WorldWideScience

Sample records for 2-d lmfbr disassembly

  1. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Iwashige, Kengo

    1996-06-21

    In an LMFBR type reactor, partitions are disposed to a coolant channel at positions lower than the free liquid level, and the width of the partitions is adapted to have a predetermined condition. Namely, when low temperature fluid overflowing the wall of the coolant channel, flows down and collided against the free liquid surface in the coolant channel, since the dropping speed thereof is reduced abruptly, large pressure waves are caused by kinetic force of the low temperature fluid. However, if appropriate numbers of partitions having an appropriate shape are formed, the dropping speed of the low temperature fluid is moderated to reduce the pressure waves. In addition, since the pressure waves are dispersed to the circumferential and lateral directions of the coolant flow channel respectively, the propagation of the pressure waves can be prevented effectively. Further, when the flow of the low temperature fluid is changed to the circumferential direction, for example, by earthquakes, since the partitions act as members resisting against the circumferential change of the low temperature fluid, the change of the direction can be suppressed. (N.H.)

  2. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1997-04-04

    An LMFBR type reactor comprises a plurality of reactor cores in a reactor container. Namely, a plurality of pot containing vessels are disposed in the reactor vessel and a plurality of reactor cores are formed in a state where an integrated-type fuel assembly is each inserted to a pot, and a coolant pipeline is connected to each of the pot containing-vessel to cool the reactor core respectively. When fuels are exchanged, the integrated-type fuel assembly is taken out together with the pot from the reactor vessel in a state where the integrated-type fuel assembly is immersed in the coolants in the pot as it is. Accordingly, coolants are supplied to each of the pot containing-vessel connected with the coolant pipeline and circulate while cooling the integrated-type fuel assembly for every pot. Then, when the fuels are exchanged, the integrated type fuel assembly is taken out to the outside of the reactor together with the pot by taking up the pot from the pot-containing vessel. Then, neutron economy is improved to thereby improve reactor power and the breeding ratio. (N.H.)

  3. Sodium-cooled LMFBR cask recommendations

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    In April of 1970 a design study to establish the parameters of a shipping cask for LMFBR Spent Fuel Assemblies from FFTF and the first demonstration plant was initiated. The basic criteria presented were that the cask should be limited to 75 tons, and that the cask should be compatible with the FFTF Fuel Assembly design and the first demonstration LMFBR Fuel Assembly design. Several features of the I-(182)-1 cask and their basis are described.

  4. CORTRAN code user manual. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Cheatham, R.L.; Crawford, S.L.; Khan, E.U.

    1981-02-01

    CORTRAN has been developed as a relatively fast running design code for core-wide steady-state and transient analysis of Liquid Metal Fast Breeder Reactor (LMFBR) cores. The preliminary version of this computer program uses subchannel analysis techniques to compute the velocity and temperature fields on a multiassembly basis for three types of transient forcing functions: total power, total flow, and inlet coolant temperature. Interassembly heat transfer, intra-assembly heat transfer, and intra-assembly flow redistribution due to buoyancy are taken into account. Heat generation within the fuel rods and assembly duct walls is also included. Individual pin radial peaking factors (peak to average for each assembly) can be either read in or calculated from specified normalized neutronic power densities (six per assembly).

  5. Community disassembly in ephemeral ecosystems.

    Science.gov (United States)

    O'Neill, Brian J

    2016-12-01

    Community disassembly is the non-random process of progressive species declines and losses. This process is usually studied to determine how various forces extirpate species, such as catastrophic disturbance, species invasions, habitat fragmentation, or unnatural/anthropogenic stressors. However, in ephemeral ecosystems, community disassembly is a natural and repeatable process. While many ephemeral ecosystems are aquatic (vernal pools, playa lakes, rock pools, saline lakes, phytotelmata, etc.), some disassembly patterns are applicable to other ecosystem types, including terrestrial ecosystems. As ephemeral waterbodies near the end of their hydroperiod, certain aspects fundamentally change. These fundamental changes or mechanisms cause visible patterns of community disassembly. Decreasing habitat size eliminates microhabitats and increases encounter rates between organisms, possibly increasing predation and competition. A harshening habitat eliminates low-tolerance species, changes the proportions of specialists/generalists, and forces organisms to acclimate, emigrate, or die. Additionally, ultraviolet light affects more of the water column, eliminating unprotected species. Furthermore, the entire metacommunity is often in similar stages of disassembly and collapses. Many of these mechanisms drive disassembly of terrestrial ephemeral habitats, such as animal carcasses, dung pads, or fungal fruiting bodies. Organisms obligate to ephemeral habitats have evolved to optimize their life history for a rapid life cycle with specific adaptations for themselves or their offspring to survive through the inactive period of the ecosystem. While some disassembly may occur too fast for biotic interactions or compensatory dynamics to be important, organisms undergoing natural disassembly should "expect" it. Thus, predictions of disassembly based on internal or biotic patterns may be more common in natural disassembly scenarios than in human-induced disassembly of permanent

  6. Leakage effects on LMFBR cell liners

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.; Gartling, D.K.; Nickell, R.E.

    1978-01-01

    The thermostructural effects of a molten sodium spill onto a Liquid Metal Fast Breeder Reactor (LMFBR) cell liner are investigated utilizing a geometrically simple finite element model. The sodium spill is considered for various flow rate regimes. Because the actual characteristics of a spill are unknown, a parametric analysis was performed with the size of spill and heat transfer coefficient as variables.

  7. Cilium assembly and disassembly

    Science.gov (United States)

    2016-01-01

    The primary cilium is an antenna-like, immotile organelle present on most types of mammalian cells, which interprets extracellular signals that regulate growth and development. Although once considered a vestigial organelle, the primary cilium is now the focus of considerable interest. We now know that ciliary defects lead to a panoply of human diseases, termed ciliopathies, and the loss of this organelle may be an early signature event during oncogenic transformation. Ciliopathies include numerous seemingly unrelated developmental syndromes, with involvement of the retina, kidney, liver, pancreas, skeletal system and brain. Recent studies have begun to clarify the key mechanisms that link cilium assembly and disassembly to the cell cycle, and suggest new possibilities for therapeutic intervention. PMID:27350441

  8. Sensitivity of the power distribution in large heterogeneous LMFBR designs

    Energy Technology Data Exchange (ETDEWEB)

    Tzanos, C.P.; Barthold, W.P.

    1977-01-01

    In heterogeneous LMFBR designs consisting of consecutive core and blanket zones, the power distribution is very sensitive to enrichment distribution changes in the core zones. The purpose of the paper is to analyze this sensitivity in heterogeneous LMFBR designs of different degrees of coupling among the core zones.

  9. AGC-2 Disassembly Report

    Energy Technology Data Exchange (ETDEWEB)

    William Windes

    2014-05-01

    The Next Generation Nuclear Plant (NGNP) Graphite Research and Development (R&D) Program is currently measuring irradiated material properties for predicting the behavior and operating performance of new nuclear graphite grades available for use within the cores of new very high temperature reactor designs. The Advanced Graphite Creep (AGC) experiment, consisting of six irradiation capsules, will generate irradiated graphite performance data for NGNP reactor operating conditions. The AGC experiment is designed to determine the changes to specific material properties such as thermal diffusivity, thermal expansion, elastic modulus, mechanical strength, irradiation induced dimensional change rate, and irradiation creep for a wide variety of nuclear grade graphite types over a range of high temperature, and moderate doses. A series of six capsules containing graphite test specimens will be used to expose graphite test samples to a dose range from 1 to 7 dpa at three different temperatures (600, 900, and 1200°C) as described in the Graphite Technology Development Plan. Since irradiation induced creep within graphite components is considered critical to determining the operational life of the graphite core, some of the samples will also be exposed to an applied load to determine the creep rate for each graphite type under both temperature and neutron flux. All six AGC capsules in the experiment will be irradiated in the Advanced Test Reactor (ATR). AGC-1 and AGC-2 will be irradiated in the south flux trap and AGC-3–AGC-6 will be irradiated in the east flux trap. The change in flux traps is due to NGNP irradiation priorities requiring the AGC experiment to be moved to accommodate Fuel irradiation experiments. After irradiation, all six AGC capsules will be cooled in the ATR Canal, sized for shipment, and shipped to the Materials and Fuels Complex (MFC) where the capsule will be disassembled in the Hot Fuel Examination Facility (HFEF). During disassembly, the metallic

  10. LMFBR with booster pump in pumping loop

    Science.gov (United States)

    Rubinstein, H.J.

    1975-10-14

    A loop coolant circulation system is described for a liquid metal fast breeder reactor (LMFBR) utilizing a low head, high specific speed booster pump in the hot leg of the coolant loop with the main pump located in the cold leg of the loop, thereby providing the advantages of operating the main pump in the hot leg with the reliability of cold leg pump operation.

  11. Multicell slug flow heat transfer analysis of finite LMFBR bundles

    Energy Technology Data Exchange (ETDEWEB)

    Yeung, M.K.; Wolf, L.

    1978-12-01

    An analytical two-dimensional, multi-region, multi-cell technique has been developed for the thermal analysis of LMFBR rod bundles. Local temperature fields of various unit cells were obtained for 7, 19, and 37-rod bundles of different geometries and power distributions. The validity of the technique has been verified by its excellent agreement with the THTB calculational result. By comparing the calculated fully-developed circumferential clad temperature distribution with those of the experimental measurements, an axial correction factor has been derived to account for the entrance effect for practical considerations. Moreover, the knowledge of the local temperature field of the rod bundle leads to the determination of the effective mixing lengths L/sub ij/ for adjacent subchannels of various geometries. It was shown that the implementation of the accurately determined L/sub ij/ into COBRA-IIIC calculations has fairly significant effects on intersubchannel mixing. In addition, a scheme has been proposed to couple the 2-D distributed and lumped parameter calculation by COBRA-IIIC such that the entrance effect can be implanted into the distributed parameter analysis. The technique has demonstrated its applicability for a 7-rod bundle and the results of calculation were compared to those of three-dimensional analyses and experimental measurements.

  12. RESEARCH ON PROCESS AND PLAN OF DISASSEMBLY

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    With the viewpoint of integrating all phases of product life cycle,product disassembly problem is discussed. An kind of logical net methodology for product disassembly modeling is presented. An channel of converting product assembly model into disassembly model,such as logical net, is proposed,and the minimization cost problem and its linear programming model are given.

  13. Reactor control rod timing system. [LMFBR

    Science.gov (United States)

    Wu, P.T.K.

    1980-03-18

    A fluid driven jet-edge whistle timing system is described for control rods of a nuclear reactor for producing real-time detection of the timing of each control rod in its scram operation. An important parameter in reactor safety, particularly for liquid metal fast breeder reactors (LMFBR), is the time deviation between the time the control rod is released and the time the rod actually reaches the down position. The whistle has a nearly pure tone signal with center frequency (above 100 kHz) far above the frequency band in which the energy of the background noise is concentrated. Each control rod can be fitted with a whistle with a different frequency so that there is no ambiguity in differentiating the signal from each control rod.

  14. Low cycle fatigue of irradiated LMFBR materials

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, L D

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data.

  15. Airborne effluent control for LMFBR fuel reprocessing plants

    Energy Technology Data Exchange (ETDEWEB)

    Yarbro, O.O.; Groenier, W.S.; Stephenson, M.J.

    1976-01-01

    A significant part of the LMFBR fuel reprocessing development program has been devoted to the development of efficient removal systems for the volatile fission products, including /sup 131/I, krypton, tritium, /sup 129/I, and most recently /sup 14/C. Flowsheet studies have indicated that very significant reductions of radioactive effluents can be achieved by integrating advanced effluent control systems with new concepts of containment and ventilation; however, the feasibility of such has not yet been established, nor have the economics been examined. This paper presents a flowsheet for the application of advanced containment systems to the processing of LMFBR fuels and summarizes the status and applicability of specific fission product removal systems.

  16. Disassemblability modeling technology of configurable product based on disassembly constraint relation weighted design structure matrix(DSM)

    Science.gov (United States)

    Qiu, Lemiao; Liu, Xiaojian; Zhang, Shuyou; Sun, Liangfeng

    2014-05-01

    The current research of configurable product disassemblability focuses on disassemblability evaluation and disassembly sequence planning. Little work has been done on quantitative analysis of configurable product disassemblability. The disassemblability modeling technology for configurable product based on disassembly constraint relation weighted design structure matrix (DSM) is proposed. Major factors affecting the disassemblability of configurable product are analyzed, and the disassembling degrees between components in configurable product are obtained by calculating disassembly entropies such as joint type, joint quantity, disassembly path, disassembly accessibility and material compatibility. The disassembly constraint relation weighted DSM of configurable product is constructed and configuration modules are formed by matrix decomposition and tearing operations. The disassembly constraint relation in configuration modules is strong coupling, and the disassembly constraint relation between modules is weak coupling, and the disassemblability configuration model is constructed based on configuration module. Finally, taking a hydraulic forging press as an example, the decomposed weak coupling components are used as configuration modules alone, components with a strong coupling are aggregated into configuration modules, and the disassembly sequence of components inside configuration modules is optimized by tearing operation. A disassemblability configuration model of the hydraulic forging press is constructed. By researching the disassemblability modeling technology of product configuration design based on disassembly constraint relation weighted DSM, the disassembly property in maintenance, recycling and reuse of configurable product are optimized.

  17. Modeling operational behavior of a disassembly line

    Science.gov (United States)

    Kizilkaya, Elif A.; Gupta, Surendra M.

    2004-12-01

    In this paper we present a dynamic kanban (pull) system specifically developed for disassembly lines. This type of kanban system is much more complex than the traditional kanban system used in assembly lines. For instance, unlike the assembly line where the external demand occurs only at the last station, the demands in the disassembly case also occur at any of the intermittent stations. The reason is that as a product moves on the disassembly line, various parts are disassembled at every station and accumulated at that station. Therefore, there are as many demand sources as there are number of parts. We consider a case example involving the end-of-life products. Based on the precedence relationships and other criteria such as hazardous properties of the parts, we balance the disassembly line. The results of the disassembly line-balancing problem (DLBP) are used as input to the proposed dynamic kanban system for disassembly line (DKSDL). We compare the performance of the DKSDL to the modified kanban system for disassembly line (MKSDL), which was previously introduced by the authors. We show, via simulation, that the DKSDL is far superior to MKSDL considered.

  18. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, September 1, 1980-November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1981-02-01

    Four tasks are reported: bundle geometry (wrapped and bare rods), subchannel geometry (bare rods), subchannel geometry (bare rods), LMFBR outlet plenum flow mixing, and theoretical determination of local temperature fields in LMFBR fuel rod bundles. (DLC)

  19. Moving hot cell for LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1994-09-16

    A moving hot cell for an LMFBR type reactor is made movable on a reactor operation floor between a position just above the reactor container and a position retreated therefrom. Further, it comprises an overhung portion which can incorporate a spent fuel just thereunder, and a crane for moving a fuel assembly between a spent fuel cask and a reactor container. Further, an opening/closing means having a shielding structure is disposed to the bottom portion and the overhung portion thereof, to provide a sealing structure, in which only the receiving port for the spent fuel cask faces to the inner side, and the cask itself is disposed at the outside. Upon exchange of fuels, the movable hot cell is placed just above the reactor to take out the spent fuels, so that a region contaminated with primary sodium is limited within the hot cell. On the other hand, upon maintenance and repair for equipments, the hot cell is moved, thereby enabling to provide a not contaminated reactor operation floor. (N.H.).

  20. Review of PRA methodology for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Yang, J.E

    1999-02-01

    Probabilistic Risk Assessment (PRA) has been widely used as a tool to evaluate the safety of NPPs (Nuclear Power Plants), which are in the design stage as well as in operation. Recently, PRA becomes one of the licensing requirements for many existing and new NPPs. KALIMER is a Liquid Metal Fast Breeder Reactor (LMFBR) being developed by KAERI. Since the design concept of KALIMER is similar to that of the PRISM plant developed by GE, it would be appropriate to review the PRA methodology of PRISM as the first step of KALIMER PRA. Hence, in this report summarizes the PRA methodology of PRISM plant, and the required works for the PSA of KALIMER based on the reviewed results. The PRA technology of PRISM plant consists of following five major tasks: (1) development of initiating event list, (2) development of system event tree, (3) development of core response event tree, (4) development of containment response event tree, and (5) consequences and risk estimation. The estimated individual and societal risk measures show that the risk from a PRISM module is substantially less than the NRC goal. Each task is compared to the PRA methodology of Light Water Reactor (LWR)/Pressurized Heavy Water Reactor (PHWR). In the report, each task of PRISM PRA methodology is reviewed and compared to the corresponding part of LWR/PHWR PSA performed in Korea. The parts that are not modeled appropriately in PRISM PRA are identified, and the recommendations for KALIMER PRA are stated. (author). 14 refs., 9 tabs., 4 figs.

  1. Coolant mixing in the LMFBR outlet plenum

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y.B.; Golay, M.W.

    1977-06-01

    Small scale experiments involving water flows are used to provide mean flow and turbulence field data for LMFBR outlet plenum flows. Measurements are performed at Reynolds Number (Re) values of 33000 and 70000 in a 1/15-scale FFTF geometry and at Re = 35000 in a 3/80-scale CRBR geometry. The experimental behavior is predicted using two different turbulence model computer programs, TEACH-T and VARR-II. It is found that the qualitative nature of the flow field within the plenum depends strongly upon the distribution of the mean inlet velocity field, upon the degree of inlet turbulence, and upon the turbulence momentum exchange model used in the calculations. It is found in the FFTF geometry that the TEACH-T predictions are better than that of VARR-II, and in the CRBR geometry neither code provides a good prediction of the observed behavior. From the sensitivity analysis, it is found that the production and dissipation of turbulence are the dominant terms in the transport equations for turbulent kinetic energy and turbulent energy dissipation rate, and the diffusion terms are relatively small. From the same study a new set of empirical constants for the turbulence model is evolved for the prediction of plenum flows.

  2. Core-seis: a code for LMFBR core seismic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Chellapandi, P.; Ravi, R.; Chetal, S.C.; Bhoje, S.B. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India). Reactor Group

    1995-12-31

    This paper deals with a computer code CORE-SEIS specially developed for seismic analysis of LMFBR core configurations. For demonstrating the prediction capability of the code, results are presented for one of the MONJU reactor core mock ups which deals with a cluster of 37 subassemblies kept in water. (author). 3 refs., 7 figs., 2 tabs.

  3. Experimental determination of LMFBR seismic equivalent core model

    Energy Technology Data Exchange (ETDEWEB)

    Fontaine, B.; Buland, P.; Fegeant, O.; Gantenbein, F. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1995-12-31

    The main phenomena which influence an LMFBR core seismic response are the fluid structure interaction and the impacts between subassemblies. To study the core behaviour seismic tests and calculations have been performed on the core mock-up RAPSODIE in air or in water and for different excitation levels. (author). 2 refs., 6 figs.

  4. NSSS capital costs for a mature LMFBR industry

    Energy Technology Data Exchange (ETDEWEB)

    Zaman, S.U.

    1978-10-23

    The conceptual design of a commercial LMFBR (Target Plant) and its NSSS capital cost have been developed in support of the United Engineers and Constructors Contract EN-78-C-02-4954 with the Department of Energy. The objective of this work is to provide the Department of Energy/Office of Program Planning and Analysis - Nuclear Energy Programs with periodic updates of technical, capital cost, fuel cycle cost, and operating and maintenance cost information. This effort supports Task 3B of the UE and C's Phase I Energy Economic Data Base (EEDB) Program. Past estimates of LMFBR capital costs have generally predicted that these costs would be higher than those of a comparably sized LWR, primarily due to the more demanding technology associated wih higher temperatures and the large number of engineered systems. The LMFBR, because of its low fuel cycle costs, can tolerate a capital cost premium relative to thermal reactors. The key issues, therefore, are: the allowable LMFBR cost premium, and the steps necessary to reduce the capital cost below the projected allowable cost premium for a safe and reliable plant.

  5. STUDY ON HUMAN-COMPUTER SYSTEM FOR STABLE VIRTUAL DISASSEMBLY

    Institute of Scientific and Technical Information of China (English)

    Guan Qiang; Zhang Shensheng; Liu Jihong; Cao Pengbing; Zhong Yifang

    2003-01-01

    The cooperative work between human being and computer based on virtual reality (VR) is investigated to plan the disassembly sequences more efficiently. A three-layer model of human-computer cooperative virtual disassembly is built, and the corresponding human-computer system for stable virtual disassembly is developed. In this system, an immersive and interactive virtual disassembly environment has been created to provide planners with a more visual working scene. For cooperative disassembly, an intelligent module of stability analysis of disassembly operations is embedded into the human-computer system to assist planners to implement disassembly tasks better. The supporting matrix for stability analysis of disassembly operations is defined and the method of stability analysis is detailed. Based on the approach, the stability of any disassembly operation can be analyzed to instruct the manual virtual disassembly. At last, a disassembly case in the virtual environment is given to prove the validity of above ideas.

  6. Binary Code Disassembly for Reverse Engineering

    Directory of Open Access Journals (Sweden)

    Marius Popa

    2013-01-01

    Full Text Available The disassembly of binary file is used to restore the software application code in a readable and understandable format for humans. Further, the assembly code file can be used in reverse engineering processes to establish the logical flows of the computer program or its vulnerabilities in real-world running environment. The paper highlights the features of the binary executable files under the x86 architecture and portable format, presents issues of disassembly process of a machine code file and intermediate code, disassembly algorithms which can be applied to a correct and complete reconstruction of the source file written in assembly language, and techniques and tools used in binary code disassembly.

  7. Disassembly automation automated systems with cognitive abilities

    CERN Document Server

    Vongbunyong, Supachai

    2015-01-01

    This book presents a number of aspects to be considered in the development of disassembly automation, including the mechanical system, vision system and intelligent planner. The implementation of cognitive robotics increases the flexibility and degree of autonomy of the disassembly system. Disassembly, as a step in the treatment of end-of-life products, can allow the recovery of embodied value left within disposed products, as well as the appropriate separation of potentially-hazardous components. In the end-of-life treatment industry, disassembly has largely been limited to manual labor, which is expensive in developed countries. Automation is one possible solution for economic feasibility. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  8. An analytical tool for PIN contact incident of LMFBR fuel-subassembly

    Energy Technology Data Exchange (ETDEWEB)

    Miyakoshi, Hiroyuki; Haga, Kazuo [Nuclear Power Engineering Corp., Tokyo (Japan)

    1997-12-01

    A subchannel computer code COBRA-41 was modified for LMFBR local faults analysis. Calculational results to a pin contact condition were compared with experimental ones and trial calculations were made to an LMFBR fuel-subassembly geometry. 8 refs., 8 figs., 2 tabs.

  9. Disassembling iron availability to phytoplankton

    Directory of Open Access Journals (Sweden)

    Yeala eShaked

    2012-04-01

    Full Text Available The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO2 drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability - the acquisition of Fe-substrate by phytoplankton - and added levels of complexity involving interactions among organisms, iron and ecosystem processes. We first examine how phytoplankton acquire free and organically-bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotes and eukaryotes. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as spectrum rather than an absolute all or nothing. We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe compounds and environments, and for gauging the contribution of various Fe substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species.

  10. Disassembling iron availability to phytoplankton.

    Science.gov (United States)

    Shaked, Yeala; Lis, Hagar

    2012-01-01

    The bioavailability of iron to microorganisms and its underlying mechanisms have far reaching repercussions to many natural systems and diverse fields of research, including ocean biogeochemistry, carbon cycling and climate, harmful algal blooms, soil and plant research, bioremediation, pathogenesis, and medicine. Within the framework of ocean sciences, short supply and restricted bioavailability of Fe to phytoplankton is thought to limit primary production and curtail atmospheric CO(2) drawdown in vast ocean regions. Yet a clear-cut definition of bioavailability remains elusive, with elements of iron speciation and kinetics, phytoplankton physiology, light, temperature, and microbial interactions, to name a few, all intricately intertwined into this concept. Here, in a synthesis of published and new data, we attempt to disassemble the complex concept of iron bioavailability to phytoplankton by individually exploring some of its facets. We distinguish between the fundamentals of bioavailability - the acquisition of Fe-substrate by phytoplankton - and added levels of complexity involving interactions among organisms, iron, and ecosystem processes. We first examine how phytoplankton acquire free and organically bound iron, drawing attention to the pervasiveness of the reductive uptake pathway in both prokaryotic and eukaryotic autotrophs. Turning to acquisition rates, we propose to view the availability of various Fe-substrates to phytoplankton as a spectrum rather than an absolute "all or nothing." We then demonstrate the use of uptake rate constants to make comparisons across different studies, organisms, Fe-compounds, and environments, and for gaging the contribution of various Fe-substrates to phytoplankton growth in situ. Last, we describe the influence of aquatic microorganisms on iron chemistry and fate by way of organic complexation and bio-mediated redox transformations and examine the bioavailability of these bio-modified Fe species.

  11. LMFBR steam generator systems development program progress report

    Energy Technology Data Exchange (ETDEWEB)

    None

    The intent of this program is to investigate methods of producing 2-1/4 Cr-1Mo duplex tubing to meet the structural, thermal/hydraulic and leak detection design requirements of the duplex tube leak detection concept for application on the Demonstration Plant and/or prototype steam generator. The leak detection concept as envisioned for LMFBR steam generator application will be analyzed regarding response to credible leak situations. The results of testing will be used for this analysis. The third fluid system will be conceptually designed including the two plena design adaptations being considered and the advantages and disadvantages of each will be assessed. The test program for the single-tube steam generator model will be developed in accordance with the technical and schedular objectives of the LMFBR duplex tube steam generator development program. A conceptual steam generator configuration will be established for use as a reference in the on-going feasibility studies and Demo Plant system development.

  12. Effect of operating temperature on LMFBR core performance

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, R.C.; Bergeron, R.J.; di Lauro, G.F.; Kulwich, M.R.; Stuteville, D.W.

    1977-04-11

    The purpose of the study is to provide an engineering evaluation of high and low temperature LMFBR core designs. The study was conducted by C-E supported by HEDL expertise in the areas of materials behavior, fuel performance and fabrication/fuel cycle cost. The evaluation is based primarily on designs and analyses prepared by AI, GE and WARD during Phase I of the PLBR studies.

  13. Large pool LMFBR design. Final report. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Wett, J. F.; Churchill, J. R.

    1979-03-01

    The design effort reported is an extension on past design effort and continuous concentration on those parts of the nuclear island unique to a commercial size pool type LMFBR. In particular, the work covers the reactor vessel, deck, rotating plugs, upper and lower internals, internal plenum separator system, IHX, pumps, cold traps, intermediate system layout, containment/confinement system, plot plan, and residual heat removal systems. Preliminary thermal, hydraulic, stress, and system analyses are also presented.

  14. First insights into disassembled "evapotranspiration"

    Science.gov (United States)

    Chormański, Jarosław; Kleniewska, Małgorzata; Berezowski, Tomasz; Szporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatyłowicz, Jan; Batelaan, Okke

    2015-04-01

    In this work we present an initial data analysis obtained from a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them fromthe total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its component transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project

  15. Illustrating the disassembly of 3D models

    KAUST Repository

    Guo, Jianwei

    2013-10-01

    We present a framework for the automatic disassembly of 3D man-made models and the illustration of the disassembly process. Given an assembled 3D model, we first analyze the individual parts using sharp edge loops and extract the contact faces between each pair of neighboring parts. The contact faces are then used to compute the possible moving directions of each part. We then present a simple algorithm for clustering the sets of the individual parts into meaningful sub-assemblies, which can be used for a hierarchical decomposition. We take the stability of sub-assemblies into account during the decomposition process by considering the upright orientation of the input models. Our framework also provides a user-friendly interface to enable the superimposition of the constraints for the decomposition. Finally, we visualize the disassembly process by generating an animated sequence. The experiments demonstrate that our framework works well for a variety of complex models. © 2013 Elsevier Ltd.

  16. Electronic waste disassembly with industrial waste heat.

    Science.gov (United States)

    Chen, Mengjun; Wang, Jianbo; Chen, Haiyian; Ogunseitan, Oladele A; Zhang, Mingxin; Zang, Hongbin; Hu, Jiukun

    2013-01-01

    Waste printed circuit boards (WPCBs) are resource-rich but hazardous, demanding innovative strategies for post-consumer collection, recycling, and mining for economically precious constituents. A novel technology for disassembling electronic components from WPCBs is proposed, using hot air to melt solders and to separate the components and base boards. An automatic heated-air disassembling equipment was designed to operate at a heating source temperature at a maximum of 260 °C and an inlet pressure of 0.5 MPa. A total of 13 individual WPCBs were subjected to disassembling tests at different preheat temperatures in increments of 20 °C between 80 and 160 °C, heating source temperatures ranging from 220 to 300 °C in increments of 20 °C, and incubation periods of 1, 2, 4, 6, or 8 min. For each experimental treatment, the disassembly efficiency was calculated as the ratio of electronic components released from the board to the total number of its original components. The optimal preheat temperature, heating source temperature, and incubation period to disassemble intact components were 120 °C, 260 °C, and 2 min, respectively. The disassembly rate of small surface mount components (side length ≤ 3 mm) was 40-50% lower than that of other surface mount components and pin through hole components. On the basis of these results, a reproducible and sustainable industrial ecological protocol using steam produced by industrial exhaust heat coupled to electronic-waste recycling is proposed, providing an efficient, promising, and green method for both electronic component recovery and industrial exhaust heat reutilization.

  17. Multi-kanban mechanism for appliance disassembly

    Science.gov (United States)

    Udomsawat, Gun; Gupta, Surendra M.

    2005-11-01

    The use of household appliances continues to rise every year. A significant number of End-Of-Life (EOL) appliances are generated because of the introduction of newer models that are more attractive, efficient and affordable. Others are, of course, generated when they become non-functional. Many regulations encourage recycling of EOL appliances to reduce the amount of waste sent to landfills. In addition, EOL appliances offer the appliance manufacturing and remanufacturing industries a source of less expensive raw materials and components. For this reason product recovery has become a subject of interest during the past decade. In this paper, we study the disassembly line for appliance disassembly. We discuss and incorporate some of the complications that are inherent in disassembly line including product arrival, demand arrival, inventory fluctuation and production control mechanisms. We show how to overcome such complications by implementing a multi-kanban system in the appliance disassembly line setting. The multi-kanban system (MKS) relies on dynamic routing of kanbans according to the state of the system. We investigate the multi-kanban mechanism using simulation and explore the effect of product mix on performance of the traditional push system (TPS) and MKS in terms of controlling the system's inventory while attempting to achieve a decent customer service level.

  18. Users' guide to CACECO containment analysis code. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Peak, R.D.

    1979-06-01

    The CACECO containment analysis code was developed to predict the thermodynamic responses of LMFBR containment facilities to a variety of accidents. The code is included in the National Energy Software Center Library at Argonne National Laboratory as Program No. 762. This users' guide describes the CACECO code and its data input requirements. The code description covers the many mathematical models used and the approximations used in their solution. The descriptions are detailed to the extent that the user can modify the code to suit his unique needs, and, indeed, the reader is urged to consider code modification acceptable.

  19. LMFBR models for the ORIGEN2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1983-06-01

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th-/sup 233/U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given.

  20. LMFBR models for the ORIGEN2 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; McAdoo, J.W.; Bjerke, M.A.

    1981-10-01

    Reactor physics calculations have led to the development of nine liquid-metal fast breeder reactor (LMFBR) models for the ORIGEN2 computer code. Four of the models are based on the U-Pu fuel cycle, two are based on the Th-U-Pu fuel cycle, and three are based on the Th-/sup 238/U fuel cycle. The reactor models are based on cross sections taken directly from the reactor physics codes. Descriptions of the reactor models as well as values for the ORIGEN2 flux parameters THERM, RES, and FAST are given.

  1. Calculation of reactivity changes due to bubble collapse. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, T.J.; Petrie, L.M.

    1977-01-01

    Calculations based on Behrens' method indicate that a substantial increase in reactivity may accompany the collapse of a large number of small bubbles in an LMFBR core. More sophisticated transport approaches to this problem have encountered several difficulties: the large number of bubbles requires many mesh points; the desired effect can easily be masked by the movement of fuel to regions of greater (or lesser) importance; the reactivity is desired for a random distribution of spherical bubbles. This paper describes a transport approach to this problem which avoids the above difficulties by using the ''sub-group'' or ''probability table'' method.

  2. Deposition and removal of radioactive isotopes from LMFBR components

    Energy Technology Data Exchange (ETDEWEB)

    Hill, E.F.; Lutton, J.M.; Maffei, H.P.

    1980-01-01

    The development of an analytical model to describe the production, transport and eventual removal of radioactive materials in the primary sodium of LMFBR's is a continuing Sodium Technology activity sponsored by the Department of Energy. This paper describes studies directed toward obtaining an understanding of the deposition from sodium of fuel cladding activated corrosion products onto stainless steel alloys and the effect of their diffusion into the base metal on the process required to decontaminate it. The objective of the decontamination operation is to reduce the activity to a level allowing hands on maintenance without causing unacceptable damage to the component.

  3. A Novel Disassemble Algorithm Designed for Malicious File

    Directory of Open Access Journals (Sweden)

    Di Sun

    2013-02-01

    Full Text Available In order to avoid being static analyzed, hacker rely on various obfuscation techniques to hide its malicious characters. These techniques are very effective against common disassembles, preventing binary file from being disassembled correctly. The study presents novel disassemble algorithm which based on analyzed Control Flow Graph (CFG and Data Flow Graph (DFG information improve the ability of the disassembly. The proposed algorithm was verified on varied binary files. The experiment shows that the method not only improves the accuracy of disassemble but also greatly deal with malicious files.

  4. Analysis of Pu-Only Partitioning Strategies in LMFBR Fuel Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Samuel Bays; Gilles Youinou

    2013-02-01

    Sodium cooled Fast Reactors (SFR) have been under consideration for production of electricity, fissile material production, and for destruction of transuranics for decades. The neutron economy of a SFR can be operated in one of two ways. One possibility is to operate the reactor in a transuranic burner mode which has been the focus of active R&D in the last 15 years. However, prior to that the focus was on breeding transuranics. This later mode of managing the neutron economy relies on ensuring the maximum fuel utilization possible in such a way as to maximize the amount of plutonium produced per unit of fission energy in the reactor core. The goal of maximizing plutonium production in this study is as fissile feed stock for the production of MOX fuel to be used in Light Water Reactors (LWR). Throughout the l970’s, this fuel cycle scenario was the focus of much research by the Atomic Energy Commission in the event that uranium supplies would be scarce. To date, there has been sufficient uranium to supply the once through nuclear fuel cycle. However, interest in a synergistic relationship Liquid Metal Fast Breeder Reactors (LMFBR) and a consumer LWR fleet persists, prompting this study. This study considered LMFBR concepts with varying additions of axial and radial reflectors. Three scenarios were considered in collaboration with a companion study on the LWR-MOX designs based on plutonium nuclide vectors produced by this study. The first scenario is a LMFBR providing fissile material to make MOX fuel where the MOX part of the fuel cycle is operated in a once-through-then-out mode. The second scenario is the same as the first but with the MOX part of the fuel cycle multi-recycling its own plutonium with LMFBR being used for the make-up feed. In these first two scenarios, plutonium partitioning from the minor actinides (MA) was assumed. Also, the plutonium management strategy of the LMFBR ensured that only the high fissile purity plutonium bred from blankets was

  5. A Heuristic for Disassembly Planning in Remanufacturing System

    Directory of Open Access Journals (Sweden)

    Jinmo Sung

    2014-01-01

    Full Text Available This study aims to improve the efficiency of disassembly planning in remanufacturing environment. Even though disassembly processes are considered as the reverse of the corresponding assembly processes, under some technological and management constraints the feasible and efficient disassembly planning can be achieved by only well-designed algorithms. In this paper, we propose a heuristic for disassembly planning with the existence of disassembled part/subassembly demands. A mathematical model is formulated for solving this problem to determine the sequence and quantity of disassembly operations to minimize the disassembly costs under sequence-dependent setup and capacity constraints. The disassembly costs consist of the setup cost, part inventory holding cost, disassembly processing cost, and purchasing cost that resulted from unsatisfied demand. A simple but efficient heuristic algorithm is proposed to improve the quality of solution and computational efficiency. The main idea of heuristic is to divide the planning horizon into the smaller planning windows and improve the computational efficiency without much loss of solution quality. Performances of the heuristic are investigated through the computational experiments.

  6. Multikanban model for disassembly line with demand fluctuation

    Science.gov (United States)

    Udomsawat, Gun; Gupta, Surendra M.; Al-Turki, Yousef A. Y.

    2004-02-01

    In recent years, the continuous growth in consumer waste and dwindling natural resources has seriously threatened the environment. Realizing this, several countries have passed regulations that force manufacturers not only to manufacture environmentally conscious products, but also to take back their used products from consumers so that the components and materials recovered from the products may be reused and/or recycled. Disassembly plays an important role in product recovery. A disassembly line is perhaps the most suitable setting for disassembly of products in large quantities. Because a disassembly line has a tendency to generate excessive inventory, employing a kanban system can reduce the inventory level and let the system run more efficiently. A disassembly line is quite different from an assembly line. For example, not only can the demand arrive at the last station, it can also arrive at any of the other stations in the system. The demand for a component on the disassembly line could fluctuate widely. In fact, there are many other complicating matters that need to be considered to implement the concept of kanbans in such an environment. In this paper, we discuss the complications that are unique to a disassembly line. We discuss the complications in utilizing the conventional production control mechanisms in a disassembly line setting. We then show how to overcome them by implementing kanbans in a disassembly line setting with demand fluctuation and introduce the concept of multi-kanban mechanism. We demonstrate its effectiveness using a simulation model. An example is presented to illustrate the concept.

  7. A Scatter Search Approach for Multiobjective Selective Disassembly Sequence Problem

    Directory of Open Access Journals (Sweden)

    Xiwang Guo

    2014-01-01

    Full Text Available Disassembly sequence has received much attention in recent years. This work proposes a multiobjective optimization of model for selective disassembly sequences and maximizing disassembly profit and minimizing disassembly time. An improved scatter search (ISS is adapted to solve proposed multiobjective optimization model, which embodies diversification generation of initial solutions, crossover combination operator, the local search strategy to improve the quality of new solutions, and reference set update method. To analyze the effect on the performance of ISS, simulation experiments are conducted on different products. The validity of ISS is verified by comparing the optimization effects of ISS and nondominated sorting genetic algorithm (NSGA-II.

  8. Postulated accident scenarios in weapons disassembly

    Energy Technology Data Exchange (ETDEWEB)

    Payne, S.S. [Dept. of Energy, Albuquerque, NM (United States)

    1997-06-01

    A very brief summary of three postulated accident scenarios for weapons disassembly is provided in the paper. The first deals with a tetrahedral configuration of four generic pits; the second, an infinite planar array of generic pits with varying interstitial water density; and the third, a spherical shell with internal mass suspension in water varying the size and mass of the shell. Calculations were performed using the Monte Carlo Neutron Photon transport code MCNP4A. Preliminary calculations pointed to a need for higher resolution of small pit separation regimes and snapshots of hydrodynamic processes of water/plutonium mixtures.

  9. 2D semiconductor optoelectronics

    Science.gov (United States)

    Novoselov, Kostya

    The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.

  10. Development of a simple estimation tool for LMFBR construction cost

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kinoshita, Izumi [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab

    1999-05-01

    A simple tool for estimating the construction costs of liquid-metal-cooled fast breeder reactors (LMFBRs), 'Simple Cost' was developed in this study. Simple Cost is based on a new estimation formula that can reduce the amount of design data required to estimate construction costs. Consequently, Simple cost can be used to estimate the construction costs of innovative LMFBR concepts for which detailed design has not been carried out. The results of test calculation show that Simple Cost provides cost estimations equivalent to those obtained with conventional methods within the range of plant power from 325 to 1500 MWe. Sensitivity analyses for typical design parameters were conducted using Simple Cost. The effects of four major parameters - reactor vessel diameter, core outlet temperature, sodium handling area and number of secondary loops - on the construction costs of LMFBRs were evaluated quantitatively. The results show that the reduction of sodium handling area is particularly effective in reducing construction costs. (author)

  11. Simple LMFBR axial-flow friction-factor correlation

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Y.N.; Todreas, N.E.

    1982-12-01

    Complicated LMFBR axial lead-length averaged friction-factor correlations are reduced to an easy, ready-to-use function of bundle Reynolds number for wire-wrapped bundles. The function together with the power curves to calculate the associated constants are incorporated in a computer preprocessor, EZFRIC. The constants required for the calculation of the subchannels and bundle friction factors are derived and correlated into power curves of geometrical parameters. A computer program, FRIC, which can alternatively be used to accurately calculate these constants is also included. The accurate values of the constants and the corresponding values predicted by the power curves and percentage error of prediction are tabulated for a wide variety of geometries of interest.

  12. Fatigue of LMFBR piping due to flow stratification

    Energy Technology Data Exchange (ETDEWEB)

    Woodward, W.S.

    1983-01-01

    Flow stratification due to reverse flow was simulated in a 1/5-scale water model of a LMFBR primary pipe loop. The stratified flow was observed to have a dynamic interface region which oscillated in a wave pattern. The behavior of the interface was characterized in terms of location, local temperature fluctuation and duration for various reverse flow conditions. A structural assessment was performed to determine the effects of stratified flow on the fatigue life of the pipe. Both the static and dynamic aspects of flow stratification were examined. The dynamic interface produces thermal striping on the inside of the pipe wall which is shown to have the most deleterious effect on the pipe wall and produce significant fatigue damage relative to a static interface.

  13. Impact of different disassembly line balancing algorithms on the performance of dynamic kanban system for disassembly line

    Science.gov (United States)

    Kizilkaya, Elif A.; Gupta, Surendra M.

    2005-11-01

    In this paper, we compare the impact of different disassembly line balancing (DLB) algorithms on the performance of our recently introduced Dynamic Kanban System for Disassembly Line (DKSDL) to accommodate the vagaries of uncertainties associated with disassembly and remanufacturing processing. We consider a case study to illustrate the impact of various DLB algorithms on the DKSDL. The approach to the solution, scenario settings, results and the discussions of the results are included.

  14. Asymmetric disassembly and robustness in declining networks.

    Science.gov (United States)

    Saavedra, Serguei; Reed-Tsochas, Felix; Uzzi, Brian

    2008-10-28

    Mechanisms that enable declining networks to avert structural collapse and performance degradation are not well understood. This knowledge gap reflects a shortage of data on declining networks and an emphasis on models of network growth. Analyzing >700,000 transactions between firms in the New York garment industry over 19 years, we tracked this network's decline and measured how its topology and global performance evolved. We find that favoring asymmetric (disassortative) links is key to preserving the topology and functionality of the declining network. Based on our findings, we tested a model of network decline that combines an asymmetric disassembly process for contraction with a preferential attachment process for regrowth. Our simulation results indicate that the model can explain robustness under decline even if the total population of nodes contracts by more than an order of magnitude, in line with our observations for the empirical network. These findings suggest that disassembly mechanisms are not simply assembly mechanisms in reverse and that our model is relevant to understanding the process of decline and collapse in a broad range of biological, technological, and financial networks.

