than one session. The equipment results of primary circuits of LMFBR's relative to corrosion and fission products, release and chemistry of fuel, measurement techniques and analytical procedures of sodium sampling, difficulties with radionuclides and particles, reactor experiences with EBR-II, FFTF, BR10, BOR60, BN350, BN600, JOYO, and KNK-II, DFR, PFR, RAPSODIE, PHENIX, and SUPERPHENIX, and at least the verification of codes for calculation models of radioactive products accumulation and distribution are described. All 20 papers presented at the meeting are separately indexed in the database. (DG)

  1. LMFBR models for the ORIGEN2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1981-10-01

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th-/sup 238/U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given.

  2. Users' guide to CACECO containment analysis code. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Peak, R.D.

    1979-06-01

    The CACECO containment analysis code was developed to predict the thermodynamic responses of LMFBR containment facilities to a variety of accidents. The code is included in the National Energy Software Center Library at Argonne National Laboratory as Program No. 762. This users' guide describes the CACECO code and its data input requirements. The code description covers the many mathematical models used and the approximations used in their solution. The descriptions are detailed to the extent that the user can modify the code to suit his unique needs, and, indeed, the reader is urged to consider code modification acceptable.

  3. Calculation of reactivity changes due to bubble collapse. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, T.J.; Petrie, L.M.

    1977-01-01

    Calculations based on Behrens' method indicate that a substantial increase in reactivity may accompany the collapse of a large number of small bubbles in an LMFBR core. More sophisticated transport approaches to this problem have encountered several difficulties: the large number of bubbles requires many mesh points; the desired effect can easily be masked by the movement of fuel to regions of greater (or lesser) importance; the reactivity is desired for a random distribution of spherical bubbles. This paper describes a transport approach to this problem which avoids the above difficulties by using the ''sub-group'' or ''probability table'' method.

  4. LMFBR models for the ORIGEN2 computer code

    International Nuclear Information System (INIS)

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th-238U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given

  5. Part 3. Status of LMFBR fuels and materials development

    International Nuclear Information System (INIS)

    The status of development of the candidate LMFBR fuel type oxide, carbide and metal, cladding/duct alloys, and absorber material is reviewed. The three-fuel types are discussed for the reference breeder cycle, transmuter cycle, denatured cycle, and blanket fuel applications. The preferred design concepts for each fuel type are identified, with discussion of the more significant factors that control burnup and thermal performance for each design and fuel type. The key technical issues for each fuel and material are reviewed and the required effort to resolve the key issues is identified

  6. New package for Belleville spring permits rate change, easy disassembly

    Science.gov (United States)

    Mac Glashan, W. F.

    1964-01-01

    A spring package, with grooves to hold the spring washers at the inner and outer edges, reduces hysteresis to a minimum. Three-segment retainers permit easy disassembly so that the spring rate can be changed.

  7. Systems impacts of spent fuel disassembly alternatives

    International Nuclear Information System (INIS)

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables

  8. Assembly and disassembly of mammalian chromosome pellicle

    Institute of Scientific and Technical Information of China (English)

    NIZUMEI; JELITTLE; 等

    1992-01-01

    By means of indirect double immunofluorescent staining,the coordination of PI antigen and perichromonucleolin(PCN),the constituent of nuclear periphery and nucleolus respectively,in the assembly and disassembly of chromosome pellicle during mitosis was studied.It was found that in 3T3 cells,during mitosis PI antigen began to coat the condensing chromosome surface earlier than PCN did.However,both of them completed their coating on chromosome at approximately the same stage of mitosis,prometaphase metaphase,The dissociation of mitosis,Prometaphase metaphase.The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took place also ahead of that of PCN,At early telophase PI antigen had been extensively involved in the formation of nuclear periphery,while PCN remained in association with the surface of decondensing chromosomes.At late telophase,when PI antigen was localized in an fairly well formed nuclear periphery,PCN was in a stage of forming prenucleolar bodies.

  9. Systems impacts of spent fuel disassembly alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  10. Disassembly and aggregation in computer aided overhaul preparation

    Directory of Open Access Journals (Sweden)

    W. Janik

    2011-02-01

    Full Text Available Purpose: Disassembly and aggregation procedures are main aspects of an overhaul process. The paper presents the example of an application that solves automation of technical mean recirculation procedures. Automation in the aspect of overhaul process preparation should be obtained through new tools specially oriented to refurbish mechanically used or damaged components.Design/methodology/approach: Methodology is based on complex overhaul process analysis that conclude technical mean recirculation method. This method brings technical mean back to operation with procedures (like: disassembly, aggregation, examination, preparation of refurbishing technology, overhaul process report generation determined in specific order.Findings: Method of technical mean refurbishing with computer aid application. Proposition of automation in aspects of: disassembly (disassembly correct sequence and aggregation procedures (which elements should be examined.Research limitations/implications: Important limitations are: disassembly based on assembly order, automation widest range possible when disassembly and aggregation is based on existing documentation. Aggregation algorithm based on machined type of elements.Practical implications: Nowadays overhaul processes are based directly in most cases on leading technologist experience. Elaborated method and application leads to more objective solutions (decisions based on algorithms results.Originality/value: CAO is an original and new approach that should be considered especially in heavy industry. Nowadays subjective decisions about how to refurbish in overhaul processes could be replaced by automated computer aided solutions. Positive economic impact to future and present overhaul processes execution in industry.

  11. State of the art review of degradation processes in LMFBR materials. Volume II. Corrosion behavior

    International Nuclear Information System (INIS)

    Degradation of materials exposed to Na in LMFBR service is reviewed. The degradation processes are discussed in sections on corrosion and mass transfer, erosion, wear and self welding, sodium--water reactions, and external corrosion. (JRD)

  12. Blockages in LMFBR fuel assemblies: a review of experimental and theoretical studies

    Energy Technology Data Exchange (ETDEWEB)

    Han, J. T.

    1977-08-08

    This is a state-of-the-art report on the thermal-hydraulic effects of flow-channel blockages in liquid-metal fast breeder reactor (LMFBR) pin bundles. Most of the experimental and theoretical studies for simulating blockages in various prototype LMFBR fuel assemblies done in the United States and abroad through 1976 are presented and summarized. A brief summary on blockage detection is included.

  13. Proposal for computer investigation of LMFBR core meltdown accidents

    International Nuclear Information System (INIS)

    The environmental consequences of an LMFBR accident involving breach of containment are so severe that such accidents must not be allowed to happen. Present methods for analyzing hypothetical core disruptive accidents like a loss of flow with failure to scram cannot show conclusively that such accidents do not lead to a rupture of the pressure vessel. A major deficiency of present methods is their inability to follow large motions of a molten LMFBR core. Such motions may lead to a secondary supercritical configuration with a subsequent energy release that is sufficient to rupture the pressure vessel. The Los Alamos Scientific Laboratory proposes to develop a computer program for describing the dynamics of hypothetical accidents. This computer program will utilize implicit Eulerian fluid dynamics methods coupled with a time-dependent transport theory description of the neutronic behavior. This program will be capable of following core motions until a stable coolable configuration is reached. Survey calculations of reactor accidents with a variety of initiating events will be performed for reactors under current design to assess the safety of such reactors

  14. Analytical approach for confirming the achievement of LMFBR reliability goals

    International Nuclear Information System (INIS)

    The approach, recommended by GE-ARSD, for confirming the achievement of LMFBR reliability goals relies upon a comprehensive understanding of the physical and operational characteristics of the system and the environments to which the system will be subjected during its operational life. This kind of understanding is required for an approach based on system hardware testing or analyses, as recommended in this report. However, for a system as complex and expensive as the LMFBR, an approach which relies primarily on system hardware testing would be prohibitive both in cost and time to obtain the required system reliability test information. By using an analytical approach, results of tests (reliability and functional) at a low level within the specific system of interest, as well as results from other similar systems can be used to form the data base for confirming the achievement of the system reliability goals. This data, along with information relating to the design characteristics and operating environments of the specific system, will be used in the assessment of the system's reliability

  15. Benchmark physics experiment of metallic-fueled LMFBR at FCA

    International Nuclear Information System (INIS)

    A benchmark physics experiment of a metallic-fueled LMFBR was performed at Japan Atomic Energy Research Institute's Fast Critical Assembly (FCA) in order to examine availability of data and method for a design of metallic-fueled core. The nuclear data and the calculation methods used for a LMFBR core design have been improved based on the oxide fuel core experiments. A metallic-fueled core has a harder neutron spectrum than an oxide-fueled core and has typical nuclear characteristics affected by the neutron spectrum. In this study, availability of the conventional calculation method for the design of the metallic-fueled core was examined by comparing the calculation values of the nuclear characteristics with the measured values. The experimental core (FCA assembly XVI-1) was selected by referring to the conceptual design of Central Research Institute of Electric Power Industry. The calculated-to-experiment (C/E) value for keff of assembly XVI-1 was 1.001. From this, as far as the criticality the prediction accuracy of the conventional calculation for the metallic-fueled core was concluded to be similar to that of an oxide-fueled core. (author)

  16. Accretion Disks Phase Transitions 2-D or not 2-D?

    CERN Document Server

    Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.

    2000-01-01

    We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.

  17. SES2D user's manual

    International Nuclear Information System (INIS)

    SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run

  18. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    , and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...

  19. A symbolic methodology to improve disassembly process design.

    Science.gov (United States)

    Rios, Pedro; Blyler, Leslie; Tieman, Lisa; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Millions of end-of-life electronic components are retired annually due to the proliferation of new models and their rapid obsolescence. The recovery of resources such as plastics from these goods requires their disassembly. The time required for each disassembly and its associated cost is defined by the operator's familiarity with the product design and its complexity. Since model proliferation serves to complicate an operator's learning curve, it is worthwhile to investigate the benefits to be gained in a disassembly operator's preplanning process. Effective disassembly process design demands the application of green engineering principles, such as those developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), which include regard for product complexity, structural commonality, separation energy, material value, and waste prevention. This paper introduces the concept of design symbolsto help the operator more efficiently survey product complexity with respect to location and number of fasteners to remove a structure that is common to all electronics: the housing. With a sample of 71 different computers, printers, and monitors, we demonstrate that appropriate symbols reduce the total disassembly planning time by 13.2 min. Such an improvement could well make efficient the separation of plastic that would otherwise be destined for waste-to-energy or landfill. The symbolic methodology presented may also improve Design for Recycling and Design for Maintenance and Support.

  20. Analysis of Pu-Only Partitioning Strategies in LMFBR Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Bays; Gilles Youinou

    2013-02-01

    Sodium cooled Fast Reactors (SFR) have been under consideration for production of electricity, fissile material production, and for destruction of transuranics for decades. The neutron economy of a SFR can be operated in one of two ways. One possibility is to operate the reactor in a transuranic burner mode which has been the focus of active R&D in the last 15 years. However, prior to that the focus was on breeding transuranics. This later mode of managing the neutron economy relies on ensuring the maximum fuel utilization possible in such a way as to maximize the amount of plutonium produced per unit of fission energy in the reactor core. The goal of maximizing plutonium production in this study is as fissile feed stock for the production of MOX fuel to be used in Light Water Reactors (LWR). Throughout the l970’s, this fuel cycle scenario was the focus of much research by the Atomic Energy Commission in the event that uranium supplies would be scarce. To date, there has been sufficient uranium to supply the once through nuclear fuel cycle. However, interest in a synergistic relationship Liquid Metal Fast Breeder Reactors (LMFBR) and a consumer LWR fleet persists, prompting this study. This study considered LMFBR concepts with varying additions of axial and radial reflectors. Three scenarios were considered in collaboration with a companion study on the LWR-MOX designs based on plutonium nuclide vectors produced by this study. The first scenario is a LMFBR providing fissile material to make MOX fuel where the MOX part of the fuel cycle is operated in a once-through-then-out mode. The second scenario is the same as the first but with the MOX part of the fuel cycle multi-recycling its own plutonium with LMFBR being used for the make-up feed. In these first two scenarios, plutonium partitioning from the minor actinides (MA) was assumed. Also, the plutonium management strategy of the LMFBR ensured that only the high fissile purity plutonium bred from blankets was

  1. Development of a simple estimation tool for LMFBR construction cost

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    1999-05-01

    A simple tool for estimating the construction costs of liquid-metal-cooled fast breeder reactors (LMFBRs), 'Simple Cost' was developed in this study. Simple Cost is based on a new estimation formula that can reduce the amount of design data required to estimate construction costs. Consequently, Simple cost can be used to estimate the construction costs of innovative LMFBR concepts for which detailed design has not been carried out. The results of test calculation show that Simple Cost provides cost estimations equivalent to those obtained with conventional methods within the range of plant power from 325 to 1500 MWe. Sensitivity analyses for typical design parameters were conducted using Simple Cost. The effects of four major parameters - reactor vessel diameter, core outlet temperature, sodium handling area and number of secondary loops - on the construction costs of LMFBRs were evaluated quantitatively. The results show that the reduction of sodium handling area is particularly effective in reducing construction costs. (author)

  2. Analytical method to accurately predict LMFBR core flow distribution

    International Nuclear Information System (INIS)

    An accurate and detailed representation of the flow distribution in LMFBR cores is very important as the starting point and basis of the thermal and structural core design. Previous experience indicated that the steady state and transient core design is as good as the core orificing; thus, a new orificing philosophy satisfying a priori all design constraints was developd. However, optimized orificing is a necessary, but not sufficient condition for achieving the optimum core flow distribution, which is affected by the hydraulic characteristics of the remainder of the primary system. Consequently, an analytical model of the overall primary system was developed, resulting in the CATFISH computer code, which, even though specifically written for LMFBRs, can be used for any reactor employing ducted assemblies

  3. Simple LMFBR axial-flow friction-factor correlation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Y.N.; Todreas, N.E.

    1982-12-01

    Complicated LMFBR axial lead-length averaged friction-factor correlations are reduced to an easy, ready-to-use function of bundle Reynolds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer preprocessor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accurate values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest.

  4. Simple LMFBR axial-flow friction-factor correlation

    International Nuclear Information System (INIS)

    Complicated LMFBR axial lead-length averaged friction-factor correlations are reduced to an easy, ready-to-use function of bundle Reynolds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer preprocessor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accurate values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest

  5. Nonlinear transient deformation of LMFBR fuel elements under impulsive loading

    International Nuclear Information System (INIS)

    Hypothetical reactor accidents are characterized by a sudden release of substantial thermal energy in one fuel element. Presently it cannot be excluded that for instance pressure pulses due to a fuel coolant interaction may have such time scales and impulses as to deform neighboring subassemblies permanently. Additionally coherent fuel element motion may limit control rod scram action and possibly cause untolerable reactivity increases. Therefore LMFBR safety requires to analyse the complex mechanical response of the core structure under typical loading conditions. An important contribution to this problem is to examine the nonlinear structural dynamics of an individual fuel element under prescribed loading and boundary conditions. The subject of this paper is the elastoplastic transient behaviour of one subassembly under given space-and-time dependent pressure loading. The interaction of several colliding fuel elements including coolant dynamics is briefly discussed. (Auth.)

  6. MIT LMFBR blanket research project. Final summary report

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, M.J.

    1983-08-01

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record.

  7. CAT reconstruction and potting comparison of a LMFBR fuel bundle

    International Nuclear Information System (INIS)

    A standard Liquid Metal Fast Breeder Reactor (LMFBR) subassembly used in the Experimental Breeder Reactor II (EBR-II) was investigated, by remote techniques, for fuel bundle distortion by both nondestructive and destructive methods, and the results from both methods were compared. The non-destructive method employed neutron tomography to reconstruct the locations of fuel elements through the use of a maximum entropy reconstruction algorithm known as MENT. The destructive method consisted of ''potting'' (a technique that embeds and permanently fixes the fuel elements in a solid matrix) the subassembly, and then cutting and polishing the individual sections. The comparison indicated that the tomography reconstruction provided good results in describing the bundle geometry and spacer-wire locations, with the overall resolution being on the order of a spacer-wire diameter. A dimensional consistency check indicated that the element and spacer-wire dimensions were accurately reproduced in the reconstruction

  8. MIT LMFBR blanket research project. Final summary report

    International Nuclear Information System (INIS)

    This is a final summary report on an experimental and analytical program for the investigation of LMFBR blanket characteristics carried out at MIT in the period 1969 to 1983. During this span of time, work was carried out on a wide range of subtasks, ranging from neutronic and photonic measurements in mockups of blankets using the Blanket Test Facility at the MIT Research Reactor, to analytic/numerical investigations of blanket design and economics. The main function of this report is to serve as a resource document which will permit ready reference to the more detailed topical reports and theses issued over the years on the various aspects of project activities. In addition, one aspect of work completed during the final year of the project, on doubly-heterogeneous blanket configurations, is documented for the record

  9. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  10. Aero Fighter - 2D Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    Designing and developing quality based computer game is always a challenging task for developers. In this paper I briefly discuss aero fighting war game based on simple 2D gaming concepts and developed in C & C++ programming languages, using old bitmapping concepts. Going into the details of the game development, I discuss the designed strategies, flow of game and implemented prototype version of game, especially for beginners of game programming.

  11. Mathematical and Simulation Modelling of Moisture Diffusion Mechanism during Plastic IC Packages Disassembly

    OpenAIRE

    Peng Mou; Dong Xiang; Guanghong Duan

    2013-01-01

    Reuse of plastic IC packages disassembled from printed circuit boards (PCBs) has significant environmental benefits and economic value. The interface delamination caused by moisture diffusion is the main failure mode of IC packages during the disassembling process, which greatly reduces the reusability and reliability of disassembled IC packages. Exploring moisture diffusion mechanism is a prerequisite to optimize prebaking processes before disassembling that is an effective way to avoid the ...

  12. 2D-animaatiotuotannon optimointi

    OpenAIRE

    Saturo, Reetta

    2015-01-01

    Tämän opinnäytetyön tavoitteena on tutkia 2D-animaatiotuotannon optimoinnin mahdollisuuksia tiukan tuotantoaikataulun vaatimuksissa. Tutkielmassa tarkastellaan kahta asiakasprojektia, jotka on toteutettu pienellä tuotantotiimillä. Työkaluna animaatioissa on käytetty pääosin Adoben After Effects -ohjelmistoa. Tutkielman alussa esitellään animaatiotuotannot, joiden tuloksena syntyi kaksi lyhyttä mainoselokuvaa. Sen jälkeen käydään läpi animaatioelokuvan tuotantoprosessia vaiheittain ja tark...

  13. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  14. Teaching Assembly for Disassembly; An Under-Graduate Module Experience

    Science.gov (United States)

    Alexandri, Eleftheria

    2014-01-01

    This paper is about the experience of teaching Assembly for Disassembly to fourth year architect students within the module of sustainable design. When designing a sustainable building one should take into consideration the fact that the building is going to be demolished in some years; thus the materials should be assembled in such a way so that…

  15. Multi-kanban mechanism for personal computer disassembly

    Science.gov (United States)

    Udomsawat, Gun; Gupta, Surendra M.; Kamarthi, Sagar V.

    2004-12-01

    The use of personal computers (PCs) continues to increase every year. According to a 1999 figure, 50 percent of all US households owned PCs, a figure that continues to rise every year. With continuous development of sophisticated software, PCs are becoming increasingly powerful. In addition, the price of a PC continues to steadily decline. Furthermore, the typical life of a PC in the workplace is approximately two to three years while in the home it is three to five years. As these PCs become obsolete, they are replaced and the old PCs are disposed of. It is estimated that between 14 and 20 million PCs are retired annually in the US. While 20 to 30% of the units may be resold, the others are discarded. These discards represent a significant potential source of lead for the waste stream. In some communities, waste cathode ray tubes (CRTs) represent the second largest source of lead in the waste stream after vehicular lead acid batteries. PCs are, therefore, not suitable for dumping in landfills. Besides, several components of a PC can be reused and then there are other valuable materials that can also be harvested. And with the advent of product stewardship, product recovery is the best solution for manufacturers. Disassembly line is perhaps the most suitable set up for disassembling PCs. However, planning and scheduling of disassembly on a disassembly line is complicated. In this paper, we discuss some of the complications including product arrival, demand arrival, inventory fluctuation and production control mechanisms. We then show how to overcome them by implementing a multi-kanban mechanism in the PC disassembly line setting. The multi-kanban mechanism relies on dynamic routing of kanbans according to the state of the system. We investigate the multi-kanban mechanism using simulation and demonstrate that this mechanism is superior to the traditional push system in terms of controlling the system"s inventory while maintaining a decent customer service level.

  16. LMFBR safety: Task 10 - characterization of sodium fires and fission product

    International Nuclear Information System (INIS)

    The objectives of this project are to: develop a computer program for calculating two-dimensional, transient, natural convection phenomena such as those arising from various sodium spill accidents in Liquid Metal Fast Breeder Reactor (LMFBR) heat transfer equipment vaults, head compartments, containment buildings, and secondary heat transfer systems; develop experimental programs and conduct tests that will characterize the behavior of sodium, sodium oxide, fuel, fission product, and other aerosols as they might be generated by various postulated LMFBR accidents; determine by analysis and experiment the generation and transport of these aerosols; and determine the effects of an accident in an LMFBR involving fuel melting by contacting molten UO2 (a fuel simulant) with stainless steel, sodium, concrete, and various sacrificial materials

  17. 2D SIMPLIFIED SERVO VALVE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.

  18. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  19. Comparison of nuclear parameters for a LMFBR heterogenous Benchmark core. Influence of different basic data sets and processing codes

    International Nuclear Information System (INIS)

    A LMFBR heterogenous core model was a few years ago proposed by CEA as a Benchmark core for comparative calculations. The geometrical RZ model consists of three radial fissile zones of the same enrichment divided at the midplane by an axial slice of internal breeder material. The fissile zones are separated by three internal breeder zones, one central zone and two breeder rings. The core has been studied with 2D diffusion codes in 10 to 25 energy groups. Comparisons have been made between CEA (CARNAVAL III) INTERATOM (KEKINR) and STUDSVIK (ENDF IV) solutions. THe spread in k (sub)eff is 1.7 percent with the lowest value for STUDSVIK (ENDF IV) and the highest value for INTERATOM (KFKINR). The spread in breeding ratio is 0.03 with the highest value for STUDSVIK and lowest for INTERATOM. This spread in k (sub) eff and BR is of the same magnitude as for homogenous benchmark core. The variations in the sodium void effect between CARNAVAL III, KFKINR and ENDF IV solutions are rather similar for the heterogenous and homogenous benchmark cores. Comparison of one-group core fission and capture cross sections indicate a dominating influence of the processing codes. The influence on k (sub) eff seem to be smaller due to cancelling effects. (author)

  20. Cover gas seals. 11 - FFTF-LMFBR seal-test program, January-March 1974

    International Nuclear Information System (INIS)

    The objectives of this program are to: (1) conduct static and dynamic tests to demonstrate or determine the mechanical performance of full-size (cross section) FFTF fuel transfer machine and reactor vessel head seals intended for use in a sodium vapor - inert gas environment, (2) demonstrate that these FFTF seals or new seal configuration provide acceptable fission product and cover gas retention capabilities at LMFBR Clinch River Plant operating environmental conditions other than radiation, and (3) develop improved seals and seal technology for the LMFBR Clinch River Plant to support the national objective to reduce all atmospheric contaminations to low levels

  1. Hydraulic characteristics in secondary vessel of double pool LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Izumi; Naohara, Nobuyuki; Nishi, Yoshihisa [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-06-01

    CRIEPI made a conceptual design study on Metallic Fueled Double Pool LMFBR from 1990 to 1992. In this study, the configuration of the primary and the secondary vessel, and both arrangement and number of the secondary components were selected to realize the simplification of the structure. Flow field of the coolant in the secondary vessel is depend on this design. The objective of this study is to clarify the hydraulic characteristics in the secondary vessel by 1/7 model of water test and analysis and to confirm the validity of this design. Followings are main results. (1) As a result of the water test, it is confirmed that there is no stagnant region in the secondary vessel and there are sufficient mixing effect under steam generators. (2) As a result of the comparison between flow distribution obtained by water test and that by analysis, good agreements are obtained qualitatively. (3) There is no stagnant region near the free surface in the secondary vessel under reactor condition of normal operation. Therefore, a thermal stratification will not take place. Because of the mixing effect under SG outlet, it is considered that temperature of the coolant in the secondary vessel changes slowly in the case of transient condition Therefore the validity of the design is confirmed. (author).

  2. Gravitational agglomeration of post-HCDA LMFBR nonspherical aerosols

    Science.gov (United States)

    Tuttle, R. F.

    1980-12-01

    A theoretical investigation of collisional dynamics of two particle interactions in a gravitational field is reported. This research is unique in that it is the first attempt at modeling the hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. Basic definitions and expressions are developed for nonspherical particles and related to spherical particles by means of shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, k, the density correction factor, alpha, and the gravitational collision shape factor, beta, are used to correct the collision kernel for the case of collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program NGCEFF is constructed, the Navier-Stokes equation is solved by the finite difference method, and the dynamical equations are solved by Gear's method. It is concluded that the aerosol gravitational collision shape factor can be determined by further theoretical work based on the concepts and methods developed in this dissertation.

  3. Experimental determination of a LMFBR seismic equivalent core model

    Energy Technology Data Exchange (ETDEWEB)

    Buland, P.; Fegeant, O.; Fontaine, B.; Gantenbein, F.

    1995-12-31

    Seismic analysis of pool type LMFBR requires to perform a finite element calculation of the reactor. Because of fluid structure interaction and non-linearities due to the presence of gaps between subassemblies, it is impossible to include in the reactor vessel finite elements model the real behaviour of the core. It is therefore required to find a linear equivalent core model (LECM) which will give for the reactor vessel the same results. The design of the LECM is based on an experimental test program conducted with the core mock-up RAPSODIE on Vesuve shaking table located at CEA/Saclay center. The tests permitted to validate a linear equivalent model, which characteristics correspond to the modal parameters of the mock-up (masses, elevations, frequencies...). These characteristics were estimated in air and in water, for different level of excitation. They permitted to quantify the added mass ratio (about 15%) which is in a rather good agreement with the computation when the free surface effect is correctly taken into account. (authors). 2 refs., 5 figs., 1 photo.

  4. PROSA-1: a probabilistic response-surface analysis code. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vaurio, J. K.; Mueller, C.

    1978-06-01

    Techniques for probabilistic response-surface analysis have been developed to obtain the probability distributions of the consequences of postulated nuclear-reactor accidents. The uncertainties of the consequences are caused by the variability of the system and model input parameters used in the accident analysis. Probability distributions are assigned to the input parameters, and parameter values are systematically chosen from these distributions. These input parameters are then used in deterministic consequence analyses performed by mechanistic accident-analysis codes. The results of these deterministic consequence analyses are used to generate the coefficients for analytical functions that approximate the consequences in terms of the selected input parameters. These approximating functions are used to generate the probability distributions of the consequences with random sampling being used to obtain values for the accident parameters from their distributions. A computer code PROSA has been developed for implementing the probabilistic response-surface technique. Special features of the code generate or treat sensitivities, statistical moments of the input and output variables, regionwise response surfaces, correlated input parameters, and conditional distributions. The code can also be used for calculating important distributions of the input parameters. The use of the code is illustrated in conjunction with the fast-running accident-analysis code SACO to provide probability studies of LMFBR hypothetical core-disruptive accidents. However, the methods and the programming are general and not limited to such applications.

  5. GPU Accelerated Real-Time Collision Handling in Virtual Disassembly

    Institute of Scientific and Technical Information of China (English)

    Peng Du; Jie-Yi Zhao; Wan-Bin Pan; Yi-Gang Wang

    2015-01-01

    Previous collision detection methods for virtual disassembly mainly detect collisions at discrete time intervals, and use oriented bounding boxes to speed up the process. However, these discrete methods cannot guarantee no penetration occurs when the components move. Meanwhile, because some of the components are embedded into each other, these components cannot be separated in the subsequent process. To solve these problems, we propose an approach for real-time collision handling by utilizing the computational power of modern GPUs. First we present a novel GPU-based collision handling framework for virtual disassembly. Second we use a collision-streams based continuous collision detection to guarantee no collision missed. Finally we introduce a triangle intersection detection algorithm to solve the problem that collision cannot be detected when the components are embedded into each other at the initial configuration. The experimental results show that our method can improve the overall performance of collision detection and achieve real-time simulation.

