VSOP, Neutron Spectra, 2-D Flux Synthesis, Fuel Management, Thermohydraulics Calculation
International Nuclear Information System (INIS)
flux for 1515 compositions in 2-D cases, r-z (9999 compositions in 3-D cases, x-y-z). The burnup scheme has been developed from the FEVER code. The build-up history of up to 49 fission product nuclides in the compositions is followed explicitly. The diffusion part of the program system can be repeated at many short burnup time steps, and the spectrum module can be repeated at larger time steps, when some significant change in the spectrum is expected. The fuel management and cost module performs the fuel shuffling and general evaluations of the reactor and fuel element life history. The fuel management simulates the currently known shuffling and out of pile routes for various reactors. It has further been extended to include the typical features of the pebble bed reactor such as burnup dependent optional reloading of elements, separated treatment of different fuel streams, and recycling in new fuel element types according to a consistent mass balance and timing. Optionally, several different types of data files can be set up with characteristic data of the reactor life. These are used for more detailed investigations and display programs. The restart option allows the study of special phases of the reactor life, e.g. changes of the fueling scheme, of the burnup, of the power output, of the coolant temperature, and of the corresponding reactivity effects. The fuel cycle cost data set is made for the present worth KPD code. Two-dimensional thermal hydraulics studies for operating and emergency conditions can be performed with the THERMIX code. The averaged temperatures of the different spectrum zones in the core are returned from the thermal hydraulics to the subsequent step of the reactor history. 3 - Restrictions on the complexity of the problem: In epithermal energy range the cell spectrum calculation is missing. If needed, it must be simulated by disadvantage factors being obtained in other codes. Further, dynamic common must be defined for the commons VARDIM, COCI
2D and 3D Numerical Simulations of Flux Cancellation
Karpen, Judith T.; DeVore, C.; Antiochos, S. K.; Linton, M. G.
2009-01-01
Cancellation of magnetic flux in the solar photosphere and chromosphere has been linked observationally and theoretically to a broad range of solar activity, from filament channel formation to CME initiation. Because this phenomenon is typically measured at only a single layer in the atmosphere, in the radial (line of sight) component of the magnetic field, the actual processes behind this observational signature are ambiguous. It is clear that reconnection is involved in some way, but the location of the reconnection sites and associated connectivity changes remain uncertain in most cases. We are using numerical modeling to demystify flux cancellation, beginning with the simplest possible configuration: a subphotospheric Lundquist flux tube surrounded by a potential field, immersed in a gravitationally stratified atmosphere, spanning many orders of magnitude in plasma beta. In this system, cancellation is driven slowly by a 2-cell circulation pattern imposed in the convection zone, such that the tops of the cells are located around the beta=1 level (i.e., the photosphere) and the flows converge and form a downdraft at the polarity inversion line; note however that no flow is imposed along the neutral line. We will present the results of 2D and 3D MHD-AMR simulations of flux cancellation, in which the flux at the photosphere begins in either an unsheared or sheared state. In all cases, a low-lying flux rope is formed by reconnection at the polarity inversion line within a few thousand seconds. The flux rope remains stable and does not rise, however, in contrast to models which do not include the presence of significant mass loading.
Evaluation of flux synthesis algorithms
International Nuclear Information System (INIS)
The flux synthesis algorithm which is the best fit to the numerical solution of the multigroup diffusion equations, was determined. Three different types of synthesis were studied: 1) discontinuous synthesis 2) continuous synthesis 3) pseudo-continuous synthesis. A matrix and a differential formulation were developed for the first two types of synthesis. For pseudo-continuous synthesis only the matrix formulation was used. Some tests were performed and the results allowed us to establish the following order of efficiency for the algorithms: 1) continuous synthesis (matrix formulation) 2) continuous synthesis (differential formulation) 3) pseudo-continuous synthesis 4) discontinuous synthesis (matrix formulation) 5) discontinuous synthesis (differential formulation). (Author)
A SUBARRAY-SYNTHESIS BASED 2D DOA ESTIMATION METHOD
Institute of Scientific and Technical Information of China (English)
Xu Wenlong; Jiang Wei; Li Zengfu; Shang Yong; Xiang Haige
2006-01-01
In some satellite communications, we need to perform Direction Of Arrival (DOA) angle estimation under the restriction that the number of receivers is less than that of the array elements in an array antenna.To solve the conundrum, a method named subarray-synthesis-based Two-Dimensional DOA (2D DOA) angle estimation is proposed. In the method, firstly, the array antenna is divided into a series of subarray antennas based on the total number of receivers; secondly, the subarray antennas' output covariance matrices are estimated; thirdly, an equivalent covariance matrix is synthesized based on the subarray output covariance matrices; then 2D DOA estimation is performed. Monte Carlo simulations showed that the estimation method is effective.
Explicit Kinetic Flux Vector Splitting Scheme for the 2-D Shallow Water Wave Equations
Institute of Scientific and Technical Information of China (English)
施卫平; 黄明游; 王婷; 张小江
2004-01-01
Originally, the kinetic flux vector splitting (KFVS) scheme was developed as a numerical method to solve gas dynamic problems. The main idea in the approach is to construct the flux based on the microscopical description of the gas. In this paper, based on the analogy between the shallow water wave equations and the gas dynamic equations, we develop an explicit KFVS method for simulating the shallow water wave equations. A 1D steady flow and a 2D unsteady flow are presented to show the robust and accuracy of the KFVS scheme.
Assessing soil fluxes using meteoric 10Be: development and application of the Be2D model
Campforts, Benjamin; Govers, Gerard; Vanacker, Veerle; Baken, Stijn; Smolders, Erik; Vanderborght, Jan
2015-04-01
Meteoric 10Be is a promising and increasingly popular tool to better understand soil fluxes at different timescales. Unlike other, more classical, methods such as the study of sedimentary archives it enables a direct coupling between eroding and deposition sites. However, meteoric 10Be can be mobilized within the soil. Therefore, spatial variations in meteoric 10Be inventories cannot directly be translated into spatial variations in erosion and sedimentation rates: a correct interpretation of measured 10Be inventories requires that both lateral and vertical movement of meteoric 10Be are accounted for. Here, we present a spatially explicit 2D model that allows to simulate the behaviour of meteoric 10Be in the soil system over timescales of up to 1 million year and use the model to investigate the impact of accelerated erosion on meteoric 10Be inventories. The model consists of two parts. A first component deals with advective and diffusive mobility within the soil profile, whereas a second component describes lateral soil (and meteoric 10Be) fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering and lateral soil fluxes. Different types of erosion such as creep, water and tillage erosion are supported. Model runs show that natural soil fluxes can be well reconstructed based on meteoric 10Be inventories, and this for a wide range of geomorphological and pedological conditions. However, extracting signals of human impact and distinguishing them from natural soil fluxes is only feasible when the soil has a rather high retention capacity so that meteoric 10Be is retained in the top soil layer. Application of the Be2D model to an existing data set in the Appalachian Mountains [West et al.,2013] using realistic parameter values for the soil retention capacity as well as for vertical advection resulted in a good agreement between simulated and observed 10Be inventories. This confirms the robustness of the model. We
Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.
Ekama, G A; Marais, P
2004-01-01
The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
Mechanical loading and the synthesis of 1,25(OH)2D in primary human osteoblasts.
van der Meijden, K; Bakker, A D; van Essen, H W; Heijboer, A C; Schulten, E A J M; Lips, P; Bravenboer, N
2016-02-01
The metabolite 1,25-dihydroxyvitamin D (1,25(OH)2D) is synthesized from its precursor 25-hydroxyvitamin D (25(OH)D) by human osteoblasts leading to stimulation of osteoblast differentiation in an autocrine or paracrine way. Osteoblast differentiation is also stimulated by mechanical loading through activation of various responses in bone cells such as nitric oxide signaling. Whether mechanical loading affects osteoblast differentiation through an enhanced synthesis of 1,25(OH)2D by human osteoblasts is still unknown. We hypothesized that mechanical loading stimulates the synthesis of 1,25(OH)2D from 25(OH)D in primary human osteoblasts. Since the responsiveness of bone to mechanical stimuli can be altered by various endocrine factors, we also investigated whether 1,25(OH)2D or 25(OH)D affect the response of primary human osteoblasts to mechanical loading. Primary human osteoblasts were pre-incubated in medium with/without 25(OH)D3 (400 nM) or 1,25(OH)2D3 (100 nM) for 24h and subjected to mechanical loading by pulsatile fluid flow (PFF). The response of osteoblasts to PFF was quantified by measuring nitric oxide, and by PCR analysis. The effect of PFF on the synthesis of 1,25(OH)2D3 was determined by subjecting osteoblasts to PFF followed by 24h post-incubation in medium with/without 25(OH)D3 (400 nM). We showed that 1,25(OH)2D3 reduced the PFF-induced NO response in primary human osteoblasts. 25(OH)D3 did not significantly alter the NO response of primary human osteoblasts to PFF, but 25(OH)D3 increased osteocalcin and RANKL mRNA levels, similar to 1,25(OH)2D3. PFF did not increase 1,25(OH)2D3 amounts in our model, even though PFF did increase CYP27B1 mRNA levels and reduced VDR mRNA levels. CYP24 mRNA levels were not affected by PFF, but were strongly increased by both 25(OH)D3 and 1,25(OH)2D3. In conclusion, 1,25(OH)2D3 may affect the response of primary human osteoblasts to mechanical stimuli, at least with respect to NO production. Mechanical stimuli may affect
Energy Technology Data Exchange (ETDEWEB)
Gardarein, J.L.; Corre, Y.; Reichle, R. [CEA Cadarache, 13 - Saint Paul lez Durance (France); Rigollet, F.; Le Niliot, Ch. [Universite de Provence (IUSTI UMR CNRS 6595), 13 - Marseille (France)
2006-07-01
In this work, a deconvolution of the temperatures measured with thermocouples fitted inside the plasma-facing components of a controlled fusion machine is performed. A 2D pulse response is used which is obtained by the thermal quadrupole method. The shape and intensity of the plasma flux deposited at the surface of the component is calculated and some experimental results are presented. (J.S.)
International Nuclear Information System (INIS)
In this work, a deconvolution of the temperatures measured with thermocouples fitted inside the plasma-facing components of a controlled fusion machine is performed. A 2D pulse response is used which is obtained by the thermal quadrupole method. The shape and intensity of the plasma flux deposited at the surface of the component is calculated and some experimental results are presented. (J.S.)
Indian Academy of Sciences (India)
Maneesh Sharma; Anant A Naik; P Raghunathan; S V Eswaran
2012-03-01
Lithographic evaluation of a `deep UV’ negative photoresist is discussed along with the synthesis of an alternating `high-ortho’ novolak resin. 2-D NMR studies (COSY, NOESY, HSQC, HMBC) on this resin are also discussed.
A combined sensor for simultaneous high resolution 2-D imaging of oxygen and trace metals fluxes
DEFF Research Database (Denmark)
Stahl, Henrik; Warnken, Kent W.; Sochaczewski, Lukasz;
2012-01-01
that the enhanced smearing and reduced response time of the O-2 signal associated with the additional DGT layer were marginal. To test sensor performance at realistic conditions, it was applied to an artificial burrow system consisting of permeable dialysis tubing flushed with oxygenated seawater. The measurements...... demonstrated localized mobilization of Ni, Cu, and Pb close to the burrow wall, where O-2 was elevated. The latter was also confirmed for Cu and Pb in natural sediments irrigated by the polychaete Hediste diversicolor. The sandwich sensor has great potential for investigating interrelations between O-2 d...
Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe
2016-04-01
In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the
Theoretical benchmarking of laser-accelerated ion fluxes by 2D-PIC simulations
Mackenroth, Felix; Marklund, Mattias
2016-01-01
There currently exists a number of different schemes for laser based ion acceleration in the literature. Some of these schemes are also partly overlapping, making a clear distinction between the schemes difficult in certain parameter regimes. Here, we provide a systematic numerical comparison between the following schemes and their analytical models: light-sail acceleration, Coulomb explosions, hole boring acceleration, and target normal sheath acceleration (TNSA). We study realistic laser parameters and various different target designs, each optimized for one of the acceleration schemes, respectively. As a means of comparing the schemes, we compute the ion current density generated at different laser powers, using two-dimensional particle-in-cell (PIC) simulations, and benchmark the particular analytical models for the corresponding schemes against the numerical results. Finally, we discuss the consequences for attaining high fluxes through the studied laser ion-acceleration schemes.
Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network.
Tu, Ching-Ting; Chan, Yu-Hsien; Chen, Yi-Chung
2016-08-01
A facial sketch synthesis system is proposed, featuring a 2D direct combined model (2DDCM)-based face-specific Markov network. In contrast to the existing facial sketch synthesis systems, the proposed scheme aims to synthesize sketches, which reproduce the unique drawing style of a particular artist, where this drawing style is learned from a data set consisting of a large number of image/sketch pairwise training samples. The synthesis system comprises three modules, namely, a global module, a local module, and an enhancement module. The global module applies a 2DDCM approach to synthesize the global facial geometry and texture of the input image. The detailed texture is then added to the synthesized sketch in a local patch-based manner using a parametric 2DDCM model and a non-parametric Markov random field (MRF) network. Notably, the MRF approach gives the synthesized results an appearance more consistent with the drawing style of the training samples, while the 2DDCM approach enables the synthesis of outcomes with a more derivative style. As a result, the similarity between the synthesized sketches and the input images is greatly improved. Finally, a post-processing operation is performed to enhance the shadowed regions of the synthesized image by adding strong lines or curves to emphasize the lighting conditions. The experimental results confirm that the synthesized facial images are in good qualitative and quantitative agreement with the input images as well as the ground-truth sketches provided by the same artist. The representing power of the proposed framework is demonstrated by synthesizing facial sketches from input images with a wide variety of facial poses, lighting conditions, and races even when such images are not included in the training data set. Moreover, the practical applicability of the proposed framework is demonstrated by means of automatic facial recognition tests. PMID:27244737
Synthesis and structure of high-quality films of copper polyphthalocyanine – 2D conductive polymer
International Nuclear Information System (INIS)
Graphical abstract: - Highlights: • 2D polymers show a big promise for science and technology. • We develop a new procedure for the direct synthesis of copper polyphthalocyanine. • We obtain reliable experimental data on the CuPPC structure. • With the support of quantum chemical calculations we describe electronic structure of CuPPC. - Abstract: Copper polyphthalocyanine (CuPPC), a 2D conjugated polymer, is a promising material for electronics and photovoltaics, but its applications were hindered by a poor processability. We propose an experimental approach, by which thin films of CuPPC, can be directly synthesized in a chemical vapor deposition (CVD) set-up at mild temperature (420 °C). High polymerization degree and high crystallinity of the films were confirmed by TEM, FTIR and UV–vis studies. From XRD and TEM electron diffraction, we conclude that the polymer has AA layer stacking with the inter-layer distance of 0.32 nm. The assignment of X-ray and TEM diffraction patterns was based on quantum-chemical calculations. Based on the latter, we also discuss electronic structure and conclude that CuPPC is rather a semi-metal than semi-conductor
The effect of temperature in flux-assisted synthesis of SnNb2O6
Noureldine, D.
2014-10-03
A flux-assisted method was used to synthesize SnNb2O6 as a visible-light-responsive metal oxide photocatalyst. The role of synthesis temperature was investigated in detail using different reaction temperatures (300, 500, 600, 800, 1000 °C). The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET). The synthesis with SnCl2 as a flux led to tin niobate particles in the platelet morphology with smooth surfaces. The synthesized crystal showed 2D anisotropic growth along the (600) plane as the flux ratio increased. The particles synthesized with a high reactant to flux ratio (1:10 or higher) exhibited improved photocatalytic activity for hydrogen evolution from an aqueous methanol solution under visible radiation (λ > 420 nm). © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
2D aperture synthesis for Lamb wave imaging using co-arrays
Ambrozinski, Lukasz; Stepinski, Tadeusz; Uhl, Tadeusz
2014-03-01
2D ultrasonic arrays in Lamb wave based SHM systems can operate in the phased array (PA) or synthetic focusing (SF) mode. In the real-time PA approach, multiple electronically delayed signals excite transmitting elements to form the desired wave-front, whereas receiving elements are used to sense scattered waves. Due to that, the PA mode requires multi channeled hardware and multiple excitations at numerous azimuths to scan the inspected region of interest. To the contrary, the SF mode, assumes a single element excitation of subsequent transmitters and off-line processing of the acquired data. In the simplest implementation of the SF technique, a single multiplexed input and output channels are required, which results in significant hardware simplification. Performance of a 2D imaging array depends on many parameters, such as, its topology, number of its transducers and their spacing in terms of wavelength as well as the type of weighting function (apodization). Moreover, it is possible to use sparse arrays, which means that not all array elements are used for transmitting and/ or receiving. In this paper the co-array concept is applied to facilitate the synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum co-array is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual elements' locations in the sub-arrays used for imaging. The coarray framework will be presented here using two different array topologies, aID uniform linear array and a cross-shaped array that will result in a square coarray. The approach will be discussed in terms of array patterns and beam patterns of the resulting imaging systems. Both, theoretical and experimental results will be given.
Directory of Open Access Journals (Sweden)
CODREAN Marius
2016-05-01
Full Text Available The purpose of this optimization is the identification of optimal parameters for processing the workpiece (the OLC45 steel bar, using inductive heating in volume. Flux 9.3.2 software, in 2D plan, has been employed in order to perform numerical simulations, while Minitab software has been used to determine optimal parameters.
In Situ Synthesis of Metal Sulfide Nanoparticles Based on 2D Metal-Organic Framework Nanosheets.
Lu, Qipeng; Zhao, Meiting; Chen, Junze; Chen, Bo; Tan, Chaoliang; Zhang, Xiao; Huang, Ying; Yang, Jian; Cao, Feifei; Yu, Yifu; Ping, Jianfeng; Zhang, Zhicheng; Wu, Xue-Jun; Zhang, Hua
2016-09-01
A facile in situ synthetic method is developed to synthesize metal sulfide nanoparticles based on 2D M-TCPP (M = Cu, Cd, or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin)) metal-organic framework nanosheets. The obtained CuS/Cu-TCPP composite nanosheet is used as the active material in photoelectrochemical cells, showing notably increased photocurrent due to the improved exciton separation and charge carrier transport.
Synthesis, Cytotoxic Activity and 2D-QSAR Study of Some Imidazoquinazoline Derivatives
Directory of Open Access Journals (Sweden)
Hanan Georgey
2014-03-01
Full Text Available A novel series of 4-substituted amino-7,8-dimethoxy-1-phenylimidazo[1,5-a]quinazolin-5(4H-one derivatives was designed, synthesized and tested for their antitumor activity against a human mammary carcinoma cell line (MCF7. Compound 5a was found to be the most active derivative. Physico-chemical parameters were also determined and revealed that most of the compounds obeyed the “rule of five” properties with good absorption percentages. 2D-QSAR studies revealed a well predictive and statistically significant and cross validated QSAR model that helps to explore some expectedly potent compounds.
Flux-assisted synthesis of SnNb2O6 for tuning photocatalytic properties
Noureldine, Dalal
2014-01-01
A flux-assisted method was used to synthesize SnNb2O6 as a visible-light-responsive metal oxide photocatalyst. The role of flux was investigated in detail using different flux to reactant molar ratios (1 : 1, 3 : 1, 6 : 1, 10 : 1, and 14 : 1) and different reaction temperatures (300, 500, and 600 °C). The obtained products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), the Brunauer-Emmett-Teller method (BET), and high resolution scanning transmission electron microscopy (HRTEM). Flux-assisted synthesis led to tin niobate particles of platelet morphology with smooth surfaces. The synthesized crystal showed a 2D anisotropic growth along the (600) plane as the flux ratio increased. The particles synthesized with a high reactant to flux ratio (1 : 10 or higher) exhibited slightly improved photocatalytic activity for hydrogen evolution from an aqueous methanol solution under visible radiation (λ > 420 nm). The photo-deposition of platinum and PbO2 was examined to gain a better understanding of electrons and hole migration pathways in these layered materials. The HR-STEM observation revealed that no preferential deposition of these nanoparticles was observed depending on the surface facets of SnNb 2O6. This journal is © the Partner Organisations 2014.
Synthesis and Structural Characterization of a New 2D Coordination Polymer [Cu(pzta)2]n
Institute of Scientific and Technical Information of China (English)
HU,Xin; LIU,Cong; WANG,Yongjiang; GUO,Jixi
2009-01-01
A new copper(Ⅱ)tetrazolate coordination polymer[Cu(pzta)2]n (1)(pzta=5-pyrazinyltetrazolate)was prepared from the hydrothermal reaction of Cu(OAc)2,·H2O with NaN3 and pyrazinecarbonitrile(pzCN)in the presence of ethanol,and characterized by elemental analysis,IR,TGA and X-ray crystallography.The X-ray diffraction analysis of 1 shows that the compound crystallizes in the monoclinic system with space group P2(1)/c and Cu(Ⅱ)ion center is six-coordinated by four different pzta ligands.The complex 1 features a 2D tetrazole coordination polymer.The thermal analysis of 1 shows that the decomposition of the complex OCCURS in two regions.
Comparison of 2-D DORT synthesis with 3-D TORT in the calculation of excore detector response
International Nuclear Information System (INIS)
The method of Dynamic Rod Worth Measurement (DRWM) requires the three dimensional mesh-wise weighting factors to the excore detector in evaluating its response. Three-dimensional mesh-wise weighting factors are used to obtain the excore detector response by multiplying them by the fission neutron density from the transient calculation due to the rod position change. These factors can be obtained from the solution of three-dimensional adjoint transport equation. DORT, two-dimensional SN transport code, synthesis method and TORT, three-dimensional SN transport code can be used for the adjoint flux. Since TORT requires very time consuming calculation, we showed if DORT synthesis method could replace TORT as a standard procedure in the DRWM. We applied the weighting factors from two methods to YGN-3 cycle-6 Bank-5. We showed that there was well agreement between two methods in the excore detector response ratios
Fan, Weiqiang; Zhu, Lin; Shi, Weidong; Chen, Fuxiao; Bai, Hongye; Song, Shuyan; Yan, Yongsheng
2013-06-01
A novel metal-organic coordination polymer [Cu(phen)(L)0.5(H2O)]n (H4L = (N,N‧-5,5‧-bis(isophthalic acid)-p-xylylenediamine, and phen = 1,10-phenanthroline) has been hydrothermally synthesized and characterized by elemental analysis, IR, TGA, and single-crystal X-ray diffraction. The crystallographic data show that the title compound crystallizes in monoclinic space group P21/n with a = 10.682(2), b = 15.682(3), c = 11.909(2) Å, β = 91.39(3)°, V = 1994.3(7) Å3, C24H17CuN3O5, Mr = 490.95, Dc = 1.635 g/cm3, F(000) = 1004, Z = 4, μ(MoKα) = 1.141 mm-1, the final R = 0.0418 and wR = 0.0983 for 3578 observed reflections (I > 2σ(I)). The structural analyses reveal that the title compound exhibits shows a 2D layer structure, which are further linked by hydrogen bonding interactions to form a three-dimensional supramolecular network. In addition, the thermal stability and electrochemical behavior of title compound has been studied. CCDC: 900413.
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
An organically templated 2-D uranyl sulfate, {(C2H8N)[(UO2)Cl(SO4)(H2O)]}n 1, has been hydrothermally synthesized . The crystal and molecular structures have been determined by X-ray crystallography method and spectral techniques. 1 belongs to mono- clinic, space group P21/c with a = 8.3545(17), b = 10.550(2), c = 12.370(3)(A), β = 102.64(3)°, V = 1063.9(4)(A)3, Mr = 464.64, Dc = 2.901 g/cm3, F(000) = 836, μ = 15.710 mm-1, Z = 4, the final R = 0.0286 and wR = 0.0685 for 10164 observed reflections with I > 2σ(I). 1 presents a two-dimensional layer-like structure constructed from infinite anionic [(UO2)Cl(H2O)(SO4)]- layers with [C2H8N]+ cations balancing the charge and a number of intermolecular hydrogen bonds (C-H…O and O-H…Cl) existing in the solid state. The fluorescence properties of 1 have also been discussed.
Synthesis, structure and near-infrared luminescence of a new 2D praseodymium(Ⅲ) coordination polymer
Institute of Scientific and Technical Information of China (English)
LIU Guangxiang; ZHOU Hong; REN Xiaoming
2011-01-01
A novel coordination polymer,[Pr2(BIPA)3(H2O)2]·2H2O (1) (H2BIPA=5-bromoisophthalic acid),was prepared by hydrothermal synthesis and characterized by IR spectroscopy,elemental analysis and single-crystal X-ray diffraction.The crystal was of monoclinic system,space group C2/c,with a=1.98037(14),b=1.44189(14),c=2.15281(18) nm,β=95.220(2)°,V=6.1218(9) nm3,C24H17Br3O16Pr2,Mr=1082.93,De=2.350 g/cm3,F(000)=4096,μ=7.136 mm-1 and Z=8.The final R 1=0.0608 and wR2=0.1371 for 5624 observed reflections ((I)＞2σ((I))).Complex 1 featured an interesting 2D layer containing {Pr2(CO2)3}n right-handed and left-handed helical chains.Furthermore,hydrogen bonds linked the adjacent 2D layers to form a 3D supramolecular framework.Moreover,the near-infrared luminescent properties of 1 were also investigated in the solid state.
Heo, Jingu; Savvides, Marios
2012-12-01
In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062
Flow boiling critical heat flux enhancement on the 2-D slice for boric acid and TSP solution
International Nuclear Information System (INIS)
The critical heat flux (CHF) on the reactor vessel external wall was measured using the small scale two-dimensional slice test section. The radius of the curvature and the channel area of the test section were 0.15 m and 0.03 mx0.03 m, respectively. The objectives are to assess the effects of additives (TSP, boric acid) and heated material (SA508) in inclination angle 90° and to investigate flow boiling CHF enhancement resulting from various working fluids of 5000 ppm tri-sodium phosphate (TSP, Na3PO4∙12H2O) solution, 4000 ppm boric acid solution and mixture solution of TSP and boric acid. Boric acid solution didn't show CHF enhancement and TSP and mixture solution showed CHF enhancement (20~34%). (author)
A coupled 2$\\times$2D Babcock-Leighton solar dynamo model. I. Surface magnetic flux evolution
Lemerle, Alexandre; Carignan-Dugas, Arnaud
2015-01-01
The need for reliable predictions of the solar activity cycle motivates the development of dynamo models incorporating a representation of surface processes sufficiently detailed to allow assimilation of magnetographic data. In this series of papers we present one such dynamo model, and document its behavior and properties. This first paper focuses on one of the model's key components, namely surface magnetic flux evolution. Using a genetic algorithm, we obtain best-fit parameters of the transport model by least-squares minimization of the differences between the associated synthetic synoptic magnetogram and real magnetographic data for activity cycle 21. Our fitting procedure also returns Monte Carlo-like error estimates. We show that the range of acceptable surface meridional flow profiles is in good agreement with Doppler measurements, even though the latter are not used in the fitting process. Using a synthetic database of bipolar magnetic region (BMR) emergences reproducing the statistical properties of ...
Directory of Open Access Journals (Sweden)
Tsung-Chien Chen
2008-01-01
Full Text Available When a gun fires, a large amount of heat flux is triggered by the propellant gas acting onthe gun barrel inner wall, leading to the rise of temperature, which will cause serious destruction.In this paper, an inverse method based on the input-estimation method including the finiteinverse heat conduction problem (IHCP element scheme to inverse estimate the unknown heatflux on the 2-D gun barrel has been presented. The use of the online accuracy to inverselyestimate the unknown heat flux on the chamber has been made using 7.62 mm gun barrel outerwall temperature measurement data. Using simulation uniform and non-uniform heat flux q(z,tcases involves a gun barrel inner wall that varies with time t and the axial z-location with convectionsituation in the outer surface. Computational results show that the proposed method exhibitsa good estimation performance and highly facilitates practical implementation.Defence Science Journal, 2008, 58(1, pp.57-76, DOI:http://dx.doi.org/10.14429/dsj.58.1623
Al-Bogami, Abdullah S.; Saleh, Tamer S.; Mekky, Ahmed E. M.; Shaaban, Mohamed R.
2016-10-01
An efficient regioselective synthesis of novel azoles containing a trifluoromethyl moiety via the 1,3-dipolar cycloaddition reaction under microwave irradiation, using fluorine-containing building blocks methodology was achieved. Furthermore, these novel azoles scaffolds have been employed as the starting material in the synthesis of new azoloazines containing a trifluoromethyl group. An unambiguous structural assignment of the obtained regioisomers was determined using the 2D HMBC NMR techniques as a valuable tool.
El-Dakdouki, Mohammad H.; Puré, Ellen; Huang, Xuefei
2013-04-01
Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be significantly enhanced through receptor mediated endocytosis. In addition, if the receptor is recycled to the cell surface, the NP cargo can be transported out of the cells, which is then taken up by neighboring cells thus enhancing solid tumor penetration. To validate our hypothesis, in the first of two articles, we report the synthesis of doxorubicin (DOX)-loaded, hyaluronan (HA) coated silica nanoparticles (SNPs) containing a highly fluorescent core to target CD44, a receptor expressed on the cancer cell surface. HA was conjugated onto amine-functionalized SNPs prepared through an oil-water microemulsion method. The immobilization of the cytotoxic drug DOX was achieved through an acid sensitive hydrazone linkage. The NPs were fully characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), zeta potential measurements, thermogravimetric analysis (TGA), UV-vis absorbance, and nuclear magnetic resonance (NMR). Initial biological evaluation experiments demonstrated that compared to ligand-free SNPs, the uptake of HA-SNPs by the CD44-expressing SKOV-3 ovarian cancer cells was significantly enhanced when evaluated in the 2D monolayer cell culture. Mechanistic studies suggested that cellular uptake of HA-SNPs was mainly through CD44 mediated endocytosis. HA-SNPs with immobilized DOX were endocytosed efficiently by the SKOV-3 cells as well. The enhanced tumor penetration and drug delivery properties of HA-SNPs will be evaluated in 3D tumor models in the subsequent paper.Nanoparticles (NPs) are being extensively studied as carriers for drug delivery, but they often have limited penetration inside tumors. We envision that by targeting an endocytic receptor on the cell surface, the uptake of NPs can be
Energy Technology Data Exchange (ETDEWEB)
Ojeda, Manuel; Li, Anwu; Nabar, Rahul P.; Nilekar, Anand U.; Mavrikakis, Manos; Iglesia, Enrique
2010-11-25
H2/D2 isotope effects on Fischer-Tropsch synthesis (FTS) rate and selectivity are examined here by combining measured values on Fe and Co at conditions leading to high C5+ yields with theoretical estimates on model Fe(110) and Co(0001) surfaces with high coverages of chemisorbed CO (CO*). Inverse isotope effects (rH/rD < 1) are observed on Co and Fe catalysts as a result of compensating thermodynamic (H2 dissociation to H*; H* addition to CO* species to form HCO*) and kinetic (H* reaction with HCO*) isotope effects. These isotopic effects and their rigorous mechanistic interpretation confirm the prevalence of H-assisted CO dissociation routes on both Fe and Co catalysts, instead of unassisted pathways that would lead to similar rates with H2 and D2 reactants. The small contributions from unassisted pathways to CO conversion rates on Fe are indeed independent of the dihydrogen isotope, as is also the case for the rates of primary reactions that form CO2 as the sole oxygen rejection route in unassisted CO dissociation paths. Isotopic effects on the selectivity to C5+ and CH4 products are small, and D2 leads to a more paraffinic product than does H2, apparently because it leads to preference for chain termination via hydrogen addition over abstraction. These results are consistent with FTS pathways limited by H-assisted CO dissociation on both Fe and Co and illustrate the importance of thermodynamic contributions to inverse isotope effects for reactions involving quasi-equilibrated H2 dissociation and the subsequent addition of H* in hydrogenation catalysis, as illustrated here by theory and experiment for the specific case of CO hydrogenation.
Directory of Open Access Journals (Sweden)
Carla Marino
2012-12-01
Full Text Available The presence of galactofuranoyl units in infectious microorganisms has prompted the study of the metabolic pathways involved in their incorporation in glycans. Although much progress has been made with respect to the biosynthesis of β-D-Galf-containing glycoconjugates, the mechanisms by which α-D-Galf units are incorporated remain unclear. Penicillium varians is a non-pathogenic fungus that produces varianose, a polysaccharide containing both α- and β-D-Galf units, which can be used as a model for biosynthetic studies on α-D-Galf incorporation. Synthetic oligosaccharide fragments related to varianose are useful as potential substrates or standards for characterization of the α-galactofuranosyl transferases. In this paper we report a straightforward procedure for the synthesis of α-D-Glcp(1→2-D-Gal (1 and the use of this compound to monitor the natural disaccharide released from varianose by mild acid degradation. The synthesis, performed by the glycosylaldonolactone approach, involved a glucosylgalactofuranose derivative, suitable for the synthesis of higher oligosaccharides with an internal D-Galf.
Production of high energy and low flux protons using 2D(3He,p)4He for space detector calibrations
Wang, Y. Q.; Burward-Hoy, J. M.; Tesmer, J. R.
2014-08-01
In this report, we want to demonstrate that besides the conventional use for elemental analysis and depth profiling by ion beam analysis (IBA), particles generated through ion-solid interactions in IBA may find other novel and important applications. Specifically, we use Rutherford backscattered and nuclear reaction produced high energy proton particles to calibrate an energetic particle subsystem (called ZEP) of the Space and Atmospheric Burst Reporting System (SABRS) at Los Alamos National Laboratory (LANL). To simulate low radiation flux in the space, we have devised an experiment that uses an ultrathin (∼51.8 nm) self-support gold foil to scatter a proton beam from a 3 MV Tandem accelerator into the ZEP subsystem. Direct backscattering from the thin gold foil produces proton particles with tunable energies of 0.2-6.0 MeV and desired counting rates of <10 kHz. To extend the proton particle energy beyond the Tandem's limit of 6 MeV, a high Q-value nuclear reaction, 2D + 3He → p + 4He + 18.352 MeV, was used. This reaction allows us to obtain as high as 25.6 MeV proton particles on our 3 MV tandem accelerator, more than 4 times as high as the accelerator's maximum proton beam energy, and has greatly extended our proton energy range for this calibration activity. Preliminary ZEP subsystem calibration results are presented.
Salt flux synthesis of single and bimetallic carbide nanowires
Leonard, Brian M.; Waetzig, Gregory R.; Clouser, Dale A.; Schmuecker, Samantha M.; Harris, Daniel P.; Stacy, John M.; Duffee, Kyle D.; Wan, Cheng
2016-07-01
Metal carbide compounds have a broad range of interesting properties and are some of the hardest and highest melting point compounds known. However, their high melting points force very high reaction temperatures and thus limit the formation of high surface area nanomaterials. To avoid the extreme synthesis temperatures commonly associated with these materials, a new salt flux technique has been employed to reduce reaction temperatures and form these materials in the nanometer regime. Additionally, the use of multiwall carbon nanotubes as a reactant further reduces the diffusion distance and provides a template for the final carbide materials. The metal carbide compounds produced through this low temperature salt flux technique maintain the nanowire morphology of the carbon nanotubes but increase in size to ˜15-20 nm diameter due to the incorporation of metal in the carbon lattice. These nano-carbides not only have nanowire like shape but also have much higher surface areas than traditionally prepared metal carbides. Finally, bimetallic carbides with composition control can be produced with this method by simply using two metal precursors in the reaction. This method provides the ability to produce nano sized metal carbide materials with size, morphology, and composition control and will allow for these compounds to be synthesized and studied in a whole new size and temperature regime.
Directory of Open Access Journals (Sweden)
G. Wohlfahrt
2015-01-01
Full Text Available Methanol is the second most abundant volatile organic compound in the troposphere and plays a significant role in atmospheric chemistry. While there is consensus about the dominant role of living plants as the major source and the reaction with OH as the major sink of methanol, global methanol budgets diverge considerably in terms of source/sink estimates reflecting uncertainties in the approaches used to model, and the empirical data used to separately constrain these terms. Here we compiled micrometeorological methanol flux data from eight different study sites and reviewed the corresponding literature in order to provide a first cross-site synthesis of the terrestrial ecosystem-scale methanol exchange and present an independent data-driven view of the land–atmosphere methanol exchange. Our study shows that the controls of plant growth on the production, and thus the methanol emission magnitude, and stomatal conductance on the hourly methanol emission variability, established at the leaf level, hold across sites at the ecosystem-level. Unequivocal evidence for bi-directional methanol exchange at the ecosystem scale is presented. Deposition, which at some sites even exceeds methanol emissions, represents an emerging feature of ecosystem-scale measurements and is likely related to environmental factors favouring the formation of surface wetness. Methanol may adsorb to or dissolve in this surface water and eventually be chemically or biologically removed from it. Management activities in agriculture and forestry are shown to increase local methanol emission by orders of magnitude; they are however neglected at present in global budgets. While contemporary net land methanol budgets are overall consistent with the grand mean of the micrometeorological methanol flux measurements, we caution that the present approach of simulating methanol emission and deposition separately is prone to opposing systematic errors and does not allow taking full
Joung Lim, Mi; Maeng, Young Jae; Fero, Arnold H.; Anderson, Stanwood L.
2016-02-01
The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV) exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries) which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP)-OPR (Optimized Power Reactor) 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND) program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C) reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor) 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Ming-Dao, E-mail: matchlessjimmy@163.com; Zhuang, Qi-Fan; Xu, Jing; Cao, Hui, E-mail: yccaoh@hotmail.com [Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center for Atmospheric Environment & Equipment Technology, School of Environmental Science and Engineering (China)
2015-12-15
The title complex, ([Co(BPPA)(5-OH-bdc)] · (H{sub 2}O)){sub n} was prepared under hydrothermal conditions based on two ligands, namely, bis(4-(pyridin-4-yl)phenyl)amine (BPPA) and 5-hydroxyisophthalic acid (5-OH-H{sub 2}bdc). 5-OH-bdc{sup 2–} anions coordinated to Co atoms to give layers in crystal. BPPA ligands coordinate to Co atoms and thread into the adjacent layers. There are hydrogen bonds between adjacent layers, giving rise to a 2D → 3D framework.
Design and synthesis of substituted pyrido[3,2-d]-1,2,3-triazines as potential Pim-1 inhibitors.
Fan, Yin-Bo; Li, Kun; Huang, Min; Cao, Yu; Li, Ying; Jin, Shu-Yu; Liu, Wen-Bing; Wen, Jia-Chen; Liu, Dan; Zhao, Lin-Xiang
2016-02-15
A novel series of substituted pyrido[3,2-d]-1,2,3-triazines were designed and synthesized as Pim-1 inhibitors through scaffold hopping. Most of the derivatives showed potent in vitro Pim-1 inhibitory activities and anti-proliferative effects toward prostate cancer cells. Among them, 6b, 6h and 6m showed the best Pim-1 inhibitory activity with IC50 values of 0.69, 0.60 and 0.80 μM, respectively. Furthermore, compounds 6b, 6i, 6j and 6m showed strong inhibitory activity to human prostate cancer LNcap and PC-3 cell lines with IC50 values at low micromolar level. Structure-activity relationship analysis revealed that appropriate substitutions at C-6 positions contributed to the kinase inhibition and antiproliferative effects. Moreover, western blot assay suggested that 6j could decrease the levels of p-BAD and p-4E-BP1 in a dose-dependent manner in PC-3 cells. Docking studies showed that 3-N of the scaffold formed a hydrogen bond with Lys67, aromatic 4-aniline formed a key π-π stack with Phe49. Taken together, this study might provide the first sight for developing the pyrido[3,2-d]-1,2,3-triazine scaffold as novel Pim-1 inhibitors.
