Protein-induced changes during the maturation process of human dendritic cells: A 2-D DIGE approach
DEFF Research Database (Denmark)
Ferreira, Gb; Overbergh, L; Hansen, Kasper Lage
2008-01-01
Dendritic cells (DCs) are unique antigen presenting cells, which upon maturation change from a specialized antigen-capturing cell towards a professional antigen presenting cells. In this study, a 2-D DIGE analysis of immature and mature DCs was performed, to identify proteins changing in expressi...
High performance CCD camera system for digitalisation of 2D DIGE gels.
Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf
2016-07-01
An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection.
2D DIGE analysis of maternal plasma for potential biomarkers of Down Syndrome
Directory of Open Access Journals (Sweden)
Hogg Julie
2011-09-01
Full Text Available Abstract Background Prenatal screening for Down Syndrome (DS would benefit from an increased number of biomarkers to improve sensitivity and specificity. Improving sensitivity and specificity would decrease the need for potentially risky invasive diagnostic procedures. Results We have performed an in depth two-dimensional difference gel electrophoresis (2D DIGE study to identify potential biomarkers. We have used maternal plasma samples obtained from first and second trimesters from mothers carrying DS affected fetuses compared with mothers carrying normal fetuses. Plasma samples were albumin/IgG depleted and expanded pH ranges of pH 4.5 - 5.5, pH 5.3 - 6.5 and pH 6 - 9 were used for two-dimensional gel electrophoresis (2DE. We found no differentially expressed proteins in the first trimester between the two groups. Significant up-regulation of ceruloplasmin, inter-alpha-trypsin inhibitor heavy chain H4, complement proteins C1s subcomponent, C4-A, C5, and C9 and kininogen 1 were detected in the second trimester in maternal plasma samples where a DS affected fetus was being carried. However, ceruloplasmin could not be confirmed as being consistently up-regulated in DS affected pregnancies by Western blotting. Conclusions Despite the in depth 2DE approach used in this study the results underline the deficiencies of gel-based proteomics for detection of plasma biomarkers. Gel-free approaches may be more productive to increase the number of plasma biomarkers for DS for non-invasive prenatal screening and diagnosis.
Image Pretreatment Tools II: Normalization Techniques for 2-DE and 2-D DIGE.
Robotti, Elisa; Marengo, Emilio; Quasso, Fabio
2016-01-01
Gel electrophoresis is usually applied to identify different protein expression profiles in biological samples (e.g., control vs. pathological, control vs. treated). Information about the effect to be investigated (a pathology, a drug, a ripening effect, etc.) is however generally confounded with experimental variability that is quite large in 2-DE and may arise from small variations in the sample preparation, reagents, sample loading, electrophoretic conditions, staining and image acquisition. Obtaining valid quantitative estimates of protein abundances in each map, before the differential analysis, is therefore fundamental to provide robust candidate biomarkers. Normalization procedures are applied to reduce experimental noise and make the images comparable, improving the accuracy of differential analysis. Certainly, they may deeply influence the final results, and to this respect they have to be applied with care. Here, the most widespread normalization procedures are described both for what regards the applications to 2-DE and 2D Difference Gel-electrophoresis (2-D DIGE) maps.
The use of 2D-DIGE to understand the regeneration of somatic embryos in avocado.
Guzmán-García, Eva; Sánchez-Romero, Carolina; Panis, Bart; Carpentier, Sebastien Christian
2013-12-01
Avocado embryogenic cell cultures can be classified into two groups based on their morphology when cultured on a medium containing auxin: somatic embryo (SE) and proembryonic masses (PEM) type cultures. The calli of SE-type cell lines are able to go through the maturation process, whereas the calli of PEM cell lines rarely mature. We have investigated four independent avocado cell cultures (two SE and two PEM). The aim of this study was to link the differential regeneration capacity of the four cell cultures to a proteomic pattern and to gain insight into the regeneration capacity. A 2D-DIGE analysis followed by a blind multivariate analysis was able to separate the two SE lines from the PEM lines indicating that the protein profiles of SE and PEM calli are different. Based on the variable importance, that is, the differential protein pattern, we hypothesize that the regeneration capacity in avocado is correlated to the ability to overcome the physicochemical stress stimuli associated with the in vitro culture. Our identical culture conditions do not seem to trigger an appropriate response in PEM lines.
Kondo, Tadashi; Hirohashi, Setsuo
2006-01-01
Proteome data combined with histopathological information provides important, novel clues for understanding cancer biology and reveals candidates for tumor markers and therapeutic targets. We have established an application of a highly sensitive fluorescent dye (CyDye DIGE Fluor saturation dye), developed for two-dimensional difference gel electrophoresis (2D-DIGE), to the labeling of proteins extracted from laser microdissected tissues. The use of the dye dramatically decreases the protein amount and, in turn, the number of cells required for 2D-DIGE; the cells obtained from a 1 mm2 area of an 8-12 microm thick tissue section generate up to 5,000 protein spots in a large-format 2D gel. This protocol allows the execution of large-scale proteomics in a more efficient, accurate and reproducible way. The protocol can be used to examine a single sample in 5 d or to examine hundreds of samples in large-scale proteomics.
de Vareilles, Mahaut; Conceição, Luis E C; Gómez-Requeni, Pedro; Kousoulaki, Katerina; Richard, Nadège; Rodrigues, Pedro M; Fladmark, Kari E; Rønnestad, Ivar
2012-10-01
Lysine (Lys) is an indispensable amino acid (AA) and generally the first limiting AA in vegetable protein sources in fish feeds. Inadequate dietary Lys availability may limit protein synthesis, accretion and growth of fish. This experiment aimed to further elucidate the role of Lys imbalance on growth by examining the myotomal muscle proteome of juvenile zebrafish (Danio rerio). Quadruplicate groups of 8 fish were fed either a low-Lys [Lys(-), 1.34 g kg(-1)], medium/control (Lys, 2.47 g kg(-1)) or high-Lys [Lys(+), 4.63 g kg(-1)] diet. Fish growth was monitored from 33 to 49 days post-fertilization (dpf) and trunk myotomal muscle proteome of Lys(-) and Lys(+) treatments were screened by 2D-DIGE and MALDI ToF tandem mass spectrometry. Growth rate was negatively affected by diet Lys(-). Out of 527 ± 11 (mean ± S.E.M.) protein spots detected (∼10-150 kDa and 4-7 pI value), 30 were over-expressed and 22 under-expressed in Lys(-) fish (|fold-change| >1.2, p value muscle protein accretion. The Lys deficiency also possibly induced a higher feeding activity, reflected in the over-expression of beta enolase and mitochondrial ATP synthase. Contrarily, in the faster growing fish [Lys(+)], over-expression of apolipoprotein A-I, F-actin capping protein and Pdlim7 point to increased energy storage as fat and enhanced muscle growth, particularly by mosaic hyperplasia. Thus using an exploratory approach, this study pinpoints interesting candidates for further elucidating the role of dietary Lys on growth of juvenile fish.
2-D DIGE analysis of UV-C radiation-responsive proteins in globe artichoke leaves.
Falvo, Sara; Di Carli, Mariasole; Desiderio, Angiola; Benvenuto, Eugenio; Moglia, Andrea; America, Twan; Lanteri, Sergio; Acquadro, Alberto
2012-02-01
Plants respond to ultraviolet stress inducing a self-defence through the regulation of specific gene family members. The UV acclimation is the result of biochemical and physiological processes, such as enhancement of the antioxidant enzymatic system and accumulation of UV-absorbing phenolic compounds (e.g. flavonoids). Globe artichoke is an attractive species for studying the protein network involved in UV stress response, being characterized by remarkable levels of inducible antioxidants. Proteomic tools can assist the evaluation of the expression patterns of UV-responsive proteins and we applied the difference in-gel electrophoresis (DIGE) technology for monitoring the globe artichoke proteome variation at four time points following an acute UV-C exposure. A total of 145 UV-C-modulated proteins were observed and 119 were identified by LC-MS/MS using a ∼144,000 customized Compositae protein database, which included about 19,000 globe artichoke unigenes. Proteins were Gene Ontology (GO) categorized, visualized on their pathways and their behaviour was discussed. A predicted protein interaction network was produced and highly connected hub-like proteins were highlighted. Most of the proteins differentially modulated were chloroplast located, involved in photosynthesis, sugar metabolisms, protein folding and abiotic stress. The identification of UV-C-responsive proteins may contribute to shed light on the molecular mechanisms underlying plant responses to UV stress.
Clement, Cristina C.; Aphkhazava, David; Nieves, Edward; Callaway, Myrasol; Olszewski, Waldemar; Rotzschke, Olaf; Santambrogio, Laura
2012-01-01
In this study a proteomic approach was used to define the protein content of matched samples of afferent prenodal lymph and plasma derived from healthy volunteers. The analysis was performed using two analytical methodologies coupled with nanoliquid chromatography-tandem mass spectrometry: one-dimensional gel electrophoresis (1DEF nanoLC Orbitrap–ESI–MS/MS), and two-dimensional fluorescence difference-in-gel electrophoresis (2D-DIGE nanoLC–ESI–MS/MS). The 253 significantly identified proteins...
Directory of Open Access Journals (Sweden)
Ramesh Ummanni
Full Text Available Prostate cancer (PCa is the most common type of cancer found in men and among the leading causes of cancer death in the western world. In the present study, we compared the individual protein expression patterns from histologically characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE coupled with mass spectrometry. Proteomic data revealed 118 protein spots to be differentially expressed in cancer (n = 24 compared to benign (n = 21 prostate tissue. These spots were analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies.
Carnielli, Carolina Moretto; Artier, Juliana; de Oliveira, Julio Cezar Franco; Novo-Mansur, Maria Teresa Marques
2017-01-16
Xanthomonas citri subsp. citri (XAC) is the causative agent of citrus canker, a disease of great economic impact around the world. Understanding the role of proteins on XAC cellular surface can provide new insights on pathogen-plant interaction. Surface proteome was performed in XAC grown in vivo (infectious) and in vitro (non-infectious) conditions, by labeling intact cells followed by cellular lysis and direct 2D-DIGE analysis. Seventy-nine differential spots were analyzed by mass spectrometry. Highest relative abundance for in vivo condition was observed for spots containing DnaK protein, 60kDa chaperonin, conserved hypothetical proteins, malate dehydrogenase, phosphomannose isomerase, and ferric enterobactin receptors. Elongation factor Tu, OmpA-related proteins, Oar proteins and some Ton-B dependent receptors were found in spots decreased in vivo. Some proteins identified on XAC's surface in infectious condition and predicted to be cytoplasmic, such as DnaK and 60KDa chaperonin, have also been previously found at cellular surface in other microorganisms. This is the first study on XAC surface proteome and results point to mediation of molecular chaperones in XAC-citrus interaction. The approach utilized here can be applied to other pathogen-host interaction systems and help to achieve new insights in bacterial pathogenicity toward promising targets of biotechnological interest.
Hayashi, Gohei; Moro, Carlo F; Rohila, Jai Singh; Shibato, Junko; Kubo, Akihiro; Imanaka, Tetsuji; Kimura, Shinzo; Ozawa, Shoji; Fukutani, Satoshi; Endo, Satoru; Ichikawa, Katsuki; Agrawal, Ganesh Kumar; Shioda, Seiji; Hori, Motohide; Fukumoto, Manabu; Rakwal, Randeep
2015-01-01
The present study continues our previous research on investigating the biological effects of low-level gamma radiation in rice at the heavily contaminated Iitate village in Fukushima, by extending the experiments to unraveling the leaf proteome. 14-days-old plants of Japonica rice (Oryza sativa L. cv. Nipponbare) were subjected to gamma radiation level of upto 4 µSv/h, for 72 h. Following exposure, leaf samples were taken from the around 190 µSv/3 d exposed seedling and total proteins were extracted. The gamma irradiated leaf and control leaf (harvested at the start of the experiment) protein lysates were used in a 2-D differential gel electrophoresis (2D-DIGE) experiment using CyDye labeling in order to asses which spots were differentially represented, a novelty of the study. 2D-DIGE analysis revealed 91 spots with significantly different expression between samples (60 positive, 31 negative). MALDI-TOF and TOF/TOF mass spectrometry analyses revealed those as comprising of 59 different proteins (50 up-accumulated, 9 down-accumulated). The identified proteins were subdivided into 10 categories, according to their biological function, which indicated that the majority of the differentially expressed proteins consisted of the general (non-energy) metabolism and stress response categories. Proteome-wide data point to some effects of low-level gamma radiation exposure on the metabolism of rice leaves. PMID:26451896
Chaudhury, Arun
2015-01-01
Using 2D differential gel electrophoresis (DIGE) and mass spectrometry (MS), a recent report by Rattan and Ali (2015) compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS), in comparison to the adjacent rectum [rectal smooth muscles (RSM)] that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold, overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II, myosin light chain kinase, myosin phosphatase, and protein kinase C between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of “sphincter proteome.” Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders involving gastrointestinal sphincters, including achalasia, gastroesophageal reflux disease (GERD), spastic pylorus, seen during diabetes or chronic chemotherapy, intestinal pseudo-obstruction, and recto-anal incontinence. Global proteome mapping may provide instant snapshot of the complete repertoire of differential proteins, thus expediting to identify the molecular pathology of gastrointestinal motility disorders currently labeled “idiopathic” and facilitating practice of precision medicine. PMID:26151053
Directory of Open Access Journals (Sweden)
Arun eChaudhury
2015-06-01
Full Text Available Using 2D differential gel electrophoresis (DIGE and MS (mass spectrometry, a recent report by Rattan and Ali (2015 compared proteome expression between tonically contracted sphincteric smooth muscles of the internal anal sphincter (IAS, in comparison to the adjacent rectum (RSM, rectal smooth muscles that contracts in a phasic fashion. The study showed the differential expression of a single 23 kDa protein SM22, which was 1.87 fold overexpressed in RSM in comparison to IAS. Earlier studies have shown differences in expression of different proteins like Rho-associated protein kinase II (ROCKII, myosin light chain kinase (MLCK, myosin phosphatase (MYP and protein kinase C (PKC between IAS and RSM. The currently employed methods, despite its high-throughput potential, failed to identify these well-characterized differences between phasic and tonic muscles. This calls into question the fidelity and validatory potential of the otherwise powerful technology of 2D DIGE/MS. These discrepancies, when redressed in future studies, will evolve this recent report as an important baseline study of sphincter proteome. Proteomics techniques are currently underutilized in examining pathophysiology of hypertensive/hypotensive disorders
Analysis of proteins using DIGE and MALDI mass spectrometry
In this work the sensitivity of the quantitative proteomics approach 2D-DIGE/MS (twoDimensional Difference Gel Electrophoresis / Mass Spectrometry) was tested by detecting decreasing amounts of a specific protein at the low picomole and sub-picomole range. Sensitivity of the 2D-D...
Janjanam, Jagadeesh; Singh, Surender; Jena, Manoj K.; Varshney, Nishant; Kola, Srujana; Kumar, Sudarshan; Kaushik, Jai K.; Grover, Sunita; Dang, Ajay K.; Mukesh, Manishi; Prakash, B. S.; Mohanty, Ashok K.
2014-01-01
Mammary gland is made up of a branching network of ducts that end with alveoli which surrounds the lumen. These alveolar mammary epithelial cells (MEC) reflect the milk producing ability of farm animals. In this study, we have used 2D-DIGE and mass spectrometry to identify the protein changes in MEC during immediate early, peak and late stages of lactation and also compared differentially expressed proteins in MEC isolated from milk of high and low milk producing cows. We have identified 41 differentially expressed proteins during lactation stages and 22 proteins in high and low milk yielding cows. Bioinformatics analysis showed that a majority of the differentially expressed proteins are associated in metabolic process, catalytic and binding activity. The differentially expressed proteins were mapped to the available biological pathways and networks involved in lactation. The proteins up-regulated during late stage of lactation are associated with NF-κB stress induced signaling pathways and whereas Akt, PI3K and p38/MAPK signaling pathways are associated with high milk production mediated through insulin hormone signaling. PMID:25111801
Canonical approach to 2D induced gravity
Popovic, D
2001-01-01
Using canonical method the Liouville theory has been obtained as a gravitational Wess-Zumino action of the Polyakov string. From this approach it is clear that the form of the Liouville action is the consequence of the bosonic representation of the Virasoro algebra, and that the coefficient in front of the action is proportional to the central charge and measures the quantum braking of the classical symmetry.
A 2D-DIGE Approach To Identify Proteins Involved in Inside-Out Control of Integrins
Langereis, Jeroen D.; Prinsen, Berthil H. C. M. T.; de Sain-van der Velden, Monique G. M.; Coppens, Cornelis J. C.; Koenderman, Leo; Ulfman, Laurien H.
2009-01-01
Leukocyte integrins are functionally regulated by "inside-out" signaling, meaning that stimulus-induced signaling pathways act on the intracellular integrin tail and induce activation of the receptor at the outside. Both a change in conformation (affinity) and in clustering (avidity/valency) of the
Difference gel electrophoresis (DIGE) using CyDye DIGE fluor minimal dyes.
Chakravarti, Bulbul; Gallagher, Sean R; Chakravarti, Deb N
2005-02-01
One- and two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis (1- and 2-D SDS-PAGE) have been widely used for the separation and quantitative estimation of proteins. Following electrophoresis, the gels are stained appropriately to visualize the proteins. Difference gel electrophoresis (DIGE) is a new technique in which different protein samples, individually labeled with specific CyDyes, are combined together followed by electrophoresis and post electrophoretic co-detection and co-analysis on the same gel. CyDye DIGE fluor minimal dyes, which consist of three different CyDyes with different spectral characteristics, have been widely used for such purposes. The technique is highly sensitive with a wide dynamic range for detection of proteins and compatible with state-of-the-art protein identification techniques using mass spectrometry. Although DIGE is mainly used to compare differential expression of various protein samples using 2-D SDS-PAGE, 1-D DIGE also has important applications in quantitative proteomic studies.
Quantum Cosmological Approach to 2d Dilaton Gravity
Navarro-Salas, J
1994-01-01
We study the canonical quantization of the induced 2d-gravity and the pure gravity CGHS-model on a closed spatial section. The Wheeler-DeWitt equations are solved in (spatially homogeneous) choices of the internal time variable and the space of solutions is properly truncated to provide the physical Hilbert space. We establish the quantum equivalence of both models and relate the results with the covariant phase-space quantization. We also discuss the relation between the quantum wavefunctions and the classical space-time solutions and propose the wave function representing the ground state.
Institute of Scientific and Technical Information of China (English)
李华玲; 孔玲; 秦艳; 刘丹丹; 夏靖; 胡竹林; 陈文飞
2013-01-01
Objective To investigate the different proteins in wild type Caenorhabditis elegans(C. elegans) N2 af-ter hypoxia and lay the foundation for studying the response mechanism of C. elegans during hypoxia. MethodsThe worms of N2 were cultured synchronously to L4 stage and treated 10 h hypoxia (0. 2% oxygen). Then the total proteins were extracted and two-dimensional difference gel electrophoresis (2D-DIGE) was performed and the se-lected protein spots were then identified by MALDI/TOF/TOF tandem mass spectrometry and search the database. Two mutant strains (prdx-2, prdx-3) were incubated for 4, 6, 8, 10 and 12 h in sealed hypoxia chamber (0. 2%oxygen). The survival rate was calculated. Results Five significantly different sports were finally identified by MS (ratio>2. 0,P2.0,P<0.05),包括2个上调( PRDX-2、 PRDX-3)和3个( RPL-7、H28O16.1、VHA-12)下调的蛋白。突变株系的缺氧存活率实验进一步验证了蛋白质组学的结果,也显示了PRDX-2和PRDX-3在抗缺氧中起重要作用。结论蛋白质组学的方法为线虫缺氧的研究提供了有参考价值的数据,缺氧10 h后,线虫中变化的蛋白质与能量、翻译和抗氧化有关,为进一步研究缺氧时的应答机制奠定了基础。
Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes.
Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita
2008-11-26
Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.
Time-Dependent 2-D Vector Field Topology: An Approach Inspired by Lagrangian Coherent Structures
Sadlo, Filip; Weiskopf, Daniel
2011-01-01
This paper presents an approach to a time-dependent variant of the concept of vector field topology for 2-D vector fields. Vector field topology is defined for steady vector fields and aims at discriminating the domain of a vector field into regions of qualitatively different behaviour. The presented approach represents a generalization for saddle-type critical points and their separatrices to unsteady vector fields based on generalized streak lines, with the classical vector field topology a...
An Efficient Multimodal 2D + 3D Feature-based Approach to Automatic Facial Expression Recognition
Li, Huibin
2015-07-29
We present a fully automatic multimodal 2D + 3D feature-based facial expression recognition approach and demonstrate its performance on the BU-3DFE database. Our approach combines multi-order gradient-based local texture and shape descriptors in order to achieve efficiency and robustness. First, a large set of fiducial facial landmarks of 2D face images along with their 3D face scans are localized using a novel algorithm namely incremental Parallel Cascade of Linear Regression (iPar-CLR). Then, a novel Histogram of Second Order Gradients (HSOG) based local image descriptor in conjunction with the widely used first-order gradient based SIFT descriptor are used to describe the local texture around each 2D landmark. Similarly, the local geometry around each 3D landmark is described by two novel local shape descriptors constructed using the first-order and the second-order surface differential geometry quantities, i.e., Histogram of mesh Gradients (meshHOG) and Histogram of mesh Shape index (curvature quantization, meshHOS). Finally, the Support Vector Machine (SVM) based recognition results of all 2D and 3D descriptors are fused at both feature-level and score-level to further improve the accuracy. Comprehensive experimental results demonstrate that there exist impressive complementary characteristics between the 2D and 3D descriptors. We use the BU-3DFE benchmark to compare our approach to the state-of-the-art ones. Our multimodal feature-based approach outperforms the others by achieving an average recognition accuracy of 86.32%. Moreover, a good generalization ability is shown on the Bosphorus database.
Coupled BOUSS-2D and CMS-Wave Modeling Approach for Harbor Projects
2012-08-01
al. 2011; Demirbilek et al. 2007) is part of the Coastal Modeling System ( CMS ) for simulating combined waves, currents, sediment transport, and...III. 2011. Verification and Validation of the Coastal Modeling System : Report 2, CMS -Wave, Tech. Report ERDC/CHL-TR-11-10, U.S. Army Engineer R&D...ERDC/CHL CHETN-IV-84 August 2012 Approved for public release; distribution is unlimited. Coupled BOUSS-2D and CMS -Wave Modeling Approach for
Energy Technology Data Exchange (ETDEWEB)
Fukuto, M.; Kewalramani, S.; Wang, S.; Lin, Y.; Nguyen, G.; Wang, Q.; Yang, L.
2011-02-07
We report an experimental demonstration of a strategy for inducing two-dimensional (2D) crystallization of charged nanoparticles on oppositely charged fluid interfaces. This strategy aims to maximize the interfacial adsorption of nanoparticles, and hence their lateral packing density, by utilizing a combination of weakly charged particles and a high surface charge density on the planar interface. In order to test this approach, we investigated the assembly of cowpea mosaic virus (CPMV) on positively charged lipid monolayers at the aqueous solution surface, by means of in situ X-ray scattering measurements at the liquid-vapor interface. The assembly was studied as a function of the solution pH, which was used to vary the charge on CPMV, and of the mole fraction of the cationic lipid in the binary lipid monolayer, which set the interface charge density. The 2D crystallization of CPMV occurred in a narrow pH range just above the particle's isoelectric point, where the particle charge was weakly negative, and only when the cationic-lipid fraction in the monolayer exceeded a threshold. The observed 2D crystals exhibited nearly the same packing density as the densest lattice plane within the known 3D crystals of CPMV. The above electrostatic approach of maximizing interfacial adsorption may provide an efficient route to the crystallization of nanoparticles at aqueous interfaces.
Mendoza-Torres, F.; Diaz-Viera, M. A.
2015-12-01
In many natural fractured porous media, such as aquifers, soils, oil and geothermal reservoirs, fractures play a crucial role in their flow and transport properties. An approach that has recently gained popularity for modeling fracture systems is the Discrete Fracture Network (DFN) model. This approach consists in applying a stochastic boolean simulation method, also known as object simulation method, where fractures are represented as simplified geometric objects (line segments in 2D and polygons in 3D). One of the shortcomings of this approach is that it usually does not consider the dependency relationships that may exist between the geometric properties of fractures (direction, length, aperture, etc), that is, each property is simulated independently. In this work a method for modeling such dependencies by copula theory is introduced. In particular, a nonparametric model using Bernstein copulas for direction-length fracture dependency in 2D is presented. The application of this method is illustrated in a case study for a fractured rock sample from a carbonate reservoir outcrop.
Nested 1D-2D approach for urban surface flood modeling
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of
One particle properties in the 2D Coulomb problem. Luttinger-Ward variational approach
Energy Technology Data Exchange (ETDEWEB)
Agnihotri, M.P.
2007-04-27
In this work, we have studied the 2D Coulomb problem. We used the Luttinger-Ward variational principle to determine the self-energy {sigma} in ring approximation. The use of an ansatz for {sigma} enables us to perform the frequency sums (integrals as T {yields} 0) analytically. Compared to the usual procedure of iterating the self consistency equation with free Green's function as starting points, the present approach is superior. It works for higher density parameter r{sub s} (low density) where the iteration already fails to converge. The motivation of the present work is the quantum Hall system at filling factor 1/2. The Luttinger-Ward procedure is a rather powerful method in particular if combined with an analytical ansatz for {sigma}. The computation performed here for 2DEG has to be seen as a first step: There, the experiment shows the features of a free Fermion system that is interpreted as a system of Composite Fermions. If one studies the self energy of the Composite Fermions in an conserved approximation that corresponds to the ring approximation, one encounters a self consistency equation. However, an iterative solution of this equation meets with a complication: Instead of the polarization part {pi}{sub 00}, in the case of the Composite Fermion there appears the longitudinal polarization part {pi}{sub LL} that has an additional factor (2k + q){sup 2} under the k integral. This integral converges only after the frequency integral is performed. It is highly difficult to reproduce this numerically. Here, the Luttinger-Ward variational approach applied to the 2D Coulomb problem in the present work looks promising. For the 2D Coulomb problem, in the ring approximation for the LW thermodynamic potential, that already leads to a formidable integral equation that has to be studied numerically. (orig.)
A New Approach to Calculate Indirect GWPs using the UIUC 2-D CRT and RTM Model
Li, Y.; Youn, D.; Patten, K.; Wuebbles, D.
2006-12-01
Global warming potentials (GWPs) are defined to be the total impact over time of adding a unit mass of a greenhouse gas to the atmosphere. Indirect GWPs are due to ozone depletion effects in the stratosphere for a certain compound and therefore stand for the long-term global cooling effects. Previously, indirect GWPs were calculated using a box model, which was not able to consider the complex processes in the atmosphere. As a step towards obtaining indirect GWPs through a more robust approach, the UIUC 2-D CRT model was used as the computational tool to derive ozone changes. The 2-D model has more realistic chemical, physical, and dynamical processes in the atmosphere and a relatively complete transport system, which makes it useful for a more accurate analysis. Furthermore, the University of Illinois at Urbana-Champaign (UIUC) radiative transfer model (RTM) is employed to derive the corresponding time-dependent radiative forcings from the 2-D CRT outputs. Two Halon compounds, Halon-1211 and Halon-1301, were selected to be studied for their indirect GWPs. The results showed that instantaneous and stratospheric adjusted indirect GWPs for a 100-year horizon are -10004.8 and -10237.1 for Halon-1211, while for Halon-1301 they are -19218.0 and -19627.6. The indirect GWPs for Halon-1211 and -1301 presented here are two to three times smaller compared to the results in WMO (2006) draft. Further analysis on indirect GWPs will be carried out using our 3-D MOZART-3 model.
Fediai, Artem; Ryndyk, Dmitry A.; Cuniberti, Gianaurelio
2016-10-01
Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces—for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts—metal/graphene contacts—and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties.
Spectral Approach to Anderson Localization in a Disordered 2D Complex Plasma Crystal
Kostadinova, Eva; Liaw, Constanze; Matthews, Lorin; Busse, Kyle; Hyde, Truell
2016-10-01
In condensed matter, a crystal without impurities acts like a perfect conductor for a travelling wave-particle. As the level of impurities reaches a critical value, the resistance in the crystal increases and the travelling wave-particle experiences a transition from an extended to a localized state, which is called Anderson localization. Due to its wide applicability, the subject of Anderson localization has grown into a rich field in both physics and mathematics. Here, we introduce the mathematics behind the spectral approach to localization in infinite disordered systems and provide physical interpretation in context of both quantum mechanics and classical physics. We argue that the spectral analysis is an important contribution to localization theory since it avoids issues related to the use of boundary conditions, scaling, and perturbation. To test accuracy and applicability we apply the spectral approach to the case of a 2D hexagonal complex plasma crystal used as a macroscopic analog for a graphene-like medium. Complex plasma crystals exhibit characteristic distance and time scales, which are easily observable by video microscopy. As such, these strongly coupled many-particle systems are ideal for the study of localization phenomena. The goal of this research is to both expand the spectral method into the classical regime and show the potential of complex plasma as a macroscopic tool for localization experiments. NSF / DOE funding is gratefully acknowledged - PHY1414523 & PHY1262031.
A sequential partly iterative approach for multicomponent reactive transport with CORE2D
Energy Technology Data Exchange (ETDEWEB)
Samper, J.; Xu, T.; Yang, C.
2008-11-01
CORE{sup 2D} V4 is a finite element code for modeling partly or fully saturated water flow, heat transport and multicomponent reactive solute transport under both local chemical equilibrium and kinetic conditions. It can handle coupled microbial processes and geochemical reactions such as acid-base, aqueous complexation, redox, mineral dissolution/precipitation, gas dissolution/exsolution, ion exchange, sorption via linear and nonlinear isotherms, sorption via surface complexation. Hydraulic parameters may change due to mineral precipitation/dissolution reactions. Coupled transport and chemical equations are solved by using sequential iterative approaches. A sequential partly-iterative approach (SPIA) is presented which improves the accuracy of the traditional sequential noniterative approach (SNIA) and is more efficient than the general sequential iterative approach (SIA). While SNIA leads to a substantial saving of computing time, it introduces numerical errors which are especially large for cation exchange reactions. SPIA improves the efficiency of SIA because the iteration between transport and chemical equations is only performed in nodes with a large mass transfer between solid and liquid phases. The efficiency and accuracy of SPIA are compared to those of SIA and SNIA using synthetic examples and a case study of reactive transport through the Llobregat Delta aquitard in Spain. SPIA is found to be as accurate as SIA while requiring significantly less CPU time. In addition, SPIA is much more accurate than SNIA with only a minor increase in computing time. A further enhancement of the efficiency of SPIA is achieved by improving the efficiency of the Newton-Raphson method used for solving chemical equations. Such an improvement is obtained by working with increments of log-concentrations and ignoring the terms of the Jacobian matrix containing derivatives of activity coefficients. A proof is given for the symmetry and non-singularity of the Jacobian matrix
An Approach to 2D Wavelet Transform and Its Use for Image Compression
Directory of Open Access Journals (Sweden)
R. Vargic
1998-12-01
Full Text Available In this paper is constructed a new type of two-dimensional wavelet transform. Construction is based on lifting scheme. We transform 1D wavelets with symmetrical factorisation to their 2D counterparts. Comparison to existing similar 2D wavelet constructions is given. Application for image compression is given using progressive (SP1HT and classical type transform coder.
Augmented Superfield Approach to Nilpotent Symmetries of the Modified Version of 2D Proca Theory
Shukla, A; Malik, R P
2013-01-01
We derive the complete set of off-shell nilpotent and absolutely anticommuting Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-)co-BRST symmetry transformations for all the fields of the modified version of two (1+1)-dimensional (2D) Proca theory by exploiting the "augmented" superfield formalism where the (dual-)horizontality conditions and (dual-)gauge-invariant restrictions are exploited together. We capture the (anti-)BRST and (anti-)co-BRST invariance of the Lagrangian density in the language of superfield formalism. We also express the nilpotency and absolute anticommutativity of the (anti-)BRST and (anti-)co-BRST charges within the framework of augmented superfield formalism. This exercise leads to some novel observations which have, hitherto, not been pointed out in the literature within the framework of superfield approach to BRST formalism. For the sake of completeness, we also mention, very briefly, a unique bosonic symmetry, the ghost-scale symmetry and discrete symmetries of the theory and ...
An analytic approach to 2D electronic PE spectra of molecular systems
Energy Technology Data Exchange (ETDEWEB)
Szoecs, V., E-mail: szocs@fns.uniba.sk [Institute of Chemistry, Comenius University, Mlynska dolina CH2, 842 15 Bratislava (Slovakia)
2011-05-26
Graphical abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems using direct calculation from electronic Hamiltonians allows peak classification from 3P-PE spectra dynamics. Display Omitted Highlights: {yields} RWA approach to electronic photon echo. {yields} A straightforward calculation of 2D electronic spectrograms in finite molecular systems. {yields} Importance of population time dynamics in relation to inter-site coherent coupling. - Abstract: The three-pulse photon echo (3P-PE) spectra of finite molecular systems and simplified line broadening models is presented. The Fourier picture of a heterodyne detected three-pulse rephasing PE signal in the {delta}-pulse limit of the external field is derived in analytic form. The method includes contributions of one and two-excitonic states and allows direct calculation of Fourier PE spectrogram from corresponding Hamiltonian. As an illustration, the proposed treatment is applied to simple systems, e.g. 2-site two-level system (TLS) and n-site TLS model of photosynthetic unit. The importance of relation between Fourier picture of 3P-PE dynamics (corresponding to nonzero population time, T) and coherent inter-state coupling is emphasized.
3D Materials image segmentation by 2D propagation: a graph-cut approach considering homomorphism.
Waggoner, Jarrell; Zhou, Youjie; Simmons, Jeff; De Graef, Marc; Wang, Song
2013-12-01
Segmentation propagation, similar to tracking, is the problem of transferring a segmentation of an image to a neighboring image in a sequence. This problem is of particular importance to materials science, where the accurate segmentation of a series of 2D serial-sectioned images of multiple, contiguous 3D structures has important applications. Such structures may have distinct shape, appearance, and topology, which can be considered to improve segmentation accuracy. For example, some materials images may have structures with a specific shape or appearance in each serial section slice, which only changes minimally from slice to slice, and some materials may exhibit specific inter-structure topology that constrains their neighboring relations. Some of these properties have been individually incorporated to segment specific materials images in prior work. In this paper, we develop a propagation framework for materials image segmentation where each propagation is formulated as an optimal labeling problem that can be efficiently solved using the graph-cut algorithm. Our framework makes three key contributions: 1) a homomorphic propagation approach, which considers the consistency of region adjacency in the propagation; 2) incorporation of shape and appearance consistency in the propagation; and 3) a local non-homomorphism strategy to handle newly appearing and disappearing substructures during this propagation. To show the effectiveness of our framework, we conduct experiments on various 3D materials images, and compare the performance against several existing image segmentation methods.
3-Phase Recognition Approach to Pseudo 3D Building Generation from 2D Floor Plan
Moloo, Raj Kishen; Auleear, Abu Salmaan
2011-01-01
Nowadays three dimension (3D) architectural visualisation has become a powerful tool in the conceptualisation, design and presentation of architectural products in the construction industry, providing realistic interaction and walkthrough on engineering products. Traditional ways of implementing 3D models involves the use of specialised 3D authoring tools along with skilled 3D designers with blueprints of the model and this is a slow and laborious process. The aim of this paper is to automate this process by simply analyzing the blueprint document and generating the 3D scene automatically. For this purpose we have devised a 3-Phase recognition approach to pseudo 3D building generation from 2D floor plan and developed a software accordingly. Our 3-phased 3D building system has been implemented using C, C++ and OpenCV library [24] for the Image Processing module; The Save Module generated an XML file for storing the processed floor plan objects attributes; while the Irrlitch [14] game engine was used to impleme...
Kang, Xiaoyan; He, Anqi; Guo, Ran; Zhai, Yanjun; Xu, Yizhuang; Noda, Isao; Wu, Jinguang
2016-11-01
We propose a substantially simplified approach to construct a pair of 2D asynchronous spectra based on the DAOSD approach proposed in our previous papers. By using a new concentration series, only three 1D spectra are used to generate a pair of 2D correlation spectra together with two reference spectra. By using this method, the previous problem of labor intensive traditional DAOSD approach has been successfully addressed. We apply the new approach to characterize intermolecular interaction between acetonitrile and butanone dissolved in carbon tetrachloride. The existence of intermolecular interaction between the two solutes can be confirmed by the presence of a cross peak in the resultant 2D IR spectra. In addition, the absence of cross peak around (2254, 2292) in Ψbutanone provides another experimental evidence to reveal the intrinsic relationship between the Ctbnd N stretching band and an overtone band (δCH3+νC-C).
Modeling Cellular Networks with Full Duplex D2D Communication: A Stochastic Geometry Approach
Ali, Konpal S.
2016-08-24
Full-duplex (FD) communication is optimistically promoted to double the spectral efficiency if sufficient self-interference cancellation (SIC) is achieved. However, this is not true when deploying FD-communication in a large-scale setup due to the induced mutual interference. Therefore, a large-scale study is necessary to draw legitimate conclusions about gains associated with FD-communication. This paper studies the FD operation for underlay device-to-device (D2D) communication sharing the uplink resources in cellular networks. We propose a disjoint fine-tuned selection criterion for the D2D and FD modes of operation. Then, we develop a tractable analytical paradigm, based on stochastic geometry, to calculate the outage probability and rate for cellular and D2D users. The results reveal that even in the case of perfect SIC, due to the increased interference injected to the network by FD-D2D communication, having all proximity UEs transmit in FD-D2D is not beneficial for the network. However, if the system parameters are carefully tuned, non-trivial network spectral-efficiency gains (64% shown) can be harvested. We also investigate the effects of imperfect SIC and D2D-link distance distribution on the harvested FD gains.
Seepage Analysis of Upper Gotvand Dam Concerning Gypsum Karstification (2D and 3D Approaches)
DEFF Research Database (Denmark)
Sadrekarimi, Jamshid; Kiyani, Majid; Fakhri, Behnam;
2011-01-01
Upper Gotvand Dam is constructed on the Karun River at the south west of Iran. In this paper, 2D and 3D models of the dam together with the foundation and abutments were established, and several seepage analyses were carried out. Then, the gypsum veins that are scattered throughout the foundation...... ground were included in the models, and the seepage pattern, considering the dissolution law of gypsum, was analyzed. It was disclosed that the discharge fluxes obtained from 2D and 3D analyses are not similar, and the discharge flux in 3D model is about four times that of the 2D model. Also, the 3D...... model locates the phreatic surface somewhat higher than the 2D model. This means that the 2D model estimates lower pore water pressure pattern in comparison with the 3D model. These may be attributed to the fact that with 2D model the lateral components of vectors of seepage velocity are ignored...
Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power
Directory of Open Access Journals (Sweden)
Mashud Rana
2016-10-01
Full Text Available Solar energy generated from PhotoVoltaic (PV systems is one of the most promising types of renewable energy. However, it is highly variable as it depends on the solar irradiance and other meteorological factors. This variability creates difficulties for the large-scale integration of PV power in the electricity grid and requires accurate forecasting of the electricity generated by PV systems. In this paper we consider 2D-interval forecasts, where the goal is to predict summary statistics for the distribution of the PV power values in a future time interval. 2D-interval forecasts have been recently introduced, and they are more suitable than point forecasts for applications where the predicted variable has a high variability. We propose a method called NNE2D that combines variable selection based on mutual information and an ensemble of neural networks, to compute 2D-interval forecasts, where the two interval boundaries are expressed in terms of percentiles. NNE2D was evaluated for univariate prediction of Australian solar PV power data for two years. The results show that it is a promising method, outperforming persistence baselines and other methods used for comparison in terms of accuracy and coverage probability.
A Very Simple Approach for 3-D to 2-D Mapping
Dey, Sandipan; Sanyal, Sugata
2010-01-01
Many times we need to plot 3-D functions e.g., in many scientificc experiments. To plot this 3-D functions on 2-D screen it requires some kind of mapping. Though OpenGL, DirectX etc 3-D rendering libraries have made this job very simple, still these libraries come with many complex pre- operations that are simply not intended, also to integrate these libraries with any kind of system is often a tough trial. This article presents a very simple method of mapping from 3D to 2D, that is free from any complex pre-operation, also it will work with any graphics system where we have some primitive 2-D graphics function. Also we discuss the inverse transform and how to do basic computer graphics transformations using our coordinate mapping system.
Hu, Anzhong; Lv, Tiejun; Gao, Hui; Zhang, Zhang; Yang, Shaoshi
2014-10-01
In this paper, an approach of estimating signal parameters via rotational invariance technique (ESPRIT) is proposed for two-dimensional (2-D) localization of incoherently distributed (ID) sources in large-scale/massive multiple-input multiple-output (MIMO) systems. The traditional ESPRIT-based methods are valid only for one-dimensional (1-D) localization of the ID sources. By contrast, in the proposed approach the signal subspace is constructed for estimating the nominal azimuth and elevation direction-of-arrivals and the angular spreads. The proposed estimator enjoys closed-form expressions and hence it bypasses the searching over the entire feasible field. Therefore, it imposes significantly lower computational complexity than the conventional 2-D estimation approaches. Our analysis shows that the estimation performance of the proposed approach improves when the large-scale/massive MIMO systems are employed. The approximate Cram\\'{e}r-Rao bound of the proposed estimator for the 2-D localization is also derived. Numerical results demonstrate that albeit the proposed estimation method is comparable with the traditional 2-D estimators in terms of performance, it benefits from a remarkably lower computational complexity.
González-Díaz, Humberto; Agüero-Chapin, Guillermín; Varona, Javier; Molina, Reinaldo; Delogu, Giovanna; Santana, Lourdes; Uriarte, Eugenio; Podda, Gianni
2007-04-30
Methods for prediction of proteins, DNA, or RNA function and mapping it onto sequence often rely on bioinformatics alignment approach instead of chemical structure. Consequently, it is interesting to develop computational chemistry approaches based on molecular descriptors. In this sense, many researchers used sequence-coupling numbers and our group extended them to 2D proteins representations. However, no coupling numbers have been reported for 2D-RNA topology graphs, which are highly branched and contain useful information. Here, we use a computational chemistry scheme: (a) transforming sequences into RNA secondary structures, (b) defining and calculating new 2D-RNA-coupling numbers, (c) seek a structure-function model, and (d) map biological function onto the folded RNA. We studied as example 1-aminocyclopropane-1-carboxylic acid (ACC) oxidases known as ACO, which control fruit ripening having importance for biotechnology industry. First, we calculated tau(k)(2D-RNA) values to a set of 90-folded RNAs, including 28 transcripts of ACO and control sequences. Afterwards, we compared the classification performance of 10 different classifiers implemented in the software WEKA. In particular, the logistic equation ACO = 23.8 . tau(1)(2D-RNA) + 41.4 predicts ACOs with 98.9%, 98.0%, and 97.8% of accuracy in training, leave-one-out and 10-fold cross-validation, respectively. Afterwards, with this equation we predict ACO function to a sequence isolated in this work from Coffea arabica (GenBank accession DQ218452). The tau(1)(2D-RNA) also favorably compare with other descriptors. This equation allows us to map the codification of ACO activity on different mRNA topology features. The present computational-chemistry approach is general and could be extended to connect RNA secondary structure topology to other functions.
A physical pattern recognition approach for 2D electromagnetic induction studies
Directory of Open Access Journals (Sweden)
D. Patella
2000-06-01
Full Text Available We present a new tomographic procedure for the analysis of natural source electromagnetic (EM induction field data collected over any complex 2D buried structure beneath a flat air-earth boundary. The tomography is developed in a pure physical context and the primary goal is the depiction of the space distribution of two occurrence probability functions for the induced electrical charge accumulations on resistivity discontinuities and current channelling inside conductive bodies, respectively. The procedure to obtain tomographic image consists of a scanning operation governed analytically by a set of multiple interference cross-correlations between the observed EM components and the corresponding synthetic components of a pair of elementary charge and dipole. To show the potentiality of the proposed physical tomography, we discuss the results from three 2D synthetic examples.
Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches
DEFF Research Database (Denmark)
Baran, Ismet; Hattel, Jesper Henri; Akkerman, Remko
2015-01-01
The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations......, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo......-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D...
2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.
Hyperspherical approach to the three-bosons problem in 2D with a magnetic field
Rittenhouse, Seth T; Johnson, B L
2016-01-01
We examine a system of three-bosons confined to two dimensions in the presence of a perpendicular magnetic field within the framework of the adiabatic hyperspherical method. For the case of zero-range, regularized pseudo-potential interactions, we find that the system is nearly separable in hyperspherical coordinates and that, away from a set of narrow avoided crossings, the full energy eigenspectrum as a function of the 2D s-wave scattering length is well described by ignoring coupling between adiabatic hyperradial potentials. In the case of weak attractive or repulsive interactions, we find the lowest three-body energy states exhibit even/odd parity oscillations as a function of total internal 2D angular momentum and that for weak repulsive interactions, the universal lowest energy interacting state has an internal angular momentum of $M=3$. With the inclusion of repulsive higher angular momentum we surmise that the origin of a set of ``magic number'' states (states with anomalously low energy) might emerge...
Directory of Open Access Journals (Sweden)
Katharina von Löhneysen
Full Text Available Erythrocyte cytosolic protein expression profiles of children with unexplained hemolytic anemia were compared with profiles of close relatives and controls by two-dimensional differential in-gel electrophoresis (2D-DIGE. The severity of anemia in the patients varied from compensated (i.e., no medical intervention required to chronic transfusion dependence. Common characteristics of all patients included chronic elevation of reticulocyte count and a negative workup for anemia focusing on hemoglobinopathies, morphologic abnormalities that would suggest a membrane defect, immune-mediated red cell destruction, and evaluation of the most common red cell enzyme defects, glucose-6-phosphate dehydrogenase and pyruvate kinase deficiency. Based upon this initial workup and presentation during infancy or early childhood, four patients classified as hereditary nonspherocytic hemolytic anemia (HNSHA of unknown etiology were selected for proteomic analysis. DIGE analysis of red cell cytosolic proteins clearly discriminated each anemic patient from both familial and unrelated controls, revealing both patient-specific and shared patterns of differential protein expression. Changes in expression pattern shared among the four patients were identified in several protein classes including chaperons, cytoskeletal and proteasome proteins. Elevated expression in patient samples of some proteins correlated with high reticulocyte count, likely identifying a subset of proteins that are normally lost during erythroid maturation, including proteins involved in mitochondrial metabolism and protein synthesis. Proteins identified with patient-specific decreased expression included components of the glutathione synthetic pathway, antioxidant pathways, and proteins involved in signal transduction and nucleotide metabolism. Among the more than 200 proteins identified in this study are 21 proteins not previously described as part of the erythrocyte proteome. These results
A new approach for assimilation of 2D radar precipitation in a high-resolution NWP model
DEFF Research Database (Denmark)
Korsholm, Ulrik Smith; Petersen, Claus; Sass, Bent Hansen;
2015-01-01
A new approach for assimilation of 2D precipitation in numerical weather prediction models is presented and tested in a case with convective, heavy precipitation. In the scheme a nudging term is added to the horizontal velocity divergence tendency equation. In case of underproduction of precipita......A new approach for assimilation of 2D precipitation in numerical weather prediction models is presented and tested in a case with convective, heavy precipitation. In the scheme a nudging term is added to the horizontal velocity divergence tendency equation. In case of underproduction...... of precipitation, the strength of the nudging is proportional to the offset between observed and modelled precipitation, leading to increased moisture convergence. If the model over-predicts precipitation, the low level moisture source is reduced, and in-cloud moisture is nudged towards environmental values...
