WorldWideScience

Sample records for 1molow cycle fatigue

  1. Multiaxial fatigue low cycle fatigue testing

    Science.gov (United States)

    Zamrik, S. Y.

    1985-01-01

    Multiaxial testing methods are reviewed. Advantages and disadvantages of each type test is discussed. Significant multiaxial data available in the literature is analyzed. The yield theories are compared for multiaxial fatigue analysis.

  2. PROBABILISTIC METHODOLOGY OF LOW CYCLE FATIGUE ANALYSIS

    Institute of Scientific and Technical Information of China (English)

    Jin Hui; Wang Jinnuo; Wang Libin

    2003-01-01

    The cyclic stress-strain responses (CSSR), Neuber's rule (NR) and cyclic strain-life relation (CSLR) are treated as probabilistic curves in local stress and strain method of low cycle fatigue analy sis. The randomness of loading and the theory of fatigue damage accumulation (TOFDA) are consid ered. The probabilistic analysis of local stress, local strain and fatigue life are constructed based on the first-order Taylor's series expansions. Through this method proposed fatigue reliability analysis can be accomplished.

  3. Low cycle fatigue of irradiated LMFBR materials

    Energy Technology Data Exchange (ETDEWEB)

    Blackburn, L D

    1976-01-01

    A review of low cycle fatigue data on irradiated LMFBR materials was conducted and extensive graphical representations of available data are presented. Representative postirradiation tensile properties of annealed 304 and 316 SS are selected and employed in several predictive methods to estimate irradiated material fatigue curves. Experimental fatigue data confirm the use of predictive methods for establishing conservative design curves over the range of service conditions relevant to such CRBRP components as core former, fixed radial shielding, core barrel, lower inlet module and upper internals structures. New experimental data on fatigue curves and creep-fatigue interaction in irradiated 20 percent cold worked (CW) 316 SS and Alloy 718 would support the design of removable radial shielding and upper internals in CRBRP. New experimental information on notched fatigue behavior and cyclic stress-strain curves of all these materials in the irradiated condition could provide significant design data.

  4. Modified low-cycle fatigue (LCF test

    Directory of Open Access Journals (Sweden)

    M. Maj

    2015-01-01

    Full Text Available The fatigue test results obtained by the common low-cycle fatigue test (LCF and its modified MLCF counterpart were presented. A satisfactory agreement of results was achieved for the two selected materials. With the MLCF method it is possible to examine from ten to twenty parameters using one single sample only. These parameters characterise the tested material in terms of its mechanical properties under the conditions of mechanical loads. Simultaneously, the study shows the implementation of the modified low-cycle fatigue test in practice.

  5. Very high cycle fatigue testing of concrete using ultrasonic cycling

    Energy Technology Data Exchange (ETDEWEB)

    Karr, Ulrike; Schuller, Reinhard; Fitzka, Michael; Mayer, Herwig [Univ. of Natural Resources and Life Sciences, Vienna (Austria). Inst. of Physics and Materials Science; Denk, Andreas; Strauss, Alfred [Univ. of Natural Resources and Life Sciences, Vienna (Austria)

    2017-06-01

    The ultrasonic fatigue testing method has been further developed to perform cyclic compression tests with concrete. Cylindrical specimens vibrate in resonance at a frequency of approximately 20 kHz with superimposed compressive static loads. The high testing frequency allows time-saving investigations in the very high cycle fatigue regime. Fatigue tests were carried out on ''Concrete 1'' (compressive strength f{sub c} = 80 MPa) and ''Concrete 2'' (f{sub c} = 107 MPa) under purely compressive loading conditions. Experiments at maximum compressive stresses of 0.44 f{sub c} (Concrete 1) and 0.38 f{sub c} (Concrete 2) delivered specimen failures above 109 cycles, indicating that no fatigue limit exists for concrete below one billion load cycles. Resonance frequency, power required to resonate the specimen and second order harmonics of the vibration are used to monitor fatigue damage in situ. Specimens were scanned by X-ray computed tomography prior to and after testing. Fatigue cracks were produced by ultrasonic cycling in the very high cycle fatigue regime at interfaces of grains as well as in cement. The possibilities as well as limitations of ultrasonic fatigue testing of concrete are discussed.

  6. Low-cycle fatigue of surgical cements

    Directory of Open Access Journals (Sweden)

    A. Balin

    2007-01-01

    Full Text Available Purpose: In case when surgical cement is used to fix endoprostheses of joints the fatigue character of mechanicalinterraction in the cement seems to be a significant importance. The paper suggests to adapt the research methodof low cycle fatigue for modelling the loads on surgical cements in an artificial hip joint. Surgical cements havealso been modified in order to improve their functional properties.Design/methodology/approach: Low cycle fatigue tests were conducted on samples made from Palamedcement without an addition and on samples modified with glassy carbon and titanium. The tests were conductedon a servohydraulic fatigue testing machine, MTS-810, with displacement control.Findings: Fatigue tests proved viscoelastic character of all the tested materials. During the fatigue tests, thephenomenon of stress cyclic relaxation was observed.Research limitations/implications: Modelling the loadings of cement in endoprostheses of joints with the lowcycle fatigue method takes into account all high value stresses, while cement is being used for endoprosthesesfor many years in the conditions of random stress and deformation courses. Therefore the obtained stress anddeformation values are bigger than those which would have been obtained in real conditions in the same time.Practical implications: The low cycle fatigue tests carried out showed how important is the factor of timefor the behavior of surgical cement in the conditions of changeable loadings. This fact is essential to assessits usability for endoprosthesoplasty of joints, specially of a hip joint. Post deformation return which is acharacteristic feature for material viscoelasticity enables its regeneration conditioning expected durability ofendoprosthesis of joints.Originality/value: Low cycle fatigue testing method for modelling of loads on surgical cement in artificial hipjoint enables to carry out the tests in a shorter period of time.

  7. Effect of higher strain range cycling on near fatigue-limit fatigue life

    Energy Technology Data Exchange (ETDEWEB)

    Fukuoka, Chie; Nakagawa, Y.G. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan). Research Inst; Rosinski, S.T.

    1999-04-01

    The objective of this study is to clarify the effects of pre-cycling above the fatigue limit on near the fatigue-limit fatigue behaviors of SA508, low alloy steel for nuclear pressure vessels, correlating fatigue lifetime with microstructural changes in the bulk. It has been observed that dislocation cell structure is well developed in an as-received SA508 sample and the misorientation among cells increases with fatigue accumulation during fatigue tests. The cell to cell misorientation was measured and statistically quantified by the Selected Area electron beam Diffraction (SAD). It was shown that a fatigue crack started growing abruptly when the SAD value (the mean misorientation among cells) exceeded a critical angle, 4-5 degrees. Fatigue tests were performed for SA508 samples, first at a high total strain range (0.62%) to 10, 100, and 6000 cycles followed by cycling at near the fatigue-limit strain range (0.40%). The sample with pre-cycling for 100 and 6000 cycles failed while ones with pre-cycling for 10 cycles and without pre-cycling did not rupture till about 10{sup 6} cycles where the tests were terminated. Small surface cracks were found all samples pre-cycled at the high strain range but the cracks were arrested for a long time at the near fatigue limit cycling followed by an abrupt growth at the failure. It was found by the SAD that samples failed at the fatigue limit when the average misorientation among cells exceeds the critical angle regardless of pre-cycling histories. The SAD value changed even during cycling below the fatigue limit, and the change in SAD value was strongly influenced by the number of pre-cycling above the fatigue limit. These changes well agreed with fatigue lifetime of the samples. (author)

  8. High cycle fatigue characteristics of 2124-T851 aluminum alloy

    Institute of Scientific and Technical Information of China (English)

    LI Xue; YIN Zhimin; NIE Bo; ZHONG Li; PAN Qinglin; JIANG Feng

    2007-01-01

    The fatigue crack growth rate, fracture toughness and fatigue S-N curve of 2124-T851 aluminum alloy at high cycle fatigue condition were measured and fatigue fracture process and fractography were studied using optical microscopy (OM), X-ray diffraction (XRD) technique, trans-mission electron microscopy (TEM) and scanning electron microscopy (SEM). The results show that at room tempera-ture and R = 0.1 conditions, the characteristics of fatigue fracture could be observed. Under those conditions, the fatigue strength and the fracture toughness of a 2124-T851 thick plate is 243 MPa and 29.64 MPa·m1/2,respectively.At high cycle fatigue condition, the higher the stress amplitude,the wider the space between fatigue striations, the faster the rate of fatigue crack developing and going into the intermittent fracture area, and the greater the ratio between the intermittent fracture area and the whole fracture area.

  9. HIGH CYCLE FATIGUE PROPERTIES OF NICKEL-BASE ALLOY 718

    Institute of Scientific and Technical Information of China (English)

    K.Kobayashi; K.Yamaguchi; M.Hayakawa; M.Kimura

    2004-01-01

    The fatigue properties of nickel-base Alloy 718 with fine- and grain-coarse grains were investigated. In the fine-grain alloy, the fatigue strength normalized by the tensile strengtn was 0.51 at 107 cycles. In contrast, the fatigue strength of the coarse-grain alloy was 0.32 at the same cycles, although the fatigue strengths in the range from 103to 105 cycles are the same for both alloys. The fracture appearances fatigued at around 106 cycles showed internal fractures originating from the flat facets of austenite grains for both alloys. The difference in fatigue strength at 107 cycles between the fine- and coarse-grain alloys could be explained in terms of the sizes of the facets from which the fractures originated.

  10. Low-Cycle Fatigue Life and Fatigue Crack Propagation of Sintered Ag Nanoparticles

    Science.gov (United States)

    Shioda, Ryutaro; Kariya, Yoshiharu; Mizumura, Noritsuka; Sasaki, Koji

    2017-02-01

    The low-cycle fatigue life and fatigue crack propagation behavior of sintered silver nanoparticles were investigated using miniature specimens sintered at two different temperatures. The fatigue crack initiation life and fatigue crack propagation rate of sintered Ag nanoparticles were extremely sensitive to changes in the range of inelastic energy density and the cyclic J integral, exhibiting brittle characteristics, in contrast to tin-based lead-free solder alloys. With increasing sintering temperature, the fatigue crack propagation rate decreased. On the other hand, the effect of sintering temperature on the fatigue crack initiation life differed depending on the use of either a smooth specimen (low-cycle fatigue test) or notched specimen (fatigue crack propagation test). For the notched specimens, the probability of grain boundaries around the notch decreased due to increased sintering temperature. Therefore, the fatigue crack initiation life was increased with an increase in sintering temperature in the fatigue crack propagation test. In the smooth specimen, however, the fatigue life decreased with an increase in sintering temperature, as the elastic modulus of the specimen increased with increasing sintering temperature. In the low-cycle fatigue test, the specimen sintered with high internal stress started to develop crack initiation early, causing a decrease in the crack initiation life.

  11. The role of creep in high temperature low cycle fatigue.

    Science.gov (United States)

    Manson, S. S.; Halford, G. R.; Spera, D. A.

    1971-01-01

    The significance of the role that creep can play in governing high-temperature, low-cycle fatigue resistance is investigated by conducting strain cycling tests on two high-temperature stainless steel alloys and making concurrent measurements of stress, temperature, and strain at various frequencies. The results are then analyzed in terms of damage imposed by creep and fatigue components. It is shown that creep can play an important and sometimes dominant role in low cycle fatigue at high temperatures. The results of the study include the findings that: (1) the simple life-fraction theory described is adequate for calculating creep damage when the cyclic creep rupture curve is used as a basis for analysis; (2) a method of universal slopes originally developed for room temperature use is sufficiently accurate at high temperature to be used to calculate pure fatigue damage; and (3) a linear creep-fatigue damage rule can explain the transitions observed from one failure mode to another.

  12. Microstructural study of multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Masao Sakane

    2015-07-01

    Full Text Available This paper discusses the relationship between the stress response and the microstructure under tension-torsion multiaxial proportional and nonproportional loadings. Firstly, this paper discusses the material dependency of additional hardening of FCC materials in relation with the stacking fault energy of the materials. The FCC materials studied were Type 304 stainless steel, pure copper, pure nickel, pure aluminum and 6061 aluminum alloy. The material with lower stacking fault energy showed stronger additional hardening, which was discussed in relation with slip morphology and dislocation structures. This paper, next, discusses dislocation structures of Type 304 stainless steel under proportional and nonproportional loadings at high temperature. The relationship between the microstructure and the hardening behavior whether isotropic or anisotropic was discussed. The re-arrangeability of dislocation structure was discussed in loading mode change tests. Microstructures of the steel was discussed in more extensively programmed multiaxial low cycle fatigue tests at room temperature, where three microstructures, dislocation bundle, stacking fault and cells, which were discussed in relation with the stress response. Finally, temperature dependence of the microstructure was discussed under proportional and nonproportional loadings, by comparing the microstructures observed at room and high temperatures.

  13. Aspect of cumulative fatigue damage under multiaxial strain cycling.

    Science.gov (United States)

    Zamrik, S. Y.; Tang, P. Y.

    1972-01-01

    The concept of order of loading and its effect on cumulative fatigue damage under multiaxial strain cyclings was investigated. The effect is illustrated through nonlinear relationships between biaxial fatigue damage and cycle-ratio diagrams. Uniaxial theories such as Miner's method, the convergence method, and the double linear damage rule in its special and generalized form, were examined and extended to the biaxial case through the octahedral shear strain theory. The generalized double linear damage rule was found more applicable to biaxial cumulative fatigue damage.

  14. Low cycle fatigue behavior of aluminum/stainless steel composites

    Science.gov (United States)

    Bhagat, R. B.

    1983-01-01

    Composites consisting of an aluminum matrix reinforced with various volume fractions of stainless steel wire were fabricated by hot die pressing under various conditions of temperature, time, and pressure. The composites were tested in plane bending to complete fracture under cycle loading, and the results were analyzed on a computer to obtain a statistically valid mathematical relationship between the low-cycle fatigue life and the fiber volume fraction of the composite. The fractured surfaces of the composites were examined by scanning electron microscopy to identify the characteristic features of fatigue damage. Fatigue damage mechanisms are proposed and discussed.

  15. On high-cycle fatigue of 316L stents.

    Science.gov (United States)

    Barrera, Olga; Makradi, Ahmed; Abbadi, Mohammed; Azaouzi, Mohamed; Belouettar, Salim

    2014-01-01

    This paper deals with fatigue life prediction of 316L stainless steel cardiac stents. Stents are biomedical devices used to reopen narrowed vessels. Fatigue life is dominated by the cyclic loading due to the systolic and diastolic pressure and the design against premature mechanical failure is of extreme importance. Here, a life assessment approach based on the Dang Van high cycle fatigue criterion and on finite element analysis is applied to explore the fatigue reliability of 316L stents subjected to multiaxial fatigue loading. A finite element analysis of the stent vessel subjected to cyclic pressure is performed to carry out fluctuating stresses and strain at some critical elements of the stent where cracks or complete fracture may occur. The obtained results show that the loading path of the analysed stent subjected to a pulsatile load pressure is located in the safe region concerning infinite lifetime.

  16. Low Cycle Fatigue of Steel in Strain Controled Cyclic Bending

    Directory of Open Access Journals (Sweden)

    Kulesa Anna

    2016-03-01

    Full Text Available The paper presents a comparison of the fatigue life curves based on test of 15Mo3 steel under cyclic, pendulum bending and tension-compression. These studies were analyzed in terms of a large and small number of cycles where strain amplitude is dependent on the fatigue life. It has been shown that commonly used Manson-Coffin-Basquin model cannot be used for tests under cyclic bending due to the impossibility of separating elastic and plastic strains. For this purpose, some well-known models of Langer and Kandil and one new model of authors, where strain amplitude is dependent on the number of cycles, were proposed. Comparing the results of bending with tension-compression it was shown that for smaller strain amplitudes the fatigue life for both test methods were similar, for higher strain amplitudes fatigue life for bending tests was greater than for tension-compression.

  17. Competition between microstructure and defect in multiaxial high cycle fatigue

    Directory of Open Access Journals (Sweden)

    F. Morel

    2015-07-01

    Full Text Available This study aims at providing a better understanding of the effects of both microstructure and defect on the high cycle fatigue behavior of metallic alloys using finite element simulations of polycrystalline aggregates. It is well known that the microstructure strongly affects the average fatigue strength and when the cyclic stress level is close to the fatigue limit, it is often seen as the main source of the huge scatter generally observed in this fatigue regime. The presence of geometrical defects in a material can also strongly alter the fatigue behavior. Nonetheless, when the defect size is small enough, i.e. under a critical value, the fatigue strength is no more affected by the defect. The so-called Kitagawa effect can be interpreted as a competition between the crack initiation mechanisms governed either by the microstructure or by the defect. Surprisingly, only few studies have been done to date to explain the Kitagawa effect from the point of view of this competition, even though this effect has been extensively investigated in the literature. The primary focus of this paper is hence on the use of both FE simulations and explicit descriptions of the microstructure to get insight into how the competition between defect and microstructure operates in HCF. In order to account for the variability of the microstructure in the predictions of the macroscopic fatigue limits, several configurations of crystalline orientations, crystal aggregates and defects are studied. The results of each individual FE simulation are used to assess the response at the macroscopic scale thanks to a probabilistic fatigue criterion proposed by the authors in previous works. The ability of this criterion to predict the influence of defects on the average and the scatter of macroscopic fatigue limits is evaluated. In this paper, particular emphasis is also placed on the effect of different loading modes (pure tension, pure torsion and combined tension and torsion on

  18. High-cycle Fatigue Fracture Behavior of Ultrahigh Strength Steels

    Institute of Scientific and Technical Information of China (English)

    Weijun HUI; Yihong NIE; Han DONG; Yuqing WENG; Chunxu WANG

    2008-01-01

    The fatigue fracture behavior of four ultrahigh strength steels with different melting processes and therefore different inclusion sizes were studied by using a rotating bar two-point bending fatigue machine in the high-cycle regime up to 107 cycles of loading. The fracture surfaces were observed by field emission scanning electron microscopy (FESEM). It was found that the size of inclusion has significant effect on the fatigue behavior.For AISI 4340 steel in which the inclusion size is smaller than 5.5 μm, all the fatigue cracks except one did not initiated from inclusion but from specimen surface and conventional S-N curve exists. For 65Si2MnWE and Aermet 100 steels in which the average inclusion sizes are 12.2 and 14.9 μm, respectively, fatigue cracks initiated from inclusions at lower stress amplitudes and stepwise S-N curves were observed. The S-N curvedisplays a continuous decline and fatigue failures originated from large oxide inclusion for 60Si2CrVA steel in which the average inclusion size is 44.4 μm. In the case of internal inclusion-induced fractures at cycles beyond about 1×106 for 65Si2MnWE and 60Si2CrVA steels, inclusion was always found inside the fish-eye and a granular bright facet (GBF) was observed in the vicinity around the inclusion. The GBF sizes increasewith increasing the number of cycles to failure Nf in the long-life regime. The values of stress intensity factor range at crack initiation site for the GBF are almost constant with Nf, and are almost equal to that for the surface inclusion and the internal inclusion at cycles lower than about 1×106. Neither fish-eye nor GBF was observed for Aermet 100 steel in the present study.

  19. A criterion for high-cycle fatigue life and fatigue limit prediction in biaxial loading conditions

    Institute of Scientific and Technical Information of China (English)

    ukasz Pejkowski; Dariusz Skibicki

    2016-01-01

    This paper presents a criterion for high-cycle fatigue life and fatigue strength estimation under periodic proportional and non-proportional cyclic loading. The cri-terion is based on the mean and maximum values of the second invariant of the stress deviator. Important elements of the criterion are: function of the non-proportionality of fatigue loading and the materials parameter that expresses the materials sensitivity to non-proportional loading. The methods for the materials parameters determination uses three S–N curves: tension–compression, torsion, and any non-proportional loading proposed. The criterion has been verified using experimental data, and the results are included in the paper. These results should be considered as promis-ing. The paper also includes a proposal for multiaxial fatigue models classification due to the approach for the non-proportionality of loading.

  20. Fatigue Life Assessment of Selected Engineering Materials Based on Modified Low-Cycle Fatigue Test

    Directory of Open Access Journals (Sweden)

    M. Maj

    2013-01-01

    Full Text Available In this study, the mechanical tests were carried out on ductile iron of EN-GJS-600-3 grade and on grey cast iron of EN-GJL-250 grade.The fatigue life was evaluated in a modified low-cycle fatigue test (MLCF, which enables the determination of parameters resulting fromthe Manson-Coffin-Morrow relationship.The qualitative and quantitative metallographic studies conducted by light microscopy on selected samples of ductile iron with spheroidalgraphite and grey cast iron with lamellar graphite (showing only small variations in mechanical properties, confirmed also smallvariations in the geometrical parameters of graphite related with its content and morphological features.

  1. A model for high-cycle fatigue crack propagation

    Energy Technology Data Exchange (ETDEWEB)

    Balbi, Marcela Angela [Rosario National Univ. (Argentina); National Council of Scientific Research and Technology (CONICET) (Argentina)

    2017-02-01

    This paper deals with the prediction of high-cycle fatigue behavior for four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel and 0.4 wt.-% C steel) using Chapetti's approach to estimate the fatigue crack propagation curve. In the first part of the paper, a single integral equation for studying the entire propagation process is determined using the recent results of Santus and Taylor, which consider a double regime of propagation (short and long cracks) characterized by the model of El Haddad. The second part of the paper includes a comparison of the crack propagation behavior model proposed by Navarro and de los Rios with the one mentioned in the first half of this work. The results allow us to conclude that the approach presented in this paper is a good and valid estimation of high-cycle fatigue crack propagation using a single equation to describe the entire fatigue crack regime.

  2. Low cycle fatigue of lead free solder joints

    Energy Technology Data Exchange (ETDEWEB)

    Schemmann, Lars; Wedi, Andre; Baither, Dietmar; Schmitz, Guido [Institut fuer Materialphysik, Westf. Wilhelms-Universitaet, Muenster (Germany)

    2011-07-01

    Presently solders containing lead are banned from consumer electronics. Important alternatives are the Sn-Ag-Cu (SAC) solders and solders containing antimony. This work studies the isothermal low cycle fatigue properties of SAC solders and the SnSb(8) solder. For the experiments, model solder joints were produced and used. They consist of two pure copper plates joined together by a circular disk of solder. Low cycle fatigue experiments were done under displacement control. Furthermore hardness was tested by a micro indenter. In order to find an explanation for the different lifetimes of the solders, several micro structural investigations were performed. For this we used transmission and scanning electron microscopy as well as optical microscopy. The measured data showed a strong relation between lifetime and hardness of the solder alloy. We also found, that the type of solder influences the crack propagation.

  3. Dissipation Assessments During Dynamic Very High Cycle Fatigue Tests

    OpenAIRE

    2015-01-01

    International audience; This paper presents an experimental device developed to detect and estimate dissipated energy during very high cycle fatigue tests (VHCF) at high loading frequency (20 kHz) and low stress (i.e. far below the yield stress). Intrinsic dissipation is computed using local expressions of the heat diffusion equation and thermal data fields provided by an infrared focal plane array camera. The results obtained from tests performed on pure copper specimens show that dissipated...

  4. Low cycle fatigue of PM/HIP astroloy

    Energy Technology Data Exchange (ETDEWEB)

    Choe, S.J.; Stoloff, N.S.; Duquette, D.J. (Rensselaer Polytechnic Institute, Troy, NY (USA))

    Low cycle fatigue and creep-fatigue-environment interactions of PM/HIP Astrology were studied at 650 C and 725 C. Total strain range was varied from 1.5% to 2.7% at a frequency of 0.3Hz. Creep-fatigue tests were performed with 2 min. or 5 min. tensile hold times. All tests were run in high purity argon in an attempt to minimize environmental effects. Employing a tensile hold was more damaging than raising temperature by 75 C. Slopes of Coffin-Manson plots were nearly independent of temperature and hold time. Raising temperature from 650 C to 725 C did not change the transgranular (TG) crack propagation mode, whereas employing hold times caused TG+IG propagation. All samples displayed multiple fracture origins associated with inclusions located at the specimen surface; pre-existing pores did not affect fatigue crack initiation. Examination of secondary cracks showed no apparent creep damage. Oxidation in high purity argon appeared to be the major factor in LCF life degradation due to hold times.

  5. INVESTIGATION OF THE LOW-CYCLE FATIGUE AND FATIGUE CRACK GROWTH BEHAVIORS OF P91 BASE METAL AND WELD JOINTS

    Institute of Scientific and Technical Information of China (English)

    H.C. Yang; Y. Tu; M.M. Yu; J. Zhao

    2004-01-01

    Low cycle fatigue tests and crack growth propagations tests on P91 pipe base metal and its weld joints were conducted at three different temperatures: room temperature,550℃ and 575℃. The strain-life was analyzed, and the changes in fatigue life behavior and fatigue growth rates with increasing temperature were discussed. The different properties of the base metal and its weld joint have been analyzed.

  6. A Modified Fatigue Damage Model for High-Cycle Fatigue Life Prediction

    Directory of Open Access Journals (Sweden)

    Meng Wang

    2016-01-01

    Full Text Available Based on the assumption of quasibrittle failure under high-cycle fatigue for the metal material, the damage constitutive equation and the modified damage evolution equation are obtained with continuum damage mechanics. Then, finite element method (FEM is used to describe the failure process of metal material. The increment of specimen’s life and damage state can be researched using damage mechanics-FEM. Finally, the lifetime of the specimen is got at the given stress level. The damage mechanics-FEM is inserted into ABAQUS with subroutine USDFLD and the Python language is used to simulate the fatigue process of titanium alloy specimens. The simulation results have a good agreement with the testing results under constant amplitude loading, which proves the accuracy of the method.

  7. High cycle fatigue properties of CLAM steel at 723 K and 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yanyun; Zhai, Xiangwei; Liu, Shaojun, E-mail: shaojun.liu@fds.org.cn; Li, Chunjing; Huang, Qunying

    2015-11-15

    Highlights: • High cycle fatigue properties of CLAM steel were investigated at 723 K and 823 K. • The condition fatigue limit at N = 10{sup 7} were 275 MPa and 235 MPa at 723 K and 823 K. • Fatigue strength decreased when stress and temperature increased at 723 K and 823 K. • Dislocation density decrease and subgrain coarsening during the test process were the possible reasons for fatigue limit decrease. - Abstract: This paper highlights the results of a study on the high cycle fatigue strength and fracture mechanism of China Low Activation Martensitic (CLAM) steel. The high cycle fatigue test results showed that the fatigue strength of CLAM steel decreased with the temperature, and the condition fatigue strengths (N = 10{sup 7}) were 275 MPa and 235 MPa at 723 K and 823 K, respectively. The fractograph results indicated that the fractures were mainly initiated from the surface of the specimen.

  8. HIGH-TEMPERATURE LOW CYCLE FATIGUE BEHAVIOR OFNICKEL BASE SUPERALLOY GH536

    Institute of Scientific and Technical Information of China (English)

    M. Zhao; L.Y. Xu; K.S. Zhang; B.Y. Yang

    2001-01-01

    Low cycle fatigue tests on nickel base superalloy GH536 were performed at 600. 700and 800°C. The strain-life and cyclic stress-strain relationship were given at various temperatures. The change in fatigue life behavior and fatigue parameters with temperature increasing was discussed. At low and intermediate total strain amplitudes,the fatigue life was found to decrease with increasing temperature.``

  9. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF regime up to 109 cycles

    Directory of Open Access Journals (Sweden)

    Eric eWycisk

    2015-12-01

    Full Text Available Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles.For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  10. Fatigue performance of laser additive manufactured Ti-6Al-4V in very high cycle fatigue (VHCF) regime up to 109 cycles

    Science.gov (United States)

    Wycisk, Eric; Siddique, Shafaqat; Herzog, Dirk; Walther, Frank; Emmelmann, Claus

    2015-12-01

    Additive manufacturing technologies are in the process of establishing themselves as an alternative production technology to conventional manufacturing such as casting or milling. Especially laser additive manufacturing (LAM) enables the production of metallic parts with mechanical properties comparable to conventionally manufactured components. Due to the high geometrical freedom in LAM the technology enables the production of ultra-light weight designs and therefore gains increasing importance in aircraft and space industry. The high quality standards of these industries demand predictability of material properties for static and dynamic load cases. However, fatigue properties especially in the very high cycle fatigue regime until 109 cycles have not been sufficiently determined yet. Therefore this paper presents an analysis of fatigue properties of laser additive manufactured Ti-6Al-4V under cyclic tension-tension until 107 cycles and tension-compression load until 109 cycles. For the analysis of laser additive manufactured titanium alloy Ti-6Al-4V Woehler fatigue tests under tension-tension and tension-compression were carried out in the high cycle and very high cycle fatigue regime. Specimens in stress-relieved as well as hot-isostatic-pressed conditions were analyzed regarding crack initiation site, mean stress sensitivity and overall fatigue performance. The determined fatigue properties show values in the range of conventionally manufactured Ti-6Al-4V with particularly good performance for hot-isostatic-pressed additive-manufactured material. For all conditions the results show no conventional fatigue limit but a constant increase in fatigue life with decreasing loads. No effects of test frequency on life span could be determined. However, independently of testing principle, a shift of crack initiation from surface to internal initiation could be observed with increasing cycles to failure.

  11. Effect of interstitial content on high- temperature fatigue crack propagation and low- cycle fatigue of alloy 720

    Science.gov (United States)

    Bashir, S.; Thomas, M. C.

    1993-08-01

    Alloy 720 is a high-strength cast and wrought turbine disc alloy currently in use for temperatures up to about 650 °C in Allison’s T800, T406, GMA 2100, and GMA 3007 engines. In the original composition in-tended for use as turbine blades, large carbide and boride stringers formed and acted as preferred crack initiators. Stringering was attributed to relatively higher boron and carbon levels. These interstitials are known to affect creep and ductility of superalloys, but the effects on low-cycle fatigue and fatigue crack propagation have not been studied. Recent emphasis on the total life approach in the design of turbine discs necessitates better understanding of the interactive fatigue crack propagation and low-cycle fatigue behavior at high temperatures. The objective of this study was to improve the damage tolerance of Alloy 720 by systematically modifying boron and carbon levels in the master melt, without altering the low-cy-cle fatigue and strength characteristics of the original composition. Improvement in strain-controlled low-cycle fatigue life was achieved by fragmenting the continuous stringers via composition modifica-tion. The fatigue crack propagation rate was reduced by a concurrent reduction of both carbon and bo-ron levels to optimally low levels at which the frequency of brittle second phases was minimal. The changes in composition have been incorporated for production disc forgings.

  12. Low cycle fatigue behavior of high strength gun steels

    Institute of Scientific and Technical Information of China (English)

    Maoqiu Wang; Han Dong; Qi Wang; Changgang Fan

    2004-01-01

    The low cycle fatigue (LCF) behavior of two high strength steels, with nominal chemical compositions (mass fraction, %)of 0.40C-1.5Cr-3Ni-0.4Mo-0.2V (PCrNi3MoV) and 0.25C-3Cr-3Mo-0.8Ni-0.1Nb (25Cr3Mo3NiNb), was investigated by using the smooth bar specimens subjected to strained-controlled push-pull loading. It is found that both steels show cyclic softening, but 25Cr3Mo3NiNb steel has a lower tendency to cyclic softening. 25Cr3Mo3NiNb steel has higher fatigue ductility, and its transition fatigue life is almost three times that of PCrNi3MoV. 25Cr3Mo3NiNb steel also shows higher LCF life either at a given total strain amplitude above 0.5% or at any given plastic strain amplitude, despite its lower monotonic tensile strength than that of PCrNi3MoV.It also means that 25Cr3Mo3NiNb steel can endure higher total strain amplitude and plastic strain amplitude at a given number of reversals to failure within 104. 25Cr3Mo3NiNb steel is expected to be a good gun steel with high LCF properties because only several thousand firings are required for gun barrel in most cases.

  13. Low cycle fatigue properties of CLAM steel at 823 K

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xue [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049 (China); Huang, Lixin [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yan, Wei; Wang, Wei [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Sha, Wei [School of Planning, Architecture and Civil Engineering, Queen' s University Belfast, Belfast BT9 5AG (United Kingdom); Shan, Yiyin, E-mail: yyshan@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Yang, Ke, E-mail: kyang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2014-09-08

    China Low Activation Martensitic (CLAM) steel is considered to be the main candidate material for the first wall components of future fusion reactors in China. In this paper, the low cycle fatigue (LCF) behavior of CLAM steel is studied under fully reversed tension–compression loading at 823 K in air. Total strain amplitude was controlled from 0.14% to 1.8% with a constant strain rate of 2.4×10{sup −3} s{sup −1}. The corresponding plastic strain amplitude ranged from 0.023% to 1.613%. The CLAM steel displayed continuous softening to failure at 823 K. The relationship between strain, stress and fatigue life was obtained using the parameters obtained from fatigue tests. The LCF properties of CLAM steel at 823 K followed Coffin–Manson relationship. Furthermore, irregular serration was observed on the stress–strain hysteresis loops of CLAM steel tested with the total strain amplitude of 0.45–1.8%, which was attributed to the dynamic strain aging (DSA) effect. During continuous cyclic deformation, the microstructure and precipitate distribution of CLAM steel changed gradually. Many tempered martensitic laths were decomposed into subgrains, and the size and number of M{sub 23}C{sub 6} carbide and MX carbonitride precipitates decreased with the increase of total strain amplitude. The response cyclic stress promoted the recovery of martensitic lath, while the thermal activation mainly played an important role on the growth of precipitates in CLAM steel at 823 K. In order to have a better understanding of high-temperature LCF behavior, the potential mechanisms controlling stress–strain response, DSA phenomenon and microstructure changes have also been evaluated.

  14. High-cycle Fatigue Properties of Alloy718 Base Metal and Electron Beam Welded Joint

    Science.gov (United States)

    Ono, Yoshinori; Yuri, Tetsumi; Nagashima, Nobuo; Sumiyoshi, Hideshi; Ogata, Toshio; Nagao, Naoki

    High-cycle fatigue properties of Alloy 718 plate and its electron beam (EB) welded joint were investigated at 293 K and 77 K under uniaxial loading. At 293 K, the high-cycle fatigue strength of the EB welded joint with the post heat treatment exhibited somewhat lower values than that of the base metal. The fatigue strengths of both samples basically increased at 77 K. However, in longer life region, the EB welded joint fractured from a blow hole formed in the welded zone, resulting in almost the same fatigue strength at 107 cycles as that at 293 K.

  15. Fatigue behavior of the magnesium alloy ZK60 in high cycle fatigue

    NARCIS (Netherlands)

    Constantinescu, D.M.; Moldovan, P.; Sillekens, W.H.; Sandu, M.; Apostol, D.A.; Miron, M.C.

    2009-01-01

    Not too much information is available in the literature for establishing fatigue properties of magnesium alloys. A compilation of existing fatigue and fatigue crack growth data of different Mg-alloys has been published by ASM International. One can underline that fatigue properties of some of the st

  16. Al-Li alloy AA2198's very high cycle fatigue crack initiation mechanism and its fatigue thermal effect

    Science.gov (United States)

    Xu, Luopeng; Cao, Xiaojian; Chen, Yu; Wang, Qingyuan

    2015-10-01

    AA2198 alloy is one of the third generation Al-Li alloys which have low density, high elastic modulus, high specific strength and specific stiffness. Compared With the previous two generation Al-Li alloys, the third generation alloys have much improved in alloys strength, corrosion resistance and weldable characteristic. For these advantages, the third generation Al-Li alloys are used as aircraft structures, such as C919 aviation airplane manufactured by China and Russia next generation aviation airplane--MS-21. As we know, the aircraft structures are usually subjected to more than 108 cycles fatigue life during 20-30 years of service, however, there is few reported paper about the third generation Al-Li alloys' very high cycle fatigue(VHCF) which is more than 108 cycles fatigue. The VHCF experiment of AA2198 have been carried out. The two different initiation mechanisms of fatigue fracture have been found in VHCF. The cracks can initiate from the interior of the testing material with lower stress amplitude and more than 108 cycles fatigue life, or from the surface or subsurface of material which is the dominant reason of fatigue failures. During the experiment, the infrared technology is used to monitor the VHCF thermal effect. With the increase of the stress, the temperature of sample is also rising up, increasing about 15 °C for every 10Mpa. The theoretical thermal analysis is also carried out.

  17. How Thermal Fatigue Cycles Change the Rheological Behavior of Polymer Modified Bitumen?

    NARCIS (Netherlands)

    Glaoui, B.; Merbouh, M.; Van de Ven, M.F.C.; Chailleux, E.; Youcefi, A.