Institute of Scientific and Technical Information of China (English)
HUANG Xi-He; SHENG Tian-Lu; XIANG Sheng-Chang; FU Rui-Biao; HU Sheng-Min; LI Ya-Min; WU Xin-Tao
2007-01-01
The hydrothermal reaction of 1,2-dicyanobenzene with NaN3 in the presence of Cd(NO3)2 affords a novel 2D cadmium tetrazolyl-benzoate, {Cd(tzbz)(H2O)}n (H2tzbz is 2-(5-tetrazolyl)-benzoate). The tzbz ligand is generated in situ through the [2+3] Sharpless cycloaddition reaction and hydrolyzation. Its crystal structure was determined by single-crystal X-ray diffraction method. The crystal crystallizes in the orthorhombic system, space group Pbca with a = 9.6659(19), b = 7.6366(15), c = 25.964(5)(A), V= 1916.5(7) (A)3, Z= 8, Mr = 318.57, Dc =2.208 g/cm3, F(000) = 1232 and μ = 2.276 mm-1. The Cd(Ⅱ) atom is coordinated by four tzbz ligands and one water molecule to form a severely distorted pentangle bipyramid. While each tzbz ligand connects to four Cd(Ⅱl) atoms in aμ4-ηl, η2, η1, ηl, η1 coordination mode to construct a 2D architecture of the title complex. Additionally, the title complex exhibits strong fluorescence at room temperature in the solid state.
Institute of Scientific and Technical Information of China (English)
LU Yan-Chun; LI Xiu-Rong; ZHANG Zhi-Hui; DU Miao
2007-01-01
A novel Cd(Ⅱ) coordination polymer,{[Cd3(tzo)2(suc)(H2O)6]·(suc)}n (Htzo = 1,2,4-triazole,H2suc = succinic acid),has been synthesized from the reaction of aqueous solution of niques,and structurally characterized by X-ray analysis and spectral techniques.To the best of our knowledge,among the few documented triazole-cadmium coordination polymers,this complex presents a novel configuration.The deprotonated 1,2,4-triazole is in tridentate and succinate in bis-chelate modes to link the Cd(Ⅱ) centers,generating a 2-D grid-like network topology.Thermogravimetric analysis results show that the framework architecture is a stable porous material.The fluorescent emission has also been discussed.
Synthesis of 1D, 2D, and 3D ZnO Polycrystalline Nanostructures Using the Sol-Gel Method
Directory of Open Access Journals (Sweden)
Yung-Kuan Tseng
2012-01-01
Full Text Available This study employed various polyol solvents to synthesize zinc oxide polycrystalline nanostructures in the form of fibers (1D, rhombic flakes (2D, and spheres (3D. The synthetic process primarily involved the use of zinc acetate dihydrate in polyol solutions, which were used to derive precursors of zinc alkoxides. Following hydrolysis at 160°C, the zinc alkoxide particles self-assembled into polycrystalline nanostructures with different morphologies. Following calcination at 500°C for 1 h, polycrystalline ZnO with good crystallinity was obtained. FE-SEM explored variations in surface morphology; XRD was used to analyze the crystalline structures and crystallinity of the products, which were confirmed as ZnO wurtzite structures. FE-TEM verified that the ZnO nanostructures were polycrystalline. Furthermore, we employed TGA/DSC to observe the phase transition. According to the results of property analyses, we proposed models of the relevant formation mechanisms. Finally, various ZnO structures were applied in the degradation of methylene blue to compare their photocatalytic efficiency.
Synthesis and Crystal Structure of a New 2D Honeycomb-like Cadmium(Ⅱ) Complex with Tripodal Ligand
Institute of Scientific and Technical Information of China (English)
SUN,Wei-Yin(孙为银); FAN,Jian(樊健); OKAMURA,Taka-aki(罔村高明); TANG,Wen-Xia(唐雯霞); UEYAMA,Norikazu(上山憲一)
2002-01-01
Anew cadmium(Ⅱ) coordination polymer, [Cd(TITMB)2]-(SO4) @ 21H2O, where TITMB = 1, 3, 5-tris (imidazol-1-yl-methyl)-2,4,6-trimethylbenzene, was obtained by self-assembly of tripodal ligand TITMB with CdSO4@2.7H2O in acetonitrile,and characterized by X-ray crystallography. The crystal data belongs to monoclinic space group Cc with cell parameters a =1.16891(4) nm, b =2.06671(6) nm, c =2.48185(7) nm, β=97.8560(10)°, R = 0.0487, wR = 0.1211. The results of structure analysis indicate that each TITMB ligand coordinates three metal atoms and in turn each Cd(Ⅱ) atom with octahedral coordination geometry connects six nitrogen atoms of imidazole group from six different TITMB ligands to produce a 2D honeycomb network structure. There are a lot of water molecules linked by hydrogen bonds and occupied the channels formed intra- and inter-sheets.
Synthesis and Crystal Structure of a Novel 2D Coordination Polymer [Cu3(mal)2(di-2-pyridlyktone)2
Institute of Scientific and Technical Information of China (English)
ZHANG Mei-Li; WU Ya-Pan; WANG Ji-Jiang; REN Yi-Xia; CHEN Xiao-Li
2011-01-01
A novel coordination polymer of CuⅡ with flexible ligands, namely, [Cu3(mal)2(di2-pyridlyktone)2] (1, H2mal = maleie acid), was synthesized and characterized by single-crystal X-ray diffraction, thermogravimetric analyses, elemental analysis and IR spectroscopy. The structure indicates that the complex crystallizes in monoclinic, space group P21/c with a = 10.268(2), b =17.737(3), c = 8.038(1) (A), β = 98.275(2)°, V = 1448.6(4) (A)3, Z = 2, Dc = 1.883 Mg·m-3, μ = 2.260 mm-1, F(000) = 826, and the final R = 0.0321 and wR = 0.0820. In 1, three CuⅡ centers (Cu(1),Cu(2), Cu(1A)) are bridged by two uncommonμ3-bridging H2mal ligands, furnishing a centrosymmetric trimetallic unit. Via further Cu-Ocoo coordination interactions, extention of these trimetallic units in two directions gives rise to an infinite corrugated 2D layer. In addition, thermal stability and electrochemistry of 1 were studied.
Directory of Open Access Journals (Sweden)
Lim Mi Joung
2016-01-01
Full Text Available The 2D/1D synthesis methodology has been used to calculate the fast neutron (E > 1.0 MeV exposure to the beltline region of the reactor pressure vessel. This method uses the DORT 3.1 discrete ordinates code and the BUGLE-96 cross-section library based on ENDF/B-VI. RAPTOR-M3G (RApid Parallel Transport Of Radiation-Multiple 3D Geometries which performs full 3D calculations was developed and is based on domain decomposition algorithms, where the spatial and angular domains are allocated and processed on multi-processor computer architecture. As compared to traditional single-processor applications, this approach reduces the computational load as well as the memory requirement per processor. Both methods are applied to surveillance test results for the Korea Standard Nuclear Plant (KSNP-OPR (Optimized Power Reactor 1000 MW. The objective of this paper is to compare the results of the KSNP surveillance program between 2D/1D synthesis and RAPTOR-M3G. Each operating KSNP has a reactor vessel surveillance program consisting of six surveillance capsules located between the core and the reactor vessel in the downcomer region near the reactor vessel wall. In addition to the In-Vessel surveillance program, an Ex-Vessel Neutron Dosimetry (EVND program has been implemented. In order to estimate surveillance test results, cycle-specific forward transport calculations were performed by 2D/1D synthesis and by RAPTOR-M3G. The ratio between measured and calculated (M/C reaction rates will be discussed. The current plan is to install an EVND system in all of the Korea PWRs including the new reactor type, APR (Advanced Power Reactor 1400 MW. This work will play an important role in establishing a KSNP-specific database of surveillance test results and will employ RAPTOR-M3G for surveillance dosimetry location as well as positions in the KSNP reactor vessel.
Mak, Kendrew K. W.
2004-01-01
NMR spectroscopy is presented. It is seen that the experiment regarding the synthesis and resolution of 1,1'-Bi-2-naphtol presents a good experiment for teaching organic synthesis and NMR spectroscopy and provides a strategy for obtaining enantiopure compounds from achiral starting materials.
Ekama, G A; Marais, P
2004-02-01
The applicability of the one-dimensional idealized flux theory (1DFT) for the design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated with the two-dimensional computational fluid dynamics model SettlerCAD using as a basis 35 full-scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25-4.1m side water depth (SWD), with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the Watts et al. (Water Res. 30(9)(1996)2112) SST, with doubled SWDs and the Darvill new (4.1m) and old (2.5m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also performed. While the design of the internal features of the SST, such as baffling, has a marked influence on the effluent SS concentration while the SST is underloaded, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST. Until more information is obtained, it would appear from the simulations that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais (Water Pollut. Control 85(1)(1986)101) remains a reasonable value to apply in the design of full-scale SSTs-for deep SSTs (4m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, this be avoided and (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the
Energy Technology Data Exchange (ETDEWEB)
Dagle, Robert A.; Lebarbier, Vanessa MC; Lizarazo Adarme, Jair A.; King, David L.; Zhu, Yunhua; Gray, Michel J.; Jones, Susanne B.; Biddy, Mary J.; Hallen, Richard T.; Wang, Yong; White, James F.; Holladay, Johnathan E.; Palo, Daniel R.
2013-11-26
The objective of the work was to enhance price-competitive, synthesis gas (syngas)-based production of transportation fuels that are directly compatible with the existing vehicle fleet (i.e., vehicles fueled by gasoline, diesel, jet fuel, etc.). To accomplish this, modifications to the traditional methanol-to-gasoline (MTG) process were investigated. In this study, we investigated direct conversion of syngas to distillates using methanol and dimethyl ether intermediates. For this application, a Pd/ZnO/Al2O3 (PdZnAl) catalyst previously developed for methanol steam reforming was evaluated. The PdZnAl catalyst was shown to be far superior to a conventional copper-based methanol catalyst when operated at relatively high temperatures (i.e., >300°C), which is necessary for MTG-type applications. Catalytic performance was evaluated through parametric studies. Process conditions such as temperature, pressure, gas-hour-space velocity, and syngas feed ratio (i.e., hydrogen:carbon monoxide) were investigated. PdZnAl catalyst formulation also was optimized to maximize conversion and selectivity to methanol and dimethyl ether while suppressing methane formation. Thus, a PdZn/Al2O3 catalyst optimized for methanol and dimethyl ether formation was developed through combined catalytic material and process parameter exploration. However, even after compositional optimization, a significant amount of undesirable carbon dioxide was produced (formed via the water-gas-shift reaction), and some degree of methane formation could not be completely avoided. Pd/ZnO/Al2O3 used in combination with ZSM-5 was investigated for direct syngas-to-distillates conversion. High conversion was achieved as thermodynamic constraints are alleviated when methanol and dimethyl are intermediates for hydrocarbon formation. When methanol and/or dimethyl ether are products formed separately, equilibrium restrictions occur. Thermodynamic relaxation also enables the use of lower operating pressures than what
Bhattacharjee, Archita; Begum, Shamima; Neog, Kashmiri; Ahmaruzzaman, M
2016-06-01
This article reports for the first time a facile, green synthesis of 2D CuO nanoleaves (NLs) using the amino acid, namely aspartic acid, and NaOH by a microwave heating method. The amino acid acts as a complexing/capping agent in the synthesis of CuO NLs. This method resulted in the formation of self-assembled 2D CuO NLs with an average length and width of ~300-400 and ~50-82 nm, respectively. The as-synthesized 2D CuO NLs were built up from the primary CuO nanoparticles by oriented attachment growth mechanism. The CuO NLs were characterized by an X-ray diffraction (XRD) method, transmission electron microscopy (TEM), selected-area electron diffraction (SAED) pattern, and Fourier transform infrared spectroscopy (FT-IR). The optical properties were investigated using UV-visible spectroscopy. For the first time, rose bengal and eosin Y dyes were degraded photochemically by solar irradiation using CuO NLs as a photocatalyst. The synthesized CuO NLs act as an efficient photocatalyst in the degradation of rose bengal and eosin Y dye under direct sunlight. The degradation of both the dyes, namely rose bengal and eosin Y, took place within 120 and 45 min, respectively, using CuO NLs as a photocatalyst, whereas commercial CuO, SnO2 quantum dots (QDs), and commercial SnO2 took more than 120 and 45 min for the degradation of rose bengal and eosin Y, respectively. The synthesized CuO NLs showed a superior photocatalytic activity as compared to that of commercial CuO, SnO2 QDs, and commercial SnO2. The reusability of the CuO NLs as a photocatalyst in the degradation of dyes was investigated, and it was evident that the catalytic efficiency decreases to a small extent (5-6 %) after the fifth cycle of operation. PMID:26939688
Zhang, Shuang; Zhao, Xiaosheng; Li, Bo; Bai, Chiyao; Li, Yang; Wang, Lei; Wen, Rui; Zhang, Meicheng; Ma, Lijian; Li, Shoujian
2016-08-15
So far, only five primary elements (C, H, O, N and B) and two types of spatial configuration (C2-C4, C6 and Td) are reported to build the monomers for synthesis of covalent organic frameworks (COFs), which have partially limited the route selection for accessing COFs with new topological structure and novel properties. Here, we reported the design and synthesis of a new "stereoscopic" 2D super-microporous phosphazene-based covalent organic framework (MPCOF) by using hexachorocyclotriphosphazene (a P-containing monomer in a C3-like spatial configuration) and p-phenylenediamine (a linker). The as-synthesized MPCOF shows high crystallinity, relatively high heat and acid stability and distinctive super-microporous structure with narrow pore-size distributions ranging from 1.0-2.1nm. The results of batch sorption experiments with a multi-ion solution containing 12 co-existing cations show that in the pH range of 1-2.5, MPCOF exhibits excellent separation efficiency for uranium with adsorption capacity more than 71mg/g and selectivity up to record-breaking 92%, and furthermore, an unreported sorption capacity (>50mg/g) and selectivity (>60%) were obtained under strong acidic condition (1M HNO3). Studies on sorption mechanism indicate that the uranium separation by MPCOF in acidic solution is realized mainly through both intra-particle diffusion and size-sieving effect. PMID:27107239
Zhang, Shuang; Zhao, Xiaosheng; Li, Bo; Bai, Chiyao; Li, Yang; Wang, Lei; Wen, Rui; Zhang, Meicheng; Ma, Lijian; Li, Shoujian
2016-08-15
So far, only five primary elements (C, H, O, N and B) and two types of spatial configuration (C2-C4, C6 and Td) are reported to build the monomers for synthesis of covalent organic frameworks (COFs), which have partially limited the route selection for accessing COFs with new topological structure and novel properties. Here, we reported the design and synthesis of a new "stereoscopic" 2D super-microporous phosphazene-based covalent organic framework (MPCOF) by using hexachorocyclotriphosphazene (a P-containing monomer in a C3-like spatial configuration) and p-phenylenediamine (a linker). The as-synthesized MPCOF shows high crystallinity, relatively high heat and acid stability and distinctive super-microporous structure with narrow pore-size distributions ranging from 1.0-2.1nm. The results of batch sorption experiments with a multi-ion solution containing 12 co-existing cations show that in the pH range of 1-2.5, MPCOF exhibits excellent separation efficiency for uranium with adsorption capacity more than 71mg/g and selectivity up to record-breaking 92%, and furthermore, an unreported sorption capacity (>50mg/g) and selectivity (>60%) were obtained under strong acidic condition (1M HNO3). Studies on sorption mechanism indicate that the uranium separation by MPCOF in acidic solution is realized mainly through both intra-particle diffusion and size-sieving effect.
Zhou, Jingwen; Qin, Jian; Zhang, Xiang; Shi, Chunsheng; Liu, Enzuo; Li, Jiajun; Zhao, Naiqin; He, Chunnian
2015-04-28
A facile and scalable 2D spatial confinement strategy is developed for in situ synthesizing highly crystalline MoS2 nanosheets with few layers (≤5 layers) anchored on 3D porous carbon nanosheet networks (3D FL-MoS2@PCNNs) as lithium-ion battery anode. During the synthesis, 3D self-assembly of cubic NaCl particles is adopted to not only serve as a template to direct the growth of 3D porous carbon nanosheet networks, but also create a 2D-confined space to achieve the construction of few-layer MoS2 nanosheets robustly lain on the surface of carbon nanosheet walls. In the resulting 3D architecture, the intimate contact between the surfaces of MoS2 and carbon nanosheets can effectively avoid the aggregation and restacking of MoS2 as well as remarkably enhance the structural integrity of the electrode, while the conductive matrix of 3D porous carbon nanosheet networks can ensure fast transport of both electrons and ions in the whole electrode. As a result, this unique 3D architecture manifests an outstanding long-life cycling capability at high rates, namely, a specific capacity as large as 709 mAh g(-1) is delivered at 2 A g(-1) and maintains ∼95.2% even after 520 deep charge/discharge cycles. Apart from promising lithium-ion battery anode, this 3D FL-MoS2@PCNN composite also has immense potential for applications in other areas such as supercapacitor, catalysis, and sensors.
Sennu, Palanichamy; Kim, Hyo Sang; An, Jae Youn; Aravindan, Vanchiappan; Lee, Yun-Sung
2015-08-01
Mesoporous Co3O4 nanosheets (Co3 O4 -NS) and nitrogen-doped reduced graphene oxide (N-rGO) are synthesized by a facile hydrothermal approach, and the N-rGO/Co3O4 -NS composite is formulated through an infiltration procedure. Eventually, the obtained composites are subjected to various characterization techniques, such as XRD, Raman spectroscopy, surface area analysis, X-ray photoelectron spectroscopy (XPS), and TEM. The lithium-storage properties of N-rGO/Co3O4 -NS composites are evaluated in a half-cell assembly to ascertain their suitability as a negative electrode for lithium-ion battery applications. The 2D/2D nanostructured mesoporous N-rGO/Co3O4 -NS composite delivered a reversible capacity of about 1305 and 1501 mAh g(-1) at a current density of 80 mA g(-1) for the 1st and 50th cycles, respectively. Furthermore, excellent cyclability, rate capability, and capacity retention characteristics are noted for the N-rGO/Co3O4 -NS composite. This improved performance is mainly related to the existence of mesoporosity and a sheet-like 2D hierarchical morphology, which translates into extra space for lithium storage and a reduced electron pathway. Also, the presence of N-rGO and carbon shells in Co3O4 -NS should not be excluded from such exceptional performance, which serves as a reliable conductive channel for electrons and act as synergistically to accommodate volume expansion upon redox reactions. Ex-situ TEM, impedance spectroscopy, and XPS, are also conducted to corroborate the significance of the 2D morphology towards sustained lithium storage.
Synthesis of tailored 2D SiC f/SiC ceramic matrix composites with BN/C interphase through ICVI
Udayakumar, A.; Raole, P. M.; Balasubramanian, M.
2011-10-01
Synthesis of 2D SiC f /SiC composites for applications in fusion reactors is a challenging task due to the stringent specification requirements on various mechanical and thermo-mechanical properties, chemical compatibility (with Pb-Li), oxidation resistance and irradiation resistance. Three types of SiC f/SiC composites with C interface and BN interface, with and without intermediate heat treatment are prepared through isothermal and isobaric chemical vapor infiltration process. Dense SiC seal coat applied to the composites has improved their oxidation resistance. The tensile, flexural and fracture toughness values of composite with BN interface were found to be improved by stabilizing the BN interface through thermal treatment. The electrical and thermal conductivity values obtained for composites with C interface are in the range of 10-29 S/m and 2.5-3.25 W/mK for the temperature range 500-900 °C as required for fusion reactor applications.
Institute of Scientific and Technical Information of China (English)
纪凤珠; 孙世宇; 王长龙; 王瑾; 左宪章
2011-01-01
漏磁检测技术被广泛应用于铁磁材料的无损评估中,用漏磁信号描述缺陷的几何特征一直是漏磁检测的难点.提出应用最小二乘支持向量机对缺陷轮廓重构的方法,并利用粒子群算法来优化LS-SVM的参数及核函数参数.支持向量机输入是漏磁信号,输出是缺陷轮廓数据,建立了由缺陷的漏磁信号到缺陷二维轮廓的映射关系.训练样本由试验数据与仿真数据组成,测试样本为人工裂纹缺陷.该方法实现了人工裂纹缺陷的二维轮廓的重构,并与BP神经网络、GA-LS-SVM两种方法进行了比较.试验结果表明,该方法具有速度快、精度高和很好的泛化能力,为漏磁检测定量化提供了一种可行的方法.%Nondestructive evaluation of ferromagnetic material is most commonly performed by magnetic flux leakage( MFL) techniques, and the key element is to describe the characters of defects from MFL inspection signals. A novel method for the reconstitution of 2-D profiles is presented based on least squares support vector machines (LS-SVM) technique, and particle swarm optimization(PSO) is adopted to optimize the model parameter of I^S-SVM. The input data sets of SVM is MFL signals and output data sets is 2-D profiles parameter, the mapping relationship from MFL signals to 2-D profiles of defects is established. The least squares method is introduced into network learning, the training data sets are composed of experiment data sets and simulation data sets, the testing data sets are artificial crack defects. The reconstitution of 2-D profiles of artificial crack defects in the magnetic flux leakage testing was implemented by this algorithm. Comparing with the reconstitution results of BP network and GA-LS-SVM, the results show that LS-SVM possesses quick speed, high accuracy and very good generalization ability , and it is a good way for the quantization of the MFL testing.
Bulk amorphous metallic alloys: Synthesis by fluxing techniques and properties
Energy Technology Data Exchange (ETDEWEB)
He, Yi; Shen, Tongde; Schwarz, R.B.
1997-05-01
Bulk amorphous alloys having dimensions of at least 1 cm diameter have been prepared in the Pd-Ni-P, Pd-Cu-P, Pd-Cu-Ni-P, and Pd-Ni-Fe-P systems using a fluxing and water quenching technique. The compositions for bulk glass formation have been determined in these systems. For these bulk metallic glasses, the difference between the crystallization temperature T{sub x}, and the glass transition temperature T{sub g}, {Delta}T = T{sub x} - T{sub g}, ranges from 60 to 1 10 K. These large values of {Delta}T open the possibility for the fabrication of amorphous near net-shape components using techniques such as injection molding. The thermal, elastic, and magnetic properties of these alloys have been studied, and we have found that bulk amorphous Pd{sub 40}Ni{sub 22.5}Fe{sub 17.5}P{sub 20} has spin glass behavior for temperatures below 30 K. 65 refs., 14 figs., 3 tabs.
SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations
Energy Technology Data Exchange (ETDEWEB)
Adams, C. H.
1976-07-01
This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.
Loidreau, Yvonnick; Deau, Emmanuel; Marchand, Pascal; Nourrisson, Marie-Renée; Logé, Cédric; Coadou, Gaël; Loaëc, Nadège; Meijer, Laurent; Besson, Thierry
2015-03-01
This paper reports the design and synthesis of a novel series of 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines via microwave-assisted multi-step synthesis. A common precursor of the whole series, 3-amino-5-bromothieno[2,3-b]pyridine-2-carbonitrile, was rapidly synthesized in one step from commercially-available 5-bromo-2-chloronicotinonitrile. Formylation with DMF-DMA led to (E)-N'-(5-bromo-2-cyanothieno[2,3-b]pyridin-3-yl)-N,N-dimethylformimidamide (4) which was conveniently functionalized at position 8 by palladium-catalyzed Suzuki-Miyaura cross-coupling to introduce a heteroaromatic ring. High-temperature formamide-mediated cyclization of the cyanoamidine intermediate gave seventeen 8-arylpyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines. The inhibitory potency of the final products was evaluated against five protein kinases (CDK5/p25, CK1δ/ε, GSK3α/β, DYRK1A and CLK1) and revealed that 8-(2,4-dichlorophenyl)pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine 1g specifically inhibits CK1δ/ε and CLK1 (220 and 88 nM, respectively) while its 7-(2,4-dichlorophenyl)pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine isomer 10 showed no activity on the panel of tested kinases. Molecular modelling of 10 and 1g in the ATP binding sites of CK1δ/ε and CLK1 showed that functionalization at position 7 of pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amines is likely to induce a steric clash on the CK1δ/ε P-loop and thus a complete loss of inhibitory activity. PMID:25549552
Pawar, Sunayna S; Koorbanally, Neil A
2014-06-01
A series of novel pyranochromene chalcones and corresponding flavanones were synthesized. This is the first report on the confirmation of the absolute configuration of chromene-based flavanones using X-ray crystallography. These compounds were characterized by 2D NMR spectroscopy, and their assignments are reported herein. The 3D structure of the chalcone 3b and flavanone 4g was determined by X-ray crystallography, and the structure of the flavanone was confirmed to be in the S configuration at C-2.
Taltavull, Joan; Serrat, Jordi; Gràcia, Jordi; Gavaldà, Amadeu; Córdoba, Mònica; Calama, Elena; Montero, José Luis; Andrés, Míriam; Miralpeix, Montserrat; Vilella, Dolors; Hernández, Begoña; Beleta, Jorge; Ryder, Hamish; Pagès, Lluís
2011-10-01
A series of pyrido[3',2':4,5]furo[3,2-d]pyrimidines (PFP) were synthesized and tested for phosphodiesterase type 4 (PDE4) inhibitory activity, with the potential to treat asthma and chronic obstructive pulmonary disease (COPD). Structure-activity relationships within this series, leading to an increase of potency on the enzyme, is presented. Both gem-dimethylcyclohexyl moieties fused to the pyridine ring and the substitution at the 5 position of the PFP scaffold, proved to be key elements in order to get a high affinity in the enzyme.
Directory of Open Access Journals (Sweden)
K. H. Patel
2006-01-01
Full Text Available 2-Amino-6-(2-naphthalenylthiazolo[3,2-d]thiadiazole [1] was prepared by treatment of KCNS and Br2 on 2-Amino-4-(2-naphthalenyl thiazole. This amine on facile condensation with aromatic aldehydes afford Schiff Base/anils/azomethines(2a-h. These anils on cyclocondensation reaction with chloro acetyl chloride and thio glycolic acid (i.e. mercapto acetic acid afford 2-azetidinones and 4-thiazolidinones respectively. The prepared compounds have been screened on some stains of fungai.
Energy Technology Data Exchange (ETDEWEB)
Li, Jiaming [Qinzhou Univ., Qinzhou (China)
2014-04-15
A 2D grid-like (4, 4)-connected topology coordination polymer, [Co(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n}, where HBTA = 2-(1H-benzotriazol-1-yl)acetic acid, has been synthesized by hydrothermal method and characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and surface photovoltage spectroscopy (SPS). X-ray diffraction analyses indicated that displays octahedral metal centers with secondary building units (SBUs) [Co(BTA){sub 2}(H{sub 2}O){sub 2}] bridged by the BTA. ligands. In the crystal, the 2D supramolecular architecture is further supported by O-H···O, O-H···N, C-H···O hydrogen bonds and π··π stacking interactions. The SPS of polymer 1 indicates that there are positive response bands in the range of 300.600 nm showing photo-electric conversion properties. There are good relationships between SPS and UV-Vis spectra.
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
A novel 2-D sheet inorganic-organic hybrid cadmium polymer, [CdBr2(bpdo)]n (bpdo = N,N'-O,O-4,4'-bipyridine) has been hydrothermally synthesized and characterized by elemental analysis, IR and single-crystal X-ray diffraction. The crystal crystallizes in monoclinic, space group C2/c, with a = 16.336(3), b = 3.9904(5), c = 18.479(3) (A), β = 91.640(6)°, Mr = 460.40, V = 1204.1(3) (A)3, Z = 4, Dc = 2.540 g/cm3, μ = 8.439 mm-1, F(000) = 864, R = 0.0314 and wR = 0.0733 for 1069 observed reflections (I＞2σ(I)). X-ray diffraction reveals that the title compound consists of the 2-D inorganic-organic hybrid sheet constructed from [CdBr2]n chains and bpdo bridges in the packing motif of …ABAB…. The title compound exhibits intense blue photoluminescence in the solid state at room temperature.
International Nuclear Information System (INIS)
In this work the result of the synthesis of the 1-phenyl- 3-methyl-2-pyrazoline-5-hydroxy-4-butoxicarbonilene (Pir-C4) is presented and the products are characterized, using the microanalysis, the infrared spectroscopy, the spectroscopy NMR of H1 and C13 and the NMR in two dimensions (COSY and HMBC) in order to determine their structures. In addition, the ligand potential capacity of these products are studied to produce coordination compounds with the uranyl (UO22+). (author)
International Nuclear Information System (INIS)
Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the High Flux Beam Reactor (HFBR) Underground Utilities removal Phase 2; the D/F Waste Line removal at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Survey Group (BSG) has completed removal and performed the final status survey (FSS) of the D/F Waste Line that provided the conduit for pumping waste from Building 750 to Building 801. Sample results have been submitted as required to demonstrate that the cleanup goals of 15 mrem/yr above background to a resident in 50 years have been met. Four rounds of sampling, from pre-excavation to final status survey (FSS), were performed as specified in the Field Sampling Plan (FSP) (BNL 2010a). It is the policy of the US Departmental of Energy (DOE) to perform independent verifications of decontamination and decomissioning activities conducted at DOE facilities. ORISE has been designated as the organization responsible for this task at the HFBR. ORISE together with DOE determined that a Type A verification of the D/F Waste Line was appropriate based on its method of construction and upon the minimal potential for residual radioactivity in the area. The removal of underground utilities is being performed in three stages in the process to decommission the HFBR facility and support structures. Phase 2 of this project included the grouting and removal of 1100 feet of 2-inch pipe and 640 feet of 4-inch pipe that served as the D/F Waste Line. Based on the pre-excavation sample results of the soil overburden, the potential for contamination of the soil surrounding the pipe is minimal (BNL 2010a). ORISE reviewed the BNL FSP and identified comments for consideration (ORISE 2010). BNL prepared a revised FSP that addressed each ORISE comment adequately (BNL 2010a). ORISE referred to the revised Phase 2 D/F Waste Line removal FSP FSS data to conduct the Type A verification and determine whether the intent odf
Institute of Scientific and Technical Information of China (English)
Wu Fu Zhu; Xin Zhai; Sai Li; Yun Yun Cao; Ping Gong; Ya Jing Liu
2012-01-01
A series of 2,6-disubstituted-4-morpholinothieno[3,2-d]pyrimidine derivatives were synthesized and their cytotoxic activity against H460,HT-29,MDA-MB-231,U87MG and H1975 cancer cell lines were evaluated in vitro.Most of the target compounds exhibited moderate to excellent activity to the tested cell lines.The most promising compound 23 (0.84 μmol/L,0.23μmol/L,2.52 μmol/L,1.80 μmol/L) was 1.0,2.9,29.3 and 4.3 times more active than GDC-0941 (0.87 μmol/L,0.66 μmol/L,73.8 μmol/L,7.77 μmol/L) against H460,HT-29,MDA-MB-231 and U87MG cell lines,respectively.
Chen, Chuanmeng; Feng, Zhihong; Feng, Yiyu; Yue, Yuchen; Qin, Chengqun; Zhang, Daihua; Feng, Wei
2016-07-27
The large-scale synthesis of atomically thin, layered MoS2/graphene heterostructures is of great interest in optoelectronic devices because of their unique properties. Herein, we present a scalable synthesis method to prepare centimeter-scale, continuous, and uniform films of bilayer MoS2 using low-pressure chemical vapor deposition. This growth process was utilized to assemble a heterostructure by growing large-scale uniform films of bilayer MoS2 on graphene (G-MoS2/graphene). Atomic force microscopy, Raman spectra, and transmission electron microscopy characterization demonstrated that the large-scale bilayer MoS2 film on graphene exhibited good thickness uniformity and a polycrystalline nature. A centimeter-scale phototransistor prepared using the G-MoS2/graphene heterostructure exhibited a high responsivity of 32 mA/W with good cycling stability; this value is 1 order of magnitude higher than that of transferred MoS2 on graphene (2.5 mA/W). This feature results from efficient charge transfer at the interface enabled by intimate contact between the grown bilayer MoS2 (G-MoS2) and graphene. The ability to integrate multilayer materials into atomically thin heterostructures paves the way for fabricating multifunctional devices by controlling their layer structure. PMID:27381011
Chen, Chuanmeng; Feng, Zhihong; Feng, Yiyu; Yue, Yuchen; Qin, Chengqun; Zhang, Daihua; Feng, Wei
2016-07-27
The large-scale synthesis of atomically thin, layered MoS2/graphene heterostructures is of great interest in optoelectronic devices because of their unique properties. Herein, we present a scalable synthesis method to prepare centimeter-scale, continuous, and uniform films of bilayer MoS2 using low-pressure chemical vapor deposition. This growth process was utilized to assemble a heterostructure by growing large-scale uniform films of bilayer MoS2 on graphene (G-MoS2/graphene). Atomic force microscopy, Raman spectra, and transmission electron microscopy characterization demonstrated that the large-scale bilayer MoS2 film on graphene exhibited good thickness uniformity and a polycrystalline nature. A centimeter-scale phototransistor prepared using the G-MoS2/graphene heterostructure exhibited a high responsivity of 32 mA/W with good cycling stability; this value is 1 order of magnitude higher than that of transferred MoS2 on graphene (2.5 mA/W). This feature results from efficient charge transfer at the interface enabled by intimate contact between the grown bilayer MoS2 (G-MoS2) and graphene. The ability to integrate multilayer materials into atomically thin heterostructures paves the way for fabricating multifunctional devices by controlling their layer structure.
Institute of Scientific and Technical Information of China (English)
AZAM Faizul; SINGH Satendra; KHOKHRA Sukhbir Lal; PRAKASH Om
2007-01-01
Objective:A series of 2-benzylideneaminonaphthothiazoles were designed and synthesized incorporating the lipophilic naphthalene ring to render them more capable of penetrating various biomembranes.Methods:Schiff bases were synthesized by the reaction of naphtha[1,2-d]thiazol-2-amine with various substituted aromatic aldehydes.2-(2'-Hydroxy)benzylideneaminonaphthothiazole was converted to its Co(Ⅱ),Ni(Ⅱ) and Cu(Ⅱ) metal complexes upon treatment with metal salts in ethanol.All the compounds were evaluated for their antibacterial activities by paper disc diffusion method with Gram positive Staphylococcus aureus and Staphylococcus epidermidis and Gram negative Escherichia coli and Pseudomonas aeruginosa bacteria.The minimum inhibitory concentrations of all the Schiff bases and metal complexes were determined by agar streak dilution method.Results:All the compounds moderately inhibited the growth of Gram positive and Gram negative bacteria.In the present study among all Schiff bases 2-(2'-hydroxy)benzylideneaminonaphthothiazole showed maximum inhibitory activity and among metal complexes Cu(Ⅱ) metal complex was found to be most potent.Conclusion:The results obtained validate the hypothesis that Schiff bases having substitution with halogens,hydroxyl group and nitro group at phenyl ring are required for the antibacterial activity while methoxy group at different positions in the aromatic ring has minimal role in the inhibitory activity.The results also indicated that the metal complexes are better antibacterial agents as compared to the Schiff bases.
Kang, Dongwei; Fang, Zengjun; Li, Zhenyu; Huang, Boshi; Zhang, Heng; Lu, Xueyi; Xu, Haoran; Zhou, Zhongxia; Ding, Xiao; Daelemans, Dirk; De Clercq, Erik; Pannecouque, Christophe; Zhan, Peng; Liu, Xinyong
2016-09-01
We designed and synthesized a series of human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitors (NNRTIs) with a piperidine-substituted thiophene[3,2-d]pyrimidine scaffold, employing a strategy of structure-based molecular hybridization and substituent decorating. Most of the synthesized compounds exhibited broad-spectrum activity with low (single-digit) nanomolar EC50 values toward a panel of wild-type (WT), single-mutant, and double-mutant HIV-1 strains. Compound 27 was the most potent; compared with ETV, its antiviral efficacy was 3-fold greater against WT, 5-7-fold greater against Y181C, Y188L, E138K, and F227L+V106A, and nearly equipotent against L100I and K103N, though somewhat weaker against K103N+Y181C. Importantly, 27 has lower cytotoxicity (CC50 > 227 μM) and a huge selectivity index (SI) value (ratio of CC50/EC50) of >159101. 27 also showed favorable, drug-like pharmacokinetic and safety properties in rats in vivo. Molecular docking studies and the structure-activity relationships provide important clues for further molecular elaboration. PMID:27541578
Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.
2016-01-01
We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well. PMID:27323877
Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.
2016-06-01
We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well.
Directory of Open Access Journals (Sweden)
Kayoko Kasai
2011-11-01
Full Text Available Two-dimensional (2D grid coordination polymers were prepared by the reaction of 1,4-bis(4-pyridylmethyltetrafluorobenzene (bpf with Cu(NO32 in the presence of aromatic compounds. Crystal structures of {[Cu(bpf2(NO32]·(biphenyl2}n (1, {[Cu(bpf2(NO32]·(m-C6H4(OMe22}n (2, {[Cu(bpf2(NO32]·PhtBu}n (3 and {[Cu(bpf2(NO3(H2O]NO3·(bpf0.5}n (4 were determined. The grid networks were held together by C–H···O and C–H···F hydrogen bonds via the NO3− anions and the tetrafluorophenylene rings of bpf, respectively. Biphenyl, m-dimethoxybenzene, t-butylbenzene, and bpf molecules were clathrated in cyclic cavities of the grid networks through arene-perfluoroarene interactions. These coordination networks have remarkable clathration ability for aromatic compounds.
Energy Technology Data Exchange (ETDEWEB)
Pan, Ganghong; Tang, Jingniu; Xu, Wenjia; Liang, Peng; Huang, Zhongjing [Guangxi University for Nationalities, Nanning (China)
2013-12-15
The design and synthesis of coordination polymers have aroused great interest owing to their intriguing aesthetic structures and potential applications in nonlinear optics, gas storage, ion exchange, luminescence, magnetism and catalysis. Self-assembly of bridging organic ligands (connectors) and multi-connected metal ions can give rise to various types of interesting coordination polymers. Since metal ion Zn(II) with d{sup 10} electronic configuration permits a variety of coordination numbers and geometries which are not dependent on ligand field stabilization but on ligand size and charge, it is well suited for the construction of various coordination polymers. Its borderline hardness allows the coordination of N, O and S donor atoms.