Fujii, Kazuyasu; Kondo, Tadashi; Yokoo, Hideki; Okano, Tetsuya; Yamada, Masayo; Yamada, Tesshi; Iwatsuki, Keiji; Hirohashi, Setsuo
2006-03-01
CyDye DIGE Fluor saturation dye (saturation dye, GE Healthcare Amersham Biosciences) enables highly sensitive 2-D PAGE. As the dye reacts with all reduced cysteine thiols, 2-D PAGE can be performed with a lower amount of protein, compared with CyDye DIGE Fluor minimal dye (GE Healthcare Amersham Biosciences), the sensitivity of which is equivalent to that of silver staining. We constructed a 2-D map of the saturation dye-labeled proteins of a liver cancer cell line (HepG2) and identified by MS 92 proteins corresponding to 123 protein spots. Functional classification revealed that the identified proteins had chaperone, protein binding, nucleotide binding, metal ion binding, isomerase activity, and motor activity. The functional distribution and the cysteine contents of the proteins were similar to those in the most comprehensive 2-D database of hepatoma cells (Seow et al.., Electrophoresis 2000, 21, 1787-1813), where silver staining was used for protein visualization. Hierarchical clustering on the basis of the quantitative expression profiles of the 123 characterized spots labeled with two charge- and mass-matched saturation dyes (Cy3 and Cy5) discriminated between nine hepatocellular carcinoma cell lines and primary cultured hepatocytes from five individuals, suggesting the utility of saturation dye and our database for proteomic studies of liver cancer.
Directory of Open Access Journals (Sweden)
DIEGO A. GARZÓN-ALVARADO
2012-01-01
Full Text Available Este articulo presenta distintas pruebas numéricas en dominios que presenta variación de parámetros, de forma espacial, de la ecuación de reacción- difusión en el espacio de Turing. Las pruebas son desarrolladas en cuadrados de lado unitario 2D en el cual se realizan subdivisiones (subdominios. En cada subdomminio se ingresan parámetros que corresponden a los diferentes números de onda, por lo tanto presentan un medio heterogéneo. Cada número de onda fue predicho mediante la teoría lineal de estabilidad y corresponde a diferentes patrones de Turing. La ecuación de reacción elegida es Schnakenberg. Los resultados muestran patrones complejos de bandas mixtas y puntos, además, los patrones no corresponden a los patrones originales en cada subdominio.
A Bayesian approach to modeling 2D gravity data using polygon states
Titus, W. J.; Titus, S.; Davis, J. R.
2015-12-01
We present a Bayesian Markov chain Monte Carlo (MCMC) method for the 2D gravity inversion of a localized subsurface object with constant density contrast. Our models have four parameters: the density contrast, the number of vertices in a polygonal approximation of the object, an upper bound on the ratio of the perimeter squared to the area, and the vertices of a polygon container that bounds the object. Reasonable parameter values can be estimated prior to inversion using a forward model and geologic information. In addition, we assume that the field data have a common random uncertainty that lies between two bounds but that it has no systematic uncertainty. Finally, we assume that there is no uncertainty in the spatial locations of the measurement stations. For any set of model parameters, we use MCMC methods to generate an approximate probability distribution of polygons for the object. We then compute various probability distributions for the object, including the variance between the observed and predicted fields (an important quantity in the MCMC method), the area, the center of area, and the occupancy probability (the probability that a spatial point lies within the object). In addition, we compare probabilities of different models using parallel tempering, a technique which also mitigates trapping in local optima that can occur in certain model geometries. We apply our method to several synthetic data sets generated from objects of varying shape and location. We also analyze a natural data set collected across the Rio Grande Gorge Bridge in New Mexico, where the object (i.e. the air below the bridge) is known and the canyon is approximately 2D. Although there are many ways to view results, the occupancy probability proves quite powerful. We also find that the choice of the container is important. In particular, large containers should be avoided, because the more closely a container confines the object, the better the predictions match properties of object.
2-D DIGE analysis of UV-C radiation-responsive proteins in globe artichoke leaves
Falvo, S.; Carli, Di M.; Desiderio, A.; Benvenuto, E.; Moglia, A.; America, A.H.P.; Lanteri, S.; Acquadro, A.
2012-01-01
Plants respond to ultraviolet stress inducing a self-defence through the regulation of specific gene family members. The UV acclimation is the result of biochemical and physiological processes, such as enhancement of the antioxidant enzymatic system and accumulation of UV-absorbing phenolic compound
Energy Technology Data Exchange (ETDEWEB)
Ramazani, A., E-mail: ali.ramazani@iehk.rwth-aachen.de [Department of Ferrous Metallurgy, RWTH Aachen University, Intzestr.1, D-52072 Aachen (Germany); Mukherjee, K.; Quade, H.; Prahl, U.; Bleck, W. [Department of Ferrous Metallurgy, RWTH Aachen University, Intzestr.1, D-52072 Aachen (Germany)
2013-01-10
A microstructure-based approach by means of representative volume elements (RVEs) is employed to evaluate the flow curve of DP steels using virtual tensile tests. Microstructures with different martensite fractions and morphologies are studied in two- and three-dimensional approaches. Micro sections of DP microstructures with various amounts of martensite have been converted to 2D RVEs, while 3D RVEs were constructed statistically with randomly distributed phases. A dislocation-based model is used to describe the flow curve of each ferrite and martensite phase separately as a function of carbon partitioning and microstructural features. Numerical tensile tests of RVE were carried out using the ABAQUS/Standard code to predict the flow behaviour of DP steels. It is observed that 2D plane strain modelling gives an underpredicted flow curve for DP steels, while the 3D modelling gives a quantitatively reasonable description of flow curve in comparison to the experimental data. In this work, a von Mises stress correlation factor {sigma}{sub 3D}/{sigma}{sub 2D} has been identified to compare the predicted flow curves of these two dimensionalities showing a third order polynomial relation with respect to martensite fraction and a second order polynomial relation with respect to equivalent plastic strain, respectively. The quantification of this polynomial correlation factor is performed based on laboratory-annealed DP600 chemistry with varying martensite content and it is validated for industrially produced DP qualities with various chemistry, strength level and martensite fraction.
An Approach to Face Recognition of 2-D Images Using Eigen Faces and PCA
Directory of Open Access Journals (Sweden)
Annapurna Mishra
2012-05-01
Full Text Available Face detection is to find any face in a given image. Face recognition is a two-dimension problem used fordetecting faces. The information contained in a face can be analysed automatically by this system likeidentity, gender, expression, age, race and pose. Normally face detection is done for a single image but itcan also be extended for video stream. As the face images are normally upright, they can be described by asmall set of 2-D characteristics views. Here the face images are projected to a feature space or face spaceto encode the variation between the known face images. The projected feature space or the face space canbe defined as ‘eigenfaces’ and can be formed by eigenvectors of the face image set. The above process canbe used to recognize a new face in unsupervised manner. This paper introduces an algorithm which is usedfor effective face recognition. It takes into consideration not only the face extraction but also themathematical calculations which enable us to bring the image into a simple and technical form. It can alsobe implemented in real-time using data acquisition hardware and software interface with the facerecognition systems. Face recognition can be applied to various domains including security systems,personal identification, image and film processing and human computer interaction.
An Approach to Face Recognition of 2-D Images Using Eigen Faces and PCA
Directory of Open Access Journals (Sweden)
Annapurna Mishra
2012-04-01
Full Text Available Face detection is to find any face in a given image. Face recognition is a two-dimension problem used for detecting faces. The information contained in a face can be analysed automatically by this system like identity, gender, expression, age, race and pose. Normally face detection is done for a single image but it can also be extended for video stream. As the face images are normally upright, they can be described by a small set of 2-D characteristics views. Here the face images are projected to a feature space or face space to encode the variation between the known face images. The projected feature space or the face space can be defined as ‘eigenfaces’ and can be formed by eigenvectors of the face image set. The above process can be used to recognize a new face in unsupervised manner. This paper introduces an algorithm which is used for effective face recognition. It takes into consideration not only the face extraction but also the mathematical calculations which enable us to bring the image into a simple and technical form. It can also be implemented in real-time using data acquisition hardware and software interface with the face recognition systems. Face recognition can be applied to various domains including security systems, personal identification, image and film processing and human computer interaction.
Lithospheric architecture of the Levant Basin (Eastern Mediterranean region): A 2D modeling approach
Inati, Lama; Zeyen, Hermann; Nader, Fadi Henri; Adelinet, Mathilde; Sursock, Alexandre; Rahhal, Muhsin Elie; Roure, François
2016-12-01
This paper discusses the deep structure of the lithosphere underlying the easternmost Mediterranean region, in particular the Levant Basin and its margins, where the nature of the crust, continental versus oceanic, remains debated. Crustal thickness and the depth of the lithosphere-asthenosphere boundary (LAB) as well as the crustal density distribution were calculated by integrating surface heat flow data, free-air gravity anomaly, geoid and topography. Accordingly, two-dimensional, lithospheric models of the study area are discussed, demonstrating the presence of a progressively attenuated crystalline crust from E to W (average thickness from 35 to 8 km). The crystalline crust is best interpreted as a strongly thinned continental crust under the Levant Basin, represented by two distinct components, an upper and a lower crust. Further to the west, the Herodotus Basin is believed to be underlain by an oceanic crust, with a thickness between 6 and 10 km. The Moho under the Arabian Plate is 35-40 km deep and becomes shallower towards the Mediterranean coast. It appears to be situated at depths ranging between 20 and 23 km below the Levant Basin and 26 km beneath the Herodotus Basin, based on our proposed models. At the Levantine margin, the thinning of the crust in the transitional domain between the onshore and the offshore is gradual, indicating successive extensional regimes that did not reach the beak up stage. In addition, the depth to LAB is around 120 km under the Arabian and the Eurasian Plates, 150 km under the Levant Basin, and it plunges to 180 km under the Herodotus Basin. This study shows that detailed 2D lithosphere modeling using integrated geophysical data can help understand the mechanisms responsible for the modelled lithospheric architecture when constrained with geological findings.
AN EXPERT APPROACH ON AUTOMATIC SOLID MODEL RECONSTRUCTION FROM 2D PROJECTIONS
Directory of Open Access Journals (Sweden)
İsmail ŞAHİN
2008-02-01
Full Text Available This paper examines how to automatically reconstruct three dimentions (3D models from their orthographic two and three views and explains a new approach developed for that purpose. The approach is based on the identification of geometric features with the interpretation of 2B views, their volumetric intersections and reconstruction of solid models. A number of rules have been defined for this goal and they implemented on a prototype software with the approach of expert systems. The developed software allows determination of some features efficiently such as slot, holes, blind holes, closed prismatic holes, etc. Another contrubition of this research is to reconstruct solid models from their full section and half section views that is almost noneexistend in the releated literature.
Truncated Hilbert space approach to the 2d $\\phi^{4}$ theory
Bajnok, Z
2015-01-01
We apply the massive analogue of the truncated conformal space approach to study the two dimensional $\\phi^{4}$ theory in finite volume. We focus on the broken phase and determine the finite size spectrum of the model numerically. We compare these results against semi-classical analysis and the Bethe-Yang spectrum.
Augmented Superfield Approach to Nilpotent Symmetries of the Modified Version of 2D Proca Theory
Directory of Open Access Journals (Sweden)
A. Shukla
2015-01-01
and absolute anticommutativity of the (anti-BRST and (anti-co-BRST charges within the framework of augmented superfield formalism. This exercise leads to some novel observations which have, hitherto, not been pointed out in the literature within the framework of superfield approach to BRST formalism. For the sake of completeness, we also mention, very briefly, a unique bosonic symmetry, the ghost-scale symmetry, and discrete symmetries of the theory and show that the algebra of conserved charges provides a physical realization of the Hodge algebra (satisfied by the de Rham cohomological operators of differential geometry.
An Indoor Navigation Approach Considering Obstacles and Space Subdivision of 2d Plan
Xu, Man; Wei, Shuangfeng; Zlatanova, Sisi
2016-06-01
The demand for indoor navigation is increasingly urgent in many applications such as safe management of underground spaces or location services in complex indoor environment, e.g. shopping centres, airports, museums, underground parking lot and hospitals. Indoor navigation is still a challenging research field, as currently applied indoor navigation algorithms commonly ignore important environmental and human factors and therefore do not provide precise navigation. Flexible and detailed networks representing the connectivity of spaces and considering indoor objects such as furniture are very important to a precise navigation. In this paper we concentrate on indoor navigation considering obstacles represented as polygons. We introduce a specific space subdivision based on a simplified floor plan to build the indoor navigation network. The experiments demonstrate that we are able to navigate around the obstacles using the proposed network. Considering to well-known path-finding approaches based on Medial Axis Transform (MAT) or Visibility Graph (VG), the approach in this paper provides a quick subdivision of space and routes, which are compatible with the results of VG.
Interferometric approach to measuring band topology in 2D optical lattices.
Abanin, Dmitry A; Kitagawa, Takuya; Bloch, Immanuel; Demler, Eugene
2013-04-19
Recently, optical lattices with nonzero Berry's phases of Bloch bands have been realized. New approaches for measuring Berry's phases and topological properties of bands with experimental tools appropriate for ultracold atoms need to be developed. In this Letter, we propose an interferometric method for measuring Berry's phases of two-dimensional Bloch bands. The key idea is to use a combination of Ramsey interference and Bloch oscillations to measure Zak phases, i.e., Berry's phases for closed trajectories corresponding to reciprocal lattice vectors. We demonstrate that this technique can be used to measure the Berry curvature of Bloch bands, the π Berry's phase of Dirac points, and the first Chern number of topological bands. We discuss several experimentally feasible realizations of this technique, which make it robust against low-frequency magnetic noise.
Magne, Pascal
2015-01-01
A concept is proposed for an approach to the learning of dental morphology and occlusion. Dental morphology, function, and esthetics should reflect a fundamental driving force, that is, the faithful emulation of the natural dentition's structural (functional, mechanical) and esthetic properties. The innovative part of the proposed approach is the emphasis on visual arts and the 2D-3D-4D aspect that starts with drawing (2D/3D) and continues with partial wax-up exercises that are followed by labial waxups and, finally, full wax-ups using innovative technical aids (electric waxers, prefabricated wax patterns, etc). Finally, the concept of layers (4D) and the histoanatomy of enamel/dentin and optical depth are taught through the realization of layering exercises (advanced acrylic mock-ups and composite resin restorations). All these techniques and materials are not only used to teach morphology and occlusion, but also constitute essential tools that will be of significant use for the student dentists and dental technologists in their future daily practice. The clinical significance of the presented methodology should allow not only students but also practicing dentists and dental technologists to help their youngest collaborators to develop a deep sense of morphology, function, and esthetics.
Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans
2016-06-07
A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers.
Brunoro, Giselle Villa Flor; Faça, Vitor Marcel; Caminha, Marcelle Almeida; Ferreira, André Teixeira da Silva; Trugilho, Monique; de Moura, Kelly Cristina Gallan; Perales, Jonas; Valente, Richard Hemmi; Menna-Barreto, Rubem Figueiredo Sadok
2016-01-01
Background The obligate intracellular protozoan Trypanosoma cruzi is the causative agent of Chagas disease, a neglected illness affecting millions of people in Latin America that recently entered non-endemic countries through immigration, as a consequence of globalization. The chemotherapy for this disease is based mainly on benznidazole and nifurtimox, which are very efficient nitroderivatives against the acute stage but present limited efficacy during the chronic phase. Our group has been studying the trypanocidal effects of naturally occurring quinones and their derivatives, and naphthoimidazoles derived from β-lapachone N1, N2 and N3 were the most active. To assess the molecular mechanisms of action of these compounds, we applied proteomic techniques to analyze treated bloodstream trypomastigotes, which are the clinically relevant stage of the parasite. Methodology/Principal Findings The approach consisted of quantification by 2D-DIGE followed by MALDI-TOF/TOF protein identification. A total of 61 differentially abundant protein spots were detected when comparing the control with each N1, N2 or N3 treatment, for 34 identified spots. Among the differentially abundant proteins were activated protein kinase C receptor, tubulin isoforms, asparagine synthetase, arginine kinase, elongation factor 2, enolase, guanine deaminase, heat shock proteins, hypothetical proteins, paraflagellar rod components, RAB GDP dissociation inhibitor, succinyl-CoA ligase, ATP synthase subunit B and methionine sulfoxide reductase. Conclusion/Significance Our results point to different modes of action for N1, N2 and N3, which indicate a great variety of metabolic pathways involved and allow for novel perspectives on the development of trypanocidal agents. PMID:27551855
Gogoi, Bidyut B.
2016-07-01
We have recently analyzed the global two-dimensional (2D) stability of the staggered lid-driven cavity (LDC) flow with a higher order compact (HOC) approach. In the analysis, critical parameters are determined for both the parallel and anti-parallel motion of the lids and a detailed analysis has been carried out on either side of the critical values. In this article, we carry out an investigation of flow stabilities inside a two-sided cross lid-driven cavity with a pair of opposite lids moving in both parallel and anti-parallel directions. On discretization, the governing 2D Navier-Stokes (N-S) equations describing the steady flow and flow perturbations results in a generalized eigenvalue problem which is solved for determining the critical parameters on four different grids. Elaborate computation is performed for a wide range of Reynolds numbers (Re) on either side of the critical values in the range 200 ⩽ Re ⩽ 10000. For flows below the critical Reynolds number Rec, our numerical results are compared with established steady-state results and excellent agreement is obtained in all the cases. For Reynolds numbers above Rec, phase plane and spectral density analysis confirmed the existence of periodic, quasi-periodic, and stable flow patterns.
Koneru, Suvarna Vani; Bhavani, Durga S
2015-01-01
A novel approach to Contact Map Overlap (CMO) problem is proposed using the two dimensional clusters present in the contact maps. Each protein is represented as a set of the non-trivial clusters of contacts extracted from its contact map. The approach involves finding matching regions between the two contact maps using approximate 2D-pattern matching algorithm and dynamic programming technique. These matched pairs of small contact maps are submitted in parallel to a fast heuristic CMO algorithm. The approach facilitates parallelization at this level since all the pairs of contact maps can be submitted to the algorithm in parallel. Then, a merge algorithm is used in order to obtain the overall alignment. As a proof of concept, MSVNS, a heuristic CMO algorithm is used for global as well as local alignment. The divide and conquer approach is evaluated for two benchmark data sets that of Skolnick and Ding et al. It is interesting to note that along with achieving saving of time, better overlap is also obtained for certain protein folds.
Kinetics and mechanisms of oxidation of 2D woven C/SiC composites; 1: Experimental approach
Energy Technology Data Exchange (ETDEWEB)
Lamouroux, F.; Camus, G. (UMR 47, Pessac (France). Lab. des Composites Thermostructuraux); Thebault, J. (Societe Europeenne de Propulsion, Saint Medard-en-Jalles (France))
1994-08-01
The oxidation behavior of a 2D woven C/SiC composite partly protected with a SiC seal coating and heat-treated (stabilized) at 1,600 C in inert gas has been investigated through an experimental approach based on thermogravimetric analyses and optical/electron microscopy. Results of the tests, performed under flowing oxygen, have shown that the oxidation behavior of the composite material in terms of oxidation kinetics and morphological evolutions is related to the presence of thermal microcracks in the seal coating as well as in the matrix. Three different temperature domains exist. At low temperatures (< 800 C), the mechanisms of reaction between carbon and oxygen control the oxidation kinetics and are associated with a uniform degradation of the carbon reinforcement. At intermediate temperatures, (between 800 and 1,100 C), the oxidation kinetics are controlled by the gas-phase diffusion through a network of microcracks in the SiC coatings, resulting in a nonuniform degradation of the carbon phases. At high temperatures (> 1,100 C), such diffusion mechanisms are limited by sealing of the microcracks by silica; therefore, the degradation of the composite remains superficial. The study of the oxidation behavior of (i) the heat-treated composite in a lower oxygen content environment (dry air) and (ii) the as-processed (unstabilized) composite in dry oxygen confirms the different mechanisms proposed to explain the oxidation behavior of the composite material.
A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions
Kong, M.; Bhattacharya, R.N.; James, C.; Basu, A.
2005-01-01
Size distribution of rigidly embedded spheres in a groundmass is usually determined from measurements of the radii of the two-dimensional (2D) circular cross sections of the spheres in random flat planes of a sample, such as in thin sections or polished slabs. Several methods have been devised to find a simple factor to convert the mean of such 2D size distributions to the actual 3D mean size of the spheres without a consensus. We derive an entirely theoretical solution based on well-established probability laws and not constrained by limitations of absolute size, which indicates that the ratio of the means of measured 2D and estimated 3D grain size distribution should be r/4 (=.785). Actual 2D size distribution of the radii of submicron sized, pure Fe0 globules in lunar agglutinitic glass, determined from backscattered electron images, is tested to fit the gamma size distribution model better than the log-normal model. Numerical analysis of 2D size distributions of Fe0 globules in 9 lunar soils shows that the average mean of 2D/3D ratio is 0.84, which is very close to the theoretical value. These results converge with the ratio 0.8 that Hughes (1978) determined for millimeter-sized chondrules from empirical measurements. We recommend that a factor of 1.273 (reciprocal of 0.785) be used to convert the determined 2D mean size (radius or diameter) of a population of spheres to estimate their actual 3D size. ?? 2005 Geological Society of America.
A new approach to river bank retreat and advance in 2D numerical models of fluvial morphodynamics
Spruyt, A.; Mosselman, E.; Jagers, B.
2011-01-01
River bank retreat and advance are modes of morphological evolution in addition to bed level changes and changes in bed sediment composition. They produce planform changes such as width adjustment and meander bend migration. However, their reproduction in a 2D numerical model still remains a challen
Institute of Scientific and Technical Information of China (English)
Zheng-Xu Zhao; Kai-Ling Li
2006-01-01
This article first generalizes the basic engineering phases of modern rapid prototyping processes, and then describes the techniques of data capture for data modeling and model making. The article also provides a brief overview of the photogrametric techniques of restitution of 3D objects, and highlights the difficulties and limitations of existing methods.It therefore presents a novel approach to photo-modeling for acquiring 3D model data from single 2D photorealistic images.Implementation of the approach is then described against a background of rapid prototyping processes to demonstrate the effectiveness of photo-modeling practice.
Energy Technology Data Exchange (ETDEWEB)
Schwerter, Michael [Forschungszentrum Juelich (Germany). Inst. of Neuroscience and Medicine (INM-4) - Medical Imaging Physics; Lietzmann, Florian; Schad, Lothar R. [Heidelberg Univ., Medical Faculty Mannheim (Germany). Computer Assisted Clinical Medicine
2016-11-01
Minimally invasive interventions are frequently aided by 2D projective image guidance. To facilitate the navigation of medical tools within the patient, information from preoperative 3D images can supplement interventional data. This work describes a novel approach to perform a 3D CT data registration to a single interventional native fluoroscopic frame. The goal of this procedure is to recover and visualize a current 2D interventional tool position in its corresponding 3D dataset. A dedicated routine was developed and tested on a phantom. The 3D position of a guidewire inserted into the phantom could successfully be reconstructed for varying 2D image acquisition geometries. The scope of the routine includes projecting the CT data into the plane of the fluoroscopy. A subsequent registration of the real and virtual projections is performed with an accuracy within the range of 1.16 ± 0.17 mm for fixed landmarks. The interventional tool is extracted from the fluoroscopy and matched to the corresponding part of the projected and transformed arterial vasculature. A root mean square error of up to 0.56 mm for matched point pairs is reached. The desired 3D view is provided by backprojecting the matched guidewire through the CT array. Due to its potential to reduce patient dose and treatment times, the proposed routine has the capability of reducing patient stress at lower overall treatment costs.
Blanc, Emilie; Lombard, Bruno
2015-01-01
A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) model. The properties of both the Biot-JKD and the Biot-DA model are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, two approaches are analyzed: Gaussian quadratures and optimization methods in the frequency range of interest. The nonlinear optimizat...
Blanc, Emilie; Chiavassa, Guillaume; Lombard, Bruno
2014-10-01
A time-domain numerical modeling of transversely isotropic Biot poroelastic waves is proposed in two dimensions. The viscous dissipation occurring in the pores is described using the dynamic permeability model developed by Johnson-Koplik-Dashen (JKD). Some of the coefficients in the Biot-JKD model are proportional to the square root of the frequency. In the time-domain, these coefficients introduce shifted fractional derivatives of order 1/2, involving a convolution product. Based on a diffusive representation, the convolution kernel is replaced by a finite number of memory variables that satisfy local-in-time ordinary differential equations, resulting in the Biot-DA (diffusive approximation) model. The properties of both the Biot-JKD and the Biot-DA models are analyzed: hyperbolicity, decrease of energy, dispersion. To determine the coefficients of the diffusive approximation, two approaches are analyzed: Gaussian quadratures and optimization methods in the frequency range of interest. The nonlinear optimization is shown to be the better way of determination. A splitting strategy is then applied to approximate numerically the Biot-DA equations. The propagative part is discretized using a fourth-order ADER scheme on a Cartesian grid, whereas the diffusive part is solved exactly. An immersed interface method is implemented to take into account heterogeneous media on a Cartesian grid and to discretize the jump conditions at interfaces. Numerical experiments are presented. Comparisons with analytical solutions show the efficiency and the accuracy of the approach, and some numerical experiments are performed to investigate wave phenomena in complex media, such as multiple scattering across a set of random scatterers.
Directory of Open Access Journals (Sweden)
Mukesh C. Sharma
2014-01-01
Full Text Available A series of 19 molecules substituted quinazolinone biphenyl acylsulfonamides derivatives displaying variable inhibition of Angiotensin II receptor AT1 activity were selected to develop models for establishing 2D and 3D QSAR. The compounds in the selected series were characterized by spatial, molecular and electro topological descriptors using QSAR module of Molecular Design Suite (VLife MDS™ 3.5. The best 2D QSAR model was selected, having correlation coefficient r2 (0.8056 and cross validated squared correlation coefficient q2 (0.6742 with external predictive ability of pred_r2 0.7583 coefficient of correlation of predicted data set (pred_r2se 0.2165. The results obtained from QSAR studies could be used in designing better Ang II activity among the congeners in future. The optimum QSAR model showed that the parameters SsssCHE index, SddCE-index, T_2_Cl_4, and SssNHE-index contributed in the model. 3D QSAR analysis by kNN-molecular field analysis approach developed based on principles of the k-nearest neighbor method combined with Genetic algorithms, stepwise forward variable selection approach; a leave-one-out cross-validated correlation coefficient (q2 of 0.6516 and a non-cross-validated correlation coefficient (r2 of 0.8316 and pred_r2 0.6954 were obtained. Contour maps using this approach showed that steric, electrostatic, and hydrophobic field effects dominantly determine binding affinities. The information rendered by 3D QSAR models may lead to a better understanding of structural requirements of Angiotensin II receptor and can help in the design of novel potent antihypertensive molecules.
Gandhi, Kaushal S.; McKay, Fiona C.; Diefenbach, Eve; Crossett, Ben; Schibeci, Stephen D.; Heard, Robert N.; Stewart, Graeme J.; Booth, David R.; Arthur, Jonathan W.
2010-01-01
Interferon beta (IFNβ) is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS). However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS) treated with IFNβ. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE) to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA) analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1α, between clinical responders and non-responders, despite the association of these proteins with IFNβ treatment in MS. PMID:20463963
Gandhi, Kaushal S; McKay, Fiona C; Diefenbach, Eve; Crossett, Ben; Schibeci, Stephen D; Heard, Robert N; Stewart, Graeme J; Booth, David R; Arthur, Jonathan W
2010-05-05
Interferon beta (IFNbeta) is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS). However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS) treated with IFNbeta. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE) to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA) analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1alpha, between clinical responders and non-responders, despite the association of these proteins with IFNbeta treatment in MS.
Directory of Open Access Journals (Sweden)
Kaushal S Gandhi
Full Text Available Interferon beta (IFNbeta is the most common immunomodulatory treatment for relapsing-remitting multiple sclerosis (RRMS. However, some patients fail to respond to treatment. In this study, we identified putative clinical response markers in the serum and plasma of people with multiple sclerosis (MS treated with IFNbeta. In a discovery-driven approach, we use 2D-difference gel electrophoresis (DIGE to identify putative clinical response markers and apply power calculations to identify the sample size required to further validate those markers. In the process we have optimized a DIGE protocol for plasma to obtain cost effective and high resolution gels for effective spot comparison. APOA1, A2M, and FIBB were identified as putative clinical response markers. Power calculations showed that the current DIGE experiment requires a minimum of 10 samples from each group to be confident of 1.5 fold difference at the p<0.05 significance level. In a complementary targeted approach, Cytometric Beadarray (CBA analysis showed no significant difference in the serum concentration of IL-6, IL-8, MIG, Eotaxin, IP-10, MCP-1, and MIP-1alpha, between clinical responders and non-responders, despite the association of these proteins with IFNbeta treatment in MS.
Directory of Open Access Journals (Sweden)
B. M. Dinelli
2011-12-01
Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. Through inspection of MIPAS spectra, 84% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 16% formed mostly by NAT particles, and only a few by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day−1. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO2, and significant denitrification, which further delayed the recovery of ozone in spring. Sporadic increases of NO2 associated with evaporation of sedimenting PSCs were also observed. Once the PSC season halted, ClO was reconverted into ClONO2. Compared to MIPAS observed 2003–2010 Arctic average values, the 2010–2011 vortex in late winter had 15 K lower temperatures, 40% lower
Directory of Open Access Journals (Sweden)
E. Arnone
2012-10-01
Full Text Available We present observations of the 2010–2011 Arctic winter stratosphere from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT. Limb sounding infrared measurements were taken by MIPAS during the Northern polar winter and into the subsequent spring, giving a continuous vertically resolved view of the Arctic dynamics, chemistry and polar stratospheric clouds (PSCs. We adopted a 2-D tomographic retrieval approach to account for the strong horizontal inhomogeneity of the atmosphere present under vortex conditions, self-consistently comparing 2011 to the 2-D analysis of 2003–2010. Unlike most Arctic winters, 2011 was characterized by a strong stratospheric vortex lasting until early April. Lower stratospheric temperatures persistently remained below the threshold for PSC formation, extending the PSC season up to mid-March, resulting in significant chlorine activation leading to ozone destruction. On 3 January 2011, PSCs were detected up to 30.5 ± 0.9 km altitude, representing the highest PSCs ever reported in the Arctic. Through inspection of MIPAS spectra, 83% of PSCs were identified as supercooled ternary solution (STS or STS mixed with nitric acid trihydrate (NAT, 17% formed mostly by NAT particles, and only two cases by ice. In the lower stratosphere at potential temperature 450 K, vortex average ozone showed a daily depletion rate reaching 100 ppbv day^{−1}. In early April at 18 km altitude, 10% of vortex measurements displayed total depletion of ozone, and vortex average values dropped to 0.6 ppmv. This corresponds to a chemical loss from early winter greater than 80%. Ozone loss was accompanied by activation of ClO, associated depletion of its reservoir ClONO_{2}, and significant denitrification, which further delayed the recovery of ozone in spring. Once the PSC season halted, ClO was reconverted primarily into ClONO_{2}. Compared to MIPAS observed 2003–2010 Arctic average values
Directory of Open Access Journals (Sweden)
Maryam Mobed-Miremadi
2014-12-01
Full Text Available Hollow alginate microfibers (od = 1.3 mm, id = 0.9 mm, th = 400 µm, L = 3.5 cm comprised of 2% (w/v medium molecular weight alginate cross-linked with 0.9 M CaCl2 were fabricated to model outward diffusion capture by 2D fluorescent microscopy. A two-fold comparison of diffusivity determination based on real-time diffusion of Fluorescein isothiocyanate molecular weight (FITC MW markers was conducted using a proposed Fickian-based approach in conjunction with a previously established numerical model developed based on spectrophotometric data. Computed empirical/numerical (Dempiricial/Dnumerical diffusivities characterized by small standard deviations for the 4-, 70- and 500-kDa markers expressed in m2/s are (1.06 × 10−9 ± 1.96 × 10−10/(2.03 × 10−11, (5.89 × 10−11 ± 2.83 × 10−12/(4.6 × 10−12 and (4.89 × 10−12 ± 3.94 × 10−13/(1.27 × 10−12, respectively, with the discrimination between the computation techniques narrowing down as a function of MW. The use of the numerical approach is recommended for fluorescence-based measurements as the standard computational method for effective diffusivity determination until capture rates (minimum 12 fps for the 4-kDa marker and the use of linear instead of polynomial interpolating functions to model temporal intensity gradients have been proven to minimize the extent of systematic errors associated with the proposed empirical method.
Directory of Open Access Journals (Sweden)
Matheus Malta de Sá
2010-12-01
Full Text Available Drugs acting on the central nervous system (CNS have to cross the blood-brain barrier (BBB in order to perform their pharmacological actions. Passive BBB diffusion can be partially expressed by the blood/brain partition coefficient (logBB. As the experimental evaluation of logBB is time and cost consuming, theoretical methods such as quantitative structure-property relationships (QSPR can be useful to predict logBB values. In this study, a 2D-QSPR approach was applied to a set of 28 drugs acting on the CNS, using the logBB property as biological data. The best QSPR model [n = 21, r = 0.94 (r² = 0.88, s = 0.28, and Q² = 0.82] presented three molecular descriptors: calculated n-octanol/water partition coefficient (ClogP, polar surface area (PSA, and polarizability (α. Six out of the seven compounds from the test set were well predicted, which corresponds to good external predictability (85.7%. These findings can be helpful to guide future approaches regarding those molecular descriptors which must be considered for estimating the logBB property, and also for predicting the BBB crossing ability for molecules structurally related to the investigated set.Fármacos que atuam no sistema nervoso central (SNC devem atravessar a barreira hematoencefálica (BHE para exercerem suas ações farmacológicas. A difusão passiva através da BHE pode ser parcialmente expressa pelo coeficiente de partição entre os compartimentos encefálico e sanguíneo (logBB, brain/blood partition coefficient. Considerando-se que a avaliação experimental de logBB é dispendiosa e demorada, métodos teóricos como estudos das relações entre estrutura química e propriedade (QSPR, Quantitative Structure-Property Relationships podem ser utilizados na previsão dos valores de logBB. Neste estudo, uma abordagem de QSPR-2D foi aplicada a um conjunto de 28 moléculas com ação central, usando logBB como propriedade biológica. O melhor modelo de QSPR [n = 21, r = 0,94 (r
Directory of Open Access Journals (Sweden)
A. Hartl
2005-11-01
Full Text Available In this study, we theoretically investigate the reconstruction of 2-D cross sections through Gaussian concentration distributions, e.g. emission plumes, from long path DOAS measurements along a limited number of light paths. This is done systematically with respect to the extension of the up to four peaks and for six different measurement setups with 2–4 telescopes and 36 light paths each. We distinguish between cases with and without additional background concentrations. Our approach parametrises the unknown distribution by local piecewise constant or linear functions on a regular grid and solves the resulting discrete, linear system by a least squares minimum norm principle. We show that the linear parametrisation not only allows better representation of the distributions in terms of discretisation errors, but also better inversion of the system. We calculate area integrals of the concentration field (i.e. total emissions rates for non-vanishing perpendicular wind speed components and show that reconstruction errors and reconstructed area integrals within the peaks for narrow distributions crucially depend on the resolution of the reconstruction grid. A recently suggested grid translation method for the piecewise constant basis functions, combining reconstructions from several shifted grids, is modified for the linear basis functions and proven to reduce overall reconstruction errors, but not the uncertainty of concentration integrals. We suggest a procedure to subtract additional background concentration fields before inversion. We find large differences in reconstruction quality between the geometries and conclude that, in general, for a constant number of light paths increasing the number of telescopes leads to better reconstruction results. It appears that geometries that give better results for negligible measurement errors and parts of the geometry that are better resolved are also less sensitive to increasing measurement errors.
Directory of Open Access Journals (Sweden)
A. Hartl
2006-01-01
Full Text Available In this study, we theoretically investigate the reconstruction of 2-D cross sections through Gaussian concentration distributions, e.g. emission plumes, from long path DOAS measurements along a limited number of light paths. This is done systematically with respect to the extension of the up to four peaks and for six different measurement setups with 2-4 telescopes and 36 light paths each. We distinguish between cases with and without additional background concentrations. Our approach parametrises the unknown distribution by local piecewise constant or linear functions on a regular grid and solves the resulting discrete, linear system by a least squares minimum norm principle. We show that the linear parametrisation not only allows better representation of the distributions in terms of discretisation errors, but also better inversion of the system. We calculate area integrals of the concentration field (i.e. total emissions rates for non-vanishing perpendicular wind speed components and show that reconstruction errors and reconstructed area integrals within the peaks for narrow distributions crucially depend on the resolution of the reconstruction grid. A recently suggested grid translation method for the piecewise constant basis functions, combining reconstructions from several shifted grids, is modified for the linear basis functions and proven to reduce overall reconstruction errors, but not the uncertainty of concentration integrals. We suggest a procedure to subtract additional background concentration fields before inversion. We find large differences in reconstruction quality between the geometries and conclude that, in general, for a constant number of light paths increasing the number of telescopes leads to better reconstruction results. It appears that geometries that give better results for negligible measurement errors and parts of the geometry that are better resolved are also less sensitive to increasing measurement errors.
Kriebitzsch, Carsten; Verlinden, Lieve; Eelen, Guy; Tan, Biauw Keng; Van Camp, Mark; Bouillon, Roger; Verstuyf, Annemieke
2009-09-01
The active form of vitamin D3, 1alpha,25-dihydroxyvitamin D3 [1,25(OH)2D3], is an important regulator of bone metabolism, calcium and phosphate homeostasis but also has potent antiproliferative and pro-differentiating effects on a wide variety of cell types. To identify key genes that are (directly) regulated by 1,25(OH)2D3, a large number of microarray studies have been performed on different types of cancer cells (prostate, breast, ovarian, colorectal, squamous cell carcinoma and leukemia). The variety of target genes identified through these studies reflects the pleiotropic action of 1,25(OH)2D3. Common cellular processes targeted by 1,25(OH)2D3 in the different cancer cell lines include cell cycle progression, apoptosis, cellular adhesion, oxidative stress, immune function and steroid metabolism. Upon comparison of the lists of genes regulated by 1,25(OH)2D3 in the different microarray studies, only a small set of individual genes were commonly regulated, among which are included 24-hydroxylase, growth arrest and DNA-damage-inducible protein, cathelicidin antimicrobial peptide and multiple cyclins.
Raza, Syed Ahsan; Hassan, Syed Ali; Pervaiz, Haris Bin; Ni, Qiang; Musavian, Leila
2016-01-01
Millimeter wave (mmWave) and Device-to-Device (D2D) communications have been considered as the key enablers of the next generation networks. We consider a D2D-enabled hybrid cellular network compromising of μW macro-cells coexisting with mmWave small cells. We investigate the dynamic resource sharing in downlink transmission to maximize the energy efficiency (EE) of the priority, or cellular users (CUs), that are opportunistically served by either macrocells or mmWave small cells, while satis...
2D semiconductor optoelectronics
Novoselov, Kostya
The advent of graphene and related 2D materials has recently led to a new technology: heterostructures based on these atomically thin crystals. The paradigm proved itself extremely versatile and led to rapid demonstration of tunnelling diodes with negative differential resistance, tunnelling transistors, photovoltaic devices, etc. By taking the complexity and functionality of such van der Waals heterostructures to the next level we introduce quantum wells engineered with one atomic plane precision. Light emission from such quantum wells, quantum dots and polaritonic effects will be discussed.
Sokolowsky, Kathleen P; Bailey, Heather E; Hoffman, David J; Andersen, Hans C; Fayer, Michael D
2016-07-21
Two-dimensional infrared (2D IR) data are presented for a vibrational probe in three nematogens: 4-cyano-4'-pentylbiphenyl, 4-cyano-4'-octylbiphenyl, and 4-(trans-4-amylcyclohexyl)-benzonitrile. The spectral diffusion time constants in all three liquids in the isotropic phase are proportional to [T*/(T - T*)](1/2), where T* is 0.5-1 K below the isotropic-nematic phase transition temperature (TNI). Rescaling to a reduced temperature shows that the decays of the frequency-frequency correlation function (FFCF) for all three nematogens fall on the same curve, suggesting a universal dynamic behavior of nematogens above TNI. Spectral diffusion is complete before significant orientational relaxation in the liquid, as measured by optically heterodyne detected-optical Kerr effect (OHD-OKE) spectroscopy, and before any significant orientational randomization of the probe measured by polarization selective IR pump-probe experiments. To interpret the OHD-OKE and FFCF data, we constructed a mode coupling theory (MCT) schematic model for the relationships among three correlation functions: ϕ1, a correlator for large wave vector density fluctuations; ϕ2, the orientational correlation function whose time derivative is the observable in the OHD-OKE experiment; and ϕ3, the FFCF for the 2D IR experiment. The equations for ϕ1 and ϕ2 match those in the previous MCT schematic model for nematogens, and ϕ3 is coupled to the first two correlators in a straightforward manner. Resulting models fit the data very well. Across liquid crystals, the temperature dependences of the coupling constants show consistent, nonmonotonic behavior. A remarkable change in coupling occurs at ∼5 K above TNI, precisely where the rate of spectral diffusion in 5CB was observed to deviate from that of a similar nonmesogenic liquid.
Dubousset, Jean; Charpak, Georges; Dorion, Irène; Skalli, Wafa; Lavaste, François; Deguise, Jacques; Kalifa, Gabriel; Ferey, Solène
2005-02-01
Close collaboration between multidisciplinary specialists (physicists, biomecanical engineers, medical radiologists and pediatric orthopedic surgeons) has led to the development of a new low-dose radiation device named EOS. EOS has three main advantages: The use of a gaseous X-ray detector, invented by Georges Charpak (Nobel Prizewinner 1992), the dose necessary to obtain a 2D image of the skeletal system has been reduced by 8 to 10 times, while that required to obtain a 3D reconstruction from CT slices has fallen by a factor of 800 to 1000. The accuracy of the 3D reconstruction obtained with EOS is as good as that obtained with CT. The patient is examined in the standing (or seated) position, and is scanned simultaneously from head to feet, both frontally and laterally. This is a major advantage over conventional CT which requires the patient to be placed horizontally. -The 3D reconstructions of each element of the osteo-articular system are as precise as those obtained by conventional CT. EOS is also rapid, taking only 15 to 30 minutes to image the entire spine.
Hostache, R.; Hissler, C.; Matgen, P.; Guignard, C.; Bates, P.
2014-02-01
Fine sediments represent an important vector of pollutant diffusion in rivers. When deposited in floodplains and riverbeds they can be responsible for soil pollution. In this context, this paper proposes a hydro-morphodynamic modelling exercise aiming at predicting transport and diffusion of fine sediments and dissolved pollutants. The model is based upon the Telemac hydro-informatic system (dynamical coupling Telemac-2D-Sysiphe). As empirical and semi-empirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. In parallel to the modelling exercise, an extensive hydrological/geochemical database has been set up during two flood events. The main sensitive parameters were found to be the hydraulic friction coefficient and the sediment particle settling velocity in water. Using the two monitored hydrological events as calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolve pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment deposition in the floodplain and a soil contamination map shows that the preferential zones for deposition identified by the model are realistic.
Monreal-Ibero, Ana; Westmoquette, Mark S; Vilchez, Jose M
2013-01-01
ABRIDGED: NGC5253 is an ideal laboratory for detailed studies of starburst galaxies. We present for the first in a starburst galaxy a 2D study of the spatial behavior of collisional and radiative transfer effects in He^+. The HeI lines are analysed based on data obtained with FLAMES and GMOS. Collisional effects are negligible (i.e. 0.1-0.6%) for transitions in the singlet cascade while relatively important for those in the triplet cascade. In particular, they can contribute up to 20% of the flux in the HeIl7065 line. Radiative transfer effects are important over an extended and circular area of 30pc in diameter centered at the Super Star Clusters. HeI abundance, y^+, has been mapped using extinction corrected fluxes of six HeI lines, realistic assumptions for T_e, n_e, and the stellar absorption equivalent width as well as the most recent emissivities. We found a mean of 10^3 y^+ ~81.6 over the mapped area. The relation between the excitation and the total helium abundance, y_tot, is consistent with no abund...
Monreal-Ibero, A.; Walsh, J. R.; Westmoquette, M. S.; Vílchez, J. M.
2013-05-01
Context. NGC 5253 is a nearby peculiar blue compact dwarf (BCD) galaxy that, on account of its proximity, provides an ideal laboratory for detailed spatial study of starburst galaxies. An open issue not addressed so far is how the collisional and self-absorption effects on He i emission influence the determination of the He+ abundance in 2D and what is the relation to the physical and chemical properties of the ionised gas. Aims: A 2D, imaging spectroscopy, study of the spatial behaviour of collisional and radiative transfer effects in He+ and their impact on the determination of He+ abundance is presented for the first time in a starburst galaxy. Methods: The He i lines were analysed based on previously presented integral field spectroscopy (IFS) data, obtained with FLAMES at the VLT and lower resolution gratings of the Giraffe spectrograph, as well as with GMOS at Gemini and the R381 grating. Results: Collisional effects reproduce the electron density (ne) structure. They are negligible (i.e. ~0.1-0.6%) for transitions in the singlet cascade but relatively important for those in the triplet cascade. In particular, they can contribute up to 20% of the flux in the He iλ7065 line. Radiative transfer effects are important over an extended and circular area of ~30 pc in diameter centred on the super star clusters (SSCs). The singly ionised helium abundance, y+, has been mapped using extinction-corrected fluxes of six He i lines, realistic assumptions for electron temperature (Te), ne, and the stellar absorption equivalent width, as well as the most recent emissivities. We find a mean(± standard deviation) of 103y+ ~ 80.3( ± 2.7) over the mapped area. The relation between the excitation and the total helium abundance, ytot, is consistent with no abundance gradient. Uncertainties in the derivation of helium abundances are dominated by the adopted assumptions. We illustrate the difficulty of detecting a putative helium enrichment owing to the presence of Wolf
Activated sludge model No. 2d, ASM2d
DEFF Research Database (Denmark)
Henze, M.
1999-01-01
The Activated Sludge Model No. 2d (ASM2d) presents a model for biological phosphorus removal with simultaneous nitrification-denitrification in activated sludge systems. ASM2d is based on ASM2 and is expanded to include the denitrifying activity of the phosphorus accumulating organisms (PAOs......). This extension of ASM2 allows for improved modeling of the processes, especially with respect to the dynamics of nitrate and phosphate. (C) 1999 IAWQ Published by Elsevier Science Ltd. All rights reserved....
Koskenniemi, K.; Koponen, J.; Kankainen, M.; Savijoki, K.; Tynkkynen, S.; Vos, de W.M.; Kalkkinen, N.; Varmanen, P.