    2013-01-01

    The paper deals with the problem of thermal fatigue cycles phenomenon, which affects the performance of flexible pavement. The purpose of the paper is to extent the knowledge on the rheology of polymer modified bitumen which was affected by cycles of thermal fatigue. The aim of this research is to d

  18. Microstructural characterization of EUROFER 97 during low-cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Giordana, M.F., E-mail: giordana@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Alvarez-Armas, I., E-mail: alvarez@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina); Armas, A., E-mail: armas@ifir-conicet.gov.ar [Instituto de Fisica Rosario, CONICET-UNR, Bv. 27 de Febrero 210 bis, 2000 Rosario (Argentina)

    2012-05-15

    The quenched and tempered reduced-activation ferritic/martensitic steel EUROFER 97 is one of the candidates for structural components of Generation IV nuclear power plants. The cyclic behaviour of this steel during isothermal plastic strain-controlled tests was investigated at room temperature and at 550 Degree-Sign C. Under low-cycle fatigue test this steel shows, after the first few cycles, a pronounced cyclic softening accompanied by microstructural changes such as the decrease of the free dislocation density inside the subgrain. The rate of softening increases with temperature being very pronounced at temperatures above 500 Degree-Sign C. The evolution of the flow stress during cycling was studied by analyzing the so-called 'back' and 'friction' stresses obtained from the hysteresis loops measured along the entire test. From the analysis of the hysteresis loops and corroborated by electron microscopy observations, it can be concluded that the strong cyclic softening observed is produced by the decrease exhibited by the friction stress. The Taylor coefficient was calculated measuring the evolution of the free dislocation density.

  19. Probabilistic Material Strength Degradation Model for Inconel 718 Components Subjected to High Temperature, High-Cycle and Low-Cycle Mechanical Fatigue, Creep and Thermal Fatigue Effects

    Science.gov (United States)

    Bast, Callie C.; Boyce, Lola

    1995-01-01

    The development of methodology for a probabilistic material strength degradation is described. The probabilistic model, in the form of a postulated randomized multifactor equation, provides for quantification of uncertainty in the lifetime material strength of aerospace propulsion system components subjected to a number of diverse random effects. This model is embodied in the computer program entitled PROMISS, which can include up to eighteen different effects. Presently, the model includes five effects that typically reduce lifetime strength: high temperature, high-cycle mechanical fatigue, low-cycle mechanical fatigue, creep and thermal fatigue. Results, in the form of cumulative distribution functions, illustrated the sensitivity of lifetime strength to any current value of an effect. In addition, verification studies comparing predictions of high-cycle mechanical fatigue and high temperature effects with experiments are presented. Results from this limited verification study strongly supported that material degradation can be represented by randomized multifactor interaction models.

  20. Macroscopic cumulative fatigue damage of material under nonsymmetrical cycle

    Institute of Scientific and Technical Information of China (English)

    盖秉政

    2002-01-01

    Hashin's macroscopic theory of fatigue damage is further discussed and a new method has been proposed for prediction of cumulative fatigue damage of material and its lifetime under nonsymmetrical cyclic loading.

  1. Combined Cycle Fatigue Testing with Ultrasonic Frequency Component of S350 Steel Welded Joint

    Institute of Scientific and Technical Information of China (English)

    柳阳; 王东坡; 邓彩艳; 吴良晨; 尹丹青; 龚宝明

    2014-01-01

    A combined cycle fatigue (CCF) testing system with ultrasonic frequency component was developed to evaluate the CCF properties of S350 steel welded joints in this study. The fatigue testing results indicated that the S-N curves of CCF did not have fatigue limit, which agreed with those of pure high frequency fatigue of welded joints. The S-N curves showed that the CCF strength of welded joints dropped greatly with the increasing interaction between high and low frequency fatigue loading. An approximation design method of CCF was presented using amplitude envelope as the stress range.

  2. Effects of recrystallization on the low cycle fatigue behavior of directionally solidified superalloy DZ40M

    Institute of Scientific and Technical Information of China (English)

    ZHAO Yang; WANG Lei; LI Hongyun; YU Teng; LIU Yang

    2008-01-01

    The effects of recrystallization on low cycle fatigue behavior were investigated on directionally solidified Co-base superalloy DZAOM.Optical microscopy and SEM were used to examine the mierostructure and fracture surface of the specimens.The mechanical testing results demonstrated that the low cycle fatigue property of DZ40M significantly decreased with the partial reerystallization.Fatigue cracks initiate near the carbides and the grain boundaries with slip-bands.Both the fatigue crack initiation and propagation can be accelerated with the occurrences of recrystallized grain boundaries.

  3. Influence of neodymium on high cycle fatigue behavior of die cast AZ91D magnesium alloy

    Institute of Scientific and Technical Information of China (English)

    杨友; 李雪松

    2010-01-01

    High cycle fatigue behavior of die cast AZ91D magnesium alloy with different Nd contents was investigated.Axial mechanical fatigue tests were conducted at the stress ratio R=0.1 and the fatigue strength was evaluated using up-to-down load method on specimens of AZ91D with different Nd contents.The results showed that the grain of AZ91D alloy was refined,the size and amount of β-Mg17Al12 phase decreased and distributed uniformly with increasing Nd content.At the number of cycles to failure,Nf=107,the fatigue...

  4. Flex Fatigue Behavior Of Plastic Optical Fibers With Low Bending Cycles

    Directory of Open Access Journals (Sweden)

    Huang Juan

    2015-06-01

    Full Text Available Flex fatigue behaviour of plastic optical fibres (POFs with the diameters of 0.2 and 0.3 mm under different pretensions is measured with fatigue life curve by flexometer. The fatigue sensitivity coefficient is calculated by the linear fitting curve of normalised stress versus logarithm of bending cycles. The residual modulus is investigated during the flex fatigue processes. The results exhibit the exponential relationship between applied pretension and numbers of bending cycles at break. It is indicated that the flex fatigue of POFs might be sensitive with high swing angle or swing speed. There is an evident loss of modulus for two POFs with pretensions of 4 and 10% of ultimate tensile strength during 10-times bending cycles. The values of residual modulus of two POFs almost keep constant after 10-times bending cycles.

  5. Low cycle fatigue: high cycle fatigue damage accumulation in a 304L austenitic stainless steel; Endommagement et cumul de dommage en fatigue dans le domaine de l'endurance limitee d'un acier inoxydable austenitique 304L

    Energy Technology Data Exchange (ETDEWEB)

    Lehericy, Y

    2007-05-15

    The aim of this study was to evaluate the consequences of a Low Cycle Fatigue pre-damage on the subsequent fatigue limit of a 304L stainless steel. The effects of hardening and severe roughness (grinding) have also been investigated. In a first set of tests, the evolution of the surface damage induced by the different LCF pre-cycling was characterized. This has permitted to identify mechanisms and kinetics of damage in the plastic domain for different surface conditions. Then, pre-damaged samples were tested in the High Cycle Fatigue domain in order to establish the fatigue limits associated with each level of pre-damage. Results evidence that, in the case of polished samples, an important number of cycles is required to initiate surface cracks ant then to affect the fatigue limit of the material but, in the case of ground samples, a few number of cycles is sufficient to initiate cracks and to critically decrease the fatigue limit. The fatigue limit of pre-damaged samples can be estimated using the stress intensity factor threshold. Moreover, this detrimental effect of severe surface conditions is enhanced when fatigue tests are performed under a positive mean stress (author)

  6. A method for calculation of finite fatigue life under multiaxial loading in high-cycle domain

    Directory of Open Access Journals (Sweden)

    M. Malnati

    2014-04-01

    Full Text Available A method for fatigue life assessment in high-cycle domain under multiaxial loading is presented in this paper. This approach allows fatigue assessment under any kind of load history, without limitations. The methodology lies on the construction - at a macroscopic level - of an “indicator” in the form of a set of cycles, representing plasticity that can arise at mesoscopic level throughout fatigue process. During the advancement of the loading history new cycles are created and a continuous evaluation of the damage is made.

  7. Investigation of Cumulative Fatigue Damage Through Sequential Low Cycle Fatigue and High Cycle Fatigue Cycling at High Temperature for a Type 316LN Stainless Steel: Life-Prediction Techniques and Associated Mechanisms

    Science.gov (United States)

    Sarkar, Aritra; Nagesha, A.; Parameswaran, P.; Sandhya, R.; Laha, K.; Okazaki, M.

    2017-01-01

    Cumulative fatigue damage under sequential low cycle fatigue (LCF) and high cycle fatigue (HCF) cycling was investigated at 923 K (650 °C) by conducting HCF tests on specimens subjected to prior LCF cycling at various strain amplitudes. Remnant HCF lives were found to decrease drastically with increase in prior fatigue exposure as a result of strong LCF-HCF interactions. The rate of decrease in remnant lives varied as a function of the applied strain amplitude. A threshold damage in terms of prior LCF life-fraction was found, below which no significant LCF-HCF interaction takes place. Similarly, a critical damage during the LCF pre-cycling marking the highest degree of LCF-HCF interaction was identified which was found to depend on the applied strain amplitude. In view of the non-linear damage accumulation behavior, Miner's linear damage rule proved to be highly non-conservative. Manson's damage curve approach, suitably modified, was found to be a better alternative for predicting the remnant HCF life. The single constant (β) employed in the model, which reflects the damage accumulation of the material under two/multi-level loading conditions is derived from the regression analysis of the experimental results and validated further.

  8. High-cycle fatigue behavior of ultrafine-grained austenitic stainless and TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, A.S. [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland); Metallurgical and Materials Engineering Department, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Karjalainen, L.P., E-mail: pentti.karjalainen@oulu.fi [Materials Engineering Laboratory (4KOMT), Box 4200, University of Oulu, 90014 Oulu (Finland)

    2010-08-20

    High-cycle fatigue behavior of ultrafine-grained (UFG) 17Cr-7Ni Type 301LN austenitic stainless and high-Mn Fe-22Mn-0.6C TWIP steels were investigated in a reversed plane bending fatigue and compared to the behavior of steels with conventional coarse grain (CG) size. Optical, scanning and transmission electron microscopy were used to examine fatigue damage mechanisms. Testing showed that the fatigue limits leading to fatigue life beyond 4 x 10{sup 6} cycles were about 630 MPa for 301LN while being 560 MPa for TWIP steel, and being 0.59 and 0.5 of the tensile strength respectively. The CG counterparts were measured to have the fatigue limits of 350 and 400 MPa. The primary damage caused by fatigue took place by grain boundary cracking in UFG 301LN, while slip band cracking occurred in CG 301LN. However, in the case of TWIP steel, the fatigue damage mechanism is similar in spite of the grain size. In the course of cycling neither the formation of a martensite structure nor mechanical twinning occurs, but intense slip bands are created with extrusions and intrusions. Fatigue crack initiates preferentially on grain and twin boundaries, and especially in the intersection sites of slip bands and boundaries.

  9. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize t

  10. Energy based study of quasi-static delamination as a low cycle fatigue process

    NARCIS (Netherlands)

    Amaral, L.; Yao, L.; Alderliesten, R.C.; Benedictus, R.

    2015-01-01

    This work proposes to treat quasi-static mode I delamination growth of CFRP as a low-cycle fatigue process. To this end, mode I quasi-static and fatigue delamination tests were performed. An average physical Strain Energy Release Rate (SERR), derived from an energy balance, is used to characterize

  11. Numerical Studies of Low Cycle Fatigue in Forward Extrusion Dies

    DEFF Research Database (Denmark)

    Pedersen, Thomas Ø

    2000-01-01

    Forward extrusion dies typically fail due to transverse fatigue cracks or wear. Fatigue cracks are initiated in regions where the material is subjected to repeated plastic deformations, e.g. the transition radius in a forward extrusion die, in the present work, a material model capable of describ...

  12. Shakedown based model for high-cycle fatigue of shape memory alloys

    Science.gov (United States)

    Gu, Xiaojun; Moumni, Ziad; Zaki, Wael; Zhang, Weihong

    2016-11-01

    The paper presents a high-cycle fatigue criterion for shape memory alloys (SMAs) based on shakedown analysis. The analysis accounts for phase transformation as well as reorientation of martensite variants as possible sources of fatigue damage. In the case of high-cycle fatigue, once the structure has reached an asymptotic state, damage is assumed to become confined at the mesoscopic scale, or the scale of the grain, with no discernable inelasticity at the macroscopic scale. Using a multiscale approach, a high-cycle fatigue criterion analogous to the Dang Van model (Dang Van 1973) for elastoplastic metals is derived for SMAs obeying the Zaki-Moumni model for SMAs (Zaki and Moumni 2007a). For these alloys, a safe domain is established in stress deviator space, consisting of a hypercylinder with axis parallel to the direction of martensite orientation at the mesoscopic scale. Safety with regard to high-cycle fatigue, upon elastic shakedown, is conditioned by the persistence of the macroscopic stress path at every material point within the hypercylinder, whose size depends on the volume fraction of martensite. The proposed criterion computes a fatigue factor at each material point, indicating its degree of safeness with respect to high cycle fatigue.

  13. Sensitivity Variation on Low Cycle Fatigue Cracks Using Level 4/Method B Penetrant

    Energy Technology Data Exchange (ETDEWEB)

    FULWOOD,HARRY; MOORE,DAVID G.

    1999-09-02

    The Federal Aviation Administration's Airworthiness Assurance NDI Validation Center (AANC) is currently conducting experiments with Level 4, Method B penetrant on low cycle fatigue specimens. The main focus of these experiments is to document the affect on penetrant brightness readings by varying inspection parameters. This paper discusses the results of changing drying temperature, drying time, and dwell time of both penetrant and emulsifier on low cycle fatigue specimens.

  14. High cycle fatigue crack propagation resistance and fracture toughness in ship steels (Short Communication

    Directory of Open Access Journals (Sweden)

    R.S. Tripathi

    2001-04-01

    Full Text Available In this paper, two grades of steel, viz., plain carbon steel and low alloy steel used in naval ships have been selected for studies on high cycle fatigue, crack propagation, stress intensity and crack opening displacement (COD. Specimen for high cycle fatigue was prepared as per IS: 1608. High cycle fatigue was carried out up to 50,000 cycles at 1000 kgfto 2000 kgfloads. Up to 2000 kgfloads, both the materials were observed within elastic zones. A number of paran1eters, including stress, strain and strain range, which indicate elastic behaviour of steels, have been considered. Low alloy steel specimen was prepared as per ASTM standard: E-399 and subjected to 5,00,000 cycles. Crack propagation, COD, stress intensity, load-cycle variations, load-COD relation, and other related paran1eters have been studied using a modem universal testing machine with state-of-the-art technology

  15. Fatigue of Austempered Ductile Iron with Two Strength Grades in Very High Cycle Regime

    Science.gov (United States)

    Zhang, Jiwang; Li, Wei; Song, Qingpeng; Zhang, Ning; Lu, Liantao

    2016-03-01

    In this study, Austempered ductile irons (ADIs) with two different strength grades were produced and the fatigue properties were measured at 109 cycles. The results show that the S-N curves give a typical step-wise shape and there is no fatigue limit in the very high cycle fatigue regime. The two grades ADI have the similar fracture behaviors and fatigue failure can initiate from defects at specimen surface and subsurface zone. On the fracture surfaces of some specimens, the `granular-bright-facet' area with rich carbon distribution is observed in the vicinity of the defect. The microstructure affects the crack behaviors at the early propagation stage. The ADI with upper and lower bainite shows higher fatigue strength compared with the ADI with coarse upper bainite.

  16. Effect of microstructure on high-cycle fatigue properties of Alloy718 plates

    Science.gov (United States)

    Ono, Y.; Yuri, T.; Nagashima, N.; Ogata, T.; Nagao, N.

    2015-12-01

    Effect of microstructure on high-cycle fatigue properties of Alloy718 were investigated at 77 K by using samples with three different microstructures; fine-grained (FG), coarse-grained (CG) and bimodal-grained (BG) ones. The BG sample consisted of FG and CG microstructural regions and grain sizes of those regions were close to those of the FG and the CG samples, respectively. High-cycle fatigue strength of the FG sample was higher than that of the CG sample. High-cycle fatigue strength of the BG sample was clearly lower than that of the FG sample and almost the same as that of the CG one. Flat area (facet) was found at fatigue crack initiation site in all specimens. Facet size was similar to the grain size and found to be almost same in the CG and the BG samples. Observations of the microstructure beneath the fatigue crack initiation site of the BG sample revealed that the facet corresponds to transgranular cracking in the course grain, meaning that fatigue crack initiated at the coarse grain in the BG sample. It is deduced that the high-cycle fatigue strength of Alloy 718 with the BG microstructure is strongly affected by that of the CG region in that material.

  17. Monitoring Low-Cycle Fatigue Material-Degradation by Ultrasonic Methods

    Directory of Open Access Journals (Sweden)

    R. Himawan

    2010-08-01

    Full Text Available Any system consisting of structural material often undergoes fatigue, which is caused by dynamic load cycle. As a structural system, nuclear power plant is very likely to have low-cycle fatigue at many of its components. Taking into account the importance of monitoring low-cycle fatigue on structural components to prevent them from getting failure, the authors have conducted a work to monitor material degradation caused by low-cycle fatigue by using ultrasonic method. An alloy of Cu-40Zn was used as a test specimen. Ultrasonic water immersion procedure was employed in this ultrasonic test. The probe used is a focusing type and has frequency as high as 15 MHz. The specimen area tested is in the middle part divided into 14 points × 23 points. The results, which were frequency spectrums, were analyzed using two parameters: frequency spectrum peak intensity and attenuation function gradient. The analysis indicates that peak intensity increases at the beginning of load cycle and then decreases. Meanwhile, gradient of attenuation function is lower at the beginning of fatigue process, and then consistently gets higher. It concludes that low-fatigue material degradation can be monitored by using ultrasonic method.

  18. Crack path for run-out specimens in fatigue tests: is it belonging to high- or very-high-cycle fatigue regime?

    Directory of Open Access Journals (Sweden)

    A. Shanyavskiy

    2015-10-01

    Full Text Available Fatigue tests run-out specimens up to 106 – 5x107 load cycles are used to determine the stress level named “fatigue limit”. Nevertheless, it is not clear what kind of fatigue cracking takes or will take place in these specimens. To discuss this problem, fatigue tests of titanium alloy VT3-1 specimens have been performed under tension with different values of R-ratio and under rotating-bending after various thermo-mechanical treatments (tempering, surface hardening and their combinations. Well-known S-N curves in High-Cycle- Fatigue regime have been plotted with run-out specimens usually used for “fatigue limit” determination. Then, after fatigue tests, run-out specimens have been tensed up to their failure, and fracture surface analyses have been performed for all tested specimens. It is found that run-out specimens in all combinations of treatments, for different R-ratio, have fracture surfaces for crack path in Very-High-Cycle-Fatigue regime. Based on this result, all S-N curves have been reconstructed in duplex curves for High- and Very-High-Cycle-Fatigue regime without using knowledge about “fatigue limit”. Detailed fracture surfaces analyses have been developed, and crack paths have been compared for various combinations of materials and surface states.

  19. High-temperature low cycle fatigue behavior of a gray cast iron

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.L., E-mail: 12klfan@tongji.edu.cn; He, G.Q.; She, M.; Liu, X.S.; Lu, Q.; Yang, Y.; Tian, D.D.; Shen, Y.

    2014-12-15

    The strain controlled low cycle fatigue properties of the studied gray cast iron for engine cylinder blocks were investigated. At the same total strain amplitude, the low cycle fatigue life of the studied material at 523 K was higher than that at 423 K. The fatigue behavior of the studied material was characterized as cyclic softening at any given total strain amplitude (0.12%–0.24%), which was attributed to fatigue crack initiation and propagation. Moreover, this material exhibited asymmetric hysteresis loops due to the presence of the graphite lamellas. Transmission electron microscopy analysis suggested that cyclic softening was also caused by the interactions of dislocations at 423 K, such as cell structure in ferrite, whereas cyclic softening was related to subgrain boundaries and dislocation climbing at 523 K. Micro-analysis of specimen fracture appearance was conducted in order to obtain the fracture characteristics and crack paths for different strain amplitudes. It showed that the higher the temperature, the rougher the crack face of the examined gray cast iron at the same total strain amplitude. Additionally, the microcracks were readily blunted during growth inside the pearlite matrix at 423 K, whereas the microcracks could easily pass through pearlite matrix along with deflection at 523 K. The results of fatigue experiments consistently showed that fatigue damage for the studied material at 423 K was lower than that at 523 K under any given total strain amplitude. - Highlights: • The low cycle fatigue behavior of the HT250 for engine cylinder blocks was investigated. • TEM investigations were conducted to explain the cyclic deformation response. • The low cycle fatigue cracks of HT250 GCI were studied by SEM. • The fatigue life of the examined material at 523 K is higher than that at 423 K.

  20. Influence of Asymmetrical Waveform on Low-Cycle Fatigue Life of Micro Solder Joint

    Science.gov (United States)

    Kanda, Yoshihiko; Kariya, Yoshiharu

    2010-02-01

    The effects of waveform symmetry on the low-cycle fatigue life of the Sn-3.0Ag-0.5Cu alloy have been investigated, using micro solder joint specimens with approximately the same volume of solder as is used in actual products. Focusing on crack initiation life, fatigue tests on Sn-Ag-Cu micro solder joints using asymmetrical triangular waveforms revealed no significant reduction in fatigue life. A slight reduction in fatigue life at low strain ranges caused by an increase in the fatigue ductility exponent, which is the result of a weakening microstructure due to loads applied at high temperature for long testing time, was observed. This was due to the fact that grain boundary damage, which has been reported in large-size specimens subjected to asymmetrical triangular waveforms, does not occur in Sn-Ag-Cu micro size solder joints with only a small number of crystal grain boundaries.

  1. Detection of low cycle fatigue in type 316 stainless steel using HTS-squid

    Energy Technology Data Exchange (ETDEWEB)

    Park, D.G.; Kim, D.W.; Hong, J.H. [Korea Atomic Energy Research Inst., Daejeon (Korea); Timofeev, V.P. [Verkin Inst. for Low Temperature Physics and Eng, Kharkov (Ukraine)

    2004-07-01

    A portable RF HTS squid-based susceptometer was applied to the measurement of fatigue behavior for type 316L(N) stainless steel containing 0.04% to 0.15% nitrogen content. Strain-controlled low cycle fatigue (LCF) tests were conducted at RT and 600 C in air an atmosphere, and the magnetic moments were measured after the fatigue test using HTS SQUID. The magnetic moment of an as-received sample is higher than that of a fatigued sample in all the temperature ranges irrespective of the nitrogen content. The fatigue life decreased with an increasing test temperature up to 500 C, but increased at 600 C. The change of magnetic moments by LCF test is attributed to the stress induced micro defects. (orig.)

  2. Very high cycle regime fatigue of thin walled tubes made from austenitic stainless steel

    DEFF Research Database (Denmark)

    Carstensen, J.V.; Mayer, H.; Brøndsted, P.

    2002-01-01

    Fatigue life data of cold worked tubes (diameter 4 mm, wall thicknesses 0.25 and 0.30 mm) of an austenitic stainless steel, AISI 904 L, were measured in the regime ranging from 2 × 105 to 1010 cycles to failure. The influence of the loading frequency was investigated as data were obtained...... in conventional rotating bending at 160 and 200 Hz and in ultrasonic axial loading at 20 kHz. Above 5 × 106 cycles the fatigue lifetimes found with both methods were comparable. The results show that the slope of the S–N curve significantly decreases beyond 108 cycles. Fracture surfaces were examined using...

  3. Influence of the crystalline orientations on microcrack initiation in low-cycle fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Mu, P. [Univ Lille Nord de France, F-59000 Lille (France); ECLille, LML, F-59650 Villeneuve d’Ascq (France); CNRS, UMR 8107, UMR 8579 (France); Aubin, V., E-mail: veronique.aubin@ecp.fr [ECP, MSSMat, F-92295 Châtenay-Malabry (France); CNRS, UMR 8107, UMR 8579 (France); Alvarez-Armas, I.; Armas, A. [IFIR, CONICET, Universidad Nacional de Rosario (Argentina)

    2013-06-20

    Present study aims at analyzing the crack initiation in an austenitic stainless steel in low-cycle fatigue. A fatigue test was carried out using a polished specimen. The surface of the specimen was observed in situ during the fatigue test, in order to establish the time of slip activity or crack initiation. After a number of cycles sufficient to initiate small cracks, the test was stopped and the surface observed by scanning electron microscopy. The electron backscattered diffraction technique (EBSD) was used to identify the orientations of surface grains in the central zone of the fatigue specimen. Crack-initiation sites and slip systems associated to the initiated microcracks were identified. The criterion of the maximum Schmid factor explains two-thirds of the cracks initiated in slip systems; however if the favorably oriented slip band with respect to this criterion makes an angle of around 45° to the loading direction, a crack may initiate in another slip system.

  4. Fatigue of extracted lead zirconate titanate multilayer actuators under unipolar high field electric cycling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong, E-mail: wangh@ornl.gov; Lee, Sung-Min; Wang, James L. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Lin, Hua-Tay [School of Mechanical and Electronic Engineering, Guangdong University of Technology, Guangzhou, 510006 (China)

    2014-12-21

    Testing of large prototype lead zirconate titanate (PZT) stacks presents substantial technical challenges to electronic testing systems, so an alternative approach that uses subunits extracted from prototypes has been pursued. Extracted 10-layer and 20-layer plate specimens were subjected to an electric cycle test under an electric field of 3.0/0.0 kV/mm, 100 Hz to 10{sup 8} cycles. The effects of measurement field level and stack size (number of PZT layers) on the fatigue responses of piezoelectric and dielectric coefficients were observed. On-line monitoring permitted examination of the fatigue response of the PZT stacks. The fatigue rate (based on on-line monitoring) and the fatigue index (based on the conductance spectrum from impedance measurement or small signal measurement) were developed to quantify the fatigue status of the PZT stacks. The controlling fatigue mechanism was analyzed against the fatigue observations. The data presented can serve as input to design optimization of PZT stacks and to operation optimization in critical applications, such as piezoelectric fuel injectors in heavy-duty diesel engines.

  5. Modeling of fatigue life of materials and structures under low-cycle loading

    Science.gov (United States)

    Volkov, I. A.; Korotkikh, Yu. G.

    2014-05-01

    A damaged medium model (DMM) consisting of three interconnected components (relations determining the cyclic elastoplastic behavior of the material, kinetic damage accumulation equations, and the strength criterion for the damaged material) was developed to estimate the stress strain state and the fatigue life of important engineering objects. The fatigue life of a strip with a cut under cyclic loading was estimated to obtain qualitative and quantitative estimates of the DMM constitutive relations under low-cycle loading. It was shown that the considered version of the constitutive relations reliably describes the main effects of elastoplastic deformation and the fatigue life processes of materials and structures.

  6. Fatigue damage evaluation of austenitic stainless steel using nonlinear ultrasonic waves in low cycle regime

    Science.gov (United States)

    Zhang, Jianfeng; Xuan, Fu-Zhen

    2014-05-01

    The interrupted low cycle fatigue test of austenitic stainless steel was conducted and the dislocation structure and fatigue damage was evaluated subsequently by using both transmission electron microscope and nonlinear ultrasonic wave techniques. A "mountain shape" correlation between the nonlinear acoustic parameter and the fatigue life fraction was achieved. This was ascribed to the generation and evolution of planar dislocation structure and nonplanar dislocation structure such as veins, walls, and cells. The "mountain shape" correlation was interpreted successfully by the combined contribution of dislocation monopole and dipole with an internal-stress dependent term of acoustic nonlinearity.

  7. Non-local high cycle fatigue criterion for metallic materials with corrosion defects

    Directory of Open Access Journals (Sweden)

    May Mohamed El

    2014-06-01

    Full Text Available Designing structures against corrosion fatigue has become a key problem for many engineering structures evolving in complex environmental conditions of humidity (aeronautics, civil engineering …. In this study, we investigate the effect of corrosion defects on the high cycle fatigue (HCF strength of a martensitic stainless steel with high specific mechanical strength, used in aeronautic applications. A volumetric approach based on Crossland equivalent stress is proposed. This can be applied to any real defects.

  8. Instantaneous quantification of skeletal muscle activation, power production, and fatigue during cycle ergometry.

    Science.gov (United States)

    Coelho, A C; Cannon, D T; Cao, R; Porszasz, J; Casaburi, R; Knorst, M M; Rossiter, H B

    2015-03-01

    A rapid switch from hyperbolic to isokinetic cycling allows the velocity-specific decline in maximal power to be measured, i.e., fatigue. We reasoned that, should the baseline relationship between isokinetic power (Piso) and electromyography (EMG) be reproducible, then contributions to fatigue may be isolated from 1) the decline in muscle activation (muscle activation fatigue); and 2) the decline in Piso at a given activation (muscle fatigue). We hypothesized that the EMG-Piso relationship is linear, velocity dependent, and reliable for instantaneous fatigue assessment at intolerance during and following whole body exercise. Healthy participants (n = 13) completed short (5 s) variable-effort isokinetic bouts at 50, 70, and 100 rpm to characterize baseline EMG-Piso. Repeated ramp incremental exercise tests were terminated with maximal isokinetic cycling (5 s) at 70 rpm. Individual baseline EMG-Piso relationships were linear (r(2) = 0.95 ± 0.04) and velocity dependent (analysis of covariance). Piso at intolerance (two legs, 335 ± 88 W) was ∼45% less than baseline [630 ± 156 W, confidence interval of the difference (CIDifference) 211, 380 W, P power was reduced (P power is linear, velocity dependent, and reproducible. Deviation from this relationship at the limit of tolerance can quantify the "activation" and "muscle" related components of fatigue during cycling.

  9. High cycle fatigue properties of die-cast magnesium alloy AZ91D-1%MM

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The high cycle fatigue properties of the die-cast magnesium alloy AZ91D containing 1%mischmetal(mass fraction)at a fatigue ratio of 0.1 were investigated.The difference in the microstructure between the skin and core region of the die-cast magnesium alloy was analyzed by optical microscopy.The mechanical property tests indicate that the values of the tensile strength,elongation and hardness are 185 MPa,1.5%and HBS 70±3 at room temperature,respectively.The p-S-N curve(p=50%)of the die-cast magnesium alloy AZ91D-1%MM is determined and the mean fatigue strength corresponding to 3.8×105cycles is 70 MPa.A linear relation between S and Np in log scale between 103 and 106 cycles is written with a equation.The mechanical properties are influenced by the casting defects.The fatigue life of the samples with minor defects is near to the upper limit of the fatigue life data.The fatigue fracture surface of the samples with minor defects possesses the mixed characteristics of quasi-cleavage,lacerated ridge and dimple and it is briule fracture mode as a whole.

  10. The significance of crack initiation stage in very high cycle fatigue of steels

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, J. [Department of Materials Engineering, Karlstad University (Sweden); Burman, C.; Kazymyrovych, V.

    2010-04-15

    Different stages of the Very High Cycle Fatigue (VHCF) crack evolution in tool steels have been explored using a 20 kHz ultrasonic fatigue testing equipment. Extensive experimental data is presented describing VHCF behaviour, strength and crack initiating defects in an AISI H11 tool steel. Striation measurements are used to estimate fatigue crack growth rate, between 10{sup -8} and 10{sup -6} m/cycle, and the number of load cycles required for a crack to grow to critical dimensions. The growth of small fatigue cracks within the ''fish-eye'' is shown to be distinctively different from the crack propagation behaviour of larger cracks. More importantly, the crack initiation stage is shown to determine the total fatigue life, which emphasizes the inherent difficulty to detect VHCF cracks prior to failure. Several mechanisms for initiation and early crack growth are possible. Some of them are discussed here: crack development by local accumulation of fatigue damage at the inclusion - matrix interface, hydrogen assisted crack growth and crack initiation by decohesion of carbides from the matrix. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  11. A New Multiaxial High-Cycle Fatigue Criterion Based on the Critical Plane for Ductile and Brittle Materials

    Science.gov (United States)

    Wang, Cong; Shang, De-Guang; Wang, Xiao-Wei

    2015-02-01

    An improved high-cycle multiaxial fatigue criterion based on the critical plane was proposed in this paper. The critical plane was defined as the plane of maximum shear stress (MSS) in the proposed multiaxial fatigue criterion, which is different from the traditional critical plane based on the MSS amplitude. The proposed criterion was extended as a fatigue life prediction model that can be applicable for ductile and brittle materials. The fatigue life prediction model based on the proposed high-cycle multiaxial fatigue criterion was validated with experimental results obtained from the test of 7075-T651 aluminum alloy and some references.

  12. Thermally Induced Ultra High Cycle Fatigue of Copper Alloys of the High Gradient Accelerating Structures

    CERN Document Server

    Heikkinen, Samuli; Wuensch, Walter

    2010-01-01

    In order to keep the overall length of the compact linear collider (CLIC), currently being studied at the European Organization for Nuclear Research (CERN), within reasonable limits, i.e. less than 50 km, an accelerating gradient above 100 MV/m is required. This imposes considerable demands on the materials of the accelerating structures. The internal surfaces of these core components of a linear accelerator are exposed to pulsed radio frequency (RF) currents resulting in cyclic thermal stresses expected to cause surface damage by fatigue. The designed lifetime of CLIC is 20 years, which results in a number of thermal stress cycles of the order of 2.33•1010. Since no fatigue data existed in the literature for CLIC parameter space, a set of three complementary experiments were initiated: ultra high cycle mechanical fatigue by ultrasound, low cycle fatigue by pulsed laser irradiation and low cycle thermal fatigue by high power microwaves, each test representing a subset of the original problem. High conductiv...

  13. Low-cycle fatigue of dispersion-strengthened copper

    Energy Technology Data Exchange (ETDEWEB)

    Robles, J. (Clorox Co., Pleasanton, CA (United States)); Anderson, K.R.; Groza, J.R.; Gibeling, J.C. (Univ. of California, Davis, CA (United States))

    1994-10-01

    The cyclic deformation behavior of a dispersion-strengthened copper alloy, GlidCop Al-15, has been studied at plastic strain amplitudes in the range 0.1 pct [<=] [Delta][var epsilon][sub p]/2 [<=] 0.8 pct. Compared to pure polycrystalline copper, the dispersion-strengthened material exhibits a relatively stable cyclic response as a consequence of the dislocation substructures inherited from prior processing and stabilized by the Al[sub 2]O[sub 3] particles. These dislocation structures remain largely unaltered during the course of deformation; hence, they do not reveal any of the features classically associated with copper tested in fatigue. At low amplitudes, the fatigue lifetimes of the dispersion-strengthened copper and the base alloy are similar; however, the former is more susceptible to cracking at stress concentrations because of its substantially greater strength. This similarity in fatigue life-times is a consequence of the dispersal of both deformation and damage accumulation by the fine grain size and dislocation/particle interactions in the GlidCop alloy. The operation of these mechanisms is reflected in the fine surface slip markings and rough fracture surface features for this material.

  14. Simulation and analysis of data for enhancing low cycle fatigue test procedures

    Energy Technology Data Exchange (ETDEWEB)

    Sarajaervi, U.; Cronvall, O. [VTT Technical Research Centre of Finland (Finland)

    2006-04-15

    The simulation and analysis of data for enhancing low cycle fatigue test procedures is discussed in this report. The analysed materials are an austenitic stainless piping steel and an austenitic weld material. This project continues the work performed in 2003 and 2004. The fatigue test data treatment application developed within the project in 2004 for the preparation of the fatigue data has been developed further. Also, more fatigue test data has been analysed with the application than in 2004. In addition to this numerical fatigue simulations were performed with FEM code ABAQUS. With the fatigue test data treatment application one can e.g. both calculate cyclically certain relevant characteristic values, e.g. elastic range, and form a set of certain cyclical parameter values needed as a part of ABAQUS analysis input files. The hardening properties of metals were modelled with both isotropic and kinematic hardening models. The further development of the application included trimming of the analysed data, and consequently trimming of resulting hardening parameters. The need for the trimming arose from the fact that the analysed fatigue test data presents some scatter caused by the limited accuracy of the test equipment and the sampling rate. The hardening parameters obtained from the application analysis results were used in the subsequent ABAQUS analyses, and then the fatigue test data were compared with the ABAQUS simulation results. After finding a procedure to trim result data to get smooth curves for cyclic hardening, hardening and softening could be reproduced in ABAQUS analysis with a reasonable accuracy. The modelling of the fatigue induced initiation and growth of cracks was not considered in this study. On the other hand, a considerable part of the fatigue life of nuclear power plant (NPP) piping components is spent in the phase preceding the initiation and growth of cracks. (au)

  15. Development of a Very High Cycle Fatigue (VHCF multiaxial testing device

    Directory of Open Access Journals (Sweden)

    M. Vieira

    2016-07-01

    Full Text Available The very high cycle region of the S-N fatigue curve has been the subject of intensive research on the last years, with special focus on axial, bending, torsional and fretting fatigue tests. Very high cycle fatigue can be achieved using ultrasonic exciters which allow for frequency testing of up to 30 kHz. Still, the multiaxial fatigue analysis is not yet developed for this type of fatigue analyses, mainly due to conceptual limitations of these testing devices. In this paper, a device designed to produce biaxial fatigue testing using a single piezoelectric axial exciter is presented, as well as the preliminary testing of this device. The device is comprised of a horn and a specimen, which are both attached to the piezoelectric exciter. The steps taken towards the final geometry of the device are presented. Preliminary experimental testing of the developed device is made using thermographic imaging, strain measurements and vibration speeds and indicates good behaviour of the tested specimen.