  6. Programmable, isothermal disassembly of DNA-linked colloidal particles

    Science.gov (United States)

    Tison, Christopher Kirby

    Colloidal particles serve as useful building blocks for materials applications ranging from controlled hand-gap materials to rationally designed drug delivery systems. Thus, developing approaches to direct the assembly and disassembly of sub-micron sized particles will be paramount to further advances in materials science engineering. This project focuses on using programmable and reversible binding between oligonucleotide strands to assemble and then disassemble polystyrene colloidal particles. It is shown that DNA-mediated assembly can be reversed at a fixed temperature using secondary oligonucleotide strands to competitively displace the primary strands linking particles together. It was found that (1) titrating the surface density of hybridizing probe strands and (2) adjusting the base length difference between primary and secondary target strands was key to successful isothermal disassembly. In order to titrate the surface density of primary probe-target duplexes, colloidal particles were conjugated with mixtures of probe strands and "diluent" strands in order to minimize the number of DNA linkages between particles. To reduce the steric interference of the diluent strands to hybridization events, diluent strands were clipped with a restriction enzyme in select cases. Kinetics studies revealed that a four to six base-length difference between primary and secondary target strands resulted in extensive competitive hybridization at secondary oligonucleotide concentrations as low as 10 nM. Importantly, it was found that the timing for release of either DNA alone or DNA-conjugated nanoparticles could be tuned through choices in the DNA sequences and concentration. Lastly, competitive hybridization was explored in select studies to drive the "shedding" of PEGylated DNA targets from microspheres to reveal underlying adhesive groups or ligands on the particle surface. Unlike prior work relying on elevated temperatures to melt DNA-linkages, this work presents an

  7. Recycling Potential and Design for Disassembly in Buildings

    OpenAIRE

    Thormark, Catarina

    2001-01-01

    Recycling as part of environmental considerations has become a common feature in architecture and building construction. Recycling of building waste can make a considerable contribution to reducing the total environmental impact of the building sector. To increase the scope for recycling in the future, aspects of recycling have to be included in the design phase. Design for disassembly is a key task to increase the future scope for recycling. One object has been to elucidate the environmental...

  8. Disassembly model for the production of astrophysical strangelets

    CERN Document Server

    Biswas, Sayan; Joarder, Partha S; Raha, Sibaji; Syam, Debapriyo

    2014-01-01

    Determination of the baryon number (or mass) distribution of the strangelets, that may fragment out of the warm and excited strange quark matter (SQM) ejected in the merger of strange stars (SSs) in compact binary stellar systems of the Galaxy, is attempted by using a statistical disassembly model (SMM). Finite mass of strange quarks is taken into account in the analysis. Strangelet charge and the resulting Coulomb correction are included to get a plausible mass distribution of galactic strangelets at their source.

  9. Learn Unity for 2D game development

    CERN Document Server

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  10. On the optimal design of the disassembly and recovery processes

    International Nuclear Information System (INIS)

    This paper tackles the problem of the optimal design of the recovery processes of the end-of-life (EOL) electric and electronic products, with a special focus on the disassembly issues. The objective is to recover as much ecological and economic value as possible, and to reduce the overall produced quantities of waste. In this context, a medium-range tactical problem is defined and a novel two-phased algorithm is presented for a remanufacturing-driven reverse supply chain. In the first phase, we propose a multicriteria/goal-programming analysis for the identification and the optimal selection of the most 'desirable' subassemblies and components to be disassembled for recovery, from a set of different types of EOL products. In the second phase, a multi-product, multi-period mixed-integer linear programming (MILP) model is presented, which addresses the optimization of the recovery processes, while taking into account explicitly the lead times of the disassembly and recovery processes. Moreover, a simulation-based solution approach is proposed for capturing the uncertainties in reverse logistics. The overall approach leads to an easy-to-use methodology that could support effectively middle level management decisions. Finally, the applicability of the developed methodology is illustrated by its application on a specific case study

  11. Gelsolin mediates calcium-dependent disassembly of Listeria actin tails

    Science.gov (United States)

    Larson, Laura; Arnaudeau, Serge; Gibson, Bruce; Li, Wei; Krause, Ryoko; Hao, Binghua; Bamburg, James R.; Lew, Daniel P.; Demaurex, Nicolas; Southwick, Frederick

    2005-01-01

    The role of intracellular Ca2+ in the regulation of actin filament assembly and disassembly has not been clearly defined. We show that reduction of intracellular free Ca2+ concentration ([Ca2+]i) to <40 nM in Listeria monocytogenes-infected, EGFP–actin-transfected Madin–Darby canine kidney cells results in a 3-fold lengthening of actin filament tails. This increase in tail length is the consequence of marked slowing of the actin filament disassembly rate, without a significant change in assembly rate. The Ca2+-sensitive actin-severing protein gelsolin concentrates in the Listeria rocket tails at normal resting [Ca2+]i and disassociates from the tails when [Ca2+]i is lowered. Reduction in [Ca2+]i also blocks the severing activity of gelsolin, but not actin-depolymerizing factor (ADF)/cofilin microinjected into Listeria-infected cells. In Xenopus extracts, Listeria tail lengths are also calcium-sensitive, markedly shortening on addition of calcium. Immunodepletion of gelsolin, but not Xenopus ADF/cofilin, eliminates calcium-sensitive actin-filament shortening. Listeria tail length is also calcium-insensitive in gelsolin-null mouse embryo fibroblasts. We conclude that gelsolin is the primary Ca2+-sensitive actin filament recycling protein in the cell and is capable of enhancing Listeria actin tail disassembly at normal resting [Ca2+]i (145 nM). These experiments illustrate the unique and complementary functions of gelsolin and ADF/cofilin in the recycling of actin filaments. PMID:15671163

  12. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  13. Input parameters to codes which analyze LMFBR wire-wrapped bundles

    International Nuclear Information System (INIS)

    This report provides a current summary of recommended values of key input parameters required by ENERGY code analysis of LMFBR wire wrapped bundles. This data is based on the interpretation of experimental results from the MIT and other available laboratory programs

  14. Input parameters to codes which analyze LMFBR wire-wrapped bundles

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, J.T.; Chan, Y.N.; Todreas, N.E.

    1980-12-01

    This report provides a current summary of recommended values of key input parameters required by ENERGY code analysis of LMFBR wire wrapped bundles. This data is based on the interpretation of experimental results from the MIT and other available laboratory programs.

  15. LMFBR safety. 6. Review of current issues and bibliography of literature (1977)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1978-07-13

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development. Selected bibliographic information on LMFBRs relative to the development and safety of the breeder reactor is presented for the year 1977. The bibliography consists of approximately 198 abstracts covering research and development, operating experience, and design practices. Keyword, author, and permuted-title indexes are included for completeness.

  16. LMFBR safety. 6. Review of current issues and bibliography of literature (1977)

    International Nuclear Information System (INIS)

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development. Selected bibliographic information on LMFBRs relative to the development and safety of the breeder reactor is presented for the year 1977. The bibliography consists of approximately 198 abstracts covering research and development, operating experience, and design practices. Keyword, author, and permuted-title indexes are included for completeness

  17. LARA: Expert system for acoustic localization of robot in a LMFBR

    International Nuclear Information System (INIS)

    The expert system LARA (Acoustic Localization of Autonomic Robot) has been developed to show the interest of introducing artificial intelligency for fine automatic positioning of refuelling machine in a LMFBR reactor. LARA which is equipped with an acoustic detector gives rapidly a good positioning on the fuel

  18. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  19. Advanced methods for fabrication of PHWR and LMFBR fuels

    International Nuclear Information System (INIS)

    For self-reliance in nuclear power, the Department of Atomic Energy (DAE), India is pursuing two specific reactor systems, namely the pressurised heavy water reactors (PHWR) and the liquid metal cooled fast breeder reactors (LMFBR). The reference fuel for PHWR is zircaloy-4 clad high density (≤ 96 per cent T.D.) natural UO2 pellet-pins. The advanced PHWR fuels are UO2-PuO2 (≤ 2 per cent), ThO2-PuO2 (≤ 4 per cent) and ThO2-U233O2 (≤ 2 per cent). Similarly, low density (≤ 85 per cent T.D.) (UPu)O2 pellets clad in SS 316 or D9 is the reference fuel for the first generation of prototype and commercial LMFBRs all over the world. However, (UPu)C and (UPu)N are considered as advanced fuels for LMFBRs mainly because of their shorter doubling time. The conventional method of fabrication of both high and low density oxide, carbide and nitride fuel pellets starting from UO2, PuO2 and ThO2 powders is 'powder metallurgy (P/M)'. The P/M route has, however, the disadvantage of generation and handling of fine powder particles of the fuel and the associated problem of 'radiotoxic dust hazard'. The present paper summarises the state-of-the-art of advanced methods of fabrication of oxide, carbide and nitride fuels and highlights the author's experience on sol-gel-microsphere-pelletisation (SGMP) route for preparation of these materials. The SGMP process uses sol gel derived, dust-free and free-flowing microspheres of oxides, carbide or nitride for direct pelletisation and sintering. Fuel pellets of both low and high density, excellent microhomogeneity and controlled 'open' or 'closed' porosity could be fabricated via the SGMP route. (author). 5 tables, 14 figs., 15 refs

  20. Spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP)

    International Nuclear Information System (INIS)

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than full fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day

  1. Spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP)

    International Nuclear Information System (INIS)

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than complete fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day

  2. Remote examination and disassembly of a biomedical target at LASL

    International Nuclear Information System (INIS)

    Group CMB-14 at the Los Alamos Scientific Laboratory examines a failed water-cooled biomedical pion-production target used in the Los Alamos Meson Physics Facility. The target had developed a water leak during service. During investigation of the failure, the target was pressurized in water first to locate the leak generally and second to pinpoint it after the target was partially disassembled. Samples from the target were examined by a metallograph, a scanning electron microscope, an electron and an ion microprobe, and an x-ray diffractometer

  3. Perspectives for spintronics in 2D materials

    Directory of Open Access Journals (Sweden)

    Wei Han

    2016-03-01

    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  4. Surface modelling for 2D imagery

    OpenAIRE

    Lieng, Henrik

    2014-01-01

    Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...

  5. Perspectives for Spintronics in 2D Materials

    OpenAIRE

    Wei Han

    2016-01-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  6. UNITS IN $F_2D_{2p}$

    OpenAIRE

    Kaur, Kuldeep; Khan, Manju

    2012-01-01

    Let $p$ be an odd prime, $D_{2p}$ be the dihedral group of order 2p, and $F_{2}$ be the finite field with two elements. If * denotes the canonical involution of the group algebra $F_2D_{2p}$, then bicyclic units are unitary units. In this note, we investigate the structure of the group $\\mathcal{B}(F_2D_{2p})$, generated by the bicyclic units of the group algebra $F_2D_{2p}$. Further, we obtain the structure of the unit group $\\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\\mathcal{U}_*(F_...

  7. 2D Barcode for DNA Encoding

    CERN Document Server

    Purcaru, Elena

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  8. 2D Barcode for DNA Encoding

    Directory of Open Access Journals (Sweden)

    Elena Purcaru

    2011-09-01

    Full Text Available The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.

  9. Digital mock-up for the spent fuel disassembly processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Kim, Y. H.; Hong, D. H.; Yoon, J. S

    2000-12-01

    In this study, the graphical design system is developed and the digital mock-up is implemented for designing the spent fuel handling and disassembly processes. The system consists of a 3D graphical modeling system, a devices assembling system, and a motion simulation system. This system is used throughout the design stages from the conceptual design to the motion analysis. By using this system, all the process involved in the spent fuel handling and disassembly processes are analyzed and optimized. Also, this system is used in developing the on-line graphic simulator which synchronously simulates the motion of the equipment in a real time basis by connecting the device controllers with the graphic server through the TCP/IP network. This simulator can be effectively used for detecting the malfunctions of the process equipment which is remotely operated. Thus, the simulator enhances the reliability and safety of the spent fuel handling process by providing the remote monitoring function of the process. The graphical design system and the digital mock-up system can be effectively used for designing the process equipment, as well as the optimized process and maintenance process. And the on-line graphic simulator can be an alternative of the conventional process monitoring system which is a hardware based system.

  10. Annotated Bibliography of EDGE2D Use

    International Nuclear Information System (INIS)

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables

  11. Port Adriano, 2D-Model Tests

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Jensen, Palle Meinert

    This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU).......This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU)....

  12. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  13. Experimental study on thermal stratification in a reactor hot plenum of a Japanese demonstration LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.; Yamamoto, K.; Takakuwa, M.; Kajiwara, H.; Watanabe, O.; Akamatsu, K.

    1997-12-31

    Thermal stratification which occurs in a reactor hot plenum after reactor trip has been regarded as one of the most serious phenomena in the thermal-hydraulics of LMFBR. Using a 1/8th scale water model, an experimental study has been conducted to estimate the thermal stratification for a Japanese demonstration LMFBR (DFBR). In the present study, reactor trip was simulated by changing the core outlet temperature with maintaining a constant flow rate. Temperature distribution was measured during the transient and detailed phenomena have been acquired in the study. A severe density interface on structural integrity occurs in a hot plenum under the thermal stratification. Experimental results for temperature gradient and rising speed of the density interface were estimated based on a similarity rule so that an actual condition in the DFBR could be fully discerned. (author)

  14. Thermal performances and melting risk assessment in a LMFBR fuel pin

    Science.gov (United States)

    Vettraino, F.; Cacciabue, P. C.; Brunelli, F.

    1985-02-01

    A reliable evaluation of fuel temperature is a key safety requirement in the design of the fuel assembly of a nuclear reactor, especially in the case of a LMFBR whose efficient operation requires high thermal performance fuel. The physico-chemical properties such as density, oxygen to metal ratio and thermal conductivity of a typical LMFBR mixed-oxide fuel, which are known to change in a remarkable way under irradiation, strongly affect the temperature profile within the fuel pellet. A statistical analysis of the temperature values in the fuel of the Italian Fast Reactor PEC, has been performed by means of the RSM code (Response Surface Methodology) coupled to a Monte-Carlo Technique (MUP code), in order to demonstrate that the melting risk is substantially negligible.

  15. Specialists' meeting on maintenance and repair of LMFBR steam generators. Summary report

    International Nuclear Information System (INIS)

    The purpose of the meeting was to review and discuss the experience accumulated in various countries on the general design philosophy of LMFBR steam generators from the view point of maintenance and repair, in-service inspection of steam generator tube bundles, identification and inspection of failed tubes and the cleaning and repairing of failed steam generators. The following main topic areas were discussed by participants: National review presentations on maintenance and repair of LMFBR steam generators - design philosophy for maintenance and repair; Research and Development work on maintenance and repair; Experience on steam generator maintenance and repair. During the meeting papers were presented by the participants on behalf of their countries and organizations. A final discussion session was held and summaries, general conclusions and recommendations were approved by consensus

  16. Hybrid LCA of a design for disassembly technology: active disassembling fasteners of hydrogen storage alloys for home appliances.

    Science.gov (United States)

    Nakamura, Shinichiro; Yamasue, Eiji

    2010-06-15

    In the current recycling system of end-of-life (EoL) appliances, which is based on shredding, alloying elements tend to end up in the scrap of base metals. The uncontrolled mixing of alloying elements contaminates secondary metals and calls for dilution with primary metals. Active disassembling fastener (ADF) is a design for disassembly (DfD) technology that is expected to solve this problem by significantly reducing the extent of mixing. This paper deals with a life cycle assessment (LCA) based on the waste input-output (WIO) model of an ADF developed using hydrogen storage alloys. Special attention is paid to the issue of dilution of mixed iron scrap using pig iron in an electric arc furnace (EAF). The results for Japanese electrical and electronic appliances indicate superiority of the recycling system based on the ADF over the current system in terms of reduced emissions of CO(2). The superiority of ADF was found to increase with an increase in the requirement for dilution of scrap.

  17. Optimization of moderated targets loading in LMFBR for minor actinides incineration

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongchun; Takeda, Toshikazu [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering

    1999-04-01

    Optimization of moderated targets loading in LMFBR for minor actinides (MAs) incineration has been performed in this paper. Results of many different composition ratios of moderated target mixture were compared. An optimum case was proposed which can offer good core performance and transmute MAs by about 73 percent (386 kg) and incinerate MAs by about 34 percent (181 kg) through 3 years of reactor operation. (author)

  18. Temperature limits for LMFBR fuel cladding under upset and emergency operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Govindarajan, S.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam Tamilnadu (India). Nuclear Systems Division

    1996-07-01

    LMFBR fuel pin cladding tube is subjected to high transient temperatures during incidents such as pump trip, pump to grid plate pipe rupture etc. It is required to know temperature limits under such transient operating conditions for components involved while analyzing such incidents. A methodology for deriving such limits for fuel clad tube is worked out in this paper by making use of the transient damage correlation proposed by W.F. Brizes et. al.

  19. Seismic criteria studies and analyses. Quarterly progress report No. 3. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-03

    Information is presented concerning the extent to which vibratory motions at the subsurface foundation level might differ from motions at the ground surface and the effects of the various subsurface materials on the overall Clinch River Breeder Reactor site response; seismic analyses of LMFBR type reactors to establish analytical procedures for predicting structure stresses and deformations; and aspects of the current technology regarding the representation of energy losses in nuclear power plants as equivalent viscous damping.

  20. Development of an 85,000 gpm (19,303 m3/h) LMFBR primary pump

    International Nuclear Information System (INIS)

    The development of an 85,000 gpm two-stage primary pump for liquid metal fast breeder reactor (LMFBR) applications is described. The design was supported by air and cavitation model testing of the hyraulics, and development and feature testing of the level control system and the adjustable frequency solid state power supply. Important fabrication and water test items are also discussed, along with some unique assembly tooling requirements

  1. Mechanical properties of transition joint materials in support of LMFBR steam generator design

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, C.R.; King, J.F.; Strizak, J.P.; Klueh, R.L.; Booker, M.K.

    1977-01-01

    Mechanical data needs are identified for transition joint weldments between austenitic and ferritic structural materials planned for LMFBR service. Since the heat-affected zone in the ferritic material is apparently the critical area, particular attention must be given to behavior in this region. Interim results are given to show differences in mechanical properties of the joint materials with particular emphasis on the ferritic materials.

  2. Ratchetting and creep-fatigue evaluation for nozzle-to-cylinder intersection. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, R.S.; Loomis, R.W.; Stewart, B.D.

    1976-01-01

    The study is part of an analytical investigation on the applicability of the simplified ratchetting and creep-fatigue rules to LMFBR component geometry. Both the detailed inelastic rules and the simplified elastic rules are applied to the results obtained from a three-dimensional finite element analysis of the nozzle-to-cylinder intersection. The results of both evaluations are compared at several locations on the surface, and an assessment of the degree of conservatism of the simplified methods is discussed.

  3. 2D materials for nanophotonic devices

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  4. Internal Photoemission Spectroscopy of 2-D Materials

    Science.gov (United States)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  5. Damping of the radial impulsive motion of LMFBR core components separated by fluid squeeze films

    International Nuclear Information System (INIS)

    The core deformation of a liquid metal cooled fast breeder reactor (LMFBR) due to local pressure propagation from rapid energy releases is a complex three-dimensional fluid-structure-interaction problem. High pressure transients of short duration cause structural deformation of the closely spaced fuel elements, which are surrounded by the flowing coolant. Corresponding relative displacements give rise to a squeezing fluid motion in the thin layers between the subassemblies. Therefore significant backpressures are produced and the resulting time and space dependent fluid forces are acting on the structure as additional non-conservative external loads. Realistic LMFBR safety analyses of several clustered fuel elements have to account for such flow induced forces. This paper describes two fluid flow models (model A, model B), which are shown to be suitable for physically coupled fluid-structure analyses. Important assumptions are discussed in both cases and basic equations are derived for one- and two-dimensional incompressible flow fields. The interface of corresponding computer codes FLUF (model A) and FLOWAX (model B) with structural dynamics programs is outlined. Finally fluid-structure interaction problems relevant to LMFBR design are analyzed; parametric studies indicate a significant cushioning effect, energy dissipation and a strongly nonlinear as well as timedependent damping of the structural response

  6. Damping of the radial impulsive motion of LMFBR core components separated by fluid squeeze films

    International Nuclear Information System (INIS)

    The core deformation of a liquid metal cooled fast breeder reactor (LMFBR) due to local pressure propagation from rapid energy releases is a complex three-dimensional fluid-structure-interaction problem. High pressure transients of short duration cause structural deformation of the closely spaced fuel elements, which are surrounded by the flowing coolant. Corresponding relative displacements give rise to squeezing fluid motion in the thin layers between the subassemblies. Therefore significant backpressures are produced and the resulting time and space dependent fluid forces are acting on the structure as additional non-conservative external loads. Realistic LMFBR safety analysis of several clustered fuel elements have to account for such flow induced forces. Several idealized models have been proposed to study some aspects of the complex problem. As part of the core mechanics activities at GfK Karlsruhe this paper describes two fluid flow models (model A, model B), which are shown to be suitable for physically coupled fluid-structure analyses. Important assumptions are discussed in both cases and basic equations are derived for one- and two-dimensional incompressible flow fields. The interface of corresponing computer codes FLUF (model A) and FLOWAX (model B) with structural dynamics programs is outlined. Finally fluid-structure interaction problems relevant to LMFBR design are analyzed; parametric studies indicate a significant cushioning effect, energy dissipation and a strongly nonlinear as well as timedependent damping of the structural response. (Auth.)

  7. Stirring-induced vortical motion measured by ultrasound Doppler velocimetry: initial 2D vector plots

    International Nuclear Information System (INIS)

    An experimental investigation on stirring-induced vortical motion of a liquid was conducted in a cylindrical container measuring 280mm diameter x 280mm height. The test medium was water and a magnetic stirrer located at the bottom on the container (centered) induced the flow. The motion can be generally described as rotationally induced vortex motion, which is of relevance to gas entrainment concerns from the free surface of pool-type LMFBR. The objective of the investigation were two-fold: 1) to demonstrate that a two dimensional (2D) velocity field, using ultrasound Doppler velocimetry and a multiple number of ultrasound transducers (TDXs), could be measured and 2) to evaluate the content of the measured velocity information with respect to understanding the relevant vortex dynamics. Our results show that our first objective was fulfilled; that is, using 6 orthogonally situated TDXs to measure the Vr and Vz components of the flow field, a 2D vector field plot of a segment of the meridional plane was generated and shown to change with the rate of induced flow (rotation rate). However, because the number of TDXs used (6) were small, the coarse resolution of the velocity field limits the amount of velocity information. Therefore traditional data presentation methods to evaluate average and fluctuating quantities under steady and stepwise viewed transient conditions, are indispensible for data analysis. The measurement method holds promise as a useful tool in thermohydraulics as the number of TDXs is increased and therefore the spatial resolution. Some of these possibilities are described in this report. (author)

  8. 2D supergravity in p+1 dimensions

    OpenAIRE

    Gustafsson, H.; Lindstrom, U.

    1998-01-01

    We describe new $N$-extended 2D supergravities on a $(p+1)$-dimensional (bosonic) space. The fundamental objects are moving frame densities that equip each $(p+1)$-dimensional point with a 2D ``tangent space''. The theory is presented in a $[p+1, 2]$ superspace. For the special case of $p=1$ we recover the 2D supergravities in an unusual form. The formalism has been developed with applications to the string-parton picture of $D$-branes at strong coupling in mind.

  9. 2D Barcode for DNA Encoding

    OpenAIRE

    Elena Purcaru; Cristian Toma

    2012-01-01

    The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...

  10. Workshop on instrumentation of the disassembled BER II

    International Nuclear Information System (INIS)

    A workshop on the instrumentation of a disassembled BER II-reactor took place in the Hahn-Meitner-Institute in Berlin on April 19 and 20, 1982. Invited were all groups that are promoted by the associations 'Neutron Scattering for Investigation of Condensed Substance' and 'Neutron Scattering and Complementary Methods in Chemistry and Biology', along with experts for neutron spectrometers. 40 foreign scientists from 22 different institutes had accepted the invitation. The actual questions were treated in 13 presentations and a certain number of posters, with the latter also comprising activation analysis. The present report contains the presentations submitted, the final discussion minutes and a summary from HMI-view. (orig./RW)

  11. Double contingency controls in the pit disassembly and conversion facility

    International Nuclear Information System (INIS)

    A Pit Disassembly and Conversion Facility (PDCF) will be built and operated at DOE'S Savannah River Site (SRS) in South Carolina. The facility will process over three metric tons of plutonium per year. There will be a significant amount of special nuclear material (SNM) moving through the various processing modules in the facility, and this will obviously require well-designed engineering controls to prevent criticality accidents. The PDCF control system will interlock glovebox entry doors closed if the correct amount of SNM has not been removed from the exit enclosure. These same engineering controls will also be used to verify that only plutonium goes to plutonium processing gloveboxes, enriched uranium goes to enriched uranium processing, and that neither goes into non-SNM processing gloveboxes.

  12. Disassembling and reintegration of large telescope primary mirror

    Science.gov (United States)

    Xu, Qi-rui; Fan, Bin; Zhang, Ming

    2014-09-01

    The success of the large telescope is largely linked to the excellent performance and reliability of the primary mirror. In order to maintain the quality of its reflective surface at the high expectations of astronomers, the primary mirror after almost two or three years of astronomical observations, needs to be removed and reinstalled for its cleaning and re-coating operation. There are a series of procedures such as the primary mirror cell dissembling from telescope, mirror handling, transportation, reintegration, alignment and so on. This paper will describe the experiences of disassembling and reintegration of large telescope primary mirror, taking a two meter grade primary mirror for example. As with all advanced and complex opto-mechanical systems, there has been the usual problems and trouble shooting.

  13. A model actin comet tail disassembling by severing

    International Nuclear Information System (INIS)

    We use a numerical simulation to model an actin comet tail as it grows from the surface of a small object (a bead) and disassembles by severing. We explore the dependence of macroscopic properties such as the local tail radius and tail length on several controllable properties, namely the bead diameter, the bead velocity, the severing rate per unit length, and the actin gel mesh size. The model predicts an F-actin density with an initial exponential decay followed by an abrupt decay at the edge of the tail, and predicts that the comet tail diameter is constant along the length of the tail. The simulation results are used to fit a formula relating the comet tail length to the control parameters, and it is proposed that this formula offers a means to extract quantitative information on the actin gel mesh size and severing kinetics from simple macroscopic measurements

  14. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  15. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  16. Beltrami States in 2D Electron Magnetohydrodynamics

    OpenAIRE

    Shivamoggi, B. K.

    2015-01-01

    In this paper, the Hamiltonian formulations along with the Poisson brackets for two-dimensional (2D) electron magnetohydrodynamics (EMHD) flows are developed. These formulations are used to deduce the Beltrami states for 2D EMHD flows. In the massless electron limit, the EMHD Beltrami states reduce to the force-free states, though there is no force-free Beltrami state in the general EMHD case.

