WorldWideScience

Sample records for 2,4-dichlorophenoxyacetic acid

  1. Membrane effects of 2,4-dichlorophenoxyacetic acid in motor cells of Mimosa pudica L.

    Science.gov (United States)

    Moyen, Christelle; Bonmort, Janine; Roblin, Gabriel

    2007-01-01

    2,4-dichlorophenoxyacetic acid applied to excised leaves of Mimosa pudica L. inhibited in a dose-dependent manner the shock-induced pulvinar movement. This inhibition was negatively correlated with the amount of [(14)C] 2,4-dichlorophenoxyacetic acid present in the vicinity of the motor cells. Although 2,4-dichlorophenoxyacetic acid is a weak acid, its greatest physiological efficiency was obtained with pH values close to neutrality. This observation opens the question of its mode of action which may be through external signaling or following internal transport by a specific anionic form transporter. The effect was related to molecular structure since 2,4-dichlorophenoxyacetic acid>3,4-dichlorophenoxyacetic acid>2,3-dichlorophenoxyacetic acid. An essential target of 2,4-dichlorophenoxyacetic acid action lies at the plasmalemma as indicated by the induced hyperpolarization of the cell membrane. Compared to indole-3-acetic acid and fusicoccin, it induced a complex effect on H(+) fluxes. Applied to plasma membrane vesicles purified from motor organs, 2,4-dichlorophenoxyacetic acid enhanced proton pumping, but, unlike fusicoccin, it did not increase the H(+)-ATPase catalytic activity in our experimental conditions. Taken together, the data suggest that 2,4-dichlorophenoxyacetic acid acts on cell turgor variation and the concomittant ion migration, in particular K(+), by a mechanism involving specific steps compared to indole-3-acetic acid and fusicoccin.

  2. Degradation of 2,4-dichlorophenoxyacetic acid in water by ozone-hydrogen peroxide process

    Institute of Scientific and Technical Information of China (English)

    YU Ying-hui; MA Jun; HOU Yan-jun

    2006-01-01

    This study reports an investigation into the degradation of 2,4-dichlorophenoxyacetic acid in bubble contactor column by O3/H2O2 process, which is widely used as a principal advanced oxidation process. The degradation of 2,4-dichlorophenoxyacetic acid was studied under different H2O2/O3 molar ratio and pH value. Meanwhile, TOC removal was investigated both in distilled water and tap water. The influences of ozone transfer and consumed hydrogen peroxide were also discussed. The degradation products and oxidation intermediates were identified by GC-MS and LC-MS. A possible reaction mechanism was thus proposed.

  3. Degradation of 2,4-dichlorophenoxyacetic acid by a halotolerant strain of Penicillium chrysogenum: antibiotic production.

    Science.gov (United States)

    Ferreira-Guedes, Sumaya; Mendes, Benilde; Leitão, Ana Lúcia

    2012-01-01

    The extensive use of pesticides in agriculture has prompted intensive research on chemical and biological methods in order to protect contamination of water and soil resources. In this paper the degradation of the pesticide 2,4-dichlorophenoxyacetic acid by a Penicillium chrysogenum strain previously isolated from a salt mine was studied in batch cultures. Co-degradation of 2,4-dichlorophenoxyacetic acid with additives such as sugar and intermediates of pesticide metabolism was also investigated. Penicillium chrysogenum in solid medium was able to grow at concentrations up to 1000 mg/L of 2,4-dichlorophenoxyacetic acid (2,4-D) with sucrose. Meanwhile, supplementation of the solid medium with glucose and lactose led to fungal growth at concentrations up to 500 mg/L of herbicide. Batch cultures of 2,4-D at 100 mg/L were developed under aerobic conditions with the addition of glucose, lactose and sucrose, showing sucrose as the best additional carbon source. The 2,4-D removal was quantified by liquid chromatography. The fungus was able to use 2,4-D as the sole carbon and energy source under 0%, 2% and 5.9% NaCl. The greatest 2,4-D degradation efficiency was found using alpha-ketoglutarate and ascorbic acid as co-substrates under 2% NaCl at pH 7. Penicillin production was evaluated in submerged cultures by bioassay, and higher amounts of beta-lactam antibiotic were produced when the herbicide was alone. Taking into account the ability of P. chrysogenum CLONA2 to degrade aromatic compounds, this strain could be an interesting tool for 2,4-D herbicide remediation in saline environments.

  4. Effects of Ethephon, Ethylene, and 2,4-Dichlorophenoxyacetic Acid on Asexual Embryogenesis in Vitro12

    Science.gov (United States)

    Tisserat, Brent; Murashige, Toshio

    1977-01-01

    Asexual embryogenesis in Daucus carota L. `Queen Anne's Lace' callus was suppressed by Ethephon, ethylene, and 2,4-dichlorophenoxyacetic acid (2,4-D). The Ethephon effect could be attributed to volatile and nonvolatile substances. The volatile component was probably entirely ethylene. Ethylene was liberated in the cultures in direct proportion to Ethephon added to the medium. Autoclaving of Ethephon caused a substantial decrease of measurable ethylene. Continuous exposure of callus to 5 μl/l ethylene depressed somatic cell embryogenesis, but not markedly. Depression of embryogenesis by 2,4-D was unrelated to ethylene evolution. PMID:16660109

  5. Rapid Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by Cupriavidus gilardii T-1.

    Science.gov (United States)

    Wu, Xiangwei; Wang, Wenbo; Liu, Junwei; Pan, Dandan; Tu, Xiaohui; Lv, Pei; Wang, Yi; Cao, Haiqun; Wang, Yawen; Hua, Rimao

    2017-05-10

    Phytotoxicity and environmental pollution of residual herbicides have caused much public concern during the past several decades. An indigenous bacterial strain capable of degrading 2,4-dichlorophenoxyacetic acid (2,4-D), designated T-1, was isolated from soybean field soil and identified as Cupriavidus gilardii. Strain T-1 degraded 2,4-D 3.39 times more rapidly than the model strain Cupriavidus necator JMP134. T-1 could also efficiently degrade 2-methyl-4-chlorophenoxyacetic acid (MCPA), MCPA isooctyl ester, and 2-(2,4-dichlorophenoxy)propionic acid (2,4-DP). Suitable conditions for 2,4-D degradation were pH 7.0-9.0, 37-42 °C, and 4.0 mL of inoculums. Degradation of 2,4-D was concentration-dependent. 2,4-D was degraded to 2,4-dichlorophenol (2,4-DCP) by cleavage of the ether bond and then to 3,5-dichlorocatechol (3,5-DCC) via hydroxylation, followed by ortho-cleavage to cis-2-dichlorodiene lactone (CDL). The metabolites 2,4-DCP or 3,5-DCC at 10 mg L(-1) were completely degraded within 16 h. Fast degradation of 2,4-D and its analogues highlights the potential for use of C. gilardii T-1 in bioremediation of phenoxyalkanoic acid herbicides.

  6. 2,4-dichlorophenoxyacetic acid as an alternative auxin for rooting of vine rootstock cuttings

    Directory of Open Access Journals (Sweden)

    Mauro Brasil Dias Tofanelli

    2014-09-01

    Full Text Available Viticulture is an important agricultural activity in semiarid northeastern Brazil, and the quality and ease of vine propagation are very important in this context. This study evaluated the use of 2,4-dichlorophenoxyacetic acid (2,4-D as an alternative to indolebutyric acid (IBA in the rooting of vine rootstock cuttings. The trial was conducted at the Universidade Federal de Sergipe (São Cristóvão-SE between January and March 2010 with cuttings of the rootstocks of 'IAC-766', 'IAC-572', and 'Paulsen 1103' treated with 2,4-D or IBA applied at concentrations of 0, 1000, 2000, or 3000 rng-L-1 for 5 s and planted in a field on washed sand. At 56 days after planting, the percentages of rooted, sprouted, callused, and dead cuttings were evaluated, and also the average number and length of the rooted cuttings. The results showed that 2,4-D was not superior to IBA in the characteristics wanted for the rooting process of the vine rootstock cuttings. The vine rootstocks showed potential for propagation by cutting without auxin application. It was observed that the high concentrations were the worst for the rooting of the cuttings.

  7. Molecularly imprinted polymer for 2, 4-dichlorophenoxyacetic acid prepared by a sol-gel method

    Indian Academy of Sciences (India)

    Yanli Sun

    2014-07-01

    Based on a sol-gel procedure, a molecularly imprinted polymer (MIP) for 2, 4-dichlorophenoxyacetic acid (2, 4-D) was synthesized, using phenyltrimethoxysilane (PTMOS), aminopropyltriethoxysilane (APTES) as monomers and tetraethoxysilane (TEOS) as cross-linking agent. In addition to the amount of the template, some factors in the sol-gel process: TEOS/APTES/PTMOS molar ratio, H2O/Si molar ratio, CH3CH2OH/Si molar ratio, etc. were investigated in detail. Results show that the optimum conditions for the preparation of the MIPs were 20:1.5:1 (TEOS: APTES: PTMOS), ca. 4 (H2O/Si), ca. 4 (CH3CH2OH/Si), respectively. Effects of various parameters involved in the adsorption process of 2, 4-D on MIP such as incubation time, pH, etc. were also evaluated. It is found that the adsorption attained equilibrium within 3 h, the optimum pH for adsorption was about 7 and the adsorption obeyed Langmuir model. Test results also demonstrated that the present MIP for 2, 4-D had large adsorption capacity (the maximum adsorption concluded from Langmuir model reached 243.3 mg/g) and good selectivity.

  8. Rapid degradation of 2,4-dichlorophenoxyacetic acid facilitated by acetate under methanogenic condition.

    Science.gov (United States)

    Yang, Zhiman; Xu, Xiaohui; Dai, Meng; Wang, Lin; Shi, Xiaoshuang; Guo, Rongbo

    2017-05-01

    Acetate can be used as an electron donor to stimulate 2,4-dichlorophenoxyacetic acid (2,4-D), which has not been determined under methanogenic condition. This study applied high-throughput sequencing and methanogenic inhibition approaches to investigate the 2,4-D degradation process using the enrichments obtained from paddy soil. Acetate addition significantly promoted 2,4-D degradation, which was 5-fold higher than in the acetate-unsupplemented enrichments in terms of the 2,4-D degradation rate constant. Dechloromonas and Pseudomonas were the dominant 2,4-D degraders. Methanogenic inhibition experiments indicated that the 2,4-D degradation was independent of methanogenesis. It was proposed that the accelerated 2,4-D degradation in the acetate-supplemented enrichment involved an unusual interaction, where members of the acetate oxidizers primarily oxidized acetate and produced H2. H2 was utilized by the 2,4-D degraders to degrade 2,4-D, but also partially consumed by the hydrogenotrophic methanogens to produce methane. The findings presented here provide a new strategy for the remediation of 2,4-D-polluted soils. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system.

    Science.gov (United States)

    Zhang, Jingli; Cao, Zhanping; Zhang, Hongwei; Zhao, Lianmei; Sun, Xudong; Mei, Feng

    2013-11-15

    The reductive degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in an electro-biological system, a biological system and an electric catalytic system, respectively. Electrochemical characteristics were monitored by cyclic voltammetry and the intermediate products of 2,4-D degradation were determined by high speed liquid chromatography (HPLC). The results showed that all 2,4-D degradations in the three systems conformed to the kinetics characteristics of one-order reaction, and the degradation kinetics constants were 28.74 × 10(-2) h(-1), 19.73 × 10(-2) h(-1) and 3.54 × 10(-2) h(-1), respectively. The kinetics constant in the electro-biological system was higher than the sum in the other two systems by 19%. The electrochemical assistance provided the electrons and accelerated the electron transfer rate in the microbial degradation of 2,4-D. The degradation resulted from the microbial reduction strengthened by the electrochemical assistance. The electron transfer existed between the electrode, cytochrome, NAD and the pollutants. A long-range electron transfer process could be achieved on the multi-phase interfaces between the electrode, bacteria and the pollutants. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Plasmid as a measure of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Chong, Nyuk-Min; Chang, Hung-Wei

    2009-02-01

    The purpose of this research was to pursuit the quantification of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid (2,4-D) by detecting and quantifying a prominent 2,4-D degradation encoding plasmid. Batch reactor acclimation, de-acclimation, and re-acclimation tests were conducted during which periods the courses of 2,4-D dissipation and plasmid evolution were quantitatively measured. Pure cultures of bacterial strains were detected to give rise to a plasmid approximately the size of 90 kb after acclimation. The 90 kb plasmid content of Arthrobacter sp. increased when degradation occurred after acclimation, with a rate that corresponded closely to the degradation rate. During de-acclimation, plasmid content declined exponentially at a half-life of approximately 3.5 days. Re-acclimation saw a renewed induction of plasmid, but substrate consumption limited the rise of plasmid to a level much lower than after the first acclimation. This research recommends a method for measuring the microbial degradation capability for a xenobiotic.

  11. Oxidation of 2,4-dichlorophenoxyacetic acid by ionizing radiation: degradation, detoxification and mineralization

    Science.gov (United States)

    Zona, Robert; Solar, Sonja

    2003-02-01

    The gamma-radiation-induced degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in aerated (A) and in during irradiation air saturated (AS) solutions. Whereas the decomposition rates were not influenced by AS, chloride elimination, detoxification as well as mineralization were significantly enhanced. In the range 50-500 μmol dm -3 2,4-D, degradation showed proportionality to concentration, while chloride formation was successively retarded. The ratios of the pseudo first-order rate constants for degradation and chloride formation, kde/ kCl, increase in AS solutions from 1.4 (50 μmol dm -3) to 2.7 (500 μmol dm -3) and in A solutions from 1.4 to 3.3. In AS for total chloride release 0.7 kGy (50 μmol dm -3) to 10 kGy (500 μmol dm -3) were required, the reduction of organic carbon at 10 kGy was 95% (50 μmol dm -3) and 50% (500 μmol dm -3). Increase and decrease of toxicity during irradiation correlated well with formation and degradation of intermediate phenolic products. The doses for detoxification corresponded to those of total dehalogenation. The oxygen uptake was ˜1.1 ppm 100 Gy -1. The presence of the inorganic components of Vienna drinking water affect the degradation parameters insignificantly.

  12. Evidence for Interspecies Gene Transfer in the Evolution of 2,4-Dichlorophenoxyacetic Acid Degraders

    Science.gov (United States)

    McGowan, Catherine; Fulthorpe, Roberta; Wright, Alice; Tiedje, J. M.

    1998-01-01

    Small-subunit ribosomal DNA (SSU rDNA) from 20 phenotypically distinct strains of 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacteria was partially sequenced, yielding 18 unique strains belonging to members of the alpha, beta, and gamma subgroups of the class Proteobacteria. To understand the origin of 2,4-D degradation in this diverse collection, the first gene in the 2,4-D pathway, tfdA, was sequenced. The sequences fell into three unique classes found in various members of the beta and gamma subgroups of Proteobacteria. None of the α-Proteobacteria yielded tfdA PCR products. A comparison of the dendrogram of the tfdA genes with that of the SSU rDNA genes demonstrated incongruency in phylogenies, and hence 2,4-D degradation must have originated from gene transfer between species. Only those strains with tfdA sequences highly similar to the tfdA sequence of strain JMP134 (tfdA class I) transferred all the 2,4-D genes and conferred the 2,4-D degradation phenotype to a Burkholderia cepacia recipient. PMID:9758850

  13. Microwave activated electrochemical degradation of 2,4-dichlorophenoxyacetic acid at boron-doped diamond electrode.

    Science.gov (United States)

    Gao, Junxia; Zhao, Guohua; Shi, Wei; Li, Dongming

    2009-04-01

    A method for improving the oxidation ability of the electrode is proposed by using microwave activation in electrochemical oxidation. The electrochemical degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave radiation (MW-EC) was carried out in a continuous flow system under atmospheric pressure. In 3 h the removal of COD, ACE (average current efficiency) and Cl(-) concentration was 1.63, 2.25 and 1.67 times as that without microwave radiation, respectively. The high degradation ability was resulted from the more active centers at the electrode surface due to the microwave radiation. The decay kinetics of 2,4-D followed a pseudo first-order reaction. The rate constant was increased to 2.16x10(-4) s(-1) with the microwave radiation, while it was 8.52x10(-5) s(-1) with electrochemical treatment only (EC). Under both conditions, the main intermediates were identified and quantified by High Performance Liquid Chromatography (HPLC). The formation rate of intermediate products and further degradation rate were increased by about 50-120% with the microwave radiation. The activation of electrochemical oxidation by microwave was discussed from the diffusion process, adsorption and the temperature at boron-doped diamond (BDD) electrode.

  14. Enhanced photocatalytic–biological degradation of 2,4 dichlorophenoxyacetic acid

    Directory of Open Access Journals (Sweden)

    Reham Samir

    2015-12-01

    Full Text Available 2,4-Dichlorophenoxyacetic acid (2,4-D is the third most commonly used herbicide all over the world. There is a contradicted opinion about its toxicity and its half life in the environment. In this study the most effective method of its degradation and bioremediation has been studied. Two microbial consortia capable of utilizing 2,4-D as a sole source of carbon were isolated from the Egyptian environment. One of the microbial consortia interestingly contained a certain kind of protozoa as one of the mixed consortia members. Degradation of 2,4-D by the microbial consortia was affected by 2,4-D initial concentration, agitation, pH of the medium and temperature. The two consortia were able to degrade up to 700 mg l−1 of 2,4-D. Pre-treatment with UV radiations in the presence of photocatalyst such as TiO2 accelerates the biodegradation process. The toxic non biodegradable concentration of 2,4-D which was found to be the 800 mg l−1, was degraded by pre-treatment with UV/TiO2 and a subsequent microbial inoculation. The combined treatment proved to be an efficient mean of biodegradation and detoxification of toxic non biodegradable concentrations of 2,4-D.

  15. Adsorption of 2,4-Dichlorophenoxyacetic Acid onto Volcanic Ash Soils:

    Directory of Open Access Journals (Sweden)

    Ei Ei Mon

    2009-01-01

    Full Text Available The quantification of the linear adsorption coefficient (Kd for soils plays a vital role to predict fate and transport of pesticides in the soil-water environment. In this study, we measured Kd values for 2,4-Dichlorophenoxyacetic acid (2,4-D adsorption onto Japanese volcanic ash soils with different amount of soil organic matter (SOM in batch experiments under different pH conditions. All measurements followed well both linear and Freundlich adsorption isotherms. Strong correlations were found between measured Kd values and pH as well as SOM. The 2,4-D adsorption increased with decreasing pH and with increasing SOM. Based on the data, a predictive Kd equation for volcanic ash soils, log (Kd = 2.04 - 0.37 pH + 0.91 log (SOM, was obtained by the multiple regression analysis. The predictive Kd equation was tested against measured 2,4-D sorption data for other volcanic ash soils and normal mineral soils from literature. The proposed Kd equation well predicted Kd values for other volcanic ash soils and slightly over- or under-predicted Kd values for normal mineral soils. The proposed Kd equation performed well against volcanic ash soils from different sites and countries, and is therefore recommended for predicting Kd values at different pH and SOM conditions for volcanic ash soils when calculating and predicting 2,4-D mobility and fate in soil and groundwater.

  16. Distribution of 2,4-dichlorophenoxyacetic acid (2,4-D) in maternal and fetal rabbits.

    Science.gov (United States)

    Sandberg, J A; Duhart, H M; Lipe, G; Binienda, Z; Slikker, W; Kim, C S

    1996-12-06

    The distribution of 2,4-dichlorophenoxyacetic acid (2,4-D) was examined in maternal and fetal rabbits. Pregnant New Zealand rabbits (28-30 d gestational age) were anesthetized with ketamine/xylazine and the femoral vein and artery were catheterized for compound administration and sampling. Dams received iv [14C]2,4-D (12.5 microCi/kg) with unlabeled sodium 2,4-D (1, 10, or 40 mg/kg) in saline. Blood and tissue were collected up to 2 h after dosing. Fetal to maternal plasma AUC ratios were 0.09, 0.07, and 0.16 after the 1, 10, or 40 mg/kg dose, respectively. Extraplasma AUCs were greatest in maternal kidney and uterus and lowest in maternal and fetal brain. A greater than fourfold elevation in fetal AUC was found when the dose was increased from 10 to 40 mg/kg, suggesting saturation of maternal plasma binding of 2,4-D. Although the in vitro fetal brain tissue to incubation media ratio was unity (1.03 +/- 0.1, mean +/- SD), fetal brain AUCs were 10% or less of the fetal plasma AUCs, indicating the brain barrier system to 2,4-D is functioning in the late-gestation fetal rabbit. However, its development may not be complete due to the higher brain tissue to plasma ratios in the fetus compared to the dam.

  17. Degradation characteristics of 2,4-dichlorophenoxyacetic acid in electro-biological system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, JingLi, E-mail: jinglizhangczp@126.com [Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Institute of Urban Construction, Tianjin 300384 (China); Cao, ZhanPing; Zhang, HongWei [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China); Zhao, LianMei [Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Institute of Urban Construction, Tianjin 300384 (China); Sun, XuDong; Mei, Feng [School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387 (China)

    2013-11-15

    Highlights: • The 2,4-D reductive degradation was studied in an electro-biological system. • The electric auxiliary accelerates 2,4-D microbial degradation. • A electron transfer is achieved between the electrode, bacteria and the pollutants. • The paper provides a promising way for the degradation of persistent organics. -- Abstract: The reductive degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in an electro-biological system, a biological system and an electric catalytic system, respectively. Electrochemical characteristics were monitored by cyclic voltammetry and the intermediate products of 2,4-D degradation were determined by high speed liquid chromatography (HPLC). The results showed that all 2,4-D degradations in the three systems conformed to the kinetics characteristics of one-order reaction, and the degradation kinetics constants were 28.74 × 10{sup −2} h{sup −1}, 19.73 × 10{sup −2} h{sup −1} and 3.54 × 10{sup −2} h{sup −1}, respectively. The kinetics constant in the electro-biological system was higher than the sum in the other two systems by 19%. The electrochemical assistance provided the electrons and accelerated the electron transfer rate in the microbial degradation of 2,4-D. The degradation resulted from the microbial reduction strengthened by the electrochemical assistance. The electron transfer existed between the electrode, cytochrome, NAD and the pollutants. A long-range electron transfer process could be achieved on the multi-phase interfaces between the electrode, bacteria and the pollutants.

  18. Microbial degradation of 2,4-dichlorophenoxyacetic acid on the Greenland ice sheet.

    Science.gov (United States)

    Stibal, Marek; Bælum, Jacob; Holben, William E; Sørensen, Sebastian R; Jensen, Anders; Jacobsen, Carsten S

    2012-08-01

    The Greenland ice sheet (GrIS) receives organic carbon (OC) of anthropogenic origin, including pesticides, from the atmosphere and/or local sources, and the fate of these compounds in the ice is currently unknown. The ability of supraglacial heterotrophic microbes to mineralize different types of OC is likely a significant factor determining the fate of anthropogenic OC on the ice sheet. Here we determine the potential of the microbial community from the surface of the GrIS to mineralize the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Surface ice cores were collected and incubated for up to 529 days in microcosms simulating in situ conditions. Mineralization of side chain- and ring-labeled [(14)C]2,4-D was measured in the samples, and quantitative PCR targeting the tfdA genes in total DNA extracted from the ice after the experiment was performed. We show that the supraglacial microbial community on the GrIS contains microbes that are capable of degrading 2,4-D and that they are likely present in very low numbers. They can mineralize 2,4-D at a rate of up to 1 nmol per m(2) per day, equivalent to ∼26 ng C m(-2) day(-1). Thus, the GrIS should not be considered a mere reservoir of all atmospheric contaminants, as it is likely that some deposited compounds will be removed from the system via biodegradation processes before their potential release due to the accelerated melting of the ice sheet.

  19. PERTUMBUHAN KALUS DAUN DEWA [Gynura procumbens (Lour Merr.] DENGAN KOMBINASI 2,4-DICHLOROPHENOXYACETIC ACID DAN KINETIN SECARA INVITRO

    Directory of Open Access Journals (Sweden)

    Samkhatin Khaniyah

    2012-09-01

    Full Text Available Tanaman daun dewa [Gynura procumbens (Lour Merr.] berguna untuk menurunkan kadar kolesterol darah, mengobati diabetes, tumor, dan sebagai obat anti kanker. Daun dewa mengandung senyawa metabolit sekunder yaitu flavonoid, saponin, dan minyak atsiri. Oleh karena itu, perlu adanya kultur in vitro yang diharapkan mampu meningkatkan jumlah metabolit sekunder, maka perlu dilakukan penelitian tentang induksi kalusdengan penambahan kombinasi 2,4-Dichlorophenoxyacetic acid dan kinetin yang tepat dapat digunakan untuk menginduksi kalus daun dewa. Tujuan penelitian ini untuk mengkaji pengaruh konsentrasi 2,4-D dan Kinetin serta interaksi keduanya terhadap induksi kalus daun dewa. Analisis menggunakan anava dua arah dan uji lanjut Duncan. Parameter yang diamati adalah parameter persentase eksplan yang hidup, persentase berkalus, berat basah, kering kalus, serta tekstur dan warna kalus . Dari Uji Jarak Berganda Duncan diperoleh hasil tertinggi pada konsentrasi 2,4-Dichlorophenoxyacetic acid 0.5 ppm dan konsentrasi kinetin 1 ppm sebesar 33.33% pada parameter persentase berkalus.Daun dewa [Gynura procumbens (Lour. Merr.] plant can be used to lower the blood cholesterol levels, to treat diabetes and tumors, and may be used as an anti-cancer drug. Daun dewa plant produces of secondary metabolites such as flavonoids, saponins, and essential oils. An in vitro culture is a necessity to increase the quantity of secondary metabolites using callus induction with the addition of a combination of 2,4-Dichlorophenoxyacetic acid and kinetin to induce daun dewa callus. The research will ecamine the influence of 2,4-Dichlorophenoxyacetic acid and Kinetin in various concentrations and their interaction on callus induction of daun dewa. Data were analyzed using advanced two-way anova and Duncan test. The test showed that the highest yeield was obtained from the combination of 0.5 ppm 2,4-D and 1 ppm kinetin, where 33.33% of plants had callus.

  20. Utilization of cotton plant ash and char for removal of 2, 4-dichlorophenoxyacetic acid

    Directory of Open Access Journals (Sweden)

    Nikhilesh S. Trivedi

    2016-12-01

    Full Text Available Cotton is a common Indian crop grown on a considerable portion of farmland across the country. After separating the useful product (cotton fibers, the other parts of the plant (stalks, leaves, etc. are discarded as wastes. In most cases, these plant materials are used as fuel in boilers or households. Cotton wastes when ignited in the presence and absence of air produce cotton plant ash (CPA and cotton plant char (CPC, respectively. However, CPA and CPC produced pose environmental problems such as safe disposal. Thus, there is an urgent need to characterize the physical and chemical properties of these derivatives and to identify their potential uses. This study highlights the potential utilization of CPA and CPC as adsorbents of 2,4-D. The main components in CPA, namely, CaO and K2O, provide micronutrients to the soil and are thus useful as a biofertilizers. Moreover, low manufacturing cost and higher availability favor the use of CPA as an efficient, low-cost adsorbent as well as a potential source of vital micronutrients. The adsorption capacity of CPA and CPC was tested using 2,4 dichlorophenoxyacetic acid (2,4-D as the representative herbicide. Experimental data were analyzed by Freundlich and Langmuir adsorption isotherms, and these fitted well with the Langmuir model. The adsorption capacity q0 was found to be 0.64 mg/g for CPA and 3.93 mg/g for CPC. Pseudo-first-order pseudo-second-order and intraparticle diffusion kinetic models were applied to experimental data, and the pseudo second order kinetics model showed best fit for the adsorption of 2,4-D on CPA and CPC. Both CPA and CPC were characterized using proximate analysis, SEM images, BET surface area, XRF, FTIR, and CHNS. The BET surface area was found to be 2 and 109 m2/g, respectively, for CPA and CPC. Adsorption study results indicated that both CPA and CPC are very effective cheap adsorbent for 2,4-D removal.

  1. The role of UV-irradiation pretreatment on the degradation of 2,4-dichlorophenoxyacetic acid in water.

    Science.gov (United States)

    Tchaikovskaya, O; Sokolova, I; Mayer, G V; Karetnikova, E; Lipatnikova, E; Kuzmina, S; Volostnov, D

    2011-01-01

    The degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in water by the combination process of UV-irradiation, humic acids and activated sludge treatment has been studied. The photoreaction rate of all irradiated samples was lowest for the sample irradiated at 308 nm (the XeCl excilamp) in the absence and in the presence of humic acids, and highest for the sample irradiated at 222 nm (the KrCl excilamp). Photolysis of 2,4-D has been shown to enhance the subsequent microbial degradation. Copyright © 2010 John Wiley & Sons, Ltd.

  2. Evaluation of Hydrocalumite-Like Compounds as Catalyst Precursors in the Photodegradation of 2,4-Dichlorophenoxyacetic Acid

    Directory of Open Access Journals (Sweden)

    Manuel Sánchez-Cantú

    2016-01-01

    Full Text Available Three hydrocalumite-like compounds in a Ca/Al ratio of 2 containing nitrate and acetate anions in the interlaminar region were prepared by a simple, economic, and environmentally friendly method. The solids were characterized by X-ray powder diffraction (XRD, thermogravimetric (TG analysis, nitrogen adsorption-desorption at −196°C, scanning electron microscopy (SEM, infrared spectroscopy (FTIR, and UV-Vis Diffuse Reflectance Spectroscopy (DRS. The catalytic activity of the calcined solids at 700°C was tested in the photodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D where 57% degradation of 2,4-D (40 ppm and a mineralization percentage of 60% were accomplished within 150 minutes. The photocatalytic properties were attributed to mayenite hydration, since the oxide ions in the cages are capable of reacting with water to form hydroxide anions capable of breaking down the 2,4-D molecules.

  3. Decomposition of 2,4-dichlorophenoxyacetic acid by ozonation, ionizing radiation as well as ozonation combined with ionizing radiation

    Science.gov (United States)

    Drzewicz, Przemyslaw; Trojanowicz, Marek; Zona, Robert; Solar, Sonja; Gehringer, Peter

    2004-03-01

    Electron beam (EB), ozone (O 3) and the combination EB/O 3 were used to study the oxidative decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D) in local tap water. Using an EB treatment, a dose of 10 kGy was required for complete 2,4-D degradation, and a 90% conversion of organic chlorine into chloride ions. Using additionally 1.33 mmol dm -3 O 3 during irradiation, the same result was achieved with a dose of 2.7 kGy. The yields of products acetate and formate were almost doubled by the combined EB/O 3 treatment, compared to those obtained with the same dose by EB irradiation. Gamma radiolysis showed that the degradation dose was proportional to the initial concentration of 2,4-D in the range of 50-2260 μmol dm -3.

  4. High temperature stability of anatase in titania-alumina semiconductors with enhanced photodegradation of 2, 4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    López-Granada, G; Barceinas-Sánchez, J D O; López, R; Gómez, R

    2013-12-15

    The incorporation of aluminum acetylacetonate as alumina source during the gelation of titanium alkoxide reduces the nucleation sites for the formation of large rutile crystals on temperatures ranging from 400 to 800°C. As a result, the aggregation of anatase crystals is prevented at high temperature. A relationship among the specific surface area, pore size, energy band gap, crystalline structure and crystallite size as the most relevant parameters are evaluated and discussed. According to the results for the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid, the specific surface area, pore size, Eg band gap are not determinant in the photocatalytic properties. It was found that the anatase crystallite size is the mores important parameter affecting the degradation efficiency.

  5. Characterization of 2,4-dichlorophenoxyacetic acid and 2,4,5-trichlorophenoxyacetic acid-degrading fungi in Vietnamese soils.

    Science.gov (United States)

    Itoh, Kazuhito; Kinoshita, Masahiro; Morishita, Shigeyuki; Chida, Masateru; Suyama, Kousuke

    2013-04-01

    Sixty-nine fungal strains were isolated countrywide from 10 Vietnamese soils, in areas both with and without a history of exposure to Agent Orange, and their degrading activities on the phenoxy acid herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), as well as related compounds, were examined. Among taxonomically various fungi, 45, 12 and 4% of the isolates degraded phenoxyacetic acid (PA), 2,4-D and 2,4,5-T, respectively. While the PA-degrading fungi were distributed to all sites and among many genera, the 2,4-D-degraders were found only in order Eurotiales in class Eurotiomycetes. All of the 2,4,5-T-degrading fungal strains were phylogenetically close to Eupenicillium spp. and were isolated from southern Vietnam. As a degradation intermediate, the corresponding phenol compounds were detected in some strains. The degradation substrate spectrum for 26 compounds of Eupenicillium spp. strains including 2,4,5-T-degraders and -non-degraders seemed to be related to phylogenetic similarity and soil sampling location of the isolates. These results suggest that the heavily contaminated environments enhanced the adaptation of the phylogenetic group of Eupenicillium spp. toward to obtain the ability to degrade 2,4,5-T. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  6. Biomonitoring Data for 2,4-Dichlorophenoxyacetic Acid in the United States and Canada: Interpretation in a Public Health Risk Assessment Context Using Biomonitoring Equivalents

    Science.gov (United States)

    Several extensive studies of exposure to 2,4-dichlorophenoxyacetic acid (2,4-D) using urinary concentrations in samples from the general population, farm applicators, and farm family members are now available. Reference doses (RfDs) exist for 2,4-D, and Biomonitoring Equivalents ...

  7. Oxidation of pesticides by in situ electrogenerated hydrogen peroxide: study for the degradation of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Badellino, Carla; Rodrigues, Christiane Arruda; Bertazzoli, Rodnei

    2006-09-21

    This paper reports an investigation on the performance of the H2O2 electrogeneration process on a rotating RVC cylinder cathode, and the optimization of the O2 reduction rate relative to cell potential. A study for the simultaneous oxidation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by the in situ electrogenerated H2O2 is also reported. Experiments were performed in 0.3 M of K2SO4, pH of 10 and 3.5. Oxygen concentration in solution was kept in 25 mg L(-1). Maximum hydrogen peroxide generation rate was reached at -1.6 V versus SCE for both, acidic and alkaline solutions. Then, 100 mg L(-1) of 2,4-D was added to the solution. First order apparent rate constants for 2,4-D degradation ranged from 0.9 to 6.3x10(-5) m s(-1), depending on the catalyst used (UV or UV+Fe(II)). TOC reduction was favored in acidic medium where a decreasing of 69% of the initial concentration was observed in the process catalyzed by UV+Fe(II). This figure was an indication that some of the intermediates derived from 2,4-D decomposition remained in solution, mainly as lighter aliphatic compounds.

  8. Oxidative degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in subcritical and supercritical waters.

    Science.gov (United States)

    Hashimoto, M; Taniguchi, S; Takanami, R; Giri, R R; Ozaki, H

    2010-01-01

    Presence of chlorinated organic compounds in water bodies has become a concern among governments, health authorities and general public. Oxidation of organic compounds in water under high temperature and pressure is considered as a promising technique, but usefulness of the technique to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) is not well understood. This article aimed to elucidate degradation characteristics of 2,4-D in both subcritical and supercritical waters by laboratory batch experiments. 2,4-D degradation, total organic carbon (TOC) removal and dechlorination increased with increasing reaction time and temperature especially in subcritical waters, while dechlorination was a major step. 2,4-dichlorophenol (2,4-DCP) and acetic acid were the main degradation intermediates both in subcritical and supercritical waters. Though 2,4-D disappeared almost completely in subcritical waters near critical region ( approximately 99%), significant amounts of TOC and organic chlorine still remained as 2,4-DCP and acetic acid. But TOC removal and dechlorination were significantly enhanced ( approximately 95 and 91% respectively) in supercritical waters. Complete mineralization of 2,4-D in subcritical waters required a considerably longer reaction period, while the mineralization was almost complete within a short reaction period in supercritical waters. This is an important information of practical significance for oxidative degradation of chlorinated pesticides similar to 2,4-D.

  9. Oxidative stress and metabolic perturbations in Escherichia coli exposed to sublethal levels of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Bhat, Supriya V; Booth, Sean C; Vantomme, Erik A N; Afroj, Shirin; Yost, Christopher K; Dahms, Tanya E S

    2015-09-01

    The chlorophenoxy herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used extensively worldwide despite its known toxicity and our limited understanding of how it affects non-target organisms. Escherichia coli is a suitable model organism to investigate toxicity and adaptation mechanisms in bacteria exposed to xenobiotic chemicals. We developed a methodical platform that uses atomic force microscopy, metabolomics and biochemical assays to quantify the response of E. coli exposed to sublethal levels of 2,4-D. This herbicide induced a filamentous phenotype in E. coli BL21 and a similar phenotype was observed in a selection of genotypically diverse E. coli strains (A0, A1, B1, and D) isolated from the environment. The filamentous phenotype was observed at concentrations 1000 times below field levels and was reversible upon supplementation with polyamines. Cells treated with 2,4-D had more compliant envelopes, significantly remodeled surfaces that were rougher and altered vital metabolic pathways including oxidative phosphorylation, the ABC transport system, peptidoglycan biosynthesis, amino acid, nucleotide and sugar metabolism. Most of the observed effects could be attributed to oxidative stress, consistent with increases in reactive oxygen species as a function of 2,4-D exposure. This study provides direct evidence that 2,4-D at sublethal levels induces oxidative stress and identifies the associated metabolic changes in E. coli.

  10. Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35.

    Science.gov (United States)

    Xia, Zhen-Yuan; Zhang, Long; Zhao, Yan; Yan, Xin; Li, Shun-Peng; Gu, Tao; Jiang, Jian-Dong

    2017-02-01

    In this study, a bacterial strain of Achromobacter sp. LZ35, which was capable of utilizing 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxy acetic acid (MCPA) as the sole sources of carbon and energy for growth, was isolated from the soil in a disused pesticide factory in Suzhou, China. The optimal 2,4-D degradation by strain LZ35 occurred at 30 °C and pH 8.0 when the initial 2,4-D concentration was 200 mg L(-1). Strain LZ35 harbored the conserved 2,4-D/alpha-ketoglutarate dioxygenase (96%) and 2,4-dichlorophenol hydroxylase (99%), and catabolized 2,4-D via the intermediate 2,4-dichlorophenol. The inoculation of 7.8 × 10(6) CFU g(-1) soil of strain LZ35 cells to 2,4-D-contaminated soil could efficiently remove over 75 and 90% of 100 and 50 mg L(-1) 2,4-D in 12 days and significantly released the phytotoxicity of maize caused by the 2,4-D residue. This is the first report of an Achromobacter sp. strain that was capable of mineralizing both 2,4-D and MCPA. This study provides us a promising candidate for its application in the bioremediation of 2,4-D- or MCPA-contaminated sites.

  11. Effect of 2,4-dichlorophenoxyacetic Acid on glucosylation of scopoletin to scopolin in tobacco tissue culture.

    Science.gov (United States)

    Hino, F; Okazaki, M; Miura, Y

    1982-04-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) stimulated the formation of scopoletin and scopolin in tobacco (Nicotiana tabacum L. ;Bright Yellow') cell culture. It especially stimulated the uptake of scopoletin from culture medium into the cells and the glucosylation of scopoletin to its monoglucoside, scopolin. This phenomenon is peculiar to 2,4-D, in contrast to other plant hormones. 2,4-D (1 mug/ml) stimulated the glucosylation of scopoletin to scopolin by enhancing UDP-glucose:scopoletin glucosyltransferase (SGTase) activity. The enhancement of SGTase activity caused by treatment with 2,4-D was observed when the syntheses of RNA and protein were inhibited by either actinomycin-D and/or cycloheximide. However, the stimulatory effect of 2,4-D was inhibited by treatment with dinitrophenol. Furthermore, SGTase with or without treatment by 2,4-D in vivo for 24 hours, was isolated from cultured tobacco cells. The enzymes were purified about 200-fold by precipitation with (NH(4))(2)SO(4) and chromatography with Sephadex G-100, DEAE-cellulose, and hydroxyapatite. The specific activity of 2,4-D-treated SGTase was 10 times higher than that of untreated SGTase even in the purified fraction, which showed one protein band under electrophoresis. These results suggest that the enhancement of SGTase activity by 2,4-D is due to the energy-dependent activation of the enzyme already present, but not due to the de novo synthesis of the enzyme.

  12. A multimedia activity model for ionizable compounds: validation study with 2,4-dichlorophenoxyacetic acid, aniline, and trimethoprim.

    Science.gov (United States)

    Franco, Antonio; Trapp, Stefan

    2010-04-01

    Fugacity models are widely adopted for the environmental exposure assessment of organic chemicals but are inconvenient for nonvolatile substances, such as ionizable chemicals. The activity approach is a robust alternative to the fugacity concept and provides the thermodynamically exact equations to describe the behavior of neutral and ionizable molecules in nonideal systems. A multimedia activity model applicable to neutral and ionizable molecules (MAMI) was developed and tested for 2,4-dichlorophenoxyacetic acid and the bases aniline and trimethoprim. The model features pH and ionic strength dependence and species-specific estimations of partition coefficients from physicochemical properties. Sorption estimates consider both lipophilic and electrical interactions. A realistic regional exposure scenario was simulated for the three test compounds, and model results were compared with results obtained with a conventional fugacity model and with monitoring data. The better performance of MAMI indicates that the activity approach can enlarge the applicability domain and improve model predictions of existing regional models. Model results, supported by experimental evidence, showed the importance of dissociation, electrical interactions in solids, humidity in air, and to a lesser extent salinity in seawater to describe the environmental fate of ionizable organic chemicals.

  13. Novel integrated electrodialysis/electro-oxidation process for the efficient degradation of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Raschitor, A; Llanos, J; Cañizares, P; Rodrigo, M A

    2017-09-01

    This work presents a novel approach of wastewater treatment technology that consists of a combined electrodialysis/electro-oxidation process, specially designed to allow increasing the efficiency in the oxidation of ionic organic pollutants contained in diluted waste. Respect to conventional electrolysis, the pollutant is simultaneously concentrated and oxidized, enhancing the performance of the cell due to the higher concentration achieved in the nearness of the anode. A proof of concept is tested with the ionic pesticide 2,4-D (2,4-dichlorophenoxyacetic acid) and results show that the efficiency of this new technology overcomes that electrolysis by more than double, regardless the supporting electrolyte used (either NaCl or Na2SO4). Moreover, the removal rate of 2,4-D when using NaCl was found to be more efficient, due to the best performance of the electrode material selected (DSA(®)) towards the formation of oxidants in chloride supporting electrolyte. These results open the way for overcoming the efficiency limitations of electrochemical treatment processes for the treatment of solutions with low concentrated ionic pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The effect of a herbicide--sodium salt of 2,4-dichlorophenoxyacetic acid on guerin carcinoma.

    Science.gov (United States)

    Sulik, M; Matus, A; Musiatowicz, B; Sulkowska, M; Kemona, A; Kisielewski, W; Sobaniec-Lotowska, M; Barwijuk-Machała, M

    1996-01-01

    The effect of sodium salt of 2,4-dichlorophenoxyacetic acid, being an active component of herbicide "PIELIK", upon the development of Guerin carcinoma implanted in male Wistar rats, was studied. 192 animals were divided in to 6 equal groups: I-animals which obtained physiological salt solution; II-rats exposed to the herbicide in postlactational period; III-animals with Guerin carcinoma, non exposed to the herbicide; IV- rats exposed to the herbicide in postlactational period+Guerin carcinoma; V-animals exposed to the herbicide from prenatal period to the end of an experiment, without Guerin carcinoma; VI-the same as in V group, but with Guerin carcinoma. The effect of the herbicide on tumor growth dynamism (diameters and mass), degree of tumour malignancy (metastases to lymph nodes), animals survival time and morfological changes in the primary tumour and in metastases was evaluated. Basing of the results obtained, it was stated that this herbicide accelerates the development of Guerin carcinoma and reduces the survival time in the rats exposed to it in the prenatal and postnatal period. However, it does not significantly influence the growth of the carcinoma in the rats exposed only in the postlactational period.

  15. 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils.

    Science.gov (United States)

    Boivin, Arnaud; Amellal, Samira; Schiavon, Michel; van Genuchten, Martinus Th

    2005-11-01

    The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization.

  16. Reductive transformation of 2,4-dichlorophenoxyacetic acid by nanoscale and microscale Fe3O4 particles.

    Science.gov (United States)

    Si, You B; Fang, Guo D; Zhou, Jing; Zhou, Dong M

    2010-04-01

    Reductive transformation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nanoscale and microscale Fe(3)O(4) was investigated and compared. Disappearance of the parent species and formation of reaction intermediates and products were kinetically analyzed. Results suggest that the transformation of 2,4-D followed a primary pathway of its complete reduction to phenol and a secondary pathway of sequential reductive hydrogenolysis to 2,4-dichlorophenol (2,4-DCP), chlorophenol (2-CP, 4-CP) and phenol. About 65% of 2,4-D with initial concentration of 50 micro M was transformed within 48 h in the presence of 300 mg L(-1) nanoscale Fe(3)O(4), and the reaction rates increased with increasing dosage of nanoscale Fe(3)O(4). The decomposition of 2,4-D proceeded rapidly at optimum pH 3.0. Chloride was identified as a reduction product for 2,4-D in the magnetite-water system. Reductive transformation of 2,4-D by microscale Fe(3)O(4) was slower than that by nanoscale Fe(3)O(4). The reactions apparently followed pseudo-first-order kinetics with respect to the 2,4-D transformation. The degradation rate of 2,4-D decreased with the increase of initial 2,4-D concentration. In addition, anions had a significant adverse impact on the degradation efficiency of 2,4-D.

  17. 2,4-Dichlorophenoxyacetic acid (2,4-D) sorption and degradation dynamics in three agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, Arnaud [George E. Brown, Jr. Salinity Laboratory, USDA-ARS, 450 West Big Springs Road, Riverside, CA 92507-4617 (United States) and Laboratoire Sols et Environnement, UMR 1120 INPL/ENSAIA-INRA 2, Avenue de la Foret de Haye, BP 172, 54505 Vandoeuvre-les-Nancy cedex (France)]. E-mail: aboivin@ussl.ars.usda.gov; Amellal, Samira [Laboratoire Sols et Environnement, UMR 1120 INPL/ENSAIA-INRA 2, Avenue de la Foret de Haye, BP 172, 54505 Vandoeuvre-les-Nancy cedex (France)]. E-mail: samira.amellal@ensaia.inpl-nancy.fr; Schiavon, Michel [Laboratoire Sols et Environnement, UMR 1120 INPL/ENSAIA-INRA 2, Avenue de la Foret de Haye, BP 172, 54505 Vandoeuvre-les-Nancy cedex (France)]. E-mail: michel.schiavon@ensaia.inpl-nancy.fr; Genuchten, Martinus Th. van [George E. Brown, Jr. Salinity Laboratory, USDA-ARS, 450 West Big Springs Road, Riverside, CA 92507-4617 (United States)]. E-mail: rvang@ussl.ars.usda.gov

    2005-11-15

    The fate and transport of 2,4-dichlorophenoxyacetic acid (2,4-D) in the subsurface is affected by a complex, time-dependent interplay between sorption and mineralization processes. 2,4-D is biodegradable in soils, while adsorption/desorption is influenced by both soil organic matter content and soil pH. In order to assess the dynamic interactions between sorption and mineralization, 2,4-D mineralization experiments were carried using three different soils (clay, loam and sand) assuming different contact times. Mineralization appeared to be the main process limiting 2,4-D availability, with each soil containing its own 2,4-D decomposers. For the clay and the loamy soils, 45 and 48% of the applied dose were mineralized after 10 days. By comparison, mineralization in the sandy soil proceeded initially much slower because of longer lag times. While 2,4-D residues immediately after application were readily available (>93% was extractable), the herbicide was present in a mostly unavailable state (<2% extractable) in all three soils after incubation for 60 days. We found that the total amount of bound residue decreased between 30 and 60 incubation days. Bioaccumulation may have led to reversible immobilization, with some residues later becoming more readily available again to extraction and/or mineralization. - Pesticide availability varies with its residence time in soil.

  18. Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor.

    Science.gov (United States)

    Ateeq, Bushra; Abul farah, M; Niamat Ali, M; Ahmad, Waseem

    2002-07-25

    The micronucleus test (MNT) in fish erythrocytes has increasingly been used to detect the genotoxic effects of environmental mutagens and its frequency is considered to reflect the genotoxic damage to cells, mainly the chromosomes. Besides, morphologically altered erythrocyte is taken as an index of cytotoxicity. Both parameters were used in the present study by two herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D, in 25, 50 and 75ppm concentrations) and 2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide (butachlor, in 1, 2 and 2.5ppm concentrations) for genotoxic and cytotoxic endpoints. The study was carried out by an in vivo method on peripheral erythrocytes of catfish Clarias batrachus using multiple sampling times (48, 72 and 96h). Cytogenetic preparations were made by haematoxylin-eosin staining technique. Pycnotic and granular micronuclei (MN) were consistently observed irrespective of chemical tested. A wide range of altered cells was also observed. Echinocytes accompanied by altered nuclei and vacuoles were prominent feature of 2,4-D, whereas, anisochromasia and anisocytosis of erythrocytes were characteristic of butachlor. Increase in MN as well as altered cells frequencies were significant. A positive dose-response relationship in all exposures and sampling times was observed. Herbicides used were found to be genotoxic as well as cytotoxic in this fish. The suitability of the adopted parameters for the screening of the aquatic genotoxicants is discussed.

  19. The role of organic ligands in ferrous-induced photochemical degradation of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Kwan, C Y; Chu, W

    2007-04-01

    Recent studies have shown that hydrogen peroxide is generated in a ferrioxalate-induced photoreductive reaction, but information about the effect of organic ligands on the photochemical behaviour of ferrous species is limited. The degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) by a ferrous-catalyzed oxidation in the presence of various ligands such as formate, citrate, malelate, oxalate, and ethylenediaminetetra-acetic acid (EDTA) was studied. The experiments were conducted under either dark or irradiated (350n m) conditions. Forty-two percent and 34% of 2,4-D were removed by the Fe(2+)/oxalate/UV and Fe(2+)/citrate/UV processes, respectively, after 30 min of reaction and oxidative intermediates were obtained in both cases. The presence of hydroxylated intermediates suggests that 2,4-D may be attacked by hydroxyl radicals, which are the products of the photo-Fenton-like reaction. As such, hydrogen peroxide was produced by the photolysis of ferrous oxalate or ferrous citrate, referred to hereafter as photogenerated H(2)O(2). As expected, the total removal percentage of 2,4-D jumped to 97% when 1mM of hydrogen peroxide (so-called spiked H(2)O(2)) was externally added to the reaction vessel to initiate the Fe(2+)/oxalate/UV process. Therefore, the treatment of 2,4-D by the Fe(2+)/oxalate/H(2)O(2)/UV system can be operated in two steps: the photolysis of ferrous oxalate first, followed by adding the spiked H(2)O(2) sometime after the commencement of the reaction. A two-phase model has been developed to describe this tandem ferrous-catalyzed photooxidation, which would help to achieve the mineralization of 2,4-D.

  20. Chromatographic characterisation, under highly aqueous conditions, of a molecularly imprinted polymer binding the herbicide 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Legido-Quigley, C; Oxelbark, J; De Lorenzi, E; Zurutuza-Elorza, A; Cormack, P A G

    2007-05-15

    The affinity of a 2,4-dichlorophenoxyacetic acid (2,4-D) molecularly imprinted polymer (MIP), which was synthesised directly in an aqueous organic solvent, for its template (2,4-D) was studied and compared with the affinity exhibited by two other reference (control) polymers, NIPA and NIPB, for the same analyte. Zonal chromatography was performed to establish the optimal selectivity, expressed as imprinting factor (IF), under chromatographic conditions more aqueous than those described so far in the literature. Frontal analysis (FA) was performed on columns packed with these polymers, using an optimized mobile phase composed of methanol/phosphate buffer (50/50, v/v), to extract adsorption isotherm data and retrieve binding parameters from the best isotherm model. Surprisingly, the template had comparable and strong affinity for both MIP (K = 3.8x10(4) M(-1)) and NIPA (K = 1.9x10(4) M(-1)), although there was a marked difference in the saturation capacities of selective and non-selective sites, as one would expect for an imprinted polymer. NIPB acts as a true control polymer in the sense that it has relatively low affinity for the template (K = 8.0x10(2) M(-1)). This work provides the first frontal chromatographic characterization of such a polymer in a water-rich environment over a wide concentration range. The significance of this work stems from the fact that the chromatographic approach used is generic and can be applied readily to other analytes, but also because there is an increasing demand for well-characterised imprinted materials that function effectively in aqueous media and are thus well-suited for analytical science applications involving, for example, biofluids and environmental water samples.

  1. Effect of inoculant strain and organic matter content on kinetics of 2,4-dichlorophenoxyacetic acid degradation in soil.

    Science.gov (United States)

    Greer, L E; Shelton, D R

    1992-01-01

    We monitored rates of degradation of soluble and sorbed 2,4-dichlorophenoxyacetic acid (2,4-D) in low-organic-matter soil at field capacity amended with 1, 10, or 100 micrograms of 2,4-D per g of wet soil and inoculated with one of two bacterial strains (MI and 155) with similar maximum growth rates (mu max) but significantly different half-saturation growth constants (Ks). Concentrations of soluble 2,4-D were determined by analyzing samples of pore water pressed from soil, and concentrations of sorbed 2,4-D were determined by solvent extraction. Between 65 and 75% of the total 2,4-D was present in the soluble phase at equilibrium, resulting in soil solution concentrations of ca. 8, 60, and 600 micrograms of 2,4-D per ml, respectively. Soluble 2,4-D was metabolized preferentially; this was followed by degradation of both sorbed (after desorption) and soluble 2,4-D. Rates of degradation were comparable for the two strains at soil concentrations of 10 and 100 micrograms of 2,4-D per g; however, at 1 microgram/g of soil, 2,4-D was metabolized more rapidly by the strain with the lower Ks value (strain MI). We also monitored rates of biodegradation of soluble and sorbed 2,4-D in high-organic-matter soil at field capacity amended with 100 micrograms of 2,4-D per g of wet soil and inoculated with the low-Ks strain (strain MI). Ten percent of total 2,4-D was present in the soluble phase, resulting in a soil solution concentration of ca. 30 micrograms of 2,4-D per ml.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1622212

  2. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Quan Xiangchun, E-mail: xchquan@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Tang Hua; Xiong Weicong; Yang Zhifeng [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2010-07-15

    Aerobic sludge granules pre-grown on glucose were bioaugmented with a plasmid pJP4 carrying strain Pseudomonas putida SM1443 in a fed-batch microcosm system and a lab-scale sequencing batch reactor (SBR) to enhance their degradation capacity to 2,4-dichlorophenoxyacetic acid (2,4-D). The fed-batch test results showed that the bioaugmented aerobic granule system gained 2,4-D degradation ability faster and maintained a more stable microbial community than the control in the presence of 2,4-D. 2,4-D at the initial concentration of about 160 mg/L was nearly completely removed by the bioaugmented granule system within 62 h, while the control system only removed 26% within 66 h. In the bioaugmented SBR which had been operated for 90 days, the seeded aerobic granules pre-grown on glucose successfully turned into 2,4-D degrading granules through bioaugmentation and stepwise increase of 2,4-D concentration from 8 to 385 mg/L. The granules showed a compact structure and good settling ability with the mean diameter of about 450 {mu}m. The degradation kinetics of 2,4-D by the aerobic granules can be described with the Haldane kinetics model with V{sub max} = 31.1 mg 2,4-D/gVSS h, K{sub i} = 597.9 mg/L and K{sub s} = 257.3 mg/L, respectively. This study shows that plasmid mediated bioaugmentation is a feasible strategy to cultivate aerobic granules degrading recalcitrant pollutants.

  3. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Quan, Xiang-chun; Tang, Hua; Xiong, Wei-cong; Yang, Zhi-feng

    2010-07-15

    Aerobic sludge granules pre-grown on glucose were bioaugmented with a plasmid pJP4 carrying strain Pseudomonas putida SM1443 in a fed-batch microcosm system and a lab-scale sequencing batch reactor (SBR) to enhance their degradation capacity to 2,4-dichlorophenoxyacetic acid (2,4-D). The fed-batch test results showed that the bioaugmented aerobic granule system gained 2,4-D degradation ability faster and maintained a more stable microbial community than the control in the presence of 2,4-D. 2,4-D at the initial concentration of about 160 mg/L was nearly completely removed by the bioaugmented granule system within 62 h, while the control system only removed 26% within 66 h. In the bioaugmented SBR which had been operated for 90 days, the seeded aerobic granules pre-grown on glucose successfully turned into 2,4-D degrading granules through bioaugmentation and stepwise increase of 2,4-D concentration from 8 to 385 mg/L. The granules showed a compact structure and good settling ability with the mean diameter of about 450 microm. The degradation kinetics of 2,4-D by the aerobic granules can be described with the Haldane kinetics model with V(max)=31.1 mg 2,4-D/gVSS h, K(i)=597.9 mg/L and K(s)=257.3 mg/L, respectively. This study shows that plasmid mediated bioaugmentation is a feasible strategy to cultivate aerobic granules degrading recalcitrant pollutants. 2010 Elsevier B.V. All rights reserved.

  4. Modification of Spatial Distribution of 2,4-Dichlorophenoxyacetic Acid Degrader Microhabitats during Growth in Soil Columns

    Science.gov (United States)

    Pallud, C.; Dechesne, A.; Gaudet, J. P.; Debouzie, D.; Grundmann, G. L.

    2004-01-01

    Bacterial processes in soil, including biodegradation, require contact between bacteria and substrates. Knowledge of the three-dimensional spatial distribution of bacteria at the microscale is necessary to understand and predict such processes. Using a soil microsampling strategy combined with a mathematical spatial analysis, we studied the spatial distribution of 2,4-dichlorophenoxyacetic acid (2,4-D) degrader microhabitats as a function of 2,4-D degrader abundance. Soil columns that allowed natural flow were percolated with 2,4-D to increase the 2,4-D degrader abundance. Hundreds of soil microsamples (minimum diameter, 125 μm) were collected and transferred to culture medium to check for the presence of 2,4-D degraders. Spatial distributions of bacterial microhabitats were characterized by determining the average size of colonized soil patches and the average number of patches per gram of soil. The spatial distribution of 2,4-D degrader microhabitats was not affected by water flow, but there was an overall increase in colonized patch sizes after 2,4-D amendment; colonized microsamples were dispersed in the soil at low 2,4-D degrader densities and clustered in patches that were more than 0.5 mm in diameter at higher densities. During growth, spreading of 2,4-D degraders within the soil and an increase in 2,4-D degradation were observed. We hypothesized that spreading of the bacteria increased the probability of encounters with 2,4-D and resulted in better interception of the degradable substrate. This work showed that characterization of bacterial microscale spatial distribution is relevant to microbial ecology studies. It improved quantitative bacterial microhabitat description and suggested that sporadic movement of cells occurs. Furthermore, it offered perspectives for linking microbial function to the soil physicochemical environment. PMID:15128522

  5. Mineralisation and degradation of 2,4-dichlorophenoxyacetic acid dimethylamine salt in a biobed matrix and in topsoil.

    Science.gov (United States)

    Knight, J Diane; Cessna, Allan J; Ngombe, Dean; Wolfe, Tom M

    2016-10-01

    Biobeds are used for on-farm bioremediation of pesticides in sprayer rinsate and from spills during sprayer filling. Using locally sourced materials from Saskatchewan, Canada, a biobed matrix was evaluated for its effectiveness for mineralising and degrading 2,4-dichlorophenoxyacetic acid dimethylamine salt (2,4-D DMA) compared with the topsoil used in the biobed matrix. Applying 2,4-D DMA to the biobed matrix caused a 2-3 day lag in CO2 production not observed when the herbicide was applied to topsoil. Despite the initial lag, less residual 2,4-D was measured in the biobed (0%) matrix than in the topsoil (57%) after a 28 day incubation. When the herbicide was applied 5 times to the biobed matrix, net CO2 increased immediately after each 2,4-D DMA application. Mineralisation of 2,4-D DMA was 61.9% and residual 2,4-D in the biobed matrix was 0.3% after 60 days, compared with corresponding values of 32.9 and 70.9% in topsoil. The biobed matrix enhanced the mineralisation and degradation of 2,4-D DMA, indicating the potential for successful implementation of biobeds under Canadian conditions. The biobed matrix was more effective for mineralising and degrading the herbicide compared with the topsoil used in the biobed matrix. By correcting for biobed matrix and formulation blank, CO2 evolution was a reliable indicator of 2,4-D DMA mineralisation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Novel 2,4-Dichlorophenoxyacetic Acid Degradation Genes from Oligotrophic Bradyrhizobium sp. Strain HW13 Isolated from a Pristine Environment

    Science.gov (United States)

    Kitagawa, Wataru; Takami, Sachiko; Miyauchi, Keisuke; Masai, Eiji; Kamagata, Yoichi; Tiedje, James M.; Fukuda, Masao

    2002-01-01

    The tfd genes of Ralstonia eutropha JMP134 are the only well-characterized set of genes responsible for 2,4-dichlorophenoxyacetic acid (2,4-D) degradation among 2,4-D-degrading bacteria. A new family of 2,4-D degradation genes, cadRABKC, was cloned and characterized from Bradyrhizobium sp. strain HW13, a strain that was isolated from a buried Hawaiian soil that has never experienced anthropogenic chemicals. The cadR gene was inferred to encode an AraC/XylS type of transcriptional regulator from its deduced amino acid sequence. The cadABC genes were predicted to encode 2,4-D oxygenase subunits from their deduced amino acid sequences that showed 46, 44, and 37% identities with the TftA and TftB subunits of 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) oxygenase of Burkholderia cepacia AC1100 and with a putative ferredoxin, ThcC, of Rhodococcus erythropolis NI86/21, respectively. They are thoroughly different from the 2,4-D dioxygenase gene, tfdA, of R. eutropha JMP134. The cadK gene was presumed to encode a 2,4-D transport protein from its deduced amino acid sequence that showed 60% identity with the 2,4-D transporter, TfdK, of strain JMP134. Sinorhizobium meliloti Rm1021 cells containing cadRABKC transformed several phenoxyacetic acids, including 2,4-D and 2,4,5-T, to corresponding phenol derivatives. Frameshift mutations indicated that each of the cadRABC genes was essential for 2,4-D conversion in strain Rm1021 but that cadK was not. Five 2,4-D degraders, including Bradyrhizobium and Sphingomonas strains, were found to have cadA gene homologs, suggesting that these 2,4-D degraders share 2,4-D degradation genes similar to those of strain HW13 cadABC. PMID:11751829

  7. Degradation of the herbicide 2, 4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt by gamma radiation from cobalt-60 in aqueous solution containing humic acid

    Science.gov (United States)

    Campos, Sandro X.; Vieira, Eny M.; Cordeiro, Paulo J. M.; Rodrigues-Fo, Edson; Murgu, Michael

    2003-12-01

    In this study, gamma radiation from cobalt-60 was used to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) dimethylamine salt in water in the presence of humic acid. The 2,4-D dimethylamine salt 1.13×10 -4 mol dm -3 solution was irradiated with different doses. HPLC was used as an analytical technique to determine the degradation rate of herbicide studied. The results showed that the herbicide was completely degraded at an absorbed dose of 3 kGy. Degradation decreased when humic acid was added to all the doses. ESI/MS and MS/MS were used to identify the radiolytic degradation products. A fragmentation path for production of 4.6-dichlororesorcinol, is suggested. The radiolytic yields ( G) were calculated.