  16. A Direct Method For Predicting The High-Cycle Fatigue Regime In SMAs: Application To Nitinol Stents

    Directory of Open Access Journals (Sweden)

    Colombé Pierre

    2015-01-01

    Full Text Available In fatigue design of metals, it is common practice to distinguish between high-cycle fatigue (occurring after 10000–100000 cycles and low-cycle fatigue. For elastic-plastic materials, there is an established correlation between fatigue and energy dissipation. In particular, high-cycle fatigue occurs when the energy dissipation remains bounded in time. Although the physical mechanisms in SMAs differ from plasticity, the hysteresis observed in the stress-strain response shows that some energy dissipation occurs, and it can be reasonably assumed that situations where the energy dissipation remains bounded is the most favorable for fatigue design. We present a direct method for determining if the energy dissipation in a SMA structure is bounded or not. That method relies only on elastic calculations, thus bypassing incremental nonlinear analysis. Moreover, only a partial knowledge of the loading (namely the extreme values is needed. Some results related to Nitinol stents are presented.

  17. Low Cycle Fatigue Behavior of HT250 Gray Cast Iron for Engine Cylinder Blocks

    Science.gov (United States)

    Fan, K. L.; He, G. Q.; She, M.; Liu, X. S.; Yang, Y.; Lu, Q.; shen, Y.; Tian, D. D.

    2014-08-01

    The strain-controlled low cycle fatigue properties were evaluated on specimens of HT250 gray cast iron (GCI) at room temperature. The material exhibited cyclic stabilization at a low strain amplitude of 0.1% and cyclic softening characteristic at higher strain amplitudes (0.15-0.30%). At a representative total strain amplitude (0.30%), the hysteresis loops of HT250 GCI were asymmetric with a large amount of plastic deformation in the compressive phases. Furthermore, the hysteresis loop became larger in both width and height with increasing total strain amplitude (from 0.10 to 0.30%), and tended to exhibit a clockwise rotation. The fatigue crack propagation mechanisms were different at various total strain amplitudes, where high stress concentration due to dislocation pile-up favored fatigue crack initiation in the examined HT250. Finally, the roughness-induced crack closure was a key to determine the crack growth rate as well as fatigue life.

  18. A simple approximative procedure for taking into account low cycle fatigue loads

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, G.; Thomsen, K.

    1996-09-01

    In this paper a simple approximative algorithm for taking into account low cycle fatigue loads is presented. Traditionally, the fatigue life consumption of a wind turbine is estimated by considering a number of (independent) load cases and performing a rainflow counting analysis on each of those. These results are then subsequently synthesized into a total load spectrum by performing a weighed sum of the number of individual load case ranges. The fatigue life consumption is thus obtained by applying the Palmgren-Miner rule on the total load spectrum. However, due to the assumption of isolated basic load cases, the above procedure fail to represent the low-frequency contributions related to the transition between those load cases. The procedure to be described in the following aims at taking the fatigue contribution, related to the transitions between the defined load cases, into account in an approximative manner. (au)

  19. High-cycle Fatigue Life Extension of Glass Fiber/Polymer Composites with Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Christopher S Grimmer; C K H Dharan

    2009-01-01

    The present work shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) to the matrix results in a significant increase in the high-cycle fatigue life. It is proposed that carbon nanotubes tend to inhibit the formation of large cracks by nucleating nano-scale damage zones. In addition, the contribution to energy absorption from the fracture of nanotubes bridging across nano-scale cracks and from nanotube pull-out from the matrix are mechanisms that can improve the fatigue life. An energy-based model was proposed to estimate the additional strain energy absorbed in fatigue. The distributed nanotubes in the matrix appear to both distribute damage as well as inhibit damage propagation resulting in an overall improvement in the fatigue strength of glass fiber composites.

  20. Identification of low cycle fatigue parameters of high strength low-alloy (HSLA steel at room temperature

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available Low cycle fatigue test was performed in ambient atmosphere at room temperature. Cycle loading of material, in case of High strength low-alloy steel, entails modifications of its properties and in this paper is therefore shown behavior of fatigue life using low cycle fatigue parameters. More precisely, crack initiation life of tested specimens was computed using theory of Coffin-Manson relation during the fatigue loading. The geometry of the stabilized hysteresis loop of welded joint HSLA steel, marked as Nionikral 70, is also analyzed. This stabilized hysteresis loop is very important for determination of materials properties.

  1. A Multiaxial Low Cycle Fatigue Life Prediction Model for Both Proportional and Non-proportional Loading Conditions

    Science.gov (United States)

    Paul, Surajit Kumar

    2014-09-01

    This paper has presented a life prediction model in the field of multiaxial low-cycle fatigue. The proposed model is generally applied for constant amplitude multiaxial proportional and non-proportional loading. Depending upon applied strain path the equivalent strain varies within a cycle. Equivalent average strain amplitude is considered as fatigue damage parameter in the proposed model. The model has requirement of only two material constants and no other tuning parameters. The model is examined by the proportional and non-proportional low-cycle fatigue life experimental data for eight different types of materials. The model is successfully correlated with multiaxial fatigue lives of eight different materials.

  2. Damage and failure modeling of lotus-type porous material subjected to low-cycle fatigue

    Directory of Open Access Journals (Sweden)

    J. Kramberger

    2016-01-01

    Full Text Available The investigation of low-cycle fatigue behaviour of lotus-type porous material is presented in this paper. Porous materials exhibit some unique features which are useful for a number of various applications. This paper evaluates a numerical approach for determining of damage initiation and evolution of lotus-type porous material with computational simulations, where the considered computational models have different pore topology patterns. The low-cycle fatigue analysis was performed by using a damage evolution law. The damage state was calculated and updated based on the inelastic hysteresis energy for stabilized cycle. Degradation of the elastic stifness was modeled using scalar damage variable. In order to examine crack propagation path finite elements with severe damage were deleted and removed from the mesh during simulation. The direct cyclic analysis capability in Abaqus/Standard was used for low-cycle fatigue analysis to obtain the stabilized response of a model subjected to the periodic loading. The computational results show a qualitative understanding of pores topology influence on low-cycle fatigue under transversal loading conditions in relation to pore orientation.

  3. Development of high-cycle fatigue design curves for a cast aluminum alloy

    Science.gov (United States)

    Cooper, R. A.

    1979-01-01

    Life prediction curves for rocket engine pump parts were developed from the results of high-cycle fatigue tests run on cast-aluminum specimens. Notched and smooth specimens were cyclically tested at different mean stress levels at -320 F (78 K). The notch size and mean stress enveloped the design operating conditions. Local stress computed in the groove of the notched specimen was used to represent its fatigue strength. The von Mises criterion was used to determine effective cyclic stresses. The Goodman rule was applied to determine equivalent reversed alternating stresses. The procedure permitted the notched and smooth data sets to each be described by a single curve. High-cycle fatigue life curves were provided for the stress state, mean stress, and stress concentration spanned by the data.

  4. Comparison of Post Weld Treatment of High Strength Steel Welded Joints in Medium Cycle Fatigue

    DEFF Research Database (Denmark)

    Pedersen, Mikkel Melters; Mouritsen, Ole Ø.; Hansen, Michael Rygaard

    2010-01-01

    the stress range can exceed the yield-strength of ordinary structural steel, especially when considering positive stress ratios (R > 0). Fatigue experiments and qualitative evaluation of the different post-weld treatments leads to the selection of TIG dressing. The process of implementing TIG dressing......This paper presents a comparison of three post-weld treatments for fatigue life improvement of welded joints. The objective is to determine the most suitable post-weld treatment for implementation in mass production of certain crane components manufactured from very high-strength steel....... The processes investigated are: burr grinding, TIG dressing and ultrasonic impact treatment. The focus of this investigation is on the so-called medium cycle area, i.e. 10 000-500 000 cycles and very high stress ranges. In this area of fatigue design, the use of very high strength steel becomes necessary, since...

  5. Low cycle fatigue behaviors of elbow pipe with local wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Koji, E-mail: ktaka@ynu.ac.j [Faculty of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, 240-8501 (Japan); Watanabe, Sota; Ando, Kotoji [Faculty of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama, 240-8501 (Japan); Urabe, Yoshio [Japan Nuclear Technology Institute, 7F Shiba Bldg., 4-2-3, Shiba, Minato-ku, Tokyo, 108-0014 (Japan); Hidaka, Akitaka; Hisatsune, Masakazu [Hitachi-GE Nuclear Energy, Ltd., 3-1-1, Saiwai-cho, Hitachi, Ibaraki, 317-8511 (Japan); Miyazaki, Katsumasa [Hitachi, Ltd., 3-1-1, Saiwai-cho, Hitachi, Ibaraki, 317-8511 (Japan)

    2009-12-15

    Low cycle fatigue tests were conducted using 100A elbow specimens made of STPT410 carbon steel with local wall thinning. Local wall thinning by erosion/corrosion was simulated by machined pipe wall thinning. The local wall thinning areas were located at three different areas, called extrados, crown and intrados. The elbow specimens were subjected to cyclic in-plane bending under displacement control without internal pressure. The effects of eroded conditions, such as eroded ratio, eroded angle and position, on the low cycle fatigue behavior and fatigue life were discussed by using experimental results and finite element analyses. Also the location of crack initiation and the crack growth direction could be predicted by three dimensional elasto-plastic finite element analyses. In addition, the safety margin of eroded elbows against seismic loading was discussed by comparing the fictitious stress of elbows with the allowable stress limit demanded by the design code.

  6. Effect of the Machining Processes on Low Cycle Fatigue Behavior of a Powder Metallurgy Disk

    Science.gov (United States)

    Telesman, J.; Kantzos, P.; Gabb, T. P.; Ghosn, L. J.

    2010-01-01

    A study has been performed to investigate the effect of various machining processes on fatigue life of configured low cycle fatigue specimens machined out of a NASA developed LSHR P/M nickel based disk alloy. Two types of configured specimen geometries were employed in the study. To evaluate a broach machining processes a double notch geometry was used with both notches machined using broach tooling. EDM machined notched specimens of the same configuration were tested for comparison purposes. Honing finishing process was evaluated by using a center hole specimen geometry. Comparison testing was again done using EDM machined specimens of the same geometry. The effect of these machining processes on the resulting surface roughness, residual stress distribution and microstructural damage were characterized and used in attempt to explain the low cycle fatigue results.

  7. The low cycle fatigue behaviour of as cast single crystal CM186LC

    Energy Technology Data Exchange (ETDEWEB)

    Bale, D.W.; Henderson, M. [ALSTOM Power Technology Centre, Leicestershire (United Kingdom); Dubiel, B.; Czyrska-Filemonowicz, A. [Univ. of Mining and Metallurgy (AGH), Krakow (Poland); Guardamagna, C.; Bontempi, P. [CESI SpA, Milan (Italy); Mulvihill, P. [Powergen, Power Technology Centre, Nottingham (United Kingdom); Lukas, P.; Obrtlik, K. [Academy of Sciences of the Czech Republic, Brno (Czech Republic); Kolkman, H. [National Aerospace Lab., NLR (Netherlands)

    2002-07-01

    CM186 LC DS is well established as a first stage industrial gas turbine (IGT) blade material and has been adopted by leading IGT manufacturers due to significant grain boundary tolerance and cost benefits. To increase the temperature capability, single crystal (SX) casting practices have been applied. The composition and heat treatment are identical to those of the DS variant meaning that the cost savings remain. The following paper characterises the low cycle fatigue (LCF) properties of CM186LC SX, and considers the effects of orientation, temperature, strain rate and mean stress on the cyclic stress-strain and strain-life characteristics. The impact of LCF and creep loading interactions has also been studied by applying tensile and compressive dwell periods during the fatigue cycle. Fractographic and microstructural analysis of as-received and fatigued specimens has been conducted. (orig.)

  8. Temporal strategy and performance during a fatiguing short-cycle repetitive task

    NARCIS (Netherlands)

    Bosch, T.; Mathiassen, S.E.; Hallman, D.; Looze, M.P. de; Lyskov, E.; Visser, B.; Dieën, J.H. van

    2012-01-01

    This study investigated temporal changes in movement strategy and performance during fatiguing short-cycle work. Eighteen participants performed six 7-min work blocks with repetitive reaching movements at 0.5 Hz, each followed by a 5.5-min rest break for a total duration of 1 h. Electromyography (EM

  9. Modification of creep and low cycle fatigue behaviour induced by welding

    Directory of Open Access Journals (Sweden)

    A. Carofalo

    2014-10-01

    Full Text Available In this work, the mechanical properties of Waspaloy superalloy have been evaluated in case of welded repaired material and compared to base material. Test program considered flat specimens on base and TIG welded material subjected to static, low-cycle fatigue and creep test at different temperatures. Results of uniaxial tensile tests showed that the presence of welded material in the gage length specimen does not have a relevant influence on yield strength and UTS. However, elongation at failure of TIG material was reduced with respect to the base material. Moreover, low-cycle fatigue properties have been determined carrying out tests at different temperature (room temperature RT and 538°C in both base and TIG welded material. Welded material showed an increase of the data scatter and lower fatigue strength, which was anyway not excessive in comparison with base material. During test, all the hysteresis cycles were recorded in order to evaluate the trend of elastic modulus and hysteresis area against the number of cycles. A clear correlation between hysteresis and fatigue life was found. Finally, creep test carried out on a limited number of specimens allowed establishing some changes about the creep rate and time to failure of base and welded material. TIG welded specimen showed a lower time to reach a fixed strain or failure when a low stress level is applied. In all cases, creep behaviour of welded material is characterized by the absence of the tertiary creep.

  10. Pacing Strategy, Muscle Fatigue and Technique in 1500m Speed Skating and Cycling Time-Trials

    NARCIS (Netherlands)

    Stoter, Inge K; MacIntosh, Brian R; Fletcher, Jared R; Pootz, Spencer; Zijdewind, Inge; Hettinga, Florentina J

    2016-01-01

    PURPOSE: To evaluate pacing behavior and peripheral and central contributions to muscle fatigue in 1500m speed skating and cycling time-trials, when a faster or slower start is instructed. METHODS: Nine speed skaters and nine cyclists, all competing at regional or national level, performed two 1500m

  11. Evaluation of thermal cycling creep-fatigue damage for a molten salt receiver

    Science.gov (United States)

    Grossman, James W.; Jones, Wendell B.; Veers, Paul S.

    1990-01-01

    A molten salt cavity receiver was solar tested at Sandia National Laboratories during a year-long test program. Upon completion of testing, an analysis was performed to determine the effect of thermal cycling on the receiver. The results indicate a substantial fatigue damage accumulation for the receiver when the relatively short test time is considered. This paper describes the methodology used to analyze the cycling, the results as they pertain to this receiver, and how they affect future receiver design.

  12. High-cycle fatigue behavior of Ti-5Al-2.5Sn ELI alloy forging at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Yoshinori; Yuri, Tetsumi; Ogata, Toshio; Demura, Masahiko [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Matsuoka, Saburo [Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, Fukuoka 819-0395 (Japan); Sunakawa, Hideo [Japan Aerospace Exploration Agency, 2-1-1 Sengen, Tsukuba, Ibaraki 305-8505 (Japan)

    2014-01-27

    High-cycle fatigue properties of Ti-5Al-2.5Sn Extra Low Interstitial (ELI) alloy forging were investigated at low temperatures. The high-cycle fatigue strength at low temperatures of this alloy was relatively low compared with that at ambient temperature. The crystallographic orientation of a facet formed at a fatigue crack initiation site was determined by electron backscatter diffraction (EBSD) method in scanning electron microscope (SEM) to understand the fatigue crack initiation mechanism and discuss on the low fatigue strength at low temperature. Furthermore, in terms of the practical use of this alloy, the effect of the stress ratio (or mean stress) on the high-cycle fatigue properties was evaluated using the modified Goodman diagram.

  13. Low cycle fatigue behavior in a medium-carbon carbide-free bainitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Lv, B. [College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-06-01

    In the paper, different morphologies of bainite were obtained through isothermal quenching at 320 °C and 395 °C in a medium-carbon carbide-free bainitic steel. The cyclic deformation mechanism was explored by using low cycle fatigue testing. The volume fraction of retained austenite was measured by X-ray diffraction and the space partitioning of the solute atoms was constructed by three-dimensional atom probe. Results showed that the fatigue life at 320 °C was always higher than that at 395 °C under low and high total strain amplitude. The cyclic softening at the early fatigue stage increased the plastic strain of the sample which was responsible for the reduction of the fatigue life at 395 °C. Strain-induced retained austenite to martensite contributed to initial cyclic hardening, but almost having no effect on the subsequent cyclic stable/softening behaviors. The finer bainitic ferrite sheaves obtained at 320 °C changed the small fatigue crack propagation direction and delayed the crack propagation rate, which was beneficial for the fatigue properties. In addition, the substitutional atoms did not redistribute between the retained austenite and bainitic ferrite before and after cyclic deformation.

  14. Ultra-high cycle fatigue behavior of high strength steel with carbide-free bainite/martensite complex microstructure

    Institute of Scientific and Technical Information of China (English)

    Xue-xia Xu; Yang Yu; Wen-long Cui; Bing-zhe Bai; Jia-lin Gu

    2009-01-01

    The ultra-high cycle fatigue behavior of a novel high strength steel with carbide-free bainite/martensite (CFB/M) complex microstructure was studied. The ultra-high cycle fatigue properties were measured by ultrasonic fatigue testing equipment at a fre-quency of 20 kHz. It is found that there is no horizontal part in the S-N curve and fatigue fracture occurs when the life of specimens exceeds 107 cycles. In addition, the origination of fatigue cracks tends to transfer from the surface to interior of specimens as the fa-tigue cycle exceeds 107 , and the fatigue crack originations of many specimens are not induced by inclusions, but by some kind of "soft structure". It is shown that the studied high strength steel performs good ultra-high cycle fatigue properties. The ultra-high fa-tigue mechanism was discussed and it is suggested that specific CFB/M complex microstrueture of the studied steel contributes to itssuperior properties.

  15. Low cycle fatigue analysis of a last stage steam turbine blade

    Directory of Open Access Journals (Sweden)

    Měšťánek P.

    2008-11-01

    Full Text Available The present paper deals with the low cycle fatigue analysis of the low pressure (LP steam turbine blade. The blade is cyclically loaded by the centrifugal force because of the repeated startups of the turbine. The goal of the research is to develop a technique to assess fatigue life of the blade and to determine the number of startups to the crack initiation. Two approaches were employed. First approach is based on the elastic finite element analysis. Fictive 'elastic' results are recalculated using Neuber's rule and the equivalent energy method. Triaxial state of stress is reduced using von Mises theory. Strain amplitude is calculated employing the cyclic deformation curve. Second approach is based on elastic-plastic FE analysis. Strain amplitude is determined directly from the FE analysis by reducing the triaxial state of strain. Fatigue life was assessed using uniaxial damage parameters. Both approaches are compared and their applicability is discussed. Factors that can influence the fatigue life are introduced. Experimental low cycle fatigue testing is shortly described.

  16. Low Cycle Fatigue Behaviors of Alloy 617 (INCONEL 617 Weldments for High Temperature Applications

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2016-04-01

    Full Text Available In this study, we comparatively investigate the low cycle fatigue behavior of Alloy 617 (INCONEL 617 weldments by gas tungsten arc welding process at room temperature and 800 °C in the air to support the qualification in high temperature applications of the Next Generation-IV Nuclear Plant. Axial total-strain controlled tests have been performed with the magnitude of strain ranges with a constant strain ratio (Rε = −1. The results of fatigue tests consistently show lower fatigue life with an increase in total strain range and temperature at all testing conditions. The reduction in fatigue life may result from the higher cyclic plastic strain accumulation and the material ductility at high temperature conditions. A constitutive behavior of high temperature by some cyclic hardening was observed. The occurrence of serrated yielding in the cyclic stress response was also observed, suggesting the influence of dynamic strain aging during high temperature. We evaluated a well-known life prediction model through the Coffin-Manson relationship. The results are well matched with the experimental data. In addition, low cycle fatigue cracking occurred in the weld metal region and initiated transgranularly at the free surface.

  17. Low cycle thermomechanical fatigue of reactor steels: Microstructural and fractographic investigations

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Kasl, Josef; Jandova, Dagmar [Výzkumný a zkušební ústav Plzeň s.r.o., Tylova 1581/46, 316 00 Plzen (Czech Republic); Jóni, Bertalan [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Eötvös Loránd University, Egyetem tér 1-3, Budapest H-1053 (Hungary); Misják, Fanni [Centre for Energy Research, Institute of Technical Physics and Materials Science, Konkoly-Thege M. 29-33, Budapest H-1121 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-07-29

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of a VVER-440 reactor pressure vessel were investigated under fully reversed total strain controlled low cycle fatigue tests. The measurements were carried out in isothermal conditions at 260 °C and with thermal-mechanical conditions in the range 150–270 °C using a GLEEBLE-3800 servo-hydraulic thermal-mechanical simulator. The low cycle fatigue results were evaluated with the Coffin–Manson law, and the parameters of the Ramberg–Osgood stress–strain relation were investigated. Fracture mechanics behavior was observed using scanning electron microscopic analysis of the crack shapes and fracture surfaces. Crack propagation was assessed in relation to the actual crack size and the loading level. Interrupted fatigue tests were also carried out to investigate the kinetics of the fatigue evolution of the materials. Microstructural evaluation of the samples was performed using light, scanning and transmission electron microscopy as well as X-ray diffraction, and measurement of dislocations was completed using TEM and XRD. The course of dislocation density in relation to cumulative usage factor was similar for both steels. However, the nature and distribution of dislocations were different in the individual steels and this resulted in different mechanical behaviors. The nature of the fracture surfaces of both steels appeared similar despite differences in dislocation arrangement. The distances between striation lines initially increased with increasing crack length and then became saturated. The low cycle fatigue behavior investigated can provide a reference for the remaining life assessment and lifetime extension analysis of nuclear power plant components.

  18. Monitoring fatigue loads on wind turbines using cycle counting data acquisition systems

    Energy Technology Data Exchange (ETDEWEB)

    Soeker, H.; Seifert, H. [Deutsches Windenergie-Institut (Germany); Fragoulis, A.; Vionis, P.; Foussekis, D. [Center for Renewable Energy Sources (Greece); Dahlberg, J.A.; Poppen, M. [The Aeronautical Research Institue of Sweden (Sweden)

    1996-09-01

    As in any industrial application, the duration of a wind turbine`s life is a key parameter for the evaluation of its economic potential. Assuming a service life of 20 years, components of the turbine have to withstand a number of load cycles of up to 10{sup 8}. Such numbers of load cycles impose high demands on the fatigue characteristics of both, the used materials and the design. Nevertheless, fatigue loading of wind turbine components still remains a parameter of high uncertainty in the design of wind turbines. The specific features of these fatigue loads can be expected to vary with the type of turbine and the site of operation. In order to ensure the reliability of the next generation of larger scale wind turbines improved load assumptions will be of vital importance. Within the scope of the presented research program DEWI, C.R.E.S. and FFA monitored fatigue loads of serial produced wind turbines by means of a monitoring method that uses on-line cycle counting techniques. The blade root bending moments of two pitch controlled, variable speed wind turbines operating in the Hamswehrum wind farm, and also that of a stall controlled, fixed speed wind turbine operating in CRES` complex terrain test site, were measured by DEWI and CRES. In parallel FFA used their database of time series measurements of blade root bending moments on a stall controlled, fixed speed turbine at Alsvik Windfarm in order to derive semi-empirical fatigue load data. The experience gained from application of the on-line measurement technique is discussed with respect to performance, data quality, reliability and cost effectiveness. Investigations on the effects of wind farm and complex terrain operation on the fatigue loads of wind turbine rotor blades are presented. (au)

  19. Prediction of three-dimensional crack propagation paths taking high cycle fatigue into account

    Directory of Open Access Journals (Sweden)

    Guido Dhondt

    2016-01-01

    Full Text Available Engine components are usually subject to complex loading patterns such as mixed-mode Low Cycle Fatigue Loading due to maneuvering. In practice, this LCF Loading has to be superimposed by High Cyclic Fatigue Loading caused by vibrations. The changes brought along by HCF are twofold: first, the vibrational cycles which are superposed on the LCF mission increase the maximum loading of the mission and may alter the principal stress planes. Secondly, the HCF cycles themselves have to be evaluated on their own, assuring that no crack propagation occurs. Indeed, the vibrational frequency is usually so high that propagation leads to immediate failure. In the present paper it is explained how these two effects can be taken care of in a standard LCF crack propagation procedure. The method is illustrated by applying the Finite Element based crack propagation software CRACKTRACER3D on an engine blade.

  20. Analysis of methods for determining high cycle fatigue strength of a material with investigation of titanium-aluminum-vanadium gigacycle fatigue behavior

    Science.gov (United States)

    Pollak, Randall D.

    Today, aerospace engineers still grapple with the qualitative and quantitative understanding of fatigue behavior in the design and testing of turbine-driven jet engines. The Department of Defense has taken a very active role in addressing this problem with the formation of the National High Cycle Fatigue Science & Technology Program in 1994. The primary goal of this program is to further the understanding of high cycle fatigue (HCF) behavior and develop methods in order to mitigate the negative impact of HCF on aerospace operations. This research supports this program by addressing the fatigue strength testing guidance currently provided by the DoD to engine manufacturers, with the primary goal to investigate current methods and recommend a test strategy to characterize the fatigue strength of a material at a specified number of cycles, such as the 109 design goal specified by MIL-HDBK-1783B, or range of cycles. The research utilized the benefits of numerical simulation to initially investigate the staircase method for use in fatigue strength testing. The staircase method is a commonly used fatigue strength test, but its ability to characterize fatigue strength variability is extremely suspect. A modified staircase approach was developed and shown to significantly reduce bias and scatter in estimates for fatigue strength variance. Experimental validation of this proposed test strategy was accomplished using a dual-phase Ti-6Al-4V alloy. The HCF behavior of a second material with a very different microstructure (beta annealed Ti-6Al-4V) was also investigated. The random fatigue limit (RFL) model, a recently developed analysis tool, was investigated to characterize stress-life behavior but found to have difficulty representing fatigue life curves with sharp transitions. Two alternative models (bilinear and hyperbolic) were developed based on maximum likelihood methods to better characterize the Ti-6Al-4V fatigue life behavior. These models provided a good fit to the

  1. A multi-temporal scale approach to high cycle fatigue simulation

    Science.gov (United States)

    Bhamare, Sagar; Eason, Thomas; Spottswood, Stephen; Mannava, Seetha R.; Vasudevan, Vijay K.; Qian, Dong

    2014-02-01

    High cycle fatigue (HCF) is a failure mechanism that dominates the life of many engineering components and structures. Time scale associated with HCF loading is a main challenge for developing a simulation based life prediction framework using conventional FEM approach. Motivated by these challenges, the extended space-time method (XTFEM) based on the time discontinuous Galerkin formulation is proposed. For HCF life prediction, XTFEM is coupled with a two-scale continuum damage mechanics model for evaluating the fatigue damage accumulation. Direct numerical simulations of HCF are performed using the proposed methodology on a notched specimen of AISI 304L steel. It is shown the total fatigue life can be accurately predicted using the proposed simulation approach based on XTFEM. The presented computational framework can be extended for predicting the service and the residual life of structural components.

  2. Low cycle fatigue and creep-fatigue interaction behavior of nickel-base superalloy GH4169 at elevated temperature of 650 °C

    Energy Technology Data Exchange (ETDEWEB)

    Chen, G., E-mail: agang@tju.edu.cn [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Zhang, Y. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Xu, D.K. [Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Lin, Y.C. [School of Mechanical and Electrical Engineering, Central South University, Changsha 410083 (China); Chen, X. [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2016-02-08

    Total strain-controlled low cycle fatigue (LCF) tests of a nickel based superalloy were performed at 650 °C. Various hold times were introduced at the peak tensile strain to investigate the high-temperature creep-fatigue interaction (CFI) effects under the same temperature. A substantial decrease in fatigue life occurred as the total strain amplitude increased. Moreover, tensile strain holding further reduced fatigue life. The saturation phenomenon of holding effect was found when the holding period reached 120 s. Cyclic softening occurred during the LCF and CFI process and it was related to the total strain amplitude and the holding period. The relationship between life-time and total strain amplitude was obtained by combining Basquin equation and Coffin-Manson equation. The surface and fracture section of the fatigued specimens were observed via scanning electronic microscope (SEM) to determine the failure mechanism.

  3. Study of high cycle fatigue of PVD surface-modified austempered ductile iron

    Energy Technology Data Exchange (ETDEWEB)

    Feng, H.P.; Lee, S.C.; Hsu, C.H.; Ho, J.M. [Tatung Inst. of Technol., Taipei (Taiwan, Province of China). Dept. of Mater. Eng.

    1999-05-25

    Austempered ductile iron (ADI) is made from ductile iron by an austempering treatment, and its main microstructure is ausferrite that is composed of acicular ferrite and high carbon austenite. The purpose of this experiment is to investigate the influence of different coating layers and the size of casting (mass effect) on the high-cycle fatigue properties of ADI. Specimens in two casting sizes of the same chemical composition were subjected to a high-toughness austempering treatment, then coated with TiN or TiCN hard films by a physical vapor deposition (PVD) process. The results showed that the fatigue limit of the small casting size ADI is 292 MPa for ADI coated with TiN and 306 MPa for ADI coated with TiCN, which are 16% and 22%, respectively, higher than that of the ADI without coating (251 MPa). For the large casting size ADI, the fatigue limits are 200, 214 and 217 MPa for ADI without coating, ADI coated with TiN and ADI coated with TiCN, respectively. ADI coated with TiN and with TiCN are 7% and 9% better than the uncoated. Thus, it is concluded that TiN and TiCN coatings by PVD can improve the high-cycle fatigue strength of ADI. This is due to the high surface hardness and possibly the ADI surface compressive residual stress as well. For the small casting size ADI, TiCN-coated specimens have a bit higher fatigue strengths and this might be attributed to the higher hardness of TiCN than TiN films. As to the effect of mass, it is found that the small casting size has better fatigue properties and benefits more from the coating films. This could have stemmed from the higher nodule count and its associated benefits in thinner castings. (orig.) 24 refs.

  4. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    Science.gov (United States)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  5. Effects of High Mean Stress on High-cycle Fatigue Behavior of PWA 1480

    Science.gov (United States)

    Majumdar, S.; Antolovich, S. D.; Milligan, W. W.

    1985-01-01

    PWA 1480 is a potential candidate material for use in the high-pressure fuel turbine blade of the space shuttle main engine. As an engine material it will be subjected to high-cycle fatigue loading superimposed on a high mean stress due to combined centrifugal and thermal loadings. The present paper describes the results obtained in an ongoing program at the Argonne National Laboratory, sponsored by NASA Lewis, to determine the effects of a high mean stress on the high-cycle fatigue behavior of this material. Straight-gauge high-cycle fatigue specimens, 0.2 inch in diameter and with the specimen axis in the 001 direction, were supplied by NASA Lewis. The nominal room temperature yield and ultimate strength of the material were 146 and 154 ksi, respectively. Each specimen was polished with 1-micron diamond paste prior to testing. However, the surface of each specimen contained many pores, some of which were as large as 50 micron. In the initial tests, specimens were subjected to axial-strain-controlled cycles. However, very little cyclic plasticity was observed.

  6. Effect of Intermittent Overload Cycles on Thermomechanical Fatigue Life of NiTi Shape Memory Alloy Wire

    Science.gov (United States)

    Saikrishna, C. N.; Ramaiah, K. V.; Vidyashankar, B.; Bhaumik, S. K.

    2013-01-01

    Effect of intermittent overload cycles on fatigue behavior of NiTi shape memory alloy wire during thermomechanical cycling (TMC) has been evaluated. Results showed that fatigue life of NiTi is enhanced when the intermittent overload is above certain minimum level. An enhancement in fatigue life by ~50 pct is observed when the overload ratio is 2.0. Accumulation of plastic strain in the material under such TMC condition is found to be relatively high compared to that of TMC with no overload cycles.

  7. The Rehbinder effect in iron during giga-cycle fatigue loading

    Science.gov (United States)

    Bannikov, M. V.; Naimark, O. B.

    2015-10-01

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  8. The Rehbinder effect in iron during giga-cycle fatigue loading

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, M. V., E-mail: mbannikov@icmm.ru; Naimark, O. B. [Institute of Continuous Media Mechanics UrB RAS, Perm, 614013 (Russian Federation)

    2015-10-27

    The influence of the adsorptive strength reduction effect (the Rehbinder effect) on the fatigue life of pure iron under the giga-cycle loading regime was investigated. Specimens were loaded by an ultrasonic testing machine with a frequency of 20 kHz in air and in contact with eutectic alloy of gallium with tin and indium. A significant (by several orders of magnitude) worsening of the life-time of iron in contact with a molten metal as compared with tests in air was established. The liquid metal penetrates into the material to a depth of 200 μm to the center of a fatigue crack. The mechanism of the fatigue crack initiation in the giga-cycle regime of loading in contact with a surfactant is differing: the crack is formed on the surface of the specimen rather than within it as is the case for air. Based on the electron and optical microscopy data for the fracture surface, it can be concluded that exactly the change in the crack initiation mechanism reduces the fatigue life of iron in contact with a liquid metal because the initiated crack propagates regardless of the surfactant.

  9. Integrating water flow, locomotor performance and respiration of Chinese sturgeon during multiple fatigue-recovery cycles.

    Directory of Open Access Journals (Sweden)

    Lu Cai

    Full Text Available The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1 critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2 active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3 excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4 with repeated step tests, white muscle (anaerobic metabolism began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species.

  10. Crack mode and life of Ti-6Al-4V under multiaxial low cycle fatigue

    Directory of Open Access Journals (Sweden)

    Takamoto Itoh

    2015-10-01

    Full Text Available This paper studies multiaxial low cycle fatigue crack mode and failure life of Ti-6Al-4V. Stress controlled fatigue tests were carried out using a hollow cylinder specimen under multiaxial loadings of λ=0, 0.4, 0.5 and 1 of which stress ratio R=0 at room temperature. λ is a principal stress ratio and is defined as λ=II/I, where I and II are principal stresses of which absolute values take the largest and middle ones, respectively. Here, the test at λ=0 is a uniaxial loading test and that at λ=1 an equi-biaxial loading test. A testing machine employed is a newly developed multiaxial fatigue testing machine which can apply push-pull and reversed torsion loadings with inner pressure onto the hollow cylinder specimen. Based on the obtained results, this study discusses evaluation of the biaxial low cycle fatigue life and crack mode. Failure life is reduced with increasing λ induced by cyclic ratcheting. The crack mode is affected by the surface condition of cut-machining and the failure life depends on the crack mode in the multiaxial loading largely.

  11. Influence of the curing cycles on the fatigue performance of unidirectional glass fiber reinforced epoxy composites

    DEFF Research Database (Denmark)

    Hüther, Jonas; Brøndsted, Povl

    2016-01-01

    stresses are built up and frozen, as residual stresses occur. In the present work, a glass fiber reinforced epoxy composite laminate with an unidirectional architecture based on non-crimp fabrics with backing fibers is investigated. Three different curing cycles (time-temperature cycles) are used, leading...... demonstrated that the resulting residual stresses barely influences the quasi-static mechanical properties of reinforced glass-fiber composites. It is found that the fatigue performance in the 0° direction is significantly influenced by the internal stresses, whereas the fatigue performance in the off axes......During the manufacturing process of fiber reinforced polymers the curing reaction of the resin results in shrinkage of the resin and introduces internal stresses in the composites. When curing at higher temperatures in order to shorten up the processing time, higher curing stresses and thermal...