  17. Glitter in a 2D monolayer.

    Science.gov (United States)

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  18. 2d index and surface operators

    Science.gov (United States)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  19. Computational analysis of coolant mixing in subassembly and hot pool of an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Velusamy, K.; Kasinathan, N.; Clement Ravichandar, S.; Selvaraj, P.; Ghosh, D.; Chellapandi, P.; Chetal, S.C. [Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

    2005-07-01

    fuel pin bundle has been analysed using the CFD code Star CD to obtain flow and temperature distribution at the SA top. In the third stage, a transient 2D direct numerical simulation (DNS) of a representative region of hot pool near the core center has been carried out to obtain possible sodium temperature fluctuation at core monitoring TC location. Temperature profile in hot pool at the TC location has also been obtained from this study. The subchannel analysis of fuel subassembly indicates that the sodium temperature distribution at the fuel pin bundle top profiled with a maximum temperature difference of ({delta}T) 88 K. The analysis of top part of FSA (above pin bundle region) indicates good mixing in this region and {delta}T comes down to {approx} 44 K at SA top. The subsequent analysis of a representative region of hot pool near core top indicates that the temperature profile observed at the TC location can cause the temperature reading by a typical TC to drift by + 7.5 K or - 13 K during a power campaign. The dominant frequency of fluctuation of sodium temperature at the TC location has been estimated to be 0.25 Hz. Temperature fluctuation of this frequency would be sensed exactly by the fast response TC used for central SA temperature monitoring. The maximum fluctuation in the temperature reading recorded by it has been estimated to be {+-} 2 K. The selected SCRAM threshold (+ 10 K) is higher than the temperature drift and magnitude of fluctuation. (authors)

  20. 2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计

    Institute of Scientific and Technical Information of China (English)

    康亚芳; 王静; 张清泉; 行小帅

    2014-01-01

    This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究,在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上,以均匀平面阵列为例,对3种不同参数的DOA估计进行了计算机仿真,分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。

  1. Evaluation of product disassemblibility based on the disassembly extension set%基于拆卸可拓集的产品拆卸性能评估

    Institute of Scientific and Technical Information of China (English)

    赵燕伟; 张美艳; 陈建; 苏楠

    2011-01-01

    针对目前产品拆卸性能评估中图模型方法存在的组合爆炸问题,提出了基于拆卸可拓集理论的评估方法.讨论了联接方式、空间几何约束以及空间可达性与产品拆卸性能之间的关系,给出了评估指标和计算公式,依据所得关联函数值的大小对产品拆卸可拓集进行了不同拆卸区域的划分,为实现产品的快速拆卸和优化设计提供一种理论依据,并以油锯中发动机为例对所提出的方法加以应用,验证了该方法的有效性.%In order to overcome the combination explosion of graph used in evaluation of product's disassemblibility, the new method was stated based on the theory of disassembly extension set, the relations among the connection forms, space geometry restrain,spatial accessibility and disasssemblibility were discussed,then the evaluation process and formula for the calculation of disassemblibility were presented. According to the value of correlation function, the product disassembly extension set was divided into different disassembly areas. Through the division and classification of components,a theoretical basis was provided for the prompt disassembly and product improvement desigr.A complete evaluation of disassemblibility about an engine of oil saw was performed as a case study,which improves the effectiveness and efficiency of the proposed method.

  2. Operational-safety advantages of LMFBR's: the EBR-II experience and testing program

    Energy Technology Data Exchange (ETDEWEB)

    Sackett, J.I.; Lindsay, R.W.; Golden, G.H.

    1982-01-01

    LMFBR's contain many inherent characteristics that simplify control and improve operating safety and reliability. The EBR-II design is such that good advantage was taken of these characteristics, resulting in a vary favorable operating history and allowing for a program of off-normal testing to further demonstrate the safe response of LMFBR's to upsets. The experience already gained, and that expected from the future testing program, will contribute to further development of design and safety criteria for LMFBR's. Inherently safe characteristics are emphasized and include natural convective flow for decay heat removal, minimal need for emergency power and a large negative reactivity feedback coefficient. These characteristics at EBR-II allow for ready application of computer diagnosis and control to demonstrate their effectiveness in response to simulated plant accidents. This latter testing objective is an important part in improvements in the man-machine interface. (MMI)

  3. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis.

    Science.gov (United States)

    Fan, Xiaohu; Hughes, Bryan G; Ali, Mohammad A M; Cho, Woo Jung; Lopez, Waleska; Schulz, Richard

    2015-01-01

    Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk) disassembly precedes that of titin (M-line), suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble) and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1) induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin.

  4. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis.

    Directory of Open Access Journals (Sweden)

    Xiaohu Fan

    Full Text Available Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk disassembly precedes that of titin (M-line, suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1 induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin.

  5. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis

    Science.gov (United States)

    Ali, Mohammad A. M.; Cho, Woo Jung; Lopez, Waleska; Schulz, Richard

    2015-01-01

    Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk) disassembly precedes that of titin (M-line), suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble) and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1) induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin. PMID:26076379

  6. 2d Index and Surface operators

    CERN Document Server

    Gadde, Abhijit

    2013-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools de...

  7. Optical modulators with 2D layered materials

    Science.gov (United States)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  8. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  9. 2D microwave imaging reflectometer electronics

    Energy Technology Data Exchange (ETDEWEB)

    Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  10. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    OpenAIRE

    Adler Charles; Sue Lucia; Beach Thomas; Civarella Gina; He Ping; Nural Hikmet; Zhong Zhenyu; Shill Holly; Caviness John; Xia Weiming; Shen Yong

    2009-01-01

    Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  11. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Adler Charles

    2009-07-01

    Full Text Available Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  12. Horns Rev II, 2-D Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...

  13. 2D PIM Simulation Based on COMSOL

    DEFF Research Database (Denmark)

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu;

    2011-01-01

    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular waveguide...

  14. Baby universes in 2d quantum gravity

    OpenAIRE

    Ambjorn, J.; S. Jain; G. Thorleifsson

    1993-01-01

    We investigate the fractal structure of $2d$ quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent $\\g_{string}$.

  15. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    Science.gov (United States)

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules.

  16. Decommissioning of nuclear facilities: Decontamination, disassembly and waste management

    International Nuclear Information System (INIS)

    The term 'decommissioning', as used within the nuclear industry, means the actions taken at the end of a facility's useful life to retire the facility from service in a manner that provides adequate protection for the health and safety of the decommissioning workers, the general public, and for the environment. These actions can range from merely closing down the facility and a minimal removal of radioactive material coupled with continuing maintenance and surveillance, to a complete removal of residual radioactivity in excess of levels acceptable for unrestricted use of the facility and its site. This latter condition, unrestricted use, is the ultimate goal of all decommissioning actions at retired nuclear facilities. The purpose of this report is to provide an information base on the considerations important to decommissioning, the methods available for decontamination and disassembly of a nuclear facility, the management of the resulting radioactive wastes, and the areas of decommissioning methodology where improvements might be made. Specific sections are devoted to each of these topics, and conclusions are presented concerning the present status of each topic. A summary of past decommissioning experience in Member States is presented in the Appendix. The report, with its discussions of necessary considerations, available operational methods, and waste management practices, together with supporting references, provides an appreciation of the activities that comprise decommissioning of nuclear facilities. It is anticipated that the information presented in the report should prove useful to persons concerned with the development of plans for the decommissioning of retired nuclear facilities

  17. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    Science.gov (United States)

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules. PMID:21103025

  18. A thermodynamic model of microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Bernard M A G Piette

    Full Text Available Microtubules are self-assembling polymers whose dynamics are essential for the normal function of cellular processes including chromosome separation and cytokinesis. Therefore understanding what factors effect microtubule growth is fundamental to our understanding of the control of microtubule based processes. An important factor that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap. Here, we derive a Monte Carlo model of the assembly and disassembly of microtubules. We use thermodynamic laws to reduce the number of parameters of our model and, in particular, we take into account the contribution of water to the entropy of the system. We fit all parameters of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. Also we calculate and incorporate the GTP hydrolysis rate. We have applied our model and can mimic published experimental data, which formerly suggested a single layer GTP tubulin dimer microtubule cap, to show that these data demonstrate that the GTP cap can fluctuate and can be several microns long.

  19. Reduced function and disassembled microtubules of cultured cardiomyocytes in spaceflight

    Institute of Scientific and Technical Information of China (English)

    YANG Fen; DAI ZhongQuan; TAN YingJun; WAN YuMin; LI YingHui; DING Bai; NIE JieLin; WANG HongHui; ZHANG XiaoYou; WANG ChunYan; LING ShuKuan; NI ChengZhi

    2008-01-01

    Lack of gravity during spaceflight has profound effects on cardiovascular system, but little is known about how the cardiomyocytes respond to microgravity. In the present study, the effects of spaceflight on the structure and function of cultured cardiomyocytes were reported. The primary cultures of neo-natal rat cardiomyocytes were carried on Shenzhou-6 spacecraft and activated at 4 h in orbit. 8 samples were fixed respectively at 4, 48 and 96 h after launching for immunofluorescence of cytoskeleton, and 2 samples remained unfixed to analyze contractile and secretory functions of the cultures. Ground sam-ples were treated in our laboratory in parallel. After 115 h spaceflight, video recordings displayed that the number of spontaneous beating sites in flown samples decreased significantly, and the cells in the beating aggregate contracted in fast frequency without synchrony. Radioimmunoassay of the medium showed that the atrial natriuretic peptide secreted from flown cells reduced by 59.6%. Confocal images demonstrated the time-dependant disassembly of mirotubules versus unchanged distribution and or-ganization of microfilaments. In conclusion, above results indicate reduced function and disorganized cytoskeleton of cardiomyocytes in spaceflight, which might provide some cellular basis for further investigations to probe into the mechanisms underlying space cardiovascular dysfunction.

  20. Fast breeder reactor blanket management: comparison of LMFBR and GCFR blankets

    International Nuclear Information System (INIS)

    The economic performance of the fast breeder reactor blanket, considering different fuel management schemes was studied. To perform this, the investigation started with a standard reactor physics calculation. Then, two economic models for evaluation of the economic performance of the radial blanket were developed. These models formed the basis of a computer code, ECOBLAN, which computes the net economic gain and the levelized fuel cost due to the radial blanket. The net gain in terms of dollars and $/kgHM-y and the levelized fuel cost in mills/kWhe were obtained as a function of blanket thickness and a residence time of the fuel in the blanket. A LMFBR and a GCFR were the reactor models considered in this study. The optimum radial blanket of a GCFR consists of two rows, that of a LMFBR consists of three rows. Regarding the different fuel management schemes, the fixed blanket was found to be more favorable than reshuffled blanket. Out-in and in-out reshuffled blanket offer almost the same net gain. In all the cases, the burnup calculated for the fuel was found to be less than the acceptable limit. There is an optimum residence time for the fuel in the blanket which depends on the position of the fuel in the blanket and the fuel management scheme studied. As expected, except for very short residence times (less than 2.5 years), the radial blanket is a net income producer. There is no significant difference between the economic performance of the blanket of a LMFBR and a GCFR

  1. The role of sodium void worth in the optimization of LMFBR cores

    International Nuclear Information System (INIS)

    Since the Chernobyl reactor accident, the positive sodium void worth of liquid metal, fast breeder reactor (LMFBR) cores has been of increased concern, even though current LMFBR design features which address core disruptive accident (CDA) prevention and energetics are totally different from those of the RBMK-1000. The concern is whether voiding of the fueled region of LMFBR cores might initiate a core disruptive accident. It appears that designs with reduced void worth are somewhat more tolerant of local cooling, boiling and gas ingress. However, other safety and economic parameters, in addition to sodium void worth, must be considered in LMR core design. These include burnup reactivity swing, fuel enrichment, breeding ratio and fissile utilization. This paper focuses on two major LMR designs: the small modular US Advanced Liquid Metal Reactor (ALMR) with metal fuel and the large monolithic European Fast Reactor (EFR) with oxide fuel. The ALMR and EFR designs emphasize the paramount importance of prevention of severe accidents. As an integral part of their safety design philosophy and in response to regulatory concerns, both the ALMR and the EFR are designed to have extremely low probabilities of core voiding and acceptable public risk consequences even if core voiding were to occur. Optimization studies were performed for both designs, aimed at finding the optimum balance between design and beyond design aspects. The most effective way to reduce the sodium void worth is core height reduction (pancaking). In doing this, compensating measures must be considered in order to avoid exceeding design and safety limits. The major drawbacks of pancaked designs are given. The results of the optimization processes have led to designs with $5--6 void worth for both ALMR and EFR

  2. Saccharomyces cerevisiae Vacuolar H+-ATPase Regulation by Disassembly and Reassembly: One Structure and Multiple Signals

    OpenAIRE

    Parra, Karlett J.; Chan, Chun-Yuan; Chen, Jun

    2014-01-01

    Vacuolar H+-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/prot...

  3. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients

    Science.gov (United States)

    Todreas, N. E.; Cheng, S. K.; Basehore, K.

    1984-08-01

    The thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration was investigated. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions are emphasized. Outlet plenum behavior is also investigated.

  4. LMFBR safety. 5. Review of current issues and bibliography of literature (1975--1976)

    International Nuclear Information System (INIS)

    The current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA), are discussed. Bibliographic information on worldwide LMFBRs relative to the development and safety of the breeder reactor is presented for the period 1975 through 1976. The bibliography consists of approximately 1618 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Keyword, author, and permuted-title indexes are included for completeness

  5. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries

  6. Nondestructive evaluation of creep-fatigue damage: an interim report. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described.

  7. LMFBR safety. 4. Review of current issues and bibliography of literature (1974--1975)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-03-21

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1974 through 1975. The bibliography consists of approximately 1554 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  8. LMFBR safety. 1. Review of current issues and bibliography of literature, 1960--1969

    International Nuclear Information System (INIS)

    This report discusses the current status of liquid-metal fast breeder (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1960 through 1969. The bibliography consists of 1560 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness

  9. LMFBR safety. 3. Review of current issues and bibliography of literature (1972--1974)

    International Nuclear Information System (INIS)

    The report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1972 through 1974. The bibliography consists of approximately 1380 abstracts covering research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included

  10. LMFBR safety. 1. Review of current issues and bibliography of literature, 1960--1969

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1976-08-16

    This report discusses the current status of liquid-metal fast breeder (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1960 through 1969. The bibliography consists of 1560 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  11. Analysis of hypothetical LMFBR whole-core accidents in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, D.R.; Deitrich, L.W.; Brown, N.W.; Waltar, A.E.

    1978-01-01

    The issue of hypothetical whole-core accidents continues to play a significant role in assessment of the potential risk to the public associated with LMFBR operation in the USA. The paper briefly characterizes the changing nature of this role, with emphasis on the current risk-oriented perspective. It then describes the models and codes used for accident analysis in the USA which have been developed under DOE sponsorship and summarizes some specific applications of the codes to the current generation of fast reactors. An assessment of future trends in this area concludes the paper.

  12. LMFBR safety. 2. Review of current issues and bibliography of literature, 1970--1972

    International Nuclear Information System (INIS)

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1970 through 1972. The bibliography consists of approximately 1620 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness

  13. LMFBR safety. 4. Review of current issues and bibliography of literature (1974--1975)

    International Nuclear Information System (INIS)

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1974 through 1975. The bibliography consists of approximately 1554 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness

  14. LMFBR safety. 2. Review of current issues and bibliography of literature, 1970--1972

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1976-11-22

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1970 through 1972. The bibliography consists of approximately 1620 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  15. LMFBR safety. 5. Review of current issues and bibliography of literature (1975--1976)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-06-08

    The current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA), are discussed. Bibliographic information on worldwide LMFBRs relative to the development and safety of the breeder reactor is presented for the period 1975 through 1976. The bibliography consists of approximately 1618 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Keyword, author, and permuted-title indexes are included for completeness.

  16. LMFBR safety. 3. Review of current issues and bibliography of literature (1972--1974)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-02-24

    The report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1972 through 1974. The bibliography consists of approximately 1380 abstracts covering research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included.

  17. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  18. HEDL contribution to SRL fuel recycle program. Quarterly report, January--March 1977. [Sensitivity analysis of LMFBR fuel fabrication cost

    Energy Technology Data Exchange (ETDEWEB)

    Fletcher, J.F.

    1977-08-01

    Research on LWR fuel cycle is being done in the following categories: economic studies (sensitivity analysis of LMFBR fuel fabrication costs), spent fuel receipt and storage (failure of PWR and BWR fuel assemblies), fuel materials preparation or finishing processes, reduction of TRU waste generation, and environmental impacts. 12 tables. (DLC)

  19. 2-D geometrical analysis of deformation

    International Nuclear Information System (INIS)

    Engineering structures such as dams, bridges, high rise buildings, etc. are subject to deformation. Deformation survey is therefore necessary to determine the magnitude and direction of such movements for the purpose of safety assessment. In this study, a strategy for two-step analyses for deformation survey rising the two dimensional (2-D) geodetic method has been developed, consisting of independent least squares estimation (LSE) of each epoch followed by deformation detection. Important aspects on LSE include global and local testing. In deformation detection, the following aspects were implemented; datum definition by the user. determination of stable datum points, geometrical analysis of deformation and graphic presentation. The developed strategy has been implemented in three computer programs, COMPUT, DEFORM and STRANS. Tests carried out with simulated and known data show that the developed strategy and programs are applicable for 2-D geometrical detection of deformation. (Author)

  20. 2D photonic-crystal optomechanical nanoresonator.

    Science.gov (United States)

    Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A

    2015-01-15

    We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837

  1. Robust and resistant 2D shape alignment

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Eiriksson, Hrafnkell

    2001-01-01

    We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l\\_\\$\\backslash\\$infty\\......We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l......\\_\\$\\backslash\\$infty\\$ norm alignments are formulated as linear programming problems. The linear vector function formulation along with the different norms results in alignment methods that are both resistant from influence from outliers, robust wrt. errors in the annotation and capable of handling missing datapoints...

  2. State of the art review of degradation processes in LMFBR materials. Volume I. Mechanical properties. Volume II. Corrosion behavior. Revision 1

    International Nuclear Information System (INIS)

    A revision to Volume I and Volume II of the LMFBR materials degradation summary is presented. Information is included on NaOH corrosive effects, effects of metal cleaning procedures, and caustic stress corrosion cracking of reactor materials. (JRD)

  3. 2D-Tasks for Cognitive Rehabilitation

    OpenAIRE

    Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.

    2011-01-01

    Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...

  4. Realistic and efficient 2D crack simulation

    Science.gov (United States)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  5. 2D materials: Graphene and others

    Science.gov (United States)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  6. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  7. Selenide isotope generator for the Galileo mission. GDS disassembly report

    International Nuclear Information System (INIS)

    The GDS-1 was disassembled to determine the cause for the rapid degradation of the output power. Unfortunately, it was not possible to relate the observations to direct causes for the degradation. However, some positive statements can be made which have an impact on the flight program. First, the outgassing and gas management techniques were shown to be adequate to maintain clean conditions within the generator. Second, the non-modular components within the generator including the receptacles on the housing were not affected by the thermal environment during operation of GDS-1. Third, a significant amount of sublimation of the P-legs has occurred during the relatively short life of 2000 + hours as shown by the bullet nosing of the legs and deposits on the cold end hardware. The fact that the generator atmosphere was not 100% xenon may have some bearing on this observation but the statement is still accurate. Fourth, all exposed N-legs display cracks and/or chips. Fifth, a great deal of misalignment of both N and P-legs was seen both visually and with radiographs. Although no definite conclusions can be made concerning the cause for the rapid degradation of performance, several of the observed conditions within the module could possibly contribute to that fact. They are: cracks in N-legs (increased resistance); deposits on edges of BeO discs (shorting of thermoelectric circuit); and bullet nosing of P-legs (increased resistance). It remains to be shown if any of these effects or the follower hangup described earlier contributed to the poor performance of GDS-1 or if another effect as yet unknown was the important factor

  8. Model-based temperature noise monitoring methods for LMFBR core anomaly detection

    Energy Technology Data Exchange (ETDEWEB)

    Tamaoki, Tetsuo; Sonoda, Yukio; Sato, Masuo (Toshiba Corp., Kawasaki, Kanagawa (Japan)); Takahashi, Ryoichi

    1994-03-01

    Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an 'autoregressive model modification method' is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio. (author).

  9. Power DRAC for rapid LMFBR deployment and consequent CO{sub 2} mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Schenewerk, W.E. [California Nuclear Engineer NU 2272, Los Angeles CA (United States)

    2007-07-01

    A metallic-sodium LMFBR (Liquid Metal Fast Breeder Reactor) can control fuel temperature after a full power SCRAM using natural convection. A 3 percent nominal DRAC (Direct Reactor Auxiliary Cooling) does this without moving parts. DRAC is promoted from tertiary to primary decay heat removal, resulting in what is referred to as a Power DRAC. Power DRAC operates continuously before and after SCRAM, rejecting 3 per cent pile power. Power DRAC operability is validated by having it reject 75 MWt from a 2500 MWt pile at all times. IHX (Intermediate Heat Exchanger) is not required to be operable for primary, secondary, or tertiary core over-temperature protection. Original DRAC concept (venturi DRAC) was a 1 per cent nominal tertiary decay heat removal system. Tertiary DRAC patent has expired. Power DRAC rejects 75 MWt through its own secondary sodium heat transfer loop to power a 25 MWe air Brayton cycle. Power DRAC eliminates requiring steam plant operability for decay heat removal. Intermediate sodium heat transfer system and steam plant can be optimized for maximum thermal efficiency. 2.5 GWt pile makes 1.0 GWe net power. Power DRAC maintains pile inlet and outlet temperatures while going from power to post-SCRAM conditions. Steam pressure is maintained post-SCRAM to mitigate SCRAM thermal transient. Not requiring steam plant operability for decay heat removal eases licensing and allows early LMFBR deployment. Each GWe atomic power delays CO{sub 2} doubling one week. (author)

  10. Analysis of three-dimensional thermo-hydraulic phenomena in the reactor core of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, S.; Lee, Y. B.; Jang, W. P.; Ha, K. S.; Jung, H. Y. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    The mismatch between power and flow under the transient condition of LMFBR (Liquid Metal cooled Fast Breeder Reactor) core results in thermal stratification in hot pool. Since the fluid of hot pool enters IHXs, the temperature distribution of hot pool can alter the overall system response, therefore three-dimensional analysis of thermo-hydraulic phenomena is necessary. In this study, the thermo-hydraulic phenomena under normal operating condition and unprotected transient condition of LMFBR is investigated using which is the three-dimensional analysis code, COMMIX-1AR/P. The basic input data is based on the design data of KALIMER-600, which is sodium-cooled fast breeder reactor developed by KAERI. COMMIX-1AR/P code has not a reactivity model and the power and core flowrate must be supplied in the input data. In this study, results of SSC-K calculation is used. The temperature and velocity distributions are calculated and compared with those of SSC-K calculation results. The UTOF(Unprotected Loss Of Flow) accident is calculated using COMMIX-1AR/P and the temperature and velocity distributions in the total reactor core are calculated and the natural circulation mode under this transient condition is investigated.

  11. Study of rationalized safety design based on the seismic PSA for an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Ryodai; Yamaguchi, Akira

    1998-12-01

    Seismic PSA was carried out for a typical liquid metal cooled fast breeder reactor (LMFBR) in order to study the rationalized seismic design, maintaining and/or improving safety during seismic event. The seismic sequence quantification identifies the dominant structures, systems and components (SSCs) to the seismic core damage frequency (CDF). The sensitivity analyses by reducing or increasing the seismic capacity for SSCs are used to examine the optimized seismic design in view of safety and economical aspects. The LMFBR-specific risk-significant SSCs are reactor coolant boundary, decay heat removal coolant path and reactor control rod, which are different from those of light water reactors (LWRs). The electrical power supply system has a minor contribution to the seismic CDF. The sensitivity study shows that passive safety features of LMFBRs are important to maintain and/or enhance seismic capacity. The passive safety includes the decay heat removal capability via natural circulation and safety measures without depending on the support systems such as alternating current (AC) electrical power, for example. On the course of seismic sequence quantification, a methodology to evaluate the probability of seismic-induced multiple failure has been developed and applied to the decay heat removal function. The results suggest the multiplicity of the triply redundant system is to be considered for the significant components such as the decay heat removal path when one considers the difference in the seismic response.

  12. International Atomic Energy Agency specialist meeting on advances in structural analysis for LMFBR applications. Summary report

    International Nuclear Information System (INIS)

    After the first session on review of national positions in the subject field, the meeting was divided into five technical sections as follows: General methods of Structural Analysis for Elevated Temperatures; Inelastic Analysis Methods for Elevated Temperature; Effects of Cyclic loading; Design Codes and Criteria; Instability and Buckling - Piping Analysis in the Creep Range. The conclusions of the Meeting were summarised as follows. In view of the complexity of material behaviour and the variability of properties from cast to cast, continuing work is needed to develop simple constitutive relations which ensure an acceptable level of conservatism for design evaluations. It is recognized that simplified design methods require further development for the assessment of ratchetting and shakedown of high temperature structures. More development work is required in the areas of buckling elastic follow up weld factors and these developments should take account of the imperfections inherent in welded fabrications. There is a need for realistic tests on welded structural features to validate design methods. It is proposed that this subject would be the topic of a future specialists meeting. In several countries, organisations are now preparing Guides and Codes concerning Structural Assessment for LMFBR components. It seems that some of these Codes could be drafted within a few years. In order to make a more realistic assessment of LMFBR structures, defect assessment in elevated temperature range must be considered

  13. A study on reactor core failure thresholds to safety operation of LMFBR

    International Nuclear Information System (INIS)

    Japan Nuclear Safety Organization (JNES) has been developing the methodology and computer codes for applying level-1 PSA to LMFBR. Many of our efforts have been directed to the judging conditions of reactor core damage and the time allowed to initiate the accident management. Several candidates of the reactor core failure threshold were examined to a typical proto-type LMFBR with MOX fuel based on the plant thermal-hydraulic analyses to the actual progressions leading to the core damage. The results of the present study showed that the judging condition of coolant-boundary integrity failure, 750 degree-C of the boundary temperature, is enough as the threshold of core damage to PLOHS (protected loss-of-heat sink). High-temperature fuel cladding creep failure will not take place before the coolant-boundary reaches the judging temperature and sodium boiling will not occur due to the system pressure rise. In cases of ATWS (anticipated transient without scrum) the accident progression is so fast and the reactor core damage will be inevitable even a realistic negative reactivity insertion due to the temperature rise is considered. Only in the case of ULOHS (unprotected loss-of-heat sink) a relatively long time of 11 min will be allowed till the shut-down of the reactor before the core damage. (authors)

  14. Bulk coolant cavitation in LMFBR containment loading following a whole-core explosion

    International Nuclear Information System (INIS)

    An LMFBR core undergoing an explosion transmits energy to the containment in a series of pressure waves and the containment loading is determined by their cumulative effect. These pressure waves are modified by their interaction with the coolant through which they propagate. It is necessary to model both the induction of bulk cavitation by tension waves and the interaction of pressure waves with cavitated liquid in realistic containment loading calculations. This paper sets out the progress which has been achieved in such modelling and first indications for the effect of bulk coolant cavitation in LMFBR containment loading. Conclusions may be briefly summarised: 1) Bulk cavitation must be included in realistic containment loading calculations. 2) Phenomenological models of cavitated liquid without memory are inappropriate. The best approach is to model bubble dynamics directly, including at least momentum conservation and surface tension. 3) The containment loading resulting from a given explosion is sensitive to the state of preparation of the coolant. The number density of nucleation sites should therfore accompany the results of model tests. (Auth.)

  15. A Label Correcting Algorithm for Partial Disassembly Sequences in the Production Planning for End-of-Life Products

    Directory of Open Access Journals (Sweden)

    Pei-Fang (Jennifer Tsai

    2012-01-01

    Full Text Available Remanufacturing of used products has become a strategic issue for cost-sensitive businesses. Due to the nature of uncertain supply of end-of-life (EoL products, the reverse logistic can only be sustainable with a dynamic production planning for disassembly process. This research investigates the sequencing of disassembly operations as a single-period partial disassembly optimization (SPPDO problem to minimize total disassembly cost. AND/OR graph representation is used to include all disassembly sequences of a returned product. A label correcting algorithm is proposed to find an optimal partial disassembly plan if a specific reusable subpart is retrieved from the original return. Then, a heuristic procedure that utilizes this polynomial-time algorithm is presented to solve the SPPDO problem. Numerical examples are used to demonstrate the effectiveness of this solution procedure.