  15. Mitotic lamin disassembly is triggered by lipid-mediated signaling.

    Science.gov (United States)

    Mall, Moritz; Walter, Thomas; Gorjánácz, Mátyás; Davidson, Iain F; Nga Ly-Hartig, Thi Bach; Ellenberg, Jan; Mattaj, Iain W

    2012-09-17

    Disassembly of the nuclear lamina is a key step during open mitosis in higher eukaryotes. The activity of several kinases, including CDK1 (cyclin-dependent kinase 1) and protein kinase C (PKC), has been shown to trigger mitotic lamin disassembly, yet their precise contributions are unclear. In this study, we develop a quantitative imaging assay to study mitotic lamin B1 disassembly in living cells. We find that CDK1 and PKC act in concert to mediate phosphorylation-dependent lamin B1 disassembly during mitosis. Using ribonucleic acid interference (RNAi), we showed that diacylglycerol (DAG)-dependent PKCs triggered rate-limiting steps of lamin disassembly. RNAi-mediated depletion or chemical inhibition of lipins, enzymes that produce DAG, delayed lamin disassembly to a similar extent as does PKC inhibition/depletion. Furthermore, the delay of lamin B1 disassembly after lipin depletion could be rescued by the addition of DAG. These findings suggest that lipins activate a PKC-dependent pathway during mitotic lamin disassembly and provide evidence for a lipid-mediated mitotic signaling event.

  16. Alignment Pins for Assembling and Disassembling Structures

    Science.gov (United States)

    Campbell, Oliver C.

    2008-01-01

    Simple, easy-to-use, highly effective tooling has been devised for maintaining alignment of bolt holes in mating structures during assembly and disassembly of the structures. The tooling was originally used during removal of a body flap from the space shuttle Atlantis, in which misalignments during removal of the last few bolts could cause the bolts to bind in their holes. By suitably modifying the dimensions of the tooling components, the basic design of the tooling can readily be adapted to other structures that must be maintained in alignment. The tooling includes tapered, internally threaded alignment pins designed to fit in the bolt holes in one of the mating structures, plus a draw bolt and a cup that are used to install or remove each alignment pin. In preparation for disassembly of two mating structures, external supports are provided to prevent unintended movement of the structures. During disassembly of the structures, as each bolt that joins the structures is removed, an alignment pin is installed in its place. Once all the bolts have been removed and replaced with pins, the pins maintain alignment as the structures are gently pushed or pulled apart on the supports. In assembling the two structures, one reverses the procedure described above: pins are installed in the bolt holes, the structures are pulled or pushed together on the supports, then the pins are removed and replaced with bolts. The figure depicts the tooling and its use. To install an alignment pin in a bolt hole in a structural panel, the tapered end of the pin is inserted from one side of the panel, the cup is placed over the pin on the opposite side of the panel, the draw bolt is inserted through the cup and threaded into the pin, the draw bolt is tightened to pull the pin until the pin is seated firmly in the hole, then the draw bolt and cup are removed, leaving the pin in place. To remove an alignment pin, the cup is placed over the pin on the first-mentioned side of the panel, the draw

  17. CNS myelin wrapping is driven by actin disassembly.

    Science.gov (United States)

    Zuchero, J Bradley; Fu, Meng-Meng; Sloan, Steven A; Ibrahim, Adiljan; Olson, Andrew; Zaremba, Anita; Dugas, Jason C; Wienbar, Sophia; Caprariello, Andrew V; Kantor, Christopher; Leonoudakis, Dmitri; Leonoudakus, Dmitri; Lariosa-Willingham, Karen; Kronenberg, Golo; Gertz, Karen; Soderling, Scott H; Miller, Robert H; Barres, Ben A

    2015-07-27

    Myelin is essential in vertebrates for the rapid propagation of action potentials, but the molecular mechanisms driving its formation remain largely unknown. Here we show that the initial stage of process extension and axon ensheathment by oligodendrocytes requires dynamic actin filament assembly by the Arp2/3 complex. Unexpectedly, subsequent myelin wrapping coincides with the upregulation of actin disassembly proteins and rapid disassembly of the oligodendrocyte actin cytoskeleton and does not require Arp2/3. Inducing loss of actin filaments drives oligodendrocyte membrane spreading and myelin wrapping in vivo, and the actin disassembly factor gelsolin is required for normal wrapping. We show that myelin basic protein, a protein essential for CNS myelin wrapping whose role has been unclear, is required for actin disassembly, and its loss phenocopies loss of actin disassembly proteins. Together, these findings provide insight into the molecular mechanism of myelin wrapping and identify it as an actin-independent form of mammalian cell motility.

  18. Activated sludge model No. 2d, ASM2d

    DEFF Research Database (Denmark)

    Henze, M.

    1999-01-01

    The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...

  19. Montmorillonite-induced Bacteriophage φ6 Disassembly

    Science.gov (United States)

    Trusiak, A.; Gottlieb, P.; Katz, A.; Alimova, A.; Steiner, J. C.; Block, K. A.

    2012-12-01

    It is estimated that there are 1031 virus particles on Earth making viruses an order of magnitude more prevalent in number than prokaryotes with the vast majority of viruses being bacteriophages. Clays are a major component of soils and aquatic sediments and can react with RNA, proteins and bacterial biofilms. The clays in soils serve as an important moderator between phage and their host bacteria, helping to preserve the evolutionary balance. Studies on the effects of clays on viral infectivity have given somewhat contradictory results; possibly a consequence of clay-virus interactions being dependent on the unique structure of particular viruses. In this work, the interaction between montmorillonite and the bacteriophage φ6 is investigated. φ6 is a member of the cystovirus family that infects Pseudomonas syringe, a common plant pathogen. As a member of the cystovirus family with an enveloped structure, φ6 serves as a model for reoviruses, a human pathogen. Experiments were conducted with φ6 suspended in dilute, purified homoionic commercial-grade montmorillonite over a range of virus:clay ratios. At a 1:100000 virus:clay ratio, the clay reduced viral infectivity by 99%. The minimum clay to virus ratio which results in a measurable reduction of P. syringae infection is 1:1. Electron microscopy demonstrates that mixed suspensions of smectite and virus co-aggregate to form flocs encompassing virions within the smectite. Both free viral particles as well as those imbedded in the flocs are seen in the micrographs to be missing the envelope- leaving only the nucleocapsid (NC) intact; indicating that smectite inactivates the virus by envelope disassembly. These results have strong implications in the evolution of both the φ6 virus and its P. syringae host cells. TEM of aggregate showing several disassembled NCs.

  20. End-of-life vehicle recycling based on disassembly

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang; QIN Ye; CHEN Ming; WANG Cheng-tao

    2005-01-01

    The end-of-life vehicle recycling was studied based on the disassembly. The end-of-life recycling and the disassembly were reviewed and discussed. A disassembly experiment of an end-of-life engine was carried out, which strictly recorded the process of dismantling. Based on the results, a model of the end-of-life recycling was presented. In this model, the end-of-life parts were classified by three ways which included to recycle directly, to recycleafter remanufacturing and to discard. By using this model, the dismantling efficiency and the recycling rate can be improved. Also, it obtains a good result after used in a dismantling factory.

  1. DESIGN OF MACHINES FOR ASSEMBLY, DISASSEMBLY AND REVERSE LOGISTICS

    Directory of Open Access Journals (Sweden)

    Ryszard ROHATYŃSKI

    2014-03-01

    Full Text Available The paper deals with the new problems of machine and other industrial products design that result from reverse logistics needs. Postulate to close the material cycle in economy poses for designer teams new, other than heretofore issues. Design for assembly that principles, methodology, and co-ordination in the frame of concurrent design already exist, does not meet demands of reverse logistics. There is a need for taking into consideration disassembly processes. The disassembly should take into regard material recovery processes and the reverse logistics requirements. In the paper general principles of the design for disassembly with allowing for these processes have been formulated.

  2. Hydraulic characteristics in secondary vessel of double pool LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Izumi; Naohara, Nobuyuki; Nishi, Yoshihisa [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-06-01

    CRIEPI made a conceptual design study on Metallic Fueled Double Pool LMFBR from 1990 to 1992. In this study, the configuration of the primary and the secondary vessel, and both arrangement and number of the secondary components were selected to realize the simplification of the structure. Flow field of the coolant in the secondary vessel is depend on this design. The objective of this study is to clarify the hydraulic characteristics in the secondary vessel by 1/7 model of water test and analysis and to confirm the validity of this design. Followings are main results. (1) As a result of the water test, it is confirmed that there is no stagnant region in the secondary vessel and there are sufficient mixing effect under steam generators. (2) As a result of the comparison between flow distribution obtained by water test and that by analysis, good agreements are obtained qualitatively. (3) There is no stagnant region near the free surface in the secondary vessel under reactor condition of normal operation. Therefore, a thermal stratification will not take place. Because of the mixing effect under SG outlet, it is considered that temperature of the coolant in the secondary vessel changes slowly in the case of transient condition Therefore the validity of the design is confirmed. (author).

  3. Experimental determination of a LMFBR seismic equivalent core model

    Energy Technology Data Exchange (ETDEWEB)

    Buland, P.; Fegeant, O.; Fontaine, B.; Gantenbein, F.

    1995-12-31

    Seismic analysis of pool type LMFBR requires to perform a finite element calculation of the reactor. Because of fluid structure interaction and non-linearities due to the presence of gaps between subassemblies, it is impossible to include in the reactor vessel finite elements model the real behaviour of the core. It is therefore required to find a linear equivalent core model (LECM) which will give for the reactor vessel the same results. The design of the LECM is based on an experimental test program conducted with the core mock-up RAPSODIE on Vesuve shaking table located at CEA/Saclay center. The tests permitted to validate a linear equivalent model, which characteristics correspond to the modal parameters of the mock-up (masses, elevations, frequencies...). These characteristics were estimated in air and in water, for different level of excitation. They permitted to quantify the added mass ratio (about 15%) which is in a rather good agreement with the computation when the free surface effect is correctly taken into account. (authors). 2 refs., 5 figs., 1 photo.

  4. Gravitational agglomeration of post-HCDA LMFBR nonspherical aerosols

    Science.gov (United States)

    Tuttle, R. F.

    1980-12-01

    A theoretical investigation of collisional dynamics of two particle interactions in a gravitational field is reported. This research is unique in that it is the first attempt at modeling the hydrodynamic interactions between a nonspherical particle and a spherical particle undergoing gravitational collisions in an LMFBR environment. Basic definitions and expressions are developed for nonspherical particles and related to spherical particles by means of shape factors. Using volume equivalent diameter as the defining length in the gravitational collision kernel, the aerodynamic shape factor, k, the density correction factor, alpha, and the gravitational collision shape factor, beta, are used to correct the collision kernel for the case of collisions between aerosol agglomerates. The Navier-Stokes equation in oblate spheroidal coordinates is solved to model a nonspherical particle and then the dynamic equations for two particle motions are developed. A computer program NGCEFF is constructed, the Navier-Stokes equation is solved by the finite difference method, and the dynamical equations are solved by Gear's method. It is concluded that the aerosol gravitational collision shape factor can be determined by further theoretical work based on the concepts and methods developed in this dissertation.

  5. PROSA-1: a probabilistic response-surface analysis code. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Vaurio, J. K.; Mueller, C.

    1978-06-01

    Techniques for probabilistic response-surface analysis have been developed to obtain the probability distributions of the consequences of postulated nuclear-reactor accidents. The uncertainties of the consequences are caused by the variability of the system and model input parameters used in the accident analysis. Probability distributions are assigned to the input parameters, and parameter values are systematically chosen from these distributions. These input parameters are then used in deterministic consequence analyses performed by mechanistic accident-analysis codes. The results of these deterministic consequence analyses are used to generate the coefficients for analytical functions that approximate the consequences in terms of the selected input parameters. These approximating functions are used to generate the probability distributions of the consequences with random sampling being used to obtain values for the accident parameters from their distributions. A computer code PROSA has been developed for implementing the probabilistic response-surface technique. Special features of the code generate or treat sensitivities, statistical moments of the input and output variables, regionwise response surfaces, correlated input parameters, and conditional distributions. The code can also be used for calculating important distributions of the input parameters. The use of the code is illustrated in conjunction with the fast-running accident-analysis code SACO to provide probability studies of LMFBR hypothetical core-disruptive accidents. However, the methods and the programming are general and not limited to such applications.

  6. Multirecycling of Plutonium from LMFBR Blanket in Standard PWRs Loaded with MOX Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Sonat Sen; Gilles Youinou

    2013-02-01

    It is now well-known that, from a physics standpoint, Pu, or even TRU (i.e. Pu+M.A.), originating from LEU fuel irradiated in PWRs can be multirecycled also in PWRs using MOX fuel. However, the degradation of the isotopic composition during irradiation necessitates using enriched U in conjunction with the MOX fuel either homogeneously or heterogeneously to maintain the Pu (or TRU) content at a level allowing safe operation of the reactor, i.e. below about 10%. The study is related to another possible utilization of the excess Pu produced in the blanket of a LMFBR, namely in a PWR(MOX). In this case the more Pu is bred in the LMFBR, the more PWR(MOX) it can sustain. The important difference between the Pu coming from the blanket of a LMFBR and that coming from a PWR(LEU) is its isotopic composition. The first one contains about 95% of fissile isotopes whereas the second one contains only about 65% of fissile isotopes. As it will be shown later, this difference allows the PWR fed by Pu from the LMFBR blanket to operate with natural U instead of enriched U when it is fed by Pu from PWR(LEU)

  7. LMFBR safety. 6. Review of current issues and bibliography of literature (1977)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1978-07-13

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development. Selected bibliographic information on LMFBRs relative to the development and safety of the breeder reactor is presented for the year 1977. The bibliography consists of approximately 198 abstracts covering research and development, operating experience, and design practices. Keyword, author, and permuted-title indexes are included for completeness.

  8. Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    L. M. Galantucci

    2004-06-01

    Full Text Available The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hybridization consists of the development of a Fuzzy controller for the parameters of an assembly or disassembly planner based on GAs. This controller acts on mutation probability and crossover rate in order to adapt their values dynamically while the algorithm runs. The second level consists of the identification of the optimal assembly or disassembly sequence by a Fuzzy function, in order to obtain a closer control of the technological knowledge of the assembly/disassembly process. Two case studies were analyzed in order to test the efficiency of the Fuzzy-GA methodologies.

  9. Assembly and Disassembly Planning by using Fuzzy Logic & Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    L.M. Galantucci

    2008-11-01

    Full Text Available The authors propose the implementation of hybrid Fuzzy Logic-Genetic Algorithm (FL-GA methodology to plan the automatic assembly and disassembly sequence of products. The GA-Fuzzy Logic approach is implemented onto two levels. The first level of hybridization consists of the development of a Fuzzy controller for the parameters of an assembly or disassembly planner based on GAs. This controller acts on mutation probability and crossover rate in order to adapt their values dynamically while the algorithm runs. The second level consists of the identification of the optimal assembly or disassembly sequence by a Fuzzy function, in order to obtain a closer control of the technological knowledge of the assembly/disassembly process. Two case studies were analyzed in order to test the efficiency of the Fuzzy-GA methodologies.

  10. Assembly and disassembly of mammalian chromosome pellicle

    Institute of Scientific and Technical Information of China (English)

    NIZUMEI; JELITTLE; 等

    1992-01-01

    By means of indirect double immunofluorescent staining,the coordination of PI antigen and perichromonucleolin(PCN),the constituent of nuclear periphery and nucleolus respectively,in the assembly and disassembly of chromosome pellicle during mitosis was studied.It was found that in 3T3 cells,during mitosis PI antigen began to coat the condensing chromosome surface earlier than PCN did.However,both of them completed their coating on chromosome at approximately the same stage of mitosis,prometaphase metaphase,The dissociation of mitosis,Prometaphase metaphase.The dissociation of PI antigen from chromosome pellicle to participate the formation of nuclear periphery took place also ahead of that of PCN,At early telophase PI antigen had been extensively involved in the formation of nuclear periphery,while PCN remained in association with the surface of decondensing chromosomes.At late telophase,when PI antigen was localized in an fairly well formed nuclear periphery,PCN was in a stage of forming prenucleolar bodies.

  11. Systems impacts of spent fuel disassembly alternatives

    Energy Technology Data Exchange (ETDEWEB)

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  12. A symbolic methodology to improve disassembly process design.

    Science.gov (United States)

    Rios, Pedro; Blyler, Leslie; Tieman, Lisa; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Millions of end-of-life electronic components are retired annually due to the proliferation of new models and their rapid obsolescence. The recovery of resources such as plastics from these goods requires their disassembly. The time required for each disassembly and its associated cost is defined by the operator's familiarity with the product design and its complexity. Since model proliferation serves to complicate an operator's learning curve, it is worthwhile to investigate the benefits to be gained in a disassembly operator's preplanning process. Effective disassembly process design demands the application of green engineering principles, such as those developed by Anastas and Zimmerman (Environ. Sci. Technol. 2003, 37, 94A-101A), which include regard for product complexity, structural commonality, separation energy, material value, and waste prevention. This paper introduces the concept of design symbolsto help the operator more efficiently survey product complexity with respect to location and number of fasteners to remove a structure that is common to all electronics: the housing. With a sample of 71 different computers, printers, and monitors, we demonstrate that appropriate symbols reduce the total disassembly planning time by 13.2 min. Such an improvement could well make efficient the separation of plastic that would otherwise be destined for waste-to-energy or landfill. The symbolic methodology presented may also improve Design for Recycling and Design for Maintenance and Support.

  13. Experimental study on thermal stratification in a reactor hot plenum of a Japanese demonstration LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.; Yamamoto, K.; Takakuwa, M.; Kajiwara, H.; Watanabe, O.; Akamatsu, K.

    1997-12-31

    Thermal stratification which occurs in a reactor hot plenum after reactor trip has been regarded as one of the most serious phenomena in the thermal-hydraulics of LMFBR. Using a 1/8th scale water model, an experimental study has been conducted to estimate the thermal stratification for a Japanese demonstration LMFBR (DFBR). In the present study, reactor trip was simulated by changing the core outlet temperature with maintaining a constant flow rate. Temperature distribution was measured during the transient and detailed phenomena have been acquired in the study. A severe density interface on structural integrity occurs in a hot plenum under the thermal stratification. Experimental results for temperature gradient and rising speed of the density interface were estimated based on a similarity rule so that an actual condition in the DFBR could be fully discerned. (author)

  14. Thermal performances and melting risk assessment in a LMFBR fuel pin

    Science.gov (United States)

    Vettraino, F.; Cacciabue, P. C.; Brunelli, F.

    1985-02-01

    A reliable evaluation of fuel temperature is a key safety requirement in the design of the fuel assembly of a nuclear reactor, especially in the case of a LMFBR whose efficient operation requires high thermal performance fuel. The physico-chemical properties such as density, oxygen to metal ratio and thermal conductivity of a typical LMFBR mixed-oxide fuel, which are known to change in a remarkable way under irradiation, strongly affect the temperature profile within the fuel pellet. A statistical analysis of the temperature values in the fuel of the Italian Fast Reactor PEC, has been performed by means of the RSM code (Response Surface Methodology) coupled to a Monte-Carlo Technique (MUP code), in order to demonstrate that the melting risk is substantially negligible.

  15. Preliminary development of inservice inspection methods for LMFBR's

    Energy Technology Data Exchange (ETDEWEB)

    Spanner, J.C.

    1976-03-01

    Although firm requirements have not yet been established in the United States for inservice inspection of LMFBR's, some initial development work on potentially applicable nondestructive testing methods has been conducted by the Hanford Engineering Development Laboratory. The paper contains a synopsis of investigations conducted in each of the following areas: ultrasonic examination of austenitic stainless steel welds, electro-thermal NDT method for stainless steel components, eddy current methods for in-situ examination of heat exchanger tubes, and under-sodium viewing and ranging. Development activities and experimental results obtained to date in each of these areas are highlighted, along with comments on potential applicability for inservice inspection of LMFBR's.

  16. HypGrid2D. A 2-d mesh generator

    Energy Technology Data Exchange (ETDEWEB)

    Soerensen, N.N.

    1998-03-01

    The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)

  17. Mechanical properties of transition joint materials in support of LMFBR steam generator design

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, C.R.; King, J.F.; Strizak, J.P.; Klueh, R.L.; Booker, M.K.

    1977-01-01

    Mechanical data needs are identified for transition joint weldments between austenitic and ferritic structural materials planned for LMFBR service. Since the heat-affected zone in the ferritic material is apparently the critical area, particular attention must be given to behavior in this region. Interim results are given to show differences in mechanical properties of the joint materials with particular emphasis on the ferritic materials.

  18. Optimization of moderated targets loading in LMFBR for minor actinides incineration

    Energy Technology Data Exchange (ETDEWEB)

    Wu Hongchun; Takeda, Toshikazu [Osaka Univ., Suita (Japan). Dept. of Nuclear Engineering

    1999-04-01

    Optimization of moderated targets loading in LMFBR for minor actinides (MAs) incineration has been performed in this paper. Results of many different composition ratios of moderated target mixture were compared. An optimum case was proposed which can offer good core performance and transmute MAs by about 73 percent (386 kg) and incinerate MAs by about 34 percent (181 kg) through 3 years of reactor operation. (author)

  19. Temperature limits for LMFBR fuel cladding under upset and emergency operating conditions

    Energy Technology Data Exchange (ETDEWEB)

    Govindarajan, S.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam Tamilnadu (India). Nuclear Systems Division

    1996-07-01

    LMFBR fuel pin cladding tube is subjected to high transient temperatures during incidents such as pump trip, pump to grid plate pipe rupture etc. It is required to know temperature limits under such transient operating conditions for components involved while analyzing such incidents. A methodology for deriving such limits for fuel clad tube is worked out in this paper by making use of the transient damage correlation proposed by W.F. Brizes et. al.

  20. Seismic criteria studies and analyses. Quarterly progress report No. 3. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    1975-01-03

    Information is presented concerning the extent to which vibratory motions at the subsurface foundation level might differ from motions at the ground surface and the effects of the various subsurface materials on the overall Clinch River Breeder Reactor site response; seismic analyses of LMFBR type reactors to establish analytical procedures for predicting structure stresses and deformations; and aspects of the current technology regarding the representation of energy losses in nuclear power plants as equivalent viscous damping.

  1. Ratchetting and creep-fatigue evaluation for nozzle-to-cylinder intersection. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Barsoum, R.S.; Loomis, R.W.; Stewart, B.D.

    1976-01-01

    The study is part of an analytical investigation on the applicability of the simplified ratchetting and creep-fatigue rules to LMFBR component geometry. Both the detailed inelastic rules and the simplified elastic rules are applied to the results obtained from a three-dimensional finite element analysis of the nozzle-to-cylinder intersection. The results of both evaluations are compared at several locations on the surface, and an assessment of the degree of conservatism of the simplified methods is discussed.

  2. Effect of reactor size on the breeding economics of LMFBR blankets

    Energy Technology Data Exchange (ETDEWEB)

    Tagishi, A.; Driscoll, M.J.

    1975-02-01

    The effect of reactor size on the neutronic and economic performance of LMFBR blankets driven by radially-power-flattened cores has been investigated using both simple models and state-of-the-art computer methods. Reactor power ratings in the range 250 to 3000 MW(e) were considered. Correlations for economic breakeven and optimum irradiation times and blanket thicknesses have been developed for batch-irradiated blankets. It is shown that a given distance from the core-blanket interface the fissile buildup rate per unit volume remains very nearly constant in the radial blanket as (radially-power-flattened, constant-height) core size increases. As a consequence, annual revenue per blanket assembly, and breakeven and optimum irradiation times and optimum blanket dimensions, are the same for all reactor sizes. It is also shown that the peripheral core fissile enrichment, hence neutron leakage spectra, of the (radially-power-flattened, constant-height) cores remains essentially constant as core size increases. Coupled with the preceding observations, this insures that radial blanket breeding performance in demonstration-size LMFBR units will be a good measure of that in much larger commercial LMFBR's.

  3. Teaching Assembly for Disassembly; An Under-Graduate Module Experience

    Science.gov (United States)

    Alexandri, Eleftheria

    2014-01-01

    This paper is about the experience of teaching Assembly for Disassembly to fourth year architect students within the module of sustainable design. When designing a sustainable building one should take into consideration the fact that the building is going to be demolished in some years; thus the materials should be assembled in such a way so that…

  4. CPAP promotes timely cilium disassembly to maintain neural progenitor pool.

    Science.gov (United States)

    Gabriel, Elke; Wason, Arpit; Ramani, Anand; Gooi, Li Ming; Keller, Patrick; Pozniakovsky, Andrei; Poser, Ina; Noack, Florian; Telugu, Narasimha Swamy; Calegari, Federico; Šarić, Tomo; Hescheler, Jürgen; Hyman, Anthony A; Gottardo, Marco; Callaini, Giuliano; Alkuraya, Fowzan Sami; Gopalakrishnan, Jay

    2016-04-15

    A mutation in the centrosomal-P4.1-associated protein (CPAP) causes Seckel syndrome with microcephaly, which is suggested to arise from a decline in neural progenitor cells (NPCs) during development. However, mechanisms ofNPCs maintenance remain unclear. Here, we report an unexpected role for the cilium inNPCs maintenance and identifyCPAPas a negative regulator of ciliary length independent of its role in centrosome biogenesis. At the onset of cilium disassembly,CPAPprovides a scaffold for the cilium disassembly complex (CDC), which includes Nde1, Aurora A, andOFD1, recruited to the ciliary base for timely cilium disassembly. In contrast, mutatedCPAPfails to localize at the ciliary base associated with inefficientCDCrecruitment, long cilia, retarded cilium disassembly, and delayed cell cycle re-entry leading to premature differentiation of patientiPS-derivedNPCs. AberrantCDCfunction also promotes premature differentiation ofNPCs in SeckeliPS-derived organoids. Thus, our results suggest a role for cilia in microcephaly and its involvement during neurogenesis and brain size control.

  5. Multi-kanban mechanism for personal computer disassembly

    Science.gov (United States)

    Udomsawat, Gun; Gupta, Surendra M.; Kamarthi, Sagar V.

    2004-12-01

    The use of personal computers (PCs) continues to increase every year. According to a 1999 figure, 50 percent of all US households owned PCs, a figure that continues to rise every year. With continuous development of sophisticated software, PCs are becoming increasingly powerful. In addition, the price of a PC continues to steadily decline. Furthermore, the typical life of a PC in the workplace is approximately two to three years while in the home it is three to five years. As these PCs become obsolete, they are replaced and the old PCs are disposed of. It is estimated that between 14 and 20 million PCs are retired annually in the US. While 20 to 30% of the units may be resold, the others are discarded. These discards represent a significant potential source of lead for the waste stream. In some communities, waste cathode ray tubes (CRTs) represent the second largest source of lead in the waste stream after vehicular lead acid batteries. PCs are, therefore, not suitable for dumping in landfills. Besides, several components of a PC can be reused and then there are other valuable materials that can also be harvested. And with the advent of product stewardship, product recovery is the best solution for manufacturers. Disassembly line is perhaps the most suitable set up for disassembling PCs. However, planning and scheduling of disassembly on a disassembly line is complicated. In this paper, we discuss some of the complications including product arrival, demand arrival, inventory fluctuation and production control mechanisms. We then show how to overcome them by implementing a multi-kanban mechanism in the PC disassembly line setting. The multi-kanban mechanism relies on dynamic routing of kanbans according to the state of the system. We investigate the multi-kanban mechanism using simulation and demonstrate that this mechanism is superior to the traditional push system in terms of controlling the system"s inventory while maintaining a decent customer service level.

  6. Computational analysis of coolant mixing in subassembly and hot pool of an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Velusamy, K.; Kasinathan, N.; Clement Ravichandar, S.; Selvaraj, P.; Ghosh, D.; Chellapandi, P.; Chetal, S.C. [Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam - 603 102 (India)

    2005-07-01

    fuel pin bundle has been analysed using the CFD code Star CD to obtain flow and temperature distribution at the SA top. In the third stage, a transient 2D direct numerical simulation (DNS) of a representative region of hot pool near the core center has been carried out to obtain possible sodium temperature fluctuation at core monitoring TC location. Temperature profile in hot pool at the TC location has also been obtained from this study. The subchannel analysis of fuel subassembly indicates that the sodium temperature distribution at the fuel pin bundle top profiled with a maximum temperature difference of ({delta}T) 88 K. The analysis of top part of FSA (above pin bundle region) indicates good mixing in this region and {delta}T comes down to {approx} 44 K at SA top. The subsequent analysis of a representative region of hot pool near core top indicates that the temperature profile observed at the TC location can cause the temperature reading by a typical TC to drift by + 7.5 K or - 13 K during a power campaign. The dominant frequency of fluctuation of sodium temperature at the TC location has been estimated to be 0.25 Hz. Temperature fluctuation of this frequency would be sensed exactly by the fast response TC used for central SA temperature monitoring. The maximum fluctuation in the temperature reading recorded by it has been estimated to be {+-} 2 K. The selected SCRAM threshold (+ 10 K) is higher than the temperature drift and magnitude of fluctuation. (authors)

  7. Aero Fighter - 2D Gaming

    CERN Document Server

    Ahmed, Zeeshan

    2010-01-01

    Designing and developing quality based computer game is always a challenging task for developers. In this paper I briefly discuss aero fighting war game based on simple 2D gaming concepts and developed in C & C++ programming languages, using old bitmapping concepts. Going into the details of the game development, I discuss the designed strategies, flow of game and implemented prototype version of game, especially for beginners of game programming.

  8. GPU Accelerated Real-Time Collision Handling in Virtual Disassembly

    Institute of Scientific and Technical Information of China (English)

    Peng Du; Jie-Yi Zhao; Wan-Bin Pan; Yi-Gang Wang

    2015-01-01

    Previous collision detection methods for virtual disassembly mainly detect collisions at discrete time intervals, and use oriented bounding boxes to speed up the process. However, these discrete methods cannot guarantee no penetration occurs when the components move. Meanwhile, because some of the components are embedded into each other, these components cannot be separated in the subsequent process. To solve these problems, we propose an approach for real-time collision handling by utilizing the computational power of modern GPUs. First we present a novel GPU-based collision handling framework for virtual disassembly. Second we use a collision-streams based continuous collision detection to guarantee no collision missed. Finally we introduce a triangle intersection detection algorithm to solve the problem that collision cannot be detected when the components are embedded into each other at the initial configuration. The experimental results show that our method can improve the overall performance of collision detection and achieve real-time simulation.

  9. Capillarity-induced disassembly of virions in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Fan Xiaobin; Peng Wenchao; Li Yang; Li Xianyu; Zhang Guoliang; Zhang Fengbao [School of Chemical Engineering and Technology, Tianjin University, Tianjin (China); Barclay, J Elaine; Evans, David J [Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH (United Kingdom)], E-mail: fbzhang@tju.edu.cn

    2008-04-23

    Studying the transport and fate of viruses through nanochannels is of great importance. By using the nanochannel of a carbon nanotube (CNT) as an ideal model, we evaluated the possibility of capillarity-induced viral transport through a closely fitting nanochannel and explored the mechanisms involved. It is shown both experimentally and theoretically that Cowpea mosaic virus can enter CNTs by capillarity. However, when introduced into a nanotube the protein capsid may disassemble. During the initial capillary filling stage, anomalous needle-shaped high pressure exists in the centre of the nanotube's entrance. This high pressure, combining with the significant negative pressure within the nanotube, may account for the disassembly of the virions.

  10. Head First 2D Geometry

    CERN Document Server

    Fallow), Stray

    2009-01-01

    Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and

  11. Computational 2D Materials Database

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm; Thygesen, Kristian Sommer

    2015-01-01

    We present a comprehensive first-principles study of the electronic structure of 51 semiconducting monolayer transition-metal dichalcogenides and -oxides in the 2H and 1T hexagonal phases. The quasiparticle (QP) band structures with spin-orbit coupling are calculated in the G(0)W(0) approximation...... and used as input to a 2D hydrogenic model to estimate exciton binding energies. Throughout the paper we focus on trends and correlations in the electronic structure rather than detailed analysis of specific materials. All the computed data is available in an open database....

  12. Disassembly model for the production of astrophysical strangelets

    CERN Document Server

    Biswas, Sayan; Joarder, Partha S; Raha, Sibaji; Syam, Debapriyo

    2014-01-01

    Determination of the baryon number (or mass) distribution of the strangelets, that may fragment out of the warm and excited strange quark matter (SQM) ejected in the merger of strange stars (SSs) in compact binary stellar systems of the Galaxy, is attempted by using a statistical disassembly model (SMM). Finite mass of strange quarks is taken into account in the analysis. Strangelet charge and the resulting Coulomb correction are included to get a plausible mass distribution of galactic strangelets at their source.

  13. A possible Zpif's law in the nuclear disassembly

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Zpif's law in the field of linguistics is tested in the nuclear disassembly within the framework of isospin dependent lattice gas model. It is found that the average cluster charge (or mass) of rank n in the charge (or mass) list shows exactly an inverse order to its rank, i.e., Zpif's law appears at the phase transition temperature. This novel criterion shall be helpful in searching the nuclear liquid gas phase transition.

  14. Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis.

    Directory of Open Access Journals (Sweden)

    Gerardo A De Blas

    2005-10-01

    Full Text Available The dynamics of SNARE assembly and disassembly during membrane recognition and fusion is a central issue in intracellular trafficking and regulated secretion. Exocytosis of sperm's single vesicle--the acrosome--is a synchronized, all-or-nothing process that happens only once in the life of the cell and depends on activation of both the GTP-binding protein Rab3 and of neurotoxin-sensitive SNAREs. These characteristics make acrosomal exocytosis a unique mammalian model for the study of the different phases of the membrane fusion cascade. By using a functional assay and immunofluorescence techniques in combination with neurotoxins and a photosensitive Ca2+ chelator we show that, in unactivated sperm, SNAREs are locked in heterotrimeric cis complexes. Upon Ca2+ entry into the cytoplasm, Rab3 is activated and triggers NSF/alpha-SNAP-dependent disassembly of cis SNARE complexes. Monomeric SNAREs in the plasma membrane and the outer acrosomal membrane are then free to reassemble in loose trans complexes that are resistant to NSF/alpha-SNAP and differentially sensitive to cleavage by two vesicle-associated membrane protein (VAMP-specific neurotoxins. Ca2+ must be released from inside the acrosome to trigger the final steps of membrane fusion that require fully assembled trans SNARE complexes and synaptotagmin. Our results indicate that the unidirectional and sequential disassembly and assembly of SNARE complexes drive acrosomal exocytosis.

  15. Nondestructive evaluation of creep-fatigue damage: an interim report. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Nickell, R.E.

    1977-02-01

    In view of the uncertainties involved in designing against creep-fatigue failure and the consequences of such failures in Class 1 nuclear components that operate at elevated temperature, the possibility of intermittent or even continuous non-destructive examination of these components has been considered. In this interim report some preliminary results on magnetic force and ultrasonic evaluation of creep-fatigue damage in an LMFBR steam generator material are presented. These results indicate that the non-destructive evaluation of pure creep damage will be extremely difficult. A set of biaxial creep-fatigue tests that are designed to discriminate between various failure theories is also described.

  16. LMFBR safety. 1. Review of current issues and bibliography of literature, 1960--1969

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1976-08-16

    This report discusses the current status of liquid-metal fast breeder (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1960 through 1969. The bibliography consists of 1560 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  17. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients

    Science.gov (United States)

    Todreas, N. E.; Cheng, S. K.; Basehore, K.

    1984-08-01

    The thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration was investigated. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions are emphasized. Outlet plenum behavior is also investigated.

  18. SPRAY code user's report. [LMFBR sodium pipe leaks

    Energy Technology Data Exchange (ETDEWEB)

    Shire, P.R.

    1977-03-01

    The SPRAY computer code has been developed to model the effects of postulated sodium spray release from LMFBR piping within containment chambers. The calculation method utilizes gas convection, heat transfer and droplet combustion theory to calculate the pressure and temperature effects within the enclosure. The applicable range is 0-21 mol percent oxygen and .02-.30 inch droplets with or without humidity. Droplet motion and large sodium surface area combine to produce rapid heat release and pressure rise within the enclosed volume.

  19. SUPERENERGY-2: a multiassembly, steady-state computer code for LMFBR core thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Basehore, K.L.; Todreas, N.E.

    1980-08-01

    Core thermal-hydraulic design and performance analyses for Liquid Metal Fast Breeder Reactors (LMFBRs) require repeated detailed multiassembly calculations to determine radial temperature profiles and subchannel outlet temperatures for various core configurations and subassembly structural analyses. At steady-state, detailed core-wide temperature profiles are required for core restraint calculations and subassembly structural analysis. In addition, sodium outlet temperatures are routinely needed for each reactor operating cycle. The SUPERENERGY-2 thermal-hydraulic code was designed specifically to meet these designer needs. It is applicable only to steady-state, forced-convection flow in LMFBR core geometries.

  20. LMFBR safety. 5. Review of current issues and bibliography of literature (1975--1976)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-06-08

    The current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA), are discussed. Bibliographic information on worldwide LMFBRs relative to the development and safety of the breeder reactor is presented for the period 1975 through 1976. The bibliography consists of approximately 1618 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Keyword, author, and permuted-title indexes are included for completeness.

  1. LMFBR safety. 4. Review of current issues and bibliography of literature (1974--1975)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-03-21

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1974 through 1975. The bibliography consists of approximately 1554 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  2. LMFBR safety. 2. Review of current issues and bibliography of literature, 1970--1972

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1976-11-22

    This report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1970 through 1972. The bibliography consists of approximately 1620 abstracts covering early research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included for completeness.

  3. LMFBR safety. 3. Review of current issues and bibliography of literature (1972--1974)

    Energy Technology Data Exchange (ETDEWEB)

    Buchanan, J.R.; Keilholtz, G.W.

    1977-02-24

    The report discusses the current status of liquid-metal fast breeder reactor (LMFBR) development and one of the principal safety issues, a hypothetical core-disruptive accident (HCDA). Bibliographic information on worldwide LMFBRs relative to the development of the breeder reactor as a safe source of nuclear power is presented for the period 1972 through 1974. The bibliography consists of approximately 1380 abstracts covering research and development and operating experiences leading up to the present design practices that are necessary for the licensing of breeder reactors. Key-word, author, and permuted-title indexes are included.

  4. CYP2D6 pharmacogenomics

    Directory of Open Access Journals (Sweden)

    Mohanan Geetha Gopisankar

    2017-10-01

    Full Text Available Cytochromes are proteins that catalyze electron transfer reactions of many metabolic pathways. They are involved in drug metabolism and thus determines the therapeutic safety and efficacy of drugs in patients. Cytochrome P450 in mitochondria accounts for 90% of the oxidative metabolism of clinically used drugs during phase 1 reaction. CYP2D6 is a major gene member of this superfamily as it carries out metabolism of 25% of drugs currently available in the market. Contrary to the concept of specificity of enzyme action these can metabolize substrates of different chemistry. Since its discovery, many have intensively studied this unique hemoprotein and contributed to the elucidation of its molecular properties and physiological functions and also the structure-activity relationships of its substrates and inhibitors. Its activity ranges considerably within a population due to genetic polymorphisms which lead to varied responses to drug intake. Studying such polymorphisms which cause a significant impact in the management of patients and helps to achieve the final target of personalizing medicine. This review briefs about history, structure, and function, molecular genetics, substrates, regulators and inhibitors of CYP2D6 and its clinical pharmacogenomics.

  5. Off-line and on-line noise analysis for core surveillance in French LMFBR 'Anabel'

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, J.; Casejuane, R.

    1982-01-01

    Some results concerning noise analysis studies performed in French LMFBR are presented in support to the design of an on-line noise analysis system to be included in the core surveillance and protection system of SUPER-PHENIX. This computerized system is presented: signal processing, block diagram, operating modes.

  6. SAVANNAH RIVER SITE R REACTOR DISASSEMBLY BASIN IN SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Blankenship, J.; Griffin, W.; Serrato, M.

    2009-12-03

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate in tact, structurally sound facilities that are no longer needed for their original purpose of, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate if from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,424 cubic meters or 31,945 cubic yards. Portland cement-based structural fill materials were design and tested for the reactor ISD project and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and work flow considerations, the recommended maximum lift height is 5 feet with 24 hours between lifts. Pertinent data and information related to the SRS 105-R-Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material designs

  7. Personalized 2D color maps

    KAUST Repository

    Waldin, Nicholas

    2016-06-24

    2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.

  8. 2D SIMPLIFIED SERVO VALVE

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.

  9. Quantum coherence selective 2D Raman-2D electronic spectroscopy.

    Science.gov (United States)

    Spencer, Austin P; Hutson, William O; Harel, Elad

    2017-03-10

    Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.

  10. Model-based temperature noise monitoring methods for LMFBR core anomaly detection

    Energy Technology Data Exchange (ETDEWEB)

    Tamaoki, Tetsuo; Sonoda, Yukio; Sato, Masuo (Toshiba Corp., Kawasaki, Kanagawa (Japan)); Takahashi, Ryoichi

    1994-03-01

    Temperature noise, measured by thermocouples mounted at each core fuel subassembly, is considered to be the most useful signal for detecting and locating local cooling anomalies in an LMFBR core. However, the core outlet temperature noise contains background noise due to fluctuations in the operating parameters including reactor power. It is therefore necessary to reduce this background noise for highly sensitive anomaly detection by subtracting predictable components from the measured signal. In the present study, both a physical model and an autoregressive model were applied to noise data measured in the experimental fast reactor JOYO. The results indicate that the autoregressive model has a higher precision than the physical model in background noise prediction. Based on these results, an 'autoregressive model modification method' is proposed, in which a temporary autoregressive model is generated by interpolation or extrapolation of reference models identified under a small number of different operating conditions. The generated autoregressive model has shown sufficient precision over a wide range of reactor power in applications to artificial noise data produced by an LMFBR noise simulator even when the coolant flow rate was changed to keep a constant power-to-flow ratio. (author).

  11. Power DRAC for rapid LMFBR deployment and consequent CO{sub 2} mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Schenewerk, W.E. [California Nuclear Engineer NU 2272, Los Angeles CA (United States)

    2007-07-01

    A metallic-sodium LMFBR (Liquid Metal Fast Breeder Reactor) can control fuel temperature after a full power SCRAM using natural convection. A 3 percent nominal DRAC (Direct Reactor Auxiliary Cooling) does this without moving parts. DRAC is promoted from tertiary to primary decay heat removal, resulting in what is referred to as a Power DRAC. Power DRAC operates continuously before and after SCRAM, rejecting 3 per cent pile power. Power DRAC operability is validated by having it reject 75 MWt from a 2500 MWt pile at all times. IHX (Intermediate Heat Exchanger) is not required to be operable for primary, secondary, or tertiary core over-temperature protection. Original DRAC concept (venturi DRAC) was a 1 per cent nominal tertiary decay heat removal system. Tertiary DRAC patent has expired. Power DRAC rejects 75 MWt through its own secondary sodium heat transfer loop to power a 25 MWe air Brayton cycle. Power DRAC eliminates requiring steam plant operability for decay heat removal. Intermediate sodium heat transfer system and steam plant can be optimized for maximum thermal efficiency. 2.5 GWt pile makes 1.0 GWe net power. Power DRAC maintains pile inlet and outlet temperatures while going from power to post-SCRAM conditions. Steam pressure is maintained post-SCRAM to mitigate SCRAM thermal transient. Not requiring steam plant operability for decay heat removal eases licensing and allows early LMFBR deployment. Each GWe atomic power delays CO{sub 2} doubling one week. (author)

  12. Analysis of three-dimensional thermo-hydraulic phenomena in the reactor core of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hu, S.; Lee, Y. B.; Jang, W. P.; Ha, K. S.; Jung, H. Y. [KAERI, Taejon (Korea, Republic of)

    2004-07-01

    The mismatch between power and flow under the transient condition of LMFBR (Liquid Metal cooled Fast Breeder Reactor) core results in thermal stratification in hot pool. Since the fluid of hot pool enters IHXs, the temperature distribution of hot pool can alter the overall system response, therefore three-dimensional analysis of thermo-hydraulic phenomena is necessary. In this study, the thermo-hydraulic phenomena under normal operating condition and unprotected transient condition of LMFBR is investigated using which is the three-dimensional analysis code, COMMIX-1AR/P. The basic input data is based on the design data of KALIMER-600, which is sodium-cooled fast breeder reactor developed by KAERI. COMMIX-1AR/P code has not a reactivity model and the power and core flowrate must be supplied in the input data. In this study, results of SSC-K calculation is used. The temperature and velocity distributions are calculated and compared with those of SSC-K calculation results. The UTOF(Unprotected Loss Of Flow) accident is calculated using COMMIX-1AR/P and the temperature and velocity distributions in the total reactor core are calculated and the natural circulation mode under this transient condition is investigated.