  12. The Effect of Drive Signal Limiting on High Cycle Fatigue Life Analysis

    Science.gov (United States)

    Kihm, Frederic; Rizzi, Stephen A.

    2014-01-01

    It is common practice to assume a Gaussian distribution of both the input acceleration and the response when modeling random vibration tests. In the laboratory, however, shaker controllers often limit the drive signal to prevent high amplitude peaks. The high amplitudes may either be truncated at a given level (socalled brick wall limiting or abrupt clipping), or compressed (soft limiting), resulting in drive signals which are no longer Gaussian. The paper first introduces several methods for limiting a drive signal, including brick wall limiting and compression. The limited signal is then passed through a linear time-invariant system representing a device under test. High cycle fatigue life predictions are subsequently made using spectral fatigue and rainflow cycle counting schemes. The life predictions are compared with those obtained from unclipped input signals. Some guidelines are provided to help the test engineer decide how clipping should be applied under different test scenarios.

  13. Discussion of "Simplified Model of Low Cycle Fatigue for RC Frames"

    OpenAIRE

    1999-01-01

    To model strength degradation due to low cycle fatigue, at least three different approaches can be considered. One possibility is based on the formulation of a new free energy function and damage energy release rate, as was proposed by Ju(1989). The second approach uses the notion of bounding surface introduced in cyclic plasticity by Dafalias and Popov (1975). From this concept, some models have been proposed to quantify damage in concrete or RC (Suaris et al. 1990). The model proposed by...

  14. Fatigue damage accumulation in steel 45 under loading regimes involving low-cycle overloads

    Science.gov (United States)

    Shlyushenkov, A. P.; Tatarintsev, V. A.

    1994-05-01

    The paper presents the results of experimental investigations into the regularities of fatigue damage accumulation in steel 45 under block loading involving elastoplastic (low-cycle) overloads. The experiments were carried out using the methods of the factorial design theory. Mathematical models are developed for damage accumulation depending on the variation of the parameters (factors) investigated: the level of the main (elastic) strain, the relative level of overloads, and their relative number.

  15. Experimental investigation of high cycle thermal fatigue in a T-junction piping system

    Energy Technology Data Exchange (ETDEWEB)

    Selvam, P. Karthick; Kulenovic, Rudi; Laurien, Eckart [Stuttgart Univ. (Germany). Inst. of Nuclear Technology and Energy Systems (IKE)

    2015-10-15

    High cycle thermal fatigue damage of structure in the vicinity of T-junction piping systems in nuclear power plants is of importance. Mixing of coolant streams at significant temperature differences causes thermal fluctuations near piping wall leading to gradual thermal degradation. Flow mixing in a T-junction is performed. The determined factors result in bending stresses being imposed on the piping system ('Banana effect').

  16. Low Cycle Fatigue Behaviour of DP Steels: Micromechanical Modelling vs. Validation

    Directory of Open Access Journals (Sweden)

    Ghazal Moeini

    2017-07-01

    Full Text Available This study aims to simulate the stabilised stress-strain hysteresis loop of dual phase (DP steel using micromechanical modelling. For this purpose, the investigation was conducted both experimentally and numerically. In the experimental part, the microstructure characterisation, monotonic tensile tests and low cycle fatigue tests were performed. In the numerical part, the representative volume element (RVE was employed to study the effect of the DP steel microstructure of the low cycle fatigue behavior of DP steel. A dislocation-density based model was utilised to identify the tensile behavior of ferrite and martensite. Then, by establishing a correlation between the monotonic and cyclic behavior of ferrite and martensite phases, the cyclic deformation properties of single phases were estimated. Accordingly, Chaboche kinematic hardening parameters were identified from the predicted cyclic curve of individual phases in DP steel. Finally, the predicted hysteresis loop from low cycle fatigue modelling was in very good agreement with the experimental one. The stabilised hysteresis loop of DP steel can be successfully predicted using the developed approach.

  17. Low Cycle Fatigue Evaluation of NiTi SESMA Thin Wires

    Science.gov (United States)

    Sateesh, V. L.; Senthilkumar, P.; Satisha; Dayananda, G. N.

    2014-07-01

    This paper presents experimental studies on low cycle fatigue (LCF) life of super-elastic shape memory alloy (SESMA) wires. The effect of frequency of the loading and amplitude of the strain on the fatigue life has been studied individually. Various loading frequencies have been considered to study the effect of frequency, by keeping the amplitude constant. From the experimental data, it was found that the LCF life of the SESMA reduces with increase in the frequency. The effect of amplitude on the LCF life of SESMA has also been studied, and it was found that the SESMA cycled at lower net strain has more fatigue life than the one cycled at higher net strain. Further, the plastic strain accumulation is also more in the samples tested at the higher net strain loadings. The modulus of austenite is found to be by and large independent of the frequency and amplitude of the loading. Further, martensitic unloading modulus is same for all the minimum strain amplitudes.

  18. A model for life predictions of nickel-base superalloys in high-temperature low cycle fatigue

    Science.gov (United States)

    Romanoski, Glenn R.; Pelloux, Regis M.; Antolovich, Stephen D.

    1988-01-01

    Extensive characterization of low-cycle fatigue damage mechanisms was performed on polycrystalline Rene 80 and IN100 tested in the temperature range from 871 to 1000 C. Low-cycle fatigue life was found to be dominated by propagation of microcracks to a critical size governed by the maximum tensile stress. A model was developed which incorporates a threshold stress for crack extension, a stress-based crack growth expression, and a failure criterion. The mathematical equivalence between this mechanistically based model and the strain-life low-cycle fatigue law was demonstrated using cyclic stress-strain relationships. The model was shown to correlate the high-temperature low-cycle fatigue data of the different nickel-base superalloys considered in this study.

  19. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Directory of Open Access Journals (Sweden)

    Spodniak Miroslav

    2017-01-01

    Full Text Available This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  20. Low cycle fatigue numerical estimation of a high pressure turbine disc for the AL-31F jet engine

    Science.gov (United States)

    Spodniak, Miroslav; Klimko, Marek; Hocko, Marián; Žitek, Pavel

    This article deals with the description of an approximate numerical estimation approach of a low cycle fatigue of a high pressure turbine disc for the AL-31F turbofan jet engine. The numerical estimation is based on the finite element method carried out in the SolidWorks software. The low cycle fatigue assessment of a high pressure turbine disc was carried out on the basis of dimensional, shape and material disc characteristics, which are available for the particular high pressure engine turbine. The method described here enables relatively fast setting of economically feasible low cycle fatigue of the assessed high pressure turbine disc using a commercially available software. The numerical estimation of accuracy of a low cycle fatigue depends on the accuracy of required input data for the particular investigated object.

  1. HIGH CYCLE FATIGUE RELIABILITY ANALYSIS ON ROTOR HUB BASED ON APPROXIMATION TECHNIQUE

    Institute of Scientific and Technical Information of China (English)

    姜年朝; 周光明; 张逊; 戴勇; 倪俊; 张志清

    2013-01-01

    A high cycle fatigue reliability analysis approach to helicopter rotor hub is proposed under working load spectrum .Automatic calculation for the approach is implemented through writing the calculating programs .In the system ,the modification of geometric model of rotor hub is controlled by several parameters ,and finite element method and S-N curve method are then employed to solve the fatigue life by automatically assigned parameters .A database between assigned parameters and fatigue life is obtained via Latin Hypercube Sampling (LHS) on toler-ance zone of rotor hub .Different data-fitting technologies are used and compared to determine a highest-precision approximation for this database .The parameters are assumed to be independent of each other and follow normal distributions .Fatigue reliability is then computed by the Monte Carlo (MC) method and the mean-value first order second moment (M FOSM ) method .Results show that the approach has high efficiency and precision ,and is suit-able for engineering application .

  2. Effect of microstructure refinement on low cycle fatigue behavior of Alloy 718

    Directory of Open Access Journals (Sweden)

    Mukhtarov Shamil

    2014-01-01

    Full Text Available Microstructure refinement down to d ∼ 0.1–1 μm is known to enhance processing properties of hard-to-deform materials and particularly can be used for facilitating superplastic forming or roll-forming. However refined microstructure can compromise service properties, particularly fatigue properties. In the present work, the fatigue behavior of the fine-grained Alloy 718 has been investigated. A number of fine-grained conditions with a grain size ∼0.1–1 μm were produced using multiple forging with a graduate decrease of the forging temperature. Part of the forged fine-grained conditions was also subjected to conventional solution annealing and ageing. In this case a small grain size was controlled by precipitates of the δ phase located on grain boundaries. Low cycle fatigue tests of the fine-grained conditions were carried out at room and elevated temperatures. The obtained properties are compared with those of the Alloy 718 in the coarse-grained conditions. The effect of the grain size on the fatigue strength of the fine-grained Alloy 718 is discussed in terms of the microstructure evolution and fracture mode.

  3. The stretch-shortening cycle : a model to study naturally occurring neuromuscular fatigue.

    Science.gov (United States)

    Nicol, Caroline; Avela, Janne; Komi, Paavo V

    2006-01-01

    Neuromuscular fatigue has traditionally been examined using isolated forms of either isometric, concentric or eccentric actions. However, none of these actions are naturally occurring in human (or animal) ground locomotion. The basic muscle function is defined as the stretch-shortening cycle (SSC), where the preactivated muscle is first stretched (eccentric action) and then followed by the shortening (concentric) action. As the SSC taxes the skeletal muscles very strongly mechanically, its influence on the reflex activation becomes apparent and very different from the isolated forms of muscle actions mentioned above. The ground contact phases of running, jumping and hopping etc. are examples of the SSC for leg extensor muscles; similar phases can also be found for the upper-body activities. Consequently, it is normal and expected that the fatigue phenomena should be explored during SSC activities. The fatigue responses of repeated SSC actions are very versatile and complex because the fatigue does not depend only on the metabolic loading, which is reportedly different among muscle actions. The complexity of SSC fatigue is well reflected by the recovery patterns of many neuromechanical parameters. The basic pattern of SSC fatigue response (e.g. when using the complete exhaustion model of hopping or jumping) is the bimodality showing an immediate reduction in performance during exercise, quick recovery within 1-2 hours, followed by a secondary reduction, which may often show the lowest values on the second day post-exercise when the symptoms of muscle soreness/damage are also greatest. The full recovery may take 4-8 days depending on the parameter and on the severity of exercise. Each subject may have their own time-dependent bimodality curve. Based on the reviewed literature, it is recommended that the fatigue protocol is 'completely' exhaustive to reduce the important influence of inter-subject variability in the fatigue responses. The bimodality concept is

  4. Impact of choice of stabilized hysteresis loop on the end result of investigation of high-strength low-alloy (HSLA steel on low cycle fatigue

    Directory of Open Access Journals (Sweden)

    S. Bulatović

    2014-10-01

    Full Text Available High strength low-alloy steel under low cycle fatigue at a certain level of strain controlled achieve stabilized condition. During the fatigue loading stabilized hysteresis loop is determined, which typical cycle of stabilization is calculated as half number of cycles to failure. Stabilized hysteresis loop is a representative of all hysteresis and it’s used to determine all of the parameters for the assessment of low cycle fatigue. This paper shows comparison of complete strain-life curves of low cycle fatigue for two chosen stabilized hysteresis loop cycles of base metal HSLA steel marked as Nionikral 70.

  5. Cadence selection affects metabolic responses during cycling and subsequent running time to fatigue.

    Science.gov (United States)

    Vercruyssen, F; Suriano, R; Bishop, D; Hausswirth, C; Brisswalter, J

    2005-05-01

    To investigate the effect of cadence selection during the final minutes of cycling on metabolic responses, stride pattern, and subsequent running time to fatigue. Eight triathletes performed, in a laboratory setting, two incremental tests (running and cycling) to determine peak oxygen uptake (VO2PEAK) and the lactate threshold (LT), and three cycle-run combinations. During the cycle-run sessions, subjects completed a 30 minute cycling bout (90% of LT) at (a) the freely chosen cadence (FCC, 94 (5) rpm), (b) the FCC during the first 20 minutes and FCC-20% during the last 10 minutes (FCC-20%, 74 (3) rpm), or (c) the FCC during the first 20 minutes and FCC+20% during the last 10 minutes (FCC+20%, 109 (5) rpm). After each cycling bout, running time to fatigue (Tmax) was determined at 85% of maximal velocity. A significant increase in Tmax was found after FCC-20% (894 (199) seconds) compared with FCC and FCC+20% (651 (212) and 624 (214) seconds respectively). VO2, ventilation, heart rate, and blood lactate concentrations were significantly reduced after 30 minutes of cycling at FCC-20% compared with FCC+20%. A significant increase in VO2 was reported between the 3rd and 10th minute of all Tmax sessions, without any significant differences between sessions. Stride pattern and metabolic variables were not significantly different between Tmax sessions. The increase in Tmax after FCC-20% may be associated with the lower metabolic load during the final minutes of cycling compared with the other sessions. However, the lack of significant differences in metabolic responses and stride pattern between the run sessions suggests that other mechanisms, such as changes in muscular activity, probably contribute to the effects of cadence variation on Tmax

  6. A Comparative Evaluation of the Effect of Low Cycle Fatigue and Creep-Fatigue Interaction on Surface Morphology and Tensile Properties of 316L(N) Stainless Steel

    Science.gov (United States)

    Mariappan, K.; Shankar, Vani; Sandhya, R.; Bhaduri, A. K.; Laha, Kinkar

    2016-04-01

    In the present work, the deformation and damage evolution in 316L(N) stainless steel during low cycle fatigue (LCF) and creep-fatigue interaction (CFI) loadings have been compared by evaluating the residual tensile properties. Towards this, LCF and CFI experiments were carried out at constant strain amplitude of ±0.6 pct, strain rate of 3 × 10-3 s-1 and temperature of 873 K (600 °C). During CFI tests, 30 minutes hold period was introduced at peak tensile strain. Experiments were interrupted up to various levels of fatigue life viz. 5, 10, 30, 50, and 60 pct of the total fatigue life ( N f) under both LCF and CFI conditions. The specimens subjected to interrupted fatigue loadings were subsequently monotonically strained at the same strain rate and temperature up to fracture. Optical and scanning electron microscopy and profilometry were conducted on the untested and tested samples to elucidate the damage evolution during the fatigue cycling under both LCF and CFI conditions. The yield strength (YS) increased sharply with the progress of fatigue damage and attained saturation within 10 pct of N f under LCF condition. On the contrary, under CFI loading condition, the YS continuously increased up to 50 pct of N f, with a sharp increase of YS up to 5 pct of N f followed by a more gradual increase up to 50 pct of N f. The difference in the evolution of remnant tensile properties was correlated with the synergistic effects of the underlying deformation and damage processes such as cyclic hardening/softening, oxidation, and creep. The evolution of tensile properties with prior fatigue damage has been correlated with the change in surface roughness and other surface features estimated by surface replica technique and fractography.

  7. Low Cycle Fatigue behavior of SMAW welded Alloy28 superaustenitic stainless steel at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Kchaou, Y., E-mail: yacinekchaou@yahoo.fr [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia); Pelosin, V.; Hénaff, G. [Institut Pprime, Département Physique et Mécanique des Matériaux, UPR 3346 CNRS ISAE-ENSMA Université de Poitiers, Téléport 2, 1, avenue Clément Ader, BP 40109, F – 86961 Futuroscope Chasseneuil Cedex (France); Haddar, N.; Elleuch, K. [Laboratoire de Génie des Matériaux et Environnement (LGME), ENIS, BPW 1173, Sfax (Tunisia)

    2016-01-10

    This paper focused on the study of Low Cycle Fatigue of welded joints of superaustenitic (Alloy28) stainless steels. Chemical composition and microstructure investigation of Base Metal (BM) and Weld Metal (WM) were identified. The results showed that both of composition is fully austenitic with a dendritic microstructure in the WM. Low cycle fatigue tests at different strain levels were performed on Base Metal (BM) and Welded Joint (WJ) specimens with a strain ratio R{sub ε}=−1. The results indicated that the fatigue life of welded joints is lower than the base metal. This is mainly due to the low ductility of the Welded Metal (WM) and the presence of welding defects. Simultaneously, Scanning Electron Microscope (SEM) observations of fractured specimens show that WJ have brittle behavior compared to BM with the presence of several welding defects especially in the crack initiation site. An estimation of the crack growth rate during LCF tests of BM and WJ was performed using distance between striations. The results showed that the crack initiation stage is shorter in the case of WJ compared to BM because of the presence of welding defects in WJ specimens.

  8. Aspects of high-cycle fatigue performance in a Ti-6Al-4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, B.L.; Campbell, J.P.; Roder, O.; Thompson, A.W.; Ritchie, R.O.

    1999-07-01

    Determination of critical levels of microstructural damage that can lead to fatigue crack propagation under high-cycle fatigue loading conditions is a major concern for the aircraft industry regarding structural integrity of turbine engine components. The cyclic frequencies characteristic of service loading spectra are extremely high and appear to require a damage-tolerant design approach. One idea for such an approach is to attempt to define a practical, appropriate crack-propagation threshold, {Delta}K{sub TH}. The present study identifies a practical lower-bound large-crack threshold under high-cycle fatigue conditions in a Ti-6 Al-4V blade alloy (with {approximately}60% primary {alpha} in a matrix of lamellar {alpha}+{beta}). The authors suggest that lower-bound thresholds can be determined by modifying standard large-crack propagation tests to simulate small-crack behavior. Modification techniques include high load-ratio testing under both constant-R and constant-K{sub max} conditions, performed at cyclic loading frequencies up to 1 kHz and R ratios up to 0.95. The results of these tests are compared to the near-threshold behavior of naturally-initiated small cracks, and to the crack initiation and early growth behavior of small cracks emanating from sites of simulated foreign object damage.

  9. Dwell Notch Low Cycle Fatigue Behavior of a Powder Metallurgy Nickel Disk Alloy

    Science.gov (United States)

    Telesman, J.; Gabb, T. P.; Yamada, Y.; Ghosn, L. J.; Jayaraman, N.

    2012-01-01

    A study was conducted to determine the processes which govern dwell notch low cycle fatigue (NLCF) behavior of a powder metallurgy (P/M) ME3 disk superalloy. The emphasis was placed on the environmentally driven mechanisms which may embrittle the highly stressed notch surface regions and reduce NLCF life. In conjunction with the environmentally driven notch surface degradation processes, the visco-plastic driven mechanisms which can significantly change the notch root stresses were also considered. Dwell notch low cycle fatigue testing was performed in air and vacuum on a ME3 P/M disk alloy specimens heat treated using either a fast or a slow cooling rate from the solutioning treatment. It was shown that dwells at the minimum stress typically produced a greater life debit than the dwells applied at the maximum stress, especially for the slow cooled heat treatment. Two different environmentally driven failure mechanisms were identified as the root cause of early crack initiation in the min dwell tests. Both of these failure mechanisms produced mostly a transgranular crack initiation failure mode and yet still resulted in low NLCF fatigue lives. The lack of stress relaxation during the min dwell tests produced higher notch root stresses which caused early crack initiation and premature failure when combined with the environmentally driven surface degradation mechanisms. The importance of environmental degradation mechanisms was further highlighted by vacuum dwell NLCF tests which resulted in considerably longer NLCF lives, especially for the min dwell tests.

  10. Effects of different pedalling techniques on muscle fatigue and mechanical efficiency during prolonged cycling.

    Science.gov (United States)

    Theurel, J; Crepin, M; Foissac, M; Temprado, J J

    2012-12-01

    The present study aimed to test the influence of the pedalling technique on the occurrence of muscular fatigue and on the energetic demand during prolonged constant-load cycling exercise. Subjects performed two prolonged (45 min) cycling sessions at constant intensity (75% of maximal aerobic power). In a random order, participants cycled either with their preferred technique (PT) during one session or were helped by a visual force-feedback to modify their pedalling pattern during the other one (FB). Index of pedalling effectiveness was significantly (Pcycling induced a significant reduction of maximal power output, which was greater after PT (-15 ± 9%) than after FB (-7 ± 12%). During steady-state FB, vastus lateralis muscle activity was significantly (Pexercise (FB: 19.0 ± 1.9% vs PT: 20.2 ± 1.9%). Although changes in muscular coordination pattern with feedback did not seem to influence GE, it could be mainly responsible for the reduction of muscle fatigue after prolonged cycling.

  11. The Effects of Hot Bending on the Low Cycle Fatigue Behaviors of 347 SS in PWR Primary Environment

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ho-Sub; Hong, Jong-Dae; Lee, Junho; Jang, Changheui [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-10-15

    Fatigue damage could be significant for some locations, especially the welds and bends where stress concentration is typically high. As a possible solution, a large radius hot-bending method has been suggested to eliminate some weld joints and all tight bends. However, for the hot-bending process which involves a high temperature thermal cycle, there is a concern about changes in mechanical properties including low cycle fatigue behaviors. In APR1400, Type 347 SS have been used as surge line pipes. Therefore, to verify the applicability of hot-bending on 347 SS surge line pipes, an environmental fatigue test program was initiated. In this paper, the preliminary results of the on-going test program are introduced. Also, the low cycle fatigue behaviors of 347 SS are compared with those of other grade of stainless steels. The effects of hot bending on the low cycle fatigue behavior of 347 SS were quantitatively evaluated. The fatigue life was compared with the estimated values per NUREG 6909 rev. 1. There are no distinct differences between NUREG 6909 and LCF tests. According to fractography and cross section analysis in progress, basically, the reduction of LCF life of 347 SS in PWR water was caused by operation of HIC mechanism. The cyclic stress responses shows that there is no secondary hardening in 330 .deg.C air and PWR water.

  12. Evaluation method of multiaxial low cycle fatigue life for cubic single crystal material

    Institute of Scientific and Technical Information of China (English)

    CHEN Jiping; DING Zhiping

    2007-01-01

    The coupling effect of normal stress and shear stress on orthotropic materials happens when applied loading deflects from the directions of the principal axes of the material coordinate system.By taking account of the coupling effects,formulas of equivalent stress and strain for cubic single crystal materials are cited.Using the equivalent strain and equivalent stress for such material and a variable k,which is introduced to express the effect of asymmetrical cyclic loading on fatigue life,a low cycle fatigue (LCF) life prediction model for such material in multiaxial stress starts is proposed.On the basis of the yield criterion and constitutive model of cubic single crystal materials,a subroutine to calculate the thermo elastic-plastic stress-strain of the material on an ANSYS platform was developed.The cyclic stress-strain of DD3 notched specimens under asymmetrical loading at 680℃ was analyzed.Low cycle fatigue test data of the single crystal nickel-based superalloy are used to fit the different parameters of the power law with multiple linear regression analysis.The equivalent stress and strain for a cubic single crystal material as failure parameters have the largest correlation coefficient.A power law exists between k and the failure cycle.The model was validated with LCF test data of CMSX-2 and DD3 single crystal nickel-based superalloys.All the test data fall into the factor of 2.5 for CMSX-2 hollow cylinder specimens and 2.0 scatter band for DD3 notched specimens,respectively.

  13. Coupling damage and reliability model of low-cycle fatigue and high energy impact based on the local stress-strain approach

    Institute of Scientific and Technical Information of China (English)

    Chen Hongxia; Chen Yunxia; Yang Zhou

    2014-01-01

    Fatigue induced products generally bear fatigue loads accompanied by impact processes, which reduces their reliable life rapidly. This paper introduces a reliability assessment model based on a local stress-strain approach considering both low-cycle fatigue and high energy impact loads. Two coupling relationships between fatigue and impact are given with effects of an impact process on fatigue damage and effects of fatigue damage on impact performance. The analysis of the former modifies the fatigue parameters and the Manson-Coffin equation for fatigue life based on material theories. On the other hand, the latter proposes the coupling variables and the difference of fracture toughness caused by accumulative fatigue damage. To form an overall reliability model including both fatigue failure and impact failure, a competing risk model is developed. A case study of an actuator cylinder is given to validate this method.

  14. Low cycle fatigue improvement of powder metallurgy titanium alloy through thermomechanical treatment

    Institute of Scientific and Technical Information of China (English)

    LIU Bin; LIU Yong; HE Xiao-yu; TANG Hui-ping; CHEN Li-fang

    2008-01-01

    A low-cost β type Ti-1.5Fe-6.8Mo-4.8Al-1.2Nd (mass fraction, %)(T12LCC) alloy was produced by blended elemental powder metallurgy(P/M) method and subsequent thermomechanical treatment. Low cycle fatigue(LCF) behavior of P/M T12LCC alloy before and after thermomechanical treatment was studied. The results show that the LCF resistance of P/M titanium alloy is significantly enhanced through the thermomechanical treatment. The mechanisms for the improvement of LCF behavior are attributed to the elimination of residual pores, the microstructure refining and homogenization.

  15. Metallurgical instabilities during the high temperature low cycle fatigue of nickel-base superalloys

    Science.gov (United States)

    Antolovich, S. D.; Jayaraman, N.

    1983-01-01

    An investigation is made of the microstructural instabilities that affect the high temperature low cycle fatigue (LCF) life of nickel-base superalloys. Crack initiation processes, provoked by the formation of carbides and the coarsening of the grains of the material at high temperatures are discussed. Experimental results are examined, and it is concluded that LCF behavior can be understood more fully only if details of the material and its dynamic behavior at high temperatures are considered. The effects of high stress, dislocation debris, and increasing environmental damage on the life of the alloy are discussed.

  16. RELIABILITY ANALYSIS FOR AN AERO ENGINE TURBINE DISK UNDER LOW CYCLE FATIGUE CONDITION

    Institute of Scientific and Technical Information of China (English)

    C.L. Liu; Z.Z. Lü; Y.L. Xu

    2004-01-01

    Reliability analysis methods based on the linear damage accumulation law (LDAL) and load-life interference model are studied in this paper. According to the equal probability rule, the equivalent loads are derived, and the reliability analysis method based on load-life interference model and recurrence formula is constructed. In conjunction with finite element analysis (FEA) program, the reliability of an aero engine turbine disk under low cycle fatigue (LCF) condition has been analyzed. The results show the turbine disk is safety and the above reliability analysis methods are feasible.

  17. Effect of dynamic strain aging on isotropic hardening in low cycle fatigue for carbon manganese steel

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean-Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320 Chatillon (France); Wang, Qing Yuan [Sichuan University, School of Aeronautics and Astronautics, No. 29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle; Bathias, Claude [Université ParisOuest Nanterre La Défense (France)

    2014-01-01

    Carbon–manganese steel A48 (French standard) is used in steam generator pipes of nuclear reactor pressure vessels at high temperatures (about 200 °C). The steel is sensitive to dynamic strain aging in monotonic tensile test and low cycle fatigue test at certain temperature range and strain rate. Its isotropic hardening behavior observed from experiments has a hardening, softening and hardening evolution with the effect of dynamic strain aging. The isotropic hardening model is improved by coupling the dislocation and dynamic strain aging theory to describe the behavior of A48 at 200 °C.

  18. How to deal with very high cycle fatigue (VHCF) effects in practical applications?

    Energy Technology Data Exchange (ETDEWEB)

    Bacher-Hoechst, Manfred; Issler, Stephan [Robert Bosch GmbH, Stuttgart (Germany). Corporate Research and Advance Engineering, Materials and Process Engineering Metals

    2012-07-01

    Fatigue designing of high-stressed engine components is a key factor for reliable power train systems in automotive industry. In this context load assumptions are very important since this is attended with a pre-designing of important machine elements. Load analyses are usually performed by using experimental methods since the accuracy of load simulations are often not precise enough. An example for VHCF problems occurs in modern high pressure pumps for gasoline direct injection systems, which have load spectra with a large amount of cycles up to 10{sup 9} including a very powerful shape of the spectra. At the same time it is necessary to consider the properties of fuels in service since they might affect the fatigue strength significantly. For example, ethanol-based gasoline fuels are used in a lot of countries worldwide and especially their additives may lead to significant corrosion fatigue effects. In addition, it is well known that material inclusions play an important role for the VHCF behaviour especially for high-strength steels. This paper deals with possibilities to avoid VHCF problems of components in service to maintain reliable systems. (orig.)

  19. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-09-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  20. Mechanism-Based Modeling for Low Cycle Fatigue of Cast Austenitic Steel

    Science.gov (United States)

    Wu, Xijia; Quan, Guangchun; Sloss, Clayton

    2017-06-01

    A mechanism-based approach—the integrated creep-fatigue theory (ICFT)—is used to model low cycle fatigue behavior of 1.4848 cast austenitic steel over the temperature range from room temperature (RT) to 1173 K (900 °C) and the strain rate range from of 2 × 10-4 to 2 × 10-2 s-1. The ICFT formulates the material's constitutive equation based on the physical strain decomposition into mechanism strains, and the associated damage accumulation consisting of crack nucleation and propagation in coalescence with internally distributed damage. At room temperature, the material behavior is controlled by plasticity, resulting in a rate-independent and cyclically stable behavior. The material exhibits significant cyclic hardening at intermediate temperatures, 673 K to 873 K (400 °C to 600 °C), with negative strain rate sensitivity, due to dynamic strain aging. At high temperatures >1073 K (800 °C), time-dependent deformation is manifested with positive rate sensitivity as commonly seen in metallic materials at high temperature. The ICFT quantitatively delineates the contribution of each mechanism in damage accumulation, and predicts the fatigue life as a result of synergistic interaction of the above identified mechanisms. The model descriptions agree well with the experimental and fractographic observations.

  1. Environmental degradation of 316 stainless steel in high temperature low cycle fatigue

    Science.gov (United States)

    Kalluri, Sreeramesh; Manson, S. Stanford; Halford, Gary R.

    1987-01-01

    Procedures based on modification of the conventional Strainrange Partitioning method are proposed to characterize the time-dependent degradation of engineering alloys in high-temperature, low-cycle fatigue. Creep-fatigue experiments were conducted in air using different waveforms of loading on 316 stainless steel at 816 C (1500 F) to determine the effect of exposure time on cyclic life. Reductions in the partitioned cyclic lives were observed with an increase in the time of exposure (or with the corresponding decrease in the steady-state creep rate) for all the waveforms involving creep strain. Excellent correlations of the experimental data were obtained by modifying the Conventional Strainrange Partitioning life relationships involving creep strain using a power-law term of either: (1) time of exposure, or (2) steady-state creep rate of the creep-fatigue test. Environmental degradation due to oxidation, material degradation due to the precipitation of carbides along the grain boundaries and detrimental deformation modes associated with the prolonged periods of creep were observed to be the main mechanisms responsible for life reductions at long exposure times.

  2. A Study on Variations of Mechanical Properties of Carbon-epoxy Composites with Thermal Fatigue Cycles or Thermal Shock Cycles

    Energy Technology Data Exchange (ETDEWEB)

    Lee, D.S.; Park, S.M. [Myongji University, Suwon (Korea)

    2000-05-01

    Applications of composites materials have been in progress noticeably in manufacturing areas of automotive, aircraft and in other industries, resulting in ensuing research activities. Carbon-epoxy, one of major composite materials, is investigated for its thermal characteristics. Upon treatments of the composite material with repeated heatings and coolings variation of its elastic constants are monitored to reveal the thermal nature of the composite material. In this study, generally, changes in elastic constants are observed to occur mostly during the first 10{approx}20 thermal cycles. Values of G{sub 13} remain almost unchanged except a minor decrease. However in the observed small changes thermal shocks produce less effect than thermal fatigues. On the other hand, values of E{sub 1} show gradual increases with the number of applied thermal cycles and temperatures. Meanwhile, values of E{sub 2} and G{sub 23} decrease to a certain extent in the early stage during the applications of thermal cycling but are not appreciably affected by frequencies of thermal cycles. Also, thermal shocks are observed to induce different effects depending on treatment temperatures. (author). 13 refs., 17 figs.

  3. Microstructure Variation and Hardness Diminution During Low Cycle Fatigue of 55NiCrMoV7 Steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The influence of temperature and hardness level on the cyclic behavior of 55NiCrMoV7 steel, and the microstructure variation and hardness diminution during low cycle fatigue behavior were investigated. By means of SEM and XRD, the modality of carbides and the full-width half-maximum (FWHM) of martensite (211) [M(211)] of Xray diffraction spectrum in fatigue specimen were studied. The results showed that the cyclic stress response behavior generally showed an initial exponential softening for the first few cycles, followed by a gradual softening without cyclic softening saturation. The fatigue behavior of the steel is closely related to the hardness level. The hardnessdiminution and the variation of half-width M(211) are remarkably influenced by the interaction between the cyclic plastic deformation and the thermal loading when the fatigue temperature exceeds the tempering temperature of the steel.

  4. Quadriceps and respiratory muscle fatigue following high-intensity cycling in COPD patients.

    Directory of Open Access Journals (Sweden)

    Damien Bachasson

    Full Text Available Exercise intolerance in COPD seems to combine abnormal ventilatory mechanics, impaired O2 transport and skeletal muscle dysfunction. However their relative contribution and their influence on symptoms reported by patients remain to be clarified. In order to clarify the complex interaction between ventilatory and neuromuscular exercise limiting factors and symptoms, we evaluated respiratory muscles and quadriceps contractile fatigue, dynamic hyperinflation and symptoms induced by exhaustive high-intensity cycling in COPD patients. Fifteen gold II-III COPD patients (age = 67 ± 6 yr; BMI = 26.6 ± 4.2 kg.m(-2 performed constant-load cycling test at 80% of their peak workload until exhaustion (9.3 ± 2.4 min. Before exercise and at exhaustion, potentiated twitch quadriceps strength (Q(tw, transdiaphragmatic (P(di,tw and gastric (P(ga,tw pressures were evoked by femoral nerve, cervical and thoracic magnetic stimulation, respectively. Changes in operational lung volumes during exercise were assessed via repetitive inspiratory capacity (IC measurements. Dyspnoea and leg discomfort were measured on visual analog scale. At exhaustion, Q(tw (-33 ± 15%, >15% reduction observed in all patients but two and Pdi,tw (-20 ± 15%, >15% reduction in 6 patients were significantly reduced (P15% reduction in 3 patients. Percentage reduction in Q(tw correlated with the percentage reduction in P(di,tw (r = 0.66; P<0.05. Percentage reductions in P(di,tw and P(ga,tw negatively correlated with the reduction in IC at exhaustion (r = -0.56 and r = -0.62, respectively; P<0.05. Neither dyspnea nor leg discomfort correlated with the amount of muscle fatigue. In conclusion, high-intensity exercise induces quadriceps, diaphragm and less frequently abdominal contractile fatigue in this group of COPD patients. In addition, the rise in end-expiratory lung volume and diaphragm flattening associated with dynamic hyperinflation in COPD might limit the development of abdominal and

  5. High Cycle Fatigue Properties of Die-Cast Magnesium Alloy AZ91D with Addition of Different Concentrations of Cerium

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of addition of different concentrations of Ce on high-cycle fatigue behavior of die-cast magnesium al-loy AZ91D was investigated. Mechanical fatigue tests were conducted at the stress ratio of R = 0.1, and fatigue strength was evaluated using up-and-down loading method. The results show that the grain size of AZ91D alloy is remarkably refined, and the amount of porosity decreases and evenly distributes with the addition of Ce. The fatigue strength of AZ91D alloy at room temperature increases from 96.7 up to 116.3 MPa (1% Ce) and 105.5 MPa (2% Ce), respectively, at the number of cycles to failure, Nf = 1 × 107. The fatigue crack of AZ91D alloy initiates at porosities and inclusions, and propagates along grain boundaries. The fatigue striations on fractured surface appear with Ce addition. The fatigue fracture surface of test specimens shows mixed-fracture characteristics of quasi-cleavage and dimple.

  6. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    Science.gov (United States)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high-cycle

  7. Effect of Cycle Duration and Phasing on Thermomechanical Fatigue of Dog-Bone Specimens Made form Steel

    Directory of Open Access Journals (Sweden)

    Achegaf Zineb

    2010-01-01

    Full Text Available Problem statement: Lifetime of standard dog-bone specimens made form steel as affected by phasing between thermal cycles and strains cycles and by cycle duration in thermomechanical fatigue is assessed under various conditions of loading. Approach: The methodology used was based on finite element post-processing analysis by specialized fatigue software package that takes into account coupling of damage from three primary sources: Fatigue, oxidation and creep. Results: A parametric study has been conducted for various thermomechanical loadings and effects of phasing and cycle duration on lifetime have been evaluated. The associated percentages of damage mechanisms due to fatigue, oxidation and creep have been determined. Conclusion: It has been shown that both phasing and cycle duration have considerable effect on lifetime. In the range of parameters investigated, the in-phase cycles were found to reduce considerably damage in the specimen for low pressures and low temperatures. The results have shown also that there was no way of unique comparison of the various phasing configurations, since there exists always a case of thermomechanical loading for which one phasing configuration yields higher damage than any another configuration.