  16. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  17. Studies and research concerning BNFP: spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP)

    International Nuclear Information System (INIS)

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than complete fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day

  18. Limit theorems for 2D invasion percolation

    CERN Document Server

    Damron, Michael

    2010-01-01

    We prove limit theorems and variance estimates for quantities related to ponds and outlets for 2D invasion percolation. We first exhibit several properties of a sequence (O(n)) of outlet variables, the n-th of which gives the number of outlets in the box centered at the origin of side length 2^n. The most important of these properties describe the sequence's renewal structure and exponentially fast mixing behavior. We use these to prove a central limit theorem and strong law of large numbers for (O(n)). We then show consequences of these limit theorems for the pond radii and outlet weights.

  19. Interparticle attraction in 2D complex plasmas

    CERN Document Server

    Kompaneets, Roman; Ivlev, Alexei V

    2015-01-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecular-like. In this Letter, we propose how to achieve a molecular-like interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  20. Periodically sheared 2D Yukawa systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, Anikó Zsuzsa [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Hartmann, Peter [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Center for Astrophysics, Space Physics and Engineering Research (CASPER), One Bear Place 97310, Baylor University, Waco, Texas 76798 (United States); Donkó, Zoltán [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Physics Department, Boston College, Chestnut Hill, Massachusetts 20467 (United States)

    2015-10-15

    We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.

  1. Extrinsic curvature induced 2-d gravity

    CERN Document Server

    Viswanathan, K S

    1993-01-01

    Abtract: 2-dimensional fermions are coupled to extrinsic geometry of a conformally immersed surface in ${\\bf R}^3$ through gauge coupling. By integrating out the fermions, we obtain a WZNW action involving extrinsic curvature of the surface. Restricting the resulting effective action to surfaces of $h\\sqrt g=1$, an explicit form of the action invariant under Virasaro symmetry is obtained. This action is a sum of the geometric action for the Virasaro group and the light-cone action of 2-d gravity plus an interaction term. The central charges of the theory in both the left and right sectors are calculated.

  2. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2004-01-01

    using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...... approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when...... model....

  3. Instant HTMl5 2D platformer

    CERN Document Server

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  4. Phase Engineering of 2D Tin Sulfides.

    OpenAIRE

    Mutlu, Z; Wu, RJ; Wickramaratne, D.; Shahrezaei, S; Liu, C; Temiz, S; Patalano, A; M Ozkan; Lake, RK; Mkhoyan, KA; Ozkan, CS

    2016-01-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2...

  5. Interparticle Attraction in 2D Complex Plasmas

    Science.gov (United States)

    Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.

    2016-03-01

    Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.

  6. Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm.

    Science.gov (United States)

    Kuksin, Dmitry; Norkin, Leonard C

    2012-02-01

    The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection.

  7. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes.

    Science.gov (United States)

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin; Bartholomew, Blaine

    2016-09-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1.

  8. Disassembling "evapotranspiration" in-situ with a complex measurement tool

    Science.gov (United States)

    Chormanski, Jaroslaw; Kleniewska, Malgorzata; Berezowski, Tomasz; Sporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatylowicz, Jan; Batelaan, Okke

    2014-05-01

    In this work we present a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them from the total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its components transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project will be the estimation of energy and

  9. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    Science.gov (United States)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  10. Comments on Thermalization in 2D CFT

    CERN Document Server

    de Boer, Jan

    2016-01-01

    We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...

  11. Multienzyme Inkjet Printed 2D Arrays.

    Science.gov (United States)

    Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel

    2015-08-19

    The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072

  12. Photocurrent spectroscopy of 2D materials

    Science.gov (United States)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  13. Development of the spent fuel disassembling process by utilizing the 3D graphic design technology

    International Nuclear Information System (INIS)

    For developing the spent fuel disassembling process, the 3D graphic simulation has been established by utilizing the 3D graphic design technology which is widely used in the industry. The spent fuel disassembling process consists of a downender, a rod extraction device, a rod cutting device, a pellet extracting device and a skeleton compaction device. In this study, the 3D graphical design model of these devices is implemented by conceptual design and established the virtual workcell within kinematics to motion of each device. By implementing this graphic simulation, all the unit process involved in the spent fuel disassembling processes are analyzed and optimized. The 3D graphical model and the 3D graphic simulation can be effectively used for designing the process equipment, as well as the optimized process and maintenance process

  14. Delivery of lipophilic bioactives: assembly, disassembly, and reassembly of lipid nanoparticles.

    Science.gov (United States)

    Yao, Mingfei; Xiao, Hang; McClements, David Julian

    2014-01-01

    The oral bioavailability of lipophilic bioactive molecules can be greatly increased by encapsulating them within engineered lipid nanoparticles (ELNs), such as micelles, microemulsions, nanoemulsions, or solid lipid nanoparticles (SLNs). After ingestion, these ELNs are disassembled in the gastrointestinal tract (GIT) and then reassembled into biological lipid nanoparticles (mixed micelles) in the small intestine. These mixed micelles solubilize and transport lipophilic bioactive components to the epithelial cells. The mixed micelles are then disassembled and reassembled into yet another form of biological lipid nanoparticle [chylomicrons (CMs)] within the enterocyte cells. The CMs carry the bioactive components into the systemic (blood) circulation via the lymphatic system, thereby avoiding first-pass metabolism. This article provides an overview of the various physicochemical and physiological processes responsible for the assembly and disassembly of lipid nanoparticles outside and inside the GIT. This knowledge can be used to design food-grade delivery systems to improve the oral bioavailability of encapsulated lipophilic bioactive components. PMID:24328432

  15. Studies of the effects of fuel EOS uncertainties on FBR disassembly energetics

    International Nuclear Information System (INIS)

    A principal source of uncertainty in the energetics of FBR core disassembly is the lack of mechanical and thermophysical data on fresh and irradiated fuel under the conditions of interest. The consequences of uncertainties are analysed in two areas: (i) the equation of state (EOS) or irradiated fuel and (ii) the specific heat of molten fuel. The current UK understanding of the role of fission products in the postulated disassembly phase of an HCDA is outlined giving particular emphasis to the possible effects of pre-disassembly heating. The authors draw as far as possible on the rather sparse experimental data and indicate where further work would be most useful. Further they discuss arguments suggesting there exists substantial uncertainty in the currently-accepted values of the specific heat of molten fuel, and show that this lack of knowledge implies that current estimates of accident excursion yield could be exaggerated by more than a factor of two. (author)

  16. Node-by-node disassembly of a mutualistic interaction web driven by species introductions.

    Science.gov (United States)

    Rodriguez-Cabal, Mariano A; Barrios-Garcia, M Noelia; Amico, Guillermo C; Aizen, Marcelo A; Sanders, Nathan J

    2013-10-01

    Interaction webs summarize the diverse interactions among species in communities. The addition or loss of particular species and the alteration of key interactions can lead to the disassembly of the entire interaction web, although the nontrophic effects of species loss on interaction webs are poorly understood. We took advantage of ongoing invasions by a suite of exotic species to examine their impact in terms of the disassembly of an interaction web in Patagonia, Argentina. We found that the reduction of one species (a host of a keystone mistletoe species) resulted in diverse indirect effects that led to the disassembly of an interaction web through the loss of the mistletoe, two key seed-dispersers (a marsupial and a bird), and a pollinator (hummingbird). Our results demonstrate that the gains and losses of species are both consequences and drivers of global change that can lead to underappreciated cascading coextinctions through the disruption of mutualisms. PMID:24067653

  17. An evaluation of passive safety features of the Japanese prototype LMFBR Monju

    Energy Technology Data Exchange (ETDEWEB)

    Tomoko Ishizu; Hiroshi Endo; Yoshihisa Shindo; Kazuo Haga [Safety Analysis and Evaluation Div., Japan Nuclear Energy Safety Organization (JNES) Kamiya-cho MT bldg., 4-3-20, Toranomon, Minato-ku, Tokyo, 105-0001 (Japan)

    2005-07-01

    Japan Nuclear Energy Safety Organization, JNES, has developed a system dynamics analysis code NALAP-II, in order to apply in the safety regulation of liquid-metal-cooled fast breeder reactor (LMFBR). In this study, the heat removal by the coolant natural circulation (NC), which is one of passive safety features of LMFBR, was examined using the code. This paper presents the model verification of the decay heat removal system and the result of trial calculation to the Japanese prototype LMFBR MONJU. In the MONJU plant, the decay heat is removed normally by three loops of the secondary heat transport system (SHTS) coupled with the intermediate reactor auxiliary cooling system (IRACS) as shown in Fig.1. To enable the cooling by NC, the air cooler (AC) of MONJU is installed in a position where the heat-transfer center is higher than that of the intermediate heat exchanger (IHX). Verification analyses of the IRACS model of NALAP-II have been carried out, by using the data of a 'natural convection test' conducted as a part of MONJU's performance tests. This test was conducted adding the heat generated by the pump operation in the primary heat transport system (PHTS) instead of the reactor power. The test was started by tripping SHTS pony-motored pump and sodium began to flow by the natural convective force through the air cooling system (ACS) of the IRACS. Figure 2 presents the analytical results of the SHTS transient comparing with the test results. In this test, about 2% of the rated SHTS flow rate was kept by the NC resulting from the balance between the heat input at IHX and the heat removal at IRACS. The calculated results of SHTS flow rate and sodium temperature during NC showed a good agreement with the test results. Then, using the verified NALAP-II, an evaluation of heat removal by NC of MONJU IRACS after the trip at the rated power operation was performed. The result showed that even if only one loop operation of IRACS removes the decay heat

  18. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    Science.gov (United States)

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material

  19. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    Science.gov (United States)

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material

  20. Locality constraints and 2D quasicrystals

    International Nuclear Information System (INIS)

    The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs

  1. 2D Cooling of Magnetized Neutron Stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2007-01-01

    Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...

  2. Alignment free characterization of 2D gratings

    CERN Document Server

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2015-01-01

    Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.

  3. Area preserving diffeomorphisms and 2-d gravity

    CERN Document Server

    La, H S

    1995-01-01

    Area preserving diffeomorphisms of a 2-d compact Riemannian manifold with or without boundary are studied. We find two classes of decompositions of a Riemannian metric, namely, h- and g-decomposition, that help to formulate a gravitational theory which is area preserving diffeomorphism (SDiffM-) invariant but not necessarily diffeomorphism invariant. The general covariance of equations of motion of such a theory can be achieved by incorporating proper Weyl rescaling. The h-decomposition makes the conformal factor of a metric SDiffM-invariant and the rest of the metric invariant under conformal diffeomorphisms, whilst the g-decomposition makes the conformal factor a SDiffM scalar and the rest a SDiffM tensor. Using these, we reformulate Liouville gravity in SDiffM invariant way. In this context we also further clarify the dual formulation of Liouville gravity introduced by the author before, in which the affine spin connection is dual to the Liouville field.

  4. Graphene suspensions for 2D printing

    Science.gov (United States)

    Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.

    2016-04-01

    It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).

  5. Numerical Evaluation of 2D Ground States

    Science.gov (United States)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  6. Metrology for graphene and 2D materials

    Science.gov (United States)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  7. Disassembly of the fusion-1 capsule after irradiation in the BOR-60 reactor

    International Nuclear Information System (INIS)

    A U.S./Russia (RF) collaborative irradiation experiment, Fusion-1, was completed in June 1996 after reaching a peak exposure of ∼17 dpa in the BOR-60 fast reactor at the Research Institute of Atomic Reactors (RIAR) in Russia. The specimens were vanadium alloys, mainly of recent heats from both countries. In this reporting period, the capsule was disassembled at the RIAR hot cells and all test specimens were successfully retrieved. For the disassembly, an innovative method of using a heated diffusion oil to melt and separate the lithium bond from the test specimens was adopted. This method proved highly successful

  8. Efficiency Optimization for Disassembly Tools via Using NN-GA Approach

    Directory of Open Access Journals (Sweden)

    Guangdong Tian

    2013-01-01

    Full Text Available Disassembly issues have been widely attracted in today’s sustainable development context. One of them is the selection of disassembly tools and their efficiency comparison. To deal with such issue, taking the bolt as a removal object, this work designs their removal experiments for different removal tools considering some factors influencing its removal process. Moreover, based on the obtained experimental data, the removal efficiency for different removal tools is optimized by a hybrid algorithm integrating neural networks (NN and genetic algorithm (GA. Their efficiency comparison is discussed. Some numerical examples are given to illustrate the proposed idea and the effectiveness of the proposed methods.

  9. Study on thermal-hydraulics of natural circulation operation for decay heat removal of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab

    2000-05-01

    Thermal-hydraulic characteristics of the decay heat removal system (DHRS) has been evaluated by both a water test and its computational analysis. The direct reactor auxiliary cooling system (DRACS) was studied as a representative DHRS in the LMFBR design. A natural circulation flow of the DRACS is originated from the buoyancy force balanced with the pressure loss within the active core. Hence it appears that the performance of the DRACS could be fully estimated by the thermal-hydraulic study of one fuel sub-assembly under the condition of low flow rate. The inter-wrapper flow occurring in the gap between core sub-assemblies under the natural circulation operation might have a large capacity to cool the core. An inverse flow occurring at the outer region of the core was due to the cooling effect of the inter-wrapper flow. (author)

  10. Living PSA program: LIPSAS development for safety management of an LMFBR plant

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Kiyoto [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan); Nakai, Ryodai [O-arai Engineering Center, Ibaraki (Japan)

    1994-12-31

    During construction and subsequent operation of a nuclear power plant, many changes occur in components, systems and operating procedures, which continuously modify the configuration of the power plant. A living PSA program can assess and manage safety-related operations and plant changes by adequately reproducing plant models and structured databases corresponding to the changes in system configuration. A living PSA system, LIPSAS, has been developed for the Japanese prototype liquid metal-cooled fast-breeder reactor (LMFBR), Monju, which is in the preoperation functional test stage. In order to utilize the LIPSAS as a risk management tool, equations for the schematic time history of the plant risk level and the relative risk criteria have been developed. Experience with LIPSAS shows that this program is a prospective tool to support decisions that affect plant safety, although a continuing and significant resource commitment of the operations staff at the site is still required. (author).

  11. Study on stability of natural circulation flow in an LMFBR. Pt. 2. Stability of core flow

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1997-11-01

    By using an experimental apparatus with water in which the primary loop and the core of an LMFBR were roughly simulated, stability of natural circulation flows in the core has been experimentally evaluated. The following were clarified as a result of the present study: (1) Though a certain and stable flow occurs in the primary loop under a steady state of natural circulation, a chaotic flow or a variant flow in addition to the steady flow arises in some simulated fuel sub-assemblies. The chaotic flow tends to occur in the range of large Reynolds number and large Richardson number. (2) Estimation of the fluctuation supposed as a chaos revealed that it was a high dimensional chaos. (author)

  12. Active acoustic leak detection for LMFBR steam generator. Sound attenuation due to bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Sakuma, Toshio [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-06-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchangers as soon as it occurs. The active acoustic detection method has drawn general interest owing to its short response time and reduction of the influence of background noise. In this paper, the application of the active acoustic detection method for SG is proposed, and sound attenuation by bubbles is investigated experimentally. Furthermore, using the SG sector model, sound field characteristics and sound attenuation characteristics due to injection of bubbles are studied. It is clarified that the sound attenuation depends upon bubble size as well as void fraction, that the distance attenuation of sound in the SG model containing heat transfer tubes is 6dB for each two-fold increase of distance, and that emitted sound attenuates immediately upon injection of bubbles. (author).

  13. Thermal-hydraulic characteristics of natural circulation operation for decay heat removal of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan); Watanabe, Osamu [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)

    2000-10-01

    Thermal-hydraulic characteristics of the decay heat removal system (DHRS) has been evaluated by both a water test and its computational analysis. The direct reactor auxiliary cooling system (DRACS) was studied as a representative DHRS in the LMFBR design. A natural circulation flow of the DRACS is originated from the buoyancy force balanced with the pressure loss within the active core. Hence it appears that the performance of the DRACS could be fully estimated by the thermal-hydraulic study of one fuel sub-assembly under the condition of low flow rate. The inter-wrapper flow occurring in the gap between core sub-assemblies under the natural circulation operation might have a large capacity to cool the core. An inverse flow occurring at the outer region of the core was due to the cooling effect of the inter-wrapper flow. (author)

  14. Benchmark experiment for physics parameters of metallic-fueled LMFBR at FCA

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, S.; Oigawa, H.; Sakurai, T.; Nemoto, T.; Okajima, S. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-09-01

    The calculated prediction for reactor physics parameters in a metallic-fueled LMFBR was tested using the benchmark experiments performed at FCA. The reactivity feedback parameters such as sodium void worth, Doppler reactivity worth and {sup 238}U-capture-to-{sup 239}Pu -fission ratio have been measured. The fuel expansion reactivity has also measured. Direct comparison with the results from similar oxide fuel assembly was made. Analysis was done with the JENDL-2 cross section library and JENDL-3.2. Prediction of reactor physics parameters with JENDL-3.2 in the metallic-fueled core agreed reasonably well with the measured values and showed similar trend to the results in the oxide fuel core. (author)

  15. Evaluation of CDA energetics in the prototype LMFBR with latest knowledge and tools

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, Yoshiharu; Morita, Koji; Kawada, Ken-ichi; Niwa, Hajime; Nonaka, Nobuyuki [Japan Nuclear Cycle Development Institute, Oarai Engineering Center, Oarai, Ibaraki (Japan)

    1999-07-01

    The sequences of an unprotected loss-of-flow accident in the prototype LMFBR has been evaluated, as a part of reactor safety research, reflecting the latest experimental and analytical knowledge on core disruptive accident (CDA). In the evaluation, the event progression scenarios and the major physical parameters were selected, based on the latest experimental knowledge and code validation studies on the transient fuel behavior and material motion during the last decade, such that associated phenomenological uncertainties were well covered within physically reasonable ranges. With the safety research knowledge and advanced accident analysis codes, which have been made available lately, the CDA energetics was assessed to be much more benign in comparison with the former analysis. In other words, we have demonstrated that our former CDA analysis is sufficiently conservative. (author)

  16. Slow transient overpower tests - C04, C05 and L03. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Culley, G.E.; Herbert, R.; Myron, D.L.; Wood, M.H.; Bowen, G.R.

    1984-11-01

    Among the low probability LMFBR accident scenarios addressed by the collaborative US/UK transient testing program is the slow transient overpower ramp resulting from the hypothetical event of a control rod runaway with failure to trip. This has been simulated in US's TREAT facility with three tests on irradiated driver fuel from the UK's Prototype Fast Reactor. Tests C04 and C05 were single pin experiments designed as a pair to study the effect of burnup on the time, location, and mechanisms of cladding failure and initial fuel escape. They were conducted on individual fuel pins of different burnup and power history; the C04 fuel had an axial peak burnup of approx. 4% while C05 fuel had reached a maximum burnup close to 9%. Test L03, reported in detail previously, studied post-failure fuel dispersal in a bundle of seven pins like the C04 fuel.

  17. Fluid-structure interaction analysis of a deck structure during a HCDA. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.

    1979-01-01

    Presented is an assessment of the structural integrity of the deck structure of a pool-type LMFBR during a Hypothetical Core Disruptive Accident (HCDA). During this accident the sodium above the core is propelled upward until it impacts against the deck structure. This hydrodynamic loading could produce (1) significant structural damage and (2) sodium leak paths. A finite-element model is used to study the deck dynamics during slug impact. By using the symmetry of the system, a sector model which accounts for the salient features of the system is developed. The main radial I-beam, component support I-beam and bottom annular plate are modeled using triangular plate elements. The concrete fill is modeled using hexahedral continuum elements. Using the above finite-element model the dynamics of the deck during a HCDA are investigated.

  18. Heat transfer and fluid flow aspects of fuel--coolant interactions. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M L

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon.

  19. Effect of exposure sequence on the distribution of LMFBR-fuel-sodium aerosols in rats

    International Nuclear Information System (INIS)

    Female Wistar rats were exposed for 30 min to sodium aerosols containing approximately 370 μg/l of sodium. Together with nonexposed rats, they were then exposed, nose-only, for 30 min to aerosols of LMFBR fuel containing approximately 36 nCi/liter. Animals from each group were killed immediately after exposure to the fuel aerosol, or 7 days later. Lungs and other tissues were removed and analyzed for plutonium content. Both the animals exposed previously to sodium aerosol, and those not exposed, showed similar patterns of deposition and retention of 239Pu in tissues at both time periods. Thus, prior exposure of animals to relatively high levels of sodium did not affect the deposition and retention of 239Pu

  20. Sodium-NaK engineering handbook. Volume III. Sodium systems, safety, handling, and instrumentation. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Foust, O J [ed.

    1978-01-01

    The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK components and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.

  1. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.

  2. Fluid-mixing studies in a hexagonal 217-pin wire-wrapped rod bundle. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Symolon, P.D.; Todreas, N.E.

    1981-02-01

    Mixing, pressure drop, and flow split experiments were performed on a 217 pin LMFBR fuel bundle with a pitch to diameter ratio of 1.25 and a lead length of 12 inches. It was found that the turbulent flow data could best be characterized by the energy parameter C/sub 1L/=.106, which is 9% higher than the value from the correlation of Chiu et al. Chiu's correlation was developed on a data base of 61 and 91 pins. The spread of existing data about the correlation is +- 25%, but the error band on our data is expected to be less (approx. +- 10% since injection depth effects were not previously considered). This result is consistent with the concept of increased swirl flow in larger bundles (more pins).

  3. Partial flow blockage effects within a (liquid metal cooled fast reactor) LMFBR fuel assembly

    International Nuclear Information System (INIS)

    A lumped thermal-hydraulic model was used to calculate the increase in the sodium and cladding temperatures in the wake behind a non-porous partial flow blockage within a typical LMFBR fuel rod assembly. The model predicts that over 25 percent of the cross sectional flow area may be blocked before the wake fluid temperature reaches boiling; the actual size depends on the blockage axial location and radial location. Agreement with the limited sodium flow rod bundle blockage data is achieved by the model if the wide variation observed in the experimental cladding temperatures within the wake region is attributed to variations in local heat transfer coefficients. (29 references) (U.S.)

  4. Wire-wrapped rod-bundle heat-transfer analysis for LMFBR

    International Nuclear Information System (INIS)

    Helical wire wraps are widely used in the LMFBR fuel and blanket assemblies to provide coolant mixing and maintain proper spacing between fuel pins. The presence of the helical wire, however, may possibly induce heat transfer problems, such as the uncertainty of the maximum clad temperature as a result of the contact between the wires and the pins. In this study, the detailed transient three dimensional velocity and temperature distributions for the coolant around the pin will be determined by solving the governing momentum and energy equation numerically. A computer code HEATRAN has been developed to perform this calculation. Before the computer code HEATRAN is applied to the wire wrapped rod bundle problem, it is used to analyze a wide range of fluid and heat transfer problem to verify its capabilities

  5. Collection and evaluation of salt mixing data with the real time data acquisition system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Glazer, S.; Chiu, C.; Todreas, N.E.

    1977-09-01

    A minicomputer based real time data acquisition system was designed and built to facilitate data collection during salt mixing tests in mock ups of LMFBR rod bundles. The system represents an expansion of data collection capabilities over previous equipment. It performs steady state and transient monitoring and recording of up to 512 individual electrical resistance probes. Extensive real time software was written to govern all phases of the data collection procedure, including probe definition, probe calibration, salt mixing test data acquisition and storage, and data editing. Offline software was also written to permit data examination and reduction to dimensionless salt concentration maps. Finally, the computer program SUPERENERGY was modified to permit rapid extraction of parameters from dimensionless salt concentration maps. The document describes the computer system, and includes circuit diagrams of all custom built components. It also includes descriptions and listings of all software written, as well as extensive user instructions.

  6. Structural dynamics in LMFBR containment analysis: a brief survey of computational methods and codes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Y.W.; Gvildys, J.

    1977-01-01

    In recent years, the use of computer codes to study the response of primary containment of large, liquid-metal fast breeder reactors (LMFBR) under postulated accident conditions has been adopted by most fast reactor projects. Since the first introduction of REXCO-H containment code in 1969, a number of containment codes have evolved and been reported in the literature. The paper briefly summarizes the various numerical methods commonly used in containment analysis in computer programs. They are compared on the basis of truncation errors resulting in the numerical approximation, the method of integration, the resolution of the computed results, and the ease of programming in computer codes. The aim of the paper is to provide enough information to an analyst so that he can suitably define his choice of method, and hence his choice of programs.

  7. Experimental verification of structural models to analyze the nonlinear dynamics of LMFBR fuel elements

    International Nuclear Information System (INIS)

    Local fault situations in LMFBR cores may produce severe pressure pulses within one fuel element. The fact cannot be ignored that these pressures can have peaks and impulses that may expand and rupture the wrapper around the element. This will impulsively load the surrounding subassemblies and possibly the control rods due to extreme coolant pressure gradients and/or subassembly collision forces. Fast reactor safety requires this mechanical propagation process through the core to be analyzed, and therefore appropriate models and solution methods are needed to simulate the nonlinear structural dynamics of one typical hexagonal fuel element. The aim of this paper is to outline one- and two-dimensional structural models and discuss their capabilities and suitability for multirow core calculations. For this purpose static and impulsive single subassembly loading experiments are described and typical results are reported and compared with numerical predictions. (Auth.)

  8. Development of Integrated Analytical Tools for Level-2 PSA of LMFBR

    International Nuclear Information System (INIS)

    JNES has developed own safety analysis methods for LMFBR to make safety analyses independently from the applicant to support the regulatory body. The area of these computer codes covers the plant response phase, the core disruption phase and the containment vessel response phase of severe accidents. In addition to the codes, the PRD (Phenomenological Relationship Diagram) method was figured out as a logical method to identify the probability distributions of blanching points in event trees for level-2 PSA. After validation of these codes using various experimental data and many trial calculations to actual reactor system, the prepared tools were applied to the level-2 PSA of Monju to evaluate the effectiveness of accident management measures of Monju. (author)

  9. Thermal and thermal stress analysis of a pool type LMFBR deck structure

    International Nuclear Information System (INIS)

    The thermal capabilities of the ANSYS code were used to construct a thermal model of a pool type LMFBR system. This model included the primary tank of hot sodium covered by the concrete deck. Included in the geometry were the pump, heat exchanger, and control rod penetrations, and the metallic insulation underneath the concrete. The model included radiation and conduction of heat from the hot sodium to the concrete deck, and the cooling of the concrete via water pipes embedded in it. Thermal stresses are calculated within the code for the various plate and shell steel elements used in the code to represent different parts of the structure. This study provides a basis for studying the effect of insulation and coolant in the design of the deck structure

  10. LMFBR fuel cycle studies progress report for August 1972. No. 42

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1972-10-01

    This report continues a series outlining progress in the development of methods for the reprocessing of LMFBR fuels. Development work is reported on problems of irradiated fuel transport to the processing facility, the dissolution of the fuel and the chemical recovery of PuO2-UO2 values, the containment of volatile fission products, product purification, conversion of fuel processing plant product nitrate solutions to solids suitable for shipping and for subsequent fuel fabrication. Pertinent experimental results are presented for the information of those immediately concerned with the field. Detailed description of experimental work and data are included in the topical reports and in the Chemical Technology Division Annual Reports.