International Nuclear Information System (INIS)
The efficient synthesis of 5-(5-bromovaleramido)-1, 10-phenanthroline, 5-(6-bromohexanamido)-1,10-phenanthroline, and 5-(11-bromoundecanamido)-1, 10-phenanthroline are described, which reacted with cis-Ru(bpy)2Cl2.2H2O and sodium hexafluorophosphate to form Ru(bpy)2[phen-NHCO(CH2)nBr](PF6)2 (n=4, 5 or 10; phen=1,10-phenanthroline). The intricate 1H NMR spectra at low field of these complexes were completely assigned in virtue of 1H-1H COSY technique. Cyclic voltammetry was used to study electrochemical behaviours of these complexes, and their luminescent properties were investigated with fluorescent spectra. (author)
Wohlfahrt, Georg; Amelynck, Crist; Ammann, Christof; Arneth, Almut; Bamberger, Ines; Goldstein, Allen; Hansel, Armin; Heinesch, Bernhard; Holst, Thomas; Hörtnagl, Lukas; Karl, Thomas; Neftel, Albrecht; McKinney, Karena; Munger, William; Schade, Gunnar; Schoon, Niels
2014-05-01
Methanol (CH3OH) is, after methane, the second most abundant VOC in the troposphere and globally represents nearly 20% of the total biospheric VOC emissions. With typical concentrations of 1-10 ppb in the continental boundary layer, methanol plays a crucial role in atmospheric chemistry, which needs to be evaluated in the light of ongoing changes in land use and climate. Previous global methanol budgets have approached the net land flux by summing up the various emission terms (namely primary biogenic and anthropogenic emissions, plant decay and biomass burning) and by subtracting dry and wet deposition, resulting in a net land flux in the range of 75-245 Tg y-1. The data underlying these budget calculations largely stem from small-scale leaf gas exchange measurements and while recently column-integrated remotely sensed methanol concentrations have become available for constraining budget calculations, there have been few attempts to contrast model calculations with direct net ecosystem-scale methanol flux measurements. Here we use eddy covariance methanol flux measurements from 8 sites in Europe and North America to study the magnitude of and controls on the diurnal and seasonal variability in the net ecosystem methanol flux. In correspondence with leaf-level literature, our data show that methanol emission and its strong environmental and biotic control (by temperature and stomatal conductance) prevailed at the more productive (agricultural) sites and at a perturbed forest site. In contrast, at more natural, less productive sites substantial deposition of methanol occurred, in particular during periods of surface wetness. These deposition processes are poorly represented by currently available temperature/light and/or production-driven modelling algorithms. A new framework for modelling the bi-directional land-atmosphere methanol exchange is proposed which accounts for the production of methanol in leaves, the regulation of leaf methanol emission by stomatal
Biemmi, Enrica; Bein, Thomas; Stock, Norbert
2006-03-01
A new open-framework zinc terephthalate (H 2NEt 2) 2[Zn 3(BDC) 4]ṡ3DEF (BDC = 1,4-benzendicarboxylate, DEF=N,N-diethylformamide) was obtained under slightly acidic condition by reacting 1,4-benzendicarboxylic acid (H 2BDC) with ZnO in a DEF solution. The structure was obtained by single crystal X-ray diffraction and consists of trimetallic zinc building units, that are interconnected by eight BDC units each (crystal data: monoclinic, C2/c, a=3337.24(5), b=983.17(2), c=1819.67(2) pm, β=92.455(1, V=5965.0(2)×10 pm, Z=4, R=0.0395, wR=0.0843 for 4533 reflections I>2σ(I)). Six BDC ions together with the trimetallic zinc units form a two-dimensional (3,6)-net while the other two BDC unit pillar these layers. Thus a three-dimensional anionic framework with a 2D pore system is formed. The pore space is occupied by solvent molecules (DEF) and diethylammonium ions, produced by in situ hydrolysis of DEF. These are interconnected as well as connected to the framework by hydrogen-bonds. The TG investigation in combination with powder X-ray diffraction and vibrational-spectroscopy show a two-step loss of the pore filling molecules as well as one H 2BDC molecule leading to crystalline phases which are stable up to 250 and 400 °C, respectively. In addition, 13C MAS-NMR data of the title compound is presented.
Eckley, Chris S.; Tate, Michael T.; Lin, Che-Jen; Gustin, Mae S.; Dent, Stephen; Eagles-Smith, Collin A.; Lutz, Michelle A; Wickland, Kimberly; Wang, Bronwen; Gray, John E.; Edwards, Grant; Krabbenhoft, David P.; Smith, David
2016-01-01
Mercury (Hg) emission and deposition can occur to and from soils, and are an important component of the global atmospheric Hg budget. This paper focuses on synthesizing existing surface-air Hg flux data collected throughout the Western North American region and is part of a series of geographically focused Hg synthesis projects. A database of existing Hg flux data collected using the dynamic flux chamber (DFC) approach from almost a thousand locations was created for the Western North America region. Statistical analysis was performed on the data to identify the important variables controlling Hg fluxes and to allow spatiotemporal scaling. The results indicated that most of the variability in soil-air Hg fluxes could be explained by variations in soil-Hg concentrations, solar radiation, and soil moisture. This analysis also identified that variations in DFC methodological approaches were detectable among the field studies, with the chamber material and sampling flushing flow rate influencing the magnitude of calculated emissions. The spatiotemporal scaling of soil-air Hg fluxes identified that the largest emissions occurred from irrigated agricultural landscapes in California. Vegetation was shown to have a large impact on surface-air Hg fluxes due to both a reduction in solar radiation reaching the soil as well as from direct uptake of Hg in foliage. Despite high soil Hg emissions from some forested and other heavily vegetated regions, the net ecosystem flux (soil flux + vegetation uptake) was low. Conversely, sparsely vegetated regions showed larger net ecosystem emissions, which were similar in magnitude to atmospheric Hg deposition (except for the Mediterranean California region where soil emissions were higher). The net ecosystem flux results highlight the important role of landscape characteristics in effecting the balance between Hg sequestration and (re-)emission to the atmosphere.
Energy Technology Data Exchange (ETDEWEB)
Hay, J.; Schwender, J.
2011-08-01
Plant oils are an important renewable resource, and seed oil content is a key agronomical trait that is in part controlled by the metabolic processes within developing seeds. A large-scale model of cellular metabolism in developing embryos of Brassica napus (bna572) was used to predict biomass formation and to analyze metabolic steady states by flux variability analysis under different physiological conditions. Predicted flux patterns are highly correlated with results from prior 13C metabolic flux analysis of B. napus developing embryos. Minor differences from the experimental results arose because bna572 always selected only one sugar and one nitrogen source from the available alternatives, and failed to predict the use of the oxidative pentose phosphate pathway. Flux variability, indicative of alternative optimal solutions, revealed alternative pathways that can provide pyruvate and NADPH to plastidic fatty acid synthesis. The nutritional values of different medium substrates were compared based on the overall carbon conversion efficiency (CCE) for the biosynthesis of biomass. Although bna572 has a functional nitrogen assimilation pathway via glutamate synthase, the simulations predict an unexpected role of glycine decarboxylase operating in the direction of NH4+ assimilation. Analysis of the light-dependent improvement of carbon economy predicted two metabolic phases. At very low light levels small reductions in CO2 efflux can be attributed to enzymes of the tricarboxylic acid cycle (oxoglutarate dehydrogenase, isocitrate dehydrogenase) and glycine decarboxylase. At higher light levels relevant to the 13C flux studies, ribulose-1,5-bisphosphate carboxylase activity is predicted to account fully for the light-dependent changes in carbon balance.
Energy Technology Data Exchange (ETDEWEB)
Ding, Mingye [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Wang, Wei, E-mail: wwnjut@hotmail.com [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Zhou, Yingjie [School of Physics and Optoelectronic Engineering, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Lu, Chunhua; Ni, Yaru; Xu, Zhongzi [College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China)
2015-06-25
Highlights: • N doped P25 is efficient in synthesizing g-C{sub 3}N{sub 4} with enhanced quantum effect. • The few-layered g-C{sub 3}N{sub 4} has a two-dimensional and porous structure. • The few-layered g-C{sub 3}N{sub 4} is superior to the bulk g-C{sub 3}N{sub 4} for photocatalysis. • Efficient heterojunction is in situ formed between g-C{sub 3}N{sub 4} and N doped P25. • The mass ratio of g-C{sub 3}N{sub 4} to N doped P25 affects the photocatalytic activity. - Abstract: The major challenge of employing photocatalysis for environment protection is to develop high efficient, low cost, and stable semiconductor photocatalysts. In the present study, an in situ annealing strategy is employed for large scale synthesis of two-dimensional (2D) porous graphitic carbon nitride (g-C{sub 3}N{sub 4}) and efficient g-C{sub 3}N{sub 4}/P25(N) (N doped P25) heterojunction with enhanced quantum effect. The P25 not only serves as the template for g-C{sub 3}N{sub 4} polymerization, but is also modified by the N species to enhance the visible light absorption. Compared to the normal bulk g-C{sub 3}N{sub 4}, the 2D porous g-C{sub 3}N{sub 4} with enhanced quantum effect is found to be more efficient in improving the specific surface area and the electron–hole pair’s separation, even its light absorption edge is blue-shifted. Photocatalytic degradation of Rhodamine B (RhB) and phenol indicates the 2D g-C{sub 3}N{sub 4} and g-C{sub 3}N{sub 4}/P25(N) are very efficient and stable under the xenon lamp irradiation. It is also found that the original mass ratio of urea, which is the precursor for g-C{sub 3}N{sub 4} synthesis and P25 modification, to P25 also plays a significant effect on the photocatalytic activity. The optimized photocatalyst (mass ratio of P25 to urea is 1:8) can decompose total RhB aqueous solution (10 mg/L, 100 ml) in 25 min. Based on systematic characterizations and discussions, a possible photocatalytic mechanism for the excellent photocatalytic
Energy Technology Data Exchange (ETDEWEB)
Hay, J.; Schwender, J.
2011-08-01
Computational simulation of large-scale biochemical networks can be used to analyze and predict the metabolic behavior of an organism, such as a developing seed. Based on the biochemical literature, pathways databases and decision rules defining reaction directionality we reconstructed bna572, a stoichiometric metabolic network model representing Brassica napus seed storage metabolism. In the highly compartmentalized network about 25% of the 572 reactions are transport reactions interconnecting nine subcellular compartments and the environment. According to known physiological capabilities of developing B. napus embryos, four nutritional conditions were defined to simulate heterotrophy or photoheterotrophy, each in combination with the availability of inorganic nitrogen (ammonia, nitrate) or amino acids as nitrogen sources. Based on mathematical linear optimization the optimal solution space was comprehensively explored by flux variability analysis, thereby identifying for each reaction the range of flux values allowable under optimality. The range and variability of flux values was then categorized into flux variability types. Across the four nutritional conditions, approximately 13% of the reactions have variable flux values and 10-11% are substitutable (can be inactive), both indicating metabolic redundancy given, for example, by isoenzymes, subcellular compartmentalization or the presence of alternative pathways. About one-third of the reactions are never used and are associated with pathways that are suboptimal for storage synthesis. Fifty-seven reactions change flux variability type among the different nutritional conditions, indicating their function in metabolic adjustments. This predictive modeling framework allows analysis and quantitative exploration of storage metabolism of a developing B. napus oilseed.
Activated sludge model No. 2d, ASM2d
DEFF Research Database (Denmark)
Henze, M.
1999-01-01
The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs...
Lokupitiya, E. Y.; Denning, A.
2010-12-01
Croplands are unique, man-made ecosystems with dynamics mostly dependent on human decisions. Crops uptake a significant amount of Carbon dioxide (CO2) during their short growing seasons. Reliability of the available models to predict the carbon exchanges by croplands is important in estimating the cropland contribution towards overall land-atmosphere carbon exchange and global carbon cycle. The energy exchanges from croplands include both sensible and latent heat fluxes. This study focuses on analyzing the performance of 19 land surface models across five agricultural sites under the site-level interim synthesis of North American Carbon Program (NACP). Model simulations were performed using a common simulation protocol and input data, including gap-filled meteorological data corresponding to each site. The net carbon fluxes (i.e. net ecosystem exchange; NEE) and energy fluxes (sensible and latent heat) predicted by 12 models with sub-hourly/hourly temporal resolution and 7 models with daily temporal resolution were compared against the site-specific gap-filled observed flux tower data. Comparisons were made by site and crop type (i.e. maize, soybean, and wheat), mainly focusing on the coefficient of determination, correlation, root mean square error, and standard deviation. Analyses also compared the diurnal, seasonal, and inter-annual variability of the modeled fluxes against the observed data and the mean modeled data.
Synthesis of benthic flux components in the Patos Lagooncoastal zone, Rio Grande do Sul, Brazil
King, Jeffrey N.
2012-01-01
The primary objective of this work is to synthesize components of benthic flux in the Patos Lagoon coastal zone, Rio Grande do Sul, Brazil. Specifically, the component of benthic discharge flux forced by the terrestrial hydraulic gradient is 0.8 m3 d-1; components of benthic discharge and recharge flux associated with the groundwater tidal prism are both 2.1 m3 d-1; components of benthic discharge and recharge flux forced by surface-gravity wave setup are both 6.3 m3 d-1; the component of benthic discharge flux that transports radium-228 is 350 m3 d-1; and components of benthic discharge and recharge flux forced by surface-gravity waves propagating over a porous medium are both 1400 m3 d-1. (All models are normalized per meter shoreline.) Benthic flux is a function of components forced by individual mechanisms and nonlinear interactions that exist between components. Constructive and destructive interference may enhance or diminish the contribution of benthic flux components. It may not be possible to model benthic flux by summing component magnitudes. Geochemical tracer techniques may not accurately model benthic discharge flux or submarine groundwater discharge (SGD). A conceptual model provides a framework on which to quantitatively characterize benthic discharge flux and SGD with a multifaceted approach.
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-02-06
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.
FEM-2D, 2-D MultiGroup Diffusion in X-Y Geometry
International Nuclear Information System (INIS)
1 - Nature of physical problem solved: FEM-2D solves the two-dimensional diffusion equation in x-y geometry. This is done by the finite elements method. 2 - Method of solution: FEM-2D uses triangular elements with first and second order Lagrange approximations. The systems equations are formulated in multigroup form and solved by Cholesky procedure which operates only on nonzero elements. Various acceleration techniques are available for the outer iteration. Fluxes along various lines and rates in arbitrary zones may be output. 3 - Restrictions on the complexity of the problem: The code uses variable dimensioning. Thus, the problem size is restricted by the largest array which usually is the systems matrix. Fluxes of all groups are kept in memory. This might become another restrictive data set for a large number of groups. The validity of the results is restricted by the approximations used. FEM-2D requires a finite element net which allows the approximation of fluxes by at most parabolas. The node distribution should be more dense in areas of heavy flux changes (near absorbers or the reflector)
Directory of Open Access Journals (Sweden)
C.-M. Tseng
2013-08-01
Full Text Available Limited observations exist for reliable assessment of annual CO2 uptake that takes into consideration the strong seasonal variation in the river-dominated East China Sea (ECS. Here we explore seasonally representative CO2 uptakes by the whole East China Sea derived from observations over a 14 yr period. We firstly identified the biological sequestration of CO2 taking place in the highly productive, nutrient-enriched Changjiang river plume, dictated by the Changjiang river discharge in warm seasons. We have therefore established an empirical algorithm as a function of sea surface temperature (SST and Changjiang river discharge (CRD for predicting sea surface pCO2. Synthesis based on both observation and model show that the annually averaged CO2 uptake from atmosphere during 1998–2011 was constrained to about 1.9 mol C m–2 yr–1. This assessment of annual CO2 uptake is more reliable and representative, compared to previous estimates, in terms of temporal and spatial coverage. Additionally, the CO2 time-series, exhibiting distinct seasonal pattern, gives mean fluxes of −3.0, −1.0, −0.9 and −2.5 mol C m–2 yr–1 in spring, summer, fall and winter, respectively, and also reveals apparent inter-annual variations. The flux seasonality shows a strong sink in spring and a weak source in late summer-early fall. The weak sink status during warm periods in summer-fall is fairly sensitive to changes of pCO2 and may easily shift from a sink to a source altered by environmental changes under climate change and anthropogenic forcing.
Lectures on 2D gravity and 2D string theory
International Nuclear Information System (INIS)
This report the following topics: loops and states in conformal field theory; brief review of the Liouville theory; 2D Euclidean quantum gravity I: path integral approach; 2D Euclidean quantum gravity II: canonical approach; states in 2D string theory; matrix model technology I: method of orthogonal polynomials; matrix model technology II: loops on the lattice; matrix model technology III: free fermions from the lattice; loops and states in matrix model quantum gravity; loops and states in the C=1 matrix model; 6V model fermi sea dynamics and collective field theory; and string scattering in two spacetime dimensions
Energy Technology Data Exchange (ETDEWEB)
Unrean, Pornkamol [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Biochemical Engineering and Pilot Plant Research and Development Unit; National Center for Genetik Engineering and Biotechnology (BIOTEC), Pathumtani (Thailand); Nguyen, Nhung H.A. [King Mongkut' s Univ. of Technology Thonburi, Bangkok (Thailand). Biochemical Engineering and Pilot Plant Research and Development Unit
2012-06-15
Elementary mode analysis (EMA) identifies all possible metabolic states of the cell metabolic network. Investigation of these states can provide a detailed insight into the underlying metabolism in the cell. In this study, the flux states of Scheffersomyces (Pichia) stipitis metabolism were examined. It was shown that increasing oxygen levels led to a decrease of ethanol synthesis. This trend was confirmed by experimental evaluation of S. stipitis in glucose-xylose fermentation. The oxygen transfer rate for an optimal ethanol production was 1.8 mmol/l/h, which gave the ethanol yield of 0.40 g/g and the ethanol productivity of 0.25 g/l/h. For a better understanding of the cell's regulatory mechanism in response to oxygenation levels, EMA was used to examine metabolic flux patterns under different oxygen levels. Up- and downregulation of enzymes in the network during the change of culturing condition from oxygen limitation to oxygen sufficiency were identified. The results indicated the flexibility of S. stipitis metabolism to cope with oxygen availability. In addition, relevant genetic targets towards improved ethanol-producing strains under all oxygenation levels were identified. These targeted genes limited the metabolic functionality of the cell to function according to the most efficient ethanol synthesis pathways. The presented approach is promising and can contribute to the development of culture optimization and strain engineers for improved lignocellulosic ethanol production by S. stipitis. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Saghatforoush, Lotfali, E-mail: saghatforoush@gmail.com; Bakhtiari, Akbar; Gheleji, Hojjat
2015-01-15
The synthesis of two dimensional (2D) coordination polymer [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} (dpp=2,3-bis(2-pyridyl)pyrazine) is reported. As determined by X-ray diffraction of a twinned crystal, the dpp ligand simultaneously adopts a bis–bidentate and bis–monodentate coordination mode in the crystal structure of compound. The electronic band structure along with density of states (DOS) calculated by the DFT method indicates that the compound is an indirect band gap semiconductor. According to the DFT calculations, the observed emission of the compound at 600 nm in solid phase could be attributed to arise from an excited LLCT state (dpp-π{sup ⁎} [C-2p and N-2p states, CBs] to I-6p state [VBs]). The linear optical properties of the compound are also calculated by DFT method. The structure of the compound in solution phase is discussed based on the measured {sup 1}H NMR and fluorescence spectra in DMSO. TGA studies indicate that the compound is thermally stable up to 210 °C. - Graphical abstract: The synthesis, crystal structure and emission spectra of [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} is presented. The electronic band structure and linear optical properties of the compound are calculated by the DFT method. - Highlights: • Two dimensional [Pb{sub 2}(µ-I){sub 2}(µ-dpp-N,N,N,N)(µ-dpp-N,N)I{sub 2}]{sub n} has been prepared. • The structure of the compound is determined by XRD of a twinned crystal. • DFT calculations indicate that the compound is an indirect band gap semiconductor. • As shown by DFT calculations, the emission band of the compound is LLCT. • Solution phase structure of compound is explored by {sup 1}H NMR and emission spectra.
2D-hahmoanimaation toteuttamistekniikat
Smolander, Aku
2009-01-01
Opinnäytetyössä tutkitaan erilaisia 2D-hahmoanimaation toteuttamistekniikoita. Aluksi luodaan yleiskatsaus animoinnin historiaan ja tekniikoihin piirtämisestä mallintamiseen. Alkukatsauksen jälkeen tutkitaan 2D-hahmon suunnittelua ja liikkeitä koskevia sääntöjä. Hahmoanimaation liikkeissä huomionarvoisia asioita ovat muun muassa ajastus, liioittelu, ennakointi ja painovoima. Seuraavaksi perehdytään itse 2D-hahmoanimaation toteuttamistekniikoihin. Tavoitteena on selvittää, tutkia ja vertailla ...
Spontaneous synthesis of carbon nanowalls, nanotubes and nanotips using high flux density plasmas
Bystrov, K.; M. C. M. van de Sanden,; Arnas, C.; Marot, L.; Mathys, D.; Liu, F.; L.K. Xu,; X.B. Li,; A.V. Shalpegin,; De Temmerman, G.
2014-01-01
We have investigated the formation of various carbon nanostructures using extreme plasma fluxes up to four orders of magnitude larger than in conventional plasma-enhanced chemical vapor deposition processing. Carbon nanowalls, multi-wall nanotubes, spherical nanoparticles and nanotips are among the
International Nuclear Information System (INIS)
A new formulation of the pseudocontinuous synthesis algorithm is applied to solve the static three dimensional two-group diffusion equations. The new method avoids ambiguities regarding interface conditions, which are inherent to the differential formulation, by resorting to the finite difference version of the differential equations involved. A considerable number of input/output options, possible core configurations and control rod positioning are implemented resulting in a very flexible as well as economical code to compute 3D fluxes, power density and reactivities of PWR reactors with partial inserted control rods. The performance of this new code is checked against the IAEA 3D Benchmark problem and results show that SINT3D yields comparable accuracy with much less computing time and memory required than in conventional 3D finite differerence codes. (Author)
Low temperature synthesis of Ba1–SrSnO3 ( = 0–1) from molten alkali hydroxide flux
Indian Academy of Sciences (India)
B Ramdas; R Vijayaraghavan
2010-02-01
Perovskite structured stannates (Ba1–SrSnO3, = 0.0–1.0) powders have been synthesized for the first time by molten salt synthesis (MSS) method using KOH as the flux at lower temperature (400°C) compared to other methods. The phase formation was confirmed by FT–IR spectroscopy, powder X-ray diffraction (XRD) and the microstructure was analysed by scanning electron microscopy. XRD patterns reveal the formation of single phasic products for parent and substituted products with good crystallinity throughout the range ( = 0.0–1.0). The morphology of the particles of BaSnO3 and SrSnO3 is spherical and rod shaped, respectively. Effect of soaking periods on the grain growth is observed clearly in SrSnO3. Ba0.5Sr0.5SnO3 (BSS5) crystallizes in flake like morphology.
Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials
Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee
2015-07-01
Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.
Finite-Element Model-Based Design Synthesis of Axial Flux PMBLDC Motors
DEFF Research Database (Denmark)
Fasil, Muhammed; Mijatovic, Nenad; Jensen, Bogi Bech;
2016-01-01
of a unique solution. The designer can later select a design, based on comparing parameters of the designs, which are critical to the application that the motor will be used. The presented approach makes it easier to define constraints for a design synthesis problem. A detailed description of the setting up...... is demonstrated by designing a segmented axial torus PMBLDC motor for an electric two-wheeler....
Accretion Disks Phase Transitions 2-D or not 2-D?
Abramowicz, M A; Igumenshchev, I V; Abramowicz, Marek Artur; Bjornsson, Gunnlaugur; Igumenshchev, Igor V.
2000-01-01
We argue that the proper way to treat thin-thick accretion-disk transitions should take into account the 2-D nature of the problem. We illustrate the physical inconsistency of the 1-D vertically integrated approach by discussing a particular example of the convective transport of energy.
Yu, G.; Niu, S.; Chen, Z.; Zhu, X.
2013-12-01
A predictive understanding of the terrestrial ecosystem carbon fluxes has been developed slowly, largely owing to lack of broad generalizations and a theoretical framework as well as clearly defined hypotheses. We synthesized Eddy flux data in different regions of northern hemisphere and previously published papers, then developed a framework for the climate controls on the geoecological patterns of terrestrial ecosystem C fluxes, and proposed the underlying mechanisms. Based on the case studies and synthesis, we found that the spatial patterns of ecosystem C fluxes in China, Asia, three continents of the northern hemisphere all had general patterns: predominately controlled by temperature and precipitation, supporting and further developing the traditional theory of 'climate controls on the spatial patterns of ecosystem productivity' in Miami and other models. Five hypotheses were proposed to explain the ecological mechanisms and processes that attribute to the climate-driven spatial patterns of C fluxes. (1) Two key processes determining gross primary productivity (GPP), i.e. growing season length and carbon uptake capacity, are jointly controlled by temperature and precipitation; (2) Ecosystem respiration (ER) is predominately determined also by temperature and precipitation, as well as substrate supply; (3) Components of ecosystem C fluxes are closely coupled with each other in response to climate change; (4) Vegetation types and soil nutrients in particular area are fundamentally determined by environmental factors, which may impact C fluxes within a certain range, but couldn't change the climate-driven pattern of C fluxes at large scale, (5) Land use only changes the magnitude of C fluxes, but doesn't change the spatial patterns and their climate dependence. All of these hypotheses were well validated by the evidences of data synthesis, which could provide the foundation for a theoretical framework for better understanding and predicting geoecological
Rato, L; Alves, M G; Dias, T R; Cavaco, J E; Oliveira, Pedro F
2015-01-01
Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM) induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ) T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by (1)H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters. PMID:26064993
Directory of Open Access Journals (Sweden)
L. Rato
2015-01-01
Full Text Available Defects in testicular metabolism are directly implicated with male infertility, but most of the mechanisms associated with type 2 diabetes- (T2DM induced male infertility remain unknown. We aimed to evaluate the effects of T2DM on testicular glucose metabolism by using a neonatal-streptozotocin- (n-STZ T2DM animal model. Plasma and testicular hormonal levels were evaluated using specific kits. mRNA and protein expression levels were assessed by real-time PCR and Western Blot, respectively. Testicular metabolic profile was assessed by 1H-NMR spectroscopy. T2DM rats showed increased glycemic levels, impaired glucose tolerance and hyperinsulinemia. Both testicular and serum testosterone levels were decreased, whereas those of 17β-estradiol were not altered. Testicular glycolytic flux was not favored in testicles of T2DM rats, since, despite the increased expression of both glucose transporters 1 and 3 and the enzyme phosphofructokinase 1, lactate dehydrogenase activity was severely decreased contributing to lower testicular lactate content. However, T2DM enhanced testicular glycogen accumulation, by modulating the availability of the precursors for its synthesis. T2DM also affected the reproductive sperm parameters. Taken together these results indicate that T2DM is able to reprogram testicular metabolism by enhancing alternative metabolic pathways, particularly glycogen synthesis, and such alterations are associated with impaired sperm parameters.
Benchmark products for land evapotranspiration: LandFlux-EVAL multi-data set synthesis
Mueller, B.
2013-10-01
Land evapotranspiration (ET) estimates are available from several global data sets.Here, Monthly Global Land et Synthesis Products, Merged from These Individual Data Sets over the Time Periods 1989-1995 (7 Yr) and 1989-2005 (17 Yr), Are Presented. the Merged Synthesis Products over the Shorter Period Are Based on A Total of 40 Distinct Data Sets while Those over the Longer Period Are Based on A Total of 14 Data Sets. in the Individual Data Sets, et Is Derived from Satellite And/or in Situ Observations (Diagnostic Data Sets) or Calculated Via Land-surface Models (LSMs) Driven with Observations-based Forcing or Output from Atmospheric Reanalyses. Statistics for Four Merged Synthesis Products Are Provided, One Including All Data Sets and Three Including only Data Sets from One Category Each (Diagnostic, LSMs, and Reanalyses). the Multi-annual Variations of et in the Merged Synthesis Products Display Realistic Responses. They Are Also Consistent with Previous Findings of A Global Increase in et between 1989 and 1997 (0.13 Mm yr-2 in Our Merged Product) Followed by A Significant Decrease in This Trend (-0.18 Mm yr-2), although These Trends Are Relatively Small Compared to the Uncertainty of Absolute et Values. the Global Mean et from the Merged Synthesis Products (Based on All Data Sets) Is 493 Mm yr-1 (1.35 Mm d-1) for Both the 1989-1995 and 1989-2005 Products, Which Is Relatively Low Compared to Previously Published Estimates. We Estimate Global Runoff (Precipitation Minus ET) to 263 Mm yr -1 (34 406 km3 yr-1) for A Total Land Area of 130 922 000 km2. Precipitation, Being An Important Driving Factor and Input to Most Simulated et Data Sets, Presents Uncertainties between Single Data Sets As Large As Those in the et Estimates. in Order to Reduce Uncertainties in Current et Products, Improving the Accuracy of the Input Variables, Especially Precipitation, As Well As the Parameterizations of ET, Are Crucial. 2013 Author(s).
International Nuclear Information System (INIS)
SES2D is an interactive graphics code designed to generate plots of equation of state data from the Los Alamos National Laboratory Group T-4 computer libraries. This manual discusses the capabilities of the code. It describes the prompts and commands and illustrates their use with a sample run
Computational 2D Materials Database
DEFF Research Database (Denmark)
Rasmussen, Filip Anselm; Thygesen, Kristian Sommer
2015-01-01
, and comparison is made with different density functional theory descriptions. Pitfalls related to the convergence of GW calculations for two-dimensional (2D) materials are discussed together with possible solutions. The monolayer band edge positions relative to vacuum are used to estimate the band alignment...
Global patterns of ecosystem carbon flux in forests: A biometric data-based synthesis
Xu, Bing; Yang, Yuanhe; Li, Pin; Shen, Haihua; Fang, Jingyun
2014-09-01
Forest ecosystems function as a significant carbon sink for atmospheric carbon dioxide. However, our understanding of global patterns of forest carbon fluxes remains controversial. Here we examined global patterns and environmental controls of forest carbon balance using biometric measurements derived from 243 sites and synthesized from 81 publications around the world. Our results showed that both production and respiration increased with mean annual temperature and exhibited unimodal patterns along a gradient of precipitation. However, net ecosystem production (NEP) initially increased and subsequently declined along gradients of both temperature and precipitation. Our results also indicated that ecosystem production increased during stand development but eventually leveled off, whereas respiration was significantly higher in mature and old forests than in young forests. The residual variation of carbon flux along climatic and age gradients might be explained by other factors such as atmospheric CO2 elevation and disturbances (e.g., forest fire, storm damage, and selective harvest). Heterotrophic respiration (Rh) was positively associated with net primary production (NPP), but the Rh-NPP relationship differed between natural and planted forests: Rh increased exponentially with NPP in natural forests but tended toward saturation with increased NPP in planted forests. Comparison of biometric measurements with eddy covariance observations revealed that ecosystem carbon balance derived from the latter generated higher overall NEP estimates. These results suggest that the eddy covariance observations may overestimate the strength of carbon sinks, and thus, biometric measurements need to be incorporated into global assessments of the forest carbon balance.
Payyavula, Raja S; Shakya, Roshani; Sengoda, Venkatesan G; Munyaneza, Joseph E; Swamy, Prashant; Navarre, Duroy A
2015-05-01
Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucrose induced accumulation of CGA correlated with the increased expression of phenylalanine ammonia-lyase (PAL) rather than HQT. Transient expression of the potato MYB transcription factor StAN1 (anthocyanin 1) in tobacco increased CGA. RNAi suppression of HQT resulted in over a 90% reduction in CGA and resulted in early flowering. The reduction in total phenolics and antioxidant capacity was less than the reduction in CGA, suggesting flux was rerouted into other phenylpropanoids. Network analysis showed distinct patterns in different organs, with anthocyanins and phenolic acids showing negative correlations in leaves and flowers and positive in tubers. Some flavonols increased in flowers, but not in leaves or tubers. Anthocyanins increased in flowers and showed a trend to increase in leaves, but not tubers. HQT suppression increased biosynthesis of caffeoyl polyamines, some of which are not previously reported in potato. Decreased PAL expression and enzyme activity was observed in HQT suppressed lines, suggesting the existence of a regulatory loop between CGA and PAL. Electrophysiology detected no effect of CGA suppression on potato psyllid feeding. Collectively, this research showed that CGA in potatoes is synthesized through HQT and HQT suppression altered phenotype and redirected phenylpropanoid flux. PMID:25421386
Ahmed, Zeeshan
2010-01-01
Designing and developing quality based computer game is always a challenging task for developers. In this paper I briefly discuss aero fighting war game based on simple 2D gaming concepts and developed in C & C++ programming languages, using old bitmapping concepts. Going into the details of the game development, I discuss the designed strategies, flow of game and implemented prototype version of game, especially for beginners of game programming.
Bryan, John Daniel
Molten gallium metal has been used as a solvent to grow large single crystals of known inorganic thermoelectric clathrates Sr8Ga 16Ge30, Ba8Ga16Ge30, and Ba8Ga16Si30. X-ray diffraction, thermal analysis, electron microprobe, Glow Discharge Mass Spectrometry, temperature dependent electrical conductivity and Seebeck coefficient measurements characterized the single crystals. The Thermoelectric performance was shown to be heavily dependent on the synthetic conditions including container choice, thermal history and impurity concentration. Inorganic Clathrates have attracted intense interest in last several years as potential new materials for thermoelectric devices. If a small to moderate increase in thermoelectric performance over the currently used materials is realized, substantial environmental and technological gains could be achieved. Since thermoelectric refrigeration modules require no moving parts or heat exchange gas (freon) they offer significant advantages over conventional refrigeration technology that tends to fail due to the finite lifetime of the pumping equipment. High temperature devices are also extremely useful for power generation in harsh unforgiving environments where excess heat is available. The thermoelectric performance, primarily at room temperature, of these compounds was found to be heavily dependent on the synthetic procedures used to obtain them. A flux growth procedure was developed to overcome the problems of the traditional melt-quench-anneal solid-state chemical approach. This procedure yielded large single crystals of the Sr8Ga16Ge 30, Ba8Ga16Ge30 and Ba8Ga 16Si30 compounds which ready facilitated their chemical and electronic study. Finally, an outlook on the application of these compounds as thermoelectric devices is given. Application of the flux method to other systems was also successful in the discovery of two new inorganic clathrate compounds: type IV Eu4Ga 8Ge16 and type V Yb8Ga16Ge14. The Eu4Ga8Ge16 compound was found to
Greenhouse gas fluxes from drained organic soils - a synthesis of a large dataset
Tiemeyer, Bärbel
2016-04-01
Drained peatlands are hotspots of greenhouse gas (GHG) emissions. Agriculture is the major land use type for peatlands in Germany and other European countries, but strongly varies in its intensity regarding groundwater level and agricultural management. Although the mean annual water table depth is sometimes proposed as an overall predictor for GHG emissions, there is a strong variability of its effects on different peatlands. We synthesized 164 annual GHG budgets for 65 different sites in 13 German peatlands. Land use comprised arable land with different crops (n = 17) and grassland with a management gradient from very intensive use with up to five cuts per year to partially rewetted conservation grassland (n = 48). Carbon dioxide (net ecosystem exchange and ecosystem respiration), nitrous oxide and methane fluxes were measured with transparent and opaque manual chambers. Besides the GHG fluxes, biomass yield, fertilisation, groundwater level, climatic data, vegetation composition and soil properties were measured. Overall, we found a large variability of the total GHG budget ranging from small uptakes to extremely high emissions (> 70 t CO2-equivalents/(ha yr)). At nearly all sites, carbon dioxide was the major component of the GHG budget. Site conditions, especially the nitrogen content of the unsaturated zone and the intra-annual water level distribution, dominated the GHG emissions from grassland. Although these factors are influenced by natural conditions (peat type, regional hydrology), they could be modified by an improved water management. In the case of grassland, agricultural management such as the number of cuts had only a minor influence on the GHG budgets. Given comparable site conditions, there was no significant difference between the emissions from grassland and arable land. Due to the large heterogeneity of site conditions and crop types, emissions from arable land are difficult to explain, but management decisions such as the duration of soil
2D-animaatiotuotannon optimointi
Saturo, Reetta
2015-01-01
Tämän opinnäytetyön tavoitteena on tutkia 2D-animaatiotuotannon optimoinnin mahdollisuuksia tiukan tuotantoaikataulun vaatimuksissa. Tutkielmassa tarkastellaan kahta asiakasprojektia, jotka on toteutettu pienellä tuotantotiimillä. Työkaluna animaatioissa on käytetty pääosin Adoben After Effects -ohjelmistoa. Tutkielman alussa esitellään animaatiotuotannot, joiden tuloksena syntyi kaksi lyhyttä mainoselokuvaa. Sen jälkeen käydään läpi animaatioelokuvan tuotantoprosessia vaiheittain ja tark...
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
Cline, Gary W; Pongratz, Rebecca L; Zhao, Xiaojian; Papas, Klearchos K
2011-11-11
Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with (31)P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by (13)C NMR isotopomer analysis of the fate of [U-(13)C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was found to be congruous with the correlation in KRB. Together, these results suggest that signaling mechanisms associated with both TCA cycle flux and with anaplerotic flux, but not ATP production, may be responsible for the enhanced rates of insulin secretion in more complex, and physiologically-relevant media. PMID:22008547
Institute of Scientific and Technical Information of China (English)
LI, Zheng(李诤); MENG, Qing-Qing(孟青青); WANG, Quan-Rui(王全瑞); TAO, Feng-Gang(陶凤岗)
2004-01-01
A series of novel tricyclic O,N-heterocycles, [1,2,4]triazolo[3,2-d][1,5]benzoxazepin-2-thiones 7 were achieved via acid-induced ring closure of the geminal arylazo isothiocyanate compounds 5 which were derived from substituted chroman-4-ones, followed by feasible ring expansion with simultaneous insertion of the nitrogen atom into the carbon skeleton. The X-ray crystal structure of 7d was also described.
Institute of Scientific and Technical Information of China (English)
WANG Ji-Jiang; CAO Pei-Xiang; GAO Lou-Jun; FU Feng; ZHANG Mei-Li; REN Yi-Xia; HOU Xiang-Yang
2011-01-01
A new 2D Zn（II） coordination polymer,[Zn（btc）0.5（phen）]n（1,H4btc = biphenyl-3,3＇,5,5＇-tetracarboxylic acid,phen = 1,10-phenanthroline）,has been hydrothermally synthesized and characterized by single-crystal X-ray diffraction analysis,elemental analysis and IR spectro-scopy.Complex 1 crystallizes in the triclinic system,space group P1 with a = 7.6878（6）,b = 10.3453（8）,c = 10.9589（9） ,α = 113.3540（10）,β = 90.5460（10）,γ = 90.4280（10）°,V = 800.09（11） 3,Z = 2,Dc = 1.696 Mg.m-3,μ = 1.566 mm-1,F（000） = 414,the final R = 0.0359 and wR = 0.0778 for 2441 observed reflections with I 2σ（I）.Complex 1 has a 2D layered network containing dinuclear Zn（II） structural units.The 2D layers are further linked by the phen molecules through π-π stacking interactions into a 3D supramolecular framework.The photoluminescent property of 1 was also studied in the solid state at room temperature.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.
Waldin, Nicholas
2016-06-24
2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.
2D bifurcations and Newtonian properties of memristive Chua's circuits
Marszalek, W.; Podhaisky, H.
2016-01-01
Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.