  8. Synthesis of molecularly imprinted organic-inorganic hybrid azobenzene materials by sol-gel for radiation induced selective recognition of 2,4-dichlorophenoxyacetic acid

    Science.gov (United States)

    Shuai Jiang, Guang; An Zhong, Shi; Chen, Lan; Blakey, Idriss; Whitaker, Andrew

    2011-02-01

    A novel photoresponsive functional monomer bearing a siloxane polymerisable group and azobenzene moieties was synthesized. This monomer was then used to prepare photoresponsive molecularly imprinted polymers (MIP), which have specific binding sites for 2,4-dichlorophenoxyacetic acid (2,4-D) through hydrogen bonding moieties. The binding affinity of the imprinted recognition sites was switchable by alternate irradiations with ultraviolet and visible light, suggesting that azobenzene groups located inside the binding sites could be used as chemical sensors and the trans-cis isomerization could regulate the affinity for the 2,4-D. In addition, the concentration of the 2,4-D was able to be quantified by monitoring the trans-to-cis photoisomerization rate constant.

  9. Removal of 2,4-dichlorophenoxyacetic acid in aqueous solution by pulsed corona discharge treatment: Effect of different water constituents, degradation pathway and toxicity assay.

    Science.gov (United States)

    Singh, Raj Kamal; Philip, Ligy; Ramanujam, Sarathi

    2017-10-01

    A multiple pin-plane corona discharge reactor was used to generate plasma for the degradation of 2,4 dichlorophenoxyacetic acid (2,4-D) from the aqueous solution. The 2,4-D of concentration 1 mg/L was completely removed within 6 min of plasma treatment. Almost complete mineralization was achieved after the treatment time of 14 min for a 2,4-D concentration of 10 mg/L. Effects of different water constituents such as carbonates, nitrate, sulphate, chloride ions, natural organic matter (humic acids) and pH on 2,4-D degradation was studied. A significant antagonistic effect of carbonate and humic acid was observed, whereas, the effects of other ions were insignificant. A higher first order rate constant of 1.73 min(-1) was observed, which was significantly decreased in the presence of carbonate ions and humic acids. Also, a higher degradation of 2,4-D was observed in acidic pH conditions. Different 2,4-D intermediates were detected and the degradation pathway of 2,4-D in plasma treatment process was suggested. The toxicity of 10 mg/L 2,4-D was completely eradicated after 10 min of plasma treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. 2,4-Dichlorophenoxyacetic acid (2,4-D) degradation promoted by nanoparticulate zerovalent iron (nZVI) in aerobic suspensions.

    Science.gov (United States)

    Correia de Velosa, Adriana; Pupo Nogueira, Raquel F

    2013-05-30

    Reactive species generated by Fe(0) oxidation promoted by O2 (catalyzed or not by ligands) are able to degrade contaminant compounds like the herbicide 2,4-dichlorophenoxyacetic acid. The degradation of 2,4-D was influenced by the concentrations of zero valent iron (ZVI) and different ligands, as well as by pH. In the absence of ligands, the highest 2,4-D degradation rate was obtained at pH 3, while the highest percentage degradation (50%) was achieved at pH 5 after 120 min of reaction. Among the ligands studied (DTPA, EDTA, glycine, oxalate, and citrate), only ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) significantly enhanced oxidation of 2,4-D. This increase in oxidation was observed at all pH values tested (including neutral to alkaline conditions), indicating the feasibility of the technique for treatment of contaminated water. In the presence of EDTA, the oxidation rate was greater at pH 3 than at pH 5 or 7. Increasing the EDTA concentration increased the rate and percentage of 2,4-D degradation, however increasing the Fe(0) concentration resulted in the opposite behavior. It was found that degradation of EDTA and 2,4-D occurred simultaneously, and that the new methodology avoided any 2,4-D removal by adsorption/coprecipitation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. A Bioluminescent Whole-Cell Reporter for Detection of 2,4-Dichlorophenoxyacetic Acid and 2,4-Dichlorophenol in Soil

    Science.gov (United States)

    Hay, Anthony G.; Rice, James F.; Applegate, Bruce M.; Bright, Nathan G.; Sayler, Gary S.

    2000-01-01

    A bioreporter was made containing a tfdRPDII-luxCDABE fusion in a modified mini-Tn5 construct. When it was introduced into the chromosome of Ralstonia eutropha JMP134, the resulting strain, JMP134-32, produced a sensitive bioluminescent response to 2,4-dichlorophenoxyacetic acid (2,4-D) at concentrations of 2.0 μM to 5.0 mM. This response was linear (R2 = 0.9825) in the range of 2.0 μM to 1.1 × 102 μM. Saturation occurred at higher concentrations, with maximal bioluminescence occurring in the presence of approximately 1.2 mM 2,4-D. A sensitive response was also recorded in the presence of 2,4-dichlorophenol at concentrations below 1.1 × 102 μM; however, only a limited bioluminescent response was recorded in the presence of 3-chlorobenzoic acid at concentrations below 1.0 mM. A significant bioluminescent response was also recorded when strain JMP134-32 was incubated with soils containing aged 2,4-D residues. PMID:11010925

  12. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications.

    Science.gov (United States)

    Kumar, Ajit; Trefault, Nicole; Olaniran, Ademola Olufolahan

    2016-01-01

    A considerable progress has been made to understand the mechanisms of biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D biodegradation pathway has been elucidated in many microorganisms including Cupriavidus necator JMP134 (previously known as Wautersia eutropha, Ralstonia eutropha and Alcaligenes eutrophus) and Pseudomonas strains. It generally involves the side chain removal of 2,4-D by α-ketoglutarate-dependent 2,4-D dioxygenase (tfdA) to form 2,4-dichlorophenol (2,4-DCP); hydroxylation of 2,4-DCP by 2,4-DCP hydroxylase (tfdB) to form dichlorocatechol; ortho or meta cleavage of dichlorocatechol by chlorocatechol 1,2-dioxygenase (tfdC) to form 2,4-dichloro-cis,cis-muconate; conversion of 2,4-dichloro-cis,cis-muconate to 2-chlorodienelactone by chloromuconate cycloisomerase (tfdD); conversion of 2-chlorodienelactone to 2-chloromaleylacetate by chlorodienelactone hydrolase (tfdE) and, finally, conversion of 2-chloromaleylacetate to 3-oxoadepate via maleylacetate by chloromaleylacetate reductase and maleylacetate reductase (tfdF), respectively, which is funnelled to the tricarboxylic acid cycle. The latest review on microbial breakdown of 2,4-D, other halogenated aromatic pesticides, and related compounds was compiled by Haggblom, however, a considerable progress has been made in this area of research since then. Thus, this review focuses on the recent advancement on 2,4-D biodegradation, the enzymes, and genes involved and their biotechlogical implications.

  13. Fungal bioconversion of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP).

    Science.gov (United States)

    Vroumsia, T; Steiman, R; Seigle-Murandi, F; Benoit-Guyod, J-L

    2005-09-01

    Ninety strains of fungi from the collection of our mycology laboratory were tested in Galzy and Slonimski (GS) synthetic liquid medium for their ability to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its by-product, 2,4-dichlorophenol (2,4-DCP) at 100 mg l(-1), each. Evolution of the amounts of each chemical in the culture media was monitored by HPLC. After 5 days of cultivation, the best results were obtained with Aspergillus penicilloides and Mortierella isabellina for 2,4-D and with Chrysosporium pannorum and Mucor genevensis for 2,4-DCP. The data collected seemed to prove, on one hand, that the strains responses varied with the taxonomic groups and the chemicals tested, and, on the other hand, that 2,4-D was less accessible to fungal degradation than 2,4-DCP. In each case, kinetics studies with the two most efficient strains revealed that there was a lag phase of 1 day before the onset of 2,4-D degradation, whereas there was none during 2,4-DCP degradation. Moreover, 2,4-DCP was detected transiently during 2,4-D degradation. Finally, M. isabellina improved its degradation potential in Tartaric Acid (TA) medium relative to GS and Malt Extract (ME) media.

  14. Electroanalytical Methodology for the Direct Determination of 2,4-Dichlorophenoxyacetic Acid in Soil Samples Using a Graphite-Polyurethane Electrode

    Directory of Open Access Journals (Sweden)

    Fernanda Ramos de Andrade

    2014-01-01

    Full Text Available An electroanalytical methodology was developed for the direct determination of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D using a graphite-polyurethane composite electrode and square wave voltammetry (SWV. 2,4-D exhibited one reduction peak with characteristics of an irreversible process at −0.54 V (versus Ag/AgCl, which is controlled by the diffusion of the reagent on the electrode surface. After the experimental parameters optimization (pH 2.0, f=50 s−1, a=0.50 V, and ΔEi=0.03 V, analytical curves were constructed in the range of 0.66 mg L−1 to 2.62  mg L−1. Detection (LD and quantification (LQ limits were 17.6 μg L−1 and 58.6 μg L−1, respectively. The methodology was successfully applied to measure the percolation of the herbicide 2,4-D in undisturbed soil columns of different granulometric compositions.

  15. Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2,4-dichlorophenoxyacetic acid in environmental water

    Science.gov (United States)

    Yang, Weijie; Jiao, Feipeng; Zhou, Lei; Chen, Xiaoqing; Jiang, Xinyu

    2013-11-01

    A new and facile method was presented to graft molecularly imprinted polymers (MIPs) on carbon nanotubes (CNTs) for 2,4-dichlorophenoxyacetic acid (2,4-D) analysis. In brief, CNTs were firstly coated with a layer of vinyl group modified silica, followed by a common precipitation polymerization with 2,4-D as the template, ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The imprinted effects obtained by using different monomers were investigated, and the results showed that acrylamide (AM) and styrene as mixed monomers was the best choice. This functionalized material was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetry (TG), which demonstrated a successful polymerization reaction on CNTs with MIPs grafting ratio of about 80%. The results of static adsorption experiments indicated the imprinted material possessed fast kinetics and good selectivity for 2,4-D molecules. A corresponding analytical method was developed and demonstrated to be applicable for the determination of 2,4-D in environmental water. The recoveries were in the range from 74.6% to 81.2% with relative standard deviation below 7.0%. To be emphasized, the method for MIPs coating proposed herein also provides a significant reference for other radical polymerization reactions based on CNTs.

  16. Molecularly imprinted polymers coated on multi-walled carbon nanotubes through a simple indirect method for the determination of 2,4-dichlorophenoxyacetic acid in environmental water

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weijie; Jiao, Feipeng; Zhou, Lei; Chen, Xiaoqing, E-mail: xqchen@mail.csu.edu.cn; Jiang, Xinyu, E-mail: jiangxinyu@mail.csu.edu.cn

    2013-11-01

    A new and facile method was presented to graft molecularly imprinted polymers (MIPs) on carbon nanotubes (CNTs) for 2,4-dichlorophenoxyacetic acid (2,4-D) analysis. In brief, CNTs were firstly coated with a layer of vinyl group modified silica, followed by a common precipitation polymerization with 2,4-D as the template, ethylene glycol dimethacrylate (EGDMA) as the crosslinker and 2,2-azobisisobutyronitrile (AIBN) as the initiator. The imprinted effects obtained by using different monomers were investigated, and the results showed that acrylamide (AM) and styrene as mixed monomers was the best choice. This functionalized material was characterized by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and thermogravimetry (TG), which demonstrated a successful polymerization reaction on CNTs with MIPs grafting ratio of about 80%. The results of static adsorption experiments indicated the imprinted material possessed fast kinetics and good selectivity for 2,4-D molecules. A corresponding analytical method was developed and demonstrated to be applicable for the determination of 2,4-D in environmental water. The recoveries were in the range from 74.6% to 81.2% with relative standard deviation below 7.0%. To be emphasized, the method for MIPs coating proposed herein also provides a significant reference for other radical polymerization reactions based on CNTs.

  17. Study of 2,4-dichlorophenoxyacetic acid (2,4-D) removal by Cu-Fe-layered double hydroxide from aqueous solution

    Science.gov (United States)

    Nejati, Kamellia; Davary, Soheila; Saati, Marziye

    2013-09-01

    The hydrotalcite-like compound of Cu-Fe-layered double hydroxide was studied as a potential adsorbent of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The nanoparticles of Cu-Fe layered double hydroxide were prepared by Cu/Fe molar ratio of 2:1 using a coprecipitation method at pH 8.5 and characterized by the X-ray powder diffraction (XRD), the Fourier transform infrared spectroscopy (FT-IR), the thermal gravimetric analysis (TGA) and the elemental analysis. The size and morphology of nanoparticles were examined by the transmission electron microscopy (TEM). The adsorption experiments on LDH, on the other hand, were conducted in three different procedures, namely, time-dependent, pH-dependent and temperature-dependent. Characterization of the adsorption products by the XRD method indicates that the intercalation of 2,4-D between the LDH layers has not occurred and the surface adsorption had taken place. The adsorption kinetic was tested for pseudo-first-order, pseudo-second-order, Elovich and Intra-particle diffusion kinetic models and the rate constants were calculated. The equilibrium adsorption data were described by Langmuir and Freundlich equations. It was observed that, the Langmuir isotherm slightly better fitted to the experimental data rather than that of Freundlich. In the adsorption experiments, the Gibbs free energy values, ΔG°, the enthalpy, ΔH°, and the entropy, ΔS° were also determined.

  18. Biodegradation of 2,4-dichlorophenoxyacetic acid by bacteria with highly antibiotic-resistant pattern isolated from wheat field soils in Kurdistan, Iran.

    Science.gov (United States)

    Karami, Solmaz; Maleki, Afshin; Karimi, Ebrahim; Poormazaheri, Helen; Zandi, Shiva; Davari, Behrooz; Salimi, Yahya Zand; Gharibi, Fardin; Kalantar, Enayatollah

    2016-12-01

    Recently, there has been increasing interest to clean up the soils contaminated with herbicide. Our aim was to determine the bioremediation of 2,4-dichlorophenoxyacetic acid (2,4-D) from wheat fields which have a long history of herbicide in Sanandaj. Based on our literature survey, this study is the first report to isolate and identify antimicrobial resistant bacteria from polluted wheat field soils in Sanandaj which has the capacity to degrade 2,4-D. From 150 2,4-D-exposed soil samples, five different bacteria were isolated and identified based on biochemical tests and 16S ribosomal RNA (rRNA). Pseudomonas has been the most frequently isolated genus. By sequencing the 16S rRNA gene of the isolated bacteria, the strains were detected and identified as a member of the genus Pseudomonas sp, Entrobacter sp, Bacillus sp, Seratia sp, and Staphylococcus sp. The sequence of Sanandaj 1 isolate displayed 87% similarity with the 16S rRNA gene of a Pseudomonas sp (HE995788). Similarly, all the isolates were compared to standard strains based on 16S rRNA. Small amounts of 2,4-D could be transmitted to a depth of 10-20 cm; however, in the depth of 20-40 cm, we could not detect the 2,4-D. The isolates were resistant to various antibiotics particularly, penicillin, ampicillin, and amoxicillin.

  19. Bioremediation using Novosphingobium strain DY4 for 2,4-dichlorophenoxyacetic acid-contaminated soil and impact on microbial community structure.

    Science.gov (United States)

    Dai, Yu; Li, Ningning; Zhao, Qun; Xie, Shuguang

    2015-04-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is commonly used for weed control. The ubiquity of 2,4-D has gained increasing environmental concerns. Biodegradation is an attractive way to clean up 2,4-D in contaminated soil. However, information on the bioaugmentation trial for remediating contaminated soil is still very limited. The impact of bioaugmentation using 2,4-D-degraders on soil microbial community remains unknown. The present study investigated the bioremediation potential of a novel degrader (strain DY4) for heavily 2,4-D-polluted soil and its bioaugmentation impact on microbial community structure. The strain DY4 was classified as a Novosphingobium species within class Alphaproteobacteria and harbored 2,4-D-degrading TfdAα gene. More than 50 and 95 % of the herbicide could be dissipated in bioaugmented soil (amended with 200 mg/kg 2,4-D) respectively in 3-4 and 5-7 days after inoculation of Novosphingobium strain DY4. A significant growth of the strain DY4 was observed in bioaugmented soil with the biodegradation of 2,4-D. Moreover, herbicide application significantly altered soil bacterial community structure but bioaumentation using the strain DY4 showed a relatively weak impact.

  20. A 3D-Printed, Portable, Optical-Sensing Platform for Smartphones Capable of detecting the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yijia; Zeinhom, Mohamed M.; Yang, Mingming; Sun, Rongrong; Wang, Shenfu; Smith, Jordan N.; Timchalk, Charles; Li, Lei; Lin, Yuehe; Du, Dan

    2017-09-05

    Onsite rapid detection of herbicide and herbicide residuals in environmental and biological specimens is important for agriculture, environment, food safety, and health care. Traditional method for herbicide detection requires expensive laboratory equipment and a long turn-round time. In this work, we developed a single-stripe microliter plate smartphone colorimetric device for rapid and low-cost in-field test. This portable smartphone platform is capable of screening 8 samples in a microplate single-stripe. The device combined the advantages of small size (50×100×160 mm3) and low cost ($10). The platform was calibrated by using two different dye solutions, i.e. methyl blue (MB) and Rhodamine B, for green and red channels. The results showed good correlation with results attained from a traditional laboratory reader. We demonstrated the application of this platform for an herbicide, 2,4-Dichlorophenoxyacetic acid detection in the range of 1 ppb to 80 ppb. Spiked samples of tap water, rat serum, plasma and human serum were tested by our device. Recoveries obtained varied from 95.6% to 105.2% for all spiked samples using the microplate reader and from 93.7% to 106.9% using the smartphone device. This work validated that the smartphone optical sensing platform is comparable to the commercial microplate reader, it is eligible for onsite rapid and low-cost detection of herbicide for environmental evaluation and biological monitoring.

  1. High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid.

    Science.gov (United States)

    Lee, Shu Chin; Lintang, Hendrik O; Yuliati, Leny

    2017-01-01

    Two series of Fe2O3/TiO2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe2O3/TiO2 for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under UV light irradiation was examined. The Fe2O3/TiO2 nanocomposites prepared by impregnation showed lower activity than the unmodified TiO2, mainly due to lower specific surface area caused by heat treatment. On the other hand, the Fe2O3/TiO2 nanocomposites prepared by photodeposition showed higher photocatalytic activity than the unmodified TiO2. Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe2O3(0.5)/TiO2. The improved activity of TiO2 after photodeposition of Fe2O3 was contributed to the formation of a heterojunction between the Fe2O3 and TiO2 nanoparticles that improved charge transfer and suppressed electron-hole recombination. A further investigation on the role of the active species on Fe2O3/TiO2 confirmed that the crucial active species were both holes and superoxide radicals. The Fe2O3(0.5)/TiO2 sample also showed good stability and reusability, suggesting its potential for water purification applications.

  2. Biodegradation of industrial-strength 2,4-dichlorophenoxyacetic acid wastewaters in the presence of glucose in aerobic and anaerobic sequencing batch reactors.

    Science.gov (United States)

    Elefsiniotis, Panagiotis; Wareham, David G

    2013-01-01

    This research explored the biodegradability of 2,4-dichlorophenoxyacetic acid (2,4-D) in two laboratory-scale sequencing batch reactors (SBRs) that operated under aerobic and anaerobic conditions. The potential limit of 2,4-D degradation was investigated at a hydraulic retention time of 48 h, using glucose as a supplemental substrate and increasing feed concentrations of 2,4-D; namely 100 to 700 mg/L (i.e. industrial strength) for the aerobic system and 100 to 300 mg/L for the anaerobic SBR. The results revealed that 100 mg/L of 2,4-D was completely degraded following an acclimation period of 29 d (aerobic SBR) and 70 d (anaerobic SBR). The aerobic system achieved total 2,4-D removal at feed concentrations up to 600 mg/L which appeared to be a practical limit, since a further increase to 700 mg/L impaired glucose degradation while 2,4-D biodegradation was non-existent. In all cases, glucose was consumed before the onset of 2,4-D degradation. In the anaerobic SBR, 2,4-D degradation was limited to 120 mg/L.

  3. A 2,4-dichlorophenoxyacetic acid degradation plasmid pM7012 discloses distribution of an unclassified megaplasmid group across bacterial species.

    Science.gov (United States)

    Sakai, Yoriko; Ogawa, Naoto; Shimomura, Yumi; Fujii, Takeshi

    2014-03-01

    Analysis of the complete nucleotide sequence of plasmid pM7012 from 2,4-dichlorophenoxyacetic-acid (2,4-D)-degrading bacterium Burkholderia sp. M701 revealed that the plasmid had 582 142 bp, with 541 putative protein-coding sequences and 39 putative tRNA genes for the transport of the standard 20 aa. pM7012 contains sequences homologous to the regions involved in conjugal transfer and plasmid maintenance found in plasmids byi_2p from Burkholderia sp. YI23 and pBVIE01 from Burkholderia sp. G4. No relaxase gene was found in any of these plasmids, although genes for a type IV secretion system and type IV coupling proteins were identified. Plasmids with no relaxase gene have been classified as non-mobile plasmids. However, nucleotide sequences with a high level of similarity to the genes for plasmid transfer, plasmid maintenance, 2,4-D degradation and arsenic resistance contained on pM7012 were also detected in eight other megaplasmids (~600 or 900 kb) found in seven Burkholderia strains and a strain of Cupriavidus, which were isolated as 2,4-D-degrading bacteria in Japan and the United States. These results suggested that the 2,4-D degradation megaplasmids related to pM7012 are mobile and distributed across various bacterial species worldwide, and that the plasmid group could be distinguished from known mobile plasmid groups.

  4. Bioaugmentation of half-matured granular sludge with special microbial culture promoted establishment of 2,4-dichlorophenoxyacetic acid degrading aerobic granules.

    Science.gov (United States)

    Quan, Xiangchun; Ma, Jingyun; Xiong, Weicong; Wang, Xinrui

    2015-06-01

    Aerobic granular sludge degrading recalcitrant compounds are generally hard to be cultivated. This study investigated the feasibility of cultivating 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granules using half-matured sludge granules pre-grown on glucose as the seeds and bioaugmentation with a 2,4-D degrading strain Achromobacter sp. QXH. Results showed that bioaugmentation promoted the steady transformation of glucose-grown granules to 2,4-D degrading sludge granules and fast establishment of 2,4-D degradation ability. The 2,4-D degradation rate of the bioaugmented granules was enhanced by 36-62 % compared to the control at 2,4-D concentrations of 144-565 mg/L on Day 18. The inoculated strain was incorporated into the half-matured granules successfully and survived till the end of operation (220 days). Sludge granules at a mean size of 420 µm and capable of utilizing 500 mg/L 2,4-D as the sole carbon source were finally obtained. Sludge microbial community shifted slightly during the whole operation and the dominant bacteria species belonged to Proteobacteria.

  5. Fine route for an efficient removal of 2,4-dichlorophenoxyacetic acid (2,4-D) by zeolite-supported TiO2.

    Science.gov (United States)

    Shankar, M V; Anandan, S; Venkatachalam, N; Arabindoo, B; Murugesan, V

    2006-05-01

    Zeolites HY, Hbeta and HZSM-5 with different physico-chemical properties were chosen as support for TiO2 to illustrate their adsorption, dispersion and electronic structure in photocatalysis. The extent of TiO2 loading was monitored by XRD and BET surface area measurements. The adsorption capacity of HY zeolite was found to be high and hence chosen for further modification to continue the investigation. Photodegradation kinetics were carried out with 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution. The extent of 2,4-D degradation on TiO2/HY loading revealed the importance of adsorption in photocatalysis. Mineralisation studies on all three zeolites with 1 wt.% TiO2 loading demonstrated the good dispersion properties of TiO2/HY. Its photocatalytic activity was found to be excellent with formulated 2,4-D. Comparison of relative photonic efficiencies demonstrated that supported photocatalysts exhibited higher activity than some of the commercial photocatalysts. The high activity of supported TiO2 is due to synergistic effects of improved adsorption of 2,4-D and efficient delocalisation of photogenerated electrons by zeolite support.

  6. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules.

    Science.gov (United States)

    Quan, Xiang-chun; Ma, Jing-yun; Xiong, Wei-cong; Yang, Zhi-feng

    2011-11-30

    Development of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granular sludge was conducted in two sequencing batch reactors (SBR) with one bioaugmented with a plasmid pJP4 donor strain Pseudomonas putida SM1443 and the other as a control. Half-matured aerobic granules pre-grown on glucose were used as the starting seeds and a two-stage operation strategy was applied. Granules capable of utilizing 2,4-D (about 500 mg/L) as the sole carbon source was successfully cultivated in both reactors. Gene-augmentation resulted in the enhancement of 2,4-D degradation rates by the percentage of 65-135% for the granules on Day 18, and 6-24% for the granules on Day 105. Transconjugants receiving plasmid pJP4 were established in the granule microbial community after bioaugmentation and persisted till the end of operation. Compared with the control granules, the granules in the bioaugmented reactor demonstrated a better settling ability, larger size, more abundant microbial diversity and stronger tolerance to 2,4-D. The finally obtained granules in the bioaugmented and control reactor had a granule size of around 600 μm and 500 μm, a Shannon-Weaver diversity index (H) of 0.96 and 0.55, respectively. A shift in microbial community was found during the granulation process. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Photo-Fenton degradation of phenol, 2,4-dichlorophenoxyacetic acid and 2,4-dichlorophenol mixture in saline solution using a falling-film solar reactor.

    Science.gov (United States)

    Luna, Airton J; Nascimento, Cláudio A O; Foletto, Edson Luiz; Moraes, José E F; Chiavone-Filhoe, Osvaldo

    2014-01-01

    In this work, a saline aqueous solution of phenol, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) was treated by the photo-Fenton process in a falling-film solar reactor. The influence of the parameters such as initial pH (5-7), initial concentration of Fe2+ (1-2.5mM) and rate of H202 addition (1.87-3.74mmol min-1) was investigated. The efficiency of photodegradation was determined from the removal of dissolved organic carbon (DOC), described by the species degradation of phenol, 2,4-D and 2,4-DCP. Response surface methodology was employed to assess the effects of the variables investigated, i.e. [Fe2+], [H202] and pH, in the photo-Fenton process with solar irradiation. The results reveal that the variables' initial concentration of Fe2+ and H202 presents predominant effect on pollutants' degradation in terms of DOC removal, while pH showed no influence. Under the most adequate experimental conditions, about 85% DOC removal was obtained in 180 min by using a reaction system employed here, and total removal of phenol, 2,4- and 2,4-DCP mixture in about 30min.

  8. High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid

    Directory of Open Access Journals (Sweden)

    Shu Chin Lee

    2017-04-01

    Full Text Available Two series of Fe2O3/TiO2 samples were prepared via impregnation and photodeposition methods. The effect of preparation method on the properties and performance of Fe2O3/TiO2 for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D under UV light irradiation was examined. The Fe2O3/TiO2 nanocomposites prepared by impregnation showed lower activity than the unmodified TiO2, mainly due to lower specific surface area caused by heat treatment. On the other hand, the Fe2O3/TiO2 nanocomposites prepared by photodeposition showed higher photocatalytic activity than the unmodified TiO2. Three times higher photocatalytic activity was obtained on the best photocatalyst, Fe2O3(0.5/TiO2. The improved activity of TiO2 after photodeposition of Fe2O3 was contributed to the formation of a heterojunction between the Fe2O3 and TiO2 nanoparticles that improved charge transfer and suppressed electron–hole recombination. A further investigation on the role of the active species on Fe2O3/TiO2 confirmed that the crucial active species were both holes and superoxide radicals. The Fe2O3(0.5/TiO2 sample also showed good stability and reusability, suggesting its potential for water purification applications.

  9. Effects of 2,4-dichlorophenoxyacetic acid on the ventral prostate of rats during the peri-pubertal, pubertal and adult stage.

    Science.gov (United States)

    Pochettino, Arístides A; Hapon, María Belén; Biolatto, Silvana M; Madariaga, María José; Jahn, Graciela A; Konjuh, Cintia N

    2016-10-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) is used on a wide variety of terrestrial and aquatic broadleaf weeds. 2,4-D has been shown to produce a wide range of adverse effects on animal and human health. The aim of the current study was to evaluate the effects of pre- and postnatal exposure to 2,4-D on rat ventral prostate (VP). Pregnant rats were exposed daily to oral doses of 70 mg/kg/day of 2,4-D from 16 days of gestation up to 23 days after delivery. Then, the treated groups (n = 8) were fed with a 2,4-D added diet until sacrificed by decapitation on postnatal day (PND) 45, 60, or 90. Morphometric studies were performed and androgen receptor (AR) protein levels in the VP were determined. AR, insulin-like growth factor-I (IGF-1) and insulin-like growth factor-I receptor (IGF-1R) mRNA expression in the VP along with testosterone (T), dihydroxytestosterone (DHT), growth hormone (GH) and IGF-1 serum levels were also determined to ascertain whether these parameters were differentially affected. Results of this study showed that 2,4-D exposure during gestation and until adulthood altered development of the prostate gland in male rats, delaying it at early ages while increasing its size in adults, indicate that 2,4-D could behave as endocrine disruptors (EDs).

  10. Detection of DNA damage by alkaline single cell gel electrophoresis in 2,4-dichlorophenoxyacetic-acid- and butachlor-exposed erythrocytes of Clarias batrachus.

    Science.gov (United States)

    Ateeq, Bushra; Abul Farah, M; Ahmad, Waseem

    2005-11-01

    The alkaline single cell gel electrophoresis, also known as comet assay, is a rapid, simple and sensitive technique for measuring DNA strand breaks in individual cells. The present study was undertaken to evaluate the genotoxic potential of two widely used herbicides; 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-chloro-2,6-diethyl-N-(butoxymethyl) acetanilide (butachlor) in erythrocytes of freshwater catfish, Clarias batrachus. Fish were exposed by medium treatment with three sub-lethal concentrations of 2,4-D (25, 50, and 75ppm) and butachlor (1, 2, and 2.5ppm) and alkaline comet assay was performed on nucleated erythrocytes after 48, 72, and 96h. The amount of DNA damage in cells was estimated from comet tail length as the extent of migration of the genetic material. A significant increase in comet tail length indicating DNA damage was observed at all concentrations of both the herbicides compared with control (Pbutachlor (9.28microm). This study confirmed that the comet assay applied on the fish erythrocyte is a useful tool in determining potential genotoxicity of water pollutants and might be appropriate as a part of a monitoring program.

  11. Rhizobium leguminosarum bv. viciae 3841 Adapts to 2,4-Dichlorophenoxyacetic Acid with "Auxin-Like" Morphological Changes, Cell Envelope Remodeling and Upregulation of Central Metabolic Pathways.

    Directory of Open Access Journals (Sweden)

    Supriya V Bhat

    Full Text Available There is a growing need to characterize the effects of environmental stressors at the molecular level on model organisms with the ever increasing number and variety of anthropogenic chemical pollutants. The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D, as one of the most widely applied pesticides in the world, is one such example. This herbicide is known to have non-targeted undesirable effects on humans, animals and soil microbes, but specific molecular targets at sublethal levels are unknown. In this study, we have used Rhizobium leguminosarum bv. viciae 3841 (Rlv as a nitrogen fixing, beneficial model soil organism to characterize the effects of 2,4-D. Using metabolomics and advanced microscopy we determined specific target pathways in the Rlv metabolic network and consequent changes to its phenotype, surface ultrastructure, and physical properties during sublethal 2,4-D exposure. Auxin and 2,4-D, its structural analogue, showed common morphological changes in vitro which were similar to bacteroids isolated from plant nodules, implying that these changes are related to bacteroid differentiation required for nitrogen fixation. Rlv showed remarkable adaptation capabilities in response to the herbicide, with changes to integral pathways of cellular metabolism and the potential to assimilate 2,4-D with consequent changes to its physical and structural properties. This study identifies biomarkers of 2,4-D in Rlv and offers valuable insights into the mode-of-action of 2,4-D in soil bacteria.

  12. Adsorption of 2,4-dichlorophenoxyacetic acid by mesoporous activated carbon prepared from H3PO4-activated langsat empty fruit bunch.

    Science.gov (United States)

    Njoku, V O; Islam, Md Azharul; Asif, M; Hameed, B H

    2015-05-01

    The removal of toxic herbicide from wastewater is challenging due to the availability of suitable adsorbents. The Langsat empty fruit bunch is an agricultural waste and was used in this study as a cheap precursor to produce activated carbon for the adsorption of herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at different initial concentrations ranging from 50 to 400 mg/L. The produced Langsat empty fruit bunch activated carbon (LEFBAC) was mesoporous and had high surface area of 1065.65 m(2)/g with different active functional groups. The effect of shaking time, temperature and pH on 2,4-D removal were investigated using the batch technique. The adsorption capacity of 2,4-D by LEFBAC was decreased with increase in pH of solution whereas adsorption capacity increased with temperature. The adsorption data was well described by Langmuir isotherm followed by removal capacity of 261.2 mg/g at 30 °C. The results from this work showed that LEFBAC can be used as outstanding material for anionic herbicide uptake from wastewater.

  13. Effect of 2,4-dichlorophenoxyacetic acid on growth, protein and chlorophyll-a content of Chlorella vulgaris and Spirulina platensis cells.

    Science.gov (United States)

    Saygideger, Saadet Demirors; Okkay, Ozlem

    2008-03-01

    In this study, effect of different 2,4 -dichlorophenoxyacetic acid (2,4-D) concentrations (0.0, 9.10(-5), 9.10(-4), 9.10(-3) and 9.10(-2) mM) on growth rate, content of protein and chlorophyll-a in Chlorella vulgaris and Spirulina platensis cells was investigated. The most stimulatory effect on growth rate, protein and pigment ratio of C. vulgaris and S. platensis was observed at 9.10(-4) mM concentrations of 2,4-D. The results show that low concentrations of 2,4-D have hormonal effect due to being a synthetic auxin. Cell number protein and pigment rates were inhibited at 9.10(-2) mM concentration in C. vulgaris. Such parameters were inhibited in S. platensis, both at 9.10(-3) and 9.10(-2) mM 2,4-D concentrations. This is due to herbicidal effect of high concentrations of 2,4-D. S. platensis was found to be more sensitive than S. vulgaris to 2,4-D applications. The use of algae as bio-indicators in herbicide contaminated fresh water habitats, was discussed.

  14. The effect of 2,4 dichlorophenoxyacetic acid on in vitro callogenesis of cocoa (Theobroma cacao L.

    Directory of Open Access Journals (Sweden)

    Sulistyani Pancaningtyas

    2015-08-01

    Full Text Available Cocoa (Theobroma cacao L. development using modern breeding techniques can be facilitated by propagation of planting material through somatic embryogenesis. Various factors that may affect embryogenesis are the composition of culture medium and culture condition. Hormone commonly used to initiate the formation of callus is auxin with type 2.4-D (2.4 Dichlorophenoxy acetic acid. The aim of this study was to determine the effect of the addition of 2.4 -D hormoneson the process of cocoa embryogenesis. The treatments were arragged in factorial combination in completely randomized design, which consisted of two factors. Thefirst factor was the concentration of auxin 2,4-D 25 %, 50 %, 75 %, and 100 %; and the second factor was cocoa clones; Sulawesi 01 and Sulawesi 02. The resultshowed that the addition of 2.4-D hormone up to 100% on somatic embryogenesis of cocoa for Sulawesi 01 clone was not significantly different from Sulawesi 02 clone for all parameters. While on the addition of 2.4-D, there was significant difference between Sulawesi 01 and 02. Cocoa embryogenic callus using the addition of 2.4-D (25%-100% was significantly different from control. Increased concentrations of 2,4-D hormone which is applied onto media would inhibit the formation of the somatic embryo. Addition of 2.4 D 25%, encouraged towards non-embryogenic callus. Keywords: 2.4 Dichlorophenoxy acetic acid, embryogenic callus, somatic embryos, cocoa, medium culture, hormone

  15. Kinetic modeling of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation in soil slurry by anodic fenton treatment.

    Science.gov (United States)

    Kong, Lingjun; Lemley, Ann T

    2006-05-31

    Anodic Fenton treatment (AFT) has been shown to be a promising technology in pesticide wastewater treatment. However, no research has been conducted on the AFT application to contaminated soils. In this study, the 2,4-D degradation kinetics of AFT in a silt loam soil slurry were investigated for the first time, and the effects of various experimental conditions including initial 2,4-D concentration, Fenton reagent delivery rate, amount of humic acid (HA) addition, and pH were examined. The 2,4-D degradation in soil slurry by AFT was found to follow a two-stage kinetic model. During the early stage of AFT (the first 4-5 min), the 2,4-D concentration profile followed a pseudo-first-order kinetic model. In the later stage (typically after 5 or 6 min), the AFT kinetic model provided a better fit. This result is most likely due to the existence of (*)OH scavengers and 2,4-D sorption on soil. The Fe(2+) delivery rate was shown to be a more significant factor in degradation rate than the H(2)O(2) delivery rate when the Fe(2+)/H(2)O(2) ratios were in the range of 1:2 to 1:10. The presence of HA in soil lowered the AFT rate, most probably due to the competition with 2,4-D for consumption of (*)OH and increased sorption of 2,4-D on soil. The optimal pH for 2,4-D degradation in soil slurry by AFT was observed to be in the range of pH 2-3.

  16. Catalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nano-Fe2O3 activated peroxymonosulfate: Influential factors and mechanism determination.

    Science.gov (United States)

    Jaafarzadeh, Nematollah; Ghanbari, Farshid; Ahmadi, Mehdi

    2017-02-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) is one of the most applicable herbicides in the world. Therefore, its residue in aquatic environment threatens the human health and ecosystems. In this study, Fe2O3 (hematite) nanoparticles (HNPs) were synthesized, and the characteristics of the obtained HNPs were determined using X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) technique, and particle size analyzer (PSA). The catalytic activity of HNPs was evaluated for the activation of peroxymonosulfate (PMS) for the degradation of 2,4-D. The effects of the operating parameters were studied for the PMS/HNPs system. The results showed that the acidic condition provided higher efficiency, while overdosing of PMS had a scavenging effect. The PMS/HNPs showed high efficiency in comparison with the homogeneous forms of iron (Fe(2+) and Fe(3+)). Reusability of HNPs was studied in five consequent usages. The presence of the anions (chloride, nitrate, and hydrogen phosphate) reduced the 2,4-D degradation. Moreover, the catalytic activity of HNPs was also investigated in the presence of other oxidants. UV irradiation increased the function of PMS/HNPs and its mechanism was described. The order of 2,4-D removal for the oxidants was PMS > persulfate > H2O2 > percarbonate. A total of 29.7% of 2,4-D chlorine content was released during the destruction of 2,4-D. The quenching study showed that sulfate radical was the major agent in the degradation of 2,4-D. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. A molecular imprinting-based turn-on Ratiometric fluorescence sensor for highly selective and sensitive detection of 2,4-dichlorophenoxyacetic acid (2,4-D).

    Science.gov (United States)

    Wang, Xiaoyan; Yu, Jialuo; Wu, Xiaqing; Fu, Junqing; Kang, Qi; Shen, Dazhong; Li, Jinhua; Chen, Lingxin

    2016-07-15

    A novel molecular imprinting-based turn-on ratiometric fluorescence sensor was constructed via a facile sol-gel polymerization for detection of 2,4-dichlorophenoxyacetic acid (2,4-D) on the basis of photoinduced electron transfer (PET) by using nitrobenzoxadiazole (NBD) as detection signal source and quantum dots (QDs) as reference signal source. With the presence and increase of 2,4-D, the amine groups on the surface of QDs@SiO2 could bind with 2,4-D and thereby the NBD fluorescence intensities could be significantly enhanced since the PET process was inhibited, while the QDs maintained constant intensities. Accordingly, the ratio of the dual-emission intensities of green NBD and red QDs could be utilized for turn-on fluorescent detection of 2,4-D, along with continuous color changes from orange-red to green readily observed by the naked eye. The as-prepared fluorescence sensor obtained high sensitivity with a low detection limit of 0.14μM within 5min, and distinguished recognition selectivity for 2,4-D over its analogs. Moreover, the sensor was successfully applied to determine 2,4-D in real water samples, and high recoveries at three spiking levels of 2,4-D ranged from 95.0% to 110.1% with precisions below 4.5%. The simple, rapid and reliable visual sensing strategy would not only provide potential applications for high selective ultratrace analysis of complicated matrices, but also greatly enrich the research connotations of molecularly imprinted sensors.

  18. Degradation of 2,4-dichlorophenoxyacetic acid (2,4-d) by a hypersaline microbial mat and related functional changes in the mat community.

    Science.gov (United States)

    Grötzschel, S; Köster, J; de Beer, D

    2004-08-01

    Microbial mats possibly possess degradation capacities for haloorganic pollutants because of their wide range of different functional groups of microorganisms combined with extreme diurnal changes in pH, oxygen, and sulfide gradients. In this study, 20 mg/l of the chlorinated herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was applied to a pristine hypersaline cyanobacterial mat from Guerrero Negro, Mexico, under a light regime of 12 h dark/12 h light (600 mumol photons/m(2)s). The loss of 2,4-D was followed by chemical GC analysis; functional changes within the mat were determined with microelectrodes for oxygen, photosynthesis, pH, and sulfide. The depletion of 2,4-D due to photooxidation or sorption processes was checked in control experiments. Within 13 days, the light/dark incubated mats degraded 97% of the herbicide, while in permanent darkness only 35% were degraded. Adsorption of 2,4-D to the mat material, agar, or glass walls was negligible (4.6%), whereas 21% of the herbicide was degraded photochemically. The 2,4-D removal rate in the light/dark incubations was comparable to values reported for soils. The phototrophic community of the mat was permanently inhibited by the 2,4-D addition by 17% on average. The sulfate reduction in the entire mat and the respiration in the photic zone were inhibited more strongly but returned to original levels. Since at the end of the experiment the photosynthetic and respiratory activity of the mats were almost as high as in the beginning and 2,4-D almost completely disappeared, we conclude that the examined mats represent a robust and effective system for the degradation of the herbicide where probably the aerobic heterotrophic population is a major player in the degradation process.

  19. Comparison of 2,4-Dichlorophenoxyacetic Acid Degradation and Plasmid Transfer in Soil Resulting from Bioaugmentation with Two Different pJP4 Donors

    Science.gov (United States)

    Newby, D. T.; Gentry, T. J.; Pepper, I. L.

    2000-01-01

    A pilot field study was conducted to assess the impact of bioaugmentation with two plasmid pJP4-bearing microorganisms: the natural host, Ralstonia eutropha JMP134, and a laboratory-generated strain amenable to donor counterselection, Escherichia coli D11. The R. eutropha strain contained chromosomal genes necessary for mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D), while the E. coli strain did not. The soil system was contaminated with 2,4-D alone or was cocontaminated with 2,4-D and Cd. Plasmid transfer to indigenous populations, plasmid persistence in soil, and degradation of 2,4-D were monitored over a 63-day period in the bioreactors. To assess the impact of contaminant reexposure, aliquots of bioreactor soil were reamended with additional 2,4-D. Both introduced donors remained culturable and transferred plasmid pJP4 to indigenous recipients, although to different extents. Isolated transconjugants were members of the Burkholderia and Ralstonia genera, suggesting multiple, if not successive, plasmid transfers. Upon a second exposure to 2,4-D, enhanced degradation was observed for all treatments, suggesting microbial adaptation to 2,4-D. Upon reexposure, degradation was most rapid for the E. coli D11-inoculated treatments. Cd did not significantly impact 2,4-D degradation or transconjugant formation. This study demonstrated that the choice of donor microorganism might be a key factor to consider for bioaugmentation efforts. In addition, the establishment of an array of stable indigenous plasmid hosts at sites with potential for reexposure or long-term contamination may be particularly useful. PMID:10919798

  20. Degradation of 2,4-dichlorophenoxyacetic acid by Pseudomonas cepacia DBO1(pRO101) in a dual-substrate chemostat.

    Science.gov (United States)

    Daugherty, D D; Karel, S F

    1994-01-01

    To determine the effect of a secondary carbon source on biodegradation of a chloroaromatic compound, Pseudomonas cepacia DBO1(pRO101) was grown in continuous cultures on basal salts media containing various mixtures of 2,4-dichlorophenoxyacetic acid (2,4-D) and succinate. Both succinate and 2,4-D were metabolized over the entire range of dilution rates and compositions analyzed (0.05 to 0.6 h-1). 2,4-Dichlorophenol (DCP), the only intermediate detected, accumulated to significant amounts (10 to 21 mg/liter) in the chemostat only when the dilution rate was 0.4 h-1 or greater. At these concentrations, DCP reduced the apparent growth rate of P. cepacia DBO1(pRO101) in batch cultures by 15 to 35% over the apparent growth rate on succinate alone. Succinate fed to the chemostat increased the cell density as well as the percentage of 2,4-D that was consumed at each dilution rate. When the amount of succinate in the feed exceeded the amount of 2,4-D, the specific rates of 2,4-D degradation in the chemostat or by washed cells were significantly lower than the specific rates for cells grown on 2,4-D alone, suggesting repression by succinate. However, when the amount of 2,4-D in the feed exceeded the amount of succinate, the specific rates of 2,4-D degradation remained at values equivalent to or higher than the specific rate for cells grown on 2,4-D alone. DCP accumulated significantly in the washed-cell assay, suggesting that the level of DCP hydroxylase is rate limiting.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7524443

  1. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Xiang-chun, E-mail: xchquan@yahoo.com.cn [Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Ma, Jing-yun; Xiong, Wei-cong; Yang, Zhi-feng [Key Laboratory of Water and Sediment Sciences of Ministry of Education/State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer The first study to cultivate aerobic granules capable of utilizing 2,4-D as the sole carbon source. Black-Right-Pointing-Pointer Granules cultivated through gene-augmentation were first compared systematically with the control on granule formation, degradation kinetics, morphology, and microbial community. Black-Right-Pointing-Pointer The first report on the fate of transconjugats in the granules during long term operation after bioaugmentation. Black-Right-Pointing-Pointer The first study to isolate in dominant bacteria in 2,4-D degrading microbial granules. - Abstract: Development of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granular sludge was conducted in two sequencing batch reactors (SBR) with one bioaugmented with a plasmid pJP4 donor strain Pseudomonas putida SM1443 and the other as a control. Half-matured aerobic granules pre-grown on glucose were used as the starting seeds and a two-stage operation strategy was applied. Granules capable of utilizing 2,4-D (about 500 mg/L) as the sole carbon source was successfully cultivated in both reactors. Gene-augmentation resulted in the enhancement of 2,4-D degradation rates by the percentage of 65-135% for the granules on Day 18, and 6-24% for the granules on Day 105. Transconjugants receiving plasmid pJP4 were established in the granule microbial community after bioaugmentation and persisted till the end of operation. Compared with the control granules, the granules in the bioaugmented reactor demonstrated a better settling ability, larger size, more abundant microbial diversity and stronger tolerance to 2,4-D. The finally obtained granules in the bioaugmented and control reactor had a granule size of around 600 {mu}m and 500 {mu}m, a Shannon-Weaver diversity index (H) of 0.96 and 0.55, respectively. A shift in microbial community was found during the granulation process.

  2. Preparation of Graphene/TiO2 Composite Nanomaterials and Its Photocatalytic Performance for the Degradation of 2,4-Dichlorophenoxyacetic Acid

    Directory of Open Access Journals (Sweden)

    Donggen Huang

    2016-01-01

    Full Text Available The graphene (GR was prepared by an improved electrochemical stripping method using a high-purity graphite rod as raw material and high temperature heat reduction in hydrogen atmosphere, and the graphene/TiO2 (GR/TiO2 composite nanomaterials were manufactured by the method of sol-gel and high temperature crystallization in hydrogen atmosphere using butyl titanate and electrolysis graphene as precursors. The physical and chemical properties of the composites had been characterized by using X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, UV-Vis spectrophotometer (UV-Vis, scanning electron microscopy (SEM, Transmission Electron Microscope (TEM,  and specific surface area (SSA by BET method. The photocatalytic properties of GR/TiO2 composites nanomaterials in anoxic water were studied by using 2,4-dichlorophenoxyacetic acid (2,4-D as probe. The results showed that graphite was well intercalated and peeled by a facile electrolysis method in different electric field environment; a well dispersed and rings structure of graphene was prepared by coupling ultrasound-assisted changing voltage electrochemical stripping technology. The as-prepared GR/TiO2 composites had good performance for the photocatalytic degradation of 2,4-D in anoxic water; the chlorines were removed from benzene ring; the middle products of dichlorophenol, chlorophenol, phloroglucinol, and so forth were produced from the photocatalytic redox reaction of 2,4-D in anoxic water; parts of 2,4-D were decomposed completely, and CO2 and H2O were produced.

  3. Green preparation of a novel red mud@carbon composite and its application for adsorption of 2,4-dichlorophenoxyacetic acid from aqueous solution.

    Science.gov (United States)

    Kazak, Omer; Eker, Yasin Ramazan; Akin, Ilker; Bingol, Haluk; Tor, Ali

    2017-08-19

    This study reports the eco-friendly preparation of a novel composite material consisting of red mud and carbon spheres, denoted as red mud@C composite, and its application for the removal of 2,4-dichlorophenoxyacetic acid herbicide (2,4-D) from aqueous solution. The preparation route has a green approach because it follows the low-energy consuming one-step hydrothermal process by using starch as a renewable carbon precursor and red mud as a waste from aluminum production industry. Characterization of the red mud@C composite was performed by FT-IR, TGA, SEM, TEM, BET, XRD, and Raman microscopy analyses. The batch adsorption studies revealed that the red mud@C composite has higher 2,4-D adsorption efficiency than those of the red mud and the naked carbon spheres. The maximum removal at initial pH of 3.0 is explained by considering the pKa of 2,4-D and pH of point of zero charge (pHpzc) of the composite material. The adsorption equilibrium time was 60 min, which followed the pseudo-second-order kinetic model together with intra-particle diffusion model. The isotherm analysis indicated that Freundlich isotherm model better represented the adsorption data, with isotherm parameters of k [15.849 (mg/g) (mg/L)(-1/n) ] and n (2.985). The prepared composite is reusable at least 5 cycles of adsorption-desorption with no significant decrease in the adsorption capacity.

  4. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn2S4/g-C3N4 photocatalyst.

    Science.gov (United States)

    Qiu, Pengxiang; Yao, Jinhua; Chen, Huan; Jiang, Fang; Xie, Xianchuan

    2016-11-05

    ZnIn2S4/g-C3N4 heterojunction photocatalyst was successfully synthesized via a simple hydrothermal method and applied to visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous phase. The flower-like ZnIn2S4 particles were dispersed on the surface of g-C3N4 nanosheets in the ZnIn2S4/g-C3N4 composite. The composite showed higher separation rate of electron-hole pairs as compared to ZnIn2S4 and g-C3N4. Consequently, the ZnIn2S4/g-C3N4 composite exhibited enhanced visible light photocatalytic decomposition efficiency of 2,4-D, within 20% ZnIn2S4/g-C3N4 composite owning the highest photocatalytic efficiency and initial rate. The initial rates of 2,4-D degradation on g-C3N4, ZnIn2S4, and 20% ZnIn2S4/g-C3N4 were 1.23, 0.57 and 3.69mmol/(gcath), respectively. The h(+) and O2(-) were found to be the dominant active species for 2,4-D decomposition. The photocatalytic degradation pathways of 2,4-D by ZnIn2S4/g-C3N4 under visible light irradiation were explored. The ZnIn2S4/g-C3N4 composite displayed high photostability in recycling tests, reflecting its promising potential as an effective visible light photocatalyst for 2,4-D treatment.

  5. Mechanism of Enhanced Electrochemical Oxidation of 2,4-dichlorophenoxyacetic Acid with in situ Microwave Activated Boron-doped Diamond and Platinum Anodes

    Science.gov (United States)

    Gao, Junxia; Zhao, Guohua; Liu, Meichuan; Li, Dongming

    2009-09-01

    Remarkable enhancement in degradation effect is achieved at in situ activated boron-doped diamond (BDD) and Pt anodes with different extent through electrochemical oxidation (EC) of 2,4-dichlorophenoxyacetic acid (2,4-D) with microwave (MW) radiation in a flow system. Results show that when EC is activated with MW radiation, the complete mineralization time of 2,4-D at the BDD is reduced quickly from 10 to 4 h while Chemical oxygen demand (COD) removal at Pt is increased from 37.7 to 58.3% at 10 h; the initial current efficiency is both improved about 1.5 times while the pseudo-first-order rate constant is increased by 153 and 119% at the BDD and Pt, respectively. To gain insight into the higher efficiency in microwave activated EC, the mechanism has therefore been systematically evaluated from the essence of electrochemical reaction and the accumulated hydroxyl radical concentration. 2,4-Dichlorophenol, catechol, benquinone, and maleic and oxalic acids are the main intermediates on the Pt anode measured by high performance liquid chromatography (HPLC), while the intermediates on the BDD electrode include 2,4-dichlorophenol, hydroquinone, and maleic and oxalic acids. The reaction pathway with microwave radiation is the same as that in a conventional electrochemical oxidation on both electrodes. While less and lower aromatic intermediates produce at the BDD with MW, which suggests the higher ring-open ratio and the faster oxidation of carboxylic acids. With microwave radiation, the ring-open ratio at the BDD is increased to 98.8% from 85.6%; the value at Pt is increased to 67.3% from 35.9%. So microwave radiation can activate the electrochemical oxidation, which leads to the higher efficiency. This promotion is mainly due to the higher accumulated hydroxyl radical concentration and the effects by microwave radiation. All the results prove that the BDD electrode presents much better mineralization performance with MW. To the best of our knowledge, it is the first

  6. An evaluation of 2,4-dichlorophenoxyacetic acid in the Amphibian Metamorphosis Assay and the Fish Short-Term Reproduction Assay.

    Science.gov (United States)

    Coady, Katherine; Marino, Troy; Thomas, Johnson; Sosinski, Lindsay; Neal, Barbara; Hammond, Larry

    2013-04-01

    2,4-Dichlorophenoxyacetic acid (2,4-D) was evaluated in both the Amphibian Metamorphosis Assay (AMA) and the Fish Short Term Reproduction Assay (FSTRA). In the AMA, tadpoles were exposed to mean measured 2,4-D concentrations of 0 (water control), 0.273, 3.24, 38.0 and 113 mg acid equivalents (ae)/L for either seven or 21 days. In the FSTRA, fathead minnows were exposed to mean measured 2,4-D concentrations of 0 (water control), 0.245, 3.14, 34.0, and 96.5 mg ae/L for 21 days. The respective concentrations of 2,4-D were not overtly toxic to either Xenopus laevis tadpoles or fathead minnows (Pimephales promelas). In the AMA, there were no signs of either advanced or delayed development, asynchronous development, or significant histopathological effects of the thyroid gland among 2,4-D exposed tadpoles evaluated on either day seven or day 21 of the exposure. Therefore, following the AMA decision logic, 2,4-D is considered "likely thyroid inactive" in the AMA with a No Observable Effect Concentration (NOEC) of 113 mg ae 2,4-D/L. In the FSTRA, there were no significant differences between control and 2,4-D exposed fish in regard to fertility, wet weight, length, gonado-somatic indices, tubercle scores, or blood plasma concentrations of vitellogenin. Furthermore, there were no treatment-related histopathologic changes in the testes or ovaries in any 2,4-D exposed group. The only significant effect was a decrease in fecundity among fish exposed to 96.5 mg ae 2,4-D/L. The cause of the reduced fecundity at the highest concentration of 2,4-D tested in the assay was most likely due to a generalized stress response in the fish, and not due to a specific endocrine mode of action of 2,4-D. Based on fish reproduction, the NOEC in the FSTRA was 34.0 mg ae 2,4-D/L.

  7. Plasmid-mediated bioaugmentation of sequencing batch reactors for enhancement of 2,4-dichlorophenoxyacetic acid removal in wastewater using plasmid pJP4.

    Science.gov (United States)

    Tsutsui, Hirofumi; Anami, Yasutaka; Matsuda, Masami; Hashimoto, Kurumi; Inoue, Daisuke; Sei, Kazunari; Soda, Satoshi; Ike, Michihiko

    2013-06-01

    Plasmid-mediated bioaugmentation was demonstrated using sequencing batch reactors (SBRs) for enhancing 2,4-dichlorophenoxyacetic acid (2,4-D) removal by introducing Cupriavidus necator JMP134 and Escherichia coli HB101 harboring 2,4-D-degrading plasmid pJP4. C. necator JMP134(pJP4) can mineralize and grow on 2,4-D, while E. coli HB101(pJP4) cannot assimilate 2,4-D because it lacks the chromosomal genes to degrade the intermediates. The SBR with C. necator JMP134(pJP4) showed 100 % removal against 200 mg/l of 2,4-D just after its introduction, after which 2,4-D removal dropped to 0 % on day 7 with the decline in viability of the introduced strain. The SBR with E. coli HB101(pJP4) showed low 2,4-D removal, i.e., below 10 %, until day 7. Transconjugant strains of Pseudomonas and Achromobacter isolated on day 7 could not grow on 2,4-D. Both SBRs started removing 2,4-D at 100 % after day 16 with the appearance of 2,4-D-degrading transconjugants belonging to Achromobacter, Burkholderia, Cupriavidus, and Pandoraea. After the influent 2,4-D concentration was increased to 500 mg/l on day 65, the SBR with E. coli HB101(pJP4) maintained stable 2,4-D removal of more than 95 %. Although the SBR with C. necator JMP134(pJP4) showed a temporal depression of 2,4-D removal of 65 % on day 76, almost 100 % removal was achieved thereafter. During this period, transconjugants isolated from both SBRs were mainly Achromobacter with high 2,4-D-degrading capability. In conclusion, plasmid-mediated bioaugmentation can enhance the degradation capability of activated sludge regardless of the survival of introduced strains and their 2,4-D degradation capacity.

  8. Enhanced photoelectrocatalytic degradation of 2,4-dichlorophenoxyacetic acid by CuInS{sub 2} nanoparticles deposition onto TiO{sub 2} nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liu Ronghua [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Liu Yutang [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Liu Chengbin, E-mail: chem_cbliu@hnu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Luo Shenglian, E-mail: sllou@hnu.cn [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063 (China); Teng Yarong [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); Yang Lixia [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China); School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang, 330063 (China); Yang Renbin [College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128 (China); Cai Qingyun [State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2011-02-03

    Research highlights: > The photocatalytic application of CuInS{sub 2} with a direct band gap of about 1.5 eV and a high absorption coefficient remains unknown. > We describe an impulse electrodeposition approach to deposit CuInS{sub 2} nanoparticles in uniform size of about 20 nm onto the top surface of the highly oriented TiO{sub 2} NT arrays while minimizing the clogging of the tube entrances. > The novel photocatalyst exhibits a highly visible-light photocatalytic degradation activity for the target organic pollutant. > Moreover, the stability of the modified TiO{sub 2} NT is good. > Therefore, CuInS{sub 2} nanoparticles modified TiO{sub 2} NT photocatalysts have potential utility in practical purification of organic wastewater. - Abstract: Surface modification of TiO{sub 2} nanotube (NT) arrays with CuInS{sub 2} nanoparticles (NPs) for photocatalytic degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was reported. A pulse electrodeposition technique was used to prepare the CuInS{sub 2} NPs, and the resulted CuInS{sub 2} NPs, with a uniform size of about 20 nm, were found to deposit on the top surface of the highly oriented TiO{sub 2} NT while without clogging the tube entrances. Compared with the unmodified TiO{sub 2} NT, the CuInS{sub 2} NPs modified TiO{sub 2} NT (CuInS{sub 2}-TiO{sub 2} NT) showed significantly enhanced photocatalytic activity towards 2,4-D under visible light. After 160 min irradiation, the removal rate of 2,4-D is 100% by using CuInS{sub 2}-TiO{sub 2} NT, much higher than 65.2% by using the unmodified TiO{sub 2} NT in photoelectrocatalytic process. The increased photodegradation efficiency mainly results from the improved photocurrent density as results of enhanced visible-light absorption and decreased hole-electron recombination due to the presence of narrow-band-gap p-type semiconductor CuInS{sub 2}.

  9. Comparison of 16S rRNA gene phylogeny and functional tfdA gene distribution in thirty-one different 2,4-dichlorophenoxyacetic acid and 4-chloro-2-methylphenoxyacetic acid degraders.