  11. TRANSENERGY S: computer codes for coolant temperature prediction in LMFBR cores during transient events

    International Nuclear Information System (INIS)

    This document is intended as a user/programmer manual for the TRANSENERGY-S computer code. The code represents an extension of the steady state ENERGY model, originally developed by E. Khan, to predict coolant and fuel pin temperatures in a single LMFBR core assembly during transient events. Effects which may be modelled in the analysis include temporal variation in gamma heating in the coolant and duct wall, rod power production, coolant inlet temperature, coolant flow rate, and thermal boundary conditions around the single assembly. Numerical formulations of energy equations in the fuel and coolant are presented, and the solution schemes and stability criteria are discussed. A detailed description of the input deck preparation is presented, as well as code logic flowcharts, and a complete program listing. TRANSENERGY-S code predictions are compared with those of two different versions of COBRA, and partial results of a 61 pin bundle test case are presented

  12. Integral capture cross-section measurements in the CFRMF for LMFBR control materials

    International Nuclear Information System (INIS)

    Integral capture-cross sections for separated isotopes of Eu and Ta are reported for measurements in the Coupled Fast Reactivity Measurements Facility (CFRMF). These cross sections along with that measured in the CFRMF for 10B(n,α) provide an absolute standard for evaluating the relative reactivity worth of Eu2O3, B4C and Ta in neutron fields typical of an LMFBR core. Based on these measurements and for neutron fields characterized by the 235U:238U reaction rate spectral index ranging from 23 to 50, the infinitely dilute relative worth of Eu2O3 has been estimated to be 25 to 40 percent higher than that for B4C and 80 percent to 100 percent higher than that for Ta. 11 references

  13. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    International Nuclear Information System (INIS)

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified

  14. ASFRE: a computer code for single-phase subchannel thermal hydraulic analysis of LMFBR single subassembly

    International Nuclear Information System (INIS)

    The objectives of this work is to develop a computer code ASFRE which analyzes 3D-thermo-hydraulic behaviors of coolant and fuel pins in an LMFBR subassembly under accident conditions such as the local blockage, loss of flow and transient over power accident conditions. Analytical models, calculation procedures and sample calculations for typical experiments are described. The ASFRE code consists of two parts, namely coolant calculation part and fuel pin calculation. The coolant thermal-hydraulic analysis employs basically subchannel analysis approach and the program solves transient mass, momentum and energy conservation equations. The fuel pin thermal analysis program solves transient heat conduction equations by finite difference method in cylindrical coordinate system. Fuel temperature distribution and thermal expansion are calculated taking into account of intra/inter-pin-flux-depression and fuel restructuring. And wire wrap spacer effects for coolant behavior and heat loss through the wrapper tube are also simulated. (author)

  15. An experimental study on sodium-water reaction in the double pool LMFBR, (4)

    International Nuclear Information System (INIS)

    Double Pool type LMFBR set the rectangular cross-sectional steam generator (SGs) inside a secondary vessel. The initial spike pressure rise caused by large sodium-water reaction in SGs might be radiated into a large sodium pool in the secondary vessel. Therefore basic experiments on pressure wave propagation were carried out by generating pressure wave in water by mean of a set of drop hummer and piston. But the experimental apparatus in water was not convenience to simulate the structure near the bottom end of the SGs shell. In this reports, experiments were carried out by generating pulse sound pressure in air, and compared with the results pressure waves in water. (author)

  16. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  17. Specialists' meeting on LMFBR fuel rod behaviour under operational transients, Kalpakkam, India, 3-6 December 1985

    International Nuclear Information System (INIS)

    IWGFR Specialists' Meeting on ''LMFBR Fuel Rod Behaviour Under Operational Transients'' was held in Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam during 3-6 December 1985. The meeting was attended by the representatives of Belgium, France, FRG, India, Italy, US, USSR, IAEA and observers from India. The purpose of the meeting was to provide a forum for the exchange of information on the subject of LMFBR Fuel Rod Behaviour Under Operational Transients. The meeting presentations were divided into sessions devoted to the following topics: Overview of National Programmes (3 papers); In-pile and out-pile experimental facilities and results (5 papers); Modelling and Code work (5 papers). A separate abstract was prepared for each of these papers

  18. LMFBR in-core thermal-hydraulics: the state of the art and US research and development needs

    International Nuclear Information System (INIS)

    A detailed critical review is presented of the literature relevant to predicting coolant flow and temperature fields in LMFBR core assemblies for nominal and non-nominal rod bundle geometries and reactor operating conditions. The review covers existing thermal-hydraulic models, computational methods, and experimental data useful for the design of an LMFBR core. The literature search made for this review included publications listed by Nuclear Science Abstracts and Energy Data Base as well as papers presented at key nuclear conferences. Based on this extensive review, the report discusses the accuracy with which the models predict flow and temperature fields in rod assemblies, identifying areas where analytical, experimental, and model development needs exist

  19. Chemical Engineering Division reactor fuels and materials chemistry research: July 1976--September 1977. [LMFBR; GCFR

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-07-01

    Reactor safety studies were directed primarily toward obtaining high-temperature physical property data for use in reactor safety analyses. Spectroscopic data and an oxygen-potential model were used to calculate thermodynamic properties applicable to the equations of state of (U,Pu)O/sub 2/ and UO/sub 2/. Work was continued on the compilation of standard sets of property data on reactor fuels and materials. The viscosity of molten alumina and the thermal diffusivity of molten UO/sub 2/ were measured as functions of temperature. Modeling and chemical-interaction studies related to post-accident heat removal were conducted. The efforts in sodium technology supported the LMFBR program. Studies were conducted to explore the feasibility of upgrading the quality of commercial-grade sodium and sodium from decommissioned reactors to provide new sources of reactor-grade sodium. Work was started on the development of methods for disposal of contaminated alkali--metal wastes. In work related to tritium, a model was developed to describe the behavior of tritium in an LMFBR, tritium permeation through steam-generator materials was measured, and an in-sodium tritium meter was developed and tested in reactor environments. Work in the area of fuels and materials chemistry was conducted in support of the GCFR program. Portions of the cesium--uranium--oxygen phase diagram were investigated to aid in understanding the reaction of fission-product cesium with urania blanket material, particularly in relation to axial gas flow in vented GCFR fuel pins. Data on the oxidation of vanadium, niobium, and titanium were assessed to determine the suitability of these materials for use in controlling oxidative attack of stainless steel cladding.

  20. Transients and safety testing of LMFBR fuel pins in the reactor BR2

    International Nuclear Information System (INIS)

    Testing of the behaviour of LMFBR fuel pins under operational transients has been performed in the reactor BR2 at S.C.K./C.E.N.-Mol (Belgium) since 1981 in the framework of the DEBENE programme ''SNR-Betriebstransienten-experimente''. A special purpose sodium loop, called ''VIC'', has therefore been developed to allow off-nominal and transient experiments on single fuel pins under realistic fast reactor operating conditions. Two basic types of tests can be run, either separately or simultaneously: fission power alteration, e.g. steady overpower runs, power cycling and fast transient overpower (TOP); mismatch of the sodium cooling, e.g. operation with reduced sodium flow and transient loss of flow (LOF). The loop allows the loading and testing of pre-irradiated fuel pins. In the field of safety oriented tests, the programme ''MOL 7 C'' investigates the LMFBR fuel element behaviour under locally blocked cooling conditions and the possible failure propagation. The work is jointly carried out by the Karlsruhe center KfK (FRG) and S.C.K./C.E.N.-Mol (Belgium). The related in-pile tests in the reactor BR2 have started in 1977 and are performed in a fully integrated sodium loop. The test section contains a 30-rod bundle with fresh or pre-irradiated fuel pins. A local porous blockage within the fuel bundle initiates severe local damage to the central rods. Important informations are obtained with respect to the problems of pin to pin propagation and the long term behaviour of a fuel subassembly with defect pins. The MOL 7 C loop system can also be used to run operational transients on a fuel bundle with representative fuel pins. The paper describes the irradiation devices VIC and MOL 7 C from their technological point of view and depicts their field of testing applications. Also the major experiments already performed and relevant irradiation data are reviewed

  1. Research report on design allowable values of structural materials for LMFBR

    International Nuclear Information System (INIS)

    The present report is composed of following two main parts. i) review and re-evaluation on test results by FCI Sub-committee studies, performed from 1973 to 1976, ii) review on procedures for determining design allowable values of structural materials for LMFBR components. Re-evaluation works have been made on monotonic tensile properties at elevated temperatures, creep and creep rupture properties, creep-fatigue properties (strain rate and tensile strain hold time effects on strain fatigue properties at elevated temperatures) of Types 316 and 304 stainless steel and 2 1/4Cr-1Mo steel (base and weld metals) produced in Japan. In the first half of the present report, creep-fatigue test results obtained by FCI Sub-committee studies are subjected to re-evaluation by the present P-FCI Sub-committee. Reviews have been made on testing methods on FCI's-creep-fatigue experiments with other test data of the test materials; high temperature monotonic tensile data, creep and creep rupture data, and origin of the test materials. The data of FCI studies are compared with other reference data obtained by several Japanese laboratories. In the latter half of the present report, procedures including ASME's are reviewed for setting design allowable values for LMFBR components on the basis of high temperature strength properties obtained with materials produced in Japan. A creep rupture data of Japanese steels are issued and examined to make proposal for a design allowable stress of S sub(t) through parameter survey. (author)

  2. Bulk coolant cavitation in LMFBR containment loading following a whole-core explosion

    International Nuclear Information System (INIS)

    An LMFBR core undergoing an explosion transmits energy to the containment in a series of pressure waves and the containment loading is determined by their cumulative effect. These pressure waves are modified by their interaction with the coolant through which they propagate. In liquids in their normal state the main effect of the interaction is to steepen the fronts of waves leading to shock formation but in liquids which have undergone bulk cavitation the interaction is much stronger and is expected to be dissipative and dispersive. Since reflections of initial pressure waves from the core at free surfaces lead to the establishment of a state of tension and consequently of bulk cavitation over large volumes of the coolant, it is necessary to model both the induction of bulk cavitation by tension waves and the interaction of pressure waves with cavitated liquid in realistic containment loading calculations. This paper sets out the progress which has been achieved in such modelling and first indications for the effect of bulk coolant cavitation in LMFBR containment loading. A model describing the interaction between cavitation bubbles and a host liquid subject to time-varying pressure fields, including the physical process of momentum conservation, phase change, heat conduction and mass diffusion is presented and used to a) determine which of the various physical processes involved dominate the results. It is shown that if we are only interested in bulk effects momentum transfer is the chief factor for the pressures and timescales of interest. b) determine the effect of the state of purity of the liquid. The main characterising parameters are the initial radii of nucleation sites and their number density, the latter being very influential. c) identify the important differences between model water and reactor sodium as far as cavitation is concerned. These are chiefly the lower surface tension and higher concentration of initially larger nucleation sites in the

  3. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) neat transport system dynamics and steam generator control

    Science.gov (United States)

    Brukx, J. F. L. M.

    1982-06-01

    Loop type LMFBR heat transport system dynamics after reactor shutdown and during subsequent decay heat removal are considered with emphasis on steam generator dynamics including the development and evaluation of various post-scram steam generator control systems, and natural circulation of the sodium coolant, including the influence of superimposed free convection on forced convection heat transfer and pressure drop. The normal operating and decay heat removal functions of the overall heat transport system are described.

  4. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) heat transport system dynamics and steam generator control: Figures

    Science.gov (United States)

    Brukx, J. F. L. M.

    1982-06-01

    Dynamic modeling of LMFBR heat transport system is discussed. Uncontrolled transient behavior of individual components and of the integrated heat transport system are considered. For each component, results showing specific dynamic features of the component and/or model capability were generated. Controlled dynamic behavior for alternative steam generator control systems during forced and natural sodium coolant circulation was analyzed. Combined free and forced convection of laminar and turbulent vertical pipe flow of liquid metals was investigated.

  5. Face recognition method based on 2D-PCA and 2D-LDA%基于2D-PCA和2D-LDA的人脸识别方法

    Institute of Scientific and Technical Information of China (English)

    温福喜; 刘宏伟

    2007-01-01

    提出了基于2D-PCA、2D-LDA两种特征采用融合分类器的人脸识别方法.首先提取人脸图像的2D-PCA和2D-LDA特征,对不同特征在决策层对分类器进行融合.在ORL人脸库上的试验结果表明,分类器决策层融合方法在识别性能上优于2D-PCA和2D-LDA,更具有鲁棒性.

  6. Analysis list: Kmt2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Kmt2d Adipocyte,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.5.tsv http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d....Adipocyte.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d.Pluripo

  7. Analysis list: KMT2D [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available KMT2D Blood,Digestive tract + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KM...T2D.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KMT2D.5.tsv http://dbarchive.biosc...iencedbc.jp/kyushu-u/hg19/target/KMT2D.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Blo...od.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Digestive_tract

  8. 2D manifold-independent spinfoam theory

    International Nuclear Information System (INIS)

    A number of background-independent quantization procedures have recently been employed in 4D nonperturbative quantum gravity. We investigate and illustrate these techniques and their relation in the context of a simple 2D topological theory. We discuss canonical quantization, loop or spin network states, path integral quantization over a discretization of the manifold, spin foam formulation and the fully background-independent definition of the theory using an auxiliary field theory on a group manifold. While several of these techniques have already been applied to this theory by Witten, the last one is novel: it allows us to give a precise meaning to the sum over topologies, and to compute background-independent and, in fact, 'manifold-independent' transition amplitudes. These transition amplitudes play the role of Wightman functions of the theory. They are physical observable quantities, and the canonical structure of the theory can be reconstructed from them via a C* algebraic GNS construction. We expect an analogous structure to be relevant in 4D quantum gravity

  9. Ion Transport in 2-D Graphene Nanochannels

    Science.gov (United States)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  10. Intermittency in 2D soap film turbulence

    CERN Document Server

    Cerbus, R T

    2013-01-01

    The Reynolds number dependency of intermittency for 2D turbulence is studied in a flowing soap film. The Reynolds number used here is the Taylor microscale Reynolds number R_{\\lambda}, which ranges from 20 to 800. Strong intermittency is found for both the inverse energy and direct enstrophy cascades as measured by (a) the pdf of velocity differences P(\\delta u(r)) at inertial scales r, (b) the kurtosis of P(\\partial_x u), and (c) the scaling of the so-called intermittency exponent \\mu, which is zero if intermittency is absent. Measures (b) and (c) are quantitative, while (a) is qualitative. These measurements are in disagreement with some previous results but not all. The velocity derivatives are nongaussian at all R_{\\lambda} but show signs of becoming gaussian as R_{\\lambda} increases beyond the largest values that could be reached. The kurtosis of P(\\delta u(r)) at various r indicates that the intermittency is scale dependent. The structure function scaling exponents also deviate strongly from the Kraichn...

  11. 2D DIGITAL SIMPLIFIED FLOW VALVE

    Institute of Scientific and Technical Information of China (English)

    Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D

    2004-01-01

    The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.

  12. Resolution Independent 2D Cartoon Video Conversion

    Directory of Open Access Journals (Sweden)

    MSF. Fayaza

    2016-03-01

    Full Text Available This paper describes a novel system for vectorizing 2D raster cartoon. The output videos are the resolution independent, smaller in file size. As a first step, input video is segment to scene thereafter all processes are done for each scene separately. Every scene contains foreground and background objects so in each and every scene foreground background classification is performed. Background details can occlude by foreground objects but when foreground objects move its previous position such occluded details exposed in one of the next frame so using that frame can fill the occluded area and can generate static background. Classified foreground objects are identified and the motion of the foreground objects tracked for this simple user assistance is required from those motion details of foreground object’s animation generated. Static background and foreground objects segmented using K-means clustering and each and every cluster’s vectorized using potrace. Using vectored background and foreground object animation path vector video regenerated.

  13. Real-Time Imaging of Single HIV-1 Disassembly with Multicolor Viral Particles.

    Science.gov (United States)

    Ma, Yingxin; He, Zhike; Tan, Tianwei; Li, Wei; Zhang, Zhiping; Song, Shuang; Zhang, Xiaowei; Hu, Qinxue; Zhou, Peng; Wu, Yuntao; Zhang, Xian-En; Cui, Zongqiang

    2016-06-28

    Viral disassembly is poorly understood and related to the infection mechanism. However, directly observing the process in living cells remains technically challenging. In this study, the genome RNA, capsid, and matrix protein of the HIV-1 virus were labeled with a Ru(II) complex ([Ru(phen)2(dppz)](2+)), the TC-FlAsH/ReAsH system, and EGFP/ECFP, respectively. Using the multicolored virus and single-particle imaging, we were able to track the sequential disassembly process of single HIV-1 virus particles in live host cells. Approximately 0.1% of viral particles were observed to undergo a sequential disassembly process at 60-120 min post infection. The timing and efficiency of the disassembly were influenced by the cellular factor CypA and reverse transcription. The findings facilitate a better understanding of the processes governing the HIV-1 lifecycle. The multicolor labeling protocol developed in this study may find many applications involving virus-host-cell interactions. PMID:27253587

  14. Using genetic/simulated annealing algorithm to solve disassembly sequence planning

    Institute of Scientific and Technical Information of China (English)

    Wu Hao; Zuo Hongfu

    2009-01-01

    disassembly sequence.And the solution methodology based on the genetic/simulated annealing algorithm with binary-tree algorithm is given.Finally,an example is analyzed in detail,and the result shows that the model is correct and efficient.

  15. Cotranslational disassembly of flock house virus in a cell-free system.

    OpenAIRE

    Hiscox, J A; Ball, L A

    1997-01-01

    Intact, purified particles of the nodaviruses flock house virus and nodamura virus that were either transfected into cells that were resistant to infection or introduced into in vitro translation systems directed the synthesis of viral proteins. We infer that direct interaction of these nodavirus particles with cytoplasmic components mediated virion disassembly that resulted in release of the viral RNA.

  16. Studies of the effects of fuel EOS uncertainties on FBR disassembly energetics

    International Nuclear Information System (INIS)

    The article analyzes the consequences of uncertainties in two areas: (i) the EOS of irradiated fuel; and (ii) the specific heat of molten fuel. The current UK understanding of the role of fission products in the postulated disassembly phase of an HCDA is outlined, giving particular emphasis to the possible effects of predisassembly heating. 21 refs

  17. DNA-based delivery vehicles: pH-controlled disassembly and cargo release.

    Science.gov (United States)

    Keum, Jung-Won; Bermudez, Harry

    2012-12-25

    Non-Watson-Crick base pairing provides an in situ approach for actuation of DNA nanostructures through responses to solution conditions. Here we demonstrate this concept by using physiologically-relevant changes in pH to regulate DNA pyramid assembly/disassembly and to control the release of protein cargo. PMID:23143043

  18. Saccharomyces cerevisiae vacuolar H+-ATPase regulation by disassembly and reassembly: one structure and multiple signals.

    Science.gov (United States)

    Parra, Karlett J; Chan, Chun-Yuan; Chen, Jun

    2014-06-01

    Vacuolar H(+)-ATPases (V-ATPases) are highly conserved ATP-driven proton pumps responsible for acidification of intracellular compartments. V-ATPase proton transport energizes secondary transport systems and is essential for lysosomal/vacuolar and endosomal functions. These dynamic molecular motors are composed of multiple subunits regulated in part by reversible disassembly, which reversibly inactivates them. Reversible disassembly is intertwined with glycolysis, the RAS/cyclic AMP (cAMP)/protein kinase A (PKA) pathway, and phosphoinositides, but the mechanisms involved are elusive. The atomic- and pseudo-atomic-resolution structures of the V-ATPases are shedding light on the molecular dynamics that regulate V-ATPase assembly. Although all eukaryotic V-ATPases may be built with an inherent capacity to reversibly disassemble, not all do so. V-ATPase subunit isoforms and their interactions with membrane lipids and a V-ATPase-exclusive chaperone influence V-ATPase assembly. This minireview reports on the mechanisms governing reversible disassembly in the yeast Saccharomyces cerevisiae, keeping in perspective our present understanding of the V-ATPase architecture and its alignment with the cellular processes and signals involved. PMID:24706019

  19. Effect of Buyang Huanwu decoction and its disassembled recipes on rats’ neurogenesis after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    曲铁兵

    2014-01-01

    Objective To explore the effect of Buyang Huanwu Decoction(BYHWD)and its disassembled recipes on rats’neurogenesis after focal cerebral ischemia and to investigate its underlying molecular mechanisms.Methods Focal cerebral ischemia model was induced by occlusion of the right middle cerebral artery for 90 min using the

  20. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB)

    International Nuclear Information System (INIS)

    Highlights: ► The disassembly of electric/electronic components (EECs) layered in PCB as the first-step in recycling process. ► The disassembling treatment was carried out by the new designed apparatus. ► Most of the EECs (over 95%) can be recovered in a nondestructive state. ► These EECs contain 17 groups and can be classified into 54 types based on their shapes and sizes. ► The successive 3 stages of physical separation would enables the recovery of minor ingredients. - Abstract: Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (Earea) and the weight ratio of the detached EECs (Eweight). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (Earea) and 98% (Eweight) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5 mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the

  1. Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants

    Directory of Open Access Journals (Sweden)

    Andrea Gaedigk

    2010-10-01

    Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.

  2. Finite state models of constrained 2d data

    DEFF Research Database (Denmark)

    Justesen, Jørn

    2004-01-01

    This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods.......This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods....

  3. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB).

    Science.gov (United States)

    Lee, Jaeryeong; Kim, Youngjin; Lee, Jae-chun

    2012-11-30

    Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (E(area)) and the weight ratio of the detached EECs (E(weight)). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (E(area)) and 98% (E(weight)) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the distribution ratio (R(dis)) and the concentration ratio (R(conc)) were used. 15 elements could be separated with the highest R(dis) and R(conc) in the same separated division. This result implies that the recyclability of the elements is highly feasible, even though the initial content in EECs is lower than several tens of mg/kg.

  4. Pit disassembly and conversion demonstration environmental assessment and research and development activities

    International Nuclear Information System (INIS)

    A significant portion of the surplus plutonium is in the form of pits, a nuclear weapons component. Pits are composed of plutonium which is sealed in a metallic shell. These pits would need to be safely disassembled and permanently converted to an unclassified form that would be suitable for long-term disposition and international inspection. To determine the feasibility of an integrated pit disassembly and conversion system, a Pit Disassembly and Conversion Demonstration is proposed to take place at the Los Alamos National Laboratory (LANL). This demonstration would be done in existing buildings and facilities, and would involve the disassembly of up to 250 pits and conversion of the recovered plutonium to plutonium metal ingots and plutonium dioxide. This demonstration also includes the conversion of up to 80 kilograms of clean plutonium metal to plutonium dioxide because, as part of the disposition process, some surplus plutonium metal may be converted to plutonium dioxide in the same facility as the surplus pits. The equipment to be used for the proposed demonstration addressed in this EA would use some parts of the Advanced Recovery and Integrated Extraction System (ARIES) capability, other existing equipment/capacities, plus new equipment that was developed at other sites. In addition, small-scale R and D activities are currently underway as part of the overall surplus plutonium disposition program. These R and D activities are related to pit disassembly and conversion, MOX fuel fabrication, and immobilization (in glass and ceramic forms). They are described in Section 7.0. On May 16, 1997, the Office of Fissile Materials Disposition (MD) notified potentially affected states and tribes that this EA would be prepared in accordance with NEPA. This EA has been prepared to provide sufficient information for DOE to determine whether a Finding of No Significant Impact (FONSI) is warranted or whether an EIS must be prepared

  5. Pit disassembly and conversion demonstration environmental assessment and research and development activities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    A significant portion of the surplus plutonium is in the form of pits, a nuclear weapons component. Pits are composed of plutonium which is sealed in a metallic shell. These pits would need to be safely disassembled and permanently converted to an unclassified form that would be suitable for long-term disposition and international inspection. To determine the feasibility of an integrated pit disassembly and conversion system, a Pit Disassembly and Conversion Demonstration is proposed to take place at the Los Alamos National Laboratory (LANL). This demonstration would be done in existing buildings and facilities, and would involve the disassembly of up to 250 pits and conversion of the recovered plutonium to plutonium metal ingots and plutonium dioxide. This demonstration also includes the conversion of up to 80 kilograms of clean plutonium metal to plutonium dioxide because, as part of the disposition process, some surplus plutonium metal may be converted to plutonium dioxide in the same facility as the surplus pits. The equipment to be used for the proposed demonstration addressed in this EA would use some parts of the Advanced Recovery and Integrated Extraction System (ARIES) capability, other existing equipment/capacities, plus new equipment that was developed at other sites. In addition, small-scale R and D activities are currently underway as part of the overall surplus plutonium disposition program. These R and D activities are related to pit disassembly and conversion, MOX fuel fabrication, and immobilization (in glass and ceramic forms). They are described in Section 7.0. On May 16, 1997, the Office of Fissile Materials Disposition (MD) notified potentially affected states and tribes that this EA would be prepared in accordance with NEPA. This EA has been prepared to provide sufficient information for DOE to determine whether a Finding of No Significant Impact (FONSI) is warranted or whether an EIS must be prepared.

  6. Polynomial solution of 2D Kalman-Bucy filtering problem

    NARCIS (Netherlands)

    Sebek, M.

    1992-01-01

    The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2)

  7. Polynomial solution of 2D Kalman-Bucy filtering problem

    OpenAIRE

    Sebek, M.

    1992-01-01

    The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2) as well.

  8. FEM-2D, 2-D MultiGroup Diffusion in X-Y Geometry

    International Nuclear Information System (INIS)

    1 - Nature of physical problem solved: FEM-2D solves the two-dimensional diffusion equation in x-y geometry. This is done by the finite elements method. 2 - Method of solution: FEM-2D uses triangular elements with first and second order Lagrange approximations. The systems equations are formulated in multigroup form and solved by Cholesky procedure which operates only on nonzero elements. Various acceleration techniques are available for the outer iteration. Fluxes along various lines and rates in arbitrary zones may be output. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning. Thus, the problem size is restricted by the largest array which usually is the systems matrix. Fluxes of all groups are kept in memory. This might become another restrictive data set for a large number of groups. The validity of the results is restricted by the approximations used. FEM-2D requires a finite element net which allows the approximation of fluxes by at most parabolas. The node distribution should be more dense in areas of heavy flux changes (near absorbers or the reflector)

  9. 2D-DCT的FPGA实现%Implementation of 2D-DCT using FPGA

    Institute of Scientific and Technical Information of China (English)

    郭前岗; 潘磊; 周西峰

    2012-01-01

    This paper presents an implementation for 2D-DCT using FPGA. It replaces the adders and multipliers with distributed arithmetic which is based on lookup tables, This design reduces resources and improves the operation speed. The simulation results show that the datas transformed by 2D-DCT are consistent with expectations, which is significant for the digital image and video compression.%设计了采用FPGA来实现2D—DCT的方案,对于其中的关键部分——乘加运算,给出了基于查找表的分布式算法。整个设计节省了资源,提高了运算速度。仿真结果表明,经LC-2D-DCT变换后的数据与期望值总体上是一致的,这对于数字图像和视频压缩的研究有一定的意义。

  10. Correlated Electron Phenomena in 2D Materials

    Science.gov (United States)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  11. Stability Test for 2-D Continuous-Discrete Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.

  12. Analysis list: Mef2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mef2d Muscle + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Mef2d.Muscle.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Muscle.gml ...

  13. Maintenance and repair of LMFBR steam generators: specialists` meeting, O-Arai Engineering Center, Japan, 4-8 June 1984. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-07-01

    The Specialists` Meeting on "Maintenance and Repair of LMFBR Steam Generators" was held in Oarai, Japan, from 4-8 June 1984. The meeting was sponsored by the International Atomic Energy Agency on the recommendation of the IAEA International Working Group on Fast Reactors and was hosted by the Power Reactor and Nuclear Fuel Development Corporation of Japan. The purpose of the meeting was to review and discuss the experience accumulated in various countries on the general design philosophy of LMFBR steam generators from the view point of maintenance and repair, in-service inspection of steam generator tube bundles, identification and inspection of failed tubes and the cleaning and repairing of failed steam generators. The following main topical areas were discussed by participants: national review presentations on maintenance and repair of LMFBR steam generators - design philosophy for maintenance and repair; research and development work on maintenance and repair; and experience on steam generator maintenance and repair.

  14. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  15. AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    Energy Technology Data Exchange (ETDEWEB)

    Paul Demkowicz; Lance Cole; Scott Ploger; Philip Winston; Binh Pham; Michael Abbott

    2011-01-01

    The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement system (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components’ properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor

  16. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  17. Underwater Nuclear Fuel Disassembly and Rod Storage Process and Equipment Description. Volume II

    International Nuclear Information System (INIS)

    The process, equipment, and the demonstration of the Underwater Nuclear Fuel Disassembly and Rod Storage System are presented. The process was shown to be a viable means of increasing spent fuel pool storage density by taking apart fuel assemblies and storing the fuel rods in a denser fashion than in the original storage racks. The assembly's nonfuel-bearing waste is compacted and containerized. The report documents design criteria and analysis, fabrication, demonstration program results, and proposed enhancements to the system

  18. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly

    OpenAIRE

    Stewart, Elizabeth J.; Mahesh Ganesan; Younger, John G.; Solomon, Michael J.