2009-01-01
Lactobacillus rhamnosus GG (LGG) is one of the most extensively studied and widely used probiotic bacteria. While the benefits of LGG treatment in gastrointestinal disorders and immunomodulation are well-documented, functional genomics research of this bacterium has only recently been initiated. In
Hostache, Renaud; Hissler, Christophe; Matgen, Patrick; Guignard, Cédric; Bates, Paul
2014-05-01
Recent years have seen a growing awareness for the central role that fine sediment loads play in transport and diffusion of pollutants by rivers and streams. Suspended sediment can potentially carry important amounts of nutrients and contaminants, such as trace metals among which some are recognized as Potential Harmful Elements (PHE). These threaten water quality in rivers and wetlands and soil quality in floodplains. Currently, many studies focusing on sediment transport modelling deal with marine and estuarine areas. Some studies evaluate sediment transport at basin scales and often evaluate yearly sediment fluxes using hydrologic and simplified hydraulic models. Some more theoretical studies develop and improve numerical models on the basis of physical model experiments. As a matter of fact, sediment transport modelling in small rivers at reach/floodplain scale is a rather new research field. In this study, we aim at simulating sediment transport at the floodplain scale and the single flood event scale in order to predict sediment spreading on alluvial soils. This simulation will help for the estimation of the potential pollution of soils due to the transport of PHEs by suspended sediments. The model is based upon the Telemac hydro-informatic system (i.e. dynamical coupling of Telemac-2D and Sysiphe). As empirical and semi-empirical parameters need to be calibrated for such a modelling exercise, a sensitivity analysis is proposed. In parallel to the modelling exercise, an extensive hydrological/geochemical database has been set up for two flood events. The most sensitive parameters were found to be the hydraulic friction coefficient and the sediment particle settling velocity in water. Using the two monitored hydrological events for calibration and validation, it was found that the model is able to satisfyingly predict suspended sediment and dissolved pollutant transport in the river channel. In addition, a qualitative comparison between simulated sediment
Stability Test for 2-D Continuous-Discrete Systems
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Models of 2-D continuous-discrete systems are introduced, which can be used to describe some complex systems. Different from classical 2-D continuous systems or 2-D discrete systems, the asymptotic stability of the continuous-discrete systems is determined by Hurwitz-Schur stability (hybrid one) of 2-D characteristic polynomials of the systems. An algebraic algorithm with simpler test procedure for Hurwitz-Schur stability test of 2-D polynomials is developed. An example to illustrate the applications of the test approach is provided.
HypGrid2D. A 2-d mesh generator
Energy Technology Data Exchange (ETDEWEB)
Soerensen, N.N.
1998-03-01
The implementation of a hyperbolic mesh generation procedure, based on an equation for orthogonality and an equation for the cell face area is described. The method is fast, robust and gives meshes with good smoothness and orthogonality. The procedure is implemented in a program called HypGrid2D. The HypGrid2D program is capable of generating C-, O- and `H`-meshes for use in connection with the EllipSys2D Navier-Stokes solver. To illustrate the capabilities of the program, some test examples are shown. First a series of C-meshes are generated around a NACA-0012 airfoil. Secondly a series of O-meshes are generated around a NACA-65-418 airfoil. Finally `H`-meshes are generated over a Gaussian hill and a linear escarpment. (au)
Ahmed, Zeeshan
2010-01-01
Designing and developing quality based computer game is always a challenging task for developers. In this paper I briefly discuss aero fighting war game based on simple 2D gaming concepts and developed in C & C++ programming languages, using old bitmapping concepts. Going into the details of the game development, I discuss the designed strategies, flow of game and implemented prototype version of game, especially for beginners of game programming.
Fallow), Stray
2009-01-01
Having trouble with geometry? Do Pi, The Pythagorean Theorem, and angle calculations just make your head spin? Relax. With Head First 2D Geometry, you'll master everything from triangles, quads and polygons to the time-saving secrets of similar and congruent angles -- and it'll be quick, painless, and fun. Through entertaining stories and practical examples from the world around you, this book takes you beyond boring problems. You'll actually use what you learn to make real-life decisions, like using angles and parallel lines to crack a mysterious CSI case. Put geometry to work for you, and
Temple, Aidan
2013-01-01
Filled with practical, step-by-step instructions and clear explanations for the most important and useful tasks. The step-by-step approach taken by this book will show you how to develop a 2D HTML5 platformer-based game that you will be able to publish to multiple devices.This book is great for anyone who has an interest in HTML5 games development, and who already has a basic to intermediate grasp on both the HTML markup and JavaScript programming languages. Therefore, due to this requirement, the book will not discuss the inner workings of either of these languages but will instead attempt to
Illumination Compensation for 2-D Barcode Recognition Basing Morphologic
Directory of Open Access Journals (Sweden)
Jian-Hua Li
2013-04-01
Full Text Available Improvement of image quality has been highly demanded in digital imaging systems. This study presents a novel illumination normalization approach for 2-D barcode recognition under varying lighting conditions. MMs (Morphological transformations are employed to original images using big scale multiple SEs (structuring elements. Then we make use of entropy to fuse images. The performance of proposed methodology is illustrated through the processing of images with different kinds of 2-D barcodes under different backgrounds. The experimental results show that this approach can process different kinds of 2-D barcodes under varying lighting conditions adaptively. Compared with other conventional methods, our proposed approach does a better job in processing 2-D barcode under non-uniform illumination.
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
A novel pilot stage valve called simplified 2D valve, which utilizes both rotary and linear motions of a single spool, is presented.The rotary motion of the spool incorporating hydraulic resistance bridge, formed by a damper groove and a crescent overlap opening, is utilized as pilot to actuate linear motion of the spool.A criterion for stability is derived from the linear analysis of the valve.Special experiments are designed to acquire the mechanical stiffness, the pilot leakage and the step response.It is shown that the sectional size of the spiral groove affects the dynamic response and the stiffness contradictorily and is also very sensitive to the pilot leakage.Therefore, it is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless, it is possible to sustain the dynamic response at a fairly high level, while keeping the leakage of the pilot stage at an acceptable level.
Waldin, Nicholas
2016-06-24
2D color maps are often used to visually encode complex data characteristics such as heat or height. The comprehension of color maps in visualization is affected by the display (e.g., a monitor) and the perceptual abilities of the viewer. In this paper we present a novel method to measure a user\\'s ability to distinguish colors of a two-dimensional color map on a given monitor. We show how to adapt the color map to the user and display to optimally compensate for the measured deficiencies. Furthermore, we improve user acceptance of the calibration procedure by transforming the calibration into a game. The user has to sort colors along a line in a 3D color space in a competitive fashion. The errors the user makes in sorting these lines are used to adapt the color map to his perceptual capabilities.
Quantum coherence selective 2D Raman-2D electronic spectroscopy.
Spencer, Austin P; Hutson, William O; Harel, Elad
2017-03-10
Electronic and vibrational correlations report on the dynamics and structure of molecular species, yet revealing these correlations experimentally has proved extremely challenging. Here, we demonstrate a method that probes correlations between states within the vibrational and electronic manifold with quantum coherence selectivity. Specifically, we measure a fully coherent four-dimensional spectrum which simultaneously encodes vibrational-vibrational, electronic-vibrational and electronic-electronic interactions. By combining near-impulsive resonant and non-resonant excitation, the desired fifth-order signal of a complex organic molecule in solution is measured free of unwanted lower-order contamination. A critical feature of this method is electronic and vibrational frequency resolution, enabling isolation and assignment of individual quantum coherence pathways. The vibronic structure of the system is then revealed within an otherwise broad and featureless 2D electronic spectrum. This method is suited for studying elusive quantum effects in which electronic transitions strongly couple to phonons and vibrations, such as energy transfer in photosynthetic pigment-protein complexes.
2D proteome analysis initiates new Insights on the Salmonella Typhimurium LuxS protein
Directory of Open Access Journals (Sweden)
Vanderleyden Jos
2009-09-01
Full Text Available Abstract Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium, we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As
Learn Unity for 2D game development
Thorn, Alan
2013-01-01
The only Unity book specifically covering 2D game development Written by Alan Thorn, experience game developer and author of seven books on game programming Hands-on examples of all major aspects of 2D game development using Unity
2-d Simulations of Test Methods
DEFF Research Database (Denmark)
Thrane, Lars Nyholm
2004-01-01
approach is presented by showing initial results from 2-d simulations of the empirical test methods slump flow and L-box. This method assumes a homogeneous material, which is expected to correspond to particle suspensions e.g. concrete, when it remains stable. The simulations have been carried out when......One of the main obstacles for the further development of self-compacting concrete is to relate the fresh concrete properties to the form filling ability. Therefore, simulation of the form filling ability will provide a powerful tool in obtaining this goal. In this paper, a continuum mechanical...... using both a Newton and Bingham model for characterisation of the rheological properties of the concrete. From the results, it is expected that both the slump flow and L-box can be simulated quite accurately when the model is extended to 3-d and the concrete is characterised according to the Bingham...
Lie symmetries and 2D Material Physics
Belhaj, Adil
2014-01-01
Inspired from Lie symmetry classification, we establish a correspondence between rank two Lie symmetries and 2D material physics. The material unit cell is accordingly interpreted as the geometry of a root system. The hexagonal cells, appearing in graphene like models, are analyzed in some details and are found to be associated with A_2 and G_2 Lie symmetries. This approach can be applied to Lie supersymmetries associated with fermionic degrees of freedom. It has been suggested that these extended symmetries can offer a new way to deal with doping material geometries. Motivated by Lie symmetry applications in high energy physics, we speculate on a possible connection with (p,q) brane networks used in the string theory compactification on singular Calabi-Yau manifolds.
Metrology for graphene and 2D materials
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
Directory of Open Access Journals (Sweden)
Raffaele Riccio
2013-04-01
Full Text Available Secondary metabolites contained in marine organisms disclose diverse pharmacological activities, due to their intrinsic ability to recognize bio-macromolecules, which alter their expression and modulate their function. Thus, the identification of the cellular pathways affected by marine natural products is crucial to provide important functional information concerning their mechanism of action at the molecular level. Perthamide C, a marine sponge metabolite isolated from the polar extracts of Theonella swinhoei and endowed with a broad and interesting anti-inflammatory profile, was found in a previous study to specifically interact with heat shock protein-90 and glucose regulated protein-94, also disclosing the ability to reduce cisplatin-mediated apoptosis. In this paper, we evaluated the effect of this compound on the whole proteome of murine macrophages cells by two-dimensional DIGE proteomics. Thirty-three spots were found to be altered in expression by at least 1.6-fold and 29 proteins were identified by LC ESI-Q/TOF-MS. These proteins are involved in different processes, such as metabolism, structural stability, protein folding assistance and gene expression. Among them, perthamide C modulates the expression of several chaperones implicated in the folding of proteins correlated to apoptosis, such as Hsp90 and T-complexes, and in this context our data shed more light on the cellular effects and pathways altered by this marine cyclo-peptide.
Orbifold Reduction and 2d (0,2) Gauge Theories
Franco, Sebastian; Seong, Rak-Kyeong
2016-01-01
We introduce Orbifold Reduction, a new method for generating $2d$ $(0,2)$ gauge theories associated to D1-branes probing singular toric Calabi-Yau 4-folds starting from $4d$ $\\mathcal{N}=1$ gauge theories on D3-branes probing toric Calabi-Yau 3-folds. The new procedure generalizes dimensional reduction and orbifolding. In terms of T-dual configurations, it generates brane brick models starting from brane tilings. Orbifold reduction provides an agile approach for generating $2d$ $(0,2)$ theories with a brane realization. We present three practical applications of the new algorithm: the connection between $4d$ Seiberg duality and $2d$ triality, a combinatorial method for generating theories related by triality and a $2d$ $(0,2)$ generalization of the Klebanov-Witten mass deformation.
Perspectives for spintronics in 2D materials
Directory of Open Access Journals (Sweden)
Wei Han
2016-03-01
Full Text Available The past decade has been especially creative for spintronics since the (rediscovery of various two dimensional (2D materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Van Goethem, Nicolas
2010-01-01
This paper develops a geometrical model of dislocations and disclinations in single crystals at the mesoscopic scale. In the continuation of previous work the distribution theory is used to represent concentrated effects in the defect lines which in turn form the branching lines of the multiple-valued elastic displacement and rotation fields. Fundamental identities relating the incompatibility tensor to the dislocation and disclination densities are proved in the case of countably many parallel defect lines, under global 2D strain assumptions relying on the geometric measure theory. Our theory provides the appropriate objective internal variables and the required mathematical framework for a rigorous homogenization from mesoscopic to macroscopic scale.
Applications of Doppler Tomography in 2D and 3D
Richards, M.; Budaj, J.; Agafonov, M.; Sharova, O.
2010-12-01
Over the past few years, the applications of Doppler tomography have been extended beyond the usual calculation of 2D velocity images of circumstellar gas flows. This technique has now been used with the new Shellspec spectrum synthesis code to demonstrate the effective modeling of the accretion disk and gas stream in the TT Hya Algol binary. The 2D tomography procedure projects all sources of emission onto a single central (Vx, Vy) velocity plane even though the gas is expected to flow beyond that plane. So, new 3D velocity images were derived with the Radioastronomical Approach method by assuming a grid of Vz values transverse to the central 2D plane. The 3D approach has been applied to the U CrB and RS Vul Algol-type binaries to reveal substantial flow structures beyond the central velocity plane.
Annotated Bibliography of EDGE2D Use
Energy Technology Data Exchange (ETDEWEB)
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
DEFF Research Database (Denmark)
Burcharth, Hans F.; Andersen, Thomas Lykke; Jensen, Palle Meinert
This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU).......This report present the results of 2D physical model tests (length scale 1:50) carried out in a waveflume at Dept. of Civil Engineering, Aalborg University (AAU)....
The Analytical Approximate Solution of the 2D Thermal Displacement
Institute of Scientific and Technical Information of China (English)
Chu－QuanGuan; Zeng－YuanGuo; 等
1996-01-01
The 2D plane gas flow under heating (with nonentity boundary condition)has been discussed by the analytical approach in this paper.The approximate analytical solutions have been obtained for the flow passing various kinds of heat sources.Solutions demonstrate the thermal displacement phenomena are strongly depend on the heating intensity.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
Isotropic 2D quadrangle meshing with size and orientation control
Pellenard, Bertrand
2011-12-01
We propose an approach for automatically generating isotropic 2D quadrangle meshes from arbitrary domains with a fine control over sizing and orientation of the elements. At the heart of our algorithm is an optimization procedure that, from a coarse initial tiling of the 2D domain, enforces each of the desirable mesh quality criteria (size, shape, orientation, degree, regularity) one at a time, in an order designed not to undo previous enhancements. Our experiments demonstrate how well our resulting quadrangle meshes conform to a wide range of input sizing and orientation fields.
2D materials for nanophotonic devices
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
New Reductions and Nonlinear Systems for 2D Schrodinger Operators
Mironov, A
2010-01-01
New Completely Integrable (2+1)-System is studied. It is based on the so-called L-A-B-triples $L_t=[H,L]-fL$ where L is a 2D Schrodinger Operator. This approach was invented by S.Manakov and B.Dubrovin, I.Krichever, S.Novikov(DKN) in the works published in 1976. A nonstandard reduction for the 2D Schrodinger Operator (completely different from the one found by S.Novikov and A.Veselov in 1984) compatible with time dynamics of the new Nonlinear System, is studied here. It can be naturally treated as a 2D extension of the famous Burgers System. The Algebro-Geometric (AG) Periodic Solutions here are very specific and unusual (for general and reduced cases). The reduced system is linearizable like Burgers. However, the general one (and probably the reduced one also) certainly lead in the stationary AG case to the nonstandard examples of algebraic curves $\\Gamma\\subset W$ in the full complex 2D manifold of Bloch-Floquet functions W for the periodic elliptic 2D operator H where $H\\psi(x,y,P)=\\lambda(P)\\psi(x,y,P),P\\...
Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.
2006-02-01
A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.
Energy Technology Data Exchange (ETDEWEB)
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Energy Technology Data Exchange (ETDEWEB)
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Applications of 2D helical vortex dynamics
DEFF Research Database (Denmark)
Okulov, Valery; Sørensen, Jens Nørkær
2010-01-01
In the paper, we show how the assumption of helical symmetry in the context of 2D helical vortices can be exploited to analyse and to model various cases of rotating flows. From theory, examples of three basic applications of 2D dynamics of helical vortices embedded in flows with helical symmetry...... of the vorticity field are addressed. These included some of the problems related to vortex breakdown, instability of far wakes behind rotors and vortex theory of ideal rotors....
2D Saturable Absorbers for Fibre Lasers
Directory of Open Access Journals (Sweden)
Robert I. Woodward
2015-11-01
Full Text Available Two-dimensional (2D nanomaterials are an emergent and promising platform for future photonic and optoelectronic applications. Here, we review recent progress demonstrating the application of 2D nanomaterials as versatile, wideband saturable absorbers for Q-switching and mode-locking fibre lasers. We focus specifically on the family of few-layer transition metal dichalcogenides, including MoS2, MoSe2 and WS2.
Image processing of 2D crystal images.
Arheit, Marcel; Castaño-Díez, Daniel; Thierry, Raphaël; Gipson, Bryant R; Zeng, Xiangyan; Stahlberg, Henning
2013-01-01
Electron crystallography of membrane proteins uses cryo-transmission electron microscopy to image frozen-hydrated 2D crystals. The processing of recorded images exploits the periodic arrangement of the structures in the images to extract the amplitudes and phases of diffraction spots in Fourier space. However, image imperfections require a crystal unbending procedure to be applied to the image before evaluation in Fourier space. We here describe the process of 2D crystal image unbending, using the 2dx software system.
Directory of Open Access Journals (Sweden)
Lina Yang
2014-01-01
Full Text Available To reduce the computation complexity of wavelet transform, this paper presents a novel approach to be implemented. It consists of two key techniques: (1 fast number theoretic transform(FNTT In the FNTT, linear convolution is replaced by the circular one. It can speed up the computation of 2D discrete wavelet transform. (2 In two-dimensional overlap-save method directly calculating the FNTT to the whole input sequence may meet two difficulties; namely, a big modulo obstructs the effective implementation of the FNTT and a long input sequence slows the computation of the FNTT down. To fight with such deficiencies, a new technique which is referred to as 2D overlap-save method is developed. Experiments have been conducted. The fast number theoretic transform and 2D overlap-method have been used to implement the dyadic wavelet transform and applied to contour extraction in pattern recognition.
2d index and surface operators
Gadde, Abhijit; Gukov, Sergei
2014-03-01
In this paper we compute the superconformal index of 2d (2, 2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes the 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and under CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in = 2 super-conformal gauge theories. They are engineered by coupling the 2d (2, 2) supersymmetric gauge theory living on the support of the surface operator to the 4d = 2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools developed in the first half of the paper. The superconformal index in the presence of surface defect is expected to be invariant under generalized S-duality. We demonstrate that it is indeed the case. In doing so the Seiberg-type duality of the 2d theory plays an important role.
Yang, Li-Ming; Dornfeld, Matthew; Frauenheim, Thomas; Ganz, Eric
2015-10-21
We predict a highly stable and robust atomically thin gold monolayer with a hexagonal close packed lattice stabilized by metallic bonding with contributions from strong relativistic effects and aurophilic interactions. We have shown that the framework of the Au monolayer can survive 10 ps MD annealing simulations up to 1400 K. The framework is also able to survive large motions out of the plane. Due to the smaller number of bonds per atom in the 2D layer compared to the 3D bulk we observe significantly enhanced energy per bond (0.94 vs. 0.52 eV per bond). This is similar to the increase in bond strength going from 3D diamond to 2D graphene. It is a non-magnetic metal, and was found to be the global minima in the 2D space. Phonon dispersion calculations demonstrate high kinetic stability with no negative modes. This 2D gold monolayer corresponds to the top monolayer of the bulk Au(111) face-centered cubic lattice. The close-packed lattice maximizes the aurophilic interactions. We find that the electrons are completely delocalized in the plane and behave as 2D nearly free electron gas. We hope that the present work can inspire the experimental fabrication of novel free standing 2D metal systems.
2-D DOA Estimation Based on 2D-MUSIC%基于2D-MUSIC算法的DOA估计
Institute of Scientific and Technical Information of China (English)
康亚芳; 王静; 张清泉; 行小帅
2014-01-01
This paper discussed the performance of classical two-dimensional DOA estimation with 2D-MUSIC, based on the mathematical model of planar array and 2D-MUSIC DOA estimation, Taking uniform planar array for example, comput-er simulation experiment was carried for the effect of three kinds of different parameters on 2-D DOA estimation, and the simulation results were analyzed. And also verification test about the corresponding algorithm performance under the differ-ent parameters was discussed.%利用经典的2D-MUSIC算法对二维阵列的DOA估计进行了研究，在平面阵列数学模型以及2D-MUSIC算法的DOA估计模型基础上，以均匀平面阵列为例，对3种不同参数的DOA估计进行了计算机仿真，分析了仿真结果。得出了在不同参数变化趋势下DOA估计的相应变化情况。
2d Index and Surface operators
Gadde, Abhijit
2013-01-01
In this paper we compute the superconformal index of 2d (2,2) supersymmetric gauge theories. The 2d superconformal index, a.k.a. flavored elliptic genus, is computed by a unitary matrix integral much like the matrix integral that computes 4d superconformal index. We compute the 2d index explicitly for a number of examples. In the case of abelian gauge theories we see that the index is invariant under flop transition and CY-LG correspondence. The index also provides a powerful check of the Seiberg-type duality for non-abelian gauge theories discovered by Hori and Tong. In the later half of the paper, we study half-BPS surface operators in N=2 superconformal gauge theories. They are engineered by coupling the 2d (2,2) supersymmetric gauge theory living on the support of the surface operator to the 4d N=2 theory, so that different realizations of the same surface operator with a given Levi type are related by a 2d analogue of the Seiberg duality. The index of this coupled system is computed by using the tools de...
Bartlow, Patrick; Uechi, Guy T; Cardamone, John J; Sultana, Tamanna; Fruchtl, McKinzie; Beitle, Robert R; Ataai, Mohammad M
2011-08-01
Immobilized metal affinity chromatography (IMAC) is a widely used purification tool for the production of active, soluble recombinant proteins. Escherichia coli proteins that routinely contaminate IMAC purifications have been characterized to date. The work presented here narrows that focus to the most problematic host proteins, those retaining nickel affinity under elevated imidazole conditions, using a single bind-and-elute step. Two-dimensional difference gel electrophoresis, a favored technique for resolving complex protein mixtures and evaluating their expression, here discerns variation in the soluble extract pools that are loaded in IMAC and the remaining contaminants with respect to varied levels of recombinant protein expression. Peptidyl-prolyl isomerase SlyD and catabolite activator protein (CAP) are here shown to be the most persistent contaminants and have greater prevalence at low target protein expression.
Estimating 2-D Vector Velocities Using Multidimensional Spectrum Analysis
DEFF Research Database (Denmark)
Oddershede, Niels; Løvstakken, Lasse; Torp, Hans;
2008-01-01
Wilson (1991) presented an ultrasonic wide-band estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity...... a minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes....... Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2...
Automatic Contour Extraction from 2D Image
Directory of Open Access Journals (Sweden)
Panagiotis GIOANNIS
2011-03-01
Full Text Available Aim: To develop a method for automatic contour extraction from a 2D image. Material and Method: The method is divided in two basic parts where the user initially chooses the starting point and the threshold. Finally the method is applied to computed tomography of bone images. Results: An interesting method is developed which can lead to a successful boundary extraction of 2D images. Specifically data extracted from a computed tomography images can be used for 2D bone reconstruction. Conclusions: We believe that such an algorithm or part of it can be applied on several other applications for shape feature extraction in medical image analysis and generally at computer graphics.
Optical modulators with 2D layered materials
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Orthotropic Piezoelectricity in 2D Nanocellulose
García, Y.; Ruiz-Blanco, Yasser B.; Marrero-Ponce, Yovani; Sotomayor-Torres, C. M.
2016-10-01
The control of electromechanical responses within bonding regions is essential to face frontier challenges in nanotechnologies, such as molecular electronics and biotechnology. Here, we present Iβ-nanocellulose as a potentially new orthotropic 2D piezoelectric crystal. The predicted in-layer piezoelectricity is originated on a sui-generis hydrogen bonds pattern. Upon this fact and by using a combination of ab-initio and ad-hoc models, we introduce a description of electrical profiles along chemical bonds. Such developments lead to obtain a rationale for modelling the extended piezoelectric effect originated within bond scales. The order of magnitude estimated for the 2D Iβ-nanocellulose piezoelectric response, ~pm V‑1, ranks this material at the level of currently used piezoelectric energy generators and new artificial 2D designs. Such finding would be crucial for developing alternative materials to drive emerging nanotechnologies.
2D microwave imaging reflectometer electronics
Energy Technology Data Exchange (ETDEWEB)
Spear, A. G.; Domier, C. W., E-mail: cwdomier@ucdavis.edu; Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C. [Electrical and Computer Engineering, University of California, Davis, California 95616 (United States); Tobias, B. J. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
Assessing 2D electrophoretic mobility spectroscopy (2D MOSY) for analytical applications.
Fang, Yuan; Yushmanov, Pavel V; Furó, István
2016-12-08
Electrophoretic displacement of charged entity phase modulates the spectrum acquired in electrophoretic NMR experiments, and this modulation can be presented via 2D FT as 2D mobility spectroscopy (MOSY) spectra. We compare in various mixed solutions the chemical selectivity provided by 2D MOSY spectra with that provided by 2D diffusion-ordered spectroscopy (DOSY) spectra and demonstrate, under the conditions explored, a superior performance of the former method. 2D MOSY compares also favourably with closely related LC-NMR methods. The shape of 2D MOSY spectra in complex mixtures is strongly modulated by the pH of the sample, a feature that has potential for areas such as in drug discovery and metabolomics. Copyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd. StartCopTextCopyright © 2016 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
2D NMR-spectroscopic screening reveals polyketides in ladybugs
Deyrup, Stephen T.; Eckman, Laura E.; McCarthy, Patrick H.; Smedley, Scott R.; Meinwald, Jerrold; Schroeder, Frank C.
2011-01-01
Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature’s cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior...
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), on behalf of Energy E2 A/S part of DONG Energy A/S, Denmark. The objective of the tests was: to investigate the combined influence of the pile...
2D PIM Simulation Based on COMSOL
DEFF Research Database (Denmark)
Wang, Xinbo; Cui, Wanzhao; Wang, Jingyu;
2011-01-01
Passive intermodulation (PIM) is a problematic type of nonlinear distortion en- countered in many communication systems. To analyze the PIM distortion resulting from ma- terial nonlinearity, a 2D PIM simulation method based on COMSOL is proposed in this paper. As an example, a rectangular wavegui...
Canonical structure of 2D black holes
Navarro-Salas, J; Talavera, C F
1994-01-01
We determine the canonical structure of two-dimensional black-hole solutions arising in $2D$ dilaton gravity. By choosing the Cauchy surface appropriately we find that the canonically conjugate variable to the black hole mass is given by the difference of local (Schwarzschild) time translations at right and left spatial infinities. This can be regarded as a generalization of Birkhoff's theorem.
2d-LCA - an alternative to x-wires
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
Directory of Open Access Journals (Sweden)
F. Martínez
2015-08-01
Full Text Available This paper discusses an integrated approach that provides new ideas about the structural geometry of the NNE-striking, Cretaceous Chañarcillo Basin located along the eastern Coastal Cordillera in the western Central Andes of northern Chile (27–28° S. The results obtained from the integration of two transverse (E–W gravity profiles with previous geological information, show that the architecture of this basin is defined by a large NNE–SSE-trending and east-vergent anticline ("Tierra Amarilla Anticlinorium", which is related to the positive reactivation of a former Cretaceous normal fault (Elisa de Bordos Master Fault. Moreover, intercalations of high and low gravity anomalies and steep gravity gradients reveal a set of buried, west-tilted half-grabens associated with a synthetic normal fault pattern. These results, together with the uplift and folding style of the Cretaceous syn-rift recognized within the basin, suggest that their complete structural geometry could be explained by an inverted fault system linked to the shortening of pre-existing Cretaceous normal fault systems. Ages of the synorogenic deposits exposed unconformably over the frontal limb of the Tierra Amarilla Anticlinorium confirm a Late Cretaceous age for the Andean deformation and tectonic inversion of the basin.
DEFF Research Database (Denmark)
Costantini, Antonella; Rantsiou, Kalliopi; Majumder, Avishek
2015-01-01
Direct addition of Oenococcus oeni starters into wine can cause viability problems. In the present study, the influence of ethanol in wine-simulated conditions on O. oeni has been evaluated by complementing microarray techniques and DIGE proteomics. Two different ethanol concentrations were studied....... In 12% ethanol, pyrimidine anabolism was stimulated, but in 8% ethanol some energy-consuming biosynthetic pathways were limited. The most significant result was the stress response induced by alcohol that concerned both the cell-envelope and specific stress proteins. Interestingly, 8% and 12% ethanol...... triggered different stress responses: in mild ethanol stress (8%), chaperones with prevalent refolding activity (like HSP20) were over-expressed, whereas at higher alcohol concentration (12%), together with HSP20 and the refolding DNAJ/K, also chaperones having proteolytic activity (like ClpP) were induced...
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-02-06
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials.
Application Perspective of 2D+SCALE Dimension
Karim, H.; Rahman, A. Abdul
2016-09-01
Different applications or users need different abstraction of spatial models, dimensionalities and specification of their datasets due to variations of required analysis and output. Various approaches, data models and data structures are now available to support most current application models in Geographic Information System (GIS). One of the focuses trend in GIS multi-dimensional research community is the implementation of scale dimension with spatial datasets to suit various scale application needs. In this paper, 2D spatial datasets that been scaled up as the third dimension are addressed as 2D+scale (or 3D-scale) dimension. Nowadays, various data structures, data models, approaches, schemas, and formats have been proposed as the best approaches to support variety of applications and dimensionality in 3D topology. However, only a few of them considers the element of scale as their targeted dimension. As the scale dimension is concerned, the implementation approach can be either multi-scale or vario-scale (with any available data structures and formats) depending on application requirements (topology, semantic and function). This paper attempts to discuss on the current and new potential applications which positively could be integrated upon 3D-scale dimension approach. The previous and current works on scale dimension as well as the requirements to be preserved for any given applications, implementation issues and future potential applications forms the major discussion of this paper.
Optimizing sparse sampling for 2D electronic spectroscopy
Roeding, Sebastian; Klimovich, Nikita; Brixner, Tobias
2017-02-01
We present a new data acquisition concept using optimized non-uniform sampling and compressed sensing reconstruction in order to substantially decrease the acquisition times in action-based multidimensional electronic spectroscopy. For this we acquire a regularly sampled reference data set at a fixed population time and use a genetic algorithm to optimize a reduced non-uniform sampling pattern. We then apply the optimal sampling for data acquisition at all other population times. Furthermore, we show how to transform two-dimensional (2D) spectra into a joint 4D time-frequency von Neumann representation. This leads to increased sparsity compared to the Fourier domain and to improved reconstruction. We demonstrate this approach by recovering transient dynamics in the 2D spectrum of a cresyl violet sample using just 25% of the originally sampled data points.
2D/3D Program work summary report
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-09-01
The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants, and was prepared in a coordination among three countries. US and Germany have published the report as NUREG/IA-0126 and GRS-100, respectively. (author).
DEVELOPMENT OF 2D HUMAN BODY MODELING USING THINNING ALGORITHM
Directory of Open Access Journals (Sweden)
K. Srinivasan
2010-11-01
Full Text Available Monitoring the behavior and activities of people in Video surveillance has gained more applications in Computer vision. This paper proposes a new approach to model the human body in 2D view for the activity analysis using Thinning algorithm. The first step of this work is Background subtraction which is achieved by the frame differencing algorithm. Thinning algorithm has been used to find the skeleton of the human body. After thinning, the thirteen feature points like terminating points, intersecting points, shoulder, elbow, and knee points have been extracted. Here, this research work attempts to represent the body model in three different ways such as Stick figure model, Patch model and Rectangle body model. The activities of humans have been analyzed with the help of 2D model for the pre-defined poses from the monocular video data. Finally, the time consumption and efficiency of our proposed algorithm have been evaluated.
Schottky diodes from 2D germanane
Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.
2016-07-01
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
Neural Network Based Reconstruction of a 3D Object from a 2D Wireframe
Johnson, Kyle; Lipson, Hod
2010-01-01
We propose a new approach for constructing a 3D representation from a 2D wireframe drawing. A drawing is simply a parallel projection of a 3D object onto a 2D surface; humans are able to recreate mental 3D models from 2D representations very easily, yet the process is very difficult to emulate computationally. We hypothesize that our ability to perform this construction relies on the angles in the 2D scene, among other geometric properties. Being able to reproduce this reconstruction process automatically would allow for efficient and robust 3D sketch interfaces. Our research focuses on the relationship between 2D geometry observable in the sketch and 3D geometry derived from a potential 3D construction. We present a fully automated system that constructs 3D representations from 2D wireframes using a neural network in conjunction with a genetic search algorithm.
2D-Tasks for Cognitive Rehabilitation
Caballero Hernandez, Ruth; Martinez Moreno, Jose Maria; García Molina, A.; Ferrer Celma, S.; Solana Sánchez, Javier; Sanchez Carrion, R.; Fernandez Casado, E.; Pérez Rodríguez, Rodrigo; Gomez Pulido, A.; Anglès Tafalla, C.; Cáceres Taladriz, César; Ferre Vergada, M.; Roig Rovira, Teresa; Garcia Lopez, P.; Tormos Muñoz, Josep M.
2011-01-01
Neuropsychological Rehabilitation is a complex clinic process which tries to restore or compensate cognitive and behavioral disorders in people suffering from a central nervous system injury. Information and Communication Technologies (ICTs) in Biomedical Engineering play an essential role in this field, allowing improvement and expansion of present rehabilitation programs. This paper presents a set of cognitive rehabilitation 2D-Tasks for patients with Acquired Brain Injury (ABI). These t...
Quasiparticle interference in unconventional 2D systems
Chen, Lan; Cheng, Peng; Wu, Kehui
2017-03-01
At present, research of 2D systems mainly focuses on two kinds of materials: graphene-like materials and transition-metal dichalcogenides (TMDs). Both of them host unconventional 2D electronic properties: pseudospin and the associated chirality of electrons in graphene-like materials, and spin-valley-coupled electronic structures in the TMDs. These exotic electronic properties have attracted tremendous interest for possible applications in nanodevices in the future. Investigation on the quasiparticle interference (QPI) in 2D systems is an effective way to uncover these properties. In this review, we will begin with a brief introduction to 2D systems, including their atomic structures and electronic bands. Then, we will discuss the formation of Friedel oscillation due to QPI in constant energy contours of electron bands, and show the basic concept of Fourier-transform scanning tunneling microscopy/spectroscopy (FT-STM/STS), which can resolve Friedel oscillation patterns in real space and consequently obtain the QPI patterns in reciprocal space. In the next two parts, we will summarize some pivotal results in the investigation of QPI in graphene and silicene, in which systems the low-energy quasiparticles are described by the massless Dirac equation. The FT-STM experiments show there are two different interference channels (intervalley and intravalley scattering) and backscattering suppression, which associate with the Dirac cones and the chirality of quasiparticles. The monolayer and bilayer graphene on different substrates (SiC and metal surfaces), and the monolayer and multilayer silicene on a Ag(1 1 1) surface will be addressed. The fifth part will introduce the FT-STM research on QPI in TMDs (monolayer and bilayer of WSe2), which allow us to infer the spin texture of both conduction and valence bands, and present spin-valley coupling by tracking allowed and forbidden scattering channels.
2D Metals by Repeated Size Reduction.
Liu, Hanwen; Tang, Hao; Fang, Minghao; Si, Wenjie; Zhang, Qinghua; Huang, Zhaohui; Gu, Lin; Pan, Wei; Yao, Jie; Nan, Cewen; Wu, Hui
2016-10-01
A general and convenient strategy for manufacturing freestanding metal nanolayers is developed on large scale. By the simple process of repeatedly folding and calendering stacked metal sheets followed by chemical etching, free-standing 2D metal (e.g., Ag, Au, Fe, Cu, and Ni) nanosheets are obtained with thicknesses as small as 1 nm and with sizes of the order of several micrometers.
Engineering light outcoupling in 2D materials
Lien, Derhsien
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells.
Irreversibility-inversions in 2D turbulence
Bragg, Andrew; de Lillo, Filippo; Boffetta, Guido
2016-11-01
We consider a recent theoretical prediction that for inertial particles in 2D turbulence, the nature of the irreversibility of their pair dispersion inverts when the particle inertia exceeds a certain value. In particular, when the particle Stokes number, St , is below a certain value, the forward-in-time (FIT) dispersion should be faster than the backward-in-time (BIT) dispersion, but for St above this value, this should invert so that BIT becomes faster than FIT dispersion. This non-trivial behavior arises because of the competition between two physically distinct irreversibility mechanisms that operate in different regimes of St . In 3D turbulence, both mechanisms act to produce faster BIT than FIT dispersion, but in 2D, the two mechanisms have opposite effects because of the inverse energy cascade in the turbulent velocity field. We supplement the qualitative argument given by Bragg et al. by deriving quantitative predictions of this effect in the short-time dispersion limit. These predictions are then confirmed by results of inertial particle dispersion in a direct numerical simulation of 2D turbulence.
2D superconductivity by ionic gating
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
A novel point cloud registration using 2D image features
Lin, Chien-Chou; Tai, Yen-Chou; Lee, Jhong-Jin; Chen, Yong-Sheng
2017-01-01
Since a 3D scanner only captures a scene of a 3D object at a time, a 3D registration for multi-scene is the key issue of 3D modeling. This paper presents a novel and an efficient 3D registration method based on 2D local feature matching. The proposed method transforms the point clouds into 2D bearing angle images and then uses the 2D feature based matching method, SURF, to find matching pixel pairs between two images. The corresponding points of 3D point clouds can be obtained by those pixel pairs. Since the corresponding pairs are sorted by their distance between matching features, only the top half of the corresponding pairs are used to find the optimal rotation matrix by the least squares approximation. In this paper, the optimal rotation matrix is derived by orthogonal Procrustes method (SVD-based approach). Therefore, the 3D model of an object can be reconstructed by aligning those point clouds with the optimal transformation matrix. Experimental results show that the accuracy of the proposed method is close to the ICP, but the computation cost is reduced significantly. The performance is six times faster than the generalized-ICP algorithm. Furthermore, while the ICP requires high alignment similarity of two scenes, the proposed method is robust to a larger difference of viewing angle.
Inversions for MT data in 2D symmetrical anisotropic media
Institute of Scientific and Technical Information of China (English)
YANG Chang-fu; LIN Chang-you; SUN Chong-chi; LI Qing-he
2005-01-01
In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.
GBL-2D Version 1.0: a 2D geometry boolean library.
Energy Technology Data Exchange (ETDEWEB)
McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J. (Elemental Technologies, American Fort, UT)
2006-11-01
This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.
Microscopic entropy of nondilatonic branes: A 2D approach
Cadoni, Mariano; Serra, Nicola
2004-12-01
We investigate nondilatonic p-branes in the near-extremal, near-horizon regime. A two-dimensional gravity model, obtained from dimensional reduction, gives an effective description of the brane. We show that the AdSp+2/CFTp+1 correspondence at finite temperature admits an effective description in terms of a AdS2/CFT1 duality endowed with a scalar field, which breaks the conformal symmetry and generates a nonvanishing central charge. The entropy of the CFT1 is computed using Cardy formula. Fixing in a natural way a free, dimensionless, parameter introduced in the model by a renormalization procedure, we find exact agreement between the CFT1 entropy and the Bekenstein-Hawking entropy of the brane.
Analytical approaches to 2D CDT coupled to matter
Atkin, Max R
2013-01-01
We review some recent results by Ambjorn et al. (1202.4435) and the authors (1202.4322,1203.5034) in which multicritical points of the CDT matrix model were found and in a particular example identified with a hard dimer model. This identification requires solving the combinatorial problem of counting configurations of dimers on CDTs.
Another solution of 2D Ising model
Vergeles, S. N.
2009-04-01
The partition function of the Ising model on a two-dimensional regular lattice is calculated by using the matrix representation of a Clifford algebra (the Dirac algebra), with number of generators equal to the number of lattice sites. It is shown that the partition function over all loops in a 2D lattice including self-intersecting ones is the trace of a polynomial in terms of Dirac matrices. The polynomial is an element of the rotation group in the spinor representation. Thus, the partition function is a function of a character on an orthogonal group of a high degree in the spinor representation.
Robust and resistant 2D shape alignment
DEFF Research Database (Denmark)
Larsen, Rasmus; Eiriksson, Hrafnkell
2001-01-01
\\_\\$\\backslash\\$infty\\$ norm alignments are formulated as linear programming problems. The linear vector function formulation along with the different norms results in alignment methods that are both resistant from influence from outliers, robust wrt. errors in the annotation and capable of handling missing datapoints......We express the alignment of 2D shapes as the minimization of the norm of a linear vector function. The minimization is done in the \\$l\\_1\\$, \\$l\\_2\\$ and the \\$l\\_\\$\\backslash\\$infty\\$ norms using well known standard numerical methods. In particular, the \\$l\\_1\\$ and the \\$l...
Extrinsic curvature induced 2-d gravity
Viswanathan, K S
1993-01-01
Abtract: 2-dimensional fermions are coupled to extrinsic geometry of a conformally immersed surface in ${\\bf R}^3$ through gauge coupling. By integrating out the fermions, we obtain a WZNW action involving extrinsic curvature of the surface. Restricting the resulting effective action to surfaces of $h\\sqrt g=1$, an explicit form of the action invariant under Virasaro symmetry is obtained. This action is a sum of the geometric action for the Virasaro group and the light-cone action of 2-d gravity plus an interaction term. The central charges of the theory in both the left and right sectors are calculated.
Computation of 2-D spectra assisted by compressed sampling
Almeida, J; Plenio, M B
2012-01-01
The computation of scientific data can be very time consuming even if they are ultimately determined by a small number of parameters. The principle of compressed sampling suggests that we can achieve a considerable decrease in the computation time by avoiding the need to sample the full data set. We demonstrate the usefulness of this approach at the hand of 2-D spectra in the context of ultra-fast non-linear spectroscopy of biological systems where numerical calculations are highly challenging due to the considerable computational effort involved in obtaining individual data points.
Dynamics of Quantum Particles in Perturbed Parabolic 2d Potential
Directory of Open Access Journals (Sweden)
A.S. Mazmanishvili
2016-11-01
Full Text Available 2d quantum-mechanical problem of the time evolution of a particle in a quadratic potential is studied. We suppose that the center of the potential is displaced in arbitrary way in time. An analytical expression for the wave function in arbitrary instant time was built. It is shown the dynamic shift of the center of the potential doesn’t change the variance. Moreover, the system can exhibit the resonance: when the frequency of the potential perturbation approaches to the natural frequency the amplitude of the wave packet of particle is increased.
2D Magneto-optical trapping of diatomic molecules.
Hummon, Matthew T; Yeo, Mark; Stuhl, Benjamin K; Collopy, Alejandra L; Xia, Yong; Ye, Jun
2013-04-05
We demonstrate one- and two-dimensional transverse laser cooling and magneto-optical trapping of the polar molecule yttrium (II) oxide (YO). In a 1D magneto-optical trap (MOT), we characterize the magneto-optical trapping force and decrease the transverse temperature by an order of magnitude, from 25 to 2 mK, limited by interaction time. In a 2D MOT, we enhance the intensity of the YO beam and reduce the transverse temperature in both transverse directions. The approach demonstrated here can be applied to many molecular species and can also be extended to 3D.
2-D DOA Estimation via Matrix Partition and Stacking Technique
Directory of Open Access Journals (Sweden)
Ping Wei
2009-01-01
Full Text Available A novel approach is proposed for the efficient estimation of the two-dimensional (2-D direction-of-arrival (DOA of signals impinging on two orthogonal uniform linear arrays (ULAs. By partitioning the cross-correlation matrix (CCM between two ULAs data into a great deal of submatrices and making use of the submatrices and the symmetric subarrays, an extended correlation matrix is constructed, and then uses the modified ESPRIT approach to extract out the so-called Kronecker Steering Vectors (KSVs of which each is the Kronecker product of the elevation and azimuth angle with a one-to-one relationship. Upon that the proposed method yields the estimate of the 2-D DOA efficiently without requiring the additionally computational burden to remove the pair-matching problem. Furthermore, the main idea of the matrix partition and stacking is to much-enhanced subspace estimate. So based on the use of the concept, the proposed method's performance is better than the existing similar approaches. Meanwhile, unlike the traditional subspace methods, it is shown that the proposed can resolve the same uncorrelated sources as the number of subarray sensor through a delicate partition-and-stacking process. Simulation results demonstrate that the proposed method is superior to the existing techniques in both DOA estimation and the detection capability of sources.
2D Hilbert transform for phase retrieval of speckle fields
Gorsky, M. P.; Ryabyi, P. A.; Ivanskyi, D. I.
2016-09-01
The paper presents principal approaches to diagnosing the structure forming skeleton of the complex optical field. An analysis of optical field singularity algorithms depending on intensity discretization and image resolution has been carried out. An optimal approach is chosen, which allows to bring much closer the solution of the phase problem of localization speckle-field special points. The use of a "window" 2D Hilbert transform for reconstruction of the phase distribution of the intensity of a speckle field is proposed. It is shown that the advantage of this approach consists in the invariance of a phase map to a change of the position of the kernel of transformation and in a possibility to reconstruct the structure-forming elements of the skeleton of an optical field, including singular points and saddle points. We demonstrate the possibility to reconstruct the equi-phase lines within a narrow confidence interval, and introduce an additional algorithm for solving the phase problem for random 2D intensity distributions.
Fuzzy Dynamic Analysis of a 2D Frame
Directory of Open Access Journals (Sweden)
P. Štemberk
2004-01-01
Full Text Available This paper deals with the dynamic analysis of a 2D concrete frame with uncertainties which are an integral part of any real structure. The uncertainties can be modeled by a stochastic or a fuzzy approach. The fuzzy approach is used and the influence of uncertain input data (modulus of elasticity and density on output data is studied. Fuzzy numbers are represented by ?-cuts. In order to reduce the volume of computation in the fuzzy approach, the response surface function concept is applied. In this way the natural frequencies and mode shapes described by fuzzy numbers are obtained. The results of fuzzy dynamic analysis can be used, e.g., in seismic design of structures based on the response spectrum.
Comments on Thermalization in 2D CFT
de Boer, Jan
2016-01-01
We revisit certain aspects of thermalization in 2D CFT. In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a BTZ black hole. The extra conserved charges, while rendering $c < 1$ theories essentially integrable, therefore seem to have little effect o...