    Science.gov (United States)

    Baelum, Jacob; Jacobsen, Carsten S; Holben, William E

    2010-03-01

    31 different bacterial strains isolated using the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole source of carbon, were investigated for their ability to mineralize 2,4-D and the related herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA). Most of the strains mineralize 2,4-D considerably faster than MCPA. Three novel primer sets were developed enabling amplification of full-length coding sequences (CDS) of the three known tfdA gene classes known to be involved in phenoxy acid degradation. 16S rRNA genes were also sequenced; and in order to investigate possible linkage between tfdA gene classes and bacterial species, tfdA and 16S rRNA gene phylogeny was compared. Three distinctly different classes of tfdA genes were observed, with class I tfdA sequences further partitioned into the two sub-classes I-a and I-b based on more subtle differences. Comparison of phylogenies derived from 16S rRNA gene sequences and tfdA gene sequences revealed that most class II tfdA genes were encoded by Burkholderia sp., while class I-a, I-b and III genes were found in a more diverse array of bacteria. Copyright 2010 Elsevier GmbH. All rights reserved.

  10. Effect of glucose on the fatty acid composition of Cupriavidus necator JMP134 during 2,4-dichlorophenoxyacetic acid degradation: implications for lipid-based stable isotope probing methods.

    Science.gov (United States)

    Lerch, Thomas Z; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André

    2011-10-01

    Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [(13)C]2,4-D, [(13)C]glucose, or mixtures of both substrates alternatively labeled with (13)C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the (13)C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments.

  11. Effect of Glucose on the Fatty Acid Composition of Cupriavidus necator JMP134 during 2,4-Dichlorophenoxyacetic Acid Degradation: Implications for Lipid-Based Stable Isotope Probing Methods▿†

    Science.gov (United States)

    Lerch, Thomas Z.; Dignac, Marie-France; Barriuso, Enrique; Mariotti, André

    2011-01-01

    Combining lipid biomarker profiling with stable isotope probing (SIP) is a powerful technique for studying specific microbial populations responsible for the degradation of organic pollutants in various natural environments. However, the presence of other easily degradable substrates may induce significant physiological changes by altering both the rate of incorporation of the target compound into the biomass and the microbial lipid profiles. In order to test this hypothesis, Cupriavidus necator JMP134, a 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium, was incubated with [13C]2,4-D, [13C]glucose, or mixtures of both substrates alternatively labeled with 13C. C. necator JMP134 exhibited a preferential use of 2,4-D over glucose. The isotopic analysis showed that glucose had only a small effect on the incorporation of the acetic chain of 2,4-D into the biomass (at days 2 and 3) and no effect on that of the benzenic ring. The addition of glucose did change the fatty acid methyl ester (FAME) composition. However, the overall FAME isotopic signature reflected that of the entire biomass. Compound-specific individual isotopic analyses of FAME composition showed that the 13C-enriched FAME profiles were slightly or not affected when tracing the 2,4-D acetic chain or 2,4-D benzenic ring, respectively. This batch study is a necessary step for validating the use of lipid-based SIP methods in complex environments. PMID:21856833

  12. Effects of olive oil and its fractions on oxidative stress and the liver's fatty acid composition in 2,4-Dichlorophenoxyacetic acid-treated rats

    Directory of Open Access Journals (Sweden)

    Ellouz Meriem

    2010-10-01

    Full Text Available Abstract Background Olive oil's beneficial effects are not only related to its high content of oleic acid, but also to the antioxidant potential of its polyphenols. In this study, we assess the effects of virgin olive oil and its fractions on 2,4-D- induced oxidative damage in the liver of rats. Methods Male Wistar rats were randomly divided into eight groups of ten each: (C a control group, (D group that received 2,4-D (5 mg/kg b.w., (D/EVOO group treated with 2,4-D plus extra virgin olive oil, (D/OOHF group that received 2,4-D plus hydrophilic fraction, (D/OOLF group treated with 2,4-D plus lipophilic fraction, (EVOO group that received only extra virgin olive oil, (OOHF group given hydrophilic fraction and (OOLF group treated with lipophilic fraction. These components were daily administered by gavage for 4 weeks. Results A significant liver damage was observed in rats treated with 2,4-D via increased serum levels of transaminases and alkaline phosphatase, hepatic lipid peroxidation and decreased hepatic antioxidant enzyme activities, namely, superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. The liver's fatty acid composition was also significantly modified with 2,4-D exposure. However, extra virgin olive oil and hydrophilic fraction intake during 2,4-D treatment induced a significant increase in the antioxidant enzyme activities and a decrease in the conjugated dienes (CD and thiobarbituric acid-reactive substances (TBARs levels in the liver. The lipophilic fraction supplemented to 2,4-D- treated rats did not show any improvement in the liver oxidative status while a marked improvement was detected in the hepatic fatty acid composition of rats supplemented with olive oil and the two fractions. Conclusion We concluded that the protective effect of olive oil against oxidative damage induced by 2,4-D is mainly related to the antioxidant potential of its hydrophilic fraction.

  13. 2,4-Dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading gene cluster in the soybean root-nodulating bacterium Bradyrhizobium elkanii USDA94.

    Science.gov (United States)

    Hayashi, Shohei; Sano, Tomoki; Suyama, Kousuke; Itoh, Kazuhito

    2016-01-01

    Herbicides 2,4-dichlorophenoxyacetic acid (2,4-D)- and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T)-degrading Bradyrhizobium strains possess tfdAα and/or cadABC as degrading genes. It has been reported that root-nodulating bacteria belonging to Bradyrhizobium elkanii also have tfdAα and cadA like genes but lack the ability to degrade these herbicides and that the cadA genes in 2,4-D-degrading and non-degrading Bradyrhizobium are phylogenetically different. In this study, we identified cadRABCK in the genome of a type strain of soybean root-nodulating B. elkanii USDA94 and demonstrated that the strain could degrade the herbicides when cadABCK was forcibly expressed. cadABCK-cloned Escherichia coli also showed the degrading ability. Because co-spiked phenoxyacetic acid (PAA) could induce the degradation of 2,4-D in B. elkanii USDA94, the lack of degrading ability in this strain was supposed to be due to the low inducing potential of the herbicides for the degrading gene cluster. On the other hand, tfdAα from B. elkanii USDA94 showed little potential to degrade the herbicides, but it did for 4-chlorophenoxyacetic acid and PAA. The 2,4-D-degrading ability of the cad cluster and the inducing ability of PAA were confirmed by preparing cadA deletion mutant. This is the first study to demonstrate that the cad cluster in the typical root-nodulating bacterium indeed have the potential to degrade the herbicides, suggesting that degrading genes for anthropogenic compounds could be found in ordinary non-degrading bacteria. Copyright © 2016 Elsevier GmbH. All rights reserved.

  14. Application of molecular imprinted polymer nanoparticles as a selective solid phase extraction for preconcentration and trace determination of 2,4-dichlorophenoxyacetic acid in the human urine and different water samples.

    Science.gov (United States)

    Omidi, Fariborz; Behbahani, Mohammad; Sadeghi Abandansari, Hamid; Sedighi, Alireza; Shahtaheri, Seyed Jamaleddin

    2014-01-01

    A molecular-imprinted polymer nanoparticles (MIP-NP) for the selective preconcentration of 2,4-dichlorophenoxyacetic acid (2,4-D) is described. It was obtained by precipitation polymerization from methacrylic acid (the functional monomer), ethylene glycol dimethacrylate (the cross-linker), 2,2'-azobisisobutyronitrile (the initiator) and 2,4-D (the template molecule) in acetonitrile solution. The MIP-NPs were characterized by thermogravimetric analysis, and by scanning electron microscopy. Imprinted 2,4-D molecules were removed from the polymeric structure using acetic acid in methanol (15:85 v/v %) as the eluting solvent. The sorption and desorption process occur within 10 min and 15 min, respectively. The maximum sorbent capacity of the molecular imprinted polymer is 89.2 mg g(-1). The relative standard deviation and limit of detection for water samples by introduced selective solid phase extraction were 4.2% and 1.25 μg L(-1), and these data for urine samples were 4.7% and 1.80 μg L(-1), respectively. The method was applied to the determination of 2,4-D in the urine and different water samples.

  15. Study on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chloro-phenoxyacetic sodium (MCPA sodium) in natural agriculture-soils of Fuzhou, China using capillary electrophoresis.

    Science.gov (United States)

    Fu, Fengfu; Xiao, Linxia; Wang, Wei; Xu, Xueqin; Xu, Liangjun; Qi, Guomin; Chen, Guonan

    2009-03-01

    A new method of analyzing trace 2,4-Dichlorophenoxyacetic acid (2,4-D) and 2-methy-4-chloro-lphenoxyacetic sodium (MCPA sodium) in soils by capillary electrophoresis (CE) has been developed in this study. The optimum analytical conditions including chemical component and concentration of buffer solution, pH, separation voltage and sample injection time were studied in detail. Under the optimum conditions, 2,4-D and MCPA sodium in soils can be speedy separated and determined within 20 min with detection limits of 0.15 microg/g (2,4-D) and 0.25 microg/g (MCPA sodium) , a RSD (n=6)89%. With the help of analytical method developed in this study, the degradations of 2,4-D and MCPA sodium in natural agriculture-soils of Fuzhou were studied. The experimental results indicated that the degradations of 2,4-D and MCPA sodium follow first-order kinetics with degradation constants of 0.1509 day(-1) (2,4-D) and 0.2722 day(-1) (MCPA sodium) respectively. The degradation half-life were calculated to be 4.6 days (2,4-D) and 2.6 days (MCPA sodium) at 27 degrees C, implied that 2,4-D and MCPA sodium can be speedy degraded in natural agriculture-soils of Fuzhou, China.

  16. A novel use of TiO2 fiber for photocatalytic ozonation of 2,4-dichlorophenoxyacetic acid in aqueous solution

    Institute of Scientific and Technical Information of China (English)

    GIRI Rabindra Raj; OZAKI Hiroaki; TAKANAMI Ryohei; TANIGUCHI Shogo

    2008-01-01

    More efficient oxidation methods are needed to degrade especially newly emerging recalcitrant organic contaminants at low concentrations in the water environment. Reduced photonic efficiency of immobilized TiO2 is a major challenge in TiO2-assisted advanced oxidation processes (AOP). Mineralization of 2,4-dichllorophenoxyacetic acid (2,4-D) in low aqueous solution by O3/UV/TiO2 using the world's first high-strength TiO2 fiber was investigated and compared with O3UV/TiO2 and O3/TiO2 in laboratory batch experiments. The 2,4-D degradation and total organic carbon (TOC) removal followed pseudo first-order reaction kinetic, while their rates in O3/UV/TiO2 were respectively about 1.5 and 2.4 times larger than the summation of the values in O3 and UV/TiO2. The O3/UV/TiO2 was characterized by few aromatics with very low abundance, fast disappearance of aliphatics and more than 95% dechlorination. The discrepancies in organic carbon mass balance among the intermediates and 2,4-D were attributed mainly to few apparently major unidentified intermediates. The significantly enhanced 2,4-D mineralization in O3/UV/TiO2 was attributed to increased ozone dissolution followed by its decomposition, and reduced electron-hole recombination in presence of dissolved ozone resulting in a large number of hydroxyl radical (·OH) generation from more than one parallel path. The removal efficiencies of the systems can further be enhanced by optimizing design parameters, and O3/UV/TiO2 with the TiO2 fiber is promising to mineralize recalcitrant organic contaminants in water at low concentrations.

  17. Small acidic protein 1 and SCF(TIR)(1) ubiquitin proteasome pathway act in concert to induce 2,4-dichlorophenoxyacetic acid-mediated alteration of actin in Arabidopsis roots.

    Science.gov (United States)

    Takahashi, Maho; Umetsu, Kana; Oono, Yutaka; Higaki, Takumi; Blancaflor, Elison B; Rahman, Abidur

    2017-03-01

    2,4-Dichlorophenoxyacetic acid (2,4-D), a functional analogue of auxin, is used as an exogenous source of auxin as it evokes physiological responses like the endogenous auxin, indole-3-acetic acid (IAA). Previous molecular analyses of the auxin response pathway revealed that IAA and 2,4-D share a common mode of action to elicit downstream physiological responses. However, recent findings with 2,4-D-specific mutants suggested that 2,4-D and IAA might also use distinct pathways to modulate root growth in Arabidopsis. Using genetic and cellular approaches, we demonstrate that the distinct effects of 2,4-D and IAA on actin filament organization partly dictate the differential responses of roots to these two auxin analogues. 2,4-D but not IAA altered the actin structure in long-term and short-term assays. Analysis of the 2,4-D-specific mutant aar1-1 revealed that small acidic protein 1 (SMAP1) functions positively to facilitate the 2,4-D-induced depolymerization of actin. The ubiquitin proteasome mutants tir1-1 and axr1-12, which show enhanced resistance to 2,4-D compared with IAA for inhibition of root growth, were also found to have less disrupted actin filament networks after 2,4-D exposure. Consistently, a chemical inhibitor of the ubiquitin proteasome pathway mitigated the disrupting effects of 2,4-D on the organization of actin filaments. Roots of the double mutant aar1-1 tir1-1 also showed enhanced resistance to 2,4-D-induced inhibition of root growth and actin degradation compared with their respective parental lines. Collectively, these results suggest that the effects of 2,4-D on actin filament organization and root growth are mediated through synergistic interactions between SMAP1 and SCF(TIR)(1) ubiquitin proteasome components. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.

  18. Synthesis and characterization of Sn doped TiO{sub 2} photocatalysts: Effect of Sn concentration on the textural properties and on the photocatalytic degradation of 2,4-dichlorophenoxyacetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Rangel-Vázquez, I.; Del Angel, G.; Bertin, V. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); González, F. [Departamento de Ingeniería de Procesos e Hidráulica, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Vázquez-Zavala, A.; Arrieta, A. [Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael, Atlixco No 1865, México 09340 D.F. (Mexico); Padilla, J.M. [Universidad Tecnológica del Centro de Veracruz, Área de Tecnología, Av. Universidad Carretera Federal Cuitláhuac-La Tinaja No. 350, Cuitláhuac, Veracruz 94910 (Mexico); Barrera, A. [Universidad de Guadalajara, Centro Universitario de la Ciénega, Av. Universidad, Número 1115, Col. Linda Vista, Apdo. Postal 106, Ocotlán Jal. (Mexico); Ramos-Ramirez, E. [Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato de la Universidad de Guanajuato Noria Alta S/N, Col. Noria Alta, Guanajuato, Gto. C.P. 36050 (Mexico)

    2015-09-15

    Abstract: TiO{sub 2} and Sn-doped TiO{sub 2} materials were prepared by sol–gel method using titanium and tin alkoxides at different Sn concentration (0.1 mol%, 0.5 mol%, 1 mol%, 3 mol% and 5 mol%). Samples were characterized by thermo gravimetric analyzer with differential scanning calorimeter (TGA–DSC), X-ray Rietveld refinement, N{sub 2} adsorption (BET), transmission electron microscopy (TEM), UV–vis spectroscopies technology and Raman spectroscopy. Only anatase phase was observed in pure TiO{sub 2}, whereas anatase and brookite were obtained in Sn-doped TiO{sub 2} samples. Sn dopant acts as a promoter in phase transformation of TiO{sub 2}. The Rietveld refinements method was used to determine the relative weight of anatase and brookite, and crystallite size as a function of Sn concentration after calcination of samples at 673 K. It was also demonstrated the incorporation of Sn{sup 4+} into the anatase TiO{sub 2} structure. Sn{sup 4+} inhibits the growth of TiO{sub 2} crystallite size, which leads to an increase of the specific surface area of TiO{sub 2}. From XRD analysis, the solid solution limit of Sn{sup 4+} into TiO{sub 2} is 5 mol% Sn. The photocatalytic activity on Sn{sup 4+} doped TiO{sub 2} was determined for the 2,4-dichlorophenoxyacetic acid reaction. The maximum in activity was attributed to the coexistence of anatase and brookite phases in the appropriate ratio and crystallite size.

  19. 除草剂2,4-滴微生物降解研究进展%Research Progress of Microbial Degradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid

    Institute of Scientific and Technical Information of China (English)

    韩丽珍; 赵德刚

    2012-01-01

    高浓度2,4-滴是一种合成激素类除草剂,可有效防除阔叶杂草,微生物降解是其在环境中的主要代谢途径.综述了2,4-滴的除草作用机制、降解微生物、降解基因、矿化途径、污染物的微生物修复及抗性转基因作物的研究进展,展望了2,4-滴降解基因在环境污染修复中的应用以及抗2,4-滴转基因作物作为草甘膦抗性作物补充的前景.%2,4-Dichlorophenoxyacetic acid(2,4-D) at high concentration is a kind of synthetic auxin herbicides, which could control dicotyledonous weeds effectively. This herbicide is mostly depended on microbial degradation in a natural environment. The function mechanism of weeding, resources of degrading microorganism and metabolism genes, mineralization way of herbicide 2,4-D were reviewed in this paper. Reviewed the studying progress on microbial remediation for pollutant and 2,4-D-resistant transgenic crops. The application of 2,4-D degrading genes in pollutant bioremediation was prospected. And 2,4-D resistant genetically modified plant is suggested to become a benefical supplement of glyphosate-resistant crops.

  20. Synthesis of magnetite-graphene oxide-layered double hydroxide composites and applications for the removal of Pb(II) and 2,4-dichlorophenoxyacetic acid from aqueous solutions.

    Science.gov (United States)

    Zhang, Fengrong; Song, Yawen; Song, Shue; Zhang, Renjie; Hou, Wanguo

    2015-04-08

    Magnetic composites consisting of magnetite (Fe3O4), graphene oxide (GO), and Mg3Al-OH layered double hydroxide (LDH), denoted as MGL composites, with varying GO contents (RGO) were synthesized by a mechano-hydrothermal (MHT) route using Fe3O4, Mg(OH)2, and Al(OH)3 as the inorganic starting materials. The application of the synthesized MGLs for removing the heavy-metal Pb(II) and the hydrophobic organic pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous solutions was investigated. Chemical bonding among the GO, Fe3O4, and LDH components was observed in the MGLs. The MGL composites showed good water-dispersity, strong magnetic response, and high sorption capacities and removal efficiencies for both Pb(II) and 2,4-D pollutants. The sorption capacities of the MGL for the pollutants significantly increased with an increase in RGO. Increasing pH could increase the removal efficiency for Pb(II) but decrease that for 2,4-D. The MGLs showed more affinity for Pb(II) than for 2,4-D in the competitive sorption. In addition, the MGLs could remain almost constant removal efficiency for the pollutants after reuse over six cycles, indicating their potential use as sorbents in wastewater treatment. Furthermore, a Cs effect was observed in the sorption equilibriums, which could be described using the Langmuir-SCA and Freundlich-SCA isotherms. The removal mechanisms of the MGL for Pb(II) and 2,4-D were discussed. The MHT method provided a simple and environmentally friendly route for synthesizing GO-LDH composite materials.

  1. 2,4-Dichlorophenoxyacetic acid (2,4-D) utilization by Delftia acidovorans MC1 at alkaline pH and in the presence of dichlorprop is improved by introduction of the tfdK gene.

    Science.gov (United States)

    Hoffmann, Doreen; Müller, Roland H

    2006-06-01

    Growth of Delftia acidovorans MC1 on 2,4-dichlorophenoxyacetic acid (2,4-D) and on racemic 2-(2,4-dichlorophenoxy)propanoic acid ((RS)-2,4-DP) was studied in the perspective of an extension of the strain's degradation capacity at alkaline pH. At pH 6.8 the strain grew on 2,4-D at a maximum rate (mu max) of 0.158 h(-1). The half-maximum rate-associated substrate concentration (Ks) was 45 microM. At pH 8.5 mu max was only 0.05 h(-1) and the substrate affinity was mucher lower than at pH 6.8. The initial attack of 2,4-D was not the limiting step at pH 8.5 as was seen from high dioxygenase activity in cells grown at this pH. High stationary 2,4-D concentrations and the fact that mu max with dichlorprop was around 0.2 h(-1) at both pHs rather pointed at limited 2,4-D uptake at pH 8.5. Introduction of tfdK from D. acidovorans P4a by conjugation, coding for a 2,4-D-specific transporter resulted in improved growth on 2,4-D at pH 8.5 with mu max of 0.147 h(-1) and Ks of 267 microM. Experiments with labeled substrates showed significantly enhanced 2,4-D uptake by the transconjugant TK62. This is taken as an indication of expression of the tfdK gene and proper function of the transporter. The uncoupler carbonylcyanide m-chlorophenylhydrazone (CCCP) reduced the influx of 2,4-D. At a concentration of 195 microM 2,4-D, the effect amounted to 90% and 50%, respectively, with TK62 and MC1. Cloning of tfdK also improved the utilization of 2,4-D in the presence of (RS)-2,4-DP. Simultaneous and almost complete degradation of both compounds occurred in TK62 up to D = 0.23 h(-1) at pH 6.8 and up to D = 0.2 h(-1) at pH 8.5. In contrast, MC1 left 2,4-D largely unutilized even at low dilution rates when growing on herbicide mixtures at pH 8.5.

  2. The Completely Sequenced Plasmid pEST4011 Contains a Novel IncP1 Backbone and a Catabolic Transposon Harboring tfd Genes for 2,4-Dichlorophenoxyacetic Acid Degradation

    Science.gov (United States)

    Vedler, Eve; Vahter, Merle; Heinaru, Ain

    2004-01-01

    The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002 contains plasmid pEST4011. This plasmid ensures its host a stable 2,4-D+ phenotype. We determined the complete 76,958-bp nucleotide sequence of pEST4011. This plasmid is a deletion and duplication derivative of pD2M4, the 95-kb highly unstable laboratory ancestor of pEST4011, and was self-generated during different laboratory manipulations performed to increase the stability of the 2,4-D+ phenotype of the original strain, strain D2M4(pD2M4). The 47,935-bp catabolic region of pEST4011 forms a transposon-like structure with identical copies of the hybrid insertion element IS1071::IS1471 at the two ends. The catabolic regions of pEST4011 and pJP4, the best-studied 2,4-D-degradative plasmid, both contain homologous, tfd-like genes for complete 2,4-D degradation, but they have little sequence similarity other than that. The backbone genes of pEST4011 are most similar to the corresponding genes of broad-host-range self-transmissible IncP1 plasmids. The backbones of the other three IncP1 catabolic plasmids that have been sequenced (the 2,4-D-degradative plasmid pJP4, the haloacetate-catabolic plasmid pUO1, and the atrazine-catabolic plasmid pADP-1) are nearly identical to the backbone of R751, the archetype plasmid of the IncP1 β subgroup. We show that despite the overall similarity in plasmid organization, the pEST4011 backbone is sufficiently different (51 to 86% amino acid sequence identity between individual backbone genes) from the backbones of members of the three IncP1 subgroups (the α, β, and γ subgroups) that it belongs to a new IncP1subgroup, the δ subgroup. This conclusion was also supported by a phylogenetic analysis of the trfA2, korA, and traG gene products of different IncP1 plasmids. PMID:15489427

  3. Effect of Dissemination of 2,4-Dichlorophenoxyacetic Acid (2,4-D) Degradation Plasmids on 2,4-D Degradation and on Bacterial Community Structure in Two Different Soil Horizons

    Science.gov (United States)

    Dejonghe, Winnie; Goris, Johan; El Fantroussi, Saïd; Höfte, Monica; De Vos, Paul; Verstraete, Willy; Top, Eva M.

    2000-01-01

    Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain, Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (105 CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (105 CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity

  4. Enhanced visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid over ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Pengxiang; Yao, Jinhua [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Engineering Research Center for Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Chen, Huan, E-mail: hchen404@njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Engineering Research Center for Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Jiang, Fang, E-mail: fjiang@njust.edu.cn [Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, Engineering Research Center for Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094 (China); Xie, Xianchuan [State Key Laboratory of Pollution Control and Resource Reuse, Center for Hydrosciences Research, School of the Environment, Nanjing University, Nanjing 210094 (China)

    2016-11-05

    Highlights: • A novel flower-on-sheet ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} nanocomposite was synthesized. • ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} showed high visible light catalytic activity for 2,4-D degradation. • The photocatalytic degradation pathway of 2,4-D was investigated. - Abstract: ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} heterojunction photocatalyst was successfully synthesized via a simple hydrothermal method and applied to visible-light photocatalytic decomposition of 2,4-dichlorophenoxyacetic acid (2,4-D) from aqueous phase. The flower-like ZnIn{sub 2}S{sub 4} particles were dispersed on the surface of g-C{sub 3}N{sub 4} nanosheets in the ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} composite. The composite showed higher separation rate of electron-hole pairs as compared to ZnIn{sub 2}S{sub 4} and g-C{sub 3}N{sub 4}. Consequently, the ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} composite exhibited enhanced visible light photocatalytic decomposition efficiency of 2,4-D, within 20% ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} composite owning the highest photocatalytic efficiency and initial rate. The initial rates of 2,4-D degradation on g-C{sub 3}N{sub 4}, ZnIn{sub 2}S{sub 4}, and 20% ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} were 1.23, 0.57 and 3.69 mmol/(g{sub cat} h), respectively. The h{sup +} and O{sub 2}{sup ·−} were found to be the dominant active species for 2,4-D decomposition. The photocatalytic degradation pathways of 2,4-D by ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} under visible light irradiation were explored. The ZnIn{sub 2}S{sub 4}/g-C{sub 3}N{sub 4} composite displayed high photostability in recycling tests, reflecting its promising potential as an effective visible light photocatalyst for 2,4-D treatment.

  5. Phase transfer catalytic synthesis of 2,4-dichlorophenoxyacetic acid%相转移催化合成2,4-二氯苯氧乙酸新工艺研究

    Institute of Scientific and Technical Information of China (English)

    杜剑萍; 邵山; 吴军

    2012-01-01

    以2,4二氯苯酚和氯乙酸为原料,在碳酸钾作用下筛选相转移催化剂(四丁基溴化铵、四乙基溴化铵和PEG-600)进行醚化反应,制备2,4二氯苯氧乙酸.所获得的最佳工艺条件是:催化剂选PEG-600/KI为最佳,二氯苯酚和氯乙酸原料物质的量比1:2,相转移催化剂PEG-600用量为二氯苯酚的6%,KI用量为二氯苯酚量的10%.在此合成条件下,2,4-二氯苯氧乙酸收率达94.2%.%2 ,4-Dichlorophenoxy acetic acid is synthesized by etherification of chloroacetic acid and 2,4-dichlorophenol with phase transfer catalyst which selected from tetrabutylammonium bromide (TBAB), tetraethylammonium bromide (TEAB) and polyethylene gtycol-600 (PEG-600) by potassium carbonate. The effect of different catalysts on yield of 2,4-dichlorophenoxy acetic acid is studied. As a result, the optimal conditions are obtained as following: using PEG-600/KI as the most suitable catalyst, the molar ratio of 2,4-dichlorophenol, chloroacetic acid, PEG-600 and KI is 1 ∶ 2 ∶ 0. 06 ∶ 0. 1. Under these conditions, the yield of 2,4-dichlorophenoxy acetic acid reaches 94. 2%.

  6. Widespread occurrence of the tfd-II genes in soil bacteria revealed by nucleotide sequence analysis of 2,4-dichlorophenoxyacetic acid degradative plasmids pDB1 and p712.

    Science.gov (United States)

    Kim, Dong-Uk; Kim, Min-Sun; Lim, Jong-Sung; Ka, Jong-Ok

    2013-05-01

    Variovorax sp. strain DB1 and Pseudomonas pickettii strain 712 are 2,4-dicholorophenoxy-acetic acid (2,4-D)-degrading bacteria, which were isolated from agricultural soils in Republic of Korea and USA, respectively. Each strain harbors a 2,4-D degradative plasmid and is able to utilize 2,4-D as the sole source of carbon for its growth. The 2,4-D degradative plasmid pDB1 of strain DB1 consisted of a 65,269-bp circular molecule with a G+C content of 66.23% and had 68 ORFs. The 2,4-D degradative plasmid p712 of strain 712 was composed of a 62,798-bp circular molecule with a 62.11% G+C content and had 62 ORFs. The plasmids pDB1 and p712 share significantly homologous 2,4-D degradative genes with high similarity to the tfdR, tfdB-II, tfdC-II, tfdD-II, tfdE-II, tfdF-II, tfdK and tfdA genes of plasmid pJP4 of Alcaligenes eutrophus isolated from Australia. In a phylogenetic analysis with trfA, traL, and trbA genes, pDB1 belonged to IncP-1β with pJP4, while p712 belonged to IncP-1ε with pKJK5 and pEMT3. The results indicated that, in spite of the differences in their backbone regions, the 2,4-D catabolic genes of the two plasmids were closely related and also related to the well-known 2,4-D degradative plasmid pJP4 even though all were isolated from different geographic regions. Other similarities in the genetic organization and the presence of IS1071 suggested that these catabolic genes may be on a transposable element, leading to widespread occurrence in soil bacteria. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Does 2,4-dichlorophenoxyacetic acid induce flowering in sweet ...

    African Journals Online (AJOL)

    Acer

    2013-12-18

    Dec 18, 2013 ... controlled by genetic and environmental factors. There- fore, several ... Compound D fertilizer (7N:14P2O5:7K2O) was applied as a basal dressing at a rate of .... Genstat Release 13.3 (PC/ Windows Vistal). VSN. International ...

  8. Efecto del tipo de explante y la concentración de ácido 2,4-diclorofenoxiacético en la formación de callos en Morus alba L. Effect of explant type and concentration of 2,4-dichlorophenoxyacetic acid on callus formation in Morus alba L.

    Directory of Open Access Journals (Sweden)

    A Espinosa

    2012-12-01

    Full Text Available El objetivo del trabajo fue evaluar el efecto del tipo de explante y la concentración de 2,4-D en la formación de callos, en Morus alba L. Como fuentes de explantes se utilizaron limbos foliares, tallos y pecíolos, obtenidos a partir de estacas que brotaron en condiciones de laboratorio. El medio de cultivo basal estuvo constituido por las sales y vitaminas MS (1962, con diferentes concentraciones de 2,4-D (0; 0,5; 1,0 y 2,0 mg.L-1. Se utilizó un diseño experimental completamente aleatorizado. La formación de callos en todos los tipos de explantes se inició en los primeros 15 días posteriores al establecimiento in vitro. La callogénesis solo ocurrió en los medios de cultivo con 2,4-D. La zona de formación del callo, su color y textura dependieron del tipo de explante utilizado. El aumento de la concentración de 2,4-D en el medio de cultivo incrementó el tamaño de los callos, con los mejores resultados en las concentraciones de 1,0 y 2,0 mg.L-1The objective of the work was to evaluate the effect of explant type and concentration of 2,4-dichlorophenoxyacetic acid on callus formation, in Morus alba L. As explant sources leaf blades, stems and petioles were used , obtained from cuttings which produced growths under laboratory conditions. The basal culture medium was constituted by MS salts and vitamins (1962, with different concentrations of 2,4-D (0; 0,5; 1,0 and 2,0 mg.L-1. A completely randomized experimental design was used. Callus formation in all explant types started in the first 15 days after the in vitro establishment. Callogenesis only occurred in the culture media with 2,4-D. The callus formation zone, callus color and texture depended on the explant type used. The increase of 2,4-D concentration in the culture medium increased callus size, with the best results in the concentrations 1,0 and 2,0 mg.L-1.

  9. Polyacrylamide Resin Preparation Based on SI-ATRP and Adsorption Property Research of the Resin to 2,4-dichlorophenoxyacetic Acid%基于SI-ATRP技术制备聚丙烯酰胺树脂及研究其对2,4-二氯苯氧乙酸的吸附性能

    Institute of Scientific and Technical Information of China (English)

    田莉莉; 郭燕; 赵艳敏

    2014-01-01

    本试验以氯甲基化交联聚苯乙烯树脂(CMCPS)为载体和大分子引发剂,溴化亚铜/2,2'-联吡啶为催化剂体系,采用了表面引发原子转移自由基聚合技术(SI-ATRP),使丙烯酰胺接枝到CMCPS树脂表面,制得了新型的聚丙烯酰胺树脂(PAM-CMCPS),并且用元素分析和扫描电镜对其进行了表征。考察了该树脂对2,4-二氯苯氧乙酸的吸附性能、动力学和热力学参数。试验结果表明:该树脂对2,4-二氯苯氧乙酸的吸附量随溶液初始浓度和温度的升高而增加,当初始浓度为8 mmol/L时吸附效果最佳,树脂的静态饱和吸附容量为111.01 mg/g, Langmuir和Freundlich方程都能呈现良好的拟合度。热力学平衡方程计算得ΔG0,表明该吸附过程是一个自发、吸热、熵增加的过程。%Polyacrylamide resin was synthesized via surface- initiated atom transfer radical polymerization (SI-ATRP) method. Acrylic amide (AM) was grafted onto the surface of the chloromethyl polystyrene resin by SI-ATRP in the CuBr/2,2'-bipyridine (Bpy) system as catalyst. The compositions of polyacrylamide resin have been determined by means of elementary analysis, and the surface morphology of resin has been observed by scanning electron microscopy (SEM). And the adsorption properties, parameters of kinetics and the thermodynamics of the resin have been evaluated in details, respectively. As the results, Adsorption capacity of 2,4-dichlorophenoxyacetic acid (2,4-D) increases with the increasing of initial concentrations of solution and temperature, and its highest adsorption capacity was obtained with solution concentration of 8 mmol/L, and the static saturation adsorption capacity of resin was 111.01 mg/g. Adsorption isotherm at room temperature has been determined and modeled with Langmuir and Freundlich equations. The thermodynamic equilibrium functions have been calculated to be△G0, hence, the adsorption is spontaneous, endothermic

  10. Preparation of Polyacrylamide Resin and Its Adsorption Properties on 2,4-Dichlorophenoxyacetic Acid%聚丙烯酰胺树脂的制备及其对2,4-二氯苯氧乙酸的吸附性能研究

    Institute of Scientific and Technical Information of China (English)

    马梅花; 王晓中; 龚艳茹; 牛玉玲; 王玥; 王惠军; 罗瑞明; 龚波林

    2015-01-01

    Polyacrylamide resin was synthesized via surface-initiated atom transfer radical polymerization ( SI-ATRP) method. Acrylic amide ( AM) was grafted onto the surface of the chloromethyl polystyrene resin via SI-ATRP in the CuBr/2, 2'-bipyridine ( Bpy) system as catalyst at room temperature. The compositions of polyacrylamide resin were determined by means of elementary analysis, FT-IR analysis and scanning electron microscopy ( SEM) . The adsorption properties, the parameters of kinetics and the thermodynamics of the resin were evaluated in details, respectively. As the results, adsorption capacity of 2,4-dichlorophenoxyacetic acid (2,4-D) increased with the initial concentrations of solution increasing at room temperature, and its highest adsorption capacity was 111. 0 mg/g with solution concentration of 8 mmol/L. Adsorption isotherm at room temperature was determined and modeled with Langmuir and Freundlich equations. The thermodynamic equilibrium functions were calculated to be ΔG0, hence, the adsorption was spontaneous, endothermic and entropy increasing. The kinetics fitted the pseudo-second-order well. The polyacrylamide-chloromethyl polystyrene (PAM-CMCPS) resin was used for the adsorption of 2,4-D in orange sample, and good results were obtained.%以氯甲基化交联聚苯乙烯树脂( CMCPS)为载体和大分子引发剂,溴化亚铜/2,2'-联吡啶为催化剂体系,采用了表面引发原子转移自由基聚合技术(SI-ATRP),将丙烯酰胺接枝到CMCPS树脂表面,制得了新型聚丙烯酰胺树脂( PAM-CMCPS),并且用元素分析、扫描电镜和红外光谱对其进行了表征。考察了此树脂对2,4-二氯苯氧乙酸的吸附性能、动力学和热力学参数。结果表明,此树脂对2,4-二氯苯氧乙酸的吸附量随溶液初始浓度和温度的升高而增加,当初始浓度为8 mmol/L时吸附效果最佳,树脂的静态饱和吸附容量为111.0 mg/g, Langmuir和 Freundlich 方程都呈现良好的拟合度。热力

  11. 赤霉素+2,4-D及赤霉素+丁酰肼对马缨杜鹃光合作用日变化的影响%Diurnal variation of Rhododendron delavayi photosynthesis sparyed gibberellin+2,4-dichlorophenoxyacetic acid and gibberellin+daminozide

    Institute of Scientific and Technical Information of China (English)

    徐小蓉; 张习敏; 牛晓娟; 唐婧; 乙引

    2011-01-01

    Different combinations of gibberellin + 2,4-dichlorophenoxyacetic acid and gibberellin+daminozide have been sprayed on Rhododendron delavayi which growth in Guizhou Qianxi Bali Azalea Forest Par, and the diurnal variation of photosynthetic physiological indexes have been determined. The results show that the photosynthetic rate had two peaks with spraying different mixed plant growth regulator, and the peak values were at 11:30 am and 15:30 pm, respectively. At the 11:30 am, the photosynthetic rate of gibberellin plus 50, 100, 200 mg/kg 2,4-D and the control were 8. 39,8. 08,8. 14,8. 29 mol · m 2s-1 respectively. The transpiration rate of spraying gibberellin and different concentration of 2,4-D and the control showed a curve of two peaks, the first peak was at 9:30 am, the values of transpiration rate ranked from large to small as follows: CK>100 mg/kg+200 mg/kg>100 mg/ kg+50 mg/kg>10G mg/kg+100 mg/kg. The intercellular Coz concentration of spraying mixed plant growth regulator was not evidence. Gibberellin plus 2,4-D and gibberellin plus daminozide had an influence to water use efficiency. The results provide a basis for further research of the photosynthetic physiological character of Rhododendron delavayi.%以贵州黔西百里杜鹃野生林中马缨杜鹃为研究对象,喷施不同浓度配比的赤霉素+2,4-D及赤霉素+J酰肼,并测定其光合生理指标的日变化.结果表明:喷施不同浓度配比的外源激素下马缨杜鹃的光合速率呈双峰型,峰值分别出现在11∶30和15∶30,在11∶30,赤霉素分别与不同浓度50、100、200mg/kg 2,4- D混和对应光合速率分别为8.39,8.08,8.14,8.29 μmol·m-2s 1;喷施赤霉素和不同浓度的2,4-D对应的马缨杜鹃叶片蒸腾作用日变化也呈“双峰”曲线,第一个峰值均出现在9:30,表现为CK> 100 mg/kg+ 200 mg/kg> 100 mg/kg+ 50mg/kg>100 mg/kg+100 mg/kg;与对照相比,各喷洒浓度对胞间CO2浓度的影响不明显,赤霉素和2,4-D、赤霉素

  12. Adaptation of Delftia acidovorans for degradation of 2,4-dichlorophenoxyacetate in a microfluidic porous medium.

    Science.gov (United States)

    Yoon, Hongkyu; Leibeling, Sabine; Zhang, Changyong; Müller, Roland H; Werth, Charles J; Zilles, Julie L

    2014-07-01

    Delftia acidovorans MC1071 can productively degrade R-2-(2,4-dichlorophenoxy)propionate (R-2,4-DP) but not 2,4-dichlorophenoxyacetate (2,4-D) herbicides. This work demonstrates adaptation of MC1071 to degrade 2,4-D in a model two-dimensional porous medium (referred to here as a micromodel). Adaptation for 2,4-D degradation in the 2 cm-long micromodel occurred within 35 days of exposure to 2,4-D, as documented by substrate removal. The amount of 2,4-D degradation in the adapted cultures in two replicate micromodels (~10 and 20 % over 142 days) was higher than a theoretical maximum (4 %) predicted using published numerical simulation methods, assuming instantaneous biodegradation and a transverse dispersion coefficient obtained for the same pore structure without biomass present. This suggests that the presence of biomass enhances substrate mixing. Additional evidence for adaptation was provided by operation without R-2,4-DP, where degradation of 2,4-D slowly decreased over 20 days, but was restored almost immediately when R-2,4-DP was again provided. Compared to suspended growth systems, the micromodel system retained the ability to degrade 2,4-D longer in the absence of R-2,4-DP, suggesting slower responses and greater resilience to fluctuations in substrates might be expected in the soil environment than in a chemostat.

  13. Biochemical and histological evaluation of kidney damage after sub-acute exposure to 2,4-dichlorophenoxyacetic herbicide in rats: involvement of oxidative stress.

    Science.gov (United States)

    Tayeb, Wafa; Nakbi, Amel; Trabelsi, Mounir; Miled, Abdelhedi; Hammami, Mohamed

    2012-11-01

    The present study evaluated the effects of sub-acute exposure to different doses of 2,4-dichlorophenoxyacetic acid (2,4-D) on rat kidney. Forty animals were divided into four equal groups and treated with different doses of 2,4-D: 0, 15, 75 and 150 mg/kg body weight per day via oral gavage for 28 consecutive days. Renal function, histopathology, tissue malondialdehyde and antioxidant enzyme activities were evaluated. The results showed a significant decrease (p kidney MDA as compared to controls. The histopathological study revealed tubular damages, glomerular alterations, vascular congestion and increased number of pyknotic nuclei in kidneys of all 2,4-D treated groups. The severity of these alterations increase in a dose-dependent manner. Our findings confirm that sub-acute exposure to 2,4-D induced oxidative renal dysfunction in rats. Therefore, at higher doses, 2,4-D may be implicated in the pathogenesis of kidney failure via lipid peroxidation and oxidative stress.

  14. Estudo da degradação do herbicida ácido 2,4- diclorofenoxiacético (2,4-D por meio da radiação gama do cobalto-60 em solução aquosa contendo ácido húmico Study of degradation of the herbicide 2,4- dichlorophenoxyacetic acid (2,4-d by gamma radiation from cobalto- 60 in aqueous solution containing humic acid

    Directory of Open Access Journals (Sweden)

    Sandro Xavier de Campos

    2002-07-01

    Full Text Available The use of pesticides in agriculture presents some problems to ecosytems as a consequence of their remaining in the environment. Conventional methods for environmental decontamination sometimes just transfer these residues from one place to another. The use of gamma radiation from cobalt-60 to induce 2,4-D degradation in aqueous solution containing humic acid was studied. Results show that the herbicide is completely degraded after treatment with a 30 kGy dose. There were decreases in the degradation of the 2,4-D when humic acid was added at all doses. Some radiolytic products are proposed. The 2,4-D radiolytic yields (G from 2,4-D were calculated.

  15. Evaluation of Hydrocalumite-Like Compounds as Catalyst Precursors in the Photodegradation of 2,4-Dichlorophenoxyacetic Acid

    OpenAIRE

    Manuel Sánchez-Cantú; Clara Barcelos-Santiago; Claudia M. Gomez; Esthela Ramos-Ramírez; Ma. de Lourdes Ruiz Peralta; Nancy Tepale; González-Coronel, Valeria J.; A. Mantilla; Francisco Tzompantzi

    2016-01-01

    Three hydrocalumite-like compounds in a Ca/Al ratio of 2 containing nitrate and acetate anions in the interlaminar region were prepared by a simple, economic, and environmentally friendly method. The solids were characterized by X-ray powder diffraction (XRD), thermogravimetric (TG) analysis, nitrogen adsorption-desorption at −196°C, scanning electron microscopy (SEM), infrared spectroscopy (FTIR), and UV-Vis Diffuse Reflectance Spectroscopy (DRS). The catalytic activity of the calcined solid...

  16. Degradation of 2,4-dichlorophenoxyacetate isopropyl amine (2,4-D IPA) by O3/AC/UV in an internally slurry airlift photo-reactor.

    Science.gov (United States)

    Farhadian, Negin; Behin, Jamshid

    2017-02-22

    An externally illuminated slurry airlift reactor (ALR) was used to decompose 2,4-dichlorophenoxyacetate isopropyl amine during catalytic ozonation with activated carbon. The effect of superficial gas velocity (0.05-0.15 cm/s), UVAB irradiation (0-60 W), treatment period (10-30 min) and amount of activated carbon (0-0.8 g/l) on removal efficiency was investigated using response surface methodology (RSM) based on the Box-Behnken surface statistical design. Well-defined circulation pattern in the ALR allowed all the fluid elements to be exposed to high light intensity zone and achieve sufficient contact between the solid catalyst and the pollutant. Treatment period appeared as the most influential variable followed by the amount of activated carbon, superficial gas velocity and UV irradiation. A kinetic study was also carried out to evaluate the degradation efficiency versus the O3, O3/AC, O3/UV and O3/AC/UV combinations in which the last one had the highest impact. Efficient suspensions of AC in the ALR resulted in the high efficiency of the O3/AC system. No significant difference was observed between the overall kinetic constants determined in O3/AC and O3/AC/UV systems due to the light transmission obstacle of solid suspension.

  17. Mixture Genotoxicity of 2,4-Dichlorophenoxyacetic Acid, Acrylamide, and Maleic Hydrazide on Human Caco-2 Cells Assessed with Comet Assay

    DEFF Research Database (Denmark)

    Syberg, Kristian; Binderup, Mona-Lise; Cedergreen, Nina;

    2015-01-01

    ), and maleic hydrazide (MH), in an experiment with a fixed ratio design setup. The genotoxic effects were assessed with the single-cell gel electrophoresis assay (comet assay) for both single chemicals and the ternary mixture. The concentration ranges used were 0-1.4, 0-20, and 0-37.7 mM for 2,4-D, AA, and MH...

  18. Biodegradation of a mixture of the herbicides ametryn, and 2,4-dichlorophenoxyacetic acid (2,4-D) in a compartmentalized biofilm reactor.

    Science.gov (United States)

    Sandoval-Carrasco, Carlos A; Ahuatzi-Chacón, Deifilia; Galíndez-Mayer, Juvencio; Ruiz-Ordaz, Nora; Juárez-Ramírez, Cleotilde; Martínez-Jerónimo, Fernando

    2013-10-01

    In this work, an efficient degradation process for the removal of 2,4-D and ametryn, together with organic and inorganic adjuvants used in the commercial formulations of both herbicides, was developed. Although both compounds are toxic for microbial communities, ametryn is markedly more toxic than 2,4-D. In spite of this, the microbial consortium used could resist loading rates up to 31.5 mg L(-1) d(-1) of ametryn, with removal efficiencies up to 97% for both herbicides. Thus, an alternative use of this consortium could be bioaugmentation, as a tool to protect the structure and function of an activated-sludge biota against ametryn or 2,4-D shock loads. The process was carried out in a lab-scale prototype of aerobic biobarrier constructed as a compartmentalized fixed film reactor with airlift recirculation of oxygenated liquid. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D by Novel Photocatalytic Material of Tourmaline-Coated TiO2 Nanoparticles: Kinetic Study and Model

    Directory of Open Access Journals (Sweden)

    Rong Ji

    2013-04-01

    Full Text Available The novel complex photocatalytic material was prepared by coating TiO2 nanoparticles on tourmaline using the sol-gel method, and used in the degradation of the herbicide 2,4-D. The results indicated that coating TiO2 with tourmaline enhanced the photocatalytic activity significantly. Based on the research of a simplified model for the average light intensity in the photoreactor, the influence of the concentration of photocatalyst, and the initial concentration of 2,4-D, a model for the degradation of 2,4-D by the tourmaline-coated TiO2 nanoparticles was established. Further tests showed that results calculated from this model were close to those obtained in the actual experiments.

  20. Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D) by Novel Photocatalytic Material of Tourmaline-Coated TiO₂ Nanoparticles: Kinetic Study and Model.

    Science.gov (United States)

    Bian, Xuesen; Chen, Jianqiu; Ji, Rong

    2013-04-15

    The novel complex photocatalytic material was prepared by coating TiO₂ nanoparticles on tourmaline using the sol-gel method, and used in the degradation of the herbicide 2,4-D. The results indicated that coating TiO₂ with tourmaline enhanced the photocatalytic activity significantly. Based on the research of a simplified model for the average light intensity in the photoreactor, the influence of the concentration of photocatalyst, and the initial concentration of 2,4-D, a model for the degradation of 2,4-D by the tourmaline-coated TiO₂ nanoparticles was established. Further tests showed that results calculated from this model were close to those obtained in the actual experiments.

  1. Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Quan Xiangchun, E-mail: xchquan@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Tang Hua; Ma Jingyun [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2011-01-30

    With a conjugative plasmid pJP4 carrying strain as the donor, two bioaugmentation experiments were conducted in a microcosm biofilm reactor with 2,4-D as the sole carbon source operated in fed-batch mode, and an enlarged lab-scale sequence batch biofilm reactor with mixed carbon sources of 2,4-D and other easily biodegradable compounds, respectively. In the microcosm study under sole carbon source condition, bioaugmentation led to a persistently increased 2,4-D degradation rate in the five operation cycles with enhancement of 13-64%. For the enlarged lab-scale bioaugmentation experiment under mixed carbon source conditions, no enhancement in 2,4-D removal could be observed during start-up period. After a period of operation, biofilm samples from the bioaugmented reactor demonstrated a stronger degradation capacity than the control and showed the presence of a large number of transconjugants. This study indicates that bioaugmentation based on plasmid horizontal transfer is a feasible strategy to establish functional microbial community in a biofilm reactor, and the strong selective pressure of 2,4-D existing alone and persistently was more favorable for the success of gene augmentation.

  2. Effects of gene augmentation on the removal of 2,4-dichlorophenoxyacetic acid in a biofilm reactor under different scales and substrate conditions.

    Science.gov (United States)

    Quan, Xiangchun; Tang, Hua; Ma, Jingyun

    2011-01-30

    With a conjugative plasmid pJP4 carrying strain as the donor, two bioaugmentation experiments were conducted in a microcosm biofilm reactor with 2,4-D as the sole carbon source operated in fed-batch mode, and an enlarged lab-scale sequence batch biofilm reactor with mixed carbon sources of 2,4-D and other easily biodegradable compounds, respectively. In the microcosm study under sole carbon source condition, bioaugmentation led to a persistently increased 2,4-D degradation rate in the five operation cycles with enhancement of 13-64%. For the enlarged lab-scale bioaugmentation experiment under mixed carbon source conditions, no enhancement in 2,4-D removal could be observed during start-up period. After a period of operation, biofilm samples from the bioaugmented reactor demonstrated a stronger degradation capacity than the control and showed the presence of a large number of transconjugants. This study indicates that bioaugmentation based on plasmid horizontal transfer is a feasible strategy to establish functional microbial community in a biofilm reactor, and the strong selective pressure of 2,4-D existing alone and persistently was more favorable for the success of gene augmentation. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. DISTRIBUTION OF 2,4-DICHLOROPHENOXYACETIC ACID IN FLOOR DUST THROUGHOUT HOMES FOLLOWING HOMEOWNER AND COMMERICAL LAWN APPLICATIONS: QUANTITATIVE EFFECTS OF CHILDREN, PETS, AND SHOES

    Science.gov (United States)

    Transport of lawn-applied 2,4-D into 13 actual homes was measured following both homeowner and commercial application of this herbicide to residential lawns. Collection of floor dust in five rooms of each house, corresponding to an entryway, living room, dining room, kitchen, a...

  4. The Effect of Single, Binary and Ternary Anions of Chloride, Carbonate and Phosphate on the Release of 2,4-Dichlorophenoxyacetate Intercalated into the Zn–Al-layered Double Hydroxide Nanohybrid

    Directory of Open Access Journals (Sweden)

    Zainal Zulkarnain

    2009-01-01

    Full Text Available Abstract Intercalation of beneficial anion into inorganic host has lead to an opportunity to synthesize various combinations of new organic–inorganic nanohybrids with various potential applications; especially, for the controlled release formulation and storage purposes. Investigation on the release behavior of 2,4-dichlorophenoxyacetate (2,4-D intercalated into the interlayer of Zn–Al-layered double hydroxide (ZAN have been carried out using single, binary and ternary aqueous systems of chloride, carbonate and phosphate. The release behavior of the active agent 2,4-D from its double-layered hydroxide nanohybrid ZANDI was found to be of controlled manner governed by pseudo-second order kinetics. It was found that carbonate medium yielded the highest accumulated release of 2,4-D, while phosphate in combination with carbonate and/or nitrate speeds up the release rate of 2,4-D. These results indicate that it is possible to design and develop new delivery system of latex stimulant compound with controlled release property based on 2,4-D that is known as a substance to increase latex production of rubber tree,Hevea brasiliensis.

  5. Formation of hydrogen peroxide during ozonation of 2,4-dichlorophenoxyacetic acid in aqueous solution%2,4-二氯苯氧乙酸臭氧化过程中过氧化氢的生成

    Institute of Scientific and Technical Information of China (English)

    陈岚; 权宇珩

    2008-01-01

    @@ 引言 2,4二氯苯氧乙酸(2,4D,又名2,4滴)是一种广泛使用的除草剂[1],应用历史较长,是我国主要的除草剂品种之一,用量也比较大.2,4D属于苯氧羧酸类除草剂的一种,可有效去除阔叶杂草,目前仍广泛用于农作物除草和草坪养护[2].

  6. Genotoxic effect of substituted phenoxyacetic acids.

    Science.gov (United States)

    Venkov, P; Topashka-Ancheva, M; Georgieva, M; Alexieva, V; Karanov, E

    2000-11-01

    The potential toxic and mutagenic action of 2,4-dichlorophenoxyacetic acid has been studied in different test systems, and the obtained results range from increased chromosomal damage to no effect at all. We reexamined the effect of this herbicide by simultaneous using three tests based on yeast, transformed hematopoietic, and mouse bone marrow cells. The results obtained demonstrated that 2,4-dichlorophenoxyacetic acid has cytotoxic and mutagenic effects. The positive response of yeast and transformed hematopoietic cells was verified in kinetics and dose-response experiments. The analysis of metaphase chromosomes indicated a statistically proved induction of breaks, deletions, and exchanges after the intraperitoneal administration of 2,4-dichlorophenoxyacetic acid in mice. The study of phenoxyacetic acid and its differently chlorinated derivatives showed that cytotoxicity and mutagenicity are induced by chlorine atoms at position 2 and/or 4 in the benzene ring. The mutagenic effect was abolished by introduction of a third chlorine atom at position 5. Thus 2,4,5-trichlorophenoxyacetic acid was found to have very weak, if any mutagenic effect; however, the herbicide preserved its toxic effect.

  7. 植物生长调节剂2,4-D和GA3对微茫藻18A8(Micractinium sp)生长和油脂积累的影响%Effects of 2,4-Dichlorophenoxyacetic Acid and Gibberellin Acid on Growth and Lipid Accumulation of Micractinium sp.

    Institute of Scientific and Technical Information of China (English)

    范新照; 费小雯; 吴小霞; 邓晓东

    2013-01-01

    An algal strain 18A8 (Micractinium sp.) isolated by our laboratory, is considered as a promising feedstock for biodiesel production. In this study, the algal strain was cultured on high-carbon medium with the addition of different concentrations of 2,4-D and GA3. Biomass and oil content were measured after ten days cultivation. The results showed that 2,4-D (2 μmol/L) and GA3 (1 μmol/L) could promote the growth of algae strain significantly. The corresponding max biomass was increased by 75.26% and 47.41% while the oil content decreased by 23.49% and 29.89% comparing to the control respectively; on the contrary, increasing the concentrations of 2,4-D (10 μmol/L) and GA3 (5 μmol/L) could obviously inhibit the growth of algae strain, the decrease in corresponding max biomass was 72.83% and 60.70% respectively. However, the oil content was increased by 149.45% and 95.75%. Moreover, the protein content, total sugar content, chlorophyll content and photosynthetic efficiency of the algae was decreased comparing to the control when 2,4-D (10 μmol/L) and GA3 (5 μmol/L) were added to the medium respectively.%实验室分离到1株含油量高并且生长迅速的微茫藻18A8 (Micractinium sp.)藻株,将其培养在高碳培养基TAP上,研究了不同浓度的植物激素2,4-二氯苯氧乙酸(2,4-D)和赤霉素(GA3)对其生物量和油脂积累的影响.结果表明:分别添加2,4-D(2 μmol/L)和GA3(1μmol/L)对藻株的生长有明显的促进作用,其最大生物量比对照组分别增加75.26%和47.41%,但其油脂含量与对照组相比却有所降低,分别降低了23.49%和29.89%;而当增加2,4-D和GA3浓度为10和5μmol/L时,对藻株的生长表现出明显的抑制作用,其最大生物量比对照组减少了72.83%和60.70%,但其油脂含量与对照组相比显著增加,分别增加149.45%和95.75%.同时,分别添加2,4-D(10 μmol/L)和GA3(5 μmol/L)的实验藻种的蛋白质和总糖含量较对照组有所降低,此外叶绿素含量和光合效率也降低.

  8. 2,3,4-Tri-O-acetyl-β-d-xylosyl 2,4-dichlorophenoxyacetate

    Directory of Open Access Journals (Sweden)

    Yonghua Yang

    2008-04-01

    Full Text Available In the title compound, C19H20Cl2O10, the hexopyranosyl ring adopts a chair conformation. The four substituents are in equatorial positions. The molecules arelinked via C—H...O contacts along the a axis.

  9. 2, 4-D Dichlorophenoxyacetic Acid Poisoning; Case Report and Literature Review

    Directory of Open Access Journals (Sweden)

    Sujata Hiran

    2017-03-01

    Full Text Available Background: 2, 4-dichlorophenoxyacetic acid, (2, 4-D is a selective herbicide available as the acids, esters and several salts which vary in their chemical properties, environmental behaviour, and to a lesser extent toxicity. The salt and ester forms are derivatives of the parent acid. It is widely used as a weed killer. The 2, 4-D dimethylamine is one of the salts of this group. Case Presentation: We report a case of ingestion of 2, 4-D herbicide intentionally. The patient had presented in a local hospital but transferred to our hospital in a state of deep coma. CT scan head showed diffuse cerebral oedema. The patient recovered completely after treatment with forced alkaline diuresis. Discussion: Anticholinesterase compounds are the most commonly used insecticide and the commonest compound used as poison in India. This case report emphasizes that not all poisonings are caused by anticholinesterase compounds. The initial clinical manifestations of 2, 4-dichlorophenoxyacetic acid (2, 4-D poisoning are very similar to alcohol, sedative drugs, or aromatic chlorinated hydrocarbons making it even more difficult for the treating physician to suspect poisoning due to these compounds. It is thus important to identify the correct compound for proper management. Prompt diagnosis and correct treatment can save the life of a patient. The poisoning is also sometimes confused with poisoning due to anticholinesterase compound. Conclusion: 2, 4-D is a poison which carries a high mortality. Prolonged coma, metabolic complications, skeletal muscle injury and myotonia are some of the complications of 2, 4-D. Forced alkaline diuresis resulted in saving our patient which otherwise had poor prognosis.

  10. Potential of Different Coleus blumei Tissues for Rosmarinic Acid Production

    Directory of Open Access Journals (Sweden)

    Rosemary Vuković

    2015-01-01

    Full Text Available Rosmarinic acid is one of the main active components of Coleus blumei and is known to have numerous health benefi ts. The pharmacological significance of rosmarinic acid and its production through in vitro culture has been the subject of numerous studies. Here, the ability of different tissues to accumulate rosmarinic acid and sustainability in production over long cultivation have been tested. Calli, tumours, normal roots and hairy roots were established routinely by application of plant growth regulators or by transformation with agrobacteria. The differences among the established tumour lines were highly heterogeneous. Hairy root lines showed the highest mean growth rate and consistency in rosmarinic acid production. Although some tumour lines produced more rosmarinic acid than the hairy root lines, over a long cultivation period their productivity was unstable and decreased. Further, the effects of plant growth regulators on growth and rosmarinic acid accumulation were tested. 2,4-Dichlorophenoxyacetic acid significantly reduced tumour growth and rosmarinic acid production. 1-Naphthaleneacetic acid strongly stimulated hairy root growth whilst abscisic acid strongly enhanced rosmarinic acid production. Hairy roots cultured in an airlift bioreactor exhibited the highest potential for mass production of rosmarinic acid.

  11. Hexagonal mesoporous silica modified with copper phthalocyanine as a photocatalyst for pesticide 2,4-dichlorophenoxiacetic acid degradation.

    Science.gov (United States)

    DeOliveira, Edimar; Neri, Cláudio R; Ribeiro, Anderson O; Garcia, Vinícius S; Costa, Leonardo L; Moura, Aline O; Prado, Alexandre G S; Serra, Osvaldo A; Iamamoto, Yassuko

    2008-07-01

    A new mesoporous catalyst was prepared by the reaction between 3-aminopropyltrimethoxisylane and Cu(II)-hexadecafluorophthalocyanine, followed by co-condensation of tetraethylorthosilicate around a micelle formed by n-dodecylamine. The surfactant was removed from the pores by continuous extraction with ethanol, giving the Si-CuF16Pc catalyst. This catalyst was characterized by SEM, FTIR, TGA, 29Si NMR, N2 adsorption and X-ray diffraction. SEM images confirmed that the catalyst material is formed by nanoaggregates with a diameter of 100 nm. N2 adsorption isotherms showed that Si-CuF16Pc has a surface area of approximately 200 m2 g(-1) and a porous diameter of 7.7 nm, characterizing the mesoporosity of this product. This novel material shows an excellent photocatalytic activity, degrading almost 90% of 2,4-dichlorophenoxyacetic acid (2,4-D) up to 30 min, while only approximately 40% of photodegradation was obtained in its absence.

  12. Electropolymerized Molecularly Imprinted Polypyrrole Film for Sensing of Clofibric Acid

    Directory of Open Access Journals (Sweden)

    Bianca Schweiger

    2015-02-01

    Full Text Available Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP and non-imprinted polymer (NIP layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6–8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

  13. A novel polymeric herbicide based on phenoxyacetic acid derivatives

    Directory of Open Access Journals (Sweden)

    Wimol Klaichim

    2009-01-01

    Full Text Available A novel polymeric herbicide based on phenoxyacetic acid derivatives was prepared by the reaction of epoxidised liquid natural rubber (ELNR with 2,4-dichlorophenoxyacetic acid (2,4-D or 2-methyl-4-chlorophenoxyacetic acid(MCPA. The liquid natural rubber (LNR was firstly obtained from the degradation of natural rubber latex with tert-butyl hydroperoxide and cobalt acetylacetonate at 65oC for 72 hrs. The epoxidised liquid natural rubber was prepared from thereaction of LNR with formic acid and hydrogen peroxide at 50oC for 6 hrs. The reaction of epoxidised liquid natural rubber with 2,4-D or MCPA using triethylamine as a catalyst in toluene was performed at 70, 80, and 90oC for 6, 9, 12, 18, and 24hrs. The polymeric herbicides obtained were characterized and the grafting percentage of 2,4-D or MCPA onto liquid natural rubber were also determined by FT-IR and 1H-NMR spectroscopy. It was found that the grafting percentage increased with increasing amount of reactants, temperature, and reaction time. The release of 2,4-D and MCPA from polymeric herbicides was investigated in pH 6, 7, and 8 buffers at room temperature. The results show that the slowest release of 2,4-D and MCPA was found to be constant at pH 7 for 14 and 10 days, respectively.