    2015-01-01

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) co...

  19. Maximizing entropy of image models for 2-D constrained coding

    OpenAIRE

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino; Zamarin, Marco; Ukhanova, Ann

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square const...

  20. Preventive maintenance modeling for multi-component systems with considering stochastic failures and disassembly sequence

    International Nuclear Information System (INIS)

    The existed PM (preventive maintenance) efforts on multi-component systems usually ignore the PM opportunities at the component failure moments and the structure dependence among the system components. In this paper, a time window based PM model is proposed for multi-component systems with the stochastic failures and the disassembly sequence involved. Whenever one of the system components stochastically fails or reaches its reliability threshold, PM opportunities arise for other system components. A Monte-Carlo based algorithm is built up to simulate the stochastic failures and then to calculate the cumulative maintenance cost of the system. The optimal PM practice is obtained by minimizing the cumulative maintenance cost throughout the given time horizon. Finally, a numerical example is given to illustrate the calculation process and the availability of the proposed PM model. - Highlights: • We propose an opportunistic PM model for multi-component systems. • PM opportunity at stochastic failure moment is considered. • Disassembly sequence among system components is involved. • A Monte Carlo based algorithm is proposed to obtain the optimal PM practice. • More PM opportunity arises with increase of disassembly cost of intermediate nodes

  1. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly.

    Science.gov (United States)

    Stewart, Elizabeth J; Ganesan, Mahesh; Younger, John G; Solomon, Michael J

    2015-08-14

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism.

  2. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  3. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    International Nuclear Information System (INIS)

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation's inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned

  4. Alveolar Type II Cells Escape Stress Failure Caused by Tonic Stretch through Transient Focal Adhesion Disassembly

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Liu, Xiao-Fei Chen, Yan-Hong Ren, Qing-Yuan Zhan, Chen Wang, Chun Yang

    2011-01-01

    Full Text Available Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI treatment. In the present study, primary rat alveolar type II (ATII cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.

  5. The non-catalytic domains of Drosophila katanin regulate its abundance and microtubule-disassembly activity.

    Directory of Open Access Journals (Sweden)

    Kyle D Grode

    Full Text Available Microtubule severing is a biochemical reaction that generates an internal break in a microtubule and regulation of microtubule severing is critical for cellular processes such as ciliogenesis, morphogenesis, and meiosis and mitosis. Katanin is a conserved heterodimeric ATPase that severs and disassembles microtubules, but the molecular determinants for regulation of microtubule severing by katanin remain poorly defined. Here we show that the non-catalytic domains of Drosophila katanin regulate its abundance and activity in living cells. Our data indicate that the microtubule-interacting and trafficking (MIT domain and adjacent linker region of the Drosophila katanin catalytic subunit Kat60 cooperate to regulate microtubule severing in two distinct ways. First, the MIT domain and linker region of Kat60 decrease its abundance by enhancing its proteasome-dependent degradation. The Drosophila katanin regulatory subunit Kat80, which is required to stabilize Kat60 in cells, conversely reduces the proteasome-dependent degradation of Kat60. Second, the MIT domain and linker region of Kat60 augment its microtubule-disassembly activity by enhancing its association with microtubules. On the basis of our data, we propose that the non-catalytic domains of Drosophila katanin serve as the principal sites of integration of regulatory inputs, thereby controlling its ability to sever and disassemble microtubules.

  6. Sparse Non-negative Matrix Factor 2-D Deconvolution

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive...... and prove the convergence of two algorithms for NMF2D based on minimizing the squared error and the Kullback-Leibler divergence respectively. Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives easy interpretable decompositions and devise two algorithms for computing...

  7. Estimation of post-buckling fatigue damage for LMFBR reactor vessel under seismic load

    Energy Technology Data Exchange (ETDEWEB)

    Ogiso, S.; Sasaki, T.; Oooka, Y. [Kawasaki Heavy Industries, Ltd., Tokyo (Japan). Nuclear Systems Div.; Nakamura, H. [Central Research Inst. of Electric Power Industry, Chiba (Japan)

    1995-12-31

    Estimation of fatigue damage caused by buckling deformation is important to evaluate safety margin in a seismic buckling design criterion for LMFBR reactor vessels, in addition to limiting the buckling strength. An advanced buckling design guideline draft including the seismic margin criterion has been proposed under the sponsorship of MITI to date. An ultimate state in this criterion was defined as the condition that the maximum global displacement {delta}{sub max} reaches a critical displacement {delta}{sub u}. The authors have previously proposed an estimation method of the fatigue damage based on the post buckling fatigue tests 304 s.s. cylinders at room temperature. However, adoption of a modified 316 s.s named 316FR s.s is under development as the material of reactor vessel of the updated design of the Demonstration Fast Breeder Reactor. The buckling tests with 316FR s.s cylinders were performed under high temperature to obtain the skeleton curve of the relation between load and displacement. And the buckling behaviors under the cyclic loading were compared with those of 304 s.s. Objectives of the present study are: to apply the proposed estimation method to a reactor vessel made of 316FR s.s., and clarify the correlation between {delta}{sub max} and fatigue failure; to verify structural soundness of the ultimate state derived from the seismic margin criterion against the fatigue failure due to the buckling deformation. (author). 7 refs., 12 figs., 1 tab.

  8. Multiobjective fuel management optimization for self-fuel-providing LMFBR using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, Vladimir G.; Sekimoto, Hiroshi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-Okayama, Meguro-ku, Tokyo (Japan); Toshinsky, Georgy I. [State Scientific Center, Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1999-06-01

    One of the conceptual options under consideration for the future of nuclear power is the long-term development without fuel reprocessing. This concept is based on a reactor that requires no plutonium reprocessing for itself, and provides high efficiency of natural uranium utilization, so called Self-Fuel-Providing LMFBR (SFPR). Several design considerations were previously given to this reactor type which, however, suffer from some problems connected with insufficient power flattening, large reactivity swings during burnup cycles, and peak fuel burnup being significantly higher than recent technology experience, which is about 18% for U-10 wt%Zr metallic fuel to be considered. Yet, the mentioned core parameters demonstrate high sensitivity to the fuel management strategy selected for the reactor. Therefore, the aim of this study is to develop a practical tool for the improvement of the core characteristics by fuel management optimization, which is based on advanced optimization techniques such as Genetic Algorithms (GA). The calculation results obtained by a simplified reactor model can serve as estimates of achievable values for mentioned core parameters, which are necessary to make decisions at the preliminary optimization stage.

  9. Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Shoichi [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab

    2001-04-01

    Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)

  10. Turbulent flow simulation in a wire-wrap rod bundle of an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Thermal Hydraulics Section, Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sundararajan, T. [Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600036 (India); Narasimhan, Arunn, E-mail: arunn@iitm.ac.i [Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600036 (India); Velusamy, K. [Thermal Hydraulics Section, Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2010-05-15

    The pressure drop and heat transfer characteristics of wire-wrapped 19-pin rod bundles in a nuclear reactor subassembly of liquid metal cooled fast breeder reactor (LMFBR) have been investigated through three-dimensional turbulent flow simulations. The predicted results of eddy viscosity based turbulence models (k-epsilon, k-omega) and the Reynolds stress model are compared with those of experimental correlations for friction factor and Nusselt number. The Re is varied between 50,000 and 150,000 and the ratio of helical pitch of wire wrap to the rod diameter is varied from 15 to 45. All the three turbulence models considered yield similar results. The friction factor increases with reduction in the wire-wrap pitch while the heat transfer coefficient remains almost unaltered. However, reduction in the wire-wrap pitch also enhances the transverse flow velocity in the cross-sectional plane as well as the local turbulence intensity, thereby improving the thermal mixing of coolant. Consequently, the presence of wire wrap reduces temperature variation within each section of the subassembly. The associated reduction in differential thermal expansion of rods is expected to improve the structural integrity of the fuel subassembly.

  11. LMFBR Emergency Deployment Assuming 45 year Time-Delay Excess CO{sub 2} Removal

    Energy Technology Data Exchange (ETDEWEB)

    Schenewerk, William Ernest [5060 San Rafael Avenue, Los Angeles, CA, 90042-3239 (United States)

    2008-07-01

    Atmospheric CO{sub 2} is presently increasing 2.25% per year in proportion to 2.25% per year exponential fossil fuel consumption increase. CO{sub 2} removal is modeled as being proportional to 45-year-earlier CO{sub 2} amount above 280 ppmV-C. This is: Exp (-0.0225/year * 45 years) = 0.36 fraction CO{sub 2} removed from anthropological emissions, apparently by seawater. LMFBRs use 15 year doubling time. Deploying 30000 GWe atomic power by year-2080 results in CO{sub 2} doubling year-2065 if World primary energy consumption continues increasing 2.25% per year. CO{sub 2} remains roughly twice pre-industrial until year-2100. Beginning year-2080, CO{sub 2} declines at 2.25% per year. CO{sub 2} will presumably decline back to roughly the year-2000 value by year-2200 if the 45-year-delay sink remains effective. LMFBR and GCFR fleet expands to 30000 GWe by 2080. 1000 GWe LWR fleet consumes 5 Mt HM (Heavy Metal). Breeder first cores require 1 Mt HM. (author)

  12. Dynamic simulation of accidental closure of intermediate heat exchanger isolation valve in a pool type LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K., E-mail: natesan@igcar.gov.in [Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Kasinathan, N.; Velusamy, K.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C. [Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2011-04-15

    Research highlights: > Thermal hydraulic analysis closure of sleeve valve in the primary circuit of FBR is discussed. > Numerical modeling of hydraulics in the primary and secondary sodium circuits is presented. > Aspects related to event management are discussed. - Abstract: In a pool type liquid metal cooled fast breeder reactor (LMFBR), core and other internals such as pumps, heat exchangers are immersed in a pool of sodium. Heat exchange from primary sodium circuit (pool) to secondary sodium circuit (loop) is through four intermediate heat exchangers (IHX) immersed in primary sodium pool. Each IHX is provided with a sleeve valve at its primary sodium inlet window for the purpose of isolating the shell side of IHX from the sodium pool. With such a provision, an inadvertent partial or complete closure of a sleeve valve of one of the IHX during normal operation of the reactor has been considered as a design basis event for the reactor. One dimensional transient thermal hydraulic models of the primary and secondary sodium circuits have been developed to study the thermal hydraulic consequences of such an event. The main areas of concern in the plant and the availability of safety parameters for the detection of the event have been evaluated.

  13. Development of the thermal behavior analysis code DIRAD and the fuel design procedure for LMFBR

    Science.gov (United States)

    Nakae, N.; Tanaka, K.; Nakajima, H.; Matsumoto, M.

    1992-06-01

    It is very important to increase the fuel linear heat rating for improvement of economy in LMFBR without any degradation in safety. A reduction of the design margin is helpful to achieve the high power operation. The development of a fuel design code and a design procedure is effective on the reduction of the design margin. The thermal behavior analysis code DIRAD has been developed with respect to fuel restructuring and gap conductance models. These models have been calibrated and revised using irradiation data of fresh fuel. It is, therefore, found that the code is applicable for the thermal analysis with fresh fuel. The uncertainties in fuel irradiation condition and fuel fabrication tolerance together with the uncertainty of the code prediction have major contributions to the design margin. In the current fuel design the first two uncertainties independently contribute to temperature increment. Another method which can rationally explain the effect of the uncertainties on the temperature increment is adopted here. Then, the design margin may be rationally reduced.

  14. Calculation of Doses Due to Accidentally Released Plutonium From An LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Fish, B.R.

    2001-08-07

    Experimental data and analytical models that should be considered in assessing the transport properties of plutonium aerosols following a hypothetical reactor accident have been examined. Behaviors of released airborne materials within the reactor containment systems, as well as in the atmosphere near the reactor site boundaries, have been semiquantitatively predicted from experimental data and analytical models. The fundamental chemistry of plutonium as it may be applied in biological systems has been used to prepare models related to the intake and metabolism of plutonium dioxide, the fuel material of interest. Attempts have been made to calculate the possible doses from plutonium aerosols for a typical analyzed release in order to evaluate the magnitude of the internal exposure hazards that might exist in the vicinity of the reactor after a hypothetical LMFBR (Liquid-Metal Fast Breeder Reactor) accident. Intake of plutonium (using data for {sup 239}Pu as an example) and its distribution in the body were treated parametrically without regard to the details of transport pathways in the environment. To the extent possible, dose-response data and models have been reviewed, and an assessment of their adequacy has been made so that recommended or preferred practices could be developed.

  15. Evaluation of the structural integrity of LMFBR equipment cell liners: results of preliminary investigations

    International Nuclear Information System (INIS)

    The behavior of a plane wall segment of a prototype liquid-metal-cooled fast breeder reactor (LMFBR) cell under conditions of a postulated massive sodium spill was studied. Sodium-concrete reaction calculations were performed assuming an initial flaw existed in the liner such that high-temperature sodium could penetrate to the concrete underneath. Based on existing sodium-concrete reaction rate data, bounding values were established for the maximum energy release per unit volume of concrete. The potential effect of this energy release on the deformation of the liner material was determined. The temperature buildup in the liner and the pressure differential across the flaw in the liner were also studied. The transient thermal and structural responses of the steel liner and backup concrete were analyzed in detail using the inelastic computer code ANSYS. The literature on the mechanical, physical, and general behavior properties of concrete at high temperature was reviewed. This review emphasized the structural behavior of concrete and did not cover the sodium-concrete reaction

  16. An experimental study of the heterogeneous LMFBR core using FCA assemblies with axial internal blanket

    International Nuclear Information System (INIS)

    To investigate physics properties of the heterogeneous LMFBR core and to examine the reliability of the current data and method for heterogeneous core configuration, an experimental study has been made on FCA VII-3 assemblies which have an internal blanket (IB) at midplane of the cylindrical core. Systematic experiments were carried out on the heterogeneous cores whose IBs were different in composition and thickness. A homogeneous core was also built to compare the results with those obtained on the heterogeneous cores. The sodium-void worth is not sensitive to the composition of IB. The positive void worth in the core of the 40 cm IB is lowered by about 40% compared with that in the homogeneous core. The analysis was made using the JAERI-Fast Set Version II and the diffusion code CITATION. Directional diffusion coefficients were used to take account of the axial streaming. To evaluate transport effects, the S4 calculation was made. Comparison between the calculated and experimental results reveals the following: ksub(eff) and Pu worth in the core are not well predicted for the heterogeneous core, although they are represented satisfactorily for the homogeneous core. Reaction rates sensitive to the low-energy neutron are underestimated in the IB when they are normalized in the core. Sodium-void worths are fairly well predicted. However, the positive void worth in the heterogeneous core is underestimated, while that in the homogeneous core is overestimated. (author)

  17. Mechanical behavior of the LMFBR core structure under transient pressure due to local failure

    International Nuclear Information System (INIS)

    A satisfactory fast reactor safety analysis requires a comprehensive experimental and theoretical research program. The structural integrity of the reactor core in case of any local failure has to be demonstrated. Such local events may be due to random pin failure which is very likely. As a consequence contact between molten fuel and coolant may occur. The existing uncertainties in the understanding of the physical mechanisms observed during this molten fuel-coolant-interaction (MFCI) emphasize the importance of the comprehensiveness of this research program. This paper describes the effort done at GfK Karlsruhe in cooperation with UKAEA and EURATOM to predict the core deformations caused by local failure within an LMFBR core. These activities try to cover all important questions currently discussed in the analysis of possible core damage. It may be concluded that the reactor can be scrammed in time under pessimistic-realistic pressure transients and that the deformations do not exceed tolerable limits. The computer methods are general enough as to allow for different core designs with varying geometries, material properties, etc. (Auth.)

  18. An appreciation of the events, models and data used for LMFBR radiological source term estimations

    International Nuclear Information System (INIS)

    In this report, the events, models and data currently available for analysis of accident source terms in liquid metal cooled fast neutron reactors are reviewed. The types of hypothetical accidents considered are the low probability, more extreme types of severe accident, involving significant degradation of the core and which may lead to the release of radionuclides. The base case reactor design considered is a commercial scale sodium pool reactor of the CDFR type. The feasibility of an integrated calculational approach to radionuclide transport and speciation (such as is used for LWR accident analysis) is explored. It is concluded that there is no fundamental obstacle, in terms of scientific data or understanding of the phenomena involved, to such an approach. However this must be regarded as a long-term goal because of the large amount of effort still required to advance development to a stage comparable with LWR studies. Particular aspects of LMFBR severe accident phenomenology which require attention are the behaviour of radionuclides during core disruptive accident bubble formation and evolution, and during the less rapid sequences of core melt under sodium. The basic requirement for improved thermal hydraulic modelling of core, coolant and structural materials, in these and other scenarios, is highlighted as fundamental to the accuracy and realism of source term estimations. The coupling of such modelling to that of radionuclide behaviour is seen as the key to future development in this area

  19. Boreside rotating ultrasonic tester for wastage determination of LMFBR-type steam generator tubes

    International Nuclear Information System (INIS)

    Large sodium-water reaction (SWR) leak tests are being run in near-prototypic steam generators at prototypic plant conditions of the Liquid Metal Fast Breeder Reactor (LMFBR). These tests simulate various types of steam tube failure at predetermined locations. A SWR results in a highly energetic-exothermic-caustic reaction which erodes neighboring tubes. A boreside-rotating ultrasonic inspection device was developed to measure wall thickness and inside diameter of the 2/one quarter/Cr-1 Mo, 10.1 mm I.D. steam tubes. Rotation of the UT beam yields a complimentary scan of the full tube in a single pass. The UT system was designed with a 15 MHz transducer in pulse-echo compression-wave mode at a pulse rate of 10,000/second. The UT beam is rotated at 20 r/s on a 1.27 mm pitch. System outputs are diameter, wall thickness, attitude, and axial position. Measurements are processed, then fed to a CRT and computer for later retrieval and plotting

  20. Development of computer code models for analysis of subassembly voiding in the LMFBR

    International Nuclear Information System (INIS)

    The research program discussed in this report was started in FY1979 under the combined sponsorship of the US Department of Energy (DOE), General Electric (GE) and Hanford Engineering Development Laboratory (HEDL). The objective of the program is to develop multi-dimensional computer codes which can be used for the analysis of subassembly voiding incoherence under postulated accident conditions in the LMFBR. Two codes are being developed in parallel. The first will use a two fluid (6 equation) model which is more difficult to develop but has the potential for providing a code with the utmost in flexibility and physical consistency for use in the long term. The other will use a mixture (< 6 equation) model which is less general but may be more amenable to interpretation and use of experimental data and therefore, easier to develop for use in the near term. To assure that the models developed are not design dependent, geometries and transient conditions typical of both foreign and US designs are being considered

  1. Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung

    Science.gov (United States)

    Bergmeir, Christoph; Subramanian, Navneeth

    Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.

  2. 2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure

    Directory of Open Access Journals (Sweden)

    Sezen S

    2006-01-01

    Full Text Available A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.

  3. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2; Experiments of FCA assembly XVI-1 and their analyses

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, Susumu; Oigawa, Hiroyuki; Ohno, Akio; Sakurai, Takeshi; Nemoto, Tatsuo; Osugi, Toshitaka; Satoh, Kunio; Hayasaka, Katsuhisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Bando, Masaru

    1993-10-01

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author).

  4. Measurement and analysis of flow wall shear stress in an interior subchannel of triangular array rods. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Fakori-Monazah, M.R.; Todreas, N.E.

    1977-08-01

    A simulated model of triangular array rods with pitch to diameter ratio of 1.10 (as a test section) and air as the fluid flow was used to study the LMFBR hydraulic parameters. The wall shear stress distribution around the rod periphery, friction factors, static pressure distributions and turbulence intensity corresponding to various Reynolds numbers ranging from 4140 to 36170 in the central subchannel were measured. Various approaches for measurement of wall shear stress were compared. The measurement was performed using the Preston tube technique with the probe outside diameter equal to 0.014 in.

  5. Optimization of radially heterogeneous 1000-MW(e) LMFBR core configurations. Appendixes D and E. Research project 620-25

    Energy Technology Data Exchange (ETDEWEB)

    Barthold, W.P.; Orechwa, Y.; Su, S.F.; Hutter, E.; Batch, R.V.; Beitel, J.C.; Turski, R.B.; Lam, P.S.K.

    1979-11-01

    A parameter study was conducted to determine the interrelated effects of: loosely or tightly coupled fuel regions separated by internal blanket assemblies, number of fuel regions, core height, number and arrangement of internal blanket subassemblies, number and size of fuel pins in a subassembly, etc. the effects of these parameters on sodium void reactivity, Doppler, incoherence, breeding gain, and thermohydraulics were of prime interest. Trends were established and ground work laid for optimization of a large, radially-heterogeneous, LMFBR core that will have low energetics in an HCDA and will have good thermal and breeding performance.

  6. Theory and use of GIRAFFE for analysis of decay characteristics of delayed-neutron precursors in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Gross, K. C.

    1980-07-01

    The application of the computer code GIRAFFE (General Isotope Release Analysis For Failed Elements) written in FORTRAN IV is described. GIRAFFE was designed to provide parameter estimates of the nonlinear discrete-measurement models that govern the transport and decay of delayed-neutron precursors in a liquid-metal fast breeder reactor (LMFBR). The code has been organized into a set of small, relatively independent and well-defined modules to facilitate modification and maintenance. The program logic, the numerical techniques, and the methods of solution used by the code are presented, and the functions of the MAIN program and of each subroutine are discussed.

  7. Theory and use of GIRAFFE for analysis of decay characteristics of delayed-neutron precursors in an LMFBR

    International Nuclear Information System (INIS)

    The application of the computer code GIRAFFE (General Isotope Release Analysis For Failed Elements) written in FORTRAN IV is described. GIRAFFE was designed to provide parameter estimates of the nonlinear discrete-measurement models that govern the transport and decay of delayed-neutron precursors in a liquid-metal fast breeder reactor (LMFBR). The code has been organized into a set of small, relatively independent and well-defined modules to facilitate modification and maintenance. The program logic, the numerical techniques, and the methods of solution used by the code are presented, and the functions of the MAIN program and of each subroutine are discussed

  8. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials

    International Nuclear Information System (INIS)

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor

  9. AGR-2 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    Energy Technology Data Exchange (ETDEWEB)

    Ploger, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Demkowciz, Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The AGR 2 irradiation experiment began in June 2010 and was completed in October 2013. The test train was shipped to the Materials and Fuels Complex in July 2014 for post-irradiation examination (PIE). The first PIE activities included nondestructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and their graphite fuel holders. Dimensional metrology was then performed on the compacts, graphite holders, and steel capsule shells. AGR 2 disassembly and metrology were performed with the same equipment used successfully on AGR 1 test train components. Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Disassembly of the AGR 2 test train and its capsules was conducted rapidly and efficiently by employing techniques refined during the AGR 1 disassembly campaign. Only one major difficulty was encountered while separating the test train into capsules when thermocouples (of larger diameter than used in AGR 1) and gas lines jammed inside the through tubes of the upper capsules, which required new tooling for extraction. Disassembly of individual capsules was straightforward with only a few minor complications. On the whole, AGR 2 capsule structural components appeared less embrittled than their AGR 1 counterparts. Compacts from AGR 2 Capsules 2, 3, 5, and 6 were in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated radial shrinkage between 0.8 to 1.7%, with the greatest shrinkage observed on Capsule 2 compacts that were irradiated at higher temperature. Length shrinkage ranged from 0.1 to 0.9%, with by far the lowest axial shrinkage on Capsule 3 compacts

  10. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  11. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    Science.gov (United States)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  12. Proceedings of the ANS/ASME/NRC international topical meeting on nuclear reactor thermal-hydraulics: LMFBR and HTGR advanced reactor concepts and analysis methods

    International Nuclear Information System (INIS)

    Separate abstracts are included for each of the papers presented concerning the thermal-hydraulics of LMFBR type reactors; mathematical methods in nuclear reactor thermal-hydraulics; heat transfer in gas-cooled reactors; and thermal-hydraulics of pebble-bed reactors. Two papers have been previously abstracted and input to the data base

  13. Symmetries and solvable models for evaporating 2D black holes

    OpenAIRE

    Cruz Muñoz, José Luis; Navarro-Salas, José; Navarro Navarro, Miguel; Talavera, C. F.

    1997-01-01

    We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is suddenly switched off. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model. © Elsevier Science B.V

  14. New Type of 2-D Laser Doppler Vibrometer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamentals and method of 2-D laser Doppler vibrometer are introduced.The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means,the measuring results are accurate.

  15. Statische verweking talud: Handleiding Windows versie SLIQ2D

    NARCIS (Netherlands)

    Van den Ham, G.