Remarks on thermalization in 2D CFT
de Boer, Jan; Engelhardt, Dalit
2016-12-01
We revisit certain aspects of thermalization in 2D conformal field theory (CFT). In particular, we consider similarities and differences between the time dependence of correlation functions in various states in rational and non-rational CFTs. We also consider the distinction between global and local thermalization and explain how states obtained by acting with a diffeomorphism on the ground state can appear locally thermal, and we review why the time-dependent expectation value of the energy-momentum tensor is generally a poor diagnostic of global thermalization. Since all 2D CFTs have an infinite set of commuting conserved charges, generic initial states might be expected to give rise to a generalized Gibbs ensemble rather than a pure thermal ensemble at late times. We construct the holographic dual of the generalized Gibbs ensemble and show that, to leading order, it is still described by a Banados-Teitelboim-Zanelli black hole. The extra conserved charges, while rendering c <1 theories essentially integrable, therefore seem to have little effect on large-c conformal field theories.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
Interactive initialization of 2D/3D rigid registration
Energy Technology Data Exchange (ETDEWEB)
Gong, Ren Hui; Güler, Özgür [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 (United States); Kürklüoglu, Mustafa [Department of Cardiac Surgery, Children' s National Medical Center, Washington, DC 20010 (United States); Lovejoy, John [Department of Orthopaedic Surgery and Sports Medicine, Children' s National Medical Center, Washington, DC 20010 (United States); Yaniv, Ziv, E-mail: ZYaniv@childrensnational.org [The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children' s National Medical Center, Washington, DC 20010 and Departments of Pediatrics and Radiology, George Washington University, Washington, DC 20037 (United States)
2013-12-15
Purpose: Registration is one of the key technical components in an image-guided navigation system. A large number of 2D/3D registration algorithms have been previously proposed, but have not been able to transition into clinical practice. The authors identify the primary reason for the lack of adoption with the prerequisite for a sufficiently accurate initial transformation, mean target registration error of about 10 mm or less. In this paper, the authors present two interactive initialization approaches that provide the desired accuracy for x-ray/MR and x-ray/CT registration in the operating room setting. Methods: The authors have developed two interactive registration methods based on visual alignment of a preoperative image, MR, or CT to intraoperative x-rays. In the first approach, the operator uses a gesture based interface to align a volume rendering of the preoperative image to multiple x-rays. The second approach uses a tracked tool available as part of a navigation system. Preoperatively, a virtual replica of the tool is positioned next to the anatomical structures visible in the volumetric data. Intraoperatively, the physical tool is positioned in a similar manner and subsequently used to align a volume rendering to the x-ray images using an augmented reality (AR) approach. Both methods were assessed using three publicly available reference data sets for 2D/3D registration evaluation. Results: In the authors' experiments, the authors show that for x-ray/MR registration, the gesture based method resulted in a mean target registration error (mTRE) of 9.3 ± 5.0 mm with an average interaction time of 146.3 ± 73.0 s, and the AR-based method had mTREs of 7.2 ± 3.2 mm with interaction times of 44 ± 32 s. For x-ray/CT registration, the gesture based method resulted in a mTRE of 7.4 ± 5.0 mm with an average interaction time of 132.1 ± 66.4 s, and the AR-based method had mTREs of 8.3 ± 5.0 mm with interaction times of 58 ± 52 s. Conclusions: Based on
2D Cooling of Magnetized Neutron Stars
Aguilera, Deborah N; Miralles, Juan A
2007-01-01
Context: Many thermally emitting isolated neutron stars have magnetic fields larger than 10^{13}G. A realistic cooling model should be reconsidered including the presence of high magnetic fields. Aims: We investigate the effects of anisotropic temperature distribution and Joule heating on the cooling of magnetized neutron stars. Methods: The 2D heat transfer equation with anisotropic thermal conductivity tensor and including all relevant neutrino emission processes is solved for realistic models of the neutron star interior and crust. Results: The presence of the magnetic field affects significantly the thermal surface distribution and the cooling history during both, the early neutrino cooling era and the late photon cooling era. Conclusions: There is a huge effect of the Joule heating on the thermal evolution of strongly magnetized neutron stars. Magnetic fields and Joule heating play a key role in maintaining magnetars warm for a long time. Moreover, this effect is also important for intermediate field neu...
2D Electrostatic Actuation of Microshutter Arrays
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Alignment free characterization of 2D gratings
Madsen, Morten Hannibal; Hansen, Poul-Erik; Jørgensen, Jan Friis
2015-01-01
Fast characterization of 2-dimensional gratings is demonstrated using a Fourier lens optical system and a differential optimization algorithm. It is shown that both the grating specific parameters such as the basis vectors and the angle between them and the alignment of the sample, such as the rotation of the sample around the x-, y-, and z-axis, can be deduced from a single measurement. More specifically, the lattice vectors and the angle between them have been measured, while the corrections of the alignment parameters are used to improve the quality of the measurement, and hence reduce the measurement uncertainty. Alignment free characterization is demonstrated on both a 2D hexagonal grating with a period of 700 nm and a checkerboard grating with a pitch of 3000 nm. The method can also be used for both automatic alignment and in-line characterization of gratings.
Benhamou, Avigael Hanna
2008-01-01
Les taux d'IgE spécifiques sont utiles au diagnostic de l'allergie à l'oeuf. Cependant, le rapport de ces taux avec la sévérité de la réaction n'a pas été étudié. Cette étude a pour but de déterminer si les taux d'IgE peuvent être prédictifs de la sévérité de la réaction allergique. Nous avons revu les tests de provocation orale à l'oeuf entre 2003 et 2005 à l'Unité d'Allergologie Pédiatrique. Nus avons analysé 51 tests dont 69% étaient positifs. Les IgE spécifiques au blanc d'oeuf variaient ...
Directory of Open Access Journals (Sweden)
Sina Haas
Full Text Available Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy.With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research.
Genomic analyses identify recurrent MEF2D fusions in acute lymphoblastic leukaemia
Gu, Zhaohui; Churchman, Michelle; Roberts, Kathryn; Li, Yongjin; Liu, Yu; Harvey, Richard C.; McCastlain, Kelly; Reshmi, Shalini C.; Payne-Turner, Debbie; Iacobucci, Ilaria; Shao, Ying; Chen, I-Ming; Valentine, Marcus; Pei, Deqing; Mungall, Karen L.; Mungall, Andrew J.; Ma, Yussanne; Moore, Richard; Marra, Marco; Stonerock, Eileen; Gastier-Foster, Julie M.; Devidas, Meenakshi; Dai, Yunfeng; Wood, Brent; Borowitz, Michael; Larsen, Eric E.; Maloney, Kelly; Mattano Jr, Leonard A.; Angiolillo, Anne; Salzer, Wanda L.; Burke, Michael J.; Gianni, Francesca; Spinelli, Orietta; Radich, Jerald P.; Minden, Mark D.; Moorman, Anthony V.; Patel, Bella; Fielding, Adele K.; Rowe, Jacob M.; Luger, Selina M.; Bhatia, Ravi; Aldoss, Ibrahim; Forman, Stephen J.; Kohlschmidt, Jessica; Mrózek, Krzysztof; Marcucci, Guido; Bloomfield, Clara D.; Stock, Wendy; Kornblau, Steven; Kantarjian, Hagop M.; Konopleva, Marina; Paietta, Elisabeth; Willman, Cheryl L.; L. Loh, Mignon; P. Hunger, Stephen; Mullighan, Charles G.
2016-01-01
Chromosomal rearrangements are initiating events in acute lymphoblastic leukaemia (ALL). Here using RNA sequencing of 560 ALL cases, we identify rearrangements between MEF2D (myocyte enhancer factor 2D) and five genes (BCL9, CSF1R, DAZAP1, HNRNPUL1 and SS18) in 22 B progenitor ALL (B-ALL) cases with a distinct gene expression profile, the most common of which is MEF2D-BCL9. Examination of an extended cohort of 1,164 B-ALL cases identified 30 cases with MEF2D rearrangements, which include an additional fusion partner, FOXJ2; thus, MEF2D-rearranged cases comprise 5.3% of cases lacking recurring alterations. MEF2D-rearranged ALL is characterized by a distinct immunophenotype, DNA copy number alterations at the rearrangement sites, older diagnosis age and poor outcome. The rearrangements result in enhanced MEF2D transcriptional activity, lymphoid transformation, activation of HDAC9 expression and sensitive to histone deacetylase inhibitor treatment. Thus, MEF2D-rearranged ALL represents a distinct form of high-risk leukaemia, for which new therapeutic approaches should be considered. PMID:27824051
Analysis of the IEA 2D test. 2D, 3D, steady or unsteady airflow?
DEFF Research Database (Denmark)
Cortes, Ines Olmedo; Nielsen, Peter V.
The “IEA Annex 20 two-dimensional test case” was defined by proffesor Peter V. Nielsen (1990) and was originally considered two-dimensional and steady flow. However, some recent works considering the case as three dimensional have shown different solutions from the 2D case as well as different so...
Analysis list: Kmt2d [Chip-atlas[Archive
Lifescience Database Archive (English)
Full Text Available Kmt2d Adipocyte,Pluripotent stem cell + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d....1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.5.tsv http://dbarchiv...e.biosciencedbc.jp/kyushu-u/mm9/target/Kmt2d.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d....Adipocyte.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Kmt2d.Pluripo
Analysis list: KMT2D [Chip-atlas[Archive
Lifescience Database Archive (English)
Full Text Available KMT2D Blood,Digestive tract + hg19 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KM...T2D.1.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/target/KMT2D.5.tsv http://dbarchive.biosc...iencedbc.jp/kyushu-u/hg19/target/KMT2D.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Blo...od.tsv,http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/colo/KMT2D.Digestive_tract
A 2D spring model for the simulation of ultrasonic wave propagation in nonlinear hysteretic media.
Delsanto, P P; Gliozzi, A S; Hirsekorn, M; Nobili, M
2006-07-01
A two-dimensional (2D) approach to the simulation of ultrasonic wave propagation in nonclassical nonlinear (NCNL) media is presented. The approach represents the extension to 2D of a previously proposed one dimensional (1D) Spring Model, with the inclusion of a PM space treatment of the intersticial regions between grains. The extension to 2D is of great practical relevance for its potential applications in the field of quantitative nondestructive evaluation and material characterization, but it is also useful, from a theoretical point of view, to gain a better insight of the interaction mechanisms involved. The model is tested by means of virtual 2D experiments. The expected NCNL behaviors are qualitatively well reproduced.
Ion Transport in 2-D Graphene Nanochannels
Xie, Quan; Foo, Elbert; Duan, Chuanhua
2015-11-01
Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).
2D DIGITAL SIMPLIFIED FLOW VALVE
Institute of Scientific and Technical Information of China (English)
Ruan Jian; Li Sheng; Pei Xiang; Burton R; Ukrainetz P; Bitner D
2004-01-01
The 2D digital simplified flow valve is composed of a pilot-operated valve designed with both rotary and linear motions of a single spool,and a stepper motor under continual control.How the structural parameters affect the static and dynamic characteristics of the valve is first clarified and a criterion for stability is presented.Experiments are designed to test the performance of the valve.It is necessary to establish a balance between the static and dynamic characteristics in deciding the structural parameters.Nevertheless,it is possible to maintain the dynamic response at a fairly high level,while keeping the leakage of the pilot stage at an acceptable level.One of the features of the digital valve is stage control.In stage control the nonlinearities,such as electromagnetic saturation and hysteresis,are greatly reduced.To a large extent the dynamic response of the valve is decided by the executing cycle of the control algorithm.
Intermittency in 2D soap film turbulence
Cerbus, R T
2013-01-01
The Reynolds number dependency of intermittency for 2D turbulence is studied in a flowing soap film. The Reynolds number used here is the Taylor microscale Reynolds number R_{\\lambda}, which ranges from 20 to 800. Strong intermittency is found for both the inverse energy and direct enstrophy cascades as measured by (a) the pdf of velocity differences P(\\delta u(r)) at inertial scales r, (b) the kurtosis of P(\\partial_x u), and (c) the scaling of the so-called intermittency exponent \\mu, which is zero if intermittency is absent. Measures (b) and (c) are quantitative, while (a) is qualitative. These measurements are in disagreement with some previous results but not all. The velocity derivatives are nongaussian at all R_{\\lambda} but show signs of becoming gaussian as R_{\\lambda} increases beyond the largest values that could be reached. The kurtosis of P(\\delta u(r)) at various r indicates that the intermittency is scale dependent. The structure function scaling exponents also deviate strongly from the Kraichn...
An evaluation of 2D SLAM techniques available in Robot Operating System
Machado Santos, Joao; Portugal, David; Rocha, Rui P.
2013-01-01
n this work, a study of several laser-based 2D Simultaneous Localization and Mapping (SLAM) techniques available in Robot Operating System (ROS) is conducted. All the approaches have been evaluated and compared in 2D simulations and real world experiments. In order to draw conclusions on the performance of the tested techniques, the experimental results were collected under the same conditions and a generalized performance metric based on the k-nearest neighbours concept was applied. Moreover...
Multiple targets vector miss distance measurement accuracy based on 2-D assignment algorithms
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy.When the multiple targets move so closely,the measurements can not be fully resolved due to finite resolution.The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem.Computer simulation results demonstrate the effectiveness and feasibility of this method.
Takhtamirov, E. E.; V. A. Volkov
2005-01-01
It is developed a many-electron approach to explain the recently observed conductivity magnetooscillations in very high mobility 2D electron systems under microwave irradiation. For the first time a theory takes into account the microwave-induced renormalization of the screened impurity potential. As a result this potential has singular, dynamic and non-linear in electric field nature. That changes the picture of scattering of electrons at impurities in a ``clean'' 2D system essentially: for ...
Lott, Geoffrey A; Utterback, James K; Widom, Julia R; Aspuru-Guzik, Alán; Marcus, Andrew H
2011-01-01
By applying a phase-modulation fluorescence approach to 2D electronic spectroscopy, we studied the conformation-dependent exciton-coupling of a porphyrin dimer embedded in a phospholipid bilayer membrane. Our measurements specify the relative angle and separation between interacting electronic transition dipole moments, and thus provide a detailed characterization of dimer conformation. Phase-modulation 2D fluorescence spectroscopy (PM-2D FS) produces 2D spectra with distinct optical features, similar to those obtained using 2D photon-echo spectroscopy (2D PE). Specifically, we studied magnesium meso tetraphenylporphyrin dimers, which form in the amphiphilic regions of 1,2-distearoyl-sn-glycero-3-phosphocholine liposomes. Comparison between experimental and simulated spectra show that while a wide range of dimer conformations can be inferred by either the linear absorption spectrum or the 2D spectrum alone, consideration of both types of spectra constrains the possible structures to a "T-shaped" geometry. The...
Asymmetric 2D spatial beam filtering by photonic crystals
Gailevicius, D.; Purlys, V.; Maigyte, L.; Gaizauskas, E.; Peckus, M.; Gadonas, R.; Staliunas, K.
2016-04-01
Spatial filtering techniques are important for improving the spatial quality of light beams. Photonic crystals (PhCs) with a selective spatial (angular) transmittance can also provide spatial filtering with the added benefit transversal symmetries, submillimeter dimensions and monolithic integration in other devices, such as micro-lasers or semiconductor lasers. Workable bandgap PhC configurations require a modulated refractive index with period lengths that are approximately less than the wavelength of radiation. This imposes technical limitations, whereby the available direct laser write (DLW) fabrication techniques are limited in resolution and refractive index depth. If, however, a deflection mechanism is chosen instead, a functional filter PhC can be produced that is operational in the visible wavelength regime. For deflection based PhCs glass is an attractive choice as it is highly stable medium. 2D and 3D PhC filter variations have already been produced on soda-lime glass. However, little is known about how to control the scattering of PhCs when approaching the smallest period values. Here we look into the internal structure of the initially symmetric geometry 2D PhCs and associating it with the resulting transmittance spectra. By varying the DLW fabrication beam parameters and scanning algorithms, we show that such PhCs contain layers that are comprised of semi-tilted structure voxels. We show the appearance of asymmetry can be compensated in order to circumvent some negative effects at the cost of potentially maximum scattering efficiency.
Scaling in Gravitational Clustering, 2D and 3D Dynamics
Munshi, D; Melott, A L; Schäffer, R
1999-01-01
Perturbation Theory (PT) applied to a cosmological density field with Gaussian initial fluctuations suggests a specific hierarchy for the correlation functions when the variance is small. In particular quantitative predictions have been made for the moments and the shape of the one-point probability distribution function (PDF) of the top-hat smoothed density. In this paper we perform a series of systematic checks of these predictions against N-body computations both in 2D and 3D with a wide range of featureless power spectra. In agreement with previous studies, we found that the reconstructed PDF-s work remarkably well down to very low probabilities, even when the variance approaches unity. Our results for 2D reproduce the features for the 3D dynamics. In particular we found that the PT predictions are more accurate for spectra with less power on small scales. The nonlinear regime has been explored with various tools, PDF-s, moments and Void Probability Function (VPF). These studies have been done with unprec...
2D Implosion Simulations with a Kinetic Particle Code
Sagert, Irina; Strother, Terrance T
2016-01-01
We perform two-dimensional (2D) implosion simulations using a Monte Carlo kinetic particle code. The paper is motivated by the importance of non-equilibrium effects in inertial confinement fusion (ICF) capsule implosions. These cannot be fully captured by hydrodynamic simulations while kinetic methods, as the one presented in this study, are able to describe continuum and rarefied regimes within one approach. In the past, our code has been verified via traditional shock wave and fluid instability simulations. In the present work, we focus on setups that are closer to applications in ICF. We perform simple 2D disk implosion simulations using one particle species. The obtained results are compared to simulations using the hydrodynamics code RAGE. In a first study, the implosions are powered by energy deposition in the outer layers of the disk. We test the impact of the particle mean-free-path and find that while the width of the implosion shock broadens, its location as a function of time remains very similar. ...
2D NMR-spectroscopic screening reveals polyketides in ladybugs.
Deyrup, Stephen T; Eckman, Laura E; McCarthy, Patrick H; Smedley, Scott R; Meinwald, Jerrold; Schroeder, Frank C
2011-06-14
Small molecules of biological origin continue to yield the most promising leads for drug design, but systematic approaches for exploring nature's cache of structural diversity are lacking. Here, we demonstrate the use of 2D NMR spectroscopy to screen a library of biorationally selected insect metabolite samples for partial structures indicating the presence of new chemical entities. This NMR-spectroscopic survey enabled detection of novel compounds in complex metabolite mixtures without prior fractionation or isolation. Our screen led to discovery and subsequent isolation of two families of tricyclic pyrones in Delphastus catalinae, a tiny ladybird beetle that is employed commercially as a biological pest control agent. The D. catalinae pyrones are based on 23-carbon polyketide chains forming 1,11-dioxo-2,6,10-trioxaanthracene and 4,8-dioxo-1,9,13-trioxaanthracene derivatives, representing ring systems not previously found in nature. This study highlights the utility of 2D NMR-spectroscopic screening for exploring nature's structure space and suggests that insect metabolomes remain vastly underexplored.
Microscopy of 2D Fermi gases. Exploring excitations and thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Morgener, Kai Henning
2014-12-08
This thesis presents experiments on three-dimensional (3D) and two-dimensional (2D) ultracold fermionic {sup 6}Li gases providing local access to microscopic quantum many-body physics. A broad magnetic Feshbach resonance is used to tune the interparticle interaction strength freely to address the entire crossover between the Bose-Einstein-Condensate (BEC) and Bardeen-Cooper-Schrieffer (BCS) regime. We map out the critical velocity in the crossover from BEC to BCS superfluidity by moving a small attractive potential through the 3D cloud. We compare the results with theoretical predictions and achieve quantitative understanding in the BEC regime by performing numerical simulations. Of particular interest is the regime of strong correlations, where no theoretical predictions exist. In the BEC regime, the critical velocity should be closely related to the speed of sound, according to the Landau criterion and Bogolyubov theory. We measure the sound velocity by exciting a density wave and tracking its propagation. The focus of this thesis is on our first experiments on general properties of quasi-2D Fermi gases. We realize strong vertical confinement by generating a 1D optical lattice by intersecting two blue-detuned laser beams under a steep angle. The large resulting lattice spacing enables us to prepare a single planar quantum gas deeply in the 2D regime. The first measurements of the speed of sound in quasi-2D gases in the BEC-BCS crossover are presented. In addition, we present preliminary results on the pressure equation of state, which is extracted from in-situ density profiles. Since the sound velocity is directly connected to the equation of state, the results provide a crosscheck of the speed of sound. Moreover, we benchmark the derived sound from available equation of state predictions, find very good agreement with recent numerical calculations, and disprove a sophisticated mean field approach. These studies are carried out with a novel apparatus which has
A proteomic approach for the diagnosis of bacterial meningitis.
Directory of Open Access Journals (Sweden)
Sarah Jesse
Full Text Available BACKGROUND: The discrimination of bacterial meningitis (BM versus viral meningitis (VM shapes up as a problem, when laboratory data are not equivocal, in particular, when Gram stain is negative. METHODOLOGY/PRINCIPAL FINDINGS: With the aim to determine reliable marker for bacterial or viral meningitis, we subjected cerebrospinal fluid (CSF to a quantitative proteomic screening. By using a recently established 2D-DIGE protocol which was adapted to the individual CSF flow, we compared a small set of patients with proven BM and VM. Thereby, we identified six potential biomarkers out of which Prostaglandin-H2 D-isomerase was already described in BM, showing proof of concept. In the subsequent validation phase on a more comprehensive collective of 80 patients, we could validate that in BM high levels of glial fibrillary acidic protein (GFAP and low levels of soluble amyloid precursor protein alpha/beta (sAPPalpha/beta are present as possible binding partner of Fibulin-1. CONCLUSIONS/SIGNIFICANCE: We conclude that our CSF flow-adapted 2D-DIGE protocol is valid especially in comparing samples with high differences in total protein and suppose that GFAP and sAPPalpha/beta have a high potential as additional diagnostic markers for differentiation of BM from VM. In the clinical setting, this might lead to an improved early diagnosis and to an individual therapy.
On the reduced canonical quantization of the induced 2d-gravity
Navarro-Salas, J; Talavera, C F; Aldaya, V
1994-01-01
The quantization of the induced 2d-gravity on a compact spatial section is carried out in three different ways. In the three approaches the supermomentum constraint is solved at the classical level but they differ in the way the hamiltonian constraint is imposed. We compare these approaches establishing an isomorphism between the resulting Hilbert spaces.
Benjamini, Dan; Basser, Peter J.
2016-10-01
Measuring multidimensional (e.g., 2D) relaxation spectra in NMR and MRI clinical applications is a holy grail of the porous media and biomedical MR communities. The main bottleneck is the inversion of Fredholm integrals of the first kind, an ill-conditioned problem requiring large amounts of data to stabilize a solution. We suggest a novel experimental design and processing framework to accelerate and improve the reconstruction of such 2D spectra that uses a priori information from the 1D projections of spectra, or marginal distributions. These 1D marginal distributions provide powerful constraints when 2D spectra are reconstructed, and their estimation requires an order of magnitude less data than a conventional 2D approach. This marginal distributions constrained optimization (MADCO) methodology is demonstrated here with a polyvinylpyrrolidone-water phantom that has 3 distinct peaks in the 2D D-T1 space. The stability, sensitivity to experimental parameters, and accuracy of this new approach are compared with conventional methods by serially subsampling the full data set. While the conventional, unconstrained approach performed poorly, the new method had proven to be highly accurate and robust, only requiring a fraction of the data. Additionally, synthetic T1 -T2 data are presented to explore the effects of noise on the estimations, and the performance of the proposed method with a smooth and realistic 2D spectrum. The proposed framework is quite general and can also be used with a variety of 2D MRI experiments (D-T2,T1 -T2, D -D, etc.), making these potentially feasible for preclinical and even clinical applications for the first time.
Optimal Control of 1D and 2D Circuit QED
Fisher, R; Glaser, S J; Marquardt, F; Schulte-Herbrueggen, T
2009-01-01
Optimal control can be used to significantly improve multi-qubit gates in quantum information processing hardware architectures based on superconducting circuit quantum electrodynamics. We apply this approach not only to dispersive gates of two qubits inside a cavity, but, more generally, to architectures based on two-dimensional arrays of cavities and qubits. For high-fidelity gate operations, simultaneous evolutions of controls and couplings in the two coupling dimensions of cavity grids are shown to be significantly faster than conventional sequential implementations. Even under experimentally realistic conditions speedups by a factor of three can be gained. The methods immediately scale to large grids and indirect gates between arbitrary pairs of qubits on the grid. They are anticipated to be paradigmatic for 2D arrays and lattices of controllable qubits.
Printable ink lenses, diffusers, and 2D gratings.
Ahmed, Rajib; Yetisen, Ali K; Khoury, Anthony El; Butt, Haider
2017-01-07
Advances in holography have led to applications including data storage, displays, security labels, and colorimetric sensors. However, existing top-down approaches for the fabrication of holographic devices are complex, expensive, and expertise dependent, limiting their use in practical applications. Here, ink-based holographic devices have been created for a wide range of applications in diffraction optics. A single pulse of a 3.5 ns Nd:YAG laser allowed selective ablation of ink to nanofabricate planar optical devices. The practicality of this method is demonstrated by fabricating ink-based diffraction gratings, 2D holographic patterns, optical diffusers, and Fresnel zone plate (FZP) lenses by using the ink. The fabrication processes were rationally designed using predictive computational modeling and the devices were fabricated within a few minutes demonstrating amenability for large scale printable optics through industrial manufacturing. It is anticipated that ink will be a promising diffraction optical material for the rapid printing of low-cost planar nanophotonic devices.
Analysis list: Mef2d [Chip-atlas[Archive
Lifescience Database Archive (English)
Full Text Available Mef2d Muscle + mm9 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.1.ts...v http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/target/Mef2d....10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Mef2d.Muscle.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/colo/Muscle.gml ...
Lifescience Database Archive (English)
Full Text Available el for vortioxetine and CYP2D6 FDA Label for acetaminophen,tramadol and CYP2D6 FDA Label for dextromethorphan... Label for vortioxetine and CYP2D6 European Medicines Agency (EMA) Label for dextromethorphan,quinidine and ...ore of this label. Read more. last updated 10/25/2013 FDA Label for dextromethorphan, quinidine and CYP2D6 O...of NUEDEXTA is a CYP2D6 inhibitor used to increase the plasma availability of dextromethorphan, which is met... 05/02/2014 European Medicines Agency (EMA) Label for dextromethorphan, quinidine
3D/2D Registration of medical images
Tomaževič, D.
2008-01-01
The topic of this doctoral dissertation is registration of 3D medical images to corresponding projective 2D images, referred to as 3D/2D registration. There are numerous possible applications of 3D/2D registration in image-aided diagnosis and treatment. In most of the applications, 3D/2D registration provides the location and orientation of the structures in a preoperative 3D CT or MR image with respect to intraoperative 2D X-ray images. The proposed doctoral dissertation tries to find origin...
2-D Path Corrections for Local and Regional Coda Waves: A Test of Transportability
Energy Technology Data Exchange (ETDEWEB)
Mayeda, K M; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D S; Morasca, P
2005-07-13
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. [2003] has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. We will compare performance of 1-D versus 2-D path corrections in a variety of regions. First, the complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Next, we will compare results for the Italian Alps using high frequency data from the University of Genoa. For Northern California, we used the same station and event distribution and compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7 {le} f {le} 8.0-Hz), the 2-D approach resulted in
CYP2D7 sequence variation interferes with TaqMan CYP2D6*15 and *35 genotyping
Directory of Open Access Journals (Sweden)
Amanda K Riffel
2016-01-01
Full Text Available TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35 which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696 SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe
2D Transonic Hydrodynamics in General Relativity
Beskin, V S
2002-01-01
The goal of my lecture is to present the introduction into the hydrodynamical version of the Grad-Shafranov equation. Although not so well-known as the full MHD one, it allows us to clarify the nontrivial structure of the Grad-Shafranov approach as well as to discuss the simplest version of the 3+1-split language -- the most convenient one for the description of the ideal flows in the vicinity of a rotating black hole.
Backscattering in a 2D topological insulator and the conductivity of a 2D strip
Magarill, L. I.; Entin, M. V.
2015-01-01
A strip of the 2D HgTe topological insulator is studied. The same-spin edge states in an ideal system propagate in opposite directions on different sides of the strip and do not mix by tunneling. Impurities, edge irregularities, and phonons produce transitions between the counterpropagating edge states on different edges. This backscattering determines the conductivity of an infinitely long strip. The conductivity at finite temperature is determined in the framework of the kinetic equation. It is found that the conductivity exponentially grows with the strip width. In the same approximation the nonlocal resistance coefficients of a four-terminal strip are found.
2D-MoO3 nanosheets for superior gas sensors
Ji, Fangxu; Ren, Xianpei; Zheng, Xiaoyao; Liu, Yucheng; Pang, Liuqing; Jiang, Jiaxing; Liu, Shengzhong (Frank)
2016-04-01
By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites.By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00880a
Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays
Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.
2006-04-01
We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.
Functional characterization of a first avian cytochrome P450 of the CYP2D subfamily (CYP2D49.
Directory of Open Access Journals (Sweden)
Hua Cai
Full Text Available The CYP2D family members are instrumental in the metabolism of 20-25% of commonly prescribed drugs. Although many CYP2D isoforms have been well characterized in other animal models, research concerning the chicken CYP2Ds is limited. In this study, a cDNA encoding a novel CYP2D enzyme (CYP2D49 was cloned from the chicken liver for the first time. The CYP2D49 cDNA contained an open reading frame of 502 amino acids that shared 52%-57% identities with other CYP2Ds. The gene structure and neighboring genes of CYP2D49 are conserved and similar to those of human CYP2D6. Additionally, similar to human CYP2D6, CYP2D49 is un-inducible in the liver and expressed predominantly in the liver, kidney and small intestine, with detectable levels in several other tissues. Metabolic assays of the CYP2D49 protein heterologously expressed in E. coli and Hela cells indicated that CYP2D49 metabolized the human CYP2D6 substrate, bufuralol, but not debrisoquine. Moreover, quinidine, a potent inhibitor of human CYP2D6, only inhibited the bufuralol 1'-hydroxylation activity of CYP2D49 to a negligible degree. All these results indicated that CYP2D49 had functional characteristics similar to those of human CYP2D6 but measurably differed in the debrisoquine 4'-hydroxylation and quinidine inhibitory profile. Further structure-function investigations that employed site-directed mutagenesis and circular dichroism spectroscopy identified the importance of Val-126, Glu-222, Asp-306, Phe-486 and Phe-488 in keeping the enzymatic activity of CYP2D49 toward bufuralol as well as the importance of Asp-306, Phe-486 and Phe-488 in maintaining the conformation of CYP2D49 protein. The current study is only the first step in characterizing the metabolic mechanism of CYP2D49; further studies are still required.
Marginal fluctuations as instantons on M2/D2-branes
Energy Technology Data Exchange (ETDEWEB)
Naghdi, M. [University of Ilam, Department of Physics, Faculty of Basic Sciences, Ilam (Iran, Islamic Republic of)
2014-03-15
We introduce some (anti-) M/D-branes through turning on the corresponding field strengths of the 11- and 10-dimensional supergravity theories over AdS{sub 4} x M{sup 7} {sup vertical} {sup stroke} {sup 6} spaces, where we use S{sup 7}/Z{sub k} and CP{sup 3} for the internal spaces. Indeed, when we add M2/D2-branes on the same directions with the near horizon branes of the Aharony-Bergman-Jafferis- Maldacena model, all symmetries and supersymmetries are preserved trivially. In this case, we obtain a localized object just in the horizon. This normalizable bulk massless scalar mode is a singlet of SO(8) and SU(4) x U(1), and it agrees with a marginal boundary operator of the conformal dimension of Δ{sub +} = 3. However, after performing a special conformal transformation, we see that the solution is localized in the Euclideanized AdS{sub 4} space and is attributable to the included anti-M2/D2-branes, which are also necessary to ensure that there is no back-reaction. The resultant theory now breaks all N = 8, 6 supersymmetries to N = 0, while the other symmetries are so preserved. The dual boundary operator is then set up from the skew-whiffing of the representations 8s and 8v for the supercharges and scalars, respectively, while the fermions remain fixed in 8c of the original theory. Besides, we also address another alternate bulk to boundary matching procedure through turning on one of the gauge fields of the full U(N){sub k} x U(N){sub -k} gauge group along the same lines with a similar situation to the one faced in the AdS{sub 5}/CFT{sub 4} correspondence. The latter approach covers the difficulty already faced with in the bulk-boundary matching procedure for k = 1, 2 as well. (orig.)
Institute of Scientific and Technical Information of China (English)
Ting-Ting Liao; Zhen Xiang; Wen-Bing Zhu; Li-Qing Fan
2009-01-01
Globozoospermia is a severe form of teratozoospermia characterized by round-headed spermatozoa with an absent acrosome, an aberrant nuclear membrane and midpiece defects. Globozoospermia is diagnosed by the presence of 100% round-headed spermatozoa on semen analysis, and patients with this condition are absolutely infertile. The objective of this study was to investigate the differences in protein expression between human round-headed and normal spermatozoa. Two-dimensional (2-D) fluorescence difference gel electrophoresis (DIGE) coupled with mass spectrometry (MS) was used in this study. Over 61 protein spots were analysed in each paired normal/round-headed comparison, using DIGE technology along with an internal standard. In total, 35 protein spots identified by tandem mass spectrometry (MS/MS) exhibited significant changes (paired t-test, P < 0.05) in the expression level between normal and round-headed spermatozoa. A total of nine proteins were found to be upregulated and 26 proteins were found to be downregulated in round-headed spermatozoa compared with normal spermatozoa. The differentially expressed proteins that we identified may have important roles in a variety of cellular processes and structures, including spermatogenesis, cell skeleton, metabolism and spermatozoa motility.
Optimization and practical implementation of ultrafast 2D NMR experiments
Queiroz Júnior,Luiz H. K.; Antonio G. Ferreira; Patrick Giraudeau
2013-01-01
Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC...
Computing 2D constrained delaunay triangulation using the GPU.
Qi, Meng; Cao, Thanh-Tung; Tan, Tiow-Seng
2013-05-01
We propose the first graphics processing unit (GPU) solution to compute the 2D constrained Delaunay triangulation (CDT) of a planar straight line graph (PSLG) consisting of points and edges. There are many existing CPU algorithms to solve the CDT problem in computational geometry, yet there has been no prior approach to solve this problem efficiently using the parallel computing power of the GPU. For the special case of the CDT problem where the PSLG consists of just points, which is simply the normal Delaunay triangulation (DT) problem, a hybrid approach using the GPU together with the CPU to partially speed up the computation has already been presented in the literature. Our work, on the other hand, accelerates the entire computation on the GPU. Our implementation using the CUDA programming model on NVIDIA GPUs is numerically robust, and runs up to an order of magnitude faster than the best sequential implementations on the CPU. This result is reflected in our experiment with both randomly generated PSLGs and real-world GIS data having millions of points and edges.
CYP2D6 polymorphism in relation to tramadol metabolism
DEFF Research Database (Denmark)
Halling, Jónrit; Weihe, Pál; Brosen, Kim
2008-01-01
to investigate whether the previously observed frequency of CYP2D6 poor metabolizers (PMs) in the Faroese, which was shown to be double that of other Europeans, was evident in a patient group medicated with a CYP2D6 substrate. The patients were CYP2D6-phenotyped by the intake of sparteine, followed by urine...... European populations (7%-10%). The concentrations of (+)-M1 when corrected for dose (nM/mg) and the (+)-M1/(+)-tramadol ratio were approximately 14-fold higher in the extensive metabolizers (EMs) than in the PMs. In conclusion, the impact of the CYP2D6 polymorphism on the pharmacokinetics of tramadol...
Sparse Non-negative Matrix Factor 2-D Deconvolution
DEFF Research Database (Denmark)
Mørup, Morten; Schmidt, Mikkel N.
2006-01-01
We introduce the non-negative matrix factor 2-D deconvolution (NMF2D) model, which decomposes a matrix into a 2-dimensional convolution of two factor matrices. This model is an extension of the non-negative matrix factor deconvolution (NMFD) recently introduced by Smaragdis (2004). We derive...... and prove the convergence of two algorithms for NMF2D based on minimizing the squared error and the Kullback-Leibler divergence respectively. Next, we introduce a sparse non-negative matrix factor 2-D deconvolution model that gives easy interpretable decompositions and devise two algorithms for computing...
Kim, Yonghun; Kim, Ah Ra; Yang, Jin Ho; Chang, Kyoung Eun; Kwon, Jung-Dae; Choi, Sun Young; Park, Jucheol; Lee, Kang Eun; Kim, Dong-Ho; Choi, Sung Mook; Lee, Kyu Hwan; Lee, Byoung Hun; Hahm, Myung Gwan; Cho, Byungjin
2016-09-14
The long-term stability and superior device reliability through the use of delicately designed metal contacts with two-dimensional (2D) atomic-scale semiconductors are considered one of the critical issues related to practical 2D-based electronic components. Here, we investigate the origin of the improved contact properties of alloyed 2D metal-semiconductor heterojunctions. 2D WSe2-based transistors with mixed transition layers containing van der Waals (M-vdW, NbSe2/WxNb1-xSe2/WSe2) junctions realize atomically sharp interfaces, exhibiting long hot-carrier lifetimes of approximately 75,296 s (78 times longer than that of metal-semiconductor, Pd/WSe2 junctions). Such dramatic lifetime enhancement in M-vdW-junctioned devices is attributed to the synergistic effects arising from the significant reduction in the number of defects and the Schottky barrier lowering at the interface. Formation of a controllable mixed-composition alloyed layer on the 2D active channel would be a breakthrough approach to maximize the electrical reliability of 2D nanomaterial-based electronic applications.
The strength of heterogeneous volcanic rocks: A 2D approximation
Heap, Michael J.; Wadsworth, Fabian B.; Xu, Tao; Chen, Chong-feng; Tang, Chun'an
2016-06-01
Volcanic rocks typically contain heterogeneities in the form of crystals and pores. We investigate here the influence of such heterogeneity on the strength of volcanic rocks using an elastic damage mechanics model in which we numerically deform two-dimensional samples comprising low-strength elements representing crystals and zero-strength elements representing pores. These circular elements are stochastically generated so that there is no overlap in a medium representing the groundmass. Our modelling indicates that increasing the fraction of pores and/or crystals reduces the strength of volcanic rocks, and that increasing the pore fraction results in larger strength reductions than increasing the crystal fraction. The model also highlights an important weakening role for pore diameter, but finds that crystal diameter has a less significant influence for strength. To account for heterogeneity (pores and crystals), we propose an effective medium approach where we define an effective pore fraction ϕp‧ = Vp/(Vp + Vg) where Vp and Vg are the pore and groundmass fractions, respectively. Highly heterogeneous samples (containing high pore and/or crystal fractions) will therefore have high values of ϕp‧, and vice-versa. When we express our numerical samples (more than 200 simulations spanning a wide range of crystal and pore fractions) in terms of ϕp‧, we find that their strengths can be described by a single curve for a given pore diameter. To provide a predictive tool for the strength of heterogeneous volcanic rocks, we propose a modified version of 2D solution for the Sammis and Ashby (1986) pore-emanating crack model, a micromechanical model designed to estimate strength using microstructural attributes such as porosity, pore radius, and fracture toughness. The model, reformulated to include ϕp‧ (and therefore crystal fraction), captures the strength curves for our numerical simulations over a sample heterogeneity range relevant to volcanic systems. We find
Pareto joint inversion of 2D magnetotelluric and gravity data
Miernik, Katarzyna; Bogacz, Adrian; Kozubal, Adam; Danek, Tomasz; Wojdyła, Marek
2015-04-01
In this contribution, the first results of the "Innovative technology of petrophysical parameters estimation of geological media using joint inversion algorithms" project were described. At this stage of the development, Pareto joint inversion scheme for 2D MT and gravity data was used. Additionally, seismic data were provided to set some constrains for the inversion. Sharp Boundary Interface(SBI) approach and description model with set of polygons were used to limit the dimensionality of the solution space. The main engine was based on modified Particle Swarm Optimization(PSO). This algorithm was properly adapted to handle two or more target function at once. Additional algorithm was used to eliminate non- realistic solution proposals. Because PSO is a method of stochastic global optimization, it requires a lot of proposals to be evaluated to find a single Pareto solution and then compose a Pareto front. To optimize this stage parallel computing was used for both inversion engine and 2D MT forward solver. There are many advantages of proposed solution of joint inversion problems. First of all, Pareto scheme eliminates cumbersome rescaling of the target functions, that can highly affect the final solution. Secondly, the whole set of solution is created in one optimization run, providing a choice of the final solution. This choice can be based off qualitative data, that are usually very hard to be incorporated into the regular inversion schema. SBI parameterisation not only limits the problem of dimensionality, but also makes constraining of the solution easier. At this stage of work, decision to test the approach using MT and gravity data was made, because this combination is often used in practice. It is important to mention, that the general solution is not limited to this two methods and it is flexible enough to be used with more than two sources of data. Presented results were obtained for synthetic models, imitating real geological conditions, where
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
Wang, X.; Cai, M.
2016-11-01
A nonlinear velocity model that considers the influence of confinement and rock mass failure on wave velocity is developed. A numerical method, which couples FLAC and SPECFEM2D, is developed for ground motion modeling near excavation boundaries in underground mines. The motivation of developing the FLAC/SPECFEM2D coupled approach is to take merits of each code, such as the stress analysis capability in FLAC and the powerful wave propagation analysis capability in SPECFEM2D. Because stress redistribution and failure of the rock mass around an excavation are considered, realistic non-uniform velocity fields for the SPECFEM2D model can be obtained, and this is a notable feature of this study. Very large differences in wavefields and ground motion are observed between the results from the non-uniform and the uniform velocity models. If the non-uniform velocity model is used, the ground motion around a stope can be amplified up to five times larger than that given by the design scaling law. If a uniform velocity model is used, the amplification factor is only about three. Using the FLAC/SPECFEM2D coupled modeling approach, accurate velocity models can be constructed and this in turn will assist in predicting ground motions accurately around underground excavations.
Wörz, Stefan; Heinzer, Stephan; Weiss, Matthias; Rohr, Karl
2008-03-01
We introduce a model-based approach for segmenting and quantifying GFP-tagged subcellular structures of the Golgi apparatus in 2D and 3D microscopy images. The approach is based on 2D and 3D intensity models, which are directly fitted to an image within 2D circular or 3D spherical regions-of-interest (ROIs). We also propose automatic approaches for the detection of candidates, for the initialization of the model parameters, and for adapting the size of the ROI used for model fitting. Based on the fitting results, we determine statistical information about the spatial distribution and the total amount of intensity (fluorescence) of the subcellular structures. We demonstrate the applicability of our new approach based on 2D and 3D microscopy images.
2D electrophoresis-based expression proteomics: a microbiologist's perspective.
Sá-Correia, Isabel; Teixeira, Miguel C
2010-12-01
Quantitative proteomics based on 2D electrophoresis (2-DE) coupled with peptide mass fingerprinting is still one of the most widely used quantitative proteomics approaches in microbiology research. Our view on the exploitation of this global expression analysis technique and its contribution and potential to push forward the field of molecular microbial physiology towards a molecular systems microbiology perspective is discussed in this article. The advances registered in 2-DE-based quantitative proteomic analysis leading to increased protein resolution, sensitivity and accuracy, and the promising use of 2-DE to gain insights into post-translational modifications at a proteome-wide level (considering all the proteins/protein forms expressed by the genome) are focused on. Given the progress made in this field, it is foreseen that the 2-DE-based approach to quantitative proteomics will continue to be a fundamental tool for microbiologists working at a genome-wide scale. Guidelines are also provided for the exploitation of expression proteomics data, based on useful computational tools, and for the integration of these data with other genome-wide expression information. The advantages and limitations of a complete 2-DE-based expression proteomics analysis, envisaging the quantification of the global changes occurring in the proteome of a given cell depending on environmental or genetic manipulations, are discussed from the microbiologist's perspective. Particular focus is given to the emerging field of toxicoproteomics, a new systems toxicity approach that offers a powerful tool to directly monitor the earliest stages of the toxicological response by identifying critical proteins and pathways that are affected by, and respond to, a chemical stress. The experimental design and the bioinformatics analysis of data used in our laboratory to gain mechanistic insights through expression proteomics into the responses of the eukaryotic model Saccharomyces cerevisiae or of
Energy Efficiency of D2D Multi-User Cooperation.
Zhang, Zufan; Wang, Lu; Zhang, Jie
2017-03-28
The Device-to-Device (D2D) communication system is an important part of heterogeneous networks. It has great potential to improve spectrum efficiency, throughput and energy efficiency cooperation of multiple D2D users with the advantage of direct communication. When cooperating, D2D users expend extraordinary energy to relay data to other D2D users. Hence, the remaining energy of D2D users determines the life of the system. This paper proposes a cooperation scheme for multiple D2D users who reuse the orthogonal spectrum and are interested in the same data by aiming to solve the energy problem of D2D users. Considering both energy availability and the Signal to Noise Ratio (SNR) of each D2D user, the Kuhn-Munkres algorithm is introduced in the cooperation scheme to solve relay selection problems. Thus, the cooperation issue is transformed into a maximum weighted matching (MWM) problem. In order to enhance energy efficiency without the deterioration of Quality of Service (QoS), the link outage probability is derived according to the Shannon Equation by considering the data rate and delay. The simulation studies the relationships among the number of cooperative users, the length of shared data, the number of data packets and energy efficiency.
From 2D Lithography to 3D Patterning
Van Zeijl, H.W.; Wei, J.; Shen, C.; Verhaar, T.M.; Sarro, P.M.
2010-01-01
Lithography as developed for IC device fabrication is a high volume high accuracy patterning technology with strong 2 dimensional (2D) characteristics. This 2D nature makes it a challenge to integrate this technology in a 3 dimensional (3D) manufacturing environment. This article addresses the perfo
Cascading Constrained 2-D Arrays using Periodic Merging Arrays
DEFF Research Database (Denmark)
Forchhammer, Søren; Laursen, Torben Vaarby
2003-01-01
We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes....... Numerical results for the capacities are presented....
Animación 2D: curriculum vitae animado
CANTOS BELMONTE, CONSUELO
2015-01-01
Trabajo Fin de Grado de animación 2D donde un personaje (alter ego de la animadora) expone, mediante la interación con una Voz en Off y su sombra, el curriclum vitae de la animadora. Cantos Belmonte, C. (2014). Animación 2D: curriculum vitae animado. http://hdl.handle.net/10251/45910. Archivo delegado
Symmetries and solvable models for evaporating 2D black holes
Cruz, J; Navarro-Salas, J; Talavera, C F
1997-01-01
We study the evaporation process of a 2D black hole in thermal equilibrium when the ingoing radiation is switched off suddenly. We also introduce global symmetries of generic 2D dilaton gravity models which generalize the extra symmetry of the CGHS model.
New Type of 2-D Laser Doppler Vibrometer
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The fundamentals and method of 2-D laser Doppler vibrometer are introduced．The factors influencing the measuring accuracy are analyzed. Moreover, the circuit for signal processing is designed. The vibrating amplitude and frequency of 2-D vibration in wider range can be measured simultaneously in non-contact means，the measuring results are accurate.
The relation between Euclidean and Lorentzian 2D quantum gravity
Ambjørn, J.; Correia, J.; Kristjansen, C.; Loll, R.
2006-01-01
Starting from 2D Euclidean quantum gravity, we show that one recovers 2D Lorentzian quantum gravity by removing all baby universes. Using a peeling procedure to decompose the discrete, triangulated geometries along a one-dimensional path, we explicitly associate with each Euclidean space-time a (gen
Estimating 3D Object Parameters from 2D Grey-Level Images
Houkes, Zweitze
2000-01-01
This thesis describes a general framework for parameter estimation, which is suitable for computer vision applications. The approach described combines 3D modelling, animation and estimation tools to determine parameters of objects in a scene from 2D grey-level images. The animation tool predicts im
2D vario-scale representations based on real 3D structure
Suba, R.; Meijers, B.M.; Van Oosterom, P.J.M.
2013-01-01
This paper focuses on 3D data structures supporting an alternative approach for creating 2D vario-scale maps. The smooth animated zooming functionality have lead us to investigate a volumetric representation of gradually changing vario-scale objects. In this paper, the principle of vario-scale maps
2-D Row-Column CMUT Arrays with an Open-Grid Support Structure
DEFF Research Database (Denmark)
Christiansen, Thomas Lehrmann; Dahl-Petersen, Christian; Jensen, Jørgen Arendt;
2013-01-01
Fabrication and characterization of 64 + 64 2-D row-column addressed CMUT arrays with 250 μm element pitch and 4.4 MHz center frequency in air incorporating a new design approach is presented. The arrays are comprised of two wafer bonded, structured silicon-on-insulator wafers featuring an opengr...
Numerical simulations in granular matter: The discharge of a 2D silo
Indian Academy of Sciences (India)
Gabriel Pérez
2008-06-01
In this paper I give a short and elementary review of numerical simulations in granular assemblies, giving the process of discharge of a 2D silo as an example. The strengths and limitations of different approaches are discussed, together with some comments on the specific issues related to the numerics of discontinuous dissipative collisions.