Learn Unity for 2D game development
Thorn, Alan
2013-01-01
The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity
Energy Technology Data Exchange (ETDEWEB)
Cline, Gary W., E-mail: gary.cline@yale.edu [The Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520 (United States); Department of Surgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States); Pongratz, Rebecca L.; Zhao, Xiaojian [The Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520 (United States); Papas, Klearchos K. [Department of Surgery, University of Minnesota-Twin Cities, Minneapolis, MN 55455 (United States)
2011-11-11
Highlights: Black-Right-Pointing-Pointer We studied media effects on mechanisms of insulin secretion of INS-1 cells. Black-Right-Pointing-Pointer Insulin secretion was higher in DMEM than KRB despite identical ATP synthesis rates. Black-Right-Pointing-Pointer Insulin secretion rates correlated with rates of anaplerosis and TCA cycle. Black-Right-Pointing-Pointer Mitochondria metabolism and substrate cycles augment secretion signal of ATP. -- Abstract: Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with {sup 31}P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by {sup 13}C NMR isotopomer analysis of the fate of [U-{sup 13}C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found
International Nuclear Information System (INIS)
Highlights: ► We studied media effects on mechanisms of insulin secretion of INS-1 cells. ► Insulin secretion was higher in DMEM than KRB despite identical ATP synthesis rates. ► Insulin secretion rates correlated with rates of anaplerosis and TCA cycle. ► Mitochondria metabolism and substrate cycles augment secretion signal of ATP. -- Abstract: Mechanistic models of glucose stimulated insulin secretion (GSIS) established in minimal media in vitro, may not accurately describe the complexity of coupling metabolism with insulin secretion that occurs in vivo. As a first approximation, we have evaluated metabolic pathways in a typical growth media, DMEM as a surrogate in vivo medium, for comparison to metabolic fluxes observed under the typical experimental conditions using the simple salt-buffer of KRB. Changes in metabolism in response to glucose and amino acids and coupling to insulin secretion were measured in INS-1 832/13 cells. Media effects on mitochondrial function and the coupling efficiency of oxidative phosphorylation were determined by fluorometrically measured oxygen consumption rates (OCRs) combined with 31P NMR measured rates of ATP synthesis. Substrate preferences and pathways into the TCA cycle, and the synthesis of mitochondrial 2nd messengers by anaplerosis were determined by 13C NMR isotopomer analysis of the fate of [U-13C] glucose metabolism. Despite similar incremental increases in insulin secretion, the changes of OCR in response to increasing glucose from 2.5 to 15 mM were blunted in DMEM relative to KRB. Basal and stimulated rates of insulin secretion rates were consistently higher in DMEM, while ATP synthesis rates were identical in both DMEM and KRB, suggesting greater mitochondrial uncoupling in DMEM. The relative rates of anaplerosis, and hence synthesis and export of 2nd messengers from the mitochondria were found to be similar in DMEM to those in KRB. And, the correlation of total PC flux with insulin secretion rates in DMEM was
Zhu, Wenquan; Chen, Guangsheng; Jiang, Nan; Liu, Jianhong; Mou, Minjie
2013-01-01
Carbon Flux Phenology (CFP) can affect the interannual variation in Net Ecosystem Exchange (NEE) of carbon between terrestrial ecosystems and the atmosphere. In this study, we proposed a methodology to estimate CFP metrics with satellite-derived Land Surface Phenology (LSP) metrics and climate drivers for 4 biomes (i.e., deciduous broadleaf forest, evergreen needleleaf forest, grasslands and croplands), using 159 site-years of NEE and climate data from 32 AmeriFlux sites and MODIS vegetation index time-series data. LSP metrics combined with optimal climate drivers can explain the variability in Start of Carbon Uptake (SCU) by more than 70% and End of Carbon Uptake (ECU) by more than 60%. The Root Mean Square Error (RMSE) of the estimations was within 8.5 days for both SCU and ECU. The estimation performance for this methodology was primarily dependent on the optimal combination of the LSP retrieval methods, the explanatory climate drivers, the biome types, and the specific CFP metric. This methodology has a potential for allowing extrapolation of CFP metrics for biomes with a distinct and detectable seasonal cycle over large areas, based on synoptic multi-temporal optical satellite data and climate data.
Institute of Scientific and Technical Information of China (English)
TAO Zhao-Lin; QIN Ling; CUI Jie-Hu; ZHENG He-Gen
2013-01-01
A new polymeric complex {[Cd2(bbmb)2(gt)2]·(H2O)2}n (bbmb =4,4'-bis(benzimidazol-1-ylmethy1)biphenyl,H2gt =glutaric acid) has been obtained by hydrothermal method and structurally characterized by elemental analysis,IR,XRD,TGA and single-crystal X-ray diffraction.The complex belongs to the triclinic system,space group P(-1) with a =10.2417(15),b =13.752(2),c =22.201(3) (A),a =73.899(2),β =88.416(2),γ =78.305(2)°,V =2940.4(7) (A)3,Z =2,C66H56Cd2N8O8,Mr =1313.99,Dc =1.484 g/cm3,F(000) =1336 andμ =0.787 mm-1,and features a 2D network.In the solid state at room temperature,the cadmium(Ⅱ) complex exhibits strong fluorescence absorption at 435 nm (λmax).
Lin, HongYan; Wang, XiuLi; Hu, HaiLiang; Chen, BaoKuan; Liu, GuoCheng
2009-03-01
A novel metal-organic framework [Cu 2(bpdc) 2(Dpq) 2(H 2O)]·H 2O ( 1) has been obtained from hydrothermal reaction of copper chloride with the mixed ligands [biphenyl-4,4'-dicarboxylic acid (H 2bpdc) and dipyrido[3,2-d:2',3'-f]quinoxaline (Dpq)], and structurally characterized by elemental analysis, IR, TG and single-crystal X-ray diffraction analysis. The unique feature is that there simultaneously exist two kinds of one-dimensional (1-D) zigzag polymeric chains in complex 1. Moreover, the 1-D polymeric chains are ultimately packed into a three-dimensional (3-D) supramolecular framework through two different hydrogen bonding interactions. The adjacent different chains are linked by C-H⋯O hydrogen bonding interactions, and the same kind chains are further connected through C-H⋯π stacking interactions. Additionally, the complex 1 was used as solid bulk-modifier to fabricate renewable carbon paste electrode (Cu-CPE) by the direct mixing method. The electrochemical behavior and electrocatalysis of Cu-CPE have been studied in detail. The results indicate that Cu-CPE give one-electron quasi-reversible redox waves in potential range of 400 to -300 mV due to the metal copper ion Cu(II)/Cu(I). The Cu-CPE showed good electrocatalytic activity toward the reduction of the bromate, nitrite and hydrogen peroxide. The electrocatalytic reduction peak currents of KBrO 3, KNO 2 and H 2O 2 showed a linear dependence on their concentrations. All of the results revealed that the Cu-CPE had a good reproducibility, remarkable long-term stability and especially good surface renewability by simple mechanical polishing in the event of surface fouling, which is important for practical application.
Energy Technology Data Exchange (ETDEWEB)
Yang Lixun [Chinese Academy of Sciences, Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, Hefei 230026 (China); Xu Xin, E-mail: xuxin@ustc.edu.cn [Chinese Academy of Sciences, Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, Hefei 230026 (China); Hao Luyuan; Yang Xiufang [Chinese Academy of Sciences, Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Jinzhai Road 96, Hefei, Anhui, Hefei 230026 (China); Agathopoulos, Simeon [Department of Materials Science and Engineering, University of Ioannina, GR-451 10 Ioannina (Greece)
2012-06-15
Oxynitride phosphor powders comprising of CaSi{sub 2}O{sub 2}N{sub 2} doped with Tb{sup 3+} were successfully synthesized using a high-temperature solid-state reaction method. The experimentally determined photoluminescence (PL) properties of the produced phosphors meet the requirements of 2D/3D plasma display panels (PDPs). In particular, under the excitation of vacuum ultraviolet (VUV) synchrotron radiation and ultraviolet (UV) irradiation, emission peaks corresponding to the {sup 5}D{sub 3}{yields}{sup 7}F{sub J} (J=6, 5, 4, 3) and {sup 5}D{sub 4}{yields}{sup 7}F{sub J} (J=6, 5, 4, 3) transitions of Tb{sup 3+} ions were recorded. Monitoring the {sup 5}D{sub 4}{yields}{sup 7}F{sub 5} emission of Tb{sup 3+} at 545 nm, the excitation bands were assigned to the host-related absorption as well as the 4f-5d (fd) and the 4f-4f (ff) transitions of Tb{sup 3+}. The produced phosphors can be efficiently excited at 147 nm, and have an adequately short decay time ({tau}{sub 1/10}=1.14 ms). - Highlights: Black-Right-Pointing-Pointer Tb{sup 3+}-doped CaSi{sub 2}O{sub 2}N{sub 2} was proved to be a candidate for plasma display panels (PDPs). Black-Right-Pointing-Pointer PL and PLE spectra from VUV to visible range of the phosphor were analyzed. Black-Right-Pointing-Pointer The phosphor has an adequately short decay time that is necessary for 3D displays.
Seepage Analysis of Upper Gotvand Dam Concerning Gypsum Karstification (2D and 3D Approaches)
DEFF Research Database (Denmark)
Sadrekarimi, Jamshid; Kiyani, Majid; Fakhri, Behnam;
2011-01-01
Upper Gotvand Dam is constructed on the Karun River at the south west of Iran. In this paper, 2D and 3D models of the dam together with the foundation and abutments were established, and several seepage analyses were carried out. Then, the gypsum veins that are scattered throughout the foundation...... model locates the phreatic surface somewhat higher than the 2D model. This means that the 2D model estimates lower pore water pressure pattern in comparison with the 3D model. These may be attributed to the fact that with 2D model the lateral components of vectors of seepage velocity are ignored...... flux through the foundation ground....
Perspectives for spintronics in 2D materials
Directory of Open Access Journals (Sweden)
Wei Han
2016-03-01
Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Surface modelling for 2D imagery
Lieng, Henrik
2014-01-01
Vector graphics provides powerful tools for drawing scalable 2D imagery. With the rise of mobile computers, of different types of displays and image resolutions, vector graphics is receiving an increasing amount of attention. However, vector graphics is not the leading framework for creating and manipulating 2D imagery. The reason for this reluctance of employing vector graphical frameworks is that it is difficult to handle complex behaviour of colour across the 2D domain. ...
Perspectives for Spintronics in 2D Materials
Wei Han
2016-01-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Kaur, Kuldeep; Khan, Manju
2012-01-01
Let $p$ be an odd prime, $D_{2p}$ be the dihedral group of order 2p, and $F_{2}$ be the finite field with two elements. If * denotes the canonical involution of the group algebra $F_2D_{2p}$, then bicyclic units are unitary units. In this note, we investigate the structure of the group $\\mathcal{B}(F_2D_{2p})$, generated by the bicyclic units of the group algebra $F_2D_{2p}$. Further, we obtain the structure of the unit group $\\mathcal{U}(F_2D_{2p})$ and the unitary subgroup $\\mathcal{U}_*(F_...
Purcaru, Elena
2012-01-01
The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution - DNA2DBC - DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.
Directory of Open Access Journals (Sweden)
Elena Purcaru
2011-09-01
Full Text Available The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features of 2D barcode implementation for DNA.
Statistical mechanics of shell models for 2D-Turbulence
Aurell, E; Crisanti, A; Frick, P; Paladin, G; Vulpiani, A
1994-01-01
We study shell models that conserve the analogues of energy and enstrophy, hence designed to mimic fluid turbulence in 2D. The main result is that the observed state is well described as a formal statistical equilibrium, closely analogous to the approach to two-dimensional ideal hydrodynamics of Onsager, Hopf and Lee. In the presence of forcing and dissipation we observe a forward flux of enstrophy and a backward flux of energy. These fluxes can be understood as mean diffusive drifts from a source to two sinks in a system which is close to local equilibrium with Lagrange multipliers (``shell temperatures'') changing slowly with scale. The dimensional predictions on the power spectra from a supposed forward cascade of enstrophy, and from one branch of the formal statistical equilibrium, coincide in these shell models at difference to the corresponding predictions for the Navier-Stokes and Euler equations in 2D. This coincidence have previously led to the mistaken conclusion that shell models exhibit a forward ...
Annotated Bibliography of EDGE2D Use
International Nuclear Information System (INIS)
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables
DEFF Research Database (Denmark)
Burcharth, Hans F.; Andersen, Thomas Lykke; Jensen, Palle Meinert
This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU).......This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU)....
Annotated Bibliography of EDGE2D Use
Energy Technology Data Exchange (ETDEWEB)
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Simulation of corium concrete interaction in 2D geometry
Energy Technology Data Exchange (ETDEWEB)
Cranga, M. [IRSN, DPAM, F-13115 St Paul Les Durance (France); Spindler, B.; Dufour, E. [CEA Grenoble, DEN, F-38000 Grenoble (France); Dimov, Dimitar [Bulgarian Acad Sci, Inst Nucl Res and Nucl Energy, NPPSAL, BU-1784 Sofia (Bulgaria); Atkhen, Kresna [EDF, SEPTEN, F-69628 Villeurbanne (France); Foit, Jerzy [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Garcia-Martin, M. [Univ Politecn Madrid, E-28006 Madrid (Spain); Sevon, Tuomo [Tech Res Ctr Finland VTT, FI-02044 Helsinki (Finland); Schmidt, W. [AREVA, D-91058 Erlangen (Germany); Spengler, C. [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany)
2010-07-01
Benchmarking work was recently performed for the issue of molten corium concrete interaction (MCCI). A synthesis is given here. It concerns first the 2D CCI-2 test with a homogeneous pool and a limestone concrete, which was used for a blind benchmark. Secondly, the COMET-L2 and COMET-L3 2D experiments in a stratified configuration were used as a post-test (L2) and a blind-test (L3) benchmark. More details are given here for the recent benchmark considering a matrix of four reactor cases, with both a homogeneous and a stratified configuration, and with both a limestone and a siliceous concrete. A short overview is given on the different models used in the codes, and the consistency between the benchmark actions on experiments and reactor situations is discussed. Finally, the major uncertainties concerning MCCI are also pointed out. (authors)
Simulation of corium concrete interaction in 2D geometry
International Nuclear Information System (INIS)
Benchmarking work was recently performed for the issue of molten corium concrete interaction (MCCI). A synthesis is given here. It concerns first the 2D CCI-2 test with a homogeneous pool and a limestone concrete, which was used for a blind benchmark. Secondly, the COMET-L2 and COMET-L3 2D experiments in a stratified configuration were used as a post-test (L2) and a blind-test (L3) benchmark. More details are given here for the recent benchmark considering a matrix of four reactor cases, with both a homogeneous and a stratified configuration, and with both a limestone and a siliceous concrete. A short overview is given on the different models used in the codes, and the consistency between the benchmark actions on experiments and reactor situations is discussed. Finally, the major uncertainties concerning MCCI are also pointed out. (authors)
A parallel splitting wavelet method for 2D conservation laws
Schmidt, Alex A.; Kozakevicius, Alice J.; Jakobsson, Stefan
2016-06-01
The current work presents a parallel formulation using the MPI protocol for an adaptive high order finite difference scheme to solve 2D conservation laws. Adaptivity is achieved at each time iteration by the application of an interpolating wavelet transform in each space dimension. High order approximations for the numerical fluxes are computed by ENO and WENO schemes. Since time evolution is made by a TVD Runge-Kutta space splitting scheme, the problem is naturally suitable for parallelization. Numerical simulations and speedup results are presented for Euler equations in gas dynamics problems.
2D materials for nanophotonic devices
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Internal Photoemission Spectroscopy of 2-D Materials
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
1,25(OH)2D3 increases membrane associated protein kinase C in MDBK cells.
Simboli-Campbell, M; Franks, D J; Welsh, J
1992-01-01
To determine whether 1,25-dihydroxycholecalciferol [1,25(OH)2D3] affects protein kinase C (PKC) activity in kidney, as has been demonstrated in HL-60 cells we measured 1,25(OH)2D3 binding, PKC activity and PKC immunoreactivity in Madin Darby bovine kidney (MDBK) cells, a normal renal epithelial cell line derived from bovine kidney. Our data demonstrate that MDBK cells exhibit specific high affinity binding for 1,25(OH)2D3, indicating the presence of the vitamin D receptor (VDR). Treatment of MDBK cells with 1,25(OH)2D3 for 24 h increased membrane PKC activity and immunoreactivity. The effect of 1,25(OH)2D3 was dose-dependent, with a peak effect observed at 10(-7)M 1,25(OH)2D3. The 1,25(OH)2D3 induced increase in membrane PKC was paralleled by a comparable decrease in cytosolic PKC activity and amount. Although time course studies were consistent with a VDR mediated effect of 1,25(OH)2D3 on PKC protein synthesis, total PKC activity was not increased by 1,25(OH)2D3, suggesting an effect on PKC translocation or localization. These results suggest that 1,25(OH)2D3 modulates PKC mediated events in kidney, a classic target for this steroid hormone.
2D supergravity in p+1 dimensions
Gustafsson, H.; Lindstrom, U.
1998-01-01
We describe new $N$-extended 2D supergravities on a $(p+1)$-dimensional (bosonic) space. The fundamental objects are moving frame densities that equip each $(p+1)$-dimensional point with a 2D ``tangent space''. The theory is presented in a $[p+1, 2]$ superspace. For the special case of $p=1$ we recover the 2D supergravities in an unusual form. The formalism has been developed with applications to the string-parton picture of $D$-branes at strong coupling in mind.
Elena Purcaru; Cristian Toma
2012-01-01
The paper presents a solution for endcoding/decoding DNA information in 2D barcodes. First part focuses on the existing techniques and symbologies in 2D barcodes field. The 2D barcode PDF417 is presented as starting point. The adaptations and optimizations on PDF417 and on DataMatrix lead to the solution – DNA2DBC – DeoxyriboNucleic Acid Two Dimensional Barcode. The second part shows the DNA2DBC encoding/decoding process step by step. In conclusions are enumerated the most important features ...
Indian Academy of Sciences (India)
C Shivakumara; M S Hegde
2003-10-01
We report a low temperature synthesis of layered Na0.20CoO2 and K0.44CoO2 phases from NaOH and KOH fluxes at 400°C. These layered oxides are employed to prepare hexagonal HCoO2, LiCoO2 and Delafossite AgCoO2 phases by ion exchange method. The resulting oxides were characterised by powder X-ray diffraction, X-ray photoelectron spectroscopy, SEM and EDX analysis. Final compositions of all these oxides are obtained from chemical analysis of elements present. Na0.20CoO2 oxide exhibits insulating to metal like behaviour, whereas AgCoO2 is semiconducting.
2D Saturable Absorbers for Fibre Lasers
Directory of Open Access Journals (Sweden)
Robert I. Woodward
2015-11-01
Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.
Beltrami States in 2D Electron Magnetohydrodynamics
Shivamoggi, B. K.
2015-01-01
In this paper, the Hamiltonian formulations along with the Poisson brackets for two-dimensional (2D) electron magnetohydrodynamics (EMHD) flows are developed. These formulations are used to deduce the Beltrami states for 2D EMHD flows. In the massless electron limit, the EMHD Beltrami states reduce to the force-free states, though there is no force-free Beltrami state in the general EMHD case.
Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric
2015-10-21
We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.
2d index and surface operators
Gadde, Abhijit; Gukov, Sergei
2014-03-01
In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.
2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计
Institute of Scientific and Technical Information of China (English)
康亚芳; 王静; 张清泉; 行小帅
2014-01-01
This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究，在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上，以均匀平面阵列为例，对3种不同参数的DOA估计进行了计算机仿真，分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。
Photonic crystals to enhance light extraction from 2D materials
Noori, Yasir J; Roberts, Jonathan; Woodhead, Christopher; Bernardo-Gavito, Ramon; Tovee, Peter; Young, Robert J
2016-01-01
We propose a scheme for coupling 2D materials to an engineered cavity based on a defective rod type photonic crystal lattice. We show results from numerical modelling of the suggested cavity design, and propose using the height profile of a 2D material transferred on top of the cavity to maximise coupling between exciton recombination and the cavity mode. The photonic structure plays a key role in enhancing the launch efficiency, by improving the directionality of the emitted light to better couple it into an external optical system. When using the photonic structure, we measured an increase in the extraction ratio by a factor of 3.4. We investigated the variations in the flux spectrum when the radius of the rods is modified, and when the 2D material droops to a range of different heights within the cavity. We found an optimum enhancement when the rods have a radius equal to 0.165 times the lattice constant, this enhancement reduces when the radius is reduced or increased. Finally, we discuss the possible use...
Energy Technology Data Exchange (ETDEWEB)
Jacqmin, R.P.
1991-12-10
The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized ``modes`` of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.
Energy Technology Data Exchange (ETDEWEB)
Jacqmin, R.P.
1991-12-10
The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J ({ge}K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R ({le}K) orthogonalized modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise.
International Nuclear Information System (INIS)
The safety and optimal performance of large, commercial, light-water reactors require the knowledge at all time of the neutron-flux distribution in the core. In principle, this information can be obtained by solving the time-dependent neutron diffusion equations. However, this approach is complicated and very expensive. Sufficiently accurate, real-time calculations (time scale of approximately one second) are not yet possible on desktop computers, even with fast-running, nodal kinetics codes. A semi-experimental, nodal synthesis method which avoids the solution of the time-dependent, neutron diffusion equations is described. The essential idea of this method is to approximate instantaneous nodal group-fluxes by a linear combination of K, precomputed, three-dimensional, static expansion-functions. The time-dependent coefficients of the combination are found from the requirement that the reconstructed flux-distribution agree in a least-squares sense with the readings of J (≥K) fixed, prompt-responding neutron-detectors. Possible numerical difficulties with the least-squares solution of the ill-conditioned, J-by-K system of equations are brought under complete control by the use of a singular-value-decomposition technique. This procedure amounts to the rearrangement of the original, linear combination of K expansion functions into an equivalent more convenient, linear combination of R (≤K) orthogonalized ''modes'' of decreasing magnitude. Exceedingly small modes are zeroed to eliminate any risk of roundoff-error amplification, and to assure consistency with the limited accuracy of the data. Additional modes are zeroed when it is desirable to limit the sensitivity of the results to measurement noise
APPLICATION OF FDS SCHEME TO 2D DEPTH-AVERAGED FLOW-POLLUTANTS SIMULATION
Institute of Scientific and Technical Information of China (English)
Zhang Li-qiong; Zhao Di-hua; Lai Jihn-sung; Yao Qi; Xiao Jun-ying
2003-01-01
A Fulx Difference Splitting (FDS) scheme was used in a 2D depth-averaged flow-pollutant model. Within the framework of the Finite Volume Method (FVM) a 2D simulation was transferred into solving a series of local 1D problems based on the rotational invariance property of the flux. The FDS scheme was employed to estimate the normal numerical flux of variables including water mass, momentum and pollutant concentration across the interface between cells. The scheme was checked with exact solutions and verified by observations in the Nantong reach of the Yangtze River. Calculated results well match both exact solutions and observations.
2d Index and Surface operators
Gadde, Abhijit
2013-01-01
In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools de...
Eagles-Smith, Collin A.; Wiener, James G.; Eckley, Chris S.; Willacker, James J.; Evers, David C.; Marvin-DiPasquale, Mark C.; Obrist, Daniel; Fleck, Jacob; Aiken, George R.; Lepak, Jesse M.; Jackson, Allyson K.; Webster, Jackson; Stewart, Robin; Davis, Jay; Alpers, Charles N.; Ackerman, Josh
2016-01-01
Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing
Eagles-Smith, Collin A; Wiener, James G; Eckley, Chris S; Willacker, James J; Evers, David C; Marvin-DiPasquale, Mark; Obrist, Daniel; Fleck, Jacob A; Aiken, George R; Lepak, Jesse M; Jackson, Allyson K; Webster, Jackson P; Stewart, A Robin; Davis, Jay A; Alpers, Charles N; Ackerman, Joshua T
2016-10-15
Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing
Optical modulators with 2D layered materials
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Automatic Contour Extraction from 2D Image
Directory of Open Access Journals (Sweden)
Panagiotis GIOANNIS
2011-03-01
Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.
2D microwave imaging reflectometer electronics
Energy Technology Data Exchange (ETDEWEB)
Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Fluid and plastic flow dynamics of the critical state for a strongly pinned 2D superconductor
Energy Technology Data Exchange (ETDEWEB)
Monier, D.; Fruchter, L. [Universite de Paris-Sud, Orsay (France). Lab. de Physique des Solides
2000-09-01
We present simulations of the dynamic critical state for a 2D superconductor with strong pinning centers, corresponding to a matching field twice the applied magnetic field. The sharp crossover between the plastic regime, at low current density and temperature, and the fluid flow regime for flux motion is characterized by the activation energy for flux motion and the transverse diffusion of the vortices trajectory. (orig.)
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...
2D PIM Simulation Based on COMSOL
DEFF Research Database (Denmark)
Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu;
2011-01-01
Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular waveguide...
Baby universes in 2d quantum gravity
Ambjorn, J.; S. Jain; G. Thorleifsson
1993-01-01
We investigate the fractal structure of $2d$ quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent $\\g_{string}$.
Flux balance analysis accounting for metabolite dilution.
Benyamini, Tomer; Folger, Ori; Ruppin, Eytan; Shlomi, Tomer
2010-01-01
Flux balance analysis is a common method for predicting steady-state flux distributions within metabolic networks, accounting for the growth demand for the synthesis of a predefined set of essential biomass precursors. Ignoring the growth demand for the synthesis of intermediate metabolites required for balancing their dilution leads flux balance analysis to false predictions in some cases. Here, we present metabolite dilution flux balance analysis, which addresses this problem, resulting in improved metabolic phenotype predictions.
Song, X.; Xu, X.; Tweedie, C. E.
2015-12-01
Drylands have been found playing an important role regulating the seasonality of global atmospheric carbon dioxide concentrations. Precipitation is a primary control of ecosystem carbon exchanges in drylands where a large proportion of the annual total rainfall arrives through a small number of episodic precipitation events. While a large number of studies use the concept of "precipitation pulses" to explore the effects of short-term precipitation events on dryland ecosystem function, few have specifically evaluated the importance of the diurnal timing of these events. The primary goal of this study was to determine how the diurnal timing of rainfall events impacts land-atmosphere net ecosystem CO2 exchanges (NEE) and ecosystem respiration in drylands. Our research leverages a substantial and existing long-term database (AmeriFlux) that describes NEE, Reco and meteorological conditions at 11 sites situated in different dryland ecosystems in South West America. All sites employ the eddy covariance technique to measure land-atmosphere the CO2 exchange rates between atmosphere and ecosystem. Data collected at these sites range from 4 to 10 years, totaling up to 73 site-years. We found that episodic precipitation events stimulate not only vegetation photosynthesis but also ecosystem respiration. Specifically, the morning precipitation events decrease photosynthesis function at daytime and increase ecosystem respiration at nighttime; the afternoon precipitation events do not stimulate ecosystem photosynthesis at daytime, while stimulate ecosystem respiration; the night precipitations suppress photosynthesis at daytime, and enhance ecosystem respiration at nighttime.
Initial Images of the Synthetic Aperture Radiometer 2D-STAR
Initial results obtained using a new synthetic aperture radiometer, 2D-STAR, a dual polarized, L-band radiometer that employs aperture synthesis in two dimensions are presented and analyzed. This airborne instrument is the natural evolution of a previous design that employed employs aperture synthes...
Performance of the new 2D ACAR spectrometer in Munich
Ceeh, Hubert; Leitner, Michael; Böni, Peter; Hugenschmidt, Christoph
2012-01-01
Angular Correlation of Annihilation Radiation (ACAR) is a well established technique for the investigation of the electric structure. A major limitation of ACAR studies is the available positron flux at a small spot on the sample. Fore this reason, the focus of this work is put on the discussion of a newly developed source-sample stage which uses an optimized static magnetic field configuration to guide the positrons onto the sample. The achieved spot size is $d_{\\mathrm{FWHM}}=5.4\\,$mm, with a high efficiency over the whole energy spectrum of the $^{22}$Na positron source. The implications of the performance of the source-sample stage are discussed with regard to 2D-ACAR measurements of single crystalline $\\alpha$-quartz, which serves as a model system for the determination of the total resolution.
2-D soft x-ray arrays in the EAST
Chen, Kaiyun; Xu, Liqing; Hu, Liqun; Duan, Yanmin; Li, Xueqin; Yuan, Yi; Mao, Songtao; Sheng, Xiuli; Zhao, Jinlong
2016-06-01
A high spatial and temporal resolution soft x-ray (SXR) imaging diagnostic has been installed in EAST for the study of magnetohydrodynamics activities and core high-Z impurity transport. Up to 122 lines of sight view the poloidal plasma from three directions (two up-down symmetrical horizontal arrays and one vertical array), which renders the diagnostic able to provide detailed tomographic reconstructions under various conditions. Fourier-Bessel method based on flux coordinates was employed for 2-D SXR tomographic reconstruction. Examples of several events measured by SXR diagnostic in EAST are shown, namely the crash patterns of sawtooth, periodical burst of edge localized modes, and the transport of high-Z intrinsic impurities.
2-D geometrical analysis of deformation
International Nuclear Information System (INIS)
Engineering structures such as dams, bridges, high rise buildings, etc. are subject to deformation. Deformation survey is therefore necessary to determine the magnitude and direction of such movements for the purpose of safety assessment. In this study, a strategy for two-step analyses for deformation survey rising the two dimensional (2-D) geodetic method has been developed, consisting of independent least squares estimation (LSE) of each epoch followed by deformation detection. Important aspects on LSE include global and local testing. In deformation detection, the following aspects were implemented; datum definition by the user. determination of stable datum points, geometrical analysis of deformation and graphic presentation. The developed strategy has been implemented in three computer programs, COMPUT, DEFORM and STRANS. Tests carried out with simulated and known data show that the developed strategy and programs are applicable for 2-D geometrical detection of deformation. (Author)
2D photonic-crystal optomechanical nanoresonator.
Makles, K; Antoni, T; Kuhn, A G; Deléglise, S; Briant, T; Cohadon, P-F; Braive, R; Beaudoin, G; Pinard, L; Michel, C; Dolique, V; Flaminio, R; Cagnoli, G; Robert-Philip, I; Heidmann, A
2015-01-15
We present the optical optimization of an optomechanical device based on a suspended InP membrane patterned with a 2D near-wavelength grating (NWG) based on a 2D photonic-crystal geometry. We first identify by numerical simulation a set of geometrical parameters providing a reflectivity higher than 99.8% over a 50-nm span. We then study the limitations induced by the finite value of the optical waist and lateral size of the NWG pattern using different numerical approaches. The NWG grating, pierced in a suspended InP 265-nm thick membrane, is used to form a compact microcavity involving the suspended nanomembrane as an end mirror. The resulting cavity has a waist size smaller than 10 μm and a finesse in the 200 range. It is used to probe the Brownian motion of the mechanical modes of the nanomembrane. PMID:25679837
Robust and resistant 2D shape alignment
DEFF Research Database (Denmark)
Larsen, Rasmus; Eiriksson, Hrafnkell
2001-01-01
We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l\\_\\$\\backslash\\$infty\\......We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l......\\_\\$\\backslash\\$infty\\$ norm alignments are formulated as linear programming problems. The linear vector function formulation along with the different norms results in alignment methods that are both resistant from influence from outliers, robust wrt. errors in the annotation and capable of handling missing datapoints...
2D-Tasks for Cognitive Rehabilitation
Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.
2011-01-01
Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...
Realistic and efficient 2D crack simulation
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
2D materials: Graphene and others
Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh
2016-05-01
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Engineering light outcoupling in 2D materials
Lien, Derhsien
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Similarities between 2D and 3D convection for large Prandtl number
Indian Academy of Sciences (India)
PANDEY AMBRISH; VERMA MAHENDRA K; CHATTERJEE ANANDO G; DUTTA BIPLAB
2016-07-01
Using direct numerical simulations of Rayleigh–Bénard convection (RBC), we perform a comparative study of the spectra and fluxes of energy and entropy, and the scaling of large-scale quantities for large and infinite Prandtl numbers in two (2D) and three (3D) dimensions. We observe close similarities between the 2D and 3D RBC, in particular, the kinetic energy spectrum $E^{u}(k) ∼ k^{−13/3}$, and the entropy spectrum exhibits a dual branch with a dominant $k^{−2}$ spectrum. We showed that the dominant Fourier modes in 2D and 3D flows are very close. Consequently, the 3D RBC is quasi-two-dimensional, which is the reason for the similarities between the 2D and 3D RBC for large and infinite Prandtl numbers.
TOPAZ2D heat transfer code users manual and thermal property data base
Energy Technology Data Exchange (ETDEWEB)
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.
Limit theorems for 2D invasion percolation
Damron, Michael
2010-01-01
We prove limit theorems and variance estimates for quantities related to ponds and outlets for 2D invasion percolation. We first exhibit several properties of a sequence (O(n)) of outlet variables, the n-th of which gives the number of outlets in the box centered at the origin of side length 2^n. The most important of these properties describe the sequence's renewal structure and exponentially fast mixing behavior. We use these to prove a central limit theorem and strong law of large numbers for (O(n)). We then show consequences of these limit theorems for the pond radii and outlet weights.
Interparticle attraction in 2D complex plasmas
Kompaneets, Roman; Ivlev, Alexei V
2015-01-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecular-like. In this Letter, we propose how to achieve a molecular-like interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
Periodically sheared 2D Yukawa systems
Energy Technology Data Exchange (ETDEWEB)
Kovács, Anikó Zsuzsa [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Hartmann, Peter [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Center for Astrophysics, Space Physics and Engineering Research (CASPER), One Bear Place 97310, Baylor University, Waco, Texas 76798 (United States); Donkó, Zoltán [Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós str. 29-33, H-1121 Budapest (Hungary); Physics Department, Boston College, Chestnut Hill, Massachusetts 20467 (United States)
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
Extrinsic curvature induced 2-d gravity
Viswanathan, K S
1993-01-01
Abtract: 2-dimensional fermions are coupled to extrinsic geometry of a conformally immersed surface in ${\\bf R}^3$ through gauge coupling. By integrating out the fermions, we obtain a WZNW action involving extrinsic curvature of the surface. Restricting the resulting effective action to surfaces of $h\\sqrt g=1$, an explicit form of the action invariant under Virasaro symmetry is obtained. This action is a sum of the geometric action for the Virasaro group and the light-cone action of 2-d gravity plus an interaction term. The central charges of the theory in both the left and right sectors are calculated.
2-d Simulations of Test Methods
DEFF Research Database (Denmark)
Thrane, Lars Nyholm
2004-01-01
using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...... approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when...... model....
Temple, Aidan
2013-01-01
Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to
Phase Engineering of 2D Tin Sulfides.
Mutlu, Z; Wu, RJ; Wickramaratne, D.; Shahrezaei, S; Liu, C; Temiz, S; Patalano, A; M Ozkan; Lake, RK; Mkhoyan, KA; Ozkan, CS
2016-01-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2...
Interparticle Attraction in 2D Complex Plasmas
Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.
2016-03-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
Comments on Thermalization in 2D CFT
de Boer, Jan
2016-01-01
We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...
Multienzyme Inkjet Printed 2D Arrays.
Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel
2015-08-19
The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072
Photocurrent spectroscopy of 2D materials
Cobden, David
Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.
Magnetic field decoupling and 3D-2D crossover in Nb/Cu multilayers
DEFF Research Database (Denmark)
Krasnov, V.M.; Kovalev, A.E.; Oboznov, V.A.;
1996-01-01
Transport properties of Nb/Cu multilayers were measured along and across layers. Ir is shown that not only the temperature but also the magnetic field parallel to layers can effectively decouple layers and cause the three-to-two-dimensional (3D-2D) crossover. As a consequence of the 3D-2D crossover...... magnetic field and by the multiply branched I-V curves caused by flux-flow of Josephson vortices in the stacked superconductor-normal-metal-superconductor junctions composing the multilayer. By measurements across layers the ''breaking field'' at which the proximity induced superconductivity in the normal...
Fabrication of 2D and 3D dendritic nanoarchitectures of CdS
Institute of Scientific and Technical Information of China (English)
GU Li
2008-01-01
The controlled preparation of two-dimensional (2D) and three-dimensional (3D) dendritic nanostructures of CdS was reported. 2D dendritic patterns are obtained through the self-assembly of nanoparticles under the entropy-driven force. 3D dendritic needle-like nanocrystals are prepared through an aqueous solution synthesis regulated by oleic acid molecules. Their growth mechanism is presumed to be the selective binding of OA molecules onto growing crystal planes. Techniques such as SEM, TEM, XRD, and FT-IR were employed to characterize the morphologies and structures of the obtained products.
Locality constraints and 2D quasicrystals
International Nuclear Information System (INIS)
The plausible assumption that long-range interactions between atoms are negligible in a quasicrystal leaks to the study of tilings that obey constraints on the local configurations of tiles. The theory of such constraints (called matching rules) for 2D quasicrystal tilings is reviewed here. Different types of matching rules are defined and examples of tilings obeying them are given where known. The role of tile decoration is discussed and is shown to be significant in at least two cases (octagonal and dodecagonal duals of periodic 4-grids and 6-grids). A new result is introduced: a constructive procedure is described for generating weak matching rules for tilings with N-fold symmetry, for any N that is either a prime number or twice a prime number. The physics associated with weak matching rules, results on local growth rules, and the case of icosahedral symmetry are all briefly discussed. (author). 29 refs, 4 figs
2D Cooling of Magnetized Neutron Stars
Aguilera, Deborah N; Miralles, Juan A
2007-01-01
Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...
Alignment free characterization of 2D gratings
Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis
2015-01-01
Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.
Area preserving diffeomorphisms and 2-d gravity
La, H S
1995-01-01
Area preserving diffeomorphisms of a 2-d compact Riemannian manifold with or without boundary are studied. We find two classes of decompositions of a Riemannian metric, namely, h- and g-decomposition, that help to formulate a gravitational theory which is area preserving diffeomorphism (SDiffM-) invariant but not necessarily diffeomorphism invariant. The general covariance of equations of motion of such a theory can be achieved by incorporating proper Weyl rescaling. The h-decomposition makes the conformal factor of a metric SDiffM-invariant and the rest of the metric invariant under conformal diffeomorphisms, whilst the g-decomposition makes the conformal factor a SDiffM scalar and the rest a SDiffM tensor. Using these, we reformulate Liouville gravity in SDiffM invariant way. In this context we also further clarify the dual formulation of Liouville gravity introduced by the author before, in which the affine spin connection is dual to the Liouville field.
Graphene suspensions for 2D printing
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
Numerical Evaluation of 2D Ground States
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.
Metrology for graphene and 2D materials
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
Directory of Open Access Journals (Sweden)
Gessica Sala
2013-01-01
Full Text Available Dysfunctions of chaperone-mediated autophagy (CMA, the main catabolic pathway for alpha-synuclein, have been linked to the pathogenesis of Parkinson’s disease (PD. Since till now there is limited information on how PD-related toxins may affect CMA, in this study we explored the effect of mitochondrial complex I inhibitor rotenone on CMA substrates, alpha-synuclein and MEF2D, and effectors, lamp2A and hsc70, in a human dopaminergic neuroblastoma SH-SY5Y cell line. Rotenone induced an upregulation of alpha-synuclein and MEF2D protein levels through the stimulation of their de novo synthesis rather than through a reduction of their CMA-mediated degradation. Moreover, increased MEF2D transcription resulted in higher nuclear protein levels that exert a protective role against mitochondrial dysfunction and oxidative stress. These results were compared with those obtained after lysosome inhibition with ammonium chloride. As expected, this toxin induced the cytosolic accumulation of both alpha-synuclein and MEF2D proteins, as the result of the inhibition of their lysosome-mediated degradation, while, differently from rotenone, ammonium chloride decreased MEF2D nuclear levels through the downregulation of its transcription, thus reducing its protective function. These results highlight that rotenone affects alpha-synuclein and MEF2D protein levels through a mechanism independent from lysosomal degradation inhibition.
Face recognition method based on 2D-PCA and 2D-LDA%基于2D-PCA和2D-LDA的人脸识别方法
Institute of Scientific and Technical Information of China (English)
温福喜; 刘宏伟
2007-01-01
提出了基于2D-PCA、2D-LDA两种特征采用融合分类器的人脸识别方法.首先提取人脸图像的2D-PCA和2D-LDA特征,对不同特征在决策层对分类器进行融合.在ORL人脸库上的试验结果表明,分类器决策层融合方法在识别性能上优于2D-PCA和2D-LDA,更具有鲁棒性.