    2009-01-01

    SLIQ2D is een quasi-2D computerprogramma waarmee het optreden voorspeld kan worden van een verwekingsvloeiing ofwel een instabiliteit van een onderwatertalud ten gevolge van verweking, gegeven de taludhelling, relatieve dichtheid en materiaaleigenschappen van het zand. Dit programma is in 1994 door

  16. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  17. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the perfo

  18. The relation between Euclidean and Lorentzian 2D quantum gravity

    NARCIS (Netherlands)

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    2006-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (gen

  19. Van der Waals stacked 2D layered materials for optoelectronics

    Science.gov (United States)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  20. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    Science.gov (United States)

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  1. Tensile properties of 11Cr-0.5Mo-2W, V, Nb stainless steel in LMFBR environment

    Energy Technology Data Exchange (ETDEWEB)

    Uehira, Akihiro; Ukai, Shigeharu; Mizuno, Tomoyasu; Asaga, Takeo; Yoshida, Eiichi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-09-01

    The tensile strength of ferritic-martensitic 11Cr-0.5Mo-2W, Nb, V stainless steel (PNC-FMS), which had been developed for core component applications in LMFBR by Japan Nuclear Cycle Development Institute, was evaluated for the effects of thermal aging, sodium exposure, and neutron irradiation. The tensile strength of thermal aged specimens ({approx}1,023 K, {approx}12,000 h) decreased at aging conditions above the initial tempering parameter, and the aging effect was considerably enhanced for the wrapper tubes tempered at lower temperatures. The tensile strength of sodium exposed specimens ({approx}973 K, {approx}10,000 h) decreased more than aged specimens due to decarburization, and the effect of decarburization was greater in thin wall cladding tubes. Evaluation of the contribution of both thermal aging and decarburization effects on the tensile strength of cladding tubes irradiated in JOYO ({approx}1,013 K, {approx}6,030 h, {approx}29 dpa) suggested that the radiation showed smaller effect on tensile properties than thermal aging and decarburization. By using the derived correlations for thermal aging and decarburization effects, the tensile strength decrease for PNC-FMS after long period (30,000 h) in LMFBR environment was quantitatively calculated. (author)

  2. Economic analysis of the transport of radioactive materials in LWR and LMFBR fuel cycles in the United States

    International Nuclear Information System (INIS)

    The costs associated with the transportation of heavy-metals in two LWR fuel cycles and one LMFBR fuel cycle have been estimated, both for existing levels of technology and for advanced shipping technology. The costs of transporting low-level wastes in the two LWR fuel cycles have also been estimated. The cost assessment included not only the package capital costs and the operating transportation costs (tariffs), but also included such items as technology development, fleet servicing and maintenance costs, and package decommissioning costs. Areas in which transportation costs can be reduced through the use of advanced packaging designs have been identified, and the amount of such cost reduction has been estimated. Savings in transportation costs of 20% for the LWR once-through fuel cycle, 13% for the LWR recycle fuel cycle, and 29% for the LMFBR recycle fuel cycle can result from the use of advanced shipping systems instead of the use of current package designs or current technology. Identification of those transportation segments in a given nuclear fuel cycle which offer the possibility of significant cost reduction should permit orderly progress toward a more efficient nuclear transportation industry. 1 figure, 6 tables

  3. CASSANDRE, 2-D Reactor Dynamic FEM Program with Thermohydraulic Feedback

    International Nuclear Information System (INIS)

    1 - Description of program or function: CASSANDRE is a two-dimensional (x-y or r-z) finite-elements neutronics code with thermohydraulic feedback for reactor dynamics prior to the disassembly phase. The code was conceived in order to be coupled with any thermohydraulics module, although thermohydraulics feedback is only considered in r-z geometry. In the steady state, criticality search is possible either by control-rod insertion or by homogeneous poisoning of the coolant. 2 - Method of solution: The program uses multigroup diffusion theory. Its main characteristics are the use of a generalized quasi-static model, the use of a flexible multigroup point-kinetics algorithm allowing for spectral matching, and the use of a finite elements description. 3 - Restrictions on the complexity of the problem: The user must prepare a cross section library

  4. Study of thermal influence on tubes due to sodium-water reactions in LMFBR steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, H.; Kurihara, A.; Nishimura, M. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2004-07-01

    A study of thermal influence on heat-transfer tubes in sodium-water reactions is carried out to evaluate the tube rupture due to overheating in the water leak accident of an LMFBR steam generator (SG). By assuming the sodium-water reaction jet to be a two-phase flow that consists of sodium and hydrogen, the heat-transfer characteristics are examined and a simple model of effective heat-transfer coefficient (HTC) is proposed for the safety evaluation of the SG. Comparison of the model with experimental data leads to the following conclusions: An upper limit exists in the HTC between reaction jet and tube wall, and it is equivalent in approximation to the HTC of single-phase sodium flow. The HTC can be written in simple form as functions of the HTC of single-phase sodium flow, void fraction and temperatures of sodium, hydrogen and tube wall. Hydrogen provides negligible heating effect, so that the apparent HTC would decrease with increase of the hydrogen temperature that can readily surpass that of sodium. The outer-surface temperature of tube wall would not rise so high beyond the temperature of sodium that is excellent in heat-transfer characteristics, even if tube wall is exposed to the high-temperature hydrogen. The transient heat conduction analysis with the mean value of the data can appropriately evaluate the outer-surface temperature of tube wall by the metallographic observation, while the analysis with the maximum value can conservatively evaluate the tube wall temperature. (authors)

  5. Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uebeyli, Mustafa E-mail: mubeyli@gazi.edu.tr

    2004-12-01

    Significant amounts of nuclear wastes consisting of plutonium, minor actinides and long lived fission products are produced during the operation of commercial nuclear power plants. Therefore, the destruction of these wastes is very important with respect to public health, environment and also the future of nuclear energy. In this study, transmutation of minor actinides (MAs) discharged from LMFBR spent fuel in a high power density fusion reactor has been investigated under a neutron wall load of 10 MW/m{sup 2} for an operation period of 10 years. Also, the effect of MA percentage on the transmutation has been examined. The fuel zone, containing MAs as spheres cladded with W-5Re, has been located behind the first wall to utilize the high neutron flux for transmutation effectively. Helium at 40 atm has been used as an energy carrier. At the end of the operation period, the total burning and transmutation are greater than the total buildups in all investigated cases, and very high burnups (420-470 GWd/tHM) are reached, depending on the MA content. The total transmutation rate values are 906 and 979 kg/GW{sub th} year at startup and decrease to 140 and 178 kg/GW{sub th} year at the end of the operation for fuel with 10% and 20% MA, respectively. Over an operation period of 10 years, the effective half lives decrease from 2.38, 2.21 and 3.08 years to 1.95, 1.80 and 2.59 years for {sup 237}Np, {sup 241}Am and {sup 243}Am, respectively. Total atomic densities decrease exponentially during the operation period. The reductions in the total atomic densities with respect to the initial ones are 79%, 81%, 82%, 83%, 85% and 86% for 10%, 12%, 14%, 16%, 18% and 20% MAs, respectively.

  6. Development of a tritium transport analysis code for the LMFBR system

    Energy Technology Data Exchange (ETDEWEB)

    Iizawa, Katsuyuki; Torii, Tatsuo [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, Tsuruga, Fukui (Japan)

    2001-03-01

    A tritium transport analysis code for the LMFBR system, TTT code, has been developed and validated using data from a power rising test conducted at Monju in 1995. The behavior of tritium during future long-term full power operation of Monju has been estimated. The TTT code was created from the tritium and hydrogen transport model devised by R. Kumar and ANL. Actual data from some plants has been used to improve the code. In this study, we used data from Monju to increase the accuracy of the calculated to measured ratio, the C/E ratio. As a result of the study, we were able to: 1. show that the calculated tritium concentration distribution and the change in the primary and secondary sodium, steam and water correlated sufficiently closely with the measured, C/E ratio of 1.1; 2. propose a transport model between sodium and the cover gas system taking into account the mechanisms affecting the partial pressure difference and the isotopic exchange of H and H3; 3. examine the considerable effect of the hydrogen source within the sodium cooling system of Monju on tritium behavior and clarify the characteristics at the initial stage of plant; 4. estimate the tritium transport and distribution for the long-term full power operation of Monju. The tritium release from the core will be 7,400 TBq during 30 years of operation. The primary and secondary cold trap will capture 99% of this and 1% or less will be released to the environment as gaseous radioactive waste from stack and its drainage water from SG; and 5. compare the best fitted tritium source rates from cores in Phenix and Monju and estimate the major release from Monju's helium bond closed type control rods. (author)

  7. Studies on scaled models for gas entrainment in the surge tank of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Ramdasu, D.; Shivakumar, N.S.; Padmakumar, G.; Anand Babu, C.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Rammohan, S.; Sreekala, S.K.; Manikandan, S.; Saseendran, S. [Fluid Control Research Institute, Palghat (India)

    2007-07-01

    This paper presents the studies carried out in the different scale models of Surge tank used in the secondary circuit of Liquid metal fast breeder reactor (LMFBR). Surge tank acquires importance because of its ability to take care of pressure surges in case of a sodium water reaction in Steam Generators (SG). The blanket of argon cover gas above the sodium free surface in the surge tank acts as a cushion for the surges. At the same time, argon gas is a source of entrainment into the sodium which is undesirable from the consideration of effective heat transfer in Inter mediate Heat Exchanger and SG, cavitation in pumps and operational problems of continuous feed and bleed of cover gas, thus leading to unfavourable reactor operating conditions. To investigate the phenomenon of gas entrainment in surge tank, hydraulic experiments were conducted in water using 1/38, 1/32, 1/22 and 1/12 scale models with Froude similarity. The minimum height of liquid column required to avoid gas entrainment was determined using different types of internal devices. Experiments were carried out in the 5/8 scale model to confirm the results of the smaller scale models. It was found that free surface height to avoid gas entrainment varies for different scale models. The combination of Pepper pot with ring plate was found to be the most effective in avoiding gas entrainment at H/D equals 1.28 where H is the height of liquid column in the tank from tank bottom and D is the inner diameter of surge tank.

  8. Development of a tritium transport analysis code for the LMFBR system

    International Nuclear Information System (INIS)

    A tritium transport analysis code for the LMFBR system, TTT code, has been developed and validated using data from a power rising test conducted at Monju in 1995. The behavior of tritium during future long-term full power operation of Monju has been estimated. The TTT code was created from the tritium and hydrogen transport model devised by R. Kumar and ANL. Actual data from some plants has been used to improve the code. In this study, we used data from Monju to increase the accuracy of the calculated to measured ratio, the C/E ratio. As a result of the study, we were able to: 1. show that the calculated tritium concentration distribution and the change in the primary and secondary sodium, steam and water correlated sufficiently closely with the measured, C/E ratio of 1.1; 2. propose a transport model between sodium and the cover gas system taking into account the mechanisms affecting the partial pressure difference and the isotopic exchange of H and H3; 3. examine the considerable effect of the hydrogen source within the sodium cooling system of Monju on tritium behavior and clarify the characteristics at the initial stage of plant; 4. estimate the tritium transport and distribution for the long-term full power operation of Monju. The tritium release from the core will be 7,400 TBq during 30 years of operation. The primary and secondary cold trap will capture 99% of this and 1% or less will be released to the environment as gaseous radioactive waste from stack and its drainage water from SG; and 5. compare the best fitted tritium source rates from cores in Phenix and Monju and estimate the major release from Monju's helium bond closed type control rods. (author)

  9. Safety issues for LMFBR: important features drawn from the assessments of Superphenix

    International Nuclear Information System (INIS)

    Superphenix, which is built on the site of Creys-Malville, is still the biggest LMFBR plant that has been in operation. It is a pool type reactor, as Phenix and the RNR 1 500 and EFR projects. After the analysis of the preliminary safety (1974-1975), the construction was authorised by decree of the Prime Minister in 1977, the authorization for fuel loading and star-up to 3% was given by the minister of industry in July 1985 and full power was achieved in December 1986. The plant was operated until the end of December 1996, producing the equivalent of 320 EFPD, corresponding to half of the maximum barn-up of the first core. The plant was definitively stopped on the 20. of April 1998 by a decision of the French government. During this period of 25 years of licensing, construction and operation of Superphenix, others discussions and preliminary licensing procedures were started for new projects, mainly the RNR 1500 French project and the EFR European project. The operation of Superphenix was also marked by several incidents, which led to additional licensing procedures and important modifications. This period was also marked by an important work of research and development in the safety field, mostly related to the issues concerning hypothetical core disruptive accidents (HCDA) and sodium fires; further, this period was marked by the Three Mile Island accident in 1979 and the Chernobyl accident in 1986. The purpose of this paper is to present some items which were discussed during this period of 25 years and which should be of interest for future LMFBRs. In this presentation, we shall discuss the key issues concerning the safety criteria and options taken with respect to severe accidents, i.e. core melt accidents, giving details on some specific which are less known since they were assessed only lately for Superphenix, sometimes in connection with the on-going safety researches. (author)

  10. Transient deformation of LMFBR cores due to local failure: experimental and theoretical investigation

    International Nuclear Information System (INIS)

    This paper describes an effort to predict the mechanical core deformation caused by local failure within an LMFBR core. These activities are intended to cover all the potential core damage possibilities currently under discussion and analysis. In particular it is shown that the reactor can be scrammed in time under pessimistic-realistic pressure transients and that the damage does not exceed tolerable limits. A special gas generator technique to simulate a fuel coolant explosion has been developed at AWRE Foulness. This has been used to perform the explosion tests needed to demonstrate the safety of the SNR 300 core. A molten fuel-coolant interaction (MFCI) experimental facility, and a drop tower to carry out sub-assembly crushing tests are described. Theoretical studies are presented which use mass-spring-dashpot, lumped parameter-hinge or micro-rigid-lumped-mass models. They simulate the crushing and bending of a single sub-assembly interacting with the coolant as well as the behaviour of a multirow 'spoke' model. For the core analysis only preliminary computational results are presently available which can be compared with the full scale tests in which the fluid pressure did not exceed a 'threshold' of about 100 bar. Parameter studies show the influence of pulse shape, material properties as well as the time integrator. Some of the unanswered questions concern the hydrodynamic feedback of the deformations on the pressure distribution in space and time. Also the behaviour of the highly irradiation-embrittled cores is poorly understood today. Finally, an enhanced energy release package to describe the MFCI must still be added to the reactivity calculation module of a future fast reactor dynamics code. (Auth.)

  11. Introduction to game physics with Box2D

    CERN Document Server

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  12. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino;

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  13. The NH$_2$D hyperfine structure revealed by astrophysical observations

    OpenAIRE

    Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) n...

  14. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  15. Optimization and practical implementation of ultrafast 2D NMR experiments

    Directory of Open Access Journals (Sweden)

    Luiz H. K. Queiroz Júnior

    2013-01-01

    Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.

  16. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    Science.gov (United States)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  17. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  18. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  19. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  20. Orbifold Reduction and 2d (0,2) Gauge Theories

    CERN Document Server

    Franco, Sebastian; Seong, Rak-Kyeong

    2016-01-01

    We introduce Orbifold Reduction, a new method for generating $2d$ $(0,2)$ gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from $4d$ $\\mathcal{N}=1$ gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating $2d$ $(0,2)$ theories with a brane realization. We present three practical applications of the new algorithm: the connection between $4d$ Seiberg duality and $2d$ triality, a combinatorial method for generating theories related by triality and a $2d$ $(0,2)$ generalization of the Klebanov-Witten mass deformation.

  1. Emerging and potential opportunities for 2D flexible nanoelectronics

    Science.gov (United States)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  2. Double resonance rotational spectroscopy of CH2D+

    Science.gov (United States)

    Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar

    2016-09-01

    Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.

  3. 2D gels still have a niche in proteomics

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Le Bihan, Marie-Catherine; Thaysen-Andersen, Morten;

    2013-01-01

    With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim...... of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2......) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show...

  4. Technical Review of the UNET2D Hydraulic Model

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  5. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    Directory of Open Access Journals (Sweden)

    Jian-Hua Li

    2013-04-01

    Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.

  6. Recent developments in 2D layered inorganic nanomaterials for sensing

    Science.gov (United States)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  7. Observables, Disassembled

    CERN Document Server

    Roberts, Bryan W

    2016-01-01

    This paper argues that non-self-adjoint operators can be observables. There are only four ways for this to occur: non-self-adjoint observables can either be normal operators, or be symmetric, or have a real spectrum, or have none of these three properties. I explore each of these four classes of observables, arguing that the class of normal operators provides an equivalent formulation of quantum theory, whereas the other classes considerably extend it.

  8. 2d quantum gravity and black hole formation

    International Nuclear Information System (INIS)

    The quantum integral of generic 2d quantum gravity can be performed exactly. The equivalence of dilaton theories to 2d theories with torsion and the use of a light cone gauge are crucial. Scalar matter can be treated perturbatively. A generalization of the Polyakov action emerges. For scattering of scalars in a flat background already in the tree approximation for the first time the intermediate formation of a black hole is observed in an ab initio quantum gravity computation

  9. Excitation of 2D plasmons in Cs/W(110)

    CERN Document Server

    Benemanskaya, G V; Frank-Kamenetskaya, G E

    2001-01-01

    One studied the evolution of surface photoemission spectra for Cs/W(110) system at metastable Cs coatings exceeding monolayer. One showed possibility to observe 2D plasmons by means of threshold photoemission spectroscopy. One detected three photoemission peaks characterized by complicated behavior depending on Cd adsorption dose. The nature of peaks may be related to plasmon photoinduced excitation in quasi-2D Cs clusters, surface Cs plasmon and interface Cs-W plasmon

  10. The Branching of Graphs in 2-d Quantum Gravity

    OpenAIRE

    Harris, M. G.

    1996-01-01

    The branching ratio is calculated for three different models of 2d gravity, using dynamical planar phi-cubed graphs. These models are pure gravity, the D=-2 Gaussian model coupled to gravity and the single spin Ising model coupled to gravity. The ratio gives a measure of how branched the graphs dominating the partition function are. Hence it can be used to estimate the location of the branched polymer phase for the multiple Ising model coupled to 2d gravity.

  11. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    OpenAIRE

    Jian-Hua Li; Yi-Wen Wang; Yi Chen; Meng Zhang

    2013-01-01

    Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations) are employed to original images using big scale multiple SEs (structuring elements). Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcode...

  12. Collins Model and Phase Diagram of 2D Ternary System

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; CHEN Li-Rong

    2004-01-01

    The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.

  13. Technique of Embedding Depth Maps into 2D Images

    Institute of Scientific and Technical Information of China (English)

    Kazutake Uehira; Hiroshi Unno; Youichi Takashima

    2014-01-01

    This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.

  14. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System

    International Nuclear Information System (INIS)

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables

  15. Quantifying cadherin mechanotransduction machinery assembly/disassembly dynamics using fluorescence covariance analysis

    Science.gov (United States)

    Vedula, Pavan; Cruz, Lissette A.; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J.

    2016-01-01

    Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation. PMID:27357130

  16. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    Science.gov (United States)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  17. eIF5A promotes translation elongation, polysome disassembly and stress granule assembly.

    Directory of Open Access Journals (Sweden)

    Chi Ho Li

    Full Text Available Stress granules (SGs are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC, an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS or treatment with a deoxyhypusine synthase inhibitor (GC7 prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions.

  18. Probing the disassembly of ultrafast laser heated gold using frequency domain interferometry.

    Science.gov (United States)

    Ao, Tommy; Ping, Yuan; Lee, Edward

    2005-10-01

    Ultrafast laser heating of a solid offers a unique approach to examine the behavior of non-equilibrium high energy density states. Initially, the electrons are optically excited while the ions in the lattice remain cold. This is followed by electron-electron and electron-phonon relaxation. Recently, experiments were performed in which ultrathin freestanding, gold foils were heated by a femtosecond pump laser to a strongly overdriven regime with energy densities reaching 20 MJ/kg. Interestingly, femtosecond laser reflectivity and transmission measurements on the heated sample revealed a quasi-steady-state behavior before the onset of hydrodynamic expansion. This led to the conjecture of the existence of a metastable, disordered state prior to the disassembly of the solid. To further examine the dynamics of ultrafast laser heated solids, frequency domain interferometry (FDI) was used to provide an independent observation. The highly sensitive change in the phase shift of the FDI probe clearly showed evidence of the quasi-steady-state behavior. The new experiment also yielded a detailed measurement of the time scale of such a quasi-steady-state phase that may help elucidate the process of electron-phonon coupling and disassembly in a strongly overdriven regime.

  19. Quantifying cadherin mechanotransduction machinery assembly/disassembly dynamics using fluorescence covariance analysis.

    Science.gov (United States)

    Vedula, Pavan; Cruz, Lissette A; Gutierrez, Natasha; Davis, Justin; Ayee, Brian; Abramczyk, Rachel; Rodriguez, Alexis J

    2016-01-01

    Quantifying multi-molecular complex assembly in specific cytoplasmic compartments is crucial to understand how cells use assembly/disassembly of these complexes to control function. Currently, biophysical methods like Fluorescence Resonance Energy Transfer and Fluorescence Correlation Spectroscopy provide quantitative measurements of direct protein-protein interactions, while traditional biochemical approaches such as sub-cellular fractionation and immunoprecipitation remain the main approaches used to study multi-protein complex assembly/disassembly dynamics. In this article, we validate and quantify multi-protein adherens junction complex assembly in situ using light microscopy and Fluorescence Covariance Analysis. Utilizing specific fluorescently-labeled protein pairs, we quantified various stages of adherens junction complex assembly, the multiprotein complex regulating epithelial tissue structure and function following de novo cell-cell contact. We demonstrate: minimal cadherin-catenin complex assembly in the perinuclear cytoplasm and subsequent localization to the cell-cell contact zone, assembly of adherens junction complexes, acto-myosin tension-mediated anchoring, and adherens junction maturation following de novo cell-cell contact. Finally applying Fluorescence Covariance Analysis in live cells expressing fluorescently tagged adherens junction complex proteins, we also quantified adherens junction complex assembly dynamics during epithelial monolayer formation.

  20. Sparse Non-negative Tensor 2D Deconvolution (SNTF2D) for multi channel time-frequency analysis

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We recently introduced two algorithms for sparse non-negative matrix factor 2-D deconvolution (SNMF2D) that are useful for single channel source separation and music transcription. We here extend this approach to the analysis of the log-frequency spectrograms of a multichannel recording. The model...... algorithms are demonstrated to successfully identify the components of both artificially generated as well as real stereo music....

  1. 2D nanostructures for water purification: graphene and beyond.

    Science.gov (United States)

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268

  2. KOREAN MOBILE OPERATORS' VALUE MAP FOR LTE D2D

    Directory of Open Access Journals (Sweden)

    Taisiya Kim

    2015-04-01

    Full Text Available Managing the wireless data traffic is a main concern for mobile network operators in Information of Things (IoT environment. Long Term Evolution Device to Device (LTE D2D is regarding as a solution for the spectrum problem. It will bring an impact on providers and the whole mobile environment. The main purpose of this study is to analyze the role of key players, who share spectrum with mobile operators, and to present the value map of relationship among Korean mobile operators and other key players in LTE D2D discovery (commercial channel, as complicated relationships of key players are expected. Then, this study suggests scenario for ‘Targeted Advertising’ service of LTE D2D. LTE D2D is early discussion stage and scenario has limitation of specific business model. However, results of this study are significant for the present stage and provide implications for future researches on strategies for LTE D2D environment.

  3. Failure Mechanism of True 2D Granular Flows

    CERN Document Server

    Nguyen, Cuong T; Fukagawa, R

    2015-01-01

    Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...

  4. The NH$_2$D hyperfine structure revealed by astrophysical observations

    CERN Document Server

    Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...

  5. Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy

    Science.gov (United States)

    Giraudeau, Patrick; Frydman, Lucio

    2014-06-01

    Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.

  6. 2D materials for photon conversion and nanophotonics

    Science.gov (United States)

    Tahersima, Mohammad H.; Sorger, Volker J.

    2015-09-01

    The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.

  7. Graphene based 2D-materials for supercapacitors

    Science.gov (United States)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  8. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Manuel Rosenberger

    2015-02-01

    Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.

  9. Cluster algebras in Scattering Amplitudes with special 2D kinematics

    CERN Document Server

    Torres, Marcus A C

    2013-01-01

    We study the cluster algebra of the kinematic configuration space $Conf_n(\\mathbb{P}^3)$ of a n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-points two loop MHV remainder function found in special 2D kinematics depend on a selection of \\XX-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercubes beads in the corresponding Stasheff polytope. Furthermore in $n = 12$, the cluster algebra and the selection of \\XX-coordinates in special 2D kinematics replicates the cluster algebra and the selection of \\XX-coordinates of $n=6$ two loop MHV amplitude in 4D kinematics.

  10. 2D growth processes: SLE and Loewner chains

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Michel [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: michel.bauer@cea.fr; Bernard, Denis [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: denis.bernard@cea.fr

    2006-10-15

    This review provides an introduction to two dimensional growth processes. Although it covers a variety of processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the remarkable properties of SLE are explained, together with the tools for computing with it. This review has been written with the aim of filling the gap between the mathematical and the physical literature on the subject.

  11. UPLAND EROSION MODELING WITH CASC2D-SED

    Institute of Scientific and Technical Information of China (English)

    Pierre JULIEN; Rosalía ROJAS

    2002-01-01

    Developed at Colorado State University, CASC2D-SED is a physically-based model simulating the hydrologic response of a watershed to a distributed rainfall field. The time-dependent processes include:precipitation, interception, infiltration, surface runoff and channel routing, upland erosion, transport and sedimentation. CASC2D-SED is applied to Goodwin Creek, Mississippi. The watershed covers 21 km2and has been extensively monitored both at the outlet and at several internal locations by the ARS-NSL at Oxford, MS. The model has been calibrated and validated using rainfall data from 16 meteorological stations, 6 stream gauging stations and 6 sediment gauging stations. Sediment erosion/deposition rates by size fraction are predicted both in space and time. Geovisualization, a powerful data exploration technique based on GIS technology, is used to analyze and display the dynamic output time series generated by the CASC2D-SED model.

  12. Design and Realization of Dynamic Obstacle on URWPSSim2D

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2013-07-01

    Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles,thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.  

  13. 2D bifurcations and Newtonian properties of memristive Chua's circuits

    Science.gov (United States)

    Marszalek, W.; Podhaisky, H.

    2016-01-01

    Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.

  14. Monte-Carlo Modeling of Parameters of a Subcritical Cascade Reactor Based on MSBR and LMFBR Technologies

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polanski, A; Sosnin, A N; Khudaverdyan, A H

    2001-01-01

    Parameters of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k_{eff}=0.94-0.98), is apable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10^{14} cm^{12}\\cdot s^_{-1}, in the fast booster zone is 5.12\\cdot10^{15} cm^{12}\\cdot s{-1} at k_{eff}=0.98 and proton beam current I=2.1 mA.

  15. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1978--May 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1978-01-01

    An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach--Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Flows are introduced into both the 1/15 scale FFTF outlet plenum and the 3/80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000.

  16. FMEF profilometry and visual examination feasibility and conceptual design. [Fuels and Materials Examination Facility; LMFBR and GCFR

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, L.D.; Dilbeck, R.A.; Hartman, J.S.; Hildebrand, B.P.; Reich, F.R.; Swinth, K.L.

    1976-07-01

    The Fuels and Materials Examination Facility (FMEF) is being scoped to provide postirradiation examination capabilities for FFTF, LMFBR and GCFR fuels and materials. The Hanford Engineering Development Laboratory has requested that the Battelle Pacific Northwest Laboratory (PNL) complete a feasibility study for the development of equipment to meet the FMEF Measurement Requirements for irradiated fuel pin and absorber rod bow, length, profile and visual examination stations. The purpose of the report is to provide a conceptual design for development of the examination equipment. The design analysis assumes that fuel pins and absorber rods to be examined are in the main cell. The cell's environment will be argon or nitrogen gas at a pressure between --1 and --4 in. of water and at a temperature between 70 and 100/sup 0/F. Oxygen content of the cell gas will normally be controlled between 25 and 50 ppM. Water content will be controlled within the same limits.

  17. PHOEBUS/UHTREX: a preliminary study of a low-cost facility for transient tests of LMFBR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, W.L. (comp.)

    1976-08-01

    The results of a brief preliminary design study of a facility for transient nuclear tests of fast breeder reactor fuel are described. The study is based on the use of a reactor building originally built for the UHTREX reactor, and the use of some reactor hardware and reactor design and fabrication technology remaining from the Phoebus-2 reactor of the Rover nulcear rocket propulsion program. The facility is therefore currently identified as the PHOEBUS/UHTREX facility. This facility is believed capable of providing early information regarding fast reactor core accident energetics issues which will be very valuable to the overall LMFBR safety program. Facility performance in conjunction with a reference 127-fuel pin experiment is described. Low cost and early availability of the facility were emphasized in the selection of design features and parameters.

  18. Comparative transient analysis of metal and oxide fueled LMFBR. [Loop-type and pool-type designs

    Energy Technology Data Exchange (ETDEWEB)

    Saphier, D.; Madell, J.T.

    1979-09-01

    The neutronics and thermodynamics of an LMFBR primary system have been simulated using the DSNP simulation language. A detailed fuel pin and its subchannel model were developed and included in the DSNP library. This permits the reactor core to be simulated with any number of pins having any number of radial and axial nodes. The metal fueled core transients were compared to transients of an oxide fueled core, the conclusion being that for the same perturbations the temperature transients are faster in the metal core. A comparison between pool-type and loop-type reactors was also performed, leading to a conclusion that the transients in the upper plenum temperatures are much slower in the pool-type reactor than in the loop-type reactor.

  19. W$_{\\infty}$ structures of 2D string theory

    CERN Document Server

    Hamada, K J

    1996-01-01

    The Ward identities of the W_{\\infty} symmetry in 2D string theory in the tachyon background are studied in the continuum approach. Comparing the solutions with the matrix model results, it is verified that 2D string amplitudes are different from the matrix model amplitudes only by the external leg factors even in higher genus. This talk is based on the recent work [1] and also [2] for the c_M <1 model. (Talk given at the workshop on ``Frontiers in Quantum Field Theory'', Osaka, Japan, December 1995.)

  20. CH2D+, the Search for the Holy Grail

    Science.gov (United States)

    Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen

    2013-10-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  1. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  2. Design of the LRP airfoil series using 2D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....

  3. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  4. Self-dual Strings and 2D SYM

    CERN Document Server

    Hosomichi, Kazuo

    2014-01-01

    We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D N=(4,4) super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.

  5. 2D-ACAR investigations of PPT aramid fibres

    International Nuclear Information System (INIS)

    2D-ACAR spectra of PPT (poly(p-phenylene terephthalamide)) fibres which contain structural elongated open spaces in the crystallographic unit cell show a p-Ps peak with an elliptical cross-section and side lobes. Peak broadening suggests dimensions of ∝14-17 by 7-9 A for the open spaces and indicates some penetration of Ps into the interlayer spacing. The side lobes can be related to projected reciprocal lattice points and indicate Ps delocalization. 2D-ACAR has also been used to study the evolution of water release from the open spaces. (orig.)