  13. Study of rationalized safety design based on the seismic PSA for an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Ryodai; Yamaguchi, Akira

    1998-12-01

    Seismic PSA was carried out for a typical liquid metal cooled fast breeder reactor (LMFBR) in order to study the rationalized seismic design, maintaining and/or improving safety during seismic event. The seismic sequence quantification identifies the dominant structures, systems and components (SSCs) to the seismic core damage frequency (CDF). The sensitivity analyses by reducing or increasing the seismic capacity for SSCs are used to examine the optimized seismic design in view of safety and economical aspects. The LMFBR-specific risk-significant SSCs are reactor coolant boundary, decay heat removal coolant path and reactor control rod, which are different from those of light water reactors (LWRs). The electrical power supply system has a minor contribution to the seismic CDF. The sensitivity study shows that passive safety features of LMFBRs are important to maintain and/or enhance seismic capacity. The passive safety includes the decay heat removal capability via natural circulation and safety measures without depending on the support systems such as alternating current (AC) electrical power, for example. On the course of seismic sequence quantification, a methodology to evaluate the probability of seismic-induced multiple failure has been developed and applied to the decay heat removal function. The results suggest the multiplicity of the triply redundant system is to be considered for the significant components such as the decay heat removal path when one considers the difference in the seismic response.

  14. 2D transition metal dichalcogenides

    Science.gov (United States)

    Manzeli, Sajedeh; Ovchinnikov, Dmitry; Pasquier, Diego; Yazyev, Oleg V.; Kis, Andras

    2017-08-01

    Graphene is very popular because of its many fascinating properties, but its lack of an electronic bandgap has stimulated the search for 2D materials with semiconducting character. Transition metal dichalcogenides (TMDCs), which are semiconductors of the type MX2, where M is a transition metal atom (such as Mo or W) and X is a chalcogen atom (such as S, Se or Te), provide a promising alternative. Because of its robustness, MoS2 is the most studied material in this family. TMDCs exhibit a unique combination of atomic-scale thickness, direct bandgap, strong spin-orbit coupling and favourable electronic and mechanical properties, which make them interesting for fundamental studies and for applications in high-end electronics, spintronics, optoelectronics, energy harvesting, flexible electronics, DNA sequencing and personalized medicine. In this Review, the methods used to synthesize TMDCs are examined and their properties are discussed, with particular attention to their charge density wave, superconductive and topological phases. The use of TMCDs in nanoelectronic devices is also explored, along with strategies to improve charge carrier mobility, high frequency operation and the use of strain engineering to tailor their properties.

  15. Learn Unity for 2D game development

    CERN Document Server

    Thorn, Alan

    2013-01-01

    The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity

  16. Digital mock-up for the spent fuel disassembly processes

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J. Y.; Kim, S. H.; Song, T. G.; Kim, Y. H.; Hong, D. H.; Yoon, J. S

    2000-12-01

    In this study, the graphical design system is developed and the digital mock-up is implemented for designing the spent fuel handling and disassembly processes. The system consists of a 3D graphical modeling system, a devices assembling system, and a motion simulation system. This system is used throughout the design stages from the conceptual design to the motion analysis. By using this system, all the process involved in the spent fuel handling and disassembly processes are analyzed and optimized. Also, this system is used in developing the on-line graphic simulator which synchronously simulates the motion of the equipment in a real time basis by connecting the device controllers with the graphic server through the TCP/IP network. This simulator can be effectively used for detecting the malfunctions of the process equipment which is remotely operated. Thus, the simulator enhances the reliability and safety of the spent fuel handling process by providing the remote monitoring function of the process. The graphical design system and the digital mock-up system can be effectively used for designing the process equipment, as well as the optimized process and maintenance process. And the on-line graphic simulator can be an alternative of the conventional process monitoring system which is a hardware based system.

  17. An evaluation of passive safety features of the Japanese prototype LMFBR Monju

    Energy Technology Data Exchange (ETDEWEB)

    Tomoko Ishizu; Hiroshi Endo; Yoshihisa Shindo; Kazuo Haga [Safety Analysis and Evaluation Div., Japan Nuclear Energy Safety Organization (JNES) Kamiya-cho MT bldg., 4-3-20, Toranomon, Minato-ku, Tokyo, 105-0001 (Japan)

    2005-07-01

    Japan Nuclear Energy Safety Organization, JNES, has developed a system dynamics analysis code NALAP-II, in order to apply in the safety regulation of liquid-metal-cooled fast breeder reactor (LMFBR). In this study, the heat removal by the coolant natural circulation (NC), which is one of passive safety features of LMFBR, was examined using the code. This paper presents the model verification of the decay heat removal system and the result of trial calculation to the Japanese prototype LMFBR MONJU. In the MONJU plant, the decay heat is removed normally by three loops of the secondary heat transport system (SHTS) coupled with the intermediate reactor auxiliary cooling system (IRACS) as shown in Fig.1. To enable the cooling by NC, the air cooler (AC) of MONJU is installed in a position where the heat-transfer center is higher than that of the intermediate heat exchanger (IHX). Verification analyses of the IRACS model of NALAP-II have been carried out, by using the data of a 'natural convection test' conducted as a part of MONJU's performance tests. This test was conducted adding the heat generated by the pump operation in the primary heat transport system (PHTS) instead of the reactor power. The test was started by tripping SHTS pony-motored pump and sodium began to flow by the natural convective force through the air cooling system (ACS) of the IRACS. Figure 2 presents the analytical results of the SHTS transient comparing with the test results. In this test, about 2% of the rated SHTS flow rate was kept by the NC resulting from the balance between the heat input at IHX and the heat removal at IRACS. The calculated results of SHTS flow rate and sodium temperature during NC showed a good agreement with the test results. Then, using the verified NALAP-II, an evaluation of heat removal by NC of MONJU IRACS after the trip at the rated power operation was performed. The result showed that even if only one loop operation of IRACS removes the decay heat

  18. Hybrid LCA of a design for disassembly technology: active disassembling fasteners of hydrogen storage alloys for home appliances.

    Science.gov (United States)

    Nakamura, Shinichiro; Yamasue, Eiji

    2010-06-15

    In the current recycling system of end-of-life (EoL) appliances, which is based on shredding, alloying elements tend to end up in the scrap of base metals. The uncontrolled mixing of alloying elements contaminates secondary metals and calls for dilution with primary metals. Active disassembling fastener (ADF) is a design for disassembly (DfD) technology that is expected to solve this problem by significantly reducing the extent of mixing. This paper deals with a life cycle assessment (LCA) based on the waste input-output (WIO) model of an ADF developed using hydrogen storage alloys. Special attention is paid to the issue of dilution of mixed iron scrap using pig iron in an electric arc furnace (EAF). The results for Japanese electrical and electronic appliances indicate superiority of the recycling system based on the ADF over the current system in terms of reduced emissions of CO(2). The superiority of ADF was found to increase with an increase in the requirement for dilution of scrap.

  19. Actin-filament disassembly: it takes two to shrink them fast.

    Science.gov (United States)

    Winterhoff, Moritz; Faix, Jan

    2015-06-01

    Actin-filament disassembly is indispensable for replenishing the pool of polymerizable actin and allows continuous dynamic remodelling of the actin cytoskeleton. A new study now reveals that ADF/cofilin preferentially dismantles branched networks and provides new insights into the collaborative work of ADF/cofilin and Aip1 on filament disassembly at the molecular level.

  20. Disassembly for remanufacturing: A systematic literature review, new model development and future research needs

    Directory of Open Access Journals (Sweden)

    Anjar Priyono

    2016-11-01

    Full Text Available Purpose: Disassembly is an important process that distinguishes remanufacturing from conventional manufacturing. It is a unique process that becomes focus of investigation from many scholars. Yet, most scholars investigate disassembly from technical and operational standpoint that lack of strategic perspective. This paper attempts to fill this gap by looking at disassembly from a strategic perspective by considering organisational characteristics, process choices and product attributes. To be more specific, this paper has three objectives. First, to gain understanding what has been done, and what need to be done in the field of disassembly in remanufacturing. Second, to conduct a systematic literature review for identifying the factors affecting disassembly for remanufacturing. Third, to propose a new model of disassembly for remanufacturing and also to provide avenues for future research. Design/methodology/approach: This study used a systematic literature review method. A series of steps were undertaken during the review. The study was started with determining the purpose of the study, selecting appropriate keywords, and reducing the selected papers using a number of criteria. A deeper analysis was carried out on the final paper that meets the criteria for this review. Findings: There are two main findings of this study. First, a list of factors affecting disassembly in remanufacturing is identified. The factors can be categorised into three groups: organisational factors, process choices and product attributes. Second, using factors that have been identified, a new model of disassembly process for remanufacturing is developed. Current studies only consider disassembly as a physical activity to break down products into components. In the new model, disassembly is viewed as a process that converts into into output, which consist of a series of steps. Research limitations/implications: The opportunities for future research include: the need to

  1. LMFBR fuel cycle studies progress report for August 1972. No. 42

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    1972-10-01

    This report continues a series outlining progress in the development of methods for the reprocessing of LMFBR fuels. Development work is reported on problems of irradiated fuel transport to the processing facility, the dissolution of the fuel and the chemical recovery of PuO2-UO2 values, the containment of volatile fission products, product purification, conversion of fuel processing plant product nitrate solutions to solids suitable for shipping and for subsequent fuel fabrication. Pertinent experimental results are presented for the information of those immediately concerned with the field. Detailed description of experimental work and data are included in the topical reports and in the Chemical Technology Division Annual Reports.

  2. Sodium-NaK engineering handbook. Volume III. Sodium systems, safety, handling, and instrumentation. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Foust, O J [ed.

    1978-01-01

    The handbook is intended for use by present and future designers in the Liquid Metals Fast Breeder Reactor (LMFBR) Program and by the engineering and scientific community performing other type investigation and exprimentation requiring high-temperature sodium and NaK technology. The arrangement of subject matter progresses from a technological discussion of sodium and sodium--potassium alloy (NaK) to discussions of varius categories and uses of hardware in sodium and NaK systems. Emphasis is placed on sodium and NaK as heat-transport media. Sufficient detail is included for basic understanding of sodium and NaK technology and of technical aspects of sodium and NaK components and instrument systems. Information presented is considered adequate for use in feasibility studies and conceptual design, sizing components and systems, developing preliminary component and system descriptions, identifying technological limitations and problem areas, and defining basic constraints and parameters.

  3. Study on thermal-hydraulics of natural circulation operation for decay heat removal of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab

    2000-05-01

    Thermal-hydraulic characteristics of the decay heat removal system (DHRS) has been evaluated by both a water test and its computational analysis. The direct reactor auxiliary cooling system (DRACS) was studied as a representative DHRS in the LMFBR design. A natural circulation flow of the DRACS is originated from the buoyancy force balanced with the pressure loss within the active core. Hence it appears that the performance of the DRACS could be fully estimated by the thermal-hydraulic study of one fuel sub-assembly under the condition of low flow rate. The inter-wrapper flow occurring in the gap between core sub-assemblies under the natural circulation operation might have a large capacity to cool the core. An inverse flow occurring at the outer region of the core was due to the cooling effect of the inter-wrapper flow. (author)

  4. Living PSA program: LIPSAS development for safety management of an LMFBR plant

    Energy Technology Data Exchange (ETDEWEB)

    Aizawa, Kiyoto [Power Reactor and Nuclear Fuel Development Corp., Tokyo (Japan); Nakai, Ryodai [O-arai Engineering Center, Ibaraki (Japan)

    1994-12-31

    During construction and subsequent operation of a nuclear power plant, many changes occur in components, systems and operating procedures, which continuously modify the configuration of the power plant. A living PSA program can assess and manage safety-related operations and plant changes by adequately reproducing plant models and structured databases corresponding to the changes in system configuration. A living PSA system, LIPSAS, has been developed for the Japanese prototype liquid metal-cooled fast-breeder reactor (LMFBR), Monju, which is in the preoperation functional test stage. In order to utilize the LIPSAS as a risk management tool, equations for the schematic time history of the plant risk level and the relative risk criteria have been developed. Experience with LIPSAS shows that this program is a prospective tool to support decisions that affect plant safety, although a continuing and significant resource commitment of the operations staff at the site is still required. (author).

  5. Study on stability of natural circulation flow in an LMFBR. Pt. 2. Stability of core flow

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1997-11-01

    By using an experimental apparatus with water in which the primary loop and the core of an LMFBR were roughly simulated, stability of natural circulation flows in the core has been experimentally evaluated. The following were clarified as a result of the present study: (1) Though a certain and stable flow occurs in the primary loop under a steady state of natural circulation, a chaotic flow or a variant flow in addition to the steady flow arises in some simulated fuel sub-assemblies. The chaotic flow tends to occur in the range of large Reynolds number and large Richardson number. (2) Estimation of the fluctuation supposed as a chaos revealed that it was a high dimensional chaos. (author)

  6. Active acoustic leak detection for LMFBR steam generator. Sound attenuation due to bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Sakuma, Toshio [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-06-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchangers as soon as it occurs. The active acoustic detection method has drawn general interest owing to its short response time and reduction of the influence of background noise. In this paper, the application of the active acoustic detection method for SG is proposed, and sound attenuation by bubbles is investigated experimentally. Furthermore, using the SG sector model, sound field characteristics and sound attenuation characteristics due to injection of bubbles are studied. It is clarified that the sound attenuation depends upon bubble size as well as void fraction, that the distance attenuation of sound in the SG model containing heat transfer tubes is 6dB for each two-fold increase of distance, and that emitted sound attenuates immediately upon injection of bubbles. (author).

  7. Thermal-hydraulic characteristics of natural circulation operation for decay heat removal of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan); Watanabe, Osamu [Advanced Reactor Technology Co., Ltd., Tokyo (Japan)

    2000-10-01

    Thermal-hydraulic characteristics of the decay heat removal system (DHRS) has been evaluated by both a water test and its computational analysis. The direct reactor auxiliary cooling system (DRACS) was studied as a representative DHRS in the LMFBR design. A natural circulation flow of the DRACS is originated from the buoyancy force balanced with the pressure loss within the active core. Hence it appears that the performance of the DRACS could be fully estimated by the thermal-hydraulic study of one fuel sub-assembly under the condition of low flow rate. The inter-wrapper flow occurring in the gap between core sub-assemblies under the natural circulation operation might have a large capacity to cool the core. An inverse flow occurring at the outer region of the core was due to the cooling effect of the inter-wrapper flow. (author)

  8. Benchmark experiment for physics parameters of metallic-fueled LMFBR at FCA

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, S.; Oigawa, H.; Sakurai, T.; Nemoto, T.; Okajima, S. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1996-09-01

    The calculated prediction for reactor physics parameters in a metallic-fueled LMFBR was tested using the benchmark experiments performed at FCA. The reactivity feedback parameters such as sodium void worth, Doppler reactivity worth and {sup 238}U-capture-to-{sup 239}Pu -fission ratio have been measured. The fuel expansion reactivity has also measured. Direct comparison with the results from similar oxide fuel assembly was made. Analysis was done with the JENDL-2 cross section library and JENDL-3.2. Prediction of reactor physics parameters with JENDL-3.2 in the metallic-fueled core agreed reasonably well with the measured values and showed similar trend to the results in the oxide fuel core. (author)

  9. Evaluation of CDA energetics in the prototype LMFBR with latest knowledge and tools

    Energy Technology Data Exchange (ETDEWEB)

    Tobita, Yoshiharu; Morita, Koji; Kawada, Ken-ichi; Niwa, Hajime; Nonaka, Nobuyuki [Japan Nuclear Cycle Development Institute, Oarai Engineering Center, Oarai, Ibaraki (Japan)

    1999-07-01

    The sequences of an unprotected loss-of-flow accident in the prototype LMFBR has been evaluated, as a part of reactor safety research, reflecting the latest experimental and analytical knowledge on core disruptive accident (CDA). In the evaluation, the event progression scenarios and the major physical parameters were selected, based on the latest experimental knowledge and code validation studies on the transient fuel behavior and material motion during the last decade, such that associated phenomenological uncertainties were well covered within physically reasonable ranges. With the safety research knowledge and advanced accident analysis codes, which have been made available lately, the CDA energetics was assessed to be much more benign in comparison with the former analysis. In other words, we have demonstrated that our former CDA analysis is sufficiently conservative. (author)

  10. Heat transfer and fluid flow aspects of fuel--coolant interactions. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M L

    1978-09-01

    A major portion of the safety analysis effort for the LMFBR is involved in assessing the consequences of a Hypothetical Core Disruptive Accident (HCDA). The thermal interaction of the hot fuel and the sodium coolant during the HCDA is investigated in two areas. A postulated loss of flow transient may produce a two-phase fuel at high pressures. The thermal interaction phenomena between fuel and coolant as the fuel is ejected into the upper plenum are investigated. A postulated transient overpower accident may produce molten fuel being released into sodium coolant in the core region. An energetic coolant vapor explosion for these reactor materials does not seem likely. However, experiments using other materials (e.g., Freon/water, tin/water) have demonstrated the possibility of this phenomenon.

  11. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.; Cheng, S.K.; Basehore, K.

    1984-08-01

    This project principally undertook the investigation of the thermal hydraulic performance of wire wrapped fuel bundles of LMFBR configuration. Results obtained included phenomenological models for friction factors, flow split and mixing characteristics; correlations for predicting these characteristics suitable for insertion in design codes; numerical codes for analyzing bundle behavior both of the lumped subchannel and distributed parameter categories and experimental techniques for pressure velocity, flow split, salt conductivity and temperature measurement in water cooled mockups of bundles and subchannels. Flow regimes investigated included laminar, transition and turbulent flow under forced convection and mixed convection conditions. Forced convections conditions were emphasized. Continuing efforts are underway at MIT to complete the investigation of the mixed convection regime initiated here. A number of investigations on outlet plenum behavior were also made. The reports of these investigations are identified.

  12. Collection and evaluation of salt mixing data with the real time data acquisition system. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Glazer, S.; Chiu, C.; Todreas, N.E.

    1977-09-01

    A minicomputer based real time data acquisition system was designed and built to facilitate data collection during salt mixing tests in mock ups of LMFBR rod bundles. The system represents an expansion of data collection capabilities over previous equipment. It performs steady state and transient monitoring and recording of up to 512 individual electrical resistance probes. Extensive real time software was written to govern all phases of the data collection procedure, including probe definition, probe calibration, salt mixing test data acquisition and storage, and data editing. Offline software was also written to permit data examination and reduction to dimensionless salt concentration maps. Finally, the computer program SUPERENERGY was modified to permit rapid extraction of parameters from dimensionless salt concentration maps. The document describes the computer system, and includes circuit diagrams of all custom built components. It also includes descriptions and listings of all software written, as well as extensive user instructions.

  13. Analysis of Flow Impedance Phenomena. Final report, June 1, 1978-July 31, 1979. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Bishop, A A

    1979-12-01

    Pressure drop data obtained during testing of the MARK I, II and IIA fuel assemblies in the Argonne National Laboratory liquid metal core component loop (CCTL) were analyzed. It is concluded that the previously unexplained pressure drop increase measured across the MARK II and MARK IIA assemblies was caused by metallic particulate fouling; the source was mechanical-chemical wear of the loops pump journal shaft. The implication to liquid metal breeder reactor (LMFBR) operation is that if a continuous source of metallic particles exists upstream of the core, a pressure drop increase can be expected. The size of the deposited particles should be larger than the thickness of laminar sublayer on a fuel rod. It is also concluded that the most probable source of metallic particulates will come from component failure and not from normal corrosion products. A small amount of deposited particulates can produce a relatively high pressure drop increase.

  14. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) neat transport system dynamics and steam generator control

    Science.gov (United States)

    Brukx, J. F. L. M.

    1982-06-01

    Loop type LMFBR heat transport system dynamics after reactor shutdown and during subsequent decay heat removal are considered with emphasis on steam generator dynamics including the development and evaluation of various post-scram steam generator control systems, and natural circulation of the sodium coolant, including the influence of superimposed free convection on forced convection heat transfer and pressure drop. The normal operating and decay heat removal functions of the overall heat transport system are described.

  15. Post-scram Liquid Metal cooled Fast Breeder Reactor (LMFBR) heat transport system dynamics and steam generator control: Figures

    Science.gov (United States)

    Brukx, J. F. L. M.

    1982-06-01

    Dynamic modeling of LMFBR heat transport system is discussed. Uncontrolled transient behavior of individual components and of the integrated heat transport system are considered. For each component, results showing specific dynamic features of the component and/or model capability were generated. Controlled dynamic behavior for alternative steam generator control systems during forced and natural sodium coolant circulation was analyzed. Combined free and forced convection of laminar and turbulent vertical pipe flow of liquid metals was investigated.

  16. Disassembling and reintegration of large telescope primary mirror

    Science.gov (United States)

    Xu, Qi-rui; Fan, Bin; Zhang, Ming

    2014-09-01

    The success of the large telescope is largely linked to the excellent performance and reliability of the primary mirror. In order to maintain the quality of its reflective surface at the high expectations of astronomers, the primary mirror after almost two or three years of astronomical observations, needs to be removed and reinstalled for its cleaning and re-coating operation. There are a series of procedures such as the primary mirror cell dissembling from telescope, mirror handling, transportation, reintegration, alignment and so on. This paper will describe the experiences of disassembling and reintegration of large telescope primary mirror, taking a two meter grade primary mirror for example. As with all advanced and complex opto-mechanical systems, there has been the usual problems and trouble shooting.

  17. Optimal hand locations for safe scaffold-end-frame disassembly.

    Science.gov (United States)

    Cutlip, R; Hsiao, H; Garcia, R; Becker, E; Mayeux, B

    2002-07-01

    Overexertion and fall injuries comprise the largest category of injuries among scaffold workers. A significant portion of these injuries is associated with scaffold-end-frame dismantling tasks, which require both muscle strength and postural balance skills. The commonly used tubular scaffold end frame is 1.52-m wide x 2-m high and weighs 23 kg. Previous studies have indicated that a great muscle strength can be generated when scaffold workers placed their hands symmetrically at knuckle height. However, adequate postural stability can only be reached when the workers placed their hands at the chest or shoulder height, which is near to the height of scaffold-end-frame center-of-mass. A reasonable approach to solve this dilemma is to develop an assistive lifting device, such as a light-weight clip-and-lift bar, that allows workers to place their hands at the height of the center-of-mass of end frames and concurrently allows an optimal hand separation for them to generate an adequate maximum isometric muscle force to safely accomplish the task. This study was conducted to determine the optimal hand location for a conceptual assistive lifting device to mitigate potential postural imbalance while reducing overexertion hazards during scaffold disassembly. This location would be within a window defined by a vertical hand placement between shoulder height and knuckle height and by a horizontal hand separation distance of shoulder width to end-frame width. The whole-body maximum isometric strength of 54 construction workers was measured in nine symmetric scaffold-end-frame disassembly postures, defined by a combination of three vertical hand placements by three horizontal hand separation distances within the aforementioned window. The study apparatus include a computer-controlled data-acquisition system, a custom-fabricated scaffold fixture, and two Bertec force platforms. An analysis of variance showed that the interaction effect of vertical hand placement and hand

  18. Sequential phosphorylation of GRASP65 during mitotic Golgi disassembly

    Directory of Open Access Journals (Sweden)

    Danming Tang

    2012-09-01

    GRASP65 phosphorylation during mitosis and dephosphorylation after mitosis are required for Golgi disassembly and reassembly during the cell cycle. At least eight phosphorylation sites on GRASP65 have been identified, but whether they are modified in a coordinated fashion during mitosis is so far unknown. In this study, we raised phospho-specific antibodies that recognize phosphorylated T220/T224, S277 and S376 residues of GRASP65, respectively. Biochemical analysis showed that cdc2 phosphorylates all three sites, while plk1 enhances the phosphorylation. Microscopic studies using these antibodies for double and triple labeling demonstrate sequential phosphorylation and dephosphorylation during the cell cycle. S277 and S376 are phosphorylated from late G2 phase through metaphase until telophase when the new Golgi is reassembled. T220/224 is not modified until prophase, but is highly modified from prometaphase to anaphase. In metaphase, phospho-T220/224 signal localizes on both Golgi haze and mitotic Golgi clusters that represent dispersed Golgi vesicles and Golgi remnants, respectively, while phospho-S277 and S376 labeling is more concentrated on mitotic Golgi clusters. Expression of a phosphorylation-resistant GRASP65 mutant T220A/T224A inhibited mitotic Golgi fragmentation to a much larger extent than the expression of the S277A and S376A mutants. In cytokinesis, T220/224 dephosphorylation occurs prior to that of S277, but after S376. This study provides evidence that GRASP65 is sequentially phosphorylated and dephosphorylated during mitosis at different sites to orchestrate Golgi disassembly and reassembly during cell division, with phosphorylation of the T220/224 site being most critical in the process.

  19. Perspectives for spintronics in 2D materials

    Directory of Open Access Journals (Sweden)

    Wei Han

    2016-03-01

    Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  20. Bedform characterization through 2D spectral analysis

    DEFF Research Database (Denmark)

    Lefebvre, Alice; Ernstsen, Verner Brandbyge; Winter, Christian

    2011-01-01

    characteristics using twodimensional (2D) spectral analysis is presented and tested on seabed elevation data from the Knudedyb tidal inlet in the Danish Wadden Sea, where large compound bedforms are found. The bathymetric data were divided into 20x20 m areas on which a 2D spectral analysis was applied. The most...... energetic peak of the 2D spectrum was found and its energy, frequency and direction were calculated. A power-law was fitted to the average of slices taken through the 2D spectrum; its slope and y-intercept were calculated. Using these results the test area was morphologically classified into 4 distinct...

  1. Maintenance and repair of LMFBR steam generators: specialists` meeting, O-Arai Engineering Center, Japan, 4-8 June 1984. Summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1984-07-01

    The Specialists` Meeting on "Maintenance and Repair of LMFBR Steam Generators" was held in Oarai, Japan, from 4-8 June 1984. The meeting was sponsored by the International Atomic Energy Agency on the recommendation of the IAEA International Working Group on Fast Reactors and was hosted by the Power Reactor and Nuclear Fuel Development Corporation of Japan. The purpose of the meeting was to review and discuss the experience accumulated in various countries on the general design philosophy of LMFBR steam generators from the view point of maintenance and repair, in-service inspection of steam generator tube bundles, identification and inspection of failed tubes and the cleaning and repairing of failed steam generators. The following main topical areas were discussed by participants: national review presentations on maintenance and repair of LMFBR steam generators - design philosophy for maintenance and repair; research and development work on maintenance and repair; and experience on steam generator maintenance and repair.

  2. Dynamic Alterations to α-Actinin Accompanying Sarcomere Disassembly and Reassembly during Cardiomyocyte Mitosis.

    Science.gov (United States)

    Fan, Xiaohu; Hughes, Bryan G; Ali, Mohammad A M; Cho, Woo Jung; Lopez, Waleska; Schulz, Richard

    2015-01-01

    Although mammals are thought to lose their capacity to regenerate heart muscle shortly after birth, embryonic and neonatal cardiomyocytes in mammals are hyperplastic. During proliferation these cells need to selectively disassemble their myofibrils for successful cytokinesis. The mechanism of sarcomere disassembly is, however, not understood. To study this, we performed a series of immunofluorescence studies of multiple sarcomeric proteins in proliferating neonatal rat ventricular myocytes and correlated these observations with biochemical changes at different cell cycle stages. During myocyte mitosis, α-actinin and titin were disassembled as early as prometaphase. α-actinin (representing the sarcomeric Z-disk) disassembly precedes that of titin (M-line), suggesting that titin disassembly occurs secondary to the collapse of the Z-disk. Sarcomere disassembly was concurrent with the dissolution of the nuclear envelope. Inhibitors of several intracellular proteases could not block the disassembly of α-actinin or titin. There was a dramatic increase in both cytosolic (soluble) and sarcomeric α-actinin during mitosis, and cytosolic α-actinin exhibited decreased phosphorylation compared to sarcomeric α-actinin. Inhibition of cyclin-dependent kinase 1 (CDK1) induced the quick reassembly of the sarcomere. Sarcomere dis- and re-assembly in cardiomyocyte mitosis is CDK1-dependent and features dynamic differential post-translational modifications of sarcomeric and cytosolic α-actinin.

  3. Annotated Bibliography of EDGE2D Use

    Energy Technology Data Exchange (ETDEWEB)

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  4. Port Adriano, 2D-Model Tests

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Andersen, Thomas Lykke; Jensen, Palle Meinert

    This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU).......This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU)....

  5. Structural Theory of 2-d Adinkras

    CERN Document Server

    Iga, Kevin

    2015-01-01

    Adinkras are combinatorial objects developed to study 1-dimensional supersymmetry representations. Recently, 2-d Adinkras have been developed to study 2-dimensional supersymmetry. In this paper, we classify all 2-d Adinkras, confirming a conjecture of T. H\\"ubsch. Along the way, we obtain other structural results, including a simple characterization of H\\"ubsch's even-split doubly even code.

  6. A methodological approach for designing and sequencing product families in Reconfigurable Disassembly Systems

    Directory of Open Access Journals (Sweden)

    Ignacio Eguia

    2011-10-01

    Full Text Available Purpose: A Reconfigurable Disassembly System (RDS represents a new paradigm of automated disassembly system that uses reconfigurable manufacturing technology for fast adaptation to changes in the quantity and mix of products to disassemble. This paper deals with a methodology for designing and sequencing product families in RDS. Design/methodology/approach: The methodology is developed in a two-phase approach, where products are first grouped into families and then families are sequenced through the RDS, computing the required machines and modules configuration for each family. Products are grouped into families based on their common features using a Hierarchical Clustering Algorithm. The optimal sequence of the product families is calculated using a Mixed-Integer Linear Programming model minimizing reconfigurability and operational costs. Findings: This paper is focused to enable reconfigurable manufacturing technologies to attain some degree of adaptability during disassembly automation design using modular machine tools. Research limitations/implications: The MILP model proposed for the second phase is similar to the well-known Travelling Salesman Problem (TSP and therefore its complexity grows exponentially with the number of products to disassemble. In real-world problems, which a higher number of products, it may be advisable to solve the model approximately with heuristics. Practical implications: The importance of industrial recycling and remanufacturing is growing due to increasing environmental and economic pressures. Disassembly is an important part of remanufacturing systems for reuse and recycling purposes. Automatic disassembly techniques have a growing number of applications in the area of electronics, aerospace, construction and industrial equipment. In this paper, a design and scheduling approach is proposed to apply in this area. Originality/value: This paper presents a new concept called Reconfigurable Disassembly System

  7. 2D materials for nanophotonic devices

    Science.gov (United States)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  8. Hybridized Plasmons in 2D Nanoslits: From Graphene to Anisotropic 2D Materials

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Xiao, Sanshui; Peres, N. M. R.

    2017-01-01

    of arbitrary width, and remains valid irrespective of the 2D conductive material (e.g., doped graphene, 2D transition metal dichalcogenides, or phosphorene). We derive the dispersion relation of the hybrid modes of a 2D nanoslit along with the corresponding induced potential and electric field distributions...

  9. What North America's skeleton crew of megafauna tells us about community disassembly

    DEFF Research Database (Denmark)

    Davis, Matt

    2017-01-01

    Functional trait diversity is increasingly used to model future changes in community structure despite a poor understanding of community disassembly's effects on functional diversity. By tracking the functional diversity of the North American large mammal fauna through the End...

  10. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients

    Directory of Open Access Journals (Sweden)

    Adler Charles

    2009-07-01

    Full Text Available Abstract Correction to Nural H, He P, Beach T, Sue L, Xia W, Shen Y. Disassembled DJ-1 high molecular weight complex in cortex mitochondria from Parkinson's disease patients Molecular Neurodegeneration 2009, 4:23.

  11. Balancing Disassembly Line in Product Recovery to Promote the Coordinated Development of Economy and Environment

    Directory of Open Access Journals (Sweden)

    Jia Liu

    2017-02-01

    Full Text Available For environmentally conscious and sustainable manufacturing, many more manufacturers are acting to recycle and remanufacture their post-consumed products. The most critical process of remanufacturing is disassembly, since it allows for the selective extraction of the valuable components and materials from returned products to reduce the waste disposal volume. It is, therefore, important to design and balance the disassembly line to work efficiently due to its vital role in effective resource usage and environmental protection. Considering the disassembly precedence relationships and sequence-dependent parts removal time increments, this paper presents an improved discrete artificial bee colony algorithm (DABC for solving the sequence-dependent disassembly line balancing problem (SDDLBP. The performance of the proposed algorithm was tested against nine other approaches. Computational results evidently indicate the superior efficiency of the proposed algorithm for addressing the environmental and economic concerns while optimizing the multi-objective SDDLBP.

  12. A thermodynamic model of microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Bernard M A G Piette

    Full Text Available Microtubules are self-assembling polymers whose dynamics are essential for the normal function of cellular processes including chromosome separation and cytokinesis. Therefore understanding what factors effect microtubule growth is fundamental to our understanding of the control of microtubule based processes. An important factor that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap. Here, we derive a Monte Carlo model of the assembly and disassembly of microtubules. We use thermodynamic laws to reduce the number of parameters of our model and, in particular, we take into account the contribution of water to the entropy of the system. We fit all parameters of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. Also we calculate and incorporate the GTP hydrolysis rate. We have applied our model and can mimic published experimental data, which formerly suggested a single layer GTP tubulin dimer microtubule cap, to show that these data demonstrate that the GTP cap can fluctuate and can be several microns long.

  13. A thermodynamic model of microtubule assembly and disassembly.

    Science.gov (United States)

    Piette, Bernard M A G; Liu, Junli; Peeters, Kasper; Smertenko, Andrei; Hawkins, Timothy; Deeks, Michael; Quinlan, Roy; Zakrzewski, Wojciech J; Hussey, Patrick J

    2009-08-11

    Microtubules are self-assembling polymers whose dynamics are essential for the normal function of cellular processes including chromosome separation and cytokinesis. Therefore understanding what factors effect microtubule growth is fundamental to our understanding of the control of microtubule based processes. An important factor that determines the status of a microtubule, whether it is growing or shrinking, is the length of the GTP tubulin microtubule cap. Here, we derive a Monte Carlo model of the assembly and disassembly of microtubules. We use thermodynamic laws to reduce the number of parameters of our model and, in particular, we take into account the contribution of water to the entropy of the system. We fit all parameters of the model from published experimental data using the GTP tubulin dimer attachment rate and the lateral and longitudinal binding energies of GTP and GDP tubulin dimers at both ends. Also we calculate and incorporate the GTP hydrolysis rate. We have applied our model and can mimic published experimental data, which formerly suggested a single layer GTP tubulin dimer microtubule cap, to show that these data demonstrate that the GTP cap can fluctuate and can be several microns long.

  14. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly.

    Science.gov (United States)

    Li, Zihui; Sai, Hiroaki; Warren, Scott C; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm Pt NPs was confirmed by high-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) images. Estimations of the Pt NP ligand head group density based on HAADF-STEM images and thermogravimetric analysis (TGA) data yielded results comparable to what has been found for alkanethiol self-assembled monolayers (SAMs) on flat Pt {111} surfaces. Changing the volume fraction of Pt NPs in block copolymer-NP composites yielded hybrids with spherical micellar, wormlike micellar, lamellar and inverse hexagonal morphologies. Disassembly of hybrids with spherical, wormlike micellar, and lamellar morphologies generated isolated metal-NP based nano-spheres, cylinders and sheets, respectively. Results suggest the existence of powerful design criteria for the formation of metal-based nanostructures from designer blocked macromolecules.

  15. Reduced function and disassembled microtubules of cultured cardiomyocytes in spaceflight

    Institute of Scientific and Technical Information of China (English)

    YANG Fen; DAI ZhongQuan; TAN YingJun; WAN YuMin; LI YingHui; DING Bai; NIE JieLin; WANG HongHui; ZHANG XiaoYou; WANG ChunYan; LING ShuKuan; NI ChengZhi

    2008-01-01

    Lack of gravity during spaceflight has profound effects on cardiovascular system, but little is known about how the cardiomyocytes respond to microgravity. In the present study, the effects of spaceflight on the structure and function of cultured cardiomyocytes were reported. The primary cultures of neo-natal rat cardiomyocytes were carried on Shenzhou-6 spacecraft and activated at 4 h in orbit. 8 samples were fixed respectively at 4, 48 and 96 h after launching for immunofluorescence of cytoskeleton, and 2 samples remained unfixed to analyze contractile and secretory functions of the cultures. Ground sam-ples were treated in our laboratory in parallel. After 115 h spaceflight, video recordings displayed that the number of spontaneous beating sites in flown samples decreased significantly, and the cells in the beating aggregate contracted in fast frequency without synchrony. Radioimmunoassay of the medium showed that the atrial natriuretic peptide secreted from flown cells reduced by 59.6%. Confocal images demonstrated the time-dependant disassembly of mirotubules versus unchanged distribution and or-ganization of microfilaments. In conclusion, above results indicate reduced function and disorganized cytoskeleton of cardiomyocytes in spaceflight, which might provide some cellular basis for further investigations to probe into the mechanisms underlying space cardiovascular dysfunction.

  16. 2D/3D switchable displays

    Science.gov (United States)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  17. Matrix models of 2d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  18. Matrix models of 2d gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  19. 2D Saturable Absorbers for Fibre Lasers

    Directory of Open Access Journals (Sweden)

    Robert I. Woodward

    2015-11-01

    Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.

  20. Image processing of 2D crystal images.

    Science.gov (United States)

    Arheit, Marcel; Castaño-Díez, Daniel; Thierry, Raphaël; Gipson, Bryant R; Zeng, Xiangyan; Stahlberg, Henning

    2013-01-01

    Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to image frozen-hydrated 2D crystals. The processing of recorded images exploits the periodic arrangement of the structures in the images to extract the amplitudes and phases of diffraction spots in Fourier space. However, image imperfections require a crystal unbending procedure to be applied to the image before evaluation in Fourier space. We here describe the process of 2D crystal image unbending, using the 2dx software system.

  1. Applications of 2D helical vortex dynamics

    DEFF Research Database (Denmark)

    Okulov, Valery; Sørensen, Jens Nørkær

    2010-01-01

    In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....

  2. Rho/Rho-associated Kinase-II Signaling Mediates Disassembly of Epithelial Apical Junctions

    OpenAIRE

    2007-01-01

    Apical junctional complex (AJC) plays a vital role in regulation of epithelial barrier function. Disassembly of the AJC is observed in diverse physiological and pathological states; however, mechanisms governing this process are not well understood. We previously reported that the AJC disassembly is driven by the formation of apical contractile acto-myosin rings. In the present study, we analyzed the signaling pathways regulating acto-myosin–dependent disruption of AJC by using a model of ext...

  3. Glitter in a 2D monolayer.

    Science.gov (United States)

    Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric

    2015-10-21

    We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.

  4. 2d index and surface operators

    Science.gov (United States)

    Gadde, Abhijit; Gukov, Sergei

    2014-03-01

    In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.

  5. Choreography of importin-α/CAS complex assembly and disassembly at nuclear pores.

    Science.gov (United States)

    Sun, Changxia; Fu, Guo; Ciziene, Danguole; Stewart, Murray; Musser, Siegfried M

    2013-04-23

    Nuclear pore complexes (NPCs) mediate the exchange of macromolecules between the cytoplasm and the nucleoplasm. Soluble nuclear transport receptors bind signal-dependent cargos to form transport complexes that diffuse through the NPC and are then disassembled. Although transport receptors enable the NPC's permeability barrier to be overcome, directionality is established by complex assembly and disassembly. Here, we delineate the choreography of importin-α/CAS complex assembly and disassembly in permeabilized cells, using single-molecule fluorescence resonance energy transfer and particle tracking. Monitoring interaction sequences in intact NPCs ensures spatiotemporal preservation of structures and interactions critical for activity in vivo. We show that key interactions between components are reversible, multiple outcomes are often possible, and the assembly and disassembly of complexes are precisely controlled to occur at the appropriate place and time. Importin-α mutants that impair interactions during nuclear import were used together with cytoplasmic Ran GTPase-activating factors to demonstrate that importin-α/CAS complexes form in the nuclear basket region, at the termination of protein import, and disassembly of importin-α/CAS complexes after export occurs in the cytoplasmic filament region of the NPC. Mathematical models derived from our data emphasize the intimate connection between transport and the coordinated assembly and disassembly of importin-α/CAS complexes for generating productive transport cycles.

  6. The effect of sudden server breakdown on the performance of a disassembly line

    Science.gov (United States)

    Udomsawat, Gun; Gupta, Surendra M.

    2005-11-01

    Product and material recovery relies on the disassembly process to separate target components or materials from the end-of-life (EOL) products. Disassembly line is especially effective when products in large quantity are disassembled. Unlike an assembly line, a disassembly line is more complex and is subjected to numerous uncertainties including stochastic and multi-level arrivals of component demands, stochastic arrival times for EOL products, and process interruption due to equipment failure. These factors seriously impair the control mechanism in the disassembly line. A common production control mechanism is the traditional push system (TPS). TPS responds to the aforementioned complications by carrying substantial amounts of inventories. An alternative control mechanism is a newly developed multi-kanban pull system (MKS) that relies on dynamic routing of kanbans, which tends to minimize the system's inventories while maintaining demand serviceability. In this paper we explore the impact of sudden breakdown of server on the performance of a disassembly line. We compare the overall performances of the TPS and MKS by considering two scenarios. We present the solution procedure and results for these cases.