2D materials and van der Waals heterostructures.
Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H
2016-07-29
The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.
2D-fractal based algorithms for nanoparticles characterization
Bonifazi, Giuseppe; Serranti, Silvia
2014-02-01
Fractal geometry concerns the study of non-Euclidean geometrical figures generated by a recursive sequence of mathematical operations. The proposed 2D-fractal approach was applied to characterise the image structure and texture generated by fine and ultra-fine particles when impacting on a flat surface. The work was developed with reference to particles usually produced by ultra-fine milling addressed to generate nano-particles population. In order to generate different particle populations to utilize in the study, specific milling actions have been thus performed adopting different milling actions and utilising different materials, both in terms of original size class distribution and chemical-physical attributes. The aim of the work was to develop a simple, reliable and low cost analytical set of procedures with the ability to establish correlations between particles detected by fractal characteristics and their milled-induced-properties (i.e. size class distribution, shape, surface properties, etc.). Such logic should constitute the core of a control engine addressed to realize a full monitoring of the milling process as well as to establish correlation between operative parameters, fed and resulting products characteristics.
BFV-BRST quantization of 2D supergravity
Energy Technology Data Exchange (ETDEWEB)
Fujiwara, T. [Ibaraki Univ., Mito (Japan). Dept. of Physics; Igarashi, Y.; Kuriki, R.; Tabei, T.
1995-02-01
Two-dimensional supergravity theory is quantized as an anomalous gauge theory. In the Batalin-Fradkin (BF) formalism, the anomaly-canceling super-Liouville fields are introduced to identify the original second-class constrained system with a gauge-fixed version of a first-class system. The BFV-BRST quantization applies to formulate the theory in the most general class of gauges. A local effective action constructed in the configuration space contains two super-Liouville actions; one is a noncovariant but local functional written only in terms of 2D supergravity fields, and the other contains the super-Liouville fields canceling the super-Weyl anomaly. Auxiliary fields for the Liouville and the gravity super-multiplets are introduced to make the BRST algebra close off-shell. Inclusion of them turns out to be essentially important especially in the super-lightcone gauge-fixing, where the super-curvature equations ({delta}{sub -}{sup 3}g{sub ++}={delta}{sub -}{sup 2}{chi}{sub ++}=0) are obtained as a result of BRST invariance of the theory. Our approach reveals the origin of the OSp (1,2) current algebra symmetry in a transparent manner. (author).
Transfer of polarized line radiation in 2D cylindrical geometry
Milić, I.
2013-07-01
Aims: This paper deals with multidimensional NLTE polarized radiative transfer in the case of two level atom in the absence of lower level polarization. We aim to develop an efficient and robust method for 2D cylindrical geometry and to apply it to various axi-symmetrical astrophysical objects such as rings, disks, rotating stars, and solar prominences. Methods: We review the methods of short characteristics and Jacobi iteration applied to axisymmetric geometry. Then we demonstrate how to use a reduced basis for polarized intensity and polarized source function to self-consistently solve the coupled equations of radiative transfer and statistical equilibrium for linearly polarized radiation. We discuss some peculiarities that do not appear in Cartesian geometry, such as angular interpolation in performing the formal solution. We also show how to account for two different types of illuminating radiation. Results: The proposed method is tested on homogeneous, self-emitting cylinders to compare the results with those in 1D geometries. We demonstrate a possible astrophysical application on a very simple model of circumstellar ring illuminated by a host star where we show that such a disk can introduce a significant amount of scattering polarization in the system. Conclusions: This method is found to converge properly and, apparently, to allow for substantial time saving compared to 3D Cartesian geometry. We also discuss the advantages and disadvantages of this approach in multidimensional radiative transfer modeling.
Spotting 2D atomic layers on aluminum nitride thin films.
Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan
2015-10-23
Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.
On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D
Zhu, Y.; Appenzeller, J.
2015-10-01
Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.
On the Current Drive Capability of Low Dimensional Semiconductors: 1D versus 2D.
Zhu, Y; Appenzeller, J
2015-12-01
Low-dimensional electronic systems are at the heart of many scaling approaches currently pursuit for electronic applications. Here, we present a comparative study between an array of one-dimensional (1D) channels and its two-dimensional (2D) counterpart in terms of current drive capability. Our findings from analytical expressions derived in this article reveal that under certain conditions an array of 1D channels can outperform a 2D field-effect transistor because of the added degree of freedom to adjust the threshold voltage in an array of 1D devices.
Foist, Rod B; Schulze, H Georg; Ivanov, Andre; Turner, Robin F B
2011-05-01
Two-dimensional correlation spectroscopy (2D-COS) is a powerful spectral analysis technique widely used in many fields of spectroscopy because it can reveal spectral information in complex systems that is not readily evident in the original spectral data alone. However, noise may severely distort the information and thus limit the technique's usefulness. Consequently, noise reduction is often performed before implementing 2D-COS. In general, this is implemented using one-dimensional (1D) methods applied to the individual input spectra, but, because 2D-COS is based on sets of successive spectra and produces 2D outputs, there is also scope for the utilization of 2D noise-reduction methods. Furthermore, 2D noise reduction can be applied either to the original set of spectra before performing 2D-COS ("pretreatment") or on the 2D-COS output ("post-treatment"). Very little work has been done on post-treatment; hence, the relative advantages of these two approaches are unclear. In this work we compare the noise-reduction performance on 2D-COS of pretreatment and post-treatment using 1D (wavelets) and 2D algorithms (wavelets, matrix maximum entropy). The 2D methods generally outperformed the 1D method in pretreatment noise reduction. 2D post-treatment in some cases was superior to pretreatment and, unexpectedly, also provided correlation coefficient maps that were similar to 2D correlation spectroscopy maps but with apparent better contrast.
2D vs. 3D mammography observer study
Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent
2011-03-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.
An automated pipeline to screen membrane protein 2D crystallization.
Kim, Changki; Vink, Martin; Hu, Minghui; Love, James; Stokes, David L; Ubarretxena-Belandia, Iban
2010-06-01
Electron crystallography relies on electron cryomicroscopy of two-dimensional (2D) crystals and is particularly well suited for studying the structure of membrane proteins in their native lipid bilayer environment. To obtain 2D crystals from purified membrane proteins, the detergent in a protein-lipid-detergent ternary mixture must be removed, generally by dialysis, under conditions favoring reconstitution into proteoliposomes and formation of well-ordered lattices. To identify these conditions a wide range of parameters such as pH, lipid composition, lipid-to-protein ratio, ionic strength and ligands must be screened in a procedure involving four steps: crystallization, specimen preparation for electron microscopy, image acquisition, and evaluation. Traditionally, these steps have been carried out manually and, as a result, the scope of 2D crystallization trials has been limited. We have therefore developed an automated pipeline to screen the formation of 2D crystals. We employed a 96-well dialysis block for reconstitution of the target protein over a wide range of conditions designed to promote crystallization. A 96-position magnetic platform and a liquid handling robot were used to prepare negatively stained specimens in parallel. Robotic grid insertion into the electron microscope and computerized image acquisition ensures rapid evaluation of the crystallization screen. To date, 38 2D crystallization screens have been conducted for 15 different membrane proteins, totaling over 3000 individual crystallization experiments. Three of these proteins have yielded diffracting 2D crystals. Our automated pipeline outperforms traditional 2D crystallization methods in terms of throughput and reproducibility.
2-D Versus 3-D Magnetotelluric Data Interpretation
Ledo, Juanjo
2005-09-01
In recent years, the number of publications dealing with the mathematical and physical 3-D aspects of the magnetotelluric method has increased drastically. However, field experiments on a grid are often impractical and surveys are frequently restricted to single or widely separated profiles. So, in many cases we find ourselves with the following question: is the applicability of the 2-D hypothesis valid to extract geoelectric and geological information from real 3-D environments? The aim of this paper is to explore a few instructive but general situations to understand the basics of a 2-D interpretation of 3-D magnetotelluric data and to determine which data subset (TE-mode or TM-mode) is best for obtaining the electrical conductivity distribution of the subsurface using 2-D techniques. A review of the mathematical and physical fundamentals of the electromagnetic fields generated by a simple 3-D structure allows us to prioritise the choice of modes in a 2-D interpretation of responses influenced by 3-D structures. This analysis is corroborated by numerical results from synthetic models and by real data acquired by other authors. One important result of this analysis is that the mode most unaffected by 3-D effects depends on the position of the 3-D structure with respect to the regional 2-D strike direction. When the 3-D body is normal to the regional strike, the TE-mode is affected mainly by galvanic effects, while the TM-mode is affected by galvanic and inductive effects. In this case, a 2-D interpretation of the TM-mode is prone to error. When the 3-D body is parallel to the regional 2-D strike the TE-mode is affected by galvanic and inductive effects and the TM-mode is affected mainly by galvanic effects, making it more suitable for 2-D interpretation. In general, a wise 2-D interpretation of 3-D magnetotelluric data can be a guide to a reasonable geological interpretation.
Landau levels in 2D materials using Wannier Hamiltonians obtained by first principles
Lado, J. L.; Fernández-Rossier, J.
2016-09-01
We present a method to calculate the Landau levels and the corresponding edge states of two dimensional (2D) crystals using as a starting point their electronic structure as obtained from standard density functional theory (DFT). The DFT Hamiltonian is represented in the basis of maximally localized Wannier functions. This defines a tight-binding Hamiltonian for the bulk that can be used to describe other structures, such as ribbons, provided that atomic scale details of the edges are ignored. The effect of the orbital magnetic field is described using the Peierls substitution in the hopping matrix elements. Implementing this approach in a ribbon geometry, we obtain both the Landau levels and the dispersive edge states for a series of 2D crystals, including graphene, Boron Nitride, MoS2, Black Phosphorous, Indium Selenide and MoO3. Our procedure can readily be used in any other 2D crystal, and provides an alternative to effective mass descriptions.
Framework for 2D-3D image fusion of infrared thermography with preoperative MRI.
Hoffmann, Nico; Weidner, Florian; Urban, Peter; Meyer, Tobias; Schnabel, Christian; Radev, Yordan; Schackert, Gabriele; Petersohn, Uwe; Koch, Edmund; Gumhold, Stefan; Steiner, Gerald; Kirsch, Matthias
2017-01-23
Multimodal medical image fusion combines information of one or more images in order to improve the diagnostic value. While previous applications mainly focus on merging images from computed tomography, magnetic resonance imaging (MRI), ultrasonic and single-photon emission computed tomography, we propose a novel approach for the registration and fusion of preoperative 3D MRI with intraoperative 2D infrared thermography. Image-guided neurosurgeries are based on neuronavigation systems, which further allow us track the position and orientation of arbitrary cameras. Hereby, we are able to relate the 2D coordinate system of the infrared camera with the 3D MRI coordinate system. The registered image data are now combined by calibration-based image fusion in order to map our intraoperative 2D thermographic images onto the respective brain surface recovered from preoperative MRI. In extensive accuracy measurements, we found that the proposed framework achieves a mean accuracy of 2.46 mm.
Activated sludge models ASM1, ASM2, ASM2d and ASM3
DEFF Research Database (Denmark)
Henze, Mogens; Gujer, W.; Mino, T.;
This book has been produced to give a total overview of the Activated Sludge Model (ASM) family at the start of 2000 and to give the reader easy access to the different models in their original versions. It thus presents ASM1, ASM2, ASM2d and ASM3 together for the first time.Modelling of activated...... sludge processes has become a common part of the design and operation of wastewater treatment plants. Today models are being used in design, control, teaching and research.ContentsASM3: Introduction, Comparison of ASM1 and ASM3, ASM3: Definition of compounds in the model, ASM3: Definition of processes...... in the Model, ASM3: Stoichiometry, ASM3: Kinetics, Limitations of ASM3, Aspects of application of ASM3, ASM3C: A Carbon based model, Conclusion ASM 2d: Introduction, Conceptual Approach, ASM 2d, Typical Wastewater Characteristics and Kinetic and Stoichiometric Constants, Limitations, Conclusion ASM 2...
2D and 3D Mechanobiology in Human and Nonhuman Systems.
Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert
2016-08-31
Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology.
2D-Cosy NMR Spectroscopy as a Quantitative Tool in Biological Matrix: Application to Cyclodextrins.
Dufour, Gilles; Evrard, Brigitte; de Tullio, Pascal
2015-11-01
Classical analytical quantifications in biological matrices require time-consuming sample pre-treatments and extractions. Nuclear magnetic resonance (NMR) analysis does not require heavy sample treatments or extractions which therefore increases its accuracy in quantification. In this study, even if quantitative (q)NMR could not be applied to 2D spectra, we demonstrated that cross-correlations and diagonal peak intensities have a linear relationship with the analyzed pharmaceutical compound concentration. This work presents the validation process of a 2D-correlation spectroscopy (COSY) NMR quantification of 2-hydroxypropyl-β-cyclodextrin in plasma. Specificity, linearity, precision (repeatability and intermediate precision), trueness, limits of quantification (LOQs), and accuracy were used as validation criteria. 2D-NMR could therefore be used as a valuable and accurate analytical technique for the quantification of pharmaceutical compounds, including hardly detectable compounds such as cyclodextrins or poloxamers, in complex biological matrices based on a calibration curve approach.
FPGA Implementation of 2-D DCT & DWT Engines for Vision Based Tracking of Dynamic Obstacles
Directory of Open Access Journals (Sweden)
Remya Ramesan
2014-07-01
Full Text Available Real time motion estimation for tracking is a challenging task. Several techniques can transform an image into frequency domain, such as DCT, DFT and wavelet transform. Direct implementation of 2-D DCT takes N^4 multiplications for an N x N image which is impractical. The proposed architecture for implementation of 2-D DCT uses look up tables. They are used to store pre-computed vector products that completely eliminate the multiplier. This makes the architecture highly time efficient, and the routing delay and power consumption is also reduced significantly. Another approach, 2-D discrete wavelet transform based motion estimation (DWT-ME provides substantial improvements in quality and area. The proposed architecture uses Haar wavelet transform for motion estimation. In this paper, we present the comparison of the performance of discrete cosine transform, discrete wavelet transform for implementation in motion estimation.
2D and 3D stability analysis of slurry trench in frictional/cohesive soil
Institute of Scientific and Technical Information of China (English)
Chang-yu HAN; Jin-jian CHEN; Jian-hua WANG; Xiao-he XIA
2013-01-01
A 2D and 3D kinematically admissible rotational failure mechanism is presented for homogeneous slurry trenches in frictional/cohesive soils.Analytical approaches are derived to obtain the upper bounds on slurry trench stability in the strict framework of limit analysis.It is shown that the factor of safety from a 3D analysis will be greater than that from a 2D analysis.Compared with the limit equilibrium method,the limit analysis method yields an unconservative estimate on the safety factors.A set of examples are presented in a wide range of parameters for 2D and 3D homogeneous slurry trenches.The factor of safety increases with increasing slurry and soil bulk density ratio,cohesion,friction angle,and with decreasing slurry level depth and trench depth ratio,trench width and depth ratio.It is convenient to assess the safety for the homogeneous slurry trenches in practical applications.
Kalman Filter for Generalized 2-D Roesser Models
Institute of Scientific and Technical Information of China (English)
SHENG Mei; ZOU Yun
2007-01-01
The design problem of the state filter for the generalized stochastic 2-D Roesser models, which appears when both the state and measurement are simultaneously subjected to the interference from white noise, is discussed. The wellknown Kalman filter design is extended to the generalized 2-D Roesser models. Based on the method of "scanning line by line", the filtering problem of generalized 2-D Roesser models with mode-energy reconstruction is solved. The formula of the optimal filtering, which minimizes the variance of the estimation error of the state vectors, is derived. The validity of the designed filter is verified by the calculation steps and the examples are introduced.
Harvest Survive : Game Mechanics of Unity 2D Game
2014-01-01
The purpose of this project was to learn how to create Games in Unity 2D, to see the work-flow and to test if the new Unity 2D feature of the Unity engine was a good alternative for developing 2D games. A further aspect was to learn the different steps and mechanics of the Unity environment. The goal was to create a survival game, in which the player would have to grow plants in order to get food and money to stay alive in a hostile environment. The player has to survive in six different...
Optimization and practical implementation of ultrafast 2D NMR experiments
Energy Technology Data Exchange (ETDEWEB)
Queiroz Junior, Luiz H. K., E-mail: professorkeng@gmail.com [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Universidade Federal de Goias (UFGO), Goiania, GO (Brazil). Inst. de Quimica; Ferreira, Antonio G. [Universidade Federal de Sao Carlos (UFSC), SP (Brazil). Departamento de Quimica; Giraudeau, Patrick [Universite de Nantes (France). CNRS, Chimie et Interdisciplinarite: Synthese, Analyse, Modelisation
2013-09-01
Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively. (author)
Spin Waves in 2D ferromagnetic square lattice stripe
Ahmed, Maher Z.
2011-01-01
In this work, the area and edges spin wave calculations were carried out using the Heisenberg Hamiltonian and the tridiagonal method for the 2D ferromagnetic square lattice stripe, where the SW modes are characterized by a 1D in-plane wave vector $q_x$. The results show a general and an unexpected feature that the area and edge spin waves only exist as optic modes. This behavior is also seen in 2D Heisenberg antiferromagnetic square lattice. This absence of the acoustic modes in the 2D square...
Optimization and practical implementation of ultrafast 2D NMR experiments
Directory of Open Access Journals (Sweden)
Luiz H. K. Queiroz Júnior
2013-01-01
Full Text Available Ultrafast 2D NMR is a powerful methodology that allows recording of a 2D NMR spectrum in a fraction of second. However, due to the numerous non-conventional parameters involved in this methodology its implementation is no trivial task. Here, an optimized experimental protocol is carefully described to ensure efficient implementation of ultrafast NMR. The ultrafast spectra resulting from this implementation are presented based on the example of two widely used 2D NMR experiments, COSY and HSQC, obtained in 0.2 s and 41 s, respectively.
Introduction to game physics with Box2D
Parberry, Ian
2013-01-01
Written by a pioneer of game development in academia, Introduction to Game Physics with Box2D covers the theory and practice of 2D game physics in a relaxed and entertaining yet instructional style. It offers a cohesive treatment of the topics and code involved in programming the physics for 2D video games. Focusing on writing elementary game physics code, the first half of the book helps you grasp the challenges of programming game physics from scratch, without libraries or outside help. It examines the mathematical foundation of game physics and illustrates how it is applied in practice thro
2D electron cyclotron emission imaging at ASDEX Upgrade (invited)
Energy Technology Data Exchange (ETDEWEB)
Classen, I. G. J. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Boom, J. E.; Vries, P. C. de [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Suttrop, W.; Schmid, E.; Garcia-Munoz, M.; Schneider, P. A. [Max Planck Institut fuer Plasmaphysik, 85748 Garching (Germany); Tobias, B.; Domier, C. W.; Luhmann, N. C. Jr. [University of California at Davis, Davis, California 95616 (United States); Donne, A. J. H. [FOM-Institute for Plasma Physics, Rijnhuizen, 3430 BE Nieuwegein (Netherlands); Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Jaspers, R. J. E. [Eindhoven University of Technology, 5600 MB Eindhoven (Netherlands); Park, H. K. [POSTECH, Pohang, Gyeongbuk, 790-784 (Korea, Republic of); Munsat, T. [University of Colorado, Boulder, Colorado 80309 (United States)
2010-10-15
The newly installed electron cyclotron emission imaging diagnostic on ASDEX Upgrade provides measurements of the 2D electron temperature dynamics with high spatial and temporal resolution. An overview of the technical and experimental properties of the system is presented. These properties are illustrated by the measurements of the edge localized mode and the reversed shear Alfven eigenmode, showing both the advantage of having a two-dimensional (2D) measurement, as well as some of the limitations of electron cyclotron emission measurements. Furthermore, the application of singular value decomposition as a powerful tool for analyzing and filtering 2D data is presented.
First Principles Calculations of Electronic Excitations in 2D Materials
DEFF Research Database (Denmark)
Rasmussen, Filip Anselm
-thin electronics and high efficiency solar cells. Contrary to many other nano-materials, methods for large scale fabrication and patterning have already been demonstrated and the first real technological applications have already be showcased. Still the technology is very young and the number of well-studied 2D...... materials are few. However as the list of 2D materials is growing it is necessary to investigate their fundamental structural, electronic and optical properties. These are determined by the atomic and electronic structure of the materials that can quite accurately predicted by computational quantum...... as if it is being screened by the electrons in the material. This method has been very successful for calculating quasiparticle energies of bulk materials but results have been more varying for 2D materials. The reason is that the 2D confined electrons are less able to screen the added charge and some...
Emerging and potential opportunities for 2D flexible nanoelectronics
Zhu, Weinan; Park, Saungeun; Akinwande, Deji
2016-05-01
The last 10 years have seen the emergence of two-dimensional (2D) nanomaterials such as graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BP) among the growing portfolio of layered van der Waals thin films. Graphene, the prototypical 2D material has advanced rapidly in device, circuit and system studies that has resulted in commercial large-area applications. In this work, we provide a perspective of the emerging and potential translational applications of 2D materials including semiconductors, semimetals, and insulators that comprise the basic material set for diverse nanosystems. Applications include RF transceivers, smart systems, the so-called internet of things, and neurotechnology. We will review the DC and RF electronic performance of graphene and BP thin film transistors. 2D materials at sub-um channel length have so far enabled cut-off frequencies from baseband to 100GHz suitable for low-power RF and sub-THz concepts.
2-D electromagnetic simulation of passive microstrip circuits
Dueñas Jiménez, Alejandro
2009-01-01
A reference for circuit design engineers and microwave engineers. It uses a simple 2-D electromagnetic simulation procedure to provide basic knowledge and practical insight into quotidian problems of microstrip passive circuits applied to microwave systems and digital technologies.
2D gels still have a niche in proteomics
DEFF Research Database (Denmark)
Rogowska-Wrzesinska, Adelina; Le Bihan, Marie-Catherine; Thaysen-Andersen, Morten;
2013-01-01
) alternative detection methods for modification specific proteomics; 3) identification of protein isoforms and modified proteins. With an example of the glycoprotein TIMP-1 protein we illustrate the unique properties of 2D gels for the separation and characterisation of multiply modified proteins. We also show......With the rapid advance of MS-based proteomics one might think that 2D gel-based proteomics is dead. This is far from the truth. Current research has shown that there are still a number of places in the field of protein and molecular biology where 2D gels still play a leading role. The aim...... of this review is to highlight some of these applications. Examples from our own research as well as from other published works are used to illustrate the 2D gel driven research in the areas of: 1) de novo sequencing and protein identification from organisms with no or incomplete genome sequences available; 2...
Ghostine, Rabih
2014-12-01
In open channel networks, flow is usually approximated by the one-dimensional (1D) Saint-Venant equations coupled with an empirical junction model. In this work, a comparison in terms of accuracy and computational cost between a coupled 1D-2D shallow water model and a fully two-dimensional (2D) model is presented. The paper explores the ability of a coupled model to simulate the flow processes during supercritical flows in crossroads. This combination leads to a significant reduction in the computational time, as a 1D approach is used in branches and a 2D approach is employed in selected areas only where detailed flow information is essential. Overall, the numerical results suggest that the coupled model is able to accurately simulate the main flow processes. In particular, hydraulic jumps, recirculation zones, and discharge distribution are reasonably well reproduced and clearly identified. Overall, the proposed model leads to a 30% reduction in run times. © 2014 International Association for Hydro-Environment Engineering and Research.
Generating a 2D Representation of a Complex Data Structure
James, Mark
2006-01-01
A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.
Maximizing the Optical Band Gap in 2D Photonic Crystals
DEFF Research Database (Denmark)
Hougaard, Kristian G.; Sigmund, Ole
Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid.......Topology optimization is used to find the 2D photonic crystal designs with the largest relative photonic band gaps. Starting points for the topology optimization are found with an exhaustive binary search on a low resolution grid....
New design of 2-D photonic crystal waveguide couplers
Institute of Scientific and Technical Information of China (English)
ZHONG Zhi-rong; ZHANG Li-hua; YANG Hong-qin; JIANG Yun-kun
2006-01-01
@@ Based on couple wave equation and finite-difference time-domain (FDTD) algorithm,the strong couple characteristic of 2-D photonic crystal couplers is calculated.Theoretical analysis and numerical simulated results indicate that the energy in a 2-D photonic crystal coupler can not be totally transferred between two wave-guides.Compared with the result of weak coupling theory,our result is more accurate.
QSAR Models for P-450 (2D6) Substrate Activity
DEFF Research Database (Denmark)
Ringsted, Tine; Nikolov, Nikolai Georgiev; Jensen, Gunde Egeskov;
2009-01-01
activity relationship (QSAR) modelling systems. They cross validated (leave-groups-out) with concordances of 71%, 81% and 82%, respectively. Discrete organic European Inventory of Existing Commercial Chemical Substances (EINECS) chemicals were screened to predict an approximate percentage of CYP 2D6...... substrates. These chemicals are potentially present in the environment. The biological importance of the CYP 2D6 and the use of the software mentioned above were discussed....
Collins Model and Phase Diagram of 2D Ternary System
Institute of Scientific and Technical Information of China (English)
XIE Chuan-Mei; CHEN Li-Rong
2004-01-01
The Collins model is introduced into the two-dimensional (2D) alternative ternary system having the Lennard-Jones (L-J) potential. The Gibbs free energy of this ternary system is calculated, and according to thermodynamic theory, a group of equations that determine the solid-liquid diagram of ternary system are derived, some isothermal sectional diagrams of the 2D ternary system are obtained. The results are quite similar to the behavior of three-dimensional substances.
A simultaneous 2D/3D autostereo workstation
Chau, Dennis; McGinnis, Bradley; Talandis, Jonas; Leigh, Jason; Peterka, Tom; Knoll, Aaron; Sumer, Aslihan; Papka, Michael; Jellinek, Julius
2012-03-01
We present a novel immersive workstation environment that scientists can use for 3D data exploration and as their everyday 2D computer monitor. Our implementation is based on an autostereoscopic dynamic parallax barrier 2D/3D display, interactive input devices, and a software infrastructure that allows client/server software modules to couple the workstation to scientists' visualization applications. This paper describes the hardware construction and calibration, software components, and a demonstration of our system in nanoscale materials science exploration.
Technique of Embedding Depth Maps into 2D Images
Institute of Scientific and Technical Information of China (English)
Kazutake Uehira; Hiroshi Unno; Youichi Takashima
2014-01-01
This paper proposes a new technique that is used to embed depth maps into corresponding 2-dimensional (2D) images. Since a 2D image and its depth map are integrated into one type of image format, they can be treated as if they were one 2D image. Thereby, it can reduce the amount of data in 3D images by half and simplify the processes for sending them through networks because the synchronization between images for the left and right eyes becomes unnecessary. We embed depth maps in the quantized discrete cosine transform (DCT) data of 2D images. The key to this technique is whether the depth maps could be embedded into 2D images without perceivably deteriorating their quality. We try to reduce their deterioration by compressing the depth map data by using the differences from the next pixel to the left. We assume that there is only one non-zero pixel at most on one horizontal line in the DCT block because the depth map values change abruptly. We conduct an experiment to evaluate the quality of the 2D images embedded with depth maps and find that satisfactory quality could be achieved.
CYP2D6 variability in populations from Venezuela.
Moreno, Nancy; Flores-Angulo, Carlos; Villegas, Cecilia; Mora, Yuselin
2016-12-01
CYP2D6 is an important cytochrome P450 enzyme that plays an important role in the metabolism of about 25% of currently prescribed drugs. The presence of polymorphisms in the CYP2D6 gene may modulate enzyme level and activity, thereby affecting individual responses to pharmacological treatments. The most prevalent diseases in the admixed population from Venezuela are cardiovascular and cancer, whereas viral, bacterial and parasitic diseases, particularly malaria, are prevalent in Amerindian populations; in the treatment of these diseases, several drugs that are metabolized by CYP2D6 are used. In this work, we reviewed the data on CYP2D6 variability and predicted metabolizer phenotypes, in healthy volunteers of two admixed and five Amerindian populations from Venezuela. The Venezuelan population is very heterogeneous as a result of the genetic admixture of three major ethnical components: Europeans, Africans and Amerindians. There are noticeable inter-regional and inter-population differences in the process of mixing of this population. Hitherto, there are few published studies in Venezuela on CYP2D6; therefore, it is necessary to increase research in this regard, in particular to develop studies with a larger sample size. There is a considerable amount of work remaining before CYP2D6 is integrated into clinical practice in Venezuela.
Self-surface charge exfoliation and electrostatically coordinated 2D hetero-layered hybrids
Yang, Min-Quan; Xu, Yi-Jun; Lu, Wanheng; Zeng, Kaiyang; Zhu, Hai; Xu, Qing-Hua; Ho, Ghim Wei
2017-02-01
At present, the technological groundwork of atomically thin two-dimensional (2D) hetero-layered structures realized by successive thin film epitaxial growth is in principle constrained by lattice matching prerequisite as well as low yield and expensive production. Here, we artificially coordinate ultrathin 2D hetero-layered metal chalcogenides via a highly scalable self-surface charge exfoliation and electrostatic coupling approach. Specifically, bulk metal chalcogenides are spontaneously exfoliated into ultrathin layers in a surfactant/intercalator-free medium, followed by unconstrained electrostatic coupling with a dissimilar transition metal dichalcogenide, MoSe2, into scalable hetero-layered hybrids. Accordingly, surface and interfacial-dominated photocatalysis reactivity is used as an ideal testbed to verify the reliability of diverse 2D ultrathin hetero-layered materials that reveal high visible-light photoreactivity, efficient charge transfer and intimate contact interface for stable cycling and storage purposes. Such a synthetic approach renders independent thickness and composition control anticipated to advance the development of `design-and-build' 2D layered heterojunctions for large-scale exploration and applications.
Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip.
Hogan, Benjamin T; Dyakov, Sergey A; Brennan, Lorcan J; Younesy, Salma; Perova, Tatiana S; Gun'ko, Yurii K; Craciun, Monica F; Baldycheva, Anna
2017-02-10
In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.
Quasi 2D hydrodynamic modelling of the flooded hinterland due to dyke breaching on the Elbe River
Directory of Open Access Journals (Sweden)
S. Huang
2007-01-01
Full Text Available In flood modeling, many 1D and 2D combination and 2D models are used to simulate diversion of water from rivers through dyke breaches into the hinterland for extreme flood events. However, these models are too demanding in data requirements and computational resources which is an important consideration when uncertainty analysis using Monte Carlo techniques is used to complement the modeling exercise. The goal of this paper is to show the development of a quasi-2D modeling approach, which still calculates the dynamic wave in 1D but the discretisation of the computational units are in 2D, allowing a better spatial representation of the flow in the hinterland due to dyke breaching without a large additional expenditure on data pre-processing and computational time. A 2D representation of the flow and velocity fields is required to model sediment and micro-pollutant transport. The model DYNHYD (1D hydrodynamics from the WASP5 modeling package was used as a basis for the simulations. The model was extended to incorporate the quasi-2D approach and a Monte-Carlo Analysis was used to conduct a flood sensitivity analysis to determine the sensitivity of parameters and boundary conditions to the resulting water flow. An extreme flood event on the Elbe River, Germany, with a possible dyke breach area was used as a test case. The results show a good similarity with those obtained from another 1D/2D modeling study.
Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip
Hogan, Benjamin T.; Dyakov, Sergey A.; Brennan, Lorcan J.; Younesy, Salma; Perova, Tatiana S.; Gun’Ko, Yurii K.; Craciun, Monica F.; Baldycheva, Anna
2017-02-01
In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials.
Dynamic in-situ sensing of fluid-dispersed 2D materials integrated on microfluidic Si chip
Hogan, Benjamin T.; Dyakov, Sergey A.; Brennan, Lorcan J.; Younesy, Salma; Perova, Tatiana S.; Gun’ko, Yurii K.; Craciun, Monica F.; Baldycheva, Anna
2017-01-01
In this work, we propose a novel approach for wafer-scale integration of 2D materials on CMOS photonic chip utilising methods of synthetic chemistry and microfluidics technology. We have successfully demonstrated that this approach can be used for integration of any fluid-dispersed 2D nano-objects on silicon-on-insulator photonics platform. We demonstrate for the first time that the design of an optofluidic waveguide system can be optimised to enable simultaneous in-situ Raman spectroscopy monitoring of 2D dispersed flakes during the device operation. Moreover, for the first time, we have successfully demonstrated the possibility of label-free 2D flake detection via selective enhancement of the Stokes Raman signal at specific wavelengths. We discovered an ultra-high signal sensitivity to the xyz alignment of 2D flakes within the optofluidic waveguide. This in turn enables precise in-situ alignment detection, for the first practicable realisation of 3D photonic microstructure shaping based on 2D-fluid composites and CMOS photonics platform, while also representing a useful technological tool for the control of liquid phase deposition of 2D materials. PMID:28186118
基于概率模型的E-2D Mesh网络容错性分析%Fault Tolerance of E-2D Mesh Networks Based on Model of Probability
Institute of Scientific and Technical Information of China (English)
肖杰; 梁家荣; 黄亿海
2009-01-01
研究了太比特路由器核心交换网络拓扑的一种新结构-E-2D Mesh.提出一种计算E-2D Mesh网络连通率的新方法.证明了当网络结点失效率控制在0.66%以下时,具有四万多个结点的E-2D Mesh网络可保持不低于99%的连通率,且在同等规模条件下,E-2D Mesh网络结点容错率至少是Mesh网络的11.09倍.研究结果表明,该方法在计算E-2D Mesh网络连通率时显示出较强的生命力且能够用于研究其它层次的网络和其它网络通信问题.%A novel switching fabric is the core of the terabit router.--E-2D mesh networks are one of the most important network topologies In massively multiprocessor parallel systems. In this paper,a novel approach for calculating the probabilistic connectivity of E-2D mesh networks is proposed. The paper formally proves that when the networks'node failure probability is bounded by 0.66%, the E-2D mesh networks with over forty thousand nodes remain connected with probability larger than 99% , and in the same scale and conditions, the probability of E-2D mesh networks is 11.09 times greater than mesh networks. The results show that the method is a powerful technique for calculating the probabilistic connectivity in E-2D mesh networks,and the scheme is also applicable to the study of other hierarchical network structures and of other network communication problems.
Automatic 2D-to-3D image conversion using 3D examples from the internet
Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.
2012-03-01
The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D
The NH$_2$D hyperfine structure revealed by astrophysical observations
Daniel, F; Punanova, A; Harju, J; Faure, A; Roueff, E; Sipilä, O; Caselli, P; Güsten, R; Pon, A; Pineda, J E
2016-01-01
The 1$_{11}$-1$_{01}$ lines of ortho and para--NH$_2$D (o/p-NH$_2$D), respectively at 86 and 110 GHz, are commonly observed to provide constraints on the deuterium fractionation in the interstellar medium. In cold regions, the hyperfine structure due to the nitrogen ($^{14}$N) nucleus is resolved. To date, this splitting is the only one which is taken into account in the NH$_2$D column density estimates. We investigate how the inclusion of the hyperfine splitting caused by the deuterium (D) nucleus affects the analysis of the rotational lines of NH$_2$D. We present 30m IRAM observations of the above mentioned lines, as well as APEX o/p-NH$_2$D observations of the 1$_{01}$-0$_{00}$ lines at 333 GHz. The hyperfine spectra are first analyzed with a line list that only includes the hyperfine splitting due to the $^{14}$N nucleus. We find inconsistencies between the line widths of the 1$_{01}$-0$_{00}$ and 1$_{11}$-1$_{01}$ lines, the latter being larger by a factor of $\\sim$1.6$\\pm0.3$. Such a large difference is...
2D nanostructures for water purification: graphene and beyond.
Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C
2016-08-18
Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future.
Twin characterisation using 2D and 3D EBSD
Institute of Scientific and Technical Information of China (English)
M. D. NAVE; J. J. L. MULDERS; A. GHOLINIA
2005-01-01
Electron backscatter diffraction (EBSD) is a superior technique for twin characterisation due to its ability to provide highly detailed classification (by generation, system and variant) of a significant number of twins in a relatively short time. 2D EBSD is now widely used for twin characterisation and provides quite good estimates of twin volume fractions under many conditions. Nevertheless, its accuracy is limited by assumptions that have to be made due to the 2D nature of the technique. With 3D EBSD, two key assumptions are no longer required, as additional information can be derived from the 3D map. This paper compares the benefits and limitations of 2D and 3D EBSD for twin characterisation. 2D EBSD enables a larger number of twins to be mapped in a given space of time, giving better statistics. 3D EBSD provides more comprehensive twin characterisation and will be a valuable tool for validation of 2D stereological methods and microstructural models of twinning during deformation.
Failure Mechanism of True 2D Granular Flows
Nguyen, Cuong T; Fukagawa, R
2015-01-01
Most previous experimental investigations of two-dimensional (2D) granular column collapses have been conducted using three-dimensional (3D) granular materials in narrow horizontal channels (i.e., quasi-2D condition). Our recent research on 2D granular column collapses by using 2D granular materials (i.e., aluminum rods) has revealed results that differ markedly from those reported in the literature. We assume a 2D column with an initial height of h0 and initial width of d0, a defined as their ratio (a =h0/d0), a final height of h , and maximum run-out distance of d . The experimental data suggest that for the low a regime (a 0.65), the ratio of a to (d-d0)/d0, h0/h , or d/d0 is expressed by power-law relations. In particular, the following power-function ratios (h0/h=1.42a^2/3 and d/d0=4.30a^0.72) are proposed for every a >0.65. In contrast, the ratio (d-d0)/d0=3.25a^0.96 only holds for 0.651.5. In addition, the influence of ground contact surfaces (hard or soft beds) on the final run-out distance and destru...
A Polyhedral Object's CSG-Rep Reconstruction From a Single 2D Line Drawing
Wang, Weidong; Grinstein, Georges G.
1990-03-01
The interpretation of a 2D line drawing as a 3D scene is an important area of study within the fields of artificial intelligence and machine vision. In the area of CAD/CAM, research has focused on the reconstruction of a 3D solid from its engineering drawings, either with two views or three views, or from its wireframe representation. We have been working on the problem of automatically reconstructing a 3D solid object's Constructive Solid Geometry (CSG) representation from a single 2D line drawing of the object. This paper describes our approach as well as some preliminary results. We validate our approach on a restricted set of objects consisting of simple rectilinear polyhedra. Using the Huffman-Clowes labeling scheme we are able to successfully identify the primitive blocks necessary for the CSG tree generation, as well as the set operations that must be applied to them. Extension to general polyhedra is also discussed.
Tracking objects outside the line of sight using 2D intensity images
Klein, Jonathan; Peters, Christoph; Martín, Jaime; Laurenzis, Martin; Hullin, Matthias B.
2016-08-01
The observation of objects located in inaccessible regions is a recurring challenge in a wide variety of important applications. Recent work has shown that using rare and expensive optical setups, indirect diffuse light reflections can be used to reconstruct objects and two-dimensional (2D) patterns around a corner. Here we show that occluded objects can be tracked in real time using much simpler means, namely a standard 2D camera and a laser pointer. Our method fundamentally differs from previous solutions by approaching the problem in an analysis-by-synthesis sense. By repeatedly simulating light transport through the scene, we determine the set of object parameters that most closely fits the measured intensity distribution. We experimentally demonstrate that this approach is capable of following the translation of unknown objects, and translation and orientation of a known object, in real time.
Dynamic 2D-barcodes for multi-device Web session migration including mobile phones
DEFF Research Database (Denmark)
Alapetite, Alexandre
2010-01-01
This article introduces a novel Web architecture that supports session migration in multi-device Web applications, particularly the case when a user starts a Web session on a computer and wishes to continue on a mobile phone. The proposed solution for transferring the needed session identifiers...... are covered in the article, including a possible migration from a mobile device to a computer (opposite direction), and between two or more mobile phones (possibly back and forth). The results show that this HCI approach is inexpensive, efficient, and works with most camera-phones on the market; the author...... across devices is to dynamically generate pictures of 2D-barcodes containing a Web address and a session ID in an encoded form. 2D-barcodes are a cheap, fast and robust approach to the problem. They are widely known and used in Japan, and are spreading in other countries. Variations on the topic...
Multi-modal 2D-3D non-rigid registration
Prümmer, M.; Hornegger, J.; Pfister, M.; Dörfler, A.
2006-03-01
In this paper, we propose a multi-modal non-rigid 2D-3D registration technique. This method allows a non-rigid alignment of a patient pre-operatively computed tomography (CT) to few intra operatively acquired fluoroscopic X-ray images obtained with a C-arm system. This multi-modal approach is especially focused on the 3D alignment of high contrast reconstructed volumes with intra-interventional low contrast X-ray images in order to make use of up-to-date information for surgical guidance and other interventions. The key issue of non-rigid 2D-3D registration is how to define the distance measure between high contrast 3D data and low contrast 2D projections. In this work, we use algebraic reconstruction theory to handle this problem. We modify the Euler-Lagrange equation by introducing a new 3D force. This external force term is computed from the residual of the algebraic reconstruction procedures. In the multi-modal case we replace the residual between the digitally reconstructed radiographs (DRR) and observed X-ray images with a statistical based distance measure. We integrate the algebraic reconstruction technique into a variational registration framework, so that the 3D displacement field is driven to minimize the reconstruction distance between the volumetric data and its 2D projections using mutual information (MI). The benefits of this 2D-3D registration approach are its scalability in the number of used X-ray reference images and the proposed distance that can handle low contrast fluoroscopies as well. Experimental results are presented on both artificial phantom and 3D C-arm CT images.
Joint 2-D DOA and Noncircularity Phase Estimation Method
Directory of Open Access Journals (Sweden)
Wang Ling
2012-03-01
Full Text Available Classical joint estimation methods need large calculation quantity and multidimensional search. In order to avoid these shortcoming, a novel joint two-Dimension (2-D Direction Of Arrival (DOA and noncircularity phase estimation method based on three orthogonal linear arrays is proposed. The problem of 3-D parameter estimation can be transformed to three parallel 2-D parameter estimation according to the characteristic of three orthogonal linear arrays. Further more, the problem of 2-D parameter estimation can be transformed to 1-D parameter estimation by using the rotational invariance property among signal subspace and orthogonal property of noise subspace at the same time in every subarray. Ultimately, the algorithm can realize joint estimation and pairing parameters by one eigen-decomposition of extended covariance matrix. The proposed algorithm can be applicable for low SNR and small snapshot scenarios, and can estiame 2(M −1 signals. Simulation results verify that the proposed algorithm is effective.
Genetics, genomics, and evolutionary biology of NKG2D ligands.
Carapito, Raphael; Bahram, Seiamak
2015-09-01
Human and mouse NKG2D ligands (NKG2DLs) are absent or only poorly expressed by most normal cells but are upregulated by cell stress, hence, alerting the immune system in case of malignancy or infection. Although these ligands are numerous and highly variable (at genetic, genomic, structural, and biochemical levels), they all belong to the major histocompatibility complex class I gene superfamily and bind to a single, invariant, receptor: NKG2D. NKG2D (CD314) is an activating receptor expressed on NK cells and subsets of T cells that have a key role in the recognition and lysis of infected and tumor cells. Here, we review the molecular diversity of NKG2DLs, discuss the increasing appreciation of their roles in a variety of medical conditions, and propose several explanations for the evolutionary force(s) that seem to drive the multiplicity and diversity of NKG2DLs while maintaining their interaction with a single invariant receptor.
Cluster algebras in Scattering Amplitudes with special 2D kinematics
Torres, Marcus A C
2013-01-01
We study the cluster algebra of the kinematic configuration space $Conf_n(\\mathbb{P}^3)$ of a n-particle scattering amplitude restricted to the special 2D kinematics. We found that the n-points two loop MHV remainder function found in special 2D kinematics depend on a selection of \\XX-coordinates that are part of a special structure of the cluster algebra related to snake triangulations of polygons. This structure forms a necklace of hypercubes beads in the corresponding Stasheff polytope. Furthermore in $n = 12$, the cluster algebra and the selection of \\XX-coordinates in special 2D kinematics replicates the cluster algebra and the selection of \\XX-coordinates of $n=6$ two loop MHV amplitude in 4D kinematics.
Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings
Directory of Open Access Journals (Sweden)
Manuel Rosenberger
2015-02-01
Full Text Available We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain.
Design and Realization of Dynamic Obstacle on URWPSSim2D
Directory of Open Access Journals (Sweden)
Xiao Chen
2013-07-01
Full Text Available Simulation system is charged with the strategy validation and dual team meets, and as the 2-dimensional simulation platform for underwater robotic fish game, URWPGSim2D is the assigned platform for Chinese underwater robot contest and Robot cup underwater program. By now on URWPGSim2D, there is only static obstacles，thus short of changeableness. In order to improve the changeableness and innovation of robotic fish contest, to extend the space for the programming of contest strategy, and to increase the interest, this paper study the design of dynamic obstacles on URWPGSim2D, and design and implement two kinds of dynamic obstacles, which are the evadible dynamic obstacle and the forcing dribbling obstacle.
UPLAND EROSION MODELING WITH CASC2D-SED
Institute of Scientific and Technical Information of China (English)
Pierre JULIEN; Rosalía ROJAS
2002-01-01
Developed at Colorado State University, CASC2D-SED is a physically-based model simulating the hydrologic response of a watershed to a distributed rainfall field. The time-dependent processes include:precipitation, interception, infiltration, surface runoff and channel routing, upland erosion, transport and sedimentation. CASC2D-SED is applied to Goodwin Creek, Mississippi. The watershed covers 21 km2and has been extensively monitored both at the outlet and at several internal locations by the ARS-NSL at Oxford, MS. The model has been calibrated and validated using rainfall data from 16 meteorological stations, 6 stream gauging stations and 6 sediment gauging stations. Sediment erosion/deposition rates by size fraction are predicted both in space and time. Geovisualization, a powerful data exploration technique based on GIS technology, is used to analyze and display the dynamic output time series generated by the CASC2D-SED model.
Yuan, Lan; Yang, Min-Quan; Xu, Yi-Jun
2014-06-21
A two-dimensional (2D) SnNb2O6 nanosheet-graphene (SnNb2O6-GR) nanocomposite featuring a typical 2D-2D structure has been synthesized via a simple surface charge modified self-assembly approach. The method is afforded by electrostatic attractive interaction between negatively charged SnNb2O6 nanosheets and modified graphene nanosheets with a positively charged surface in an aqueous solution. The SnNb2O6-GR nanocomposite exhibits a distinctly enhanced visible light photocatalytic performance toward degradation of organic dye in water as compared to blank SnNb2O6 nanosheets. The enhanced photoactivity is attributed to the integrated factors of the intimate interfacial contact and unique 2D-2D morphology associated with SnNbO6 and GR, which are beneficial for harnessing the electron conductivity of GR, facilitating the transfer and separation of photogenerated charge carriers over SnNbO6-GR upon visible light irradiation, and thereby contributing to the photoactivity enhancement. It is hoped that this work could enrich the facile, efficient fabrication of various 2D-2D semiconductor nanosheet-graphene composite photocatalysts toward target photocatalytic applications.