  8. Leg joint power output during progressive resistance FES-LCE cycling in SCI subjects: developing an index of fatigue

    Directory of Open Access Journals (Sweden)

    Faghri Pouran D

    2008-04-01

    Full Text Available Abstract Background The purpose of this study was to investigate the biomechanics of the hip, knee and ankle during a progressive resistance cycling protocol in an effort to detect and measure the presence of muscle fatigue. It was hypothesized that knee power output can be used as an indicator of fatigue in order to assess the cycling performance of SCI subjects. Methods Six spinal cord injured subjects (2 incomplete, 4 complete between the ages of twenty and fifty years old and possessing either a complete or incomplete spinal cord injury at or below the fourth cervical vertebra participated in this study. Kinematic data and pedal forces were recorded during cycling at increasing levels of resistance. Ankle, knee and hip power outputs and resultant pedal force were calculated. Ergometer cadence and muscle stimulation intensity were also recorded. Results The main findings of this study were: (a ankle and knee power outputs decreased, whereas hip power output increased with increasing resistance, (b cadence, stimulation intensity and resultant pedal force in that combined order were significant predictors of knee power output and (c knowing the value of these combined predictors at 10 rpm, an index of fatigue can be developed, quantitatively expressing the power capacity of the knee joint with respect to a baseline power level defined as fatigue. Conclusion An index of fatigue was successfully developed, proportionalizing knee power capacity during cycling to a predetermined value of fatigue. The fatigue index value at 0/8th kp, measured 90 seconds into active, unassisted pedaling was 1.6. This indicates initial power capacity at the knee to be 1.6 times greater than fatigue. The fatigue index decreased to 1.1 at 2/8th kp, representing approximately a 30% decrease in the knee's power capacity within a 4 minute timespan. These findings suggest that the present cycling protocol is not sufficient for a rider to gain the benefits of FES and thus

  9. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training.

    Science.gov (United States)

    Behrens, Martin; Weippert, Matthias; Wassermann, Franziska; Bader, Rainer; Bruhn, Sven; Mau-Moeller, Anett

    2015-01-01

    Previously published studies on the effect of short-term endurance training on neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC) and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after 8 weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms) and iMVC of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave), peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that cycling endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue resistance.

  10. Digital Micromirror Device (DMD-Based High-Cycle Torsional Fatigue Testing Micromachine for 1D Nanomaterials

    Directory of Open Access Journals (Sweden)

    Chenchen Jiang

    2016-03-01

    Full Text Available Fatigue behavior of nanomaterials could ultimately limit their applications in variable nano-devices and flexible nanoelectronics. However, very few existing nanoscale mechanical testing instruments were designed for dedicated fatigue experiments, especially for the challenging torsional cyclic loading. In this work, a novel high-cycle torsion straining micromachine, based on the digital micromirror device (DMD, has been developed for the torsional fatigue study on various one-dimensional (1D nanostructures, such as metallic and semiconductor nanowires. Due to the small footprint of the DMD chip itself and its cable-remote controlling mechanisms, it can be further used for the desired in situ testing under high-resolution optical or electron microscopes (e.g., scanning electron microscope (SEM, which allows real-time monitoring of the fatigue testing status and construction of useful structure-property relationships for the nanomaterials. We have then demonstrated its applications for testing nanowire samples with diameters about 100 nm and 500 nm, up to 1000 nm, and some of them experienced over hundreds of thousands of loading cycles before fatigue failure. Due to the commercial availability of the DMD and millions of micromirrors available on a single chip, this platform could offer a low-cost and high-throughput nanomechanical solution for the uncovered torsional fatigue behavior of various 1D nanostructures.

  11. Effect of corrosion and sandblasting on the high cycle fatigue behavior of reinforcing B500C steel bars

    Directory of Open Access Journals (Sweden)

    Marina C. Vasco

    2017-10-01

    Full Text Available . In a series of applications, steel reinforced concrete structures are subjected to fatigue loads during their service life, what in most cases happens in corrosive environments. Surface treatments have been proved to represent proper processes in order to improve both fatigue and corrosion resistances. In this work, the effect of corrosion and sandblasting on the high cycle fatigue behavior reinforcing steel bars is investigated. The investigated material is the reinforcing steel bar of technical class B500C, of nominal diameter of 12 mm. Steel bars specimens were first exposed to corrosion in alternate salt spray environment for 30 and 60 days and subjected to both tensile and fatigue tests. Then, a series of specimens were subjected to common sandblasting, corroded and mechanically tested. Metallographic investigation and corrosion damage evaluation regarding mass loss and martensitic area reduction were performed. Tensile tests were conducted after each corrosion exposure period prior to the fatigue tests. Fatigue tests were performed at a stress ratio, R, of 0.1 and loading frequency of 20 Hz. All fatigue tests series as well as tensile test were also performed for as received steel bars to obtain the reference behavior. The results have shown that sandblasting hardly affects the tensile behavior of the uncorroded material. The effect of sandblasting on the tensile behavior of pre-corroded specimens seems to be also limited. On the other hand, fatigue results indicate an improved fatigue behavior for the sandblasted material after 60 days of corrosion exposure. Martensitic area reductions, mass loss and depth of the pits were significantly smaller for the case of sandblasted materials, which confirms an increased corrosion resistance

  12. Effects of cycling exercise on vigor, fatigue, and electroencephalographic activity among young adults who report persistent fatigue.

    Science.gov (United States)

    Dishman, Rod K; Thom, Nathaniel J; Puetz, Timothy W; O'Connor, Patrick J; Clementz, Brett A

    2010-11-01

    We previously reported that 6 weeks of exercise training had positive effects on feelings of vigor and fatigue among college students who reported persistent fatigue. Here we examined whether transient mood changes after single sessions of exercise would mimic those chronic effects and whether they would be related to changes in brain activity measured by electroencephalography (EEG). Feelings of vigor were higher after both low- and moderate-intensity exercise during Weeks 1, 3, and 6 compared to a control condition. Feelings of fatigue were lower after low-intensity exercise during Weeks 3 and 6. Posterior theta activity accounted for about half the changes in vigor. Studies that manipulate mood, EEG activity, or both during exercise are needed to determine whether EEG changes after exercise are causally linked with mood.

  13. High-Cycle Fatigue Resistance of Si-Mo Ductile Cast Iron as Affected by Temperature and Strain Rate

    Science.gov (United States)

    Matteis, Paolo; Scavino, Giorgio; Castello, Alessandro; Firrao, Donato

    2015-09-01

    Silicon-molybdenum ductile cast irons are used to fabricate exhaust manifolds of internal combustion engines of large series cars, where the maximum pointwise temperature at full engine load may be higher than 973 K (700 °C). In this application, high-temperature oxidation and thermo-mechanical fatigue (the latter being caused by the engine start and stop and by the variation of its power output) have been the subject of several studies and are well known, whereas little attention has been devoted to the high-cycle fatigue, arising from the engine vibration. Therefore, the mechanical behavior of Si-Mo cast iron is studied here by means of stress-life fatigue tests up to 10 million cycles, at temperatures gradually increasing up to 973 K (700 °C). The mechanical characterization is completed by tensile and compressive tests and ensuing fractographic examinations; the mechanical test results are correlated with the cast iron microstructure and heat treatment.

  14. Effect of temperature, microstructure, and stress state on the low cycle fatigue behavior of Waspaloy

    Science.gov (United States)

    Stahl, D. R.; Antolovich, S. D.; Mirdamadi, M.; Zamrik, S. Y.

    1988-01-01

    Specimens of Waspaloy of two different microstructures were tested in uniaxial and torsional low-cycle fatigue at 24 and 649 C. For all specimens, deformation and failure mechanisms are found to be independent of stress state at 24 C; in both microstructures, failure is associated with the formation of shear cracks. At 649 C, deformation and failure mechanisms for the fine-grain large gamma-prime specimens are independent of stress state, and the mechanisms are similar to those observed at 24 C. For the coarse-grain small gamma-prime specimens, however, failure occurs on principal planes in torsion and on shear plane in uniaxial tension. The results are interpreted in terms of deformation mode and microstructural instability.

  15. Low Cycle and Thermo-Mechanical Fatigue of Friction Welded Dissimilar Superalloys Joint

    Science.gov (United States)

    Sakaguchi, Motoki; Sano, Atsushi; Tran, Tra Hung; Okazaki, Masakazu; Sekihara, Masaru

    The high temperature strengths of the dissimilar friction welded superalloys joint between the cast polycrystalline Mar-M247 and the forged IN718 alloys have been investigated under low cycle and thermo-mechanical fatigue loadings, in comparison with those of the base metals. The experiments showed that the lives of the dissimilar joints were significantly influenced by the test conditions and loading modes. Not only the lives themselves but also the failure positions and mechanisms were sensitive to the loading mode. The fracture behaviors depending on the loading modes and test conditions were discussed, based on the macroscopic elastic follow-up mechanism and the microstructural inhomogeneity in the friction weld joint.

  16. Effect of adjusting pulse durations of functional electrical stimulation cycling on energy expenditure and fatigue after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Ashraf S. Gorgey, MPT, PhD, FACSM

    2015-02-01

    Full Text Available The purpose of the current study was to determine the effects of three different pulse durations (200, 350, and 500 microseconds [P200, P350, and P500, respectively] on oxygen uptake, cycling performance, and energy expenditure (EE percentage of fatigue of the knee extensor muscle group immediately and 48 to 72 h after cycling in persons with spinal cord injury (SCI. A convenience sample of 10 individuals with motor complete SCI participated in a repeated-measures design using a functional electrical stimulation (FES cycle ergometer over a 3 wk period. There was no difference among the three FES protocols on relative oxygen uptake or cycling EE. Delta EE between exercise and rest was 42% greater in both P500 and P350 than in P200 (p = 0.07, whereas recovery oxygen uptake was 23% greater in P350 than in P200 (p = 0.03. There was no difference in the outcomes of the three pulse durations on muscle fatigue. Knee extensor torque significantly decreased immediately after (p < 0.001 and 48 to 72 h after (p < 0.001 FES leg cycling. Lengthening pulse duration did not affect submaximal or relative oxygen uptake or EE, total EE, and time to fatigue. Greater recovery oxygen updake and delta EE were noted in P350 and P500 compared with P200. An acute bout of FES leg cycling resulted in torque reduction that did not fully recover 48 to 72 h after cycling.

  17. Neuromuscular function and fatigue resistance of the plantar flexors following short-term cycling endurance training

    Directory of Open Access Journals (Sweden)

    Martin eBehrens

    2015-05-01

    Full Text Available Previously published studies on the effect of short-term endurance training on the neuromuscular function of the plantar flexors have shown that the H-reflex elicited at rest and during weak voluntary contractions was increased following the training regime. However, these studies did not test H-reflex modulation during isometric maximum voluntary contraction (iMVC and did not incorporate a control group in their study design to compare the results of the endurance training group to individuals without the endurance training stimulus. Therefore, this randomized controlled study was directed to investigate the neuromuscular function of the plantar flexors at rest and during iMVC before and after eight weeks of cycling endurance training. Twenty-two young adults were randomly assigned to an intervention group and a control group. During neuromuscular testing, rate of torque development, isometric maximum voluntary torque and muscle activation were measured. Triceps surae muscle activation and tibialis anterior muscle co-activation were assessed by normalized root mean square of the EMG signal during the initial phase of contraction (0-100, 100-200 ms and isometric maximum voluntary contraction of the plantar flexors. Furthermore, evoked spinal reflex responses of the soleus muscle (H-reflex evoked at rest and during iMVC, V-wave, peak twitch torques induced by electrical stimulation of the posterior tibial nerve at rest and fatigue resistance were evaluated. The results indicate that the endurance training did not lead to a significant change in any variable of interest. Data of the present study conflict with the outcome of previously published studies that have found an increase in H-reflex excitability after endurance training. However, these studies had not included a control group in their study design as was the case here. It is concluded that short-term cycling endurance training does not necessarily enhance H-reflex responses and fatigue

  18. Calculation of low-cycle fatigue in accordance with the national standard and strength codes

    Science.gov (United States)

    Kontorovich, T. S.; Radin, Yu. A.

    2017-08-01

    Over the most recent 15 years, the Russian power industry has largely relied on imported equipment manufactured in compliance with foreign standards and procedures. This inevitably necessitates their harmonization with the regulatory documents of the Russian Federation, which include calculations of strength, low cycle fatigue, and assessment of the equipment service life. An important regulatory document providing the engineering foundation for cyclic strength and life assessment for high-load components of the boiler and steamline of a water/steam circuit is RD 10-249-98:2000: Standard Method of Strength Estimation in Stationary Boilers and Steam and Water Piping. In January 2015, the National Standard of the Russian Federation 12952-3:2001 was introduced regulating the issues of design and calculation of the pressure parts of water-tube boilers and auxiliary installations. Thus, there appeared to be two documents simultaneously valid in the same energy field and using different methods for calculating the low-cycle fatigue strength, which leads to different results. In this connection, the current situation can lead to incorrect ideas about the cyclic strength and the service life of high-temperature boiler parts. The article shows that the results of calculations performed in accordance with GOST R 55682.3-2013/EN 12952-3: 2001 are less conservative than the results of the standard RD 10-249-98. Since the calculation of the expected service life of boiler parts should use GOST R 55682.3-2013/EN 12952-3: 2001, it becomes necessary to establish the applicability scope of each of the above documents.

  19. Investigation of low-cycle fatigue behavior of austenitic stainless steel for cold-stretched pressure vessels

    Institute of Scientific and Technical Information of China (English)

    Cun-jian MIAO; Jin-yang ZHENG; Xiao-zhe GAO; Ze HUANG; A-bin GUO; Du-yi YE; Li MA

    2013-01-01

    Cold-stretched pressure vessels from austenitic stainless steels (ASS) are widely used for storage and transportation of liquefied gases,and have such advantages as thin wall and light weight.Fatigue is an important concern in these pressure vessels,which are subjected to alternative loads.Even though several codes and standards have guidelines on these pressure vessels,there are no relevant design methods on fatigue failure.To understand the fatigue properties of ASS 1.4301 (equivalents include UNS S30400 and AISI 304) in solution-annealed (SA) and cold-stretched conditions (9% strain level) and the response of fatigue properties to cold stretching (CS),low-cycle fatigue (LCF) tests were performed at room temperature,with total strain amplitudes ranging from ±0.4% to ±0.8%.Martensite transformations were measured during the tests.Comparisons on cyclic stress response,cyclic stress-strain behavior,and fatigue life were carried out between SA and CS materials.Results show that CS reduces the initial hardening stage,but prolongs the softening period in the cyclic stress response.Martensite transformation helps form a stable regime and subsequent secondary hardening.The stresses of monotonic and cyclic stress-strain curves are improved by CS,which leads to a lower plastic strain and a much higher elastic strain.The fatigue resistance of the CS material is better than that of the SA material,which is approximately 1 x l03 to 2×104 cycles.The S-N curve of the ASME standard for ASS is compared with the fatigue data and is justified to be suitable for the fatigue design of cold-stretched pressure vessels.However,considering the CS material has a better fatigue resistance,the S-N curve will be more conservative.The present study would be helpful in making full use of the advantages of CS to develop a new S-N curve for fatigue design of cold-stretched pressure vessels.

  20. Benefits of high gradient solidification for creep and low cycle fatigue of AM1 single crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Steuer, S., E-mail: Susanne.Steuer@ensma.fr [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Villechaise, P. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France); Pollock, T.M. [Materials Department, University of California Santa Barbara, Santa Barbara, CA 93106-5050 (United States); Cormier, J. [Institut Pprime, CNRS – ENSMA – Université de Poitiers, UPR CNRS 3346, Department of Physics and Mechanics of Materials, ENSMA – Téléport 2, 1 avenue Clément Ader, BP 40109, 86961 Futuroscope Chasseneuil Cedex (France)

    2015-10-01

    The influence of high thermal gradient processing on the creep and low cycle fatigue properties of the AM1 Ni-based single crystal superalloy has been studied. Isothermal creep (from 750 °C up to 1200 °C) and low cycle fatigue (750 °C and 950 °C) experiments were performed for AM1 alloy solidified with a conventional radiation cooled (Bridgman) and higher thermal gradient liquid-metal cooled (LMC) casting process to produce coarse and finer-scaled dendritic structures, respectively. There was no significant effect of the casting technique on creep properties, due to the very similar microstructures (γ′-size and γ-channel width) established after full heat treatment of both Bridgman and LMC samples. For low cycle fatigue properties, the benefit of the higher gradient LMC process was dependent on the testing temperature. At 750 °C, cracks primarily initiated at pores created by solidification shrinkage in both Bridgman and LMC samples. Samples produced by the LMC technique demonstrated fatigue lives up to 4 times longer, compared to the Bridgman samples, due to refined porosity. At 950 °C the low cycle fatigue properties of the LMC and conventionally solidified material were not distinguishable due to a shift of crack initiation sites from internal pores to oxidized surface layers or near-surface pores. The benefit of the LMC approach was, however, apparent in fatigue at 950 °C when testing in a vacuum environment. Based on these results, a crack initiation model based on the local slip activity close to casting defect is proposed.

  1. Assessment of Musculoskeletal Strength and Levels of Fatigue during Different Phases of Menstrual Cycle in Young Adults.

    Science.gov (United States)

    Pallavi, L C; D Souza, Urban John; Shivaprakash, G

    2017-02-01

    Some of the physiological factors and athletic performance might show variation along the phases of menstrual cycle. The alterations seen in these physiological parameters of various systems relating to oscillations in hormonal levels do affect the autonomic nervous system and metabolic functions. Former studies heave inconclusively about the influence of hormones on exercise performance, predominantly muscle strength and rate of fatigue during different phases of the menstrual cycle. Studies regarding influence of these variations during bleeding phase were not done. To evaluate the muscle strength variations and also the rate of fatigue during various phases of the menstrual cycle in young adults. This was a prospective study conducted among 100 healthy adult female volunteers aged 18-24 years, with normal regular menstrual cycles persistent between 26- 32 days (average of 28 days), for a minimum of last 6 months. Muscle strength was assessed by calculating the work done and fatigue rate using Mosso's ergograph and by handgrip dynamometer strength. Each subject was evaluated consecutively for two menstrual cycles in all three phases which were classified as Phase 1- Menstrual phase, Phase 2- Follicular phase and Phase 3- Luteal phase. The data obtained was analysed by statistical tool One-way ANOVA followed by a post-hoc Tukeys test. A p-value of ≤ 0.05 was considered significant. The amount of work done and handgrip strength was significantly higher in phase 2 (pmenstrual cycle. In terms of fatigue rate percentage, phase 2 showed significantly lesser values (pmenstrual cycle. We conclude that the cyclical variation in endogenous reproductive hormones increases the muscle strength in follicular phase of the menstrual cycle. Thus provide support for the influence of these hormones in regulation of these parameters in the premenopausal age group.

  2. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

    Science.gov (United States)

    Texier, Damien; Gómez, Ana Casanova; Pierret, Stéphane; Franchet, Jean-Michel; Pollock, Tresa M.; Villechaise, Patrick; Cormier, Jonathan

    2016-03-01

    The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

  3. Influence of the Peak Tensile Overload Cycles on the Fatigue Crack Growth of Aluminum Alloy Under Spectrum Loading

    Science.gov (United States)

    Iranpour, Mohammad; Taheri, Farid

    2013-11-01

    Many structures such as aircrafts, risers, and offshore pipelines that are in contact with fluids, become subjected to complex variable amplitude loading (VAL) stress-time histories during their service lives. As a result, the structural life assessment and damage-tolerant analyses of such structures are considered as two important design criteria. In this paper, a VAL stress-time history is used to study the fatigue life of 6061-T651 aluminum alloy, with focus on the retardation effect resulting from the applied peak tensile overload cycles (TOLCs). Various so-called "clipping" levels are tested, and the results are compared with those obtained through an analytical method, using the Willenborg retardation approach, in conjunction with the Walker fatigue crack growth model. The results would demonstrate the significant influence of the TOLC present within VAL scenarios on retarding the fatigue crack growth rate of the material. The study also investigates the influence of various clipping levels on the fatigue response of the material, also highlighting the limitations of the analytical approach in estimating the resulting crack growth rate. It is observed that the analytical method predicts a higher fatigue life for the material subjected to VAL, which is non-conservative for design purposes. Some suggestions are provided for fatigue life estimation of the material when subjected to VAL scenarios.

  4. Anti-fatigue effect of percutaneous stimulation of the hepatic region by mid-frequency pulse current in different diadynamic cycles in soldiers with exercise-induced fatigue

    Directory of Open Access Journals (Sweden)

    Peng-yi DAI

    2012-01-01

    Full Text Available Objective  To investigate the anti-fatigue effect of percutaneous stimulation of the hepatic region with the mid-frequency pulse current in different diadynamic cycles in exercise-induced fatigued soldiers. Methods  One hundred twenty healthy PLA recruits who did not have physical exercise were randomly divided into four groups with thirty ones in each: control, stimulation group A, stimulation group B, and stimulation group C. All the subjects of four groups were ordered intensive training (exercise from Monday to Saturday, with rest on Sunday for five weeks to establish the exercise-induced fatigue model. Each day after the exercise, the recruits of stimulation groups A, B, and C were treated immediately with mid-frequency (1204Hz, current intensity ≤80mA stimulation to the hepatic region with diadynamic cycles of 0.5, 1, and 2 seconds, respectively. No pulse current stimulation was given in the control group. Venous blood was collected before breakfast on Sundays to measure the fasting plasma glucose (FPG and blood lactate (LAC contents, and liver function was determined by determination of alanine aminotransferase (ALT, aspartate aminotransferase (AST, and lactate dehydrogenase (LDH. The 3000-m running performance of the recruits in each group was recorded on the same day. Results  There was no significant difference between the four groups in terms of the FPG level at the end of the first week (P>0.05. At the end of the third and fifth weeks, the FPG level was significantly higher in the three stimulation groups than in the control group (PPP>0.05. At the end of the first, third, and fifth weeks, the ALT, AST, LDH, and LAC levels were significantly lower in every stimulation group than in the control group (PPPPP>0.05. At the end of the first week, there was no significant difference in 3000-m running performance (P>0.05 between the 4 groups. At the end of the third and fifth weeks, the 3000-m running performance was significantly

  5. Cracking process of Fe-26Cr-1Mo during low cycle corrosion fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.Q.; Li, J.; Wang, Z.F.; Zhu, Z.Y.; Ke, W. (Academia Sinica, Shenyang (China). Corrosion Science Lab.); Zang, Q.S.; Wang, Z.G. (Academia Sinica, Shenyang (China). State Key Lab. for Fatigue and Fracture of Materials)

    1994-12-01

    The corrosion fatigue (CF) life has been divided classically into the initiation'' and propagation'' periods. Usually, the crack initiation process dominates the component lifetime under the low cycle CF condition because the crack propagates rapidly one initiated. Despite much work done on the research of the CF crack initiation mechanisms, however, a full understanding of crack initiation is still lacking. There are some limitations in explaining the CF crack initiation in an aqueous solution using the above four mechanisms individually. And, it is difficult to conduct experiments in which one mechanism along can be examined. Although CF is complicated, it is possible to reproduce a specific experiment condition which will have the dominant factor affecting the CF crack initiation. Once the cracks initiate on the smooth metal surface, their coalescence, micropropagation and macropropagation will take place successively. The initiated cracks propagate first in the range of several grains, and the behavior of the microcrack propagation is different from that of macrocrack propagation. For Fe-26Cr-1Mo ferritic stainless steel, the fundamental research work of straining electrode has been done by many investigators, but the observation of the material surface at different deformation processes has not been reported. In the present study, the detailed observation of the cracking process of the material has been carried out in low cycle CF.

  6. A low cycle fatigue model for low carbon manganese steel including the effect of dynamic strain aging

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhi Yong, E-mail: huangzy@scu.edu.cn [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Wagner, Danièle [Université Paris Ouest Nanterre La Défense (France); Wang, Qing Yuan; Khan, Muhammad Kashif [Sichuan University, School of Aeronautics and Astronautics, No.29 Jiuyanqiao Wangjiang Road, Chengdu 610064 (China); Chaboche, Jean–Louis [ONERA, DMSM, 29 avenue de la Division Lecerc, F-92320, Chatillon (France)

    2016-01-27

    Carbon–manganese steel A48 (French standards) is used in steam generator pipes of the nuclear power plant where it is subjected to the cyclic thermal load. The Dynamic Strain Aging (DSA) influences the mechanical behavior of the steel in low cycle fatigue (LCF) at favorable temperature and strain rate. The peak stress of A48 steel experiences hardening–softening–hardening (HSH) evolution at 200 °C and 0.4% s{sup −1} strain rate in fatigue loading. In this study, isotropic and kinematic hardening rules with DSA effect have been modified. The HSH evolution of cyclic stress associated with cumulative plastic deformation has also been estimated.

  7. Fatigue behaviors of Z2CND18.12N stainless steel under thermal-mechanical cycling

    Institute of Scientific and Technical Information of China (English)

    Liubing WANG; Dunji YU; Fei XUE; Weiwei YU; Jian CHEN; Xu CHEN

    2011-01-01

    Tests under mechanical strain control were performed to investigate the TMF behavior of Z2CND18.12N within the temperature range between 150-550 ℃. Differentstrain amplitudes and phase-angles were applied. Total strain controlled low cycle fatigue test was also performed at the peak temperature of TMF cycling. The results show that the cyclic stress response of the material displayed an initial hardening regime followed by a saturation period and then cyclic softening till failure. The TMF cycling leads to the development of significant amounts of mean stress. Some life prediction models were employed to predict the TMF life of Z2CND18.12N, and the results indicate that the energy-based models provide good prediction on the thermal-mechanical fatigue behaviors of this material. An optical microscopic observation shows that the surface crack initiations and crack propagations are typicallytransgranular mode.

  8. Influence of the number of cycles on shear fatigue strength of resin composite bonded to enamel and dentin using dental adhesives in self-etching mode.

    Science.gov (United States)

    Tsujimoto, Akimasa; Barkmeier, Wayne W; Erickson, Robert L; Takamizawa, Toshiki; Latta, Mark A; Miyazaki, Masashi

    2017-09-28

    The influence of the number of cycles on shear fatigue strength to enamel and dentin using dental adhesives in self-etch mode was investigated. A two-step self-etch adhesive and two universal adhesives were used to bond to enamel and dentin in self-etch mode. Initial shear bond strength and shear fatigue strength to enamel and dentin using the adhesive in self-etch mode were determined. Fatigue testing was used with 20 Hz frequency and cycling periods of 50,000, 100,000 and 1,000,000 cycles, or until failure occurred. For each of the cycling periods, there was no significant difference in shear fatigue strength across the cycling periods for the individual adhesives. Differences in shear fatigue strength were found between the adhesives within the cycling periods. Regardless of the adhesive used in self-etch mode for bonding to enamel or dentin, shear fatigue strength was not influenced by the number of cycles used for shear fatigue strength testing.

  9. Low Cycle Fatigue Behavior of 316LN Stainless Steel Alloyed with Varying Nitrogen Content. Part II: Fatigue Life and Fracture Behavior

    Science.gov (United States)

    Prasad Reddy, G. V.; Sandhya, R.; Sankaran, S.; Mathew, M. D.

    2014-10-01

    Influence of nitrogen content on low cycle fatigue life and fracture behavior of 316LN stainless steel (SS) alloyed with 0.07 to 0.22 wt pct nitrogen is presented in this paper over a range of total strain amplitudes ( ±0.25 to 1.0 pct) in the temperature range from 773 K to 873 K (500 °C to 600 °C). The combined effect of nitrogen and strain amplitude on fatigue life is observed to be complex i.e., fatigue life either decreases/increases with increase in nitrogen content or saturates/peaks at 0.14 wt pct N depending on strain amplitude and temperature. Coffin-Manson plots (CMPs) revealed both single-slope and dual-slope strain-life curves depending on the test temperature and nitrogen content. 316LN SS containing 0.07 and 0.22 wt pct N showed nearly single-slope CMP at all test temperatures, while 316LN SS with 0.11 and 0.14 wt pct N exhibited marked dual-slope behavior at 773 K (500 °C) that changes to single-slope behavior at 873 K (600 °C). The changes in slope of CMP are found to be in good correlation with deformation substructural changes.

  10. Effects of creatine loading on electromyographic fatigue threshold during cycle ergometry in college-aged women

    Directory of Open Access Journals (Sweden)

    Cramer Joel T

    2007-11-01

    Full Text Available Abstract The purpose of this study was to examine the effects of 5 days of Creatine (Cr loading on the electromyographic fatigue threshold (EMGFT in college-aged women. Fifteen healthy college-aged women (mean ± SD = 22.3 ± 1.7 yrs volunteered to participate in this double-blind, placebo-controlled study and were randomly placed into either placebo (PL – 10 g of flavored dextrose powder; n = 8 or creatine (Cr – 5 g di-creatine citrate plus 10 g of flavored dextrose powder; n = 7; Creatine Edge, FSI Nutrition loading groups. Each group ingested one packet 4 times per day (total of 20 g/day for 5 days. Prior to and following supplementation, each subject performed a discontinuous incremental cycle ergometer test to determine their EMGFT value, using bipolar surface electrodes placed on the longitudinal axis of the right vastus lateralis. Subjects completed a total of four, 60 second work bouts (ranging from 100–350 W. The EMG amplitude was averaged over 10 second intervals and plotted over the 60 second work bout. The resulting slopes from each successive work bouts were used to calculate EMGFT. A two-way ANOVA (group [Cr vs. PL] × time [pre vs. post] resulted in a significant (p = 0.031 interaction. Furthermore, a dependent samples t-test showed a 14.5% ± 3.5% increase in EMGFT from pre- to post-supplementation with Cr (p = 0.009, but no change for the PL treatment (-2.2 ± 5.8%; p = 0.732. In addition, a significant increase (1.0 ± 0.34 kg; p = 0.049 in weight (kg was observed in the Cr group but no change for PL (-0.2 kg ± 0.2 kg. These findings suggest that 5 days of Cr loading in women may be an effective strategy for delaying the onset of neuromuscular fatigue during cycle ergometry.

  11. Influence of PbBi environment on the low-cycle fatigue behavior of SNS target container materials

    Energy Technology Data Exchange (ETDEWEB)

    Kalkhof, D.; Grosse, M. E-mail: micro.grosse@psi.ch

    2003-05-15

    The low-cycle fatigue (LCF) behavior of the stainless steel 316L and the 10.5Cr-steel Manet-II was investigated at 260 deg. C in air and in stagnant lead-bismuth (PbBi). At low-strain levels, the fatigue lives for 316L in PbBi and air were comparable. At total strain amplitudes of 0.50% and higher a weak influence of PbBi was observed. In contrast to 316L, the results of LCF tests for Manet-II in PbBi showed a significant reduction of lifetime for all applied strain amplitudes. In the worst case the cycle number to crack initiation was reduced by a factor of {approx}7 compared with the comparable test in air. For the low-strain amplitude of 0.30%, fatigue tests conducted at a frequency of 0.1 Hz had shorter fatigue lives than at a frequency of 1.0 Hz. For Manet-II the crack propagation in PbBi was much faster than in air, and failure immediate followed the formation of the first macroscopic crack.

  12. Reliability estimation for 18Ni steel under low cycle fatigue using probabilistic technique

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ouk Sub; Choi, Hye Bin; Kim, Dong Hyeok; Kim, Hong Min [Inha Univ., Incheon (Korea, Republic of)

    2008-07-01

    In this study, the fatigue life of 18Ni Maraging steel under both low and high cyclic conditions is estimated by using FORM (First Order Reliability Method). Fatigue models based on strain approach such as coffin? Manson Fatigue theory and Morrow mean stress method are utilized. The limit state function including these two models was established. A case study for a material with the given special material properties was carried out to show the application of the proposed process of the reliability estimation. The effect of mean stress of the varying fatigue loading on the failure probability has also been investigated.

  13. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  14. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in; Kumawat, Bhupendra K.; Chakravartty, J.K.

    2015-07-15

    The cyclic stress–strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain–stress relationships and the strain–life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  15. Predicting Blood Lactate Concentration and Oxygen Uptake from sEMG Data during Fatiguing Cycling Exercise

    Directory of Open Access Journals (Sweden)

    Petras Ražanskas

    2015-08-01

    Full Text Available This article presents a study of the relationship between electromyographic (EMG signals from vastus lateralis, rectus femoris, biceps femoris and semitendinosus muscles, collected during fatiguing cycling exercises, and other physiological measurements, such as blood lactate concentration and oxygen consumption. In contrast to the usual practice of picking one particular characteristic of the signal, e.g., the median or mean frequency, multiple variables were used to obtain a thorough characterization of EMG signals in the spectral domain. Based on these variables, linear and non-linear (random forest models were built to predict blood lactate concentration and oxygen consumption. The results showed that mean and median frequencies are sub-optimal choices for predicting these physiological quantities in dynamic exercises, as they did not exhibit significant changes over the course of our protocol and only weakly correlated with blood lactate concentration or oxygen uptake. Instead, the root mean square of the original signal and backward difference, as well as parameters describing the tails of the EMG power distribution were the most important variables for these models. Coefficients of determination ranging from R2 = 0:77 to R2 = 0:98 (for blood lactate and from R2 = 0:81 to R2 = 0:97 (for oxygen uptake were obtained when using random forest regressors.

  16. Low cycle fatigue of corroded pipes under cyclic bending and internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, Marcelo Igor; Netto, Theodoro A. [Universidade Federal do Rio de Janeiro COPPE - Ocean Engineering Dept., Rio de Janeiro, RJ (Brazil)

    2010-07-01

    In oil and gas pipelines, fatigue failure can occur in corroded pipes after some years of operation. Thus it is important for operators to be able to evaluate the defects caused by corrosion to decide whether or not to repair the line. The ratcheting phenomenon can occur in parts of the pipes where corrosion has thickened the wall. The aim of this paper is to provide a new model for estimating resistance in corroded pipes which takes into account the ratcheting phenomenon. A 3-D finite element model was developed with ABACUS and experimental tests were carried out. Results showed that ratcheting should be considered in corroded pipes depending on the loading and on the size of the defect. In addition the model showed good correlation for the deformations presented in the first bending loading cycle but it did not anticipate ratcheting in the deepest defect. This paper demonstrated that ratcheting should be accounted for when analyzing the structural integrity of a corroded pipe.

  17. Low cycle fatigue behavior of a ferritic reactor pressure vessel steel

    Science.gov (United States)

    Sarkar, Apu; Kumawat, Bhupendra K.; Chakravartty, J. K.

    2015-07-01

    The cyclic stress-strain response and the low cycle fatigue (LCF) behavior of 20MnMoNi55 pressure vessel steel were studied. Tensile strength and LCF properties were examined at room temperature (RT) using specimens cut from rolling direction of a rolled block. The fully reversed strain-controlled LCF tests were conducted at a constant total strain rate with different axial strain amplitude levels. The cyclic strain-stress relationships and the strain-life relationships were obtained through the test results, and related LCF parameters of the steel were calculated. The studied steel exhibits cyclic softening behavior. Furthermore, analysis of stabilized hysteresis loops showed that the steel exhibits non-Masing behavior. Complementary scanning electron microscopy examinations were also carried out on fracture surfaces to reveal dominant damage mechanisms during crack initiation, propagation and fracture. Multiple crack initiation sites were observed on the fracture surface. The investigated LCF behavior can provide reference for pressure vessel life assessment and fracture mechanisms analysis.

  18. Effect of acute exercise-induced fatigue on maximal rate of heart rate increase during submaximal cycling.

    Science.gov (United States)

    Thomson, Rebecca L; Rogers, Daniel K; Howe, Peter R C; Buckley, Jonathan D

    2016-01-01

    Different mathematical models were used to evaluate if the maximal rate of heart rate (HR) increase (rHRI) was related to reductions in exercise performance resulting from acute fatigue. Fourteen triathletes completed testing before and after a 2-h run. rHRI was assessed during 5 min of 100-W cycling and a sigmoidal (rHRIsig) and exponential (rHRIexp) model were applied. Exercise performance was assessed using a 5-min cycling time-trial. The run elicited reductions in time-trial performance (1.34 ± 0.19 to 1.25 ± 0.18 kJ · kg(-1), P increased pre-exercise HR (73.0 ± 8.4 to 90.5 ± 11.4 beats · min(-1), P exercise and steady-state HR. rHRIsig was reduced following acute exercise-induced fatigue, and correlated with difference in performance.