  14. The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues.

    Science.gov (United States)

    Ulmasov, T; Hagen, G; Guilfoyle, T

    1994-11-01

    The octopine synthase (ocs or ocs-like) element has been previously reported to be responsive to the plant hormones, auxin, salicylic acid, and methyl jasmonate. Using transient assays with carrot protoplasts, we have demonstrated that an ocs element from the soybean auxin-inducible GH2/4 promoter is not only activated by strong auxins (i.e., 2,4-dichlorophenoxyacetic acid, 2,4,5-trichlorophenoxyacetic acid, alpha-naphthalene acetic acid) and salicylic acid, but also by weak auxin analogues (beta-naphthalene acetic acid), inactive auxin analogs (i.e., 2,3-dichlorophenoxyacetic acid, 2,4,6-trichlorophenoxyacetic acid), and inactive salicylic acid analogs (3-hydroxybenzoic acid and 4-hydroxybenzoic acid). Our results indicate that the ocs element in the GH2/4 promoter is not selectively induced by plant hormones and might function similarly to tandem AP-1 sites in some animal glutathione S-transferase (GST) genes. The ocs element, like the AP-1 sites in animal GST promoters, may be induced not only by certain hormones but also by some non-hormonal stress-inducing or electrophilic agents.

  15. Plant regeneration through somatic embryogenesis in three ethiopian Coffea arabica Lin. hybrids

    Directory of Open Access Journals (Sweden)

    RA Ramos

    2009-01-01

    Abbreviations: BA (6-benzyladenine; 2,4-D (2,4-dichlorophenoxyacetic acid; IBA (indole-3-butyric acid; MS (Murashige and Skoog; NAA (naphthaleneacetic acid, GA3 (Gibberellic acid, CV (Coefficient of variation, S.E (Standard error.

  16. A protocol for axenic liquid cell cultures of a woody leguminous mangrove, Caesalpinia crista, and their amino acids profiling.

    Science.gov (United States)

    Inoue, Aya; Ogita, Shinjiro; Tsuchiya, Shinpei; Minagawa, Reiko; Sasamoto, Hamako

    2015-05-01

    Callus induction, maintenance and protoplast cultures were achieved from immature seeds of a woody leguminous mangrove, Caesalpinia crista. Axenic cultures were possible during 1.5 months of pod storage in 0.1% benzalkonium chloride solution. Callus induction was achieved using 1 mL liquid medium in a 10 mL flat-bottomed culture tube. Protoplasts were isolated using Cellulase R10, Hemicellulase, and Driselase 20 in 0.6 M mannitol solution and sub-culturable calluses were obtained in 50 μL liquid medium using a 96-microplate method. The optimal hormonal concentration was 10 μM each of 2,4-dichlorophenoxyacetic acid and benzyladenine in liquid Murashige and Skoog's basal medium for both callus induction and maintenance, and protoplast cultures. Similarities and differences in amino acid profiles and culture conditions are discussed among woody mangrove species and non-mangrove leguminous species. Caesalpinia crista cultures were unique as they secreted a large amount of amino acids, including proline, into the liquid culture medium.

  17. Production of a toxic metabolite in 2,4-D-resistant GM crop plants.

    Science.gov (United States)

    Lurquin, Paul F

    2016-06-01

    This Note questions the safety of crop plants engineered with transgenes coding for the degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) into its cytotoxic metabolite 2,4-dichlorophenol (2,4-DCP).

  18. Modeling of Phenoxy Acid Herbicide Mineralization and Growth of Microbial Degraders in 15 Soils Monitored by Quantitative Real-Time PCR of the Functional tfdA Gene

    Science.gov (United States)

    Bælum, Jacob; Prestat, Emmanuel; David, Maude M.; Strobel, Bjarne W.

    2012-01-01

    Mineralization potentials, rates, and kinetics of the three phenoxy acid (PA) herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D), 4-chloro-2-methylphenoxyacetic acid (MCPA), and 2-(4-chloro-2-methylphenoxy)propanoic acid (MCPP), were investigated and compared in 15 soils collected from five continents. The mineralization patterns were fitted by zero/linear or exponential growth forms of the three-half-order models and by logarithmic (log), first-order, or zero-order kinetic models. Prior and subsequent to the mineralization event, tfdA genes were quantified using real-time PCR to estimate the genetic potential for degrading PA in the soils. In 25 of the 45 mineralization scenarios, ∼60% mineralization was observed within 118 days. Elevated concentrations of tfdA in the range 1 × 105 to 5 × 107 gene copies g−1 of soil were observed in soils where mineralization could be described by using growth-linked kinetic models. A clear trend was observed that the mineralization rates of the three PAs occurred in the order 2,4-D > MCPA > MCPP, and a correlation was observed between rapid mineralization and soils exposed to PA previously. Finally, for 2,4-D mineralization, all seven mineralization patterns which were best fitted by the exponential model yielded a higher tfdA gene potential after mineralization had occurred than the three mineralization patterns best fitted by the Lin model. PMID:22635998

  19. Crystal structures and hydrogen bonding in the morpholinium salts of four phenoxyacetic acid analogues

    Directory of Open Access Journals (Sweden)

    Graham Smith

    2015-11-01

    Full Text Available The anhydrous salts morpholinium (tetrahydro-2-H-1,4-oxazin-4-ium phenoxyacetate, C4H10NO+·C8H7O3−, (I, morpholinium (4-fluorophenoxyacetate, C4H10NO+·C8H6 FO3−, (II, and isomeric morpholinium (3,5-dichlorophenoxyacetate (3,5-D, (III, and morpholinium (2,4-dichlorophenoxyacetic acid (2,4-D, C4H10NO+·C8H5Cl2O3−, (IV, have been determined and their hydrogen-bonded structures are described. In the crystals of (I, (III and (IV, one of the the aminium H atoms is involved in a three-centre asymmetric cation–anion N—H...O,O′ R12(4 hydrogen-bonding interaction with the two carboxyl O-atom acceptors of the anion. With the structure of (II, the primary N—H...O interaction is linear. In the structures of (I, (II and (III, the second N—H...Ocarboxyl hydrogen bond generates one-dimensional chain structures extending in all cases along [100]. With (IV, the ion pairs are linked though inversion-related N—H...O hydrogen bonds [graph set R42(8], giving a cyclic heterotetrameric structure.

  20. Gibberellic Acid, Synthetic Auxins, and Ethylene Differentially Modulate α-l-Arabinofuranosidase Activities in Antisense 1-Aminocyclopropane-1-Carboxylic Acid Synthase Tomato Pericarp Discs1

    Science.gov (United States)

    Sozzi, Gabriel O.; Greve, L. Carl; Prody, Gerry A.; Labavitch, John M.

    2002-01-01

    α-l-Arabinofuranosidases (α-Afs) are plant enzymes capable of releasing terminal arabinofuranosyl residues from cell wall matrix polymers, as well as from different glycoconjugates. Three different α-Af isoforms were distinguished by size exclusion chromatography of protein extracts from control tomatoes (Lycopersicon esculentum) and an ethylene synthesis-suppressed (ESS) line expressing an antisense 1-aminocyclopropane-1-carboxylic synthase transgene. α-Af I and II are active throughout fruit ontogeny. α-Af I is the first Zn-dependent cell wall enzyme isolated from tomato pericarp tissues, thus suggesting the involvement of zinc in fruit cell wall metabolism. This isoform is inhibited by 1,10-phenanthroline, but remains stable in the presence of NaCl and sucrose. α-Af II activity accounts for over 80% of the total α-Af activity in 10-d-old fruit, but activity drops during ripening. In contrast, α-Af III is ethylene dependent and specifically active during ripening. α-Af I released monosaccharide arabinose from KOH-soluble polysaccharides from tomato cell walls, whereas α-Af II and III acted on Na2CO3-soluble pectins. Different α-Af isoform responses to gibberellic acid, synthetic auxins, and ethylene were followed by using a novel ESS mature-green tomato pericarp disc system. α-Af I and II activity increased when gibberellic acid or 2,4-dichlorophenoxyacetic acid was applied, whereas ethylene treatment enhanced only α-Af III activity. Results suggest that tomato α-Afs are encoded by a gene family under differential hormonal controls, and probably have different in vivo functions. The ESS pericarp explant system allows comprehensive studies involving effects of physiological levels of different growth regulators on gene expression and enzyme activity with negligible wound-induced ethylene production. PMID:12114586

  1. A novel ionic liquid-modified organic-polymer monolith as the sorbent for in-tube solid-phase microextraction of acidic food additives.

    Science.gov (United States)

    Wang, Ting-Ting; Chen, Yi-Hui; Ma, Jun-Feng; Hu, Min-Jie; Li, Ying; Fang, Jiang-Hua; Gao, Hao-Qi

    2014-08-01

    A novel ionic liquid-modified organic-polymer monolithic capillary column was prepared and used for in-tube solid-phase microextraction (SPME) of acidic food additives. The primary amino group of 1-aminopropyl-3-methylimidazolium chloride was reacted with the epoxide group of glycidyl methacrylate. The as-prepared new monomer was then copolymerized in situ with acrylamide and N,N'-methylenebisacrylamide in the presence of polyethylene glycol (PEG)-8000 and PEG-10,000 as porogens. The extraction performance of the developed monolithic sorbent was evaluated for benzoic acid, 3-hydroxybenzoic acid, cinnamic acid, 2,4-dichlorophenoxyacetic acid, and 3-(trifluoromethyl)-cinnamic acid. Such a sorbent, bearing hydrophobic and anion-exchange groups, had high extraction efficiency towards the test compounds. The adsorption capacities for the analytes dissolved in water ranged from 0.18 to 1.74 μg cm(-1). Good linear calibration curves (R(2) > 0.99) were obtained, and the limits of detection (S/N = 3) for the analytes were found to be in the range 1.2-13.5 ng mL(-1). The recoveries of five acidic food additives spiked in Coca-Cola beverage samples ranged from 85.4 % to 98.3 %, with RSD less than 6.9 %. The excellent applicability of the ionic liquid (IL)-modified monolithic column was further tested by the determination of benzoic acid content in Sprite samples, further illustrating its good potential for analyzing food additives in complex samples.

  2. Production of anti-cancer triterpene (betulinic acid) from callus cultures of different Ocimum species and its elicitation.

    Science.gov (United States)

    Pandey, Harshita; Pandey, Pallavi; Singh, Sailendra; Gupta, Ruby; Banerjee, Suchitra

    2015-03-01

    Betulinic acid (BA), a pentacyclic triterpenoid, is gaining unmatched attention owing to its unique anti-cancer activity with selective melanoma growth inhibition without damaging normal cells. It is also well-known for its multifaceted pharmacokinetics, entailing antibacterial, antimalarial, anti-HIV and antioxidant merits. Considering the escalating demand with diminishing bioresource of this molecule, the present study was undertaken that revealed the untapped potentials of Ocimum calli, contrasting to that in the in vitro derived leaves, as effective production alternative of BA in three out of four tested species (i.e. Ocimum basilicum, Ocimum kilimandscharicum, Ocimum sanctum excluding Ocimum grattisimum). Callus inductions were obtained in all the four species with different 2,4-dichlorophenoxyacetic acid (2,4-D)/α-naphthaleneacetic acid (NAA) concentrations with kinetin. Notably, 2,4-D favoured maximum callus growth in all whereas NAA proved beneficial for the highest metabolite yield in the calli of each BA-producing species. The O. basilicum calli demonstrated the maximum growth (growth index (GI) 678.7 ± 24.47) and BA yield (2.59 ± 0.55 % dry weight [DW]), whereas those in O. kilimandscharicum (GI 533.33 ± 15.87; BA 1.87 ± 0.6 % DW) and O. sanctum (GI 448 ± 16.07; BA 0.39 ± 0.12 % DW) followed a descending order. The O. gratissimum calli revealed minimum growth (GI 159 ± 13.25) with no BA accumulation. Elicitation with methyl jasmonate at 200-μM concentration after 48-h exposure doubled the BA yield (5.10 ± 0.18 % DW) in NAA-grown O. basilicum calli compared to that in the untreated counterpart (2.61 ± 0.19 % DW), which further enthused its future application.

  3. Exposures of 129 Preschool Children to Organochlorines, Organophosphates, Pyrethroids, and Acid Herbicides at Their Homes and Daycares in North Carolina

    Directory of Open Access Journals (Sweden)

    Marsha K. Morgan

    2014-04-01

    Full Text Available Few data exist on the concurrent exposures of young children to past-use and current-use pesticides in their everyday environments. In this further analysis of study data, we quantified the potential exposures and intake doses of 129 preschool children, ages 20 to 66 months, to 16 pesticides (eight organochlorines, two organophosphates, three pyrethroids, and three acid herbicides. Environmental samples (soil, dust, outdoor air, and indoor air and personal samples (hand wipes, solid food, and liquid food were collected at 129 homes and 13 daycare centers in six counties in North Carolina between 2000 and 2001. α-Chlordane, γ-chlordane, heptachlor, chlorpyrifos, diazinon, cis-permethrin, trans-permethrin, and 2,4-dichlorophenoxyacetic acid (2,4-D were detected ≥50% in two or more media in both settings. Of these pesticides, the children’s estimated median potential intake doses through dietary ingestion, nondietary ingestion, and inhalation routes were the highest for 2,4-D and cis/trans-permethrin (both 4.84 ng/kg/day, cis/trans-permethrin (2.39 ng/kg/day, and heptachlor (1.71 ng/kg/day, respectively. The children’s estimated median potential aggregate intake doses by all three routes were quantifiable for chlorpyrifos (4.6 ng/kg/day, cis/trans-permethrin (12.5 ng/kg/day, and 2,4-D (4.9 ng/kg/day. In conclusion, these children were likely exposed daily to several pesticides from several sources and routes at their homes and daycares.

  4. Preparation of amino acid-based polymer functionalized magnetic nanoparticles as adsorbents for analysis of plant growth regulators in bean sprouts.

    Science.gov (United States)

    Ji, Shilei; Qi, Li; Li, Nan; Wang, Minglin

    2016-09-01

    A novel magnetic solid phase extraction (MSPE) adsorbent has been developed for enriching two plant growth regulators, including 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-chlorophenoxyacetic acid (4-CPA), in bean sprouts. For preparing the MSPE adsorbent, poly(N-methacryloyl-L-phenylalanine methyl ester (P(MA-L-Phe-OMe)), amino acid-based polymer, was modified onto the magnetic nanoparticles via "grafting to" method by free radical polymerization. The resultant P(MA-L-Phe-OMe)-functionalized magnetic nanoparticles (Fe3O4@P(MA-L-Phe-OMe)) were characterized by Fourier transform infrared (FT-IR) spectroscopy and elemental analysis. The adsorption amount of Fe3O4@P(MA-L-Phe-OMe) nanoparticles to 2,4-D and 4-CPA were 39.82mgg(-1) and 29.02mgg(-1), respectively. Moreover, the prepared MSPE adsorbents showed good selectivity towards 2,4-D and 4-CPA due to the hydrophobic interactions and electrostatic forces between the target analytes and Fe3O4@P(MA-L-Phe-OMe). The results demonstrated that the proposed MSPE adsorbents have high affinity to the targets 2,4-D and 4-CPA. Under the optimized conditions, the proposed materials were successfully applied to enrich 2,4-D and 4-CPA in bean sprouts samples. The recovery values of the bean sprouts solution spiked the targets were from 90.9% to 96.4% with the relative standard deviations of 2.3-3.9%. Our work proved that the novel Fe3O4@P(MA-L-Phe-OMe) nanoparticles were the good adsorbents of magnetic solid phase extraction (MSPE) and have good potential for the analysis of trace compound in real samples.

  5. Novel insight into the genetic context of the cadAB genes from a 4-chloro-2-methylphenoxyacetic acid-degrading Sphingomonas.

    Directory of Open Access Journals (Sweden)

    Tue Kjærgaard Nielsen

    Full Text Available The 2-methyl-4-chlorophenoxyacetic (MCPA acid-degrader Sphingomonas sp. ERG5 has recently been isolated from MCPA-degrading bacterial communities. Using Illumina-sequencing, the 5.7 Mb genome of this isolate was sequenced in this study, revealing the 138 kbp plasmid pCADAB1 harboring the 32.5 kbp composite transposon Tn6228 which contains genes encoding proteins for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D and MCPA, as well as the regulation of this pathway. Transposon Tn6228 was confirmed by PCR to be situated on the plasmid and also exist in a circular intermediate state - typical of IS3 elements. The canonical tfdAα-gene of group III 2,4-D degraders, encoding the first step in degradation of 2,4-D and related compounds, was not present in the chromosomal contigs. However, the alternative cadAB genes, also providing the initial degradation step, were found in Tn6228, along with the 2,4-D-degradation-associated genes tfdBCDEFKR and cadR. Putative reductase and ferredoxin genes cadCD of Rieske non-heme iron oxygenases were also present in close proximity to cadAB, suggesting that these might have an unknown role in the initial degradation reaction. Parts of the composite transposon contain sequence displaying high similarity to previously analyzed 2,4-D degradation genes, suggesting rapid dissemination and high conservation of the chlorinated-phenoxyacetic acid (PAA-degradation genotype among the sphingomonads.

  6. Enantioselective Uptake and Degradation of the Chiral Herbicide Dichlorprop [(RS)-2-(2,4-Dichlorophenoxy)propanoic acid] by Sphingomonas herbicidovorans MH

    Science.gov (United States)

    Zipper, Christian; Bunk, Monika; Zehnder, Alexander J. B.; Kohler, Hans-Peter E.

    1998-01-01

    Sphingomonas herbicidovorans MH was able to completely degrade both enantiomers of the chiral herbicide dichlorprop [(RS)-2-(2,4-dichlorophenoxy)propanoic acid], with preferential degradation of the (S) enantiomer over the (R) enantiomer. These results are in agreement with the recently reported enantioselective degradation of mecoprop [(RS)-2-(4-chloro-2-methylphenoxy)propanoic acid] by this bacterium (C. Zipper, K. Nickel, W. Angst, and H.-P. E. Kohler, Appl. Environ. Microbiol. 62:4318–4322, 1996). Uptake of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D (2,4-dichlorophenoxyacetic acid) was inducible. Initial uptake rates of cells grown on the respective substrate showed substrate saturation kinetics with apparent affinity constants (Kt) of 108, 93, and 117 μM and maximal velocities (Vmax) of 19, 10, and 21 nmol min−1 mg of protein−1 for (R)-dichlorprop, (S)-dichlorprop, and 2,4-D, respectively. Transport of (R)-dichlorprop, (S)-dichlorprop, and 2,4-D was completely inhibited by various uncouplers and by nigericin but was only marginally inhibited by valinomycin and by the ATPase inhibitor N,N′-dicyclohexylcarbodiimine. Experiments on the substrate specificity of the putative transport systems revealed that (R)-dichlorprop uptake was inhibited by (R)-mecoprop but not by (S)-mecoprop, (S)-dichlorprop, or 2,4-D. On the other hand, the (S)-dichlorprop transport was inhibited by (S)-mecoprop but not by (R)-mecoprop, (R)-dichlorprop, or 2,4-D. These results provide evidence that the first step in the degradation of dichlorprop, mecoprop, and 2,4-D by S. herbicidovorans is active transport and that three inducible, proton gradient-driven uptake systems exist: one for (R)-dichlorprop and (R)-mecoprop, another for (S)-dichlorprop and (S)-mecoprop, and a third for 2,4-D. PMID:9642189

  7. Novel Insight into the Genetic Context of the cadAB Genes from a 4-chloro-2-methylphenoxyacetic Acid-Degrading Sphingomonas

    Science.gov (United States)

    Nielsen, Tue Kjærgaard; Xu, Zhuofei; Gözdereliler, Erkin; Aamand, Jens; Hansen, Lars Hestbjerg; Sørensen, Sebastian R.

    2013-01-01

    The 2-methyl-4-chlorophenoxyacetic (MCPA) acid-degrader Sphingomonas sp. ERG5 has recently been isolated from MCPA-degrading bacterial communities. Using Illumina-sequencing, the 5.7 Mb genome of this isolate was sequenced in this study, revealing the 138 kbp plasmid pCADAB1 harboring the 32.5 kbp composite transposon Tn6228 which contains genes encoding proteins for the removal of 2,4-dichlorophenoxyacetic acid (2,4-D) and MCPA, as well as the regulation of this pathway. Transposon Tn6228 was confirmed by PCR to be situated on the plasmid and also exist in a circular intermediate state - typical of IS3 elements. The canonical tfdAα-gene of group III 2,4-D degraders, encoding the first step in degradation of 2,4-D and related compounds, was not present in the chromosomal contigs. However, the alternative cadAB genes, also providing the initial degradation step, were found in Tn6228, along with the 2,4-D-degradation-associated genes tfdBCDEFKR and cadR. Putative reductase and ferredoxin genes cadCD of Rieske non-heme iron oxygenases were also present in close proximity to cadAB, suggesting that these might have an unknown role in the initial degradation reaction. Parts of the composite transposon contain sequence displaying high similarity to previously analyzed 2,4-D degradation genes, suggesting rapid dissemination and high conservation of the chlorinated-phenoxyacetic acid (PAA)-degradation genotype among the sphingomonads. PMID:24391756

  8. Posttranslational oxidative modification of (R)-2-(2,4-dichlorophenoxy)propionate/α-ketoglutarate-dependent dioxygenases (RdpA) leads to improved degradation of 2,4-dichlorophenoxyacetate (2,4-D)

    NARCIS (Netherlands)

    Leibeling, S.; Maeß, M.B.; Centler, F.; Kleinsteuber, S.; von Bergen, M.; Thullner, M.; Harms, H.; Müller, R.H.

    2013-01-01

    Microbial activities and the versatility gained through adaptation to xenobiotic compounds are the main biological forces to counteract environmental pollution. The current results present a new adaptive mechanism that is mediated through posttranslational modifications. Strains of Delftia acidovora

  9. SUPERCRITICAL WATER OXIDATION MODEL DEVELOPMENT FOR SELECTED EPA PRIORITY POLLUTANTS

    Science.gov (United States)

    Supercritical Water Oxidation (SCWO) evaluated for five compounds: acetic acid, 2,4-dichlorophenol, pentachlorophenol, pyridine, 2,4-dichlorophenoxyacetic acid (methyl ester). inetic models were developed for acetic acid, 2,4-dichlorophenol, and pyridine. he test compounds were e...

  10. Embryoids derived from isolated protoplasts of carrot.

    Science.gov (United States)

    Kameya, T; Uchimiya, H

    1972-12-01

    Protoplasts isolated enzymatically from carrot root tissues developed into cell clusters in a liquid medium containing coconut milk and naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D). Cells of the resulting calluses differentiated into embryoids on an agar medium containing coconut milk or kinetin.

  11. Evaluation of exposure to organophosphate, carbamate, phenoxy acid, and chlorophenol pesticides in pregnant women from 10 Caribbean countries.

    Science.gov (United States)

    Forde, Martin S; Robertson, Lyndon; Laouan Sidi, Elhadji A; Côté, Suzanne; Gaudreau, Eric; Drescher, Olivia; Ayotte, Pierre

    2015-09-01

    Pesticides are commonly used in tropical regions such as the Caribbean for both household and agricultural purposes. Of particular concern is exposure during pregnancy, as these compounds can cross the placental barrier and interfere with fetal development. The objective of this study was to evaluate exposure of pregnant women residing in 10 Caribbean countries to the following commonly used classes of pesticides in the Caribbean: organophosphates (OPs), carbamates, phenoxy acids, and chlorophenols. Out of 438 urine samples collected, 15 samples were randomly selected from each Caribbean country giving a total of 150 samples. Samples were analyzed for the following metabolites: six OP dialkylphosphate metabolites [dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate (DEP), diethylthiophosphate (DETP) and diethyldithiophosphate (DEDTP)]; two carbamate metabolites [2-isopropoxyphenol (2-IPP) and carbofuranphenol]; one phenoxy acid 2,4-dichlorophenoxyacetic acid (2,4-D); and five chlorophenols [2,4-dichlorophenol (DCP), 2,5-dichlorophenol (2,5-DCP), 2,4,5-trichlorophenol (TCP), 2,4,6-trichlorophenol (2,4,6-TCP), and pentachlorophenol (PCP)]. OP metabolites were consistently detected in ≥60% of the samples from Antigua and Barbuda, Bermuda, and Jamaica. Of the carbamate metabolites, 2-IPP was detected in seven of the 10 Caribbean countries with a detection frequency around 30%, whereas carbofuranphenol was detected in only one sample. The detection frequency for the phenoxy acid 2,4-D ranged from 20% in Grenada to a maximum of 67% in Belize. Evidence of exposure to chlorophenol pesticides was also established with 2,4-DCP by geometric means ranging from 0.52 μg L(-1) in St Lucia to a maximum of 1.68 μg L(-1) in Bermuda. Several extreme concentrations of 2,5-DCP were detected in four Caribbean countries-Belize (1100 μg L(-1)), Bermuda (870 μg L(-1)), Jamaica (1300 μg L(-1)), and St Kitts and Nevis (1400 μg L(-1

  12. Factors influencing induction, propagation and regeneration of mature zygotic embryo-derived callus from Allium cepa.

    NARCIS (Netherlands)

    Zheng, S.; Henken, B.; Sofiari, E.; Jacobsen, E.; Krens, F.A.; Kik, C.

    1998-01-01

    A systematic study on the effects of subspecies, cultivar, basal medium, sucrose concentration and 2,4-dichlorophenoxyacetic acid concentration on callus induction, propagation and subsequent plant regeneration in Allium cepa has been carried out. Mature zygotic embryos from two onion (cvs. Sturon a

  13. Biodegradation kinetics at low concentrations (

    DEFF Research Database (Denmark)

    Toräng, Lars; Albrechtsen, Hans-Jørgen; Nyholm, Niels

    2000-01-01

    Aerobic biodegradation of 2,4-dichlorophenoxyacetic acid (2,4-D) was studied in groundwater added sediment fines. At concentrations at or below 1 mu g/L of 2,4-D degradation kinetic was of true first order without significant growth of specific degraders and with half-life for mineralization...

  14. A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4

    DEFF Research Database (Denmark)

    Aspray, T.J.; Hansen, Susse Kirkelund; Burns, R.G.

    2005-01-01

    A soil suspension was used as a source to initiate the development of microbial communities in flow cells irrigated with 2,4-dichlorophenoxyacetic acid (2,4-D) (25 mu g ml(-1)). Culturable bacterial members of the community were identified by 16S rRNA gene sequencing and found to be members of th...

  15. Callus induction and plant regeneration from different explant types of Miscanthus x ogiformis Honda 'Giganteus'

    DEFF Research Database (Denmark)

    Holme, Inger Bæksted; Petersen, Karen Koefoed

    1996-01-01

    . The explants were cultured on urashige and Skoog medium supplemented with 4.5, 13.6, 22.6 or 31.7 μM 2,4-dichlorophenoxyacetic acid. Three types of callus were formed but only one was embryogenic and regenerated plants. Callus induction and formation of embryogenic callus depended on the type and developmental...

  16. The interaction of 2,4-D application and mannitol pretreatment in anther and microspore culture of Hordeum vulgare L. cv. igri

    NARCIS (Netherlands)

    Hoekstra, S.; Bergen, S. van; Brouwershaven, I.R. van; Schilperoort, R.A.; Heidekamp, F.

    1996-01-01

    The influence of 2,4-dichlorophenoxyacetic acid (2,4-D) on embryo-like structures (ELS) and plant development from barley microspores was determined. Microspores cultured on filters enabled simple modification of growth regulator concentrations. Regeneration frequencies obtained with 2,4- D as

  17. “IN VITRO” MULTIPLICATION OF CALENDULA OFFICINALIS L.

    Directory of Open Access Journals (Sweden)

    Smaranda Vantu

    2015-09-01

    steps: the shoots were excised and transferred to fresh medium and then rooting of these shoots was achieved on the same medium with 0,02 mg/l benzylaminopurine and 1 mg/l 2,4 dichlorophenoxyacetic acid. The excised shoots were subcultured for roots induction. Regenerated plants were transferred to ex vitro conditions for an acclimatisation period.

  18. Effects of the herbicide 2,4-D on the growth of nine aquatic macrophytes

    NARCIS (Netherlands)

    Belgers, J.D.M.; Lieverloo, van R.J.; Pas, van der L.J.T.; Brink, van den P.J.

    2007-01-01

    A study was conducted to determine the effect of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on nine submersed macrophyte species. The first objective of the study was to investigate the sensitivity of various endpoints in macrophyte toxicity tests. A second objective was to investigate the

  19. Plant regeneration from leaf-derived callus in Plectranthus barbatus ...

    African Journals Online (AJOL)

    RAMA

    2013-05-01

    May 1, 2013 ... Key words: Callus culture, medicinal plant, root induction, shoot organogenesis. INTRODUCTION ... media fortified with 2 mg/l 2,4-dichlorophenoxyacetic acid. The pH ... salts, vitamins, 0.5 to 2.0 mg/l BAP or Kn and in different.

  20. Synthesis of Molecularly Imprinted Polymer Particles by Suspension Polymerization in Silicon Oil

    Institute of Scientific and Technical Information of China (English)

    Xiao Bing WANG; Zhao Hui ZHENG; Xiao Bin DING; Xu CHENG; Xin Hua HU; Yu Xing PENG

    2006-01-01

    Molecularly imprinted polymers using 2,4-dichlorophenoxyacetic acid (2,4-D) as templates were prepared by suspension polymerization in silicon oil. The polymer particles exhibited regular shape in the micro-scale range. The adsorbing experiments indicated that the imprinted polymer particles possessed higher affinity to 2,4-D than the non-imprinted polymer particles.

  1. The role of 2,4-D and auxin-binding proteins during the induction of embryogenic and non-embryogenic callus in Zea mays (L.).

    NARCIS (Netherlands)

    Bronsema, F.

    1998-01-01

    This thesis deals with the influence of the growth regulator 2,4-dichlorophenoxyacetic acid (2,4-D) on the induction of callus in cultured immature embryos of Zea mays (L). In maize, two types of embryogenic callus can be induced in immature zygotic embryos.Type I callus, which is compact in appeara

  2. Methods of Analysis by the U.S. Geological Survey Organic Geochemistry Research Group-Determination of Dissolved Isoxaflutole and Its Sequential Degradation Products, Diketonitrile and Benzoic Acid, in Water Using Solid-Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry

    Science.gov (United States)

    Meyer, Michael T.; Lee, Edward A.; Scribner, Elisabeth A.

    2007-01-01

    An analytical method for the determination of isoxaflutole and its sequential degradation products, diketonitrile and a benzoic acid analogue, in filtered water with varying matrices was developed by the U.S. Geological Survey Organic Geochemistry Research Group in Lawrence, Kansas. Four different water-sample matrices fortified at 0.02 and 0.10 ug/L (micrograms per liter) are extracted by vacuum manifold solid-phase extraction and analyzed by liquid chromatography/tandem mass spectrometry using electrospray ionization in negative-ion mode with multiple-reaction monitoring (MRM). Analytical conditions for mass spectrometry detection are optimized, and quantitation is carried out using the following MRM molecular-hydrogen (precursor) ion and product (p) ion transition pairs: 357.9 (precursor), 78.9 (p), and 277.6 (p) for isoxaflutole and diketonitrile, and 267.0 (precursor), 159.0 (p), and 223.1 (p) for benzoic acid. 2,4-dichlorophenoxyacetic acid-d3 is used as the internal standard, and alachlor ethanesulfonic acid-d5 is used as the surrogate standard. Compound detection limits and reporting levels are calculated using U.S. Environmental Protection Agency procedures. The mean solid-phase extraction recovery values ranged from 104 to 108 percent with relative standard deviation percentages ranging from 4.0 to 10.6 percent. The combined mean percentage concentration normalized to the theoretical spiked concentration of four water matrices analyzed eight times at 0.02 and 0.10 ug/L (seven times for the reagent-water matrix at 0.02 ug/L) ranged from approximately 75 to 101 percent with relative standard deviation percentages ranging from approximately 3 to 26 percent for isoxaflutole, diketonitrile, and benzoic acid. The method detection limit (MDL) for isoxaflutole and diketonitrile is 0.003 ug/L and 0.004 ug/L for benzoic acid. Method reporting levels (MRLs) are 0.011, 0.010, and 0.012 ug/L for isoxaflutole, diketonitrile, and benzoic acid, respectively. On the basis

  3. Tolfenamic acid degradation by direct photolysis and the UV-ABC/H2O2 process: factorial design, kinetics, identification of intermediates, and toxicity evaluation.

    Science.gov (United States)

    de Melo da Silva, Lucas; Pereira Cavalcante, Rodrigo; Fabbro Cunha, Rebeca; Gozzi, Fábio; Falcao Dantas, Renato; de Oliveira, Silvio Cesar; Machulek, Amilcar

    2016-12-15

    This study employed direct UV-ABC photolysis and the UV-ABC/H2O2 process to investigate the degradation of tolfenamic acid (TA), a common anti-inflammatory drug used in both human and veterinary medicine. A 2(3) factorial design with added center point was used to evaluate the effect of three independent variables-namely, H2O2 concentration ([H2O2]), TA concentration ([TA]), and experiment time (time)-on TA degradation and H2O2 photolysis during UV-ABC/H2O2 treatment using a high-pressure mercury vapor lamp (photon flux of 2.6307 × 10(4) J s(-1)) as the UV irradiation source. The responses yielded similar values, revealing a linear behavior, with correlation coefficients R = 0.9968 and Radj = 0.9921 for TA degradation and R = 0.9828 and Radj = 0.9570 for H2O2 photolysis. The most efficient combination of variables was [H2O2] = 255 mg L(-1) and [TA] = 25 mg L(-1), resulting in 100% TA degradation and 98.87% H2O2 photolysis by 90 min of treatment. Additionally, the second-order kinetic constant of the reaction between TA and HO(●) was determined using a competitive kinetic model, employing 2,4-dichlorophenoxyacetic acid (2,4D) as the reference compound. The kinetic constant was 1.9 × 10(10) M(-1) s(-1) in alkaline medium. TA degradation by direct photolysis generated quinone imines as by-products, responsible for the formation of a dark red "internal filter" that increased the value of acute toxicity to Artemia salina. The UV-ABC/H2O2 process did not promote formation of quinone imines by 90 min of treatment and therefore did not increase acute toxicity values. Several by-products generated during TA degradation were identified and possible degradation pathways for the UV-ABC and UV-ABC/H2O2 processes were proposed. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Aescin formation in calli and embryoids from cotyledon and stem explants of Aesculus hippocastanum L.

    Science.gov (United States)

    Profumo, P; Caviglia, A M; Gastaldo, P

    1994-11-01

    Aescin in calli and embryoids obtained from both cotyledon and stem explants of Aesculus hippocastanum were investigated by HPLC. Determinations were carried out on tissues cultured in agarized medium supplemented with growth substances (2,4-dichlorophenoxyacetic acid; kinetin; 1-naphthaleneacetic acid). The results indicate that aescin was produced in all the analysed samples. The amount of active principle present in some samples was higher than that found in horse-chestnut seeds.

  5. High frequency embryoid and plantlet formation from tissue cultures of the Finger millet-Eleusine coracana (L.) Gaertn.

    Science.gov (United States)

    Sivadas, P; Kothari, S L; Chandra, N

    1990-07-01

    Compact nodulated embryogenic callus differentiated from cultured seeds of Eleusine coracana (Finger Millet) on Murashige and Skoog (1962) basal medium with 2,4-dichlorophenoxyacetic acid (1.0, 3.0 mg (l)). This embryogenic callus was maintained on a medium with a lower level of 2,4 - dichlorophenoxyacetic acid. At every subculture the embryogenic callus had some preexisting embryoids in it. With this method of subculture the callus has retained its morphogenic potential for four years. Following transfer to media with different levels of auxins and cytokinins, the callus showed varied patterns of growth and morphogenesis. Embryoids could be germinated in profusion to form plantlets which could be transferred to the field. Shoot buds also differentiated from the whole surface of the embryoid or from the flattened meristemoids.

  6. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils.

    OpenAIRE

    Pepper, Ian L.; Gentry, Terry J; Newby, Deborah T; Roane, Timberley M; Josephson, Karen L.

    2002-01-01

    Soils co-contaminated with metals and organics present special problems for remediation. Metal contamination can delay or inhibit microbial degradation of organic pollutants such that for effective in situ biodegradation, bioaugmentation is necessary. We monitored the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) or 3-chlorobenzoate (3-CB) in two different soils with and without cadmium (Cd) contamination. Additionally, we evaluated the ability of bioaugmentation to enhance organic de...

  7. High Frequency Plant Regeneration System from Transverse Thin Cell Layer Section of In vitro Derived ‘Nadia’ Ginger Microrhizome

    Directory of Open Access Journals (Sweden)

    Dikash Singh THINGBAIJAM

    2014-03-01

    Full Text Available An efficient and reproducible procedure is outlined for rapid in vitro multiplication of Zingiber officinale var. ‘Nadia’ through high frequency shoot proliferation from transverse thin cell layer (tTCL sections of in vitro derived microrhizome. In vitro derived microrhizome of size 500 μm in thickness was used as initial explants for induction of somatic embryos. Among the different phytohormones tested, tTCL explants shows maximum calli proliferation in medium containing 2 mg/L 2,4-Dichlorophenoxyacetic acid (88.30±0.11%. Reduced concentration of 2,4 Dichlorophenoxyacetic acid was supplemented with different cytokinins for regeneration of callus. Among the different medium tested, optimum redifferentiation of somatic embryos were observed in medium containing 0.2 mg/L 2,4 Dichlorophenoxyacetic acid and 6.0 mg/L BAP (141.08±0.25. Clump of regenerated plantlets were further subculture and transfer into microrhizome inducing medium containing high sucrose concentration (8%. Plantlets with well developed microrhizome were successfully acclimatized and eventually transferred to the field. The application of studying embryo section for regeneration of plants might be useful alternative to ginger improvement programme. Histological analysis showed formation of somatic embryos and regenerated adventitious shoot.

  8. High Frequency Plant Regeneration System from Transverse Thin Cell Layer Section of In vitro Derived ‘Nadia’ Ginger Microrhizome

    Directory of Open Access Journals (Sweden)

    Dikash Singh THINGBAIJAM

    2014-03-01

    Full Text Available An efficient and reproducible procedure is outlined for rapid in vitro multiplication of Zingiber officinale var. ‘Nadia’ through high frequency shoot proliferation from transverse thin cell layer (tTCL sections of in vitro derived microrhizome. In vitro derived microrhizome of size 500 μm in thickness was used as initial explants for induction of somatic embryos. Among the different phytohormones tested, tTCL explants shows maximum calli proliferation in medium containing 2 mg/L 2,4-Dichlorophenoxyacetic acid (88.30±0.11%. Reduced concentration of 2,4 Dichlorophenoxyacetic acid was supplemented with different cytokinins for regeneration of callus. Among the different medium tested, optimum redifferentiation of somatic embryos were observed in medium containing 0.2 mg/L 2,4 Dichlorophenoxyacetic acid and 6.0 mg/L BAP (141.08±0.25. Clump of regenerated plantlets were further subculture and transfer into microrhizome inducing medium containing high sucrose concentration (8%. Plantlets with well developed microrhizome were successfully acclimatized and eventually transferred to the field. The application of studying embryo section for regeneration of plants might be useful alternative to ginger improvement programme. Histological analysis showed formation of somatic embryos and regenerated adventitious shoot.

  9. Response of pine hypocotyl sections to growth regulators and related substances

    Directory of Open Access Journals (Sweden)

    J. Zakrzewski

    2015-01-01

    Full Text Available Growth response of Pinus silvestris hypocotyl sections to some synthetic growth regulators and related substances was studied. Elongation of hypocotyl sections was stimulated by naphtaleneacetic acid, indole-3-acetic acid, in-dole-3-propionic acid, indole-3-butyric acid, 2,4-dichlorophenoxyacetic acid, indoleaoetic amide, indoleacetic nitrile and coumarin. Indole-3-acetic acid and naphtaleneacetic acid extended period of growth up to 16 and 24 hours, respectively. Growth was inhibited by kinetin, trans-cinnamic acid and 2,3,5-tri-iodobenzoic acid. No effect of gibberellic acid, tryptophan and biotin was observed.

  10. Reference: 422 [Arabidopsis Phenome Database[Archive

    Lifescience Database Archive (English)

    Full Text Available , that exhibits increased tolerance to the auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D...). Reciprocally, loss-of-function mutations in PDR9 confer 2,4-D hypersensitivity. This alt...ered auxin sensitivity defect of pdr9 mutants is specific for 2,4-D and closely related compounds as these m...butyric acid. We demonstrate that 2,4-D, but not indole-3-acetic acid transport is affected by mutations in ...pdr9, suggesting that the PDR9 transporter specifically effluxes 2,4-D out of plant cells without affecting

  11. AUXIN AND GROWTH OF EXCISED ROOTS OF Bryophyllum calycinum.

    Science.gov (United States)

    Robbins, W J; Hervey, A

    1969-10-01

    Exogenous auxin (alpha-naphthalene acetic acid, indole acetic acid, or 2,4-dichlorophenoxyacetic acid) was essential for the growth of single excised root tips of Bryophyllum calycinum in 50 ml of a mineral salt-sucrose medium supplemented with vitamins. Large inocula with a dry weight of 2.0 mg or more grew with no auxin added to the medium. Evidence for the synthesis of auxin by the excised roots grown from the larger inocula is presented. Leaching of auxin from single root tips cultivated in 15 or 50 ml of basal medium is considered to account for their failure to grow.

  12. Somatic embryogenesis and regeneration of plants in the bamboo Dendrocalamus strictus.

    Science.gov (United States)

    Rao, I U; Ramanuja Rao, I V; Narang, V

    1985-08-01

    Somatic embryogenesis leading to plant regeneration has been achieved in the bamboo, Dendrocalamus strictus, by culturing seeds (caryopses) on B5 basal medium supplemented with 2,4-dichlorophenoxyacetic acid. Callus cultures obtained from the embryonal end of the seeds differentiated chlorophyllous embryoids. On transfer to a germination medium (B5 liquid, sucrose, indolebutyric acid, and ∝ -naphthaleneacetic acid) 40% of the embryoids developed into plantlets. Further development of the plantlets occured on B5 liquid medium (half strength) + sucrose (1%) + IBA (5 × 10(-7)M) + NAA (10(-7)M).

  13. Acidic deposition ("acid rain")

    Science.gov (United States)

    Schreiber, R. Kent; LaRoe, Edward T.; Farris, Gaye S.; Puckett, Catherine E.; Doran, Peter D.; Mac, Michael J.

    1995-01-01

    Acidic deposition, or "acid rain," describes any form of precipitation, including rain, snow, and fog, with a pH of 5.5 or below (Note: pH values below 7 are acidic; vinegar has a pH of 3). It often results when the acidity of normal precipitation is increased by sulfates and nitrates that are emitted into the atmosphere from burning fossil fuels. This form of airborne contamination is considered harmful, both directly and indirectly, to a host of plant and animal species.Although acid rain can fall virtually anywhere, ecological damages in environmentally sensitive areas downwind of industrial and urban emissions are a major concern. This includes areas that have a reduced capacity to neutralize acid inputs because of low alkalinity soils and areas that contain species with a low tolerance to acid conditions. To determine the distribution of acidic deposition and evaluate its biological effects, research and monitoring are being conducted by the federal government with support from states, universities, and private industry.            The national extent of the acid rain problem has been estimated by sampling water from 3,000 lakes and 500 streams (Irving 1991), representing more than 28,000 lakes and 56,000 stream reaches with a total of 200,000 km (125,000 mi). Some particularly sensitive areas, such as the Adirondack Mountain region, have been more intensively sampled and the biota examined in detail for effects from acidity.         To identify trends in aquatic ecosystems, present and historical survey data on water chemistry and associated biota are compared. In lakes, the chemical and biological history and pH trends may be inferred or reconstructed in some cases by examining assemblages of fossil diatoms and aquatic invertebrates in the sediment layers. In terrestrial ecosystems, vegetation damage is surveyed and effects of acidic deposition to plants and animals are determined from laboratory and field exposure experiments. Natural

  14. Proliferation Potential of 18-Month-Old Callus of Ananas comosus L. cv. Moris

    OpenAIRE

    Silva,A.E.; Kadir, M.A.; Aziz, M A; S. Kadzimin

    2006-01-01

    Differential effect of plant growth regulators and additives in proliferation of 18-month-old calli of Ananas comosus L. cv. Moris were assessed in vitro. The proliferation of callus relied on the growth regulators and additives. Of the different auxins supplemented in the Murashige and Skoog (MS) media, 32.22 μM α-naphthaleneacetic acid (NAA) gave the highest mean fresh weight of callus (46.817 g). Medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) was inferior to NAA, while b-n...

  15. Studies on the Factors Affecting on Somatic Embryogenesis in Soybean

    Institute of Scientific and Technical Information of China (English)

    WANG Ping; WANG Gang; LU Wen-he; JI Jing; YANG Qing-kai

    2002-01-01

    The effects of the concentration of MS micro salts, 2,4-dichlorophenoxyacetic acid (2,4-D), 3-naphthalene acetic acid (NAA), proline and adenine on callus formation and somatic embryogenesis were investigated using orthogonal design with immature cotyledons of soybean. The results showed that the role of concentration of micro salts on frequency of callus formation and somatic embryogenesis were significant. MS medium supplemented with 2,4-D, NAA, proline and adenine could stimulate callus formation. The concentration of MS micro salts possessed obvious effects on somatic embryogenesis of soybean. The category and concentration of the hormone needed were different among genotypes when embryogenesis were induced.

  16. Bacterial degradation of phenoxy herbicide mixtures 2,4-D and MCPP

    Energy Technology Data Exchange (ETDEWEB)

    Kyeheon Oh; Tuovinen, O.H. (Ohio State Univ., Columbus (United States))

    1991-08-01

    The phenoxy herbicides 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-(2-methyl-4-chlorophenoxy)propionic acid (MCPP) have auxin-like growth regulating properties and are extensively used for the control of broad-leaf angiosperm weeds. The microbiological degradation of 2,4-D by pure and mixed cultures has been examined in a number of studies. The authors have previously evaluated the concurrent microbiological degradation of 2,4-D and MCPP in stirred tank reactors. For the present paper, they examined the utilization of the two substrates by three mixed cultures that had a previous history of growth with the respective single phenoxy herbicide.

  17. Anomalies in mineralization of low concentrations of organic compounds in lake water and sewage.

    OpenAIRE

    1986-01-01

    The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. ...

  18. Utilization of zygotic embryos of an economic rattan palm Calamus thwaitesii Becc. (Arecaceae) for somaplant regeneration and cryobanking

    OpenAIRE

    Hemanthakumar, A. S.; Preetha, T. S.; Krishnan, P.N.; Seeni, S.

    2012-01-01

    Zygotic embryos excised from immature green fruits of the rattan palm, Calamus thwaitesii and cultured for 16 weeks under optimum culture conditions in Murashige and Skoog (MS) medium supplemented with 31.67 μM 2,4-dichlorophenoxyacetic acid (2,4-D) and 35.23 μM 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) produced mixed (compact and friable) calli at 70 and 92 % rates. The semi-friable part of the callus (~500 mg) separated and subcultured in medium containing 2.22 μM 6-benzyladenine and 1.07...

  19. Effects of Auxins on PIN-FORMED2 (PIN2) Dynamics Are Not Mediated by Inhibiting PIN2 Endocytosis.

    Science.gov (United States)

    Jásik, Ján; Bokor, Boris; Stuchlík, Stanislav; Mičieta, Karol; Turňa, Ján; Schmelzer, Elmon

    2016-10-01

    By using the photoconvertible fluorescence protein Dendra2 as a tag we demonstrated that neither the naturally occurring auxins indole-3-acetic acid and indole-3-butyric acid, nor the synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid nor compounds inhibiting polar auxin transport such as 2,3,5-triiodobenzoic acid and 1-N-naphthylphthalamic acid, were able to inhibit endocytosis of the putative auxin transporter PIN-FORMED2 (PIN2) in Arabidopsis (Arabidopsis thaliana) root epidermis cells. All compounds, except Indole-3-butyric acid, repressed the recovery of the PIN2-Dendra2 plasma membrane pool after photoconversion when they were used in high concentrations. The synthetic auxin analogs 1-naphthaleneacetic acid and 2,4-dichlorophenoxyacetic acid showed the strongest inhibition. Auxins and auxin transport inhibitors suppressed also the accumulation of both newly synthesized and endocytotic PIN2 pools in Brefeldin A compartments (BFACs). Furthermore, we demonstrated that all compounds are also interfering with BFAC formation. The synthetic auxin analogs caused the highest reduction in the number and size of BFACs. We concluded that auxins and inhibitors of auxin transport do affect PIN2 turnover in the cells, but it is through the synthetic rather than the endocytotic pathway. The study also confirmed inappropriateness of the BFA-based approach to study PIN2 endocytosis because the majority of PIN2 accumulating in BFACs is newly synthesized and not derived from the plasma membrane. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Plant regeneration from callus culture of vetiver (Vetiveria zizanioides Nash

    Directory of Open Access Journals (Sweden)

    Somporn Prasertsongskun

    2003-09-01

    Full Text Available The present research aimed to establish cell suspension culture of vetiver (Vetiveria zizanioides Nash from Surat Thani germplasm source and efficient plant regeneration from callus derived from such cultures. Cell suspension cultures were established from calli derived from inflorescence of vetiver. Optimum cell proliferation occurred in liquid N6 medium supplemented with 10 μM 2,4-dichlorophenoxyacetic acid (2,4-D and 10 mM proline. The cell suspension formed the highest small colonies when plated on solid MS medium containing 0.45 μM 2,4-D. After subsequent transfer to regeneration medium (MS free medium 65% of plantlets were obtained.

  1. Removal of 2,4-D from aqueous solution by the adsorbents from spent bleaching earth.

    Science.gov (United States)

    Mahramanlioğlu, M; Kizilcikli, I; Biçer, I O; Tunçay, M

    2000-03-01

    The removal of 2,4-D (2,4-dichlorophenoxyacetic acid) from aqueous solutions by activated spent bleaching earths (SBE) was studied at 20 degrees C. Experiments were performed as a function of time, initial concentration, dose and particle size of the adsorbent. The Langmuir and Freundlich adsorption equations were fitted by the adsorption data obtained. The values of Langmuir and Freundlich constants were determined. The adsorption kinetic was found to follow Lagergren equation. Both the boundary layer and intraparticle diffusion played important roles in the adsorption rate of 2,4-D. As the size of the adsorbent increased, the time to reach equilibrium increased but adsorption capacity decreased.

  2. [Embryo initiation from Pinus sibirica megagametophytes in in vitro culture].

    Science.gov (United States)

    Tret'iakova, I N; Voroshilova, E V

    2014-01-01

    Megagametophytes of Siberian pine were cultured on an in vitro culture medium 1/2 LV supplemented with growth regulators 2,4-dichlorophenoxyacetic acid (2,4-D) and benzylaminopurine (6-BAP) to form embryos. The competency of somatic cell of explants to embryogenesis manifested itself in an organized growth and polarity. A coenocyte consisting of long vacuolated cells was formed in the megagametophyte culture. Then, the migration of the nuclei to one of the poles of the cell, their division, and formation of embryoids was observed. The megagametophyte culture of the Siberian pine differed from the zygotic embryo culture by the absence of asymmetric division in the vacuolated cell.

  3. Somatic embryogenesis ofCyclamen persicum Mill. 'Anneke' from aseptic seedlings.

    Science.gov (United States)

    Takamura, T; Miyajima, I; Matsuo, E

    1995-01-01

    InCyclamen persicum 'Anneke', explants from the various vegetative organs of aseptic seedling formed embryoids. The optimal responses were recorded in Murashige and Skoog (MS) medium enriched with 5.0µM 2,4-dichlorophenoxyacetic acid (2,4-D), 0.5µM kinetin and 3-6% sucrose. Embryogenesis was enhanced at higher temperature of 25-30°C. On the other hand, light inhibited embryogenesis. Histological and morphological studies confirmed that the embryoids were indeed somatic embryos.

  4. Effect of Plant Growth Regulators on Calcium-stimulated Serine Transport into Tobacco Cells

    Science.gov (United States)

    Smith, Ivan K.

    1978-01-01

    The transport of serine into tobacco cells (Nicotiana tabacum L.) cultured in liquid medium was examined. Transport was inhibited approximately 50% by 2,4-dichlorophenoxyacetic acid, indoleacetic acid, α-naphthalene acetic acid, and kinetin at a concentration of 10 micrograms per milliliter. Transport was not inhibited by 2,6-dichlorophenoxyacetic acid and inhibited less than 25% by p-chlorophenoxyacetic acid at this concentration. Removal of 2,4-dichlorophenoxyacetic acid from the transport medium resulted in an alleviation of inhibition. Gibberellic acid at concentrations from 2 to 20 micrograms per milliliter stimulated transport. It was previously shown that inhibition of transport by La3+ was due to removal of Ca2+ from surface sites and inhibition of Ca2+ uptake by cells. None of the growth regulators tested had any significant effect on Ca2+ binding and/or transport. A contributing factor to the low transport rates in the absence of Ca2+ is the increased rate of serine efflux. None of the growth regulators tested had any significant effect on the rate of serine efflux. PMID:16660646

  5. Valproic Acid

    Science.gov (United States)

    ... acid is in a class of medications called anticonvulsants. It works by increasing the amount of a ... older (about 1 in 500 people) who took anticonvulsants such as valproic acid to treat various conditions ...

  6. Amino acids

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002222.htm Amino acids To use the sharing features on this page, please enable JavaScript. Amino acids are organic compounds that combine to form proteins . ...

  7. Obeticholic Acid

    Science.gov (United States)

    Obeticholic acid is used alone or in combination with ursodiol (Actigall, Urso) to treat primary biliary cholangitis (PBC; a ... were not treated successfully with ursodiol alone. Obeticholic acid is in a class of medications called farnesoid ...

  8. Ascorbic Acid

    Science.gov (United States)

    Ascorbic acid is used to prevent and treat scurvy, a disease caused by a lack of vitamin C in ... Ascorbic acid comes in extended-release (long-acting) capsules and tablets, lozenges, syrup, chewable tablets, and liquid drops to ...

  9. Mefenamic Acid

    Science.gov (United States)

    Mefenamic acid is used to relieve mild to moderate pain, including menstrual pain (pain that happens before or during a menstrual period). Mefenamic acid is in a class of medications called NSAIDs. ...

  10. Acid mucopolysaccharides

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003368.htm Acid mucopolysaccharides To use the sharing features on this page, please enable JavaScript. Acid mucopolysaccharides is a test that measures the amount ...

  11. Ethacrynic Acid

    Science.gov (United States)

    Ethacrynic acid, a 'water pill,' is used to treat swelling and fluid retention caused by various medical problems. It ... Ethacrynic acid comes as a tablet to take by mouth. It is usually taken once or twice a day ...

  12. Aminocaproic Acid

    Science.gov (United States)

    Aminocaproic acid is used to control bleeding that occurs when blood clots are broken down too quickly. This type ... the baby is ready to be born). Aminocaproic acid is also used to control bleeding in the ...

  13. Aspartic acid

    Science.gov (United States)

    ... body work. It plays a role in: Hormone production and release Normal nervous system function Plant sources of aspartic acid include: avocado, asparagus, and molasses. Animal sources of aspartic acid include: ...

  14. Assessment of plant-driven removal of emerging organic pollutants by duckweed.

    Science.gov (United States)

    Reinhold, Dawn; Vishwanathan, Saritha; Park, Jung Jae; Oh, David; Michael Saunders, F

    2010-08-01

    Constructed treatment wetlands have the potential to reclaim wastewaters through removal of trace concentrations of emerging organic pollutants, including pharmaceuticals, personal care products, and pesticides. Flask-scale assessments incorporating active and inactivated duckweed were used to screen for plant-associated removal of emerging organic pollutants in aquatic plant systems. Removals of four of eight pollutants, specifically atrazine, meta-N,N-diethyl toluamide (DEET), picloram, and clofibric acid, were negligible in all experimental systems, while duckweed actively increased aqueous depletion of fluoxetine, ibuprofen, 2,4-dichlorophenoxyacetic acid, and triclosan. Active plant processes affecting depletion of experimental pollutants included enhancement of microbial degradation of ibuprofen, uptake of fluoxetine, and uptake of degradation products of triclosan and 2,4-dichlorophenoxyacetic acid. Passive plant processes, particularly sorption, also contributed to aqueous depletion of fluoxetine and triclosan. Overall, studies demonstrated that aquatic plants contribute directly and indirectly to the aqueous depletion of emerging organic pollutants in wetland systems through both active and passive processes. Copyright 2010 Elsevier Ltd. All rights reserved.

  15. Fatty acids - trans fatty acids

    Science.gov (United States)

    The data supporting a negative effect of dietary trans fatty acids on cardiovascular disease risk is consistent. The primary dietary sources of trans fatty acids include partially hydrogenated fat and rudiment fat. The adverse effect of trans fatty acids on plasma lipoprotein profiles is consisten...

  16. Embryogenic callus formation in Dioscorea rotundata Poir cv. `Blanco de Guinea'

    Directory of Open Access Journals (Sweden)

    Dayana Rodríguez González

    2014-07-01

    Full Text Available Yam contributes to energy and nutritional requirements of most of the population of developing countries. However, their extensive culture is constrained by the limited availability of planting material with physiological and sanitary quality, and also part of the harvesting is used as seed in the next planting. For this reason, it is necessary to establish a methodology for plant regeneration and somatic embryogenesis could facilitate their micropropagation and genetic improvement. This study aimed to form embryogenic callus in Dioscorea rotundata Poir cv. `White Guinea'. The effect of the addition of 2,4-dichlorophenoxyacetic acid (2,4-D (0, 1.0, 2.0 and 4.0 mg l-1 was determined, in combination with three types of explants from in vitro plants (leaves petiole, petiole segments and root sections. The highest percentage of embryogenic callus was obtained with 1.0 mg l-1 2,4-D and leaves with petiole as explants. These were characterized by the presence of compact whitish nodules. Key words: 2,4-dichlorophenoxyacetic acid, somatic embryogenesis, micropropagation, yam

  17. Effects of variations in culture media and hormonal treatments upon callus induction potential in endosperm explant of Barringtonia racemosa L.

    Institute of Scientific and Technical Information of China (English)

    Nurul Izzati Osman; Norrizah Jaafar Sidik; Asmah Awal

    2016-01-01

    Objective: To induce callus from the medicinally valuable species, Barringtonia racemosa L.(B. racemosa) whereby the formation of callus is essential for micropropagation studies and in vitro plant secondary metabolites production.Methods: The callus induction potential in B. racemosa was assessed from endosperm explant cultured on different culture media and plant hormonal treatments. Lloyd and Mc Cown’s woody plant medium and Murashige and Skoog’s medium were used in the study as culture media. On the other hand, various concentrations and combinations of2,4-dichlorophenoxyacetic acid(1.0–2.0 mg/L) and kinetin(0.5–2.5 mg/L) had been incorporated in the culture media to exert the effects of auxin and cytokinin on callus induction.Results: From the present study, it was found that the profuse [(1.681 ± 0.770) g fresh weight,(0.239 ± 0.239) g dry weight] and friable callus formation was optimally produced with desirable morphology and considerable percentage of callus induction(56.70%) in endosperm explants cultured on 1.0 mg/L 2,4-dichlorophenoxyacetic acid and 1.5 mg/L kinetin in Murashige and Skoog’s medium.Conclusions: A reliable protocol for inducing callus formation of profuse and friable morphology in endosperm explant of B. racemosa had therefore been successfully established.

  18. Folic Acid

    Science.gov (United States)

    ... damage. 10 Do I need folic acid after menopause? Yes. Women who have gone through menopause still need 400 micrograms of folic acid every ... United States: 2003–2006 . American Journal of Clinical Nutrition; 91(1): 231–237. Hamner, H.C., Cogswell, ...

  19. Preparation, Analytical, IR Spectral, and Thermal Studies of Some New Hydrazinium Carboxylates

    Directory of Open Access Journals (Sweden)

    R. Manimekalai

    2012-01-01

    Full Text Available Hydrazinium salts of 2,4-dichlorophenylacetic acid, phenoxyacetic acid, 2,4-dichlorophenoxyacetic acid, diphenylacetic acid, cinnamic acid, and picolinic and nicotinic acids have been prepared by accomplishing neutralization of aqueous hydrazine hydrate with the respective acids. Formation of these hydrazinium salts has been confirmed by analytical, IR spectral, and thermal studies. IR spectra of the salts register N–N stretching frequencies of ion in the region 963–951 cm−1 and the frequencies of ion in the region 1047–1026 cm−1. Thermal decomposition studies show that the hydrazinium salts undergo melting followed by endothermic decomposition into carbon residue as the endproduct.

  20. Clonal propagation of Leptospermum spp. by tissue culture.

    Science.gov (United States)

    Shipton, W A; Jackes, B R

    1986-02-01

    Propagation by axillary and multiple axillary bud development was achieved in three native Leptospermum spp. when axillary buds derived from nodal tissues ex mature plants were placed in benzylaminopurine media (0.04-1.0 μM) containing macro- and micro-nutrients, sucrose (0.06 M) and a vitamin/amino acid supplement. Reduction of agar concentration from 0.8 to 0.2% greatly stimulated axillary bud development and growth in L. flavescens and L. brachyandrum. Rooting of axillary shoots was stimulated by 2,4-dichlorophenoxyacetic acid and p-chlorophenoxy acetic acid in L. flavescens at concentrations of 5 and 1 μM respectively. In L. petersonii ssp. root initiation and development was favoured by β-naphthoxyacetic acid (1 μM) and in L. brachyandrum indole butyric acid and α-naphthalene acetic acid (1 μM) were almost equally effective.