Designing 2D arrays for SHM of planar structures: a review
Stepinski, Tadeusz; Ambrozinski, Lukasz; Uhl, Tadeusz
2013-04-01
Monitoring structural integrity of large planar structures that aims at detecting and localizing impact or damage at any point of the structure requires normally a relatively dense network of uniformly distributed ultrasonic sensors. 2-D ultrasonic phased arrays, due to their beam-steering capability and all azimuth angle coverage are a very promising tool for structural health monitoring (SHM) of plate-like structures using Lamb waves (LW). Linear phased arrays that have been proposed for that purpose, produce mirrored image characterized by azimuth dependent resolution, which prevents unequivocal damage localization. 2D arrays do not have this drawback and they are even capable of mode selectivity when generating and receiving LWs. Performance of 2D arrays depends on their topology as well as the number of elements (transducers) used and their spacing in terms of wavelength. In this paper we propose a consistent methodology for three-step: theoretical, numerical and experimental investigation of a diversity of 2D array topologies in SHM applications. In the first step, the theoretical evaluation is performed using frequency-dependent structure transfer function (STF). STF that defines linear propagation of different LWs modes through the dispersive medium enables theoretical investigation of the particular array performance for a predefined tone-burst excitation signal. A dedicated software tool has been developed for the numerical evaluation of 2D array directional characteristics (beampattern) in a specific structure. The simulations are performed using local interaction simulation approach (LISA), implemented using NVIDIA CUDA graphical computation unit (GPU), which enables time-efficient 3D simulations of LWs propagation. Beampatterns of a 2D array can be to some extend evaluated analytically and using numerical simulations; in most cases, however, they require experimental verification. Using scanning laser vibrometer is proposed for that purpose, in a setup
Cortés-Vega, Luis
2015-09-01
We built, based on the Euclidean algorithm, a functional technique, which allows to discover a direct proof of Chinese Remainder Theorem. Afterwards, by using this functional approach, we present some applications to 2-D acoustic diffractal diffusers. The novelty of the method is their functional algorithmic character, which improves ideas, as well as, other results of the author and his collaborators in a previous work.
A robust data completion method for 2D Laplacian Cauchy problems
Energy Technology Data Exchange (ETDEWEB)
Delvare, F [Laboratoire Energetique Explosions Structures and Institut PRISME, Universite d' Orleans and ENSI de Bourges, 88 Boulevard Lahitolle, 18020 Bourges Cedex (France); Cimetiere, A [Laboratoire de Metallurgie Physique, Universite de Poitiers and ENSMA Poitiers, Boulevard Marie et Pierre CURIE, Teleport 2, BP 30179, 86962 Futuroscope Chasseneuil Cedex (France)], E-mail: franck.delvare@ensi-bourges.fr, E-mail: alain.cimetiere@univ-poitiers.fr
2008-11-01
The purpose is to propose an improved regularization method for data completion problems. This method is presented on the Cauchy problem for the Laplace equation in 2D situations. Many numerical simulations using finite element method highlight the efficiency of this new approach. In particular, it gives reconstructions with an increased accuracy, it is stable with respect to strong perturbations on the data and is able to deblur noisy data.
Comparison between 2D and 3D Modelling of Induction Machine Using Finite Element Method
Directory of Open Access Journals (Sweden)
Zelmira Ferkova
2015-01-01
Full Text Available The paper compares two different ways (2D and 3D of modelling of two-phase squirrel-cage induction machine using the finite element method (FEM. It focuses mainly on differences between starting characteristics given from both types of the model. It also discusses influence of skew rotor slots on harmonic content in air gap flux density and summarizes some issues of both approaches.
2D Sketch based recognition of 3D freeform shapes by using the RBF Neural Network
Qin, S F; Sun, Guangmin; Wright, D K; Lim, S.; Khan, U.; Mao, C.
2005-01-01
This paper presents a novel free-form surface recognition method from 2D freehand sketching. The approach is based on the Radial basis function (RBF), an artificial intelligence technique. A simple three-layered network has been designed and constructed. After training and testing with two types of surfaces (four sided boundary surfaces and four close section surfaces), it has been shown that the method is useful in freeform surface recognition. The testing results are very satisfactory.
2D sketch based recognition of 3D freeform shape by using the RBF neural network
Qin, SF; Sun, GM; Wright, DK; Lim, S.; Khan, U.; Mao, C.
2005-01-01
This paper presents a novel free-form surface recognition method from 2D freehand sketching. The approach is based on the Radial basis function (RBF), an artificial intelligence technique. A simple three-layered network has been designed and constructed. After training and testing with two types of surfaces (four sided boundary surfaces and four close section surfaces), it has been shown that the method is useful in freeform surface recognition. The testing results are very satisfactory.
NEW FAST ALGORITHM FOR 2-D ANGLE-OF-ARRIVAL ESTIMATION
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Based on propagator method, a fast 2-D Angle-Of-Arrival (AOA) algorithm is proPosed in this paper. The proposed algorithm does not need the Eigen-Value Decomposition (EVD) or Singular Value Decomposition (SVD) of the Sample Covariance Matrix (SCM), thus the fast algorithm has lower computational complexity with insignificant performance degradation when comparing with conventional subspace approaches. Furthermore, the proposed algorithm has no performance degradation. Finally, computer simulations verify the effectiveness of the proposed algorithm.
Removal of Spectro-Polarimetric Fringes by 2D Pattern Recognition
Casini, R.; Judge, P. G.; Schad, T. A.
2012-01-01
We present a pattern-recognition based approach to the problem of removal of polarized fringes from spectro-polarimetric data. We demonstrate that 2D Principal Component Analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us in principle to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction...
CH2D+, the Search for the Holy Grail
Roueff, E; Lis, D C; Wootten, A; Marcelino, N; cernicharo, J; Tercero, B
2013-01-01
CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of K, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+ and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.
EEG simulation by 2D interconnected chaotic oscillators
Energy Technology Data Exchange (ETDEWEB)
Kubany, Adam, E-mail: adamku@bgu.ac.i [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Mhabary, Ziv; Gontar, Vladimir [Department of Industrial Engineering and Management, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel)
2011-01-15
Research highlights: ANN of 2D interconnected chaotic oscillators is explored for EEG simulation. An inverse problem solution (PRCGA) is proposed. Good matching between the simulated and experimental EEG signals has been achieved. - Abstract: An artificial neuronal network composed by 2D interconnected chaotic oscillators is explored for brain waves (EEG) simulation. For the inverse problem solution a parallel real-coded genetic algorithm (PRCGA) is proposed. In order to conduct thorough comparison between the simulated and target signal characteristics, a spectrum analysis of the signals is undertaken. A good matching between the theoretical and experimental EEG signals has been achieved. Numerical results of calculations are presented and discussed.
2D fluid simulations of interchange turbulence with ion dynamics
DEFF Research Database (Denmark)
Nielsen, Anders Henry; Madsen, Jens; Xu, G. S.
2013-01-01
In this paper we present a first principle global two-dimensional fluid model. The HESEL (Hot Edge SOL Electrostatic) model is a 2D numerical fluid code, based on interchange dynamics and includes besides electron also the ion pressure dynamic. In the limit of cold ions the model almost reduces......B vorticity as well as the ion diamagnetic vorticity. The 2D domain includes both open and closed field lines and is located on the out-board midplane of a tokamak. On open field field lines the parallel dynamics are parametrized as sink terms depending on the dynamic quantities; density, electron and ion...
Recording 2-D Nutation NQR Spectra by Random Sampling Method.
Glotova, Olga; Sinyavsky, Nikolaj; Jadzyn, Maciej; Ostafin, Michal; Nogaj, Boleslaw
2010-10-01
The method of random sampling was introduced for the first time in the nutation nuclear quadrupole resonance (NQR) spectroscopy where the nutation spectra show characteristic singularities in the form of shoulders. The analytic formulae for complex two-dimensional (2-D) nutation NQR spectra (I = 3/2) were obtained and the condition for resolving the spectral singularities for small values of an asymmetry parameter η was determined. Our results show that the method of random sampling of a nutation interferogram allows significant reduction of time required to perform a 2-D nutation experiment and does not worsen the spectral resolution.
Exact computation of scalar 2D aerial imagery
Gordon, Ronald L.
2002-07-01
An exact formulation of the problem of imaging a 2D object through a Koehler illumination system is presented; the accurate simulation of a real layout is then not time- limited but memory-limited. The main idea behind the algorithm is that the boundary of the region that comprise a typical TCC Is made up of circular arcs, and therefore the area - which determines the value of the TCC - should be exactly computable in terms of elementary analytical functions. A change to integration around the boundary leads to an expression with minimal dependence on expensive functions such as arctangents and square roots. Numerical comparisons are made for a simple 2D structure.
GENERALIZED VARIATIONAL OPTIMAZATION ANALYSIS FOR 2-D FLOW FIELD
Institute of Scientific and Technical Information of China (English)
HUANG Si-xun; XU Ding-hua; LAN Wei-ren; TENG Jia-jun
2005-01-01
The Variational Optimization Analysis Method (VOAM) for 2-D flow field suggested by Sasaki was reviewed first. It is known that the VOAM can be used efficiently in most cases. However, in the cases where there are high frequency noises in 2-D flow field, it appears to be inefficient. In the present paper, based on Sasaki's VOAM, a Generalized Variational Optimization Analysis Method (GVOAM) was proposed with regularization ideas, which could deal well with flow fields containing high frequency noises. A numerical test shows that observational data can be both variationally optimized and filtered, and therefore the GVOAM is an efficient method.
On the Nonrelativistic 2D Purely Magnetic Supersymmetric Pauli Operator
Grinevich, P.; Mironov, A.(Lebedev Physics Institute; ITEP, Moscow, Russia); Novikov, S.
2011-01-01
The Complete Manifold of Ground State Eigenfunctions for the Purely Magnetic 2D Pauli Operator is considered as a by-product of the new reduction found by the present authors few years ago for the Algebrogeometric Inverse Spectral Data (i.e. Riemann Surfaces and Divisors). This reduction is associated with the (2+1) Soliton Hierarhy containing a 2D analog of the famous "Burgers System". This article contains also exposition of the previous works made since 1980 including the first topological...
Use of Proteomics Analysis for Molecular Precision Approaches in Cancer Therapy
Directory of Open Access Journals (Sweden)
Yuqiao Shen
2008-01-01
Full Text Available The rapidly expanding data sets derived from genomic and transcriptomic analyses have allowed greater understanding of structural and functional network patterns within the genome resulting in a realignment of thinking within a systems biologic framework of cancer. However, insofar as spatially and temporally dynamic differential gene expression at the protein level is the mediate effector of cellular behavior and, in view of extensive post translational modiﬁcation (PTM, the need for sensitive, quantitative, and high throughput proteomic analytic techniques has emerged. To circumvent the problems of tissue sample heterogeneity, laser capture microdissection (LCM allows for the acquisition of homogeneous cell populations. Using different ﬂ uorescent dyes to label protein samples prior to gel electrophoresis, 2-D DIGE (two- dimensional differential in-gel electrophoresis can, with reasonable sensitivity, process three protein samples on the same gel allowing for intragel relative quantiﬁcation. MudPIT (multidimensional protein identiﬁcation technology is a non-gel approach exploiting the unique physical properties of charge and hydrophobicity which allows the separation of peptide mixtures as well as direct MS (mass spectrometry and database searching. The introduction of iTRAQ (isobaric tags for relative and absolute quantiﬁcation achieves labeling of all peptides by employing an 8-plex set of amine reactive tags to derivatize peptides at the N-terminus and lysine side chains allowing for absolute quantiﬁcation and assessment of PTM. These and other new laboratory technologies, along with improved bioinformatics tools, have started to make signiﬁ cant contributions in cancer diagnostics and treatments.
Coordinated Precoding for D2D Communications Underlay Uplink MIMO Cellular Networks
Directory of Open Access Journals (Sweden)
Bing Fang
2016-01-01
Full Text Available We study the coordinated precoding problem for device-to-device (D2D communications underlay multiple-input multiple-output (MIMO cellular networks. The system model considered here constitutes multiple D2D user pairs attempting to share the uplink radio resources of a cellular network. We first formulate the coordinated precoding problem for the D2D user pairs as a sum-rate maximization (SRM problem, which is subject to a total interference power constraint imposed to protect the base station (BS and individual transmit power budgets available for each D2D user pair. Since the formulated SRM problem is nonconvex in general, we reformulate it as a difference convex- (DC- type programming problem, which can be iteratively solved by employing the famous successive convex approximation (SCA method. Moreover, a proximal-point-based regularization approach is also pursued here to ensure the convergence of the proposed algorithm. Interestingly, the centralized precoding algorithm can also lend itself to a distributed implementation. By introducing a price-based interference management mechanism, we reformulate the coordinated precoding problem as a Stackelberg game. Then, a distributed precoding algorithm is developed based on the concept of Stackelberg equilibrium (SE. Finally, numerical simulations are also provided to demonstrate the proposed algorithms. Results show that our algorithms can converge fast to a satisfactory solution with guaranteed convergence.
Shin, Keun-Young; Kim, Minkyu; Lee, James S.; Jang, Jyongsik
2015-09-01
Highly omnidirectional and frequency controllable carbon/polyaniline (C/PANI)-based, two- (2D) and three-dimensional (3D) monopole antennas were fabricated using screen-printing and a one-step, dimensionally confined hydrothermal strategy, respectively. Solvated C/PANI was synthesized by low-temperature interfacial polymerization, during which strong π-π interactions between graphene and the quinoid rings of PANI resulted in an expanded PANI conformation with enhanced crystallinity and improved mechanical and electrical properties. Compared to antennas composed of pristine carbon or PANI-based 2D monopole structures, 2D monopole antennas composed of this enhanced hybrid material were highly efficient and amenable to high-frequency, omnidirectional electromagnetic waves. The mean frequency of C/PANI fiber-based 3D monopole antennas could be controlled by simply cutting and stretching the antenna. These antennas attained high peak gain (3.60 dBi), high directivity (3.91 dBi) and radiation efficiency (92.12%) relative to 2D monopole antenna. These improvements were attributed the high packing density and aspect ratios of C/PANI fibers and the removal of the flexible substrate. This approach offers a valuable and promising tool for producing highly omnidirectional and frequency-controllable, carbon-based monopole antennas for use in wireless networking communications on industrial, scientific, and medical (ISM) bands.
Higher-Order Neural Networks Applied to 2D and 3D Object Recognition
Spirkovska, Lilly; Reid, Max B.
1994-01-01
A Higher-Order Neural Network (HONN) can be designed to be invariant to geometric transformations such as scale, translation, and in-plane rotation. Invariances are built directly into the architecture of a HONN and do not need to be learned. Thus, for 2D object recognition, the network needs to be trained on just one view of each object class, not numerous scaled, translated, and rotated views. Because the 2D object recognition task is a component of the 3D object recognition task, built-in 2D invariance also decreases the size of the training set required for 3D object recognition. We present results for 2D object recognition both in simulation and within a robotic vision experiment and for 3D object recognition in simulation. We also compare our method to other approaches and show that HONNs have distinct advantages for position, scale, and rotation-invariant object recognition. The major drawback of HONNs is that the size of the input field is limited due to the memory required for the large number of interconnections in a fully connected network. We present partial connectivity strategies and a coarse-coding technique for overcoming this limitation and increasing the input field to that required by practical object recognition problems.
DETECTION OF N{sub 2}D{sup +} IN A PROTOPLANETARY DISK
Energy Technology Data Exchange (ETDEWEB)
Huang, Jane; Öberg, Karin I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-08-20
Observations of deuterium fractionation in the solar system, and in interstellar and circumstellar material, are commonly used to constrain the formation environment of volatiles. Toward protoplanetary disks, this approach has been limited by the small number of detected deuterated molecules, i.e., DCO{sup +} and DCN. Based on ALMA Cycle 2 observations toward the disk around the T Tauri star AS 209, we report the first detection of N{sub 2}D{sup +} (J = 3–2) in a protoplanetary disk. These data are used together with previous Submillimeter Array observations of N{sub 2}H{sup +} (J = 3–2) to estimate a disk-averaged D/H ratio of 0.3–0.5, an order of magnitude higher than disk-averaged ratios previously derived for DCN/HCN and DCO{sup +}/HCO{sup +} around other young stars. The high fractionation in N{sub 2}H{sup +} is consistent with model predictions. The presence of abundant N{sub 2}D{sup +} toward AS 209 also suggests that N{sub 2}D{sup +} and the N{sub 2}D{sup +}/N{sub 2}H{sup +} ratio can be developed into effective probes of deuterium chemistry, kinematics, and ionization processes outside the CO snow line of disks.
2D-3D Face Recognition Method Based on a Modified CCA-PCA Algorithm
Directory of Open Access Journals (Sweden)
Patrik Kamencay
2014-03-01
Full Text Available This paper presents a proposed methodology for face recognition based on an information theory approach to coding and decoding face images. In this paper, we propose a 2D-3D face-matching method based on a principal component analysis (PCA algorithm using canonical correlation analysis (CCA to learn the mapping between a 2D face image and 3D face data. This method makes it possible to match a 2D face image with enrolled 3D face data. Our proposed fusion algorithm is based on the PCA method, which is applied to extract base features. PCA feature-level fusion requires the extraction of different features from the source data before features are merged together. Experimental results on the TEXAS face image database have shown that the classification and recognition results based on the modified CCA-PCA method are superior to those based on the CCA method. Testing the 2D-3D face match results gave a recognition rate for the CCA method of a quite poor 55% while the modified CCA method based on PCA-level fusion achieved a very good recognition score of 85%.
Fast 2D-DCT implementations for VLIW processors
Sohm, OP; Canagarajah, CN; Bull, DR
1999-01-01
This paper analyzes various fast 2D-DCT algorithms regarding their suitability for VLIW processors. Operations for truncation or rounding which are usually neglected in proposals for fast algorithms have also been taken into consideration. Loeffler's algorithm with parallel multiplications was found to be most suitable due to its parallel structure
2D nanomaterials based electrochemical biosensors for cancer diagnosis.
Wang, Lu; Xiong, Qirong; Xiao, Fei; Duan, Hongwei
2017-03-15
Cancer is a leading cause of death in the world. Increasing evidence has demonstrated that early diagnosis holds the key towards effective treatment outcome. Cancer biomarkers are extensively used in oncology for cancer diagnosis and prognosis. Electrochemical sensors play key roles in current laboratory and clinical analysis of diverse chemical and biological targets. Recent development of functional nanomaterials offers new possibilities of improving the performance of electrochemical sensors. In particular, 2D nanomaterials have stimulated intense research due to their unique array of structural and chemical properties. The 2D materials of interest cover broadly across graphene, graphene derivatives (i.e., graphene oxide and reduced graphene oxide), and graphene-like nanomaterials (i.e., 2D layered transition metal dichalcogenides, graphite carbon nitride and boron nitride nanomaterials). In this review, we summarize recent advances in the synthesis of 2D nanomaterials and their applications in electrochemical biosensing of cancer biomarkers (nucleic acids, proteins and some small molecules), and present a personal perspective on the future direction of this area.
The partition function of 2d string theory
Dijkgraaf, R; Plesser, R
1993-01-01
We derive a compact and explicit expression for the generating functional of all correlation functions of tachyon operators in 2D string theory. This expression makes manifest relations of the $c=1$ system to KP flow and $W_{1+\\infty}$ constraints. Moreover we derive a Kontsevich-Penner integral representation of this generating functional.
The toroidal Hausdorff dimension of 2d Euclidean quantum gravity
DEFF Research Database (Denmark)
Ambjorn, Jan; Budd, Timothy George
2013-01-01
The lengths of shortest non-contractible loops are studied numerically in 2d Euclidean quantum gravity on a torus coupled to conformal field theories with central charge less than one. We find that the distribution of these geodesic lengths displays a scaling in agreement with a Hausdorff dimension...
Validation of minor species of the MIPAS2D database
Directory of Open Access Journals (Sweden)
Enzo Papandrea
2014-01-01
Full Text Available The MIPAS2D [Dinelli et al., 2010] database has been developed applying the tomographic analysis technique GMTR [Carlotti et al., 2001] to measurements acquired in the nominal observation mode of the complete MIPAS (Michelson Interferometer for Passive Atmosphere Sounding [Fischer et al., 2008] mission. […
The 2D Boussinesq equations with logarithmically supercritical velocities
Chae, Dongho
2011-01-01
This paper investigates the global (in time) regularity of solutions to a system of equations that generalize the vorticity formulation of the 2D Boussinesq-Navier-Stokes equations. The velocity $u$ in this system is related to the vorticity $\\omega$ through the relations $u=\
Dynamic and approximate pattern matching in 2D
DEFF Research Database (Denmark)
Clifford, Raphaël; Fontaine, Allyx; Starikovskaya, Tatiana
2016-01-01
updates can be performed in O(log2 n) time and queries in O(log2 m) time. - We then consider a model where an update is a new 2D pattern and a query is a location in the text. For this setting we show that Hamming distance queries can be answered in O(log m + H) time, where H is the relevant Hamming...... distance. - Extending this work to allow approximation, we give an efficient algorithm which returns a (1+ε) approximation of the Hamming distance at a given location in O(ε−2 log2 m log log n) time. Finally, we consider a different setting inspired by previous work on locality sensitive hashing (LSH......). Given a threshold k and after building the 2D text index and receiving a 2D query pattern, we must output a location where the Hamming distance is at most (1 + ε)k as long as there exists a location where the Hamming distance is at most k. - For our LSH inspired 2D indexing problem, the text can...
2D InP photonic crystal fabrication process development
Rong, B.; Van der Drift, E.; Van der Heijden, R.W.; Salemink, H.W.M.
2006-01-01
We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectri
Band Alignment of 2D Transition Metal Dichalcogenide Heterojunctions
Chiu, Ming Hui
2016-09-20
It is critically important to characterize the band alignment in semiconductor heterojunctions (HJs) because it controls the electronic and optical properties. However, the well-known Anderson\\'s model usually fails to predict the band alignment in bulk HJ systems due to the presence of charge transfer at the interfacial bonding. Atomically thin 2D transition metal dichalcogenide materials have attracted much attention recently since the ultrathin HJs and devices can be easily built and they are promising for future electronics. The vertical HJs based on 2D materials can be constructed via van der Waals stacking regardless of the lattice mismatch between two materials. Despite the defect-free characteristics of the junction interface, experimental evidence is still lacking on whether the simple Anderson rule can predict the band alignment of HJs. Here, the validity of Anderson\\'s model is verified for the 2D heterojunction systems and the success of Anderson\\'s model is attributed to the absence of dangling bonds (i.e., interface dipoles) at the van der Waal interface. The results from the work set a foundation allowing the use of powerful Anderson\\'s rule to determine the band alignments of 2D HJs, which is beneficial to future electronic, photonic, and optoelectronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rheological Properties of Quasi-2D Fluids in Microgravity
Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2015-01-01
In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.
Research Synthesis and Characterization of 2D Conjugated Polymers
2007-07-13
polythiophene chain on the Scheme should necessarily result in a continuous brick wall 2D structure). Furthermore, the design should eliminate any...Photoelectron Spectroscopy and Ultraviolet Photoelectron Spectroscopy are under way. We have also conducted preliminary experiments on the two other low
Design of the LRP airfoil series using 2D CFD
DEFF Research Database (Denmark)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N.;
2014-01-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Nav...
BPS black holes in N=2 D=4 gauged supergravities
Hristov, K.; Looyestijn, H.T.; Vandoren, S.J.G.
2010-01-01
We construct and analyze BPS black hole solutions in gauged N=2, D=4 supergravity with charged hypermultiplets. A class of solutions can be found through spontaneous symmetry breaking in vacua that preserve maximal supersymmetry. The resulting black holes do not carry any hair for the scalars. We de
Maximizing entropy of image models for 2-D constrained coding
DEFF Research Database (Denmark)
Forchhammer, Søren; Danieli, Matteo; Burini, Nino;
2010-01-01
£ 2 squares contains all 0s or all 1s. The maximum values of the entropy for the constraints are estimated and binary PRF satisfying the constraint are characterized and optimized w.r.t. the entropy. The maximum binary PRF entropy is 0.839 bits/symbol for the no uniform squares constraint. The entropy...... of the Markov random field defined by the 2-D constraint is estimated to be (upper bounded by) 0.8570 bits/symbol using the iterative technique of Belief Propagation on 2 £ 2 finite lattices. Based on combinatorial bounding techniques the maximum entropy for the constraint was determined to be 0.848.......This paper considers estimating and maximizing the entropy of two-dimensional (2-D) fields with application to 2-D constrained coding. We consider Markov random fields (MRF), which have a non-causal description, and the special case of Pickard random fields (PRF). The PRF are 2-D causal finite...
The Anglo-Australian Observatory's 2dF Facility
Lewis, I J; Taylor, K; Glazebrook, K; Bailey, J A; Baldry, I K; Barton, J R; Bridges, T J; Dalton, G B; Farrell, T J; Gray, P M; Lankshear, A; McCowage, C; Parry, I R; Sharples, R M; Shortridge, K; Smith, G A; Stevenson, J; Straede, J O; Waller, L G; Whittard, J D; Wilcox, J K; Willis, K C
2002-01-01
The 2dF (Two-degree Field) facility at the prime focus of the Anglo-Australian Telescope provides multiple object spectroscopy over a 2 degree field of view. Up to 400 target fibres can be independently positioned by a complex robot. Two spectrographs provide spectra with resolutions of between 500 and 2000, over wavelength ranges of 440nm and 110nm respectively. The 2dF facility began routine observations in 1997. 2dF was designed primarily for galaxy redshift surveys and has a number of innovative features. The large corrector lens incorporates an atmospheric dispersion compensator, essential for wide wavelength coverage with small diameter fibres. The instrument has two full sets of fibres on separate field plates, so that re-configuring can be done in parallel with observing. The robot positioner places one fibre every 6 seconds, to a precision of 0.3 arcsec (20micron) over the full field. All components of 2dF, including the spectrographs, are mounted on a 5-m diameter telescope top-end ring for ease of ...
Nonlinear excursions of particles in ideal 2D flows
DEFF Research Database (Denmark)
Aref, Hassan; Pedersen, Johan Rønby; Stremler, Mark A.;
2010-01-01
A number of problems related to particle trajectories in ideal 2D flows are discussed. Both regular particle paths, corresponding to integrable dynamics, and irregular or chaotic paths may arise. Examples of both types are shown. Sometimes, in the same flow, certain particles will follow regular ...
Approximate 2D inversion of airborne TEM data
DEFF Research Database (Denmark)
Christensen, N.B.; Wolfgram, Peter
2006-01-01
We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model ....... Application to GEOTEM data over the Harmony nickel sulphide deposit recovered the three dipping conductors in the 2D section despite their complex structure and high conductivity contrast.......We propose an approximate two-dimensional inversion procedure for transient electromagnetic data. The method is a two-stage procedure, where data are first inverted with 1D multi-layer models. The 1D model section is then considered as data for the next inversion stage that produces the 2D model...... section. For moving platform data there is translational invariance and the second part of the inversion becomes a deconvolution. The convolution kernels are computed by perturbing one model element in an otherwise homogeneous 2D section and calculating full nonlinear responses. These responses...
CFD code comparison for 2D airfoil flows
DEFF Research Database (Denmark)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.;
2016-01-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3 × ...
Discrepant Results in a 2-D Marble Collision
Kalajian, Peter
2013-01-01
Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…
CANONICAL COMPUTATIONAL FORMS FOR AR 2-D SYSTEMS
ROCHA, P; WILLEMS, JC
1990-01-01
A canonical form for AR 2-D systems representations is introduced. This yields a method for computing the system trajectories by means of a line-by-line recursion, and displays some relevant information about the system structure such as the choice of inputs and initial conditions.
A VARIATIONAL MODEL FOR 2-D MICROPOLAR BLOOD FLOW
Institute of Scientific and Technical Information of China (English)
He Ji-huan
2003-01-01
The micropolar fluid model is an essential generalization of the well-established Navier-Stokes model in the sense that it takes into account the microstructure of the fluid.This paper is devolted to establishing a variational principle for 2-D incompressible micropolar blood flow.
Computational study of interfaces and edges of 2D materials
Farmanbar Gelepordsari, M.
2016-01-01
The discovery of graphene and its intriguing properties has given birth to the field of two-dimensional (2D) materials. These materials are characterized by a strong covalent bonding between the atoms within a plane, but weak, van derWaals, bonding between the planes. Such materials can be isolated
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Brorsen, Michael
This report is an extension of the study presented in Lykke Andersen and Brorsen, 2006 and includes results from the irregular wave tests, where Lykke Andersen & Brorsen, 2006 focused on regular waves. The 2D physical model tests were carried out in the shallow wave flume at Dept. of Civil...
Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.
2016-08-01
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets
Cytochrome P-450 2D6 (CYP2D6) Genotype and Breast Cancer Recurrence in Tamoxifen-Treated Patients
DEFF Research Database (Denmark)
Ahern, Thomas P; Hertz, Daniel L; Damkier, Per;
2017-01-01
-infiltrated tissues, all of which showed excellent CYP2D6 genotype agreement. We applied these concordance data to a quantitative bias analysis of the subset of the 31 studies that were based on genotypes from tumor-infiltrated tissue to examine whether genotyping errors substantially biased estimates of association....... The bias analysis showed negligible bias by discordant genotypes. Summary estimates of association, with or without bias adjustment, indicated no clinically important association between CYP2D6 genotype and breast cancer survival in tamoxifen-treated women....
Energy Technology Data Exchange (ETDEWEB)
Giaddui, T; Yu, J; Xiao, Y [Thomas Jefferson University, Philadelphia, PA (United States); Jacobs, P [MIM Software, Inc, Cleavland, Ohio (United States); Manfredi, D; Linnemann, N [IROC Philadelphia, RTQA Center, Philadelphia, PA (United States)
2015-06-15
Purpose: 2D-2D kV image guided radiation therapy (IGRT) credentialing evaluation for clinical trial qualification was historically qualitative through submitting screen captures of the fusion process. However, as quantitative DICOM 2D-2D and 2D-3D image registration tools are implemented in clinical practice for better precision, especially in centers that treat patients with protons, better IGRT credentialing techniques are needed. The aim of this work is to establish methodologies for quantitatively reviewing IGRT submissions based on DICOM 2D-2D and 2D-3D image registration and to test the methodologies in reviewing 2D-2D and 2D-3D IGRT submissions for RTOG/NRG Oncology clinical trials qualifications. Methods: DICOM 2D-2D and 2D-3D automated and manual image registration have been tested using the Harmony tool in MIM software. 2D kV orthogonal portal images are fused with the reference digital reconstructed radiographs (DRR) in the 2D-2D registration while the 2D portal images are fused with DICOM planning CT image in the 2D-3D registration. The Harmony tool allows alignment of the two images used in the registration process and also calculates the required shifts. Shifts calculated using MIM are compared with those submitted by institutions for IGRT credentialing. Reported shifts are considered to be acceptable if differences are less than 3mm. Results: Several tests have been performed on the 2D-2D and 2D-3D registration. The results indicated good agreement between submitted and calculated shifts. A workflow for reviewing these IGRT submissions has been developed and will eventually be used to review IGRT submissions. Conclusion: The IROC Philadelphia RTQA center has developed and tested a new workflow for reviewing DICOM 2D-2D and 2D-3D IGRT credentialing submissions made by different cancer clinical centers, especially proton centers. NRG Center for Innovation in Radiation Oncology (CIRO) and IROC RTQA center continue their collaborative efforts to enhance
Half-metallicity in 2D organometallic honeycomb frameworks
Sun, Hao; Li, Bin; Zhao, Jin
2016-10-01
Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.
Human factors flight trial analysis for 2D/3D SVS
Schiefele, Jens; Howland, Duncan; Maris, John; Wipplinger, Patrick
2004-08-01
The paper describes flight trials performed in Reno, NV. Flight trial were conducted with a Cheyenne 1 from Marinvent. Twelve pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely andomized settings. Three different settings (standard displays, 2D moving map, and 2D/3D moving map) were evaluated. They included seamless evaluation for STAR, approach, and taxi operations. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional and time accuracy were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, situation awareness rating technique (SART), situational awareness probe (SAP), and questionnaires.This article describes the human factor analysis from flight trials performed in Reno, NV. Flight trials were conducted with a Cheyenne 1 from Marinvent. Thirteen pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely randomized settings. Three different display configurations: Elec. Flight Information System (EFIS), EFIS and 2D moving map, and 3D SVS Primary Flight Display (PFD) and 2D moving map were evaluated. They included normal/abnormal procedure evaluation for: Steep turns and reversals, Unusual attitude recovery, Radar vector guidance towards terrain, Non-precision approaches, En-route alternate for non-IFR rated pilots encountering IMC, and Taxiing on complex taxi-routes. The flight trial goal was to evaluate the objective performance of pilots for the different display configurations. As dependent variables, positional and time data were measured. Analysis was performed by an ANOVA test. In parallel, all pilots answered subjective NASA Task Load Index, Cooper-Harper, Situation Awareness Rating Technique (SART), and questionnaires. The result shows that pilots flying 2D/3D SVS perform no worse than pilots with conventional
The 2d-LCA as an alternative to x-wires
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2015-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
A high-throughput strategy to screen 2D crystallization trials of membrane proteins.
Vink, Martin; Derr, Kd; Love, James; Stokes, David L; Ubarretxena-Belandia, Iban
2007-12-01
Electron microscopy of two-dimensional (2D) crystals has demonstrated potential for structure determination of membrane proteins. Technical limitations in large-scale crystallization screens have, however, prevented a major breakthrough in the routine application of this technology. Dialysis is generally used for detergent removal and reconstitution of the protein into a lipid bilayer, and devices for testing numerous conditions in parallel are not readily available. Furthermore, the small size of resulting 2D crystals requires electron microscopy to evaluate the results and automation of the necessary steps is essential to achieve a reasonable throughput. We have designed a crystallization block, using standard microplate dimensions, by which 96 unique samples can be dialyzed simultaneously against 96 different buffers and have demonstrated that the rate of detergent dialysis is comparable to those obtained with conventional dialysis devices. A liquid-handling robot was employed to set up 2D crystallization trials with the membrane proteins CopA from Archaeoglobus fulgidus and light-harvesting complex II (LH2) from Rhodobacter sphaeroides. For CopA, 1 week of dialysis yielded tubular crystals and, for LH2, large and well-ordered vesicular 2D crystals were obtained after 24 h, illustrating the feasibility of this approach. Combined with a high-throughput procedure for preparation of EM-grids and automation of the subsequent negative staining step, the crystallization block offers a novel pipeline that promises to speed up large-scale screening of 2D crystallization and to increase the likelihood of producing well-ordered crystals for analysis by electron crystallography.
GPU computing for 2-d spin systems: CUDA vs OpenGL
Anselmi, V; Di Renzo, F
2008-01-01
In recent years the more and more powerful GPU's available on the PC market have attracted attention as a cost effective solution for parallel (SIMD) computing. CUDA is a solid evidence of the attention that the major companies are devoting to the field. CUDA is a hardware and software architecture developed by Nvidia for computing on the GPU. It qualifies as a friendly alternative to the approach to GPU computing that has been pioneered in the OpenGL environment. We discuss the application of both the CUDA and the OpenGL approach to the simulation of 2-d spin systems (XY model).
A 2-D graphical representation of protein sequences based on nucleotide triplet codons
Bai, Fenglan; Wang, Tianming
2005-09-01
Graphical representation of DNA provides a simple way of viewing, sorting and comparing various gene structures. A 2-D graphical representation of protein sequences based on nucleotide triplet codons has been derived for similarity analysis of protein sequences. This approach is based on a graphical representation of triplets of DNA in which the interior of the left half plane of the complex plane is used to accommodate 64 sites for the 64 codons. We associate a directed curve, numerical value, or matrix with a protein as a descriptor. The approach is illustrated on the Homo sapiens X-linked nuclear protein (ATRX) gene.
Institute of Scientific and Technical Information of China (English)
LI Dong-Sheng; ZHOU Cai-Hua; WANG Yao-Yu; FU Feng; WU Ya-Pan; QI Guang-Cai; SHI Qi-Zhen
2006-01-01
Two new supramolecular complexes, [Cu(H2dhbd)(3-pyOH)(H2O)]2·3-pyOH·2H2O (1) and [Cu2(dhbd)(dpa)2-(H2O)]·6H2O (2) (H4dhbd=2,3-dihydroxybutanedioic acid, 3-pyOH=3-hydroxypyridine, dpa=2,2'-dipyridylamine),have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses,H-O hydrogen bonds, the cyclic dinuclear units in 1 together with four adjacent neighbors are connected into a 2D honeycomb network encapsulating free 3-pyOH ligands. Unexpectedly, the water-dimers are fixed in interlayers of 2D honeycomb network and act as hydrogen-bond bridging to further extend these 2D networks into 3D hydrogen-bonded framework. Complex 2 includes interesting 2D grids constructed from chiral dinuclear units through cules into three dimension with channels. Variable-temperature magnetic susceptibility measurements for both complexes indicate the presence of weak antiferromagnetic exchange interactions between adjacent copper(Ⅱ) ions.
Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon
2015-05-01
There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.
GO-2D: identifying 2-dimensional cellular-localized functional modules in Gene Ontology
Directory of Open Access Journals (Sweden)
Yang Da
2007-01-01
Full Text Available Abstract Background Rapid progress in high-throughput biotechnologies (e.g. microarrays and exponential accumulation of gene functional knowledge make it promising for systematic understanding of complex human diseases at functional modules level. Based on Gene Ontology, a large number of automatic tools have been developed for the functional analysis and biological interpretation of the high-throughput microarray data. Results Different from the existing tools such as Onto-Express and FatiGO, we develop a tool named GO-2D for identifying 2-dimensional functional modules based on combined GO categories. For example, it refines biological process categories by sorting their genes into different cellular component categories, and then extracts those combined categories enriched with the interesting genes (e.g., the differentially expressed genes for identifying the cellular-localized functional modules. Applications of GO-2D to the analyses of two human cancer datasets show that very specific disease-relevant processes can be identified by using cellular location information. Conclusion For studying complex human diseases, GO-2D can extract functionally compact and detailed modules such as the cellular-localized ones, characterizing disease-relevant modules in terms of both biological processes and cellular locations. The application results clearly demonstrate that 2-dimensional approach complementary to current 1-dimensional approach is powerful for finding modules highly relevant to diseases.
Commandeur, Jan; Graaf, de Chris; Keizers, Peter; Oostenbrink, Chris; Vugt-Lussenburg, van Barbara; Vermeulen, Nico
2007-01-01
Detailed molecular dynamics (MD) simulations have been performed to reproduce and rationalize the experimental finding that the F483A mutant of CYP2D6 has lower affinity for R-propranolol than for S-propranolol. Wild-type (WT) CYP2D6 does not show this stereospecificity. Four different approaches t
Instantons in 2D U(1) Higgs model and 2D CP(N-1) sigma models
Lian, Yaogang
2007-12-01
In this thesis I present the results of a study of the topological structures of 2D U(1) Higgs model and 2D CP N-1 sigma models. Both models have been studied using the overlap Dirac operator construction of topological charge density. The overlap operator provides a more incisive probe into the local topological structure of gauge field configurations than the traditional plaquette-based operator. In the 2D U(1) Higgs model, we show that classical instantons with finite sizes violate the negativity of topological charge correlator by giving a positive contribution to the correlator at non-zero separation. We argue that instantons in 2D U(1) Higgs model must be accompanied by large quantum fluctuations in order to solve this contradiction. In 2D CPN-1 sigma models, we observe the anomalous scaling behavior of the topological susceptibility chi t for N ≤ 3. The divergence of chi t in these models is traced to the presence of small instantons with a radius of order a (= lattice spacing), which are directly observed on the lattice. The observation of these small instantons provides detailed confirmation of Luscher's argument that such short-distance excitations, with quantized topological charge, should be the dominant topological fluctuations in CP1 and CP 2, leading to a divergent topological susceptibility in the continuum limit. For the CPN-1 models with N > 3 the topological susceptibility is observed to scale properly with the mass gap. Another topic presented in this thesis is an implementation of the Zolotarev optimal rational approximation for the overlap Dirac operator. This new implementation has reduced the time complexity of the overlap routine from O(N3 ) to O(N), where N is the total number of sites on the lattice. This opens up a door to more accurate lattice measurements in the future.
Analytical Solution for Predicting In-plane Elastic Shear Properties of 2D Orthogonal PWF Composites
Institute of Scientific and Technical Information of China (English)
CHENG Xu; XIONG Junjiang; BAI Jiangbo
2012-01-01
This paper proposes a new analytical solution to predict the shear modulus of a two-dimensional (2D) plain weave fabric (PWF) composite accounting for the interaction of orthogonal interlacing strands with coupled shear deformation modes including not only relative bending but also torsion,etc.The two orthogonal yams in a micromechanical unit cell are idealized as curved beams with a path depicted by using sinusoidal shape functions.The intemal forces and macroscopic deformations carried by the yarn families,together with macroscopic shear modulus of PWFs are derived by means of a strain energy approach founded on micromechanics.Three sets of experimental data pertinent to three kinds of 2D orthogonal PWF composites have been implemented to validate the new model.The calculations from the new model are also compared with those by using two models in the earlier literature.It is shown that the experimental results correlate well with predictions from the new model.
Graphical algorithms and threshold error rates for the 2d colour code
Wang, D S; Hill, C D; Hollenberg, L C L
2009-01-01
Recent work on fault-tolerant quantum computation making use of topological error correction shows great potential, with the 2d surface code possessing a threshold error rate approaching 1% (NJoP 9:199, 2007), (arXiv:0905.0531). However, the 2d surface code requires the use of a complex state distillation procedure to achieve universal quantum computation. The colour code of (PRL 97:180501, 2006) is a related scheme partially solving the problem, providing a means to perform all Clifford group gates transversally. We review the colour code and its error correcting methodology, discussing one approximate technique based on graph matching. We derive an analytic lower bound to the threshold error rate of 6.25% under error-free syndrome extraction, while numerical simulations indicate it may be as high as 13.3%. Inclusion of faulty syndrome extraction circuits drops the threshold to approximately 0.1%.
Institute of Scientific and Technical Information of China (English)
T. Lukas; G.G. Schiava D’Albano; A. Munjiza
2014-01-01
The combined finiteediscrete element method (FDEM) belongs to a family of methods of computational mechanics of discontinua. The method is suitable for problems of discontinua, where particles are deformable and can fracture or fragment. The applications of FDEM have spread over a number of dis-ciplines including rock mechanics, where problems like mining, mineral processing or rock blasting can be solved by employing FDEM. In this work, a novel approach for the parallelization of two-dimensional (2D) FDEM aiming at clusters and desktop computers is developed. Dynamic domain decomposition based parallelization solvers covering all aspects of FDEM have been developed. These have been implemented into the open source Y2D software package and have been tested on a PC cluster. The overall performance and scalability of the parallel code have been studied using numerical examples. The results obtained confirm the suitability of the parallel implementation for solving large scale problems.
On the control of the chaotic attractors of the 2-d Navier-Stokes equations.
Smaoui, Nejib; Zribi, Mohamed
2017-03-01
The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, Re. Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.
Characterization of heroin samples by 1H NMR and 2D DOSY 1H NMR.
Balayssac, Stéphane; Retailleau, Emmanuel; Bertrand, Geneviève; Escot, Marie-Pierre; Martino, Robert; Malet-Martino, Myriam; Gilard, Véronique
2014-01-01
Twenty-four samples of heroin from different illicit drug seizures were analyzed using proton Nuclear Magnetic Resonance ((1)H NMR) and two-dimensional diffusion-ordered spectroscopy (2D DOSY) (1)H NMR. A careful assignment and quantification of (1)H signals enabled a comprehensive characterization of the substances present in the samples investigated: heroin, its main related impurities (6-acetylmorphine, acetylcodeine, morphine, noscapine and papaverine) and cutting agents (caffeine and acetaminophen in nearly all samples as well as lactose, lidocaine, mannitol, piracetam in one sample only), and hence to establish their spectral signatures. The good agreement between the amounts of heroin, noscapine, caffeine and acetaminophen determined by (1)H NMR and gas chromatography, the reference method in forensic laboratories, demonstrates the validity of the (1)H NMR technique. In this paper, 2D DOSY (1)H NMR offers a new approach for a whole characterization of the various components of these complex mixtures.
Reliability of a Novel Model for Drug Release from 2D HPMC-Matrices
Directory of Open Access Journals (Sweden)
Rumiana Blagoeva
2010-04-01
Full Text Available A novel model of drug release from 2D-HPMC matrices is considered. Detailed mathematical description of matrix swelling and the effect of the initial drug loading are introduced. A numerical approach to solution of the posed nonlinear 2D problem is used on the basis of finite element domain approximation and time difference method. The reliability of the model is investigated in two steps: numerical evaluation of the water uptake parameters; evaluation of drug release parameters under available experimental data. The proposed numerical procedure for fitting the model is validated performing different numerical examples of drug release in two cases (with and without taking into account initial drug loading. The goodness of fit evaluated by the coefficient of determination is presented to be very good with few exceptions. The obtained results show better model fitting when accounting the effect of initial drug loading (especially for larger values.
A New Curb Detection Method for Unmanned Ground Vehicles Using 2D Sequential Laser Data
Directory of Open Access Journals (Sweden)
Jinling Wang
2013-01-01
Full Text Available Curb detection is an important research topic in environment perception, which is an essential part of unmanned ground vehicle (UGV operations. In this paper, a new curb detection method using a 2D laser range finder in a semi-structured environment is presented. In the proposed method, firstly, a local Digital Elevation Map (DEM is built using 2D sequential laser rangefinder data and vehicle state data in a dynamic environment and a probabilistic moving object deletion approach is proposed to cope with the effect of moving objects. Secondly, the curb candidate points are extracted based on the moving direction of the vehicle in the local DEM. Finally, the straight and curved curbs are detected by the Hough transform and the multi-model RANSAC algorithm, respectively. The proposed method can detect the curbs robustly in both static and typical dynamic environments. The proposed method has been verified in real vehicle experiments.
Directory of Open Access Journals (Sweden)
T. Lukas
2014-12-01
Full Text Available The combined finite–discrete element method (FDEM belongs to a family of methods of computational mechanics of discontinua. The method is suitable for problems of discontinua, where particles are deformable and can fracture or fragment. The applications of FDEM have spread over a number of disciplines including rock mechanics, where problems like mining, mineral processing or rock blasting can be solved by employing FDEM. In this work, a novel approach for the parallelization of two-dimensional (2D FDEM aiming at clusters and desktop computers is developed. Dynamic domain decomposition based parallelization solvers covering all aspects of FDEM have been developed. These have been implemented into the open source Y2D software package and have been tested on a PC cluster. The overall performance and scalability of the parallel code have been studied using numerical examples. The results obtained confirm the suitability of the parallel implementation for solving large scale problems.
2D/3D Program work summary report, [January 1988--December 1992
Energy Technology Data Exchange (ETDEWEB)
Damerell, P. S.; Simons, J. W. [eds., MPR Associates, Washington, DC (United States)
1993-06-01
The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants.
Hybrid 2D-3D modelling of GTA welding with filler wire addition
Traidia, Abderrazak
2012-07-01
A hybrid 2D-3D model for the numerical simulation of Gas Tungsten Arc welding is proposed in this paper. It offers the possibility to predict the temperature field as well as the shape of the solidified weld joint for different operating parameters, with relatively good accuracy and reasonable computational cost. Also, an original approach to simulate the effect of immersing a cold filler wire in the weld pool is presented. The simulation results reveal two important observations. First, the weld pool depth is locally decreased in the presence of filler metal, which is due to the energy absorption by the cold feeding wire from the hot molten pool. In addition, the weld shape, maximum temperature and thermal cycles in the workpiece are relatively well predicted even when a 2D model for the arc plasma region is used. © 2012 Elsevier Ltd. All rights reserved.
Building a symbolic computer algebra toolbox to compute 2D Fourier transforms in polar coordinates.