Analysis list: Kmt2d [Chip-atlas[Archive
Lifescience Database Archive (English)
Full Text Available Kmt2d Adipocyte,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.5.tsv http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d....Adipocyte.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d.Pluripo
Analysis list: KMT2D [Chip-atlas[Archive
Lifescience Database Archive (English)
Full Text Available KMT2D Blood,Digestive tract + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KM...T2D.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KMT2D.5.tsv http://dbarchive.biosc...iencedbc.jp/kyushu-u/hg19/target/KMT2D.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Blo...od.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Digestive_tract
DEVELOPMENT OF COUPLED 1D-2D MATHEMATICAL MODELS FOR TIDAL RIVERS
Institute of Scientific and Technical Information of China (English)
XU Zu-xin; YIN Hai-long
2004-01-01
Some coupled 1D-2D hydrodynamic and water quality models depicting tidal water bodies with complex topography were presented. For the coupled models, finite element method was used to solve the governing equations so as to study tidal rivers with complex topography. Since the 1D and 2D models were coupled, the principle of model coupling was proposed to account appropriately for the factors of water level, flow and pollutant flux and the related dynamical behavior was simulated. Specifically the models were used to probe quantitative pollution contribution of receiving water from neighboring Jiangsu and Zhejiang Provinces to the pollution in the Huangpu River passing through Shanghai City. Numerical examples indicated that the developed coupled 1D-2D models are applicable in tidal river network region of Shanghai.
2D edge plasma modeling extended up to the main chamber
Energy Technology Data Exchange (ETDEWEB)
Dekeyser, W., E-mail: wouter.dekeyser@mech.kuleuven.be [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Baelmans, M. [Department of Mechanical Engineering, Katholieke Universiteit Leuven, Celestijnenlaan 300A, 3001 Leuven (Belgium); Reiter, D.; Boerner, P.; Kotov, V. [Institut fuer Plasmaphysik, Forschungszentrum Juelich GmbH, EURATOM-Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany)
2011-08-01
Far SOL plasma flow, and hence main chamber recycling and plasma surface interaction, are today still only very poorly described by current 2D fluid edge codes, such as B2, UEDGE or EDGE2D, due to a common technical limitation. We have extended the B2 plasma fluid solver in the current ITER version of B2-EIRENE (SOLPS4.3) to allow plasma solutions to be obtained up to the 'real vessel wall', at least on the basis of ad hoc far SOL transport models. We apply here the kinetic Monte Carlo Code EIRENE on such plasma solutions to study effects of this model refinement on main chamber fluxes and sputtering, for an ITER configuration. We show that main chamber sputtering may be significantly modified both due to thermalization of CX neutrals in the far SOL and poloidally highly asymmetric plasma wall contact, as compared to hitherto applied teleportation of particle fluxes across this domain.
2D manifold-independent spinfoam theory
International Nuclear Information System (INIS)
A number of background-independent quantization procedures have recently been employed in 4D nonperturbative quantum gravity. We investigate and illustrate these techniques and their relation in the context of a simple 2D topological theory. We discuss canonical quantization, loop or spin network states, path integral quantization over a discretization of the manifold, spin foam formulation and the fully background-independent definition of the theory using an auxiliary field theory on a group manifold. While several of these techniques have already been applied to this theory by Witten, the last one is novel: it allows us to give a precise meaning to the sum over topologies, and to compute background-independent and, in fact, 'manifold-independent' transition amplitudes. These transition amplitudes play the role of Wightman functions of the theory. They are physical observable quantities, and the canonical structure of the theory can be reconstructed from them via a C* algebraic GNS construction. We expect an analogous structure to be relevant in 4D quantum gravity
Ion Transport in 2-D Graphene Nanochannels
Xie, Quan; Foo, Elbert; Duan, Chuanhua
2015-11-01
Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).
Intermittency in 2D soap film turbulence
Cerbus, R T
2013-01-01
The Reynolds number dependency of intermittency for 2D turbulence is studied in a flowing soap film. The Reynolds number used here is the Taylor microscale Reynolds number R_{\\lambda}, which ranges from 20 to 800. Strong intermittency is found for both the inverse energy and direct enstrophy cascades as measured by (a) the pdf of velocity differences P(\\delta u(r)) at inertial scales r, (b) the kurtosis of P(\\partial_x u), and (c) the scaling of the so-called intermittency exponent \\mu, which is zero if intermittency is absent. Measures (b) and (c) are quantitative, while (a) is qualitative. These measurements are in disagreement with some previous results but not all. The velocity derivatives are nongaussian at all R_{\\lambda} but show signs of becoming gaussian as R_{\\lambda} increases beyond the largest values that could be reached. The kurtosis of P(\\delta u(r)) at various r indicates that the intermittency is scale dependent. The structure function scaling exponents also deviate strongly from the Kraichn...
2D DIGITAL SIMPLIFIED FLOW VALVE
Institute of Scientific and Technical Information of China (English)
Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D
2004-01-01
The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.
Resolution Independent 2D Cartoon Video Conversion
Directory of Open Access Journals (Sweden)
MSF. Fayaza
2016-03-01
Full Text Available This paper describes a novel system for vectorizing 2D raster cartoon. The output videos are the resolution independent, smaller in file size. As a first step, input video is segment to scene thereafter all processes are done for each scene separately. Every scene contains foreground and background objects so in each and every scene foreground background classification is performed. Background details can occlude by foreground objects but when foreground objects move its previous position such occluded details exposed in one of the next frame so using that frame can fill the occluded area and can generate static background. Classified foreground objects are identified and the motion of the foreground objects tracked for this simple user assistance is required from those motion details of foreground object’s animation generated. Static background and foreground objects segmented using K-means clustering and each and every cluster’s vectorized using potrace. Using vectored background and foreground object animation path vector video regenerated.
Metabolic Flux Analysis of L-Tryptophan Synthesis in Escherichia coli%大肠杆菌L-色氨酸合成的代谢流分析
Institute of Scientific and Technical Information of China (English)
申彤; 徐庆阳; 张成林; 谢希贤
2014-01-01
目的：从代谢流的层面研究育种过程中基因操作对色氨酸积累的影响，为色氨酸菌种选育的设计思路提供理论指导和验证。方法：根据实验菌株的代谢特点构建L-色氨酸代谢网络图，对出发菌株TRTH0709，及其重组菌株TRTH1013、TRTH1105和TRTH1107在30 L发酵罐中进行分批流加发酵试验，在发酵进入稳定期后的26~28 h，分别检测主要胞外代谢物的浓度并计算变化速率。结果和结论：得到了各菌株在拟稳态下的代谢流分布图。转酮酶基因（tktA）和磷酸烯醇式丙酮酸合成酶基因（ppsA）过表达能显著影响中心代谢途径，使代谢流向有利于色氨酸合成的方向改变，贮碳因子基因（csrA）敲除的影响较小，但在tktA和ppsA过表达质粒存在的情况下对色氨酸合成的代谢流有明显的促进作用。进一步的菌种改造仍有待进行，葡萄糖转运系统的替代和三羧酸循环的减弱是主要方向。%Objective: To analysis the effect of gene manipulation on accumulation of L-tryptophan at the level of metabolic flow in the process of strain breeding. To provide theoretical guidance and validation for strains breed-ing design. Methods: According to the metabolic characteristics of test strain, metabolism network of L-tryptophan was constructed. The fed-batch fermentation of L-tryptophan by original strain TRTH0709 and recombination strains (TRTH1013, TRTH1105 and TRTH1107) were carrried out in 30 L fermentor. The concentrations of extra-cellu-lar metabolites were determined under pseudo-steady state of the batch culture(26~28 h). Results & Conclusion:The metabolic flux distribution maps of the four strains were obtained, compared and analyzed. Overexpression of transketolase(tktA) and PEP synthase(ppsA) can significantly influence the central metabolic pathways, make the metabolic flow redirect to tryptophan synthesis way. The influence of carbon store regulator A
The CRF-method for semiconductors' intravalley collision kernels: I – the 2D case
Directory of Open Access Journals (Sweden)
Claudio Barone
1992-05-01
Full Text Available If the collisions are redefined as a flux a kinetic conservation law can be written in divergence form. This can be handled numerically, in the framework of Finite Particle Approximation, using the CRF-method. In the present paper the relevant quantities needed for computer implementation of the CRF-method are derived in the case of a 2D momentum space for the semiconductors' intravalley collision kernels.
2D-photochemical model for forbidden oxygen line emission for comet 1P/Halley
Cessateur, G.; De Keyser, J.; Maggiolo, R.; Rubin, M.; Gronoff, G.; Gibbons, A.; Jehin, E.; Dhooghe, F.; Gunell, H.; Vaeck, N.; Loreau, J.
2016-08-01
We present here a 2D-model of photochemistry for computing the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines at 577.7 nm, 630 nm, and 636.4 nm, in case of the comet 1P/Halley. The presence of O2 within cometary atmospheres, measured by the in-situ ROSETTA and GIOTTO missions, necessitates a revision of the usual photochemical models. Indeed, the photodissociation of molecular oxygen also leads to a significant production of oxygen in excited electronic states. In order to correctly model the solar UV flux absorption, we consider here a 2D configuration. While the green to red-doublet ratio is not affected by the solar UV flux absorption, estimates of the red-doublet and green lines emissions are, however, overestimated by a factor of two in the 1D model compared to the 2D model. Considering a spherical symmetry, emission maps can be deduced from the 2D model in order to be directly compared to ground and/or in-situ observations.
Large-area and high-quality 2D transition metal telluride
Zhou, Jiadong; Liu, Fucai; Lin, Junhao; Huang, Xiangwei; Xia, Juan; Zhang, Bowei; Zeng, Qingsheng; Wang, Hong; Zhu, Chao; Niu, Lin; Wang, Xuewen; Fu, Wei; Yu, Peng; Chang, Tay-Rong; Hsu, Chuang-Han
2016-01-01
Atomically thin transitional metal ditellurides like WTe2 and MoTe2 have triggered tremendous research interests because of their intrinsic nontrivial band structure. They are also predicted to be 2D topological insulators and type-II Weyl semimetals. However, most of the studies on ditelluride atomic layers so far rely on the low-yield and time-consuming mechanical exfoliation method. Direct synthesis of large-scale monolayer ditellurides has not yet been achieved. Here, using the chemical v...
Identification of novel CYP2D7-2D6 hybrids: non-functional and functional variants
Directory of Open Access Journals (Sweden)
Andrea Gaedigk
2010-10-01
Full Text Available Polymorphic expression of CYP2D6 contributes to the wide range of activity observed for this clinically important drug metabolizing enzyme. In this report we describe novel CYP2D7/2D6 hybrid genes encoding non-functional and functional CYP2D6 protein and a CYP2D7 variant that mimics a CYP2D7/2D6 hybrid gene. Five kb long PCR products encompassing the novel genes were entirely sequenced. A quantitative assay probing in different gene regions was employed to determine CYP2D6 and 2D7 copy number variations and the relative position of the hybrid genes within the locus was assessed by long-range PCR. In addition to the previously known CYP2D6*13 and *66 hybrids, we describe three novel non-functional CYP2D7-2D6 hybrids with gene switching in exon 2 (CYP2D6*79, intron 2 (CYP2D6*80 and intron 5 (CYP2D6*67. A CYP2D7-specific T-ins in exon 1 causes a detrimental frame shift. One subject revealed a CYP2D7 conversion in the 5’-flanking region of a CYP2D6*35 allele, was otherwise unaffected (designated CYP2D6*35B. Finally, three DNAs revealed a CYP2D7 gene with a CYP2D6-like region downstream of exon 9 (designated CYP2D7[REP6]. Quantitative copy number determination, sequence analyses and long-range PCR mapping were in agreement and excluded the presence of additional gene units. Undetected hybrid genes may cause over-estimation of CYP2D6 activity (CYP2D6*1/*1 vs *1/hybrid, etc, but may also cause results that may interfere with the genotype determination. Detection of hybrid events, ‘single’ and tandem, will contribute to more accurate phenotype prediction from genotype data.
2-D Chemical-Dynamical Modeling of Venus's Sulfur Variability
Bierson, Carver J.; Zhang, Xi
2016-10-01
Over the last decade a combination of ground based and Venus Express observations have been made of the concentration of sulfur species in Venus's atmosphere, both above [1, 2] and below the clouds [3, 4]. These observations put constraints on both the vertical and meridional variations of the major sulfur species in Venus's atmosphere.. It has also been observed that SO2 concentrations varies on both timescales of hours and years [1,4]. The spatial and temporal distribution of tracer species is owing to two possibilities: mutual chemical interaction and dynamical tracer transport.Previous Chemical modeling of Venus's middle atmosphere has only been explored in 1-D. We will present the first 2-D (altitude and latitude) chemical-dynamical model for Venus's middle atmosphere. The sulfur chemistry is based on of the 1D model of Zhang et al. 2012 [5]. We do model runs over multiple Venus decades testing two scenarios: first one with varying sulfur fluxes from below, and second with secular dynamical perturbations in the atmosphere [6]. By comparing to Venus Express and ground based observations, we put constraints on the dynamics of Venus's middle atmosphere.References: [1] Belyaev et al. Icarus 2012 [2] Marcq et al. Nature geoscience, 2013 [3] Marcq et al. JGR:Planets, 2008 [4] Arney et al. JGR:Planets, 2014 [5] Zhang et al. Icarus 2012 [6] Parish et al. Icarus 2012
Finite state models of constrained 2d data
DEFF Research Database (Denmark)
Justesen, Jørn
2004-01-01
This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods.......This paper considers a class of discrete finite alphabet 2D fields that can be characterized using tools front finite state machines and Markov chains. These fields have several properties that greatly simplify the analysis of 2D coding methods....
Polynomial solution of 2D Kalman-Bucy filtering problem
Sebek, M.
1992-01-01
The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2)
Polynomial solution of 2D Kalman-Bucy filtering problem
Sebek, M.
1992-01-01
The 2D version of the Kalman-Bucy filtering problem is formulated and then solved via 2D polynomial methods. The optimal filter is restricted to be a linear causal system. The design procedure is shown to consist of one 2D spectral factorization equation only. In fact, it works for n-D signals (n>2) as well.
2D-DCT的FPGA实现%Implementation of 2D-DCT using FPGA
Institute of Scientific and Technical Information of China (English)
郭前岗; 潘磊; 周西峰
2012-01-01
This paper presents an implementation for 2D-DCT using FPGA. It replaces the adders and multipliers with distributed arithmetic which is based on lookup tables, This design reduces resources and improves the operation speed. The simulation results show that the datas transformed by 2D-DCT are consistent with expectations, which is significant for the digital image and video compression.%设计了采用FPGA来实现2D—DCT的方案，对于其中的关键部分——乘加运算，给出了基于查找表的分布式算法。整个设计节省了资源，提高了运算速度。仿真结果表明，经LC-2D-DCT变换后的数据与期望值总体上是一致的，这对于数字图像和视频压缩的研究有一定的意义。
Synthesis and characterization of BaFe{sub 2}As{sub 2} single crystals grown by in-flux technique
Energy Technology Data Exchange (ETDEWEB)
Garitezi, T.M.; Adriano, C.; Rosa, P.F.S.; Bittar, E.M.; Bufaical, L.; Almeida, R.L.; Granado, E.; Pagliuso, P.G., E-mail: thalesmg@ifi.unicamp.br [Universidade Estadual de Campinas (UNICAM), SP (Brazil). Instituto de Fisica Gleb Wataghin; Grant, T; Fisk, Z. [University of California, Irvine, CA (United States); Avila, M.A.; Ribeiro, R.A. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas; Kuhns, P.L.; Reyes, A.P.; Urbano, R.R. [National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL (United States)
2013-08-15
We report a detailed characterization of BaFe{sub 2}As{sub 2} single crystals grown by a metallic In-flux technique, an alternative to well-established growth routes using FeAs self- or Sn-flux. Electrical resistivity, magnetic susceptibility, nuclear magnetic resonance, and energy dispersive spectroscopy measurements showed no evidence of flux incorporation. More importantly, our results demonstrate that BaFe{sub 2}As{sub 2} single crystals grown by In-flux have extremely high quality. To explore the efficiency of the In-flux growth method, we have also prepared nearly optimally doped superconducting samples of Ba(Fe{sub 1} {sub -x} M {sub x} ){sub 2}As{sub 2} (M = Co, Cu, Ni, and Ru). Among other interesting features, this alternative chemical substitution method has led to enhancement of the maximum T{sub c} for most dopings. (author)
Correlated Electron Phenomena in 2D Materials
Lambert, Joseph G.
In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in
Stability Test for 2-D Continuous-Discrete Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.
Analysis list: Mef2d [Chip-atlas[Archive
Lifescience Database Archive (English)
Full Text Available Mef2d Muscle + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Mef2d.Muscle.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Muscle.gml ...
CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping
Directory of Open Access Journals (Sweden)
Amanda K Riffel
2016-01-01
Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe
Mints, R G
1995-01-01
We consider the flux jump instability of the Bean's critical state arising in the flux creep regime in type-II superconductors. We find the flux jump field, $B_j$, that determines the superconducting state stability criterion. We calculate the dependence of $B_j$ on the external magnetic field ramp rate, magnetization experiments the slope of the current-voltage curve in the flux creep regime determines the stability of the Bean's critical state, {\\it i.e.}, the value of $B_j$. We show that a flux jump can be preceded by the magneto-thermal oscillations and find the frequency of these oscillations as a function of $\\dot B_e$.
Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.
Directory of Open Access Journals (Sweden)
Hua Cai
Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.
Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector
Energy Technology Data Exchange (ETDEWEB)
Bucholz, J.A.
1995-08-01
This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.
U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...
Plasmas for environmental issues: from hydrogen production to 2D materials assembly
Tatarova, E.; Bundaleska, N.; Sarrette, J. Ph; Ferreira, C. M.
2014-12-01
generation in water discharges of intense UV radiation, shock waves and active radicals (OH, O, H2O2, etc), which are all effective agents against many biological pathogens and harmful chemicals, make these discharges suitable for decontamination, sterilization and purification processes. Moreover, plasmas appear as invaluable tools for the synthesis and engineering of new nanomaterials and in particular 2D materials. A brief overview on plasma-synthesized carbon nanostructures shows the high potential of such materials for energy conversion and storage applications.
Plasmas for environmental issues: from hydrogen production to 2D materials assembly
International Nuclear Information System (INIS)
generation in water discharges of intense UV radiation, shock waves and active radicals (OH, O, H2O2, etc), which are all effective agents against many biological pathogens and harmful chemicals, make these discharges suitable for decontamination, sterilization and purification processes. Moreover, plasmas appear as invaluable tools for the synthesis and engineering of new nanomaterials and in particular 2D materials. A brief overview on plasma-synthesized carbon nanostructures shows the high potential of such materials for energy conversion and storage applications. (invited review)
High Torque Density Transverse Flux Machine without the Need to Use SMC Material for 3D Flux Paths
DEFF Research Database (Denmark)
Lu, Kaiyuan; Wu, Weimin
2015-01-01
machine topology proposed in this paper, by advantageously utilizing the magnetic flux path provided by an additional rotor, use of laminations that allow 2-D flux paths only will be sufficient to accomplish the required 3-D flux paths. The machine also has a high torque density and is therefore......This paper presents a new transverse flux permanent magnet machine. In a normal transverse flux machine, complicated 3-D flux paths often exist. Such 3-D flux paths would require the use of soft magnetic composites material instead of laminations for construction of the machine stator. In the new...
Maximizing entropy of image models for 2-D constrained coding
Forchhammer, Søren; Danieli, Matteo; Burini, Nino; Zamarin, Marco; Ukhanova, Ann
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite context models, which define stationary probability distributions on finite rectangles and thus allow for calculation of the entropy. We consider two binary constraints and revisit the hard square const...
Directory of Open Access Journals (Sweden)
Justyna Zeler
2014-10-01
Full Text Available Li2SO4 or (Li2SO4 + SiO2-mixture fluxes were used to prepare a Lu2O3:Eu powder phosphor as well as an undoped Lu2O3 utilizing commercial lutetia and europia as starting reagents. SEM images showed that the fabricated powders were non-agglomerated and the particles sizes varied from single microns to tens of micrometers depending largely on the flux composition rather than the oxide(s-to-flux ratio. In the presence of SiO2 in the flux, certain grains grew up to 300–400 μm. The lack of agglomeration and the large sizes of crystallites allowed making single crystal structural measurements and analysis on an undoped Lu2O3 obtained by means of the flux technique. The cubic structure with a = 10.393(2 Å, and Ia space group at 298 K was determined. The most efficient radioluminescence of Lu2O3:Eu powders reached 95%–105% of the commercial Gd2O2S:Eu.
Sparse Non-negative Matrix Factor 2-D Deconvolution
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel N.
2006-01-01
We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive...... and prove the convergence of two algorithms for NMF2D based on minimizing the squared error and the Kullback-Leibler divergence respectively. Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives easy interpretable decompositions and devise two algorithms for computing...
Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung
Bergmeir, Christoph; Subramanian, Navneeth
Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.
2D Four-Channel Perfect Reconstruction Filter Bank Realized with the 2D Lattice Filter Structure
Directory of Open Access Journals (Sweden)
Sezen S
2006-01-01
Full Text Available A novel orthogonal 2D lattice structure is incorporated into the design of a nonseparable 2D four-channel perfect reconstruction filter bank. The proposed filter bank is obtained by using the polyphase decomposition technique which requires the design of an orthogonal 2D lattice filter. Due to constraint of perfect reconstruction, each stage of this lattice filter bank is simply parameterized by two coefficients. The perfect reconstruction property is satisfied regardless of the actual values of these parameters and of the number of the lattice stages. It is also shown that a separable 2D four-channel perfect reconstruction lattice filter bank can be constructed from the 1D lattice filter and that this is a special case of the proposed 2D lattice filter bank under certain conditions. The perfect reconstruction property of the proposed 2D lattice filter approach is verified by computer simulations.
KPLS-RWBFNN model for MFL 2D defect profile reconstruction
Xu, Chao; Wang, Changlong; Ji, Fengzhu
2013-03-01
Kernel partial least squares (KPLS) is normally very efficient for tackling nonlinear systems by mapping an original input space into a high-dimensional feature space and creating a linear PLS model in the feature space. Unlike other nonlinear PLS techniques, KPLS does not entail any nonlinear optimisation procedures. However, due to the linear inner model of PLS, KPLS is still inappropriate for describing the significant nonlinear characteristic data structure while dealing with complex physical systems in practical situations. Under this circumstance, radial wavelet basic function neural network (RWBFNN) can replace the linear inner model of PLS in the nonlinear kernel-based algorithm. Thus, KPLS-RWBFNN model is proposed in this paper and applied to multi-resolution approximation reconstruction of 2D defect profiles in magnetic flux leakage testing. The reconstructions of 2D defect profiles by this method are implemented, and the comparisons among reconstructions by KPLS, RWBFNN and the proposed approach are also undertaken. Meanwhile, the reconstructions of 2D defects by RWBFNN and the proposed approach at different SNR are also executed. The results indicate that KPLS-RWBFNN model could simplify the structure of the network while holding well-behaved generalisation and multi-resolution approximation and predict the 2D defect profiles accurately and rapidly with good robustness.
2 D patterns of soil gas diffusivity , soil respiration, and methane oxidation in a soil profile
Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike
2015-04-01
The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration, which makes it a key parameter for root growth and gas production and consumption. Horizontal homogeneity in soil profiles is assumed in most studies for soil properties - including DS. This assumption, however, is not valid, even in apparently homogeneous soils, as we know from studies using destructive sampling methods. Using destructive methods may allow catching a glimpse, but a large uncertainty remains, since locations between the sampling positions cannot be analyzed, and measurements cannot be repeated. We developed a new method to determine in situ the apparent soil gas diffusion coefficient in order to examine 2 D pattern of DS and methane oxidation in a soil profile. Different tracer gases (SF6, CF4, C2H6) were injected continuously into the subsoil and measured at several locations in the soil profile. These data allow for modelling inversely the 2 D patterns of DS using Finite Element Modeling. The 2D DS patterns were then combined with naturally occurring CH4 and CO2 concentrations sampled at the same locations to derive the 2D pattern of soil respiration and methane oxidation in the soil profile. We show that methane oxidation and soil respiration zones shift within the soil profile while the gas fluxes at the surface remain rather stable during a the 3 week campaign.
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
GMC Collisions as Triggers of Star Formation. I. Parameter Space Exploration with 2D Simulations
Wu, Benjamin; Tan, Jonathan C; Bruderer, Simon
2015-01-01
We utilize magnetohydrodynamic (MHD) simulations to develop a numerical model for GMC-GMC collisions between nearly magnetically critical clouds. The goal is to determine if, and under what circumstances, cloud collisions can cause pre-existing magnetically subcritical clumps to become supercritical and undergo gravitational collapse. We first develop and implement new photodissociation region (PDR) based heating and cooling functions that span the atomic to molecular transition, creating a multiphase ISM and allowing modeling of non-equilibrium temperature structures. Then in 2D and with ideal MHD, we explore a wide parameter space of magnetic field strength, magnetic field geometry, collision velocity, and impact parameter, and compare isolated versus colliding clouds. We find factors of ~2-3 increase in mean clump density from typical collisions, with strong dependence on collision velocity and magnetic field strength, but ultimately limited by flux-freezing in 2D geometries. For geometries enabling flow a...
Symmetries and solvable models for evaporating 2D black holes
Cruz Muñoz, José Luis; Navarro-Salas, José; Navarro Navarro, Miguel; Talavera, C. F.
1997-01-01
We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is suddenly switched off. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model. © Elsevier Science B.V
New Type of 2-D Laser Doppler Vibrometer
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The fundamentals and method of 2-D laser Doppler vibrometer are introduced．The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means，the measuring results are accurate.
Statische verweking talud: Handleiding Windows versie SLIQ2D
Van den Ham, G.
2009-01-01
SLIQ2D is een quasi-2D computerprogramma waarmee het optreden voorspeld kan worden van een verwekingsvloeiing ofwel een instabiliteit van een onderwatertalud ten gevolge van verweking, gegeven de taludhelling, relatieve dichtheid en materiaaleigenschappen van het zand. Dit programma is in 1994 door
Cascading Constrained 2-D Arrays using Periodic Merging Arrays
DEFF Research Database (Denmark)
Forchhammer, Søren; Laursen, Torben Vaarby
2003-01-01
We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....
From 2D Lithography to 3D Patterning
Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.
2010-01-01
Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the perfo
The relation between Euclidean and Lorentzian 2D quantum gravity
Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.
2006-01-01
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (gen
Tracking objects outside the line of sight using 2D intensity images
Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.
2016-08-01
The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time.
Van der Waals stacked 2D layered materials for optoelectronics
Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.
2016-06-01
The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.
Institute of Scientific and Technical Information of China (English)
李冬青; 时文娟
2009-01-01
A complex [Cu2Br2(L)2]2 (1) (L=bis (2-pyrimidinylthio)methane) has been synthesized and structurally characterized. Complex 1 contains dinuclear Cu2Br2 units, which are linked by ditopic L to form a 2D layer structure with a 36-membered macrometallocycle. The adjacent layers are further connected through interpyrimidyl rings C-H strong green solid-state photoluminescence, due to metal-to-ligand charge-transfer (MLCT) at room temperature. CCDC: 711434.
Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng
2016-08-01
Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648
Optical and Electronic Properties of 2D Graphitic Carbon-Nitride and Carbon Enriched Alloys
Therrien, Joel; Li, Yancen; Schmidt, Daniel; Masaki, Michael; Syed, Abdulmannan
The two-dimensional form of graphitic carbon-nitride (gCN) has been successfully synthesized using a simple CVD process. In it's pure form, the carbon to nitrogen ratio is 0.75. By adding a carbon bearing gas to the growth environment, the C/N ratio can be increased, ultimately reaching the pure carbon form: graphene. Unlike attempts at making a 2D alloy system out of BCN, the CN system does not suffer from phase segregation and thus forms a homogeneous alloy. The synthesis approach and electronic and optical properties will be presented for the pure gCN and a selection of alloy compositions.
Introduction to game physics with Box2D
Parberry, Ian
2013-01-01
Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro
Maximizing entropy of image models for 2-D constrained coding
DEFF Research Database (Denmark)
Forchhammer, Søren; Danieli, Matteo; Burini, Nino;
2010-01-01
This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...... £ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...
The NH$_2$D hyperfine structure revealed by astrophysical observations
Daniel, F.; Coudert, L. H.; Punanova, A.; Harju, J.; Faure, A.; Roueff, E.; Sipilä, O.; Caselli, P.; Güsten, R.; Pon, A.; Pineda, J E
2016-01-01
The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) n...
Kalman Filter for Generalized 2-D Roesser Models
Institute of Scientific and Technical Information of China (English)
SHENG Mei; ZOU Yun
2007-01-01
The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.
Optimization and practical implementation of ultrafast 2D NMR experiments
Directory of Open Access Journals (Sweden)
Luiz H. K. Queiroz Júnior
2013-01-01
Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.
Optimization and practical implementation of ultrafast 2D NMR experiments
Energy Technology Data Exchange (ETDEWEB)
Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation
2013-09-01
Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)
2D electron cyclotron emission imaging at ASDEX Upgrade (invited)
Energy Technology Data Exchange (ETDEWEB)
Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)
2010-10-15
The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.
A coupled $2\\times2$D Babcock-Leighton solar dynamo model. II. Reference dynamo solutions
Lemerle, Alexandre
2016-01-01
In this paper we complete the presentation of a new hybrid $2\\times2$D flux transport dynamo (FTD) model of the solar cycle based on the Babcock-Leighton mechanism of poloidal magnetic field regeneration via the surface decay of bipolar magnetic regions (BMRs). This hybrid model is constructed by allowing the surface flux transport (SFT) simulation described in Lemerle et al. 2015 to provide the poloidal source term to an axisymmetric FTD simulation defined in a meridional plane, which in turn generates the BMRs required by the SFT. A key aspect of this coupling is the definition of an emergence function describing the probability of BMR emergence as a function of the spatial distribution of the internal axisymmetric magnetic field. We use a genetic algorithm to calibrate this function, together with other model parameters, against observed cycle 21 emergence data. We present a reference dynamo solution reproducing many solar cycle characteristics, including good hemispheric coupling, phase relationship betwe...
Kim, Duho; Jansen, Rolf A.; Windhorst, Rogier A.
2016-01-01
We analyze the intrinsic flux ratios of simple and composite stellar populations for various visible--near-infrared filters with respect to ˜3.5μm (L-band), and their dependence on metallicity, star-formation history, and effective mean age. This study is motivated by the fact that light from galaxies is reddened and attenuated by dust via scattering and absorption, where different sightlines across the face of a galaxy suffer various amounts of extinction. Ignoring the effects of this extinction could lead one to infer lower stellar mass, and SFR, or higher metallicity. Tamura et al. (2009) developed an approximate method, dubbed the "βV" method, which corrects for dust-extinction on a pixel-by-pixel basis, by comparing the observed flux ratio and empirical estimate of the intrinsic flux ratio of optical and ˜3.5μm broadband data. Here, we aim to validate and test the limits of the βV method for various filters spanning the visible through near-infrared wavelength range. Through extensive modeling, we test their assumptions for the intrinsic flux ratios for a wide variety of simple and composite stellar populations. We build spectral energy distributions (SEDs) of simple stellar populations (SSPs), by adopting Starburst99 and BC03 models for young (100Myr) stellar populations, respectively, and linear combinations of these for intermediate ages. We then construct composite stellar population (CSP) SEDs by combining SSP SEDs for various realistic star-formation histories (SFHs). We convolve filter response curves of visible--near-infrared filters for HST imaging surveys and mid-infrared filters in current (WISE, Spitzer/IRAC) and near-future use (JWST/NIRCam) with each model SED, to obtain intrinsic flux ratios (βλ,0). We find that βNIR,0 is only varying slightly as a function of metallicity but is insensitive to SFH or redshift (z≤2). We also find a narrow range of βV,0 (0.7+0.05-0.08) for early Hubble type galaxies (E and S0) using SEDs of randomly
Institute of Scientific and Technical Information of China (English)
陈宏; 徐衡; 刘光祥; 任小明
2009-01-01
A 2D coordination polymer of [Cd(mbix)(BIPA)] (1) (H2BIPA=5-bromoisophthalic acid and mbix=1,3-bis(imidazol-1-ylmethyl) benzene) has been hydrothertnal prepared and characterized by elemental analysis, IR spectroscopy and single-crystal X-ray diffraction structure analysis. The crystal is of monoclinic, space group P21/n 4, F(000)=1 168, Goof=1.085, R1=0.045 0, wR2=0.093 1. The crystal structure shows that the Cd2 units are formed by the two caroboxylate group adopting tridentate-chelating-bridging coordination mode, which are linked to form hydrogen bonding interactions and π-π weak interactions. In addition, complex 1 exhibits strong photolumine-scent emission at room temperature. CCDC: 710801.
Orbifold Reduction and 2d (0,2) Gauge Theories
Franco, Sebastian; Seong, Rak-Kyeong
2016-01-01
We introduce Orbifold Reduction, a new method for generating $2d$ $(0,2)$ gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from $4d$ $\\mathcal{N}=1$ gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating $2d$ $(0,2)$ theories with a brane realization. We present three practical applications of the new algorithm: the connection between $4d$ Seiberg duality and $2d$ triality, a combinatorial method for generating theories related by triality and a $2d$ $(0,2)$ generalization of the Klebanov-Witten mass deformation.
Emerging and potential opportunities for 2D flexible nanoelectronics
Zhu, Weinan; Park, Saungeun; Akinwande, Deji
2016-05-01
The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.
Double resonance rotational spectroscopy of CH2D+
Töpfer, Matthias; Jusko, Pavol; Schlemmer, Stephan; Asvany, Oskar
2016-09-01
Context. Deuterated forms of CH are thought to be responsible for deuterium enrichment in lukewarm astronomical environments. There is no unambiguous detection of CH2D+ in space to date. Aims: Four submillimetre rotational lines of CH2D+ are documented in the literature. Our aim is to present a complete dataset of highly resolved rotational lines, including millimetre (mm) lines needed for a potential detection. Methods: We used a low-temperature ion trap and applied a novel IR-mm-wave double resonance method to measure the rotational lines of CH2D+. Results: We measured 21 low-lying (J ≤ 4) rotational transitions of CH2D+ between 23 GHz and 1.1 THz with accuracies close to 2 ppb.
2D gels still have a niche in proteomics
DEFF Research Database (Denmark)
Rogowska-Wrzesinska, Adelina; Le Bihan, Marie-Catherine; Thaysen-Andersen, Morten;
2013-01-01
With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim...... of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2......) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show...
Technical Review of the UNET2D Hydraulic Model
Energy Technology Data Exchange (ETDEWEB)
Perkins, William A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Richmond, Marshall C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
Illumination Compensation for 2-D Barcode Recognition Basing Morphologic
Directory of Open Access Journals (Sweden)
Jian-Hua Li
2013-04-01
Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.
Recent developments in 2D layered inorganic nanomaterials for sensing
Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar
2015-08-01
Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.
2d quantum gravity and black hole formation
International Nuclear Information System (INIS)
The quantum integral of generic 2d quantum gravity can be performed exactly. The equivalence of dilaton theories to 2d theories with torsion and the use of a light cone gauge are crucial. Scalar matter can be treated perturbatively. A generalization of the Polyakov action emerges. For scattering of scalars in a flat background already in the tree approximation for the first time the intermediate formation of a black hole is observed in an ab initio quantum gravity computation
Excitation of 2D plasmons in Cs/W(110)
Benemanskaya, G V; Frank-Kamenetskaya, G E
2001-01-01
One studied the evolution of surface photoemission spectra for Cs/W(110) system at metastable Cs coatings exceeding monolayer. One showed possibility to observe 2D plasmons by means of threshold photoemission spectroscopy. One detected three photoemission peaks characterized by complicated behavior depending on Cd adsorption dose. The nature of peaks may be related to plasmon photoinduced excitation in quasi-2D Cs clusters, surface Cs plasmon and interface Cs-W plasmon
The Branching of Graphs in 2-d Quantum Gravity
Harris, M. G.
1996-01-01
The branching ratio is calculated for three different models of 2d gravity, using dynamical planar phi-cubed graphs. These models are pure gravity, the D=-2 Gaussian model coupled to gravity and the single spin Ising model coupled to gravity. The ratio gives a measure of how branched the graphs dominating the partition function are. Hence it can be used to estimate the location of the branched polymer phase for the multiple Ising model coupled to 2d gravity.
Illumination Compensation for 2-D Barcode Recognition Basing Morphologic
Jian-Hua Li; Yi-Wen Wang; Yi Chen; Meng Zhang
2013-01-01
Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations) are employed to original images using big scale multiple SEs (structuring elements). Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcode...
Collins Model and Phase Diagram of 2D Ternary System
Institute of Scientific and Technical Information of China (English)
XIE Chuan-Mei; CHEN Li-Rong
2004-01-01
The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.
Technique of Embedding Depth Maps into 2D Images
Institute of Scientific and Technical Information of China (English)
Kazutake Uehira; Hiroshi Unno; Youichi Takashima
2014-01-01
This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.
Klemme, Stephan; John, Timm; Wessels, Mathias; Kusebauch, Christof; Berndt, Jasper; Rohrbach, Arno; Schmid-Beurmann, Peter
2013-01-01
We present a new strategy on how to synthesize trace-element bearing (REE, Sr) chlorapatites Ca5(PO4)3Cl using the flux growth method. Synthetic apatites were up to several mm long, light blue in colour. The apatites were characterized using XRD, electron microprobe and laser ablation ICP-MS (LA-ICPMS) techniques and contained several hundred μg/g La, Ce, Pr, Sm, Gd and Lu and about 1700 μg/g Sr. The analyses indicate that apatites were homogenous (within the uncertainties) for major and trace elements. PMID:23531340
Critical flux determination by flux-stepping
DEFF Research Database (Denmark)
Beier, Søren; Jonsson, Gunnar Eigil
2010-01-01
values are more or less useless in itself as critical flux predictors, and constant flux verification experiments have to be conducted to check if the determined critical fluxes call predict sustainable flux regimes. However, it is shown that using the step-by-step predicted critical fluxes as start...
Ma, Zongqing; Liu, Yongchang; Cai, Qi
2012-03-21
MgB(2) superconductors with unique microstructures were rapidly fabricated at low temperatures, and exhibited significantly improved critical current density (J(c)). According to the microstructure observations, the prepared samples consisted of lamellar nano MgB(2) grains with many embedded nanoimpurities (about 10 nm). The formation of these lamellar nano MgB(2) grains is associated with the presence of a local Mg-Cu liquid at sintering temperatures as low as 575 °C. The ball milling treatment of the original powders also plays a positive role in the growth of lamellar grains. Based on an analysis of the relationship between resistivity and temperature, the lamellar nano MgB(2) grains in the prepared sample possess better grain connectivity than the typical morphology of MgB(2) samples prepared by traditional high-temperature sintering. Furthermore, the presence of many nano MgB(2) grain boundaries and nano impurities in the prepared sample can obviously increase the flux pinning centers in accordance with the analysis of flux pinning behavior. Both factors mentioned above contribute to the significant improvement in J(c) from low field to relative high field. The method developed in the present work is an effective and low-cost way to further enhance J(c) in MgB(2) superconductors across a wide range of applied magnetic fields without using expensive nanometer-sized dopants.
Kim, Duho; Windhorst, Rogier A
2016-01-01
We analyze the intrinsic flux ratios of various visible--near-infrared filters with respect to 3.5micron for simple and composite stellar populations, and their dependence on age, metallicity and star formation history. UV/optical light from stars is reddened and attenuated by dust, where different sightlines across a galaxy suffer varying amounts of extinction. Tamura et al. (2009) developed an approximate method to correct for dust extinction on a pixel-by-pixel basis, dubbed the "beta_V" method, by comparing the observed flux ratio to an empirical estimate of the intrinsic ratio of visible and ~3.5micron data. Through extensive modeling, we aim to validate the "beta_V" method for various filters spanning the visible through near-infrared wavelength range, for a wide variety of simple and composite stellar populations. Combining Starburst99 and BC03 models, we built spectral energy distributions (SEDs) of simple (SSP) and composite (CSP) stellar populations for various realistic star formation histories (SF...
Estimating surface fluxes using eddy covariance and numerical ogive optimization
Sievers, J.; Papakyriakou, T.; Larsen, S. E.; Jammet, M. M.; Rysgaard, S.; Sejr, M. K.; Sørensen, L. L.