  1. Folic acid

    Science.gov (United States)

    ... taking a specific nutritional supplement, containing vitamin B3 (nicotinamide), a compound isolated from grains (azelaic acid), zinc, ... lung cancer in most people. A type of skin cancer called melanoma. Limited research suggests that taking ...

  2. Folic Acid

    Science.gov (United States)

    ... B-complex vitamin needed by the body to manufacture red blood cells. A deficiency of this vitamin ... prepared from dried yeast, fruit, and fresh leafy green vegetables to increase the folic acid in your ...

  3. Ibotenic acid and thioibotenic acid

    DEFF Research Database (Denmark)

    Hermit, Mette B; Greenwood, Jeremy R; Nielsen, Birgitte

    2004-01-01

    with the conformations preferred by the ligands upon docking to mGlu1 and models of the other mGlu subtypes, we propose that unlike other subtypes, group III mGlu receptor binding sites require a ligand conformation at an energy level which is prohibitively expensive for ibotenic acid, but not for thioibotenic acid....... These studies demonstrate how subtle differences in chemical structures can result in profound differences in pharmacological activity....

  4. Acid Rain

    Science.gov (United States)

    Bricker, Owen P.; Rice, Karen C.; Dietrich, W.E.; Sposito, Garrison

    1997-01-01

    Acid deposition, or acid rain as it is more commonly referred to, has become a widely publicized environmental issue in the U.S. over the past decade. The term usually conjures up images of fish kills, dying forests, "dead" lakes, and damage to monuments and other historic artifacts. The primary cause of acid deposition is emission of S02 and NOx to the atmosphere during the combustion of fossil fuels. Oxidation of these compounds in the atmosphere forms strong acids - H2SO4 and HNO3 - which are returned to the Earth in rain, snow, fog, cloud water, and as dry deposition.Although acid deposition has only recently been recognized as an environmental problem in the U.S., it is not a new phenomenon (Cogbill & Likens 1974). As early as the middle of the 17th century in England, the deleterious effects of industrial emissions on plants, animals, and humans, and the atmospheric transport of pollutants between England and France had become issues of concern (Evelyn 1661, Graunt 1662). It is interesting that well over three hundred years ago in England, recommendations were made to move industry outside of towns and build higher chimneys to spread the pollution into "distant parts." Increasing the height of smokestacks has helped alleviate local problems, but has exacerbated others. In the U.S. the height of the tallest smokestack has more than doubled, and the average height of smokestacks has tripled since the 1950s (Patrick et al 1981). This trend occurred in most industrialized nations during the 20th century and has had the effect of transforming acid rain from a local urban problem into a problem of global scale.

  5. Perfluorooctanoic acid

    NARCIS (Netherlands)

    de Voogt, P.; Wexler, P.

    2014-01-01

    Perfluorooctanoic acid (PFOA, 335-67-1) is used in fluoropolymer production and firefighting foams and persists in the environment. Human exposure to PFOA is mostly through the diet. PFOA primarily affects the liver and can cause developmental and reproductive toxic effects in test animals.

  6. Proliferation Potential of 18-Month-Old Callus of Ananas comosus L. cv. Moris

    Directory of Open Access Journals (Sweden)

    A.E. De Silva

    2006-01-01

    Full Text Available Differential effect of plant growth regulators and additives in proliferation of 18-month-old calli of Ananas comosus L. cv. Moris were assessed in vitro. The proliferation of callus relied on the growth regulators and additives. Of the different auxins supplemented in the Murashige and Skoog (MS media, 32.22 μM α-naphthaleneacetic acid (NAA gave the highest mean fresh weight of callus (46.817 g. Medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D was inferior to NAA, while b-naphthoxy acetic acid (BNOA and p-chlorophenoxy acetic acid (4-CPA were not effective in proliferating 18-months old callus. Addition of casein hydrolysate and coconut water to NAA supplemented medium showed better proliferation and production of callus. However, in terms of callus production, NAA at 32.22 μM was economically better.

  7. Proliferation potential of 18-month-old callus of Ananas comosus L. cv. Moris.

    Science.gov (United States)

    De Silva, A E; Kadir, M A; Aziz, M A; Kadzimin, S

    2006-02-17

    Differential effect of plant growth regulators and additives in proliferation of 18-month-old calli of Ananas comosus L. cv. Moris were assessed in vitro. The proliferation of callus relied on the growth regulators and additives. Of the different auxins supplemented in the Murashige and Skoog (MS) media, 32.22 microM alpha-naphthaleneacetic acid (NAA) gave the highest mean fresh weight of callus (46.817 g). Medium supplemented with 2,4-dichlorophenoxyacetic acid (2,4-D) was inferior to NAA, while b-naphthoxy acetic acid (BNOA) and p-chlorophenoxy acetic acid (4-CPA) were not effective in proliferating 18-months old callus. Addition of casein hydrolysate and coconut water to NAA supplemented medium showed better proliferation and production of callus. However, in terms of callus production, NAA at 32.22 microM was economically better.

  8. Shoot regeneration from petioles and leaves of Vitis X labruscana 'Catawba'.

    Science.gov (United States)

    Cheng, Z M; Reisch, B I

    1989-10-01

    Shoot regeneration and normal plants were obtained from leaf and petiole explants derived from in vitro grown shoots of Vitis X labruscana 'Catawba'. Regeneration was induced in the presence of both 6-benzylaminopurine and indole-3-butyric acid; combinations of 2,4-dichlorophenoxyacetic acid or 2-naphthoxyacetic acid with 6-benzylaminopurine did not permit regeneration from leaf explants. Up to 15% of leaf and 70% of petiole explants regenerated shoots on media with 5.0-10.0 μM BA and 0.1-0.5 μM IBA. Incubation in the dark was required to obtain regeneration. About 50% of shoots developed normally following transfer to light. An average of one shoot regenerated from leaf explants and 3.3 shoots regenerated per petiole explant. Regeneration from petioles and leaves was always from the basipetal end. The interaction of 6-benzylaminopurine with indole-3-butyric acid was also examined.

  9. Genotoxic Potential of Two Herbicides and their Active Ingredients Assessed with Comet Assay on a Fish Cell Line, Epithelioma Papillosum Cyprini (EPC)

    DEFF Research Database (Denmark)

    Syberg, Kristian; Rank, Jette; Jensen, Klara

    2013-01-01

    The aim of this study was to optimize the epithelioma papillosum cyprini (EPC) cell line handling procedure for the comet assay to investigate the genotoxic potential of widely used pesticides. The effects of various media and handling of the EPC cell line were examined. Results indicated...... that avoiding trypsin to detach cells led to lower level of DNA damage in the negative control. Further, two commonly used herbicides (Dezormon and Optica trio) and their four active ingredients (4-chloro-o-tolyloxyacetic acid, 2,4-dichlorophenoxyacetic acid, 2-(4-chloro-2-methylphenoxy)propionic acid, 2......-(2,4-dichlorophenoxy)propionic acid) individually and in a ternary mixture were examined with the comet assay. Data showed that among the active ingredients only 2,4-D andMCPA induced DNA damage, while both herbicides were genotoxic at high concentrations....

  10. Hydroxycarboxylic acids and salts

    Energy Technology Data Exchange (ETDEWEB)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  11. Cucumber Seedling Indoleacetaldehyde Oxidase 1

    Science.gov (United States)

    Bower, Peter J.; Brown, Hugh M.; Purves, William K.

    1978-01-01

    Extracts of light-grown Cucumis sativus L. seedlings catalyzed the oxidation of indole-3-acetaldehyde to indole-3-acetic acid. No added cofactors were required. Inhibitor studies indicated that the enzyme is a metalloflavoprotein. While indole-3-aldehyde, benzaldehyde, and phenylacetaldehyde partially inhibited the oxidation of indole-3-acetaldehyde, suggesting that they may serve as alternative substrates, it is proposed that indoleacetaldehyde is the major substrate in vivo. 2,4-Dichlorophenoxyacetic acid strongly inhibited the indoleacetaldehyde oxidase activity, and it is proposed that this enzyme may be subject in vivo to feedback inhibition by indole-3-acetic acid. The enzyme was activated by brief heating or by treatment with mercaptoethanol. PMID:16660220

  12. Hydrofluoric acid poisoning

    Science.gov (United States)

    Fluorhydric acid ... stomach, or intestine have holes (perforations) from the acid. ... Hydrofluoric acid is especially dangerous. The most common accidents involving hydrofluoric acid cause severe burns on the skin ...

  13. Dehydroabietic acid

    Directory of Open Access Journals (Sweden)

    Xiao-Ping Rao

    2009-10-01

    Full Text Available The title compound [systematic name: (1R,4aS,10aR-7-isopropyl-1,4a-dimethyl-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid], C20H28O2, has been isolated from disproportionated rosin which is obtained by isomerizing gum rosin with a Pd-C catalyst.. Two crystallographically independent molecules exist in the asymmetric unit. In each molecule, there are three six-membered rings, which adopt planar, half-chair and chair conformations. The two cyclohexane rings form a trans ring junction with the two methyl groups in axial positions. The crystal structure is stabilized by intermolecular O—H...O hydrogen bonds.

  14. Photocatalytic degradation of pesticides by titanium dioxide and titanium pillared purified clays

    Directory of Open Access Journals (Sweden)

    M. Abdennouri

    2016-09-01

    Full Text Available Titanium dioxide was synthesized by the sol–gel method and titanium pillared purified clay was prepared with two titanium contents: 1.15 and 10.5 mmol of Ti per gram of clay. The composites were synthesized by immobilizing TiO2 onto surfactant-pillared clay via ion exchange reaction between clay with cation surfactant, cetyl-trimethyl ammonium bromide (CTMABr. The composition and texture of the prepared photocatalysts were characterized with X-ray powder diffraction (XRD, FT-IR spectroscopy, transmission electron microscopy (TEM and energy-dispersive spectroscopy (EDX. The adsorption performance and photocatalytic activities of the prepared samples were investigated using 2,4-dichlorophenoxyacetic acid (2,4-D and 2,4-dichlorophenoxypropionic acid (2,4-DP as models of organic pollutants. The results were obtained that these photocatalysts can effectively degrade selected pesticides. The removal efficiency increases with the Ti content in the pillared clay.

  15. Biodegradation of phenol, 2,4-DCP, 2,4-D, and 2,4,5-T in field-collected rhizosphere and nonrhizosphere soils

    Energy Technology Data Exchange (ETDEWEB)

    Boyle, J.J.; Shann, J.R. [Univ. of Cincinnati, OH (United States)

    1995-07-01

    This study investigated xenobiotic biodegradation in rhizosphere soil collected from field-grown plants, grouped for analysis as monocots or dicots. Microbial activity was highest in monocot rhizosphere soils, No differences were seen between these soils in the mineralization of phenol or 2,4-dichlorophenol (2,4-DCP), but there were differences in 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) mineralization. The rate constants for 2,4-D or 2,4,5-T mineralization in nonrhizosphere soil. Thus, soils that had a prior association with a plant showed significantly increased rates o mineralization for the more recalcitrant compounds tested. In addition, this enhanced mineralization in the rhizosphere appeared to be dependent on the type of plant involved. 20 refs., 4 figs., 2 tabs.

  16. CALLUS INDUCTION FROM 15 CARNATION (DIANTHUS CARYOPHYLLUS L. CULTIVARS

    Directory of Open Access Journals (Sweden)

    Jaime A. TEIXEIRA DA SILVA

    2014-12-01

    Full Text Available Plant growth regulators (PGRs were used to induce callus in 15 carnation (Dianthus caryophyllus L.; Caryophyllaceae cultivars: Orange Sherbert, Avalanche, Magenta, La France, Stripe Red, Marie, Concerto PVP, Snap, Lucky Pierot, Cinnamon Tea, White Love, Siberia, Magesta, Spark Bruno, and Honono no Estejo. Seeds were initially sown on autoclaved moistened filter paper and internodes of surface-sterilized seedlings were used as explants. Most callus was induced in the presence of 0.5 mg/L α-naphthaleneacetic acid used together with 1 mg/L 6-benzyladenine or 1 mg/L 2,4-dichlorophenoxyacetic acid on basal Murashige and Skoog medium. Callus is not a desirable method to clonally propagate important germplasm but can serve as one possible way of deriving periclinal mutants as a result of somaclonal variation.

  17. Somatic embryogenesis and plant regeneration from cell suspension and tissue cultures of mature himalayan poplar (Populus ciliata).

    Science.gov (United States)

    Cheema, G S

    1989-02-01

    Somatic embryogenesis and plantlet formation were obtained from callus and cell suspension cultures of 40-year- old Himalayan Poplar (Populus ciliata Wall ex Royle). Callus and cell suspensions were obtained by transfer of inoculum of semiorganized leaf cultures, which were maintained on Murashige and Skoog (MS) medium supplemented with benzylaminopurine (BAP), to MS with 2,4-dichlorophenoxyacetic acid (2,4-D). Reduction of 2,4-D concentration during subsequent subculture of cell suspensions resulted in the formation of embryoids. These embryoids developed further only after being transferred to agar-based MS medium supplemented with BAP and naphthalene acetic acid. Loss of embryogenic potential was observed in cell suspensions after 6 subcultures. However, callus cultures retained the embryogenic potential even after repeated subcultures for more than a year. Plantlets could be successfully hardened and grown in natural outdoor conditions.

  18. Plant regeneration of grapevine (Vitis sp.) protoplasts isolated from embryogenic tissue.

    Science.gov (United States)

    Reustle, G; Harst, M; Alleweldt, G

    1995-12-01

    Protoplasts with high embryogenic competence could be isolated from leaf-disk-derived embryos and embryoids of Vitis sp. cv. Seyval blanc. After a 4-week induction treatment in NN-69 medium supplemented with 4.0mg/l naphthoxyacetic acid (NOA) and 0.9mg/l thidiazuron (TDZ) and subsequent subcultivation in hormone-free medium, 38.5% of the developed microcalluses showed somatic embryogenesis. In contrast, only few formed somatic embryos after induction in CPW-13 medium with either 1.0mg/l 2,4-dichlorophenoxyacetic acid and 0.5mg/l benzylaminopurine treatment (13.8%) or NOA/TDZ treatment (1.4%). Up to 30% of these embryos germinated and about half of them regenerated into typical in vitro grapevines when transferred onto LS-medium in culture tubes.

  19. Ferula gummosa Boiss. Embryogenic culture and karyological changes.

    Science.gov (United States)

    Bernard, Françoise; Bazarnov, Hossein Shaker; Khatab, Leila Javadi; Darabi, Ahmad Shafiei; Sheidai, Massoud

    2007-06-15

    Ferula gummosa Boiss. a highly valuable medicinal plant which naturally propagates in very limited areas of the Middle East with specific environmental conditions. The production of Ferula gummosa somatic embryos and the karyological analysis of somatic seedlings were the purpose of this study. High frequency indirect embryogenesis was induced in callus derived from zygotic embryonic axes. Embryogenesis was obtained when callus tissues were placed onto an agar induction Murashige and Skoog medium with 1-naphthalene acetic acid and after the transfer of the cultures in a thermoperiod regime of 16 h, 19 degrees C/8 h, 7 degrees C under photoperiod of 16 h light/8h dark. Embryogenic callus tissues were maintained by subculture on induction medium. Globular proliferation was achieved with suspension culture in the Murashige and Skoog medium added with 1-naphthalene acetic acid or 2,4-dichlorophenoxyacetic acid for two weeks. Maturation of embryos and development of plantlets arose on the induction agar medium, but was better after transfer into the hormone free Murashige and Skoog medium. However, the level of abnormal embryos was high. Direct embryogenesis was obtained from somatic seedlings. The best results were obtained from hypocotyl explants. Embryo induction was achieved by two week culture of the explants in 2,4-dichlorophenoxyacetic acid liquid medium; somatic embryo growth and maturation was recovered on the hormone free medium. High level of abnormalities was recorded in the culture. Karyological analysis showed a high incidence level of cytochimerism in somatic seedlings with chromosome stickiness, polypoidy and aneuploidy in metaphase cells of the same root tip. The frequency of these karyological changes varied with the type of somatic embryos with regard to morphological abnormalities. Normal and abnormal rooted somatic seedlings were able to grow until production of the first leaf and then entered dormancy in the same manner as zygotic plantlets.

  20. Amino acids in the sedimentary humic and fulvic acids

    Digital Repository Service at National Institute of Oceanography (India)

    Sardessai, S.

    to the coastal sedimentary humic acids implying higher association of amino acids with the carbonaceous and fine grained sedimentary humic acids. Both the humic and fulvic acids are composed of neutral, acidic, basic, aromatic and sulphur containing amino acids....

  1. Influence of auxins and sucrose in monoterpenoid oxindole alkaloid production by Uncaria tomentosa cell suspension cultures.

    Science.gov (United States)

    Luna-Palencia, Gabriela R; Cerda-García-Rojas, Carlos M; Rodríguez-Monroy, Mario; Ramos-Valdivia, Ana C

    2005-01-01

    Growth and alkaloid production in Uncaria tomentosa cell suspension cultures were studied in Murashige and Skoog medium supplemented with 10 microM 2,4-dichlorophenoxyacetic acid, 10 microM kinetin, and 58 mM sucrose for maintenance and with 10 microM indole-3-acetic acid, 10 microM kinetin, and 58 mM sucrose for production. A U. tomentosa pale Uth-3 cell line, cultured in the production medium, showed a reduced lag phase and a specific growth rate (mu) of 0.27 day(-1), while cells growing in the maintenance medium showed mu = 0.20 day(-1). U. tomentosa cells growing in the production medium produced monoterpenoid oxindole alkaloids (MOA) in amounts of 10.2 +/- 1.6 microg g(-1) dry weight (DW). The chemical profile of MOA produced by in vitro cell cultures was similar to that found in the plant. After 10 subcultures, maximum MOA production decreased to 2.0 +/- 0.7 microg g(-1) DW, while tryptamine alkaloids (TA) were produced with a maximum of 6.2 +/- 0.4 microg g(-1) DW. The increase of initial sucrose concentration up to 145 mM in the production medium enhanced the cell biomass by 3.2-fold (from 10.2 +/- 0.1 to 32.8 +/- 1.1 g DW L(-1)), reduced mu from 0.27 to 0.23 day(-1), and provoked a substantial accumulation of TA (23.1 +/- 4.7 microg g(-1) DW). A high sucrose concentration stimulated MOA production in the maintenance medium (2.7 +/- 0.5 microg g(-1) DW), even in the presence of 2,4-dichlorophenoxyacetic acid.

  2. [Teichoic acids from lactic acid bacteria].

    Science.gov (United States)

    Livins'ka, O P; Harmasheva, I L; Kovalenko, N K

    2012-01-01

    The current view of the structural diversity of teichoic acids and their involvement in the biological activity of lactobacilli has been reviewed. The mechanisms of effects of probiotic lactic acid bacteria, in particular adhesive and immunostimulating functions have been described. The prospects of the use of structure data of teichoic acid in the assessment of intraspecific diversity of lactic acid bacteria have been also reflected.

  3. Plasma amino acids

    Science.gov (United States)

    Amino acids blood test ... types of methods used to determine the individual amino acid levels in the blood. ... test is done to measure the level of amino acids in the blood. An increased level of a ...

  4. Uric acid test (image)

    Science.gov (United States)

    Uric acid urine test is performed to check for the amount of uric acid in urine. Urine is collected over a 24 ... testing. The most common reason for measuring uric acid levels is in the diagnosis or treatment of ...

  5. Preparation of Cationic MOFs with Mobile Anions by Anion Stripping to Remove 2,4-D from Water

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2017-07-01

    Full Text Available A cationic porous framework with mobile anions (MIL-101(Cr-Cl was easily and successfully synthesized by utilizing the stronger affinity of F− to Al3+ than Cr3+ in the charge-balanced framework of MIL-101(Cr. The structure, morphology and porosity of MIL-101(Cr-Cl were characterized. The obtained new materials retain the high surface area, good thermostability, and structure topology of MIL-101(Cr. With the mobile Cl− anion, MIL-101(Cr-Cl can be used as an ion-exchange material for anionic organic pollutions. In this work, 2,4-dichlorophenoxyacetic acid (2,4-D was used as a model to test the absorption performance of this new material. This new material exhibited improved adsorbability compared to that of the original metal-organic frameworks (MOFs. At the same time, this material also shows high anti-interference performance with changing solution pH.

  6. Distribution of Trans-Anethole and Estragole in Fennel (Foeniculum vulgare Mill of Callus Induced from Different Seedling Parts and Fruits

    Directory of Open Access Journals (Sweden)

    Abd El-Moneim Mohamed Radwan AFIFY

    2011-03-01

    Full Text Available In the present study, seeds from local cultivar of fennel were germinated on Murashige and Skoog medium (MS without plant growth regulators. Different types of explants from the growing seedling such as cotyledonal leaves, hypocotyls, epicotyls and roots were cultured on MS medium, contained different concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D either alone or with kinetin. Differential responses in the essential oil constituents were observed in the induction and development of callus. The major components of essential oils includes estragole, trans-anethole, limonene and fenchone were studied under different conditions to find out the best methods which could be used to reduce the amount of estragole (not favorite for human consumption and increase the amount of trans-anethole.

  7. Selection of hybrids and edible citrus species with a high content in the diosmin functional compound. Modulating effect of plant growth regulators on contents.

    Science.gov (United States)

    Marín, F R; Del Río, J A

    2001-07-01

    The purpose of this study is to identify species, hybrids, and cultivars of edible Citrus species with high contents of diosmin as a functional compound and also to identify the developmental progress of the fruit in which it reaches maximum levels; these findings would be useful for extraction purposes and for the modulating effect of plant growth regulators on diosmin content to increase the level of this flavone. The results obtained reveal that the highest contents of diosmin are present in immature fruits of certain varieties of citron (Buda's finger) and lemon (Meyer), whereas the contents in the edible parts of the fruits are irrelevant from a pharmacological point of view. Similarly, it is shown that it is possible to increase the content of this flavone using hormonal treatments (6-benzylaminopurine and 2,4-dichlorophenoxyacetic acid) during the early stages of fruit growth.

  8. Application of electrokinetic soil flushing to four herbicides: A comparison.

    Science.gov (United States)

    dos Santos, E Vieira; Souza, F; Saez, C; Cañizares, P; Lanza, M R V; Martinez-Huitle, C A; Rodrigo, M A

    2016-06-01

    In this work, four bench-scale plants containing soil spiked with four herbicides (2,4-Dichlorophenoxyacetic acid (2,4-D), oxyfluorfen, chlorsulfuron and atrazine) undergo treatment consisting of an electrokinetic soil flushing (EKSF). Results clearly demonstrate that efficiency of EKSF depends on the chemical characteristic of the pesticide used. The amount of pesticide collected in the anode well is more significant than that collected in the cathode wells, indicating that the electromigration is much more important than drainage by electro-osmotic flux for this application. After 15 d of treatment, the 2,4-D is the pesticide most efficiently removed (95% of removal), while chlorsulfuron is the pesticide more resilient to the treatment. Additionally, volatilization was found to be a process of the major significance in the application of electrokinetic techniques to soil polluted with herbicides and because of that it should always be taken into account in the future design of full-scale processes.

  9. Cytotoxicity of MEIC chemicals Nos. 11-30 in 3T3 mouse fibroblasts with and without microsomal activation

    DEFF Research Database (Denmark)

    Rasmussen, Eva

    1999-01-01

    The cytotoxicity of MEIC chemicals Nos, 11-30 was evaluated by determination of neutral red uptake in Balb/c 3T3 mouse fibroblasts with and without the addition of a microsomal activation mixture. The use of microsomes significantly decreased the cytotoxicity of malathion, 2,4-dichlorophenoxyacetic...... acid, propranolol, thioridazine, lithium sulfate, copper sulfate and thallium sulfate, whereas the cytotoxicity of 1,1,1-trichloroethylene, phenol, nicotine, and paraquat was significantly increased by use of the microsomal activation mixture. These cytotoxicity data are in line with observations...... in other studies on microsomal modulation of the cytotoxicity of the test substances. Moderate to good correlations were found between the cytotoxicity data and rodent lethality data, and the addition of microsomes slightly improved the in vitro/in vivo concordance. The evidence to support the relevance...

  10. Micropropagation and callogenesis in Mandevilla guanabarica (Apocynaceae, an endemic plant from Brazil

    Directory of Open Access Journals (Sweden)

    Sandra Zorat Cordeiro

    2014-07-01

    Full Text Available Mandevilla guanabarica is an endemic plant from Brazil, with pharmacological and ornamental potential, both unexplored. This study established the best culture medium for in vitro plant maintenance, efficient protocol for its regeneration, and callogenesis from different explants excised from in vitro-grown plants. Woody plant medium with double boron concentration (WPMB plus 2.27 µM thidiazuron or 0.49 µM 2-isopentenyladenine provided multiplication rates higher than 1:6. Shoots were 100% rooted on WPMB. After acclimatization, plants showed 83% survival. For callogenesis, the use of MS media supplemented with high concentrations of picloram or 2,4-dichlorophenoxyacetic acid produced, respectively, friable or compact non-morphogenic calluses from different types of explants. This micropropagation protocol allows the production of seedlings of M. guanabarica for ornamental or commercial uses, and for conservation purposes; calluses can be used to establish suspension cultures in prospecting for bioactive compounds

  11. Effet du 2,4-D sur l’induction de l’embryogenèse somatique à partir de cotylédons matures de caroubier (Ceratonia siliqua L.

    Directory of Open Access Journals (Sweden)

    Assia LOZZI

    2015-12-01

    Full Text Available The present study is the first report of the production of embryogenic callus and structures cultures from mature cotyledons of Ceratonia siliqua. Regeneration depends on the plant material type and concentration of the auxin. In the case of mature cotyledons, the presence of 2,4 - dichlorophenoxyacetic acid was necessary for callus induction. This auxin promoted a rapid proliferated callus initiation with nodular structure in all explants and concentrations tested. Upon transfer to auxin free medium, the callus formed a large number of globular embryonic structures (SEG. The highest number of SEG (126/g of callus was produced with 10 µM of 2,4-D. Higher concentrations were accompanied by hyperhydricity of SEG. No embryonic structures occurred from the others types of explants (immature seeds, leaves and portions of epicotyls, hypocotyls and roots.

  12. Highly efficient transformation protocol for plum (Prunus domestica L.).

    Science.gov (United States)

    Petri, César; Scorza, Ralph; Srinivasan, Chinnathambi

    2012-01-01

    A high-throughput transformation system for plum has been developed using hypocotyl slices excised from zygotic embryos as the source of explants. The hypocotyl slices are infected in an Agrobacterium tumefaciens suspension and then cocultivated for 3 days in shoot regeneration ¾ MS basal medium supplemented with 9 μM 2,4-dichlorophenoxyacetic acid. Transgenic shoots are regenerated in a medium containing 7.5 μM thidiazuron and elongated in a medium containing 3 μM benzyladenine in the presence of 80 mg/L kanamycin in both media. Transformed shoots are rooted in ½ MS basal medium supplemented with 5 μM NAA and 40 mg/L kanamycin. The transgenic plants are acclimatized in a growth chamber and transferred to a temperature-controlled greenhouse. This protocol has allowed transformation efficiencies up to 42% and enabled the production of self-rooted transgenic plum plants within 6 months of transformation.

  13. Micropropagation of Dalbergia sissoo Roxb. through tissue culture technique.

    Science.gov (United States)

    Sahu, Jyoti; Khan, Shagufta; Sahu, Ram Kumar; Roy, Amit

    2014-04-01

    Multiple shoots of Dalbergia sissoo Roxb. (Sissoo) were incited from seeds through indirect somatic embryogenesis method. Seeds were inoculated in Murashige and Skoog's medium without any growth hormone. Than cotyledonary leaves were struck and used for callus induction on MS medium amplified with 2, 4-dichlorophenoxyacetic acid (0.5 to 4 mg mL(-1)). After 3 to 4 weeks the embryogenic callus clumps was transferred to medium supplemented with cytokinin (BAP 1 to 5 mg L(-1), kinetin 1-5.0 mg L(-1)) for embryo maturation and germination. The high-frequency shoot proliferation (82%) and maximum number of shoots per explants were recorded in MS medium containing NAA (0.5)+BAP (0.5). The findings of recent investigations have shown that, it is possible to induce indirect somatic embryogenesis in Dalbergia sissoo and plant regeneration from callus cultures derived from cotyledonary leaves as explants.

  14. “IN VITRO” MULTIPLICATION OF CALENDULA OFFICINALIS L.

    Directory of Open Access Journals (Sweden)

    Vantu Smaranda

    2015-11-01

    Full Text Available The aim of the present study was to develop a regeneration procedures for Calendula officinalis L., as analternative for biomass production. Calendula officinalis L. (Asteraceae is an important medicinal plant species withmultitherapeutic, cosmetic, values. Meristematic explants taken from seedlings of Calendula officinalis L. germinated inaseptic conditions were tested for their regenerative potential. The regeneration of whole plants was obtained in twosteps: the shoots were excised and transferred to fresh medium and then rooting of these shoots was achieved on the samemedium with 0,02 mg/l benzylaminopurine and 1 mg/l 2,4 dichlorophenoxyacetic acid. The excised shoots weresubcultured for roots induction. Regenerated plants were transferred to ex vitro conditions for an acclimatisation period

  15. A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4

    DEFF Research Database (Denmark)

    Aspray, T.J.; Hansen, Susse Kirkelund; Burns, R.G.

    2005-01-01

    of the genera Pseudomonas, Burkholderia, Collimonas and Rhodococcus. A 2,4-D degrading donor strain, Pseudomonas putida SM 1443 (pJP4::gfp), was inoculated into flow cell chambers containing 2-day old biofilm communities. Transfer of pJP4::gfp from the donor to the bacterial community was detectable as GFP...... chamber. A 2,4-D degrading transconjugant strain was isolated from the flow cell system belonging to the genus Burkholderia.......A soil suspension was used as a source to initiate the development of microbial communities in flow cells irrigated with 2,4-dichlorophenoxyacetic acid (2,4-D) (25 mu g ml(-1)). Culturable bacterial members of the community were identified by 16S rRNA gene sequencing and found to be members...

  16. Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Pallud, C.; Bertolla, F.

    2005-01-01

    Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has...... rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell......, the introduced population was less widely spread at the microscale level than two model indigenous functional communities: the 2,4-dichlorophenoxyacetic acid degraders and the nitrifiers (each at 106 CFU g(-1) soil). When the soil was percolated with a substrate metabolizable by P. putida or incubated for I...

  17. Effect of exogenous cytokinins on growth and somatic embryogenesis in anise cells (Pimpinella anisum L.).

    Science.gov (United States)

    Ernst, D; Oesterhelt, D

    1984-05-01

    A cell culture of anise was grown in the presence or absence of 2,4-dichlorophenoxyacetic acid (2,4-D). Application of isopentenyladenine or isopentenyladenosine (4·10(-8) to 4·10(-7) M) to the proembryonic culture (+2,4-D) yielded an increase of the cell density, in contrast to a proembryonic culture grown without exogenous application of cytokinins. Embryogenesis was induced by transferring the cells to a hormone-free medium. Embryo development was promoted by isopentenyladenine and isopentenyladenosine (5·10(-8) to 5·10(-7) M), higher concentrations (5·10(-6) M) inhibited embryogenesis. The effect of cytokinins on embryogenesis was only promotive until the third day of culture, i.e. coincident with cell growth rather than differentiation.

  18. Analysis of mycorrhizal associations formed by Cistus incanus transformed root clones with Terfezia boudieri isolates.

    Science.gov (United States)

    Zaretsky, M; Kagan-Zur, V; Mills, D; Roth-Bejerano, N

    2006-02-01

    One clone (M-2), out of several Agrobacterium rhizogenes transformed root clones of Cistus incanus, formed ecto- or endomycorrhiza in vitro with two isolates of Terfezia boudieri collected in Israel. All other clone-fungal isolate combinations formed ectomycorrhiza. The endomycorrhiza-forming isolate secreted smaller amounts of auxin than an ectomycorrhiza-forming isolate. Addition of 2,4-dichlorophenoxyacetic acid (2,4-D) led to ectomycorrhiza formation by the M-2 clone on low P medium. Endomycorrhizas were formed by both M-2 and a control clone with the same T. boudieri isolates on high P medium with 2,4-D. The M-2 clone of C. incanus exhibited greater sensitivity to exogenous auxins (IAA and 2,4-D) than other clones, and clonal sensitivity to auxin was increased tenfold under low P conditions. Results are discussed in relation to phosphate and auxin influence on T. boudieri-C. incanus interaction.

  19. Detection of trinitrotoluene (TNT) extracted from soil using a surface plasmon resonance (SPR)-based sensor platform

    Science.gov (United States)

    Strong, Anita A.; Stimpson, Donald I.; Bartholomew, Dwight U.; Jenkins, Thomas F.; Elkind, Jerome L.

    1999-08-01

    An antibody-based competition assay has been developed using a surface plasmon resonance (SPR) sensor platform for the detection of trinitrotoluene (TNT) in soil extract solutions. The objective of this work is to develop a sensor-based assay technology to use in the field for real- time detection of land mines. This immunoassay combines very simple bio-film attachment procedures and a low-cost SPR sensor design to detect TNT in soil extracts. The active bio-surface is a coating of bovine serum albumin that has been decorated with trinitrobenzene groups. A blind study on extracts from a large soil matrix was recently performed and result from this study will be presented. Potential interferant studied included 2,4-dinitrophenol, 2,4- dinitrotoluene, ammonium nitrate, and 2,4- dichlorophenoxyacetic acid. Cross-reactivity with dinitrotoluene will be discussed. Also, plans to reach sensitivity levels of 1ppb TNT in soil will be described.

  20. Somatic embryo-like structures of strawberry regenerated in vitro on media supplemented with 2,4-D and BAP.

    Science.gov (United States)

    Omar, Genesia F; Mohamed, Fouad H; Haensch, Klaus-Thomas; Sarg, Sawsan H; Morsey, Mohamed M

    2013-09-01

    Somatic embryo-like structures (SELS) were produced in vitro from leaf disk and petiole explants of two cultivars of strawberry (Fragaria x ananassa Duch) on Murashige and Skoog medium with different concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), 6-benzylaminopurine (BAP) and sucrose to check the embryonic nature of these structures histologically. A large number of SELS could be regenerated in both cultivars on media with 2-4 mg L(-1) 2,4-D in combination with 0.5 -1 mg L(-1) BAP and 50 g x L(-1) sucrose. Histological examination of SELS revealed the absence of a root pole. Therefore these structures cannot be strictly classified as somatic embryos. The SELS formed under the tested culture conditions represent malformed shoot-like and leaf-like structures. The importance of these results for the propagation of strawberries via somatic embryogenesis is discussed.

  1. The growth of maize seedlings as function of free energy and redox potential

    Directory of Open Access Journals (Sweden)

    Dragičević Vesna D.

    2010-01-01

    Full Text Available The difference in the growth of maize seedlings originating from seeds injured by accelerated ageing, as well as those altered by restoring with low 2,4-D (2,4-dichlorophenoxyacetic acid concentrations was examined, from the point of view of free energy and redox potential. The ageing decreased germination ability, the seedling growth and free energy, with no remarkable influence on the redox capacity. Meanwhile, the 2,4-D treatment increased the germination percentage and the seedling growth, by better energy utilisation, with shifting of the redox balance to a reducing environment. From this point of view, the free energy and the redox potential are useful tools for the determination of biological vitality.

  2. Synthesis and phytotoxic activity of 1,2,3-triazole derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Borgati, Thiago F.; Alves, Rosemeire B., E-mail: thfborgati@gmail.com, E-mail: rosebrondi@yahoo.com.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Quimica; Teixeira, Robson R.; Freitas, Rossimiriam P. de; Perdigao, Thays G.; Silva, Silma F. da; Santos, Aline Aparecida dos [Universidade Federal de Vicosa, MG (Brazil). Departamento de Quimica; Bastidas, Alberto de Jesus O. [Laboratorio de Quimica Ecologica, Departamento de Quimica, Universidad de Los Andes, Nucleo Universitario Pedro Rincon Gutierrez, Merida (Viet Nam)

    2013-06-15

    Thirteen triazole derivatives bearing halogenated benzyl substituents were synthesized using the Cu-catalyzed azide-alkyne cycloaddition (CuAAC), a leading example of the click chemistry approach, as the key step. The biological activity of the compounds was evaluated, and it was found that these compounds interfere with the germination and radicle growth (shoots and roots) of two dicotyledonous species, Lactuca sativa and Cucumis sativus, and one monocotyledonous species, Allium cepa. The compounds showed predominantly inhibitory activity related to the evaluated species mainly at the concentration of 10{sup -4} mol L{sup -1}. Some of them presented inhibitory activity comparable to 2,4-D (2,4-dichlorophenoxyacetic acid), used as positive control. (author)

  3. ADSORPTION OF 2,4-D ON MODIFIED HYPERCROSSLINKED POLYSTYRENE (NDA-99) AND XAD-4 RESIN

    Institute of Scientific and Technical Information of China (English)

    Yu-ping Qiu; Jin-long Chen; Ai-min Li; Quan-xing Zhang; Min-sheng Huang

    2005-01-01

    The adsorption behavior of pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) in aqueous solution has been investigated using a hypercrosslinked polystyrene adsorbent (NDA-99) modified by dimethylamine group as well as a nonionic macroporous adsorbent (XAD-4). The Langmuir and Freundlich isotherm models were employed to fit the experimental data to describe adsorption mechanism. It shows that NDA-99 resin exhibits an adsorption affinity for 2,4-D higher than XAD-4 resin owing to its exceptional micropore structure and the amine group of the hypercrosslinked matrix.Further studies indicate that the hydrogen bonding interaction and the stronger π-π conjugation play a significant role in the course of the adsorption of 2,4-D on NDA-99 resin, which is in agreement with the IR spectroscopic results and the AE values of HOMO (the highest occupied molecular orbit) of adsorbent and LUMO (the lowest unoccupied molecular orbit) of adsorbate calculated from the MINDO/3 model.

  4. POLYELEOSTEARIC ACID VESICLES

    Institute of Scientific and Technical Information of China (English)

    LI Zichen; XIE Ximng; FAN Qinghua; FANG Yifei

    1992-01-01

    α-Eleostearic acid and β-eleostearic acid formed vesicles in aqueous medium when an ethanol solutionofeleostearic acid was injected rapidly into a vigorously vortexed aqueous phase. Formation of the vesicles was demonstrated by electron microscopic observation and bromothymol blue encapsulation experiments. Polymerizations of the eleostearic acids in the formed vesicles carried out by UV irradiation produced poly-α-eleostearic acid and poly-β-eleostearic acid vesicles.

  5. Acid distribution in phosphoric acid fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Okae, I.; Seya, A.; Umemoto, M. [Fuji Electric Co., Ltd., Chiba (Japan)

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  6. Application of nanoporous silicas as adsorbents for chlorinated aromatic compounds. A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Moritz, Michał, E-mail: michal.moritz@put.poznan.pl [Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Piotrowo 3, 60-965 Poznań (Poland); Adam Mickiewicz University, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań (Poland); Geszke-Moritz, Małgorzata, E-mail: Malgorzata.Geszke-Moritz@amu.edu.pl [NanoBioMedical Centre, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań (Poland)

    2014-08-01

    The removal of two selected environmental pollutants such as 2,4-dichlorophenoxyacetic acid (2,4-D) and Triclosan (TC) was examined by adsorption experiments on the modified SBA-15 and MCF mesoporous silicas. Mesoporous adsorbents were modified by a grafting process with (3-aminopropyl)triethoxysilane (APTES) and 1-[3-(trimethoxysilyl)propyl]urea (TMSPU). Mesoporous materials were synthesized and characterized by N{sub 2} adsorption–desorption experiment, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), elemental analysis and adsorption studies. The results show that both APTES-functionalized SBA-15 and MCF nanoporous carriers are potentially good adsorbents for the removal of 2,4-D in a wide range of concentrations from 0.1 to 4 mg/cm{sup 3}. Maximum adsorption capacity of as-modified adsorbents for 2,4-D estimated from the Langmuir model was ∼ 280 mg/g. The ionic interaction between the adsorbent and 2,4-D seems to play a key role in the adsorption process of the pollutant on APTES-modified siliceous matrices. The efficiency of TC sorption onto all prepared mesoporous adsorbents was significantly lower as compared to the entrapment of 2,4-D. Experimental data were best fitted by the Langmuir isotherm model. The results of this study suggest that mesoporous silica-based materials are promising adsorbents for the removal of selected organic pollutants. - Graphical abstract: Adsorption of 2,4-dichlorophenoxyacetic acid and Triclosan inside 3-amino-functionalized mesoporous channel.

  7. Gas-phase Acidities of Aspartic Acid, Glutamic Acid, and their Amino Acid Amides.

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhong; Matus, Myrna H; Velazquez, Hector A; Dixon, David A; Cassady, Carolyn J

    2007-02-14

    Gas-phase acidities (GA or ΔGacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage’s importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3–4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  8. Gas-phase acidities of aspartic acid, glutamic acid, and their amino acid amides

    Science.gov (United States)

    Li, Zhong; Matus, Myrna H.; Velazquez, Hector Adam; Dixon, David A.; Cassady, Carolyn J.

    2007-09-01

    Gas-phase acidities (GA or [Delta]Gacid) for the two most acidic common amino acids, aspartic acid and glutamic acid, have been determined for the first time. Because of the amide linkage's importance in peptides and as an aid in studying side chain versus main chain deprotonation, aspartic acid amide and glutamic acid amide were also studied. Experimental GA values were measured by proton transfer reactions in an electrospray ionization/Fourier transform ion cyclotron resonance mass spectrometer. Calculated GAs were obtained by density functional and molecular orbital theory approaches. The best agreement with experiment was found at the G3MP2 level; the MP2/CBS and B3LYP/aug-cc-pVDZ results are 3-4 kcal/mol more acidic than the G3MP2 results. Experiment shows that aspartic acid is more acidic than glutamic acid by ca. 3 kcal/mol whereas the G3MP2 results show a smaller acidity difference of 0.2 kcal/mol. Similarly, aspartic acid amide is experimentally observed to be ca. 2 kcal/mol more acidic than glutamic acid amide whereas the G3MP2 results show a correspondingly smaller energy difference of 0.7 kcal/mol. The computational results clearly show that the anions are all ring-like structures with strong hydrogen bonds between the OH or NH2 groups and the CO2- group from which the proton is removed. The two amino acids are main-chain deprotonated. In addition, use of the COSMO model for the prediction of the free energy differences in aqueous solution gave values in excellent agreement with the most recent experimental values for pKa. Glutamic acid is predicted to be more acidic than aspartic acid in aqueous solution due to differential solvation effects.

  9. Toxicity of adipic acid.

    Science.gov (United States)

    Kennedy, Gerald L

    2002-05-01

    Adipic acid has very low acute toxicity in rats with an LD50 > 5000 mg/kg. Adipic acid produced mild to no skin irritation on intact guinea pig skin as a 50% concentration in propylene glycol; it was not a skin sensitizer. Adipic acid caused mild conjunctival irritation in washed rabbit eyes; in unwashed rabbit eyes, there was mild conjunctival irritation, minimal iritis, but no corneal effects. Adipic acid dust may irritate the mucous membranes of the lungs and nose. In a 2-year feeding study, rats fed adipic acid at concentrations up to 5% in the diet exhibited only weight loss. Adipic acid is not genetically active in a wide variety of assay systems. Adipic acid caused no developmental toxicity in mice, rats, rabbits, or hamsters when administered orally. Adipic acid is partially metabolized in humans; the balance is eliminated unchanged in the urine. Adipic acid is slightly to moderately toxic to fish, daphnia, and algae in acute tests.

  10. Acid Thunder: Acid Rain and Ancient Mesoamerica

    Science.gov (United States)

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  11. Acid Thunder: Acid Rain and Ancient Mesoamerica

    Science.gov (United States)

    Kahl, Jonathan D. W.; Berg, Craig A.

    2006-01-01

    Much of Mesoamerica's rich cultural heritage is slowly eroding because of acid rain. Just as water dissolves an Alka-Seltzer tablet, acid rain erodes the limestone surfaces of Mexican archaeological sites at a rate of about one-half millimeter per century (Bravo et al. 2003). A half-millimeter may not seem like much, but at this pace, a few…

  12. Omega-3 Fatty Acids

    Science.gov (United States)

    Omega-3 fatty acids are used together with lifestyle changes (diet, weight-loss, exercise) to reduce the ... the blood in people with very high triglycerides. Omega-3 fatty acids are in a class of ...

  13. Omega-6 Fatty Acids

    Science.gov (United States)

    Omega-6 fatty acids are types of fats. Some types are found in vegetable oils, including corn, evening primrose seed, safflower, and soybean oils. Other types of omega-6 fatty acids are found in black currant ...

  14. Lactic acid test

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003507.htm Lactic acid test To use the sharing features on this page, please enable JavaScript. Lactic acid is mainly produced in muscle cells and red ...

  15. Catalytic Synthesis Lactobionic Acid

    Directory of Open Access Journals (Sweden)

    V.G. Borodina

    2014-07-01

    Full Text Available Gold nanoparticles are obtained, characterized and deposited on the carrier. Conducted catalytic synthesis of lactobionic acid from lactose. Received lactobionic acid identify on the IR spectrum.

  16. Amino Acid Metabolism Disorders

    Science.gov (United States)

    ... this process. One group of these disorders is amino acid metabolism disorders. They include phenylketonuria (PKU) and maple syrup urine disease. Amino acids are "building blocks" that join together to form ...

  17. Facts about Folic Acid

    Science.gov (United States)

    ... Partners About Us Information For… Media Policy Makers Facts About Folic Acid Language: English (US) Español ( ... a woman needs 400 micrograms (mcg) every day. Facts About Folic Acid Download and print this fact ...

  18. Azelaic Acid Topical

    Science.gov (United States)

    Azelaic acid gel and foam is used to clear the bumps, lesions, and swelling caused by rosacea (a skin ... redness, flushing, and pimples on the face). Azelaic acid cream is used to treat the pimples and ...

  19. Folic Acid Quiz

    Science.gov (United States)

    ... About Us Information For… Media Policy Makers Folic Acid Quiz Language: English (US) Español (Spanish) Recommend ... button beside the question. Good Luck! 1. Folic acid is: A a B vitamin B a form ...

  20. Immunoglobulin and fatty acids

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising 0.1-10 w/w % immunoglobulin (Ig), 4-14 w/w % saturated fatty acids, 4-14 w/w % mono-unsaturated fatty acids and 0-5 w/w % poly-unsaturated fatty acids, wherein the weight percentages are based on the content of dry matter in the composition...

  1. The Acid Rain Reader.

    Science.gov (United States)

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  2. Stomach acid test

    Science.gov (United States)

    Gastric acid secretion test ... of the cells in the stomach to release acid. The stomach contents are then removed and analyzed. ... 3.5). These numbers are converted to actual acid production in units of milliequivalents per hour (mEq/ ...

  3. Acid Lipase Disease

    Science.gov (United States)

    ... Page You are here Home » Disorders » All Disorders Acid Lipase Disease Information Page Acid Lipase Disease Information Page What research is being ... research to understand lipid storage diseases such as acid lipase deficiency. Additional research studies hope to identify ...

  4. Acid Rain Study Guide.

    Science.gov (United States)

    Hunger, Carolyn; And Others

    Acid rain is a complex, worldwide environmental problem. This study guide is intended to aid teachers of grades 4-12 to help their students understand what acid rain is, why it is a problem, and what possible solutions exist. The document contains specific sections on: (1) the various terms used in conjunction with acid rain (such as acid…

  5. The Acid Rain Reader.

    Science.gov (United States)

    Stubbs, Harriett S.; And Others

    A topic which is often not sufficiently dealt with in elementary school textbooks is acid rain. This student text is designed to supplement classroom materials on the topic. Discussed are: (1) "Rain"; (2) "Water Cycle"; (3) "Fossil Fuels"; (4) "Air Pollution"; (5) "Superstacks"; (6) "Acid/Neutral/Bases"; (7) "pH Scale"; (8) "Acid Rain"; (9)…

  6. Demospongic Acids Revisited

    Directory of Open Access Journals (Sweden)

    Gilles Barnathan

    2010-10-01

    Full Text Available The well-known fatty acids with a D5,9 unsaturation system were designated for a long period as demospongic acids, taking into account that they originally occurred in marine Demospongia sponges. However, such acids have also been observed in various marine sources with a large range of chain-lengths (C16–C32 and from some terrestrial plants with short acyl chains (C18–C19. Finally, the D5,9 fatty acids appear to be a particular type of non-methylene-interrupted fatty acids (NMA FAs. This article reviews the occurrence of these particular fatty acids in marine and terrestrial organisms and shows the biosynthetic connections between D5,9 fatty acids and other NMI FAs.

  7. Acidic Ionic Liquids.

    Science.gov (United States)

    Amarasekara, Ananda S

    2016-05-25

    Ionic liquid with acidic properties is an important branch in the wide ionic liquid field and the aim of this article is to cover all aspects of these acidic ionic liquids, especially focusing on the developments in the last four years. The structural diversity and synthesis of acidic ionic liquids are discussed in the introduction sections of this review. In addition, an unambiguous classification system for various types of acidic ionic liquids is presented in the introduction. The physical properties including acidity, thermo-physical properties, ionic conductivity, spectroscopy, and computational studies on acidic ionic liquids are covered in the next sections. The final section provides a comprehensive review on applications of acidic ionic liquids in a wide array of fields including catalysis, CO2 fixation, ionogel, electrolyte, fuel-cell, membrane, biomass processing, biodiesel synthesis, desulfurization of gasoline/diesel, metal processing, and metal electrodeposition.

  8. [Biosynthesis of adipic acid].

    Science.gov (United States)

    Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe

    2013-10-01

    Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.

  9. Boric acid and boronic acids inhibition of pigeonpea urease.

    Science.gov (United States)

    Reddy, K Ravi Charan; Kayastha, Arvind M

    2006-08-01

    Urease from the seeds of pigeonpea was competitively inhibited by boric acid, butylboronic acid, phenylboronic acid, and 4-bromophenylboronic acid; 4-bromophenylboronic acid being the strongest inhibitor, followed by boric acid > butylboronic acid > phenylboronic acid, respectively. Urease inhibition by boric acid is maximal at acidic pH (5.0) and minimal at alkaline pH (10.0), i.e., the trigonal planar B(OH)3 form is a more effective inhibitor than the tetrahedral B(OH)4 -anionic form. Similarly, the anionic form of phenylboronic acid was least inhibiting in nature.

  10. Acid-Base Homeostasis.

    Science.gov (United States)

    Hamm, L Lee; Nakhoul, Nazih; Hering-Smith, Kathleen S

    2015-12-07

    Acid-base homeostasis and pH regulation are critical for both normal physiology and cell metabolism and function. The importance of this regulation is evidenced by a variety of physiologic derangements that occur when plasma pH is either high or low. The kidneys have the predominant role in regulating the systemic bicarbonate concentration and hence, the metabolic component of acid-base balance. This function of the kidneys has two components: reabsorption of virtually all of the filtered HCO3(-) and production of new bicarbonate to replace that consumed by normal or pathologic acids. This production or generation of new HCO3(-) is done by net acid excretion. Under normal conditions, approximately one-third to one-half of net acid excretion by the kidneys is in the form of titratable acid. The other one-half to two-thirds is the excretion of ammonium. The capacity to excrete ammonium under conditions of acid loads is quantitatively much greater than the capacity to increase titratable acid. Multiple, often redundant pathways and processes exist to regulate these renal functions. Derangements in acid-base homeostasis, however, are common in clinical medicine and can often be related to the systems involved in acid-base transport in the kidneys.

  11. Glycolic Acid 15% Plus Salicylic Acid 2%

    Science.gov (United States)

    Sánchez-Blanco, Elena

    2011-01-01

    Background: Facial flat warts are a contagious viral disease that can cause disturbing cosmetic problems. Topical glycolic acid has been reported to be effective in dermatological treatment depending on the exfoliant capacity, but has not often been reported to be effective in the treatment of facial flat warts. Objective: The aim of this paper was to evaluate the efficacy and safety of glycolic acid 15% topical gel plus salicylic acid 2% in the treatment of recalcitrant facial flat warts. Methods: A total of 20 consecutive patients 7 to 16 years of age with recalcitrant facial flat warts were enrolled in this study. Patients having warts by the eye and lip regions were excluded from the study. A fine layer of face gel was applied to the treatment area once daily. Most of the participants had tried different treatments with no success. Assessments for the response and the occurrence of side effects were performed every two weeks at Weeks 2, 4, 6, and 8. Results: All the patients were clinically cured within eight weeks. Seven patients cleared in four weeks, and 13 patients cleared in eight weeks. No noticeable adverse events were related to the skin. Conclusion: Topical gel of glycolic acid 15% plus salicylic acid 2% is safe and effective when applied to facial flat warts once daily until clearance and may be considered as first-line treatment. PMID:21938272

  12. Nitrogen Lewis Acids.

    Science.gov (United States)

    Pogoreltsev, Alla; Tulchinsky, Yuri; Fridman, Natalia; Gandelman, Mark

    2017-03-22

    Being a major conception of chemistry, Lewis acids have found countless applications throughout chemical enterprise. Although many chemical elements can serve as the central atom of Lewis acids, nitrogen is usually associated with Lewis bases. Here, we report on the first example of robust and modifiable Lewis acids centered on the nitrogen atom, which provide stable and well-characterized adducts with various Lewis bases. On the basis of the reactivity of nitrogen Lewis acids, we prepared, for the first time, cyclic triazanes, a class of cyclic organic compounds sequentially bearing three all-saturated nitrogen atoms (N-N-N motif). Reactivity abilities of these N-Lewis acids were explained by theoretical calculations. Properties and future applications of nitrogen Lewis acids are intriguing.

  13. Citric Acid Alternative to Nitric Acid Passivation

    Science.gov (United States)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  14. USGS Tracks Acid Rain

    Science.gov (United States)

    Gordon, John D.; Nilles, Mark A.; Schroder, LeRoy J.

    1995-01-01

    The U.S. Geological Survey (USGS) has been actively studying acid rain for the past 15 years. When scientists learned that acid rain could harm fish, fear of damage to our natural environment from acid rain concerned the American public. Research by USGS scientists and other groups began to show that the processes resulting in acid rain are very complex. Scientists were puzzled by the fact that in some cases it was difficult to demonstrate that the pollution from automobiles and factories was causing streams or lakes to become more acidic. Further experiments showed how the natural ability of many soils to neutralize acids would reduce the effects of acid rain in some locations--at least as long as the neutralizing ability lasted (Young, 1991). The USGS has played a key role in establishing and maintaining the only nationwide network of acid rain monitoring stations. This program is called the National Atmospheric Deposition Program/National Trends Network (NADP/NTN). Each week, at approximately 220 NADP/NTN sites across the country, rain and snow samples are collected for analysis. NADP/NTN site in Montana. The USGS supports about 72 of these sites. The information gained from monitoring the chemistry of our nation's rain and snow is important for testing the results of pollution control laws on acid rain.

  15. Parenteral Nutrition: Amino Acids

    Science.gov (United States)

    Hoffer, Leonard John

    2017-01-01

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness. PMID:28287411

  16. Parenteral Nutrition: Amino Acids.

    Science.gov (United States)

    Hoffer, Leonard John

    2017-03-10

    There is growing interest in nutrition therapies that deliver a generous amount of protein, but not a toxic amount of energy, to protein-catabolic critically ill patients. Parenteral amino acids can achieve this goal. This article summarizes the biochemical and nutritional principles that guide parenteral amino acid therapy, explains how parenteral amino acid solutions are formulated, and compares the advantages and disadvantages of different parenteral amino acid products with enterally-delivered whole protein products in the context of protein-catabolic critical illness.

  17. Diterpenoid acids from Grindelia nana.

    Science.gov (United States)

    Mahmoud, A A; Ahmed, A A; Tanaka, T; Iinuma, M

    2000-03-01

    Two new norditerpenoid acids of the labdane-type (norgrindelic acids), 4,5-dehydro-6-oxo-18-norgrindelic acid (1) and 4beta-hydroxy-6-oxo-19-norgrindelic acid (2), as well as a new grindelic acid derivative, 18-hydroxy-6-oxogrindelic acid (3), were isolated from the aerial parts of Grindelia nana. In addition, the known compounds, 6-oxogrindelic acid, grindelic acid, methyl grindeloate, 7alpha,8alpha-epoxygrindelic acid, and 4alpha-carboxygrindelic acid were also isolated. The structures of the new compounds were characterized on the basis of spectroscopic analysis.

  18. Nucleic Acid Immunity.

    Science.gov (United States)

    Hartmann, G

    2017-01-01

    Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to

  19. Simultaneous determination of 13 phytohormones in oilseed rape tissues by liquid chromatography-electrospray tandem mass spectrometry and the evaluation of the matrix effect.

    Science.gov (United States)

    Fan, Sufang; Wang, Xiupin; Li, Peiwu; Zhang, Qi; Zhang, Wen

    2011-03-01

    In the experiment, a high-performance liquid chromatography and electrospray ionization-tandem mass spectrometry with selected reaction monitoring was used to simultaneously determine various classes of phytohormones, including indole-3-acetic acid, α-naphthaleneacetic acid, 2-chlorobenzoic acid, 4-chlorobenzoic acid, indole-3-butyric acid, gibberellic acid, 2,4-dichlorophenoxyacetic acid, 2-naphthoxyacetic acid, abscisic acid, 2,3,5-triiodobenzoic acid, uniconazole, paclobutrazol and 2,4-epibassinolide in rape tissues. The analyses were separated by an HPLC equipped with a reversed-phase column using a binary solvent system composed of methanol and water, both containing 0.1% of formic acid. The matrix effect was also considered and determined. The technology was applied to analyze rape tissues, including roots, stems, leaves, flowers, immature pods and rape seeds. The rape tissues were subjected to ultrasound-assisted extraction and purified by dispersive solid-phase extraction, and then transferred into the liquid chromatography system. The detection limit for each plant hormone was defined by the ratio of signal/background noise (S/N) of 3. The results showed perfect linearity (R(2) values of 0.9987-1.0000) and reproducibility of elution times (relative standard deviations, RSDs,<1%) and peak areas (RSDs,<7%) for all target compounds.

  20. Peptide Nucleic Acids (PNA)

    DEFF Research Database (Denmark)

    2002-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  1. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  2. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2003-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  3. Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds known as peptide nucleic acids, bind complementary DNA and RNA strands, and generally do so more strongly than the corresponding DNA or RNA strands while exhibiting increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from...

  4. Carbolic acid poisoning

    Science.gov (United States)

    ... you to. If the person swallowed the carbolic acid, give them water or milk right away, if a provider tells ... well someone does depends on how much carbolic acid they swallowed and how quickly they receive treatment. The faster medical help is given, the better ...

  5. Uric acid - blood

    Science.gov (United States)

    ... High levels of uric acid can sometimes cause gout or kidney disease. You may have this test if you have had or are about to have certain types of chemotherapy. Rapid weight loss, which may occur with such treatments, can increase the amount of uric acid in ...

  6. Neurotoxicity of Folic Acid

    NARCIS (Netherlands)

    Amsterdam van JGC; Jansen EHJM; A Opperhuizen; TOX

    2004-01-01

    The present review summarises the neurotoxicological effects of folic acid. Some studies in animals have shown that folic acid is neurotoxic and epileptogenic when applied directly to the brain. One poorly controlled and not further reproduced study from 1970 reported neurotoxic symptoms like

  7. Amino Acid Crossword Puzzle

    Science.gov (United States)

    Sims, Paul A.

    2011-01-01

    Learning the 20 standard amino acids is an essential component of an introductory course in biochemistry. Later in the course, the students study metabolism and learn about various catabolic and anabolic pathways involving amino acids. Learning new material or concepts often is easier if one can connect the new material to what one already knows;…

  8. Fats and fatty acids

    Science.gov (United States)

    The absolute fat requirement of the human species is the amount of essential fatty acids needed to maintain optimal fatty acid composition of all tissues and normal eicosanoid synthesis. At most, this requirement is no more than about 5% of an adequate energy intake. However, fat accounts for appro...

  9. Peptide Nucleic Acid Synthons

    DEFF Research Database (Denmark)

    2004-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary ssDNA and RNA strands more strongly than a corresponding DNA. The peptide nucleic acids generally comprise ligands such as naturally occurring DNA bases attached to a peptide backbone through a suitable linker....

  10. Chlorogenic acid and caffeic acid are absorbed in humans

    OpenAIRE

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the absorption of chlorogenic acid and caffeic acid in humans are lacking. We determined the absorption of chlorogenic acid and caffeic acid in a cross-over study with 4 female and 3 male healthy ileo...

  11. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, M.R.; Hollman, P.C.H.; Katan, M.B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  12. Chlorogenic acid and caffeic acid are absorbed in humans

    NARCIS (Netherlands)

    Olthof, M.R.; Hollman, P.C.H.; Katan, M.B.

    2001-01-01

    Chlorogenic acid, an ester of caffeic acid and quinic acid, is a major phenolic compound in coffee; daily intake in coffee drinkers is 0.5-1 g. Chlorogenic acid and caffeic acid are antioxidants in vitro and might therefore contribute to the prevention of cardiovascular disease. However, data on the

  13. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Wesén, Clas; Sundin, Peter

    1997-01-01

    Chlorinated fatty acids have been found to be major contributors to organohalogen compounds in fish, bivalves, jellyfish, and lobster, and they have been indicated to contribute considerably to organohalogens in marine mammals. Brominated fatty acids have been found in marine sponges. Also......, chlorinated lipids have been found in meat exposed to hypochlorite disinfected water, and in chlorine-treated flour and in products made from such flour. Following exposure to chlorine bleached pulp mill effluents, aquatic organisms may have elevated concentrations of chlorinated fatty acids in their lipids....... However, a natural production of halogenated fatty acids is also possible. In this paper we summarize the present knowledge of the occurrence of halogenated fatty acids in lipids and suggested ways of their formation. In Part II (Trends Anal. Chem. 16 (1997) 274) we deal with methods...