  7. 2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计

    Institute of Scientific and Technical Information of China (English)

    康亚芳; 王静; 张清泉; 行小帅

    2014-01-01

    This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究,在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上,以均匀平面阵列为例,对3种不同参数的DOA估计进行了计算机仿真,分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。

  8. Estimation of post-buckling fatigue damage for LMFBR reactor vessel under seismic load

    Energy Technology Data Exchange (ETDEWEB)

    Ogiso, S.; Sasaki, T.; Oooka, Y. [Kawasaki Heavy Industries, Ltd., Tokyo (Japan). Nuclear Systems Div.; Nakamura, H. [Central Research Inst. of Electric Power Industry, Chiba (Japan)

    1995-12-31

    Estimation of fatigue damage caused by buckling deformation is important to evaluate safety margin in a seismic buckling design criterion for LMFBR reactor vessels, in addition to limiting the buckling strength. An advanced buckling design guideline draft including the seismic margin criterion has been proposed under the sponsorship of MITI to date. An ultimate state in this criterion was defined as the condition that the maximum global displacement {delta}{sub max} reaches a critical displacement {delta}{sub u}. The authors have previously proposed an estimation method of the fatigue damage based on the post buckling fatigue tests 304 s.s. cylinders at room temperature. However, adoption of a modified 316 s.s named 316FR s.s is under development as the material of reactor vessel of the updated design of the Demonstration Fast Breeder Reactor. The buckling tests with 316FR s.s cylinders were performed under high temperature to obtain the skeleton curve of the relation between load and displacement. And the buckling behaviors under the cyclic loading were compared with those of 304 s.s. Objectives of the present study are: to apply the proposed estimation method to a reactor vessel made of 316FR s.s., and clarify the correlation between {delta}{sub max} and fatigue failure; to verify structural soundness of the ultimate state derived from the seismic margin criterion against the fatigue failure due to the buckling deformation. (author). 7 refs., 12 figs., 1 tab.

  9. Multiobjective fuel management optimization for self-fuel-providing LMFBR using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Toshinsky, Vladimir G.; Sekimoto, Hiroshi [Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, O-Okayama, Meguro-ku, Tokyo (Japan); Toshinsky, Georgy I. [State Scientific Center, Institute of Physics and Power Engineering, Obninsk (Russian Federation)

    1999-06-01

    One of the conceptual options under consideration for the future of nuclear power is the long-term development without fuel reprocessing. This concept is based on a reactor that requires no plutonium reprocessing for itself, and provides high efficiency of natural uranium utilization, so called Self-Fuel-Providing LMFBR (SFPR). Several design considerations were previously given to this reactor type which, however, suffer from some problems connected with insufficient power flattening, large reactivity swings during burnup cycles, and peak fuel burnup being significantly higher than recent technology experience, which is about 18% for U-10 wt%Zr metallic fuel to be considered. Yet, the mentioned core parameters demonstrate high sensitivity to the fuel management strategy selected for the reactor. Therefore, the aim of this study is to develop a practical tool for the improvement of the core characteristics by fuel management optimization, which is based on advanced optimization techniques such as Genetic Algorithms (GA). The calculation results obtained by a simplified reactor model can serve as estimates of achievable values for mentioned core parameters, which are necessary to make decisions at the preliminary optimization stage.

  10. Effects of governing parameters on steady-state inter-wrapper flow in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Shoichi [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab

    2001-04-01

    Hydraulic experiments were performed using a 1/8th scale rectangular model, based on a Japanese demonstration fast breeder reactor design, in order to study fundamental characteristics of interwrapper flows occurring under steady state conditions in an LMFBR. The steady state interwrapper flow of which direction was downward in the center region and upward in the peripheral region of a core barrel was observed because of the radial static pressure gradient in the upper part of the core barrel, produced by a core blockage effect resulting from an above core structure with a perforated skirt. Thermal stratification phenomena were moreover observed in the interwrapper region, created by the hot steady state interwrapper flow from an upper plenum and the cold leakage flow through the separated plate of the core barrel. The thermal interface was generated in higher part of the core barrel when the core blockage effect was smaller and Richardson number and the leakage flow rate ratio were larger. Significant temperature fluctuations occurred in the peripheral region of the core barrel, when the difference between the interface elevations in the center and peripheral regions of the core barrel was enough large. (author)

  11. Turbulent flow simulation in a wire-wrap rod bundle of an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K. [Thermal Hydraulics Section, Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sundararajan, T. [Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600036 (India); Narasimhan, Arunn, E-mail: arunn@iitm.ac.i [Department of Mechanical Engineering, Indian Institute of Technology, Madras, Chennai 600036 (India); Velusamy, K. [Thermal Hydraulics Section, Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2010-05-15

    The pressure drop and heat transfer characteristics of wire-wrapped 19-pin rod bundles in a nuclear reactor subassembly of liquid metal cooled fast breeder reactor (LMFBR) have been investigated through three-dimensional turbulent flow simulations. The predicted results of eddy viscosity based turbulence models (k-epsilon, k-omega) and the Reynolds stress model are compared with those of experimental correlations for friction factor and Nusselt number. The Re is varied between 50,000 and 150,000 and the ratio of helical pitch of wire wrap to the rod diameter is varied from 15 to 45. All the three turbulence models considered yield similar results. The friction factor increases with reduction in the wire-wrap pitch while the heat transfer coefficient remains almost unaltered. However, reduction in the wire-wrap pitch also enhances the transverse flow velocity in the cross-sectional plane as well as the local turbulence intensity, thereby improving the thermal mixing of coolant. Consequently, the presence of wire wrap reduces temperature variation within each section of the subassembly. The associated reduction in differential thermal expansion of rods is expected to improve the structural integrity of the fuel subassembly.

  12. LMFBR Emergency Deployment Assuming 45 year Time-Delay Excess CO{sub 2} Removal

    Energy Technology Data Exchange (ETDEWEB)

    Schenewerk, William Ernest [5060 San Rafael Avenue, Los Angeles, CA, 90042-3239 (United States)

    2008-07-01

    Atmospheric CO{sub 2} is presently increasing 2.25% per year in proportion to 2.25% per year exponential fossil fuel consumption increase. CO{sub 2} removal is modeled as being proportional to 45-year-earlier CO{sub 2} amount above 280 ppmV-C. This is: Exp (-0.0225/year * 45 years) = 0.36 fraction CO{sub 2} removed from anthropological emissions, apparently by seawater. LMFBRs use 15 year doubling time. Deploying 30000 GWe atomic power by year-2080 results in CO{sub 2} doubling year-2065 if World primary energy consumption continues increasing 2.25% per year. CO{sub 2} remains roughly twice pre-industrial until year-2100. Beginning year-2080, CO{sub 2} declines at 2.25% per year. CO{sub 2} will presumably decline back to roughly the year-2000 value by year-2200 if the 45-year-delay sink remains effective. LMFBR and GCFR fleet expands to 30000 GWe by 2080. 1000 GWe LWR fleet consumes 5 Mt HM (Heavy Metal). Breeder first cores require 1 Mt HM. (author)

  13. Dynamic simulation of accidental closure of intermediate heat exchanger isolation valve in a pool type LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K., E-mail: natesan@igcar.gov.in [Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Kasinathan, N.; Velusamy, K.; Selvaraj, P.; Chellapandi, P.; Chetal, S.C. [Reactor Engineering Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    2011-04-15

    Research highlights: > Thermal hydraulic analysis closure of sleeve valve in the primary circuit of FBR is discussed. > Numerical modeling of hydraulics in the primary and secondary sodium circuits is presented. > Aspects related to event management are discussed. - Abstract: In a pool type liquid metal cooled fast breeder reactor (LMFBR), core and other internals such as pumps, heat exchangers are immersed in a pool of sodium. Heat exchange from primary sodium circuit (pool) to secondary sodium circuit (loop) is through four intermediate heat exchangers (IHX) immersed in primary sodium pool. Each IHX is provided with a sleeve valve at its primary sodium inlet window for the purpose of isolating the shell side of IHX from the sodium pool. With such a provision, an inadvertent partial or complete closure of a sleeve valve of one of the IHX during normal operation of the reactor has been considered as a design basis event for the reactor. One dimensional transient thermal hydraulic models of the primary and secondary sodium circuits have been developed to study the thermal hydraulic consequences of such an event. The main areas of concern in the plant and the availability of safety parameters for the detection of the event have been evaluated.

  14. Development of the thermal behavior analysis code DIRAD and the fuel design procedure for LMFBR

    Science.gov (United States)

    Nakae, N.; Tanaka, K.; Nakajima, H.; Matsumoto, M.

    1992-06-01

    It is very important to increase the fuel linear heat rating for improvement of economy in LMFBR without any degradation in safety. A reduction of the design margin is helpful to achieve the high power operation. The development of a fuel design code and a design procedure is effective on the reduction of the design margin. The thermal behavior analysis code DIRAD has been developed with respect to fuel restructuring and gap conductance models. These models have been calibrated and revised using irradiation data of fresh fuel. It is, therefore, found that the code is applicable for the thermal analysis with fresh fuel. The uncertainties in fuel irradiation condition and fuel fabrication tolerance together with the uncertainty of the code prediction have major contributions to the design margin. In the current fuel design the first two uncertainties independently contribute to temperature increment. Another method which can rationally explain the effect of the uncertainties on the temperature increment is adopted here. Then, the design margin may be rationally reduced.

  15. Development of computer code models for analysis of subassembly voiding in the LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Hinkle, W [ed.

    1979-12-01

    The research program discussed in this report was started in FY1979 under the combined sponsorship of the US Department of Energy (DOE), General Electric (GE) and Hanford Engineering Development Laboratory (HEDL). The objective of the program is to develop multi-dimensional computer codes which can be used for the analysis of subassembly voiding incoherence under postulated accident conditions in the LMFBR. Two codes are being developed in parallel. The first will use a two fluid (6 equation) model which is more difficult to develop but has the potential for providing a code with the utmost in flexibility and physical consistency for use in the long term. The other will use a mixture (< 6 equation) model which is less general but may be more amenable to interpretation and use of experimental data and therefore, easier to develop for use in the near term. To assure that the models developed are not design dependent, geometries and transient conditions typical of both foreign and US designs are being considered.

  16. Calculation of Doses Due to Accidentally Released Plutonium From An LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Fish, B.R.

    2001-08-07

    Experimental data and analytical models that should be considered in assessing the transport properties of plutonium aerosols following a hypothetical reactor accident have been examined. Behaviors of released airborne materials within the reactor containment systems, as well as in the atmosphere near the reactor site boundaries, have been semiquantitatively predicted from experimental data and analytical models. The fundamental chemistry of plutonium as it may be applied in biological systems has been used to prepare models related to the intake and metabolism of plutonium dioxide, the fuel material of interest. Attempts have been made to calculate the possible doses from plutonium aerosols for a typical analyzed release in order to evaluate the magnitude of the internal exposure hazards that might exist in the vicinity of the reactor after a hypothetical LMFBR (Liquid-Metal Fast Breeder Reactor) accident. Intake of plutonium (using data for {sup 239}Pu as an example) and its distribution in the body were treated parametrically without regard to the details of transport pathways in the environment. To the extent possible, dose-response data and models have been reviewed, and an assessment of their adequacy has been made so that recommended or preferred practices could be developed.

  17. LMFBR source term experiments in the Fuel Aerosol Simulant Test (FAST) facility

    Energy Technology Data Exchange (ETDEWEB)

    Petrykowski, J.C.; Longest, A.W.

    1985-01-01

    The transport of uranium dioxide (UO/sub 2/) aerosol through liquid sodium was studied in a series of ten experiments in the Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory (ORNL). The experiments were designed to provide a mechanistic basis for evaluating the radiological source term associated with a postulated, energetic core disruptive accident (CDA) in a liquid metal fast breeder reactor (LMFBR). Aerosol was generated by capacitor discharge vaporization of UO/sub 2/ pellets which were submerged in a sodium pool under an argon cover gas. Measurements of the pool and cover gas pressures were used to study the transport of aerosol contained by vapor bubbles within the pool. Samples of cover gas were filtered to determine the quantity of aerosol released from the pool. The depth at which the aerosol was generated was found to be the most critical parameter affecting release. The largest release was observed in the baseline experiment where the sample was vaporized above the sodium pool. In the nine ''undersodium'' experiments aerosol was generated beneath the surface of the pool at depths varying from 30 to 1060 mm. The mass of aerosol released from the pool was found to be a very small fraction of the original specimen. It appears that the bulk of aerosol was contained by bubbles which collapsed within the pool. 18 refs., 11 figs., 4 tabs.

  18. Measurement and analysis of flow wall shear stress in an interior subchannel of triangular array rods. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Fakori-Monazah, M.R.; Todreas, N.E.

    1977-08-01

    A simulated model of triangular array rods with pitch to diameter ratio of 1.10 (as a test section) and air as the fluid flow was used to study the LMFBR hydraulic parameters. The wall shear stress distribution around the rod periphery, friction factors, static pressure distributions and turbulence intensity corresponding to various Reynolds numbers ranging from 4140 to 36170 in the central subchannel were measured. Various approaches for measurement of wall shear stress were compared. The measurement was performed using the Preston tube technique with the probe outside diameter equal to 0.014 in.

  19. Theory and use of GIRAFFE for analysis of decay characteristics of delayed-neutron precursors in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Gross, K. C.

    1980-07-01

    The application of the computer code GIRAFFE (General Isotope Release Analysis For Failed Elements) written in FORTRAN IV is described. GIRAFFE was designed to provide parameter estimates of the nonlinear discrete-measurement models that govern the transport and decay of delayed-neutron precursors in a liquid-metal fast breeder reactor (LMFBR). The code has been organized into a set of small, relatively independent and well-defined modules to facilitate modification and maintenance. The program logic, the numerical techniques, and the methods of solution used by the code are presented, and the functions of the MAIN program and of each subroutine are discussed.

  20. LMFBR (LIQUID METAL FAST BREEDER REACTOR) READTION RATE AND DOSIMETRY 3RD QUARTERLY PROGRESS REPORT DECEMBER 1971 JANUARY FEBRUARY 1972

    Energy Technology Data Exchange (ETDEWEB)

    MCELROY WN

    1972-03-01

    This report was compiled at the Hanford Engineering Development Laboratory operated by Westinghouse Hanford Company, a subsidiary of Westinghouse Electric Corporation, for the United States Atomic Energy Commission, Division of Reactor Development and Technology, under Contract No. AT (45-1) 2170. It describes technical progress made in the Interlaboratory LMFBR Reaction Rate Program during the reporting period. The Interlaboratory LMFBR Reaction Rate (ILRR) program has been established by USAEC/RDT to develop a capability to accurately measure neutron-induced reaction rates for LMFBR fuels and materials development programs. The initial goal for the principal fission reactions, {sup 235}U, {sup 238}U, and {sup 239}Pu, is an accuracy to within {+-}5 at the 95% confidence level. Accurate measurement of other fission and non-fission reactions will be required, but to a lesser accuracy, between {+-}5 to 10% at the 95% confidence level. A secondary program objective is improvement in knowledge of the nuclear parameters involved in fuels and materials dosimetry measurements of neutron flux, spectra, fluence, and burnup. These accuracy goals for the ILRR program are severe; measurements of fast-neutron-induced reaction rates have not been rapidly moving toward this level of precision. Using a number of techniques in well established neutron environments of current interest for fast reactor development and critically evaluating the results will help establish existing levels of accuracy and indicate the scale of effort required for improvement. To accomplish the objectives of this program, reliable and documented experimental values of reaction rates and ratios will be determined for various well established and permanent neutron fields. The Coupled Fast Reactivity Measurement Facility (CFRMF) at Aerojet Nuclear Company (ANC) is the first neutron field being studied because of the similarity of its spectrum to that of a fast reactor and the range and reproducibility of

  1. Benchmark physics experiment of metallic-fueled LMFBR at FCA. 2; Experiments of FCA assembly XVI-1 and their analyses

    Energy Technology Data Exchange (ETDEWEB)

    Iijima, Susumu; Oigawa, Hiroyuki; Ohno, Akio; Sakurai, Takeshi; Nemoto, Tatsuo; Osugi, Toshitaka; Satoh, Kunio; Hayasaka, Katsuhisa [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Bando, Masaru

    1993-10-01

    An availability of data and method for a design of metallic-fueled LMFBR is examined by using the experiment results of FCA assembly XVI-1. Experiment included criticality and reactivity coefficients such as Doppler, sodium void, fuel shifting and fuel expansion. Reaction rate ratios, sample worth and control rod worth were also measured. Analysis was made by using three-dimensional diffusion calculations and JENDL-2 cross sections. Predictions of assembly XVI-1 reactor physics parameters agree reasonably well with the measured values, but for some reactivity coefficients such as Doppler, large zone sodium void and fuel shifting further improvement of calculation method was need. (author).

  2. 2d Index and Surface operators

    CERN Document Server

    Gadde, Abhijit

    2013-01-01

    In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools de...

  3. Optical modulators with 2D layered materials

    Science.gov (United States)

    Sun, Zhipei; Martinez, Amos; Wang, Feng

    2016-04-01

    Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.

  4. Automatic Contour Extraction from 2D Image

    Directory of Open Access Journals (Sweden)

    Panagiotis GIOANNIS

    2011-03-01

    Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.

  5. Orthotropic Piezoelectricity in 2D Nanocellulose

    Science.gov (United States)

    García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.

    2016-10-01

    The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.

  6. 2D microwave imaging reflectometer electronics

    Energy Technology Data Exchange (ETDEWEB)

    Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  7. Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.

    Science.gov (United States)

    Fang, Yuan; Yushmanov, Pavel V; Furó, István

    2016-12-08

    Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.

  8. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    Energy Technology Data Exchange (ETDEWEB)

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C. [Indira Gandhi Centre for Atomic Research, Kalpakkam (India)

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  9. A Label Correcting Algorithm for Partial Disassembly Sequences in the Production Planning for End-of-Life Products

    Directory of Open Access Journals (Sweden)

    Pei-Fang (Jennifer Tsai

    2012-01-01

    Full Text Available Remanufacturing of used products has become a strategic issue for cost-sensitive businesses. Due to the nature of uncertain supply of end-of-life (EoL products, the reverse logistic can only be sustainable with a dynamic production planning for disassembly process. This research investigates the sequencing of disassembly operations as a single-period partial disassembly optimization (SPPDO problem to minimize total disassembly cost. AND/OR graph representation is used to include all disassembly sequences of a returned product. A label correcting algorithm is proposed to find an optimal partial disassembly plan if a specific reusable subpart is retrieved from the original return. Then, a heuristic procedure that utilizes this polynomial-time algorithm is presented to solve the SPPDO problem. Numerical examples are used to demonstrate the effectiveness of this solution procedure.

  10. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. I. DISASSEMBLING GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Savorgnan, G. A. D.; Graham, A. W., E-mail: gsavorgn@astro.swin.edu.au [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122 (Australia)

    2016-01-15

    Several recent studies have performed galaxy decompositions to investigate correlations between the black hole mass and various properties of the host spheroid, but they have not converged on the same conclusions. This is because their models for the same galaxy were often significantly different and not consistent with each other in terms of fitted components. Using 3.6 μm Spitzer imagery, which is a superb tracer of the stellar mass (superior to the K band), we have performed state-of-the-art multicomponent decompositions for 66 galaxies with directly measured black hole masses. Our sample is the largest to date and, unlike previous studies, contains a large number (17) of spiral galaxies with low black hole masses. We paid careful attention to the image mosaicking, sky subtraction, and masking of contaminating sources. After a scrupulous inspection of the galaxy photometry (through isophotal analysis and unsharp masking) and—for the first time—2D kinematics, we were able to account for spheroids; large-scale, intermediate-scale, and nuclear disks; bars; rings; spiral arms; halos; extended or unresolved nuclear sources; and partially depleted cores. For each individual galaxy, we compared our best-fit model with previous studies, explained the discrepancies, and identified the optimal decomposition. Moreover, we have independently performed one-dimensional (1D) and two-dimensional (2D) decompositions and concluded that, at least when modeling large, nearby galaxies, 1D techniques have more advantages than 2D techniques. Finally, we developed a prescription to estimate the uncertainties on the 1D best-fit parameters for the 66 spheroids that takes into account systematic errors, unlike popular 2D codes that only consider statistical errors.

  11. Spent fuel disassembly and canning programs at the Barnwell Nuclear Fuel Plant (BNFP). [For storage or transport

    Energy Technology Data Exchange (ETDEWEB)

    Townes, III, George A.

    1980-10-01

    Methods of disassembling and canning spent fuel to allow more efficient storage are being investigated at the BNFP. Studies and development programs are aimed at dry disassembly of fuel to allow storage and shipment of fuel pins rather than complete fuel assemblies. Results indicate that doubling existing storage capacity or tripling the carrying capacity of existing transportation equipment is achievable. Disassembly could be performed in the BNFP hot cells at rates of about 12 to 15 assemblies per day.

  12. Aircraft height estimation using 2-D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2010-01-01

    Full Text Available A method to infer height information from an aircraft tracked with a single 2-D search radar is presented. The method assumes level flight in the target aircraft and a good estimate of the speed of the aircraft. The method yields good results...

  13. Canonical structure of 2D black holes

    CERN Document Server

    Navarro-Salas, J; Talavera, C F

    1994-01-01

    We determine the canonical structure of two-dimensional black-hole solutions arising in $2D$ dilaton gravity. By choosing the Cauchy surface appropriately we find that the canonically conjugate variable to the black hole mass is given by the difference of local (Schwarzschild) time translations at right and left spatial infinities. This can be regarded as a generalization of Birkhoff's theorem.

  14. Horns Rev II, 2-D Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Frigaard, Peter

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...

  15. 2D PIM Simulation Based on COMSOL

    DEFF Research Database (Denmark)

    Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu;

    2011-01-01

    Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...

  16. Microcalorimetric study of adsorption and disassembling of virus-like particles on anion exchange chromatography media.

    Science.gov (United States)

    Yu, Mengran; Zhang, Songping; Zhang, Yan; Yang, Yanli; Ma, Guanghui; Su, Zhiguo

    2015-04-03

    Chromatographic purification of virus-like particles (VLPs) is important to the development of modern vaccines. However, disassembly of the VLPs on the solid-liquid interface during chromatography process could be a serious problem. In this study, isothermal titration calorimetric (ITC) measurements, together with chromatography experiments, were performed on the adsorption and disassembling of multi-subunits hepatitis B virus surface antigen virus-like particles (HB-VLPs). Two gigaporous ion-exchange chromatography (IEC) media, DEAE-AP-280 nm and DEAE-POROS, were used. The application of gigaporous media with high ligand density led to significantly increased irreversible disassembling of HB-VLPs and consequently low antigen activity recovery during IEC process. To elucidate the thermodynamic mechanism of the effect of ligand density on the adsorption and conformational change of VLPs, a thermodynamic model was proposed. With this model, one can obtain the intrinsic molar enthalpy changes related to the binding of VLPs and the accompanying conformational change on the liquid-solid interface during its adsorption. This model assumes that, when intact HB-VLPs interact with the IEC media, the total adsorbed proteins contain two states, the intact formation and the disassembled formation; accordingly, the apparent adsorption enthalpy, ΔappH, which can be directly measured from ITC experiments, presents the sum of three terms: (1) the intrinsic molar enthalpy change associated to the binding of intact HB-VLPs (ΔbindHintact), (2) the intrinsic molar enthalpy change associated to the binding of HB-VLPs disassembled formation (ΔbindHdis), and (3) the enthalpy change accompanying the disassembling of HB-VLPs (ΔconfHdis). The intrinsic binding of intact HB-VLPs and the disassembled HB-VLPs to both kinds of gigaporous media (each of which has three different ligand densities), were all observed to be entropically driven as indicated by positive values of

  17. Disassembling "evapotranspiration" in-situ with a complex measurement tool

    Science.gov (United States)

    Chormanski, Jaroslaw; Kleniewska, Malgorzata; Berezowski, Tomasz; Sporak-Wasilewska, Sylwia; Okruszko, Tomasz; Szatylowicz, Jan; Batelaan, Okke

    2014-05-01

    In this work we present a complex tool for measuring water fluxes in wetland ecosystems. The tool was designed to quantify processes related to interception storage on plants leafs. The measurements are conducted by combining readings from various instruments, including: eddy covariance tower (EC), field spectrometer, SapFlow system, rain gauges above and under canopy, soil moisture probes and other. The idea of this set-up is to provide continuous measurement of overall water flux from the ecosystem (EC tower), intercepted water volume and timing (field spectrometers), through-fall (rain gauges above and under canopy), transpiration (SapFlow), evaporation and soil moisture (soil moisture probes). Disassembling the water flux to the above components allows giving more insight to the interception related processes and differentiates them from the total evapotranspiration. The measurements are conducted in the Upper Biebrza Basin (NE Poland). The study area is part of the valley and is covered by peat soils (mainly peat moss with the exception of areas near the river) and receives no inundations waters of the Biebrza. The plant community of Agrostietum-Carici caninae has a dominant share here creating an up to 0.6 km wide belt along the river. The area is covered also by Caricion lasiocarpae as well as meadows and pastures Molinio-Arrhenatheretea, Phragmitetum communis. Sedges form a hummock pattern characteristic for the sedge communities in natural river valleys with wetland vegetation. The main result of the measurement set-up will be the analyzed characteristics and dynamics of interception storage for sedge ecosystems and a developed methodology for interception monitoring by use spectral reflectance technique. This will give a new insight to processes of evapotranspiration in wetlands and its components transpiration, evaporation from interception and evaporation from soil. Moreover, other important results of this project will be the estimation of energy and

  18. Disassembly of simian virus 40 during passage through the endoplasmic reticulum and in the cytoplasm.

    Science.gov (United States)

    Kuksin, Dmitry; Norkin, Leonard C

    2012-02-01

    The nonenveloped polyomavirus simian virus 40 (SV40) is taken up into cells by a caveola-mediated endocytic process that delivers the virus to the endoplasmic reticulum (ER). Within the ER lumen, the capsid undergoes partial disassembly, which exposes its internal capsid proteins VP2 and VP3 to immunostaining with antibodies. We demonstrate here that the SV40 genome does not become accessible to detection while the virus is in the ER. Instead, the genome becomes accessible two distinct detection procedures, one using anti-bromodeoxyuridine antibodies and the other using a 5-ethynyl-2-deoxyuridine-based chemical reaction, only after the emergence of partially disassembled SV40 particles in the cytoplasm. These cytoplasmic particles retain some of the SV40 capsid proteins, VP1, VP2, and VP3, in addition to the viral genome. Thus, SV40 particles undergo discrete disassembly steps during entry that are separated temporally and topologically. First, a partial disassembly of the particles occurs in the ER, which exposes internal capsid proteins VP2 and VP3. Then, in the cytoplasm, disassembly progresses further to also make the genomic DNA accessible to immune detection.

  19. Coordinated Action of Nap1 and RSC in Disassembly of Tandem Nucleosomes.

    Science.gov (United States)

    Prasad, Rashmi; D'Arcy, Sheena; Hada, Arjan; Luger, Karolin; Bartholomew, Blaine

    2016-09-01

    The SWI/SNF and RSC family of ATP-dependent chromatin remodelers disassembles nucleosomes by moving nucleosomes into the vicinity of adjoining nucleosomes. We found that the histone chaperone Nap1 efficiently promotes disassembly of adjacent nucleosomes with which RSC collides and not the disassembly of nucleosomes mobilized by RSC. Nap1 is specific to RSC, as it does not target SWI/SNF, its paralog in Saccharomyces cerevisiae Extensive mutational analysis of Nap1 has revealed that Nap1 affinity for histones H2A-H2B and H3-H4 and its ability to displace histones from DNA are required for Nap1 to enhance RSC-mediated disassembly. Other histone chaperones, such as Vps75, that also bind histones are not able to enhance RSC-mediated disassembly. Our study suggests a mechanism by which Nap1 is recruited to actively transcribed regions and assists in the passage of the transcription complex through chromatin, and it provides a novel mechanism for the coordinated action of RSC and Nap1.

  20. An Intelligent Agent-Controlled and Robot-Based Disassembly Assistant

    Science.gov (United States)

    Jungbluth, Jan; Gerke, Wolfgang; Plapper, Peter

    2017-09-01

    One key for successful and fluent human-robot-collaboration in disassembly processes is equipping the robot system with higher autonomy and intelligence. In this paper, we present an informed software agent that controls the robot behavior to form an intelligent robot assistant for disassembly purposes. While the disassembly process first depends on the product structure, we inform the agent using a generic approach through product models. The product model is then transformed to a directed graph and used to build, share and define a coarse disassembly plan. To refine the workflow, we formulate “the problem of loosening a connection and the distribution of the work” as a search problem. The created detailed plan consists of a sequence of actions that are used to call, parametrize and execute robot programs for the fulfillment of the assistance. The aim of this research is to equip robot systems with knowledge and skills to allow them to be autonomous in the performance of their assistance to finally improve the ergonomics of disassembly workstations.

  1. Tensile properties of 11Cr-0.5Mo-2W, V, Nb stainless steel in LMFBR environment

    Energy Technology Data Exchange (ETDEWEB)

    Uehira, Akihiro; Ukai, Shigeharu; Mizuno, Tomoyasu; Asaga, Takeo; Yoshida, Eiichi [Japan Nuclear Cycle Development Inst., Oarai, Ibaraki (Japan). Oarai Engineering Center

    2000-09-01

    The tensile strength of ferritic-martensitic 11Cr-0.5Mo-2W, Nb, V stainless steel (PNC-FMS), which had been developed for core component applications in LMFBR by Japan Nuclear Cycle Development Institute, was evaluated for the effects of thermal aging, sodium exposure, and neutron irradiation. The tensile strength of thermal aged specimens ({approx}1,023 K, {approx}12,000 h) decreased at aging conditions above the initial tempering parameter, and the aging effect was considerably enhanced for the wrapper tubes tempered at lower temperatures. The tensile strength of sodium exposed specimens ({approx}973 K, {approx}10,000 h) decreased more than aged specimens due to decarburization, and the effect of decarburization was greater in thin wall cladding tubes. Evaluation of the contribution of both thermal aging and decarburization effects on the tensile strength of cladding tubes irradiated in JOYO ({approx}1,013 K, {approx}6,030 h, {approx}29 dpa) suggested that the radiation showed smaller effect on tensile properties than thermal aging and decarburization. By using the derived correlations for thermal aging and decarburization effects, the tensile strength decrease for PNC-FMS after long period (30,000 h) in LMFBR environment was quantitatively calculated. (author)

  2. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    Science.gov (United States)

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-02-06

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  3. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    Directory of Open Access Journals (Sweden)

    Kateryna Shavanova

    2016-02-01

    Full Text Available The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical. A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.

  4. Studies on scaled models for gas entrainment in the surge tank of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Ramdasu, D.; Shivakumar, N.S.; Padmakumar, G.; Anand Babu, C.; Vaidyanathan, G. [Fast Reactor Technology Group, Indira Gandhi Centre for Atomic Research, Kalpakkam (India); Rammohan, S.; Sreekala, S.K.; Manikandan, S.; Saseendran, S. [Fluid Control Research Institute, Palghat (India)

    2007-07-01

    This paper presents the studies carried out in the different scale models of Surge tank used in the secondary circuit of Liquid metal fast breeder reactor (LMFBR). Surge tank acquires importance because of its ability to take care of pressure surges in case of a sodium water reaction in Steam Generators (SG). The blanket of argon cover gas above the sodium free surface in the surge tank acts as a cushion for the surges. At the same time, argon gas is a source of entrainment into the sodium which is undesirable from the consideration of effective heat transfer in Inter mediate Heat Exchanger and SG, cavitation in pumps and operational problems of continuous feed and bleed of cover gas, thus leading to unfavourable reactor operating conditions. To investigate the phenomenon of gas entrainment in surge tank, hydraulic experiments were conducted in water using 1/38, 1/32, 1/22 and 1/12 scale models with Froude similarity. The minimum height of liquid column required to avoid gas entrainment was determined using different types of internal devices. Experiments were carried out in the 5/8 scale model to confirm the results of the smaller scale models. It was found that free surface height to avoid gas entrainment varies for different scale models. The combination of Pepper pot with ring plate was found to be the most effective in avoiding gas entrainment at H/D equals 1.28 where H is the height of liquid column in the tank from tank bottom and D is the inner diameter of surge tank.

  5. Study of thermal influence on tubes due to sodium-water reactions in LMFBR steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, H.; Kurihara, A.; Nishimura, M. [Japan Nuclear Cycle Development Institute, Ibaraki (Japan)

    2004-07-01

    A study of thermal influence on heat-transfer tubes in sodium-water reactions is carried out to evaluate the tube rupture due to overheating in the water leak accident of an LMFBR steam generator (SG). By assuming the sodium-water reaction jet to be a two-phase flow that consists of sodium and hydrogen, the heat-transfer characteristics are examined and a simple model of effective heat-transfer coefficient (HTC) is proposed for the safety evaluation of the SG. Comparison of the model with experimental data leads to the following conclusions: An upper limit exists in the HTC between reaction jet and tube wall, and it is equivalent in approximation to the HTC of single-phase sodium flow. The HTC can be written in simple form as functions of the HTC of single-phase sodium flow, void fraction and temperatures of sodium, hydrogen and tube wall. Hydrogen provides negligible heating effect, so that the apparent HTC would decrease with increase of the hydrogen temperature that can readily surpass that of sodium. The outer-surface temperature of tube wall would not rise so high beyond the temperature of sodium that is excellent in heat-transfer characteristics, even if tube wall is exposed to the high-temperature hydrogen. The transient heat conduction analysis with the mean value of the data can appropriately evaluate the outer-surface temperature of tube wall by the metallographic observation, while the analysis with the maximum value can conservatively evaluate the tube wall temperature. (authors)

  6. Transmutation of minor actinides discharged from LMFBR spent fuel in a high power density fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Uebeyli, Mustafa E-mail: mubeyli@gazi.edu.tr

    2004-12-01

    Significant amounts of nuclear wastes consisting of plutonium, minor actinides and long lived fission products are produced during the operation of commercial nuclear power plants. Therefore, the destruction of these wastes is very important with respect to public health, environment and also the future of nuclear energy. In this study, transmutation of minor actinides (MAs) discharged from LMFBR spent fuel in a high power density fusion reactor has been investigated under a neutron wall load of 10 MW/m{sup 2} for an operation period of 10 years. Also, the effect of MA percentage on the transmutation has been examined. The fuel zone, containing MAs as spheres cladded with W-5Re, has been located behind the first wall to utilize the high neutron flux for transmutation effectively. Helium at 40 atm has been used as an energy carrier. At the end of the operation period, the total burning and transmutation are greater than the total buildups in all investigated cases, and very high burnups (420-470 GWd/tHM) are reached, depending on the MA content. The total transmutation rate values are 906 and 979 kg/GW{sub th} year at startup and decrease to 140 and 178 kg/GW{sub th} year at the end of the operation for fuel with 10% and 20% MA, respectively. Over an operation period of 10 years, the effective half lives decrease from 2.38, 2.21 and 3.08 years to 1.95, 1.80 and 2.59 years for {sup 237}Np, {sup 241}Am and {sup 243}Am, respectively. Total atomic densities decrease exponentially during the operation period. The reductions in the total atomic densities with respect to the initial ones are 79%, 81%, 82%, 83%, 85% and 86% for 10%, 12%, 14%, 16%, 18% and 20% MAs, respectively.

  7. Development of a tritium transport analysis code for the LMFBR system

    Energy Technology Data Exchange (ETDEWEB)

    Iizawa, Katsuyuki; Torii, Tatsuo [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, Tsuruga, Fukui (Japan)

    2001-03-01

    A tritium transport analysis code for the LMFBR system, TTT code, has been developed and validated using data from a power rising test conducted at Monju in 1995. The behavior of tritium during future long-term full power operation of Monju has been estimated. The TTT code was created from the tritium and hydrogen transport model devised by R. Kumar and ANL. Actual data from some plants has been used to improve the code. In this study, we used data from Monju to increase the accuracy of the calculated to measured ratio, the C/E ratio. As a result of the study, we were able to: 1. show that the calculated tritium concentration distribution and the change in the primary and secondary sodium, steam and water correlated sufficiently closely with the measured, C/E ratio of 1.1; 2. propose a transport model between sodium and the cover gas system taking into account the mechanisms affecting the partial pressure difference and the isotopic exchange of H and H3; 3. examine the considerable effect of the hydrogen source within the sodium cooling system of Monju on tritium behavior and clarify the characteristics at the initial stage of plant; 4. estimate the tritium transport and distribution for the long-term full power operation of Monju. The tritium release from the core will be 7,400 TBq during 30 years of operation. The primary and secondary cold trap will capture 99% of this and 1% or less will be released to the environment as gaseous radioactive waste from stack and its drainage water from SG; and 5. compare the best fitted tritium source rates from cores in Phenix and Monju and estimate the major release from Monju's helium bond closed type control rods. (author)

  8. Node-by-node disassembly of a mutualistic interaction web driven by species introductions

    Science.gov (United States)

    Rodriguez-Cabal, Mariano A.; Barrios-Garcia, M. Noelia; Amico, Guillermo C.; Aizen, Marcelo A.; Sanders, Nathan J.

    2013-01-01

    Interaction webs summarize the diverse interactions among species in communities. The addition or loss of particular species and the alteration of key interactions can lead to the disassembly of the entire interaction web, although the nontrophic effects of species loss on interaction webs are poorly understood. We took advantage of ongoing invasions by a suite of exotic species to examine their impact in terms of the disassembly of an interaction web in Patagonia, Argentina. We found that the reduction of one species (a host of a keystone mistletoe species) resulted in diverse indirect effects that led to the disassembly of an interaction web through the loss of the mistletoe, two key seed-dispersers (a marsupial and a bird), and a pollinator (hummingbird). Our results demonstrate that the gains and losses of species are both consequences and drivers of global change that can lead to underappreciated cascading coextinctions through the disruption of mutualisms. PMID:24067653

  9. Schottky diodes from 2D germanane

    Science.gov (United States)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  10. Schottky diodes from 2D germanane

    Energy Technology Data Exchange (ETDEWEB)

    Sahoo, Nanda Gopal; Punetha, Vinay Deep [Nanoscience and Nanotechnology Centre, Department of Chemistry, Kumaun University, Nainital, 263001 Uttarakhand (India); Esteves, Richard J; Arachchige, Indika U. [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Pestov, Dmitry [Nanomaterials Core Characterization Center, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); McLeskey, James T., E-mail: JamesMcLeskey@rmc.edu [Department of Physics, Randolph-Macon College, Ashland, Virginia 23005 (United States)

    2016-07-11

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe{sub 2} framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  11. 2D Metals by Repeated Size Reduction.

    Science.gov (United States)

    Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui

    2016-10-01

    A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.

  12. 2dF mechanical engineering

    Science.gov (United States)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  13. 2D-Tasks for Cognitive Rehabilitation

    OpenAIRE

    Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.

    2011-01-01

    Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...

  14. Quasiparticle interference in unconventional 2D systems

    Science.gov (United States)

    Chen, Lan; Cheng, Peng; Wu, Kehui

    2017-03-01

    At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.

  15. Disassembly properties and material characterisation of household small waste electric and electronic equipment.

    Science.gov (United States)

    Bovea, María D; Pérez-Belis, Victoria; Ibáñez-Forés, Valeria; Quemades-Beltrán, Pilar

    2016-07-01

    This paper is focused on characterising small waste electric and electronic equipment, specifically small household appliances, from two different points of views: disassembly properties and material identification. The sample for this characterisation was obtained from a selective collection campaign organised in Castellón de la Plana (Spain). A total amount of 833.7kg (749 units) of small waste electric and electronic equipment was collected, of which 23.3% by weight and 22.4% by units belonged to the subcategory household equipment. This subcategory, composed of appliances such as vacuum cleaners, toasters, sandwich makers, hand blenders, juicers, coffee makers, hairdryers, scales, irons and heaters, was first disassembled in order to analyse different aspects of the disassembly process for each equipment type: type of joints, ease of identification of materials, ease of access to joints for extracting components, ease of separation of components from the whole, uniformity of tools needed for the disassembly process and possibility of reassembly after disassembly. Results show that the most common joints used in these equipment types are snap-fits and screws, although some permanent joints have also been identified. Next, the material composition of each component of each appliance belonging to each equipment type was identified visually and with additional mechanical trials and testing. It can be observed that plastic and electric/electronic components are present in all the equipment types analysed and are also the material fractions that appear with higher percentages in the material composition: 41.1wt% and 39.1wt% for the plastic fraction and electric/electronic components, respectively. The most common plastics are: polypropylene (PP), acrylonitrile butadiene styrene (ABS) and polycarbonate (PC), while the most common electric/electronic components are: cable, plug and printed circuit boards. Results also show that disassembly properties and material

  16. Engineering light outcoupling in 2D materials

    KAUST Repository

    Lien, Derhsien

    2015-02-11

    When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.

  17. Irreversibility-inversions in 2D turbulence

    Science.gov (United States)

    Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido

    2016-11-01

    We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.

  18. Disassembly of the fusion-1 capsule after irradiation in the BOR-60 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H. [Argonne National Lab., IL (United States); Kazakov, V.A.; Chakin, V.P. [and others

    1997-04-01

    A U.S./Russia (RF) collaborative irradiation experiment, Fusion-1, was completed in June 1996 after reaching a peak exposure of {approx}17 dpa in the BOR-60 fast reactor at the Research Institute of Atomic Reactors (RIAR) in Russia. The specimens were vanadium alloys, mainly of recent heats from both countries. In this reporting period, the capsule was disassembled at the RIAR hot cells and all test specimens were successfully retrieved. For the disassembly, an innovative method of using a heated diffusion oil to melt and separate the lithium bond from the test specimens was adopted. This method proved highly successful.

  19. 2D superconductivity by ionic gating

    Science.gov (United States)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  20. 2-D Prony-Huang Transform: A New Tool for 2-D Spectral Analysis

    CERN Document Server

    Schmitt, Jérémy; Borgnat, Pierre; Flandrin, Patrick; Condat, Laurent

    2014-01-01

    This work proposes an extension of the 1-D Hilbert Huang transform for the analysis of images. The proposed method consists in (i) adaptively decomposing an image into oscillating parts called intrinsic mode functions (IMFs) using a mode decomposition procedure, and (ii) providing a local spectral analysis of the obtained IMFs in order to get the local amplitudes, frequencies, and orientations. For the decomposition step, we propose two robust 2-D mode decompositions based on non-smooth convex optimization: a "Genuine 2-D" approach, that constrains the local extrema of the IMFs, and a "Pseudo 2-D" approach, which constrains separately the extrema of lines, columns, and diagonals. The spectral analysis step is based on Prony annihilation property that is applied on small square patches of the IMFs. The resulting 2-D Prony-Huang transform is validated on simulated and real data.

  1. GBL-2D Version 1.0: a 2D geometry boolean library.

    Energy Technology Data Exchange (ETDEWEB)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  2. Extrinsic curvature induced 2-d gravity

    CERN Document Server

    Viswanathan, K S

    1993-01-01

    Abtract: 2-dimensional fermions are coupled to extrinsic geometry of a conformally immersed surface in ${\\bf R}^3$ through gauge coupling. By integrating out the fermions, we obtain a WZNW action involving extrinsic curvature of the surface. Restricting the resulting effective action to surfaces of $h\\sqrt g=1$, an explicit form of the action invariant under Virasaro symmetry is obtained. This action is a sum of the geometric action for the Virasaro group and the light-cone action of 2-d gravity plus an interaction term. The central charges of the theory in both the left and right sectors are calculated.

  3. Instant HTMl5 2D platformer

    CERN Document Server

    Temple, Aidan

    2013-01-01

    Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to

  4. Robust and resistant 2D shape alignment

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Eiriksson, Hrafnkell

    2001-01-01

    \\_\\$\\backslash\\$infty\\$ norm alignments are formulated as linear programming problems. The linear vector function formulation along with the different norms results in alignment methods that are both resistant from influence from outliers, robust wrt. errors in the annotation and capable of handling missing datapoints......We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l...