  6. EEG simulation by 2D interconnected chaotic oscillators

    International Nuclear Information System (INIS)

    Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  7. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  8. CH2D+, the Search for the Holy Grail

    CERN Document Server

    Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B

    2013-01-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  9. GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD

    Institute of Scientific and Technical Information of China (English)

    HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun

    2005-01-01

    The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.

  10. QSAR Models for P-450 (2D6) Substrate Activity

    DEFF Research Database (Denmark)

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;

    2009-01-01

    drugs and other chemicals. A training set of 747 chemicals primarily based on in vivo human data for the CYP isoenzyme 2D6 was collected from the literature. QSAR models focusing on substrate/non substrate activity were constructed by the use of MultiCASE, Leadscope and MDL quantitative structure......Human Cytochrome P450 (CYP) is a large group of enzymes that possess an essential function in metabolising different exogenous and endogenous compounds. Humans have more than 50 different genes encoding CYP enzymes, among these a gene encoding for the CYP isoenzyme 2D6, a CYP able to metabolise...

  11. SKIMO: corto de animación 2D

    OpenAIRE

    VALERO BALLESTER, AIDA AMPARO

    2015-01-01

    El siguiente Trabajo Final de Grado llamado “Skimo” consiste en un teaser de animación 2D enfocado a ser finalizado el próximo año durante la realización del Diploma en Animación de personajes 2D del Máster de animación. Realizado en solitario como reto personal durante el curso presente, siendo la primera vez que trabajaba la animación. Para este proyecto he realizado toda la preproducción (layout, animática, storyboard, diseño de personajes, fondos, etc), animación en pape...

  12. Transmission properties of 2D metamaterial photonic crystals

    Science.gov (United States)

    Mejía-Salazar, Jorge; Porras-Montenegro, Nelson

    2014-03-01

    By using the finite difference time domain technique, we have performed a theoretical study of the transmission properties in 2D photonic crystals composed by circular cilyndrical metamaterial rods. Numerical transmission spectra was compared with its corresponding photonic band structure in the case of an infinite periodic 2D array obtaining a very good agreement. On the other hand, we have characterized the corresponding symmetries for this system and the results were compared with its corresponding conventional plasmonic metamaterial counterpart. J.R. M-S is funded by the Colombian Agency COLCIENCIAS.

  13. Nomenclature for human CYP2D6 alleles.

    Science.gov (United States)

    Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M

    1996-06-01

    To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658

  14. Investigation of the physical and numerical foundations of two-fluid representation of sodium boiling with applications to LMFBR experiments

    International Nuclear Information System (INIS)

    This work involves the development of physical models for the constitutive relations of a two-fluid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, and a subassembly wall model suitable for stimulating LMFBR transient events. Mathematically rigorous derivations of time-volume averaged conservation equations are used to establish the differential equations of THERMIT-6S. These equations are then discretized in a manner identical to the original THERMIT code. A virtual mass term is incorporated in THERMIT-6S to solve the ill-posed problem. Based on a simplified flow regime, namely cocurrent annular flow, constitutive relations for two-phase flow of sodium are derived. The wall heat transfer coefficient is based on momentum-heat transfer analogy and a logarithmic law for liquid film velocity distribution. A broad literature review is given for two-phase friction factors. It is concluded that entrainment can account for some of the discrepancies in the literature. Mass and energy exchanges are modelled by generalization of the turbulent flux concept. Interfacial drag coefficients are derived for annular flows with entrainment. Code assessment is performed by simulating three experiments for low flow-high power accidents and one experiment for low flow/low power accidents in the LMFBR. While the numerical results for pre-dryout are in good agreement with the data, those for post-dryout reveal the need for improvement of the physical models. The benefits of two-dimensional non-equilibrium representation of sodium boiling are studied

  15. Development of integrated analytical tools for level-2 PSA of LMFBR

    International Nuclear Information System (INIS)

    As same as to light water reactor, JNES (Japan Nuclear Energy Safety Organization) has devoted to prepare the analysis tools for PSA to liquid-metal cooled fast breeder reactor (LMFBR) to make safety evaluation from regulatory side. The developed tools consist of a group of safety analysis computer codes and an analysis method called PRD (Phenomenological Relationship Diagram) to qualify logically the probability distribution at the branching points in event trees. So far the tools have been used to evaluate the effectiveness of accident management measures of Monju proposed by the owner and the tools are under further development to describe the event progresses more realistically. One of the objectives of this improvement is to construct data bases of the Emergency Response Support System (ERSS) for Monju by conducting many application analyses to the conceivable scenarios after initiating events. The present paper introduces the function of each tool in the synthetic analysis system coupled with the accident scenario and presents points for future improvement. The phase transitions of severe accidents of LMFBR and the role of each analysis tool is shown. In (i) the plant response phase, the temperature of sodium in the primary cooling system begins to rise due to the power to flow mismatch. In cases of gradual temperature increase such as PLOHS (protected loss-of-heat sink), the sodium boundary will fail by the high temperature creep. If boundary failure does not occur,the sodium will lastly boil. The temperature and the pressure changes during the plant response phase are analyzed by the NALAP-II code. NALAP-II also calculates the SCDF (structural cumulative defect factor), that is an index of high temperate creep, of the key locations in the plant, however, the application is limited to the parts whose geometry are modeled by a cylindrical wall. Hence, for the analysis of components with complicated shape that require the consideration of buckling, structure

  16. LMFBR large valve development. Static sodium proof-of-principle (POP) test design and analyses interim summary report for the 12. 0-inch rotating offset ball valve internals

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.A.; Perschler, J.; Kinter, R.S.

    1975-04-01

    This report updates progress made by AMCO to date in the development of the 12-inch rotating offset ball valve, for use in sodium isolation service for the LMFBR Demonstration Plant Intermediate Heat Transport System (IHTS). The work is being performed under Contract No. AT-(04-03)-1035 ERDA SAN. The design incorporates an offset rotating ball in conjunction with a flexible metal lip seal to provide shut-off in liquid sodium at elevated temperatures.

  17. CYP2D6基因与药物代谢%CYP2D6 gene and drug metabolism

    Institute of Scientific and Technical Information of China (English)

    施安国

    2003-01-01

    细胞色素P-450(CYP)中的CYP2D6酶在抗抑郁药、安定药及某些抗心律失常药的代谢中起重要作用,CYP2D6基因位于22号常染色体上为隐性遗传,CYP2D6基因呈多态性约有70余种等位基因变异型,也存在特异人群差别,因而导致所编码的酶活性不同,这些数据有助于理解药物代谢的个体差异、有助于预测药物之间的相互作用.

  18. Structural response of large LMFBR head closures to hypothetical core disruptive accidents

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.; Marciniak, T.J.; Belytschko, T.B.

    1977-01-01

    A preliminary study of the dynamic response of a large (1200 MWe) pool-type deck structure to an energetic core disassembly accident was performed. The analysis proceeded as two independent, decoupled calculations: containment calculations and deck response calculations. The containment calculations were performed mainly to derive a loading pressure history for the deck structure. In part of the study, the deck was considered rigid so the derived loading pressures were conservative. In the second part of the study a set of independent deck response calculations were performed using the derived loading pressure history as input. A finite-element model that incorporated the main structural components of the deck was constructed. A preliminary study of the dynamic response of the deck was performed using this model. Also, the effect that different types of boundary conditions have on the dynamic response of the deck was studied. Based on the above preliminary studies, it is concluded that the deck structure can maintain its structural integrity under the given energy release.

  19. Ultratrace Detection of Toxic Chemicals: Triggered Disassembly of Supramolecular Nanotube Wrappers.

    Science.gov (United States)

    Ishihara, Shinsuke; Azzarelli, Joseph M; Krikorian, Markrete; Swager, Timothy M

    2016-07-01

    Chemical sensors offer opportunities for improving personal security, safety, and health. To enable broad adoption of chemical sensors requires performance and cost advantages that are best realized from innovations in the design of the sensing (transduction) materials. Ideal materials are sensitive and selective to specific chemicals or chemical classes and provide a signal that is readily interfaced with portable electronic devices. Herein we report that wrapping single walled carbon nanotubes with metallo-supramolecular polymers creates sensory devices with a dosimetric (time- and concentration-integrated) increase in electrical conductivity that is triggered by electrophilic chemical substances such as diethylchlorophosphate, a nerve agent simulant. The mechanism of this process involves the disassembly of the supramolecular polymer, and we demonstrate its utility in a wireless inductively powered sensing system based on near-field communication technology. Specifically, the dosimeters can be powered and read wirelessly with conventional smartphones to create sensors with ultratrace detection limits. PMID:27336905

  20. Electrostatic assembly/disassembly of nanoscaled colloidosomes for light-triggered cargo release

    KAUST Repository

    Li, Song

    2015-04-27

    Colloidosome capsules possess the potential for the encapsulation and release of molecular and macromolecular cargos. However, the stabilization of the colloidosome shell usually requires an additional covalent crosslinking which irreversibly seals the capsules, and greatly limits their applications in large-cargos release. Herein we report nanoscaled colloidosomes designed by the electrostatic assembly of organosilica nanoparticles (NPs) with oppositely charged surfaces (rather than covalent bonds), arising from different contents of a bridged nitrophenylene-alkoxysilane [NB; 3-nitro-N-(3-(triethoxysilyl)propyl)-4-(((3-(triethoxysilyl)propyl)-amino)methyl)benzamid] derivative in the silica. The surface charge of the positively charged NPs was reversed by light irradiation because of a photoreaction in the NB moieties, which impacted the electrostatic interactions between NPs and disassembled the colloidosome nanosystems. This design was successfully applied for the encapsulation and light-triggered release of cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Contact identification for assembly-disassembly simulation with a haptic device

    CERN Document Server

    Iacob, Robert; Léon, Jean-Claude

    2008-01-01

    Assembly/Disassembly (A/D) simulations using haptic devices are facing difficulties while simulating insertion/extraction operations such as removing cylinders from holes. In order to address this configuration as well as others, an approach based on contact identification between components is presented in this paper. This approach can efficiently contribute either to a new A/D simulation preparation process relying on two types of shape representations (mesh and CAD NURBS models), or directly to the real time simulation process when it is performed with 6D haptic devices. The model processing pipeline is described and illustrated to show how information can be propagated and used for contact detection. Then, the contact identification process is introduced and illustrated through an example

  2. Optimized XML Storage in NXD Based on Tree-Structure Disassemble

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Independent XML storage based on XSD (XML Schema Document) is adopted in NXD(Native XML Database), XML storage structure based on tree-structure disassemble and the algorithm used in dynamically updating XML document are provided in this paper. The main idea is that in term of data model of XML document, XML document is parsed to Document Structure-Tree with Hierarchical Model and Leaf-Data with Relation Model for storage. Simultaneously Proxy node is imported in order to solve the problem that XML data store in cross-blocks. And with XSD model information, sparse index is constructed to save storage space. It is proved that this storage structure could improve efficiency of XML document operation.

  3. Interaction of systems integration, assembly, disassembly and maintenance in developing the INTOR-NET mechanical configuration

    Energy Technology Data Exchange (ETDEWEB)

    Farfaletti-Casali, F.; Booker, D.; Buzzi, U.; Casini, G.; Gritzmann, P. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Cardella, A. (Nucleare Italiana Reattori Avanzati S.p.A. (NIRA), Genoa)

    1984-04-01

    The driving concepts of systems integration, based on assembly, disassembly and maintenance requirements which define the mechanical configuration of INTOR (a world-wide conceptual study of an experimental Tokamak-type power fusion reactor of the next generation), are presented as the starting point for the studies carried out in this field at JRC-Ispra. Complementary new developments recently incorporated into the European version of INTOR, referred to as INTOR-NET, are described in detail and compared with the original concepts. The aim in INTOR-NET has been to reduce the physical size of the reactor while retaining similar plasma parameters. New systems integration and mechanical configuration concepts are introduced which can be used in future investigations for the NET design as alterantive options. Further reductions in reactor and/or improvements in the maintenance approach appear possible.

  4. Influence of Isotope Effects on Product Polarizations of N(2D)+D2,N(2D)+H2 and N(2D)+HD Reactive Systems

    Institute of Scientific and Technical Information of China (English)

    NIE Shan-shan; CHU Tian-shu

    2012-01-01

    To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants,quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy surfacc(PES) of 2A" state.Product polarizations such as product distributions ofP(θr),P(φr) and P(θr,φr),as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions.Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.

  5. Wilson loop in 2d noncommutative gauge theories

    OpenAIRE

    Valtancoli, Paolo

    2009-01-01

    We reconsider the perturbative expansion of the Wilson loop in 2d noncommutative gauge theories, using an improved integration method. For the class of maximally crossed diagrams in the $\\theta \\to \\infty$ limit we find an intriguing formula, easily generalizable to all orders in perturbation theory.

  6. The 2dF Galaxy Redshift Survey: Preliminary Results

    OpenAIRE

    Maddox, S.

    1997-01-01

    Spectroscopic observations for a new survey of 250 000 galaxy redshifts are underway, using the 2dF instrument at the AAT. The input galaxy catalogue and commissioning data are described. The first result from the preliminary data is a new estimate of the galaxy luminosity function at =0.1.

  7. H on He: sticking and 2d-superfluidity

    International Nuclear Information System (INIS)

    The sticking coefficient, which governs the sticking time τs, is discussed for high surface-coverage conditions. We point out that τs must remain large compared to a characteristic vortex diffusion time, if the system is to display 2d-superfluidity

  8. 2D Static Light Scattering for Dairy Based Applications

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke

    Throughout this thesis we investigate a recently introduced optical technique denoted 2D static light scattering (2DSLS). The technique is remote sensing, non-invasive, highly flexible, and appears to be well suited for in-line process control. Moreover, the output signal contains contributions...

  9. CFD code comparison for 2D airfoil flows

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.;

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × ...

  10. Fiber Drawn 2D Polymeric Photonic Crystal THz Filters

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi;

    2012-01-01

    In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...

  11. Horns Rev II, 2D-Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Brorsen, Michael

    This report is an extension of the study presented in Lykke Andersen and Brorsen, 2006 and includes results from the irregular wave tests, where Lykke Andersen & Brorsen, 2006 focused on regular waves. The 2D physical model tests were carried out in the shallow wave flume at Dept. of Civil...

  12. 2D InP photonic crystal fabrication process development

    NARCIS (Netherlands)

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.

    2006-01-01

    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri

  13. Interactive Exploratory Visualization of 2D Vector Fields

    NARCIS (Netherlands)

    Isenberg, Tobias; Everts, Maarten H.; Grubert, Jens; Carpendale, Sheelagh

    2008-01-01

    In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch-sensitive displays, our approach allows individuals to custom-design glyphs (arrows, lines, etc.) that best reveal patterns of the unde

  14. CANONICAL COMPUTATIONAL FORMS FOR AR 2-D SYSTEMS

    NARCIS (Netherlands)

    ROCHA, P; WILLEMS, JC

    1990-01-01

    A canonical form for AR 2-D systems representations is introduced. This yields a method for computing the system trajectories by means of a line-by-line recursion, and displays some relevant information about the system structure such as the choice of inputs and initial conditions.

  15. Resolution deconvolution method applied to 2D-ACAR measurements

    International Nuclear Information System (INIS)

    An inexpensive way to achieve high resolution 2D-ACAR measurements is to utilize resolution deconvolution techniques. We developed a resolution deconvolution method which avoids noise amplification and is applicable to the 3D reconstruction method using Fourier-Bessel transforms. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. The toroidal Hausdorff dimension of 2d Euclidean quantum gravity

    DEFF Research Database (Denmark)

    Ambjorn, Jan; Budd, Timothy George

    2013-01-01

    The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimensi...

  17. 2D kinematics of simulated disc merger remnants

    NARCIS (Netherlands)

    Jesseit, Roland; Naab, Thorsten; Peletier, Reynier F.; Burkert, Andreas

    2007-01-01

    We present a 2D kinematic analysis for a sample of simulated binary disc merger remnants with mass ratios 1:1 and 3:1. For the progenitor discs we used pure stellar models as well as models with 10 per cent of their mass in gas. A multitude of phenomena also observed in real galaxies are found in th

  18. High resolution 2D image upconversion of incoherent light

    DEFF Research Database (Denmark)

    Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter

    2011-01-01

    An optimized method for continuous wave 2-dimensional (2-D) upconversion of incoherent or thermal light is demonstrated and quantified. Using standard resolution targets a resolution of 200×1000 pixels is obtained. The suggested method is viewed in scope of modern CCD cameras operating in the nea...

  19. A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    He Ji-huan

    2003-01-01

    The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.

  20. NKG2D ligands mediate immunosurveillance of senescent cells.

    Science.gov (United States)

    Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery

    2016-02-01

    Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797

  1. ELLIPT2D: A Flexible Finite Element Code Written Python

    International Nuclear Information System (INIS)

    The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research

  2. 2D signature for detection and identification of drugs

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei

    2011-06-01

    The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.

  3. Computational study of interfaces and edges of 2D materials

    NARCIS (Netherlands)

    Farmanbar Gelepordsari, M.

    2016-01-01

    The discovery of graphene and its intriguing properties has given birth to the field of two-dimensional (2D) materials. These materials are characterized by a strong covalent bonding between the atoms within a plane, but weak, van derWaals, bonding between the planes. Such materials can be isolated

  4. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    Science.gov (United States)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  5. In Vitro Disassembly of Influenza A Virus Capsids by Gradient Centrifugation.

    Science.gov (United States)

    Stauffer, Sarah; Nebioglu, Firat; Helenius, Ari

    2016-01-01

    Acid-triggered molecular processes closely control cell entry of many viruses that enter through the endocytic system. In the case of influenza A virus (IAV), virus fusion with the endosomal membrane as well as the subsequent disassembly of the viral capsid, called uncoating, is governed by the ionic conditions inside endocytic vesicles. The early steps in the virus life cycle are hard to study because endosomes cannot be directly accessed experimentally, creating the need for an in vitro approach. Here, we describe a method based on velocity gradient centrifugation of purified virions through a two-layer glycerol gradient, which enables analysis of the IAV core and its stability. The gradient contains a non-ionic detergent (NP-40) in its lower layer to remove the viral membrane by solubilization as the virus sediments toward the bottom. At neutral pH, viral cores are pelleted as stable structures. The major core components, matrix protein (M1) and the viral ribonucleoproteins (vRNPs), can be clearly identified in the pellet fraction by SDS-PAGE. Decreasing the pH to 6.0 or lower in the bottom layer selectively removes M1 from the pellet followed by release of vRNPs at more acidic conditions. Viral protein bands on Coomassie-stained gels can be subjected to densitometric quantification to monitor intermediate states of IAV disassembly. Besides pH, other factors that influence viral core stability can be assessed, such as salt concentration and putative viral uncoating factors, simply by modifying the detergent-containing glycerol layer accordingly. Taken together, the presented technique allows highly reproducible and quantitative analysis of viral uncoating in vitro. It can be applied to other enveloped viruses that undergo complex uncoating processes. PMID:27077390

  6. Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea

    Science.gov (United States)

    Cochrane, Ryan; Spikings, Richard; Gerdes, Axel; Ulianov, Alexey; Mora, Andres; Villagómez, Diego; Putlitz, Benita; Chiaradia, Massimo

    2014-03-01

    Crustal anatectites are frequently observed along ocean-continent active margins, although their origins are disputed with interpretations varying between rift-related and collisional. We report geochemical, isotopic and geochronological data that define an ~ 1500 km long belt of S-type meta-granites along the Andes of Colombia and Ecuador, which formed during 275-223 Ma. These are accompanied by amphibolitized tholeiitic basaltic dykes that yield concordant zircon U-Pb dates ranging between 240 and 223 Ma. A model is presented which places these rocks within a compressive Permian arc setting that existed during the amalgamation of westernmost Pangaea. Anatexis and mafic intrusion during 240-223 Ma are interpreted to have occurred during continental rifting, which culminated in the formation of oceanic crust and initiated the break-up of western Pangaea. Compression during 275-240 Ma generated small volumes of crustal melting. Rifting during 240-225 Ma was characterized by basaltic underplating, the intrusion of tholeiitic basalts and a peak in crustal melting. Tholeiitic intrusions during 225-216 Ma isotopically resemble depleted mantle and yield no evidence for contamination by continental crust, and we assign this period to the onset of continental drift. Dissected ophiolitic sequences in northern Colombia yield zircon U-Pb dates of 216 Ma. The Permo-Triassic margin of Ecuador and Colombia exhibits close temporal, faunal and geochemical similarities with various crustal blocks that form the basement to parts of Mexico, and thus these may represent the relict conjugate margin to NW Gondwana. The magmatic record of the early disassembly of Pangaea spans ~ 20 Ma (240-216 Ma), and the duration of rifting and rift-drift transition is similar to that documented in Cretaceous-Tertiary rift settings such as the West Iberia-Newfoundland conjugate margins, and the Taupo-Lau-Havre System, where rifting and continental disassembly also occurred over periods lasting ~ 20 Ma.

  7. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  8. Half-metallicity in 2D organometallic honeycomb frameworks.

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575

  9. 2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures

    Science.gov (United States)

    Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali

    2016-02-01

    Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.

  10. Novel Hydrogen-bonded Three-dimensional Supramolecular Architectures Containing 2D Honeycomb Networks or 2D Grids

    Institute of Scientific and Technical Information of China (English)

    LI Dong-Sheng; ZHOU Cai-Hua; WANG Yao-Yu; FU Feng; WU Ya-Pan; QI Guang-Cai; SHI Qi-Zhen

    2006-01-01

    Two new supramolecular complexes, [Cu(H2dhbd)(3-pyOH)(H2O)]2·3-pyOH·2H2O (1) and [Cu2(dhbd)(dpa)2-(H2O)]·6H2O (2) (H4dhbd=2,3-dihydroxybutanedioic acid, 3-pyOH=3-hydroxypyridine, dpa=2,2'-dipyridylamine),have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses,H-O hydrogen bonds, the cyclic dinuclear units in 1 together with four adjacent neighbors are connected into a 2D honeycomb network encapsulating free 3-pyOH ligands. Unexpectedly, the water-dimers are fixed in interlayers of 2D honeycomb network and act as hydrogen-bond bridging to further extend these 2D networks into 3D hydrogen-bonded framework. Complex 2 includes interesting 2D grids constructed from chiral dinuclear units through cules into three dimension with channels. Variable-temperature magnetic susceptibility measurements for both complexes indicate the presence of weak antiferromagnetic exchange interactions between adjacent copper(Ⅱ) ions.

  11. Development of an annular linear induction electromagnetic pump for the na-coolant circulation of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Reyoung; Lee, Yong Bum; Kim, Yong Kyun; Nam, Ho Yun [KAERI, Taejon (Korea, Republic of)

    1998-07-01

    The EM (ElectroMagnetic) pump operated by Lorentz force (J x B) is developed for the sodium coolant circulation of LMFBR (Liquid Metal Fast Breeder Reactors). Design and experimental characterization are carried out on the linear induction EM pump of the narrow annular channel type. The pump which obtains propulsion force resultantly by the three phase symmetric alternating input currents is analyzed by the electrical equivalent circuit method used in the analyses of the induction machines. Then, the equivalent circuit for the pump consists of equivalent variables of primary and secondary resistances and magnetizing and leakage reactances given as functions of pump geometrical and electrical variables by Laithwaithe's standard formulae. Developing pressure-flowrate relation given by pump variables is sought from the balance equation on the circuit. Developing pressure and efficiency of the pump according to the pump variables are analyzed for the pump with a flowrate of 200 l/min. It is shown that pump is mainly characterized by length of the core, diameter of the inner core and channel gap geometrically and by input frequency electrically. Optimum values of pump geometrical and operational variables are determined to maximize the developing force and overall efficiency. The pump has geometrical size of 60 cm in length, 4.27 cm in inner core diameter and electrical input of 6,428 VA and 17 Hz. Optimally designed pump is manufactured by the consideration of material and operational requirements in the chemically-active sodium environment with high temperature of 600 .deg. C. Silicon-iron steel plates with high magnetic permeability in the high temperature are stacked for generation of the high magnetic flux and alumina-dispersion-strengthened-copper bands are used as exciting coils. Each turn of coil is insulated by asbestos band to protect electrical short in the high temperature. Stainless steel which can be compatible with sodium is selected as structural

  12. 2-D linear motion system. Innovative technology summary report

    International Nuclear Information System (INIS)

    The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However

  13. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    Science.gov (United States)

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  14. Security Issues for 2D Barcodes Ticketing Systems

    Directory of Open Access Journals (Sweden)

    Cristian Toma

    2011-03-01

    Full Text Available The paper presents a solution for endcoding/decoding access to the subway public transportation systems. First part of the paper is dedicated through section one and two to the most used 2D barcodes used in the market – QR and DataMatrix. The sample for DataMatrix is author propietary and the QR sample is from the QR standard [2]. The section three presents MMS and Digital Rights Management topics used for issuing the 2D barcodes tickets. The second part of the paper, starting with section four shows the architecture of Subway Ticketing Systems and the proposed procedure for the ticket issuing. The conclusions identify trends of the security topics in the public transportation systems.

  15. Characterization of steady solutions to the 2D Euler equation

    CERN Document Server

    Izosimov, Anton

    2015-01-01

    Steady fluid flows have very special topology. In this paper we describe necessary and sufficient conditions on the vorticity function of a 2D ideal flow on a surface with or without boundary, for which there exists a steady flow among isovorticed fields. For this we introduce the notion of an antiderivative (or circulation function) on a measured graph, the Reeb graph associated to the vorticity function on the surface, while the criterion is related to the total negativity of this antiderivative. It turns out that given topology of the vorticity function, the set of coadjoint orbits of the symplectomorphism group admitting steady flows with this topology forms a convex polytope. As a byproduct of the proposed construction, we also describe a complete list of Casimirs for the 2D Euler hydrodynamics: we define generalized enstrophies which, along with circulations, form a complete set of invariants for coadjoint orbits of area-preserving diffeomorphisms on a surface.

  16. TRO-2D - A code for rational transonic aerodynamic optimization

    Science.gov (United States)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  17. Simulation of corium concrete interaction in 2D geometry

    Energy Technology Data Exchange (ETDEWEB)

    Cranga, M. [IRSN, DPAM, F-13115 St Paul Les Durance (France); Spindler, B.; Dufour, E. [CEA Grenoble, DEN, F-38000 Grenoble (France); Dimov, Dimitar [Bulgarian Acad Sci, Inst Nucl Res and Nucl Energy, NPPSAL, BU-1784 Sofia (Bulgaria); Atkhen, Kresna [EDF, SEPTEN, F-69628 Villeurbanne (France); Foit, Jerzy [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Garcia-Martin, M. [Univ Politecn Madrid, E-28006 Madrid (Spain); Sevon, Tuomo [Tech Res Ctr Finland VTT, FI-02044 Helsinki (Finland); Schmidt, W. [AREVA, D-91058 Erlangen (Germany); Spengler, C. [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany)

    2010-07-01

    Benchmarking work was recently performed for the issue of molten corium concrete interaction (MCCI). A synthesis is given here. It concerns first the 2D CCI-2 test with a homogeneous pool and a limestone concrete, which was used for a blind benchmark. Secondly, the COMET-L2 and COMET-L3 2D experiments in a stratified configuration were used as a post-test (L2) and a blind-test (L3) benchmark. More details are given here for the recent benchmark considering a matrix of four reactor cases, with both a homogeneous and a stratified configuration, and with both a limestone and a siliceous concrete. A short overview is given on the different models used in the codes, and the consistency between the benchmark actions on experiments and reactor situations is discussed. Finally, the major uncertainties concerning MCCI are also pointed out. (authors)

  18. 2D/3D Program work summary report

    International Nuclear Information System (INIS)

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author)

  19. Functionalized 2D atomic sheets with new properties

    Science.gov (United States)

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2011-03-01

    Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.

  20. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.