  14. Phenolic acids enzymatic lipophilization.

    Science.gov (United States)

    Figueroa-Espinoza, Maria-Cruz; Villeneuve, Pierre

    2005-04-20

    Lipophilization is the esterification of a lipophilic moiety (fatty acid or fatty alcohol) on different substrates (phenolic acid, sugar, protein, ...), resulting in new molecules with modified hydrophilic/lipophilic balance. This reaction can be obtained chemically or enzymatically using different enzymes. Phenolic acids possess interesting biological properties (antioxidant, chelator, free radical scavenger, UV filter, antimicrobial, ...), but because of their relatively low solubility in aprotic media, their application in oil-based products is limited. Therefore, the esterification of their carboxylic acid function with a fatty alcohol enhances their hydrophobicity and results in a multifunctional amphiphilic molecule. Enzymatic lipophilization of phenolic acids is nowadays studied for potential industrial applications. Different systems have been proposed to perform the reaction yield [free or immobilized enzymes (lipase, feruloyl esterase, tannase, etc.), free or added organic solvent, addition of surfactant, microemulsion system, etc.]. Some of the functional properties of these esters have been demonstrated. This review presents a panorama of the advances in this field.

  15. 2-Methylaspartic acid monohydrate

    Directory of Open Access Journals (Sweden)

    Ray J. Butcher

    2013-12-01

    Full Text Available The title compound, C5H9NO4·H2O, is an isomer of the α-amino acid glutamic acid that crystallizes from water in its zwitterionic form as a monohydrate. It is not one of the 20 proteinogenic α-amino acids that are used in living systems and differs from the natural amino acids in that it has an α-methyl group rather than an α-H atom. In the crystal, an O—H...O hydrogen bond is present between the acid and water molecules while extensive N—H...O and O—H...O hydrogen bonds link the components into a three-dimensional array.

  16. Composition of amino acids, fatty acids and dietary fibre monomers ...

    African Journals Online (AJOL)

    Composition of amino acids, fatty acids and dietary fibre monomers in kernels of ... Nuts are rich in protein and essential amino acids, and have a high energy value ... of protein, especially when combined with foods with high lysine content.

  17. Amino acids analysis during lactic acid fermentation by single strain ...

    African Journals Online (AJOL)

    SAM

    2014-07-09

    Jul 9, 2014 ... of the three LAB strains to utilize amino acids for growth and lactic acid production were employed to ... Lactic acid bacteria (LAB), which are used for the ..... and characterization of potential probiotic lactobacilli from pig feces.

  18. Trans Fatty Acids

    Science.gov (United States)

    Doyle, Ellin

    1997-09-01

    Fats and their various fatty acid components seem to be a perennial concern of nutritionists and persons concerned with healthful diets. Advice on the consumption of saturated, polyunsaturated, monounsaturated, and total fat bombards us from magazines and newspapers. One of the newer players in this field is the group of trans fatty acids found predominantly in partially hydrogenated fats such as margarines and cooking fats. The controversy concerning dietary trans fatty acids was recently addressed in an American Heart Association (AHA) science advisory (1) and in a position paper from the American Society of Clinical Nutrition/American Institute of Nutrition (ASCN/AIN) (2). Both reports emphasize that the best preventive strategy for reducing risk for cardiovascular disease and some types of cancer is a reduction in total and saturated fats in the diet, but a reduction in the intake of trans fatty acids was also recommended. Although the actual health effects of trans fatty acids remain uncertain, experimental evidence indicates that consumption of trans fatty acids adversely affects serum lipid levels. Since elevated levels of serum cholesterol and triacylglycerols are associated with increased risk of cardiovascular disease, it follows that intake of trans fatty acids should be minimized.

  19. Gluconic acid production.

    Science.gov (United States)

    Anastassiadis, Savas; Morgunov, Igor G

    2007-01-01

    Gluconic acid, the oxidation product of glucose, is a mild neither caustic nor corrosive, non toxic and readily biodegradable organic acid of great interest for many applications. As a multifunctional carbonic acid belonging to the bulk chemicals and due to its physiological and chemical characteristics, gluconic acid itself, its salts (e.g. alkali metal salts, in especially sodium gluconate) and the gluconolactone form have found extensively versatile uses in the chemical, pharmaceutical, food, construction and other industries. Present review article presents the comprehensive information of patent bibliography for the production of gluconic acid and compares the advantages and disadvantages of known processes. Numerous manufacturing processes are described in the international bibliography and patent literature of the last 100 years for the production of gluconic acid from glucose, including chemical and electrochemical catalysis, enzymatic biocatalysis by free or immobilized enzymes in specialized enzyme bioreactors as well as discontinuous and continuous fermentation processes using free growing or immobilized cells of various microorganisms, including bacteria, yeast-like fungi and fungi. Alternatively, new superior fermentation processes have been developed and extensively described for the continuous and discontinuous production of gluconic acid by isolated strains of yeast-like mold Aureobasidium pullulans, offering numerous advantages over the traditional discontinuous fungi processes.

  20. Sulfuric Acid on Europa

    Science.gov (United States)

    1999-01-01

    Frozen sulfuric acid on Jupiter's moon Europa is depicted in this image produced from data gathered by NASA's Galileo spacecraft. The brightest areas, where the yellow is most intense, represent regions of high frozen sulfuric acid concentration. Sulfuric acid is found in battery acid and in Earth's acid rain. This image is based on data gathered by Galileo's near infrared mapping spectrometer.Europa's leading hemisphere is toward the bottom right, and there are enhanced concentrations of sulfuric acid in the trailing side of Europa (the upper left side of the image). This is the face of Europa that is struck by sulfur ions coming from Jupiter's innermost moon, Io. The long, narrow features that crisscross Europa also show sulfuric acid that may be from sulfurous material extruded in cracks. Galileo, launched in 1989, has been orbiting Jupiter and its moons since December 1995. JPL manages the Galileo mission for NASA's Office of Space Science, Washington DC. JPL is a division of the California Institute of Technology, Pasadena, CA.

  1. Fusidic acid in dermatology

    DEFF Research Database (Denmark)

    Schöfer, Helmut; Simonsen, Lene

    1995-01-01

    efficacy and tolerability. Similarly, plain fusidic acid cream or ointment used two or three times daily in SSTIs such as impetigo are clinically and bacteriologically effective, with minimal adverse events. Combination formulations of fusidic acid with 1% hydrocortisone or 0.1% betamethasone achieve...... excellent results in infected eczema by addressing both inflammation and infection. A new lipid-rich combination formulation provides an extra moisturizing effect. Development of resistance to fusidic acid has remained generally low or short-lived and can be minimized by restricting therapy to no more than...

  2. Acid rain: An overview

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Summary of the effects of acid rain and related processes, sources, issues, corrective actions, research, current law, potential solutions, political solutions,...

  3. Fatty Acid Oxidation Disorders

    Science.gov (United States)

    ... acid oxidation disorders are tested for in newborn screening? The March of Dimes recommends that all babies ... in behavior Diarrhea, nausea (feeling sick to your stomach) and throwing up Drowsiness Fever Fussiness Little appetite ...

  4. Synthesis of aminoaldonic acids

    DEFF Research Database (Denmark)

    Jørgensen, Christel Thea

    With the aim of synthesising aminoaldonic acids, two 2-acetamido-2-deoxyaldonolactones with D-galacto (6) and D-arabino (11) configuration were prepared from acetylated sugar formazans in analogy with a known procedure. Empolying the same procedure to acetylated sugar phenylhydrazones gave mixtures....... The aziridino amides 43 and 51 were reductively cleaved with hydrazine to give 3-amino-2,3-dideoxyhexonhydrazides 83 and 85, which were easily converted into the corresponding lactone 84 and acid 86. The aziridine ring of 43 and 51 was also opened with acetic acid to give the 3-amino-3-deoxyhexonic acids 79...... and 82, respectively. The aminolactone 84 was converted into the corresponding amino sugar 89.With the aim of synthesising substrates for the Pictet-Spengler reaction three 4-aldehydo acetamidodideoxytetronolactones 92, 97 and 103 were prepared by periodate cleavage of the corresponding hexonolactones...

  5. [Hydrofluoric acid burns].

    Science.gov (United States)

    Holla, Robin; Gorter, Ramon R; Tenhagen, Mark; Vloemans, A F P M Jos; Breederveld, Roelf S

    2016-01-01

    Hydrofluoric acid is increasingly used as a rust remover and detergent. Dermal contact with hydrofluoric acid results in a chemical burn characterized by severe pain and deep tissue necrosis. It may cause electrolyte imbalances with lethal consequences. It is important to identify high-risk patients. 'High risk' is defined as a total affected body area > 3% or exposure to hydrofluoric acid in a concentration > 50%. We present the cases of three male patients (26, 31, and 39 years old) with hydrofluoric acid burns of varying severity and describe the subsequent treatments. The application of calcium gluconate 2.5% gel to the skin is the cornerstone of the treatment, reducing pain as well as improving wound healing. Nails should be thoroughly inspected and possibly removed if the nail is involved, to ensure proper healing. In high-risk patients, plasma calcium levels should be evaluated and cardiac monitoring is indicated.

  6. Azetidinic amino acids

    DEFF Research Database (Denmark)

    Bräuner-Osborne, Hans; Bunch, Lennart; Chopin, Nathalie

    2005-01-01

    A set of ten azetidinic amino acids, that can be envisioned as C-4 alkyl substituted analogues of trans-2-carboxyazetidine-3-acetic acid (t-CAA) and/or conformationally constrained analogues of (R)- or (S)-glutamic acid (Glu) have been synthesized in a diastereo- and enantiomerically pure form from...... of two diastereoisomers that were easily separated and converted in two steps into azetidinic amino acids. Azetidines 35-44 were characterized in binding studies on native ionotropic Glu receptors and in functional assays at cloned metabotropic receptors mGluR1, 2 and 4, representing group I, II and III...... beta-amino alcohols through a straightforward five step sequence. The key step of this synthesis is an original anionic 4-exo-tet ring closure that forms the azetidine ring upon an intramolecular Michael addition. This reaction was proven to be reversible and to lead to a thermodynamic distribution...

  7. Amino acid racemisation dating

    Energy Technology Data Exchange (ETDEWEB)

    Murray-Wallace, C.V. [University of Wollongong, Wollongong, NSW (Australia). School of Geosciences

    1999-11-01

    The potential of the time-dependent amino acid racemisation reaction as a method of age assessment was first reported by Hare and Abelson (1968). They noted that in specimens of the bivalve mollusc Mercenaria sp., greater concentrations of amino acids in the D-configuration with increasing fossil age. Hare and Abelson (1968) also reported negligible racemisation in a modern specimen of Mecanaria sp. On this basis they suggested that the extent of amino acid racemisation (epimerisation in the case of isoleucine) may be used to assess the age of materials within and beyond the range of radiocarbon dating. For the past thirty years amino acid racemisation has been extensively applied in Quaternary research as a method of relative and numeric dating, and a particularly large literature has emerged on the subject 12 refs.

  8. Folic acid - test

    Science.gov (United States)

    ... folic acid before and during pregnancy helps prevent neural tube defects, such as spina bifida. Women who are ... take more if they have a history of neural tube defects in earlier pregnancies. Ask your provider how ...

  9. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  10. Ethylenediaminetetraacetic acid in endodontics

    OpenAIRE

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-01-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for...

  11. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid an......-lowering effect in patients with type 2 diabetes remain unclear. This article offers a review of the mechanisms behind the glucose-lowering effect of BASs, and the efficacy of BASs in the treatment of type 2 diabetes....... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...

  12. Fatty Acid Biosynthesis IX

    DEFF Research Database (Denmark)

    Carey, E. M.; Hansen, Heinz Johs. Max; Dils, R.

    1972-01-01

    # 1. I. [I-14C]Acetate was covalently bound to rabbit mammary gland fatty acid synthetase by enzymic transacylation from [I-14C]acetyl-CoA. Per mole of enzyme 2 moles of acetate were bound to thiol groups and up to I mole of acetate was bound to non-thiol groups. # 2. 2. The acetyl-fatty acid...... synthetase complex was isolated free from acetyl-CoA. It was rapidly hydrolysed at 30°C, but hydrolysis was greatly diminished at o°C and triacetic lactone synthesis occurred. In the presence of malonyl-CoA and NADPH, all the acetate bound to fatty acid synthetase was incorporated into long-chain fatty acids....... Hydrolysis of bound acetate and incorporation of bound acetate into fatty acids were inhibited to the same extent by guanidine hydrochloride. # 3. 3. Acetate was also covalently bound to fatty acid synthetase by chemical acetylation with [I-14C]acetic anhydride in the absence of CoASH. A total of 60 moles...

  13. Neutron Nucleic Acid Crystallography.

    Science.gov (United States)

    Chatake, Toshiyuki

    2016-01-01

    The hydration shells surrounding nucleic acids and hydrogen-bonding networks involving water molecules and nucleic acids are essential interactions for the structural stability and function of nucleic acids. Water molecules in the hydration shells influence various conformations of DNA and RNA by specific hydrogen-bonding networks, which often contribute to the chemical reactivity and molecular recognition of nucleic acids. However, X-ray crystallography could not provide a complete description of structural information with respect to hydrogen bonds. Indeed, X-ray crystallography is a powerful tool for determining the locations of water molecules, i.e., the location of the oxygen atom of H2O; however, it is very difficult to determine the orientation of the water molecules, i.e., the orientation of the two hydrogen atoms of H2O, because X-ray scattering from the hydrogen atom is very small.Neutron crystallography is a specialized tool for determining the positions of hydrogen atoms. Neutrons are not diffracted by electrons, but are diffracted by atomic nuclei; accordingly, neutron scattering lengths of hydrogen and its isotopes are comparable to those of non-hydrogen atoms. Therefore, neutron crystallography can determine both of the locations and orientations of water molecules. This chapter describes the current status of neutron nucleic acid crystallographic research as well as the basic principles of neutron diffraction experiments performed on nucleic acid crystals: materials, crystallization, diffraction experiments, and structure determination.

  14. Performance Comparison of New Combinations of Acids with Mud Acid in Sandstone Acidizing

    Directory of Open Access Journals (Sweden)

    Mian Umer Shafiq

    2014-01-01

    Full Text Available The aim of this research is to find the best suitable acid to acidize undamaged low permeable sandstone formation Stimulation of sandstone formations is a challenging task, which involves several chemicals and physical interactions of the acid with the formation. Mud acid has been successfully used to stimulate sandstone reservoirs for a number of years. Matrix acidizing may also be used to increase formation permeability in undamaged wells. The change may be up to 50 to 100% with the mud acid. For any acidizing process, the selection of acid (Formulation and Concentration and the design (Pre-flush, Main Acid, After-flush is very important. Different researchers are using different combinations of acids with different concentrations to get the best results for acidization. Mainly the common practice is combination of Hydrochloric Acid- Hydrofluoric with Concentration (3% HF-12% HCl. This study presents the results of a laboratory investigation of Orthophosphoric acid instead of hydrochloric acid in one combination and the second combination is Fluoboric and formic acid and the third one is formic and hydrofluoric acid. The results are compared with the mud acid and the results analyzed are porosity, permeability, strength, color change and FESEM Analysis. All of these new combinations shows that these have the potential to be used as acidizing acids on sandstone formations.

  15. Acidification and Acid Rain

    Science.gov (United States)

    Norton, S. A.; Veselã½, J.

    2003-12-01

    Air pollution by acids has been known as a problem for centuries (Ducros, 1845; Smith, 1872; Camuffo, 1992; Brimblecombe, 1992). Only in the mid-1900s did it become clear that it was a problem for more than just industrially developed areas, and that precipitation quality can affect aquatic resources ( Gorham, 1955). The last three decades of the twentieth century saw tremendous progress in the documentation of the chemistry of the atmosphere, precipitation, and the systems impacted by acid atmospheric deposition. Chronic acidification of ecosystems results in chemical changes to soil and to surface waters and groundwater as a result of reduction of base cation supply or an increase in acid (H+) supply, or both. The most fundamental changes during chronic acidification are an increase in exchangeable H+ or Al3+ (aluminum) in soils, an increase in H+ activity (˜concentration) in water in contact with soil, and a decrease in alkalinity in waters draining watersheds. Water draining from the soil is acidified and has a lower pH (=-log [H+]). As systems acidify, their biotic community changes.Acidic surface waters occur in many parts of the world as a consequence of natural processes and also due to atmospheric deposition of strong acid (e.g., Canada, Jeffries et al. (1986); the United Kingdom, Evans and Monteith (2001); Sweden, Swedish Environmental Protection Board (1986); Finland, Forsius et al. (1990); Norway, Henriksen et al. (1988a); and the United States (USA), Brakke et al. (1988)). Concern over acidification in the temperate regions of the northern hemisphere has been driven by the potential for accelerating natural acidification by pollution of the atmosphere with acidic or acidifying compounds. Atmospheric pollution ( Figure 1) has resulted in an increased flux of acid to and through ecosystems. Depending on the ability of an ecosystem to neutralize the increased flux of acidity, acidification may increase only imperceptibly or be accelerated at a rate that

  16. Inhibitory effect of ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bo; Wan, Wei; Wang, Jianlong [Laboratory of Environmental Technology, INET, Tsinghua University, Beijing 100084 (China)

    2008-12-15

    The inhibitory effect of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production by mixed cultures was investigated in batch tests using glucose as substrate. The experimental results showed that, at 35 C and initial pH 7.0, during the fermentative hydrogen production, the substrate degradation efficiency, hydrogen production potential, hydrogen yield and hydrogen production rate all trended to decrease with increasing added ethanol, acetic acid, propionic acid and butyric acid concentration from 0 to 300 mmol/L. The inhibitory effect of added ethanol on fermentative hydrogen production was smaller than those of added acetic acid, propionic acid and butyric acid. The modified Han-Levenspiel model could describe the inhibitory effects of added ethanol, acetic acid, propionic acid and butyric acid on fermentative hydrogen production rate in this study successfully. The modified Logistic model could describe the progress of cumulative hydrogen production. (author)

  17. Determination of plant hormones in fertilizers by high-performance liquid chromatography with photodiode array detection: method development and single-laboratory validation.

    Science.gov (United States)

    Gambino, Grazia Laura; Pagano, Pietro; Scordino, Monica; Sabatino, Leonardo; Scollo, Emanuele; Traulo, Pasqualino; Gagliano, Giacomo

    2008-01-01

    A simple and reliable high-performance liquid chromatographic method that uses photodiode array detection was developed for the simultaneous determination of 12 native and synthetic plant hormones, i.e., plant growth regulators (PGRs), in fertilizers, such as 1-naphthol, 2,4-dichlorophenoxyacetic acid, 4-(2,4-dichlorophenoxy)butyric acid, 4-chlorophenoxyacetic acid, indole-3-acetic acid, 4-(3-indolyl)butyric acid, dichlorprop, (4-chloro-2-methylphenoxy)acetic acid, alpha-naphthaleneacetic acid, 1-naphthaleneacetamide, beta-naphthoxyacetic acid, and thidiazuron. The method was experimentally validated for routine regulatory application, and the following analytical parameters were assessed for all PGRs studied: linearity; specificity; precision (relative standard deviation) and accuracy, both measured at 3 concentration levels (0.1, 0.05, and 0.01%, w/w); ruggedness; limit of detection; and limit of quantification. Results were satisfactory for all method validation parameters tested and for all PGRs studied, demonstrating the suitability of the method for the determination of PGRs in fertilizers. The uncertainty of measurement was also estimated at 3 concentration levels for all PGRs by using the approach of the International Organization for Standardization, described in its Guide to the Expression of Uncertainty in Measurement. The method was applied to 20 samples of liquid fertilizer with declared biostimulant properties.

  18. Synthesis and anticonvulsant activity of novel bicyclic acidic amino acids

    DEFF Research Database (Denmark)

    Conti, Paola; De Amici, Marco; Joppolo Di Ventimiglia, Samuele

    2003-01-01

    Bicyclic acidic amino acids (+/-)-6 and (+/-)-7, which are conformationally constrained homologues of glutamic acid, were prepared via a strategy based on a 1,3-dipolar cycloaddition. The new amino acids were tested toward ionotropic and metabotropic glutamate receptor subtypes; both of them...

  19. EFFECT OF ACIDITY ON ACID-SENSITIVE UV CURING SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Qi-dao Chen; Bing Wu; Xiao-yin Hong

    1999-01-01

    By using diphenyliodonium salts with different counterions as photo acid generators (PAGs), the effect of acidity on ring-opening polymerization of epoxy monomers and polycondensation of polyol with hexamethoxymethyl melamine (HMMM) was studied. The result shows that the rate of ring-opening polymerization is evidently dependent on the acidity of the acid and strong photo-generated acid is required.However, there is a leveling effect in the polycondensation system; if the photo-generated acid is stronger than protonated HMMM, the acidity does not obviously affect the polycondensation rate.

  20. Determination of Sialic Acids by Acidic Ninhydrin Reaction

    Directory of Open Access Journals (Sweden)

    Yao,Kenzabroh

    1987-12-01

    Full Text Available A new acidic ninhydrin method for determining free sialic acids is described. The method is based on the reaction of sialic acids with Gaitonde's acid ninhydrin reagent 2 which yields a stable color with an absorption maximum at 470 nm. The standard curve is linear in the range of 5 to 500 nmol of N-acetylneuraminic acid per 0.9 ml of reaction mixture. The reaction was specific only for sialic acids among the various sugars and sugar derivatives examined. Some interference of this method by cysteine, cystine and tryptophan was noted, although their absorption maxima differed from that of sialic acids. The interference by these amino acids was eliminated with the use of a small column of cation-exchange resin. The acidic ninhydrin method provides a simple and rapid method for the determination of free sialic acids in biological materials.

  1. Domoic Acid Epileptic Disease

    Directory of Open Access Journals (Sweden)

    John S. Ramsdell

    2014-03-01

    Full Text Available Domoic acid epileptic disease is characterized by spontaneous recurrent seizures weeks to months after domoic acid exposure. The potential for this disease was first recognized in a human case study of temporal lobe epilepsy after the 1987 amnesic shellfish-poisoning event in Quebec, and was characterized as a chronic epileptic syndrome in California sea lions through investigation of a series of domoic acid poisoning cases between 1998 and 2006. The sea lion study provided a breadth of insight into clinical presentations, unusual behaviors, brain pathology, and epidemiology. A rat model that replicates key observations of the chronic epileptic syndrome in sea lions has been applied to identify the progression of the epileptic disease state, its relationship to behavioral manifestations, and to define the neural systems involved in these behavioral disorders. Here, we present the concept of domoic acid epileptic disease as a delayed manifestation of domoic acid poisoning and review the state of knowledge for this disease state in affected humans and sea lions. We discuss causative mechanisms and neural underpinnings of disease maturation revealed by the rat model to present the concept for olfactory origin of an epileptic disease; triggered in dendodendritic synapases of the olfactory bulb and maturing in the olfactory cortex. We conclude with updated information on populations at risk, medical diagnosis, treatment, and prognosis.

  2. Improvement of friable callus production of Boerhaavia paniculata Rich and the investigation of its lipid profile by GC/MS.

    Science.gov (United States)

    Souza, Joanne M M; Berkov, Strahill; Santos, Alberdan S

    2014-09-01

    In this study, a protocol to induce high amount of friable callus of Boerhaavia paniculata RICH and a lipidomics technique were applied to investigate the profile of lipids to relate to those present in the roots of this plant that presented anti-inflammatory activity in the crude hexane extract. The callus culture was induced from seeds in solidified Murashige and Skoog medium containing different amounts of glucose and different concentrations of 2,4-Dichlorophenoxyacetic acid. The explants were kept in a germination chamber at 30±2°C with a photoperiod of 16 h under light intensity of 27 µmol m-2 s-1 for 4 weeks. The best results for friable callus formation and development of the biomass were obtained in the treatment containing 2.26 µM 2.4-D and glucose (1.5 %; w/v). Lipidomics techniques were applied in hexane fraction showing higher concentrations of the steroids β-sitosterol (3.53 mg/100 g dc-dry cells), and fatty acids, especially 2-hydroxy-tetracosanoic acid (0.34 mg/100 g dc), eicosanoic acid (86.25 mg/100 g dc), stearic acid (420.83 mg/100 g dc), tetradecanoic acid (10.74 mg/100 g dc) and linoleic acid (100.61 mg/100 g dc). The lipid profile of callus versus that found in the roots of wild plant is described in this work.

  3. Improvement of friable callus production of Boerhaavia paniculata Rich and the investigation of its lipid profile by GC/MS

    Directory of Open Access Journals (Sweden)

    JOANNE M.M. SOUZA

    2014-09-01

    Full Text Available In this study, a protocol to induce high amount of friable callus of Boerhaavia paniculata RICH and a lipidomics technique were applied to investigate the profile of lipids to relate to those present in the roots of this plant that presented anti-inflammatory activity in the crude hexane extract. The callus culture was induced from seeds in solidified Murashige and Skoog medium containing different amounts of glucose and different concentrations of 2,4-Dichlorophenoxyacetic acid. The explants were kept in a germination chamber at 30±2°C with a photoperiod of 16 h under light intensity of 27 µmol m–2 s–1 for 4 weeks. The best results for friable callus formation and development of the biomass were obtained in the treatment containing 2.26 µM 2.4-D and glucose (1.5 %; w/v. Lipidomics techniques were applied in hexane fraction showing higher concentrations of the steroids β-sitosterol (3.53 mg/100 g dc–dry cells, and fatty acids, especially 2-hydroxy-tetracosanoic acid (0.34 mg/100 g dc, eicosanoic acid (86.25 mg/100 g dc, stearic acid (420.83 mg/100 g dc, tetradecanoic acid (10.74 mg/100 g dc and linoleic acid (100.61 mg/100 g dc. The lipid profile of callus versus that found in the roots of wild plant is described in this work.

  4. Analyses of Phytohormones in Coconut (Cocos Nucifera L. Water Using Capillary Electrophoresis-Tandem Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    Swee Ngin Tan

    2014-12-01

    Full Text Available Capillary electrophoresis (CE coupled with mass spectrometry (MS or tandem mass spectrometry (MS/MS is reported as an alternative and potentially useful method for the simultaneous analysis of various classes of phytohormones with diversified structures, including indole-3-acetic acid (IAA, indole-3-butyric acid (IBA, abscisic acid (ABA, gibberellic acid (GA, zeatin (Z, N6-benzyladenine (BA, α-naphthaleneacetic acid (NAA and 2,4-dichlorophenoxyacetic acid (2,4-D. The key to the CE-MS/MS analysis was based on electroosmotic flow reversal using a cationic polymer-coated capillary. Under optimum conditions, a baseline separation of eight phytohormones was accomplished within 30 min using 60 mM ammonium formate/formic acid buffer of pH 3.8 with −20 kV as the separation voltage. The accessibility of MS/MS together with the characterization by migration properties obtained by CE allows for the development of CE-MS/MS as an emerging potential method for the analysis of different classes of phytohormones in a single run. The utility of the CE-MS/MS method was demonstrated by the comprehensive screening of phytohormones in coconut (Cocos nucifera L. water after pre-concentration and purification through solid-phase extraction (SPE cartridge. IAA, ABA, GA and Z were detected and quantified in the purified coconut water extract sample.

  5. Simultaneous analysis of different classes of phytohormones in coconut (Cocos nucifera L.) water using high-performance liquid chromatography and liquid chromatography-tandem mass spectrometry after solid-phase extraction.

    Science.gov (United States)

    Ma, Zhen; Ge, Liya; Lee, Anna S Y; Yong, Jean Wan Hong; Tan, Swee Ngin; Ong, Eng Shi

    2008-03-10

    Coconut (Cocos nucifera L.) water, which contains many uncharacterized phytohormones is extensively used as a growth promoting supplement in plant tissue culture. In this paper, a high-performance liquid chromatography (HPLC) method was developed for the simultaneous determination of various classes phytohormones, including indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), abscisic acid (ABA), gibberellic acid (GA), zeatin (Z), N(6)-benzyladenine (BA), alpha-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) in young coconut water (CW). The analysis was carried out using a reverse-phase HPLC gradient elution, with an aqueous mobile phase (containing 0.1% formic acid, pH adjusted to 3.2 with triethylamine (TEA)) modified by methanol, and solute detection made at 265 nm wavelength. The method was validated for specificity, quantification, accuracy and precision. After preconcentration of putative endogenous phytohormones in CW using C(18) solid-phase extraction (SPE) cartridges, the HPLC method was able to screen for putative endogenous phytohormones present in CW. Finally, the identities of the putative phytohormones present in CW were further confirmed using independent liquid chromatography-tandem mass spectrometry (LC-MS/MS) equipped with an electrospray ionization (ESI) interface.

  6. In vitro auxin binding to cellular membranes of cucumber fruits.

    Science.gov (United States)

    Narayanan, K R; Mudge, K W; Poovaiah, B W

    1981-04-01

    Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s).

  7. In Vitro Auxin Binding to Cellular Membranes of Cucumber Fruits 123

    Science.gov (United States)

    Narayanan, Komaratchi R.; Mudge, Kenneth W.; Poovaiah, B. W.

    1981-01-01

    Specific binding of 1-naphthaleneacetic acid (NAA) to crude membrane preparations from cucumber (Cucumis sativus L.) was demonstrated. This in vitro binding had a pH optimum of 3.75 and an equilibrium dissociation constant of 10 to 20 micromolar with 1250 picomoles binding sites per gram fresh weight. The NAA-binding sites were pronase sensitive. The supernatant from the fruit partially inhibited the in vitro NAA binding to fruit membranes. NAA, 2-naphthoxyacetic acid, 3-indoleacetic acid, 2-4-dichlorophenoxyacetic acid, and 2,3,5-triiodobenzoic acid, which are reported to be very good inducers of parthenocarpy in cucumber, showed a high degree of specific binding to cucumber fruit membranes. In comparison, 2-naphthaleneacetic acid and indolepropionic acid, which are reported to be very weak auxins in corn coleoptile, pea stem, and strawberry fruit growth bioassays, did not bind efficiently to cucumber fruit membranes. In vitro binding studies with fruit membranes suggest that auxin stimulated fruit growth may be mediated by membrane-associated, auxin-binding protein(s). PMID:16661764

  8. Hydrogen production by fermentation using acetic acid and lactic acid.

    Science.gov (United States)

    Matsumoto, Mitsufumi; Nishimura, Yasuhiko

    2007-03-01

    Microbial hydrogen production from sho-chu post-distillation slurry solution (slurry solution) containing large amounts of organic acids was investigated. The highest hydrogen producer, Clostridium diolis JPCC H-3, was isolated from natural environment and produced hydrogen at 6.03+/-0.15 ml from 5 ml slurry solution in 30 h. Interestingly, the concentration of acetic acid and lactic acid in the slurry solution decreased during hydrogen production. The substrates for hydrogen production by C. diolis JPCC H-3, in particular organic acids, were investigated in an artificial medium. No hydrogen was produced from acetic acid, propionic acid, succinic acid, or citric acid on their own. Hydrogen and butyric acid were produced from a mixture of acetic acid and lactic acid, showing that C. diolis. JPCC H-3 could produce hydrogen from acetic acid and lactic acid. Furthermore, calculation of the Gibbs free energy strongly suggests that this reaction would proceed. In this paper, we describe for the first time microbial hydrogen production from acetic acid and lactic acid by fermentation.

  9. Halogenated fatty acids

    DEFF Research Database (Denmark)

    Mu, Huiling; Sundin, Peter; Wesén, Clas

    1997-01-01

    Halogenated fatty acids are the major contributors to organohalogen compounds in lipids of marine mammals, fish, and bivalves. For the initial characterization of these recently noticed compounds, a determination of the halogen concentration has usually been combined with some lipid isolation...... and separation method. This review covers separation by solid phase chromatography, gel permeation chromatography, and liquid-liquid extraction, followed by halogen determination. All studies performed according to this outline have indicated that the major organohalogen compounds are chlorinated fatty acids...... bound in different lipids. For the detection and identification of individual, halogenated fatty acid methyl esters (FAMEs) liberated from the lipids, gas chromatography (GC) has been employed together with detection methods such as electron capture detection, electrolytic conductivity detection (ELCD...

  10. Calorimetry of Nucleic Acids.

    Science.gov (United States)

    Rozners, Eriks; Pilch, Daniel S; Egli, Martin

    2015-12-01

    This unit describes the application of calorimetry to characterize the thermodynamics of nucleic acids, specifically, the two major calorimetric methodologies that are currently employed: differential scanning (DSC) and isothermal titration calorimetry (ITC). DSC is used to study thermally induced order-disorder transitions in nucleic acids. A DSC instrument measures, as a function of temperature (T), the excess heat capacity (C(p)(ex)) of a nucleic acid solution relative to the same amount of buffer solution. From a single curve of C(p)(ex) versus T, one can derive the following information: the transition enthalpy (ΔH), entropy (ΔS), free energy (ΔG), and heat capacity (ΔCp); the state of the transition (two-state versus multistate); and the average size of the molecule that melts as a single thermodynamic entity (e.g., the duplex). ITC is used to study the hybridization of nucleic acid molecules at constant temperature. In an ITC experiment, small aliquots of a titrant nucleic acid solution (strand 1) are added to an analyte nucleic acid solution (strand 2), and the released heat is monitored. ITC yields the stoichiometry of the association reaction (n), the enthalpy of association (ΔH), the equilibrium association constant (K), and thus the free energy of association (ΔG). Once ΔH and ΔG are known, ΔS can also be derived. Repetition of the ITC experiment at a number of different temperatures yields the ΔCp for the association reaction from the temperature dependence of ΔH.

  11. Whither acid rain?

    Science.gov (United States)

    Brimblecombe, P

    2001-04-04

    Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  12. Ethylenediaminetetraacetic acid in endodontics.

    Science.gov (United States)

    Mohammadi, Zahed; Shalavi, Sousan; Jafarzadeh, Hamid

    2013-09-01

    Ethylenediaminetetraacetic acid (EDTA) is a chelating agent can bind to metals via four carboxylate and two amine groups. It is a polyamino carboxylic acid and a colorless, water-soluble solid, which is widely used to dissolve lime scale. It is produced as several salts, notably disodium EDTA and calcium disodium EDTA. EDTA reacts with the calcium ions in dentine and forms soluble calcium chelates. A review of the literature and a discussion of the different indications and considerations for its usage are presented.

  13. Locked nucleic acid

    DEFF Research Database (Denmark)

    Jepsen, Jan Stenvang; Sørensen, Mads D; Wengel, Jesper

    2004-01-01

    Locked nucleic acid (LNA) is a class of nucleic acid analogs possessing very high affinity and excellent specificity toward complementary DNA and RNA, and LNA oligonucleotides have been applied as antisense molecules both in vitro and in vivo. In this review, we briefly describe the basic...... physiochemical properties of LNA and some of the difficulties that may be encountered when applying LNA technology. The central part of the review focuses on the use of LNA molecules in regulation of gene expression, including delivery to cells, stability, unspecific effects, toxicity, pharmacokinetics...

  14. Whither Acid Rain?

    Directory of Open Access Journals (Sweden)

    Peter Brimblecombe

    2000-01-01

    Full Text Available Acid rain, the environmental cause célèbre of the 1980s seems to have vanished from popular conscience. By contrast, scientific research, despite funding difficulties, has continued to produce hundreds of research papers each year. Studies of acid rain taught much about precipitation chemistry, the behaviour of snow packs, long-range transport of pollutants and new issues in the biology of fish and forested ecosystems. There is now evidence of a shift away from research in precipitation and sulfur chemistry, but an impressive theoretical base remains as a legacy.

  15. Fatty acids of Thiobacillus thiooxidans.

    Science.gov (United States)

    Levin, R A

    1971-12-01

    Fatty acid spectra were made on Thiobacillus thiooxidans cultures both in the presence and absence of organic compounds. Small additions of glucose or acetate had no significant effect either on growth or fatty acid content. The addition of biotin had no stimulatory effect but did result in slight quantitative changes in the fatty acid spectrum. The predominant fatty acid was a C(19) cyclopropane acid.

  16. Obtención de plantas haploides en chile miahuateco (Capsicum annuum L. Obtaining haploid plants from miahuateco chili pepper (Capsicum annuum L.

    Directory of Open Access Journals (Sweden)

    Marcelina Vélez Torres

    Full Text Available La regeneración de plantas haploides, es una herramienta importante en los programas de mejoramiento y estudios genéticos, ya que permite obtener líneas puras más rápido que los métodos convencionales a través de la duplicación de plantas haploides. El objetivo de este trabajo fue establecer una metodología que permita la regeneración de plantas haploides de chile tipo miahuateco (Capsicum annuum L.. Las anteras se cultivaron en los medios basales de Murashige y Skoog (1962; Chu et al. (1975, suplementados con 6-furfurilaminopurina (0.1-1 mg L-1, ácido naftalenacético (0.1 mg L-1, ácido indolacético (1 mg L-1 y ácido 2-4 diclorofenoxiacético (1 mg L-1. La embriogénesis se indujo hasta en 2.23% de anteras cuando se cultivaron en una combinación de 6-furfurilaminopurina con 2-4, diclorofenoxiacético (1 mg L-1 de ambos o de ácido indolacético con 6-furfurilaminopurina (0.1 mg L-1 de ambos. El análisis cromosómicos de las plantas regeneradas mostró que eran haploides con número cromósomico 2n= x= 12.Haploid plant regeneration is an important tool in breeding programs and genetics studies, since it helps obtain pure lines faster than conventional methods by the duplication of haploid plants. The aim of this study was to establish a methodology to regenerate haploid Miahuateco chili pepper plants (Capsicum annuum L.. Anthers were grown on Murashige and Skoog (1962; Chu et al. (1975 basal media, supplemented with 6-furfurylaminopurine (0.1-1 mg L-1, naphthaleneacetic acid (0.1 mg L-1, indolacetic acid (1 mg L-1, and 2-4 dichlorophenoxyacetic acid (1 mg L-1. Embryogenesis was induced in 2.23% of anthers grown in a combination of 6-furfurylaminopurine with 2-4 dichlorophenoxyacetic acid (1 mg L-1, of each, or indolacetic acid with 6-furfurylaminopurine (0.1 mg L-1 of each. Chromosome analysis of regenerated plants showed that they were haploids with a chromosome number of 2n= x= 12.

  17. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    Science.gov (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  18. The Acid-Base Titration of a Very Weak Acid: Boric Acid

    Science.gov (United States)

    Celeste, M.; Azevedo, C.; Cavaleiro, Ana M. V.

    2012-01-01

    A laboratory experiment based on the titration of boric acid with strong base in the presence of d-mannitol is described. Boric acid is a very weak acid and direct titration with NaOH is not possible. An auxiliary reagent that contributes to the release of protons in a known stoichiometry facilitates the acid-base titration. Students obtain the…

  19. Catalytic acetoxylation of lactic acid to 2-acetoxypropionic acid, en route to acrylic acid

    NARCIS (Netherlands)

    Beerthuis, R.; Granollers, M.; Brown, D.R.; Salavagione, H.J.; Rothenberg, G.; Shiju, N.R.

    2015-01-01

    We present an alternative synthetic route to acrylic acid, starting from the platform chemical lactic acid and using heterogeneous catalysis. To improve selectivity, we designed an indirect dehydration reaction that proceeds via acetoxylation of lactic acid to 2-acetoxypropionic acid. This

  20. Lactic acid bacterial cell factories for gamma-aminobutyric acid.

    Science.gov (United States)

    Li, Haixing; Cao, Yusheng

    2010-11-01

    Gamma-aminobutyric acid is a non-protein amino acid that is widely present in organisms. Several important physiological functions of gamma-aminobutyric acid have been characterized, such as neurotransmission, induction of hypotension, diuretic effects, and tranquilizer effects. Many microorganisms can produce gamma-aminobutyric acid including bacteria, fungi and yeasts. Among them, gamma-aminobutyric acid-producing lactic acid bacteria have been a focus of research in recent years, because lactic acid bacteria possess special physiological activities and are generally regarded as safe. They have been extensively used in food industry. The production of lactic acid bacterial gamma-aminobutyric acid is safe and eco-friendly, and this provides the possibility of production of new naturally fermented health-oriented products enriched in gamma-aminobutyric acid. The gamma-aminobutyric acid-producing species of lactic acid bacteria and their isolation sources, the methods for screening of the strains and increasing their production, the enzymatic properties of glutamate decarboxylases and the relative fundamental research are reviewed in this article. And the potential applications of gamma-aminobutyric acid-producing lactic acid bacteria were also referred to.

  1. Aminolevulinic Acid Topical

    Science.gov (United States)

    ... on or under the skin that result from exposure to sunlight and can develop into skin cancer) of the ... acid will make your skin very sensitive to sunlight (likely to get sunburn). Avoid exposure of treated skin to direct sunlight or bright ...

  2. Multifunctional Cinnamic Acid Derivatives

    Directory of Open Access Journals (Sweden)

    Aikaterini Peperidou

    2017-07-01

    Full Text Available Our research to discover potential new multitarget agents led to the synthesis of 10 novel derivatives of cinnamic acids and propranolol, atenolol, 1-adamantanol, naphth-1-ol, and (benzylamino ethan-1-ol. The synthesized molecules were evaluated as trypsin, lipoxygenase and lipid peroxidation inhibitors and for their cytotoxicity. Compound 2b derived from phenoxyphenyl cinnamic acid and propranolol showed the highest lipoxygenase (LOX inhibition (IC50 = 6 μΜ and antiproteolytic activity (IC50 = 0.425 μΜ. The conjugate 1a of simple cinnamic acid with propranolol showed the higher antiproteolytic activity (IC50 = 0.315 μΜ and good LOX inhibitory activity (IC50 = 66 μΜ. Compounds 3a and 3b, derived from methoxylated caffeic acid present a promising combination of in vitro inhibitory and antioxidative activities. The S isomer of 2b also presented an interesting multitarget biological profile in vitro. Molecular docking studies point to the fact that the theoretical results for LOX-inhibitor binding are identical to those from preliminary in vitro study.

  3. Lactic acid and lactates

    NARCIS (Netherlands)

    Schreurs, V.V.A.M.

    2010-01-01

    This review aims to integrate the present state of knowledge on lactate metabolism in human and mammalian physiology as far as it could be subject to nutritional interventions. An integrated view on the nutritional, metabolic and physiological aspects of lactic acid and lactates might open a perspec

  4. Accidents with sulfuric acid

    Directory of Open Access Journals (Sweden)

    Rajković Miloš B.

    2006-01-01

    Full Text Available Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eighteen years (from 1988 till the beginning of 2006 are analyzed in this paper. It is very alarming data that, according to all the recorded accidents, over 1.6 million tons of sulfuric acid were exuded. Although water transport is the safest (only 16.38% of the total amount of accidents in that way 98.88% of the total amount of sulfuric acid was exuded into the environment. Human factor was the common factor in all the accidents, whether there was enough control of the production process, of reservoirs or transportation tanks or the transport was done by inadequate (old tanks, or the accidents arose from human factor (inadequate speed, lock of caution etc. The fact is that huge energy, sacrifice and courage were involved in the recovery from accidents where rescue teams and fire brigades showed great courage to prevent real environmental catastrophes and very often they lost their lives during the events. So, the phrase that sulfuric acid is a real "environmental bomb" has become clearer.

  5. Uric acid and evolution

    National Research Council Canada - National Science Library

    Álvarez-Lario, Bonifacio; Macarrón-Vicente, Jesús

    2010-01-01

    Uric acid (UA) is the end product of purine metabolism in humans due to the loss of uricase activity by various mutations of its gene during the Miocene epoch, which led to humans having higher UA levels than other mammals. Furthermore, 90...

  6. Acid Rain Investigations.

    Science.gov (United States)

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  7. The Acid Rain Game.

    Science.gov (United States)

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  8. Acid Rain Classroom Projects.

    Science.gov (United States)

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  9. Hyaluronic Acid Assays

    DEFF Research Database (Denmark)

    Itenov, Theis S; Kirkby, Nikolai S; Bestle, Morten H

    2015-01-01

    BACKGROUD: Hyaluronic acid (HA) is proposed as a marker of functional liver capacity. The aim of the present study was to compare a new turbidimetric assay for measuring HA with the current standard method. METHODS: HA was measured by a particle-enhanced turbidimetric immunoassay (PETIA) and enzyme...

  10. Koetjapic acid chloroform hemisolvate

    Directory of Open Access Journals (Sweden)

    Z. D. Nassar

    2010-06-01

    Full Text Available The asymmetric unit of the title compound, C30H46O4·0.5CHCl3, consists of one koetjapic acid [systematic name: (3R,4aR,4bS,7S,8S,10bS,12aS-7-(2-carboxyethyl-3,4b,7,10b,12a-pentamethyl-8-(prop-1-en-2-yl-1,2,3,4,4a,4b,5,6,7,8,9,10,10b,11,12,12a-hexadecahydrochrysene-3-carboxylic acid] molecule and one half-molecule of chloroform solvent, which is disordered about a twofold rotation axis. The symmetry-independent component is further disordered over two sites, with occupancies of 0.30 and 0.20. The koetjapic acid contains a fused four-ring system, A/B/C/D. The A/B, B/C and C/D junctions adopt E/trans/cis configurations, respectively. The conformation of ring A is intermediate between envelope and half-chair and ring B adopts an envelope conformation whereas rings C and D adopt chair conformations. A weak intramolecular C—H...O hydrogen bond is observed. The koetjapic acid molecules are linked into dimers by two pairs of intermolecular O—H...O hydrogen bonds. The dimers are stacked along the c axis.

  11. Phenylpyruvic acid in urine

    NARCIS (Netherlands)

    Meulemans, O.; Vergeer, E.G.

    1960-01-01

    The method of The, Fleury And Vink for the determination of phenylpyruvic acid (PPA) in urine is modified by measuring the extinction after the green colour with ferric chloride has faded, and subtracting this extinction from that found initially. More accurate values are obtained and low PPA values

  12. Acid Rain Classroom Projects.

    Science.gov (United States)

    Demchik, Michael J.

    2000-01-01

    Describes a curriculum plan in which students learn about acid rain through instructional media, research and class presentations, lab activities, simulations, design, and design implementation. Describes the simulation activity in detail and includes materials, procedures, instructions, examples, results, and discussion sections. (SAH)

  13. The Acid Rain Game.

    Science.gov (United States)

    Rakow, Steven J.; Glenn, Allen

    1982-01-01

    Provides rationale for and description of an acid rain game (designed for two players), a problem-solving model for elementary students. Although complete instructions are provided, including a copy of the game board, the game is also available for Apple II microcomputers. Information for the computer program is available from the author.…

  14. Acid Rain Investigations.

    Science.gov (United States)

    Hugo, John C.

    1992-01-01

    Presents an activity in which students investigate the formation of solid ammonium chloride aerosol particles to help students better understand the concept of acid rain. Provides activity objectives, procedures, sample data, clean-up instructions, and questions and answers to help interpret the data. (MDH)

  15. Effect of domoic acid on brain amino acid levels.

    Science.gov (United States)

    Durán, R; Arufe, M C; Arias, B; Alfonso, M

    1995-03-01

    The administration of Domoic Acid (Dom) in a 0.2 mg/kg i.p. dose induces changes in the levels of amino acids of neurochemical interest (Asp, Glu, Gly, Tau, Ala, GABA) in different rat brain regions (hypothalamus, hippocampus, amygdala, striatum, cortex and midbrain). The most affected amino acid is the GABA, the main inhibitory amino acid neurotransmitter, whereas glutamate, the main excitatory amino acid, is not affected. The rat brain regions that seem to be the main target of the Dom action belong to the limbic system (hippocampus, amygdala). The possible implication of the amino acids in the actions of Dom is also discussed.

  16. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    Energy Technology Data Exchange (ETDEWEB)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  17. Potentiometric determination of peroxodisulfuric acid during electrolysis sulfuric acid

    Directory of Open Access Journals (Sweden)

    Fedor Malchik

    2013-09-01

    Full Text Available Was proposed two potentiometric methods for determining peroxodisulfuric acid during electrolysis of sulfuric acid (potentiometric titration method and direct potentiometry, based on its interaction with a known excess of a solution Fe2+.

  18. Progress in engineering acid stress resistance of lactic acid bacteria.

    Science.gov (United States)

    Wu, Chongde; Huang, Jun; Zhou, Rongqing

    2014-02-01

    Lactic acid bacteria (LAB) are widely used for the production of a variety of fermented foods, and are considered as probiotic due to their health-promoting effect. However, LAB encounter various environmental stresses both in industrial fermentation and application, among which acid stress is one of the most important survival challenges. Improving the acid stress resistance may contribute to the application and function of probiotic action to the host. Recently, the advent of genomics, functional genomics and high-throughput technologies have allowed for the understanding of acid tolerance mechanisms at a systems level, and many method to improve acid tolerance have been developed. This review describes the current progress in engineering acid stress resistance of LAB. Special emphasis is placed on engineering cellular microenvironment (engineering amino acid metabolism, introduction of exogenous biosynthetic capacity, and overproduction of stress response proteins) and maintaining cell membrane functionality. Moreover, strategies to improve acid tolerance and the related physiological mechanisms are also discussed.

  19. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine.

    Science.gov (United States)

    Campos, Francisco M; Figueiredo, Ana R; Hogg, Tim A; Couto, José A

    2009-06-01

    The influence of phenolic (p-coumaric, caffeic, ferulic, gallic and protocatechuic) acids on glucose and organic acid metabolism by two strains of wine lactic acid bacteria (Oenococcus oeni VF and Lactobacillus hilgardii 5) was investigated. Cultures were grown in modified MRS medium supplemented with different phenolic acids. Cellular growth was monitored and metabolite concentrations were determined by HPLC-RI. Despite the strong inhibitory effect of most tested phenolic acids on the growth of O. oeni VF, the malolactic activity of this strain was not considerably affected by these compounds. While less affected in its growth, the capacity of L. hilgardii 5 to degrade malic acid was clearly diminished. Except for gallic acid, the addition of phenolic acids delayed the metabolism of glucose and citric acid in both strains tested. It was also found that the presence of hydroxycinnamic acids (p-coumaric, caffeic and ferulic) increased the yield of lactic and acetic acid production from glucose by O. oeni VF and not by L. hilgardii 5. The results show that important oenological characteristics of wine lactic acid bacteria, such as the malolactic activity and the production of volatile organic acids, may be differently affected by the presence of phenolic acids, depending on the bacterial species or strain.

  20. [Determination of scopolin, chlorogenic acid, scopoletin, isochlorogenic acid A, isochlorogenic acid B and isochlorogenic acid C in plants of Erycibe].

    Science.gov (United States)

    Xu, Xiao-kun; Chen, Zhi-yong; Liao, Li-ping; Zhang, Zi-jia; Wang, Zheng-tao

    2015-03-01

    An accurate and reliable analytical method for-simultaneous determination of six active components (scopolin, chlorogenic acid, scopoletin, isochlorogenic acid A, isochlorogenic acid B and isochlorogenic acid C) in plants of Erycibe was developed. Scopolin, chlorogenic acid, scopoletin, isochlorogenic acid A, isochlorogenic acid B and isochlorogenic acid C in the samples were well separated in analytical HPLC by gradual elution with methanol-0.1% formic acid solution. The chromatographic condictions: Agilent Poroshell 120 EC-C18 column, flowing rate being 1 mL x min(-1), detecting wavelength at 345 nm. Good linearities of scopolin, chlorogenic acid, scopoletin, isochlorogenic acid A, isochlorogenic acid B and isochlorogenic acid C were in the range of 0.026 8-2.68, 0.027 0-2.70, 0.008 1-0.81, 0.018 8-1.88, 0.017 6-1.76, 0.019 6-1.96 μg, respectively (r > 0.999 6). The average recoveries of the six components were 98.1%, 98.7%, 100.8%, 100.4%, 99.7%, 101.1%; the relative standard deviations were 2.67%, 2.86%, 2.62%, 1.98%, 2.76%, 2.19%. The method is simple, feasible and reproducible and can be used for the quality control of plants of Erycibe.

  1. Efficient plant regeneration of bittersweet (Solanum dulcamara L., a medicinal plant

    Directory of Open Access Journals (Sweden)

    Arzu Ucar Turker

    2011-04-01

    Full Text Available Solanum dulcamara L. (bittersweet is a medicinal plant that has been used to treat skin diseases, warts, tumors, felons, arthritis, rheumatism, bronchial congestion, heart ailments, ulcerative colitis, eye inflammations, jaundice and pneumonia. A reliable in vitro culture protocol for bittersweet was established. Explants (leaf and petiole segments were cultured on Murashige and Skoog minimal organics (MSMO medium with various plant growth regulator combinations. Leaf explants formed more shoots than petiole explants. Plant regeneration was observed through indirect organogenesis with both explants. Best shoot proliferation was obtained from leaf explants with 3 mg/l BA (benzyladenine and 0.5 mg/l IAA (indole-3-acetic acid. Regenerated shoots were transferred to rooting media containing different levels of IAA (indole-3-acetic acid, IBA (indole-3-butyric acid, NAA (naphthalene acetic acid or 2,4-D (2,4 dichlorophenoxyacetic acid. Most shoots developed roots on medium with 0.5 mg/l IBA. Rooted explants were transferred to vermiculate in Magenta containers for acclimatization and after 2 weeks, they were planted in plastic pots containing potting soil and maintained in the plant growth room.

  2. Effects of anionic xenobiotics on rat kidney. I--Tissue and mitochondrial respiration.

    Science.gov (United States)

    Pritchard, J B; Krall, A R; Silverthorn, S U

    1982-01-15

    The polar 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) metabolite, 2,2-bis(p-chlorophenyl)acetic acid (DDA), and the phenoxyacetic acid herbicides, 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), were previously shown to be accumulated to high levels in liver and kidney via the organic acid transport system, raising the possibility of organ-specific toxicity secondary to transport. In these studies, accumulation of DDA was shown to depress oxygen consumption by renal cortical slices at high doses (0.1 and 1mM). Isolated renal and hepatic mitochondria were uncoupled by low doses of DDA (5-10 nmoles/mg mitochondrial protein. Maximal uncoupling was seen at 50-70 nmoles/mg. 2,4-D and 2,4,5-T also produced uncoupling, but at doses of 70 nmoles/mg or higher. All agents were more effective with alpha-ketoglutarate or pyruvate-malate), all three agents also depressed State 3 (ADP-stimulated) respiration. Again, DDA was more effective than 2,4-D or 2,4,5-T. These results suggest that accumulation of these or other anionic xenobiotics may lead to toxicity in those tissues possessing the organic anion transport system.

  3. Regeneration of viable oil palm plants from protoplasts by optimizing media components, growth regulators and cultivation procedures.

    Science.gov (United States)

    Masani, Mat Yunus Abdul; Noll, Gundula; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2013-09-01

    Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10μM naphthalene acetic acid, 2μM 2,4-dichlorophenoxyacetic acid, 2μM indole-3-butyric acid, 2μM gibberellic acid and 2μM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid.

  4. Organogenesis and plant formation from cotyledon and callus culture of rape

    Directory of Open Access Journals (Sweden)

    Janina H. Rogozińska

    2014-01-01

    Full Text Available Cotyledon explants of rape were excised from aseptically germinated seedlings and cultured during 2 weeks on M u r a s h i g e and S k o o g medium supplemented with auxins, cytokinins, auxin-cytokinin combinations and abscisic acid. Callus formation occurred on medium with 2,4-dichlorophenoxyacetic acid (2,4-D, naphthalene-l-acetic acid (NAA, indole-3-acetic acid (IAA and on their combinations with kinetin (K or 6-benzylaminopurine (BAP. Regeneration of roots was achieved on media with NAA, IAA and indole-3-butyric acid (IBA and on combinations of these auxins with cytokinins. The presence of 2,4-D in the medium, though it promoted compact callus growth, had an inhibitory effect on root formation. Callus derived from the cotyledons had somewhat different requirements for growth in subculture and the root formation ability diminished in the course of the culture. Lower ABA concentrations stimulated callus growth whereas higher concentrations inhibited it similary as in the case of cotyledons. Shoot buds regenerated from the cotyledons after ca. 3 weeks on media supplemented with NAA + BAP. The 9-week-old plantlets transferred to the soil developed into complete plants. The plants which underwent vernalization formed flowers and normal seeds.

  5. Usnic acid controls the acidity tolerance of lichens.

    Science.gov (United States)

    Hauck, Markus; Jürgens, Sascha-René

    2008-11-01

    The hypotheses were tested that, firstly, lichens producing the dibenzofuran usnic acid colonize substrates characterized by specific pH ranges, secondly, this preferred pH is in a range where soluble usnic acid and its corresponding anion occur in similar concentrations, and thirdly, usnic acid makes lichens vulnerable to acidity. Lichens with usnic acid prefer an ambient pH range between 3.5 and 5.5 with an optimum between 4.0 and 4.5. This optimum is close to the pK(a1) value of usnic acid of 4.4. Below this optimum pH, dissolved SO(2) reduces the chlorophyll fluorescence yield more in lichens with than without their natural content of usnic acid. This suggests that usnic acid influences the acidity tolerance of lichens. The putative mechanism of the limited acidity tolerance of usnic acid-containing lichens is the acidification of the cytosol by molecules of protonated usnic acid shuttling protons through the plasma membrane at an apoplastic pH

  6. Circulating folic acid in plasma: relation to folic acid fortification

    Science.gov (United States)

    The implementation of folic acid fortification in the United States has resulted in unprecedented amounts of this synthetic form of folate in the American diet. Folic acid in circulation may be a useful measure of physiologic exposure to synthetic folic acid, and there is a potential for elevated co...

  7. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, Sascha R.A.; van der Ham, Aloysius G.J.; Schuur, Boelo

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  8. Acetic acid extraction from aqueous solutions using fatty acids

    NARCIS (Netherlands)

    IJmker, H.M.; Gramblicka, M.; Kersten, S.R.A.; Ham, van der A.G.J.; Schuur, B.

    2014-01-01

    A major challenge for production of acetic acid via bio-based routes is cost-effective concentration and purification of the acetic acid from the aqueous solutions, for which liquid–liquid extraction is a possible method. A main challenge in extraction of acetic acid from dilute aqueous solutions is

  9. N-(3-Chlorophenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-07-01

    Full Text Available In the title compound, C10H8ClNO3, the molecular conformation is stabilized by two intramolecular hydrogen bonds. The first is a short O—H...O hydrogen bond within the maleamic acid unit and the second is a C—H...O hydrogen bond which connects the amide group with the phenyl ring. The maleamic acid unit is essentially planar, with an r.m.s. deviation of 0.044 Å, and makes a dihedral angle of 15.2 (1° with the phenyl ring. In the crystal, intermolecular N—H...O hydrogen bonds link the molecules into C(7 chains running [010].

  10. Acid hydrolysis of cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Salazar, H.

    1980-12-01

    One of the alternatives to increase world production of etha nol is by the hydrolysis of cellulose content of agricultural residues. Studies have been made on the types of hydrolysis: enzimatic and acid. Data obtained from the sulphuric acid hydrolysis of cellulose showed that this process proceed in two steps, with a yield of approximately 95% glucose. Because of increases in cost of alternatives resources, the high demand of the product and the more economic production of ethanol from cellulose materials, it is certain that this technology will be implemented in the future. At the same time further studies on the disposal and reuse of the by-products of this production must be undertaken.

  11. Autohydrolysis of phytic acid.

    Science.gov (United States)

    Hull, S R; Gray, J S; Montgomery, R

    1999-09-10

    The autohydrolysis of phytic acid at 120 degrees C resulted in the formation of most of the phosphate esters of myo-inositol in varying amounts depending upon the reaction time. Eighteen of the 39 chromatographically distinct myo-inositol mono-, bis-, tris-, tetrakis-, pentakis-, and hexakisphosphates have been characterized using two different HPLC systems. These myo-inositol phosphates were partially purified by preparative anion-exchange chromatography under acidic and alkaline elution conditions. The combination of these two methods provides a two-tiered chromatographic approach to the rapid and sensitive identification of inositol phosphates in complex mixtures. Identification of the products was confirmed by 1D and 2D (1)H NMR analysis. The analytical procedure was applied to the autohydrolysis of the mixture of inositol phosphates from corn steep water.

  12. N-(3-Methylphenylsuccinamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-02-01

    Full Text Available In the crystal structure of the title compound, C11H13NO3, the conformations of the N—H and C=O bonds in the amide segment are anti to each other, and that of the amide H atom is anti to the meta-methyl group in the benzene ring. Furthermore, the conformations of the amide oxygen and the carbonyl O atom of the acid segment are also anti to the adjacent –CH2 groups. The C=O and O—H bonds of the acid group are syn to each other. In the crystal, the molecules are packed into infinite chains through intermolecular N—H...O and O—H...O hydrogen bonds.

  13. Accidents with sulfuric acid

    OpenAIRE

    Rajković Miloš B.

    2006-01-01

    Sulfuric acid is an important industrial and strategic raw material, the production of which is developing on all continents, in many factories in the world and with an annual production of over 160 million tons. On the other hand, the production, transport and usage are very dangerous and demand measures of precaution because the consequences could be catastrophic, and not only at the local level where the accident would happen. Accidents that have been publicly recorded during the last eigh...

  14. Phenolic acids bioavailability

    OpenAIRE

    2011-01-01

    The daily intake of phenolic compounds does not necessarily reflect the dose at which they reach the physiological targets in the organisms. The biological activity of phenolic compounds metabolites found in blood, organs and target tissues, as a result of digestive and hepatic activity, may differ from those of the native forms of the substances. This review discusses the absorption and metabolism of phenolic acids, a class of phenolic compounds abundant in food, and the methodologies used f...

  15. Omega-3 fatty acids (image)

    Science.gov (United States)

    Omega-3 fatty acids are a form of polyunsaturated fat that the body derives from food. Omega-3s (and omega-6s) are known as essential fatty acids (EFAs) because they are important for good health. ...

  16. Folic Acid Questions and Answers

    Science.gov (United States)

    ... What effect does taking folic acid have on arsenic poisoning? In many countries in the world, arsenic in ... What effect does taking folic acid have on arsenic poisoning? In many countries in the world, arsenic in ...