Dovlo, Edem; Baddour, Natalie
2015-01-01
The development of a symbolic computer algebra toolbox for the computation of two dimensional (2D) Fourier transforms in polar coordinates is presented. Multidimensional Fourier transforms are widely used in image processing, tomographic reconstructions and in fact any application that requires a multidimensional convolution. By examining a function in the frequency domain, additional information and insights may be obtained. The advantages of our method include: •The implementation of the 2D Fourier transform in polar coordinates within the toolbox via the combination of two significantly simpler transforms.•The modular approach along with the idea of lookup tables implemented help avoid the issue of indeterminate results which may occur when attempting to directly evaluate the transform.•The concept also helps prevent unnecessary computation of already known transforms thereby saving memory and processing time.
Achieving energy efficiency in LTE with joint D2D communications and green networking techniques
Yaacoub, Elias E.
2013-07-01
In this paper, the joint operation of cooperative device-to-device (D2D) communications and green cellular communications is investigated. An efficient approach for grouping mobile terminals (MTs) into cooperative clusters is described. In each cluster, MTs cooperate via D2D communications to share content of common interest. Furthermore, an energy-efficient technique for putting BSs in sleep mode in an LTE cellular network is presented. Finally, both methods are combined in order to ensure green communications for both the users\\' MTs and the operator\\'s BSs. The studied methods are investigated in the framework of OFDMA-based state-of-the-art LTE cellular networks, while taking into account intercell interference and resource allocation. © 2013 IEEE.
Extreme Growth of Enstrophy on 2D Bounded Domains
Protas, Bartosz; Sliwiak, Adam
2016-11-01
We study the vortex states responsible for the largest instantaneous growth of enstrophy possible in viscous incompressible flow on 2D bounded domain. The goal is to compare these results with estimates obtained using mathematical analysis. This problem is closely related to analogous questions recently considered in the periodic setting on 1D, 2D and 3D domains. In addition to systematically characterizing the most extreme behavior, these problems are also closely related to the open question of the finite-time singularity formation in the 3D Navier-Stokes system. We demonstrate how such extreme vortex states can be found as solutions of constrained variational optimization problems which in the limit of small enstrophy reduce to eigenvalue problems. Computational results will be presented for circular and square domains emphasizing the effect of geometric singularities (corners of the domain) on the structure of the extreme vortex states. Supported by an NSERC (Canada) Discovery Grant.
Enhanced automated platform for 2D characterization of RFID communications
Vuza, Dan Tudor; Vlǎdescu, Marian
2016-12-01
The characterization of the quality of communication between an RFID reader and a transponder at all expected positions of the latter on the reader antenna is of primal importance for the evaluation of performance of an RFID system. Continuing the line of instruments developed for this purpose by the authors, the present work proposes an enhanced version of a previously introduced automated platform for 2D evaluation. By featuring higher performance in terms of mechanical speed, the new version allows to obtain 2D maps of communication with a higher resolution that would have been prohibitive in terms of test duration with the previous version. The list of measurement procedures that can be executed with the platform is now enlarged with additional ones, such as the determination of the variation of the magnetic coupling between transponder and antenna across the antenna surface and the utilization of transponder simulators for evaluation of the quality of communication.
Security Issues for 2D Barcodes Ticketing Systems
Directory of Open Access Journals (Sweden)
Cristian Toma
2011-03-01
Full Text Available The paper presents a solution for endcoding/decoding access to the subway public transportation systems. First part of the paper is dedicated through section one and two to the most used 2D barcodes used in the market – QR and DataMatrix. The sample for DataMatrix is author propietary and the QR sample is from the QR standard [2]. The section three presents MMS and Digital Rights Management topics used for issuing the 2D barcodes tickets. The second part of the paper, starting with section four shows the architecture of Subway Ticketing Systems and the proposed procedure for the ticket issuing. The conclusions identify trends of the security topics in the public transportation systems.
Wave propagation in pantographic 2D lattices with internal discontinuities
Madeo, A; Neff, P
2014-01-01
In the present paper we consider a 2D pantographic structure composed by two orthogonal families of Euler beams. Pantographic rectangular 'long' waveguides are considered in which imposed boundary displacements can induce the onset of traveling (possibly non-linear) waves. We performed numerical simulations concerning a set of dynamically interesting cases. The system undergoes large rotations which may involve geometrical non-linearities, possibly opening the path to appealing phenomena such as propagation of solitary waves. Boundary conditions dramatically influence the transmission of the considered waves at discontinuity surfaces. The theoretical study of this kind of objects looks critical, as the concept of pantographic 2D sheets seems to have promising possible applications in a number of fields, e.g. acoustic filters, vascular prostheses and aeronautic/aerospace panels.
Stable 2D Feature Tracking for Long Video Sequences
Directory of Open Access Journals (Sweden)
Jong-Seung Park
2008-12-01
Full Text Available In this paper, we propose a 2D feature tracking method that is stable to long video sequences. To improve the stability of long tracking, we use trajectory information about 2D features. We predict the expected feature states and compute a rough estimate of the feature location on the current image frame using the history of previous feature states up to the current frame. A search window is positioned at the estimated location and similarity measures are computed within the search window. Once the feature position is determined from the similarity measures, the current feature states are appended to the history bu®er. The outlier rejection stage is also introduced to reduce false matches. Experimental results from real video sequences showed that the proposed method stably tracks point features for long frame sequences.
Band-structure engineering in conjugated 2D polymers.
Gutzler, Rico
2016-10-26
Conjugated polymers find widespread application in (opto)electronic devices, sensing, and as catalysts. Their common one-dimensional structure can be extended into the second dimension to create conjugated planar sheets of covalently linked molecules. Extending π-conjugation into the second dimension unlocks a new class of semiconductive polymers which as a consequence of their unique electronic properties can find usability in numerous applications. In this article the theoretical band structures of a set of conjugated 2D polymers are compared and information on the important characteristics band gap and valence/conduction band dispersion is extracted. The great variance in these characteristics within the investigated set suggests 2D polymers as exciting materials in which band-structure engineering can be used to tailor sheet-like organic materials with desired electronic properties.
2D-immunoblotting analysis of Sporothrix schenckii cell wall
Directory of Open Access Journals (Sweden)
Estela Ruiz-Baca
2011-03-01
Full Text Available We utilized two-dimensional gel electrophoresis and immunoblotting (2D-immunoblotting with anti-Sporothrix schenckii antibodies to identify antigenic proteins in cell wall preparations obtained from the mycelial and yeast-like morphologies of the fungus. Results showed that a 70-kDa glycoprotein (Gp70 was the major antigen detected in the cell wall of both morphologies and that a 60-kDa glycoprotein was present only in yeast-like cells. In addition to the Gp70, the wall from filament cells showed four proteins with molecular weights of 48, 55, 66 and 67 kDa, some of which exhibited several isoforms. To our knowledge, this is the first 2D-immunoblotting analysis of the S. schenckii cell wall.
Structural Complexity and Phonon Physics in 2D Arsenenes.
Carrete, Jesús; Gallego, Luis J; Mingo, Natalio
2017-03-15
In the quest for stable 2D arsenic phases, four different structures have been recently claimed to be stable. We show that, due to phonon contributions, the relative stability of those structures differs from previous reports and depends crucially on temperature. We also show that one of those four phases is in fact mechanically unstable. Furthermore, our results challenge the common assumption of an inverse correlation between structural complexity and thermal conductivity. Instead, a richer picture emerges from our results, showing how harmonic interactions, anharmonicity, and symmetries all play a role in modulating thermal conduction in arsenenes. More generally, our conclusions highlight how vibrational properties are an essential element to be carefully taken into account in theoretical searches for new 2D materials.
Planar maps, circle patterns and 2d gravity
David, Francois
2013-01-01
Via circle pattern techniques, random planar triangulations (with angle variables) are mapped onto Delaunay triangulations in the complex plane. The uniform measure on triangulations is mapped onto a conformally invariant spatial point process. We show that this measure can be expressed as: (1) a sum over 3-spanning-trees partitions of the edges of the Delaunay triangulations; (2) the volume form of a K\\"ahler metric over the space of Delaunay triangulations, whose prepotential has a simple formulation in term of ideal tessellations of the 3d hyperbolic space; (3) a discretized version (involving finite difference complex derivative operators) of Polyakov's conformal Fadeev-Popov determinant in 2d gravity; (4) a combination of Chern classes, thus also establishing a link with topological 2d gravity.
A brief review of the 2d/4d correspondences
Tachikawa, Yuji
2016-01-01
An elementary introduction to the 2d/4d correspondences is given. After quickly reviewing the 2d q-deformed Yang-Mills theory and the Liouville theory, we will introduce 4d theories obtained by coupling trifundamentals to SU(2) gauge fields. We will then see concretely that the supersymmetric partition function of these theories on S^3 x S^1 and on S^4 is given respectively by the q-deformed Yang-Mills theory and the Liouville theory. After giving a short discussion on how this correspondence may be understood from the viewpoint of the 6d N=(2,0) theory, we conclude the review by enumerating future directions. Most of the technical points will be referred to more detailed review articles.
2D Models for Dust-driven AGB Star Winds
Woitke, P
2006-01-01
New axisymmetric (2D) models for dust-driven winds of C-stars are presented which include hydrodynamics with radiation pressure on dust, equilibrium chemistry and time-dependent dust formation with coupled grey Monte Carlo radiative transfer. Considering the most simple case without stellar pulsation (hydrostatic inner boundary condition) these models reveal a more complex picture of the dust formation and wind acceleration as compared to earlier published spherically symmetric (1D) models. The so-called exterior $\\kappa$-mechanism causes radial oscillations with short phases of active dust formation between longer phases without appreciable dust formation, just like in the 1D models. However, in 2D geometry, the oscillations can be out-of-phase at different places above the stellar atmosphere which result in the formation of dust arcs or smaller caps that only occupy a certain fraction of the total solid angle. These dust structures are accelerated outward by radiation pressure, expanding radially and tangen...
Controlling avalanche criticality in 2D nano arrays.
Zohar, Y C; Yochelis, S; Dahmen, K A; Jung, G; Paltiel, Y
2013-01-01
Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.
Tradeoffs for reliable quantum information storage in 2D systems
Bravyi, Sergey; Terhal, Barbara
2009-01-01
We ask whether there are fundamental limits on storing quantum information reliably in a bounded volume of space. To investigate this question, we study quantum error correcting codes specified by geometrically local commuting constraints on a 2D lattice of finite-dimensional quantum particles. For these 2D systems, we derive a tradeoff between the number of encoded qubits k, the distance of the code d, and the number of particles n. It is shown that kd^2=O(n) where the coefficient in O(n) depends only on the locality of the constraints and dimension of the Hilbert spaces describing individual particles. We show that the analogous tradeoff for the classical information storage is k\\sqrt{d} =O(n).
A "Necklace" Model for Vesicles Simulations in 2D
Ismail, Mourad
2012-01-01
The aim of this paper is to propose a new numerical model to simulate 2D vesicles interacting with a newtonian fluid. The inextensible membrane is modeled by a chain of circular rigid particles which are maintained in cohesion by using two different type of forces. First, a spring force is imposed between neighboring particles in the chain. Second, in order to model the bending of the membrane, each triplet of successive particles is submitted to an angular force. Numerical simulations of vesicles in shear flow have been run using Finite Element Method and the FreeFem++[1] software. Exploring different ratios of inner and outer viscosities, we recover the well known "Tank-Treading" and "Tumbling" motions predicted by theory and experiments. Moreover, for the first time, 2D simulations of the "Vacillating-Breathing" regime predicted by theory in [2] and observed experimentally in [3] are done without special ingredient like for example thermal fluctuations used in [4].
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Simulation of corium concrete interaction in 2D geometry
Energy Technology Data Exchange (ETDEWEB)
Cranga, M. [IRSN, DPAM, F-13115 St Paul Les Durance (France); Spindler, B.; Dufour, E. [CEA Grenoble, DEN, F-38000 Grenoble (France); Dimov, Dimitar [Bulgarian Acad Sci, Inst Nucl Res and Nucl Energy, NPPSAL, BU-1784 Sofia (Bulgaria); Atkhen, Kresna [EDF, SEPTEN, F-69628 Villeurbanne (France); Foit, Jerzy [Forschungszentrum Karlsruhe, D-76021 Karlsruhe (Germany); Garcia-Martin, M. [Univ Politecn Madrid, E-28006 Madrid (Spain); Sevon, Tuomo [Tech Res Ctr Finland VTT, FI-02044 Helsinki (Finland); Schmidt, W. [AREVA, D-91058 Erlangen (Germany); Spengler, C. [Gesell Anlagen and Reaktorsicherheit GRS mbH, D-50667 Cologne (Germany)
2010-07-01
Benchmarking work was recently performed for the issue of molten corium concrete interaction (MCCI). A synthesis is given here. It concerns first the 2D CCI-2 test with a homogeneous pool and a limestone concrete, which was used for a blind benchmark. Secondly, the COMET-L2 and COMET-L3 2D experiments in a stratified configuration were used as a post-test (L2) and a blind-test (L3) benchmark. More details are given here for the recent benchmark considering a matrix of four reactor cases, with both a homogeneous and a stratified configuration, and with both a limestone and a siliceous concrete. A short overview is given on the different models used in the codes, and the consistency between the benchmark actions on experiments and reactor situations is discussed. Finally, the major uncertainties concerning MCCI are also pointed out. (authors)
Two-Dimensional (2D) Polygonal Electromagnetic Cloaks
Institute of Scientific and Technical Information of China (English)
LI Chao; YAO Kan; LI Fang
2009-01-01
Transformation optics offers remarkable control over electromagnetic fields and opens an exciting gateway to design 'invisible cloak devices' recently.We present an important class of two-dimensional (2D) cloaks with polygon geometries.Explicit expressions of transformed medium parameters are derived with their unique properties investigated.It is found that the elements of diagonalized permittivity tensors are always positive within an irregular polygon cloak besides one element diverges to plus infinity and the other two become zero at the inner boundary.At most positions,the principle axes of permittivity tensors do not align with position vectors.An irregular polygon cloak is designed and its invisibility to external electromagnetic waves is numerically verified.Since polygon cloaks can be tailored to resemble any objects,the transformation is finally generalized to the realization of 2D cloaks with arbitrary geometries.
A Novel 2D Z-Shaped Electromagnetic Bandgap Structure
Directory of Open Access Journals (Sweden)
I. Iliev
2015-02-01
Full Text Available This paper researches a novel 2D Z-shaped Electromagnetic Band-Gap (EBG structure, its dispersion diagram and application field. Based on a transmission line model, the dispersion equation is derived and theoretically investigated. In order to validate theoretical results, a full wave analysis is performed and the electromagnetic properties of the structure are revealed. The theoretical results show good agreement with the full wave simulation results. The frequency response of the structure is compared to the well know structures of Jerusalem cross and patch EBG. The results show the applicability of the proposed 2D Z-shaped EBG in microstrip patch antennas, microstrip filters and high speed switching circuits, where the suppression of parasitic surface wave is required.
Critical Dynamics in Quenched 2D Atomic Gases
Larcher, F.; Dalfovo, F.; Proukakis, N. P.
2016-05-01
Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.
Hard and Soft Physics with 2D Materials
McEuen, Paul
With their remarkable structural, thermal, mechanical, optical, chemical, and electronic properties, 2D materials are truly special. For example, a graphene sheet can be made into a high-performance transistor, but it is also the ultimate realization of a thin mechanical sheet. Such sheets, first studied in detail by August Föppl over a hundred years ago, are notoriously complex, since they can bend, buckle, and crumple in a variety of ways. In this talk, I will discuss a number of experiments to probe these unusual materials, from the effects of ripples on the mechanical properties of a graphene sheet, to folding with atomically thin bimorphs, to the electronic properties of bilayer graphene solitons. Finally, I discuss how the Japanese paper art of kirigami (kiru = `to cut', kami = `paper') applied to 2D materials offers a route to mechanical metamaterials and the construction of nanoscale machines.
Functionalized 2D atomic sheets with new properties
Sun, Qiang; Zhou, Jian; Wang, Qian; Jena, Puru
2011-03-01
Due to the unique atomic structure and novel physical and chemical properties, graphene has sparked tremendous theoretical and experimental efforts to explore other 2D atomic sheets like B-N, Al-N, and Zn-O, where the two components offer much more complexities and flexibilities in surface modifications. Using First principles calculations based on density functional theory, we have systematically studied the semi- and fully-decorated 2D sheets with H and F and Cl. We have found that the electronic structures and magnetic properties can be effectively tuned, and the system can be a direct or an indirect semiconductor or even a half-metal, and the system can be made ferromagnetic, antiferromagnetic, or magnetically degenerate depending upon how the surface is functionalized. Discussions are made for the possible device applications.
Directory of Open Access Journals (Sweden)
Wu Steven H
2012-06-01
Full Text Available Abstract Background Two-dimensional polyacrylamide gel electrophoresis (2D PAGE is commonly used to identify differentially expressed proteins under two or more experimental or observational conditions. Wu et al (2009 developed a univariate probabilistic model which was used to identify differential expression between Case and Control groups, by applying a Likelihood Ratio Test (LRT to each protein on a 2D PAGE. In contrast to commonly used statistical approaches, this model takes into account the two possible causes of missing values in 2D PAGE: either (1 the non-expression of a protein; or (2 a level of expression that falls below the limit of detection. Results We develop a global Bayesian model which extends the previously described model. Unlike the univariate approach, the model reported here is able treat all differentially expressed proteins simultaneously. Whereas each protein is modelled by the univariate likelihood function previously described, several global distributions are used to model the underlying relationship between the parameters associated with individual proteins. These global distributions are able to combine information from each protein to give more accurate estimates of the true parameters. In our implementation of the procedure, all parameters are recovered by Markov chain Monte Carlo (MCMC integration. The 95% highest posterior density (HPD intervals for the marginal posterior distributions are used to determine whether differences in protein expression are due to differences in mean expression intensities, and/or differences in the probabilities of expression. Conclusions Simulation analyses showed that the global model is able to accurately recover the underlying global distributions, and identify more differentially expressed proteins than the simple application of a LRT. Additionally, simulations also indicate that the probability of incorrectly identifying a protein as differentially expressed (i.e., the False
An inverse design method for 2D airfoil
Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao
2010-03-01
The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.
Vertical heterostructures based on graphene and other 2D materials
Energy Technology Data Exchange (ETDEWEB)
Antonova, I. V. [Rzhanov Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Branch (Russian Federation)
2016-01-15
Recent advances in the fabrication of vertical heterostructures based on graphene and other dielectric and semiconductor single-layer materials, including hexagonal boron nitride and transition-metal dichalcogenides, are reviewed. Significant progress in this field is discussed together with the great prospects for the development of vertical heterostructures for various applications, which are associated, first of all, with reconsideration of the physical principles of the design and operation of device structures based on graphene combined with other 2D materials.
Compression of 2D vector fields under guaranteed topology preservation
2003-01-01
In this paper we introduce a new compression technique for 2D vector fields which preserves the complete topology, i.e., the critical points and the connectivity of the separatrices. As the theoretical foundation of the algorithm, we show in a theorem that for local modifications of a vector field, it is possible to decide entirely by a local analysis whether or not the global topology is preserved. This result is applied in a compression algorithm which is based on a ...
Mapping Proprioception across a 2D Horizontal Workspace
2010-01-01
Relatively few studies have been reported that document how proprioception varies across the workspace of the human arm. Here we examined proprioceptive function across a horizontal planar workspace, using a new method that avoids active movement and interactions with other sensory modalities. We systematically mapped both proprioceptive acuity (sensitivity to hand position change) and bias (perceived location of the hand), across a horizontal-plane 2D workspace. Proprioception of both the le...
An Arbitrary 2D Structured Replica Control Protocol
Basmadjian, Robert; Meer, Hermann,
2011-01-01
Traditional replication protocols that logically arrange the replicas into a specific structure have reasonable availability, lower communication cost as well as system load than those that do not require any logical organisation of replicas. We propose in this paper the A2DS protocol: a single protocol that, unlike the existing proposed protocols, can be adapted to any 2D structure. Its read operation is carried out on any replica of every level of the structure whereas write operations are ...
FASTWO - A 2-D interactive algebraic grid generator
Luh, Raymond Ching-Chung; Lombard, C. K.
1988-01-01
This paper presents a very simple and effective computational procedure, FASTWO, for generating patched composite finite difference grids in 2-D for any geometry. Major components of the interactive graphics based method that is closely akin to and borrows many tools from transfinite interpolation are highlighted. Several grids produced by FASTWO are shown to illustrate its powerful capability. Comments about extending the methodology to 3-D are also given.
Submicrometric 2D ratchet effect in magnetic domain wall motion
Energy Technology Data Exchange (ETDEWEB)
Castán-Guerrero, C., E-mail: ccastan@unizar.es [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Herrero-Albillos, J. [Fundación ARAID, E-50004 Zaragoza (Spain); Centro Universitario de la Defensa, E-50090 Zaragoza (Spain); Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Sesé, J. [Instituto de Nanociencia de Aragón, Laboratorio de Microscopías Avanzadas, Universidad de Zaragoza, E-50018 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Bartolomé, J.; Bartolomé, F. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Hierro-Rodriguez, A.; Valdés-Bango, F.; Martín, J.I.; Alameda, J.M. [Dpto. Física, Universidad de Oviedo, Asturias (Spain); CINN (CSIC – Universidad de Oviedo – Principado de Asturias), Asturias (Spain); García, L.M. [Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC – Universidad de Zaragoza, E-50009 Zaragoza (Spain); Dpto. de Física de la Materia Condensada, Universidad de Zaragoza, E-50009 Zaragoza (Spain)
2014-12-15
Strips containing arrays of submicrometric triangular antidots with a 2D square periodicity have been fabricated by electron beam lithography. A clear ratchet effect of 180° domain wall motion under a varying applied field parallel to the walls has been observed. The direction is determined by the direction of the triangle vertices. In contrast, no ratchet effect is observed when the antidot array is constituted by symmetric rhomb-shaped antidots.
Physical degrees of freedom in 2-D string field theories
Sakai, N; Sakai, Norisuke; Tanii, Yoshiaki
1992-01-01
States in the absolute (semi-relative) cohomology but not in the relative cohomology are examined through the component decomposition of the string field theory action for the 2-D string. It is found that they are auxiliary fields without kinetic terms, but are important for instance in the master equation for the Ward-Takahashi identities. The ghost structure is analyzed in the Siegel gauge, but it is noted that the absolute (semi-relative) cohomology states are lost.
2D and 3D Traveling Salesman Problem
Haxhimusa, Yll; Carpenter, Edward; Catrambone, Joseph; Foldes, David; Stefanov, Emil; Arns, Laura; Pizlo, Zygmunt
2011-01-01
When a two-dimensional (2D) traveling salesman problem (TSP) is presented on a computer screen, human subjects can produce near-optimal tours in linear time. In this study we tested human performance on a real and virtual floor, as well as in a three-dimensional (3D) virtual space. Human performance on the real floor is as good as that on a…
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Brorsen, Michael
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU), Denmark. The starting point for the present report is the previously carried out run-up tests described in Lykke Andersen & Frigaard, 2006......-shaped access platforms on piles. The Model tests include mainly regular waves and a few irregular wave tests. These tests have been conducted at Aalborg University from 9. November, 2006 to 17. November, 2006....
Controllable and Observable Polynomial Description for 2D Noncausal Systems
Directory of Open Access Journals (Sweden)
M. S. Boudellioua
2007-01-01
Full Text Available Two-dimensional state-space systems arise in applications such as image processing, iterative circuits, seismic data processing, or more generally systems described by partial differential equations. In this paper, a new direct method is presented for the polynomial realization of a class of noncausal 2D transfer functions. It is shown that the resulting realization is both controllable and observable.
Stereoscopic highlighting: 2D graph visualization on stereo displays.
Alper, Basak; Höllerer, Tobias; Kuchera-Morin, JoAnn; Forbes, Angus
2011-12-01
In this paper we present a new technique and prototype graph visualization system, stereoscopic highlighting, to help answer accessibility and adjacency queries when interacting with a node-link diagram. Our technique utilizes stereoscopic depth to highlight regions of interest in a 2D graph by projecting these parts onto a plane closer to the viewpoint of the user. This technique aims to isolate and magnify specific portions of the graph that need to be explored in detail without resorting to other highlighting techniques like color or motion, which can then be reserved to encode other data attributes. This mechanism of stereoscopic highlighting also enables focus+context views by juxtaposing a detailed image of a region of interest with the overall graph, which is visualized at a further depth with correspondingly less detail. In order to validate our technique, we ran a controlled experiment with 16 subjects comparing static visual highlighting to stereoscopic highlighting on 2D and 3D graph layouts for a range of tasks. Our results show that while for most tasks the difference in performance between stereoscopic highlighting alone and static visual highlighting is not statistically significant, users performed better when both highlighting methods were used concurrently. In more complicated tasks, 3D layout with static visual highlighting outperformed 2D layouts with a single highlighting method. However, it did not outperform the 2D layout utilizing both highlighting techniques simultaneously. Based on these results, we conclude that stereoscopic highlighting is a promising technique that can significantly enhance graph visualizations for certain use cases.
F-theory and 2d (0, 2) theories
Schäfer-Nameki, Sakura; Weigand, Timo
2016-05-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.
Volumetric elasticity imaging with a 2-D CMUT array.
Fisher, Ted G; Hall, Timothy J; Panda, Satchi; Richards, Michael S; Barbone, Paul E; Jiang, Jingfeng; Resnick, Jeff; Barnes, Steve
2010-06-01
This article reports the use of a two-dimensional (2-D) capacitive micro-machined ultrasound transducer (CMUT) to acquire radio-frequency (RF) echo data from relatively large volumes of a simple ultrasound phantom to compare three-dimensional (3-D) elasticity imaging methods. Typical 2-D motion tracking for elasticity image formation was compared with three different methods of 3-D motion tracking, with sum-squared difference (SSD) used as the similarity measure. Differences among the algorithms were the degree to which they tracked elevational motion: not at all (2-D search), planar search, combination of multiple planes and plane independent guided search. The cross-correlation between the predeformation and motion-compensated postdeformation RF echo fields was used to quantify motion tracking accuracy. The lesion contrast-to-noise ratio was used to quantify image quality. Tracking accuracy and strain image quality generally improved with increased tracking sophistication. When used as input for a 3-D modulus reconstruction, high quality 3-D displacement estimates yielded accurate and low noise modulus reconstruction.
2D Non-Abelian Theory: Some Novel Features
Srinivas, N; Kureel, B K; Malik, R P
2016-01-01
Within the framework of Becchi-Rouet-Stora-Tyutin (BRST) formalism, we discuss some novel features of a two (1+1)-dimensional (2D) non-Abelian 1-form gauge theory (without any interaction with matter fields). Besides the usual off-shell nilpotent and absolutely anticommutating (anti-)BRST symmetry transformations, we discuss the off-shell nilpotent and absolutely anticommutating (anti-)co-BRST symmetry transformations for this specific 2D theory. Particularly, we lay emphasis on the existence of the coupled (but equivalent) Lagrangian densities of the 2D non-Abelian theory in view of the presence of (anti-)co-BRST symmetry transformations where we pin-point some novel features associated with the Curci-Ferrari (CF) type restrictions. We demonstrate that these CF-type restrictions can be incorporated into the (anti-)co-BRST invariant Lagrangian densities through the fermionic Lagrange multipliers which carry specific ghost numbers. The modified versions of the Lagrangian densities respect some precise and perf...
Photonic crystals to enhance light extraction from 2D materials
Noori, Yasir J; Roberts, Jonathan; Woodhead, Christopher; Bernardo-Gavito, Ramon; Tovee, Peter; Young, Robert J
2016-01-01
We propose a scheme for coupling 2D materials to an engineered cavity based on a defective rod type photonic crystal lattice. We show results from numerical modelling of the suggested cavity design, and propose using the height profile of a 2D material transferred on top of the cavity to maximise coupling between exciton recombination and the cavity mode. The photonic structure plays a key role in enhancing the launch efficiency, by improving the directionality of the emitted light to better couple it into an external optical system. When using the photonic structure, we measured an increase in the extraction ratio by a factor of 3.4. We investigated the variations in the flux spectrum when the radius of the rods is modified, and when the 2D material droops to a range of different heights within the cavity. We found an optimum enhancement when the rods have a radius equal to 0.165 times the lattice constant, this enhancement reduces when the radius is reduced or increased. Finally, we discuss the possible use...
Cross-Correlating 2D and 3D Galaxy Surveys
Energy Technology Data Exchange (ETDEWEB)
Passaglia, Samuel [Chicago U., KICP; Manzotti, Alessandro [Chicago U., KICP; Dodelson, Scott [Fermilab
2017-02-09
Galaxy surveys probe both structure formation and the expansion rate, making them promising avenues for understanding the dark universe. Photometric surveys accurately map the 2D distribution of galaxy positions and shapes in a given redshift range, while spectroscopic surveys provide sparser 3D maps of the galaxy distribution. We present a way to analyse overlapping 2D and 3D maps jointly and without loss of information. We represent 3D maps using spherical Fourier-Bessel (sFB) modes, which preserve radial coverage while accounting for the spherical sky geometry, and we decompose 2D maps in a spherical harmonic basis. In these bases, a simple expression exists for the cross-correlation of the two fields. One very powerful application is the ability to simultaneously constrain the redshift distribution of the photometric sample, the sample biases, and cosmological parameters. We use our framework to show that combined analysis of DESI and LSST can improve cosmological constraints by factors of ${\\sim}1.2$ to ${\\sim}1.8$ on the region where they overlap relative to identically sized disjoint regions. We also show that in the overlap of DES and SDSS-III in Stripe 82, cross-correlating improves photo-$z$ parameter constraints by factors of ${\\sim}2$ to ${\\sim}12$ over internal photo-$z$ reconstructions.
Design Application Translates 2-D Graphics to 3-D Surfaces
2007-01-01
Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.
Hybrid 3D-2D printing for bone scaffolds fabrication
Seleznev, V. A.; Prinz, V. Ya
2017-02-01
It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.
Observations of 2D Doppler backscattering on MAST
Thomas, D A; Freethy, S J; Huang, B K; Shevchenko, V F; Vann, R G L
2015-01-01
The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch an...
Fast 2D DOA Estimation Algorithm by an Array Manifold Matching Method with Parallel Linear Arrays.
Yang, Lisheng; Liu, Sheng; Li, Dong; Jiang, Qingping; Cao, Hailin
2016-02-23
In this paper, the problem of two-dimensional (2D) direction-of-arrival (DOA) estimation with parallel linear arrays is addressed. Two array manifold matching (AMM) approaches, in this work, are developed for the incoherent and coherent signals, respectively. The proposed AMM methods estimate the azimuth angle only with the assumption that the elevation angles are known or estimated. The proposed methods are time efficient since they do not require eigenvalue decomposition (EVD) or peak searching. In addition, the complexity analysis shows the proposed AMM approaches have lower computational complexity than many current state-of-the-art algorithms. The estimated azimuth angles produced by the AMM approaches are automatically paired with the elevation angles. More importantly, for estimating the azimuth angles of coherent signals, the aperture loss issue is avoided since a decorrelation procedure is not required for the proposed AMM method. Numerical studies demonstrate the effectiveness of the proposed approaches.
ELRIS2D: A MATLAB Package for the 2D Inversion of DC Resistivity/IP Data
Akca Irfan
2016-01-01
ELRIS2D is an open source code written in MATLAB for the two-dimensional inversion of direct current resistivity (DCR) and time domain induced polarization (IP) data. The user interface of the program is designed for functionality and ease of use. All available settings of the program can be reached from the main window. The subsurface is discretized using a hybrid mesh generated by the combination of structured and unstructured meshes, which reduces the computational cost of the whole invers...
Prinz, V Ya; Seleznev, Vladimir
2016-12-13
It is a well-known fact that bone scaffold topography on micro- and nanometer scale influences the cellular behavior. Nano-scale surface modification of scaffolds allows the modulation of biological activity for enhanced cell differentiation. To date, there has been only a limited success in printing scaffolds with micro- and nano-scale features exposed on the surface. To improve on the currently available imperfect technologies, in our paper we introduce new hybrid technologies based on a combination of 2D (nano imprint) and 3D printing methods. The first method is based on using light projection 3D printing and simultaneous 2D nanostructuring of each of the layers during the formation of the 3D structure. The second method is based on the sequential integration of preliminarily created 2D nanostructured films into a 3D printed structure. The capabilities of the developed hybrid technologies are demonstrated with the example of forming 3D bone scaffolds. The proposed technologies can be used to fabricate complex 3D micro- and nanostructured products for various fields.
Energy Technology Data Exchange (ETDEWEB)
Rocha, Antonio Carlos de Almeida
1998-12-01
The purpose of this work is to estimate thin reservoir properties even without counting on a good quality and a homogeneous database. Following a regional geological setting, well data such as logs, reports, cores had led to an interpretation of the depositional model in which the sandstone interval is inserted as an filling an incised valley system. This knowledge is essential to provide elements for a final work judgement. The main geological properties were then extracted from logs. The geophysical approach has counted on a 1D modeling of the main well acoustic parameters and a 2D Seismostratigraphic Inversion with a {alpha} priori acoustic impedance, which was able to enhance the frequency content of the original data. After the interpretation of the inverted data, seismic attributes were then extracted. A multivariate statistics was performed in order to establish which correlations between geological and seismic would be carried forward. An Ordinary Kriging was applied to the 2D seismic attributes. The External Drift Kriging was used to derive maps of the geological properties with the constraint of seismic variables. The final geological properties maps are similar in shape and coherent with the depositional model proposed. (author)
Determination of Cytochrome P450 2D6 (CYP2D6 Gene Copy Number by Real-Time Quantitative PCR
Directory of Open Access Journals (Sweden)
Laurent Bodin
2005-01-01
Full Text Available Gene dosage by real-time quantitative PCR has proved to be accurate for measuring gene copy number. The aim of this study was to apply this approach to the CYP2D6 gene to allow for rapid identification of poor and ultrarapid metabolizers (0, 1, or more than 2 gene copy number. Using the 2−ΔΔCt calculation method and a duplex reaction, the number of CYP2D6 gene copies was determined. Quantitative PCR was performed on 43 samples previously analyzed by Southern blotting and long PCR including 20 samples with a heterozygous deletion, 11 with normal copy number (2 copies, and 12 samples with duplicated genes. The average ratio ranged from 1.02 to 1.28, 1.85 to 2.21, and 2.55 to 3.30, respectively, for the samples with 1 copy, 2 copies, and 3 copies. This study shows that this method is sensitive enough to detect either a heterozygous gene deletion or duplication.
From 2D Silhouettes to 3D Object Retrieval: Contributions and Benchmarking
Directory of Open Access Journals (Sweden)
Napoléon Thibault
2010-01-01
Full Text Available 3D retrieval has recently emerged as an important boost for 2D search techniques. This is mainly due to its several complementary aspects, for instance, enriching views in 2D image datasets, overcoming occlusion and serving in many real-world applications such as photography, art, archeology, and geolocalization. In this paper, we introduce a complete "2D photography to 3D object" retrieval framework. Given a (collection of picture(s or sketch(es of the same scene or object, the method allows us to retrieve the underlying similar objects in a database of 3D models. The contribution of our method includes (i a generative approach for alignment able to find canonical views consistently through scenes/objects and (ii the application of an efficient but effective matching method used for ranking. The results are reported through the Princeton Shape Benchmark and the Shrec benchmarking consortium evaluated/compared by a third party. In the two gallery sets, our framework achieves very encouraging performance and outperforms the other runs.
Li, Jian V; Johnston, Steven W; Yan, Yanfa; Levi, Dean H
2010-03-01
Thermally activated processes are characterized by two key quantities, activation energy (E(a)) and pre-exponential factor (nu(0)), which may be temperature dependent. The accurate measurement of E(a), nu(0), and their temperature dependence is critical for understanding the thermal activation mechanisms of non-Arrhenius processes. However, the classic 1D Arrhenius plot-based methods cannot unambiguously measure E(a), nu(0), and their temperature dependence due to the mathematical impossibility of resolving two unknown 1D arrays from one 1D experimental data array. Here, we propose a 2D Arrhenius plot method to solve this fundamental problem. Our approach measures E(a) at any temperature from matching the first and second moments of the data calculated with respect to temperature and rate in the 2D temperature-rate plane, and therefore is able to unambiguously solve E(a), nu(0), and their temperature dependence. The case study of deep level emission in a Cu(In,Ga)Se(2) solar cell using the 2D Arrhenius plot method reveals clear temperature dependent behavior of E(a) and nu(0), which has not been observable by its 1D predecessors.
Developing mobile BIM/2D barcode-based automated facility management system.
Lin, Yu-Cheng; Su, Yu-Chih; Chen, Yen-Pei
2014-01-01
Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment.
Developing Mobile BIM/2D Barcode-Based Automated Facility Management System
Directory of Open Access Journals (Sweden)
Yu-Cheng Lin
2014-01-01
Full Text Available Facility management (FM has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D graphics when depicting facilities. Building information modeling (BIM uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D object-oriented computer-aided design (CAD. This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment.
The 2DX robot: a membrane protein 2D crystallization Swiss Army knife.
Iacovache, Ioan; Biasini, Marco; Kowal, Julia; Kukulski, Wanda; Chami, Mohamed; van der Goot, F Gisou; Engel, Andreas; Rémigy, Hervé-W
2010-03-01
Among the state-of-the-art techniques that provide experimental information at atomic scale for membrane proteins, electron crystallography, atomic force microscopy and solid state NMR make use of two-dimensional crystals. We present a cyclodextrin-driven method for detergent removal implemented in a fully automated robot. The kinetics of the reconstitution processes is precisely controlled, because the detergent complexation by cyclodextrin is of stoichiometric nature. The method requires smaller volumes and lower protein concentrations than established 2D crystallization methods, making it possible to explore more conditions with the same amount of protein. The method yielded highly ordered 2D crystals diffracting to high resolution from the pore-forming toxin Aeromonas hydrophila aerolysin (2.9A), the plant aquaporin SoPIP2;1 (3.1A) and the human aquaporin-8 (hAQP8; 3.3A). This new method outperforms traditional 2D crystallization approaches in terms of accuracy, flexibility, throughput, and allows the usage of detergents having low critical micelle concentration (CMC), which stabilize the structure of membrane proteins in solution.
Ultrafast state detection and 2D ion crystals in a Paul trap
Ip, Michael; Ransford, Anthony; Campbell, Wesley
2016-05-01
Projective readout of quantum information stored in atomic qubits typically uses state-dependent CW laser-induced fluorescence. This method requires an often sophisticated imaging system to spatially filter out the background CW laser light. We present an alternative approach that instead uses simple pulse sequences from a mode-locked laser to affect the same state-dependent excitations in less than 1 ns. The resulting atomic fluorescence occurs in the dark, allowing the placement of non-imaging detectors right next to the atom to improve the qubit state detection efficiency and speed. We also study 2D Coulomb crystals of atomic ions in an oblate Paul trap. We find that crystals with hundreds of ions can be held in the trap, potentially offering an alternative to the use of Penning traps for the quantum simulation of 2D lattice spin models. We discuss the classical physics of these crystals and the metastable states that are supported in 2D. This work is supported by the US Army Research Office.
Peng, Cheng; Efetov, Dmitri; Shiue, Ren-Jye; Nanot, Sebastien; Hempel, Marek; Kong, Jing; Koppens, Frank; Englund, Dirk
Strong spatial tunability of the charge carrier density at nanoscale is essential to many 2D-material-based electronic and optoelectronic applications. As an example, plasmonic metamaterials with nanoscale dimensions would make graphene plasmonics at visible and near-infrared wavelengths possible. However, existing gating techniques based on conventional dielectric gating geometries limit the spatial resolution and achievable carrier concentration, strongly restricting the available wavelength, geometry, and quality of the devices. Here, we present a novel spatially selective electrolyte gating approach that allows for in-plane spatial Fermi energy modulation of 2D materials of more than 1 eV (carrier density of n = 1014 cm-2) across a length of 2 nm. We present electrostatic simulations as well as electronic transport, photocurrent, cyclic voltammetry and optical spectroscopy measurements to characterize the performance of the gating technique applied to graphene devices. The high spatial resolution, high doping capacity, full tunability and self-aligned device geometry of the presented technique opens a new venue for nanoscale metamaterial engineering of 2D materials for complete optical absorption, nonlinear optics and sensing, among other applications.
Ruaño, Gualberto; Kocherla, Mohan; Graydon, James S; Holford, Theodore R; Makowski, Gregory S; Goethe, John W
2016-05-01
We describe a population genetic approach to compare samples interpreted with expert calling (EC) versus automated calling (AC) for CYP2D6 haplotyping. The analysis represents 4812 haplotype calls based on signal data generated by the Luminex xMap analyzers from 2406 patients referred to a high-complexity molecular diagnostics laboratory for CYP450 testing. DNA was extracted from buccal swabs. We compared the results of expert calls (EC) and automated calls (AC) with regard to haplotype number and frequency. The ratio of EC to AC was 1:3. Haplotype frequencies from EC and AC samples were convergent across haplotypes, and their distribution was not statistically different between the groups. Most duplications required EC, as only expansions with homozygous or hemizygous haplotypes could be automatedly called. High-complexity laboratories can offer equivalent interpretation to automated calling for non-expanded CYP2D6 loci, and superior interpretation for duplications. We have validated scientific expert calling specified by scoring rules as standard operating procedure integrated with an automated calling algorithm. The integration of EC with AC is a practical strategy for CYP2D6 clinical haplotyping.
Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin
2005-04-01
This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney.
单群2D2n（2）的拟刻画%Quasirecognition of the Simple Group 2 D2n (2)
Institute of Scientific and Technical Information of China (English)
李立莉
2015-01-01
Let G be finite group such that M(G) = M(2 D2n (2)) where 2n -1 prime .Then G has a nor‐mal subgroup isomorphic to 2 D2n (2) .Especially ,if | G | = |2 D2n (2)| ,then G ≌ 2 D2n (2) .%设 G为有限群，且满足 M（G）＝ M（2 D2n （2）），其中2n －1为素数。则 G必有正规子群同构于2 D2n （2）。特别地，若｜G｜＝｜2 D2n （2）｜，则G ≌2 D2n （2）。
Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy
Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander
2014-07-01
The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin "wrapping", i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.
Topology-Preserving Rigid Transformation of 2D Digital Images.
Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues
2014-02-01
We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.
N=2, D=6 supergravity with $E_7$ gauge matter
Zyablyuk, K N
1997-01-01
The lagrangian of N=2, D=6 supergravity coupled to E_7 X SU(2) vector- and hyper-multiplets is derived. For this purpose the coset manifold E_8/E_7 X SU(2), parametrized by the scalars of the hypermultiplet, is constructed. A difference from the case of Sp(n)-matter is pointed out. This model can be considered as an intermediate step in the compactification of D=10 supergravity coupled to E_8 X E_8 matter to four-dimensional model of E_6 unification.
Optical diffraction by ordered 2D arrays of silica microspheres
Shcherbakov, A. A.; Shavdina, O.; Tishchenko, A. V.; Veillas, C.; Verrier, I.; Dellea, O.; Jourlin, Y.
2017-03-01
The article presents experimental and theoretical studies of angular dependent diffraction properties of 2D monolayer arrays of silica microspheres. High-quality large area defect-free monolayers of 1 μm diameter silica microspheres were deposited by the Langmuir-Blodgett technique under an accurate optical control. Measured angular dependencies of zeroth and one of the first order diffraction efficiencies produced by deposited samples were simulated by the rigorous Generalized Source Method taking into account particle size dispersion and lattice nonideality.
Novel 2D representation of vibration for local damage detection
Directory of Open Access Journals (Sweden)
Grzegorz Żak
2014-07-01
Full Text Available In this paper a new 2D representation for local damage detection is presented. It is based on a vibration time series analysis. A raw vibration signal is decomposed via short-time Fourier transform and new time series for each frequency bin are differentiated to decorrelate them. For each time series, autocorrelation function is calculated. In the next step ACF maps are constructed. For healthy bearing ACF map should not have visible horizontal lines indicating damage. The method is illustrated by analysis of real data containing signals from damaged bearing and healthy for comparison.
Partial compactness for the 2-D Landau-Lifshitz flow
Directory of Open Access Journals (Sweden)
Paul Harpes
2004-07-01
Full Text Available Uniform local $C^infty$-bounds for Ginzburg-Landau type approximations for the Landau-Lifshitz flow on planar domains are proven. They hold outside an energy-concentration set of locally finite parabolic Hausdorff-dimension 2, which has finite times-slices. The approximations subconverge to a global weak solution of the Landau-Lifshitz flow, which is smooth away from the energy concentration set. The same results hold for sequences of global smooth solutions of the 2-d Landau-Lifshitz flow.
Transport Experiments on 2D Correlated Electron Physics in Semiconductors
Energy Technology Data Exchange (ETDEWEB)
Tsui, Daniel
2014-03-24
This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.
Numerical modelling of spallation in 2D hydrodynamics codes
Maw, J. R.; Giles, A. R.
1996-05-01
A model for spallation based on the void growth model of Johnson has been implemented in 2D Lagrangian and Eulerian hydrocodes. The model has been extended to treat complete separation of material when voids coalesce and to describe the effects of elevated temperatures and melting. The capabilities of the model are illustrated by comparison with data from explosively generated spall experiments. Particular emphasis is placed on the prediction of multiple spall effects in weak, low melting point, materials such as lead. The correlation between the model predictions and observations on the strain rate dependence of spall strength is discussed.
CFD code comparison for 2D airfoil flows
DEFF Research Database (Denmark)
Sørensen, Niels N.; Méndez, B.; Muñoz, A.
2016-01-01
The current paper presents the effort, in the EU AVATAR project, to establish the necessary requirements to obtain consistent lift over drag ratios among seven CFD codes. The flow around a 2D airfoil case is studied, for both transitional and fully turbulent conditions at Reynolds numbers of 3...... × 106 and 15 × 106. The necessary grid resolution, domain size, and iterative convergence criteria to have consistent results are discussed, and suggestions are given for best practice. For the fully turbulent results four out of seven codes provide consistent results. For the laminar...
2-D Electromagnetic Model of Fast-Ramping Superconducting Magnets
Auchmann, B; Kurz, S; Russenschuck, Stephan
2006-01-01
Fast-ramping superconducting (SC) accelerator magnets are the subject of R&D efforts by magnet designers at various laboratories. They require modifications of magnet design tools such as the ROXIE program at CERN, i.e. models of dynamic effects in superconductors need to be implemented and validated. In this paper we present the efforts towards a dynamic 2-D simulation of fast-ramping SC magnets with the ROXIE tool. Models are introduced and simulation results are compared to measurements of the GSI001 magnet of a GSI test magnet constructed and measured at BNL.
Automatische Annotation medizinischer 2D- und 3D-Visualisierungen
Mühler, Konrad; Preim, Bernhard
Wir stellen ein Framework vor, mit dem medizinische 2D- und 3D-Visualisierungen automatisch annotiert werden können. Annotationstexte wie St beirukturbenennungen oder Kurzbefunde werden so in der Darstellung platziert, dass sie gut lesbar sind und keine anderen Texte oder Strukturen verdecken. Weiterhin führen wir Techniken ein, mit denen sich eine Überfrachtung von Schichtbildern mit Annotationen vermeiden lassen. Unser System kommt sowohl in der chirurgischen OP-Planung wie auch in medizinischen Ausbildungssystemen zum Einsatz.
Quantum Oscillations in an Interfacial 2D Electron Gas.
Energy Technology Data Exchange (ETDEWEB)
Zhang, Bingop [Zhejiang Univ., Hangzhou (China); Lu, Ping [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Liu, Henan [Univ. of North Carolina, Charlotte, NC (United States); Lin, Jiao [Zhejiang Univ., Hangzhou (China); Ye, Zhenyu [Zhejiang Univ., Hangzhou (China); Jaime, Marcelo [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Balakirev, Fedor F. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab. (MagLab); Yuan, Huiqiu [Zhejiang Univ., Hangzhou (China); Wu, Huizhen [Zhejiang Univ., Hangzhou (China); Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Zhang, Yong [Univ. of North Carolina, Charlotte, NC (United States)
2016-01-01
Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb_{1-x}Sn_{x}Te thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.