  5. Another solution of 2D Ising model

    Science.gov (United States)

    Vergeles, S. N.

    2009-04-01

    The partition function of the Ising model on a two-dimensional regular lattice is calculated by using the matrix representation of a Clifford algebra (the Dirac algebra), with number of generators equal to the number of lattice sites. It is shown that the partition function over all loops in a 2D lattice including self-intersecting ones is the trace of a polynomial in terms of Dirac matrices. The polynomial is an element of the rotation group in the spinor representation. Thus, the partition function is a function of a character on an orthogonal group of a high degree in the spinor representation.

  6. Target tracking using a 2D radar

    CSIR Research Space (South Africa)

    Kriel, M

    2012-08-01

    Full Text Available is omitted. This can be an important consideration as aircraft altitude limits the attack pro�les a target can��y [1]. 33.2 HEIGHT ESTIMATION The current literature regarding height estimation restricts itself to computations involving two or more 2D... is instrumental in determining the aircraft altitude. The accuracy to which these speeds are known is directly pro- portional to the accuracy to which the altitude can be determined. Knowledge of aircraft speed can be obtained in a variety of ways. For example...

  7. Using genetic/simulated annealing algorithm to solve disassembly sequence planning

    Institute of Scientific and Technical Information of China (English)

    Wu Hao; Zuo Hongfu

    2009-01-01

    disassembly sequence.And the solution methodology based on the genetic/simulated annealing algorithm with binary-tree algorithm is given.Finally,an example is analyzed in detail,and the result shows that the model is correct and efficient.

  8. Effect of Buyang Huanwu decoction and its disassembled recipes on rats’ neurogenesis after focal cerebral ischemia

    Institute of Scientific and Technical Information of China (English)

    曲铁兵

    2014-01-01

    Objective To explore the effect of Buyang Huanwu Decoction(BYHWD)and its disassembled recipes on rats’neurogenesis after focal cerebral ischemia and to investigate its underlying molecular mechanisms.Methods Focal cerebral ischemia model was induced by occlusion of the right middle cerebral artery for 90 min using the

  9. Mechanical disassembly of single virus particles reveals kinetic intermediates predicted by theory.

    Science.gov (United States)

    Castellanos, Milagros; Pérez, Rebeca; Carrillo, Pablo J P; de Pablo, Pedro J; Mateu, Mauricio G

    2012-06-06

    New experimental approaches are required to detect the elusive transient intermediates predicted by simulations of virus assembly or disassembly. Here, an atomic force microscope (AFM) was used to mechanically induce partial disassembly of single icosahedral T=1 capsids and virions of the minute virus of mice. The kinetic intermediates formed were imaged by AFM. The results revealed that induced disassembly of single minute-virus-of-mice particles is frequently initiated by loss of one of the 20 equivalent capsomers (trimers of capsid protein subunits) leading to a stable, nearly complete particle that does not readily lose further capsomers. With lower frequency, a fairly stable, three-fourths-complete capsid lacking one pentamer of capsomers and a free, stable pentamer were obtained. The intermediates most frequently identified (capsids missing one capsomer, capsids missing one pentamer of capsomers, and free pentamers of capsomers) had been predicted in theoretical studies of reversible capsid assembly based on thermodynamic-kinetic models, molecular dynamics, or oligomerization energies. We conclude that mechanical manipulation and imaging of simple virus particles by AFM can be used to experimentally identify kinetic intermediates predicted by simulations of assembly or disassembly. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Remarks on thermalization in 2D CFT

    Science.gov (United States)

    de Boer, Jan; Engelhardt, Dalit

    2016-12-01

    We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.

  11. Gas sensing in 2D materials

    Science.gov (United States)

    Yang, Shengxue; Jiang, Chengbao; Wei, Su-huai

    2017-06-01

    Two-dimensional (2D) layered inorganic nanomaterials have attracted huge attention due to their unique electronic structures, as well as extraordinary physical and chemical properties for use in electronics, optoelectronics, spintronics, catalysts, energy generation and storage, and chemical sensors. Graphene and related layered inorganic analogues have shown great potential for gas-sensing applications because of their large specific surface areas and strong surface activities. This review aims to discuss the latest advancements in the 2D layered inorganic materials for gas sensors. We first elaborate the gas-sensing mechanisms and introduce various types of gas-sensing devices. Then, we describe the basic parameters and influence factors of the gas sensors to further enhance their performance. Moreover, we systematically present the current gas-sensing applications based on graphene, graphene oxide (GO), reduced graphene oxide (rGO), functionalized GO or rGO, transition metal dichalcogenides, layered III-VI semiconductors, layered metal oxides, phosphorene, hexagonal boron nitride, etc. Finally, we conclude the future prospects of these layered inorganic materials in gas-sensing applications.

  12. Comments on Thermalization in 2D CFT

    CERN Document Server

    de Boer, Jan

    2016-01-01

    We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...

  13. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    Science.gov (United States)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  14. FMEF profilometry and visual examination feasibility and conceptual design. [Fuels and Materials Examination Facility; LMFBR and GCFR

    Energy Technology Data Exchange (ETDEWEB)

    Philipp, L.D.; Dilbeck, R.A.; Hartman, J.S.; Hildebrand, B.P.; Reich, F.R.; Swinth, K.L.

    1976-07-01

    The Fuels and Materials Examination Facility (FMEF) is being scoped to provide postirradiation examination capabilities for FFTF, LMFBR and GCFR fuels and materials. The Hanford Engineering Development Laboratory has requested that the Battelle Pacific Northwest Laboratory (PNL) complete a feasibility study for the development of equipment to meet the FMEF Measurement Requirements for irradiated fuel pin and absorber rod bow, length, profile and visual examination stations. The purpose of the report is to provide a conceptual design for development of the examination equipment. The design analysis assumes that fuel pins and absorber rods to be examined are in the main cell. The cell's environment will be argon or nitrogen gas at a pressure between --1 and --4 in. of water and at a temperature between 70 and 100/sup 0/F. Oxygen content of the cell gas will normally be controlled between 25 and 50 ppM. Water content will be controlled within the same limits.

  15. Coolant mixing in LMFBR rod bundles and outlet plenum mixing transients. Progress report, March 1, 1978--May 31, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Todreas, N.E.; Golay, M.W.; Wolf, L.

    1978-01-01

    An optical technique has been developed for the measurement of the eddy diffusivity of heat in a transparent flowing medium. The method uses a combination of two established measurement tools: a Mach--Zehnder interferometer for the monitoring of turbulently fluctuating temperature and a Laser Doppler Anemometer (LDA) for the measurement of turbulent velocity fluctuations. The technique is applied to the investigation of flow fields characteristic of the LMFBR outlet plenum. The study is accomplished using air as the working fluid in a small scale Plexiglas test section. Flows are introduced into both the 1/15 scale FFTF outlet plenum and the 3/80 scale CRBR geometry plenum at inlet Reynolds numbers of 22,000.

  16. Monte-Carlo Modeling of Parameters of a Subcritical Cascade Reactor Based on MSBR and LMFBR Technologies

    CERN Document Server

    Bznuni, S A; Zhamkochyan, V M; Polanski, A; Sosnin, A N; Khudaverdyan, A H

    2001-01-01

    Parameters of a subcritical cascade reactor driven by a proton accelerator and based on a primary lead-bismuth target, main reactor constructed analogously to the molten salt breeder (MSBR) reactor core and a booster-reactor analogous to the core of the BN-350 liquid metal cooled fast breeder reactor (LMFBR). It is shown by means of Monte-Carlo modeling that the reactor under study provides safe operation modes (k_{eff}=0.94-0.98), is apable to transmute effectively radioactive nuclear waste and reduces by an order of magnitude the requirements on the accelerator beam current. Calculations show that the maximal neutron flux in the thermal zone is 10^{14} cm^{12}\\cdot s^_{-1}, in the fast booster zone is 5.12\\cdot10^{15} cm^{12}\\cdot s{-1} at k_{eff}=0.98 and proton beam current I=2.1 mA.

  17. PHOEBUS/UHTREX: a preliminary study of a low-cost facility for transient tests of LMFBR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Kirk, W.L. (comp.)

    1976-08-01

    The results of a brief preliminary design study of a facility for transient nuclear tests of fast breeder reactor fuel are described. The study is based on the use of a reactor building originally built for the UHTREX reactor, and the use of some reactor hardware and reactor design and fabrication technology remaining from the Phoebus-2 reactor of the Rover nulcear rocket propulsion program. The facility is therefore currently identified as the PHOEBUS/UHTREX facility. This facility is believed capable of providing early information regarding fast reactor core accident energetics issues which will be very valuable to the overall LMFBR safety program. Facility performance in conjunction with a reference 127-fuel pin experiment is described. Low cost and early availability of the facility were emphasized in the selection of design features and parameters.

  18. COBRA-WC: a version of COBRA for single-phase multiassembly thermal hydraulic transient analysis. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    George, T.L.; Basehore, K.L.; Wheeler, C.L.; Prather, W.A.; Masterson, R.E.

    1980-07-01

    The objective of this report is to provide the user of the COBRA-WC (Whole Core) code a basic understanding of the code operation and capabilities. Included in this manual are the equations solved and the assumptions made in their derivations, a general description of the code capabilities, an explanation of the numerical algorithms used to solve the equations, and input instructions for using the code. Also, the auxiliary programs GEOM and SPECSET are described and input instructions for each are given. Input for COBRA-WC sample problems and the corresponding output are given in the appendices. The COBRA-WC code has been developed from the COBRA-IV-I code to analyze liquid Metal Fast Breeder Reactor (LMFBR) assembly transients. It was specifically developed to analyze a core flow coastdown to natural circulation cooling.

  19. Finite-element formulations for the thermal stress analysis of two- and three-dimensional thin reactor structures. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kulak, R.F.; Kennedy, J.M.; Belytschko, T.B.; Schoeberle, D.F.

    1977-01-01

    In several postulated LMFBR subassembly-to-subassembly failure propagation events, it is hypothesized that the duct wall of an accident subassembly fails and deposits molten fuel on the outer wall of an adjacent subassembly. It is therefore necessary to determine if the deposited fuel will fail the adjacent wall and thus propagate the event. This entails a thermal stress analysis, and since at times the adjacent subassembly is internally pressurized, thermomechanical analysis are also of value. Solutions are presented for several elastic plastic thermal problems. Some of these examples are compared to available analytic solutions. In addition, the hypothetical accident of molten fuel deposition on the adjacent hexcan is addressed. Combinations of pressure and thermal loading are considered. It is shown that the principal feature of the response is a large in-plane compressive stress which would undoubtedly cause buckling.

  20. Disassembly and physical separation of electric/electronic components layered in printed circuit boards (PCB).

    Science.gov (United States)

    Lee, Jaeryeong; Kim, Youngjin; Lee, Jae-chun

    2012-11-30

    Although printed circuit boards (PCBs) contain various elements, only the major elements (i.e., those with content levels in wt% or over grade) of and precious metals (e.g., Ag, Au, and platinum groups) contained within PCBs can be recycled. To recover other elements from PCBs, the PCBs should be properly disassembled as the first step of the recycling process. The recovery of these other elements would be beneficial for efforts to conserve scarce resources, reuse electric/electronic components (EECs), and eliminate environmental problems. This paper examines the disassembly of EECs from wasted PCBs (WPCBs) and the physical separation of these EECs using a self-designed disassembling apparatus and a 3-step separation process of sieving, magnetic separation, and dense medium separation. The disassembling efficiencies were evaluated by using the ratio of grinding area (E(area)) and the weight ratio of the detached EECs (E(weight)). In the disassembly treatment, these efficiencies were improved with an increase of grinder speed and grinder height. 97.7% (E(area)) and 98% (E(weight)) could be accomplished ultimately by 3 repetitive treatments at a grinder speed of 5500 rpm and a grinder height of 1.5mm. Through a series of physical separations, most groups of the EECs (except for the diode, transistor, and IC chip groups) could be sorted at a relatively high separation efficiency of about 75% or more. To evaluate the separation efficiency with regard to the elemental composition, the distribution ratio (R(dis)) and the concentration ratio (R(conc)) were used. 15 elements could be separated with the highest R(dis) and R(conc) in the same separated division. This result implies that the recyclability of the elements is highly feasible, even though the initial content in EECs is lower than several tens of mg/kg.

  1. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Soonthornsit, Jeerawat [Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555 (Japan); Yamaguchi, Yoko; Tamura, Daisuke [Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan); Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho [Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555 (Japan); Yamamoto, Akitsugu [Department of Animal Bioscience, Nagahama Institute of Bio-Science and Technology, 266 Tamura, Nagahama, Shiga, 526‐0829 (Japan); Nakamura, Nobuhiro, E-mail: osaru3@cc.kyoto-su.ac.jp [Laboratory for Cell and Developmental Biology, Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Motoyama, Kamigamo, Kita, Kyoto 603-8555 (Japan); Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa 920-1192 (Japan)

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1–2 h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A{sub 2} inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A{sub 2} was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus. - Highlights: • The Golgi apparatus reversibly disassembles by low pH treatment. • The cis-Golgi disassembles quickly generating tubular structures. • Both anterograde and retrograde transport between the ER and the Golgi apparatus are reduced. • Phospholipase A{sub 2} inhibitors (ONO

  2. Investigation of the physical and numerical foundations of two-fluid representation of sodium boiling with applications to LMFBR experiments

    Energy Technology Data Exchange (ETDEWEB)

    No, H.C.; Kazimi, M.S.

    1983-03-01

    This work involves the development of physical models for the constitutive relations of a two-fluid, three-dimensional sodium boiling code, THERMIT-6S. The code is equipped with a fluid conduction model, a fuel pin model, and a subassembly wall model suitable for stimulating LMFBR transient events. Mathematically rigorous derivations of time-volume averaged conservation equations are used to establish the differential equations of THERMIT-6S. These equations are then discretized in a manner identical to the original THERMIT code. A virtual mass term is incorporated in THERMIT-6S to solve the ill-posed problem. Based on a simplified flow regime, namely cocurrent annular flow, constitutive relations for two-phase flow of sodium are derived. The wall heat transfer coefficient is based on momentum-heat transfer analogy and a logarithmic law for liquid film velocity distribution. A broad literature review is given for two-phase friction factors. It is concluded that entrainment can account for some of the discrepancies in the literature. Mass and energy exchanges are modelled by generalization of the turbulent flux concept. Interfacial drag coefficients are derived for annular flows with entrainment. Code assessment is performed by simulating three experiments for low flow-high power accidents and one experiment for low flow/low power accidents in the LMFBR. While the numerical results for pre-dryout are in good agreement with the data, those for post-dryout reveal the need for improvement of the physical models. The benefits of two-dimensional non-equilibrium representation of sodium boiling are studied.

  3. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992......). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92...... was on the Dolos breakwater with a high superstructure, where there was almost no overtopping. This case is believed to be the most dangerous one. The test of the Dolos breakwater with a low superstructure was also performed. The objective of the last part of the experiment is to investigate the influence...

  4. Alignment free characterization of 2D gratings

    CERN Document Server

    Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis

    2015-01-01

    Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.

  5. 2D Cooling of Magnetized Neutron Stars

    CERN Document Server

    Aguilera, Deborah N; Miralles, Juan A

    2007-01-01

    Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...

  6. Lie symmetries and 2D Material Physics

    CERN Document Server

    Belhaj, Adil

    2014-01-01

    Inspired from Lie symmetry classification, we establish a correspondence between rank two Lie symmetries and 2D material physics. The material unit cell is accordingly interpreted as the geometry of a root system. The hexagonal cells, appearing in graphene like models, are analyzed in some details and are found to be associated with A_2 and G_2 Lie symmetries. This approach can be applied to Lie supersymmetries associated with fermionic degrees of freedom. It has been suggested that these extended symmetries can offer a new way to deal with doping material geometries. Motivated by Lie symmetry applications in high energy physics, we speculate on a possible connection with (p,q) brane networks used in the string theory compactification on singular Calabi-Yau manifolds.

  7. 2-d Simulations of Test Methods

    DEFF Research Database (Denmark)

    Thrane, Lars Nyholm

    2004-01-01

    approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when......One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...

  8. Full revivals in 2D quantum walks

    Energy Technology Data Exchange (ETDEWEB)

    Stefanak, M; Jex, I [Department of Physics, FJFI CVUT v Praze, Brehova 7, 115 19 Praha 1-Stare Mesto (Czech Republic); Kollar, B; Kiss, T, E-mail: martin.stefanak@fjfi.cvut.c [Department of Quantum Optics and Quantum Information, Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Konkoly-Thege M. u. 29-33, H-1121 Budapest (Hungary)

    2010-09-01

    Recurrence of a random walk is described by the Polya number. For quantum walks, recurrence is understood as the return of the walker to the origin, rather than the full revival of its quantum state. Localization for two-dimensional quantum walks is known to exist in the sense of non-vanishing probability distribution in the asymptotic limit. We show, on the example of the 2D Grover walk, that one can exploit the effect of localization to construct stationary solutions. Moreover, we find full revivals of a quantum state with a period of two steps. We prove that there cannot be longer cycles for a four-state quantum walk. Stationary states and revivals result from interference, which has no counterpart in classical random walks.

  9. 2-D Model Test of Dolosse Breakwater

    DEFF Research Database (Denmark)

    Burcharth, Hans F.; Liu, Zhou

    1994-01-01

    The rational design diagram for Dolos armour should incorporate both the hydraulic stability and the structural integrity. The previous tests performed by Aalborg University (AU) made available such design diagram for the trunk of Dolos breakwater without superstructures (Burcharth et al. 1992......). To extend the design diagram to cover Dolos breakwaters with superstructure, 2-D model tests of Dolos breakwater with wave wall is included in the project Rubble Mound Breakwater Failure Modes sponsored by the Directorate General XII of the Commission of the European Communities under Contract MAS-CT92......-0042. Furthermore, Task IA will give the design diagram for Tetrapod breakwaters without a superstructure. The more complete research results on Dolosse can certainly give some insight into the behaviour of Tetrapods armour layer of the breakwaters with superstructure. The main part of the experiment...

  10. 2D Electrostatic Actuation of Microshutter Arrays

    Science.gov (United States)

    Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.

    2015-01-01

    An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.

  11. Fast 2-D Complex Gabor Filter with Kernel Decomposition

    OpenAIRE

    Um, Suhyuk; Kim, Jaeyoon; Min, Dongbo

    2017-01-01

    2-D complex Gabor filtering has found numerous applications in the fields of computer vision and image processing. Especially, in some applications, it is often needed to compute 2-D complex Gabor filter bank consisting of the 2-D complex Gabor filtering outputs at multiple orientations and frequencies. Although several approaches for fast 2-D complex Gabor filtering have been proposed, they primarily focus on reducing the runtime of performing the 2-D complex Gabor filtering once at specific...

  12. Metrology for graphene and 2D materials

    Science.gov (United States)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  13. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    Science.gov (United States)

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Low cytoplasmic pH reduces ER-Golgi trafficking and induces disassembly of the Golgi apparatus.

    Science.gov (United States)

    Soonthornsit, Jeerawat; Yamaguchi, Yoko; Tamura, Daisuke; Ishida, Ryuichi; Nakakoji, Yoko; Osako, Shiho; Yamamoto, Akitsugu; Nakamura, Nobuhiro

    2014-11-01

    The Golgi apparatus was dramatically disassembled when cells were incubated in a low pH medium. The cis-Golgi disassembled quickly, extended tubules and spread to the periphery of cells within 30 min. In contrast, medial- and trans-Golgi were fragmented in significantly larger structures of smaller numbers at a slower rate and remained largely in structures distinct from the cis-Golgi. Electron microscopy revealed the complete disassembly of the Golgi stack in low pH treated cells. The effect of low pH was reversible; the Golgi apparatus reassembled to form a normal ribbon-like structure within 1-2h after the addition of a control medium. The anterograde ER to Golgi transport and retrograde Golgi to ER transport were both reduced under low pH. Phospholipase A2 inhibitors (ONO, BEL) effectively suppressed the Golgi disassembly, suggesting that the phospholipase A2 was involved in the Golgi disassembly. Over-expression of Rab1, 2, 30, 33 and 41 also suppressed the Golgi disassembly under low pH, suggesting that they have protective role against Golgi disassembly. Low pH treatment reduced cytoplasmic pH, but not the luminal pH of the Golgi apparatus, strongly suggesting that reduction of the cytoplasmic pH triggered the Golgi disassembly. Because a lower cytoplasmic pH is induced in physiological or pathological conditions, disassembly of the Golgi apparatus and reduction of vesicular transport through the Golgi apparatus may play important roles in cell physiology and pathology. Furthermore, our findings indicated that low pH treatment can serve as an important tool to analyze the molecular mechanisms that support the structure and function of the Golgi apparatus.

  15. Analysis of the IEA 2D test. 2D, 3D, steady or unsteady airflow?

    DEFF Research Database (Denmark)

    Cortes, Ines Olmedo; Nielsen, Peter V.

    The “IEA Annex 20 two-dimensional test case” was defined by proffesor Peter V. Nielsen (1990) and was originally considered two-dimensional and steady flow. However, some recent works considering the case as three dimensional have shown different solutions from the 2D case as well as different so...

  16. AGR-1 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    Energy Technology Data Exchange (ETDEWEB)

    Paul Demkowicz; Lance Cole; Scott Ploger; Philip Winston; Binh Pham; Michael Abbott

    2011-01-01

    The AGR-1 irradiation experiment ended on November 6, 2009, after 620 effective full power days in the Advanced Test Reactor, achieving a peak burnup of 19.6% FIMA. The test train was shipped to the Materials and Fuels Complex in March 2010 for post-irradiation examination. The first PIE activities included non-destructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and the graphite fuel holders. Dimensional measurements of the compacts, graphite holders, and steel capsules shells were performed using a custom vision measurement system (for outer diameters and lengths) and conventional bore gauges (for inner diameters). Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Neutron radiography of the intact Capsule 2 showed a high degree of detail of interior components and confirmed the observation that there was no major damage to the capsule. Disassembly of the capsules was initiated using procedures qualified during out-of-cell mockup testing. Difficulties were encountered during capsule disassembly due to irradiation-induced changes in some of the capsule components’ properties, including embrittled niobium and molybdenum parts that were susceptible to fracture and swelling of the graphite fuel holders that affected their removal from the capsule shells. This required various improvised modifications to the disassembly procedure to avoid damage to the fuel compacts. Ultimately the capsule disassembly was successful and only one compact from Capsule 4 (out of 72 total in the test train) sustained damage during the disassembly process, along with the associated graphite holder. The compacts were generally in very good condition upon removal. Only relatively minor

  17. Analysis list: Kmt2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Kmt2d Adipocyte,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.5.tsv http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d....Adipocyte.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d.Pluripo

  18. Intermittency in 2D soap film turbulence

    CERN Document Server

    Cerbus, R T

    2013-01-01

    The Reynolds number dependency of intermittency for 2D turbulence is studied in a flowing soap film. The Reynolds number used here is the Taylor microscale Reynolds number R_{\\lambda}, which ranges from 20 to 800. Strong intermittency is found for both the inverse energy and direct enstrophy cascades as measured by (a) the pdf of velocity differences P(\\delta u(r)) at inertial scales r, (b) the kurtosis of P(\\partial_x u), and (c) the scaling of the so-called intermittency exponent \\mu, which is zero if intermittency is absent. Measures (b) and (c) are quantitative, while (a) is qualitative. These measurements are in disagreement with some previous results but not all. The velocity derivatives are nongaussian at all R_{\\lambda} but show signs of becoming gaussian as R_{\\lambda} increases beyond the largest values that could be reached. The kurtosis of P(\\delta u(r)) at various r indicates that the intermittency is scale dependent. The structure function scaling exponents also deviate strongly from the Kraichn...

  19. Competing coexisting phases in 2D water

    Science.gov (United States)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  20. Ion Transport in 2-D Graphene Nanochannels

    Science.gov (United States)

    Xie, Quan; Foo, Elbert; Duan, Chuanhua

    2015-11-01

    Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).

  1. 2D DIGITAL SIMPLIFIED FLOW VALVE

    Institute of Scientific and Technical Information of China (English)

    Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D

    2004-01-01

    The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.

  2. Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro.

    Science.gov (United States)

    Oliva, R; Mezquita, C

    1986-10-21

    In accordance with the results of classical experiments performed in vitro with calf thymus chromatin and the fish protamine salmine, we have observed that this highly basic, small molecular weight protamine cannot cause major displacement of histones from nucleosomal core particles at concentrations several times higher than physiological (arginine/nucleotide ratios 1-8) and that hyperacetylation of histones facilitates nucleosome disassembly. However, the avian protamine galline, with molecular weight and number of arginine residues almost twice those of common fish protamines, is able to displace the nucleosomal core histones from DNA in vitro at concentrations (arginine/nucleotide ratios 0.6-1.2) within the physiological range (0.8). Our results suggest that the binding of the avian protamine galline to chromatin could be directly involved in the rapid disassembly of nucleosomes that takes place during the nucleohistone nucleoprotamine transition in chicken spermiogenesis.

  3. Development of an annular linear induction electromagnetic pump for the na-coolant circulation of LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hee Reyoung; Lee, Yong Bum; Kim, Yong Kyun; Nam, Ho Yun [KAERI, Taejon (Korea, Republic of)

    1998-07-01

    The EM (ElectroMagnetic) pump operated by Lorentz force (J x B) is developed for the sodium coolant circulation of LMFBR (Liquid Metal Fast Breeder Reactors). Design and experimental characterization are carried out on the linear induction EM pump of the narrow annular channel type. The pump which obtains propulsion force resultantly by the three phase symmetric alternating input currents is analyzed by the electrical equivalent circuit method used in the analyses of the induction machines. Then, the equivalent circuit for the pump consists of equivalent variables of primary and secondary resistances and magnetizing and leakage reactances given as functions of pump geometrical and electrical variables by Laithwaithe's standard formulae. Developing pressure-flowrate relation given by pump variables is sought from the balance equation on the circuit. Developing pressure and efficiency of the pump according to the pump variables are analyzed for the pump with a flowrate of 200 l/min. It is shown that pump is mainly characterized by length of the core, diameter of the inner core and channel gap geometrically and by input frequency electrically. Optimum values of pump geometrical and operational variables are determined to maximize the developing force and overall efficiency. The pump has geometrical size of 60 cm in length, 4.27 cm in inner core diameter and electrical input of 6,428 VA and 17 Hz. Optimally designed pump is manufactured by the consideration of material and operational requirements in the chemically-active sodium environment with high temperature of 600 .deg. C. Silicon-iron steel plates with high magnetic permeability in the high temperature are stacked for generation of the high magnetic flux and alumina-dispersion-strengthened-copper bands are used as exciting coils. Each turn of coil is insulated by asbestos band to protect electrical short in the high temperature. Stainless steel which can be compatible with sodium is selected as structural

  4. Drill-and-crack technique for nuclear disassembly of hard nucleus.

    Science.gov (United States)

    Hwang, Ho Sik; Kim, Eun Chul; Kim, Man Soo

    2010-10-01

    We describe a new technique for nuclear disassembly of a hard nucleus in cataract surgery. The drill-and-crack technique, which combines phaco chop and the prechopper, makes a deep hole (drill) in the central nucleus with the phaco tip and divides the nucleus (crack) with the prechopper inside the hole. Copyright © 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  5. Detailed Per-residue Energetic Analysis Explains the Driving Force for Microtubule Disassembly.

    Directory of Open Access Journals (Sweden)

    Ahmed T Ayoub

    2015-06-01

    Full Text Available Microtubules are long filamentous hollow cylinders whose surfaces form lattice structures of αβ-tubulin heterodimers. They perform multiple physiological roles in eukaryotic cells and are targets for therapeutic interventions. In our study, we carried out all-atom molecular dynamics simulations for arbitrarily long microtubules that have either GDP or GTP molecules in the E-site of β-tubulin. A detailed energy balance of the MM/GBSA inter-dimer interaction energy per residue contributing to the overall lateral and longitudinal structural stability was performed. The obtained results identified the key residues and tubulin domains according to their energetic contributions. They also identified the molecular forces that drive microtubule disassembly. At the tip of the plus end of the microtubule, the uneven distribution of longitudinal interaction energies within a protofilament generates a torque that bends tubulin outwardly with respect to the cylinder's axis causing disassembly. In the presence of GTP, this torque is opposed by lateral interactions that prevent outward curling, thus stabilizing the whole microtubule. Once GTP hydrolysis reaches the tip of the microtubule (lateral cap, lateral interactions become much weaker, allowing tubulin dimers to bend outwards, causing disassembly. The role of magnesium in the process of outward curling has also been demonstrated. This study also showed that the microtubule seam is the most energetically labile inter-dimer interface and could serve as a trigger point for disassembly. Based on a detailed balance of the energetic contributions per amino acid residue in the microtubule, numerous other analyses could be performed to give additional insights into the properties of microtubule dynamic instability.

  6. 2-D Animation's Not Just for Mickey Mouse.

    Science.gov (United States)

    Weinman, Lynda

    1995-01-01

    Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)

  7. Design-only conceptual design report for pit disassembly and conversion facility. Rev 0

    Energy Technology Data Exchange (ETDEWEB)

    Zygmunt, S.; Christensen, L.; Richardson, C.

    1997-12-12

    This design-only conceptual design report (DOCDR) was prepared to support a funding request by the Department of Energy (DOE)-Office of Fissile Material Disposition (OFMD) for engineering design of the Pit Disassembly and Conversion Facility (PDCF) Project No. 99-D-141. The PDCF will be used to disassemble the nation`s inventory of surplus nuclear weapons pits and convert the plutonium recovered from those pits into a form suitable for storage, international inspection, and final disposition. The PDCF is a complex consisting of a hardened building that will contain the plutonium processes in a safe and secure manner, and conventional buildings and structures that will house support personnel, systems, and equipment. The PDCF uses the Advanced Recovery and Integrated Extraction System (ARIES), a low waste, modular pyroprocessing system to convert pits to plutonium oxide. The PDCF project consists of engineering and design, and construction of the buildings and structures, and engineering and design, procurement, installation, testing and start-up of equipment to disassemble pits and convert plutonium in pits to oxide form. The facility is planned to operate for 10 years, averaging 3.5 metric tons (3.86 tons) of plutonium metal per year. On conclusion of operations, the PDCF will be decontaminated and decommissioned.

  8. Distinct annular oligomers captured along the assembly and disassembly pathways of transthyretin amyloid protofibrils.

    Directory of Open Access Journals (Sweden)

    Ricardo H Pires

    Full Text Available BACKGROUND: Defects in protein folding may lead to severe degenerative diseases characterized by the appearance of amyloid fibril deposits. Cytotoxicity in amyloidoses has been linked to poration of the cell membrane that may involve interactions with amyloid intermediates of annular shape. Although annular oligomers have been detected in many amyloidogenic systems, their universality, function and molecular mechanisms of appearance are debated. METHODOLOGY/PRINCIPAL FINDINGS: We investigated with high-resolution in situ atomic force microscopy the assembly and disassembly of transthyretin (TTR amyloid protofibrils formed of the native protein by pH shift. Annular oligomers were the first morphologically distinct intermediates observed in the TTR aggregation pathway. Morphological analysis suggests that they can assemble into a double-stack of octameric rings with a 16 ± 2 nm diameter, and displaying the tendency to form linear structures. According to light scattering data coupled to AFM imaging, annular oligomers appeared to undergo a collapse type of structural transition into spheroid oligomers containing 8-16 monomers. Disassembly of TTR amyloid protofibrils also resulted in the rapid appearance of annular oligomers but with a morphology quite distinct from that observed in the assembly pathway. CONCLUSIONS/SIGNIFICANCE: Our observations indicate that annular oligomers are key dynamic intermediates not only in the assembly but also in the disassembly of TTR protofibrils. The balance between annular and more compact forms of aggregation could be relevant for cytotoxicity in amyloidogenic disorders.

  9. Phosphorylation of p37 is important for Golgi disassembly at mitosis

    Energy Technology Data Exchange (ETDEWEB)

    Kaneko, Yayoi [Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511 (Japan); Tamura, Kaori [Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Totsukawa, Go [Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan); Mitsubishi Kagaku Institute of Life Sciences, Tokyo 194-8511 (Japan); Kondo, Hisao, E-mail: hk228@med.kyushu-u.ac.jp [Department of Molecular Cell Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582 (Japan)

    2010-11-05

    Research highlights: {yields} p37 is phosphorylated on Serine-56 and Threonine-59 by Cdc2 at mitosis. {yields} Phosphorylated p37 does not bind to Golgi membranes. {yields} p37 phosphorylation inhibits p97/p37-mediated Golgi membrane fusion. -- Abstract: In mammals, the Golgi apparatus is disassembled at early mitosis and reassembled at the end of mitosis. For Golgi disassembly, membrane fusion needs to be blocked. Golgi biogenesis requires two distinct p97ATPase-mediated membrane fusion, the p97/p47 and p97/p37 pathways. We previously reported that p47 phosphorylation on Serine-140 by Cdc2 results in mitotic inhibition of the p97/p47 pathway . In this study, we demonstrate that p37 is phosphorylated on Serine-56 and Threonine-59 by Cdc2 at mitosis, and this phosphorylated p37 does not bind to Golgi membranes. Using an in vitro Golgi reassembly assay, we show that mutated p37(S56D, T59D), which mimics mitotic phosphorylation, does not cause any cisternal regrowth, indicating that p37 phosphorylation inhibits the p97/p37 pathway. Our results demonstrate that p37 phosphorylation on Serine-56 and Threonine-59 is important for Golgi disassembly at mitosis.

  10. The non-catalytic domains of Drosophila katanin regulate its abundance and microtubule-disassembly activity.

    Directory of Open Access Journals (Sweden)

    Kyle D Grode

    Full Text Available Microtubule severing is a biochemical reaction that generates an internal break in a microtubule and regulation of microtubule severing is critical for cellular processes such as ciliogenesis, morphogenesis, and meiosis and mitosis. Katanin is a conserved heterodimeric ATPase that severs and disassembles microtubules, but the molecular determinants for regulation of microtubule severing by katanin remain poorly defined. Here we show that the non-catalytic domains of Drosophila katanin regulate its abundance and activity in living cells. Our data indicate that the microtubule-interacting and trafficking (MIT domain and adjacent linker region of the Drosophila katanin catalytic subunit Kat60 cooperate to regulate microtubule severing in two distinct ways. First, the MIT domain and linker region of Kat60 decrease its abundance by enhancing its proteasome-dependent degradation. The Drosophila katanin regulatory subunit Kat80, which is required to stabilize Kat60 in cells, conversely reduces the proteasome-dependent degradation of Kat60. Second, the MIT domain and linker region of Kat60 augment its microtubule-disassembly activity by enhancing its association with microtubules. On the basis of our data, we propose that the non-catalytic domains of Drosophila katanin serve as the principal sites of integration of regulatory inputs, thereby controlling its ability to sever and disassemble microtubules.

  11. Alveolar Type II Cells Escape Stress Failure Caused by Tonic Stretch through Transient Focal Adhesion Disassembly

    Directory of Open Access Journals (Sweden)

    Xiao-Yang Liu, Xiao-Fei Chen, Yan-Hong Ren, Qing-Yuan Zhan, Chen Wang, Chun Yang

    2011-01-01

    Full Text Available Mechanical ventilation-induced excessive stretch of alveoli is reported to induce cellular stress failure and subsequent lung injury, and is therefore an injurious factor to the lung. Avoiding cellular stress failure is crucial to ventilator-induced lung injury (VILI treatment. In the present study, primary rat alveolar type II (ATII cells were isolated to evaluate their viability and the mechanism of their survival under tonic stretch. By the annexin V/ PI staining and flow cytometry assay, we demonstrated that tonic stretch-induced cell death is an immediate injury of mechanical stress. In addition, immunofluorescence and immunoblots assay showed that the cells experienced an expansion-contraction-reexpansion process, accompanied by partial focal adhesion (FA disassembly during contraction. Manipulation of integrin adherent affinity by altering bivalent cation levels in the culture medium and applying an integrin neutralizing antibody showed that facilitated adhesion affinity promoted cell death under tonic stretch, while lower level of adhesion protected the cells from stretch-induced stress failure. Finally, a simplified numerical model was established to reveal that adequate disassembly of FAs reduced the forces transmitting throughout the cell. Taken together, these results indicate that ATII cells escape stress failure caused by tonic stretch via active cell morphological remodeling, during which cells transiently disassemble FAs to unload mechanical forces.

  12. Artificial biofilms establish the role of matrix interactions in staphylococcal biofilm assembly and disassembly.

    Science.gov (United States)

    Stewart, Elizabeth J; Ganesan, Mahesh; Younger, John G; Solomon, Michael J

    2015-08-14

    We demonstrate that the microstructural and mechanical properties of bacterial biofilms can be created through colloidal self-assembly of cells and polymers, and thereby link the complex material properties of biofilms to well understood colloidal and polymeric behaviors. This finding is applied to soften and disassemble staphylococcal biofilms through pH changes. Bacterial biofilms are viscoelastic, structured communities of cells encapsulated in an extracellular polymeric substance (EPS) comprised of polysaccharides, proteins, and DNA. Although the identity and abundance of EPS macromolecules are known, how these matrix materials interact with themselves and bacterial cells to generate biofilm morphology and mechanics is not understood. Here, we find that the colloidal self-assembly of Staphylococcus epidermidis RP62A cells and polysaccharides into viscoelastic biofilms is driven by thermodynamic phase instability of EPS. pH conditions that induce phase instability of chitosan produce artificial S. epidermidis biofilms whose mechanics match natural S. epidermidis biofilms. Furthermore, pH-induced solubilization of the matrix triggers disassembly in both artificial and natural S. epidermidis biofilms. This pH-induced disassembly occurs in biofilms formed by five additional staphylococcal strains, including three clinical isolates. Our findings suggest that colloidal self-assembly of cells and matrix polymers produces biofilm viscoelasticity and that biofilm control strategies can exploit this mechanism.

  13. AGR-2 Irradiated Test Train Preliminary Inspection and Disassembly First Look

    Energy Technology Data Exchange (ETDEWEB)

    Ploger, Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States); Demkowciz, Paul [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    The AGR 2 irradiation experiment began in June 2010 and was completed in October 2013. The test train was shipped to the Materials and Fuels Complex in July 2014 for post-irradiation examination (PIE). The first PIE activities included nondestructive examination of the test train, followed by disassembly of the test train and individual capsules and detailed inspection of the capsule contents, including the fuel compacts and their graphite fuel holders. Dimensional metrology was then performed on the compacts, graphite holders, and steel capsule shells. AGR 2 disassembly and metrology were performed with the same equipment used successfully on AGR 1 test train components. Gamma spectrometry of the intact test train gave a preliminary look at the condition of the interior components. No evidence of damage to compacts or graphite components was evident from the isotopic and gross gamma scans. Disassembly of the AGR 2 test train and its capsules was conducted rapidly and efficiently by employing techniques refined during the AGR 1 disassembly campaign. Only one major difficulty was encountered while separating the test train into capsules when thermocouples (of larger diameter than used in AGR 1) and gas lines jammed inside the through tubes of the upper capsules, which required new tooling for extraction. Disassembly of individual capsules was straightforward with only a few minor complications. On the whole, AGR 2 capsule structural components appeared less embrittled than their AGR 1 counterparts. Compacts from AGR 2 Capsules 2, 3, 5, and 6 were in very good condition upon removal. Only relatively minor damage or markings were visible using high resolution photographic inspection. Compact dimensional measurements indicated radial shrinkage between 0.8 to 1.7%, with the greatest shrinkage observed on Capsule 2 compacts that were irradiated at higher temperature. Length shrinkage ranged from 0.1 to 0.9%, with by far the lowest axial shrinkage on Capsule 3 compacts

  14. SAVANNAH RIVER SITE R-REACTOR DISASSEMBLY BASIN IN-SITU DECOMMISSIONING -10499

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Serrato, M.; Blankenship, J.; Griffin, W.

    2010-01-04

    The US DOE concept for facility in-situ decommissioning (ISD) is to physically stabilize and isolate intact, structurally sound facilities that are no longer needed for their original purpose, i.e., generating (reactor facilities), processing(isotope separation facilities) or storing radioactive materials. The 105-R Disassembly Basin is the first SRS reactor facility to undergo the in-situ decommissioning (ISD) process. This ISD process complies with the 105-R Disassembly Basin project strategy as outlined in the Engineering Evaluation/Cost Analysis for the Grouting of the R-Reactor Disassembly Basin at the Savannah River Site and includes: (1) Managing residual water by solidification in-place or evaporation at another facility; (2) Filling the below grade portion of the basin with cementitious materials to physically stabilize the basin and prevent collapse of the final cap - Sludge and debris in the bottom few feet of the basin will be encapsulated between the basin floor and overlying fill material to isolate it from the environment; (3) Demolishing the above grade portion of the structure and relocating the resulting debris to another location or disposing of the debris in-place; and (4) Capping the basin area with a concrete slab which is part of an engineered cap to prevent inadvertent intrusion. The estimated total grout volume to fill the 105-R Reactor Disassembly Basin is 24,384 cubic meters or 31,894 cubic yards. Portland cement-based structural fill materials were designed and tested for the reactor ISD project, and a placement strategy for stabilizing the basin was developed. Based on structural engineering analyses and material flow considerations, maximum lift heights and differential height requirements were determined. Pertinent data and information related to the SRS 105-R Reactor Disassembly Basin in-situ decommissioning include: regulatory documentation, residual water management, area preparation activities, technology needs, fill material

  15. Stability Test for 2-D Continuous-Discrete Systems

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.

  16. Pharm GKB: CYP2D6 [PharmGKB

    Lifescience Database Archive (English)

    Full Text Available el for vortioxetine and CYP2D6 FDA Label for acetaminophen,tramadol and CYP2D6 FDA Label for dextromethorphan... Label for vortioxetine and CYP2D6 European Medicines Agency (EMA) Label for dextromethorphan,quinidine and ...ore of this label. Read more. last updated 10/25/2013 FDA Label for dextromethorphan, quinidine and CYP2D6 O...of NUEDEXTA is a CYP2D6 inhibitor used to increase the plasma availability of dextromethorphan, which is met... 05/02/2014 European Medicines Agency (EMA) Label for dextromethorphan, quinidine

  17. 3D/2D Registration of medical images

    OpenAIRE

    Tomaževič, D.

    2008-01-01

    The topic of this doctoral dissertation is registration of 3D medical images to corresponding projective 2D images, referred to as 3D/2D registration. There are numerous possible applications of 3D/2D registration in image-aided diagnosis and treatment. In most of the applications, 3D/2D registration provides the location and orientation of the structures in a preoperative 3D CT or MR image with respect to intraoperative 2D X-ray images. The proposed doctoral dissertation tries to find origin...

  18. Analysis list: Mef2d [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Mef2d Muscle + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Mef2d.Muscle.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Muscle.gml ...

  19. CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping

    Directory of Open Access Journals (Sweden)

    Amanda K Riffel

    2016-01-01

    Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe

  20. Backscattering in a 2D topological insulator and the conductivity of a 2D strip

    Science.gov (United States)

    Magarill, L. I.; Entin, M. V.