  19. Effects of load ratio, R, and test temperature on high cycle fatigue behavior of nano-structured Al-4Y-4Ni-X alloy composites

    Energy Technology Data Exchange (ETDEWEB)

    El-Shabasy, Adel B., E-mail: ashabasy@hotmail.com [Department of Design and Production Engineering, Faculty of Engineering, Ain Shams University, Cairo 11517 (Egypt); Hassan, Hala A. [Department of Design and Production Engineering, Faculty of Engineering, Ain Shams University, Cairo 11517 (Egypt); Lewandowski, John J. [Department of Material' s Science and Engineering, Case Western Reserve University, Cleveland, OH 44106 (United States)

    2012-12-15

    Nanostructured Al-4Y-4Ni-X composites created by extruding atomized amorphous powders at different extrusion ratios were tested under high cycle bending fatigue at load ratios, R=0.1, 0.33 and -1 at room temperature, 149 Degree-Sign C and 260 Degree-Sign C. Increasing the extrusion ratio generally improved the fatigue life and the fatigue limits were well in excess of that obtained on conventional aluminum alloys at all temperatures tested. The fatigue limits obtained in this work were also compared to previously reported values for a nanostructured composite Al-Gd-Ni-Fe alloy produced via similar means.

  20. Effect of HIP temperature on microstructure and low cycle fatigue strength of CuCrZr alloy

    Energy Technology Data Exchange (ETDEWEB)

    Nishi, Hiroshi, E-mail: nishi.hiroshi88@jaea.go.jp [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan); Enoeda, Mikio [Japan Atomic Energy Agency, Naka-shi, Ibaraki-ken 311-0193 (Japan)

    2011-10-01

    In order to investigate the effect of the HIP cycle temperatures on the metallurgic degradation and the mechanical properties of CuCrZr alloy, assessments of the microstructure, tensile test, Charpy impact test and low cycle fatigue test are performed for various heat treated CuCrZr alloys, which were solution-annealed followed by water-quenched and aged state of CuCrZr with simulated HIP cycle at temperatures of 980 and 1045 deg. C. Grain growth occurred on 1045 deg. C HIP CuCrZr, though slightly on 980 deg. C HIP CuCrZr. Metallurgic degradation such as voids was not found by optical and SEM observations. There were coarse precipitates in all the CuCrZr and the precipitates did not easily dissolve at 980 deg. C. The low cycle fatigue strength of 1045 deg. C HIP CuCrZr was lower than that of other CuCrZr because of the metallurgic degradation caused by the heat cycle, while that of other CuCrZr was corresponding to the best fit curve of ITER MPH.

  1. A Cycling Movement Based System for Real-Time Muscle Fatigue and Cardiac Stress Monitoring and Analysis.

    Science.gov (United States)

    Chen, Szi-Wen; Liaw, Jiunn-Woei; Chang, Ya-Ju; Chan, Hsiao-Lung; Chiu, Li-Yu

    2015-01-01

    In this study, we defined a new parameter, referred to as the cardiac stress index (CSI), using a nonlinear detrended fluctuation analysis (DFA) of heart rate (HR). Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG) signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE) scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases.

  2. A Cycling Movement Based System for Real-Time Muscle Fatigue and Cardiac Stress Monitoring and Analysis.

    Directory of Open Access Journals (Sweden)

    Szi-Wen Chen

    Full Text Available In this study, we defined a new parameter, referred to as the cardiac stress index (CSI, using a nonlinear detrended fluctuation analysis (DFA of heart rate (HR. Our study aimed to incorporate the CSI into a cycling based fatigue monitoring system developed in our previous work so the muscle fatigue and cardiac stress can be both continuously and quantitatively assessed for subjects undergoing the cycling exercise. By collecting electrocardiogram (ECG signals, the DFA scaling exponent α was evaluated on the RR time series extracted from a windowed ECG segment. We then obtained the running estimate of α by shifting a one-minute window by a step of 20 seconds so the CSI, defined as the percentage of all the less-than-one α values, can be synchronously updated every 20 seconds. Since the rating of perceived exertion (RPE scale is considered as a convenient index which is commonly used to monitor subjective perceived exercise intensity, we then related the Borg RPE scale value to the CSI in order to investigate and quantitatively characterize the relationship between exercise-induced fatigue and cardiac stress. Twenty-two young healthy participants were recruited in our study. Each participant was asked to maintain a fixed pedaling speed at a constant load during the cycling exercise. Experimental results showed that a decrease in DFA scaling exponent α or an increase in CSI was observed during the exercise. In addition, the Borg RPE scale and CSI were positively correlated, suggesting that the factors due to cardiac stress might also contribute to fatigue state during physical exercise. Since the CSI can effectively quantify the cardiac stress status during physical exercise, our system may be used in sports medicine, or used by cardiologists who carried out stress tests for monitoring heart condition in patients with heart diseases.

  3. Damage estimates for European and U.S.sites using the U.S. high-cycle fatigue data base

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, H.J. [Wind Energy Technology, Sandia National Lab., Albuquerque, NM (United States)

    1996-09-01

    This paper uses two high-cycle fatigue data bases, one for typical U.S. blade materials and one for European materials, to analyze the service lifetime of a wind turbine blade subjected to the WISPER load spectrum for northern European sites and the WISPER protocol load spectrum for U.S. wind farm sites. The U.S. data base contains over 2200 data points that were obtained using coupon testing procedures. These data are used to construct a Goodman diagram that is suitable for analyzing wind turbine blades. This result is compared to the Goodman diagram derived from the European fatigue data base FACT. The LIFE2 fatigue analysis code for wind turbines is then used to predict the service lifetime of a turbine blade subjected to the two loading histories. The results of this study indicate that the WISPER load spectrum from northern European sites significantly underestimates the WISPER protocol load spectrum from a U.S. wind farm site, i.e., the WISPER load spectrum significantly underestimates the number and magnitude of the loads observed at a U.S. wind farm site. Further, the analysis demonstrate that the European and the U.S. fatigue material data bases are in general agreement for the prediction of tensile failures. However, for compressive failures, the two data bases are significantly different, with the U.S. data base predicting significantly shorter service lifetimes than the European data base. (au) 14 refs.

  4. The potential significance of microalloying with niobium in governing very high cycle fatigue behavior of bainite/martensite multiphase steels

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P., E-mail: zhaoping12@mails.tsinghua.edu.cn [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Beijing Iron & Steel Research Institute, Special Steel Institute, Beijing 100081 (China); Cheng, C.; Gao, G.; Hui, W. [Materials Science & Engineering Research Center, Beijing Jiaotong University, Beijing 100044 (China); Misra, R.D.K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical, Materials and Biomedical Engineering, University of Texas, El Paso 500 W. University Avenue, El Paso, TX 79968-0520 (United States); Bai, B.; Weng, Y. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2016-01-05

    We elucidate here the effect of microalloying with niobium (Nb) on very high cycle fatigue (VHCF) behavior in high-strength C–Mn–Si–Cr bainite/martensite (B/M) multiphase steels studied through ultrasonic fatigue testing. The tensile strength (R{sub m}) and fatigue limit strength after 10{sup 9} cycles (σ{sub w9}) and in the non-failure condition of the steel microalloyed with Nb were 1640 MPa and 900 MPa, respectively. Thus, the value of σ{sub w9}/R{sub m} exceeded in comparison to conventional steels and was approximate 0.55. Three types of failure modes were observed in Nb-bearing steels depending on the surface condition, inclusion, and the matrix microstructure, i.e., surface defect-induced failure mode (S-mode), inclusion-induced failure mode (I-mode), and non-inclusion induced failure mode (N-mode). Only two failure modes were observed in Nb-free steels, the S-mode and the N-mode. The study clearly suggests that Nb had a distinct effect on the VHCF properties of B/M steels. The VHCF limit of Nb-bearing steel was enhanced by 200 MPa because of refinement of the microstructure and pinning of dislocations by randomly distributed nanometer-sized Nb(C, N) precipitates. It is underscored that microalloying with Nb is a potential approach to enhance VHCF properties in advanced high-strength steels.

  5. Prediction of low-cycle fatigue-life by acoustic emission—1: 2024-T3 aluminum alloy, and —2: 7075-T6 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Baram, J. [Ben-Gurion Univ. of the Negev, Beer Sheva (Israel). Materials Engineering Division; Rosen, M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Materials and Molecular Research Division

    1981-01-01

    1: In this paper, low-cycle fatigue tests were conducted by tension-tension until rupture, on a 2024-T3 aluminum alloy sheet. Initial crack sizes and orientations in the fatigue specimens were found to be randomly distributed. Acoustic emission was continuously monitored during the tests. Every few hundred cycles, the acoustic signal having the highest peak-amplitude, was recorded as an extremal event for the elapsed period. This high peak-amplitude is related to a fast crack propagation rate through a phenomenological relationship. The extremal peak amplitudes are shown by an ordered statistics treatment, to be extremally distributed. The statistical treatment enables the prediction of the number of cycles left until failure. Predictions performed a posteriori based on results gained early in each fatigue test are in good agreement with actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress appears to be a promising nondestructive method of predicting fatigue life. 2: In this paper, low cycle high stress fatigue tests were conducted by tension-tension on an Alclad 7075-T6 aluminum sheet alloy, until rupture. Initial crack sizes and orientations in the fatigue specimens were randomly distributed. Acoustic emission was continuously monitored during the tests. Extremal peak-amplitudes, equivalent to extremal crack-propagation rates, are shown to be extremally Weibull distributed. The prediction of the number of cycles left until failure is made possible, using an ordered statistics treatment and an experimental equipment parameter obtained in previous experiments (Part 1). The predicted life-times are in good agreement with the actual fatigue lives. Finally, the amplitude distribution analysis of the acoustic signals emitted during cyclic stress has been proven to be a feasible nondestructive method of predicting fatigue life.

  6. Simulation of Delamination Propagation in Composites Under High-Cycle Fatigue by Means of Cohesive-Zone Models

    Science.gov (United States)

    Turon, Albert; Costa, Josep; Camanho, Pedro P.; Davila, Carlos G.

    2006-01-01

    A damage model for the simulation of delamination propagation under high-cycle fatigue loading is proposed. The basis for the formulation is a cohesive law that links fracture and damage mechanics to establish the evolution of the damage variable in terms of the crack growth rate dA/dN. The damage state is obtained as a function of the loading conditions as well as the experimentally-determined coefficients of the Paris Law crack propagation rates for the material. It is shown that by using the constitutive fatigue damage model in a structural analysis, experimental results can be reproduced without the need of additional model-specific curve-fitting parameters.

  7. Evaluation of the Effect of Surface Finish on High-Cycle Fatigue of SLM-IN718

    Science.gov (United States)

    Lambert, D. M.

    2016-01-01

    The surface finish of parts produced by additive manufacturing processes is much rougher than the surface finish generated by machining processes, and a rougher surface can reduce the fatigue strength of a part. This paper discusses an effort to quantify that reduction of strength in high-cycle fatigue for selective laser melt (SLM) coupons. A high-cycle fatigue (HCF) knockdown factor was estimated for Inconel 718, manufactured with the SLM process. This factor is the percentage reduction from the maximum stress in fatigue for low-stress ground (LSG) specimens to the maximum stress of those left with the original surface condition at the same fatigue life. Specimens were provided by a number of vendors, free to use their "best practice"; only one heat treat condition was considered; and several test temperatures were characterized, including room temperature, 800F, 1000F, and 1200F. The 1000F data had a large variance, and was omitted from consideration in this document. A first method used linear approximations extracted from the graphs, and only where data was available for both. A recommended knockdown factor of the as-built surface condition (average roughness of approximately 245 micro-inches/inch) versus low-stress ground condition (roughness no more than 4 micro-inches/inch) was established at approximately 1/3 or 33%. This is to say that for the as-built surface condition, a maximum stress of 2/3 of the stress for LSG can be expected to produce a similar life in the as-built surface condition. In this first evaluation, the knockdown factor did not appear to be a function of temperature. A second approach, the "KP method", incorporated the surface finish measure into a new parameter termed the pseudo-stress intensity factor, Kp, which was formulated to be similar to the fracture mechanics stress intensity factor. Using Kp, the variance seemed to be reduced across all sources, and knockdown factors were estimated using Kp over the range where data occurred. A

  8. Functional fatigue recovery of superelastic cycled NiTi wires based on near 100 °C aging treatments

    Directory of Open Access Journals (Sweden)

    Isalgue Antonio

    2015-01-01

    Full Text Available Functional fatigue affecting superelastic behaviour of NiTi wires includes an accumulation of residual strain and an uneven decrement of transformation stress on cycling. Although this evolution is observed to diminish asymptotically, it represents an important loss in the maximum recoverable strain level and in the hysteretic dissipative capacity of the material. In this work, the effect of moderate temperature aging treatment on the functionally degraded material properties was studied with two experimental setups. NiTi pseudoelastic wire samples of 0.5 and 2.46 mm diameter were subjected to different cycling programs intercalated by aging treatments of different durations up to 48 h at 100°C. Results show that important levels of recovery on the residual strains and the transformation stresses were attained after the aging treatments. The analysis indicates that the characteristics of the recovered cycles are rather independent from the treatment duration and from the reached condition before each treatment.

  9. The low cycle fatigue behavior of a plasma-sprayed coating material

    Science.gov (United States)

    Gayda, J.; Gabb, T. P.; Miner, R. V., Jr.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C, but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  10. Low cycle fatigue behaviour of a plasma-sprayed coating material

    Science.gov (United States)

    Gayda, J.; Gabb, T. P.; Miner, R. V.

    1986-01-01

    Single crystal nickel-base superalloys employed in turbine blade applications are often used with a plasma spray coating for oxidation and hot corrosion resistance. These coatings may also affect fatigue life of the superalloy substrate. As part of a large program to understand the fatigue behavior of coated single crystals, fully reversed, total strain controlled fatigue tests were run on a free standing NiCoCrAlY coating alloy, PWA 276, at 0.1 Hz. Fatigue tests were conducted at 650 C, where the NiCoCrAlY alloy has modest ductility, and at 1050 C, where it is extremely ductile, showing tensile elongation in excess of 100 percent. At the lower test temperature, deformation induced disordering softened the NiCoCrAlY alloy, while at the higher test temperature cyclic hardening was observed which was linked to gradual coarsening of the two phase microstructure. Fatigue life of the NiCoCrAlY alloy was significantly longer at the higher temperature. Further, the life of the NiCoCrAlY alloy exceeds that of coated, /001/-oriented PWA 1480 single crystals at 1050 C but at 650 C the life of the coated crystal is greater than that of the NiCoCrAlY alloy on a total strain basis.

  11. Ca²⁺-pumping impairment during repetitive fatiguing contractions in single myofibers: role of cross-bridge cycling.

    Science.gov (United States)

    Nogueira, Leonardo; Shiah, Amy A; Gandra, Paulo G; Hogan, Michael C

    2013-07-15

    The energy cost of contractions in skeletal muscle involves activation of both actomyosin and sarcoplasmic reticulum (SR) Ca²⁺-pump (SERCA) ATPases, which together determine the overall ATP demand. During repetitive contractions leading to fatigue, the relaxation rate and Ca²⁺ pumping become slowed, possibly because of intracellular metabolite accumulation. The role of the energy cost of cross-bridge cycling during contractile activity on Ca²⁺-pumping properties has not been investigated. Therefore, we inhibited cross-bridge cycling by incubating isolated Xenopus single fibers with N-benzyl-p-toluene sulfonamide (BTS) to study the mechanisms by which SR Ca²⁺ pumping is impaired during fatiguing contractions. Fibers were stimulated in the absence (control) and presence of BTS and cytosolic calcium ([Ca²⁺]c) transients or intracellular pH (pHi) changes were measured. BTS treatment allowed normal [Ca²⁺]c transients during stimulation without cross-bridge activation. At the time point that tension was reduced to 50% in the control condition, the fall in the peak [Ca²⁺]c and the increase in basal [Ca²⁺]c did not occur with BTS incubation. The progressively slower Ca²⁺ pumping rate and the fall in pHi during repetitive contractions were reduced during BTS conditions. However, when mitochondrial ATP supply was blocked during contractions with BTS present (BTS + cyanide), there was no further slowing in SR Ca²⁺ pumping during contractions compared with the BTS-alone condition. Furthermore, the fall in pHi was significantly less during the BTS + cyanide condition than in the control conditions. These results demonstrate that factors related to the energetic cost of cross-bridge cycling, possibly the accumulation of metabolites, inhibit the Ca²⁺ pumping rate during fatiguing contractions.

  12. Multiple autoclave cycle effects on cyclic fatigue of nickel-titanium rotary files produced by new manufacturing methods.

    Science.gov (United States)

    Hilfer, Paul B; Bergeron, Brian E; Mayerchak, Michael J; Roberts, Howard W; Jeansonne, Billie G

    2011-01-01

    Novel nickel-titanium rotary files with proprietary manufacturing techniques have recently been marketed. The purpose of this study was to assess multiple autoclave cycle effects on cyclic fatigue of GT Series X files (Dentsply Tulsa Dental Specialties, Tulsa, OK) and Twisted Files (SybronEndo, Orange, CA) METHODS: A jig using a 5-mm radius curve with 90° of maximum file flexure was used to induce cyclic fatigue failure. Files (n = 10) representing each experimental group (GT Series X 20/.04 and 20/.06; Twisted Files 25/.04 and 25/.06) were first tested to establish baseline mean cycles to failure (MCF). Experimental groups (n = 20) were then cycled to 25% of the established baseline MCF and then autoclaved. Additional autoclaving was accomplished at 50% and 75% of MCF followed by continual testing until failure. Control groups (n = 20) underwent the same procedures except autoclaving was not accomplished. The GT Series X (20/.04 and 20/.06) files showed no significant difference (p = 0.918/p = 0.096) in MCF for experimental versus control files. Twisted Files (25/.04) showed no significant difference (p = 0.432) in MCF between experimental and control groups. However, the Twisted Files (25/.06) experimental group showed a significantly lower (p = 0.0175) MCF compared with the controls. Under the conditions of this evaluation, autoclave sterilization significantly decreased cyclic fatigue resistance of one of the four file groups tested. Repeated autoclaving significantly reduced the MCF of 25/.06 Twisted Files; however, 25/.04 Twisted Files and both GT Series X files tested were not significantly affected by the same conditions. Published by Elsevier Inc.

  13. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    Science.gov (United States)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near

  14. 核电汽轮机转子在低周疲劳与高周疲劳交互作用下裂纹扩展寿命的研究%Study on Crack Propagation Life under Low Cycle Fatigue and High Cycle Fatigue of Nuclear Steam Turbine Rotors

    Institute of Scientific and Technical Information of China (English)

    史进渊

    2015-01-01

    The calculation and assessment methods for the crack propagation life under low cycle fatigue and high cycle fatigue of nuclear steam turbine rotors is presented. The low high fatigue cycle stress amplitude and stress range as well as the crack propagation life calculation methods for low cycle fatigue and high cycle fatigue of nuclear steam turbine rotors are introduced. The calculation and assessment methods for the crack propagation calendar life under low cycle fatigue and high cycle fatigue of nuclear steam turbine rotors are given together with an application example for calculation and improvement of the fatigue crack propagation calendar life of a low pressure welded rotor for 1 000 MW nuclear steam turbines. The example results indicate that effect of the high cycle fatigue on the fatigue crack propagation calendar life of nuclear steam turbine rotors is bigger, it is necessary that assessment for the crack propagation life under low cycle fatigue and high cycle fatigue of rotors in the rotor structure design of new development for nuclear steam turbine and the rotor safety assessment for operation steam turbine for nuclear power plants.%提出核电汽轮机转子在低周疲劳与高周疲劳交互作用下裂纹扩展寿命的计算与评定方法.介绍核电汽轮机转子的低周疲劳与高周疲劳的应力幅与应力范围、低周疲劳裂纹扩展寿命与高周疲劳扩展寿命的计算方法.给出了核电汽轮机转子在低周疲劳与高周疲劳交互作用下裂纹扩展日历寿命的计算与评定方法,以及1 000 MW级核电汽轮机焊接低压转子疲劳裂纹扩展日历寿命的计算与改进的应用实例.结果表明,高周疲劳对汽轮机转子疲劳裂纹扩展日历寿命有比较大的影响,新研制核电汽轮机的转子结构设计和在役核电汽轮机的转子安全性评定,需要评估转子在低周疲劳与高周疲劳交互作用下裂纹扩展寿命.

  15. THE EFFECT OF A STRETCH-SHORTENING CYCLE FATIGUE TEST ON THE DYNAMIC CHARACTERISTICS OF LOWER LIMBS IN ADULT MEN AND PRE-PUBESCENT BOYS

    Directory of Open Access Journals (Sweden)

    Ftikas C.

    2010-06-01

    Full Text Available Purpose: The present study focused on the acute effect differences between children and adults after a stretch shortening cycle fatigue test on drop jump performance.Method: Eleven pre-pubescent boys (10,2 ± 0,7 y old and eleven adult men (24,3 ± 3,3 y old performed a stretch shortening cycle fatigue test (SSFT,10 sets /10 repetitions, with 30 sec interval between sets. Before and after fatigue test, maximal isometric torque, drop jump (DJ, contact time and ground reaction forces (GRF wereevaluated. Fatigue perceives and feel of pain were evaluated immediately after fatigue as well.Results: After fatigue MVC and DJ significantly decreased in both groups but this decrease was higher in adults.Contact time and GRF were increased in both groups but in a higher extend in adults. Fatigue perception and the feeling of pain were also higher in adults.Conclusion: In this research, the SSFT resulted in acute reduction of the performance of both age groups butmore in adults. The higher performance reduction in adults could be attributed possibly both in neuromuscular, metabolic and inflammatory factors

  16. Bond and low cycle fatigue behavior of thermoset composite reinforcing for the concrete industry

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, B.

    1990-09-21

    This thesis encompasses two separate research projects. The first project, described in Chapter 2 was a project investigating the fatigue behavior of thermoset Fiber Composite (FC) sandwich wall ties. The second research project detailed in this thesis was a project studying the bond and tensile properties of FC rod and FC fibers.

  17. Long-range-correlation large-scale interactions in ensembles of defects: Estimating reliability of aluminum alloys under dynamic cycling and fatigue loading conditions

    Science.gov (United States)

    Oborin, V.; Bannikov, M.; Naimark, O.; Froustey, C.

    2011-03-01

    The role of the collective behavior of defect ensembles in prestrained samples of an Al-Cu alloy was studied under fatigue testing conditions (preset load level) that corresponded to thte basic fatigue life of the given material (about 2 × 105 cycles). The surface relief of deformed samples was examined in a NewView interferometer profilometer so as to reveal the scaling-invariant laws of defect-related structure evolution.

  18. Effects of shot peening on short crack growth rate and resulting low cycle fatigue behaviour in low pressure turbine blade material

    OpenAIRE

    He, B.; Soady, K.A.; Mellor, B.G.; Morris, A; Reed, P.A.S

    2013-01-01

    The effect of shot peening on subsequent low cycle fatigue behaviour of a representative low pressure steam turbine blade material has been investigated in bend test samples. An analysis of the short fatigue crack growth behaviour has been conducted. For samples with no stress concentration feature, shot peening was found to have a more evident beneficial effect at lower strain levels than at higher strain levels, whereas for samples with a stress concentration feature, the beneficial effect ...

  19. A Study on the Effects on Low Cycle Fatigue Life of a High Pressure Turbine Nozzle due to the Perturbation of Crystal Orientation of Grain of DS Materials

    Energy Technology Data Exchange (ETDEWEB)

    Huh, Jae Sung; Kang, Young Seok; Rhee, Dong Ho [Korea Aerospace Research Institute, Daejeon (Korea, Republic of)

    2016-07-15

    High pressure components of a gas turbine engine are generally made of nickel-base superalloys, using precision casting process due to complicated geometries with intricate channels and cooling holes. Turbine components manufactured from directionally solidified and single crystal materials have columnar grains; however, it is found that the crystals do not grow in its preferred direction, although the orientation can be controlled. This anisotropy can lead to the variations of elastic and Hill's parameters in constitutive equations, and they alter stress distributions and the low cycle fatigue life. We aims to evaluate the effects of perturbed crystal orientations on the structural integrity of a directionally solidified nozzle using low cycle fatigue life. We also attempt to show the necessity for the control of allowed manufacturing errors and stochastic analysis. Our approaches included conjugate heat transfer and structural analysis, along with low cycle fatigue life assessment.

  20. A Simulation Method for High-Cycle Fatigue-Driven Delamination using a Cohesive Zone Model

    DEFF Research Database (Denmark)

    Bak, Brian Lau Verndal; Turon, A.; Lindgaard, Esben;

    2016-01-01

    on parameter fitting of any kind. The method has been implemented as a zero-thickness eight-node interface element for Abaqus and as a spring element for a simple finite element model in MATLAB. The method has been validated in simulations of mode I, mode II, and mixed-mode crack loading for both self......A novel computational method for simulating fatigue-driven mixed-mode delamination cracks in laminated structures under cyclic loading is presented. The proposed fatigue method is based on linking a cohesive zone model for quasi-static crack growth and a Paris' law-like model described......-similar and non-self-similar crack propagation. The method produces highly accurate results compared with currently available methods and is capable of simulating general mixed-mode non-self-similar crack growth problems....

  1. Dynamic speckle interferometry of high-cycle material fatigue: Theory and some experiments

    Science.gov (United States)

    Vladimirov, A. P.

    2016-06-01

    The objective of this paper was theoretical analysis of speckle dynamics in the image plane of a thin transparent object. It was suggested that speckle dynamics develops in simultaneous periodic motion of the sample, micro- and macro-variations of its refraction index and its translational motion. The results of the theory were contrasted with the data obtained in the fatigue tests with transparent object.

  2. Assessment of Low Cycle Fatigue Behavior of Powder Metallurgy Alloy U720

    Science.gov (United States)

    Gabb, Tomothy P.; Bonacuse, Peter J.; Ghosn, Louis J.; Sweeney, Joseph W.; Chatterjee, Amit; Green, Kenneth A.

    2000-01-01

    The fatigue lives of modem powder metallurgy disk alloys are influenced by variabilities in alloy microstructure and mechanical properties. These properties can vary as functions of variables the different steps of materials/component processing: powder atomization, consolidation, extrusion, forging, heat treating, and machining. It is important to understand the relationship between the statistical variations in life and these variables, as well as the change in life distribution due to changes in fatigue loading conditions. The objective of this study was to investigate these relationships in a nickel-base disk superalloy, U720, produced using powder metallurgy processing. Multiple strain-controlled fatigue tests were performed at 538 C (1000 F) at limited sets of test conditions. Analyses were performed to: (1) assess variations of microstructure, mechanical properties, and LCF failure initiation sites as functions of disk processing and loading conditions; and (2) compare mean and minimum fatigue life predictions using different approaches for modeling the data from assorted test conditions. Significant variations in life were observed as functions of the disk processing variables evaluated. However, the lives of all specimens could still be combined and modeled together. The failure initiation sites for tests performed at a strain ratio R(sub epsilon) = epsilon(sub min)/epsilon(sub max) of 0 were different from those in tests at a strain ratio of -1. An approach could still be applied to account for the differences in mean and maximum stresses and strains. This allowed the data in tests of various conditions to be combined for more robust statistical estimates of mean and minimum lives.

  3. Influences of fine pitch solder joint shape parameters on fatigue life under thermal cycle

    Institute of Scientific and Technical Information of China (English)

    HUANG Chun-yue; WU Zhao-hua; HUANG Hong-yan; ZHOU De-jian

    2005-01-01

    The solder joint reliability of a 0. 5 mm lead pitch, 240-pin quad flat package(QFP) was studied by nonlinear finite element analysis(FEA). The stress/strain distributions within the solder joints and the maximum plastic strain range of the solder joints were determined. Based on the calculated maximum plastic strain range the thermal fatigue life of the solder joints was calculated using Coffin-Manson equation. The influences of shape parameters including volume of solder joint, pad size and stand-off on the thermal fatigue life of the solder joints were also studied. The results show that the stress and strain distribution in the solder joint are not uniform; the interface between the lead and the solder joint is the high stress and strain region; the maximum stress and stain occur at the topmost point where the solder joint intersects with the inner side of the lead. The solder joint cracks should occur firstly at this point and propagate along the interface between the solder and the lead. The solder joint with the pad size of 1.25 mm× 0.35 mm, the stand-off of 0.02 mm and the solder volume of 0. 026 mm3 has longer fatigue life than that of any others. These optimal parameters have been applied in practice to assemble the 240-pin, 0.5 mm pitch QFP.

  4. Application of the Seebeck effect for monitoring of neutron embrittlement and low-cycle fatigue in nuclear reactor steel

    Energy Technology Data Exchange (ETDEWEB)

    Niffenegger, M. [Paul Scherrer Institut, Nuclear Energy and Safety Department, Structural Integrity Group, CH-5232 Villigen PSI (Switzerland)]. E-mail: Markus.Niffenegger@psi.ch; Reichlin, K. [Paul Scherrer Institut, Nuclear Energy and Safety Department, Structural Integrity Group, CH-5232 Villigen PSI (Switzerland); Kalkhof, D. [Paul Scherrer Institut, Nuclear Energy and Safety Department, Structural Integrity Group, CH-5232 Villigen PSI (Switzerland)

    2005-08-01

    The monitoring of neutron embrittlement and low-cycle fatigue in nuclear reactor steel is an important topic in lifetime extension of nuclear power plants. Among several material parameters that may change due to material degradation are the thermoelectric properties. Therefore, we investigated the application of the Seebeck effect for determining material degradation of common reactor pressure vessel (RPV) steel. The Seebeck coefficients (SC) of several irradiated Charpy specimens made from Japanese reference steel JRQ were measured. The specimens suffered fluences from 0 up to 4.5 E{sup 19} neutrons/cm{sup 2}, with energies higher than 1 MeV. Measured changes of the SC within this range were about 500 nV/ deg C, increasing continuously in the range under investigation. Some indications of saturation appeared at fluencies larger than 4.5 E{sup 19} neutrons/cm{sup 2}. We obtained a linear dependency between the SC and the temperature shift {delta}T {sub 41} of the Charpy energy versus temperature curve, which is widely used to characterize material embrittlement. Similar measurements were performed on fatigue specimens made from the austenitic stainless steel X6CrNiTi18-10 (according to DIN 1.4541) that were fatigued by applying cyclic strain amplitudes of 0.28%. A clear correlation between the change of the SC and the accumulated plastic strain, i.e. number of cycles was obtained. Further investigations were made to quantify the size of the gauge volume in which the thermoelectric power (TEP), also called thermoelectric voltage, is generated. It appeared that the information gathered from a thermoelectric power measurement is very local. This fact can be used to develop a novel TEP-method acting as a thermoelectric scanning microscope (TSM). Finally, we conclude that the change of the SC has a potential for monitoring of material degradation due to neutron irradiation and thermal fatigue, but it has to be taken into account that several influencing parameters

  5. Research review of low-cycle fatigue behavior of steel brace%钢支撑低周疲劳性能研究综述

    Institute of Scientific and Technical Information of China (English)

    于海丰; 张学辉; 李其廉

    2011-01-01

    总结了国际上有关钢支撑低周疲劳性能试验及有限元研究方面的现状,指出了钢支撑低周疲劳性能研究的方向。%Low-cycle fatigue behavior research of the steel brace is prerequisite to the understanding of the seismic performance of concentrically braced frame with moment resisting frame dual systems. In this paper, the current test and finite element research in the low-cycle fatigue behavior of the steel brace is reviewed and the further research direction is pointed out.

  6. High-cycle fatigue of 10M Ni-Mn-Ga magnetic shape memory alloy in reversed mechanical loading

    Science.gov (United States)

    Aaltio, I.; Soroka, A.; Ge, Y.; Söderberg, O.; Hannula, S.-P.

    2010-07-01

    Application of Ni-Mn-Ga magnetic shape memory alloys in magnetic-field-induced actuation relies on their performance in long-term high-cycle fatigue. In this paper the performance and changes in the microstructure of a Ni-Mn-Ga 10M martensite single crystal material are reported in a long-term mechanically induced shape change cycling. The longest test was run for 2 × 109 cycles at a frequency of 250 Hz and a strain amplitude of ± 1%. After the test a clear increase of the dynamic stiffness of the material was detected. Three specimens out of ten were cycled until fracture occurred and their fracture mechanism was studied. It was observed that the macroscopic crack growth took place roughly at a 45° angle with respect to the loading direction that was along the lang100rang crystallographic direction of the sample. The macroscopic fracture plane seemed to correspond roughly to the {111} crystal planes. On a microscopic scale the fracture propagated in a step-like manner at least partly along crystallographic planes. The steps at the fracture plane correspond to the {101} twin planes, with the height of steps along the lang101rang direction. The final fracture of the samples occurred in a brittle manner after the critical stress was exceeded.

  7. Evaluation of the Effect of Dynamic Sodium on the Low Cycle Fatigue Properties of 316L(N) Stainless Steel Base and Weld Joints

    Science.gov (United States)

    Ganesan, V.; Kannan, R.; Mariappan, K.; Sukumaran, G.; Sandhya, R.; Rao, K. Bhanu Sankara

    2012-06-01

    Low cycle fatigue (LCF) tests on 316L(N) austenitic stainless steel base and weld joints were at 823 K and 873 K at a constant strain rate of 3 × 10 -3 s -1 with strain ranges varying from {±}0.4% to {±}1.0% in a servo-hydraulic fatigue test system under flowing sodium environment. The cyclic stress response exhibited a similar trend as that in air comprising of an initial rapid hardening, followed by a slight softening stage before saturation. The fatigue lives are significantly improved in sodium environment when compared to identical testing conditions in air environment. The lack of oxidation in sodium environment is attributed to the delayed crack initiation, reduced crack propagation rate and consequent increase in fatigue life. Comparison of the data evaluated in sodium with RCC-MR design code, derived on the basis of data obtained from air shows that the design based on air tests is conservative.

  8. Damage study of an austenitic stainless steel in high cycle multiaxial fatigue regime;Etude de l'endommagement d'un acier inoxydable austenitique par fatigue multiaxiale a grand nombre de cycles

    Energy Technology Data Exchange (ETDEWEB)

    Poncelet, M. [CEA Saclay, DEN, SRMA, 91 - Gif-sur-Yvette (France); Barbier, G.; Raka, B.; Vincent, L.; Desmorat, R. [LMT Cachan, ENS Cachan/CNRS/UPMC/PRES Univ. Sud Paris, 94 - Cachan (France); Barbier, G. [EDF R and D / LaMSID, 92 - Clamart (France)

    2010-02-15

    Biaxial fatigue tests are performed up to 1 000 000 cycles at room temperature. Cross specimens of 304L steel thinned in their centre to initiate crack, are loaded by a biaxial testing machine. The strain at the centre of the sample is measured during loading using a stroboscopic Digital Image Correlation (DIC) technique, and crack initiation on the whole gauge zone is early detected by a second DIC-based measurement. A special optical assembly is designed to allow for simultaneous measurements. Three types of loadings are performed: equi-biaxial with a loading ratio R = 0.1, equi-biaxial with loading ratio R = -1, pseudo uniaxial (cyclic loading at R 0.1 in one direction and constant loading in the other). First results are commented. (authors)

  9. A new model of low cycle fatigue crack growth rate%一种新型的低周疲劳裂纹扩展速率模型

    Institute of Scientific and Technical Information of China (English)

    吴晓松; 陈荐; 何建军; 任延杰; 高鹏

    2011-01-01

    The plastic strain at crack tip of low cycle fatigue and the strain distribution on the cyclic plasticity zone of crack tip obey the HRR theoretical solution approximately were analyzed in this paper. A new low cycle fatigue crack growth mathematical model is derived by the combination of these mechanisms which include the crack tip sharpen, the passivation rev crack and crack interaction mechanics and the Ramberg-Osgood's circulation stressstrain curve and the Coffin-Manson's fatigue life curve. The experimental data of low cycle fatigue crack growth rate which belongs to the 30CrlMolV and St-4340 are contrasted. The comparison result shows that the low cycle fatigue crack growth rate model adopted in this paper is able to predict reasonably the low cycle fatigue crack growth rate of the materials used.%基于低周疲劳裂纹扩展机制,假设裂纹尖端循环塑性区内应变分布服从HRR理论解,利用裂纹尖端锐化、钝化启裂低周疲劳裂纹扩展机制,结合Ramberg-Osgood循环应力应变曲线和Manson-Coffin疲劳寿命曲线等断裂力学理论,推导出一种新的低周疲劳裂纹扩展速率数学模型.与30Cr1Mo1V和St-4340的低周疲劳裂纹扩展速率试验数据进行对比,结果表明该低周疲劳裂纹扩展速率模型能够较好地预测材料的低周疲劳裂纹扩展速率.