2015-02-01
Estimating representative surface fluxes using eddy covariance leads invariably to questions concerning inclusion or exclusion of low-frequency flux contributions. For studies where fluxes are linked to local physical parameters and up-scaled through numerical modelling efforts, low-frequency contributions interfere with our ability to isolate local biogeochemical processes of interest, as represented by turbulent fluxes. No method currently exists to disentangle low-frequency contributions on flux estimates. Here, we present a novel comprehensive numerical scheme to identify and separate out low-frequency contributions to vertical turbulent surface fluxes. For high flux rates (|Sensible heat flux| > 40 Wm-2, |latent heat flux|> 20 Wm-2 and |CO2 flux|> 100 mmol m-2 d-1 we found that the average relative difference between fluxes estimated by ogive optimization and the conventional method was low (5-20%) suggesting negligible low-frequency influence and that both methods capture the turbulent fluxes equally well. For flux rates below these thresholds, however, the average relative difference between flux estimates was found to be very high (23-98%) suggesting non-negligible low-frequency influence and that the conventional method fails in separating low-frequency influences from the turbulent fluxes. Hence, the ogive optimization method is an appropriate method of flux analysis, particularly in low-flux environments.
Sparse Non-negative Tensor 2D Deconvolution (SNTF2D) for multi channel time-frequency analysis
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel N.
2006-01-01
We recently introduced two algorithms for sparse non-negative matrix factor 2-D deconvolution (SNMF2D) that are useful for single channel source separation and music transcription. We here extend this approach to the analysis of the log-frequency spectrograms of a multichannel recording. The model...... algorithms are demonstrated to successfully identify the components of both artificially generated as well as real stereo music....
Numerical Analysis of General Trends in Single-Phase Natural Circulation in a 2D-Annular Loop
Directory of Open Access Journals (Sweden)
Gilles Desrayaud
2008-01-01
Full Text Available The aim of this paper is to address fluid flow behavior of natural circulation in a 2D-annular loop filled with water. A two-dimensional, numerical analysis of natural convection in a 2D-annular closed-loop thermosyphon has been performed for various radius ratios from 1.2 to 2.0, the loop being heated at a constant flux over the bottom half and cooled at a constant temperature over the top half. It has been numerically shown that natural convection in a 2D-annular closed-loop thermosyphon is capable of showing pseudoconductive regime at pitchfork bifurcation, stationary convective regimes without and with recirculating regions occurring at the entrance of the exchangers, oscillatory convection at Hopf bifurcation and Lorenz-like chaotic flow. The complexity of the dynamic properties experimentally encountered in toroidal or rectangular loops is thus also found here.
Institute of Scientific and Technical Information of China (English)
林培喜; 康新平; 安哲
2011-01-01
溶剂热条件下采用Cd(NO3)2· 4H2O,5-甲基吡嗪-2-甲酸和4,4-联吡啶作为反应物合成出一个新的具有二维层状结构的镉金属配位聚合物[Cd(mpac)(4,4-bpy)(OH)]n(1),并分别用元素分析,红外光谱,热重分析和x-射线单晶衍射表征该结构.晶体结构分析结果表明:5-甲基吡嗪-2-甲酸将cd(Ⅱ)离子连接成一维链,这些链进一步被4,4-联吡啶连接成二维层状结构.在二维层状结构中存在大小为0.24×1.16nm2的一维通道.荧光谱图表明常温固态下配合物1发射蓝色荧光.%A 2D cadmium coordination polymer,[Cd (mpac)(4,4-bpy)(OH)]n (1) (Hmpac =5-methy1-2-pyrazinecarboxylic acid,4,4-bpy=4,4-bipyridine) has been synthesized by solvothermal method and characterized by elemental analysis,IR,TGA and single-crystal X-ray diffraction.The mpac ligands link the Cd(Ⅱ) atoms to form an infinite Cd-carboxylate chain.These chains are further bridged by 4,4-bpy ligands,forming a new twodimensional layered network.Interestingly,there are small channels of 0.24x1.16 nm2 within the 2D individual layers along the b-axis.Furthermore,the luminescent property of complex 1 was investigated at room temperature.CCDC:808271.
Li, Dong Jun; Huang, Zhegang; Hwang, Tae Hoon; Narayan, Rekha; Choi, Jang Wook; Kim, Sang Ouk
2016-03-01
Realizing practical high performance materials and devices using the properties of 2D materials is of key research interest in the materials science field. In particular, building well-defined heterostructures using more than two different 2D components in a rational way is highly desirable. In this paper, a 2D heterostructure consisting of atomic thin titania nanosheets densely grown on reduced graphene oxide surface is successfully prepared through incorporating polymer functionalized graphene oxide into the novel TiO2 nanosheets synthesis scheme. As a result of the synergistic combination of a highly accessible surface area and abundant interface, which can modulate the physicochemical properties, the resultant heterostructure can be used in high efficiency visible light photocatalysis as well as fast energy storage with a long lifecycle. [Figure not available: see fulltext.
Institute of Scientific and Technical Information of China (English)
梁青; 宋会花
2009-01-01
A metal-organic coordination polymer {[La(PDC)(N-HPDC)]·H2O}n (1) (H2PDC=pyridine-3A-dicarboxylic acid) has been hydrothermally synthesized and structurally characterized by X-ray diffraction single-crystal structure determination, elemental analyses and IR spectroscopy. The complex crystallizes in the monoclinic system, space group P21/c with a=1.452 8(2) nm, b=0.681 59(11) nm, c=1.464 0(2) nm, β=94.270(2)°, V=1.445 6(4) nm3, Dc=2.243 reflections (I>2σ(I)). There are La-O-C-O-C-La double chains in the complex. The chelating carboxylate O atoms and pyridyl N atoms lead the compound to 2D layers structure, which is extended to 3D supramolecular architecture through intermolecular hydrogen bonds. It is interesting that the polymer containing one-dimensional channels. CCDC: 708868.
Directory of Open Access Journals (Sweden)
Xianglin Zhu
2015-10-01
Full Text Available Ag9(SiO42NO3 was prepared by a reactive flux method. The structures, morphologies, and light absorption properties were investigated. Owing to the polar crystal structure, an internal electric field can be formed inside the material, which can facilitate the photogenerated charge separation during the photocatalytic process. Based on both the wide light absorption spectra and high charge separation efficiency originated from the polarized internal electric field, Ag9(SiO42NO3 exhibit higher efficiency over Ag3PO4 during the degradation of organic dyes under visible light irradiation, which is expected to be a potential material for solar energy harvest and conversion.
2D nanostructures for water purification: graphene and beyond.
Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C
2016-08-18
Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268
KOREAN MOBILE OPERATORS' VALUE MAP FOR LTE D2D
Directory of Open Access Journals (Sweden)
Taisiya Kim
2015-04-01
Full Text Available Managing the wireless data traffic is a main concern for mobile network operators in Information of Things (IoT environment. Long Term Evolution Device to Device (LTE D2D is regarding as a solution for the spectrum problem. It will bring an impact on providers and the whole mobile environment. The main purpose of this study is to analyze the role of key players, who share spectrum with mobile operators, and to present the value map of relationship among Korean mobile operators and other key players in LTE D2D discovery (commercial channel, as complicated relationships of key players are expected. Then, this study suggests scenario for ‘Targeted Advertising’ service of LTE D2D. LTE D2D is early discussion stage and scenario has limitation of specific business model. However, results of this study are significant for the present stage and provide implications for future researches on strategies for LTE D2D environment.
Failure Mechanism of True 2D Granular Flows
Nguyen, Cuong T; Fukagawa, R
2015-01-01
Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...
The NH$_2$D hyperfine structure revealed by astrophysical observations
Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E
2016-01-01
The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...
Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy
Giraudeau, Patrick; Frydman, Lucio
2014-06-01
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.
HYDROTHERMAL METHANE FLUXES FROM THE SOIL AT SOUSAKI (GREECE)
D'Alessandro, W.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Brusca, L.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Kyriakopoulos, K.; University of Athens, Dept. Geology and Geoenvironment, Greece; Martelli, M.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia; Michas, G.; University of Athens, Dept. Geology and Geoenvironment; Papadakis, G.; University of Athens, Dept. Geology and Geoenvironment, Greece; Salerno, F.; Istituto Nazionale di Geofisica e Vulcanologia, Sezione Palermo, Palermo, Italia
2010-01-01
Methane soil flux measurements have been made in 38 sites at the geothermal system of Sousaki (Greece) with the closed chamber method. Fluxes range from –47.6 to 29,150 mg m-2 d-1 and the diffuse CH4 output of the system has been estimated in 19 t/a. Contemporaneous CO2 flux measurements showed a fair positive correlation between CO2 and CH4 fluxes but the flux ratio evidenced methanotrophic activity within the soil. Laboratory CH4 consumption experiments confirmed the presence ...
2D materials for photon conversion and nanophotonics
Tahersima, Mohammad H.; Sorger, Volker J.
2015-09-01
The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.
Graphene based 2D-materials for supercapacitors
Palaniselvam, Thangavelu; Baek, Jong-Beom
2015-09-01
Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.
Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings
Directory of Open Access Journals (Sweden)
Manuel Rosenberger
2015-02-01
Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.
Cluster algebras in Scattering Amplitudes with special 2D kinematics
Torres, Marcus A C
2013-01-01
We study the cluster algebra of the kinematic configuration space $Conf_n(\\mathbb{P}^3)$ of a n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-points two loop MHV remainder function found in special 2D kinematics depend on a selection of \\XX-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercubes beads in the corresponding Stasheff polytope. Furthermore in $n = 12$, the cluster algebra and the selection of \\XX-coordinates in special 2D kinematics replicates the cluster algebra and the selection of \\XX-coordinates of $n=6$ two loop MHV amplitude in 4D kinematics.
2D growth processes: SLE and Loewner chains
Energy Technology Data Exchange (ETDEWEB)
Bauer, Michel [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: michel.bauer@cea.fr; Bernard, Denis [Service de Physique Theorique de Saclay, CE-Saclay, 91191 Gif-sur-Yvette (France) and Laboratoire de Physique Theorique, Ecole Normale Superieure, 24 rue Lhomond, 75005 Paris (France)]. E-mail: denis.bernard@cea.fr
2006-10-15
This review provides an introduction to two dimensional growth processes. Although it covers a variety of processes such as diffusion limited aggregation, it is mostly devoted to a detailed presentation of stochastic Schramm-Loewner evolutions (SLE) which are Markov processes describing interfaces in 2D critical systems. It starts with an informal discussion, using numerical simulations, of various examples of 2D growth processes and their connections with statistical mechanics. SLE is then introduced and Schramm's argument mapping conformally invariant interfaces to SLE is explained. A substantial part of the review is devoted to reveal the deep connections between statistical mechanics and processes, and more specifically to the present context, between 2D critical systems and SLE. Some of the remarkable properties of SLE are explained, together with the tools for computing with it. This review has been written with the aim of filling the gap between the mathematical and the physical literature on the subject.
UPLAND EROSION MODELING WITH CASC2D-SED
Institute of Scientific and Technical Information of China (English)
Pierre JULIEN; Rosalía ROJAS
2002-01-01
Developed at Colorado State University, CASC2D-SED is a physically-based model simulating the hydrologic response of a watershed to a distributed rainfall field. The time-dependent processes include:precipitation, interception, infiltration, surface runoff and channel routing, upland erosion, transport and sedimentation. CASC2D-SED is applied to Goodwin Creek, Mississippi. The watershed covers 21 km2and has been extensively monitored both at the outlet and at several internal locations by the ARS-NSL at Oxford, MS. The model has been calibrated and validated using rainfall data from 16 meteorological stations, 6 stream gauging stations and 6 sediment gauging stations. Sediment erosion/deposition rates by size fraction are predicted both in space and time. Geovisualization, a powerful data exploration technique based on GIS technology, is used to analyze and display the dynamic output time series generated by the CASC2D-SED model.
Design and Realization of Dynamic Obstacle on URWPSSim2D
Directory of Open Access Journals (Sweden)
Xiao Chen
2013-07-01
Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles，thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.
W$_{\\infty}$ structures of 2D string theory
Hamada, K J
1996-01-01
The Ward identities of the W_{\\infty} symmetry in 2D string theory in the tachyon background are studied in the continuum approach. Comparing the solutions with the matrix model results, it is verified that 2D string amplitudes are different from the matrix model amplitudes only by the external leg factors even in higher genus. This talk is based on the recent work [1] and also [2] for the c_M <1 model. (Talk given at the workshop on ``Frontiers in Quantum Field Theory'', Osaka, Japan, December 1995.)
CH2D+, the Search for the Holy Grail
Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen
2013-10-01
CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand
2011-12-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.
Design of the LRP airfoil series using 2D CFD
DEFF Research Database (Denmark)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;
2014-01-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D...... Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils....
EEG simulation by 2D interconnected chaotic oscillators
Energy Technology Data Exchange (ETDEWEB)
Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)
2011-01-15
Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.
Hosomichi, Kazuo
2014-01-01
We study the system of M2-branes suspended between parallel M5-branes using ABJM model with a natural half-BPS boundary condition. For small separation between M5-branes, the worldvolume theory is shown to reduce to a 2D N=(4,4) super Yang-Mills theory with some similarity to q-deformed Yang-Mills theory. The gauge coupling is related to the position of the branes in an interesting manner. The theory is considerably different from the 2D theory proposed for multiple "M-strings". We make a detailed comparison of elliptic genus of the two descriptions and find only a partial agreement.
2D-ACAR investigations of PPT aramid fibres
International Nuclear Information System (INIS)
2D-ACAR spectra of PPT (poly(p-phenylene terephthalamide)) fibres which contain structural elongated open spaces in the crystallographic unit cell show a p-Ps peak with an elliptical cross-section and side lobes. Peak broadening suggests dimensions of ∝14-17 by 7-9 A for the open spaces and indicates some penetration of Ps into the interlayer spacing. The side lobes can be related to projected reciprocal lattice points and indicate Ps delocalization. 2D-ACAR has also been used to study the evolution of water release from the open spaces. (orig.)
EEG simulation by 2D interconnected chaotic oscillators
International Nuclear Information System (INIS)
Research highlights: → ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. → An inverse problem solution (PRCGA) is proposed. → Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.
Quantum process tomography by 2D fluorescence spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Pachón, Leonardo A. [Grupo de Física Atómica y Molecular, Instituto de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín (Colombia); Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States); Marcus, Andrew H. [Department of Chemistry and Biochemistry, Oregon Center for Optics, Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403 (United States); Aspuru-Guzik, Alán [Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 (United States)
2015-06-07
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
CH2D+, the Search for the Holy Grail
Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B
2013-01-01
CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.
GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD
Institute of Scientific and Technical Information of China (English)
HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun
2005-01-01
The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.
QSAR Models for P-450 (2D6) Substrate Activity
DEFF Research Database (Denmark)
Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;
2009-01-01
drugs and other chemicals. A training set of 747 chemicals primarily based on in vivo human data for the CYP isoenzyme 2D6 was collected from the literature. QSAR models focusing on substrate/non substrate activity were constructed by the use of MultiCASE, Leadscope and MDL quantitative structure......Human Cytochrome P450 (CYP) is a large group of enzymes that possess an essential function in metabolising different exogenous and endogenous compounds. Humans have more than 50 different genes encoding CYP enzymes, among these a gene encoding for the CYP isoenzyme 2D6, a CYP able to metabolise...
VALERO BALLESTER, AIDA AMPARO
2015-01-01
El siguiente Trabajo Final de Grado llamado “Skimo” consiste en un teaser de animación 2D enfocado a ser finalizado el próximo año durante la realización del Diploma en Animación de personajes 2D del Máster de animación. Realizado en solitario como reto personal durante el curso presente, siendo la primera vez que trabajaba la animación. Para este proyecto he realizado toda la preproducción (layout, animática, storyboard, diseño de personajes, fondos, etc), animación en pape...
Transmission properties of 2D metamaterial photonic crystals
Mejía-Salazar, Jorge; Porras-Montenegro, Nelson
2014-03-01
By using the finite difference time domain technique, we have performed a theoretical study of the transmission properties in 2D photonic crystals composed by circular cilyndrical metamaterial rods. Numerical transmission spectra was compared with its corresponding photonic band structure in the case of an infinite periodic 2D array obtaining a very good agreement. On the other hand, we have characterized the corresponding symmetries for this system and the results were compared with its corresponding conventional plasmonic metamaterial counterpart. J.R. M-S is funded by the Colombian Agency COLCIENCIAS.
Nomenclature for human CYP2D6 alleles.
Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M
1996-06-01
To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658
Estimating nitrogen losses in furrow irrigated soil amended by compost using HYDRUS-2D model
Iqbal, Shahid; Guber, Andrey; Zaman Khan, Haroon; ullah, Ehsan
2014-05-01
Furrow irrigation commonly results in high nitrogen (N) losses from soil profile via deep infiltration. Estimation of such losses and their reduction is not a trivial task because furrow irrigation creates highly nonuniform distribution of soil water that leads to preferential water and N fluxes in soil profile. Direct measurements of such fluxes are impractical. The objective of this study was to assess applicability of HYDRUS-2D model for estimating nitrogen balance in manure amended soil under furrow irrigation. Field experiments were conducted in a sandy loam soil amended by poultry manure compost (PMC) and pressmud compost (PrMC) fertilizers. The PMC and PrMC contained 2.5% and 0.9% N and were applied at 5 rates: 2, 4, 6, 8 and 10 ton/ha. Plots were irrigated starting from 26th day from planting using furrows with 1x1 ridge to furrow aspect ratio. Irrigation depths were 7.5 cm and time interval between irrigations varied from 8 to 15 days. Results of the field experiments showed that approximately the same corn yield was obtained with considerably higher N application rates using PMC than using PrMC as a fertilizer. HYDRUS-2D model was implemented to evaluate N fluxes in soil amended by PMC and PrMC fertilizers. Nitrogen exchange between two pools of organic N (compost and soil) and two pools of mineral N (soil NH4-N and soil NO3-N) was modeled using mineralization and nitrification reactions. Sources of mineral N losses from soil profile included denitrification, root N uptake and leaching with deep infiltration of water. HYDRUS-2D simulations showed that the observed increases in N root water uptake and corn yields associated with compost application could not be explained by the amount of N added to soil profile with the compost. Predicted N uptake by roots significantly underestimated the field data. Good agreement between simulated and field-estimated values of N root uptake was achieved when the rate of organic N mineralization was increased
High Speed Phase-Resolved 2-d UBV Photometry of the Crab pulsar
Golden, A; Redfern, R M; Beskin, G M; Neizvestny, S I; Neustroev, V V; Plokhotnichenko, V L; Cullum, M
2000-01-01
We report a phase-resolved photometric and morphological analysis of UBV data of the Crab pulsar obtained with the 2-d TRIFFID high speed optical photometer mounted on the Russian 6m telescope. By being able to accurately isolate the pulsar from the nebular background at an unprecedented temporal resolution (1 \\mu s), the various light curve components were accurately fluxed via phase-resolved photometry. Within the $UBV$ range, our datasets are consistent with the existing trends reported elsewhere in the literature. In terms of flux and phase duration, both the peak Full Width Half Maxima and Half Width Half Maxima decrease as a function of photon energy. This is similarly the case for the flux associated with the bridge of emission. Power-law fits to the various light curve components are as follows; \\alpha = 0.07 \\pm 0.19 (peak 1), \\alpha = -0.06 \\pm 0.19 (peak 2) and \\alpha = -0.44 \\pm 0.19 (bridge) - the uncertainty here being dominated by the integrated CCD photometry used to independently reference th...
CYP2D6基因与药物代谢%CYP2D6 gene and drug metabolism
Institute of Scientific and Technical Information of China (English)
施安国
2003-01-01
细胞色素P-450(CYP)中的CYP2D6酶在抗抑郁药、安定药及某些抗心律失常药的代谢中起重要作用,CYP2D6基因位于22号常染色体上为隐性遗传,CYP2D6基因呈多态性约有70余种等位基因变异型,也存在特异人群差别,因而导致所编码的酶活性不同,这些数据有助于理解药物代谢的个体差异、有助于预测药物之间的相互作用.
Institute of Scientific and Technical Information of China (English)
NIE Shan-shan; CHU Tian-shu
2012-01-01
To figure out the influence of isotope effect on product polarizations of the N(2D)+D2 reactive system and its isotope variants,quasi-classical trajectory(QCT) calculation was performed on Ho's potential energy surfacc(PES) of 2A" state.Product polarizations such as product distributions ofP(θr),P(φr) and P(θr,φr),as well as the generalized polarization-dependent differential cross sections(PDDCSs) were discussed and compared in detail among the four product channels of the title reactions.Both the intermolecular and intramolecular isotope effects were proved to be influential on product polarizations.
Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications
Taha Tijerina, Jose Jaime
Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk
Wilson loop in 2d noncommutative gauge theories
Valtancoli, Paolo
2009-01-01
We reconsider the perturbative expansion of the Wilson loop in 2d noncommutative gauge theories, using an improved integration method. For the class of maximally crossed diagrams in the $\\theta \\to \\infty$ limit we find an intriguing formula, easily generalizable to all orders in perturbation theory.
The 2dF Galaxy Redshift Survey: Preliminary Results
Maddox, S.
1997-01-01
Spectroscopic observations for a new survey of 250 000 galaxy redshifts are underway, using the 2dF instrument at the AAT. The input galaxy catalogue and commissioning data are described. The first result from the preliminary data is a new estimate of the galaxy luminosity function at =0.1.
H on He: sticking and 2d-superfluidity
International Nuclear Information System (INIS)
The sticking coefficient, which governs the sticking time τs, is discussed for high surface-coverage conditions. We point out that τs must remain large compared to a characteristic vortex diffusion time, if the system is to display 2d-superfluidity
2D Static Light Scattering for Dairy Based Applications
DEFF Research Database (Denmark)
Skytte, Jacob Lercke
Throughout this thesis we investigate a recently introduced optical technique denoted 2D static light scattering (2DSLS). The technique is remote sensing, non-invasive, highly flexible, and appears to be well suited for in-line process control. Moreover, the output signal contains contributions...
CFD code comparison for 2D airfoil flows
DEFF Research Database (Denmark)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.;
2016-01-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × ...
Fiber Drawn 2D Polymeric Photonic Crystal THz Filters
DEFF Research Database (Denmark)
Stecher, Matthias; Jansen, Christian; Ahmadi-Boroujeni, Mehdi;
2012-01-01
In this paper, we report on different polymeric 2D photonic crystal filters for THz frequencies which are fabricated by a standard fiber drawing technique. The bandstop filters were simulated and designed by the generalized multipole technique (GMT). The frequency and angle dependent transmission...
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Brorsen, Michael
This report is an extension of the study presented in Lykke Andersen and Brorsen, 2006 and includes results from the irregular wave tests, where Lykke Andersen & Brorsen, 2006 focused on regular waves. The 2D physical model tests were carried out in the shallow wave flume at Dept. of Civil...
2D InP photonic crystal fabrication process development
Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.
2006-01-01
We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri
Interactive Exploratory Visualization of 2D Vector Fields
Isenberg, Tobias; Everts, Maarten H.; Grubert, Jens; Carpendale, Sheelagh
2008-01-01
In this paper we present several techniques to interactively explore representations of 2D vector fields. Through a set of simple hand postures used on large, touch-sensitive displays, our approach allows individuals to custom-design glyphs (arrows, lines, etc.) that best reveal patterns of the unde
CANONICAL COMPUTATIONAL FORMS FOR AR 2-D SYSTEMS
ROCHA, P; WILLEMS, JC
1990-01-01
A canonical form for AR 2-D systems representations is introduced. This yields a method for computing the system trajectories by means of a line-by-line recursion, and displays some relevant information about the system structure such as the choice of inputs and initial conditions.
Resolution deconvolution method applied to 2D-ACAR measurements
International Nuclear Information System (INIS)
An inexpensive way to achieve high resolution 2D-ACAR measurements is to utilize resolution deconvolution techniques. We developed a resolution deconvolution method which avoids noise amplification and is applicable to the 3D reconstruction method using Fourier-Bessel transforms. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
The toroidal Hausdorff dimension of 2d Euclidean quantum gravity
DEFF Research Database (Denmark)
Ambjorn, Jan; Budd, Timothy George
2013-01-01
The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimensi...
2D kinematics of simulated disc merger remnants
Jesseit, Roland; Naab, Thorsten; Peletier, Reynier F.; Burkert, Andreas
2007-01-01
We present a 2D kinematic analysis for a sample of simulated binary disc merger remnants with mass ratios 1:1 and 3:1. For the progenitor discs we used pure stellar models as well as models with 10 per cent of their mass in gas. A multitude of phenomena also observed in real galaxies are found in th
High resolution 2D image upconversion of incoherent light
DEFF Research Database (Denmark)
Dam, Jeppe Seidelin; Pedersen, Christian; Tidemand-Lichtenberg, Peter
2011-01-01
An optimized method for continuous wave 2-dimensional (2-D) upconversion of incoherent or thermal light is demonstrated and quantified. Using standard resolution targets a resolution of 200×1000 pixels is obtained. The suggested method is viewed in scope of modern CCD cameras operating in the nea...
A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW
Institute of Scientific and Technical Information of China (English)
He Ji-huan
2003-01-01
The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.
NKG2D ligands mediate immunosurveillance of senescent cells.
Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery
2016-02-01
Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797
ELLIPT2D: A Flexible Finite Element Code Written Python
International Nuclear Information System (INIS)
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research
2D signature for detection and identification of drugs
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei
2011-06-01
The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.
Computational study of interfaces and edges of 2D materials
Farmanbar Gelepordsari, M.
2016-01-01
The discovery of graphene and its intriguing properties has given birth to the field of two-dimensional (2D) materials. These materials are characterized by a strong covalent bonding between the atoms within a plane, but weak, van derWaals, bonding between the planes. Such materials can be isolated
Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.
2016-08-01
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets
Optimisation of the PGAA instrument at FRM II for low background and 2D measurements
International Nuclear Information System (INIS)
At the beginning of 2008, the new Prompt Gamma-ray Activation Analysis (PGAA) facility started operation at the Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II). The main characteristic of this facility is the relatively intense cold neutron beam. This property is due to the special construction of the neutron beam guide; the last 7m are elliptically tapered, which means that the neutrons are focused on the sample. This arrangement allows for a max. neutron flux of 6.07 . 1010 cm-2s-1, which is currently the highest cold neutron flux worldwide. Due to this high flux, the main problem encountered was the beam background, i.e. the radiation background created from irradiation of construction materials. The first part of this work was dedicated to the optimisation of the instrument. The goal achieved was a reduction of the background by a factor of 15. Once the instrument was optimised, measurements were dedicated to special elements like Cd, Sm, Eu, and Gd, that have very good characteristics for this method and to archaeological samples (old greek coins). Another improvement of the instrument was the development of a 2D imaging system. A new setup was installed in order to obtain spacial information about the distribution of elements inside samples. This imaging method was first applied to a small piece of the Allende meteorite with a different setup developed in the frame of the European Project ANCIENT CHARM. This setup was thought for 3D imaging, so the conditions were not optimal for 2D mapping. With this insight a second setup was built later specially dedicated for this application. In particular, the neutron field was reduced to a small spot of about 2 x 2 mm2 and a two stage motor was built in order to allow the movement of the sample in two dimensions. Moreover, the possibility to evacuate the sample chamber was added. With this second setup the measurements on the Allende meteorite were repeated for a comparison. The 2D-setup was also applied in
Half-metallicity in 2D organometallic honeycomb frameworks
Sun, Hao; Li, Bin; Zhao, Jin
2016-10-01
Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.
Half-metallicity in 2D organometallic honeycomb frameworks.
Sun, Hao; Li, Bin; Zhao, Jin
2016-10-26
Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575
2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures
Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali
2016-02-01
Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.
Institute of Scientific and Technical Information of China (English)
LI Dong-Sheng; ZHOU Cai-Hua; WANG Yao-Yu; FU Feng; WU Ya-Pan; QI Guang-Cai; SHI Qi-Zhen
2006-01-01
Two new supramolecular complexes, [Cu(H2dhbd)(3-pyOH)(H2O)]2·3-pyOH·2H2O (1) and [Cu2(dhbd)(dpa)2-(H2O)]·6H2O (2) (H4dhbd=2,3-dihydroxybutanedioic acid, 3-pyOH=3-hydroxypyridine, dpa=2,2'-dipyridylamine),have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses,H-O hydrogen bonds, the cyclic dinuclear units in 1 together with four adjacent neighbors are connected into a 2D honeycomb network encapsulating free 3-pyOH ligands. Unexpectedly, the water-dimers are fixed in interlayers of 2D honeycomb network and act as hydrogen-bond bridging to further extend these 2D networks into 3D hydrogen-bonded framework. Complex 2 includes interesting 2D grids constructed from chiral dinuclear units through cules into three dimension with channels. Variable-temperature magnetic susceptibility measurements for both complexes indicate the presence of weak antiferromagnetic exchange interactions between adjacent copper(Ⅱ) ions.
2-D linear motion system. Innovative technology summary report
International Nuclear Information System (INIS)
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker trademark, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m2 of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology. However
Design of 2-D DCT IP Soft Core Based on Loeffler's Algorithm%基于Loeffler算法的2-D DCT IP软核设计
Institute of Scientific and Technical Information of China (English)
郭宝增; 牛力; 刘志明
2011-01-01
提出一种基于Loeffler算法的2-D DCT IP软核设计方法.用移位和加法运算代替乘法运算.为减少芯片占用面积,对乘法系数采用CSD编码,1-D DCT复用技术;为提高电路的速度,采用流水线结构,优化转置矩阵. 基于上述算法,设计了用Verilog HDL 语言描述的IP软核. 对软核进行了编译、综合、布局布线和后仿真,验证了算法的正确性. 实验结果显示最高工作频率可以达到139.43 MHz,能够满足视频图像压缩的实时性要求.%This paper presents a design of 2-D DCT IP soft core based on Loeffler's algorithm. We make use of the shifter and addition operations to replace the multiplication operations. In order to save hardware resources, the multiplication factors are coded by CSD, and the technology of 1-D DCT reusing is taken; In order to improve the circuit speed, the pipelining technology is taken, and optimize the transposed matrices is adopted. Based on abovementioned algorithms the IP soft core with Verilog HDL is obtained. For the IP soft core, we made the compiling,synthesis, layout and post simulation, so the correctness of the design is verified. The experiment shows that design has a maximum frequency of 139. 43 MHz, which can satisfy the requirement of real-time video image compression.
A 2D zinc-organic network being easily exfoliated into isolated sheets
Yu, Guihong; Li, Ruiqing; Leng, Zhihua; Gan, Shucai
2016-08-01
A metal-organic aggregate, namely {Zn2Cl2(BBC)}n (BBC = 4,4‧,4‧‧-(benzene-1,3,5-triyl-tris(benzene-4,1-diyl))tribenzoate) was obtained by solvothermal synthesis. Its structure is featured with the Zn2(COO)3 paddle-wheels with two chloride anions on axial positions and hexagonal pores in the layers. The exclusion of water in the precursor and the solvent plays a crucial role in the formation of target compound. This compound can be easily dissolved in alkaline solution and exfoliated into isolated sheets, which shows a novel way for the preparation of 2D materials.
Security Issues for 2D Barcodes Ticketing Systems
Directory of Open Access Journals (Sweden)
Cristian Toma
2011-03-01
Full Text Available The paper presents a solution for endcoding/decoding access to the subway public transportation systems. First part of the paper is dedicated through section one and two to the most used 2D barcodes used in the market – QR and DataMatrix. The sample for DataMatrix is author propietary and the QR sample is from the QR standard [2]. The section three presents MMS and Digital Rights Management topics used for issuing the 2D barcodes tickets. The second part of the paper, starting with section four shows the architecture of Subway Ticketing Systems and the proposed procedure for the ticket issuing. The conclusions identify trends of the security topics in the public transportation systems.
Characterization of steady solutions to the 2D Euler equation
Izosimov, Anton
2015-01-01
Steady fluid flows have very special topology. In this paper we describe necessary and sufficient conditions on the vorticity function of a 2D ideal flow on a surface with or without boundary, for which there exists a steady flow among isovorticed fields. For this we introduce the notion of an antiderivative (or circulation function) on a measured graph, the Reeb graph associated to the vorticity function on the surface, while the criterion is related to the total negativity of this antiderivative. It turns out that given topology of the vorticity function, the set of coadjoint orbits of the symplectomorphism group admitting steady flows with this topology forms a convex polytope. As a byproduct of the proposed construction, we also describe a complete list of Casimirs for the 2D Euler hydrodynamics: we define generalized enstrophies which, along with circulations, form a complete set of invariants for coadjoint orbits of area-preserving diffeomorphisms on a surface.
TRO-2D - A code for rational transonic aerodynamic optimization
Davis, W. H., Jr.
1985-01-01
Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.
2D/3D Program work summary report
International Nuclear Information System (INIS)
The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author)
Functionalized 2D atomic sheets with new properties
Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru
2011-03-01
Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.
2D-immunoblotting analysis of Sporothrix schenckii cell wall
Directory of Open Access Journals (Sweden)
Estela Ruiz-Baca
2011-03-01
Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.
Defect Dynamics in Active 2D Nematic Liquid Crystals
Decamp, Stephen; Redner, Gabriel; Hagan, Michael; Dogic, Zvonimir
2014-03-01
Active materials are assemblies of animate, energy-consuming objects that exhibit continuous dynamics. As such, they have properties that are dramatically different from those found in conventional materials made of inanimate objects. We present a 2D active nematic liquid crystal composed of bundled microtubules and kinesin motor proteins that exists in a dynamic steady-state far from equilibrium. The active nematic exhibits spontaneous binding and unbinding of charge +1/2 and -1/2 disclination defects as well as streaming of +1/2 defects. By tuning ATP concentration, we precisely control the amount of activity, a key parameter of the system. We characterize the dynamics of streaming defects on a large, flat, 2D interface using quantitative polarization light microscopy. We report fundamental characteristics of the active nematics such as defect velocities, defect creation and annihilation rates, and emergent length scales in the system.
Wave propagation in pantographic 2D lattices with internal discontinuities
Madeo, A; Neff, P
2014-01-01
In the present paper we consider a 2D pantographic structure composed by two orthogonal families of Euler beams. Pantographic rectangular 'long' waveguides are considered in which imposed boundary displacements can induce the onset of traveling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations which may involve geometrical non-linearities, possibly opening the path to appealing phenomena such as propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses and aeronautic/aerospace panels.
Bulk correlation functions in 2D quantum gravity
Kostov, I K
2005-01-01
We compute bulk 3- and 4-point tachyon correlators in the 2d Liouville gravity with non-rational matter central charge c<1, following and comparing two approaches. The continuous CFT approach exploits the action on the tachyons of the ground ring generators deformed by Liouville and matter ``screening charges''. A by-product general formula for the matter 3-point OPE structure constants is derived. We also consider a ``diagonal'' CFT of 2D quantum gravity, in which the degenerate fields are restricted to the diagonal of the semi-infinite Kac table. The discrete formulation of the theory is a generalization of the ADE string theories, in which the target space is the semi-infinite chain of points.
Planar maps, circle patterns and 2d gravity
David, Francois
2013-01-01
Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a K\\"ahler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space; (3) a discretized version (involving finite difference complex derivative operators) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.
2D Models for Dust-driven AGB Star Winds
Woitke, P
2006-01-01
New axisymmetric (2D) models for dust-driven winds of C-stars are presented which include hydrodynamics with radiation pressure on dust, equilibrium chemistry and time-dependent dust formation with coupled grey Monte Carlo radiative transfer. Considering the most simple case without stellar pulsation (hydrostatic inner boundary condition) these models reveal a more complex picture of the dust formation and wind acceleration as compared to earlier published spherically symmetric (1D) models. The so-called exterior $\\kappa$-mechanism causes radial oscillations with short phases of active dust formation between longer phases without appreciable dust formation, just like in the 1D models. However, in 2D geometry, the oscillations can be out-of-phase at different places above the stellar atmosphere which result in the formation of dust arcs or smaller caps that only occupy a certain fraction of the total solid angle. These dust structures are accelerated outward by radiation pressure, expanding radially and tangen...
Estimating 2-D Vector Velocities Using Multidimensional Spectrum Analysis
DEFF Research Database (Denmark)
Oddershede, Niels; Løvstakken, Lasse; Torp, Hans;
2008-01-01
new velocity estimators for finding both the axial and lateral velocity components. The estimators essentially search for the plane in the 3-D Fourier space, where the integrated power spectrum is largest. The first uses the 3-D Fourier transform to find the power spectrum, while the second uses......Wilson (1991) presented an ultrasonic wide-band estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity....... Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2...
A brief review of the 2d/4d correspondences
Tachikawa, Yuji
2016-01-01
An elementary introduction to the 2d/4d correspondences is given. After quickly reviewing the 2d q-deformed Yang-Mills theory and the Liouville theory, we will introduce 4d theories obtained by coupling trifundamentals to SU(2) gauge fields. We will then see concretely that the supersymmetric partition function of these theories on S^3 x S^1 and on S^4 is given respectively by the q-deformed Yang-Mills theory and the Liouville theory. After giving a short discussion on how this correspondence may be understood from the viewpoint of the 6d N=(2,0) theory, we conclude the review by enumerating future directions. Most of the technical points will be referred to more detailed review articles.
Designing of sparse 2D arrays for Lamb wave imaging using coarray concept
Energy Technology Data Exchange (ETDEWEB)
Ambroziński, Łukasz, E-mail: ambrozin@agh.edu.pl; Stepinski, Tadeusz, E-mail: ambrozin@agh.edu.pl; Uhl, Tadeusz, E-mail: ambrozin@agh.edu.pl [AGH University of Science and technology, al. Mickiewicza 30, 30-059 Krakow (Poland)
2015-03-31
2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.
Kim, Wun-gwi
2013-12-01
Membranes utilizing nanoporous one-dimensional (1D) and two-dimensional (2D) materials are emerging as attractive candidates for applications in molecular separations and related areas. Such nanotubular and nanolayered materials include carbon nanotubes, metal oxide nanotubes, layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. By virtue of their unique shape, size, and structure, they possess transport properties that are advantageous for membrane and thin film applications. These materials also have very different chemistry from more conventional porous 3D materials, due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D and 2D materials. Thereafter, we elucidate different approaches for fabrication of membranes and thin films from these materials, either as multiphase (composite/hybrid) or single-phase membranes. The influence of surface chemistry and processing techniques on the membrane morphology is highlighted. We then discuss the applications of such membranes in areas relating to molecular transport and separation, e.g. gas and liquid-phase separations, water purification, and ion-conducting membranes. The review concludes with a discussion of the present outlook and some of the key scientific challenges to be addressed on the path to industrially applicable membranes containing nanoporous 1D and 2D materials. © 2013 Elsevier Ltd.
2DBase: 2D-PAGE database of Escherichia coli
Vijayendran, Chandran; Burgemeister, Sebastian; Friehs, Karl; Niehaus, Karsten; Flaschel, Erwin
2007-01-01
We present a web-based integrated proteome database, termed 2DBase of Escherichia coli which was designed to store, compare, analyse, and retrieve various information obtained by 2D polyacrylamide gel electrophoresis and mass spectrometry. The main objectives of this database are (1) to provide the features for query and data-mining applications to access the stored proteomics data (2) to efficiently compare the specific protein spots present in the comparable proteome maps and (3) to analyse...
2D and 3D Traveling Salesman Problem
Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt
2011-01-01
When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…
Controllable and Observable Polynomial Description for 2D Noncausal Systems
Directory of Open Access Journals (Sweden)
M. S. Boudellioua
2007-01-01
Full Text Available Two-dimensional state-space systems arise in applications such as image processing, iterative circuits, seismic data processing, or more generally systems described by partial differential equations. In this paper, a new direct method is presented for the polynomial realization of a class of noncausal 2D transfer functions. It is shown that the resulting realization is both controllable and observable.