    2015-01-01

    A strip of the 2D HgTe topological insulator is studied. The same-spin edge states in an ideal system propagate in opposite directions on different sides of the strip and do not mix by tunneling. Impurities, edge irregularities, and phonons produce transitions between the counterpropagating edge states on different edges. This backscattering determines the conductivity of an infinitely long strip. The conductivity at finite temperature is determined in the framework of the kinetic equation. It is found that the conductivity exponentially grows with the strip width. In the same approximation the nonlocal resistance coefficients of a four-terminal strip are found.

  1. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    Science.gov (United States)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  2. Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.

    Directory of Open Access Journals (Sweden)

    Hua Cai

    Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.

  3. Development of a water leak detector system for LMFBR steam generator. Pt. 1; Sound attenuation due to bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Yoshida, Kazuo (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.)

    1994-03-01

    In the steam generators (SG) of LMFBR, it is necessary to detect the leakage of water from tubes of heat exchanger as soon as leakage is occurred. The active acoustic detection method has drawn general interests owing to its short response time and reduction of the influence of background noise. In this paper, in order to study the applicability of active acoustic method for detection of water leakage in the SG, the sound attenuation characteristics due to bubbles are investigated under various bubble conditions and emitted sound conditions. Furthermore, using SG sector model, sound attenuation characteristics due to injection of bubbles are studied. As a result, it is clarified that the sound attenuation due to bubbles varies dependent upon size of bubbles, void fraction and thickness of bubble layer, that the attenuation of sound reaches maximum when bubbles resonate with the emitted frequency. The sound attenuation due to bubbles in the SG model attenuates immediately upon injection of bubbles, and sound attenuation depends upon bubble size as well as void fraction. (author).

  4. Development of ultrasonic thermometry for high-temperature high-resolution temperature profiling applications in LMFBR safety research

    Science.gov (United States)

    Field, M. E.

    1986-05-01

    Ultrasonic thermometry was developed as a high temperature profiling diagnostic for use in the Liquid Metal Fast Breeder Reactor (LMFBR) Debris Coolability Program at Sandia National Laboratories. These instruments were used successfully in the DC series experiments and the D10 experiment. Temperatures approaching 3000 C with spatial resolution of 10 mm and indicated temperature gradients of 700 C/cm were measured. Instruments were operated in molten sodium, molten steel, and molten UO2 environments. Up to 14 measurement zones on a single instrument in molten sodium were used with 12 mm and 15 mm spatial resolution. Hermetically sealed units operating at elevated temperatures were used. Post-test examination revealed very little systematic calibration drifts (less than 10 C) with random drifts occuring with less than 40 C standard deviation in a 10 to 12 mm measured zone. The stability of the system varies from +/- 1 C to +/- 15 C depending on the sensor design constraints for a particular application. Doped tungsten sensors were developed to permit operation of total measurement zone length of 30 cm at temperatures above 2500 C.

  5. Liquid metal reactor KALIMER development - Study on the high temperature properties of the steam generator tubing for LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yong Soo; Kim, Soon Tae; Park, Hui Sang; Kim, Soo Han [Yonsei University, Seoul (Korea); Kim, Young Sik [Andong National University, Andong (Korea)

    1999-04-01

    This work dealt with the evaluation of super stainless steels for steam generator tubing of LMFBR. The experimental alloys were designed to simulate the elimination of alloying elements, in special, C and N. Regardless of carbon contents, super stainless steels showed the excellent properties (tensile properties and corrosion resistance) than those of 9Cr-1Mo steel. Nitrogen content has affected positively the ultimate tensile strength and yield strength by TT(Thermal Treatment), but the elongation was reduced by TT in case of nitrogen free alloy and the elongation was largely increased by TT in case of nitrogen bearing alloys. In acidic chloride environment, nitrogen has influenced a little on corrosion potential and critical current density, but largely on passive current density, especially, at high potential. However, the trend of corrosion potential and critical current density by nitrogen was similar to the results in acidic solutions, but passive current density was largely affected by nitrogen content of stainless steels. 29 refs., 24 figs., 8 tabs. (Author)

  6. Rising and boiling of a drop of volatile liquid in a heavier one: application to the LMFBR severe accidents

    Energy Technology Data Exchange (ETDEWEB)

    Pigny, Sylvain L.; Coste, Pierre F. [DEN/DER/SSTH, CEA/Grenoble, 38054 Grenoble Cedex 9 (France)

    2005-07-01

    Full text of publication follows: The rising and, simultaneously the boiling, of a droplet of volatile liquid in a heavier one is computation-ally investigated. Our calculations are performed with the help of the SIMMER code, in which a specific DNS algorithm is developed, to represent surface tension between the different media in an explicit way. This is required to represent the physical contact that occurs between two liquids and the vapor from the lighter one, since interfacial heat transfers, and therefore boiling kinetics, merely depend on it. The behavior of the three fluids system is of interest as a key phenomenon related to the transition phase of LMFBR severe accidents, before the formation of a fully developed bubble column. The driven force due to the boiling of steel drops can play a major role in the relocation, and, consequently, the recriticality of UO{sub 2} fuel. The problem is investigated focusing first on analytical experiments, built-up with simulating materials, and for which accurate experimental results are provided. The dependence of results with regard to thermodynamical and physical properties is underlined. This point is of interest in view of some uncertainties in the knowledge of data concerning the materials present in the reactor at high temperature. The pressure level is a key parameter in the accident scenarios: its influence is uppermost on the volumic mass of the gas. It is also outlined. (authors)

  7. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap

    Energy Technology Data Exchange (ETDEWEB)

    Croff, A.G.; Liberman, M.S.; Morrison, G.W.

    1982-01-01

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.

  8. Notes on the inherently safe core design meeting with the DOE-RRT, AI, GE, W-ARD, EPRI, and ETEC (at AI, Canoga Park, California, November 7-8, 1978). [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Jackola, A.S.; Paschall, R.K.

    1978-11-09

    The primary purpose of the meeting was to familiarize large LMFBR design managers with the capabilities of the Inherent Secondary Shutdown Systems (articulated rod and absorber balls) and to obtain inputs from them. The other purpose of the meeting was for the ISSS designers (AI, GE, and WARD) to present current work status, future plans, and schedules for their respective ISSS tasks.

  9. The No-Hair Conjecture in 2D Dilaton Supergravity

    CERN Document Server

    Gamboa-Rios, J

    1993-01-01

    We study two dimensional dilaton gravity and supergravity following hamiltonian methods. Firstly, we consider the structure of constraints of 2D dilaton gravity and then the 2D dilaton supergravity is obtained taking the squere root of the bosonic constraints. We integrate exactly the equations of motion in both cases and we show that the solutions of the equation of motion of 2D dilaton supergravity differs from the solutions of 2D dilaton gravity only by boundary conditions on the fermionic variables, i.e. the black holes of 2D dilaton supergravity theory are exactly the same black holes of 2D bosonic dilaton gravity modulo supersymmetry transformations. This result is the bidimensional analogue of the no-hair theorem for supergravity.

  10. Scalable Fabrication of 2D Semiconducting Crystals for Future Electronics

    Directory of Open Access Journals (Sweden)

    Jiantong Li

    2015-12-01

    Full Text Available Two-dimensional (2D layered materials are anticipated to be promising for future electronics. However, their electronic applications are severely restricted by the availability of such materials with high quality and at a large scale. In this review, we introduce systematically versatile scalable synthesis techniques in the literature for high-crystallinity large-area 2D semiconducting materials, especially transition metal dichalcogenides, and 2D material-based advanced structures, such as 2D alloys, 2D heterostructures and 2D material devices engineered at the wafer scale. Systematic comparison among different techniques is conducted with respect to device performance. The present status and the perspective for future electronics are discussed.

  11. Interactive domains in the molecular chaperone human alphaB crystallin modulate microtubule assembly and disassembly.

    Directory of Open Access Journals (Sweden)

    Joy G Ghosh

    Full Text Available Small heat shock proteins regulate microtubule assembly during cell proliferation and in response to stress through interactions that are poorly understood.Novel functions for five interactive sequences in the small heat shock protein and molecular chaperone, human alphaB crystallin, were investigated in the assembly/disassembly of microtubules and aggregation of tubulin using synthetic peptides and mutants of human alphaB crystallin.The interactive sequence (113FISREFHR(120 exposed on the surface of alphaB crystallin decreased microtubule assembly by approximately 45%. In contrast, the interactive sequences, (131LTITSSLSSDGV(142 and (156ERTIPITRE(164, corresponding to the beta8 strand and the C-terminal extension respectively, which are involved in complex formation, increased microtubule assembly by approximately 34-45%. The alphaB crystallin peptides, (113FISREFHR(120 and (156ERTIPITRE(164, inhibited microtubule disassembly by approximately 26-36%, and the peptides (113FISREFHR(120 and (131LTITSSLSSDGV(142 decreased the thermal aggregation of tubulin by approximately 42-44%. The (131LTITSSLSSDGV(142 and (156ERTIPITRE(164 peptides were more effective than the widely used anti-cancer drug, Paclitaxel, in modulating tubulinmicrotubule dynamics. Mutagenesis of these interactive sequences in wt human alphaB crystallin confirmed the effects of the alphaB crystallin peptides on microtubule assembly/disassembly and tubulin aggregation. The regulation of microtubule assembly by alphaB crystallin varied over a narrow range of concentrations. The assembly of microtubules was maximal at alphaB crystallin to tubulin molar ratios between 1:4 and 2:1, while molar ratios >2:1 inhibited microtubule assembly.Interactive sequences on the surface of human alphaB crystallin collectively modulate microtubule assembly through a dynamic subunit exchange mechanism that depends on the concentration and ratio of alphaB crystallin to tubulin. These are the first

  12. Optimization and practical implementation of ultrafast 2D NMR experiments

    OpenAIRE

    Queiroz Júnior,Luiz H. K.; Antonio G. Ferreira; Patrick Giraudeau

    2013-01-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC...

  13. Cofilin phosphorylation is elevated after F-actin disassembly induced by Rac1 depletion

    DEFF Research Database (Denmark)

    Liu, Linna; Li, Jing; Zhang, Liwang

    2015-01-01

    that actin filaments disassembled. In the epidermis of mice in which Rac1 was knocked out only in keratinocytes, cofilin phosphorylation was aberrantly elevated, corresponding to repression of the phosphatase slingshot1 (SSH1). These effects were independent of the signaling pathways for p21-activated kinase....../LIM kinase (Pak/LIMK), protein kinase C, or protein kinase D or generation of reactive oxygen species. Similarly, when actin polymerization was specifically inhibited or Rac1 was knocked down, cofilin phosphorylation was enhanced and SSH1 was repressed. Repression of SSH1 partially blocked actin...

  14. Observables, Disassembled

    CERN Document Server

    Roberts, Bryan W

    2016-01-01

    This paper argues that non-self-adjoint operators can be observables. There are only four ways for this to occur: non-self-adjoint observables can either be normal operators, or be symmetric, or have a real spectrum, or have none of these three properties. I explore each of these four classes of observables, arguing that the class of normal operators provides an equivalent formulation of quantum theory, whereas the other classes considerably extend it.

  15. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    Science.gov (United States)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  16. New Type of 2-D Laser Doppler Vibrometer

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The fundamentals and method of 2-D laser Doppler vibrometer are introduced.The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means,the measuring results are accurate.

  17. Animación 2D: curriculum vitae animado

    OpenAIRE

    CANTOS BELMONTE, CONSUELO

    2015-01-01

    Trabajo Fin de Grado de animación 2D donde un personaje (alter ego de la animadora) expone, mediante la interación con una Voz en Off y su sombra, el curriclum vitae de la animadora. Cantos Belmonte, C. (2014). Animación 2D: curriculum vitae animado. http://hdl.handle.net/10251/45910. Archivo delegado

  18. Symmetries and solvable models for evaporating 2D black holes

    CERN Document Server

    Cruz, J; Navarro-Salas, J; Talavera, C F

    1997-01-01

    We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is switched off suddenly. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model.

  19. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the perfo

  20. Two-Dimensional Gel Electrophoresis and 2D-DIGE.

    Science.gov (United States)

    Meleady, Paula

    2018-01-01

    Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) continues to be one of the most versatile and widely used techniques to study the proteome of a biological system. In particular, a modified version of 2D-PAGE, two-dimensional difference gel electrophoresis (2D-DIGE), which uses differential labeling of protein samples with up to three fluorescent tags, offers greater sensitivity and reproducibility over conventional 2D-PAGE gels for differential quantitative analysis of protein expression between experimental groups. Both these methods have distinct advantages in the separation and identification of thousands of individual proteins species including protein isoforms and post-translational modifications. This review will discuss the principles of 2D-PAGE and 2D-DIGE including limitations to the methods. 2D-PAGE and 2D-DIGE continue to be popular methods in bioprocessing-related research (particularly on recombinant Chinese hamster ovary cells), which will also be discussed in the review chapter.

  1. From 2D Lithography to 3D Patterning

    NARCIS (Netherlands)

    Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.

    2010-01-01

    Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the

  2. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....

  3. Energy Efficiency of D2D Multi-User Cooperation.

    Science.gov (United States)

    Zhang, Zufan; Wang, Lu; Zhang, Jie

    2017-03-28

    The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.

  4. The relation between Euclidean and Lorentzian 2D quantum gravity

    NARCIS (Netherlands)

    Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.

    2006-01-01

    Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (gen

  5. Disassembly intermediates of RbsD protein remain oligomeric despite the loss of an intact secondary structure

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Many proteins exist as homo-oligomers in living organisms wherein the change of oligomeric status apparently serves as an effective means for modulating their biological activities. We have previously reported that the homo-decameric RbsD from Escherichia coli undergoes stepwise disassembly and non-stepwise reassembly. Here the structural status of the urea-induced RbsD disassembly intermediates was examined, mainly using urea-containing polyacrylamide gel electrophoresis and chemical cross-linking. Such intermediates were found to remain oligomeric while losing their intact secondary structures. Such disassembly intermediates were able to effectively refold when the concentration of the urea denaturant was reduced to a lower level, or to refold/reassemble into the native decamers when urea was completely removed, as detected by non-denaturing polyacrylamide gel electrophoresis. These novel observations strongly suggest that the assembly of oligomeric proteins may occur before the completion of subunit folding.

  6. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  7. Phacoemulsification in cases of pseudoexfoliation using in situ nuclear disassembly without nuclear rotation.

    Science.gov (United States)

    Mahdy, Mohamed A E S

    2012-05-01

    The purpose was to assess the safety and frequency of intraoperative complications of phacoemulsification using an in situ nuclear disassembly technique in pseudoexfoliation (PEX) cases. The work was done in Rustaq Hospital, Rustaq, Sultanate of Oman. This prospective, interventional, noncomparative study included 103 cases of cataract with pseudoexfoliation that underwent phacoemulsification with in situ nuclear disassembly using Alcon Infinity machine with Ozil handpeice and Kelman-style 45° phacoemulsification tip. Of the 103 cases, 55 males (53.4%) and 48 (46.6%) females, one case developed posterior capsular rupture, and four cases developed zonular dehiscence that was partial in three cases and >180° in one case only. The best corrected visual acuity (BCVA) 4 weeks postoperatively using logMAR notation was as follows: 66 cases (65.1%) had BCVA of 0.30 or better (logMAR notation), and 37 cases (35.9%) had BCVA of 0.48 or less. Safe and efficient phacoemulsification without nuclear rotation could be achieved in cases pseudoexfoliation in which zonular weakness is a concern by utilizing the versatility of Kelman style phaco tip to do lateral sweep sculpting and in situ cracking techniques. It prevents zonular stress by avoiding manipulation or rotation of the nucleus in cases.

  8. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    Science.gov (United States)

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-04-03

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques.

  9. Molecular disassembly of starch granules during gelatinization and its effect on starch digestibility: a review.

    Science.gov (United States)

    Wang, Shujun; Copeland, Les

    2013-11-01

    Starch is the most important glycemic carbohydrate in foods. The relationship between the rate and extent of starch digestion to produce glucose for absorption into the bloodstream and risk factors for diet-related diseases is of considerable nutritional interest. Native starch is attacked slowly by enzymes, but after hydrothermal processing its susceptibility to enzymatic breakdown is greatly increased. Most starch consumed by humans has undergone some form of processing or cooking, which causes native starch granules to gelatinize, followed by retrogradation on cooling. The extent of gelatinization and retrogradation are major determinants of the susceptibility of starch to enzymatic digestion and its functional properties for food processing. The type and extent of changes that occur in starch as a result of gelatinization, pasting and retrogradation are determined by the type of the starch, processing and storage conditions. A mechanistic understanding of the molecular disassembly of starch granules during gelatinization is critical to explaining the effects of processing or cooking on starch digestibility. This review focuses on the molecular disassembly of starch granules during starch gelatinization over a wide range of water levels, and its consequential effect on in vitro starch digestibility and in vivo glycemic index.

  10. eIF5A promotes translation elongation, polysome disassembly and stress granule assembly.

    Directory of Open Access Journals (Sweden)

    Chi Ho Li

    Full Text Available Stress granules (SGs are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC, an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS or treatment with a deoxyhypusine synthase inhibitor (GC7 prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions.

  11. eIF5A promotes translation elongation, polysome disassembly and stress granule assembly.

    Science.gov (United States)

    Li, Chi Ho; Ohn, Takbum; Ivanov, Pavel; Tisdale, Sarah; Anderson, Paul

    2010-04-01

    Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC), an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine)-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS) or treatment with a deoxyhypusine synthase inhibitor (GC7) prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions.

  12. Asymmetric ring structure of Vps4 required for ESCRT-III disassembly

    Science.gov (United States)

    Caillat, Christophe; Macheboeuf, Pauline; Wu, Yuanfei; McCarthy, Andrew A.; Boeri-Erba, Elisabetta; Effantin, Gregory; Göttlinger, Heinrich G.; Weissenhorn, Winfried; Renesto, Patricia

    2015-12-01

    The vacuolar protein sorting 4 AAA-ATPase (Vps4) recycles endosomal sorting complexes required for transport (ESCRT-III) polymers from cellular membranes. Here we present a 3.6-Å X-ray structure of ring-shaped Vps4 from Metallosphera sedula (MsVps4), seen as an asymmetric pseudohexamer. Conserved key interface residues are shown to be important for MsVps4 assembly, ATPase activity in vitro, ESCRT-III disassembly in vitro and HIV-1 budding. ADP binding leads to conformational changes within the protomer, which might propagate within the ring structure. All ATP-binding sites are accessible and the pseudohexamer binds six ATP with micromolar affinity in vitro. In contrast, ADP occupies one high-affinity and five low-affinity binding sites in vitro, consistent with conformational asymmetry induced on ATP hydrolysis. The structure represents a snapshot of an assembled Vps4 conformation and provides insight into the molecular motions the ring structure undergoes in a concerted action to couple ATP hydrolysis to ESCRT-III substrate disassembly.

  13. Probing the disassembly of ultrafast laser heated gold using frequency domain interferometry.

    Science.gov (United States)

    Ao, Tommy; Ping, Yuan; Lee, Edward

    2005-10-01

    Ultrafast laser heating of a solid offers a unique approach to examine the behavior of non-equilibrium high energy density states. Initially, the electrons are optically excited while the ions in the lattice remain cold. This is followed by electron-electron and electron-phonon relaxation. Recently, experiments were performed in which ultrathin freestanding, gold foils were heated by a femtosecond pump laser to a strongly overdriven regime with energy densities reaching 20 MJ/kg. Interestingly, femtosecond laser reflectivity and transmission measurements on the heated sample revealed a quasi-steady-state behavior before the onset of hydrodynamic expansion. This led to the conjecture of the existence of a metastable, disordered state prior to the disassembly of the solid. To further examine the dynamics of ultrafast laser heated solids, frequency domain interferometry (FDI) was used to provide an independent observation. The highly sensitive change in the phase shift of the FDI probe clearly showed evidence of the quasi-steady-state behavior. The new experiment also yielded a detailed measurement of the time scale of such a quasi-steady-state phase that may help elucidate the process of electron-phonon coupling and disassembly in a strongly overdriven regime.

  14. Sustainable development in the building industry: an analysis and assessment tool for design of disassembly

    Science.gov (United States)

    Graubner, Carl-Alexander; Reiche, Katja

    2001-02-01

    Ecologically Sustainable Development (ESD) has been embraced by governments worldwide and as building plays a key role in development, it is implicated in this movement. Consideration of the whole life cycle of a building is a major aspect, when assessing its sustainability. While the reduction of operating energy and the optimization of building material selection has been a main focus of research in Europe, the consideration of maintenance during operation or the demolition of a building at the end of its life has usually been neglected. Aiming for sustainability the conversation of materials and energy by applying a closed system approach on a long term time scale must be realized. Therefore building materials are to be recycled, building elements are to be reused and buildings are to be more flexible. Designing to facilitate the disassembly of building elements is expected to be an improvement for sustainable buildings. A tool for the assessment of building elements has been developed that focuses on connection selection, its influence on material and energy flow, as well as the quality of building waste materials. The assessment of material production and erection processes, using Life Cycle Assessment is completed with a qualitative/quantitative classification of demolition processes, and disposal scenarios, considering environmental, economic and technical aspects. An analysis of floor elements has confirmed, that Design for Disassembly is very promising for the improvement of sustainable buildings but that improvement potentials can differ considerably. Details of the analysis tool developed and an analysis of building elements will be shown in this article

  15. Synthesis and chemistry of elemental 2D materials

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, Andrew J.; Kiraly, Brian T.; Hersam, Mark C.; Guisinger, Nathan P.

    2017-01-25

    2D materials have attracted considerable attention in the past decade for their superlative physical properties. These materials consist of atomically thin sheets exhibiting covalent in-plane bonding and weak interlayer and layer-substrate bonding. Following the example of graphene, most emerging 2D materials are derived from structures that can be isolated from bulk phases of layered materials, which form a limited library for new materials discovery. Entirely synthetic 2D materials provide access to a greater range of properties through the choice of constituent elements and substrates. Of particular interest are elemental 2D materials, because they provide the most chemically tractable case for synthetic exploration. In this Review, we explore the progress made in the synthesis and chemistry of synthetic elemental 2D materials, and offer perspectives and challenges for the future of this emerging field.

  16. 2D materials and van der Waals heterostructures.

    Science.gov (United States)

    Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H

    2016-07-29

    The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.

  17. Subchannel Model of Analysis Code ATHAS-LMR for LMFBR%钠冷快堆分析程序ATHAS-LMR的子通道模型

    Institute of Scientific and Technical Information of China (English)

    陈选相; 吴攀; 单建强

    2012-01-01

    Based on the subchannel model and the wire wrap distributed resistance model, the subchannel code ATHAS-LMR was developed to analyze the thermal hydraulic performance of the LMFBR (liquid metal cooled fast breeder reactor) fuel assemblies. Comparing the results of ATHAS-LMR with those of some foreign experiments and similar subchannel codes, the results show that ATHAS-LMR can predict the experiments very well and is able to analyze the thermal hydraulic performance of the LMFBR fuel assemblies under different conditions, such as normal operation, flow blockage accident.%以子通道模型和绕丝分布式阻力模型为基础,研发了液态金属快中子增殖堆热工水力子通道分析程序ATHAS-LMR,以对液态金属快中子增殖堆燃料组件中的热工水力现象进行分析.与国外知名实验和类似子通道分析程序比较,结果表明:ATHAS-LMR与实验结果及其他子通道分析程序的结果相近,能够完成包括堵流工况的各种工况下液态金属快中子增殖堆组件的热工水力性能分析.

  18. A proposal of benchmark calculation on reactor physics for metallic fueled and MOX fueled LMFBR based upon mack-up experiment at FCA

    Energy Technology Data Exchange (ETDEWEB)

    Oigawa, Hiroyuki; Iijima, Susumu; Sakurai, Takeshi; Okajima, Shigeaki; Andoh, Masaki; Nemoto, Tatsuo; Kato, Yuichi; Osugi, Toshitaka [Dept. of Nuclear Energy System, Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan)

    2000-02-01

    In order to assess the validity of the cross section library for fast reactor physics, a set of benchmark calculation is proposed. The benchmark calculation is based upon mock-up experiments at three FCA cores with various compositions of central test regions, two of which were mock-ups of metallic fueled LMFBR's, and the other was a mock-up of a mixed oxide fueled LMFBR. One of the metallic cores included enriched uranium in the test region, while the others did not. Physics parameters to be calculated are criticality, reaction rate ratios, plutonium and B{sub 4}C sample worth, sodium void reactivity worth, and Doppler reactivity worth of {sup 238}U. Homogenized atomic number densities and various correction factors are given so that anyone can easily perform diffusion calculation in two-dimensional RZ-model and compare the results with the experiments. The validity of the correction factors are proved by changing the calculation method and used nuclear data file. (author)

  19. An analysis of thermionic space nuclear reactor power system: I. Effect of disassembling radial reflector, following a reactivity initiated accident

    Science.gov (United States)

    El-Genk, Mohamed S.; Paramonov, Dmitry

    1993-01-01

    An analysis is performed to determine the effect of disassembling the radial reflector of the TOPAZ-II reactor, following a hypothetical severe Reactivity Initiated Accident (RIA). Such an RIA is assumed to occur during the system start-up in orbit due to a malfunction of the drive mechanism of the control drums, causing the drums to rotate the full 180° outward at their maximum speed of 1.4°/s. Results indicate that disassembling only three of twelve radial reflector panels would successfully shutdown the reactor, with little overheating of the fuel and the moderator.

  20. A study on integrity of LMFBR secondary cooling system to hypothetical tube failure propagation in the steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Yoshihisa Shindo; Kazuo Haga [Japan Nuclear Energy Safety Organization (JNES) Kamiya-cho MT Bldg., 4-3-20 Toranomon, Minato-ku, Tokyo 105-0001 (Japan)

    2005-07-01

    Full text of publication follows: A fundamental safety issue of liquid-metal-cooled fast breeder reactor (LMFBR) is to maintain the integrity of the secondary cooling system components against violent chemical sodium-water reaction caused by the water leak from the heat transfer tube of steam generators (SG). The produced sodium-water reaction jet would attack more severely surrounding tubes and would cause other tube failures (tube failure propagation), if it was assumed that the water leak was not detected by function-less detectors and proper operating actions to mitigate the tube failure propagation, such as isolations of the SG from the secondary cooling system and turbine water/steam system, and blowing water and steam inside tubes in the SG, were not taken. This study has been made focusing on the affection of large-scale water leak enlarged due to SG tube failure propagation to the structural integrity of the secondary cooling system because the generated pressure pulse caused by a large-scale sodium-water reaction might break heat transfer tubes of the intermediate heat exchanger (IHX). The present work has been made as one part of the study of probabilistic safety assessment (PSA) of LMFBR, because if the heat-transfer tubes of IHX were failed, the reactor core may be affected by the pressure pulse and/or by the sodium-water reaction products transported through the primary cooling system. As tools for PSA of the water leak incident of SG, we have developed QUARK-LP Version 4 code that mainly analyzes the high temperature rupture phenomena and estimates the number of failed tubes during the middle-scale water leak. The pressure pulse behavior generated by sodium-water reaction in the failure SG and the pressure propagation in the secondary cooling system are calculated by using the SWAAM-2 code developed by ANL. Furthermore, the quasi-steady state high pressure and temperature of the secondary cooling system in a long term is estimated by using the SWAAM

  1. 2D vs. 3D mammography observer study

    Science.gov (United States)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  2. An automated pipeline to screen membrane protein 2D crystallization.

    Science.gov (United States)

    Kim, Changki; Vink, Martin; Hu, Minghui; Love, James; Stokes, David L; Ubarretxena-Belandia, Iban

    2010-06-01

    Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility.

  3. Joint 2D and 3D phase processing for quantitative susceptibility mapping: application to 2D echo-planar imaging.

    Science.gov (United States)

    Wei, Hongjiang; Zhang, Yuyao; Gibbs, Eric; Chen, Nan-Kuei; Wang, Nian; Liu, Chunlei

    2017-04-01

    Quantitative susceptibility mapping (QSM) measures tissue magnetic susceptibility and typically relies on time-consuming three-dimensional (3D) gradient-echo (GRE) MRI. Recent studies have shown that two-dimensional (2D) multi-slice gradient-echo echo-planar imaging (GRE-EPI), which is commonly used in functional MRI (fMRI) and other dynamic imaging techniques, can also be used to produce data suitable for QSM with much shorter scan times. However, the production of high-quality QSM maps is difficult because data obtained by 2D multi-slice scans often have phase inconsistencies across adjacent slices and strong susceptibility field gradients near air-tissue interfaces. To address these challenges in 2D EPI-based QSM studies, we present a new data processing procedure that integrates 2D and 3D phase processing. First, 2D Laplacian-based phase unwrapping and 2D background phase removal are performed to reduce phase inconsistencies between slices and remove in-plane harmonic components of the background phase. This is followed by 3D background phase removal for the through-plane harmonic components. The proposed phase processing was evaluated with 2D EPI data obtained from healthy volunteers, and compared against conventional 3D phase processing using the same 2D EPI datasets. Our QSM results were also compared with QSM values from time-consuming 3D GRE data, which were taken as ground truth. The experimental results show that this new 2D EPI-based QSM technique can produce quantitative susceptibility measures that are comparable with those of 3D GRE-based QSM across different brain regions (e.g. subcortical iron-rich gray matter, cortical gray and white matter). This new 2D EPI QSM reconstruction method is implemented within STI Suite, which is a comprehensive shareware for susceptibility imaging and quantification. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  4. 2-D Versus 3-D Magnetotelluric Data Interpretation

    Science.gov (United States)

    Ledo, Juanjo

    2005-09-01

    In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.

  5. Introduction to game physics with Box2D

    CERN Document Server

    Parberry, Ian

    2013-01-01

    Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro

  6. 2D electron cyclotron emission imaging at ASDEX Upgrade (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)

    2010-10-15

    The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.

  7. Optimization and practical implementation of ultrafast 2D NMR experiments

    Directory of Open Access Journals (Sweden)

    Luiz H. K. Queiroz Júnior

    2013-01-01

    Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.

  8. Spin Waves in 2D ferromagnetic square lattice stripe

    OpenAIRE

    Ahmed, Maher Z.

    2011-01-01

    In this work, the area and edges spin wave calculations were carried out using the Heisenberg Hamiltonian and the tridiagonal method for the 2D ferromagnetic square lattice stripe, where the SW modes are characterized by a 1D in-plane wave vector $q_x$. The results show a general and an unexpected feature that the area and edge spin waves only exist as optic modes. This behavior is also seen in 2D Heisenberg antiferromagnetic square lattice. This absence of the acoustic modes in the 2D square...

  9. Optimization and practical implementation of ultrafast 2D NMR experiments

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation

    2013-09-01

    Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)

  10. Harvest Survive : Game Mechanics of Unity 2D Game

    OpenAIRE

    2014-01-01

    The purpose of this project was to learn how to create Games in Unity 2D, to see the work-flow and to test if the new Unity 2D feature of the Unity engine was a good alternative for developing 2D games. A further aspect was to learn the different steps and mechanics of the Unity environment. The goal was to create a survival game, in which the player would have to grow plants in order to get food and money to stay alive in a hostile environment. The player has to survive in six different...

  11. Kalman Filter for Generalized 2-D Roesser Models

    Institute of Scientific and Technical Information of China (English)

    SHENG Mei; ZOU Yun

    2007-01-01

    The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.

  12. First Principles Calculations of Electronic Excitations in 2D Materials

    DEFF Research Database (Denmark)

    Rasmussen, Filip Anselm

    -thin electronics and high efficiency solar cells. Contrary to many other nano-materials, methods for large scale fabrication and patterning have already been demonstrated and the first real technological applications have already be showcased. Still the technology is very young and the number of well-studied 2D...... materials are few. However as the list of 2D materials is growing it is necessary to investigate their fundamental structural, electronic and optical properties. These are determined by the atomic and electronic structure of the materials that can quite accurately predicted by computational quantum...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...

  13. Illumination Compensation for 2-D Barcode Recognition Basing Morphologic

    Directory of Open Access Journals (Sweden)

    Jian-Hua Li

    2013-04-01

    Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.

  14. Emerging and potential opportunities for 2D flexible nanoelectronics

    Science.gov (United States)

    Zhu, Weinan; Park, Saungeun; Akinwande, Deji

    2016-05-01

    The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.

  15. CYP2D6 polymorphism in relation to tramadol metabolism

    DEFF Research Database (Denmark)

    Halling, Jónrit; Weihe, Pál; Brosen, Kim

    2008-01-01

    Several studies have demonstrated the impact of CYP2D6 polymorphism on the pharmacokinetics of tramadol. However, the relationship between the O-demethylation of tramadol and O-desmethyltramadol (M1) and CYP2D6 activity has not previously been investigated with tramadol in multimedicated...... outpatients under steady-state conditions. Hence, the aim of this study was to determine if the well documented pharmacokinetics of tramadol regarding CYP2D6 could be verified in a study including 88 multimedicated Faroese patients, treated with tramadol at steady-state conditions. Further, the study aimed...... collection over 12 hours. Sparteine and its metabolites were assayed by gas chromatography. Genotype analyses for the CYP2D6 3, 4, 6, and 9 alleles were performed by polymerase chain reaction and Taqman technology. Plasma and urinary concentrations of (+/-)-tramadol and (+/-)-M1 were determined by high...

  16. 2D gels still have a niche in proteomics

    DEFF Research Database (Denmark)

    Rogowska-Wrzesinska, Adelina; Le Bihan, Marie-Catherine; Thaysen-Andersen, Morten;

    2013-01-01

    ) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show......With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim...... of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2...

  17. Orbifold Reduction and 2d (0,2) Gauge Theories

    CERN Document Server

    Franco, Sebastian; Seong, Rak-Kyeong

    2016-01-01

    We introduce Orbifold Reduction, a new method for generating $2d$ $(0,2)$ gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from $4d$ $\\mathcal{N}=1$ gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating $2d$ $(0,2)$ theories with a brane realization. We present three practical applications of the new algorithm: the connection between $4d$ Seiberg duality and $2d$ triality, a combinatorial method for generating theories related by triality and a $2d$ $(0,2)$ generalization of the Klebanov-Witten mass deformation.

  18. Proteome analysis of human colorectal cancer tissue using 2-D ...

    African Journals Online (AJOL)

    Jane

    2010-10-11

    Oct 11, 2010 ... Laser capture microdissection and two-dimensional difference gel electrophoresis were used to establish ... As a technique with high-flux and high resolution, pro- teomics ... in which the protein sample was labeled before 2-D.

  19. 2-D electromagnetic simulation of passive microstrip circuits

    CERN Document Server

    Dueñas Jiménez, Alejandro

    2009-01-01

    A reference for circuit design engineers and microwave engineers. It uses a simple 2-D electromagnetic simulation procedure to provide basic knowledge and practical insight into quotidian problems of microstrip passive circuits applied to microwave systems and digital technologies.

  20. Materials science: Screen printing of 2D semiconductors

    Science.gov (United States)

    Kim, Young Duck; Hone, James

    2017-04-01

    Atomically thin semiconductors have been made by transferring the oxide 'skin' of a liquid metal to substrates. This opens the way to the low-cost mass production of 2D semiconductors at the sizes needed for electronics applications.

  1. Use of spatial information in 2D SEMG array decomposition

    NARCIS (Netherlands)

    Smit, C.T.; Kallenberg, L.A.C.; Hermens, Hermanus J.

    2007-01-01

    A new feature extraction/classification method for High Density surface ElectroMyoGraphy (HD sEMG) Motor Unit Aciton Potential (MUAP) decomposition using 2D shape and energy distribution features is presented and experimentally tested.

  2. Sparse Non-negative Matrix Factor 2-D Deconvolution

    DEFF Research Database (Denmark)

    Mørup, Morten; Schmidt, Mikkel N.

    2006-01-01

    We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive...... and prove the convergence of two algorithms for NMF2D based on minimizing the squared error and the Kullback-Leibler divergence respectively. Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives easy interpretable decompositions and devise two algorithms for computing...... this form of factorization. The developed algorithms have been used for source separation and music transcription....

  3. Collins Model and Phase Diagram of 2D Ternary System

    Institute of Scientific and Technical Information of China (English)

    XIE Chuan-Mei; CHEN Li-Rong

    2004-01-01

    The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.

  4. A simultaneous 2D/3D autostereo workstation

    Science.gov (United States)

    Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius

    2012-03-01

    We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.

  5. Maximizing the Optical Band Gap in 2D Photonic Crystals

    DEFF Research Database (Denmark)

    Hougaard, Kristian G.; Sigmund, Ole

    Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....

  6. New design of 2-D photonic crystal waveguide couplers

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zhi-rong; ZHANG Li-hua; YANG Hong-qin; JIANG Yun-kun

    2006-01-01

    @@ Based on couple wave equation and finite-difference time-domain (FDTD) algorithm,the strong couple characteristic of 2-D photonic crystal couplers is calculated.Theoretical analysis and numerical simulated results indicate that the energy in a 2-D photonic crystal coupler can not be totally transferred between two wave-guides.Compared with the result of weak coupling theory,our result is more accurate.

  7. 2D IR Correlation Spectroscopy in Wood Science

    Directory of Open Access Journals (Sweden)

    Carmen Mihaela Popescu

    2012-10-01

    Full Text Available Generalized 2D correlation spectroscopy is a well-established technique that provides considerable utility and benefit in various spectroscopic studies of polymers. Some of the important features of generalized 2D correlation spectra are simplification of complex spectra consisting of many overlapped peaks, enhancement of spectral resolution by spreading peaks along the second dimension, unambiguous assignments through the correlation of bands selectively coupled by various interaction mechanisms, and determination of the sequence of the spectral peak emergence.

  8. RNA folding pathways and kinetics using 2D energy landscapes.

    Science.gov (United States)

    Senter, Evan; Dotu, Ivan; Clote, Peter

    2015-01-01

    RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.

  9. Generating a 2D Representation of a Complex Data Structure

    Science.gov (United States)

    James, Mark

    2006-01-01

    A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.

  10. QSAR Models for P-450 (2D6) Substrate Activity

    DEFF Research Database (Denmark)

    Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;

    2009-01-01

    activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....

  11. Electrostatic assembly/disassembly of nanoscaled colloidosomes for light-triggered cargo release

    KAUST Repository

    Li, Song

    2015-04-27

    Colloidosome capsules possess the potential for the encapsulation and release of molecular and macromolecular cargos. However, the stabilization of the colloidosome shell usually requires an additional covalent crosslinking which irreversibly seals the capsules, and greatly limits their applications in large-cargos release. Herein we report nanoscaled colloidosomes designed by the electrostatic assembly of organosilica nanoparticles (NPs) with oppositely charged surfaces (rather than covalent bonds), arising from different contents of a bridged nitrophenylene-alkoxysilane [NB; 3-nitro-N-(3-(triethoxysilyl)propyl)-4-(((3-(triethoxysilyl)propyl)-amino)methyl)benzamid] derivative in the silica. The surface charge of the positively charged NPs was reversed by light irradiation because of a photoreaction in the NB moieties, which impacted the electrostatic interactions between NPs and disassembled the colloidosome nanosystems. This design was successfully applied for the encapsulation and light-triggered release of cargos. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Neuroprotective Effects Against POCD by Photobiomodulation: Evidence from Assembly/Disassembly of the Cytoskeleton.

    Science.gov (United States)

    Liebert, Ann D; Chow, Roberta T; Bicknell, Brian T; Varigos, Euahna

    2016-01-01

    Postoperative cognitive dysfunction (POCD) is a decline in memory following anaesthesia and surgery in elderly patients. While often reversible, it consumes medical resources, compromises patient well-being, and possibly accelerates progression into Alzheimer's disease. Anesthetics have been implicated in POCD, as has neuroinflammation, as indicated by cytokine inflammatory markers. Photobiomodulation (PBM) is an effective treatment for a number of conditions, including inflammation. PBM also has a direct effect on microtubule disassembly in neurons with the formation of small, reversible varicosities, which cause neural blockade and alleviation of pain symptoms. This mimics endogenously formed varicosities that are neuroprotective against damage, toxins, and the formation of larger, destructive varicosities and focal swellings. It is proposed that PBM may be effective as a preconditioning treatment against POCD; similar to the PBM treatment, protective and abscopal effects that have been demonstrated in experimental models of macular degeneration, neurological, and cardiac conditions.

  13. Interaction of systems integration, assembly, disassembly and maintenance in developing the INTOR-NET mechanical configuration

    Energy Technology Data Exchange (ETDEWEB)

    Farfaletti-Casali, F.; Booker, D.; Buzzi, U.; Casini, G.; Gritzmann, P. (Commission of the European Communities, Ispra (Italy). Joint Research Centre); Cardella, A. (Nucleare Italiana Reattori Avanzati S.p.A. (NIRA), Genoa)

    1984-04-01

    The driving concepts of systems integration, based on assembly, disassembly and maintenance requirements which define the mechanical configuration of INTOR (a world-wide conceptual study of an experimental Tokamak-type power fusion reactor of the next generation), are presented as the starting point for the studies carried out in this field at JRC-Ispra. Complementary new developments recently incorporated into the European version of INTOR, referred to as INTOR-NET, are described in detail and compared with the original concepts. The aim in INTOR-NET has been to reduce the physical size of the reactor while retaining similar plasma parameters. New systems integration and mechanical configuration concepts are introduced which can be used in future investigations for the NET design as alterantive options. Further reductions in reactor and/or improvements in the maintenance approach appear possible.

  14. Evidence of Critical Behavior in the Disassembly of Nuclei with A ~ 36

    CERN Document Server

    Ma, Y G; Hagel, K; Wang, J; Keutgen, T; Majka, Z; Murray, M; Qin, L; Smith, P; Natowitz, J B; Alfaro, R; Cibor, J; Cinausero, M; Masri, Y E; Fabris, D; Fioretto, E; Keksis, A L; Lunardon, M; Makeev, A G; Marie, N; Martin, E; Martínez-Davalos, A; Menchaca-Rocha, A; Nebbia, G; Prete, G; Rizzi, V; Ruangma, A; Shetty, D V; Souliotis, G A; Staszel, P; Veselsky, M; Viesti, G; Winchester, E M; Yennello, S J

    2004-01-01

    A wide variety of observables indicate that maximal fluctuations in the disassembly of hot nuclei with A ~ 36 occur at an excitation energy of 5.6 +- 0.5 MeV/u and temperature of 8.3 +- 0.5 MeV. Associated with this point of maximal fluctuations are a number of quantitative indicators of apparent critical behavior. The associated caloric curve does not appear to show a plateau such as that seen for heavier systems. This suggests that, in contrast to similar signals seen for apparent first order liquid-gas transitions in heavier nuclei, the observed behavior in these very light nuclei is associated with a transition much closer to the critical point.