  10. Low Cycle Fatigue Behavior of Conventionally Cast MAR-M 200 at 1000 C.

    Science.gov (United States)

    1984-09-01

    propagation, as illustrated in figures 5 and 6. Gell and Leverant (ref. 1), McMahon and Coffin (ref. 7), Coffin (ref. 8), and Antolovich , Liu and Baur (ref...propagation in Rene’ 80 was primarily transgranular, independent of cyclic loading frequency. Antolovich et. al. reported crack initiation in Rene’ 80 at...on the Cyclic Strain and Fatigue Behavior of Cast Rene’ at 16000 F. Metall. Trans., vol. 5, 1974, no. 5, May pp 1053-1060. 9. Antolovich , Stephen 0

  11. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    Institute of Scientific and Technical Information of China (English)

    Zhi-yang L; Ao-shuang Wan; Jun-jiang Xiong; Kuang Li; Jian-zhong Liu

    2016-01-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  12. Effects of stress ratio on the temperature-dependent high-cycle fatigue properties of alloy steels

    Science.gov (United States)

    Lü, Zhi-yang; Wan, Ao-shuang; Xiong, Jun-jiang; Li, Kuang; Liu, Jian-zhong

    2016-12-01

    This paper addresses the effects of stress ratio on the temperature-dependent high-cycle fatigue (HCF) properties of alloy steels 2CrMo and 9CrCo, which suffer from substantial vibrational loading at small stress amplitude, high stress ratio, and high frequency in the high-temperature environments in which they function as blade and rotor spindle materials in advanced gas or steam turbine engines. Fatigue tests were performed on alloy steels 2CrMo and 9CrCo subjected to constant-amplitude loading at four stress ratios and at four and three temperatures, respectively, to determine their temperature-dependent HCF properties. The interaction mechanisms between high temperature and stress ratio were deduced and compared with each other on the basis of the results of fractographic analysis. A phenomenological model was developed to evaluate the effects of stress ratio on the temperature-dependent HCF properties of alloy steels 2CrMo and 9CrCo. Good correlation was achieved between the predictions and actual experiments, demonstrating the practical and effective use of the proposed method.

  13. Mechanisms of deformation and fracture in high temperature low cycle fatigue of Rene 80 and IN 100

    Science.gov (United States)

    Romanoski, G. R., Jr.

    1982-01-01

    Specimens tested for the AGARD strain range partitioning program were investigated. Rene 80 and IN 100 were tested in air and in vacuum; at 871 C, 925 C, and 1000 C; and in the coated and uncoated condition. The specimens exhibited a multiplicity of high-temperature low-cycle fatigue damage. Observations of the various forms of damage were consistent with material and testing conditions and were generally in agreement with previous studies. In every case observations support a contention that failure occurs at a particular combination of crack length and maximum stress. A failure criterion which is applicable in the regime of testing studied is presented. The predictive capabilities of this criterion are straight forward.

  14. Low Cycle Mechanical and Fatigue Properties of AlZnMgCu Alloy

    Directory of Open Access Journals (Sweden)

    Pysz S.

    2016-03-01

    Full Text Available The article presents the analysis of properties of the high-strength AlZnMgCu (abbr AlZn aluminium alloy and estimates possibilities of its application for responsible structures with reduced weight as an alternative to iron alloy castings. The aim of the conducted studies was to develop and select the best heat treatment regime for a 7xx casting alloy based on high-strength materials for plastic working from the 7xxx series. For analysis, wrought AlZnMgCu alloy (7075 was selected. Its potential of the estimated as-cast mechanical properties indicates a broad spectrum of possible applications for automotive parts and in the armaments industry. The resulting tensile and fatigue properties support the thesis adopted, while the design works further confirm these assumptions.

  15. Development of a probabilistic model for the prediction of fatigue life in the very high cycle fatigue (VHCF range based on inclusion population

    Directory of Open Access Journals (Sweden)

    Kolyshkin A.

    2014-06-01

    Full Text Available The VHCF behaviour of metallic materials containing microstructural defects such as non-metallic inclusions is determined by the size and distribution of the damage dominating defects. In the present paper, the size and location of about 60.000 inclusions measured on the longitudinal and transversal cross sections of AISI 304 sheet form a database for the probabilistic determination of failure-relevant inclusion distribution in fatigue specimens and their corresponding fatigue lifes. By applying the method of Murakami et al. the biggest measured inclusions were used in order to predict the size of failure-relevant inclusions in the fatigue specimens. The location of the crack initiating inclusions was defined based on the modeled inclusion population and the stress distribution in the fatigue specimen, using the probabilistic Monte Carlo framework. Reasonable agreement was obtained between modeling and experimental results.

  16. Crack growth through low-cycle fatigue loading of material ARMOX 500T

    Directory of Open Access Journals (Sweden)

    V. Pepel

    2016-10-01

    Full Text Available This paper presents microstructure analysis of the creation and growth of cracks in uniaxial load. Analyse were done for steel Armox 500T (armour sheet. Results show that cracks are present quit early in steel lifetime. First micro cracks occur before the 200th cycles, whereby crack growth is progressive during further loading. Also it can be seen that after a certain number of cycles there are more longer cracks then shorter ones.

  17. A Wireless Sensor Network with Enhanced Power Efficiency and Embedded Strain Cycle Identification for Fatigue Monitoring of Railway Bridges

    Directory of Open Access Journals (Sweden)

    Glauco Feltrin

    2016-01-01

    Full Text Available Wireless sensor networks have been shown to be a cost-effective monitoring tool for many applications on civil structures. Strain cycle monitoring for fatigue life assessment of railway bridges, however, is still a challenge since it is data intensive and requires a reliable operation for several weeks or months. In addition, sensing with electrical resistance strain gauges is expensive in terms of energy consumption. The induced reduction of battery lifetime of sensor nodes increases the maintenance costs and reduces the competitiveness of wireless sensor networks. To overcome this drawback, a signal conditioning hardware was designed that is able to significantly reduce the energy consumption. Furthermore, the communication overhead is reduced to a sustainable level by using an embedded data processing algorithm that extracts the strain cycles from the raw data. Finally, a simple software triggering mechanism that identifies events enabled the discrimination of useful measurements from idle data, thus increasing the efficiency of data processing. The wireless monitoring system was tested on a railway bridge for two weeks. The monitoring system demonstrated a good reliability and provided high quality data.

  18. Imposed Thermal Fatigue and Post-Thermal-Cycle Wear Resistance of Biomimetic Gray Cast Iron by Laser Treatment

    Science.gov (United States)

    Sui, Qi; Zhou, Hong; Zhang, Deping; Chen, Zhikai; Zhang, Peng

    2017-08-01

    The present study aims to create coupling biomimetic units on gray cast iron substrate by laser surface treatment (LST). LSTs for single-step (LST1) and two-step (LST2) processes, were carried out on gray cast iron in different media (air and water). Their effects on microstructure, thermal fatigue, and post-thermal-cycle wear (PTW) resistance on the specimens were studied. The tests were carried out to examine the influence of crack-resistance behavior as well as the biomimetic surface on its post-thermal-cycle wear behavior and different units, with different laser treatments for comparison. Results showed that LST2 enhanced the PTW behaviors of gray cast iron, which then led to an increase in its crack resistance. Among the treated cast irons, the one treated by LST2 in air showed the lowest residual stress, due to the positive effect of the lower steepness of the thermal gradient. Moreover, the same specimen showed the best PTW performance, due to its superior crack resistance and higher hardness as a result of it.

  19. Experimental study of cyclic creep and high-cycle fatigue of welded joints of St3 steel by the DIC technique

    Energy Technology Data Exchange (ETDEWEB)

    Kibitkin, Vladimir V., E-mail: vvk@ispms.tsc.ru; Solodushkin, Andrey I., E-mail: s.ai@sibmail.com; Pleshanov, Vasily S., E-mail: vsp@ispms.tsc.ru [Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation)

    2015-10-27

    In the paper the mechanisms of plastic deformation and fracture of welded joints of steel St3 were investigated at high-cycle fatigue and cyclic creep by the digital image correlation (DIC) technique. The evolution of strain rate is studied for the following regions: base metal, HAZ, and fusion zone. This strain rate evolution can be considered as a mechanical response of material. Three stages of deformation evolution are shown: deformation hardening (I), fatigue crack initiation (II), and the last stage is related to main crack (III). Two criteria are offered to evaluate the current mechanical state of welded joints.

  20. Use of ultrasonic back-reflection intensity for predicting the onset of crack growth due to low-cycle fatigue in stainless steel under block loading.

    Science.gov (United States)

    Islam, Md Nurul; Arai, Yoshio; Araki, Wakako

    2015-02-01

    The present study proposes the use of ultrasonic back-reflected waves for evaluating low cycle fatigue crack growth from persistent slip bands (PSBs) of stainless steel under block loading. Fatigue under high-low block loading changes the back-reflected intensity of the ultrasonic wave that emanates from the surface. Measuring the change in ultrasonic intensity can predict the start of crack growth with reasonable accuracy. The present study also proposes a modified constant cumulative plastic strain method and a PSB damage evolution model to predict the onset of crack growth under block loads.

  1. Oxide-assisted crack growth in hold-time low-cycle-fatigue of single-crystal superalloys

    Directory of Open Access Journals (Sweden)

    Suzuki Akane

    2014-01-01

    Full Text Available Compressive hold-time low-cycle fatigue is one of the important damage modes in Ni-based superalloy hot-gas path components. In strain controlled LCF, the compressive hold typically degrades fatigue life significantly due to creep relaxation and the resultant generation of tensile stress upon returning to zero strain. Crack initiation typically occurs on the surface, and therefore, the cracks are covered with layers of oxides. Recent finite element modeling based on experimental observations has indicated that the in-plane compressive stress in the alumina layer formed on the surface of the bond coat assists rumpling and, eventually, leads to initiation of cracks. The stress in the oxide layer continues to assist crack extension by pushing the alumina layer along the crack front during the compressive hold. In-situ measurements of the growth strains of alumina were performed using high energy synchrotron X-rays at Argonne National Lab. Specimens of single-crystal superalloys with and without aluminide coatings were statically pre-oxidized to form a layer of alumina at 1093 and 982 ∘C. For the in-situ synchrotron measurements, the specimens were heated up to the pre-oxidation temperatures with a heater. The alumina layers on both bare and coated specimens show compressive in-plane strains at both temperatures. The oxide strains on the superalloys showed dependency on temperature; on the other hand, the oxide strains in the aluminide coatings were insensitive to temperature. The magnitude of the compressive strains was larger on the superalloys than the ones on the aluminide coatings.

  2. Fatigue Damage in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben;

    1996-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Fatigue failure is found to depend both on the total time under load and on the number of cycles.Recent accelerated fatigue research on wood is reviewed, and a discrepancy between...... failure explanation under fatigue and static load conditions is observed. In the present study small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four frequencies ranging from 0.01 Hz...... to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation between stiffness reduction...

  3. A COMPARISON OF THE EFFECTS OF FATIGUE ON SUBJECTIVE AND OBJECTIVE ASSESSMENT OF SITUATION AWARENESS IN CYCLING

    Directory of Open Access Journals (Sweden)

    Wade L. Knez

    2006-03-01

    Full Text Available Maximal effort on a 30 km Time Trial (TT30 was examined to assess whether it would elicit changes in objective and subjective tests of the participants' perception of the environment and their ability to anticipate future occurrences (situation awareness; SA and to determine the effect of post-exercise recovery on SA. Nine experienced (5.22 ± 2.77 years road cyclists had their objective and subjective levels of SA assessed prior to and at the completion of two TT30. The participants' results were compared to measurements of maximal oxygen uptake (VO2max, peak power output (PPO, age and years of competitive cycle racing experience. Fatigue resulting from maximal effort on a TT30 produced significant changes in both the objective and subjective test of SA. Effect sizes of 0.93 and 0.99 indicated that the first and second TT30 were likely or almost certain to have a beneficial effect on the objective assessment of SA. However, the effect sizes of 0.97 and 0.95 relating to the subjective assessment of cognitive performance on the first and second TT30 showed that it was very likely the participants' had an increased difficulty in maintaining SA. A recovery period of up to three minutes post TT30 had no effect on SA. Changes in SA had no relationship with measurements of VO2max, peak power output (PPO, age and years of competitive cycle racing experience. The findings suggest that within a laboratory environment, participants consistently underestimate their ability to make accurate assessments of their cycling environment compared to objective measures of their SA

  4. A damage-coupled multi-axial time-dependent low cycle fatigue failure model for SS304 stainless steel at high temperature

    Institute of Scientific and Technical Information of China (English)

    Yujie LIU; Qing GAO; Guozheng KANG

    2011-01-01

    Based on the time-dependent strain cyclic characteristics and fatigue behaviors of SS304 stainless steel under multi-axial cyclic loading at 700℃, and in the frameof unified visoco-plastic cyclic constitutive model and continuum damage mechanics theory, the damage-coupled multi-axial time-dependent constitutive model and fatigue failure model were proposed. In the model, the evolution equation of damage was introduced in and the time-dependent effects, e.g. holding time, loading rate, were taken into account. The model was applied to the simulation of whole-life cyclic deformation behaviors and prediction of LCF life for SS304 stainless steel in multiaxial time-dependent low cycle fatigue tests. It is shown that the simulated results agree well with experimental ones.

  5. 船舶结构低周疲劳强度分析方法%A low-cycle-fatigue assessment method of ship structures

    Institute of Scientific and Technical Information of China (English)

    田雨; 纪卓尚

    2011-01-01

    为了分析船舶结构低周疲劳强度,以连续介质损伤力学和热力学为基础,将损伤耗散势和塑性应变理论相结合,建立了船舶结构低周疲劳强度模型.分别采用船用高强度402钢疲劳试验结果、Manson-Coffin方程法、通用斜率法及高周疲劳S-N曲线外推法对推导模型的适用性和实用性进行评估,并讨论了船舶结构低周疲劳损伤临界值.比较结果表明,文章推导的模型可以使用应力形式准确地评估船舶局部结构的低周疲劳寿命和损伤,能够方便地对低周疲劳强度进行校核.根据推导模型,低周疲劳强度与等效平均应力幅(ˉσa)和钢材低周疲劳试验特性参数K,m有关,船舶常用钢材的低周疲劳损伤临界值可取为0.3.%A model to analyze the low-cycle-fatigue strength of ship structures was presented. It combined dissipation energy of continuum mechanics with plastic mechanics, and is based on continuum damage mechanics and thermodynamics theories. The applicability of the model has been verified by fatigue test results of high strength steel 402, the Manson-Coffin equation, the universal slopes method, and a method of extrapolating a high-cycle-fatigue S-N curve in a low cycle life region. The convenience of assessing the low-cycle-fatigue strength and damage of local ship structures precisely was proven. It was also implied by the models that the low-cycle-fatigue strength was related to the effective mean amplitude and steel fatigue test constants K and m. The damage limit of steel which is commonly used in shipbuilding was shown to be 0.3.

  6. Effects of warm laser peening at elevated temperature on the low-cycle fatigue behavior of Ti6Al4V alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.Z.; Meng, X.K., E-mail: mengdetiankong10@126.com; Huang, S.; Sheng, J.; Lu, J.Z.; Yang, Z.R.; Su, C.

    2015-09-03

    This study focused on the effects of warm laser peening (WLP) on the fatigue behavior of Ti6Al4V titanium alloy during low-cycle fatigue (LCF) tests. The Ti6Al4V specimens were treated by laser peening at room temperature (RT-LP) and WLP at elevated temperatures from 100 °C to 400 °C. The residual stress relaxation (RSR) tests and LCF tests were conducted subsequently. In addition, the microstructure analysis of fracture surfaces was performed using scanning electron microscope (SEM). Finally, the fracture mechanism of the untreated, RT-LPed and 300 °C-WLPed samples during LCF was revealed. It is found that although the compressive residual stress (CRS) induced by WLP decreases at elevated temperatures, the depth and stability of CRS increase with the increasing treatment temperature, which help to retard the early fatigue crack initiation. Moreover, for the 300 °C-WLPed specimens, the growth rate of effective cracks is decreased and the lengths of crack growth paths are increased by the induced high angle boundaries (HABs) and nano-precipitates. Therefore, specimens treated by WLP at 300 °C are found to have a significantly extended fatigue life when subjected to low-cycle loads. This extended fatigue life is attributed to the great depth and stability of introduced CRS, as well as the enhanced fracture toughness. It can be concluded that 300 °C is the optimal temperature for WLP of Ti6Al4V titanium alloy from the perspective of LCF improvement.

  7. Residual stresses, defects and fatigue cycling in friction stir butt welds in 5383-H321 and 5083-H321 aluminium alloys

    Energy Technology Data Exchange (ETDEWEB)

    James, M.N.; Bradley, G.R. [Mechanical and Marine Engineering, Univ. of Plymouth, Plymouth (United Kingdom); Hattingh, D.G. [Mechanical Engineering, PE Technikon, Port Elizabeth (South Africa); Hughes, D.J.; Webster, P.J. [FaME38, ILL-ESRF, Grenoble (France)

    2003-07-01

    This paper presents results from a substantial investigation of residual stresses and defects associated with single pass and double pass friction stir welds in 5083-H321 and 5383-H321 aluminium alloys. The residual stress part of the paper summarises data on their as-welded magnitude and plate-to-plate variation, together with their modification during applied bending fatigue loading corresponding to cyclic lives of 10{sup 5} and 10{sup 7} cycles. Results indicate fairly low initial peak tensile stresses both parallel with, and perpendicular to, the weld run. Peak tensile stresses occur just outside the tool shoulder with values typically in the range 0-30 MPa. Peak compressive stresses have much higher magnitudes (typically in the range -50 MPa to -140 MPa) and occur at distances of up to 40 mm from the weld centreline. Significant plate-to-plate variability in residual stress magnitudes exists, and fatigue cycling can raise peak tensile stresses by as much as a factor of four (to around 80 MPa). This has significant potential influence on fatigue life prediction. The paper also presents data on the occurrence of partial-fusion defects (PFD's or so-called 'kissing bonds' or 'onion-skin' defects) as a function of tool travel speed (in the range 80-200 mm/min), and their influence on fatigue life. Results indicate that PFD's can sometimes be associated with crack initiation, but that their major effect is more likely to appear when levels of plastic deformation are high, i.e. during relatively fast fatigue crack growth or during fast fracture. (orig.)

  8. Repeated-sprint cycling does not induce respiratory muscle fatigue in active adults: measurements from the powerbreathe® inspiratory muscle trainer.

    Science.gov (United States)

    Minahan, Clare; Sheehan, Beth; Doutreband, Rachel; Kirkwood, Tom; Reeves, Daniel; Cross, Troy

    2015-03-01

    This study examined respiratory muscle strength using the POWERbreathe® inspiratory muscle trainer (i.e., 'S-Index') before and after repeated-sprint cycling for comparison with maximal inspiratory pressure (MIP) values obtained during a Mueller maneuver. The S-Index was measured during six trials across two sessions using the POWERbreathe® and MIP was measured during three trials in a single session using a custom-made manometer in seven recreationally active adults. Global respiratory muscle strength was measured using both devices before and after the performance of sixteen, 6-s sprints on a cycle ergometer. Intraclass correlation coefficients for the POWERbreathe® S-index indicated excellent (p Repeated-sprint cycling had no effect on respiratory muscle strength as measured by the POWERbreathe® (p > 0.99) and during the Mueller maneuver (p > 0.99). The POWERbreathe® S-Index is a moderately reliable, but not equivalent, measure of MIP determined during a Mueller maneuver. Furthermore, repeated-sprint cycling does not induce globalized respiratory muscle fatigue in recreationally-active adults. Key pointsThe S-Index as measured by the POWERbreathe® is a reliable measure of respiratory muscle strengthThe S-Index does not accurately reflect maximal inspiratory pressure obtained from a Mueller maneuverRepeated-sprint cycling does not induce respiratory muscle fatigue as measured by the POWERbreathe® and the Manometer.

  9. Initiation and propagation life distributions of fatigue cracks and the life evaluation in high cycle fatigue of ADI; ADI zai no ko cycle hiro kiretsu hassei shinten jumyo bunpu tokusei to jumyo hyoka

    Energy Technology Data Exchange (ETDEWEB)

    Ochi, Y.; Ishii, A. [University of Electro Communications, Tokyo (Japan); Ogata, T. [Hitachi Metals, Ltd., Tokyo (Japan); Kubota, M. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1997-10-15

    Rotating bending fatigue tests were carried out on austempered ductile cast iron (ADI) in order to investigate the statistical properties of life distributions of crack initiation and propagation, and also the evaluation of fatigue life. The results are summarized as follows: (1) The size of crack initiation sites of the material was represented by a Weibull distribution without regarding to the kinds of crack initiation sites such as microshrinkage and graphite grain. The crack initiation life scattered widely, but the scatter became much smaller as soon as the cracks grew. (2) The crack propagation life Nac which was defined as the minimum crack propagation rate showed lower scatter than the crack initation life. (3) The fatigue life of the material was evaluated well by Nac and the propagation rate after Nac. It was clear that the fatigue life of ductile cast iron was goverened by the scatter of Nac. 8 refs., 13 figs., 4 tabs.

  10. 焊接接头多轴高周疲劳评估方法%Multiaxial high-cycle fatigue assessment method for welded joints

    Institute of Scientific and Technical Information of China (English)

    张晓阳; 刘金勇; 曲先强

    2014-01-01

    本文主要对焊接接头的多轴高周疲劳评估方法展开研究.针对某管板焊接接头,分别采用Von Mises等效应力法、Eurocode3规范方法、IIW规范方法以及修正Wöhler曲线方法( MWCM )计算其多轴高周疲劳损伤寿命,并与试验寿命进行比较.对四种方法预测寿命的标准差进行分析.结果显示,等效应力法能够准确预测比例加载下的多轴高周疲劳寿命,但并不适用于估算非比例加载下的多轴疲劳损伤寿命,且预测结果偏于危险.MWCM既能够适用于比例加载下的多轴高周疲劳损伤寿命预测,也适用于非比例加载下的多轴高周疲劳损伤寿命预测,且预测寿命的标准差较小.%The multiaxial high-cycle fatigue assessment method for welded joints was carried out .Von Mises equivalent stress method, Eurocode3 recommended method , IIW recommended method and Modified Wöhler Curve Method ( MWCM ) were used to evaluate multiaxial high-cycle fatigue life of tube-plate welded joints , and results were compared with experimental fatigue life.Then the standard errors of estimated fatigue life for the four methods were analyzed .Results show that equiva-lent stress method can only be used to calculate multiaxial high-cycle fatigue life under proportional added multiaxial loads, whereas MWCM performed well to evaluate multiaxial fatigue life for welded structures subject to both proportional and non-proportional added multiaxial loads , moreover has a small standard error .

  11. Effects of two different half-squat training programs on fatigue during repeated cycling sprints in soccer players.

    Science.gov (United States)

    Bogdanis, Gregory C; Papaspyrou, Aggeliki; Souglis, Athanasios G; Theos, Apostolos; Sotiropoulos, Aristomenis; Maridaki, Maria

    2011-07-01

    This study compared the effects of two different half-squat training programs on the repeated-sprint ability of soccer players during the preseason. Twenty male professional soccer players were divided into 2 groups: One group (S-group) performed 4 sets of 5 repetitions with 90% of their 1-repetition maximum (1RM), and the other group (H-group) performed 4 sets of 12 repetitions with 70% of 1RM, 3 times per week for 6 weeks, in addition to their common preseason training program. Repeated-sprint ability was assessed before and after training by 10 × 6-second cycle ergometer sprints separated by 24 seconds of passive recovery. Maximal half-squat strength increased significantly in both groups (p < 0.01), but this increase was significantly greater in the S-group compared with the H-group (17.3 ± 1.9 vs. 11.0 ± 1.9%, p < 0.05). Lean leg volume (LLV) increased only in the H-group. Total work over the 10 sprints improved in both groups after training, but this increase was significantly greater in the second half (8.9 ± 2.6%) compared with the first half of the sprint test (3.2 ± 1.7%) only in the S-group. Mean power output (MPO) expressed per liter of LLV was better maintained during the last 6 sprints posttraining only in the S-group, whereas there was no change in MPO per LLV in the H-group over the 10 sprints. These results suggest that resistance training with high loads is superior to a moderate-load program, because it increases strength without a change in muscle mass and also results in a greater improvement in repeated sprint ability. Therefore, resistance training with high loads may be preferable when the aim is to improve maximal strength and fatigue during sprinting in professional soccer players.

  12. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Science.gov (United States)

    Senthilkumar, R.; Arunkumar, N.; Manzoor Hussian, M.

    Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014) alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM) images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  13. A comparative study on low cycle fatigue behaviour of nano and micro Al2O3 reinforced AA2014 particulate hybrid composites

    Directory of Open Access Journals (Sweden)

    R. Senthilkumar

    2015-01-01

    Full Text Available Aluminium based metal matrix composites have drawn more attraction due to their improved properties in structural applications for the past two decades. The fatigue behaviour of composite materials needs to be studied for their structural applications. In this work, powder metallurgy based aluminium (AA2014 alloy reinforced with micro and nano-sized alumina particles were fabricated and consolidated with the hot extrusion process. The evaluation of mechanical properties in the extruded composite was carried out. This composite was subjected to low cycle fatigue test with a constant strain rate. Scanning Electron Microscope (SEM and Transmission Electron Microscope (TEM images were used to evaluate the fatigue behaviour of aluminium-nano composite samples. Enhanced mechanical properties were exhibited by the nano alumina reinforced aluminium composites, when compared to the micron sized alumina reinforced composites. The failure cycle is observed to be higher for the nano alumina reinforced composites when compared with micron sized alumina composites due to a lower order of induced plastic strain.

  14. Microstructure characteristics and temperature-dependent high cycle fatigue behavior of advanced 9% Cr/CrMoV dissimilarly welded joint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingjun [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Lu, Fenggui, E-mail: Lfg119@sjtu.edu.cn [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China); Cui, Haichao [Shanghai Key Laboratory of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200240 (China); Ding, Yuming; Liu, Xia [Shanghai Turbine Plant of Shanghai Electric Power Generation Equipment Co. Ltd., Shanghai 200240 (China); Gao, Yulai, E-mail: ylgao@shu.edu.cn [Shanghai Key Laboratory of Modern Metallurgy and Materials Processing, Shanghai University, Shanghai 200072 (China)

    2014-10-06

    Advanced 9% Cr and CrMoV steels chosen as candidate materials are first welded by narrow-gap submerged arc welding (NG-SAW) to fabricate the heavy section rotor. The present work focuses on studying the high-cycle fatigue (HCF) behavior of advanced 9% Cr/CrMoV dissimilarly welded joint at different temperatures. Conditional fatigue strength of this dissimilarly welded joint was obtained by HCF tests at room temperature (RT), 400 °C and 470 °C. It was observed that the failure occurred at the side of CrMoV base metal (BM), weld metal (WM) and heat affected zone (HAZ) of CrMoV side over 5×10{sup 7} cycles for the specimens tested at RT, 400 °C and 470 °C. The detailed microstructures of BMs, WMs and HAZs as well as fracture appearance were observed by optical microscopy (OM) and scanning electron microscopy (SEM). Precipitation and aggregation of carbides along the grain boundaries were clearly detected with the increase of temperature, which brought a negative effect on the fatigue properties. It is interesting to note that the inclusion size leading to crack initiation became smaller for the HCF test at higher temperature. Therefore, reduction in the inclusion size in a welded joint helps to improve the HCF performance at high temperature.

  15. The significance of ultrafine film-like retained austenite in governing very high cycle fatigue behavior in an ultrahigh-strength MN–SI–Cr–C steel

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, P., E-mail: zhaoping12@mails.tsinghua.edu.cn [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, B.; Cheng, C. [Materials Science and Engineering Research Center, Beijing Jiaotong University, Beijing 100044 (China); Misra, R.D K., E-mail: dmisra2@utep.edu [Laboratory for Excellence in Advanced Steel Research, Department of Metallurgical and Materials Engineering, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968-0520 (United States); Gao, G., E-mail: gaogh@bjtu.edu.cn [Materials Science and Engineering Research Center, Beijing Jiaotong University, Beijing 100044 (China); Bai, B.; Weng, Y. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Materials Science and Engineering Research Center, Beijing Jiaotong University, Beijing 100044 (China)

    2015-10-01

    We elucidate here the very high cycle fatigue (VHCF) behavior of an ultrahigh-strength medium carbon Mn–Si–Cr–C steel processed using the approach of bainite-based quenching and partitioning (BQ&P). The microstructure of BQ&P process comprised of bainite, carbon-depleted martensite, retained austenite (RA) and small amount of martensite/austenite island (M/A). The tensile strength (R{sub m}) and fatigue limit strength after 10{sup 9} cycles (σ{sub w9}) and in the non-failed condition were 1688 MPa and 875 MPa, respectively such that σ{sub w9}/R{sub m} exceeded conventional steels and was 0.52. Two types of failure modes were observed depending on the surface and microstructure, notably surface-induced failure and non-inclusion-induced failure, where the non-inclusion-induced failure was influenced by the microstructure. Inclusion-induced failure was absent. The study underscores that film-like retained austenite was the underlying reason for superior fatigue properties, hitherto not previously obtained.

  16. MODELS OF FATIGUE LIFE CURVES IN FATIGUE LIFE CALCULATIONS OF MACHINE ELEMENTS – EXAMPLES OF RESEARCH

    Directory of Open Access Journals (Sweden)

    Grzegorz SZALA

    2014-03-01

    Full Text Available In the paper there was attempted to analyse models of fatigue life curves possible to apply in calculations of fatigue life of machine elements. The analysis was limited to fatigue life curves in stress approach enabling cyclic stresses from the range of low cycle fatigue (LCF, high cycle fatigue (HCF, fatigue limit (FL and giga cycle fatigue (GCF appearing in the loading spectrum at the same time. Chosen models of the analysed fatigue live curves will be illustrated with test results of steel and aluminium alloys.

  17. Movement-related cortical potential amplitude reduction after cycling exercise relates to the extent of neuromuscular fatigue

    Directory of Open Access Journals (Sweden)

    Jérôme eSpring

    2016-06-01

    Full Text Available Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP, which reflect preparatory brain activity 1.5 seconds before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 minutes at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence.The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (-10±8% and the time trial (-21±9%. The voluntary activation level (VAL (-6±8% and -12±10%, peak twitch (Pt (-21±16% and -32±17% and paired stimuli (P100Hz (-7±11% and -12±13% were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100Hz (r=0.61, and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r=0.64.In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction.

  18. Study of the quantitative assessment method for high-cycle thermal fatigue of a T-pipe under turbulent fluid mixing based on the coupled CFD-FEM method and the rainflow counting method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Y.; Lu, T., E-mail: likesurge@sina.com

    2016-12-01

    Highlights: • Two characteristic parameters of the temperature fluctuations are used for qualitative analysis. • A quantitative assessment method for high-cycle thermal fatigue of a T-pipe is proposed. • The time-dependent curves for the temperature and thermal stress are not always “in-phase”. • Large magnitude of thermal stresses may not mean large number of fatigue cycles. • The normalized fatigue damage rate and normalized RMS temperature are positively related. - Abstract: With the development of nuclear power and nuclear power safety, high-cycle thermal fatigue of the pipe structures induced by the flow and heat transfer of the fluid in pipes have aroused more and more attentions. Turbulent mixing of hot and cold flows in a T-pipe is a well-recognized source of thermal fatigue in piping system, and thermal fatigue is a significant long-term degradation mechanism. It is not an easy work to evaluate thermal fatigue of a T-pipe under turbulent flow mixing because of the thermal loads acting at fluid–structure interface of the pipe are so complex and changeful. In this paper, a one-way Computational Fluid Dynamics-Finite Element Method (CFD-FEM method) coupling based on the ANSYS Workbench 15.0 software has been developed to calculate transient thermal stresses with the temperature fields of turbulent flow mixing, and thermal fatigue assessment has been carried out with this obtained fluctuating thermal stresses by programming in the software platform of Matlab based on the rainflow counting method. In the thermal analysis, the normalized mean temperatures and the normalized root mean square (RMS) temperatures are obtained and compared with the experiment of the test case from the Vattenfall benchmark facility to verify the accuracy of the CFD calculation and to determine the position which thermal fatigue is most likely to occur in the T-junction. Besides, more insights have been obtained in the coupled CFD-FEM analysis and the thermal fatigue

  19. On the effect of deep-rolling and laser-peening on the stress-controlled low- and high-cycle fatigue behavior of Ti-6Al-4V at elevated temperatures up to 550?C

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, IAltenberger, RKNalla, YSano LWagner, RO

    2012-04-01

    The effect of surface treatment on the stress/life fatigue behavior of a titanium Ti-6Al-4V turbine fan blade alloy is investigated in the regime of 102 to 106 cycles to failure under fully reversed stress-controlled isothermal push-pull loading between 25? and 550?C at a frequency of 5 Hz. Specifically, the fatigue behavior was examined in specimens in the deep-rolled and laser-shock peened surface conditions, and compared to results on samples in the untreated (machined and stress annealed) condition. Although the fatigue resistance of the Ti-6Al-4V alloy declined with increasing test temperature regardless of surface condition, deep-rolling and laser-shock peening surface treatments were found to extend the fatigue lives by factors of more than 30 and 5-10, respectively, in the high-cycle and low-cycle fatigue regimes at temperatures as high as 550?C. At these temperatures, compressive residual stresses are essentially relaxed; however, it is the presence of near-surface work hardened layers, with a nanocystalline structure in the case of deep-rolling and dense dislocation tangles in the case of laser-shock peening, which remain fairly stable even after cycling at 450?-550?C, that provide the basis for the beneficial role of mechanical surface treatments on the fatigue strength of Ti-6Al-4V at elevated temperatures.

  20. Low cycle fatigue behaviour of Ti–6Al–5Zr–0.5Mo–0.25Si alloy at room temperature

    Indian Academy of Sciences (India)

    Anil Kumar Nag; K V U Praveen; Vakil Singh

    2006-06-01

    Low cycle fatigue (LCF) behaviour of the near titanium alloy, Ti–6Al–5Zr–0.5Mo–0.25Si (LT26A), was investigated in the ( + ) as well as treated conditions at room temperature. LCF tests were carried out under total strain controlled mode in the range of t/2: from ± 0.60% to ± 1.40%. The alloy shows cyclic softening in both the conditions. Also it exhibits dual slope Coffin–Manson (C–M) relationship in both the treated conditions.

  1. The effect of microstructure, temperature, and hold-time on low-cycle fatigue of As HIP P/M Rene 95

    Science.gov (United States)

    Bashir, S.; Antolovich, S. D.

    1984-01-01

    The effects of microstructure, temperature, plastic strain range, and hold time on the low-cycle fatigue (LCF) life were studied for Rene 95, an important Ni base superalloy used in jet engine disks. It was shown that the life could be varied by approximately an order of magnitude at elevated temperatures by simple heat treatments. The life was largest for the microstructure that promoted the most homogeneous deformation mode. The results are explained using the concept of a synergistic interaction between the deformation mode and boundary oxidation.

  2. The effect of microstructure, temperature, and hold-time on low-cycle fatigue of As HIP P/M Rene 95

    Science.gov (United States)

    Bashir, S.; Antolovich, S. D.

    1984-01-01

    The effects of microstructure, temperature, plastic strain range, and hold time on the low-cycle fatigue (LCF) life were studied for Rene 95, an important Ni base superalloy used in jet engine disks. It was shown that the life could be varied by approximately an order of magnitude at elevated temperatures by simple heat treatments. The life was largest for the microstructure that promoted the most homogeneous deformation mode. The results are explained using the concept of a synergistic interaction between the deformation mode and boundary oxidation.

  3. Correlation of microstructure and low cycle fatigue properties for 13.5Cr1.1W0.3Ti ODS steel

    Science.gov (United States)

    He, P.; Klimenkov, M.; Möslang, A.; Lindau, R.; Seifert, H. J.