  17. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2007-01-01

    Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness.......Trials have assessed bile acids for patients with viral hepatitis, but no consensus has been reached regarding their usefulness....

  18. (boric acid) against Blattella germanica

    African Journals Online (AJOL)

    ufuoma

    2013-05-01

    May 1, 2013 ... study of the ovaries was done following the toxicity assays after having evaluated the toxicity of the boric acid ... Key words: German cockroach, boric acid, reproduction, ovary, biochemical. ... MATERIALS AND METHODS.

  19. Occurrence of an Inhibitor of Tissue-Type Plasminogen Activator in Seeds and in Vitro Cultures of Erythrina caffra Thunb.

    Science.gov (United States)

    Meyer, H J; van Staden, J

    1991-08-01

    The level of an inhibitor of tissue-type plasminogen activator (t-PA) increased slowly during the early developmental stage of seeds of Erythrina caffra Thunb. Thereafter, the inhibitor increased exponentially until the seeds reached maturity. At maturity, the t-PA inhibitor levels in the cotyledons were 38 times higher than the levels at the onset of seed development. The t-PA inhibitor accumulated at a faster rate than the storage proteins, which reached a concentration 15 times higher than the protein concentration at the onset of seed development. During the imbibition and germination process, the t-PA inhibitor decreased gradually. The inhibitor kept on decreasing during the growth of the seedlings until the 10th day after imbibition, when it leveled off at 4.1% of that of the initial inhibitor concentration. The inhibitor remained at this level until the cotyledons were shed at day 22. The total protein in the cotyledons decreased at a slower rate than the inhibitor and reached a minimum concentration at day 20 of 3.6% of the initial protein concentration in the cotyledons. Callus cultures of root, shoot, leaf, and cotyledonary tissue was established and maintained on Murashige-Skoog medium supplemented with 3% sucrose, 10 micromolar benzyladenine, and 5 micromolar 2,4-dichlorophenoxyacetic acid. A shoot cell suspension culture was established on Murashige-Skoog medium supplemented with 3% sucrose, 1 micromolar benzyladenine, and 0.5 micromolar 2,4-dichlorophenoxyacetic acid (pH 5.7) and shaken at 60 revolutions per minute. The level of t-PA inhibitor in root, shoot, leaf, and cotyledonary callus was substantially lower than in the corresponding intact tissue. The t-PA inhibitor levels in the linear growth phase was higher than in the lag or stationary growth phases of the cell suspension culture. A hydrolysate of the cell walls of tomato and E. caffra Thunb, as well as polyamines and organic acids, did not increase the concentration of t-PA inhibitor in

  20. Enzymic Synthesis of Caffeoylglucaric Acid from Chlorogenic Acid and Glucaric Acid by a Protein Preparation from Tomato Cotyledons 1

    Science.gov (United States)

    Strack, Dieter; Gross, Wiltrud; Wray, Victor; Grotjahn, Lutz

    1987-01-01

    The phenylpropane metabolism of tomato (Lycopersicon esculentum Mill) cotyledons was investigated. The HPLC analysis revealed two hydroxycinnamic-acid conjugates as major components, identified as chlorogenic acid (5-O-caffeoylquinic acid) and caffeoylglucaric acid (2-O- or 5-O-caffeoyl-glucaric acid). Quantitative analyses indicated a precursor-product relationship between the chlorogenic and caffeoylglucaric acids. Protein preparations from tomato cotyledons were found to catalyze the formation of caffeoylglucaric acid with chlorogenic acid as acyl donor and free glucaric acid as acceptor molecule. This enzyme activity, possibly to be classified as hydroxycinnamoylquinic acid:glucaric acid hydroxycinnamoyltransferase, acts together with hydroxycinnamoyl-CoA: quinic acid hydroxycinnamoyltransferase. PMID:16665274

  1. Biological properties of lipoic acid

    Directory of Open Access Journals (Sweden)

    Anna Bilska

    2002-06-01

    Full Text Available Lipoic acid is a prostetic group of H-protein of the glycine cleavage system and the dihydrolipoamide acyltransferases (E2 of the pyruvate, alpha-ketoglutarate and branched-chain alpha-keto acid dehydrogenase complexes. Lipoic acid and its reduced form, dihydrolipoic acid, reacts with oxygen reactive species. This paper reviews the beneficial effects in oxidative stress models or clinical conditions.

  2. Lewis Acid Catalyzed Benzylic Bromination

    OpenAIRE

    Shibatomi, Kazutaka; Zhang, Yanhua; Yamamoto, Hisashi

    2008-01-01

    Lewis acid catalyzed bromination on aromatic side chain was achieved efficiently by using 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) as a bromination reagent under mild conditions. Zirconium(IV) chloride showed the highest catalytic activity for the benzylic bromination. It was revealed that the present Lewis acid catalysis proceeds via the radical generation pathway. In contrast to Lewis acid catalysis, Brønsted acid promoted aromatic ring bromination without any benzylic bromination. Monobro...

  3. LACTIC ACID BACTERIA: PROBIOTIC APPLICATIONS

    OpenAIRE

    NEENA GARG

    2015-01-01

    Lactic acid bacteria (LAB) is a heterotrophic Gram-positive bacteria which under goes lactic acid fermentations and leads to production of lactic acid as an end product. LAB includes Lactobacillus, Leuconostoc, Pediococcus, Lactococcus and Streptococcus which are grouped together in the family lactobacillaceae. LAB shows numerous antimicrobial activities due to production of antibacterial and antifungal compounds such as organic acids, bacteriocins, diacetyl, hydrogen peroxide and reutrin. LA...

  4. Acids and bases solvent effects on acid-base strenght

    CERN Document Server

    Cox, Brian G

    2013-01-01

    Acids and bases are ubiquitous in chemistry. Our understanding of them, however, is dominated by their behaviour in water. Transfer to non-aqueous solvents leads to profound changes in acid-base strengths and to the rates and equilibria of many processes: for example, synthetic reactions involving acids, bases and nucleophiles; isolation of pharmaceutical actives through salt formation; formation of zwitter- ions in amino acids; and chromatographic separation of substrates. This book seeks to enhance our understanding of acids and bases by reviewing and analysing their behaviour in non-aqueous solvents. The behaviour is related where possible to that in water, but correlations and contrasts between solvents are also presented.

  5. Fumaric acid production by fermentation

    NARCIS (Netherlands)

    Roa Engel, C.A.; Straathof, A.J.J.; Zijlmans, T.W.; Van Gulik, W.M.; Van der Wielen, L.A.M.

    2008-01-01

    Abstract The potential of fumaric acid as a raw material in the polymer industry and the increment of cost of petroleum-based fumaric acid raises interest in fermentation processes for production of this compound from renewable resources. Although the chemical process yields 112% w/w fumaric acid fr

  6. Pantothenic acid biosynthesis in zymomonas

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  7. Acid Rain Limits Global Warming

    Institute of Scientific and Technical Information of China (English)

    Will Knight; 张林玲

    2004-01-01

    @@ Acid rain restricts global warming by reducing methane① emissions from natural wetland areas, suggests a global climate study. Acid rain is the result of industrial pollution,which causes rainwater to carry small quantities of acidic compoumds② such as sulphuric and nitric acid③. Contaminated rainwater can upset rivers and lakes, killing fish and other organisms and also damage plants, trees and buildings.

  8. Microbial degradation of poly(amino acid)s.

    Science.gov (United States)

    Obst, Martin; Steinbüchel, Alexander

    2004-01-01

    Natural poly(amino acid)s are a group of poly(ionic) molecules (ionomers) with various biological functions and putative technical applications and play, therefore, an important role both in nature and in human life. Because of their biocompatibility and their synthesis from renewable resources, poly(amino acid)s may be employed for many different purposes covering a broad spectrum of medical, pharmaceutical, and personal care applications as well as the domains of agriculture and of environmental applications. Biodegradability is one important advantage of naturally occurring poly(amino acid)s over many synthetic polymers. The intention of this review is to give an overview about the enzyme systems catalyzing the initial steps in poly(amino acid) degradation. The focus is on the naturally occurring poly(amino acid)s cyanophycin, poly(epsilon-L-lysine) and poly(gamma-glutamic acid); but biodegradation of structurally related synthetic polyamides such as poly(aspartic acid) and nylons, which are known from various technical applications, is also included.

  9. Molecular Interaction of Pinic Acid with Sulfuric Acid

    DEFF Research Database (Denmark)

    Elm, Jonas; Kurten, Theo; Bilde, Merete

    2014-01-01

    We investigate the molecular interactions between the semivolatile α-pinene oxidation product pinic acid and sulfuric acid using computational methods. The stepwise Gibbs free energies of formation have been calculated utilizing the M06-2X functional, and the stability of the clusters is evaluated...... from the corresponding ΔG values. The first two additions of sulfuric acid to pinic acid are found to be favorable with ΔG values of -9.06 and -10.41 kcal/mol. Addition of a third sulfuric acid molecule is less favorable and leads to a structural rearrangement forming a bridged sulfuric acid-pinic acid...... cluster. The involvement of more than one pinic acid molecule in a single cluster is observed to lead to the formation of favorable (pinic acid)2(H2SO4) and (pinic acid)2(H2SO4)2 clusters. The identified most favorable growth paths starting from a single pinic acid molecule lead to closed structures...

  10. Heterogeneous uptake of amines by citric acid and humic acid.

    Science.gov (United States)

    Liu, Yongchun; Ma, Qingxin; He, Hong

    2012-10-16

    Heterogeneous uptake of methylamine (MA), dimethylamine (DMA), and trimethylamine (TMA) onto citric acid and humic acid was investigated using a Knudsen cell reactor coupled to a quadrupole mass spectrometer at 298 K. Acid-base reactions between amines and carboxylic acids were confirmed. The observed uptake coefficients of MA, DMA, and TMA on citric acid at 298 K were measured to be 7.31 ± 1.13 × 10(-3), 6.65 ± 0.49 × 10(-3), and 5.82 ± 0.68 × 10(-3), respectively, and showed independence of sample mass. The observed uptake coefficients of MA, DMA, and TMA on humic acid at 298 K increased linearly with sample mass, and the true uptake coefficients of MA, DMA, and TMA were measured to be 1.26 ± 0.07 × 10(-5), 7.33 ± 0.40 × 10(-6), and 4.75 ± 0.15 × 10(-6), respectively. Citric acid, having stronger acidity, showed a higher reactivity than humic acid for a given amine; while the steric effect of amines was found to govern the reactivity between amines and citric acid or humic acid.

  11. Micropropagation and assessment of genetic fidelity of Henckelia incana: an endemic and medicinal Gesneriad of South India.

    Science.gov (United States)

    Prameela, J; Ramakrishnaiah, H; Krishna, V; Deepalakshmi, A P; Naveen Kumar, N; Radhika, R N

    2015-07-01

    Henckelia incana is an endemic medicinal plant used for the treatment of fever and skin allergy. In the present study shoot regeneration was evaluated on Murashige and Skoog's (MS) medium supplemented with auxins, Indole-3-acetic acid (IAA), Indole-3- butyric acid (IBA), 1-Naphthaleneacetic acid (NAA), 2, 4-Dichlorophenoxyacetic acid (2, 4-D) and cytokinins, 6-Benzylaminopurine (BAP) and Kinetin (Kn) at concentrations of 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0 mgl(-1). MS medium with IBA (18.08), NAA (17.83) and IAA (17.58) at 0.5 mgl(-1) concentrations showed efficient regeneration. Regenerated shoots were rooted on half-strength MS medium with and without 0.5 mgl(-1) IBA or NAA. The plantlets were successfully hardened in rooting trays (peat, vermiculite and sand) and transferred to field mileu. The genetic fidelity of in vitro raised plants was assessed by using three different single primer amplification reaction (SPAR) markers namely random amplified polymorphic DNA (RAPD), inter-simple sequence repeat (ISSR) and direct amplification of mini-satellite DNA region (DAMD). The results consistently demonstrated true-to-true type propagation. This is the first report of in vitro propagation and establishment of true-to-true type genetic fidelity in H. incana.

  12. Compositional equivalence of DAS-444Ø6-6 (AAD-12 + 2mEPSPS + PAT) herbicide-tolerant soybean and nontransgenic soybean.

    Science.gov (United States)

    Lepping, Miles D; Herman, Rod A; Potts, Brian L

    2013-11-20

    Soybeans from transgenic event DAS-444Ø6-6 are the first to express three proteins that provide tolerance to broad-spectrum herbicides. DAS-444Ø6-6 soybean expresses the aryloxyalkanoate dioxygenase-12 (AAD-12) enzyme from the soil bacterium Delftia acidovorans , which provides tolerance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D); the double-mutant 5-enolpyruvylshikimate-3-phosphate synthase (2mEPSPS) enzyme encoded by a modified version of the epsps gene from maize ( Zea mays ), which provides tolerance to the herbicide glyphosate; and the phosphinothricin acetyltransferase (PAT) enzyme from Streptomyces viridochromogenes , which provides tolerance to the herbicide glufosinate. The purpose of this study was to determine if the nutrient and antinutrient composition of forage and grain from DAS-444Ø6-6 soybean are similar to those of nontransgenic soybean. Forage was analyzed for proximates, fiber, and minerals; grain analyses further included vitamins, amino acid and fatty acid profiles, and antinutrients and bioactive components (lectin, phytic acid, raffinose, stachyose, trypsin inhibitor, and isoflavones). Results indicate that DAS-444Ø6-6 soybean is compositionally equivalent to nontransgenic soybean. Findings are consistent with similar studies for other input traits, as endogenous plant metabolic pathways that influence composition are expected to be less affected by transgenesis compared with traditional plant-breeding methods.

  13. Functional characterization of PaLAX1, a putative auxin permease, in heterologous plant systems.

    Science.gov (United States)

    Hoyerová, Klára; Perry, Lucie; Hand, Paul; Lanková, Martina; Kocábek, Tomás; May, Sean; Kottová, Jana; Paces, Jan; Napier, Richard; Zazímalová, Eva

    2008-03-01

    We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants.

  14. Novel auxin transport inhibitors phenocopy the auxin influx carrier mutation aux1.

    Science.gov (United States)

    Parry, G; Delbarre, A; Marchant, A; Swarup, R; Napier, R; Perrot-Rechenmann, C; Bennett, M J

    2001-02-01

    The hormone auxin is transported in plants through the combined actions of diffusion and specific auxin influx and efflux carriers. In contrast to auxin efflux, for which there are well documented inhibitors, understanding the developmental roles of carrier-mediated auxin influx has been hampered by the absence of specific competitive inhibitors. However, several molecules that inhibit auxin influx in cultured cells have been described recently. The physiological effects of two of these novel influx carrier inhibitors, 1-naphthoxyacetic acid (1-NOA) and 3-chloro-4-hydroxyphenylacetic acid (CHPAA), have been investigated in intact seedlings and tissue segments using classical and new auxin transport bioassays. Both molecules do disrupt root gravitropism, which is a developmental process requiring rapid auxin redistribution. Furthermore, the auxin-insensitive and agravitropic root-growth characteristics of aux1 plants were phenocopied by 1-NOA and CHPAA. Similarly, the agravitropic phenotype of inhibitor-treated seedlings was rescued by the auxin 1-naphthaleneacetic acid, but not by 2,4-dichlorophenoxyacetic acid, again resembling the relative abilities of these two auxins to rescue the phenotype of aux1. Further investigations have shown that none of these compounds block polar auxin transport, and that CHPAA exhibits some auxin-like activity at high concentrations. Whilst results indicate that 1-NOA and CHPAA represent useful tools for physiological studies addressing the role of auxin influx in planta, 1-NOA is likely to prove the more useful of the two compounds.

  15. Functional Characterization of PaLAX1, a Putative Auxin Permease, in Heterologous Plant Systems1[W][OA

    Science.gov (United States)

    Hoyerová, Klára; Perry, Lucie; Hand, Paul; Laňková, Martina; Kocábek, Tomáš; May, Sean; Kottová, Jana; Pačes, Jan; Napier, Richard; Zažímalová, Eva

    2008-01-01

    We have isolated the cDNA of the gene PaLAX1 from a wild cherry tree (Prunus avium). The gene and its product are highly similar in sequences to both the cDNAs and the corresponding protein products of AUX/LAX-type genes, coding for putative auxin influx carriers. We have prepared and characterized transformed Nicotiana tabacum and Arabidopsis thaliana plants carrying the gene PaLAX1. We have proved that constitutive overexpression of PaLAX1 is accompanied by changes in the content and distribution of free indole-3-acetic acid, the major endogenous auxin. The increase in free indole-3-acetic acid content in transgenic plants resulted in various phenotype changes, typical for the auxin-overproducing plants. The uptake of synthetic auxin, 2,4-dichlorophenoxyacetic acid, was 3 times higher in transgenic lines compared to the wild-type lines and the treatment with the auxin uptake inhibitor 1-naphthoxyacetic acid reverted the changes caused by the expression of PaLAX1. Moreover, the agravitropic response could be restored by expression of PaLAX1 in the mutant aux1 plants, which are deficient in auxin influx carrier activity. Based on our data, we have concluded that the product of the gene PaLAX1 promotes the uptake of auxin into cells, and, as a putative auxin influx carrier, it affects the content and distribution of free endogenous auxin in transgenic plants. PMID:18184737

  16. Improved somatic embryogenesis in wheat by partial simulation of the in-ovulo oxygen, growth-regulator and desiccation environments.

    Science.gov (United States)

    Carman, J G

    1988-09-01

    The effects of O2, growth-regulators and desiccation on callus growth and somatic embryo (embryoid) development were investigated in cultures of immature embryos of two lines of Triticum aestivum L. Callus and embryoid formation were induced on media that contained N(6)-furfurylamin-opurine (kinetin) and either 2,4-dichlorophenoxyacetic acid or 3,6-dichloro-o-anisic acid, either with or without abscisic acid (ABA). Cultures containing differentiated embryoids were then exposed to high concentrations of both ABA and indole-3-acetic acid, after which samples were desiccated to approx. 10% tissue moisture. Incubating cultures in 3.2 mmol·l(-1) O2 (approx. 9%, low-O2) increased embryoid formation sixfold in one wheat line and nearly threefold in another. In the former line low-O2 caused the formation of mostly embryogenic callus. Low-O2 also decreased precocious germination of immature embryos, decreased callus growth, and improved development and viability of the resultant embryoids. Including 1.9 μmol·l(-1) ABA in the callus-induction medium reduced germination of immature embryos and reduced the incidence of embryoids with visible abnormalities. Despite the improved morphology, significantly fewer of the embryoids produced on ABA-containing medium germinated. Desiccation significantly enhanced germination of these embryoids as well as those produced on ABA-free medium.

  17. Microbial transformations of isocupressic acid.

    Science.gov (United States)

    Lin, S J; Rosazza, J P

    1998-07-01

    Microbial transformations of the labdane-diterpene isocupressic acid (1) with different microorganisms yielded several oxygenated metabolites that were isolated and characterized by MS and NMR spectroscopic analyses. Nocardia aurantia (ATCC 12674) catalyzed the cleavage of the 13,14-double bond to yield a new nor-labdane metabolite, 2. Cunninghamella elegans (-) (NRRL 1393) gave 7beta-hydroxyisocupressic acid (3) and labda-7,13(E)-diene-6beta,15, 17-triol-19-oic acid (4), and Mucor mucedo (ATCC 20094) gave 2alpha-hydroxyisocupressic acid (5) and labda-8(17),14-diene-2alpha, 13-diol-19-oic acid (6).

  18. Amino Acid Catabolism in Plants.

    Science.gov (United States)

    Hildebrandt, Tatjana M; Nunes Nesi, Adriano; Araújo, Wagner L; Braun, Hans-Peter

    2015-11-02

    Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.

  19. Acidic aerosol in urban air

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, M.; Yamaoka, S.; Miyazaki, T.; Oka, M.

    1982-01-01

    The distribution and chemical composition of acidic aerosol in Osaka City were investigated. Samples were collected at five sites in the city from June to September, 1979. Acidic aerosol was determined by the acid-base titration method, sulfate ion by barium chloride turbidimetry, nitrate ion by the xylenol method, and chloride ion by the mercury thiocyanate method. The concentration of acidic aerosol at five sites ranged from 7.7 micrograms per cubic meter to 10.0 micrograms per cubic meter, but mean concentrations in the residential area were slightly higher than those in the industrial area. When acidic aerosol concentrations were compared with concentrations of sulfate, nitrate, and chloride ions, a significant correlation was found between acidic aerosol and sulfate ion. The sum of the ion equivalents of the three types showed good correlation with the acidic aerosol equivalent during the whole period.

  20. Nucleic Acid Vaccines

    Institute of Scientific and Technical Information of China (English)

    LU Shan

    2004-01-01

    @@ Anew method of immunization was discovered in the early 1990s. Several research groups independently demonstrated that direct inoculation of DNA plasmids coding for a specific protein antigen could elicit immune responses against that antigen[1-4].Since in theory the mRNA molecules also have the potential to be translated into the protein antigen, this vaccination approach was officially named by WHO as the nucleic acid vaccination even though the term DNA vaccine has been used more commonly in the literature. This novel approach is considered the fourth generation of vaccines after live attenuated vaccines, killed or inactivated vaccines and recombinant protein based subunit vaccines.

  1. Mycophenolic Acid in Silage

    Science.gov (United States)

    Schneweis, Isabell; Meyer, Karsten; Hörmansdorfer, Stefan; Bauer, Johann

    2000-01-01

    We examined 233 silage samples and found that molds were present in 206 samples with counts between 1 × 103 and 8.9 × 107 (mean, 4.7 × 106) CFU/g. Mycophenolic acid, a metabolite of Penicillium roqueforti, was detected by liquid chromatography-mass spectrometry in 74 (32%) of these samples at levels ranging from 20 to 35,000 (mean, 1,400) μg/kg. This compound has well-known immunosuppressive properties, so feeding with contaminated silage may promote the development of infectious diseases in livestock. PMID:10919834

  2. New Acid Combination for a Successful Sandstone Acidizing

    Science.gov (United States)

    Shafiq, M. U.; Mahmud, H. K. B.; Rezaee, R.

    2017-05-01

    With the development of new enhanced oil recovery techniques, sandstone acidizing has been introduced and played a pivotal role in the petroleum industry. Different acid combinations have been applied, which react with the formation, dissolve the soluble particles; thus increase the production of hydrocarbons. To solve the problems which occurred using current preflush sandstone acidizing technology (hydrochloric acid); a new acid combination has been developed. Core flooding experiments on sandstone core samples with dimensions 1.5 in. × 3 in. were conducted at a flow rate of 2 cm3/min. A series of hydrochloric-acetic acid mixtures with different ratios were tested under 150°F temperature. The core flooding experiments performed are aimed to dissolve carbonate, sodium, potassium and calcium particles from the core samples. These experiments are followed by few important tests which include, porosity-permeability, pH value, Inductively Coupled Plasma (ICP) analysis and Nuclear Magnetic Resonance (NMR measurements). All the results are compared with the results of conventional hydrochloric acid technology. NMR and porosity analysis concluded that the new acid combination is more effective in creating fresh pore spaces and thus increasing the reservoir permeability. It can be seen from the pore distribution before and after the acidizing. Prior applying acid; the large size of pores appears most frequently in the pore distribution while with the applied acid, it was found that the small pore size is most the predominant of the pore distribution. These results are validated using ICP analysis which shows the effective removal of calcium and other positive ions from the core sample. This study concludes that the combination of acetic-hydrochloric acid can be a potential candidate for the preflush stage of sandstone acidizing at high temperature reservoirs.

  3. Bicyclic glutamic acid derivatives.

    Science.gov (United States)

    Meyer, Udo; Bisel, Philippe; Weckert, Edgar; Frahm, August Wilhelm

    2006-05-15

    For the second-generation asymmetric synthesis of the trans-tris(homoglutamic) acids via Strecker reaction of chiral ketimines, the cyanide addition as the key stereodifferentiating step produces mixtures of diastereomeric alpha-amino nitrile esters the composition of which is independent of the reaction temperature and the type of the solvent, respectively. The subsequent hydrolysis is exclusively achieved with concentrated H(2)SO(4) yielding diastereomeric mixtures of three secondary alpha-amino alpha-carbamoyl-gamma-esters and two diastereomeric cis-fused angular alpha-carbamoyl gamma-lactams as bicyclic glutamic acid derivatives, gained from in situ stereomer differentiating cyclisation of the secondary cis-alpha-amino alpha-carbamoyl-gamma-esters. Separation was achieved by CC. The pure secondary trans-alpha-amino alpha-carbamoyl-gamma-esters cyclise on heating and treatment with concentrated H(2)SO(4), respectively, to diastereomeric cis-fused angular secondary alpha-amino imides. Their hydrogenolysis led to the enantiomeric cis-fused angular primary alpha-amino imides. The configuration of all compounds was completely established by NMR methods, CD-spectra, and by X-ray analyses of the (alphaR,1R,5R)-1-carbamoyl-2-(1-phenylethyl)-2-azabicyclo[3.3.0]octan-3-one and of the trans-alphaS,1S,2R-2-ethoxycarbonylmethyl-1-(1-phenylethylamino)cyclopentanecarboxamide.

  4. Cryoprotection from lipoteichoic acid

    Science.gov (United States)

    Rice, Charles V.; Middaugh, Amy; Wickham, Jason R.; Friedline, Anthony; Thomas, Kieth J.; Johnson, Karen; Zachariah, Malcolm; Garimella, Ravindranth

    2012-10-01

    Numerous chemical additives lower the freezing point of water, but life at sub-zero temperatures is sustained by a limited number of biological cryoprotectants. Antifreeze proteins in fish, plants, and insects provide protection to a few degrees below freezing. Microbes have been found to survive at even lower temperatures, and with a few exceptions, antifreeze proteins are missing. Survival has been attributed to external factors, such as the high salt concentration of brine veins and adhesion to particulates or ice crystal defects. We have discovered an endogenous cryoprotectant in the cell wall of bacteria, lipoteichoic acid biopolymers. Adding 1% LTA to bacteria cultures immediately prior to freezing provides 50% survival rate, similar to the results obtained with 1% glycerol. In the absence of an additive, bacterial survival is negligible as measured with the resazurin cell viability assay. The mode of action for LTA cryoprotection is unknown. With a molecular weight of 3-5 kDa, it is unlikely to enter the cell cytoplasm. Our observations suggest that teichoic acids could provide a shell of liquid water around biofilms and planktonic bacteria, removing the need for brine veins to prevent bacterial freezing.

  5. Acid Ceramidase in Melanoma

    DEFF Research Database (Denmark)

    Realini, Natalia; Palese, Francesca; Pizzirani, Daniela

    2016-01-01

    Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC-regulated sphing......Acid ceramidase (AC) is a lysosomal cysteine amidase that controls sphingolipid signaling by lowering the levels of ceramides and concomitantly increasing those of sphingosine and its bioactive metabolite, sphingosine 1-phosphate. In the present study, we evaluated the role of AC......-regulated sphingolipid signaling in melanoma. We found that AC expression is markedly elevated in normal human melanocytes and proliferative melanoma cell lines, compared with other skin cells (keratinocytes and fibroblasts) and non-melanoma cancer cells. High AC expression was also observed in biopsies from human...... generate lower amounts of ceramides than normal melanocytes do. This down-regulation in ceramide production appears to result from suppression of the de novo biosynthesis pathway. To test whether AC might contribute to melanoma cell proliferation, we blocked AC activity using a new potent (IC50 = 12 n...

  6. Kinetics of wet oxidation of formic acid and acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Shende, R.V.; Mahajani, V.V. [Univ. of Mumbai (India). Dept. of Chemical Technology

    1997-11-01

    Oxidation of lower molecular weight carboxylic acids such as formic, acetic, glyoxalic, and oxalic acids is often the rate-controlling step during wet oxidation (WO) of an aqueous waste stream exhibiting very high chemical oxygen demand (COD). The kinetics of WO of formic acid was studied in the absence and presence of a cupric sulfate as catalyst in the temperature range 150--240 C and oxygen partial pressure range 0.345--1.380 MPa. Wet oxidation of acetic acid was carried out in the presence of cupric sulfate in the temperature range 215--235 C. Homogeneous copper sulfate was found to be a very good catalyst for oxidation of formic acid and acetic acid.

  7. Solid acid catalysis from fundamentals to applications

    CERN Document Server

    Hattori, Hideshi

    2014-01-01

    IntroductionTypes of solid acid catalystsAdvantages of solid acid catalysts Historical overviews of solid acid catalystsFuture outlookSolid Acids CatalysisDefinition of acid and base -Brnsted acid and Lewis acid-Acid sites on surfacesAcid strengthRole of acid sites in catalysisBifunctional catalysisPore size effect on catalysis -shape selectivity-Characterization of Solid Acid Catalysts Indicator methodTemperature programmed desorption (TPD) of ammoniaCalorimetry of adsorption of basic moleculesInfrare

  8. Japodic Acid, A Novel Aliphatic Acid from Jatropha podagrica Hook

    OpenAIRE

    Aiyelaagbe, Olapeju O.; Gloer, James B.

    2008-01-01

    A new aliphatic acid named japodic acid (1) with a gem-dimethyl cyclopropane ring has been isolated from the roots of Jatropha podagrica. Its structure was established by 1D and 2D NMR and mass spectrometric data. Two other known compounds, erythrinasinate (2) and fraxidin (3) were also isolated from this plant for the first time. Japodic acid showed mild insect growth inhibition activity against Helicoverpa zea (37% growth reduction at 100 ppm). Fraxidin and erythrinasinate exhibited antibac...

  9. Electrolytic nature of aqueous sulfuric acid. 2. Acidity.

    Science.gov (United States)

    Fraenkel, Dan

    2012-09-27

    In part 1 of this study, I reported that the Debye-Hückel limiting law and the smaller-ion shell (SiS) model of strong electrolyte solutions fit nicely with the experimental mean ionic activity coefficient (γ(±)) of aqueous sulfuric acid as a function of concentration and of temperature when the acid is assumed to be a strong 1-3 electrolyte. Here, I report that the SiS-derived activity coefficient of H(+), γ(H(+)), of the 1-3 acid is comparable to that of aqueous HCl. This agrees with titration curves showing, as well-known, that sulfuric acid in water is parallel in strength to aqueous HCl. The calculated pH is in good accord with the Hammett acidity function, H(0), of aqueous sulfuric acid at low concentration, and differences between the two functions at high concentration are discussed and explained. This pH-H(0) relation is consistent with the literature showing that the H(0) of sulfuric acid (in the 1-9 M range) is similar to those of HCl and the other strong mineral monoprotic acids. The titration of aqueous sulfuric acid with NaOH does not agree with the known second dissociation constant of 0.010 23; rather, the constant is found to be ~0.32 and the acid behaves upon neutralization as a strong diprotic acid practically dissociating in one step. A plausible reaction pathway is offered to explain how the acid may transform, upon base neutralization, from a dissociated H(4)SO(5) (as 3H(+) and HSO(5)(3-)) to a dissociated H(2)SO(4) even though the equilibrium constant of the reaction H(+) + HSO(5)(3-) ↔ SO(4)(2-) + H(2)O, at 25 °C, is 10(-37) (part 1).

  10. Bile acid interactions with cholangiocytes

    Institute of Scientific and Technical Information of China (English)

    Xuefeng Xia; Heather Francis; Shannon Glaser; Gianfranco Alpini; Gene LeSage

    2006-01-01

    Cholangiocytes are exposed to high concentrations of bile acids at their apical membrane. A selective transporter for bile acids, the Apical Sodium Bile Acid Cotransporter (ASBT) (also referred to as Ibat; gene name Slc10a2)is localized on the cholangiocyte apical membrane. On the basolateral membrane, four transport systems have been identified (t-ASBT, multidrug resistance (MDR)3,an unidentified anion exchanger system and organic solute transporter (Ost) heteromeric transporter, OstαOstβ. Together, these transporters unidirectionally move bile acids from ductal bile to the circulation. Bile acids absorbed by cholangiocytes recycle via the peribiliaryplexus back to hepatocytes for re-secretion into bile.This recycling of bile acids between hepatocytes and cholangiocytes is referred to as the cholehepatic shunt pathway. Recent studies suggest that the cholehepatic shunt pathway may contribute in overall hepatobiliary transport of bile acids and to the adaptation to chronic cholestasis due to extrahepatic obstruction. ASBT is acutely regulated by an adenosine 3', 5'-monophosphate (cAMP)-dependent translocation to the apical membrane and by phosphorylation-dependent ubiquitination and proteasome degradation. ASBT is chronically regulated by changes in gene expression in response to biliary bile acid concentration and inflammatory cytokines.Another potential function of cholangiocyte ASBT is to allow cholangiocytes to sample biliary bile acids in order to activate intracellular signaling pathways. Bile acids trigger changes in intracellular calcium, protein kinase C (PKC), phosphoinositide 3-kinase (PI3K), mitogenactivated protein (MAP) kinase and extracellular signalregulated protein kinase (ERK) intracellular signals.Bile acids significantly alter cholangiocyte secretion,proliferation and survival. Different bile acids have differential effects on cholangiocyte intracellular signals,and in some instances trigger opposing effects on cholangiocyte secretion

  11. Citric acid production patent review.

    Science.gov (United States)

    Anastassiadis, Savas; Morgunov, Igor G; Kamzolova, Svetlana V; Finogenova, Tatiana V

    2008-01-01

    Current Review article summarizes the developments in citric acid production technologies in East and West last 100 years. Citric acid is commercially produced by large scale fermentation mostly using selected fungal or yeast strains in aerobe bioreactors and still remains one of the runners in industrial production of biotechnological bulk metabolites obtained by microbial fermentation since about 100 years, reflecting the historical development of modern biotechnology and fermentation process technology in East and West. Citric acid fermentation was first found as a fungal product in cultures of Penicillium glaucum on sugar medium by Wehmer in 1893. Citric acid is an important multifunctional organic acid with a broad range of versatile uses in household and industrial applications that has been produced industrially since the beginning of 20(th) century. There is a great worldwide demand for citric acid consumption due to its low toxicity, mainly being used as acidulant in pharmaceutical and food industries. Global citric acid production has reached 1.4 million tones, increasing annually at 3.5-4.0% in demand and consumption. Citric acid production by fungal submerged fermentation is still dominating, however new perspectives like solid-state processes or continuous yeast processes can be attractive for producers to stand in today's strong competition in industry. Further perspectives aiming in the improvement of citric acid production are the improvement of citric acid producing strains by classical and modern mutagenesis and selection as well as downstream processes. Many inexpensive by-products and residues of the agro-industry (e.g. molasses, glycerin etc.) can be economically utilized as substrates in the production of citric acid, especially in solid-state fermentation, enormously reducing production costs and minimizing environmental problems. Alternatively, continuous processes utilizing yeasts which reach 200-250 g/l citric acid can stand in today

  12. Role of Ribonucleic Acid Synthesis in Replication of Deoxyribonucleic Acid

    Science.gov (United States)

    Pato, Martin L.

    1975-01-01

    An experiment previously interpreted to show a ribonucleic acid requirement for propagation of deoxyribonucleic replication is reexamined and the earlier interpretation is shown to be incorrect. PMID:1090599

  13. Rotational study of the bimolecule acetic acid-fluoroacetic acid

    Science.gov (United States)

    Feng, Gang; Gou, Qian; Evangelisti, Luca; Caminati, Walther

    2017-01-01

    The rotational spectrum of the acetic acid-fluoroacetic acid bimolecule was measured by using a pulsed jet Fourier transform microwave spectrometer. One conformer, in which fluoroacetic acid is in trans form, has been observed. The rotational transitions are split into two component lines, due to the internal rotation of the methyl group of acetic acid. From these splittings, the corresponding V3 barrier has been determined. The dissociation energy of this complex has been estimated to 66 kJ/mol. An increase of the distance between the two monomers upon the OH → OD substitution (Ubbelohde effect) has been observed.

  14. Evaluation of ascorbic acid in protecting labile folic acid derivatives.

    OpenAIRE

    1983-01-01

    The use of ascorbic acid as a reducing agent to protect labile, reduced derivatives of folic acid has been evaluated by high-performance liquid chromatographic separations and Lactobacillus casei microbiological assay of eluate fractions. Upon heating for 10 min at 100 degrees C, solutions of tetrahydropteroylglutamic acid (H4PteGlu) in 2% sodium ascorbate gave rise to 5,10-methylene-H4PteGlu and 5-methyl-H4PteGlu. H2PteGlu acid gave rise to 5-methyl-H4PteGlu and PteGlu. 10-Formyl-H4PteGlu ga...

  15. Determination of acetylsalicylic acid and salicylic acid in foods, using HPLC with fluorescence detection.

    OpenAIRE

    Venema, D.P.; Hollman, P.C.H.; Janssen, P.L.T.M.K.; Katan, M B

    1996-01-01

    We developed a specific and sensitive HPLC method with fluorescence detection for the determination of free acetylsalicylic acid, free salicylic acid, and free salicylic acid plus salicylic acid after alkaline hydrolysis (free-plus-bound) in foods. Acetylsalicylic acid was detected after postcolumn hydrolysis to salicylic acid. With the method for free acetylsalicylic acid and salicylic acid, recovery was 95-98␏or acetylsalicylic acid added to foods and 92-102␏or salicylic acid. Recovery of a...

  16. Esterification by the Plasma Acidic Water: Novel Application of Plasma Acid

    Science.gov (United States)

    Gu, Ling

    2014-03-01

    This work explores the possibility of plasma acid as acid catalyst in organic reactions. Plasma acidic water was prepared by dielectric barrier discharge and used to catalyze esterification of n-heptanioc acid with ethanol. It is found that the plasma acidic water has a stable and better performance than sulfuric acid, meaning that it is an excellent acid catalyst. The plasma acidic water would be a promising alternative for classic mineral acid as a more environment friendly acid.

  17. Tissue culture and regeneration of an antimalarial plant, Artemisia sieberi Besser

    Directory of Open Access Journals (Sweden)

    A. Sharafi

    2014-10-01

    Full Text Available WHO recommends artemisinin-based combination therapies (ACTs as the most effective choice to treat malaria. For developing transgenic plants with high accumulation of artemisinin (by introducing genes encoding enzymes which regulate the biosynthetic pathway of artemisinin, an efficient protocol for tissue culture and plant regeneration is necessary. In the present study, leaf explants of Artemisia sieberi were cultivated in Murashige & Skoog based medium supplemented by combination of different plant growth regulators including 6-benzyl-aminopurine (BA, α-naphthalene-acetic acid (NAA, indole-3-acetic acid (IAA, picloram (Pic and 2,4-dichlorophenoxyacetic acid (2,4-D. The highest frequency of shoot induction was obtained on MS medium supplemented with 2 mg/L BA plus 0.05 mg/L NAA (95% regeneration and MS medium supplemented with 2 mg/L BA plus 0.5 mg/L IAA (85% regeneration. Rooting was obtained on MS medium supplemented with 0.05 mg/L NAA. The present study has revealed a simple, reliable, rapid and high efficient regeneration system for A. sieberi Besser as a source of artemisinin in short period via adventitious shoot induction procedure.

  18. An efficient protocol devised for rapid callus induction from leaf explants of Biophytum sensitivum (lDC.

    Directory of Open Access Journals (Sweden)

    Sirigiri Chandra Kala

    2014-03-01

    Full Text Available The Cell cultures are used extensively for in vitro secondary metabolite productions were obtained from callus tissue through cell suspension culture.  The establishment of callus cultures has considerable potential for the production of known and novel secondary metabolites. The objective of the study was to scientifically assess callus culture of Biophytum sensitivum (L DC. was established from leaf explants with different growth regulators greatly influenced the growth of callus cultures. The callus from leaf explants is induced by inoculating the young leaf bits on MS medium supplemented with various auxins (2, 4- Dichlorophenoxyacetic acid (2, 4-D, α-Naphthalene Acetic Acid (NAA and Indole Buteric Acid (IBA, cytokinins (6-Benzyladenine (BA and Kinetin (KN and cytokinin-auxin combination (BA+NAA in different concentrations were (0.5 to 5.0 mg/l used. BA 1mg/l, in combination with NAA (1.0 mg/l also produced maximum amount of callus.  So, this research is concluded that the plant leaf explants cultured on MS medium with 1 mg/ l  BA with 0.5 mg/l NAA was found most efficient for callus induction, provided calli with quite good in texture and friable in nature.

  19. Effects of phenoxyherbicides and glyphosate on the hepatic and intestinal biotransformation activities in the rat.

    Science.gov (United States)

    Hietanen, E; Linnainmaa, K; Vainio, H

    1983-08-01

    The effects of phenoxyacid herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and MCPA (4-chloro-2-methylphenoxyacetic acid), clofibrate, and glyphosate on hepatic and intestinal drug metabolizing enzyme activities were studied in rats intragastrically exposed for 2 weeks. The hepatic ethoxycoumarin O-deethylase activity increased about 2-fold with MCPA. Both 2,4-D and MCPA increased the hepatic epoxide hydrolase activity and decreased the hepatic glutathione S-transferase activity. MCPA also increased the intestinal activities of ethoxycoumarin O-deethylase and epoxide hydrolase. Glyphosate decreased the hepatic level of cytochrome P-450 and monooxygenase activities and the intestinal activity of aryl hydrocarbon hydroxylase. Clofibrate decreased the hepatic activities of UDPglucuronosyltransferase with p-nitrophenol or methylumbelliferone as the substrate. Also 2,4-D decreased the hepatic activity of UDPglucuronosyltransferase with p-nitrophenol as the substrate. MCPA decreased the intestinal activities of UDPglucuronosyltransferase with either p-nitrophenol or methylumbelliferone as the substrate. The results indicate that phenoxyacetic acids, especially MCPA, may have potent effects on the metabolism of xenobiotics. Glyphosate, not chemically related to phenoxyacids, seems to inhibit monooxygenases. Whether these changes are related to the toxicity of these xenobiotics remains to be clarified in further experiments.

  20. In vitro micropropagation of Dracaena sanderiana Sander ex Mast: An important indoor ornamental plant.

    Science.gov (United States)

    Aslam, Junaid; Mujib, Abdul; Sharma, Maheshwar Prasad

    2013-01-01

    A protocol has been developed for in vitro plant regeneration from a nodal explant of Dracaena sanderiana Sander ex Mast. Nodal explant showed high callus induction potentiality on MS medium supplemented with 6.78 μM 2,4-dichlorophenoxyacetic acid (2,4-D) followed by 46.5 μM chlorophenoxy acetic acid (CPA). The highest frequency of shoot regeneration (85%) and number of shoots per explant (5.6) were obtained on medium supplemented with 7.84 μM N(6)-benzylaminopurine (BA). Rooting was high on MS solid compared to liquid medium when added with 7.38 μM indole-3-butyric acid (IBA). Fifty percent of the roots were also directly rooted as microcuttings on soil rite, sand and peat mixture (1:1:1). In vitro and ex vitro raised plantlets were used for acclimatization. More than 90% of the plantlets was successfully acclimatized and established in plastic pots. Ex vitro transferred plantlets were normal without any phenotypic aberrations.

  1. Micropropagation of Gerbera (Gerbera jamesonii Bolus).

    Science.gov (United States)

    Minerva, Ghani; Kumar, Surinder

    2013-01-01

    Gerbera (Gerbera jamesonii Bolus) is one of the most popular ornamental flowers worldwide and used both as cut flower and potted plant. Some of them show excellent agronomic characters such as color, floral diameter, stem length, and vigor, which make this plant of commercial importance. Conventionally, multiplication is done through seeds or rhizome cuttings. Rapid multiplication of elite cultivars of Gerbera, with improved agronomic traits, has been achieved by using both direct and indirect tissue culture methods. Direct shoot regeneration was accomplished from stem apices on MS medium supplemented with 1 mg/L 6-benzyladenine (BA) and 1 mg/L kinetin. Indirect shoot induction succeeded from callus differentiation has been achieved on MS medium containing 2 mg/L 2,4-dichlorophenoxyacetic acid, 0.5 mg/L indole-3-acetic acid, and 2 mg/L BA. The in vitro shoots, 4-5 cm long, were rooted by quick dipping the shoot bases for 3-5 s in 2,000 mg/L indole-3-butyric acid solution followed by transfer to the pots containing farmyard manure, soil, and sand (1:1:1 by volume). Initially, in vitro plantlets were covered with glass jars to maintain a high relative humidity (85-90%). As soon as new shoot growth begins, relative humidity is decreased by exposing them to the open environmental conditions prior transferring to the glasshouse. Indirect shoot regeneration increased the frequency of somaclonal variations. The selected somaclones were used in developing new and novel cultivars.

  2. Identification of genes up-regulated in dedifferentiating Nicotania glauca pith tissue, using an improved method for constructing a subtractive cDNA library.

    Science.gov (United States)

    Cecchini, E; Dominy, P J; Geri, C; Kaiser, K; Sentry, J; Milner, J J

    1993-12-11

    Pith explants of Nicotiana glauca grown in vitro in synthetic medium supplemented with 2,4 dichlorophenoxyacetic acid (2, 4 D), are induced to dedifferentiate. Treatment with actinomycin D within the first 4-8 h of culture (but not later) is lethal and the explants die, implying a requirement for de novo transcription. The genes expressed during the initial period of culture are presumably critical for subsequent cell survival and proliferation, but so far their identity is unknown. We have constructed a subtractive cDNA library, enriched in sequences more abundant in dedifferentiating tissue than in pith. The subtractive library contains approximately seven major species, two of which, NGSUB7 and NGSUB8, are highly abundant. In Northern blots, these two hybridized to mRNA species whose abundance increased significantly but transiently during the first 4 to 8 h of culture. The sequence of NGSUB7 showed no significant homology at a nucleotide or derived amino acid level with any previously reported sequence. NGSUB8 however, showed significant homology over part of the derived amino acid sequence to several yeast and bacterial proteins with DNA binding function. We propose that the two recombinants represent transcripts from two novel genes edeA and edeB, which are expressed early in dedifferentiation.

  3. Plant regeneration through callus organogenesis and true-to-type conformity of plants by RAPD analysis in Desmodium gangeticum (Linn.) DC.

    Science.gov (United States)

    Cheruvathur, Meena K; Abraham, Jyothi; Thomas, T Dennis

    2013-03-01

    An efficient plant regeneration protocol was established for an endangered ethnomedicinal plant Desmodium gangeticum (Linn.) DC. Morphogenic calli were produced from 96 % of the cultures comprising the immature leaf explants on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid (4.0 mg l(-1)) in combination with 6-benzylaminopurine (BA; 0.8 mg l(-1)). For callus regeneration, various concentrations of BA (1.0-5.0 mg l(-1)) or thidiazuron (TDZ; 1.0-5.0 mg l(-1)) alone or in combination with indole-3-acetic acid (IAA; 0.2-1.0 mg l(-1)) were used. Highest response of shoot regeneration was observed on MS medium fortified with TDZ (4.0 mg l(-1)) and IAA (0.5 mg l(-1)) combination. Here, 100 % cultures responded with an average number of 22.3 shoots per gram calli. Inclusion of indole-3-butyric acid in half MS medium favored rooting of recovered shoots. Out of 45 rooted plants transferred to soil, 40 survived. Total DNA was extracted from the leaves of the acclimatized plants of D. gangeticum. Analysis of random amplified polymorphic DNA using 13 arbitrary decanucleotide primers showed the genetic homogeneity in all the ten plants regenerated from callus with parental plant, suggesting that shoot regeneration from callus could be used for the true-to-type multiplication of this plant.

  4. Arabidopsis GLP4 is localized to the Golgi and binds auxin in vitro

    Institute of Scientific and Technical Information of China (English)

    Ke Yin; Xinxin Han; Zhihong Xu; Hongwei Xue

    2009-01-01

    Hormones are critical for cell differentiation,elongation, and division. The plant hormone auxin plays vital roles in plant growth and development and is essential for various physiologic processes. Previous studies showed that germin-like proteins (GLPs) are involved in multiple physiologic and developmental processes and that several GLP members could bind different auxin molecules. Here we showed that Arabidopsis thaliana GLP4 gene, which has a length of 660 bp and encodes a 219-aa polypeptide, contains the conserved auxin-binding region box A and hinds indole-3-acetic acid and 2,4-dichlorophenoxyacetic acid (2,4-D) with low affinity, but not α-naphthaleneacetic acid, in vitro,by using assays equilibrium dialysis and nuclear magnetic resonance. This hinding character is different from that of auxin-binding protein 1, which does not hind 2,4-D. GLP4 is highly transcribed in various tissues, but it shows low transcription in roots and during embryo development. In addition, transcription of GLP4 is stimulated by auxin treatment. Suhcellular localization studies indicated that GLP4 protein is localized in the Golgi compartment and the N-terminus of GLP4 is crucial for its proper localization, which suggests that GLP4 may be involved in Goigi-dependent developmental processes.

  5. The Control of Storage Xyloglucan Mobilization in Cotyledons of Hymenaea courbaril1

    Science.gov (United States)

    dos Santos, Henrique Pessoa; Purgatto, Eduardo; Mercier, Helenice; Buckeridge, Marcos Silveira

    2004-01-01

    Hymenaea courbaril is a leguminous tree species from the neotropical rain forests. Its cotyledons are largely enriched with a storage cell wall polysaccharide (xyloglucan). Studies of cell wall storage polymers have been focused mostly on the mechanisms of their disassembly, whereas the control of their mobilization and the relationship between their metabolism and seedling development is not well understood. Here, we show that xyloglucan mobilization is strictly controlled by the development of first leaves of the seedling, with the start of its degradation occurring after the beginning of eophyll (first leaves) expansion. During the period of storage mobilization, an increase in the levels of xyloglucan hydrolases, starch, and free sugars were observed in the cotyledons. Xyloglucan mobilization was inhibited by shoot excision, darkness, and by treatment with the auxin-transport inhibitor N-1-naphthylphthalamic acid. Analyses of endogenous indole-3-acetic acid in the cotyledons revealed that its increase in concentration is followed by the rise in xyloglucan hydrolase activities, indicating that auxin is directly related to xyloglucan mobilization. Cotyledons detached during xyloglucan mobilization and treated with 2,4-dichlorophenoxyacetic acid showed a similar mobilization rate as in attached cotyledons. This hormonal control is probably essential for the ecophysiological performance of this species in their natural environment since it is the main factor responsible for promoting synchronism between shoot growth and reserve degradation. This is likely to increase the efficiency of carbon reserves utilization by the growing seedling in the understorey light conditions of the rain forest. PMID:15133152

  6. Molecular characterization of a cytokinin-inducible periwinkle protein showing sequence homology with pathogenesis-related proteins and the Bet v 1 allergen family.

    Science.gov (United States)

    Carpin, S; Laffer, S; Schoentgen, F; Valenta, R; Chénieux, J C; Rideau, M; Hamdi, S

    1998-03-01

    Cytokinin treatment of periwinkle callus cultures increased the accumulation of a protein, designated T1, in two-dimensional separated protein extracts. The first 30 NH2-terminal amino acids were determined by Edman degradation and showed significant sequence homology with intracellular pathogenesis-related (IPR) plant proteins and the Bet v 1 allergen family. The deduced amino acid sequence of cDNAs coding for T1, isolated by RT-PCR and 5' RACE-PCR, exhibited an average sequence identity of 40% with both IPR and Bet v 1-related allergens. T1 and all related proteins contained a p-loop motif typically found in nucleotide-binding proteins as the most conserved sequence feature. Northern blot analysis showed that cytokinin treatment of periwinkle callus induced T1 transcripts, whereas addition of 2,4-dichlorophenoxyacetic acid inhibited this accumulation. Hybridization of genomic periwinkle DNA with the T1 cDNA suggested that the protein is encoded by a single-copy gene. Immunoblot studies with a panel of Bet v 1-specific antibodies and sera from Bet v 1 allergic individuals identified T1 as a protein that is immunologically distinct from the Bet v 1 allergen family and has no allergenic properties.

  7. Plant regeneration from somatic embryos ofTaxus brevifolia.

    Science.gov (United States)

    Chee, P P

    1996-12-01

    Taxusbrevifolia is the source of paclitaxel (Taxol®), an anticancer drug. A method for regeneration ofTaxus brevifolia from immature zygotic embryos via somatic embryogenesis is described. Embryogenic callus tissues were obtained by culturing immature zygotic embryos on Lloyd and McCown medium (MCM) supplemented with 160 μM 2,4-dichlorophenoxyacetic acid (2,4-D) + 5 μM benzylaminopurine (BA) + 5 μM naphthaleneacetic acid (NAA) for 4 weeks. Putative embryoids were obtained following transfer of cultures to MCM medium supplemented with 4 μM BA + 5 μM kinetin + 1 μM NAA for 6 to 8 weeks. Conversion of embryos was obtained on MCM medium supplemented with 40 μM abscisic acid (ABA) + 1% activated charcoal. Development of bipolar structures with recognizable shoot and root apices was observed in somatic embryos. Five percent of somatic embryos were regenerated into plantlets on half-strength growth regulator-free MCM medium.

  8. Development of embryoids by microspore and anther cultures of red beet (Beta vulgaris L. subsp. vulgaris

    Directory of Open Access Journals (Sweden)

    Krystyna GÓRECKA

    2017-03-01

    Full Text Available So far there is no information about receiving red beet androgenic embryos by androgenesis. Several factors were tested which affected this process: starch accumulation in microspores, correlation between bud length and microsporogenesis course, induction and regeneration medium composition. Ploidy level of obtained regenerants were evaluated. Treating anthers with α-amylase or watering donor plants with gibberellin increased number of obtained androgenic embryos. The highest percentage (80% of microspores at uninuclear stage appeared in buds with 1.3-1.5 mm. The B5 medium with 100 g·L-1 sucrose and 0.1 mg·L-1 2,4-D (2, 4-dichlorophenoxyacetic acid proved to be better for inducing androgenesis than MS medium supplemented with 0.2 mg·L-1 BAP (6-benzylaminopurine and 0.5 mg·L-1 IAA (indole-3-acetic acid. First androgenic embryos were placed on B5 medium without plant growth regulators and then on MS medium containing 0.2 mg·L-1 BAP and 1 mg·L-1 NAA (α-naphthaleneacetic acid. Androgenic embryos died on B5 regeneration medium without plant growth regulators. On MS medium first shoots and callus with and without roots were obtained. Rosettes withered during following passages whereas callus tissue developed further. The quantity of DNA in this tissue equivalent to 4X chromosomes.

  9. 49 CFR 173.158 - Nitric acid.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Nitric acid. 173.158 Section 173.158... Nitric acid. (a) Nitric acid exceeding 40 percent concentration may not be packaged with any other material. (b) Nitric acid in any concentration which does not contain sulfuric acid or hydrochloric acid as...

  10. Molecular Simulation of Naphthenic Acid Removal on Acidic Catalyst Ⅱ. Experimental results of catalytic decarboxylation over acidic catalysts

    Institute of Scientific and Technical Information of China (English)

    Fu Xiaoqin; Tian Songbai; Hou Shuandi; Longjun; Wang Xieqing

    2008-01-01

    The energy barriers of thermal decarboxylation reactions of petroleum acids and catalytic decarboxylation reactions of Br(o)nsted acid and Lewis acid were analyzed using molecular simulation technology.Compared with thermal decarboxylation reactions of petroleum acids, the decarboxylation reactions by acid catalysts were easier to occur. The decarboxylaton effect by Lewis acid was better than Br(o)nsted acid. The mechanisms of catalytic decarboxylation over acid catalyst were also verified by experiments on a fixed bed and a fluidized bed, the experimental results showed that the rate of acid removal could reach up to 97% over the acidic catalyst at a temperature above 400℃.

  11. Nanoclusters of Cyanuric Acid

    Indian Academy of Sciences (India)

    M ELANGO; V SUBRAMANIAN; N SATHYAMURTHY

    2017-07-01

    In this article, the self-assembly of cyanuric acid (CA) molecules into nano-structures is examined. Equilibrium geometry of CA is planar and it belongs to the D3h point group. It is shown that CA clusters form three dimensional bowls and balls. Cyclic pentamer (5-bowl) is the basic motif responsible for these non-planar geometries. It is also shown that the cyclic hexamer based clusters can be non-planar if they contain a 5-bowl. A unified criterion for the formation of bowls and balls from basic molecular building blocks emerges from this study. The role of symmetry in supramolecular self-assembly is also clearly evident from the present study.

  12. Acid mine drainage

    Science.gov (United States)

    Bigham, Jerry M.; Cravotta, Charles A.

    2016-01-01

    Acid mine drainage (AMD) consists of metal-laden solutions produced by the oxidative dissolution of iron sulfide minerals exposed to air, moisture, and acidophilic microbes during the mining of coal and metal deposits. The pH of AMD is usually in the range of 2–6, but mine-impacted waters at circumneutral pH (5–8) are also common. Mine drainage usually contains elevated concentrations of sulfate, iron, aluminum, and other potentially toxic metals leached from rock that hydrolyze and coprecipitate to form rust-colored encrustations or sediments. When AMD is discharged into surface waters or groundwaters, degradation of water quality, injury to aquatic life, and corrosion or encrustation of engineered structures can occur for substantial distances. Prevention and remediation strategies should consider the biogeochemical complexity of the system, the longevity of AMD pollution, the predictive power of geochemical modeling, and the full range of available field technologies for problem mitigation.

  13. Enzymatic tRNA acylation by acid and alpha-hydroxy acid analogues of amino acids.

    Science.gov (United States)

    Owczarek, Alina; Safro, Mark; Wolfson, Alexey D

    2008-01-08

    Incorporation of unnatural amino acids with unique chemical functionalities has proven to be a valuable tool for expansion of the functional repertoire and properties of proteins as well as for structure-function analysis. Incorporation of alpha-hydroxy acids (primary amino group is substituted with hydroxyl) leads to the synthesis of proteins with peptide bonds being substituted by ester bonds. Practical application of this modification is limited by the necessity to prepare corresponding acylated tRNA by chemical synthesis. We investigated the possibility of enzymatic incorporation of alpha-hydroxy acid and acid analogues (lacking amino group) of amino acids into tRNA using aminoacyl-tRNA synthetases (aaRSs). We studied direct acylation of tRNAs by alpha-hydroxy acid and acid analogues of amino acids and corresponding chemically synthesized analogues of aminoacyl-adenylates. Using adenylate analogues we were able to enzymatically acylate tRNA with amino acid analogues which were otherwise completely inactive in direct aminoacylation reaction, thus bypassing the natural mechanisms ensuring the selectivity of tRNA aminoacylation. Our results are the first demonstration that the use of synthetic aminoacyl-adenylates as substrates in tRNA aminoacylation reaction may provide a way for incorporation of unnatural amino acids into tRNA, and consequently into proteins.

  14. Ghrelin and gastric acid secretion.

    Science.gov (United States)

    Yakabi, Koji; Kawashima, Junichi; Kato, Shingo

    2008-11-07

    Ghrelin, a novel growth hormone-releasing peptide, was originally isolated from rat and human stomach. Ghrelin has been known to increase the secretion of growth hormone (GH), food intake, and body weight gain when administered peripherally or centrally. Ghrelin is also known to stimulate the gastric motility and the secretion of gastric acid. In the previous studies, the action of ghrelin on acid secretion was shown to be as strong as that of histamine and gastrin in in-vivo experiment. In the studies, the mechanism for the action of ghrelin was also investigated. It was shown that vagotomy completely inhibited the action of ghrelin on the secretion of gastric acid suggesting that vagal nerve is involved in the mechanism for the action of ghrelin on acid secretion. As famotidine did not inhibit ghrelin-induced acid secretion in the study by Masuda et al, they concluded that histamine was not involved in the action of ghrelin on acid secretion. However, we have shown that famotidine completely inhibited ghrelin-induced acid secretion and histidine decarboxylase (HDC) mRNA was increased in gastric mucosa by ghrelin injection which is inhibited by vagotomy Our results indicate that histamine is involved in the action of ghrelin on acid secretion. Furthermore synergistic action of gastrin and ghrelin on gastric acid secretion was shown. Although gastrin has important roles in postprandial secretion of gastric acid, ghrelin may be related to acid secretion during fasting period or at night. However, further studies are needed to elucidate the physiological role of ghrelin in acid secretion.

  15. Racemization of Meteoritic Amino Acids

    Science.gov (United States)

    Cohen, Barbara A.; Chyba, Christopher F.

    2000-05-01

    Meteorites may have contributed amino acids to the prebiotic Earth, affecting the global ratio of right-handed to left-handed (D/L) molecules. We calculate D/L ratios for seven biological, α-hydrogen, protein amino acids over a variety of plausible parent body thermal histories, based on meteorite evidence and asteroid modeling. We show that amino acids in meteorites do not necessarily undergo complete racemization by the time they are recovered on Earth. If the mechanism of amino acid formation imposes some enantiomeric preference on the amino acids, a chiral signature can be retained through the entire history of the meteorite. Original enantiomeric excesses in meteorites such as Murchison, which have undergone apparently short and cool alteration scenarios, should have persisted to the present time. Of the seven amino acids for which relevant data are available, we expect glutamic acid, isoleucine, and valine, respectively, to be the most likely to retain an initial enantiomeric excess, and phenylalanine, aspartic acid, and alanine the least. Were the D/L ratio initially identical in each amino acid, final D/L ratios could be used to constrain the initial ratio and the thermal history experienced by the whole suite.

  16. Antibiofilm Properties of Acetic Acid

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Morten; Jensen, Peter Østrup;

    2014-01-01

    of the infected implant, tissue, or organ and thereby the biofilm. Acetic acid is known for its antimicrobial effect on bacteria in general, but has never been thoroughly tested for its efficacy against bacterial biofilms. In this article, we describe complete eradication of both Gram-positive and Gram......-negative biofilms using acetic acid both as a liquid and as a dry salt. In addition, we present our clinical experience of acetic acid treatment of chronic wounds. In conclusion, we here present the first comprehensive in vitro and in vivo testing of acetic acid against bacterial biofilms....