  15. Contact identification for assembly-disassembly simulation with a haptic device

    CERN Document Server

    Iacob, Robert; Léon, Jean-Claude

    2008-01-01

    Assembly/Disassembly (A/D) simulations using haptic devices are facing difficulties while simulating insertion/extraction operations such as removing cylinders from holes. In order to address this configuration as well as others, an approach based on contact identification between components is presented in this paper. This approach can efficiently contribute either to a new A/D simulation preparation process relying on two types of shape representations (mesh and CAD NURBS models), or directly to the real time simulation process when it is performed with 6D haptic devices. The model processing pipeline is described and illustrated to show how information can be propagated and used for contact detection. Then, the contact identification process is introduced and illustrated through an example

  16. Ultratrace Detection of Toxic Chemicals: Triggered Disassembly of Supramolecular Nanotube Wrappers.

    Science.gov (United States)

    Ishihara, Shinsuke; Azzarelli, Joseph M; Krikorian, Markrete; Swager, Timothy M

    2016-07-06

    Chemical sensors offer opportunities for improving personal security, safety, and health. To enable broad adoption of chemical sensors requires performance and cost advantages that are best realized from innovations in the design of the sensing (transduction) materials. Ideal materials are sensitive and selective to specific chemicals or chemical classes and provide a signal that is readily interfaced with portable electronic devices. Herein we report that wrapping single walled carbon nanotubes with metallo-supramolecular polymers creates sensory devices with a dosimetric (time- and concentration-integrated) increase in electrical conductivity that is triggered by electrophilic chemical substances such as diethylchlorophosphate, a nerve agent simulant. The mechanism of this process involves the disassembly of the supramolecular polymer, and we demonstrate its utility in a wireless inductively powered sensing system based on near-field communication technology. Specifically, the dosimeters can be powered and read wirelessly with conventional smartphones to create sensors with ultratrace detection limits.

  17. Optimized XML Storage in NXD Based on Tree-Structure Disassemble

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Independent XML storage based on XSD (XML Schema Document) is adopted in NXD(Native XML Database), XML storage structure based on tree-structure disassemble and the algorithm used in dynamically updating XML document are provided in this paper. The main idea is that in term of data model of XML document, XML document is parsed to Document Structure-Tree with Hierarchical Model and Leaf-Data with Relation Model for storage. Simultaneously Proxy node is imported in order to solve the problem that XML data store in cross-blocks. And with XSD model information, sparse index is constructed to save storage space. It is proved that this storage structure could improve efficiency of XML document operation.

  18. CYP2D6 variability in populations from Venezuela.

    Science.gov (United States)

    Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin

    2016-12-01

    CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.

  19. Technique of Embedding Depth Maps into 2D Images

    Institute of Scientific and Technical Information of China (English)

    Kazutake Uehira; Hiroshi Unno; Youichi Takashima

    2014-01-01

    This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.

  20. RADIOLOGICAL SURVEY STATION DEVELOPMENT FOR THE PIT DISASSEMBLY AND CONVERSION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Dalmaso, M.; Gibbs, K.; Gregory, D.

    2011-05-22

    The Savannah River National Laboratory (SRNL) has developed prototype equipment to demonstrate remote surveying of Inner and Outer DOE Standard 3013 containers for fixed and transferable contamination in accordance with DOE Standard 3013 and 10 CFR 835 Appendix B. When fully developed the equipment will be part of a larger suite of equipment used to package material in accordance with DOE Standard 3013 at the Pit Disassembly and Conversion Project slated for installation at the Savannah River Site. The prototype system consists of a small six-axis industrial robot with an end effector consisting of a force sensor, vacuum gripper and a three fingered pneumatic gripper. The work cell also contains two alpha survey instruments, swipes, swipe dispenser, and other ancillary equipment. An external controller interfaces with the robot controller, survey instruments and other ancillary equipment to control the overall process. SRNL is developing automated equipment for the Pit Disassembly and Conversion (PDC) Project that is slated for the Savannah River Site (SRS). The equipment being developed is automated packaging equipment for packaging plutonium bearing materials in accordance with DOE-STD-3013-2004. The subject of this paper is the development of a prototype Radiological Survey Station (RSS). Other automated equipment being developed for the PDC includes the Bagless transfer System, Outer Can Welder, Gantry Robot System (GRS) and Leak Test Station. The purpose of the RSS is to perform a frisk and swipe of the DOE Standard 3013 Container (either inner can or outer can) to check for fixed and transferable contamination. This is required to verify that the contamination levels are within the limits specified in DOE-STD-3013-2004 and 10 CFR 835, Appendix D. The surface contamination limit for the 3013 Outer Can (OC) is 500 dpm/100 cm2 (total) and 20 dpm/100 cm2 (transferable). This paper will concentrate on the RSS developments for the 3013 OC but the system for the

  1. Permo-Triassic anatexis, continental rifting and the disassembly of western Pangaea

    Science.gov (United States)

    Cochrane, Ryan; Spikings, Richard; Gerdes, Axel; Ulianov, Alexey; Mora, Andres; Villagómez, Diego; Putlitz, Benita; Chiaradia, Massimo

    2014-03-01

    Crustal anatectites are frequently observed along ocean-continent active margins, although their origins are disputed with interpretations varying between rift-related and collisional. We report geochemical, isotopic and geochronological data that define an ~ 1500 km long belt of S-type meta-granites along the Andes of Colombia and Ecuador, which formed during 275-223 Ma. These are accompanied by amphibolitized tholeiitic basaltic dykes that yield concordant zircon U-Pb dates ranging between 240 and 223 Ma. A model is presented which places these rocks within a compressive Permian arc setting that existed during the amalgamation of westernmost Pangaea. Anatexis and mafic intrusion during 240-223 Ma are interpreted to have occurred during continental rifting, which culminated in the formation of oceanic crust and initiated the break-up of western Pangaea. Compression during 275-240 Ma generated small volumes of crustal melting. Rifting during 240-225 Ma was characterized by basaltic underplating, the intrusion of tholeiitic basalts and a peak in crustal melting. Tholeiitic intrusions during 225-216 Ma isotopically resemble depleted mantle and yield no evidence for contamination by continental crust, and we assign this period to the onset of continental drift. Dissected ophiolitic sequences in northern Colombia yield zircon U-Pb dates of 216 Ma. The Permo-Triassic margin of Ecuador and Colombia exhibits close temporal, faunal and geochemical similarities with various crustal blocks that form the basement to parts of Mexico, and thus these may represent the relict conjugate margin to NW Gondwana. The magmatic record of the early disassembly of Pangaea spans ~ 20 Ma (240-216 Ma), and the duration of rifting and rift-drift transition is similar to that documented in Cretaceous-Tertiary rift settings such as the West Iberia-Newfoundland conjugate margins, and the Taupo-Lau-Havre System, where rifting and continental disassembly also occurred over periods lasting ~ 20 Ma.

  2. Nanoscale Disassembly and Free Radical Reorganization of Polydopamine in Ionic Liquids.

    Science.gov (United States)

    Manini, Paola; Margari, Piero; Pomelli, Christian; Franchi, Paola; Gentile, Gennaro; Napolitano, Alessandra; Valgimigli, Luca; Chiappe, Cinzia; Ball, Vincent; d'Ischia, Marco

    2016-11-23

    Despite the growing scientific and technological relevance of polydopamine (PDA), a eumelanin-like adhesive material widely used for surface functionalization and coating, knowledge of its structural and physicochemical properties, including in particular the origin of paramagnetic behavior, is still far from being complete. Herein, we disclose the unique ability of ionic liquids (ILs) to disassemble PDA, either as a suspension or as a thin film, up to the nanoscale, and to establish specific interactions with the free radical centers exposed by deaggregation of potential investigative value. Immersion of PDA-coated glasses into four different ILs ([C1C1im][(CH3O)HPO2], [C1C1im][(CH3O)CH3PO2], [C1C1im][(CH3O)2PO2], [N1888][C18:1]) at room temperature caused the fast and virtually complete removal of the coating as determined by UV-visible spectroscopy and scanning electron microscopy (SEM). Transmission electron microscopy (TEM) analysis of the colored supernatants from PDA suspensions in ILs revealed the presence of nanostructures not exceeding 50 nm in diameter. Electron paramagnetic resonance (EPR) analysis indicated profound IL-dependent modifications in signal intensity, line-width, and g-factor values of PDA. These differences were interpreted in terms of a partial conversion of C-centered radicals into O-centered semiquinone-type components following destacking and interaction with the anion component in ILs. The discovery of ILs as a powerful tool to disassemble PDA under mild conditions provides a new entry both to detailed investigations of this biopolymer on the nanoscale and to mild removal of coatings from functionalized surfaces, greatly expanding the scope of PDA-based surface functionalization strategies.

  3. Multilayer films: Assembly and disassembly at different pH conditions

    Science.gov (United States)

    Batchellor, Adam

    The objective of this work was to examine the growth and disassembly under different pH conditions of multilayer films composed of polyelectrolytes and a synthetic clay. Multilayer films containing the strong polyelectrolyte poly(diallyldimethylammonium chloride) (PDDA) as a positive building block, and the strong polyelectrolyte poly(styrene sulfonate) (PSS), or the weak polyelectrolyte poly(acrylic acid) (PAA), and/or the synthetic clay Laponite as negative building blocks were assembled using the Layer-by-Layer (LbL) methodology. Both two-component, as well as three-component systems were considered. Large differences in growth rates were observed for PDDA/PAA systems, as well as for PDDA/Laponite systems under different pH conditions. The addition of Laponite into the PDDA/PAA systems resulted in little change in growth rates and no change in relative order compared to the PDDA/PAA two-component system. The addition of PSS to the PDDA/Laponite systems resulted in both changes in growth rates as well as changes in relative order compared to the two-component PDDA/Laponite systems. Multilayer films of PDDA/PAA exhibited significant variation in their disassembly behavior when exposed to different pH conditions. Films were found to be most stable when immersed in aqueous solutions at the same conditions as they were deposited at. Films were slightly less stable when immersed in solutions of a higher pH than they were deposited at. Films were prone to delamination when immersed in solutions at pH 2.

  4. Failure Mechanism of True 2D Granular Flows

    CERN Document Server

    Nguyen, Cuong T; Fukagawa, R

    2015-01-01

    Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...

  5. Twin characterisation using 2D and 3D EBSD

    Institute of Scientific and Technical Information of China (English)

    M. D. NAVE; J. J. L. MULDERS; A. GHOLINIA

    2005-01-01

    Electron backscatter diffraction (EBSD) is a superior technique for twin characterisation due to its ability to provide highly detailed classification (by generation, system and variant) of a significant number of twins in a relatively short time. 2D EBSD is now widely used for twin characterisation and provides quite good estimates of twin volume fractions under many conditions. Nevertheless, its accuracy is limited by assumptions that have to be made due to the 2D nature of the technique. With 3D EBSD, two key assumptions are no longer required, as additional information can be derived from the 3D map. This paper compares the benefits and limitations of 2D and 3D EBSD for twin characterisation. 2D EBSD enables a larger number of twins to be mapped in a given space of time, giving better statistics. 3D EBSD provides more comprehensive twin characterisation and will be a valuable tool for validation of 2D stereological methods and microstructural models of twinning during deformation.

  6. 2D nanostructures for water purification: graphene and beyond.

    Science.gov (United States)

    Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C

    2016-08-18

    Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.

  7. The NH$_2$D hyperfine structure revealed by astrophysical observations

    CERN Document Server

    Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E

    2016-01-01

    The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...

  8. New Reductions and Nonlinear Systems for 2D Schrodinger Operators

    CERN Document Server

    Mironov, A

    2010-01-01

    New Completely Integrable (2+1)-System is studied. It is based on the so-called L-A-B-triples $L_t=[H,L]-fL$ where L is a 2D Schrodinger Operator. This approach was invented by S.Manakov and B.Dubrovin, I.Krichever, S.Novikov(DKN) in the works published in 1976. A nonstandard reduction for the 2D Schrodinger Operator (completely different from the one found by S.Novikov and A.Veselov in 1984) compatible with time dynamics of the new Nonlinear System, is studied here. It can be naturally treated as a 2D extension of the famous Burgers System. The Algebro-Geometric (AG) Periodic Solutions here are very specific and unusual (for general and reduced cases). The reduced system is linearizable like Burgers. However, the general one (and probably the reduced one also) certainly lead in the stationary AG case to the nonstandard examples of algebraic curves $\\Gamma\\subset W$ in the full complex 2D manifold of Bloch-Floquet functions W for the periodic elliptic 2D operator H where $H\\psi(x,y,P)=\\lambda(P)\\psi(x,y,P),P\\...

  9. The Prolyl Isomerase Pin1 Promotes the Herpesvirus-Induced Phosphorylation-Dependent Disassembly of the Nuclear Lamina Required for Nucleocytoplasmic Egress.

    Science.gov (United States)

    Milbradt, Jens; Hutterer, Corina; Bahsi, Hanife; Wagner, Sabrina; Sonntag, Eric; Horn, Anselm H C; Kaufer, Benedikt B; Mori, Yasuko; Sticht, Heinrich; Fossen, Torgils; Marschall, Manfred

    2016-08-01

    The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear

  10. Development of a water leak detection system for LMFBR steam generators. Pt. 2; General planning of sensor arrangement for active acoustic method

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Kazuo; Kumagai, Hiromichi (Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.)

    1994-04-01

    Development of a water leak detection system with short response time and high sensitivity for LMFBR steam generators is required to prevent failure propagation and to maintain structural integrity of steam generators. A new type of leak detection method, active acoustic method, which observes gas bubbles accompanying the leak using sonic waves is being developed. In this study, some series of experiments are carried out to investigate; (1) attenuation of sonic wave in a typical SG structure, (2) suitable method to attach waveguides to the SG shell, and (3) possibility of reflex method. Furthermore, a reference sensor arrangement for active acoustic method is selected based on the experimental results as the basis of future studies. (author).

  11. Development of a water leak detection system for LMFBR steam generator. Pt. 3. Experimental results for detection of bubbles using the SG sector model

    Energy Technology Data Exchange (ETDEWEB)

    Kumagai, Hiromichi; Yoshida, Kazuo [Central Research Inst. of Electric Power Industry, Komae, Tokyo (Japan). Komae Research Lab.

    1995-05-01

    In order to prevent the expansion of tube damages and to maintain structural safety in steam generators (SG) of liquid metal fast breeder reactor (LMFBR), it is necessary to detect precisely and immediately the leakage of water from tubes of heat exchangers. The active acoustic detection method, which detects the sound attenuation due to bubbles generated at the sodium-water reactions, has drawn general interests owing to its short response time and reduction of the influence of background noise. Sound attenuation is also subjected to structures such as heat transfer tubes and shrouds. Accordingly, it is necessary to evaluate the sound attenuation due to structures. However, studies in these respects are very few. In this paper, using the water bath and SG sector model, the attenuation characteristics of sounds due to flat plates and heat transfer tubes are investigated under various conditions and discussed. (author).

  12. Proceedings of a seminar on the potential for LMFBR boiling detection by acoustic/neutronic monitoring, Argonne, Illinois, April 8--9, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Carey, W.M.; Albrecht, R.W.

    1976-06-01

    A seminar involving ten technical presentations by principal investigators was held to assess the current scope of ERDA-sponsored programs to determine the feasibility of sodium-boiling detection in LMFBRs and to establish areas in need of additional research and development. The consensus was that (1) feasibility of boiling detection by acoustic, neutronic, and acoustic/neutronic monitors has been demonstrated in U.S. and European programs; (2) additional research and development is needed in areas of reactor noise, cavitation, and the effects of noncondensible gases on sound source levels and transmission; (3) the role of acoustic/neutronic monitors from the standpoint of reactor surveillance rather than reactor safety is a viable approach to be adapted; and, in particular (4) a need exists for an operational LMFBR demonstration system. Each paper has been separately abstracted and indexed. (DG)

  13. UPLAND EROSION MODELING WITH CASC2D-SED

    Institute of Scientific and Technical Information of China (English)

    Pierre JULIEN; Rosalía ROJAS

    2002-01-01

    Developed at Colorado State University, CASC2D-SED is a physically-based model simulating the hydrologic response of a watershed to a distributed rainfall field. The time-dependent processes include:precipitation, interception, infiltration, surface runoff and channel routing, upland erosion, transport and sedimentation. CASC2D-SED is applied to Goodwin Creek, Mississippi. The watershed covers 21 km2and has been extensively monitored both at the outlet and at several internal locations by the ARS-NSL at Oxford, MS. The model has been calibrated and validated using rainfall data from 16 meteorological stations, 6 stream gauging stations and 6 sediment gauging stations. Sediment erosion/deposition rates by size fraction are predicted both in space and time. Geovisualization, a powerful data exploration technique based on GIS technology, is used to analyze and display the dynamic output time series generated by the CASC2D-SED model.

  14. Graphene based 2D-materials for supercapacitors

    Science.gov (United States)

    Palaniselvam, Thangavelu; Baek, Jong-Beom

    2015-09-01

    Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.

  15. Design and Realization of Dynamic Obstacle on URWPSSim2D

    Directory of Open Access Journals (Sweden)

    Xiao Chen

    2013-07-01

    Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles,thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.  

  16. Genetics, genomics, and evolutionary biology of NKG2D ligands.

    Science.gov (United States)

    Carapito, Raphael; Bahram, Seiamak

    2015-09-01

    Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.

  17. Joint 2-D DOA and Noncircularity Phase Estimation Method

    Directory of Open Access Journals (Sweden)

    Wang Ling

    2012-03-01

    Full Text Available Classical joint estimation methods need large calculation quantity and multidimensional search. In order to avoid these shortcoming, a novel joint two-Dimension (2-D Direction Of Arrival (DOA and noncircularity phase estimation method based on three orthogonal linear arrays is proposed. The problem of 3-D parameter estimation can be transformed to three parallel 2-D parameter estimation according to the characteristic of three orthogonal linear arrays. Further more, the problem of 2-D parameter estimation can be transformed to 1-D parameter estimation by using the rotational invariance property among signal subspace and orthogonal property of noise subspace at the same time in every subarray. Ultimately, the algorithm can realize joint estimation and pairing parameters by one eigen-decomposition of extended covariance matrix. The proposed algorithm can be applicable for low SNR and small snapshot scenarios, and can estiame 2(M −1 signals. Simulation results verify that the proposed algorithm is effective.

  18. Applications of Doppler Tomography in 2D and 3D

    Science.gov (United States)

    Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.

    2010-12-01

    Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.

  19. Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings

    Directory of Open Access Journals (Sweden)

    Manuel Rosenberger

    2015-02-01

    Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.

  20. Maximizing entropy of image models for 2-D constrained coding

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Danieli, Matteo; Burini, Nino

    2010-01-01

    This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square constraint given by forbidding neighboring 1s and provide novel results for the constraint that no uniform 2...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...

  1. Cluster algebras in Scattering Amplitudes with special 2D kinematics

    CERN Document Server

    Torres, Marcus A C

    2013-01-01

    We study the cluster algebra of the kinematic configuration space $Conf_n(\\mathbb{P}^3)$ of a n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-points two loop MHV remainder function found in special 2D kinematics depend on a selection of \\XX-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercubes beads in the corresponding Stasheff polytope. Furthermore in $n = 12$, the cluster algebra and the selection of \\XX-coordinates in special 2D kinematics replicates the cluster algebra and the selection of \\XX-coordinates of $n=6$ two loop MHV amplitude in 4D kinematics.

  2. Determination of slope failure using 2-D resistivity method

    Science.gov (United States)

    Muztaza, Nordiana Mohd; Saad, Rosli; Ismail, Nur Azwin; Bery, Andy Anderson

    2017-07-01

    Landslides and slope failure may give negative economic effects including the cost to repair structures, loss of property value and medical costs in the event of injury. To avoid landslide, slope failure and disturbance of the ecosystem, good and detailed planning must be done when developing hilly area. Slope failure classification and various factors contributing to the instability using 2-D resistivity survey conducted in Selangor, Malaysia are described. The study on landslide and slope failure was conducted at Site A and Site B, Selangor using 2-D resistivity method. The implications of the anticipated ground conditions as well as the field observation of the actual conditions are discussed. Nine 2-D resistivity survey lines were conducted in Site A and six 2-D resistivity survey lines with 5 m minimum electrode spacing using Pole-dipole array were performed in Site B. The data were processed using Res2Dinv and Surfer10 software to evaluate the subsurface characteristics. 2-D resistivity results from both locations show that the study areas consist of two main zones. The first zone is alluvium or highly weathered with the resistivity of 100-1000 Ωm at 20-70 m depth. This zone consists of saturated area (1-100 Ωm) and boulders with resistivity value of 1200-3000 Ωm. The second zone with resistivity values of > 3000 Ωm was interpreted as granitic bedrock. The study area was characterized by saturated zones, highly weathered zone, highly contain of sand and boulders that will trigger slope failure in the survey area. Based on the results obtained from the study findings, it can be concluded that 2-D resistivity method is useful method in determination of slope failure.

  3. Quantum process tomography by 2D fluorescence spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  4. Integrability from 2d N=(2,2) Dualities

    CERN Document Server

    Yamazaki, Masahito

    2015-01-01

    We study integrable models in the context of the recently discovered Gauge/YBE correspondence, where the Yang-Baxter equation is promoted to a duality between two supersymmetric gauge theories. We study flavored elliptic genus of 2d $\\mathcal{N}=(2,2)$ quiver gauge theories, which theories are defined from statistical lattices regarded as quiver diagrams. Our R-matrices are written in terms of theta functions, and simplifies considerably when the gauge groups at the quiver nodes are Abelian. We also discuss the modularity properties of the R-matrix, reduction of 2d index to 1d Witten index, and string theory realizations of our theories.

  5. Isotropic 2D quadrangle meshing with size and orientation control

    KAUST Repository

    Pellenard, Bertrand

    2011-12-01

    We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.

  6. 2D-ACAR investigations of PPT aramid fibres

    Energy Technology Data Exchange (ETDEWEB)

    Mijnarends, P.E.; Falub, C.V.; Eijt, S.W.H.; Veen, A. van [Interfaculty Reactor Inst., Delft Univ. of Technology (Netherlands)

    2001-07-01

    2D-ACAR spectra of PPT (poly(p-phenylene terephthalamide)) fibres which contain structural elongated open spaces in the crystallographic unit cell show a p-Ps peak with an elliptical cross-section and side lobes. Peak broadening suggests dimensions of {proportional_to}14-17 by 7-9 A for the open spaces and indicates some penetration of Ps into the interlayer spacing. The side lobes can be related to projected reciprocal lattice points and indicate Ps delocalization. 2D-ACAR has also been used to study the evolution of water release from the open spaces. (orig.)

  7. On the Nonrelativistic 2D Purely Magnetic Supersymmetric Pauli Operator

    OpenAIRE

    Grinevich, P.; Mironov, A.(Lebedev Physics Institute; ITEP, Moscow, Russia); Novikov, S.

    2011-01-01

    The Complete Manifold of Ground State Eigenfunctions for the Purely Magnetic 2D Pauli Operator is considered as a by-product of the new reduction found by the present authors few years ago for the Algebrogeometric Inverse Spectral Data (i.e. Riemann Surfaces and Divisors). This reduction is associated with the (2+1) Soliton Hierarhy containing a 2D analog of the famous "Burgers System". This article contains also exposition of the previous works made since 1980 including the first topological...

  8. EEG simulation by 2D interconnected chaotic oscillators

    Energy Technology Data Exchange (ETDEWEB)

    Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)

    2011-01-15

    Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.

  9. Recording 2-D Nutation NQR Spectra by Random Sampling Method.

    Science.gov (United States)

    Glotova, Olga; Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw

    2010-10-01

    The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution.

  10. 2D fluid simulations of interchange turbulence with ion dynamics

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.

    2013-01-01

    In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces......B vorticity as well as the ion diamagnetic vorticity. The 2D domain includes both open and closed field lines and is located on the out-board midplane of a tokamak. On open field field lines the parallel dynamics are parametrized as sink terms depending on the dynamic quantities; density, electron and ion...

  11. GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD

    Institute of Scientific and Technical Information of China (English)

    HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun

    2005-01-01

    The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.

  12. CH2D+, the Search for the Holy Grail

    CERN Document Server

    Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B

    2013-01-01

    CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.

  13. Using 2-D arrays for sensing multimodal Lamb waves

    Science.gov (United States)

    Engholm, Marcus; Stepinski, Tadeusz

    2010-04-01

    Monitoring structural integrity of large planar structures requires normally a relatively dense network of uniformly distributed ultrasonic sensors. A 2-D ultrasonic phased array with all azimuth angle coverage would be extremely useful for the structural health monitoring (SHM) of such structures. Known techniques for estimating direction of arriving (DOA) waves cannot efficiently cope with dispersive and multimodal Lamb waves (LWs). In the paper we propose an adaptive spectral estimation technique capable of handling broadband LWs sensed by 2-D arrays, the modified Capon method. Performance of the technique is evaluated using simulated multiple-mode LWs, and verified using experimental data.

  14. Exact computation of scalar 2D aerial imagery

    Science.gov (United States)

    Gordon, Ronald L.

    2002-07-01

    An exact formulation of the problem of imaging a 2D object through a Koehler illumination system is presented; the accurate simulation of a real layout is then not time- limited but memory-limited. The main idea behind the algorithm is that the boundary of the region that comprise a typical TCC Is made up of circular arcs, and therefore the area - which determines the value of the TCC - should be exactly computable in terms of elementary analytical functions. A change to integration around the boundary leads to an expression with minimal dependence on expensive functions such as arctangents and square roots. Numerical comparisons are made for a simple 2D structure.

  15. AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Francine Joyce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip Lon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of the rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite

  16. GROUT TEMPERATURE MEASUREMENTS IN 105-R DISASSEMBLY BASIN D AND E CANAL

    Energy Technology Data Exchange (ETDEWEB)

    Fogle, R.; Collins, M.; Guerrero, H.

    2010-06-03

    The 105-R Reactor Disassembly Basin Grout Placement Strategy Report (SRNL-TR-2009-00157) identifies various portions of the facility that will undergo an in-situ decommissioning process. The estimated residual radioactive contamination in the 105-R facility is shown in Figure 1. Cementitious grout formulations developed by SRNL are being used to immobilize and isolate the radioactive contamination in existing below grade portions of the 105-R building as shown by the gray-hatched area in Figure 2. A Zero Bleed flowable fill was formulated for both dry placement and for underwater placement. The first major area in the 105-R Disassembly Basin to undergo the grouting process was the D&E Canal and an underlying void space known as the Chase. Grout temperature data was needed to ensure that the grout mix design was on the correct grout curing trajectory to meet the material compressive strength requirement of 50 pounds per square inch. Initial grout temperature measurements were needed to confirm and optimize grout mix design fresh property characteristics; i.e. material strength, and set time. Grout curing temperature is an integrating fresh property characteristic that is used to estimate cementitious material strength in accordance with the Standard Practice for Estimating Concrete Strength by the Maturity Method, ASTM C 1074. The Maturity Method is used in the construction industry to estimate in-place strength of concrete to allow the start of critical construction activities; e.g. formwork removal, removal of cold weather protection, opening of roadways to traffic, etc. Applying this methodology provides an expeditious means to estimate in-place grout strength based on compressive strength laboratory results. The Maturity Method results define the relationship between strength-time and age-time that may be utilized in the field for estimating strength after a given time of placement. Maturation curves were developed under the 105-R Reactor Disassembly Basin

  17. AGR-3/4 Irradiation Test Train Disassembly and Component Metrology First Look Report

    Energy Technology Data Exchange (ETDEWEB)

    Stempien, John Dennis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rice, Francine Joyce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Harp, Jason Michael [Idaho National Lab. (INL), Idaho Falls, ID (United States); Winston, Philip Lon [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    The AGR-3/4 experiment was designed to study fission product transport within graphitic matrix material and nuclear-grade graphite. To this end, this experiment consisted of 12 capsules, each fueled with 4 compacts containing UCO TRISO particles as driver fuel and 20 UCO designed-to-fail (DTF) fuel particles in each compact. The DTF fuel was fabricated with a thin pyrocarbon layer which was intended to fail during irradiation and provide a source of fission products. These fission products could then migrate through the compact and into the surrounding concentric rings of graphitic matrix material and/or nuclear graphite. Through post-irradiation examination (PIE) of the rings (including physical sampling and gamma scanning) fission product concentration profiles within the rings can be determined. These data can be used to elucidate fission product transport parameters (e.g. diffusion coefficients within the test materials) which will be used to inform and refine models of fission product transport. After irradiation in the Advanced Test Reactor (ATR) had been completed in April 2014, the AGR-3/4 experiment was shipped to the Hot Fuel Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) for inspection, disassembly, and metrology. The AGR-3/4 test train was received at MFC in two separate shipments between February and April 2015. Visual examinations of the test train exterior did not indicate dimensional distortion, and only two small discolored areas were observed at the bottom of Capsules 8 and 9. No corresponding discoloration was found on the inside of these capsules, however. Prior to disassembly, the two test train sections were subject to analysis via the Precision Gamma Scanner (PGS), which did not indicate that any gross fuel relocation had occurred. A series of specialized tools (including clamps, cutters, and drills) had been designed and fabricated in order to carry out test train disassembly and recovery of capsule components (graphite

  18. Current Status on Mechanical Disassembly and Shearing System Development in FaCT Project

    Energy Technology Data Exchange (ETDEWEB)

    Washiya, T.; Tasaka, M.; Kitagaki, T.; Higuti, H.; Koizumi, K.; Myouchin, M.; Koyama, T. [JAEA, 4-33 Muramatsu, Tokai-mura, Ibaraki 319-1194 (Japan); Kobayashi, T. [Japan Atomic Power Company - JAPC (Japan)

    2009-06-15

    Japan Atomic Energy Agency (JAEA) has been carried out the Fast Reactor Cycle Technology Development (FaCT) project in cooperation with the Japanese electric utilities. As for the development of the advanced aqueous reprocessing in the FaCT project, JAEA and Japan Atomic Power Company (JAPC) have been developing a reliable disassembly and shearing system for FBR fuel reprocessing. As configuration of FBR fuel assembly, fuel pins are covered with a hexagonal shaped wrapper tube, which must be separated from the fuel pins prior to the shear process. We proposed new disassembly procedures combined two mechanical cutting operations and one pulling operation. The cutting operation has two modes, such as the slit-cutting mode for the wrapper tube cutting and the crop-cutting mode for the pin bundle cutting to separate the entrance nozzle. After the slit-cut operations, the wrapper tube will be pulled and removed from the fuel pins bundle. Some fundamental experiments were carried out to select the cutting tool by using FMS and ODS steals nominated as the material of the commercial FBR fuel, and CBN wheel shown the highest durability and selected as the promising tool. With reflecting of these technologies, an engineering-scale system testing device was designed and fabricated. And to confirm the system performance, some demonstration tests by using a simulated fuel assembly of prototype reactor 'Monju' has been stared. In the fuel shearing process, we proposed the short-length shearing to obtain highly fragmented fuel to provide efficient fuel dissolution, which required adapting to the uranium crystallization process. The fragment rate is affected by the shear-length and the layout of fuel pins in the shear magazine. In order to optimize the shear conditions, parametric tests by using shear machine and simulated fuel pins was carried out. As the results, optimum shear length is selected to be 10 mm. In this paper, we will report the latest experimental results

  19. Implementation of 2D Discrete Wavelet Transform by Number Theoretic Transform and 2D Overlap-Save Method

    Directory of Open Access Journals (Sweden)

    Lina Yang

    2014-01-01

    Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.

  20. The partition function of 2d string theory

    CERN Document Server

    Dijkgraaf, R; Plesser, R

    1993-01-01

    We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the $c=1$ system to KP flow and $W_{1+\\infty}$ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.

  1. The Anglo-Australian Observatory's 2dF Facility

    CERN Document Server

    Lewis, I J; Taylor, K; Glazebrook, K; Bailey, J A; Baldry, I K; Barton, J R; Bridges, T J; Dalton, G B; Farrell, T J; Gray, P M; Lankshear, A; McCowage, C; Parry, I R; Sharples, R M; Shortridge, K; Smith, G A; Stevenson, J; Straede, J O; Waller, L G; Whittard, J D; Wilcox, J K; Willis, K C

    2002-01-01

    The 2dF (Two-degree Field) facility at the prime focus of the Anglo-Australian Telescope provides multiple object spectroscopy over a 2 degree field of view. Up to 400 target fibres can be independently positioned by a complex robot. Two spectrographs provide spectra with resolutions of between 500 and 2000, over wavelength ranges of 440nm and 110nm respectively. The 2dF facility began routine observations in 1997. 2dF was designed primarily for galaxy redshift surveys and has a number of innovative features. The large corrector lens incorporates an atmospheric dispersion compensator, essential for wide wavelength coverage with small diameter fibres. The instrument has two full sets of fibres on separate field plates, so that re-configuring can be done in parallel with observing. The robot positioner places one fibre every 6 seconds, to a precision of 0.3 arcsec (20micron) over the full field. All components of 2dF, including the spectrographs, are mounted on a 5-m diameter telescope top-end ring for ease of ...

  2. Approximate 2D inversion of airborne TEM data

    DEFF Research Database (Denmark)

    Christensen, N.B.; Wolfgram, Peter

    2006-01-01

    We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...

  3. Nonlinear excursions of particles in ideal 2D flows

    DEFF Research Database (Denmark)

    Aref, Hassan; Pedersen, Johan Rønby; Stremler, Mark A.;

    2010-01-01

    A number of problems related to particle trajectories in ideal 2D flows are discussed. Both regular particle paths, corresponding to integrable dynamics, and irregular or chaotic paths may arise. Examples of both types are shown. Sometimes, in the same flow, certain particles will follow regular ...

  4. CFD code comparison for 2D airfoil flows

    DEFF Research Database (Denmark)

    Sørensen, Niels N.; Méndez, B.; Muñoz, A.;

    2016-01-01

    The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × ...

  5. CANONICAL COMPUTATIONAL FORMS FOR AR 2-D SYSTEMS

    NARCIS (Netherlands)

    ROCHA, P; WILLEMS, JC

    1990-01-01

    A canonical form for AR 2-D systems representations is introduced. This yields a method for computing the system trajectories by means of a line-by-line recursion, and displays some relevant information about the system structure such as the choice of inputs and initial conditions.

  6. The 2D Boussinesq equations with logarithmically supercritical velocities

    CERN Document Server

    Chae, Dongho

    2011-01-01

    This paper investigates the global (in time) regularity of solutions to a system of equations that generalize the vorticity formulation of the 2D Boussinesq-Navier-Stokes equations. The velocity $u$ in this system is related to the vorticity $\\omega$ through the relations $u=\

  7. 2D fluid simulations of interchange turbulence with ion dynamics

    DEFF Research Database (Denmark)

    Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.

    2013-01-01

    In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces...

  8. On the sensitivity of the 2D electromagnetic invisibility cloak

    Energy Technology Data Exchange (ETDEWEB)

    Kaproulias, S. [Department of Physics, University of Patras, 26504 Patras (Greece); Sigalas, M.M., E-mail: sigalas@upatras.gr [Department of Materials Science, University of Patras, 26504 Patras (Greece)

    2012-10-15

    A computational study of the sensitivity of the two dimensional (2D) electromagnetic invisibility cloaks is performed with the finite element method. A circular metallic object is covered with the cloak and the effects of absorption, gain and disorder are examined. Also the effect of covering the cloak with a thin dielectric layer is studied.

  9. Rheological Properties of Quasi-2D Fluids in Microgravity

    Science.gov (United States)

    Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha

    2015-01-01

    In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.

  10. Research Synthesis and Characterization of 2D Conjugated Polymers

    Science.gov (United States)

    2007-07-13

    polythiophene chain on the Scheme should necessarily result in a continuous brick wall 2D structure). Furthermore, the design should eliminate any...Photoelectron Spectroscopy and Ultraviolet Photoelectron Spectroscopy are under way. We have also conducted preliminary experiments on the two other low

  11. 2D InP photonic crystal fabrication process development

    NARCIS (Netherlands)

    Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.

    2006-01-01

    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri

  12. Fiber Drawn 2D Polymeric Photonic Crystal THz Filters

    DEFF Research Database (Denmark)

    Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi

    2012-01-01

    In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...

  13. Anti-NKG2D mAb

    DEFF Research Database (Denmark)

    Vadstrup, Kasper; Bendtsen, Flemming

    2017-01-01

    production, and target cell killing. Research into the NKG2D mechanism of action has primarily been focused on cancer and viral infections where cytotoxicity evasion is a concern. In human inflammatory bowel disease (IBD) this system is less characterized, but the ligands have been shown to be highly...

  14. Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions

    KAUST Repository

    Chiu, Ming Hui

    2016-09-20

    It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The toroidal Hausdorff dimension of 2d Euclidean quantum gravity

    DEFF Research Database (Denmark)

    Ambjorn, Jan; Budd, Timothy George

    2013-01-01

    The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...

  16. Fast 2D-DCT implementations for VLIW processors

    OpenAIRE

    Sohm, OP; Canagarajah, CN; Bull, DR

    1999-01-01

    This paper analyzes various fast 2D-DCT algorithms regarding their suitability for VLIW processors. Operations for truncation or rounding which are usually neglected in proposals for fast algorithms have also been taken into consideration. Loeffler's algorithm with parallel multiplications was found to be most suitable due to its parallel structure

  17. The Analytical Approximate Solution of the 2D Thermal Displacement

    Institute of Scientific and Technical Information of China (English)

    Chu-QuanGuan; Zeng-YuanGuo; 等

    1996-01-01

    The 2D plane gas flow under heating (with nonentity boundary condition)has been discussed by the analytical approach in this paper.The approximate analytical solutions have been obtained for the flow passing various kinds of heat sources.Solutions demonstrate the thermal displacement phenomena are strongly depend on the heating intensity.

  18. BPS black holes in N=2 D=4 gauged supergravities

    NARCIS (Netherlands)

    Hristov, K.; Looyestijn, H.T.; Vandoren, S.J.G.

    2010-01-01

    We construct and analyze BPS black hole solutions in gauged N=2, D=4 supergravity with charged hypermultiplets. A class of solutions can be found through spontaneous symmetry breaking in vacua that preserve maximal supersymmetry. The resulting black holes do not carry any hair for the scalars. We de

  19. Design of the LRP airfoil series using 2D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;

    2014-01-01

    This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Nav...

  20. 2D nanomaterials based electrochemical biosensors for cancer diagnosis.

    Science.gov (United States)

    Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei

    2017-03-15

    Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.

  1. Validation of minor species of the MIPAS2D database

    Directory of Open Access Journals (Sweden)

    Enzo Papandrea

    2014-01-01

    Full Text Available The MIPAS2D [Dinelli et al., 2010] database has been developed applying the tomographic analysis technique GMTR [Carlotti et al., 2001] to measurements acquired in the nominal observation mode of the complete MIPAS (Michelson Interferometer for Passive Atmosphere Sounding [Fischer et al., 2008] mission. […

  2. A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW

    Institute of Scientific and Technical Information of China (English)

    He Ji-huan

    2003-01-01

    The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.

  3. Dynamic and approximate pattern matching in 2D

    DEFF Research Database (Denmark)

    Clifford, Raphaël; Fontaine, Allyx; Starikovskaya, Tatiana

    2016-01-01

    updates can be performed in O(log2 n) time and queries in O(log2 m) time. - We then consider a model where an update is a new 2D pattern and a query is a location in the text. For this setting we show that Hamming distance queries can be answered in O(log m + H) time, where H is the relevant Hamming...... distance. - Extending this work to allow approximation, we give an efficient algorithm which returns a (1+ε) approximation of the Hamming distance at a given location in O(ε−2 log2 m log log n) time. Finally, we consider a different setting inspired by previous work on locality sensitive hashing (LSH......). Given a threshold k and after building the 2D text index and receiving a 2D query pattern, we must output a location where the Hamming distance is at most (1 + ε)k as long as there exists a location where the Hamming distance is at most k. - For our LSH inspired 2D indexing problem, the text can...

  4. Computational study of interfaces and edges of 2D materials

    NARCIS (Netherlands)

    Farmanbar Gelepordsari, M.

    2016-01-01

    The discovery of graphene and its intriguing properties has given birth to the field of two-dimensional (2D) materials. These materials are characterized by a strong covalent bonding between the atoms within a plane, but weak, van derWaals, bonding between the planes. Such materials can be isolated

  5. Stabilization of 2D quantum gravity by branching interactions

    CERN Document Server

    Diego, O

    1995-01-01

    In this paper the stabilization of 2D quantum Gravity by branching interactions is considered. The perturbative expansion and the first nonperturbative term of the stabilized model are the same than the unbounded matrix model which define pure Gravity, but it has new nonperturbative effects that survives in the continuum limit.

  6. Discrepant Results in a 2-D Marble Collision

    Science.gov (United States)

    Kalajian, Peter

    2013-01-01

    Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…

  7. Horns Rev II, 2D-Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Brorsen, Michael

    This report is an extension of the study presented in Lykke Andersen and Brorsen, 2006 and includes results from the irregular wave tests, where Lykke Andersen & Brorsen, 2006 focused on regular waves. The 2D physical model tests were carried out in the shallow wave flume at Dept. of Civil...

  8. Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients

    DEFF Research Database (Denmark)

    Ahern, Thomas P; Hertz, Daniel L; Damkier, Per;

    2017-01-01

    -infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association....... The bias analysis showed negligible bias by discordant genotypes. Summary estimates of association, with or without bias adjustment, indicated no clinically important association between CYP2D6 genotype and breast cancer survival in tamoxifen-treated women....

  9. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    Science.gov (United States)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  10. WE-AB-BRA-07: Quantitative Evaluation of 2D-2D and 2D-3D Image Guided Radiation Therapy for Clinical Trial Credentialing, NRG Oncology/RTOG

    Energy Technology Data Exchange (ETDEWEB)

    Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)

    2015-06-15

    Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance

  11. Intracellular Disassembly of Self-Quenched Nanoparticles Turns NIR Fluorescence on for Sensing Furin Activity in Cells and in Tumors.

    Science.gov (United States)

    Yuan, Yue; Zhang, Jia; Cao, Qinjingwen; An, Linna; Liang, Gaolin

    2015-06-16

    There has been no report on enzyme-controlled disassembly of self-quenched NIR fluorescent nanoparticles turning fluorescence on for specific detection/imaging of the enzyme's activity in vitro and in vivo. Herein, we reported the rational design of new NIR probe 1 whose fluorescence signal was self-quenched upon reduction-controlled condensation and subsequent assembly of its nanoparticles (i.e., 1-NPs). Then disassembly of 1-NPs by furin turned the fluorescence on. Employing this enzymatic strategy, we successfully applied 1-NPs for NIR detection of furin in vitro and NIR imaging furin activity in living cells. Moreover, we also applied 1-NPs for discriminative NIR imaging of MDA-MB-468 tumors in nude mice. This NIR probe 1 might be further developed for tumor-targeted imaging in routine preclinical studies or even in patients in the future.

  12. A candidate approach implicates the secreted Salmonella effector protein SpvB in P-body disassembly.

    Directory of Open Access Journals (Sweden)

    Ana Eulalio

    Full Text Available P-bodies are dynamic aggregates of RNA and proteins involved in several post-transcriptional regulation processes. P-bodies have been shown to play important roles in regulating viral infection, whereas their interplay with bacterial pathogens, specifically intracellular bacteria that extensively manipulate host cell pathways, remains unknown. Here, we report that Salmonella infection induces P-body disassembly in a cell type-specific manner, and independently of previously characterized pathways such as inhibition of host cell RNA synthesis or microRNA-mediated gene silencing. We show that the Salmonella-induced P-body disassembly depends on the activation of the SPI-2 encoded type 3 secretion system, and that the secreted effector protein SpvB plays a major role in this process. P-body disruption is also induced by the related pathogen, Shigella flexneri, arguing that this might be a new mechanism by which intracellular bacterial pathogens subvert host cell function.