An inverse design method for 2D airfoil
Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao
2010-03-01
The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.
Vertical heterostructures based on graphene and other 2D materials
Energy Technology Data Exchange (ETDEWEB)
Antonova, I. V. [Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch (Russian Federation)
2016-01-15
Recent advances in the fabrication of vertical heterostructures based on graphene and other dielectric and semiconductor single-layer materials, including hexagonal boron nitride and transition-metal dichalcogenides, are reviewed. Significant progress in this field is discussed together with the great prospects for the development of vertical heterostructures for various applications, which are associated, first of all, with reconsideration of the physical principles of the design and operation of device structures based on graphene combined with other 2D materials.
How to use 2D gel electrophoresis in plant proteomics.
Rabilloud, Thierry
2014-01-01
International audience Two-dimensional electrophoresis has nurtured the birth of proteomics. It is however no longer the exclusive setup used in proteomics, with the development of shotgun proteomics techniques that appear more fancy and fashionable nowadays.Nevertheless, 2D gel-based proteomics still has valuable features, and sometimes unique ones, which make it often an attractive choice when a proteomics strategy must be selected. These features are detailed in this chapter, as is the ...
Submicrometric 2D ratchet effect in magnetic domain wall motion
Energy Technology Data Exchange (ETDEWEB)
Castán-Guerrero, C., E-mail: ccastan@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)
2014-12-15
Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.
Spin dependent 2D ACAR measurements in gadolinium
International Nuclear Information System (INIS)
The spin dependent momentum density of Gd was studied by two dimensional angular correlation of annihilation radiation (2D ACAR) measurements, using the spin polarized positron technique. The ''reduced momentum density'' and the ''reduced spin density'' density'' in k space for planes within the first Brillouin zone have been obtained, and qualitative agreement with a model proposed by Mattocks and Young to explain their de Haas-van Alphen (dHvA) measurements is found. (Auth.)
Rule Based Selection of 2D Urban Area Map Objects
Jagdish Lal Raheja; Umesh Kumar
2010-01-01
The purpose of cartographic generalization is to represent a particular situation adapted to the needs of its users, with adequate legibility of the representation and perceptional congruity with the real situation. In this paper, a simple approach is presented for the selection process of building ground plans that are represented as 2D line, square and polygon segments. It is based on simple selection process from the field of computer graphics. It is important to preserve the overall chara...
Random 2D Composites and the Generalized Method of Schwarz
Vladimir Mityushev
2015-01-01
Two-phase composites with nonoverlapping inclusions randomly embedded in matrix are investigated. A straightforward approach is applied to estimate the effective properties of random 2D composites. First, deterministic boundary value problems are solved for all locations of inclusions, that is, for all events of the considered probabilistic space C by the generalized method of Schwarz. Second, the effective properties are calculated in analytical form and averaged over C. This method is relat...
Physical degrees of freedom in 2-D string field theories
Sakai, N; Sakai, Norisuke; Tanii, Yoshiaki
1992-01-01
States in the absolute (semi-relative) cohomology but not in the relative cohomology are examined through the component decomposition of the string field theory action for the 2-D string. It is found that they are auxiliary fields without kinetic terms, but are important for instance in the master equation for the Ward-Takahashi identities. The ghost structure is analyzed in the Siegel gauge, but it is noted that the absolute (semi-relative) cohomology states are lost.
Contributions to statistical image segmentation and 2D pattern Recognition
Derrode, Stéphane
2008-01-01
This dissertation follows 9 years of my research activities, including 7 years as an assistant professor at the École Centrale Marseille and as a researcher into the Multidimensional Signal Processing Group of Institut Fresnel (CNRS UMR 6133). Works which I present explore some aspects of the statistical segmentation of images for applications in space imagery and the invariant description of 2D shapes for object recognition in video imagery. More precisely, the first part of the manuscript s...
Conformal field theory and 2D critical phenomena. Part 1
International Nuclear Information System (INIS)
Review of the recent developments in the two-dimensional conformal field theory and especially its applications to the physics of 2D critical phenomena is given. It includes the Ising model, the Potts model. Minimal models, corresponding to theories invariant under higher symmetries, such as superconformal theories, parafermionic theories and theories with current and W-algebras are also discussed. Non-hamiltonian approach to two-dimensional field theory is formulated. 126 refs
Experimental verification of FOREV-2D simulations for the plasma shield
International Nuclear Information System (INIS)
Analysis of experiments in the MK-200UG facility dedicated to verify the FOREV-2D simulations of ITER core contamination with carbon vaporized during ELMs has been performed. In these experiments the carbon fibre composite (CFC) of NB31 grade have been treated with plasma heat fluxes relevant for ITER ELMs. The analysis revealed that thin layer of few hundred microns on CFC surface is damaged and its thermoconductivity effectively reduced approximately three times, but the CFC bulk has the reference thermoconductivity. Good agreement between the measured and the calculated profiles for carbon plasma electron density at various hydrogen plasma heat loads as well as the agreement between the measured and the simulated dependences of the absorbed energy density on the applied heat load provide reliable validation of the carbon plasma shields simulated with the FOREV-2D code. High carbon plasma shield densities of 1023-1024 m-3 predicted in the simulations for ELM-produced shields has been proved in these MK-200UG experiments.
A New 2D-Transport, 1D-Diffusion Approximation of the Boltzmann Transport equation
Energy Technology Data Exchange (ETDEWEB)
Larsen, Edward
2013-06-17
The work performed in this project consisted of the derivation, implementation, and testing of a new, computationally advantageous approximation to the 3D Boltz- mann transport equation. The solution of the Boltzmann equation is the neutron flux in nuclear reactor cores and shields, but solving this equation is difficult and costly. The new “2D/1D” approximation takes advantage of a special geometric feature of typical 3D reactors to approximate the neutron transport physics in a specific (ax- ial) direction, but not in the other two (radial) directions. The resulting equation is much less expensive to solve computationally, and its solutions are expected to be sufficiently accurate for many practical problems. In this project we formulated the new equation, discretized it using standard methods, developed a stable itera- tion scheme for solving the equation, implemented the new numerical scheme in the MPACT code, and tested the method on several realistic problems. All the hoped- for features of this new approximation were seen. For large, difficult problems, the resulting 2D/1D solution is highly accurate, and is calculated about 100 times faster than a 3D discrete ordinates simulation.
Beyond Graphene: Electronic and Mechanical Properties of Defective 2-D Materials
Terrones, Humberto
One of the challenges in the production of 2-D materials is the synthesis of defect free systems which can achieve the desired properties for novel applications. However, the reality so far indicates that we need to deal with defective systems and understand their main features in order to perform defect engineering in such a way that we can engineer a new material. In this talk I discuss first, the introduction of defects in a hierarchic way starting from 2-D graphene to form giant Schwarzites or graphene foams, which also can exhibit further defects, thus we can have several levels of defectiveness. In this context, it will be shown that giant Schwarzites, depending on their symmetry, can exhibit Dirac-Fermion behavior and further, possess protected topological states as shown by other authors. Regarding the mechanical properties of these systems, it is possible to tune the Poisson Ratio by the addition of defects, thus shedding light to the explanation of the almost zero Poisson ratios in experimentally obtained graphene foams. Second, the idea of Haeckelites, a planar sp2 graphene-like structure with heptagons and pentagons, can be extended to transition metal dichalcogenides (TMDs) with square and octagonal-like defects, finding semi-metallic behaviors with Dirac-Fermions, and even topological insulating properties. National Science Foundation (EFRI-1433311).
Resolving 2D Amorphous Materials with Scanning Probe Microscopy
Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim
Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.
Observations of 2D Doppler backscattering on MAST
Thomas, D A; Freethy, S J; Huang, B K; Shevchenko, V F; Vann, R G L
2015-01-01
The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch an...
2D Non-Abelian Theory: Some Novel Features
Srinivas, N; Kureel, B K; Malik, R P
2016-01-01
Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss some novel features of a two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields). Besides the usual off-shell nilpotent and absolutely anticommutating (anti-)BRST symmetry transformations, we discuss the off-shell nilpotent and absolutely anticommutating (anti-)co-BRST symmetry transformations for this specific 2D theory. Particularly, we lay emphasis on the existence of the coupled (but equivalent) Lagrangian densities of the 2D non-Abelian theory in view of the presence of (anti-)co-BRST symmetry transformations where we pin-point some novel features associated with the Curci-Ferrari (CF) type restrictions. We demonstrate that these CF-type restrictions can be incorporated into the (anti-)co-BRST invariant Lagrangian densities through the fermionic Lagrange multipliers which carry specific ghost numbers. The modified versions of the Lagrangian densities respect some precise and perf...
On the effective shear speed in 2D phononic crystals
Kutsenko, A A; Norris, A N; Poncelet, O
2011-01-01
The quasistatic limit of the antiplane shear-wave speed ('effective speed') $c$ in 2D periodic lattices is studied. Two new closed-form estimates of $c$ are derived by employing two different analytical approaches. The first proceeds from a standard background of the plane wave expansion (PWE). The second is a new approach, which resides in $\\mathbf{x}$-space and centers on the monodromy matrix (MM) introduced in the 2D case as the multiplicative integral, taken in one coordinate, of a matrix with components being the operators with respect to the other coordinate. On the numerical side, an efficient PWE-based scheme for computing $c$ is proposed and implemented. The analytical and numerical findings are applied to several examples of 2D square lattices with two and three high-contrast components, for which the new PWE and MM estimates are compared with the numerical data and with some known approximations. It is demonstrated that the PWE estimate is most efficient in the case of densely packed stiff inclusio...
Hope for slow positron 2D-ACAR
International Nuclear Information System (INIS)
Positron is trapped by the hole type defect (localized) and vanished by pair annihilation with the electron. Atomic hole, cluster of atomic hole and complex materials of impurity can be detected by using this property of positron. The positron annihilation method determined the fine structure of hole and the electron structure. 2D-ACAR of positron trapped in defect gives the detailed distribution of momentum (the two-dimension map integrated in the direction of γ-annihilation) of positron and electron localized in the hole. It makes possible the detailed comparison with the calculation results of the first principle theory. The results of 2D-ACAR of cluster and hole in Si showed that about 60% positrons were trapped and annihilated by divacancy and 40% of it were vanished from the perfect crystal unless trapping. Very interest results were found that 2D-ACAR of neutral divacancy was very isotropic and that of negative divacancy (-1 or -2) was isotropic, too. (M.N.)
Design Application Translates 2-D Graphics to 3-D Surfaces
2007-01-01
Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.
A 2-D ECE Imaging Diagnostic for TEXTOR
Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.
2002-11-01
A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.
Inversions for MT data in 2D symmetrical anisotropic media
Institute of Scientific and Technical Information of China (English)
YANG Chang-fu; LIN Chang-you; SUN Chong-chi; LI Qing-he
2005-01-01
In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.
F-theory and 2d (0, 2) theories
Schäfer-Nameki, Sakura; Weigand, Timo
2016-05-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.
MAGNUM-2D computer code: user's guide
Energy Technology Data Exchange (ETDEWEB)
England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.
1985-01-01
Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.
Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)
2015-12-09
Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant
Progresses in the Analysis of Stochastic 2D Cellular Automata: a Study of Asynchronous 2D Minority
Regnault, Damien; Thierry, Éric
2007-01-01
Cellular automata are often used to model systems in physics, social sciences, biology that are inherently asynchronous. Over the past 20 years, studies have demonstrated that the behavior of cellular automata drastically changed under asynchronous updates. Still, the few mathematical analyses of asynchronism focus on one-dimensional probabilistic cellular automata, either on single examples or on specific classes. As for other classic dynamical systems in physics, extending known methods from one- to two-dimensional systems is a long lasting challenging problem. In this paper, we address the problem of analysing an apparently simple 2D asynchronous cellular automaton: 2D Minority where each cell, when fired, updates to the minority state of its neighborhood. Our experiments reveal that in spite of its simplicity, the minority rule exhibits a quite complex response to asynchronism. By focusing on the fully asynchronous regime, we are however able to describe completely the asymptotic behavior of this dynamics...
A type of 2D magnetic equivalent circuit framework of permanent magnet for magnetic system in AEMR
Institute of Scientific and Technical Information of China (English)
Liang Huimin; You Jiaxin; Cai Zhaowen; Zhai Guofu
2015-01-01
Modeling of permanent magnet (PM) is very important in the process of electromagnetic system calculation of aerospace electromagnetic relay (AEMR). In traditional analytical calcula-tion, PM is often equivalent to a lumped parameter model of one magnetic resistance and one mag-netic potential, but great error is often caused for the inner differences of PM; based on the conception of flux tube, a type of 2D magnetic equivalent circuit framework of permanent magnet model (2D MECF) is established; the element is defined, the relationship between elements is deduced, and solution procedure as well as verification condition of this model is given;by a case study of the electromagnetic system of a certain type of AEMR, the electromagnetic system calcu-lation model is established based on 2D MECF and the attractive force at different rotation angles is calculated;the proposed method is compared with the traditional lumped parameter model and finite element method (FEM); for some types of electromagnetic systems with symmetrical struc-ture, 2D MECF proves to be of acceptable accuracy and high calculation speed which fit the requirement of robust design for AEMR.
Be2D: A model to understand the distribution of meteoric 10Be in soilscapes
Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard
2016-04-01
Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute
Garaud, Pascale
2015-01-01
Fingering convection (otherwise known as thermohaline convection) is an instability that occurs in stellar radiative interiors in the presence of unstable compositional gradients. Numerical simulations have been used in order to estimate the efficiency of mixing induced by this instability. However, fully three-dimensional (3D) computations in the parameter regime appropriate for stellar astrophysics (i.e. low Prandtl number) are prohibitively expensive. This raises the question of whether two-dimensional (2D) simulations could be used instead to achieve the same goals. In this work, we address this issue by comparing the outcome of 2D and 3D simulations of fingering convection at low Prandtl number. We find that 2D simulations are never appropriate. However, we also find that the required 3D computational domain does not have to be very wide: the third dimension need only contain a minimum of two wavelengths of the fastest-growing linearly unstable mode to capture the essentially 3D dynamics of small-scale f...
Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin
2005-04-01
This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney. PMID:16010976
Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin
2005-04-01
This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney.
2D/3D Monte Carlo Feature Profile Simulator FPS-3D
Moroz, Paul
2010-11-01
Numerical simulation of etching/deposition profiles is important for semiconductor industry, as it allows analysis and prediction of the outcome of materials processing on a micron and sub-micron scale. The difficulty, however, is in making such a simulator a reliable, general, and easy to use tool applicable to different situations, for example, with different ratios of ion to neutral fluxes, different chemistries, different energies of incoming particles, and different angular and energy dependencies for surface reactions, without recompiling the code each time when the parameters change. The FPS-3D simulator [1] does not need recompilation when the features, materials, gases, or plasma are changed -- modifications to input, chemistry, and flux files are enough. The code allows interaction of neutral low-energy species with the surface mono-layer, while considering finite penetration depth into the volume for fast particles and ions. The FPS-3D code can simulate etching and deposition processes, both for 2D and 3D geometries. FPS-3D is using an advanced graphics package from HFS for presenting real-time process and profile evolution. The presentation will discuss the FPS-3D code with examples for different process conditions. The author is thankful to Drs. S.-Y. Kang of TEL TDC and P. Miller of HFS for valuable discussions. [4pt] [1] P. Moroz, URP.00101, GEC, Saratoga, NY, 2009.
Quantum Vacua of 2d Maximally Supersymmetric Yang-Mills Theory
Koloğlu, Murat
2016-01-01
We analyze the classical and quantum vacua of 2d $\\mathcal{N}=(8,8)$ supersymmetric Yang-Mills theory with $SU(N)$ and $U(N)$ gauge group, describing the worldvolume interactions of $N$ parallel D1-branes with flat transverse directions $\\mathbb{R}^8$. We claim that the IR limit of the $SU(N)$ theory in the superselection sector labeled $M \\pmod{N}$ --- identified with the internal dynamics of $(M,N)$-string bound states of Type IIB string theory --- is described by the symmetric orbifold $\\mathcal{N}=(8,8)$ sigma model into $(\\mathbb{R}^8)^{D-1}/\\mathbb{S}_D$ when $D=\\gcd(M,N)>1$, and by a single massive vacuum when $D=1$, generalizing the conjectures of E. Witten and others. The full worldvolume theory of the D1-branes is the $U(N)$ theory with an additional $U(1)$ 2-form gauge field $B$ coming from the string theory Kalb-Ramond field. This $U(N)+B$ theory has generalized field configurations, labeled by the $\\mathbb{Z}$-valued generalized electric flux and an independent $\\mathbb{Z}_N$-valued 't Hooft flux...
Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker
2014-05-01
One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so
Ozasa, S.; Kim, S. B.; Nakano, H.; Sawae, M.; Kobayashi, H.
The electric device applications of a high temperature superconducting (HTS) bulk magnet having stable levitation and suspension properties due to their strong flux pinning force have been proposed and developed. We have been investigating the three-dimensional (3-D) superconducting actuator using HTS bulk to develop a non-contact transportation device. Probably, the cost of the manufactory will be increased to install the 2-D arranged electromagnets (EM) in a large area because many EMs are needed to cover the area. Therefore, we have been trying to find the method for reducing the number of EMs. In this study, all the EMs except for rotation were replaced in the 2-D arranged permanent magnets (PM), and gap length between PMs were experimentally investigated to improve the dynamic behavior of the mover and to reduce the cost of the manufacturing. As a result, we have succeeded in conveyance of the bulk and reduce the convergence time and maximum overshoot.
2D Seismic Reflection Data across Central Illinois
Energy Technology Data Exchange (ETDEWEB)
Smith, Valerie; Leetaru, Hannes
2014-09-30
In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made
Magnetic Flux Controllers for Induction Heating Applications
Institute of Scientific and Technical Information of China (English)
Valentin Nemkov; Robert Goldstein; Robert Ruffini
2004-01-01
Application of magnetic flux controllers/concentrators to induction heating coils can drastically improve the process efficiency and heat pattern control. Presentation includes: benefits provided by flux controllers, materials available for controllers, application techniques, computer assisted design of induction coils with concentrators, examples of applications. Depending on induction system design, magnetic flux controllers can concentrate heating in a specified area,change heat source distribution and shield a particular part zone or external area preventing unintended eddy current heating.Besides of the coil efficiency improvement and optimal power distribution, magnetic flux controllers reduce the coil current demand from a supplying circuitry thus strongly reducing losses in busswork, cables, transformers and inverter components.Improvement that can be achieved due to magnetic flux controllers is case dependable. 2D and 3D computer simulation allows the designer to predict accurately effect of controllers on the coil parameters and temperature distribution and optimize the whole electromagnetic system. Special attention in presentation is paid to new magnetodielectric materials optimized for induction heating conditions. These materials have high magnetic permeability and saturation flux density,excellent machinability, good chemical and temperature resistance. Concentrators from these materials can work in a wide range of frequencies and specific powers. Examples of magnetic flux controller application include surface hardening of shafts and gears, induction surface hardfacing and brazing.
AmeriFlux Measurement Network: Science Team Research
Energy Technology Data Exchange (ETDEWEB)
Law, B E
2012-12-12
Research involves analysis and field direction of AmeriFlux operations, and the PI provides scientific leadership of the AmeriFlux network. Activities include the coordination and quality assurance of measurements across AmeriFlux network sites, synthesis of results across the network, organizing and supporting the annual Science Team Meeting, and communicating AmeriFlux results to the scientific community and other users. Objectives of measurement research include (i) coordination of flux and biometric measurement protocols (ii) timely data delivery to the Carbon Dioxide Information and Analysis Center (CDIAC); and (iii) assurance of data quality of flux and ecosystem measurements contributed by AmeriFlux sites. Objectives of integration and synthesis activities include (i) integration of site data into network-wide synthesis products; and (ii) participation in the analysis, modeling and interpretation of network data products. Communications objectives include (i) organizing an annual meeting of AmeriFlux investigators for reporting annual flux measurements and exchanging scientific information on ecosystem carbon budgets; (ii) developing focused topics for analysis and publication; and (iii) developing data reporting protocols in support of AmeriFlux network goals.
Anomalous Hall Effect in a 2D Rashba Ferromagnet.
Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M
2016-07-22
Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength. PMID:27494487
Localized moving breathers in a 2-D hexagonal lattice
Marin, J L; Russell, F M
1997-01-01
We show for the first time that highly localized in-plane breathers can propagate in specific directions with minimal lateral spreading in a model 2-D hexagonal non-linear lattice. The lattice is subject to an on-site potential in addition to longitudinal nonlinear inter-particle interactions. This study investigates the prediction that stable breather-like solitons could be formed as a result of energetic scattering events in a given layered crystal and would propagate in atomic-chain directions in certain atomic planes. This prediction arose from a long-term study of previously unexplained dark lines in natural crystals of muscovite mica.
Novel 2D representation of vibration for local damage detection
Directory of Open Access Journals (Sweden)
Grzegorz Żak
2014-07-01
Full Text Available In this paper a new 2D representation for local damage detection is presented. It is based on a vibration time series analysis. A raw vibration signal is decomposed via short-time Fourier transform and new time series for each frequency bin are differentiated to decorrelate them. For each time series, autocorrelation function is calculated. In the next step ACF maps are constructed. For healthy bearing ACF map should not have visible horizontal lines indicating damage. The method is illustrated by analysis of real data containing signals from damaged bearing and healthy for comparison.
Slow positron beam experiment using 2D-ACAR
International Nuclear Information System (INIS)
We developed a γ-incident position detector using the position sensitive photomultiplier R3941. The equipment is set up five meters apart from the sample and used for the experiment by the continuous spectrum positron. If the sample with width 2 mm were measured, the resolving power became about 1.2 m rad and the average coincidence counter coefficiency about 50 cps by radiation source 1GBq 22Na. A positronium emission spectroscopy is explained as the experimental example of a combination of low-energy position beam and 2D-ACAR. (S.Y.)
2-D ACAR measurements of Ni3A1
International Nuclear Information System (INIS)
In connection with a detailed study of the electronic structure and stability of the aluminides (Ni,Fe)3Al, 2-D ACAR positron annihilation measurements were made on a Ni3Al single crystal to study the Fermi surface. The results for Ni3Al have been compared with results for pure Ni. Strong similarities were found for the electronic structures of these materials. Theoretical calculations of the Fermi surface for Ni3Al are in good agreement with the experimental results. The Γ16 sheet, not previously observed in any experiment, has now been observed for the first time in Ni3Al. 14 refs., 10 figs
Informatiivisen 2D-animaation suunnittelu ja toteutus
Inkinen, Jaakko
2015-01-01
Tämän opinnäytetyön tavoitteena on tutkia animaatiota infografiikan välineenä. Produktiivinen työ on informatiivisen 2D-animaation suunnittelu ja toteutus. Työn toimeksiantajana on Carea, eli Kymenlaakson sairaanhoito- ja sosiaalipalvelujen kuntayhtymä. Animaation tarkoituksena on informoida potilaita omista mahdollisuuksistaan vaikuttaa hoitonsa turvallisuuteen, ja lopullinen tuotos tulee näkymään sekä internetissä että Kymenlaakson keskussairaalassa sijaitsevilta näytöiltä. Työ toteutetaan ...
Topology-Preserving Rigid Transformation of 2D Digital Images.
Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues
2014-02-01
We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping. PMID:26270925
High Current Density 2D/3D Esaki Tunnel Diodes
Krishnamoorthy, Sriram; Lee II, Edwin W.; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D.; Johnson, Jared M.; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth
2016-01-01
The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable roo...
Hypoxic regulation of the NKG2D ligand, H60
Krishnamurthy, Siddharth Ravindran
2009-01-01
Hypoxia in the context of cancer has been well studied as it has been shown that tumors that are in hypoxic conditions tend to become malignant or metastatic. There is evidence that hypoxia is able to modulate tumor immunogenicity, however this phenomenon has not been well characterized. Here, we look at the effects of hypoxia on tumor immunogenicity from the perspective of NK cell recognition. We find that hypoxia decreases the expression of the NKG2D ligand, H60 post-transcriptionally but n...
Analysis of a 2D "liquid" plasma lattice
Institute of Scientific and Technical Information of China (English)
HUA; Jianjun; LIU; Yanhong; ZHANG; Zhihe
2004-01-01
To study the structural and dynamical properties of a 2D dusty plasma lattice, a set of experiments were performed in an environment of radio frequency discharge. Based on the results of one of the experiments, pair correlation function, bond-orientational correlation function and mean square displacement of such a system were computed and analyzed. The bond-orientational correlation function is found to fit in with the law of e-r, and the mean square displacement is found to increase monotonously with time, both of which, together with the pair correlation function, indicate that the two-dimensional dusty plasma lattice formed in the experiment stayed in a "liquid" state.
Cryogenic Cavitating Flow in 2D Laval Nozzle
Institute of Scientific and Technical Information of China (English)
Naoki Tani; Toshio Nagashima
2003-01-01
Cavitation is one of the troublesome problems in rocket turbo pumps, and since most of high-efficiency rocket propellants are cryogenic fluids, so called "thermodynamic effect" becomes more evident than in water. In the present study, numerical and experimental study of liquid nitrogen cavitation in 2D Laval nozzle was carried out,so that the influence of thermodynamic effect was examined. It was revealed that temperature and cavitation have strong inter-relationship with each other in thermo-sensitive cryogenic fluids.
Action, Hamiltonian and CFT of 2D black holes
International Nuclear Information System (INIS)
The boundary terms in the Hamiltonian, in the presence of horizons, are carefully analyzed in a simple 2D theory admitting AdS black holes. The agreement between the Euclidean approach and CFT is obtained modulo certain assumptions regarding the spectrum of the Virasoro's algebra. The results obtained are of general validity, since they rely on general properties of black holes. In particular, the central charge can be understood as a classical result without invoking string theory. The peculiar features of gravity, that the on shell Hamiltonian is determined by boundary terms, is the reason for the mentioned agreement. (author)
Multiple ising spins coupled to 2d quantum gravity
Harris, M G
1994-01-01
We study a model in which p independent Ising spins are coupled to 2d quantum gravity (in the form of dynamical planar phi-cubed graphs). Consideration is given to the p tends to infinity limit in which the partition function becomes dominated by certain graphs; we identify most of these graphs. A truncated model is solved exactly providing information about the behaviour of the full model in the limit of small beta. Finally, we derive a bound for the critical value of the coupling constant, beta_c and examine the magnetization transition in the limit p tends to zero.
2-D SIMULATION OF CHANNEL FLOWS WITH MOVEABLE BED
Institute of Scientific and Technical Information of China (English)
Wilhelm BECHTELER; Davood FARSHI
2001-01-01
This paper presents some preliminary results of 2-D numerical simulation of open channel flow with moveable bed. The unsteady two dimensional channel flow and sediment transport are simulated by solving shallow water equations and sediment continuity equation in conservation form based on unstructured finite volume method. Redefining longitudinal and transverse slopes of the bed is implemented in order to consider them in the bedload equation. A simple modeling treatment dealing with secondary flow effect on sediment movement is also discussed. Finally, two examples of numerical simulation are presented.
GAIA: A 2-D Curvilinear moving grid hydrodynamic code
International Nuclear Information System (INIS)
The GAIA computer code is developed for time dependent, compressible, multimaterial fluid flow problems, to overcome some drawbacks of traditional 2-D Lagrangian codes. The initial goals of robustness, entropy accuracies, efficiency in presence of large interfacial slip, have already been achieved. The general GODUNOV approach is applied to an arbitrary time varying control-volume formulation. We review in this paper the Riemann solver, the GODUNOV cartesian and curvilinear moving grid schemes and an efficient grid generation algorithm. We finally outline a possible second order accuracy extension
Computation of 2-D spectra assisted by compressed sampling
Almeida, J; Plenio, M B
2012-01-01
The computation of scientific data can be very time consuming even if they are ultimately determined by a small number of parameters. The principle of compressed sampling suggests that we can achieve a considerable decrease in the computation time by avoiding the need to sample the full data set. We demonstrate the usefulness of this approach at the hand of 2-D spectra in the context of ultra-fast non-linear spectroscopy of biological systems where numerical calculations are highly challenging due to the considerable computational effort involved in obtaining individual data points.
Finite Element Analysis of 2-D Elastic Contacts Involving FGMs
Abhilash, M. N.; Murthy, H.
2014-05-01
The response of elastic indenters in contact with Functionally Graded Material (FGM) coated homogeneous elastic half space has been presented in the current paper. Finite element analysis has been used due to its ability to handle complex geometry, material, and boundary conditions. Indenters of different typical surface profiles have been considered and the problem has been idealized as a two-dimensional (2D) plane strain problem considering only normal loads. Initially, indenters were considered to be rigid and the results were validated with the solutions presented in the literature. The analysis has then been extended to the case of elastic indenters on FGM-coated half spaces and the results are discussed.
Mesophases in Nearly 2D Room-Temperature Ionic Liquids
Manini, N.; Cesaratto, M.; Del Popolo, Mario; Ballone, Pietro
2009-01-01
Computer simulations of (i) a [C(12)mim][Tf2N] film of nanometric thickness squeezed at kbar pressure by a piecewise parabolic confining potential reveal a mesoscopic in-plane density and composition modulation reminiscent of mesophases seen in 3D samples of the same room-temperature ionic liquid (RTIL). Near 2D confinement, enforced by a high normal load, as well as relatively long aliphatic chains are strictly required for the mesophase formation, as confirmed by computations for two relate...
Hybrid animation integrating 2D and 3D assets
O'Hailey, Tina
2010-01-01
Artist imaginations continue to grow and stretch the boundaries of traditional animation. Successful animators adept and highly skilled in traditional animation mediums are branching out beyond traditional animation workflows and will often use multiple forms of animation in a single project. With the knowledge of 3D and 2D assets and the integration of multiple animation mediums into a single project, animators have a wealth of creative resources available for a project that is not limited to a specific animation medium, software package or workflow processs. Enhance a poignant scene by choos
N=2, D=6 supergravity with $E_7$ gauge matter
Zyablyuk, K N
1997-01-01
The lagrangian of N=2, D=6 supergravity coupled to E_7 X SU(2) vector- and hyper-multiplets is derived. For this purpose the coset manifold E_8/E_7 X SU(2), parametrized by the scalars of the hypermultiplet, is constructed. A difference from the case of Sp(n)-matter is pointed out. This model can be considered as an intermediate step in the compactification of D=10 supergravity coupled to E_8 X E_8 matter to four-dimensional model of E_6 unification.
Quantum Oscillations in an Interfacial 2D Electron Gas.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bingop [Zhejiang Univ., Hangzhou (China); Lu, Ping [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Liu, Henan [Univ. of North Carolina, Charlotte, NC (United States); Lin, Jiao [Zhejiang Univ., Hangzhou (China); Ye, Zhenyu [Zhejiang Univ., Hangzhou (China); Jaime, Marcelo [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Balakirev, Fedor F. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Yuan, Huiqiu [Zhejiang Univ., Hangzhou (China); Wu, Huizhen [Zhejiang Univ., Hangzhou (China); Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhang, Yong [Univ. of North Carolina, Charlotte, NC (United States)
2016-01-01
Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb_{1-x}Sn_{x}Te thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.
Topology-Preserving Rigid Transformation of 2D Digital Images.
Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues
2014-02-01
We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.
Efficient 2d full waveform inversion using Fortran coarray
Ryu, Donghyun; Kim, ahreum; Ha, Wansoo
2016-04-01
We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.
NUMERICAL SIMULATIONS OF 2D PERIODIC UNSTEADY CAVITATING FLOWS
Institute of Scientific and Technical Information of China (English)
WU Lei; LU Chuan-jing; LI Jie; CHEN Xin
2006-01-01
A two-phase mixture model was established to study unsteady cavitating flows. A local compressible system of equations was derived by introducing a density-pressure function to account for the two-phase flow of water/vapor and the transition from one phase to the other. An algorithm for solving the variable-density Navier-Stokes equations of cavitating flow problem was put forward. The numerical results for unsteady characteristics of cavitating flows on a 2D NACA hydrofoil coincide well with experimental data.
Field Evaluation of a Novel 2D Preferential Flow Snowpack Hydrology Model
Leroux, N.; Pomeroy, J. W.; Kinar, N. J.
2015-12-01
Accurate estimation of snowmelt flux is of primary importance for runoff hydrograph prediction, which is used for water management and flood forecasting. Lateral flows and preferential flow pathways in porous media flow have proven critical for improving soil and groundwater flow models, but though many physically-based layered snowmelt models have been developed, only 1D matrix flow is accounted for in these models. Therefore, there is a need for snowmelt models that include these processes so as to examine the potential to improve snowmelt hydrological modelling. A 2D model is proposed that enables an improved understanding of energy and water flows within deep heterogeneous snowpacks, including those on slopes. A dual pathway theory is presented that simulates the formation of preferential flow paths, vertical and lateral water flows through the snow matrix and flow fingers, internal energy fluxes, melt, wet snow metamorphism, and internal refreezing. The dual pathway model utilizes an explicit finite volume method to solve for the energy and water flux equations over a non-orthogonal grid. It was run and evaluated using in-situ data collected from snowpit - accessed gravimetric, thermometric, photographic, and dielectric observations and novel non-invasive acoustic observations of layering, temperature, flowpath geometry, density and wetness at the Fortress Mountain Snow Laboratory, Alberta, Canada. The melt of a natural snowpack was artificially generated after detailed observation of snowpack initial conditions such as snow layer properties, temperature, and liquid water content. Snowpack ablation and liquid water content distribution over time were then measured and used for model parameterization and validation. Energy available at the snow surface and soil slope angle were set as mondel inputs. Model verification was based on snowpack property evolution. The heterogeneous flow model can be an important tool to help understand snowmelt flow processes, how
Marginal fluctuations as instantons on M2/D2-branes
Naghdi, M.
2014-03-01
We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over spaces, where we use and for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis-Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of and , and it agrees with a marginal boundary operator of the conformal dimension of . However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all supersymmetries to , while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations and for the supercharges and scalars, respectively, while the fermions remain fixed in of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full gauge group along the same lines with a similar situation to the one faced in the AdS/CFT correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for as well.
Scaling in Gravitational Clustering, 2D and 3D Dynamics
Munshi, D; Melott, A L; Schäffer, R
1999-01-01
Perturbation Theory (PT) applied to a cosmological density field with Gaussian initial fluctuations suggests a specific hierarchy for the correlation functions when the variance is small. In particular quantitative predictions have been made for the moments and the shape of the one-point probability distribution function (PDF) of the top-hat smoothed density. In this paper we perform a series of systematic checks of these predictions against N-body computations both in 2D and 3D with a wide range of featureless power spectra. In agreement with previous studies, we found that the reconstructed PDF-s work remarkably well down to very low probabilities, even when the variance approaches unity. Our results for 2D reproduce the features for the 3D dynamics. In particular we found that the PT predictions are more accurate for spectra with less power on small scales. The nonlinear regime has been explored with various tools, PDF-s, moments and Void Probability Function (VPF). These studies have been done with unprec...
Predicting Non-Square 2D Dice Probabilities
Pender, G A T
2014-01-01
The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 [1]. In this paper we make progress on the 2D problem (which can be realised in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest a model that predicts this based on the side length ratio. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or grippy surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This ...
Influence of Elevation Data Source on 2D Hydraulic Modelling
Bakuła, Krzysztof; Stępnik, Mateusz; Kurczyński, Zdzisław
2016-08-01
The aim of this paper is to analyse the influence of the source of various elevation data on hydraulic modelling in open channels. In the research, digital terrain models from different datasets were evaluated and used in two-dimensional hydraulic models. The following aerial and satellite elevation data were used to create the representation of terrain - digital terrain model: airborne laser scanning, image matching, elevation data collected in the LPIS, EuroDEM, and ASTER GDEM. From the results of five 2D hydrodynamic models with different input elevation data, the maximum depth and flow velocity of water were derived and compared with the results of the most accurate ALS data. For such an analysis a statistical evaluation and differences between hydraulic modelling results were prepared. The presented research proved the importance of the quality of elevation data in hydraulic modelling and showed that only ALS and photogrammetric data can be the most reliable elevation data source in accurate 2D hydraulic modelling.
$T \\bar{T}$-deformed 2D Quantum Field Theories
Cavaglià, Andrea; Szécsényi, István M; Tateo, Roberto
2016-01-01
It was noticed many years ago, in the framework of massless RG flows, that the irrelevant composite operator $T \\bar{T}$, built with the components of the energy-momentum tensor, enjoys very special properties in 2D quantum field theories, and can be regarded as a peculiar kind of integrable perturbation. Novel interesting features of this operator have recently emerged from the study of effective string theory models.In this paper we study further properties of this distinguished perturbation. We discuss how it affects the energy levels and one-point functions of a general 2D QFT in finite volume through a surprising relation with a simple hydrodynamic equation. In the case of the perturbation of CFTs, adapting a result by L\\"uscher and Weisz we give a compact expression for the partition function on a finite-length cylinder and make a connection with the exact $g$-function method. We argue that, at the classical level, the deformation naturally maps the action of $N$ massless free bosons into the Nambu-Goto...
High Current Density 2D/3D Esaki Tunnel Diodes
Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth
2016-01-01
The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved. PMID:26938221
Flatbands in 2D boroxine-linked covalent organic frameworks.
Wang, Rui-Ning; Zhang, Xin-Ran; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long
2016-01-14
Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules. Furthermore, the band structures are surprising and show flat-band characteristics which are mainly attributed to the delocalized π-conjugated electrons around the phenyl rings and can be better understood within aromaticity theories. Next, the effects of branch sizes and hydrostatic strains on their band structures are systematically considered within generalized gradient approximations. It is found that their band gaps will start to saturate when the branch size reaches 9. For boroxine-linked COFs with only one benzene ring in the branch, the band gap is robust under compressive strain while it decreases with the tensile strain increasing. When the branch size is equal or greater than 2, their band gaps will monotonously increase with the strain increasing in the range of [-1.0, 2.0] Å. All boroxine-linked COFs are semiconductors with controllable band gaps, depending on the branch length and the applied strain. In comparison with other 2D materials, such as graphene, hexagonal boron nitride, and even γ-graphyne, all boroxine-linked COFs are much softer and even more stable. That is, they can maintain the planar features under a larger compressive strain, which means that they are good candidates in flexible electronics.
Flatbands in 2D boroxine-linked covalent organic frameworks.
Wang, Rui-Ning; Zhang, Xin-Ran; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long
2016-01-14
Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules. Furthermore, the band structures are surprising and show flat-band characteristics which are mainly attributed to the delocalized π-conjugated electrons around the phenyl rings and can be better understood within aromaticity theories. Next, the effects of branch sizes and hydrostatic strains on their band structures are systematically considered within generalized gradient approximations. It is found that their band gaps will start to saturate when the branch size reaches 9. For boroxine-linked COFs with only one benzene ring in the branch, the band gap is robust under compressive strain while it decreases with the tensile strain increasing. When the branch size is equal or greater than 2, their band gaps will monotonously increase with the strain increasing in the range of [-1.0, 2.0] Å. All boroxine-linked COFs are semiconductors with controllable band gaps, depending on the branch length and the applied strain. In comparison with other 2D materials, such as graphene, hexagonal boron nitride, and even γ-graphyne, all boroxine-linked COFs are much softer and even more stable. That is, they can maintain the planar features under a larger compressive strain, which means that they are good candidates in flexible electronics. PMID:26662215
Three-bosons in 2D with a magnetic field
Rittenhouse, Seth; Johnson, Brad; Wray, Andrew; D'Incao, Jose
2016-05-01
Systems of interacting particles in reduced dimensions in the presence of external fields can exhibit a number of surprising behaviors, for instance the emergence of the fractional quantum Hall effect. Examining few-body interactions and effects can lead to significant insights within these systems. In this talk we examine a system of three bosons confined to two dimensions in the presence of a perpendicular magnetic field within the framework of the adiabatic hyperspherical method. For the case of zero-range, regularized pseudo-potential interactions, we find that the system is nearly separable in hyperspherical coordinates and that, away from a set of narrow avoided crossings, the full energy eigenspectrum as a function of the 2D s-wave scattering length is well described by ignoring coupling between adiabatic hyperradial potentials. In the case of weak attractive or repulsive interactions, we find the lowest three-body energy states exhibit even/odd parity oscillations as a function of total internal 2D angular momentum and that for weak repulsive interactions, the universal lowest energy interacting state has an internal angular momentum of M=3. We also discuss the effect of including finite range and higher partial-wave interactions.