  17. Preparation and characterization Al3+-bentonite Turen Malang for esterification fatty acid (palmitic acid, oleic acid and linoleic acid)

    Science.gov (United States)

    Abdulloh, Abdulloh; Aminah, Nanik Siti; Triyono, Mudasir, Trisunaryanti, Wega

    2016-03-01

    Catalyst preparation and characterization of Al3+-bentonite for esterification of palmitic acid, oleic acid and linoleic acid has been done. Al3+-bentonite catalyst was prepared from natural bentonite of Turen Malang through cation exchange reaction using AlCl3 solution. The catalysts obtained were characterized by XRD, XRF, pyridine-FTIR and surface area analyser using the BET method. Catalyst activity test of Al3+-bentonite for esterification reaction was done at 65°C using molar ratio of metanol-fatty acid of 30:1 and 0.25 g of Al3+-bentonite catalyst for the period of ½, 1, 2, 3, 4 and 5 hours. Based on the characterization results, the Al3+-bentonite Turen Malang catalyst has a d-spacing of 15.63 Ǻ, acid sites of Brönsted and Lewis respectively of 230.79 µmol/g and 99.39 µmol/g, surface area of 507.3 m2/g and the average of radius pore of 20.09 Å. GC-MS analysis results of the oil phase after esterification reaction showed the formation of biodiesel (FAME: Fatty acid methyl ester), namely methyl palmitate, methyl oleate and methyl linoleate. The number of conversions resulted in esterification reaction using Al3+-bentonite Turen Malang catalyst was 74.61%, 37.75%, and 20, 93% for the esterification of palmitic acid, oleic acid and linoleic acid respectively.

  18. [Hydrofluoric acid poisoning: case report].

    Science.gov (United States)

    Cortina, Tatiana Judith; Ferrero, Hilario Andrés

    2013-01-01

    Hydrofluoric acid is a highly dangerous substance with industrial and domestically appliances. Clinical manifestations of poisoning depend on exposure mechanism, acid concentration and exposed tissue penetrability. Gastrointestinal tract symptoms do not correlate with injury severity. Patients with history of hydrofluoric acid ingestion should undergo an endoscopy of the upper gastrointestinal tract. Intoxication requires immediate intervention because systemic toxicity can take place. We present a 5 year old girl who accidentally swallowed 5 ml of 20% hydrofluoric acid. We performed gastrointestinal tract endoscopy post ingestion, which revealed erythematous esophagus and stomach with erosive lesions. Two months later, same study was performed and revealed esophagus and stomach normal mucous membrane.

  19. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  20. Retinoic acid and iron metabolism

    DEFF Research Database (Denmark)

    Chakraborty, Surajit; Bhattacharyya, Rajasri; Sayal, Kirtimaan

    2014-01-01

    tuberculosis controlling molecules in the days to come. Iron has proven to be essential for pathogenesis of tuberculosis and retinoic acid is known to influence the iron metabolism pathway. Retenoic acid is also known to exhibit antitubercular effect in in vivo system. Therefore there is every possibility...... that retinoic acid by affecting the iron metabolism pathway exhibits its antimycobacterial effect. These aspects are reviewed in the present manuscript for understanding the antimycobacterial role of retinoic acid in the context of iron metabolism and other immunological aspects....

  1. ACETIC ACID AND A BUFFER

    DEFF Research Database (Denmark)

    2009-01-01

    The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent.......The present invention relates to a composition comprising : a) 0.01-20% wt/wt acetic acid and b) a physiologically tolerable buffer capable of maintaining acetic acid at a pH in the range of 2-7; and use of such a composition as an antimicrobial agent....

  2. Biotechnological production of citric acid

    National Research Council Canada - National Science Library

    Max, Belén; Salgado, José Manuel; Rodríguez, Noelia; Cortés, Sandra; Converti, Attilio; Domínguez, José Manuel

    2010-01-01

    This work provides a review about the biotechnological production of citric acid starting from the physicochemical properties and industrial applications, mainly in the food and pharmaceutical sectors...

  3. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances.

    Science.gov (United States)

    Lee, Je Min; Lee, Hyungjae; Kang, SeokBeom; Park, Woo Jung

    2016-01-04

    Polyunsaturated fatty acids (PUFAs) are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  4. Peptide Nucleic Acids Having Amino Acid Side Chains

    DEFF Research Database (Denmark)

    1998-01-01

    A novel class of compounds, known as peptide nucleic acids, bind complementary DNA and RNA strands more strongly than the corresponding DNA or RNA strands, and exhibit increased sequence specificity and solubility. The peptide nucleic acids comprise ligands selected from a group consisting...

  5. Fatty Acid Desaturases, Polyunsaturated Fatty Acid Regulation, and Biotechnological Advances

    Directory of Open Access Journals (Sweden)

    Je Min Lee

    2016-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs are considered to be critical nutrients to regulate human health and development, and numerous fatty acid desaturases play key roles in synthesizing PUFAs. Given the lack of delta-12 and -15 desaturases and the low levels of conversion to PUFAs, humans must consume some omega-3 and omega-6 fatty acids in their diet. Many studies on fatty acid desaturases as well as PUFAs have shown that fatty acid desaturase genes are closely related to different human physiological conditions. Since the first front-end desaturases from cyanobacteria were cloned, numerous desaturase genes have been identified and animals and plants have been genetically engineered to produce PUFAs such as eicosapentaenoic acid and docosahexaenoic acid. Recently, a biotechnological approach has been used to develop clinical treatments for human physiological conditions, including cancers and neurogenetic disorders. Thus, understanding the functions and regulation of PUFAs associated with human health and development by using biotechnology may facilitate the engineering of more advanced PUFA production and provide new insights into the complexity of fatty acid metabolism.

  6. Carbonic Acid Pretreatment of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  7. Carbonic Acid Retreatment of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  8. Ghrelin and gastric acid secretion

    Institute of Scientific and Technical Information of China (English)

    Koji Yakabi; Junichi Kawashima; Shingo Kato

    2008-01-01

    Ghrelin, a novel growth hormone-releasing peptide, was originally isolated from rat and human stomach. Ghrelin has been known to increase the secretion of growth hormone (GH), food intake, and body weight gain when administered peripherally or centrally. Ghrelin is also known to stimulate the gastric motility and the secretion of gastric acid. In the previous studies, the action of ghrelin on acid secretion was shown to be as strong as that of histamine and gastrin in-vivo experiment. In the studies, the mechanism for the action of ghrelin was also investigated. It was shown that vagotomy completely inhibited the action of ghrelin on the secretion of gastric acid suggesting that vagal nerve is involved in the mechanism for the action of ghrelin on acid secretion. As famotidine did not inhibit ghrelin-in-duced acid secretion in the study by Masuda et al, they concluded that histamine was not involved in the action of ghrelin on acid secretion. However, we have shown that famotidine completely inhibited ghrelin-induced acid secretion and histidine decarboxylase (HDC) mRNA was increased in gastric mucosa by ghrelin injection which is inhibited by vagotomy Our results indicate that histamine is involved in the action of ghrelin on acid secretion. Furthermore synergistic action of gastrin and ghrelin on gastric add secretion was shown. Although gastrin has important roles in postprandial secretion of gastric acid, ghrelin may be related to acid secretion during fasting period or at night. However, further studies are needed to elucidate the physiological role of ghrelin in acid secretion.

  9. Amino acids in Arctic aerosols

    Directory of Open Access Journals (Sweden)

    E. Scalabrin

    2012-11-01

    Full Text Available Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS to analyze 20 amino acids and quantify compounds at fmol m−3 levels. Mean total FAA concentration was 1070 fmol m−3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m−3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (< 0.49 μm and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanic emissions.

  10. Amino acids in Arctic aerosols

    Directory of Open Access Journals (Sweden)

    E. Scalabrin

    2012-07-01

    Full Text Available Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS to analyze 20 amino acids to quantify compounds at fmol m−3 levels. Mean total FAA concentration was 1070 fmol m−3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m−3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  11. The acidic amino acids of tulip: isolation of γ-ethylideneglutamic acid

    Science.gov (United States)

    Fowden, L.

    1966-01-01

    1. γ-Ethylideneglutamic acid has been isolated from fruit capsules of tulip plants. 2. The assigned structure was indicated by examining the products formed after oxidation and catalytic hydrogenation and was confirmed by nuclear-magnetic-resonance spectroscopy and by synthesis of γ-ethylglutamic acid. 3. The ability of γ-ethylideneglutamic acid to participate in transamination and decarboxylation reactions was examined. PMID:5938664

  12. Infrared spectra of hydrogen-bonded salicylic acid and its derivatives : Salicylic acid and acetylsalicylic acid

    Science.gov (United States)

    Wójcik, Marek J.

    1981-11-01

    Infrared spectra of hydrogen-bonded salicylic acid, O-deutero-salicylic acid and acetylsalicylic acid crystals have been studied experimentally and theoretically. Interpretation of these spectra was based on the Witkowski-Maréchal model. Semi-quantitative agreement between experimental and theoretical spectra can be achieved with the simplest form of this model, with values of interaction parameters transferable for equivalent intermolecular hydrogen bonds.

  13. Production of succinic Acid from citric Acid and related acids by lactobacillus strains.

    Science.gov (United States)

    Kaneuchi, C; Seki, M; Komagata, K

    1988-12-01

    A number of Lactobacillus strains produced succinic acid in de Man-Rogosa-Sharpe broth to various extents. Among 86 fresh isolates from fermented cane molasses in Thailand, 30 strains (35%) produced succinic acid; namely, 23 of 39 Lactobacillus reuteri strains, 6 of 18 L. cellobiosus strains, and 1 of 6 unidentified strains. All of 10 L. casei subsp. casei strains, 5 L. casei subsp. rhamnosus strains, 6 L. mali strains, and 2 L. buchneri strains did not produce succinic acid. Among 58 known strains including 48 type strains of different Lactobacillus species, the strains of L. acidophilus, L. crispatus, L. jensenii, and L. parvus produced succinic acid to the same extent as the most active fresh isolates, and those of L. alimentarius, L. collinoides, L. farciminis, L. fructivorans (1 of 2 strains tested), L. malefermentans, and L. reuteri were also positive, to lesser extents. Diammonium citrate in de Man-Rogosa-Sharpe broth was determined as a precursor of the succinic acid produced. Production rates were about 70% on a molar basis with two fresh strains tested. Succinic acid was also produced from fumaric and malic acids but not from dl-isocitric, alpha-ketoglutaric, and pyruvic acids. The present study is considered to provide the first evidence on the production of succinic acid, an important flavoring substance in dairy products and fermented beverages, from citrate by lactobacilli.

  14. Acid Rain: The Scientific Challenge.

    Science.gov (United States)

    Godfrey, Paul J.

    1991-01-01

    Documents the workings and findings of the Massachusetts Acid Rain Monitoring Project, which has pooled the volunteer efforts of more than 1,000 amateur and professional scientists since 1983. Reports on the origins of air pollution, the prediction of acid rain, and its effects on both water life and land resources. (JJK)

  15. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2003-01-01

    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  16. Acid Rain: What's the Forecast?

    Science.gov (United States)

    Bybee, Rodger

    1984-01-01

    Discusses various types of acid rain, considered to be a century-old problem. Topics include: wet and dry deposition, effects on a variety of environments, ecosystems subject to detrimental effects, and possible solutions to the problem. A list of recommended resources on acid rain is provided. (BC)

  17. Bile acids for viral hepatitis

    DEFF Research Database (Denmark)

    Chen, Weikeng; Liu, J; Gluud, C

    2003-01-01

    The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness.......The viral hepatitides are common causes of liver diseases globally. Trials have assessed bile acids for patients with viral hepatitis, but no consensus was reached regarding their usefulness....

  18. Protein and amino acid nutrition

    Science.gov (United States)

    Dairy cow protein and amino acid nutrition have a significant role in sustainable dairying. Protein, amino acids, and nitrogen are inextricably linked through effects in the rumen, metabolism of the cow, and environmental nutrient management. Feeding systems have been making progress toward emphasiz...

  19. Pantothenic acid (Vitamin B5)

    Science.gov (United States)

    ... vitamin B5 (pantothenic acid), vitamin B6 (pyridoxine), vitamin B12 (cyanocobalamin), and folic acid. However, some products do ... Pantothenas, Calcium D-Pantothenate, Calcium Pantothenate, Complexe de Vitamines B, D-Calcium Pantothenate, D-Panthenol, D-Panthénol, ...

  20. Phosphorus derivatives of salicylic acid

    Science.gov (United States)

    Chvertkina, L. V.; Khoklov, P. S.; Mironov, Vladimir F.

    1992-10-01

    The present state of work on the methods of synthesis, chemical properties, and practical applications of phosphorus-containing derivatives of salicylic acid has been reviewed. The characteristics of the chemical transformations of cyclic and acyclic phosphorus derivatives of salicylic acid related to the coordination state of the phosphorus atom have been examined. The bibliography includes 158 references.

  1. utilisation of synthetic amino acids

    African Journals Online (AJOL)

    student

    intake, bodyweight gain, egg weight or efficiency of lysine utilisation, but ... When modelling the amino acid requirements of broiler breeder ... Two hundred and forty Cobb broiler breeder hens aged 27 weeks were housed in individual cages. ..... feeds with synthetic amino acids is of importance not only on nutritional and.

  2. Acid Rain: What's the Forecast?

    Science.gov (United States)

    Bybee, Rodger

    1984-01-01

    Discusses various types of acid rain, considered to be a century-old problem. Topics include: wet and dry deposition, effects on a variety of environments, ecosystems subject to detrimental effects, and possible solutions to the problem. A list of recommended resources on acid rain is provided. (BC)

  3. Acid Rain: The Scientific Challenge.

    Science.gov (United States)

    Godfrey, Paul J.

    1991-01-01

    Documents the workings and findings of the Massachusetts Acid Rain Monitoring Project, which has pooled the volunteer efforts of more than 1,000 amateur and professional scientists since 1983. Reports on the origins of air pollution, the prediction of acid rain, and its effects on both water life and land resources. (JJK)

  4. Kinetics and Mechanism of Oxidation of Phenyl Acetic Acid and Dl-Mandelic Acid by Permanganate in Acid Medium

    Directory of Open Access Journals (Sweden)

    B.Syama Sundar

    2014-06-01

    Full Text Available Kinetics of oxidation of phenyl acetic acid and DL- Mandelic acid by potassium permanganate in aqueous acetic acid and perchloric acid mixture reveals that the kinetic orders are first order in oxidant, first order in H+ and zero order in substrate for phenyl acetic acid. DL-Mandelic acid exhibits first order in oxidant and zero order in substrate. The results are rationalised by a mechanism involving intermediate formation of mandelic acid in case of Phenyl acetic acid and ester formation with Mn (VII in case of DL-Mandelic acid. The following order of reactivity is observed: DL-Mandelic acid > Phenyl acetic acid. The high reactivity of DL-Mandelic acid over phenyl acetic acid may be due to different mechanisms operating with the two substrates and benzaldehyde is the final product in both the cases.

  5. N-(3-Nitrophenylmaleamic acid

    Directory of Open Access Journals (Sweden)

    B. Thimme Gowda

    2010-07-01

    Full Text Available In the title compound, C10H8N2O5, the molecule is slightly distorted from planarity. The molecular structure is stabilized by two intramolecular hydrogen bonds. The first is a short O—H...O hydrogen bond (H...O distance = 1.57 Å within the maleamic acid unit and the second is a C—H...O hydrogen bond (H...O distance = 2.24 Å which connects the amide group with the benzene ring. The nitro group is twisted by 6.2 (2° out of the plane of the benzene ring. The crystal structure manifests a variety of hydrogen bonding. The packing is dominated by a strong intermolecular N—H...O interaction which links the molecules into chains running along the b axis. The chains within a plane are further assembled by three additional types of intermolecular C—H...O hydrogen bonds to form a sheet parallel to the (overline{1}01 plane.

  6. Examining impacts of current-use pesticides in Southern Ontario using in situ exposures of the amphipod Hyalella azteca.

    Science.gov (United States)

    Bartlett, Adrienne J; Struger, John; Grapentine, Lee C; Palace, Vince P

    2016-05-01

    In situ exposures with Hyalella azteca were used to assess impacts of current-use pesticides in Southern Ontario, Canada. Exposures were conducted over 2 growing seasons within areas of high pesticide use: 1 site on Prudhomme Creek and 3 sites on Twenty Mile Creek. Three sites on Spencer Creek, an area of low pesticide use, were added in the second season. Surface water samples were collected every 2 wk to 3 wk and analyzed for a suite of pesticides. Hyalella were exposed in situ for 1 wk every 4 wk to 6 wk, and survival and acetylcholinesterase (AChE) activity were measured. Pesticides in surface waters reflected seasonal use patterns: lower concentrations in spring and fall and higher concentrations during summer months. Organophosphate insecticides (chlorpyrifos, azinphos methyl, diazinon) and acid herbicides (2,4-dichlorophenoxyacetic acid [2,4-D], mecoprop) were routinely detected in Prudhomme Creek, whereas neutral herbicides (atrazine, metolachlor) dominated the pesticide signature of Twenty Mile Creek. Spencer Creek contained fewer pesticides, which were measured at lower concentrations. In situ effects also followed seasonal patterns: higher survival and AChE activity in spring and fall, and lower survival and AChE activity during summer months. The highest toxicity was observed at Prudhomme Creek and was primarily associated with organophosphates. The present study demonstrated that current-use pesticides in Southern Ontario were linked to in situ effects and identified sites of concern requiring further investigation.

  7. In vitro plant regeneration system for tropical butternut squash genotypes (Cucurbita moschata

    Directory of Open Access Journals (Sweden)

    Marta Valdez-Melara

    2009-11-01

    Full Text Available An efficient and reproducible method for regeneration of commercial and pure lines of tropical butternut squash (Cucurbita moschata plants via somatic embryogenesis was developed. The influence of genotype, explant source, N6-benzylaminopurine (BAP, 2,4-dichlorophenoxyacetic acid (2,4-D and 2,4,5-trichlorophenoxyacetic acid (2,4,5-T concentration on somatic embryogenesis induction was investigated. Friable embryogenic calli was produced from zigotic embryos (53-56% and cotyledons from seedlings (70% of C. moschata cv. Sello de Oro cultured on callus induction medium (CIM supplemented with 0.5 mg/l or 3.5 mg/l 2,4-D. No embryogenic calli was obtained from leaf segments of C. moschata cv. Sello de Oro cultured on CIM supplemented with different concentrations of BAP and 2,4-D and cotyledons from seedlings of C. moschata cv. PVG 04 cultured on CIM with BAP and 2,4,5-T. Embryogenic calli induction was achieved in 75% C. moschata pure lines evaluated and calli percentage frequency range from 5% to 34%. Successful acclimatization of squash in vitro plants was achieved in the greenhouse and in the field. Regenerated plants appeared morphologically normal and set flowers and fruits with seeds that could germinate normally. Rev. Biol. Trop. 57 (Suppl. 1: 119-127. Epub 2009 November 30.

  8. Comparative activity of TiO2 microspheres and P25 powder for organic degradation: Implicative importance of structural defects and organic adsorption

    Science.gov (United States)

    Wang, Chuan; Liu, Hong; Liu, Yuan; He, Guang'an; Jiang, Chengchun

    2014-11-01

    TiO2 microspheres have been employed as a promisingly new photocatalyst for water and wastewater treatment. P25 TiO2 is commonly employed and its properties are well established as photocatalyst. In this study, photocatalytic activities of the two TiO2 samples are compared by degrading sulfosalicylic acid (SSA), phenol, and 2,4-Dichlorophenoxyacetic acid (2,4-D) under 365 nm UV illumination in a suspension system at neutral pH and associated optimized TiO2 dosages. The results showed that the three organic compounds unexceptionally degraded more rapidly on P25 than on TiO2 microspheres in terms of the concentration-time curves and total organic carbon removals at 120 min. This might me attributed the presence of oxygen vacancies and Ti(III) defects already present on P25 as determined by electron paramagnetic resonance, implying that the defects played an important role for the enhancement of the charge transfer step as rate-determining step. The degradations of three organic compounds on P25 and TiO2 microspheres could be well described by the first-order rate equation, while the degradation kinetics of SSA on TiO2 microspheres was quite different. The difference was ascribed to the medium adsorption ability of SSA on the TiO2 surface.

  9. EFFICIENT CALLUS INDUCTION AND PLANT REGENERATION FROM IMMATURE EMBRYO CULTURE OF TRITICUM AESTIVUM L.- THINOPYRUM INTERMEDIUM ALIEN DISOMIC ADDITION LINES

    Institute of Scientific and Technical Information of China (English)

    LI Hong-mei; LI Xing-feng; GAO Ju-rong; WANG Hong-gang

    2005-01-01

    An efficient plant regeneration system was developed from the immature embryos of Triticum aestivum L. - Thinopyrum intermedium alien disomic addition lines, which resistant to powdery mildew. The protocol was based on a series of experiments involving the callus induction and differentiation. The experiment studied the effects of embryo size on callus induction and differentiation of the immature embryos. We found that the embryo size is critical for the establishment of embryogenic callus. Immature embryos (0.8~1.5 mm) showed high ability to produce embryogenic callus capable of regenerating green plants. The medium Murashige and Skoog's (MS) added with 2mg/L 2, 4-dichlorophenoxyacetic acid (2, 4-D) gave the best embryogenic callus induction, maintenance and regeneration. The embryogenic callus maintained high regeneration during six subcultures in the callus induction medium. Suitable time of partial desiccation could effectively improve the regeneration capacity of the callus cultured for 3~4 month.Bud green spot and root green spot were observed during the differentiation of callus and the difference between them was described. Regenerated shoots were rooted on half-strength MS medium containing 0.2 mg/L Naphthalene acetic acid (NAA). Plants were successfully transferred to soil and grew well. This efficient plant regeneration system provides a foundation for the study of somaclonal variation of Triticum aestivum L. - Thinopyrum intermedium alien disomic addition lines.

  10. Somatic Embryogenesis in Lily Bulb Scale Cultures

    Institute of Scientific and Technical Information of China (English)

    WANG Shasha; WANG Jingang; FAN Jinping; CHE Daidi

    2008-01-01

    Somatic embryogenesis from lily bulb scales has not been studied in details, although tissue culture methods have been applied to the propagation for decades. The effects of different kinds and concentration of auxins for oriental lily somatic embryogenesis were investigated (Lilium hybrida car. Sorbonne).2,4-dichlorophenoxyacetic acid (2,4-D), thidiazuron (TDZ) and α-naphthaleneacetic acid (NAA) media with benzyladenine(6-BA) and lactalbumin hydrolysate (LH) were used for embryogenic callus in the darkness. The best response onembryogenic callus formation was obtained on MS media supplemented 2, 4-D 2.0 mg·L-1,6-BA 0.5 mg·L-1 and LH 300 mg·L-1. Transfer embryogenic callus to the media with TDZ, 6-BA, kinetin (KT) supplemented 2, 4-D. The highest number of somatic embryos has been produced on medium with 0.5 mg.L-1 2, 4-D and 0.3 mg·L-1 KT. Germinated embryos with shoot axes were changed to MS media with 6-BA 0.5 mg· L-1. The results suggest that in vitro culture of somatic embryogenesis from lily bulb scales can be used for plant regeneration.

  11. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO{sub 2}/CeO{sub 2} catalyst in a slurry

    Energy Technology Data Exchange (ETDEWEB)

    Luna, A.J. [Instituto Nacional de Propriedade Industrial (INPI), Rio de Janeiro, RJ (Brazil)], e-mail: airtonj@inpi.gov.br; Rojas, L.O.A.; Sousa, J.F. de [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. of Chemical Engineering; Melo, D.M.A. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Dept. of Chemistry; Benachour, M. [Universidade Federal de Pernambuco (UFPE)Recife, PE (Brazil). Dept. of Chemical Engineering

    2009-07-15

    In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process - Catalyzed Wet Oxidation (CWO). A mixed oxide of Mn-Ce (7:3), the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl{sub 2} and CeCl{sub 3} in a basic medium. The mixed oxide, MnO{sub 2}/CeO{sub 2}, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130 deg C and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4- dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed. (author)

  12. Adsorption of ionizable organic contaminants on multi-walled carbon nanotubes with different oxygen contents

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaona; Zhao Huimin [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Liaoning Province, Dalian 116024 (China); Quan Xie, E-mail: quanxie@dlut.edu.cn [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Liaoning Province, Dalian 116024 (China); Chen Shuo; Zhang Yaobin; Yu Hongtao [Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Liaoning Province, Dalian 116024 (China)

    2011-02-15

    Multi-walled carbon nanotubes (MWNTs), which are considered to be promising candidates for the adsorption of toxic organics, are released into aqueous environment with their increasing production and application. In this study, the adsorption behaviors of five structurally related ionizable organic contaminants namely perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorooctanesulfonamide (PFOSA), 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-n-nonylphenol (4-NP) onto MWNTs with different oxygen contents (3.84-22.85%) were investigated. The adsorption kinetics was investigated and simulated with pseudo-second-order model. The adsorption isotherms were found to be fitted with Freundlich model and influenced by both the properties of organic chemicals and the oxygen contents of MWNTs. As adsorption capacity decreases dramatically with the increasing of oxygen contents, the MWNTs with the lowest oxygen contents possess the highest adsorption capacity among four MWNTs. For the MWNTs with the oxygen contents of 3.84%, the adsorption affinity related with hydrophobic interaction and {pi}-electron polarizability decreased in the order of 4-NP > PFOSA > PFOS > 2,4-D > PFOA. Furthermore, the adsorption characters of five contaminants were affected by solution pH and solute pK{sub a} considering electrostatic repulse force and hydrogen bonding, which showed the adsorption of MWNTs with lower oxygen content is much sensitive to solution chemistry.

  13. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    Science.gov (United States)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  14. Photocatalytic degradation of 2,4-D and 2,4-DP herbicides on Pt/TiO2 nanoparticles

    Directory of Open Access Journals (Sweden)

    M. Abdennouri

    2015-09-01

    Full Text Available Titanium dioxide was synthesized by the sol–gel method and platinum supported on titanium dioxide were prepared by a wet impregnation chemical process at different platinum contents. The prepared samples were dried over night at 110 °C and then calcined at 500 °C for 4 h. Structural and morphological characterization has been carried out by means of X-ray diffraction (XRD, differential scanning calorimetry–thermogravimetric analysis (DSC–TGA, Raman spectroscopy, Fourier-transform infrared spectroscopy (FT-IR, Brunauer–Emmett–Teller surface area measurement (BET and transmission electron microscopy coupled to the energy dispersive spectroscopy (TEM/EDX. The adsorption performance and photocatalytic activity of the samples were investigated using two chlorophenoxy herbicides: 2,4-dichlorophenoxyacetic acid (2,4-D and 2-(2,4-dichlorophenoxy propionic acid (2,4-DP as models of organic pollutants in water. The obtained results show that Pt/TiO2 exhibited higher photocatalytic activity than TiO2 particles for the degradation of the two selected herbicides. The photocatalytic activity increases by increasing the platinum yield in the catalyst.

  15. Simplified Regeneration Protocol for Cycas revoluta Thunb. Mature Zygotic Embryos

    Directory of Open Access Journals (Sweden)

    Rohangiz NADERI

    2015-03-01

    Full Text Available Mature zygotic embryos of Cycas revoluta Thunb. were used as explants to investigate direct and indirect organogenesis. Explants were incubated on half-strength Murashige and Skoog (½ MS basal medium supplemented with various plant growth regulators, singly or in combination (all at 0.5 mg l-1: 6-benzyladenine (BA, kinetin (Kin, 2,4-dichlorophenoxyacetic acid (2,4-D, Kin×2,4-D, BA×Kin and BA×2,4-D. Cultures were placed at a low light intensity (4 µmol m-2 s-1 PPFD. Adventitious shoot regeneration was observed in the presence of 0.5 mg l-1BA after 35 days. The highest number of direct and indirect shoots per zygotic embryo was 3.67 and 29.67, respectively. Roots were induced on indirect shoots by continuous culture on rooting medium (½ MS,‏ 0.1 mg l-1 1-naphthaleneacetic acid and hardened successfully in perlite. Each rooted plantlet with pinnate leaves and a primary tap root was individually isolated and acclimatized 185 days after the beginning of culture, with a 10% success rate.

  16. Chemometric-assisted QuEChERS extraction method for post-harvest pesticide determination in fruits and vegetables

    Science.gov (United States)

    Li, Minmin; Dai, Chao; Wang, Fengzhong; Kong, Zhiqiang; He, Yan; Huang, Ya Tao; Fan, Bei

    2017-02-01

    An effective analysis method was developed based on a chemometric tool for the simultaneous quantification of five different post-harvest pesticides (2,4-dichlorophenoxyacetic acid (2,4-D), carbendazim, thiabendazole, iprodione, and prochloraz) in fruits and vegetables. In the modified QuEChERS (quick, easy, cheap, effective, rugged and safe) method, the factors and responses for optimization of the extraction and cleanup analyses were compared using the Plackett–Burman (P–B) screening design. Furthermore, the significant factors (toluene percentage, hydrochloric acid (HCl) percentage, and graphitized carbon black (GCB) amount) were optimized using a central composite design (CCD) combined with Derringer’s desirability function (DF). The limits of quantification (LOQs) were estimated to be 1.0 μg/kg for 2,4-D, carbendazim, thiabendazole, and prochloraz, and 1.5 μg/kg for iprodione in food matrices. The mean recoveries were in the range of 70.4–113.9% with relative standard deviations (RSDs) of less than 16.9% at three spiking levels. The measurement uncertainty of the analytical method was determined using the bottom-up approach, which yielded an average value of 7.6%. Carbendazim was most frequently found in real samples analyzed using the developed method. Consequently, the analytical method can serve as an advantageous and rapid tool for determination of five preservative pesticides in fruits and vegetables.

  17. High embryogenic ability and regeneration from floral axis of Amorphophallus konjac (Araceae

    Directory of Open Access Journals (Sweden)

    Zhong Lin

    2017-03-01

    Full Text Available Amorphophallus konjac (Araceae a perennial herb, it has high medicinal and industrial value. In this study, a simple and efficient system for direct somatic embryogenesis and plantlet regeneration of Amorphophallus konjac was developed. The floral axis was used as the experimental material. The primary callus, developed from the floral axis grown on Murashige and Skoog (MS medium supplemented with different hormone combination at different concentrations. The highest rate of embryogenic callus formation was observed on the MS medium containing 9.04 µM 2, 4-dichlorophenoxyacetic acid (2, 4-D and 5.37 µM naphthalene acetic acid (NAA. The maximum induction rate was 79.8%, and the embryogenic calli were able to subculture on a medium containing similar hormone combination for over 1 year. The calli were also placed on different media for regeneration and it produced complete plants with shoots and root systems simultaneously. The highest differentiation rate of the embryogenic calli grown on differentiation medium supplemented with 8.88 µM 6-benzylaminopurine (6-BA and 5.37 µM NAA was 95.6%. Flow cytometry analysis showed no ploidy variation in all the regenerate plantlets.

  18. Total catalytic wet oxidation of phenol and its chlorinated derivates with MnO2/CeO2 catalyst in a slurry

    Directory of Open Access Journals (Sweden)

    A. J. Luna

    2009-09-01

    Full Text Available In the present work, a synthetic effluent of phenol was treated by means of a total oxidation process-Catalyzed Wet Oxidation (CWO. A mixed oxide of Mn-Ce (7:3, the catalyst, was synthesized by co-precipitation from an aqueous solution of MnCl2 and CeCl3 in a basic medium. The mixed oxide, MnO2/CeO2, was characterized and used in the oxidation of phenol in a slurry reactor in the temperature range of 80-130ºC and pressure of 2.04-4.76 MPa. A phenol solution containing 2.4-dichlorophenol and 2.4-dichlorophenoxyacetic acid was also degraded with good results. A lumped kinetic model, with two parallel reaction steps, fits precisely with the integrated equation and the experimental data. The kinetic parameters obtained are in agreement with the Arrhenius equation. The activation energies were determined to be 38.4 for the total oxidation and 53.4 kJ/mol for the organic acids formed.

  19. On-line monitoring of the photocatalytic degradation of 2,4-D and dicamba using a solid-phase extraction-multisyringe flow injection system.

    Science.gov (United States)

    Chávez-Moreno, Carmín; Ferrer, Laura; Hinojosa-Reyes, Laura; Hernández-Ramírez, Aracely; Cerdà, Víctor; Guzmán-Mar, Jorge

    2013-11-15

    A fully automated on-line system for monitoring the photocatalytic degradation of herbicides was developed using multisyringe flow injection analysis (MSFIA) coupled to a solid phase extraction (SPE) unit with UV detection. The calibration curves were linear in the concentration range of 100-1000 μg L(-1) for 3,6-dichloro-2-methoxybenzoic acid (dicamba) and 500-3000 μg L(-1) for 2,4-dichlorophenoxyacetic acid (2,4-D), while the detection limits were 30 and 135 μg L(-1) for dicamba and 2,4-D, respectively. The monitoring of the photocatalytic degradation (TiO2 anatase/UV 254 nm) of these two herbicides was performed by MSFIA-SPE system using a small sample volume (2 mL) in a fully automated approach. The degradation was assessed in ultrapure and drinking water with initial concentrations of 1000 and 2000 μg L(-1) for dicamba and 2,4-D, respectively. Degradation percentages of approximately 85% were obtained for both herbicides in ultrapure water after 45 min of photocatalytic treatment. A similar degradation efficiency in drinking water was observed for 2,4-D, whereas dicamba exhibited a lower degradation percentage (75%), which could be attributed to the presence of inorganic species in this kind of water. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Anionic peroxidase production by Arnebia euchroma callus.

    Science.gov (United States)

    Farhadi, Sahar; Haghbeen, Kamahldin; Marefatjo, Mohammad-Javad; Hoor, Marjan Ghiyami; Zahiri, Hossein Shahbani; Rahimi, Karim

    2011-01-01

    Arnebia euchroma callus, obtained from the root cell culture of an Iranian native specimen, has gained a doubling time of 63 H after regular subculturing on Linsmaier-Skoog (LS) medium containing sugar (50 g/L), 2,4-dichlorophenoxyacetic acid (10(-6) M), and kinetin (10(-5) M) under darkness at 25°C. Despite the observed somaclonal variations, peroxidase production by the A. euchroma calli has been stable over 4 years under the aforementioned conditions. Isoelectric focusing experiments revealed that the partially purified A. euchroma peroxidases (AePoxs) are mainly anionic with pI values of about 5.5 and 6.6. AePox reaches its optimal activity at 55°C and pH 7.5. Results of the various kinetic studies suggest that AePox belongs to the type III plant peroxidases with no activity for the oxidation of 3-indoleacetic acid, but seems to play a role in the lignin biosynthesis and H(2) O(2) regulation during the proliferation of the A. euchroma cells on LS medium. Comparing the biochemical properties of AePox with horseradish peroxidase and in view of the ease of solid cell culture, the A. euchroma callus could be considered as a source of plant peroxidase for some biotechnological applications. Copyright © 2011 International Union of Biochemistry and Molecular Biology, Inc.

  1. A quantitative HPLC-MS/MS method for studying internal concentrations and toxicokinetics of 34 polar analytes in zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Brox, Stephan; Ritter, Axel P; Küster, Eberhard; Reemtsma, Thorsten

    2014-08-01

    An analytical method using high-performance liquid chromatography-tandem mass spectrometry was developed to determine internal concentrations of 34 test compounds such as pharmaceuticals and pesticides in zebrafish embryos (ZFE), among them, cimetidine, 2,4-dichlorophenoxyacetic acid, metoprolol, atropine and phenytoin. For qualification and quantification, multiple reaction monitoring mode was used. The linear range extends from 0.075 ng/mL for thiacloprid and metazachlor and 7.5 ng/mL for coniine and clofibrate to 250 ng/mL for many of the test compounds. Matrix effects were strongest for nicotine, but never exceeded ±20 % for any of the developmental stages of the ZFE. Method recoveries ranged from 90 to 110 % from an analysis of nine pooled ZFE. These findings together with the simple sample preparation mean this approach is suitable for the determination of internal concentrations from only nine individual ZFE in all life stages up to 96 h post-fertilization. Exemplarily, the time course of the internal concentrations of clofibric acid, metribuzin and benzocaine in ZFE was studied over 96 h, and three different patterns were distinguished, on the basis of the speed and extent of uptake and whether or not a steady state was reached. Decreasing internal concentrations may be due to metabolism in the ZFE.

  2. Heterologous expression of a Tpo1 homolog from Arabidopsis thaliana confers resistance to the herbicide 2,4-D and other chemical stresses in yeast.

    Science.gov (United States)

    Cabrito, Tânia R; Teixeira, Miguel C; Duarte, Alexandra A; Duque, Paula; Sá-Correia, Isabel

    2009-10-01

    The understanding of the molecular mechanisms underlying acquired herbicide resistance is crucial in dealing with the emergence of resistant weeds. Saccharomyces cerevisiae has been used as a model system to gain insights into the mechanisms underlying resistance to the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The TPO1 gene, encoding a multidrug resistance (MDR) plasma membrane transporter of the major facilitator superfamily (MFS), was previously found to confer resistance to 2,4-D in yeast and to be transcriptionally activated in response to the herbicide. In this work, we demonstrate that Tpo1p is required to reduce the intracellular concentration of 2,4-D. ScTpo1p homologs encoding putative plasma membrane MFS transporters from the plant model Arabidopsis thaliana were analyzed for a possible role in 2,4-D resistance. At5g13750 was chosen for further analysis, as its transcript levels were found to increase in 2,4-D stressed plants. The functional heterologous expression of this plant open reading frame in yeast was found to confer increased resistance to the herbicide in Deltatpo1 and wild-type cells, through the reduction of the intracellular concentration of 2,4-D. Heterologous expression of At5g13750 in yeast also leads to increased resistance to indole-3-acetic acid (IAA), Al(3+) and Tl(3+). At5g13750 is the first plant putative MFS transporter to be suggested as possibly involved in MDR.

  3. Isolation, culture, and plant regeneration from Echinacea purpurea protoplasts.

    Science.gov (United States)

    Pan, Zeng-guang; Liu, Chun-zhao; Murch, Susan I; Saxena, Praveen K

    2006-01-01

    A plant regeneration system from the isolated protoplasts of Echinacea purpurea L. using an alginate solid/liquid culture is described in the chapter. Viable protoplasts were isolated rom 100 mg of young leaves of 4-wk-old seedlings in an isolation mixture containing 1.0% cellulase Onozuka R-10, 0.5% pectinase, and 0.3 mol/L mannitol. After isolation and purification, the mesophyll protoplasts were embedded into 0.6% Na-alginate at the density 1 x 10(-5) mL and cultured in modified Murashige and Skoog (MS) culture medium supplemented with 0.3 mol/L sucrose, 2.5 micromol/L benzylaminopurine (BA), and 5.0 micromol/L 2,4-dichlorophenoxyacetic acid (2,4-D). The visible colonies were present after 4 wk of culture. The protoplast-derived clones were transferred onto gellan gum-solidified basal medium supplemented with 1.0 micromol/L BA and 2.0 micromol/L indole-3-butyric acid (IBA) and formed compact and green calli. Shoot development was achieved by subculturing the calli onto the same basal medium supplemented with 5.0 micromol/L BA and 2.0 micromol/L IBA. Further subculture onto basal medium resulted in the regeneration of complete plantlets.

  4. Callus induction and plant regeneration in the moss Aloina Aloides (Schultz Kindb. (Pottiaceae, Bryopsida

    Directory of Open Access Journals (Sweden)

    Bijelović Aneta

    2003-01-01

    Full Text Available Callus induction of moss species Aloina aloides (Schultz Kindb. was obtained on Murashige and Skoog (MS medium supplemented with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D or with 1.0 mg/L 2,4-D and 1.0 mg/L kinetin (KIN or with 0.2 mg/L indole-3-butyric acid (IBA and 2.0 mg/L 6-benzylaminopurine (BAP or with 7.5 g/L of sucrose or with 15 g/L of sucrose or hormone - free and sugar free MS basal medium. The callus can be maintained for a long period of time without bud formation subcultured on the above media, at 16 h day/8 h night, 25 ± 2ºC, 60-70% air humidity and irradiance of 50 μmol m-2s-1. To obtain plant regeneration pieces, calli were transferred onto MS media supplemented with different concentrations of auxins and cytokinins (1.0 mg/L 2,4-D and 2 mg/L KIN; 0.2 mg/L IBA and 2 mg/L KIN; or 0.2 mg/L IAA and 2 mg/L BAP. In these media after subculturing, callus enlarges and turns to gametophytes with buds. Except for a smaller size, the plants obtained on the callus did not differ morphoanatomically from the shoots in the nature.

  5. Improved micropropagation and in vitro fruiting of Morus indica L. (K-2 cultivar

    Directory of Open Access Journals (Sweden)

    Gaurab Gogoi

    2017-06-01

    Full Text Available A rapid economically viable micropropagation protocol has been developed in the present work for Morus indica L. (K-2 cultivar utilizing the readily available nodal explants. Explants were established on different plant growth regulators (PGRs either individually or in combinations. MS medium containing 1 mg L−1 Kinetin (Kin showed the best shoot multiplication with 4.8 ± 0.23 cm average shoot length and 6.5 ± 0.03 number of internodes. Regenerated shoots were elongated in MS medium supplemented with 1.5 mg L−1 gibberellic acid (GA3. Elongated shoots cultured in full-strength MS medium supplemented with 1 mg L−1 2,4-dichlorophenoxyacetic acid (2,4-D for one week and then cultured in half-strength MS proved to be more effective in rooting compared to other PGRs in significantly shorter duration. Micropropagated plants transferred to soil fortified with the quarter-strength of MS salts along with humidity regulation process showed 89% survival frequency. In vitro flowering in the regenerated shoots was also observed in the MS medium supplemented with (1.5 mg L−1 Kin and carbon source replaced by commercial sugar cubes. This method can be effectively used for in vitro culture of M. indica in commercial scale owing to its enhanced quality and reduced time frame.

  6. Emerging contaminants (pharmaceuticals, personal care products, a food additive and pesticides) in waters of Sydney estuary, Australia.

    Science.gov (United States)

    Birch, G F; Drage, D S; Thompson, K; Eaglesham, G; Mueller, J F

    2015-08-15

    The current investigation of marine water from 30 sites adjacent to stormwater outlets across the entire Sydney estuary is the first such research in Australia. The number of analytes detected were: 8/59 pharmaceutical compounds (codeine, paracetamol, tramadol, venlafaxine, propranolol, fluoxetine, iopromide and carbamazepine), 7/38 of the pesticides (2,4-dichlorophenoxyacetic acid (2,4-D), 3,4-dichloroaniline, carbaryl, diuron, 2-methyl-4-chlorophenoxyacetic acid (MCPA), mecoprop and simazine) and 0/3 of the personal care products (PCPs) analysed. An artificial sweetener (acesulfame) was detected, however none of the nine antibiotics analysed were identified. Sewage water is not discharged to this estuary, except infrequently as overflow during high-precipitation events. The presence of acesulfame (a recognised marker of domestic wastewater) and pharmaceuticals in water from all parts of the estuary after a dry period, suggests sewage water is leaking into the stormwater system in this catchment. The pesticides are applied to the environment and were discharged via stormwater to the estuary.

  7. Production of lignans in calluses of Schisandra chinensis.

    Science.gov (United States)

    Kohda, Hiroshi; Ozaki, Makoto; Namera, Akira

    2012-04-01

    Calluses were induced from leaves of Schisandra chinensis Baillon (Schisandraceae). Murashige-Skoog (MS) and Woody Plant (WP) media were used for the induction, in full and half strength (1/2 MS or 1/2 WP) salt formulations. Test media were solidified with 0.25% gelrite and supplemented with 2% sucrose and various concentrations and combinations of 2,4-dichlorophenoxyacetic acid (2,4-D), kinetin (Kin), 3-indolebutyric acid (IBA), and 6-benzylaminopurine (BAP). Optimal conditions for callus induction and growth were found to be 1/2 MS medium containing 0.02 mg/l Kin and 0.2 mg/l 2,4-D. Chloroform extracts of all induced calluses contained gomisin A and F as major components. Gomisin A and F contents of calluses that were cultured under the optimal conditions mentioned above were highest compared to the calluses incubated with other combinations of plant hormones and media. Subculture, by repeated transfer of cultured calluses to fresh medium, caused no decrease in the production of gomisin A and F. Optimal conditions for lignan production were found to be 1/2 MS medium supplemented with 0.05 mg/1 Kin and 0.2 mg/l 2,4-D. Under these conditions, gomisin A and gomisin F contents were 0.05 and 0.04% of callus dry weight, respectively.

  8. Establishment and Optimization of the Regeneration System of Mature Embryos of Maize (Zea mays L.)

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cheng-hao; ZHANG Li-jun; GE Chao; HU Kai

    2008-01-01

    A reliable system was developed for regeneration from mature embryos derived from callus of four maize inbred lines (Liao 7980,Dan 9818,Dan 340,and Dan 5026).The protocol was mainly based on a series of experiments involving the composition of culture medium.We found that 9 μM 2,4-dichlorophenoxyacetic acid in MS medium was optimum for the induction of callus.The induction frequency of primary calli was over 85% for four inbred lines tested.The addition of L-proline (12 mM) in subculture medium significantly promoted the formation of embryogenic callus but it did not significantly enhance growth rate of callus.Efficient shoot regeneration was obtained on regeneration medium containing 2.22 μM 6-benzylaminopurine in combinations with 4.64 μM Kinetin.Regenerated shoots were rooted on half-strength MS medium containing 2.85 μM indole-3-butyric acid.This plant regeneration system provides a foundation for genetic transformation of maize.

  9. Auxin requirements of sycamore cells in suspension culture.

    Science.gov (United States)

    Moloney, M M; Hall, J F; Robinson, G M; Elliott, M C

    1983-04-01

    Sycamore (Acer pseudoplatanus L.) cell suspension cultures (strain OS) require 2,4-dichlorophenoxyacetic acid (2,4-D) in their culture medium for normal growth. If the 2,4-D is omitted, rates of cell division are dramatically reduced and cell lysis may occur. Despite this ;auxin requirement,' it has been shown by gas chromatography-mass spectrometry that the cells synthesize indol-3yl-acetic acid (IAA). Changes in free 2,4-D and IAA in the cells during a culture passage have been monitored.There is a rapid uptake of 2,4-D by the cells during the lag phase leading to a maximum concentration per cell (125 nanograms per 10(6) cells) on day 2 followed by a decline to 45 nanograms per 10(6) cells by day 9 (middle of linear phase). The initial concentration of IAA (0.08 nanograms per 10(6) cells) rises slowly to a peak of 1.4 nanograms per 10(6) cells by day 9 then decreases rapidly to 0.2 nanograms per 10(6) cells by day 15 (early declining phase) and 0.08 nanograms per 10(6) cells by day 23 (early stationary phase).

  10. Production of the Anti-Inflammatory Compound 6-O-Palmitoyl-3-O-β-D-glucopyranosylcampesterol by Callus Cultures of Lopezia racemosa Cav. (Onagraceae

    Directory of Open Access Journals (Sweden)

    Roberta Salinas

    2014-06-01

    Full Text Available Lopezia racemosa Cav. is a plant used in Mexican traditional medicine to heal inflammatory diseases. From this plant we isolated the novel compound 6-O-palmitoyl- 3-O-β-D-glucopyranosylcampesterol (1 and 6-O-palmitoyl-3-O-β-D-glucopyranosyl-β-sitosterol (2, previously reported to have cytotoxic activity on several cancer cell lines. We evaluated the anti-inflammatory activity of 1 in vivo by mouse ear edema induced with 12-O-tetradecanoylphorbol-13-acetate (TPA and 57.14% inhibition was observed. The aim of our study was to obtain callus cultures derived from this plant species with the ability to produce the compounds of interest. Callus cultures were initiated on MS basal medium amended with variable amounts of naphthaleneacetic acid (NAA, or 2,4-dichlorophenoxyacetic acid (2,4-D, combined or not with 6-benzylaminopurine (BAP. Ten treatments with these growth regulators were carried out, using in vitro germinated seedlings as source of three different explants: hypocotyl, stem node, and leaf. Highest yield of 1 was observed on callus derived from leaf explants growing in medium containing 1.0 mg/L 2,4-D and 0.5 mg/L BAP. Selected callus lines produced less 1 than wild plants but the in vitro cultured seedlings showed higher production. So we conclude that it could be attractive to further investigate their metabolic potential.

  11. In Vitro Selection and Identification of Drought-Tolerant Mutants in Sweetpotato

    Institute of Scientific and Technical Information of China (English)

    WANG Yu-ping; LIU Qing-chang; LI Ai-xian; ZHAI Hong; ZHANG Song-shu; LIU Bao-li

    2003-01-01

    In vitro selection of drought-tolerant mutants in sweetpotato cv. Lizixiang was studied by using PEG6000 as selection stress. Embryogenic suspension cultures were cultured in MS medium containing 0-35% PEG6000 and 2 mg L-1 2, 4-dichlorophenoxyacetic acid (2, 4-D). The results indicated that 30%PEG6000 can be used for the optimal selection stress of drought-tolerance. Embryogenic suspension cultures irradiated with 80 Gy gamma-ray were cultured in MS medium containing 30 % PEG6000 and 2 mg L-1 2,4-D and 20 drought-tolerant cell aggregates were obtained. These cell aggregates were transferred to solid MS medium supplemented with 2 mg L-1 2,4-D and formed embryogenic callus with somatic embryos. The embryogenic callus with somatic embryos was further transferred to MS medium supplemented with 1 mg L-1 abscisic acid (ABA), resulting in the germination of somatic embryos. In this study a total of 18 regenerated plants were obtained. The regenerated plants were transplanted in a greenhouse and 11 lines were formed. The analysis on drought treatment of seedlings, water retaining capacity of leaves and coefficient of drought-tolerance showed that 3 lines had significant drought-tolerance in comparison with the control plants.

  12. EFFECT OF PHYSIOLOGICAL AGE AND GROWTH REGULATORS ON CALLUS BROWNING OF COCONUT ENDOSPERM CULTURE IN VITRO

    Directory of Open Access Journals (Sweden)

    LAZARUS AGUS SUKAMTO

    2011-01-01

    Full Text Available The possibility of physiological age and growth regulators affecting callus browning ofcoconut endosperm was investigated. Solid endosperm explants of four coconut fruits fromsame brunches of two coconut cultivars “Samoan Dwarf ” were grown on modified Murashigeand Skoog (MS formula with addition of 10 mg l putresine, 2.50 g l activated charcoal (AC,1.70 g l phytagel, 0, 10 , 10 , 10 , 10 M 2,4-dichlorophenoxyacetic acid (2,4-D or 4-amino-3,5,6-trichloropicolinic acid (Picloram combined with 10 M 6-benzylaminopurine (BA.Callogenesis occurred on 98.83% of explants. Callus browning between different physiologicalages (antipodal and micropylar tissues of coconut endosperm at 9, 26 and 31 weeks of culture(WOC was significantly different, but not at 16 and 21 WOC. Auxins of 2,4-D and Picloramdid not affect significantly callus browning of endosperm cultures. Auxin doses at 10 , 10 , and10 M decreased significantly callus browning at 9 and 16 WOC, respectively, but at 10 Mbrowning was less significant compared to other doses at 21 WOC. Auxin dose at 10 M causedless significant browning compared to other doses at 31 WOC. The addition of BA decreasedsignificantly callus browning at 9 WOC, but did not affect callus browning thereafter.

  13. IMPROVED PLANT REGENERATION AND IN VITRO SOMATIC EMBRYOGENESIS IN Ruta graveolens

    Directory of Open Access Journals (Sweden)

    Zuraida AR

    2014-07-01

    Full Text Available In vitro callus cultures initiated from stem segments of Ruta graveolen which later on differentiated into somatic embryoids and subsequently regenerated whole plants. Callus formation was observed in culture medium containing low concentrations of the plant growth regulators, 2,4-dichlorophenoxyacetic acid (2,4-D and/or α-naphthalene acetic acid (NAA. At 0.2 mg/L NAA was showing the highest rate (85% of callus induction. The callus appeared watery, but showed no sign of browning after a month of culture. Sub-culturing the callus on to medium with 0.2 mg/L 2,4-D showed enhanced the callus proliferation rate up to 95%. Somatic embryogenesis from callus was most successful on MS medium containing either 6 g/L agar and supplemented with 0.5 mg/L benzylaminopurine (BAP, or with 9 g/L agar, supplemented with 0.5 mg/L kinetin (KIN. The former medium was more successful in plantlet regeneration when the embryoids were subsequently transferred to regeneration medium with 3 g/L agar and 0.5 mg/L BAP.

  14. Changes of gentiopicroside synthesis during somatic embryogenesis in Gentiana macrophylla.

    Science.gov (United States)

    Chen, Li-Yu; Chen, Qian-Liang; Xu, Dan; Hao, Jian-Guo; Schläppi, Michael; Xu, Zi-Qin

    2009-12-01

    IN VITRO plant regeneration of Gentiana macrophylla Pall. and determination of gentiopicroside content during somatic embryogenesis are described in the present work. The highest percentage of embryogenic callus formation was observed in Murashige and Skoog (MS) medium supplemented with 1.0 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 1.0 mg/L 6-benzylaminopurine (BA). Calli were subcultured on MS medium containing 1.0 mg/L 2,4-D, 1.0 mg/L BA and 500 mg/L lactalbumin hydrolysate (LH) at intervals of 25 days. A higher frequency of somatic embryo maturation was achieved on MS medium containing B5 vitamins (MB) supplemented with different concentrations of 1-naphthaleneacetic acid (NAA) and BA than with a combination of NAA and kinetin (KT). Addition of AgNO(3) improved maturation of somatic embryos while thidiazuron (TDZ) promoted vitrification. The gentiopicroside contents of embryogenic calli and globular-, heart-, torpedo-, and cotyledon-shaped embryoids were determined by high-performance liquid chromatography (HPLC). Gentiopicroside was not detectable in embryogenic calli, but in all types of somatic embryos. The highest gentiopicroside content was observed in cotyledon-shaped embryoids, reaching more than 12 mg/g dry weight.

  15. Plantlet Regeneration of Tartary Buckwheat (Fagopyrum tataricum Gaertn.) in Vitro Tissue Cultures.

    Science.gov (United States)

    Wang, Cheng-Long; Dong, Xue-Ni; Ding, Meng-Qi; Tang, Yi-Xiong; Zhu, Xue-Mei; Wu, Yan-Min; Zhou, Mei-Liang; Shao, Ji-Rong

    2016-01-01

    Tartary buckwheat is an ancient annual dicotyledonous herb, which is widely distributed around the world, specifically in the high altitude area of southwestern China and in the hill region of Himalayan. The plantlet regeneration of tartary buckwheat via somatic embryogenesis or multiple shoot induction was investigated in two different tartary buckwheats, Yuanzi and Xichang. The regeneration ability of Yuanzi was better than Xichang tartary buckwheat, and the hypocotyls were better than cotyledons as tartary buckwheat plantlet regeneration explants via somatic embryogenesis. The most suitable medium for callus induction was Murashige and Skoog basal medium added 2 mg/L 2, 4- dichlorophenoxyacetic acid and 1 mg/L Kinetin, which could reach up to 98.96% callus induction percentage. The plantlet regeneration percentage from callus of tartary buckwheat could reach up to 55.77%, which induced on 2.0 mg/L Benzyladenine and 1.0 mg/L KT in MS basal medium. In addition, maximum of multiple shoot induction percentage was 69.05%, which was observed in case of Yuanzi tartary buckwheat in MS basal medium with added 3.0 mg/L 6-BA and 1.0 mg/L Thidiazuron. Roots induction of regenerated plants were achieved on 1/2 MS basal medium with added 1mg/L Indole-3-Butytric acid, which has 75% survival after transferred regenerated plants to soil under field conditions.

  16. NaCl and TDZ are Two Key Factors for the Improvement of In Vitro Regeneration Rate of Salicornia europaea L.

    Institute of Scientific and Technical Information of China (English)

    Xiu-Ling Shi; He-Ping Han; Wu-Liang Shi; Yin-Xin Li

    2006-01-01

    The present study aimed to find out suitable conditions for the in vitro culture of Salicornla europaea L.and to develop an efficient regeneration system. S. europaea plants were regenerated successfully in vitro from callus derived from mature embryos. Via the method of 2,4-dichlorophenoxyacetic acid (2,4-D)short-treatment on mature seeds, callus was induced from hypocotyls on the MS medium with 4.55μmol/L N-phenyl-N'-1, 2, 3-thiadiazol-5-yl urea (TDZ) 3-4 weeks after the seeds germinated. The callus differentiated into shoots at a rate of 27.6% after subculture for one time on the same medium. When NaCl was included in the medium, shoots were formed in cluster and the shoot differentiation frequency was increased to 55.2%. The shoots were rooted when cultured on 1/2 MS medium supplemented with indole3-butyric acid (IBA), klnetin (KN) and activated charcoal (AC). The results indicated that NaCl and TDZ played an important role in the improvement of the regeneration rate of the halophyte, S. europaea.

  17. Regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata.

    Science.gov (United States)

    Ma, Kai; Hu, Chun Gen; Xu, Bing; Yao, Jia Ling

    2013-09-01

    Protocols for regeneration and Agrobacterium-mediated transformation of the apomictic species Eulaliopsis binata were developed. Initially, seeds of four genotypes of E. binata were incubated on a callus induction Murashige and Skoog (MS) basal medium supplemented with three concentrations of 2,4-dichlorophenoxyacetic acid (2,4-D). It was found that 36.2 % of explants developed highly friable callus on medium containing 3.0 mg l(-1) 2,4-D. Based on frequency of callus induction, the genotype Neixiang was selected for regeneration and transformation. Callus incubated on MS basal medium supplemented with 0.2 mg l(-1) α-naphthalene acetic acid and 6.0 mg l(-1) 6-furfuryl-aminopurine developed shoots. Subsequently, Agrobacterium tumefaciens strain EHA105-harboring a plasmid pCAMBIA1381 carrying a hygromycin phosphotransferase (hpt) resistance gene and a synthetic green fluorescent protein (GFP) gene, both driven by the cauliflower mosaic virus 35S promoter-was used for transformation system. Putative transgenic callus was obtained following two cycles of hygromycin selection. Expression of the transgene(s) in putative transgenic callus was analyzed using the GFP detection. Molecular identification of putative transformed shoots was performed by polymerase chain reaction and Southern blot analysis to confirm presence and integration of the hpt gene.

  18. Molten fatty acid based microemulsions.

    Science.gov (United States)

    Noirjean, Cecile; Testard, Fabienne; Dejugnat, Christophe; Jestin, Jacques; Carriere, David

    2016-06-21

    We show that ternary mixtures of water (polar phase), myristic acid (MA, apolar phase) and cetyltrimethylammonium bromide (CTAB, cationic surfactant) studied above the melting point of myristic acid allow the preparation of microemulsions without adding a salt or a co-surfactant. The combination of SANS, SAXS/WAXS, DSC, and phase diagram determination allows a complete characterization of the structures and interactions between components in the molten fatty acid based microemulsions. For the different structures characterized (microemulsion, lamellar or hexagonal phases), a similar thermal behaviour is observed for all ternary MA/CTAB/water monophasic samples and for binary MA/CTAB mixtures without water: crystalline myristic acid melts at 52 °C, and a thermal transition at 70 °C is assigned to the breaking of hydrogen bounds inside the mixed myristic acid/CTAB complex (being the surfactant film in the ternary system). Water determines the film curvature, hence the structures observed at high temperature, but does not influence the thermal behaviour of the ternary system. Myristic acid is partitioned in two "species" that behave independently: pure myristic acid and myristic acid associated with CTAB to form an equimolar complex that plays the role of the surfactant film. We therefore show that myristic acid plays the role of a solvent (oil) and a co-surfactant allowing the fine tuning of the structure of oil and water mixtures. This solvosurfactant behaviour of long chain fatty acid opens the way for new formulations with a complex structure without the addition of any extra compound.

  19. Pentadecanoic and Heptadecanoic Acids: Multifaceted Odd-Chain Fatty Acids.

    Science.gov (United States)

    Pfeuffer, Maria; Jaudszus, Anke

    2016-07-01

    The odd-chain fatty acids (OCFAs) pentadecanoic acid (15:0) and heptadecanoic acid (17:0), which account for only a small proportion of total saturated fatty acids in milk fat and ruminant meat, are accepted biomarkers of dairy fat intake. However, they can also be synthesized endogenously, for example, from gut-derived propionic acid (3:0). A number of studies have shown an inverse association between OCFA concentrations in human plasma phospholipids or RBCs and risk of type 2 diabetes and cardiovascular disease. We propose a possible involvement in metabolic regulation from the assumption that there is a link between 15:0 and 17:0 and the metabolism of other short-chain, medium-chain, and longer-chain OCFAs. The OCFAs 15:0 and 17:0 can be elongated to very-long-chain FAs (VLCFAs) such as tricosanoic acid (23:0) and pentacosanoic acid (25:0) in glycosphingolipids, particularly found in brain tissue, or can be derived from these VLCFAs. Their chains can be shortened, yielding propionyl-coenzyme A (CoA). Propionyl-CoA, by succinyl-CoA, can replenish the citric acid cycle (CAC) with anaplerotic intermediates and, thus, improve mitochondrial energy metabolism. Mitochondrial function is compromised in a number of disorders and may be impaired with increasing age. Optimizing anaplerotic intermediate availability for the CAC may help to cope with demands in times of increased metabolic stress and with aging. OCFAs may serve as substrates for synthesis of both odd-numbered VLCFAs and propionyl-CoA or store away excess propionic acid.

  20. Fatty acid composition of selected prosthecate bacteria.

    Science.gov (United States)

    Carter, R N; Schmidt, J M

    1976-10-11

    The cellular fatty acid composition of 14 strains of Caulobacter speices and types, two species of Prosthecomicrobium, and two species of Asticcacaulis was determined by gas-liquid chromatography. In most of these bacteria, the major fatty acids were octadecenoic acid (C18:1), hexadecenoic acid (C16:1) and hexadecanoic acid (C16:0). Some cyclopropane and branched chain fatty acids were detected in addition to the straight chained acids. Hydroxytetradecanoic acid was an important component of P.enhydrum but significant amounts of hydroxy acids were not detected in other prosthecate bacteria examined.