Multichannel 2-D Power Spectral Estimation and Applications.
1987-12-01
Nuttall,1976) in 1-D. The success of the ME method in 1-D has led researchers to explore this problem in 2-D. Unfortunately, the simplicity and elegance...the form: P -I T , _ _ (i)] x,,i (3.53)i=1 (S. where i. is the estimated value of the PWM -dimensional data vector x,, and a(’) is the linear...in detail in the next section. C. CODING EXPERIMENTS WITH COLOR IMAGES In this work a color image is represented by its red, green, and blue ( RGB ) com
Exact solutions for the 2d one component plasma
Andersen, Timothy D
2011-01-01
The 2d one component gas of pointlike charges in a uniform neutralizing background interacting with a logarithmic potential is a common model for plasmas. In its classical equilibrium statistics at fixed temperature (canonical ensemble) it is formally related to certain types of random matrices with Gaussian distribution and complex eigenvalues. In this paper, I present an exact integration of this ensemble for $N$ such particles (or alternatively $N\\times N$ matrices) for all complex temperatures, a significant open problem in statistical physics for several decades.
Automatic simulation of 1D and 2D chaotic oscillators
Energy Technology Data Exchange (ETDEWEB)
Tlelo-Cuautle, E; Munoz-Pacheco, J-M [Department of Electronics, INAOE, Luis Enrique Erro No. 1, Tonantzintla, Puebla, 72840 MEXICO (Mexico)], E-mail: e.tlelo@ieee.org, E-mail: mpacheco@inaoep.mx
2008-02-15
A new method is introduced for automatic simulation of three kinds of chaotic oscillators: Chua's circuit, generalized Chua's circuit and chaotic oscillator implemented with saturated functions. The former generates the double-scroll, and the others 1D n-scroll attractors. The third chaotic oscillator is modified to generate 2D n-scrolls attractors. The oscillators are modelled by applying state variables and piecewise-linear approximation. Basically, the method computes the eigenvalues of the oscillators to begin time simulation and to make control of step-size automatically.
A generalized 2-D Poincaré inequality
Directory of Open Access Journals (Sweden)
Crisciani Fulvio
2000-01-01
Full Text Available Two 1-D Poincaré-like inequalities are proved under the mild assumption that the integrand function is zero at just one point. These results are used to derive a 2-D generalized Poincare inequality in which the integrand function is zero on a suitable arc contained in the domain (instead of the whole boundary. As an application, it is shown that a set of boundary conditions for the quasi geostrophic equation of order four are compatible with general physical constraints dictated by the dissipation of kinetic energy.
Efficient 2d full waveform inversion using Fortran coarray
Ryu, Donghyun; Kim, ahreum; Ha, Wansoo
2016-04-01
We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.
NUMERICAL SIMULATIONS OF 2D PERIODIC UNSTEADY CAVITATING FLOWS
Institute of Scientific and Technical Information of China (English)
WU Lei; LU Chuan-jing; LI Jie; CHEN Xin
2006-01-01
A two-phase mixture model was established to study unsteady cavitating flows. A local compressible system of equations was derived by introducing a density-pressure function to account for the two-phase flow of water/vapor and the transition from one phase to the other. An algorithm for solving the variable-density Navier-Stokes equations of cavitating flow problem was put forward. The numerical results for unsteady characteristics of cavitating flows on a 2D NACA hydrofoil coincide well with experimental data.
Anomalous Hall Effect in a 2D Rashba Ferromagnet.
Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M
2016-07-22
Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength.
DEFF Research Database (Denmark)
Andersen, Thomas Lykke; Frigaard, Peter
This report present the results of 2D physical model tests carried out in the shallow wave flume at Dept. of Civil Engineering, Aalborg University (AAU). The objective of the tests was: To investigate the combined influence of the pile diameter to water depth ratio and the wave height to water...... on the front side of the pile (0 to 90 degrees). These tests have been conducted at Aalborg University from 9. October, 2006 to 8. November, 2006. Unless otherwise mentioned, all values given in this report are in model scale....
2-D SIMULATION OF CHANNEL FLOWS WITH MOVEABLE BED
Institute of Scientific and Technical Information of China (English)
Wilhelm BECHTELER; Davood FARSHI
2001-01-01
This paper presents some preliminary results of 2-D numerical simulation of open channel flow with moveable bed. The unsteady two dimensional channel flow and sediment transport are simulated by solving shallow water equations and sediment continuity equation in conservation form based on unstructured finite volume method. Redefining longitudinal and transverse slopes of the bed is implemented in order to consider them in the bedload equation. A simple modeling treatment dealing with secondary flow effect on sediment movement is also discussed. Finally, two examples of numerical simulation are presented.
Dislocation field theory in 2D: Application to graphene
Energy Technology Data Exchange (ETDEWEB)
Lazar, Markus, E-mail: lazar@fkp.tu-darmstadt.de [Heisenberg Research Group, Department of Physics, Darmstadt University of Technology, Hochschulstr. 6, D-64289 Darmstadt (Germany); Department of Physics, Michigan Technological University, Houghton, MI 49931 (United States)
2013-01-17
A two-dimensional (2D) dislocation continuum theory is being introduced. The present theory adds elastic rotation, dislocation density, and background stress to the classical energy density of elasticity. This theory contains four material moduli. Two characteristic length scales are defined in terms of the four material moduli. Non-singular solutions of the stresses and elastic distortions of an edge dislocation are calculated. It has been pointed out that the elastic strain agrees well with experimental data found recently for an edge dislocation in graphene.
Directory of Open Access Journals (Sweden)
Julie Nikolaisen
Full Text Available Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. "mitochondrial dynamics" are linked to cellular (patho physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs. Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT. 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate
Power Control for D2D Underlay Cellular Networks With Channel Uncertainty
Memmi, Amen
2016-12-26
Device-to-device (D2D) communications underlying the cellular infrastructure are a technology that have been proposed recently as a promising solution to enhance cellular network capabilities. It improves spectrum utilization, overall throughput, and energy efficiency while enabling new peer-to-peer and location-based applications and services. However, interference is the major challenge, since the same resources are shared by both systems. Therefore, interference management techniques are required to keep the interference under control. In this paper, in order to mitigate interference, we consider centralized and distributed power control algorithms in a one-cell random network model. Existing results on D2D underlay networks assume perfect channel state information (CSI). This assumption is usually unrealistic in practice due to the dynamic nature of wireless channels. Thus, it is of great interest to study and evaluate achievable performances under channel uncertainty. Differently from previous works, we are assuming that the CSI may be imperfect and include estimation errors. In the centralized approach, we derive the optimal powers that maximize the coverage probability and the rate of the cellular user while scheduling as many D2D links as possible. These powers are computed at the base station (BS) and then delivered to the users, and hence the name “centralized”. For the distributed method, the ON–OFF power control and the truncated channel inversion are proposed. Expressions of coverage probabilities are established in the function of D2D links intensity, pathloss exponent, and estimation error variance. Results show the important influence of CSI error on achievable performances and thus how crucial it is to consider it while designing networks and evaluating performances.
DEFF Research Database (Denmark)
Rodek, L.; Knudsen, E.; Poulsen, H.F.;
2005-01-01
The determination of crystalline structures is a demanding and fundamental task of crystallography. This paper offers a new approach for rendering a 2D grain map of a polycrystal based on an orientation map reconstructed from X-ray diffraction patterns. The orientation map is produced by a Bayesian...
Kinetic analysis of protein aggregation monitored by real-time 2D solid-state NMR spectroscopy
Etzkorn, M.; Böckmann, A.; Baldus, M.
2011-01-01
It is shown that real-time 2D solid-state NMR can be used to obtain kinetic and structural information about the process of protein aggregation. In addition to the incorporation of kinetic information involving intermediate states, this approach can offer atom-specific resolution for all detectable
Fast acceleration of 2D wave propagation simulations using modern computational accelerators.
Directory of Open Access Journals (Sweden)
Wei Wang
Full Text Available Recent developments in modern computational accelerators like Graphics Processing Units (GPUs and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than 150x speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least 200x faster than the sequential implementation and 30x faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of 120x with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other
Explicit Kinetic Flux Vector Splitting Scheme for the 2-D Shallow Water Wave Equations
Institute of Scientific and Technical Information of China (English)
施卫平; 黄明游; 王婷; 张小江
2004-01-01
Originally, the kinetic flux vector splitting (KFVS) scheme was developed as a numerical method to solve gas dynamic problems. The main idea in the approach is to construct the flux based on the microscopical description of the gas. In this paper, based on the analogy between the shallow water wave equations and the gas dynamic equations, we develop an explicit KFVS method for simulating the shallow water wave equations. A 1D steady flow and a 2D unsteady flow are presented to show the robust and accuracy of the KFVS scheme.
A discrete 2-D Formulation for 3-D Field Problems with Continuous Symmetry
Auchmann, B; Kurz, S
2010-01-01
We describe a general formalism that allows to reduce the spatial dimension of a field problem from 3-D to (2+1)-D. Subsequently we identify conditions under which the third dimension can be eliminated.We see that the resulting 2-D field problems only decouple if an orthogonality criterion is fulfilled.The approach is based solely on differential-form calculus and can therefore be easily transferred into a discrete setting. As a numerical example we compute the field of twisted wires.
Coherence properties of a 2D trapped Bose gas around the superfluid transition
Plisson, T; Holzmann, M; Salomon, G; Aspect, Alain; Bouyer, Philippe; Bourdel, Thomas
2011-01-01
We measure the momentum distribution of a 2D trapped Bose gas and observe the increase of the range of coherence around the Berezinskii-Kosterlitz-Thouless (BKT) transition. We quantitatively compare our observed profiles to both a Hartee-Fock mean-field theory and to quantum Monte-Carlo simulations. In the normal phase, we already observe a sharpening of the momentum distribution. This behavior is partially captured in a mean-field approach, in contrast to the physics of the BKT transition.
3D Reconstruction from 2D Line Drawings only with Visible Vertices and Edges
Institute of Scientific and Technical Information of China (English)
WANG Xuan; DONG Li-jun
2014-01-01
The human vision system can reconstruct a 3D object easily from single 2D line drawings even if the hidden lines of the object are invisible. Now, there are many methods have emulated this ability, but when the hidden lines of the object are invisible, these methods cannot reconstruct a complete 3D object. Therefore, we put forward a new algorithm to settle this hard problem. Our approach consists of two steps: (1) infer the invisible vertices and edges to complete the line drawing, (2) propose a vertex-based optimization method to reconstruct a 3D object.
Unsteady 2D potential-flow forces on a thin variable geometry airfoil undergoing arbitrary motion
DEFF Research Database (Denmark)
Gaunaa, M.
2006-01-01
In this report analytical expressions for the unsteady 2D force distribution on a variable geometry airfoil undergoing arbitrary motion are derived under the assumption of incompressible, irrotational, inviscid flow. The airfoil is represented by itscamberline as in classic thin-airfoil theory...... of the present theory in problems employing the eigenvalue approach, such as stabilityanalysis. The analytical expressions for the forces simplify to all previously known steady and unsteady thin-airfoil solutions. Apart from the obvious applications within active load control/reduction, the current theory can...
Removal of Spectro-Polarimetric Fringes by 2D Pattern Recognition
Casini, R; Schad, T A
2012-01-01
We present a pattern-recognition based approach to the problem of removal of polarized fringes from spectro-polarimetric data. We demonstrate that 2D Principal Component Analysis can be trained on a given spectro-polarimetric map in order to identify and isolate fringe structures from the spectra. This allows us in principle to reconstruct the data without the fringe component, providing an effective and clean solution to the problem. The results presented in this paper point in the direction of revising the way that science and calibration data should be planned for a typical spectro-polarimetric observing run.
Optimizing water hyperpolarization and dissolution for sensitivity-enhanced 2D biomolecular NMR
Olsen, Greg; Markhasin, Evgeny; Szekely, Or; Bretschneider, Christian; Frydman, Lucio
2016-03-01
A recent study explored the use of hyperpolarized water, to enhance the sensitivity of nuclei in biomolecules thanks to rapid proton exchanges with labile amide backbone and sidechain groups. Further optimizations of this approach have now allowed us to achieve proton polarizations approaching 25% in the water transferred into the NMR spectrometer, effective water T1 times approaching 40 s, and a reduction in the dilution demanded for the cryogenic dissolution process. Further hardware developments have allowed us to perform these experiments, repeatedly and reliably, in 5 mm NMR tubes. All these ingredients - particularly the ⩾3000× 1H polarization enhancements over 11.7 T thermal counterparts, long T1 times and a compatibility with high-resolution biomolecular NMR setups - augur well for hyperpolarized 2D NMR studies of peptides, unfolded proteins and intrinsically disordered systems undergoing fast exchanges of their protons with the solvent. This hypothesis is here explored by detailing the provisions that lead to these significant improvements over previous reports, and demonstrating 1D coherence transfer experiments and 2D biomolecular HMQC acquisitions delivering NMR spectral enhancements of 100-500× over their optimized, thermally-polarized, counterparts.
Image restoration using 2D autoregressive texture model and structure curve construction
Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.
2015-05-01
In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.
F-theory and 2d (0,2) Theories
Schafer-Nameki, Sakura
2016-01-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N=(0,2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0,2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0,2) theories as heterotic worldsheet t...
Interactive 2D to 3D stereoscopic image synthesis
Feldman, Mark H.; Lipton, Lenny
2005-03-01
Advances in stereoscopic display technologies, graphic card devices, and digital imaging algorithms have opened up new possibilities in synthesizing stereoscopic images. The power of today"s DirectX/OpenGL optimized graphics cards together with adapting new and creative imaging tools found in software products such as Adobe Photoshop, provide a powerful environment for converting planar drawings and photographs into stereoscopic images. The basis for such a creative process is the focus of this paper. This article presents a novel technique, which uses advanced imaging features and custom Windows-based software that utilizes the Direct X 9 API to provide the user with an interactive stereo image synthesizer. By creating an accurate and interactive world scene with moveable and flexible depth map altered textured surfaces, perspective stereoscopic cameras with both visible frustums and zero parallax planes, a user can precisely model a virtual three-dimensional representation of a real-world scene. Current versions of Adobe Photoshop provide a creative user with a rich assortment of tools needed to highlight elements of a 2D image, simulate hidden areas, and creatively shape them for a 3D scene representation. The technique described has been implemented as a Photoshop plug-in and thus allows for a seamless transition of these 2D image elements into 3D surfaces, which are subsequently rendered to create stereoscopic views.
2D COORDINATE TRANSFORMATION USING ARTIFICIAL NEURAL NETWORKS
Directory of Open Access Journals (Sweden)
B. Konakoglu
2016-10-01
Full Text Available Two coordinate systems used in Turkey, namely the ED50 (European Datum 1950 and ITRF96 (International Terrestrial Reference Frame 1996 coordinate systems. In most cases, it is necessary to conduct transformation from one coordinate system to another. The artificial neural network (ANN is a new method for coordinate transformation. One of the biggest advantages of the ANN is that it can determine the relationship between two coordinate systems without a mathematical model. The aim of this study was to investigate the performances of three different ANN models (Feed Forward Back Propagation (FFBP, Cascade Forward Back Propagation (CFBP and Radial Basis Function Neural Network (RBFNN with regard to 2D coordinate transformation. To do this, three data sets were used for the same study area, the city of Trabzon. The coordinates of data sets were measured in the ED50 and ITRF96 coordinate systems by using RTK-GPS technique. Performance of each transformation method was investigated by using the coordinate differences between the known and estimated coordinates. The results showed that the ANN algorithms can be used for 2D coordinate transformation in cases where optimum model parameters are selected.
2D Gridded Surface Data Value-Added Product
Energy Technology Data Exchange (ETDEWEB)
Tang, Q [Lawrence Livermore National Laboratory; Xie, S [Lawrence Livermore National Laboratory
2015-08-30
This report describes the Atmospheric Radiation Measurement (ARM) Best Estimate (ARMBE) 2-dimensional (2D) gridded surface data (ARMBE2DGRID) value-added product. Spatial variability is critically important to many scientific studies, especially those that involve processes of great spatial variations at high temporal frequency (e.g., precipitation, clouds, radiation, etc.). High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with its enhanced spatial density will facilitate the studies at even finer scales. Currently, however, data are reported only at individual site locations at different time resolutions for different datastreams. It is difficult for users to locate all the data they need and requires extra effort to synchronize the data. To address these problems, the ARMBE2DGRID value-added product merges key surface measurements at the ARM SGP sites and interpolates the data to a regular 2D grid to facilitate the data application.
2D Plasmonics for Enabling Novel Light-Matter Interactions
Kaminer, Ido; Zhen, Bo; Joannopoulos, John D; Soljacic, Marin
2015-01-01
The physics of light-matter interactions is strongly constrained by both the small value of the fine-structure constant and the small size of the atom. Overcoming these limitations is a long-standing challenge. Recent theoretical and experimental breakthroughs have shown that two dimensional systems, such as graphene, can support strongly confined light in the form of plasmons. These 2D systems have a unique ability to squeeze the wavelength of light by over two orders of magnitude. Such high confinement requires a revisitation of the main assumptions of light-matter interactions. In this letter, we provide a general theory of light-matter interactions in 2D systems which support plasmons. This theory reveals that conventionally forbidden light-matter interactions, such as: high-order multipolar transitions, two-plasmon spontaneous emission, and spin-flip transitions can occur on very short time-scales - comparable to those of conventionally fast transitions. Our findings enable new platforms for spectroscopy...
Spectroscopic properties of multilayered gold nanoparticle 2D sheets.
Yoshida, Akihito; Imazu, Keisuke; Li, Xinheng; Okamoto, Koichi; Tamada, Kaoru
2012-12-11
We report the fabrication technique and optical properties of multilayered two-dimensional (2D) gold nanoparticle sheets ("Au nanosheet"). The 2D crystalline monolayer sheet composed of Au nanoparticles shows an absorption peak originating from a localized surface plasmon resonance (LSPR). It was found that the absorption spectra dramatically change when the monolayers are assembled into the multilayers on different substrates (quartz or Au). In the case of the multilayers on Au thin film (d = 200 nm), the LSPR peak is shifted to longer wavelength at the near-IR region by increasing the number of layers. The absorbance also depends on the layer number and shows the nonlinear behavior. On the other hand, the multilayers on quartz substrate show neither such LSPR peak shift nor nonlinear response of absorbance. The layer number dependence on metal surfaces can be interpreted as the combined effects between the near-field coupling of the LSPR and the far-field optics of the stratified metamaterial films, as proposed in our previous study. We also report the spectroscopic properties of hybrid multilayers composed of two kinds of monolayers, i.e., Au nanosheet and Ag nanosheet. The combination of the different metal nanoparticle sheets realizes more flexible plasmonic color tuning.
$T \\bar{T}$-deformed 2D Quantum Field Theories
Cavaglià, Andrea; Szécsényi, István M; Tateo, Roberto
2016-01-01
It was noticed many years ago, in the framework of massless RG flows, that the irrelevant composite operator $T \\bar{T}$, built with the components of the energy-momentum tensor, enjoys very special properties in 2D quantum field theories, and can be regarded as a peculiar kind of integrable perturbation. Novel interesting features of this operator have recently emerged from the study of effective string theory models.In this paper we study further properties of this distinguished perturbation. We discuss how it affects the energy levels and one-point functions of a general 2D QFT in finite volume through a surprising relation with a simple hydrodynamic equation. In the case of the perturbation of CFTs, adapting a result by L\\"uscher and Weisz we give a compact expression for the partition function on a finite-length cylinder and make a connection with the exact $g$-function method. We argue that, at the classical level, the deformation naturally maps the action of $N$ massless free bosons into the Nambu-Goto...
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Directory of Open Access Journals (Sweden)
José Oswaldo Cadenas
Full Text Available In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q ≤ n the algorithm executes in time within O(n; second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q ≤ n holds; the smaller the ratio min(p, q/n is in the dataset, the greater the speedup factor achieved.
Predicting Non-Square 2D Dice Probabilities
Pender, G A T
2014-01-01
The prediction of the final state probabilities of a general cuboid randomly thrown onto a surface is a problem that naturally arises in the minds of men and women familiar with regular cubic dice and the basic concepts of probability. Indeed, it was considered by Newton in 1664 [1]. In this paper we make progress on the 2D problem (which can be realised in 3D by considering a long cuboid, or alternatively a rectangular cross-sectioned dreidel). For the two-dimensional case we suggest a model that predicts this based on the side length ratio. We test this theory both experimentally and computationally, and find good agreement between our theory, experimental and computational results. Our theory is known, from its derivation, to be an approximation for particularly bouncy or grippy surfaces where the die rolls through many revolutions before settling. On real surfaces we would expect (and we observe) that the true probability ratio for a 2D die is a somewhat closer to unity than predicted by our theory. This ...
High Current Density 2D/3D Esaki Tunnel Diodes
Krishnamoorthy, Sriram; Lee, Choong Hee; Zhang, Yuewei; McCulloch, William D; Johnson, Jared M; Hwang, Jinwoo; Wu, Yiying; Rajan, Siddharth
2016-01-01
The integration of two-dimensional materials such as transition metal dichalcogenides with bulk semiconductors offer interesting opportunities for 2D/3D heterojunction-based novel device structures without any constraints of lattice matching. By exploiting the favorable band alignment at the GaN/MoS2 heterojunction, an Esaki interband tunnel diode is demonstrated by transferring large area, Nb-doped, p-type MoS2 onto heavily n-doped GaN. A peak current density of 446 A/cm2 with repeatable room temperature negative differential resistance, peak to valley current ratio of 1.2, and minimal hysteresis was measured in the MoS2/GaN non-epitaxial tunnel diode. A high current density of 1 kA/cm2 was measured in the Zener mode (reverse bias) at -1 V bias. The GaN/MoS2 tunnel junction was also modeled by treating MoS2 as a bulk semiconductor, and the electrostatics at the 2D/3D interface was found to be crucial in explaining the experimentally observed device characteristics.
Preconditioning 2D Integer Data for Fast Convex Hull Computations.
Cadenas, José Oswaldo; Megson, Graham M; Luengo Hendriks, Cris L
2016-01-01
In order to accelerate computing the convex hull on a set of n points, a heuristic procedure is often applied to reduce the number of points to a set of s points, s ≤ n, which also contains the same hull. We present an algorithm to precondition 2D data with integer coordinates bounded by a box of size p × q before building a 2D convex hull, with three distinct advantages. First, we prove that under the condition min(p, q) ≤ n the algorithm executes in time within O(n); second, no explicit sorting of data is required; and third, the reduced set of s points forms a simple polygonal chain and thus can be directly pipelined into an O(n) time convex hull algorithm. This paper empirically evaluates and quantifies the speed up gained by preconditioning a set of points by a method based on the proposed algorithm before using common convex hull algorithms to build the final hull. A speedup factor of at least four is consistently found from experiments on various datasets when the condition min(p, q) ≤ n holds; the smaller the ratio min(p, q)/n is in the dataset, the greater the speedup factor achieved.
Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces
Escobar-Ruiz, M. A.; Miller, Willard, Jr.
2016-07-01
2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
MESH2D GRID GENERATOR DESIGN AND USE
Energy Technology Data Exchange (ETDEWEB)
Flach, G.; Smith, F.
2012-01-20
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j{sub 0}) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations. The overall mesh is constructed from grid zones that are typically then subdivided into a collection of smaller grid cells. The grid zones usually correspond to distinct materials or larger-scale geometric shapes. The structured grid zones are identified through uppercase indices (I,J). Subdivision of zonal regions into grid cells can be done uniformly, or nonuniformly using either a polynomial or geometric skewing algorithm. Grid cells may be concentrated backward, forward, or toward both ends. Figure 1 illustrates the above concepts in the context of a simple four zone grid.
2D vibrational properties of epitaxial silicene on Ag(111)
Solonenko, Dmytro; Gordan, Ovidiu D.; Le Lay, Guy; Sahin, Hasan; Cahangirov, Seymur; Zahn, Dietrich R. T.; Vogt, Patrick
2017-03-01
The two-dimensional silicon allotrope, silicene, could spur the development of new and original concepts in Si-based nanotechnology. Up to now silicene can only be epitaxially synthesized on a supporting substrate such as Ag(111). Even though the structural and electronic properties of these epitaxial silicene layers have been intensively studied, very little is known about its vibrational characteristics. Here, we present a detailed study of epitaxial silicene on Ag(111) using in situ Raman spectroscopy, which is one of the most extensively employed experimental techniques to characterize 2D materials, such as graphene, transition metal dichalcogenides, and black phosphorous. The vibrational fingerprint of epitaxial silicene, in contrast to all previous interpretations, is characterized by three distinct phonon modes with A and E symmetries. Both, energies and symmetries of theses modes are confirmed by ab initio theory calculations. The temperature dependent spectral evolution of these modes demonstrates unique thermal properties of epitaxial silicene and a significant electron-phonon coupling. These results unambiguously support the purely two-dimensional character of epitaxial silicene up to about 300 °C, whereupon a 2D-to-3D phase transition takes place. The detailed fingerprint of epitaxial silicene will allow us to identify it in different environments or to study its modifications.
Electron-Phonon Scattering in Atomically Thin 2D Perovskites.
Guo, Zhi; Wu, Xiaoxi; Zhu, Tong; Zhu, Xiaoyang; Huang, Libai
2016-11-22
Two-dimensional (2D) atomically thin perovskites with strongly bound excitons are highly promising for optoelectronic applications. However, the nature of nonradiative processes that limit the photoluminescence (PL) efficiency remains elusive. Here, we present time-resolved and temperature-dependent PL studies to systematically address the intrinsic exciton relaxation pathways in layered (C4H9NH3)2(CH3NH3)n-1PbnI3n+1 (n = 1, 2, 3) structures. Our results show that scatterings via deformation potential by acoustic and homopolar optical phonons are the main scattering mechanisms for excitons in ultrathin single exfoliated flakes, exhibiting a T(γ) (γ = 1.3 to 1.9) temperature dependence for scattering rates. We attribute the absence of polar optical phonon and defect scattering to efficient screening of Coulomb potential, similar to what has been observed in 3D perovskites. These results establish an understanding of the origins of nonradiative pathways and provide guidelines for optimizing PL efficiencies of atomically thin 2D perovskites.
Facial biometrics based on 2D vector geometry
Malek, Obaidul; Venetsanopoulos, Anastasios; Androutsos, Dimitrios
2014-05-01
The main challenge of facial biometrics is its robustness and ability to adapt to changes in position orientation, facial expression, and illumination effects. This research addresses the predominant deficiencies in this regard and systematically investigates a facial authentication system in the Euclidean domain. In the proposed method, Euclidean geometry in 2D vector space is being constructed for features extraction and the authentication method. In particular, each assigned point of the candidates' biometric features is considered to be a 2D geometrical coordinate in the Euclidean vector space. Algebraic shapes of the extracted candidate features are also computed and compared. The proposed authentication method is being tested on images from the public "Put Face Database". The performance of the proposed method is evaluated based on Correct Recognition (CRR), False Acceptance (FAR), and False Rejection (FRR) rates. The theoretical foundation of the proposed method along with the experimental results are also presented in this paper. The experimental results demonstrate the effectiveness of the proposed method.
2D kinematic signatures of boxy/peanut bulges
Iannuzzi, Francesca
2015-01-01
We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disk galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrised up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the midplane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically-symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second bucklin...
Homogenization of 1D and 2D magnetoelastic lattices
Directory of Open Access Journals (Sweden)
Schaeffer Marshall
2015-01-01
Full Text Available This paper investigates the equivalent in-plane mechanical properties of one dimensional (1D and two dimensional (2D, periodic magneto-elastic lattices. A lumped parameter model describes the lattices using magnetic dipole moments in combination with axial and torsional springs. The homogenization procedure is applied to systems linearized about stable configurations, which are identified by minimizing potential energy. Simple algebraic expressions are derived for the properties of 1D structures. Results for 1D lattices show that a variety of stiffness changes are possible through reconfiguration, and that magnetization can either stiffen or soften a structure. Results for 2D hexagonal and re-entrant lattices show that both reconfigurations and magnetization have drastic effects on the mechanical properties of lattice structures. Lattices can be stiffened or softened and the Poisson’s ratio can be tuned. Furthermore for certain hexagonal lattices the sign of Poisson’s ratio can change by varying the lattice magnetization. In some cases presented, analytical and numerically estimated equivalent properties are validated through numerical simulations that also illustrate the unique characteristics of the investigated configurations.
Symmetries and black holes in 2D dilaton gravity
Cruz, J; Navarro, M; Talavera, C F
1996-01-01
We study global symmetries of generic 2D dilaton gravity models. Using a non-linear sigma model formulation we show that the unique theories admitting special conformal symmetries are the models with an exponential potential V \\propto e^{\\beta\\phi} ( S ={1\\over2\\pi} \\int d^2 x \\sqrt{-g} [ R \\phi + 4 \\lambda^2 e^{\\beta\\phi} ]), which include the model of Callan, Giddings, Harvey and Strominger (CGHS) as a particular though limiting (\\beta=0) case. These models give rise to black hole solutions with a mass-dependent temperature. The underlying conformal symmetry can be maintained in a natural way in the one-loop effective action, thus implying the exact solvability of the semiclassical theory including back-reaction. Moreover, we also introduce three different classes of non-conformal transformations which are symmetries for generic 2D dilaton gravity models. Special linear combinations of these transformations turn out to be the conformal symmetries of the CGHS and V \\propto e^{\\beta\\phi} models. We show that,...
On row-by-row coding for 2-D constraints
Tal, Ido; Roth, Ron M
2008-01-01
A constant-rate encoder--decoder pair is presented for a fairly large family of two-dimensional (2-D) constraints. Encoding and decoding is done in a row-by-row manner, and is sliding-block decodable. Essentially, the 2-D constraint is turned into a set of independent and relatively simple one-dimensional (1-D) constraints; this is done by dividing the array into fixed-width vertical strips. Each row in the strip is seen as a symbol, and a graph presentation of the respective 1-D constraint is constructed. The maxentropic stationary Markov chain on this graph is next considered: a perturbed version of the corresponding probability distribution on the edges of the graph is used in order to build an encoder which operates in parallel on the strips. This perturbation is found by means of a network flow, with upper and lower bounds on the flow through the edges. A key part of the encoder is an enumerative coder for constant-weight binary words. A fast realization of this coder is shown, using floating-point arith...
2D CFT Partition Functions at Late Times
Dyer, Ethan
2016-01-01
We consider the late time behavior of the analytically continued partition function $Z(\\beta + it) Z(\\beta - it)$ in holographic $2d$ CFTs. This is a probe of information loss in such theories and in their holographic duals. We show that each Virasoro character decays in time, and so information is not restored at the level of individual characters. We identify a universal decaying contribution at late times, and conjecture that it describes the behavior of generic chaotic $2d$ CFTs out to times that are exponentially large in the central charge. It was recently suggested that at sufficiently late times one expects a crossover to random matrix behavior. We estimate an upper bound on the crossover time, which suggests that the decay is followed by a parametrically long period of late time growth. Finally, we discuss integrable theories and show how information is restored at late times by a series of characters. This hints at a possible bulk mechanism, where information is restored by an infinite sum over non-...
Flatbands in 2D boroxine-linked covalent organic frameworks.
Wang, Rui-Ning; Zhang, Xin-Ran; Wang, Shu-Fang; Fu, Guang-Sheng; Wang, Jiang-Long
2016-01-14
Density functional calculations have been performed to analyze the electronic and mechanical properties of a number of 2D boroxine-linked covalent organic frameworks (COFs), which are experimentally fabricated from di-borate aromatic molecules. Furthermore, the band structures are surprising and show flat-band characteristics which are mainly attributed to the delocalized π-conjugated electrons around the phenyl rings and can be better understood within aromaticity theories. Next, the effects of branch sizes and hydrostatic strains on their band structures are systematically considered within generalized gradient approximations. It is found that their band gaps will start to saturate when the branch size reaches 9. For boroxine-linked COFs with only one benzene ring in the branch, the band gap is robust under compressive strain while it decreases with the tensile strain increasing. When the branch size is equal or greater than 2, their band gaps will monotonously increase with the strain increasing in the range of [-1.0, 2.0] Å. All boroxine-linked COFs are semiconductors with controllable band gaps, depending on the branch length and the applied strain. In comparison with other 2D materials, such as graphene, hexagonal boron nitride, and even γ-graphyne, all boroxine-linked COFs are much softer and even more stable. That is, they can maintain the planar features under a larger compressive strain, which means that they are good candidates in flexible electronics.
Reconstruction of a 2D seismic wavefield by seismic gradiometry
Maeda, Takuto; Nishida, Kiwamu; Takagi, Ryota; Obara, Kazushige
2016-12-01
We reconstructed a 2D seismic wavefield and obtained its propagation properties by using the seismic gradiometry method together with dense observations of the Hi-net seismograph network in Japan. The seismic gradiometry method estimates the wave amplitude and its spatial derivative coefficients at any location from a discrete station record by using a Taylor series approximation. From the spatial derivatives in horizontal directions, the properties of a propagating wave packet, including the arrival direction, slowness, geometrical spreading, and radiation pattern can be obtained. In addition, by using spatial derivatives together with free-surface boundary conditions, the 2D vector elastic wavefield can be decomposed into divergence and rotation components. First, as a feasibility test, we performed an analysis with a synthetic seismogram dataset computed by a numerical simulation for a realistic 3D medium and the actual Hi-net station layout. We confirmed that the wave amplitude and its spatial derivatives were very well-reproduced for period bands longer than 25 s. Applications to a real large earthquake showed that the amplitude and phase of the wavefield were well reconstructed, along with slowness vector. The slowness of the reconstructed wavefield showed a clear contrast between body and surface waves and regional non-great-circle-path wave propagation, possibly owing to scattering. Slowness vectors together with divergence and rotation decomposition are expected to be useful for determining constituents of observed wavefields in inhomogeneous media.
2-D Composite Model for Numerical Simulations of Nonlinear Waves
Institute of Scientific and Technical Information of China (English)
2000-01-01
－ A composite model, which is the combination of Boussinesq equations and Volume of Fluid (VOF) method, has been developed for 2-D time-domain computations of nonlinear waves in a large region. The whole computational region Ω is divided into two subregions. In the near-field around a structure, Ω2, the flow is governed by 2-D Reynolds Averaged Navier-Stokes equations with a turbulence closure model of k-ε equations and numerically solved by the improved VOF method; whereas in the subregion Ω1 (Ω1 = Ω - Ω2) the flow is governed by one-D Boussinesq equations and numerically solved with the predictor-corrector algorithm. The velocity and the wave surface elevation are matched on the common boundary of the two subregions. Numerical tests have been conducted for the case of wave propagation and interaction with a wave barrier. It is shown that the composite model can help perform efficient computation of nonlinear waves in a large region with the complicated flow fields near structures taken into account.
The Usage of 2D Codes in Marketing Practices
Directory of Open Access Journals (Sweden)
Toni Podmanicki
2011-07-01
Full Text Available Barcodes, which are used for the labelling and identification of products, have been used as the foundation for the development of new symbols, two-dimensional barcodes (usually called 2D codes. These codes are capable of receiving large amounts of data in a small area, and data stored in them can be read by means of mobile devices. They usually contain information such as web addresses, text, contacts and similar data that encourage users to interact in order to obtain the desired information, entertainment, discount, reservation, and even do their shopping. The possibility of connecting the physical and digital world by means of 2D codes has led marketing professionals to face new challenges in the development of strategies in mobile marketing. Many companies recognized the potential of the above technology very early, in its initial phase, and they use it now in their activities. This paper aims to emphasize the importance of knowing this technology and its advantages by providing examples in marketing practices.
2D velocity fields of simulated interacting disc galaxies
Kronberger, T; Schindler, S; Ziegler, B L
2007-01-01
We investigate distortions in the velocity fields of disc galaxies and their use to reveal the dynamical state of interacting galaxies at different redshift. For that purpose, we model disc galaxies in combined N-body/hydrodynamic simulations. 2D velocity fields of the gas are extracted from these simulations which we place at different redshifts from z=0 to z=1 to investigate resolution effects on the properties of the velocity field. To quantify the structure of the velocity field we also perform a kinemetry analysis. If the galaxy is undisturbed we find that the rotation curve extracted from the 2D field agrees well with long-slit rotation curves. This is not true for interacting systems, as the kinematic axis is not well defined and does in general not coincide with the photometric axis of the system. For large (Milky way type) galaxies we find that distortions are still visible at intermediate redshifts but partly smeared out. Thus a careful analysis of the velocity field is necessary before using it for...
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
This paper presents new weighting functions in grid generation and new discretizing scheme of momentum equations in numerical simulation of river flow. By using the new weighting functions, the curvilinear grid could be concentrated as desired near the assigned points or lines in physical plane. By using the new discretizing scheme, the difficulties caused by movable boundary and dry riverbed can be overcome. As an application, the flow in the Wuhan Section of Yangtze River is simulated. The computational results are in good agreement with the measured results. The new method is applicable to the numerical simulation of 2-D river flow with irregular region and moveable boundary.
3-D Imaging using Row--Column-Addressed 2-D Arrays with a Diverging Lens
DEFF Research Database (Denmark)
Bouzari, Hamed; Engholm, Mathias; Stuart, Matthias Bo;
2016-01-01
It has been shown that row–column-addressed (RCA) 2-D arrays can be an inexpensive alternative to fully addressed 2-D arrays. Generally imaging with an RCA 2-D array is limited to its forward-looking volume region. Constructing a double-curved RCA 2-D array or applying a diverging lens over the f...
Intensity-based 2D 3D registration for lead localization in robot guided deep brain stimulation
Hunsche, Stefan; Sauner, Dieter; El Majdoub, Faycal; Neudorfer, Clemens; Poggenborg, Jörg; Goßmann, Axel; Maarouf, Mohammad
2017-03-01
Intraoperative assessment of lead localization has become a standard procedure during deep brain stimulation surgery in many centers, allowing immediate verification of targeting accuracy and, if necessary, adjustment of the trajectory. The most suitable imaging modality to determine lead positioning, however, remains controversially discussed. Current approaches entail the implementation of computed tomography and magnetic resonance imaging. In the present study, we adopted the technique of intensity-based 2D 3D registration that is commonly employed in stereotactic radiotherapy and spinal surgery. For this purpose, intraoperatively acquired 2D x-ray images were fused with preoperative 3D computed tomography (CT) data to verify lead placement during stereotactic robot assisted surgery. Accuracy of lead localization determined from 2D 3D registration was compared to conventional 3D 3D registration in a subsequent patient study. The mean Euclidian distance of lead coordinates estimated from intensity-based 2D 3D registration versus flat-panel detector CT 3D 3D registration was 0.7 mm ± 0.2 mm. Maximum values of these distances amounted to 1.2 mm. To further investigate 2D 3D registration a simulation study was conducted, challenging two observers to visually assess artificially generated 2D 3D registration errors. 95% of deviation simulations, which were visually assessed as sufficient, had a registration error below 0.7 mm. In conclusion, 2D 3D intensity-based registration revealed high accuracy and reliability during robot guided stereotactic neurosurgery and holds great potential as a low dose, cost effective means for intraoperative lead localization.
Designing of sparse 2D arrays for Lamb wave imaging using coarray concept
Ambroziński, Łukasz; Stepinski, Tadeusz; Uhl, Tadeusz
2015-03-01
2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array's aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays' elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.
Designing of sparse 2D arrays for Lamb wave imaging using coarray concept
Energy Technology Data Exchange (ETDEWEB)
Ambroziński, Łukasz, E-mail: ambrozin@agh.edu.pl; Stepinski, Tadeusz, E-mail: ambrozin@agh.edu.pl; Uhl, Tadeusz, E-mail: ambrozin@agh.edu.pl [AGH University of Science and technology, al. Mickiewicza 30, 30-059 Krakow (Poland)
2015-03-31
2D ultrasonic arrays have considerable application potential in Lamb wave based SHM systems, since they enable equivocal damage imaging and even in some cases wave-mode selection. Recently, it has been shown that the 2D arrays can be used in SHM applications in a synthetic focusing (SF) mode, which is much more effective than the classical phase array mode commonly used in NDT. The SF mode assumes a single element excitation of subsequent transmitters and off-line processing the acquired data. In the simplest implementation of the technique, only single multiplexed input and output channels are required, which results in significant hardware simplification. Application of the SF mode for 2D arrays creates additional degrees of freedom during the design of the array topology, which complicates the array design process, however, it enables sparse array designs with performance similar to that of the fully populated dense arrays. In this paper we present the coarray concept to facilitate synthesis process of an array’s aperture used in the multistatic synthetic focusing approach in Lamb waves-based imaging systems. In the coherent imaging, performed in the transmit/receive mode, the sum coarray is a morphological convolution of the transmit/receive sub-arrays. It can be calculated as the set of sums of the individual sub-arrays’ elements locations. The coarray framework will be presented here using a an example of a star-shaped array. The approach will be discussed in terms of beampatterns of the resulting imaging systems. Both simulated and experimental results will be included.
Automatic masking for robust 3D-2D image registration in image-guided spine surgery
Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.
2016-03-01
During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.
Kim, Wun-gwi
2013-12-01
Membranes utilizing nanoporous one-dimensional (1D) and two-dimensional (2D) materials are emerging as attractive candidates for applications in molecular separations and related areas. Such nanotubular and nanolayered materials include carbon nanotubes, metal oxide nanotubes, layered zeolites, porous layered oxides, layered aluminophosphates, and porous graphenes. By virtue of their unique shape, size, and structure, they possess transport properties that are advantageous for membrane and thin film applications. These materials also have very different chemistry from more conventional porous 3D materials, due to the existence of a large, chemically active, external surface area. This feature also necessitates the development of innovative strategies to process these materials into membranes and thin films with high performance. This work provides the first comprehensive review of this emerging area. We first discuss approaches for the synthesis and structural characterization of nanoporous 1D and 2D materials. Thereafter, we elucidate different approaches for fabrication of membranes and thin films from these materials, either as multiphase (composite/hybrid) or single-phase membranes. The influence of surface chemistry and processing techniques on the membrane morphology is highlighted. We then discuss the applications of such membranes in areas relating to molecular transport and separation, e.g. gas and liquid-phase separations, water purification, and ion-conducting membranes. The review concludes with a discussion of the present outlook and some of the key scientific challenges to be addressed on the path to industrially applicable membranes containing nanoporous 1D and 2D materials. © 2013 Elsevier Ltd.
Face recognition based on the band fusion of generalized phase spectrum of 2D-FrFT
Wang, Xu; Qi, Lin; Tie, Yun; Chen, Enqing; Sun, Huijing
2017-02-01
In this paper, we propose a novel feature extraction method for face recognition based on two dimensional fractional Fourier transform (2D-FrFT). First, we extract the phase information of facial image in 2D-FrFT, which is called the generalized phase spectra (GPS). Then, we present an improved two-dimensional separability judgment (I2DSJ) to select appropriate order parameters for discrete fractional Fourier transform. Finally, multiple orders' generalized phase spectrum bands (MGPSB) fusion is proposed. In order to make full use of the discriminative information from different orders for face recognition, the proposed approach merges different orders' generalized phase spectra (GPS) of 2D-FrFT. The proposed method is no need to construct the subspace through the feature extraction methods and has less computation cost. Experimental results on the public face databases demonstrate that our method outperforms the representative methods.
A nodal collocation approximation for the multi-dimensional P{sub L} equations - 2D applications
Energy Technology Data Exchange (ETDEWEB)
Capilla, M. [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Camino de Vera 14, E-46022 Valencia (Spain)], E-mail: tcapilla@mat.upv.es; Talavera, C.F. [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Camino de Vera 14, E-46022 Valencia (Spain)], E-mail: talavera@mat.upv.es; Ginestar, D. [Departamento de Matematica Aplicada, Universidad Politecnica de Valencia, Camino de Vera 14, E-46022 Valencia (Spain)], E-mail: dginesta@mat.upv.es; Verdu, G. [Departamento de Ingenieria Quimica y Nuclear, Universidad Politecnica de Valencia, Camino de Vera 14, E-46022 Valencia (Spain)], E-mail: gverdu@iqn.upv.es
2008-10-15
A classical approach to solve the neutron transport equation is to apply the spherical harmonics method obtaining a finite approximation known as the P{sub L} equations. In this work, the derivation of the P{sub L} equations for multi-dimensional geometries is reviewed and a nodal collocation method is developed to discretize these equations on a rectangular mesh based on the expansion of the neutronic fluxes in terms of orthogonal Legendre polynomials. The performance of the method and the dominant transport Lambda Modes are obtained for a homogeneous 2D problem, a heterogeneous 2D anisotropic scattering problem, a heterogeneous 2D problem and a benchmark problem corresponding to a MOX fuel reactor core.
Modeling of lamps through a diffuser with 2D and 3D picket-fence backlight models
Belshaw, Richard J.; Wilmott, Roger; Thomas, John T.
2002-08-01
Laboratory photometric measurements are taken of a display backlight one metre away from the emission surface (diffuser) with a whole acceptance angle on the photometer of about 0.125 degrees (2.182mm spot size at emission surface). A simulation method was sought to be able to obtain the brightness uniformity (luminance peak to trough ratio from above one lamp to the null between lamps in a picket-fence backlight). A 3D raytrace BackLight model in TracePro and a 2D Mathematical model in Matlab have been developed. With a specimen backlight in the laboratory, a smooth luminance profile was measured by the photometer on the diffuser surface. Ray Trace models in both 3D and 2D take too long to produce smooth 'continuous filled' distributions. The Mathematical 2D approach, although with limitations, yielded smooth solutions in a very reasonable time frame.
Magnetoresistance in Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions.
Zhang, Han; Ye, Meng; Wang, Yangyang; Quhe, Ruge; Pan, Yuanyuan; Guo, Ying; Song, Zhigang; Yang, Jinbo; Guo, Wanlin; Lu, Jing
2016-06-28
Semiconducting single-layer (SL) and few-layer MoS2 have a flat surface, free of dangling bonds. Using density functional theory coupled with non-equilibrium Green's function method, we investigate the spin-polarized transport properties of Co/2D MoS2/Co and Ni/2D MoS2/Ni junctions with MoS2 layer numbers of N = 1, 3, and 5. Well-defined interfaces are formed between MoS2 and metal electrodes. The junctions with a SL MoS2 spacer are almost metallic owing to the strong coupling between MoS2 and the ferromagnets, while those are tunneling with a few layer MoS2 spacer. Both large magnetoresistance and tunneling magnetoresistance are found when fcc or hcp Co is used as an electrode. Therefore, flat single- and few-layer MoS2 can serve as an effective nonmagnetic spacer in a magnetoresistance or tunneling magnetoresistance device with a well-defined interface.
A Volume Rendering Algorithm for Sequential 2D Medical Images
Institute of Scientific and Technical Information of China (English)
吕忆松; 陈亚珠
2002-01-01
Volume rendering of 3D data sets composed of sequential 2D medical images has become an important branch in image processing and computer graphics.To help physicians fully understand deep-seated human organs and focuses(e.g.a tumour)as 3D structures.in this paper,we present a modified volume rendering algorithm to render volumetric data,Using this method.the projection images of structures of interest from different viewing directions can be obtained satisfactorily.By rotating the light source and the observer eyepoint,this method avoids rotates the whole volumetric data in main memory and thus reduces computational complexity and rendering time.Experiments on CT images suggest that the proposed method is useful and efficient for rendering 3D data sets.