Magnetic gating of a 2D topological insulator
Dang, Xiaoqian; Burton, J. D.; Tsymbal, Evgeny Y.
2016-09-01
Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic ‘gate’ representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate.
Spin dependent 2D electron scattering by nanomagnets
International Nuclear Information System (INIS)
The 2D scattering problem of an electron by a magnetized nanoparticle is solved in the Born approximation with account of the dipole-dipole interaction of the magnetic moments of electron and nanomagnet. The scattering amplitudes in this problem are the two-component spinors. They are obtained as functions of the electron spin orientation, the electron energy and show anisotropy in scattering angle. The initially polarized beam of electrons scattered by the nanomagnet consists of electrons with no spin flipped and spin flipped. The majority of electrons with no spin flipped are scattered by small angles. The majority electrons with spin flipped are scattered in the vicinity of the scattering angles π/2 and 3π/2. This can be used as one more method of controlling the spin currents. - Research highlights: → The artificial namomagnets with gigantic magnetic moments strongly interact with spins of electrons. → In 2D geometry this interaction controls the electron-nanomagnet scattering. → The scattering amplitudes are two-component spinors. → The scattering lengths depend on orientation of magnetic moment of the nanomagnet, the electron spin, and the scattering angle. → This dependence can be used for controlling the spin currents.
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Directory of Open Access Journals (Sweden)
José Oswaldo Cadenas
Full Text Available In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q ≤ n the algorithm executes in time within O(n; second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q ≤ n holds; the smaller the ratio min(p, q/n is in the dataset, the greater the speedup factor achieved.
Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces
Escobar-Ruiz, M. A.; Miller, Willard, Jr.
2016-07-01
2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
Facial biometrics based on 2D vector geometry
Malek, Obaidul; Venetsanopoulos, Anastasios; Androutsos, Dimitrios
2014-05-01
The main challenge of facial biometrics is its robustness and ability to adapt to changes in position orientation, facial expression, and illumination effects. This research addresses the predominant deficiencies in this regard and systematically investigates a facial authentication system in the Euclidean domain. In the proposed method, Euclidean geometry in 2D vector space is being constructed for features extraction and the authentication method. In particular, each assigned point of the candidates' biometric features is considered to be a 2D geometrical coordinate in the Euclidean vector space. Algebraic shapes of the extracted candidate features are also computed and compared. The proposed authentication method is being tested on images from the public "Put Face Database". The performance of the proposed method is evaluated based on Correct Recognition (CRR), False Acceptance (FAR), and False Rejection (FRR) rates. The theoretical foundation of the proposed method along with the experimental results are also presented in this paper. The experimental results demonstrate the effectiveness of the proposed method.
2D Plasmonics for Enabling Novel Light-Matter Interactions
Kaminer, Ido; Zhen, Bo; Joannopoulos, John D; Soljacic, Marin
2015-01-01
The physics of light-matter interactions is strongly constrained by both the small value of the fine-structure constant and the small size of the atom. Overcoming these limitations is a long-standing challenge. Recent theoretical and experimental breakthroughs have shown that two dimensional systems, such as graphene, can support strongly confined light in the form of plasmons. These 2D systems have a unique ability to squeeze the wavelength of light by over two orders of magnitude. Such high confinement requires a revisitation of the main assumptions of light-matter interactions. In this letter, we provide a general theory of light-matter interactions in 2D systems which support plasmons. This theory reveals that conventionally forbidden light-matter interactions, such as: high-order multipolar transitions, two-plasmon spontaneous emission, and spin-flip transitions can occur on very short time-scales - comparable to those of conventionally fast transitions. Our findings enable new platforms for spectroscopy...
Homogenization of 1D and 2D magnetoelastic lattices
Directory of Open Access Journals (Sweden)
Schaeffer Marshall
2015-01-01
Full Text Available This paper investigates the equivalent in-plane mechanical properties of one dimensional (1D and two dimensional (2D, periodic magneto-elastic lattices. A lumped parameter model describes the lattices using magnetic dipole moments in combination with axial and torsional springs. The homogenization procedure is applied to systems linearized about stable configurations, which are identified by minimizing potential energy. Simple algebraic expressions are derived for the properties of 1D structures. Results for 1D lattices show that a variety of stiffness changes are possible through reconfiguration, and that magnetization can either stiffen or soften a structure. Results for 2D hexagonal and re-entrant lattices show that both reconfigurations and magnetization have drastic effects on the mechanical properties of lattice structures. Lattices can be stiffened or softened and the Poisson’s ratio can be tuned. Furthermore for certain hexagonal lattices the sign of Poisson’s ratio can change by varying the lattice magnetization. In some cases presented, analytical and numerically estimated equivalent properties are validated through numerical simulations that also illustrate the unique characteristics of the investigated configurations.
2D Gridded Surface Data Value-Added Product
Energy Technology Data Exchange (ETDEWEB)
Tang, Q [Lawrence Livermore National Laboratory; Xie, S [Lawrence Livermore National Laboratory
2015-08-30
This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.
Magnetic gating of a 2D topological insulator.
Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y
2016-09-28
Deterministic control of transport properties through manipulation of spin states is one of the paradigms of spintronics. Topological insulators offer a new playground for exploring interesting spin-dependent phenomena. Here, we consider a ferromagnetic 'gate' representing a magnetic adatom coupled to the topologically protected edge state of a two-dimensional (2D) topological insulator to modulate the electron transmission of the edge state. Due to the locked spin and wave vector of the transport electrons the transmission across the magnetic gate depends on the mutual orientation of the adatom magnetic moment and the current. If the Fermi energy matches an exchange-split bound state of the adatom, the electron transmission can be blocked due to the full back scattering of the incident wave. This antiresonance behavior is controlled by the adatom magnetic moment orientation so that the transmission of the edge state can be changed from 1 to 0. Expanding this consideration to a ferromagnetic gate representing a 1D chain of atoms shows a possibility to control the spin-dependent current of a strip of a 2D topological insulator by magnetization orientation of the ferromagnetic gate. PMID:27437829
Local currents in a 2D topological insulator.
Dang, Xiaoqian; Burton, J D; Tsymbal, Evgeny Y
2015-12-23
Symmetry protected edge states in 2D topological insulators are interesting both from the fundamental point of view as well as from the point of view of potential applications in nanoelectronics as perfectly conducting 1D channels and functional elements of circuits. Here using a simple tight-binding model and the Landauer-Büttiker formalism we explore local current distributions in a 2D topological insulator focusing on effects of non-magnetic impurities and vacancies as well as finite size effects. For an isolated edge state, we show that the local conductance decays into the bulk in an oscillatory fashion as explained by the complex band structure of the bulk topological insulator. We demonstrate that although the net conductance of the edge state is topologically protected, impurity scattering leads to intricate local current patterns. In the case of vacancies we observe vortex currents of certain chirality, originating from the scattering of current-carrying electrons into states localized at the edges of hollow regions. For finite size strips of a topological insulator we predict the formation of an oscillatory band gap in the spectrum of the edge states, the emergence of Friedel oscillations caused by an open channel for backscattering from an impurity and antiresonances in conductance when the Fermi energy matches the energy of the localized state created by an impurity. PMID:26610145
MESH2D GRID GENERATOR DESIGN AND USE
Energy Technology Data Exchange (ETDEWEB)
Flach, G.; Smith, F.
2012-01-20
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.
F-theory and 2d (0,2) Theories
Schafer-Nameki, Sakura
2016-01-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N=(0,2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0,2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0,2) theories as heterotic worldsheet t...
Application Perspective of 2D+SCALE Dimension
Karim, H.; Rahman, A. Abdul
2016-09-01
Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS). One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale) dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats) depending on application requirements (topology, semantic and function). This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.
2-D Composite Model for Numerical Simulations of Nonlinear Waves
Institute of Scientific and Technical Information of China (English)
2000-01-01
－ A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.
Collective Construction of 2D Block Structures with Holes
Fitzsimmons, Zachary
2011-01-01
In this paper we present algorithms for collective construction systems in which a large number of autonomous mobile robots trans- port modular building elements to construct a desired structure. We focus on building block structures subject to some physical constraints that restrict the order in which the blocks may be attached to the structure. Specifically, we determine a partial ordering on the blocks such that if they are attached in accordance with this ordering, then (i) the structure is a single, connected piece at all intermediate stages of construction, and (ii) no block is attached between two other previously attached blocks, since such a space is too narrow for a robot to maneuver a block into it. Previous work has consider this problem for building 2D structures without holes. Here we extend this work to 2D structures with holes. We accomplish this by modeling the problem as a graph orientation problem and describe an O(n^2) algorithm for solving it. We also describe how this partial ordering ma...
Predicting non-square 2D dice probabilities
Pender, G. A. T.; Uhrin, M.
2014-07-01
The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 (Newton 1967 The Mathematical Papers of Issac Newton vol I (Cambridge: Cambridge University Press) pp 60-1). In this paper we make progress on the 2D problem (which can be realized in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest that the ratio of the probabilities of landing on each of the two sides is given by \\frac{\\sqrt{{{k}^{2}}+{{l}^{2}}}-k}{\\sqrt{{{k}^{2}}+{{l}^{2}}}-l}\\frac{arctan \\frac{l}{k}}{arctan \\frac{k}{l}} where k and l are the lengths of the two sides. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or ‘grippy’ surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This problem may also have wider relevance in the testing of physics engines.
2D Pauli Equation with Hulthén Potential in the Presence of Aharonov—Bohm Effect
International Nuclear Information System (INIS)
The 2D Pauli equation with Hulthén potential for spin-1/2 particle in the presence of Aharonov—Bohm (AB) field is solved analytically, on the assumption that an effective approximation is used for the centrifugal term. Singular and regular solutions of the problem are obtained. It is shown that the AB field lifts the degeneracy of the energy levels. The range of the flux parameter for which singular solutions are allowed is modified compared to the pure AB case. When the screening parameter vanishes, it is shown that the obtained energy spectrum becomes the same as that of the Aharonov—Bohm Coulomb problem. (general)
2D Pauli Equation with Hulthén Potential in the Presence of Aharonov—Bohm Effect
Ferkous, N.; Bounames, A.
2013-06-01
The 2D Pauli equation with Hulthén potential for spin-1/2 particle in the presence of Aharonov—Bohm (AB) field is solved analytically, on the assumption that an effective approximation is used for the centrifugal term. Singular and regular solutions of the problem are obtained. It is shown that the AB field lifts the degeneracy of the energy levels. The range of the flux parameter for which singular solutions are allowed is modified compared to the pure AB case. When the screening parameter vanishes, it is shown that the obtained energy spectrum becomes the same as that of the Aharonov—Bohm Coulomb problem.
Institute of Scientific and Technical Information of China (English)
PAN Cun-hong; DAI Shi-qiang; CHEN Sen-mei
2006-01-01
In order to establish a well-balanced scheme, 2D shallow water equations were transformed and solved by using the Finite Volume Method (FVM) with unstructured mesh. The numerical flux from the interface between cells was computed with an exact Riemann solver, and the improved dry Riemann solver was applied to deal with the wet/dry problems. The model was verified through computing some typical examples and the tidal bore on the Qiantang River. The results show that the scheme is robust and accurate, and could be applied extensively to engineering problems.
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper presents new weighting functions in grid generation and new discretizing scheme of momentum equations in numerical simulation of river flow. By using the new weighting functions, the curvilinear grid could be concentrated as desired near the assigned points or lines in physical plane. By using the new discretizing scheme, the difficulties caused by movable boundary and dry riverbed can be overcome. As an application, the flow in the Wuhan Section of Yangtze River is simulated. The computational results are in good agreement with the measured results. The new method is applicable to the numerical simulation of 2-D river flow with irregular region and moveable boundary.
Priority-based task reassignments in hierarchical 2D mesh-connected systems using tableaux
Kim, Dohan
2011-01-01
Task reassignments in 2D mesh-connected systems (2D-MSs) have been researched and simulated for several decades. We propose a hierarchical 2D mesh-connected system (2D-HMS) in order to exploit the regular nature of a 2D-MS. In our approach priority-based task assignments and reassignments in a 2D-HMS are represented by tableaux and their algorithms. We provide examples of priority-based task reassignments in a 2D-HMS in which task relocations are simply reduced to a jeu de taquin slide.
The treatment of magnetic buoyancy in flux transport dynamo models
Choudhuri, Arnab Rai; Hazra, Gopal
2015-01-01
One important ingredient of flux transport dynamo models is the rise of the toroidal magnetic field through the convection zone due to magnetic buoyancy to produce bipolar sunspots and then the generation of the poloidal magnetic field from these bipolar sunspots due to the Babcock-Leighton mechanism. Over the years, two methods of treating magnetic buoyancy, a local method and a non-local method have been used widely by different groups in constructing 2D kinematic models of the flux transpo...
2D Hybrid Yttrium Iron Garnet Magnetic Sensor Noise Characterization
Dufay, Basile; Saez, Sébastien; Cordier, Christophe; Dolabdjian, Christophe; Dubuc, Christian; Hristoforou, E.; Ubizskii, S.
2011-01-01
International audience; This paper deals with the noise characterization of a magnetic field hybrid sensor based on flux-gate-like magnetometer. In the used layout, a magnetic core, like an Yttrium- Iron-Garnet (YIG) thin film, is driven to saturation by a rotating magnetization field, which induces a modulated magnetic field. The latter is sensed, by means of one or more punctual sensors, as an image of the applied magnetic field vector components. Both theoretical principles and main equiva...
Interactive initialization of 2D/3D rigid registration
International Nuclear Information System (INIS)
Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on the
Interactive initialization of 2D/3D rigid registration
Energy Technology Data Exchange (ETDEWEB)
Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children' s National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children' s National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: ZYaniv@childrensnational.org [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)
2013-12-15
Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on
Comic ray flux anisotropies caused by astrospheres
Scherer, K; Ferreira, S E S; Fichtner, H
2016-01-01
Huge astrospheres or stellar wind bubbles influence the propagation of cosmic rays at energies up to the TeV range and can act as small-scale sinks decreasing the cosmic ray flux. We model such a sink (in 2D) by a sphere of radius 10\\,pc embedded within a sphere of a radius of 1\\,kpc. The cosmic ray flux is calculated by means of backward stochastic differential equations from an observer, which is located at $r_{0}$, to the outer boundary. It turns out that such small-scale sinks can influence the cosmic ray flux at the observer's location by a few permille (i.e\\ a few 0.1\\%), which is in the range of the observations by IceCube, Milagro and other large area telescopes.
Comic ray flux anisotropies caused by astrospheres
Scherer, K.; Strauss, R. D.; Ferreira, S. E. S.; Fichtner, H.
2016-09-01
Huge astrospheres or stellar wind bubbles influence the propagation of cosmic rays at energies up to the TeV range and can act as small-scale sinks decreasing the cosmic ray flux. We model such a sink (in 2D) by a sphere of radius 10 pc embedded within a sphere of a radius of 1 kpc. The cosmic ray flux is calculated by means of backward stochastic differential equations from an observer, which is located at r0, to the outer boundary. It turns out that such small-scale sinks can influence the cosmic ray flux at the observer's location by a few permille (i.e. a few 0.1%), which is in the range of the observations by IceCube, Milagro and other large area telescopes.
Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.
Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing
2016-06-28
Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface.
Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.
Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing
2016-06-28
Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface. PMID:27257639
Synthesis, antimalarial properties and 2D-QSAR studies of novel triazole-quinine conjugates.
Faidallah, Hassan M; Panda, Siva S; Serrano, Juan C; Girgis, Adel S; Khan, Khalid A; Alamry, Khalid A; Therathanakorn, Tanya; Meyers, Marvin J; Sverdrup, Francis M; Eickhoff, Christopher S; Getchell, Stephen G; Katritzky, Alan R
2016-08-15
Click chemistry technique led to novel 1,2,3-triazole-quinine conjugates 8a-g, 10a-o, 11a-h and 13 utilizing benzotriazole-mediated synthetic approach with excellent yields. Some of the synthesized analogs (11a, 11d-h) exhibited antimalarial properties against Plasmodium falciparum strain 3D7 with potency higher than that of quinine (standard reference used) through in vitro standard procedure bio-assay. Statistically significant BMLR-QSAR model describes the bio-properties, validates the observed biological observations and identifies the most important parameters governing bio-activity. PMID:27298002
Hydrothermal synthesis of 2D ordered macroporous ZnO films
Institute of Scientific and Technical Information of China (English)
2008-01-01
The ZnO films with two-dimensional ordered macroporous structure were successfully fabricated through hydrothermal crystal growth of ZnO on the ZnO substrate covered with a mouolayer of polystyrene (PS) spheres as template.The precursor solution of hydrothermal crystal growth of ZnO were prepared by equitramine (HMT).The confinement effect of the PS spheres template on the growth of ZnO nanorods and the influence of sodium citrate on the crystal growth of ZnO had been studied.The film surface morphology and the preferential growth of ZnO crystal were investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD),respectively.Also,the photoluminescence spectrum of ZnO films had been measured,and the corresponding mechanism was discussed.
Synthesis by pulsed laser ablation of 2D nanostructures for advanced biomedical sensing
Trusso, S.; Zanchi, C.; Bombelli, A.; Lucotti, A.; Tommasini, M.; de Grazia, U.; Ciusani, E.; Romito, L. M.; Ossi, P. M.
2016-05-01
Au nanoparticle arrays with controlled nanostructure were produced by pulsed laser ablation on glass. Such substrates were optimized for biomedical sensing by means of SERS keeping fixed all process parameters but the laser pulse (LP) number that is a key deposition parameter. It allows to fine-tune the Au surface nanostructure with a considerable improvement in the SERS response towards the detection of apomorphine in blood serum (3.3 × 10‑6 M), when LP number is increased from 1 × 104 to 2 × 104. This result is the starting point to correlate the intensity of selected SERS signals of apomorphine to its concentration in the blood of patients with Parkinson's disease.
In-Cell Protein Structures from 2D NMR Experiments.
Müntener, Thomas; Häussinger, Daniel; Selenko, Philipp; Theillet, Francois-Xavier
2016-07-21
In-cell NMR spectroscopy provides atomic resolution insights into the structural properties of proteins in cells, but it is rarely used to solve entire protein structures de novo. Here, we introduce a paramagnetic lanthanide-tag to simultaneously measure protein pseudocontact shifts (PCSs) and residual dipolar couplings (RDCs) to be used as input for structure calculation routines within the Rosetta program. We employ this approach to determine the structure of the protein G B1 domain (GB1) in intact Xenopus laevis oocytes from a single set of 2D in-cell NMR experiments. Specifically, we derive well-defined GB1 ensembles from low concentration in-cell NMR samples (∼50 μM) measured at moderate magnetic field strengths (600 MHz), thus offering an easily accessible alternative for determining intracellular protein structures. PMID:27379949
Fast and robust recognition and localization of 2D objects
Otterbach, Rainer; Gerdes, Rolf; Kammueller, R.
1994-11-01
The paper presents a vision system which provides a robust model-based identification and localization of 2-D objects in industrial scenes. A symbolic image description based on the polygonal approximation of the object silhouettes is extracted in video real time by the use of dedicated hardware. Candidate objects are selected from the model database using a time and memory efficient hashing algorithm. Any candidate object is submitted to the next computation stage which generates pose hypotheses by assigning model to image contours. Corresponding continuous measures of similarity are derived from the turning functions of the curves. Finally, the previous generated hypotheses are verified using a voting scheme in transformation space. Experimental results reveal the fault tolerance of the vision system with regard to noisy and split image contours as well as partial occlusion of objects. THe short cycle time and the easy adaptability of the vision system make it well suited for a wide variety of applications in industrial automation.
The concept of time in 2D quantum gravity
International Nuclear Information System (INIS)
We show that the ''time'' ts defined via spin clusters in the Ising model coupled to 2d gravity leads to a fractal dimension dh(s)=6 of space-time at the critical point, as advocated by Ishibashi and Kawai. In the unmagnetized phase, however, this definition of Hausdorff dimension breaks down. Numerical measurements are consistent with these results. The same definition leads to dh(s)=16 at the critical point when applied to flat space. The fractal dimension dh(s) is in disagreement with both analytical prediction and numerical determination of the fractal dimension dh(g), which is based on the use of the geodesic distance tg as ''proper time''. There seems to be no simple relation of the kind ts=tg{dh(g)/dh(s)}, as expected by dimensional reasons. (author)
Phase Cascade Bridge Rectifier Array in a 2-D lattice
Nazari, M; Hong, M K; Mohanty, P; Erramilli, S; Narayan, O
2016-01-01
We report on a novel rectification phenomenon in a 2-D lattice network consisting of $N\\times N$ sites with diode and AC source elements with controllable phases. A phase cascade configuration is described in which the current ripple in a load resistor goes to zero in the large $N$ limit, enhancing the rectification efficiency without requiring any external capacitor or inductor based filters. The integrated modular configuration is qualitatively different from conventional rectenna arrays in which the source, rectifier and filter systems are physically disjoint. Exact analytical results derived using idealized diodes are compared to a realistic simulation of commercially available diodes. Our results on nonlinear networks of source-rectifier arrays are potentially of interest to a fast evolving field of distributed power networks.
Non-chiral 2d CFT with integer energy levels
Ashrafi, M.; Loran, F.
2016-09-01
The partition function of 2d conformal field theory is a modular invariant function. It is known that the partition function of a holomorphic CFT whose central charge is a multiple of 24 is a polynomial in the Klein function. In this paper, by using the medium temperature expansion we show that every modular invariant partition function can be mapped to a holomorphic partition function whose structure can be determined similarly. We use this map to study partition function of CFTs with half-integer left and right conformal weights. We show that the corresponding left and right central charges are necessarily multiples of 4. Furthermore, the degree of degeneracy of high-energy levels can be uniquely determined in terms of the degeneracy in the low energy states.
Non-chiral 2d CFT with integer energy levels
Ashrafi, M
2016-01-01
The partition function of 2d conformal field theory is a modular invariant function. It is known that the partition function of a holomorphic CFT whose central charge is a multiple of 24 is a polynomial in the Klein function. In this paper, by using the medium temperature expansion we show that every modular invariant partition function can be mapped to a holomorphic partition function whose structure can be determined similarly. We use this map to study partition function of CFTs with half-integer left and right conformal weights. We show that the corresponding left and right central charges are necessarily multiples of 4. Furthermore, the degree of degeneracy of high-energy levels can be uniquely determined in terms of the degeneracy in the low energy states.
Tailoring the energy distribution and loss of 2D plasmons
Lin, Xiao; López, Josué J; Kaminer, Ido; Chen, Hongsheng; Soljačić, Marin
2016-01-01
The ability to tailor the energy distribution of plasmons at the nanoscale has many applications in nanophotonics, such as designing plasmon lasers, spasers, and quantum emitters. To this end, we analytically study the energy distribution and the proper field quantization of 2D plasmons with specific examples for graphene plasmons. We find that the portion of the plasmon energy contained inside graphene (energy confinement factor) can exceed 50%, despite graphene being infinitely thin. In fact, this very high energy confinement can make it challenging to tailor the energy distribution of graphene plasmons just by modifying the surrounding dielectric environment or the geometry, such as changing the separation distance between two coupled graphene layers. However, by adopting concepts of parity-time symmetry breaking, we show that tuning the loss in one of the two coupled graphene layers can simultaneously tailor the energy confinement factor and propagation characteristics, causing the phenomenon of loss-indu...
A Volume Rendering Algorithm for Sequential 2D Medical Images
Institute of Scientific and Technical Information of China (English)
吕忆松; 陈亚珠
2002-01-01
Volume rendering of 3D data sets composed of sequential 2D medical images has become an important branch in image processing and computer graphics.To help physicians fully understand deep-seated human organs and focuses(e.g.a tumour)as 3D structures.in this paper,we present a modified volume rendering algorithm to render volumetric data,Using this method.the projection images of structures of interest from different viewing directions can be obtained satisfactorily.By rotating the light source and the observer eyepoint,this method avoids rotates the whole volumetric data in main memory and thus reduces computational complexity and rendering time.Experiments on CT images suggest that the proposed method is useful and efficient for rendering 3D data sets.
Premixed Flame Dynamics in Narrow 2D Channels
Ayoobi, Mohsen
2015-01-01
Premixed flames propagating within small channels show complex combustion phenomena that differ from flame propagation at conventional scales. Available experimental and numerical studies have documented stationary/non-stationary and/or asymmetric modes that depend on properties of the incoming reactant flow as well as channel geometry and wall temperatures. The present work seeks to illuminate mechanisms leading to symmetry-breaking and limit cycle behavior that are fundamental to these combustion modes. Specifically, four cases of lean premixed methane/air combustion -- two equivalence ratios (0.53 and 0.7) and two channel widths (2 and 5mm) -- are investigated in a 2D configuration with constant channel length and bulk inlet velocity, where numerical simulations are performed using detailed chemistry. External wall heating is simulated by imposing a linear temperature gradient as a boundary condition on both walls. In the 2mm-channel, both equivalence ratios produce flames that stabilize with symmetric fla...
Fuzzy Dynamic Analysis of a 2D Frame
Directory of Open Access Journals (Sweden)
P. Štemberk
2004-01-01
Full Text Available This paper deals with the dynamic analysis of a 2D concrete frame with uncertainties which are an integral part of any real structure. The uncertainties can be modeled by a stochastic or a fuzzy approach. The fuzzy approach is used and the influence of uncertain input data (modulus of elasticity and density on output data is studied. Fuzzy numbers are represented by ?-cuts. In order to reduce the volume of computation in the fuzzy approach, the response surface function concept is applied. In this way the natural frequencies and mode shapes described by fuzzy numbers are obtained. The results of fuzzy dynamic analysis can be used, e.g., in seismic design of structures based on the response spectrum.
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Brorsen, Michael
. The objective of the tests was to investigate the impact pressures generated on a horizontal platform and a cone platform for selected sea states calibrated by Lykke Andersen & Frigaard, 2006. The measurements should be used for assessment of slamming coefficients for the design of horizontal and cone......This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006......-shaped access platforms on piles. The Model tests include mainly regular waves and a few irregular wave tests. These tests have been conducted at Aalborg University from 9. November, 2006 to 17. November, 2006....
Improving Morphology Operation for 2D Hole Filling Algorithm
Directory of Open Access Journals (Sweden)
Mokhtar M. Hasan
2012-02-01
Full Text Available object detection may result with some noises, the correct detecting of such object plays a major role for later recognition steps, the interior noise of the object must be removed, the morphological operations are used successfully for this purpose, these morphological operations are applied for 2D holes filling using dilation operation, in this paper we have enhanced this algorithm to get better and faster version that will reduce the processing time dramatically by using a dynamic marker, we have applied two kind of markers with different structuring elements but same size which is 3x3, the processing time is reduced and our algorithm reduced the processing time of the original algorithm down to one third, the results also enhanced since there are some cases missed by the extant version of morphological operations holes filling algorithm
Improving Morphology Operation for 2D Hole Filling Algorithm
Directory of Open Access Journals (Sweden)
Mokhtar M. Hasan
2012-02-01
Full Text Available Object detection may result with some noises, the correct detecting of such object plays a majorrole for later recognition steps, the interior noise of the object must be removed, themorphological operations are used successfully for this purpose, these morphological operationsare applied for 2D holes filling using dilation operation, in this paper we have enhanced thisalgorithm to get better and faster version that will reduce the processing time dramatically byusing a dynamic marker, we have applied two kind of markers with different structuring elementsbut same size which is 3x3 and those markers are used according to the structure of the subwindowof the object, the processing time is reduced, and our algorithm reduces this timeapproximately to one third, the results also enhanced since there are some cases missed by theextant version of morphological operations holes filling algorithm.
Multiscale simulation of 2D elastic wave propagation
Zhang, Wensheng; Zheng, Hui
2016-06-01
In this paper, we develop the multiscale method for simulation of elastic wave propagation. Based on the first-order velocity-stress hyperbolic form of 2D elastic wave equation, the particle velocities are solved first ona coarse grid by the finite volume method. Then the stress tensor is solved by using the multiscale basis functions which can represent the fine-scale variation of the wavefield on the coarse grid. The basis functions are computed by solving a local problem with the finite element method. The theoretical formulae and description of the multiscale method for elastic wave equation are given in more detail. The numerical computations for an inhomogeneous model with random scatter are completed. The results show the effectiveness of the multiscale method.
2D numerical modelling of meandering channel formation
Indian Academy of Sciences (India)
Y Xiao; G Zhou; F S Yang
2016-03-01
A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-loadtransport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numericalpredictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under differentscenarios and improve understanding of patterning processes.
TRANSITION FROM 2D TO 3D WITH GEOGEBRA
Directory of Open Access Journals (Sweden)
MARIA MIHAILOVA
2014-12-01
Full Text Available This article presents the definition of projection plane, its importance for the geometry constructions used in civil engineering and comparative analysis of three opportunities for creating a three dimensional basis, used in drawing such a plane. First method consists of transforming affine and orthonormal coordinates and its application in GeoGebra is presented. Second method, using combination of spherical and polar coordinates in space, is introduced. The third suggested method is an application of descriptive geometry for transforming 2D to 3D and a new method of forming a plane of projection, which will be used later in the reviewed example below. The example shows how GeoGebra software can be used in technical drawing used in civil engineering.
The unitary conformal field theory behind 2D Asymptotic Safety
Nink, Andreas
2015-01-01
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in $d>2$ dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge $c=25$. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a...
Optimal Control of 1D and 2D Circuit QED
Fisher, R; Glaser, S J; Marquardt, F; Schulte-Herbrueggen, T
2009-01-01
Optimal control can be used to significantly improve multi-qubit gates in quantum information processing hardware architectures based on superconducting circuit quantum electrodynamics. We apply this approach not only to dispersive gates of two qubits inside a cavity, but, more generally, to architectures based on two-dimensional arrays of cavities and qubits. For high-fidelity gate operations, simultaneous evolutions of controls and couplings in the two coupling dimensions of cavity grids are shown to be significantly faster than conventional sequential implementations. Even under experimentally realistic conditions speedups by a factor of three can be gained. The methods immediately scale to large grids and indirect gates between arbitrary pairs of qubits on the grid. They are anticipated to be paradigmatic for 2D arrays and lattices of controllable qubits.
NEW IMPROVED 2D SVD BASED ALGORITHM FOR VIDEO CODING
Directory of Open Access Journals (Sweden)
Sachin V
2012-07-01
Full Text Available Video compression is one of the most important blocks of an image acquisition system. Compression of video results in reduction of transmission bandwidth. In real time video compression the incoming video data is directly compressed without being stored first. Therefore real time video compression system operates under stringent timing constraints. Current video compression standards like MPEG, H.26x series, involve emotion estimation and compensation blocks which are highly computationally expensive and hence they are not suitable for real time applications on resource scarce systems. Current applications like video calling, video conferencing require low complexity video compression algorithms so that they can be implemented in environments that have scarce computational resources (like mobile phones. A low complexity video compression algorithm based on 2D SVD exists. In this paper, a modification to that algorithm which provides higher PSNR at the same bit rate is presented.
Experimental identification of diffusive coupling using 2D NMR.
Song, Y-Q; Carneiro, G; Schwartz, L M; Johnson, D L
2014-12-01
Spin relaxation based nuclear magnetic resonance (NMR) methods have been used extensively to determine pore size distributions in a variety of materials. This approach is based on the assumption that each pore is in the fast diffusion limit but that diffusion between pores can be neglected. However, in complex materials these assumptions may be violated and the relaxation time distribution is not easily interpreted. We present a 2D NMR technique and an associated data analysis that allow us to work directly with the time dependent experimental data without Laplace inversion to identify the signature of diffusive coupling between different pores. Measurements on microporous glass beads and numerical simulations are used to illustrate the technique. PMID:25526135
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To investigate the combined influence of the pile diameter to water depth ratio and the wave height to water...... depth ratio on wave run-up of piles. The measurements should be used to design access platforms on piles. The Model tests include: Calibration of regular and irregular sea states at the location of the pile (without structure in place). Measurement of wave run-up for the calibrated sea states...... on the front side of the pile (0 to 90 degrees). These tests have been conducted at Aalborg University from 9. October, 2006 to 8. November, 2006. Unless otherwise mentioned, all values given in this report are in model scale....
A WATERMARKING ALGORITHM BASED ON PERMUTATION AND 2-D BARCODE
Institute of Scientific and Technical Information of China (English)
Ji Zhen; Zhang Jihong; Xie Weixin
2001-01-01
This letter presents a method for digital image watermarking for copyright protection. This technique produces a watermarked image that closely retains the quality of the original host image while concurrently surviving various image processing operations such as lowpass/highpass filtering, lossy JPEG compression, and cropping. This image watermarking algorithm takes full advantage of permutation and 2-D barcode (PDF417). The actual watermark embedding in spatial domain is followed using permutated image for improving the resistance to image cropping. Much higher watermark robustness is obtainable via a simple forward error correction technique, which is the main feature of PDF417 codes. Additional features of this technique include the easy determination of the existence of the watermark and that the watermark verification procedure does not need the original host image. The experimental results demonstrate its effectiveness.
2D and 3D heterogeneous photonic integrated circuits
Yoo, S. J. Ben
2014-03-01
Exponential increases in the amount of data that need to be sensed, communicated, and processed are continuing to drive the complexity of our computing, networking, and sensing systems. High degrees of integration is essential in scalable, practical, and cost-effective microsystems. In electronics, high-density 2D integration has naturally evolved towards 3D integration by stacking of memory and processor chips with through-silicon-vias. In photonics, too, we anticipate highdegrees of 3D integration of photonic components to become a prevailing method in realizing future microsystems for information and communication technologies. However, compared to electronics, photonic 3D integration face a number of challenges. This paper will review two methods of 3D photonic integration --- fs laser inscription and layer stacking, and discuss applications and future prospects.
2-D NUMERICAL SIMULATION OF CRUSH BEDROCK RIVER
Institute of Scientific and Technical Information of China (English)
YIN Ze-gao; ZHANG Tu-qiao; SUN Dong-po; LI Guo-qing
2004-01-01
In this paper, the erosion-resisting coefficient was introduced to compute bed deformation in a crush bedrock river. In the case of crush bedrock, there has been no proper control equation to describe bed stability, which leads to difficulty in calculation of the bed deformation with conventional methods. The data from field survey were used to give the erosion-resisting capability with an appropriate coefficient. After the determination of longitudinal distribution expressed by polynomial regression and transversal distribution expressed by normal distribution function, the plane distribution of erosion-resisting coefficient in a crush bedrock river was obtained. With the computational results from a 2-D horizontal flow mathematical model, the erosion-resisting coefficient and controlling condition of local stability were employed to compute the values of bed deformation when riverbed is stable. The above method was applied in a case study, and the computational results of flow and bed deformations are in good agreement with physical model test data.
Internetwork magnetic field as revealed by 2D inversions
Danilovic, S; Rempel, M
2016-01-01
Properties of magnetic field in the internetwork regions are still fairly unknown due to rather weak spectropolarimetric signals. We address the matter by using the 2D inversion code that is able to retrieve the information on smallest spatial scales, up to the diffraction limit, while being less susceptible to noise than most of the previous methods used. Performance of the code and the impact of the various effects on the retrieved field distribution is tested first on the realistic MHD simulations. The best inversion scenario is then applied to the real Hinode/SP data. Tests on simulations show: (1) the best choice of node position ensures a decent retrieval of all parameters, (2) code performs well for different configurations of magnetic field, (3) slightly different noise level or slightly different defocus included in the spatial PSF produces no significant effect on the results and (4) temporal integration shifts the field distribution to the stronger, more horizontally inclined field. Although the co...
Excitation Entanglement Entropy in 2d Conformal Field Theories
Sheikh-Jabbari, M M
2016-01-01
We analyze how excitations affect the entanglement entropy for an arbitrary entangling interval in a 2d conformal field theory (CFT) using the holographic entanglement entropy techniques as well as direct CFT computations. We introduce the excitation entanglement entropy \\Delta_h S, the difference between the entanglement entropy generic excitations and their arbitrary descendants denoted by h. The excitation entanglement entropy, unlike the entanglement entropy, is a finite quantity (independent of the cutoff), and hence a good physical observable. We show that the excitation entanglement entropy is governed by a second order differential equation sourced by the one point function of the energy momentum tensor computed in the excited background state. We analyze low and high temperature behavior of the excitation entanglement entropy and show that \\Delta_h S grows as function of temperature. We prove an "integrated positivity" for the excitation entanglement entropy, that although \\Delta_h S can be positive ...
Automatic Contour Extraction from 2D Neuron Images
Leandro, J J G; Costa, L da F
2008-01-01
The current work describes a novel system devised for automatic contour extraction of 2D branching structures images obtained from 3D neurons. Most contour-based methods for neuronal cell shape analysis fall short of suitable representation of such cells because overlaps between neuronal processes prevent traditional contour following algorithms from entering the innermost cell regions. The herein-proposed framework is specifically aimed at the problem of contour following even in presence of multiple overlaps. First, the input image is preprocessed in order to obtain an 8-connected skeleton with one-pixel-wide branches, as well as a set of subtree seed pixels and critical regions (i.e., bifurcations and crossings). Next, for each subtree, the tracking algorithm iteratively labels all valid pixel branches, up to a critical region, where the algorithm determines the suitable direction to proceed. Our algorithm has been found to exhibit robustness even for images with close parallel segments. Experimental resul...
Symmetries of the 2D magnetic particle imaging system matrix
International Nuclear Information System (INIS)
In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. (paper)
Currency verification by a 2D infrared barcode
International Nuclear Information System (INIS)
Nowadays all the National Central Banks are continuously studying innovative anti-counterfeiting systems for banknotes. In this note, an innovative solution is proposed, which combines the potentiality of a hylemetric approach (methodology conceptually similar to biometry), based on notes' intrinsic characteristics, with a well-known and consolidated 2D barcode identification system. In particular, in this note we propose to extract from the banknotes a univocal binary control sequence (template) and insert an encrypted version of it in a barcode printed on the same banknote. For a more acceptable look and feel of a banknote, the superposed barcode can be stamped using IR ink that is visible to near-IR image sensors. This makes the banknote verification simpler. (technical design note)
Visualizing 2D Flows with Animated Arrow Plots
Jobard, Bruno; Sokolov, Dmitry
2012-01-01
Flow fields are often represented by a set of static arrows to illustrate scientific vulgarization, documentary film, meteorology, etc. This simple schematic representation lets an observer intuitively interpret the main properties of a flow: its orientation and velocity magnitude. We propose to generate dynamic versions of such representations for 2D unsteady flow fields. Our algorithm smoothly animates arrows along the flow while controlling their density in the domain over time. Several strategies have been combined to lower the unavoidable popping artifacts arising when arrows appear and disappear and to achieve visually pleasing animations. Disturbing arrow rotations in low velocity regions are also handled by continuously morphing arrow glyphs to semi-transparent discs. To substantiate our method, we provide results for synthetic and real velocity field datasets.