  13. The Chemical Pipeline Disassembling Skills Exploration%化工管路拆装技术探究

    Institute of Scientific and Technical Information of China (English)

    徐国钦; 张晓素

    2012-01-01

    According to the national petroleum and chemical engineering skills contest competition requirements,the paper discussed the chemical pipeline disassembling attention points and skills,the students’ cooperation consciousness and team spirit of the students.It is an useful reference for the vocational school teachers and students that carry out the chemical pipeline disassembling training.%依据全国石油化工技能大赛竞赛要求,文章全面论述了化工管路拆装的注意要点和技巧以及学生协作意识和团体精神的培养,对开展化工管路拆装实训的职业院校师生是一种有益的借鉴。

  14. 2d-LCA - an alternative to x-wires

    Science.gov (United States)

    Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim

    2014-11-01

    The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.

  15. Preliminary 2D numerical modeling of common granular problems

    Science.gov (United States)

    Wyser, Emmanuel; Jaboyedoff, Michel

    2017-04-01

    Granular studies received an increasing interest during the last decade. Many scientific investigations were successfully addressed to acknowledge the ubiquitous behavior of granular matter. We investigate liquid impacts onto granular beds, i.e. the influence of the packing and compaction-dilation transition. However, a physically-based model is still lacking to address complex microscopic features of granular bed response during liquid impacts such as compaction-dilation transition or granular bed uplifts (Wyser et al. in review). We present our preliminary 2D numerical modeling based on the Discrete Element Method (DEM) using nonlinear contact force law (the Hertz-Mindlin model) for disk shape particles. The algorithm is written in C programming language. Our 2D model provides an analytical tool to address granular problems such as i) granular collapses and ii) static granular assembliy problems. This provides a validation framework of our numerical approach by comparing our numerical results with previous laboratory experiments or numerical works. Inspired by the work of Warnett et al. (2014) and Staron & Hinch (2005), we studied i) the axisymetric collapse of granular columns. We addressed the scaling between the initial aspect ratio and the final runout distance. Our numerical results are in good aggreement with the previous studies of Warnett et al. (2014) and Staron & Hinch (2005). ii) Reproducing static problems for regular and randomly stacked particles provides a valid comparison to results of Egholm (2007). Vertical and horizontal stresses within the assembly are quite identical to stresses obtained by Egholm (2007), thus demonstating the consistency of our 2D numerical model. Our 2D numerical model is able to reproduce common granular case studies such as granular collapses or static problems. However, a sufficient small timestep should be used to ensure a good numerical consistency, resulting in higher computational time. The latter becomes critical

  16. 2D/3D Image Registration using Regression Learning.

    Science.gov (United States)

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-09-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object's 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region's motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method's application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof.

  17. Liquid-like 2D plasmonic waves (Conference Presentation)

    Science.gov (United States)

    Zhang, Baile

    2017-05-01

    We predict some novel 2D plasmonic waves as analogues of corresponding hydrodynamic wave phenomena, including plasmonic splashing and V-shaped ship-wakes excited by a swift electron perpendicularly impacting upon and moving parallel above a graphene monolayer, respectively. 2D plasmons have fueled substantial research efforts in the past few years. Recent studies have identified that 2D plasmons exhibit peculiar dispersion that is formally analogous to hydrodynamic deep-water-waves on a 2D liquid surface. Logically, many intricate and intriguing hydrodynamic wave phenomena, such as the splashing stimulated by a droplet or stone impacting a calm liquid surface and the V-shaped ship-wakes generated behind a ship when it travels over a water surface, should have counterparts in 2D plasmons, but have not been studied. We fill this gap by investigating dynamic excitation of graphene plasmons when a monolayer graphene is perpendicularly impacted by a swift electron, as an analogue of hydrodynamic splashing. A central jet-like rise, called "Rayleigh jet" or "Worthington jet" as a hallmark in hydrodynamic splashing, is demonstrated as an excessive concentration of graphene plasmons, followed by plasmonic ripples dispersing like concentric ripples of deep-water waves. This plasmonic jet, serving as a monopole antenna, can generate radiation as analogue of splashing sound. This is also the first discussion on the space-time limitation on surface plasmon generation. We then demonstrate a V-shaped plasmonic wave pattern when a swift electron moves parallel above a graphene monolayer, as an analogue of hydrodynamic ship-wakes. The plasmonic wake angle is found to be the same with the Kelvin angle and thus insensitive to the electron velocity when the electron velocity is small. However, the wake angle gradually decreases by increasing the electron's velocity when the electron velocity is large, and thus transits into the Mach angle, being similar to recent development in fluid

  18. Half-metallicity in 2D organometallic honeycomb frameworks

    Science.gov (United States)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  19. Biomedical Exploitation of Chitin and Chitosan via Mechano-Chemical Disassembly, Electrospinning, Dissolution in Imidazolium Ionic Liquids, and Supercritical Drying

    OpenAIRE

    Riccardo A. A. Muzzarelli

    2011-01-01

    Recently developed technology permits to optimize simultaneously surface area, porosity, density, rigidity and surface morphology of chitin-derived materials of biomedical interest. Safe and ecofriendly disassembly of chitin has superseded the dangerous acid hydrolysis and provides higher yields and scaling-up possibilities: the chitosan nanofibrils are finding applications in reinforced bone scaffolds and composite dressings for dermal wounds. Electrospun chitosan nanofibers, in the form of ...

  20. Disassembly of actin structures by nanosecond pulsed electric field is a downstream effect of cell swelling.

    Science.gov (United States)

    Pakhomov, Andrei G; Xiao, Shu; Pakhomova, Olga N; Semenov, Iurii; Kuipers, Marjorie A; Ibey, Bennett L

    2014-12-01

    Disruption of the actin cytoskeleton structures was reported as one of the characteristic effects of nanosecond-duration pulsed electric field (nsPEF) in both mammalian and plant cells. We utilized CHO cells that expressed the monomeric fluorescent protein (mApple) tagged to actin to test if nsPEF modifies the cell actin directly or as a consequence of cell membrane permeabilization. A train of four 600-ns pulses at 19.2 kV/cm (2 Hz) caused immediate cell membrane poration manifested by YO-PRO-1 dye uptake, gradual cell rounding and swelling. Concurrently, bright actin features were replaced by dimmer and uniform fluorescence of diffuse actin. To block the nsPEF-induced swelling, the bath buffer was isoosmotically supplemented with an electropore-impermeable solute (sucrose). A similar addition of a smaller, electropore-permeable solute (adonitol) served as a control. We demonstrated that sucrose efficiently blocked disassembly of actin features by nsPEF, whereas adonitol did not. Sucrose also attenuated bleaching of mApple-tagged actin in nsPEF-treated cells (as integrated over the cell volume), although did not fully prevent it. We conclude that disintegration of the actin cytoskeleton was a result of cell swelling, which, in turn, was caused by cell permeabilization by nsPEF and transmembrane diffusion of solutes which led to the osmotic imbalance.

  1. Histone Acetylation near the Nucleosome Dyad Axis Enhances Nucleosome Disassembly by RSC and SWI/SNF.

    Science.gov (United States)

    Chatterjee, Nilanjana; North, Justin A; Dechassa, Mekonnen Lemma; Manohar, Mridula; Prasad, Rashmi; Luger, Karolin; Ottesen, Jennifer J; Poirier, Michael G; Bartholomew, Blaine

    2015-12-01

    Signaling associated with transcription activation occurs through posttranslational modification of histones and is best exemplified by lysine acetylation. Lysines are acetylated in histone tails and the core domain/lateral surface of histone octamers. While acetylated lysines in histone tails are frequently recognized by other factors referred to as "readers," which promote transcription, the mechanistic role of the modifications in the lateral surface of the histone octamer remains unclear. By using X-ray crystallography, we found that acetylated lysines 115 and 122 in histone H3 are solvent accessible, but in biochemical assays they appear not to interact with the bromodomains of SWI/SNF and RSC to enhance recruitment or nucleosome mobilization, as previously shown for acetylated lysines in H3 histone tails. Instead, we found that acetylation of lysines 115 and 122 increases the predisposition of nucleosomes for disassembly by SWI/SNF and RSC up to 7-fold, independent of bromodomains, and only in conjunction with contiguous nucleosomes. Thus, in combination with SWI/SNF and RSC, acetylation of lateral surface lysines in the histone octamer serves as a crucial regulator of nucleosomal dynamics distinct from the histone code readers and writers.

  2. ARC: A compact, high-field, disassemblable fusion nuclear science facility and demonstration power plant

    Science.gov (United States)

    Sorbom, Brandon; Ball, Justin; Palmer, Timothy; Mangiarotti, Franco; Sierchio, Jennifer; Bonoli, Paul; Kasten, Cale; Sutherland, Derek; Barnard, Harold; Haakonsen, Christian; Goh, Jon; Sung, Choongki; Whyte, Dennis

    2014-10-01

    The Affordable, Robust, Compact (ARC) reactor conceptual design aims to reduce the size, cost, and complexity of a combined Fusion Nuclear Science Facility (FNSF) and demonstration fusion pilot power plant. ARC is a 270 MWe tokamak reactor with a major radius of 3.3 m, a minor radius of 1.1 m, and an on-axis magnetic field of 9.2 T. ARC has Rare Earth Barium Copper Oxide (REBCO) superconducting toroidal field coils with joints to allow disassembly, allowing for removal and replacement of the vacuum vessel as a single component. Inboard-launched current drive of 25 MW LHRF power and 13.6 MW ICRF power is used to provide a robust, steady state core plasma far from disruptive limits. ARC uses an all-liquid blanket, consisting of low pressure, slowly flowing Fluorine Lithium Beryllium (FLiBe) molten salt. The liquid blanket acts as a working fluid, coolant, and tritium breeder, and minimizes the solid material that can become activated. The large temperature range over which FLiBe is liquid permits blanket operation at 800-900 K with single phase fluid cooling and allows use of a high-efficiency Brayton cycle for electricity production in the secondary coolant loop.

  3. Disassembly of the Staphylococcus aureus hibernating 100S ribosome by an evolutionarily conserved GTPase.

    Science.gov (United States)

    Basu, Arnab; Yap, Mee-Ngan F

    2017-09-11

    The bacterial hibernating 100S ribosome is a poorly understood form of the dimeric 70S particle that has been linked to pathogenesis, translational repression, starvation responses, and ribosome turnover. In the opportunistic pathogen Staphylococcus aureus and most other bacteria, hibernation-promoting factor (HPF) homodimerizes the 70S ribosomes to form a translationally silent 100S complex. Conversely, the 100S ribosomes dissociate into subunits and are presumably recycled for new rounds of translation. The regulation and disassembly of the 100S ribosome are largely unknown because the temporal abundance of the 100S ribosome varies considerably among different bacterial phyla. Here, we identify a universally conserved GTPase (HflX) as a bona fide dissociation factor of the S. aureus 100S ribosome. The expression levels hpf and hflX are coregulated by general stress and stringent responses in a temperature-dependent manner. While all tested guanosine analogs stimulate the splitting activity of HflX on the 70S ribosome, only GTP can completely dissociate the 100S ribosome. Our results reveal the antagonistic relationship of HPF and HflX and uncover the key regulators of 70S and 100S ribosome homeostasis that are intimately associated with bacterial survival.

  4. Fulvic acid inhibits aggregation and promotes disassembly of tau fibrils associated with Alzheimer's disease.

    Science.gov (United States)

    Cornejo, Alberto; Jiménez, José M; Caballero, Leonardo; Melo, Francisco; Maccioni, Ricardo B

    2011-01-01

    Alzheimer's disease is a neurodegenerative disorder involving extracellular plaques (amyloid-β) and intracellular tangles of tau protein. Recently, tangle formation has been identified as a major event involved in the neurodegenerative process, due to the conversion of either soluble peptides or oligomers into insoluble filaments. At present, the current therapeutic strategies are aimed at natural phytocomplexes and polyphenolics compounds able to either inhibit the formation of tau filaments or disaggregate them. However, only a few polyphenolic molecules have emerged to prevent tau aggregation, and natural drugs targeting tau have not been approved yet. Fulvic acid, a humic substance, has several nutraceutical properties with potential activity to protect cognitive impairment. In this work we provide evidence to show that the aggregation process of tau protein, forming paired helical filaments (PHFs) in vitro, is inhibited by fulvic acid affecting the length of fibrils and their morphology. In addition, we investigated whether fulvic acid is capable of disassembling preformed PHFs. We show that the fulvic acid is an active compound against preformed fibrils affecting the whole structure by diminishing length of PHFs and probably acting at the hydrophobic level, as we observed by atomic force techniques. Thus, fulvic acid is likely to provide new insights in the development of potential treatments for Alzheimer's disease using natural products.

  5. Variations in Spontaneous Assembly and Disassembly of Molecules on Unmodified Gold Nanoparticles

    Science.gov (United States)

    Jin, Ng Zhang; Anniebell, Stanley; Gopinath, Subash C. B.; Chen, Yeng

    2016-09-01

    Electrostatic attraction, covalent binding, and hydrophobic absorption are spontaneous processes to assemble and disassemble the molecules of gold nanoparticles (GNP). This dynamic change can be performed in the presence of ions, such as NaCl or charged molecules. Current research encompasses the GNP in mediating non-biofouling and investigating the molecular attachment and detachment. Experiments were performed with different sizes of GNP and polymers. As a proof of concept, poly(ethylene glycol)- b-poly(acrylic acid), called PEG-PAAc, attachment and binding events between factor IX and factor IX-bp from snake venom were demonstrated, and the variations with these molecular attachment on GNP were shown. Optimal concentration of NaCl for GNP aggregation was 250 mM, and the optimal size of GNP used was 30 nm. The polymer PEG-PAAc (1 mg/ml) has a strong affinity to the GNP as indicated by the dispersed GNP. The concentration of 5800 nM of factor IX was proved to be optimal for dispersion of GNP, and at least 100 nM of factor IX-bp was needed to remove factor IX from the surface of GNP. This study delineates the usage of unmodified GNP for molecular analysis and downstream applications.

  6. Leukocytes Breach Endothelial Barriers by Insertion of Nuclear Lobes and Disassembly of Endothelial Actin Filaments

    Directory of Open Access Journals (Sweden)

    Sagi Barzilai

    2017-01-01

    Full Text Available The endothelial cytoskeleton is a barrier for leukocyte transendothelial migration (TEM. Mononuclear and polymorphonuclear leukocytes generate gaps of similar micron-scale size when squeezing through inflamed endothelial barriers in vitro and in vivo. To elucidate how leukocytes squeeze through these barriers, we co-tracked the endothelial actin filaments and leukocyte nuclei in real time. Nuclear squeezing involved either preexistent or de novo-generated lobes inserted into the leukocyte lamellipodia. Leukocyte nuclei reversibly bent the endothelial actin stress fibers. Surprisingly, formation of both paracellular gaps and transcellular pores by squeezing leukocytes did not require Rho kinase or myosin II-mediated endothelial contractility. Electron-microscopic analysis suggested that nuclear squeezing displaced without condensing the endothelial actin filaments. Blocking endothelial actin turnover abolished leukocyte nuclear squeezing, whereas increasing actin filament density did not. We propose that leukocyte nuclei must disassemble the thin endothelial actin filaments interlaced between endothelial stress fibers in order to complete TEM.

  7. Influence of the Assembly Conditions on the Growth and Disassembly of Layer-by-Layer Films

    Science.gov (United States)

    Vishvakant Mankad, Ravin

    A central aim of our research is to capitalize upon the versatility of the Layer-by-layer (LbL) assembly technique and explore parameters to control the film properties for tailored applications. The objective of this work is to investigate immersion time as a parameter to tune film properties and analyze the kinetics of LbL assembly. Multilayer films prepared using strong polycation poly (diallyldimethylammonium chloride) (PDDA) and strong polyanion poly (styrene sulfonate) (PSS), or the weak polyanion poly (acrylic acid) (PAA), and/or the synthetic clay Laponite were assembled using the solution dip LbL procedure. We also investigate the disassembly kinetics of these multilayers upon exposure to different pH conditions. UV-vis spectroscopy and AFM were used to measure the adsorption and desorption of polymers and film surface morphology. The kinetics of multilayer growth for strong polyelectrolyte system were observed to be different than for the weak polyelectrolyte system. Multilayer films of strong polyelectrolyte system of PDDA/PSS or clay system of PDDA/Laponite were found to be stable upon exposure to different pH conditions for very long times. LbL offers a convenient method to produce ultrathin films with nanometer scale control for various applications, e.g., drug delivery, optical coating, battery electrolytes and gas barriers.

  8. Role of a reducing environment in disassembly of the herpesvirus tegument

    Energy Technology Data Exchange (ETDEWEB)

    Newcomb, William W. [Department of Microbiology Immunology and Cancer Biology, University of Virginia Health System, Box 800734, University of Virginia Health System, 1300 Jefferson Park Ave. Charlottesville, VA 22908 (United States); Jones, Lisa M. [Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130 (United States); Dee, Alexander [Department of Molecular, Microbial and Structural Biology, University of Connecticut Health Center, Farmington, CT 06030 (United States); Chaudhry, Farid [Department of Microbiology Immunology and Cancer Biology, University of Virginia Health System, Box 800734, University of Virginia Health System, 1300 Jefferson Park Ave. Charlottesville, VA 22908 (United States); Brown, Jay C., E-mail: JCB2G@VIRGINIA.EDU [Department of Microbiology Immunology and Cancer Biology, University of Virginia Health System, Box 800734, University of Virginia Health System, 1300 Jefferson Park Ave. Charlottesville, VA 22908 (United States)

    2012-09-15

    Initiation of infection by herpes family viruses involves a step in which most of the virus tegument becomes detached from the capsid. Detachment takes place in the host cell cytosol near the virus entry site and it is followed by dispersal of tegument proteins and disappearance of the tegument as a distinct entity. Here we describe the results of experiments designed to test the idea that the reducing environment of the cytosol may contribute to tegument detachment and disassembly. Non-ionic detergent was used to remove the membrane of purified herpes simplex virus under control and reducing conditions. The effects on the tegument were then examined by SDS-PAGE and electron microscopy. Protein analysis demonstrated that most major tegument proteins were removed under both oxidizing and reducing conditions except for UL49 which required a reducing environment. It is proposed therefore that the reducing conditions in the cytosol are involved in removal of UL49 protein. Electron microscopic analysis revealed that capsids produced under oxidizing conditions contained a coating of protein that was absent in reduced virions and which correlated uniquely with the presence of UL49. This capsid-associated layer is suggested to be the location of UL49 in the extracted virion.

  9. Advanced Recovery and Integrated Extraction System (ARIES): The United State's demonstration line for pit disassembly and conversion

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, Timothy O.

    1998-03-01

    The Advanced Recovery and Integrated Extraction System (ARIES) is a pit disassembly and conversion demonstration line at Los Alamos National Laboratory's plutonium facility. Pits are the core of a nuclear weapon that contains fissile material. With the end of the cold war, the United States began a program to dispose of the fissile material contained in surplus nuclear weapons. In January of 1997, the Department of Energy's Office of Fissile Material Disposition issued a Record of Decision (ROD) on the disposition of surplus plutonium. This decision contained a hybrid option for disposition of the plutonium, immobilization and mixed oxide fuel. ARIES is the cornerstone of the United States plutonium disposition program that supplies the pit demonstration plutonium feed material for either of these disposition pathways. Additionally, information from this demonstration is being used to design the United States Pit Disassembly and Conversion Facility. AH of the ARIES technologies were recently developed and incorporate waste minimization. The technologies include pit bisection, hydride/dehydride, metal to oxide conversion process, packaging, and nondestructive assay (NDA). The current schedule for the ARIES integrated Demonstration will begin in the Spring of 1998. The ARIES project involves a number of DOE sites including Los Alamos National Laboratory as the lead laboratory, Lawrence Livermore National Laboratory (LLNL), and Sandia National Laboratories. Moreover, the ARIES team is heavily involved in working with Russia in their pit disassembly and conversion activities.

  10. Novel Hydrogen-bonded Three-dimensional Supramolecular Architectures Containing 2D Honeycomb Networks or 2D Grids

    Institute of Scientific and Technical Information of China (English)

    LI Dong-Sheng; ZHOU Cai-Hua; WANG Yao-Yu; FU Feng; WU Ya-Pan; QI Guang-Cai; SHI Qi-Zhen

    2006-01-01

    Two new supramolecular complexes, [Cu(H2dhbd)(3-pyOH)(H2O)]2·3-pyOH·2H2O (1) and [Cu2(dhbd)(dpa)2-(H2O)]·6H2O (2) (H4dhbd=2,3-dihydroxybutanedioic acid, 3-pyOH=3-hydroxypyridine, dpa=2,2'-dipyridylamine),have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses,H-O hydrogen bonds, the cyclic dinuclear units in 1 together with four adjacent neighbors are connected into a 2D honeycomb network encapsulating free 3-pyOH ligands. Unexpectedly, the water-dimers are fixed in interlayers of 2D honeycomb network and act as hydrogen-bond bridging to further extend these 2D networks into 3D hydrogen-bonded framework. Complex 2 includes interesting 2D grids constructed from chiral dinuclear units through cules into three dimension with channels. Variable-temperature magnetic susceptibility measurements for both complexes indicate the presence of weak antiferromagnetic exchange interactions between adjacent copper(Ⅱ) ions.

  11. Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models

    Science.gov (United States)

    Lian, Yaogang

    2007-12-01

    In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.

  12. 'Active Disassembly using Smart Materials' end of life technology for WEEE - results from the framework V project

    Energy Technology Data Exchange (ETDEWEB)

    Arnaiz, S. [GAIKER Centro Tecnologico, Zamudio (Spain); Bodenhoefer, K. [Sony International (Europe) GmbH, Stuttgart (Germany); Harrison, D.; Hussein, H. [Brunel Univ., Runnymede (United Kingdom); Herrmann, C. [PE Europe GmbH, Stuttgart (Germany); Irasarri, L.; Malaina, M. [Indumetal Recycling, Bilbao (Spain); Schnecke, D. [Motorola Advanced Technology Center-Europe, Taunusstein (Germany); Tanskanen, P. [Nokia Research Centre, Helsinki (Finland)

    2004-07-01

    The three and a half year 'Active Disassembly using Smart Materials' (ADSM) project was set up to investigate a new generic way of dealing with waste electrical and electronic equipment (WEEE). Currently manual disassembly allows for the highest degree of separation of the required fractions, however the costs associated with this treatment are very high. This poses a difficult problem that ADSM aims to tackle. Self-disassembling products are not currently available but development of these could ease WEEE recycling. Active Disassembly may be defined as a process by which a product that is at its 'End of Life' (EoL) condition can self dismantle with the aid of embedded devices, integral or discrete. These devices may be triggered by external or internal stimuli. Active Disassembly using Smart Materials (ADSM) is the implementation of temperature-triggered mechanisms as the fixing systems. At EoL the product is raised to an increased ambient temperature exceeding in use conditions. The smart materials react to this stimulus resulting in the release of the fastening elements and thus self-disassembly. Unlike other forms of recycling ADSM is a generic EoL process. (orig.)

  13. Functionalized 2D atomic sheets with new properties

    Science.gov (United States)

    Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru

    2011-03-01

    Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.

  14. A brief review of the 2d/4d correspondences

    CERN Document Server

    Tachikawa, Yuji

    2016-01-01

    An elementary introduction to the 2d/4d correspondences is given. After quickly reviewing the 2d q-deformed Yang-Mills theory and the Liouville theory, we will introduce 4d theories obtained by coupling trifundamentals to SU(2) gauge fields. We will then see concretely that the supersymmetric partition function of these theories on S^3 x S^1 and on S^4 is given respectively by the q-deformed Yang-Mills theory and the Liouville theory. After giving a short discussion on how this correspondence may be understood from the viewpoint of the 6d N=(2,0) theory, we conclude the review by enumerating future directions. Most of the technical points will be referred to more detailed review articles.

  15. 2D Models for Dust-driven AGB Star Winds

    CERN Document Server

    Woitke, P

    2006-01-01

    New axisymmetric (2D) models for dust-driven winds of C-stars are presented which include hydrodynamics with radiation pressure on dust, equilibrium chemistry and time-dependent dust formation with coupled grey Monte Carlo radiative transfer. Considering the most simple case without stellar pulsation (hydrostatic inner boundary condition) these models reveal a more complex picture of the dust formation and wind acceleration as compared to earlier published spherically symmetric (1D) models. The so-called exterior $\\kappa$-mechanism causes radial oscillations with short phases of active dust formation between longer phases without appreciable dust formation, just like in the 1D models. However, in 2D geometry, the oscillations can be out-of-phase at different places above the stellar atmosphere which result in the formation of dust arcs or smaller caps that only occupy a certain fraction of the total solid angle. These dust structures are accelerated outward by radiation pressure, expanding radially and tangen...

  16. Simulation of corium concrete interaction in 2D geometry

    Energy Technology Data Exchange (ETDEWEB)

    Cranga, M. [IRSN, DPAM, F-13115 St Paul Les Durance (France); Spindler, B.; Dufour, E. [CEA Grenoble, DEN, F-38000 Grenoble (France); Dimov, Dimitar [Bulgarian Acad Sci, Inst Nucl Res and Nucl Energy, NPPSAL, BU-1784 Sofia (Bulgaria); Atkhen, Kresna [EDF, SEPTEN, F-69628 Villeurbanne (France); Foit, Jerzy [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Garcia-Martin, M. [Univ Politecn Madrid, E-28006 Madrid (Spain); Sevon, Tuomo [Tech Res Ctr Finland VTT, FI-02044 Helsinki (Finland); Schmidt, W. [AREVA, D-91058 Erlangen (Germany); Spengler, C. [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany)

    2010-07-01

    Benchmarking work was recently performed for the issue of molten corium concrete interaction (MCCI). A synthesis is given here. It concerns first the 2D CCI-2 test with a homogeneous pool and a limestone concrete, which was used for a blind benchmark. Secondly, the COMET-L2 and COMET-L3 2D experiments in a stratified configuration were used as a post-test (L2) and a blind-test (L3) benchmark. More details are given here for the recent benchmark considering a matrix of four reactor cases, with both a homogeneous and a stratified configuration, and with both a limestone and a siliceous concrete. A short overview is given on the different models used in the codes, and the consistency between the benchmark actions on experiments and reactor situations is discussed. Finally, the major uncertainties concerning MCCI are also pointed out. (authors)

  17. Two-Dimensional (2D) Polygonal Electromagnetic Cloaks

    Institute of Scientific and Technical Information of China (English)

    LI Chao; YAO Kan; LI Fang

    2009-01-01

    Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently.We present an important class of two-dimensional (2D) cloaks with polygon geometries.Explicit expressions of transformed medium parameters are derived with their unique properties investigated.It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary.At most positions,the principle axes of permittivity tensors do not align with position vectors.An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified.Since polygon cloaks can be tailored to resemble any objects,the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.

  18. Extreme Growth of Enstrophy on 2D Bounded Domains

    Science.gov (United States)

    Protas, Bartosz; Sliwiak, Adam

    2016-11-01

    We study the vortex states responsible for the largest instantaneous growth of enstrophy possible in viscous incompressible flow on 2D bounded domain. The goal is to compare these results with estimates obtained using mathematical analysis. This problem is closely related to analogous questions recently considered in the periodic setting on 1D, 2D and 3D domains. In addition to systematically characterizing the most extreme behavior, these problems are also closely related to the open question of the finite-time singularity formation in the 3D Navier-Stokes system. We demonstrate how such extreme vortex states can be found as solutions of constrained variational optimization problems which in the limit of small enstrophy reduce to eigenvalue problems. Computational results will be presented for circular and square domains emphasizing the effect of geometric singularities (corners of the domain) on the structure of the extreme vortex states. Supported by an NSERC (Canada) Discovery Grant.

  19. 2D-immunoblotting analysis of Sporothrix schenckii cell wall

    Directory of Open Access Journals (Sweden)

    Estela Ruiz-Baca

    2011-03-01

    Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.

  20. Stable 2D Feature Tracking for Long Video Sequences

    Directory of Open Access Journals (Sweden)

    Jong-Seung Park

    2008-12-01

    Full Text Available In this paper, we propose a 2D feature tracking method that is stable to long video sequences. To improve the stability of long tracking, we use trajectory information about 2D features. We predict the expected feature states and compute a rough estimate of the feature location on the current image frame using the history of previous feature states up to the current frame. A search window is positioned at the estimated location and similarity measures are computed within the search window. Once the feature position is determined from the similarity measures, the current feature states are appended to the history bu®er. The outlier rejection stage is also introduced to reduce false matches. Experimental results from real video sequences showed that the proposed method stably tracks point features for long frame sequences.

  1. Hard and Soft Physics with 2D Materials

    Science.gov (United States)

    McEuen, Paul

    With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.

  2. Optimizing sparse sampling for 2D electronic spectroscopy

    Science.gov (United States)

    Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias

    2017-02-01

    We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.

  3. Enhanced automated platform for 2D characterization of RFID communications

    Science.gov (United States)

    Vuza, Dan Tudor; Vlǎdescu, Marian

    2016-12-01

    The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.

  4. Security Issues for 2D Barcodes Ticketing Systems

    Directory of Open Access Journals (Sweden)

    Cristian Toma

    2011-03-01

    Full Text Available The paper presents a solution for endcoding/decoding access to the subway public transportation systems. First part of the paper is dedicated through section one and two to the most used 2D barcodes used in the market – QR and DataMatrix. The sample for DataMatrix is author propietary and the QR sample is from the QR standard [2]. The section three presents MMS and Digital Rights Management topics used for issuing the 2D barcodes tickets. The second part of the paper, starting with section four shows the architecture of Subway Ticketing Systems and the proposed procedure for the ticket issuing. The conclusions identify trends of the security topics in the public transportation systems.

  5. A Novel 2D Z-Shaped Electromagnetic Bandgap Structure

    Directory of Open Access Journals (Sweden)

    I. Iliev

    2015-02-01

    Full Text Available This paper researches a novel 2D Z-shaped Electromagnetic Band-Gap (EBG structure, its dispersion diagram and application field. Based on a transmission line model, the dispersion equation is derived and theoretically investigated. In order to validate theoretical results, a full wave analysis is performed and the electromagnetic properties of the structure are revealed. The theoretical results show good agreement with the full wave simulation results. The frequency response of the structure is compared to the well know structures of Jerusalem cross and patch EBG. The results show the applicability of the proposed 2D Z-shaped EBG in microstrip patch antennas, microstrip filters and high speed switching circuits, where the suppression of parasitic surface wave is required.

  6. Critical Dynamics in Quenched 2D Atomic Gases

    Science.gov (United States)

    Larcher, F.; Dalfovo, F.; Proukakis, N. P.

    2016-05-01

    Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.

  7. 2D/3D Program work summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author).

  8. Structural Complexity and Phonon Physics in 2D Arsenenes.

    Science.gov (United States)

    Carrete, Jesús; Gallego, Luis J; Mingo, Natalio

    2017-03-15

    In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.

  9. Wave propagation in pantographic 2D lattices with internal discontinuities

    CERN Document Server

    Madeo, A; Neff, P

    2014-01-01

    In the present paper we consider a 2D pantographic structure composed by two orthogonal families of Euler beams. Pantographic rectangular 'long' waveguides are considered in which imposed boundary displacements can induce the onset of traveling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations which may involve geometrical non-linearities, possibly opening the path to appealing phenomena such as propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses and aeronautic/aerospace panels.

  10. Polymer ultrapermeability from the inefficient packing of 2D chains

    Science.gov (United States)

    Rose, Ian; Bezzu, C. Grazia; Carta, Mariolino; Comesaña-Gándara, Bibiana; Lasseuguette, Elsa; Ferrari, M. Chiara; Bernardo, Paola; Clarizia, Gabriele; Fuoco, Alessio; Jansen, Johannes C.; Hart, Kyle E.; Liyana-Arachchi, Thilanga P.; Colina, Coray M.; McKeown, Neil B.

    2017-09-01

    The promise of ultrapermeable polymers, such as poly(trimethylsilylpropyne) (PTMSP), for reducing the size and increasing the efficiency of membranes for gas separations remains unfulfilled due to their poor selectivity. We report an ultrapermeable polymer of intrinsic microporosity (PIM-TMN-Trip) that is substantially more selective than PTMSP. From molecular simulations and experimental measurement we find that the inefficient packing of the two-dimensional (2D) chains of PIM-TMN-Trip generates a high concentration of both small (carbon capture demonstrated for relevant gas mixtures. Comparisons between PIM-TMN-Trip and structurally similar polymers with three-dimensional (3D) contorted chains confirm that its additional intrinsic microporosity is generated from the awkward packing of its 2D polymer chains in a 3D amorphous solid. This strategy of shape-directed packing of chains of microporous polymers may be applied to other rigid polymers for gas separations.

  11. Band-structure engineering in conjugated 2D polymers.

    Science.gov (United States)

    Gutzler, Rico

    2016-10-26

    Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.

  12. A "Necklace" Model for Vesicles Simulations in 2D

    CERN Document Server

    Ismail, Mourad

    2012-01-01

    The aim of this paper is to propose a new numerical model to simulate 2D vesicles interacting with a newtonian fluid. The inextensible membrane is modeled by a chain of circular rigid particles which are maintained in cohesion by using two different type of forces. First, a spring force is imposed between neighboring particles in the chain. Second, in order to model the bending of the membrane, each triplet of successive particles is submitted to an angular force. Numerical simulations of vesicles in shear flow have been run using Finite Element Method and the FreeFem++[1] software. Exploring different ratios of inner and outer viscosities, we recover the well known "Tank-Treading" and "Tumbling" motions predicted by theory and experiments. Moreover, for the first time, 2D simulations of the "Vacillating-Breathing" regime predicted by theory in [2] and observed experimentally in [3] are done without special ingredient like for example thermal fluctuations used in [4].

  13. Planar maps, circle patterns and 2d gravity

    CERN Document Server

    David, Francois

    2013-01-01

    Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a K\\"ahler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space; (3) a discretized version (involving finite difference complex derivative operators) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.

  14. Controlling avalanche criticality in 2D nano arrays.

    Science.gov (United States)

    Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y

    2013-01-01

    Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.

  15. Tradeoffs for reliable quantum information storage in 2D systems

    CERN Document Server

    Bravyi, Sergey; Terhal, Barbara

    2009-01-01

    We ask whether there are fundamental limits on storing quantum information reliably in a bounded volume of space. To investigate this question, we study quantum error correcting codes specified by geometrically local commuting constraints on a 2D lattice of finite-dimensional quantum particles. For these 2D systems, we derive a tradeoff between the number of encoded qubits k, the distance of the code d, and the number of particles n. It is shown that kd^2=O(n) where the coefficient in O(n) depends only on the locality of the constraints and dimension of the Hilbert spaces describing individual particles. We show that the analogous tradeoff for the classical information storage is k\\sqrt{d} =O(n).

  16. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    Science.gov (United States)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  17. TRO-2D - A code for rational transonic aerodynamic optimization

    Science.gov (United States)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  18. DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM

    Directory of Open Access Journals (Sweden)

    K. Srinivasan

    2010-11-01

    Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.

  19. An Arbitrary 2D Structured Replica Control Protocol

    OpenAIRE

    Basmadjian, Robert; Meer, Hermann,

    2011-01-01

    Traditional replication protocols that logically arrange the replicas into a specific structure have reasonable availability, lower communication cost as well as system load than those that do not require any logical organisation of replicas. We propose in this paper the A2DS protocol: a single protocol that, unlike the existing proposed protocols, can be adapted to any 2D structure. Its read operation is carried out on any replica of every level of the structure whereas write operations are ...

  20. FASTWO - A 2-D interactive algebraic grid generator

    Science.gov (United States)

    Luh, Raymond Ching-Chung; Lombard, C. K.

    1988-01-01

    This paper presents a very simple and effective computational procedure, FASTWO, for generating patched composite finite difference grids in 2-D for any geometry. Major components of the interactive graphics based method that is closely akin to and borrows many tools from transfinite interpolation are highlighted. Several grids produced by FASTWO are shown to illustrate its powerful capability. Comments about extending the methodology to 3-D are also given.

  1. Horns Rev II, 2D-Model Tests

    DEFF Research Database (Denmark)

    Andersen, Thomas Lykke; Brorsen, Michael

    This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006......-shaped access platforms on piles. The Model tests include mainly regular waves and a few irregular wave tests. These tests have been conducted at Aalborg University from 9. November, 2006 to 17. November, 2006....

  2. Controllable and Observable Polynomial Description for 2D Noncausal Systems

    Directory of Open Access Journals (Sweden)

    M. S. Boudellioua

    2007-01-01

    Full Text Available Two-dimensional state-space systems arise in applications such as image processing, iterative circuits, seismic data processing, or more generally systems described by partial differential equations. In this paper, a new direct method is presented for the polynomial realization of a class of noncausal 2D transfer functions. It is shown that the resulting realization is both controllable and observable.

  3. Stereoscopic highlighting: 2D graph visualization on stereo displays.

    Science.gov (United States)

    Alper, Basak; Höllerer, Tobias; Kuchera-Morin, JoAnn; Forbes, Angus

    2011-12-01

    In this paper we present a new technique and prototype graph visualization system, stereoscopic highlighting, to help answer accessibility and adjacency queries when interacting with a node-link diagram. Our technique utilizes stereoscopic depth to highlight regions of interest in a 2D graph by projecting these parts onto a plane closer to the viewpoint of the user. This technique aims to isolate and magnify specific portions of the graph that need to be explored in detail without resorting to other highlighting techniques like color or motion, which can then be reserved to encode other data attributes. This mechanism of stereoscopic highlighting also enables focus+context views by juxtaposing a detailed image of a region of interest with the overall graph, which is visualized at a further depth with correspondingly less detail. In order to validate our technique, we ran a controlled experiment with 16 subjects comparing static visual highlighting to stereoscopic highlighting on 2D and 3D graph layouts for a range of tasks. Our results show that while for most tasks the difference in performance between stereoscopic highlighting alone and static visual highlighting is not statistically significant, users performed better when both highlighting methods were used concurrently. In more complicated tasks, 3D layout with static visual highlighting outperformed 2D layouts with a single highlighting method. However, it did not outperform the 2D layout utilizing both highlighting techniques simultaneously. Based on these results, we conclude that stereoscopic highlighting is a promising technique that can significantly enhance graph visualizations for certain use cases.

  4. Compression of 2D vector fields under guaranteed topology preservation

    OpenAIRE

    2003-01-01

    In this paper we introduce a new compression technique for 2D vector fields which preserves the complete topology, i.e., the critical points and the connectivity of the separatrices. As the theoretical foundation of the algorithm, we show in a theorem that for local modifications of a vector field, it is possible to decide entirely by a local analysis whether or not the global topology is preserved. This result is applied in a compression algorithm which is based on a ...

  5. Submicrometric 2D ratchet effect in magnetic domain wall motion

    Energy Technology Data Exchange (ETDEWEB)

    Castán-Guerrero, C., E-mail: ccastan@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)

    2014-12-15

    Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.

  6. 2D and 3D Traveling Salesman Problem

    Science.gov (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  7. 2D and 3D Traveling Salesman Problem

    Science.gov (United States)

    Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt

    2011-01-01

    When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…

  8. An inverse design method for 2D airfoil

    Science.gov (United States)

    Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao

    2010-03-01

    The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.

  9. Physical degrees of freedom in 2-D string field theories

    CERN Document Server

    Sakai, N; Sakai, Norisuke; Tanii, Yoshiaki

    1992-01-01

    States in the absolute (semi-relative) cohomology but not in the relative cohomology are examined through the component decomposition of the string field theory action for the 2-D string. It is found that they are auxiliary fields without kinetic terms, but are important for instance in the master equation for the Ward-Takahashi identities. The ghost structure is analyzed in the Siegel gauge, but it is noted that the absolute (semi-relative) cohomology states are lost.

  10. 2D relaxation/diffusion correlations in porous media.

    Science.gov (United States)

    Godefroy, S; Callaghan, P T

    2003-01-01

    2D correlations between NMR relaxation and/or diffusion have been used to investigate water and oil dynamics in food and micro-emulsion systems. In the case of Mozzarella and Gouda cheese samples, a significant change in D/T2 correlation is appearing with cheese aging. In the case of a water/toluene micro-emulsion, some evidence for coalescence effects is suggested by D/D exchange spectra.

  11. 2D NMR-spectroscopic screening reveals polyketides in ladybugs

    OpenAIRE

    Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.

    2011-01-01

    Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior...

  12. Mapping Proprioception across a 2D Horizontal Workspace

    OpenAIRE

    2010-01-01

    Relatively few studies have been reported that document how proprioception varies across the workspace of the human arm. Here we examined proprioceptive function across a horizontal planar workspace, using a new method that avoids active movement and interactions with other sensory modalities. We systematically mapped both proprioceptive acuity (sensitivity to hand position change) and bias (perceived location of the hand), across a horizontal-plane 2D workspace. Proprioception of both the le...

  13. Evolutionary learning in the 2D artificial life system "avida"

    CERN Document Server

    Adami, C; Chris Adami

    1994-01-01

    We present a new tierra-inspired artificial life system with local interactions and two-dimensional geometry, based on an update mechanism akin to that of 2D cellular automata. We find that the spatial geometry is conducive to the development of diversity and thus improves adaptive capabilities. We also demonstrate the adaptive strength of the system by breeding cells with simple computational abilities, and study the dependence of this adaptability on mutation rate and population size.

  14. F-theory and 2d (0, 2) theories

    Science.gov (United States)

    Schäfer-Nameki, Sakura; Weigand, Timo

    2016-05-01

    F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.

  15. Inversions for MT data in 2D symmetrical anisotropic media

    Institute of Scientific and Technical Information of China (English)

    YANG Chang-fu; LIN Chang-you; SUN Chong-chi; LI Qing-he

    2005-01-01

    In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.

  16. A novel point cloud registration using 2D image features

    Science.gov (United States)

    Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng

    2017-01-01

    Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.

  17. Hybrid 3D-2D printing for bone scaffolds fabrication

    Science.gov (United States)

    Seleznev, V. A.; Prinz, V. Ya

    2017-02-01

    It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.

  18. Based on the cocos2d cross-platform development

    Institute of Scientific and Technical Information of China (English)

    申志兵

    2016-01-01

    the intelligent mobile Phone operating system is various, but apple's IOS, Google's Android and Microsof 's Windows Phone operating system almost all of the mobile Phone market, so developing a cross-platform recruit games has the very high commercial value.Cocos2d - x is a cross-platform, open source2 d mobile game framework, using the Cocos2d - x development projects can in IOS, Android, Windows Phone support, such as c + + platform to create and run. This paper mainly introduces recruit class game development stages of preparation, including feasibility analysis, system requirements analysis, system outline design, detailed design and coding and testing of the system as well as content.Whether it is worth in feasibility analysis, mainly on the system development in all aspects of the analysis;In system demand analysis, the major demand analysis and the function of the system system function structure diagram, use case diagram, system flow chart to comprehend;In system design, mainly on the system of the game execution module, main module, a monster module, props module in detail, such as design and draw the class diagram, sequence diagram and state diagram;This game is a dungeon stage mode class, to rotate around the protagonist to destroy the monster, obtains the key to unlock the next level, in the pursuit of complete game speed at the same time to finish the game within the prescribed steps.

  19. Observations of 2D Doppler backscattering on MAST

    CERN Document Server

    Thomas, D A; Freethy, S J; Huang, B K; Shevchenko, V F; Vann, R G L

    2015-01-01

    The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch an...

  20. Design Application Translates 2-D Graphics to 3-D Surfaces

    Science.gov (United States)

    2007-01-01

    Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.