    2014-12-01

    Reduced activation oxide dispersion strengthened (ODS) steels are prospective structural materials for the blanket system and first wall components in Tokamak-type fusion reactors. Under the pulsed operation, these components will be predominantly subjected to cyclic thermal-mechanical loading which leads to inevitable fatigue damage. In this work, strain controlled isothermal fatigue tests were conducted for 13.5Cr1.1W0.3Ti ODS steel at 550 °C. The total strain range varied from 0.54% to 0.9%. After thermomechanical processing, 13.5CrWTi-ODS steel exhibits a remarkable lifetime extension with a factor of 10-20 for strain ranges Δε ⩽ 0.7%. 13.5Cr ODS steel shows no cyclic softening at all during the whole testing process irrespective of the strain range. TEM observations reveal ultrastable grain structure and constant dislocation densities around 1014 m-2, independent of the number of cycles or the applied strain amplitude. The presence of the stabilized ultrafine Y-Ti-O dispersoids enhances the microstructural stability and therefore leads to outstanding fatigue resistance for 13.5Cr1.1W0.3Ti-ODS steel.

  4. 气体钻井钻柱疲劳失效周期分析%Contrast of Fatigue Failure Cycles of Drill String during Gas Drilling

    Institute of Scientific and Technical Information of China (English)

    吴立新; 陈平; 祝效华; 张文华; 贾彦杰; 李金和

    2012-01-01

    The development of gas drilling is restricted seriously because of frequent failure of drilling tools. To study the fatigue failure cycle of drill string, the whole drill string was taken in deep-vertical drilling as research subject. Based on Forman model in drill string fatigue life prediction, and taking consideration of the dynamic characteristics of drill string and the effect of local thermal factors on drill string fatigue life in gas drilling,the calculation equation of drill string fatigue life in gas drilling was established. Taking a real borehole in the west of Sichuan province as an example,the fatigue life of drill string in gas drilling was calculated with the established equation, then compared with that in mud drilling. Consequently, the relationship model of the fatigue life in gas and mud drilling was obtained. The results showed that the fatigue life of drilling tools was very sensitive to the initial crack. The initial crack develops larger,the fatigue life drops sharper. The fatigue life of drill string in each interval in gas drilling was obviously lower than that in mud drilling.%钻柱的频繁失效严重制约着气体钻井的发展.为研究钻柱的疲劳失效周期,以深直井全井钻柱为研究对象,基于疲劳寿命预测的Forman模型,综合考虑深直井钻柱的动力学特性和气体钻井过程中局部热因素对钻柱疲劳寿命的影响,建立了气体钻井钻柱疲劳寿命计算方程.以川西某实钻井为例,利用建立的气体钻井钻柱疲劳寿命计算方程,对气体钻井条件下的钻柱疲劳寿命进行了计算,并与该层段钻井液钻井参数下的钻柱疲劳寿命进行了对比,初步获得了气体钻井与钻井液钻井的钻柱疲劳寿命关系模型.分析结果表明,气体钻井的钻柱疲劳寿命对初始裂纹非常敏感,初始裂纹越大钻柱寿命下降越明显;气体钻井各井段钻柱的疲劳寿命均明显低于钻井液钻井.

  5. Mean stress effect under Multi-Axial High Cycle Fatigue loading for cast A356-T6 alloy

    Directory of Open Access Journals (Sweden)

    Houria M. Iben

    2014-06-01

    The obtained results show clearly that: (i the mean stress has detrimental, it is more significant in tension, lesser in tension-torsion case and slightly in torsion tests. (ii The improved DSG criterion describes very well the trend of the fatigue limit as a function of defect size and SDAS.

  6. Study on creep-fatigue damage evaluation for advanced 9%-12% chromium steels under stress controlled cycling

    Institute of Scientific and Technical Information of China (English)

    Peng ZHAO; Fuzhen XUAN

    2011-01-01

    Creep-fatigue interaction is one of the main damage mechanisms in high temperature plants and their components. Assessment of creep-fatigue properties is of practical importance for design and operation of high temperature components. However, the standard evaluation techniques, i.e. time fraction rule and ductility exhaustion one have limitations in accounting for the effects of control mode on the cyclic deformations. It was found that conventional linear cumulative damage rule failed in accurately evaluating the creep-fatigue life under stress controlled condition. The calculated creep damages by time fraction rule were excessively high, which led to overly conservative prediction of failure lives. In the present study, it was suggested that such over estimation of creep damage was mainly caused by anelastic strain upon stress loading. For precise assessment under conditions of stress control, a modified creep damage model accounting for the effect of anelastic creep was proposed. The assessments of creep fatigue data under stress controlled condition were performed with the new approach developed in this paper for a rotor material and a boiler material used in ultra supercritical power plants. It was shown that a more moderate amount of creep damage was obtained by the new model, which gave better predictions of failure life.

  7. 挤压态AZ31镁合金高周疲劳行为%High Cycle Fatigue Properties of Extruded AZ31 Magnesium Alloy

    Institute of Scientific and Technical Information of China (English)

    武艳军; 朱荣; 卢田; 王经涛

    2011-01-01

    为探讨镁合金拉/压强度不对称对疲劳性能的影响,对AZ31镁合金进行了室温应力控制疲劳实验,研究应变幅、峰值应变、循环能量参数随周次的演化,并采用光学显微镜观察表面形貌.结果表明:疲劳初期AZ31镁合金滞后环呈现不对称,200周次后不对称消失;峰值压缩应变随周次增加而变小,在约200周次时转变为拉伸应变;裂纹在材料表面孪晶带处形核,并沿孪晶面扩展.由于AZ31镁合金独特的织构与晶格特点,疲劳过程中交替出现的孪生与去孪生导致了滞后环的不对称,孪晶在裂纹形核及扩展中具有重要作用.%A number of uniaxial stress-controlled cyclic loading experiments are conducted for extruded AZ31 magnesium alloy in order to investigate the influence of tension-compression asymmetry on fatigue properties. The cyclic strain amplitude, peak strain and energy parameter are studied. The results show that the hysteresis loops exhibit asymmetry during initial fatigue cycles ,but this asymmetry vanishes after 200 cycles. The peak compressive strain gradually decreases, and it reverses to tensile strain at about 200 cycle. Fatigue crack initiates at the twin bands in the surface,and the crack propagates along with specific twin boundaries. Twining and detwinning behaviors are often observed in the fatigue process due to texture and deformation mechanism, leading to the hysteresis loop asymmetry. The twins are crucial to the crack initiation and propagation.

  8. Compressive Fatigue in Wood

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben;

    1999-01-01

    An investigation of fatigue failure in wood subjected to load cycles in compression parallel to grain is presented. Small clear specimens of spruce are taken to failure in square wave formed fatigue loading at a stress excitation level corresponding to 80% of the short term strength. Four...... frequencies ranging from 0.01 Hz to 10 Hz are used. The number of cycles to failure is found to be a poor measure of the fatigue performance of wood. Creep, maximum strain, stiffness and work are monitored throughout the fatigue tests. Accumulated creep is suggested identified with damage and a correlation...... is observed between stiffness reduction and accumulated creep. A failure model based on the total work during the fatigue life is rejected, and a modified work model based on elastic, viscous and non-recovered viscoelastic work is experimentally supported, and an explanation at a microstructural level...

  9. Aspectos relacionados à fadiga durante o ciclismo: uma abordagem biomecânica Aspects related with fatigue during cycling: a biomechanical approach

    Directory of Open Access Journals (Sweden)

    Fernando Diefenthaeler

    2008-10-01

    Full Text Available A fadiga muscular pode ser definida como a incapacidade funcional na manutenção de um nível esperado de força. As competições de ciclismo, especialmente provas de estrada, apresentam como característica longa duração e altas intensidades. Tais características resultam na instauração do processo de fadiga, que pode estar associado a mecanismos e fatores metabólicos que afetam os músculos (fadiga periférica e o sistema nervoso central (fadiga central. O objetivo deste trabalho é fazer uma revisão sobre aspectos relacionados com as mudanças na técnica de pedalada e na atividade elétrica dos músculos envolvidos nesse movimento durante o processo de fadiga. Alguns desses aspectos têm sido reportados na literatura e podem ter repercussão na (1 magnitude, direção e sentido de aplicação das forças no pedal; no (2 padrão de ativação muscular; na (3 geração de força e, conseqüentemente, no (4 desempenho do ciclista. No entanto, poucos estudos associam a fadiga muscular ao comportamento das forças aplicadas no pedal e ao padrão da ativação muscular. Os resultados dos estudos revisados demonstram a incapacidade dos ciclistas em manter a força desejada, perda da técnica de pedalada e mudança nos padrões de ativação elétrica sob condições de fadiga.Muscular fatigue can be defined as functional inability to maintain a desired force output. During cycling competition, especially road races, cyclists are required to exercise for extended duration at high intensities. These features often result in fatigue, which can be associated with metabolic mechanisms and factors affecting both muscles (peripheral fatigue and the central nervous system (central fatigue. The aim of this study is to review aspects related to alterations in the pedaling technique and electrical activation of the muscles during a fatiguing exercise bout. Some of these alterations have been reported in the literature and can reflect on the (1

  10. A limit-cycle model of leg movements in cross-country skiing and its adjustments with fatigue.

    Science.gov (United States)

    Cignetti, F; Schena, F; Mottet, D; Rouard, A

    2010-08-01

    Using dynamical modeling tools, the aim of the study was to establish a minimal model reproducing leg movements in cross-country skiing, and to evaluate the eventual adjustments of this model with fatigue. The participants (N=8) skied on a treadmill at 90% of their maximal oxygen consumption, up to exhaustion, using the diagonal stride technique. Qualitative analysis of leg kinematics portrayed in phase planes, Hooke planes, and velocity profiles suggested the inclusion in the model of a linear stiffness and an asymmetric van der Pol-type nonlinear damping. Quantitative analysis revealed that this model reproduced the observed kinematics patterns of the leg with adequacy, accounting for 87% of the variance. A rising influence of the stiffness term and a dropping influence of the damping terms were also evidenced with fatigue. The meaning of these changes was discussed in the framework of motor control.

  11. Simulation Methods for High-Cycle Fatigue-Driven Delamination using Cohesive Zone Models - Fundamental Behavior and Benchmark Studies

    DEFF Research Database (Denmark)

    Bak, Brian Lau Verndal; Lindgaard, Esben; Turon, A.;

    2015-01-01

    A novel computational method for simulating fatigue-driven delamination cracks in composite laminated structures under cyclic loading based on a cohesive zone model [2] and new benchmark studies with four other comparable methods [3-6] are presented. The benchmark studies describe and compare...... the traction-separation response in the cohesive zone and the transition phase from quasistatic to fatigue loading for each method. Furthermore, the accuracy of the predicted crack growth rate is studied and compared for each method. It is shown that the method described in [2] is significantly more accurate...... than the other methods [3-6]. Finally, studies are presented of the dependency and sensitivity to the change in different quasi-static material parameters and model specific fitting parameters. It is shown that all the methods except [2] rely on different parameters which are not possible to determine...

  12. Effect of forging parameters on low cycle fatigue behaviour of Al/basalt short fiber metal matrix composites.

    Science.gov (United States)

    Karthigeyan, R; Ranganath, G

    2013-01-01

    This paper deals with metal matrix composites (MMCs) of Al 7075 alloy containing different weight percentage (2.5, 5, 7.5, and 10) basalt short fiber reinforcement and unreinforced matrix alloy. The samples were produced by the permanent stir casting technique. The casting ingots were cut into blanks to be forged in single stage and double stage, using MN press and graphite-based lubricant. The microstructures and fatigue properties of the matrix alloy and MMC samples were investigated in the as cast state and in the single and double stage forging operations. The microstructure results showed that the forged sample had a uniform distribution of the basalt short fiber throughout the specimens. Evaluation of the fatigue properties showed that the forged samples had higher values than those of the as cast counterparts. After forging, the enhancement of the fatigue strength of the matrix alloy was so significant and high in the case of 2.5 and 5.0 wt. percentage basalt short fiber reinforced MMC, and there was no enhancement in 7.5 and 10 weight percentages short fiber reinforced MMCs. The fracture damage was mainly due to decohesion at the matrix-fiber interface.

  13. Modifications on A-F hardening rule to assess ratcheting response of materials and its interaction with fatigue damage under uniaxial stress cycles

    Science.gov (United States)

    Ahmadzadehrishehri, Gholamreza

    stress levels. The constructed calibration curves were employed to determine strain rate coefficients required to assess ratcheting response of materials under uniaxial loading conditions at various cyclic stress levels. The predicted ratcheting strain values based on the modified hardening rule were found in good agreements with the experimentally obtained ratcheting data over stages I and II under uniaxial loading conditions. The capability of the modified hardening rule to assess ratcheting deformation of materials under multi-step uniaxial loading spectra was also assessed. Subsequent load steps were considerably affected by previous load steps in multi-step loading conditions. Ratcheting strains for low-high stress steps were successfully predicted by the modified hardening rule. High-low loading sequences however resulted in an overestimated reversed ratcheting strain in the later load steps. The modified hardening rule proposed in this thesis was then employed to predict the ratcheting strain and its concurrent interaction with fatigue damage over stress cycles in steel alloys. The interaction of ratcheting and fatigue damage was defined based on mechanistic parameters involving the effects of mean stress, stress amplitude, and cyclic softening/hardening response of materials. The extent of ratcheting effect on the overall damage of steel samples was defined by means of the product of the average ratcheting strain rate over the stress cycles and the applied maximum cyclic stress, while fatigue damage was analysed based on earlier developed energy-based models of Xia-Ellyin and Smith-Watson-Topper. Overall damage induced by both ratcheting and fatigue was calibrated through a weighting factor at various ratios of mean stress/cyclic amplitude stress (sigmam/sigmaa). The estimated lives based on the proposed algorithm at different mean stresses and stress amplitudes showed good agreements as compared with experiments.

  14. Measuring submaximal performance parameters to monitor fatigue and predict cycling performance: a case study of a world-class cyclo-cross cyclist.

    Science.gov (United States)

    Lamberts, Robert P; Rietjens, Gerard J; Tijdink, Hendrik H; Noakes, Timothy D; Lambert, Michael I

    2010-01-01

    Recently a novel submaximal test, known as the Lamberts and Lambert submaximal cycle test (LSCT), has been developed with the purpose of monitoring and predicting changes in cycling performance. Although this test has been shown to be reliable and able to predict cycling performance, it is not known whether it can measure changes in training status. Therefore, the aim of this study was to determine whether the LSCT is able to track changes in performance parameters, and objective and subjective markers of well-being. A world class cyclo-cross athlete (31 years) volunteered to participate in a 10-week observational study. Before and after the study, a peak power output (PPO) test with respiratory gas analysis (VO(2max)) and a 40-km time trial (40-km TT) test were performed. Training data were recorded in a training logbook with a daily assessment of well-being, while a weekly LSCT was performed. After the training period all performance parameters had improved by a meaningful amount (PPO +5.2%; 40-km TT time -2.5%; VO(2max) +1.4%). Increased training loads during weeks 2 and 6 and the subsequent training-induced fatigue was reflected in the increased well-being scores. Changes during the LSCT were most clearly notable in (1) increased power during the first minute of third stage, (2) increased rating of perceived exertion during second and third stages, and (3) a faster heart rate recovery after the third stage. In conclusion, these data suggest that the LSCT is able to track changes in training status and detect the consequences of sharp increases in training loads which seem to be associated with accumulating fatigue.

  15. 高镍铸铁排气歧管低周热疲劳研究%Low Cycle Thermal Fatigue of High Nickel Cast Iron Exhaust Manifold

    Institute of Scientific and Technical Information of China (English)

    袁守利; 王超; 刘志恩; 李雪妮

    2014-01-01

    针对某新开发的车用高镍铸铁排气歧管进行了低周热疲劳寿命预测研究,为获取准确的热边界条件,采用STAR-CCM+与有限元软件进行基于疲劳寿命试验条件的非稳态耦合传热分析,得到了排气歧管的对流换热系数和温度场,建立了具有真实装配关系并施加螺栓预紧力的排气歧管有限元模型,在对等效塑性应变分析的基础上,结合Coffin-Manson公式进行寿命预测。结果表明,在排气歧管开发过程中,采用该方法可以快速对其热疲劳寿命进行评估。%The low cycle thermal fatigue life of a newly developed high nickel cast iron exhaust manifold for vehicle was pre -dicted.In order to obtain a more accurate thermal boundary condition , STAR-CCM+and FE software were applied to analyze non-steady coupled heat transfer based on fatigue life experiment .The convective heat transfer coefficient and temperature field of exhaust manifold were then obtained .The FE model of the exhaust manifold was established with accurate assembly relation a-mong different components and bolt pre -tightening loads .At last, using Coffin-Manson equation , life prediction was completed based on analysis of equivalent plastic strain .The result indicates that the analysis method could speed up thermal fatigue life prediction of an exhaust manifold during developing process .

  16. Fatigue Strength of Weathering Steel

    Directory of Open Access Journals (Sweden)

    Ludvík KUNZ

    2012-03-01

    Full Text Available Fatigue behaviour of Atmofix 52 steel (comparable to COR-TENâ steel exposed to atmospheric corrosion for 20 years was investigated. S-N curves for load symmetrical cycling and cycling with stress ratio R = 0 were determined on specimens detracted from a failed transmission tower. The data were compared with those on material without a rust layer. The fracture surfaces and, in particular, the sites of fatigue crack initiation were analyzed. Substantial decrease of fatigue life and fatigue limit due to corrosion exposition was found. Based on observation of surface layer with corrosion products and on fractographic analysis of failed specimens conclusions on fatigue damage mechanism were drawn. No grain boundary corrosion, which can be responsible for fatigue crack initiation, was observed. Initiation of fatigue cracks was related to surface roughness and took place exclusively on corrosion dimples.DOI: http://dx.doi.org/10.5755/j01.ms.18.1.1335

  17. Study on the Ultra High Cycle Bending Vibration Fatigue Test of Titanium Alloys%钛合金超高周弯曲振动疲劳性能试验

    Institute of Scientific and Technical Information of China (English)

    申景生; 李全通; 吴晓峰; 高潮; 刘青川

    2011-01-01

    Based on the three-point bending method, an ultra high cycle bending vibration fatigue system is developed and the design method of fatigue test specimens is introduced too. The S - N curve of titanium alloy TC17 is determined by the ultra high cycle dissymmetrical bending fatigue system (20 kHz). The result shows that when stress ratio(R) is -1, the S - N curve of titanium alloy TC17 is a continuously declining curve, The specimens continue to fail over 107 stress cycles. In 107 weeks time, the samples don' t happen the fatigue damage, so it does not exist in the traditional sense fatigue limit.%在三点弯曲超高周疲劳试验的基础上,开发了悬臂梁式弯曲振动超高周疲劳试验系统,并介绍了疲劳试验试片的设计方法.利用超高周弯曲疲劳试验系统(20 kHz)测定了钛合金TC17的S-N曲线,结果表明,当应力比R=-1时TC17钛合金的S-N曲线是一条连续下降型曲线,在107周次以后,试样仍未发生疲劳破坏,不存在传统意义上的疲劳极限.

  18. 加载速率对汽轮机转子钢低周疲劳损伤的影响%Effect of Loading Rate on Low-cycle Fatigue Damage of Turbine Rotor Steel

    Institute of Scientific and Technical Information of China (English)

    何建军; 陈荐; 孙清民; 邱玮; 周鹏展

    2011-01-01

    加载速率反映了汽轮机转子启停及运行时温度变化速度与负荷变化速率.对火电厂汽轮机转子30Cr1Mo1V钢在538℃温度下的低周疲劳损伤进行试验研究,研究加载速率对实际低周疲劳损伤和预测低周疲劳损伤的影响.结果表明:在相同的寿命分数下,加载应变速率越大,低周疲劳损伤越小;在同一加载速率下,总应变幅越大对应的低周疲劳损伤也越大;在同等应变幅条件下,转子钢高温低周疲劳预测损伤比实际损伤大,加载速率较低时,转子钢高温低周疲劳预测损伤比较大;加载速率对材料损伤有显著影响的取值范围为0.1%·s-1≤ε≤0.2%·s-1.%Loading rate is associated with high thermo-mechanical loads change rate of the turbine rotors during start-up and shut-down procedures. Low-cycle fatigue damage of power plant turbine rotor 30CrlMolV steel was studied at 538 ℃, and the effect on the actual low-cycle fatigue damage and the predicted low-cycle fatigue damage of the loading rate were also studied. The results show that higher strain loading rate leads to the smaller low-cycle fatigue damage in the same cycle life fraction. The greater total strain amplitude brings the greater low-cycle fatigue damage in the same loading rate. While in the same strain amplitude condition,the predicted low-cycle fatigue damage of the rotor steel is larger than the actual one, the low-cycle fatigue predicted damage is greater in the lower loading rate test process. The loading rate range which has significant effect to the material damage is 0.1%·s-1 ≤ ε≤ 0.2%·s-1.

  19. Repeated-Sprint Cycling Does Not Induce Respiratory Muscle Fatigue in Active Adults: Measurements from The Powerbreathe® Inspiratory Muscle Trainer

    Directory of Open Access Journals (Sweden)

    Clare Minahan, Beth Sheehan, Rachel Doutreband, Tom Kirkwood, Daniel Reeves, Troy Cross

    2015-03-01

    Full Text Available This study examined respiratory muscle strength using the POWERbreathe® inspiratory muscle trainer (i.e., ‘S-Index’ before and after repeated-sprint cycling for comparison with maximal inspiratory pressure (MIP values obtained during a Mueller maneuver. The S-Index was measured during six trials across two sessions using the POWERbreathe® and MIP was measured during three trials in a single session using a custom-made manometer in seven recreationally active adults. Global respiratory muscle strength was measured using both devices before and after the performance of sixteen, 6-s sprints on a cycle ergometer. Intraclass correlation coefficients for the POWERbreathe® S-index indicated excellent (p 0.99 and during the Mueller maneuver (p > 0.99. The POWERbreathe® S-Index is a moderately reliable, but not equivalent, measure of MIP determined during a Mueller maneuver. Furthermore, repeated-sprint cycling does not induce globalized respiratory muscle fatigue in recreationally-active adults.

  20. Changes in urinary amino acids excretion in relationship with muscle activity markers over a professional cycling stage race: in search of fatigue markers.

    Science.gov (United States)

    Corsetti, Roberto; Barassi, Alessandra; Perego, Silvia; Sansoni, Veronica; Rossi, Alessandra; Damele, Clara Anna Linda; Melzi D'Eril, Gianlodovico; Banfi, Giuseppe; Lombardi, Giovanni

    2016-01-01

    The aim of this study was to identify the relationship between metabolic effort, muscular damage/activity indices, and urinary amino acids profile over the course of a strenuous prolonged endurance activity, as a cycling stage race is, in order to identify possible fatigue markers. Nine professional cyclists belonging to a single team, competing in the Giro d'Italia cycling stage race, were anthropometrically characterized and sampled for blood and urine the day before the race started, and on days 12 and 23 of the race. Diet was kept the same over the race, and power output and energy expenditure were recorded. Sera were assayed for muscle markers (lactate dehydrogenase, aspartate aminotransferase, and creatine kinase activities, and blood urea nitrogen), and creatinine, all corrected for plasma volume changes. Urines were profiled for amino acid concentrations, normalized on creatinine excretion. Renal function, in terms of glomerular filtration rate, was monitored by MDRD equation corrected on body surface area. Creatine kinase activity and blood urea were increased during the race as did serum creatinine while kidney function remained stable. Among the amino acids, taurine, glycine, cysteine, leucine, carnosine, 1-methyl histidine, and 3-methyl histidine showed a net decreased, while homocysteine was increased. Taurine and the dipeptide carnosine (β-alanyl-L-histidine) were significantly correlated with the muscle activity markers and the indices of effort. In conclusion, the metabolic profile is modified strikingly due to the effort. Urinary taurine and carnosine seem useful tools to evaluate the muscle damage and possibly the fatigue status on a long-term basis.

  1. Fatigue behavior of ADI: Some specific features

    Energy Technology Data Exchange (ETDEWEB)

    Svejcar, J.; Vechet, S.; Pokluda, J. [Technical Univ. of Brno (Czech Republic). Faculty of Mechanical Engineering

    1997-12-31

    The paper summarizes the results of fatigue tests on austempered ductile iron. Attention is mainly focused on the effect of graphite on crack propagation and on some irregularities exhibited by ADI and other ductile irons, e.g., some specific features of fatigue fracture (especially the occurrence of fatigue striations on intergranular facets), decrease of fatigue limit with increasing UTS, and anomalous dependence of loading cycle amplitude on mean cycle stress.

  2. Evolution of structural phase states of 08Cr18Ni10Ti steel subjected to high-cycle fatigue with electrostimulation

    Institute of Scientific and Technical Information of China (English)

    Molotova; K.Ye.; Konovalov; S.V.; Kozlov; E.V.; Ivanov; Yu.F.; Gromov; V.E.

    2005-01-01

    This work contains analysis results from the study of defective substructure and phase state of steel subjected to fatigue loading and pulse current action in order to increase its fatigue life.……

  3. GH4169镍基高温合金的超高周疲劳性能%Very High Cycle Fatigue Properties of GH4169 Ni-based Superalloy

    Institute of Scientific and Technical Information of China (English)

    燕怒; 韩晓琪; 余泳华; 游敏; 彭文杰

    2016-01-01

    在室温下使用超声疲劳试验机对GH4169镍基高温合金进行了105~108周次的疲劳试验,获得了S-N曲线并观察了疲劳断口形貌.结果表明:S-N曲线呈逐渐下降的趋势,没有出现疲劳极限,在超过107周次的循环后试样仍发生疲劳破坏;疲劳裂纹的萌生位置并未随S-N曲线的下降呈现出规律性,裂纹主要萌生于试样表面,少量萌生于试样内部;在超声疲劳载荷作用下试样同时存在塑性和脆性两种破坏方式.%The fatigue tests in 105-108 cycles of GH4169 Ni-based superalloy were carried out at ambient temperature by the ultrasonic fatigue tester, and then the S-N curve was obtained and the fatigue fracture morphology was observed.The results show that the S-N curve exhibited a descending trend and the fatigue limit was not observed.The fatigue fracture of the specimen still occurred when the number of cycles exceeded 107 .The fatigue crack initiation positions didn′t show the regularity with the S-N curve descending.The fatigue cracks mostly initiated from the surface and few from internal of the specimen.Under the ultrasonic load the plastic and brittle failure modes were both found in the specimen.

  4. Fatigue approach for addressing environmental effects in fatigue usage calculation

    Energy Technology Data Exchange (ETDEWEB)

    Wilhelm, Paul; Rudolph, Juergen [AREVA GmbH, Erlangen (Germany); Steinmann, Paul [Erlangen-Nuremberg Univ., erlangen (Germany). Chair of Applied Mechanics

    2015-04-15

    Laboratory tests consider simple trapezoidal, triangle, and sinusoidal signals. However, actual plant components are characterized by complex loading patterns and periods of holds. Fatigue tests in water environment show, that the damage from a realistic strain variation or the presence of hold-times within cyclic loading results in an environmental reduction factor (Fen) only half that of a simple waveform. This study proposes a new fatigue approach for addressing environmental effects in fatigue usage calculation for class 1 boiler and pressure vessel reactor components. The currently accepted method of fatigue assessment has been used as a base model and all cycles, which have been comparable with realistic fatigue tests, have been excluded from the code-based fatigue calculation and evaluated directly with the test data. The results presented show that the engineering approach can successfully be integrated in the code-based fatigue assessment. The cumulative usage factor can be reduced considerably.

  5. Probabilistic Fatigue Damage Program (FATIG)

    Science.gov (United States)

    Michalopoulos, Constantine

    2012-01-01

    FATIG computes fatigue damage/fatigue life using the stress rms (root mean square) value, the total number of cycles, and S-N curve parameters. The damage is computed by the following methods: (a) traditional method using Miner s rule with stress cycles determined from a Rayleigh distribution up to 3*sigma; and (b) classical fatigue damage formula involving the Gamma function, which is derived from the integral version of Miner's rule. The integration is carried out over all stress amplitudes. This software solves the problem of probabilistic fatigue damage using the integral form of the Palmgren-Miner rule. The software computes fatigue life using an approach involving all stress amplitudes, up to N*sigma, as specified by the user. It can be used in the design of structural components subjected to random dynamic loading, or by any stress analyst with minimal training for fatigue life estimates of structural components.

  6. Investigation of ultra-high cycle fatigue behavior of TC17 alloy at a frequency of 20kHz%20kHz下TC17钛合金超高周疲劳性能研究

    Institute of Scientific and Technical Information of China (English)

    高潮; 程礼; 彭桦; 申景生; 邱辰霖; 刘延杰

    2012-01-01

    The bending fatigue system was developed using the piezoelectric ultrasonic fatigue testing technology and experimental investigation of the ultra-high cycles fatigue life for TC17 alloy subjected to bending fatigue deformation has been conducted.The experimental resultes show that the specimens were tested to failure in the range of 107-109 cycles and the fatigue limit decreases with the increasing number of cycles between 107 and 109 for R=-1.0 and there was no obvious fatigue limit.The S-N curve for TC17 is a continuous decline curve between 107 and 109 cycles.The fractographic study showes that fatigue failures are mostly initiated at the surface of the test specimens.When there are subsurface inclusions,fatigue cracks initiated from subsurface inclusions,and the composition of inclusions is mainly oxides of aluminums.%应用基于压电超声疲劳试验技术开发的20kHz弯曲疲劳试验系统,完成了室温下TC17合金超高周疲劳试验.结果表明:在疲劳循环大于107周次时,试样仍会发生疲劳断裂,疲劳强度随循环次数的增加而下降,并不存在明显的疲劳极限.TC17合金的应力-寿命(S-N)曲线在107~109周次的范围内为连续下降型.光学显微镜发现,TC17合金的疲劳破坏主要起源于试样表面.当存在夹杂物时,疲劳裂纹从距离表面很近的夹杂物处萌生,能谱分析表明夹杂物的成分主要是铝的氧化物.

  7. Application of cyclic J-integral to low cycle fatigue crack growth of Japanese carbon steel pipe

    Energy Technology Data Exchange (ETDEWEB)

    Miura, N.; Fujioka, T.; Kashima, K. [and others

    1997-04-01

    Piping for LWR power plants is required to satisfy the LBB concept for postulated (not actual) defects. With this in mind, research has so far been conducted on the fatigue crack growth under cyclic loading, and on the ductile crack growth under excessive loading. It is important, however, for the evaluation of the piping structural integrity under seismic loading condition, to understand the fracture behavior under dynamic and cyclic loading conditions, that accompanies large-scale yielding. CRIEPI together with Hitachi have started a collaborative research program on dynamic and/or cyclic fracture of Japanese carbon steel (STS410) pipes in 1991. Fundamental tensile property tests were conducted to examine the effect of strain rate on tensile properties. Cracked pipe fracture tests under some loading conditions were also performed to investigate the effect of dynamic and/or cyclic loading on fracture behavior. Based on the analytical considerations for the above tests, the method to evaluate the failure life for a cracked pipe under cyclic loading was developed and verified. Cyclic J-integral was introduced to predict cyclic crack growth up to failure. This report presents the results of tensile property tests, cracked pipe fracture tests, and failure life analysis. The proposed method was applied to the cracked pipe fracture tests. The effect of dynamic and/or cyclic loading on pipe fracture was also investigated.

  8. T55-L-714 Engine Development and Qualification. Engine M11 Low Cycle Fatigue Test Report. (0213-005-87),

    Science.gov (United States)

    1987-12-01

    feature items) that are or may be scheduled for inclusion in production engines and which may be sensitive to this type of cycling. Engine M-11 testing was...Remove SGB seal 2-300-138-01 and install seal R. Willard 2-300-138-02G. M. Wolfram M. Zoccoli 2.4) Check balance GP rotors, correct as necessary to

  9. Effect of shot peening treatment in the behavior of residual stress in duplex stainless steel during medium cycle fatigue; Efeito do tratamento de shot peening no comportamento das tensoes residuais em aco inoxidavel duplex durante fadiga de medio ciclo

    Energy Technology Data Exchange (ETDEWEB)

    Pedrosa, Peter D.S.; Rebello, Joao Marcos A. [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEMM/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Metalurgica e de Materiais; Fonseca, Maria P. Cindra, E-mail: mcindra@vm.uff.b [Universidade Federal Fluminense (PGMEC/UFF), Niteroi, RJ (Brazil). Escola de Engenharia. Programa de Pos-Graduacao em Engenharia Mecanica

    2010-07-01

    The lifetime of duplex stainless steel parts experiencing cyclic fatigue is directly influenced by the residual stresses present in the ferrite and austenite phases. The motivation for this work was to analyze the behaviour of the residual stresses fields introduced by shot peening treatment in both phases, in the sample surface as in the subsurface layers, in low fatigue cycles, using the X-rays diffraction technique. The results shows that the compressive residual stresses introduced by the shot peening treatment in both phases improved fatigue life of the material. However, the cyclical loads produce partial or total relief in these residual stresses fields. It was verified that the shot peening process induced the formation of microcracks only in the ferrite phase. The largest variations in the total compressive residual stresses fields also occurred in this phase. The samples surfaces were analyzed by scanning electron microscopy. (author)

  10. Low-cycle Fatigue Behavior of Permanent-mold Cast Al-Si-Cu-Er Alloy%金属型铸造Al-Si-Cu-Er合金的低周疲劳行为

    Institute of Scientific and Technical Information of China (English)

    吴伟; 王爽; 吕伟; 车欣

    2011-01-01

    通过在不同外加总应变幅下进行应变控制的室温低周疲劳试验,探讨了金属型铸造A1-Si-Cu-Er合金的疲劳变形和断裂行为.结果表明,在低周疲劳加载下,金属型铸造Al-Si-Cu-Er合金表现为循环应变硬化、循环稳定;金属型铸造Al-Si-Cu-Er合金的弹性应变幅、塑性应变幅与疲劳断裂时的载荷反向周次之间的关系可分别用Basquin和Coffin-Manson公式描述;金属型铸造Al-Si-Cu-Er合金在低周疲劳加载条件下,裂纹均以穿晶方式萌生于试样表面,并以穿晶方式扩展.%The fatigue deformation and fracture behavior of permanent-mold cast Al-Si-Cu-Er alloy were investigated by low-cycle fatigue test at room temperature under different total strain amplitudes. The results show that permanent-mold cast Al-Si-Cu-Er alloy exhibits cyclic strain hardening and stable cyclic stress response during fatigue deformation, which mainly depend on the imposed total strain. The relation between elastic strain amplitude, plastic strain amplitude and reversals to failure can be described by Coffin-Manson and Basquin equations,respectiveiy. In addition, the fatigue cracks initiate at the free surface of fatigue specimens and propagate in a transgranular mode under low-cycle fatigue.

  11. Fatigue evaluation algorithms: Review

    Energy Technology Data Exchange (ETDEWEB)

    Passipoularidis, V.A.; Broendsted, P.

    2009-11-15

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time series can be simulated. The predictions are validated against fatigue life data both from repeated block tests at a single stress ratio as well as against spectral fatigue using the WISPER, WISPERX and NEW WISPER load sequences on a Glass/Epoxy multidirectional laminate typical of a wind turbine rotor blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects. In general, FADAS performs well in predicting life under both spectral and block loading fatigue. (author)

  12. Caffeine Alters Blood Potassium and Catecholamine Concentrations but not the Perception of Pain and Fatigue with a 1 km Cycling Sprint

    Directory of Open Access Journals (Sweden)

    Dean M. Cordingley

    2016-07-01

    Full Text Available Background: Caffeine has been used by some athletes to improve short-term high-intensity exercise performance; however, the literature is equivocal. Objectives: The objective of this study was to investigate the effects of caffeine on plasma potassium and catecholamine concentrations, pain and fatigue perception, to determine whether potassium ion handling and altered perception related to the central nervous system are associated with enhanced performance during a 1 km cycling time trial.  Methods: Thirteen well trained men with a mean age of 27 ± 6 yrs (body mass: 76.4 ± 6.4 kg, height: 180 ± 7 cm, and max: 57.5 ± 4.6 ml·kg-1·min-1 were recruited.  Participants were randomized to a caffeine (5 mg·kg-1 or a placebo condition using a double blind, cross over design.  Results: Caffeine had no significant effects on the 1 km time-trial performance indicators of time (82.1 ± 2.4 vs. 81.9 ± 3.9s, peak (633.0 ± 83.6 vs. 638.7 ± 110.1 watts or average power (466.0 ± 37.3 vs. 467.5 ± 59.9 watts; caffeine and placebo conditions respectively.  In addition, caffeine had no significant effect on oxygen consumption ( (4.11 ± 0.24 vs 4.06 ± 0.29 L,the perception of pain (5.6 ± 2.4 vs. 5.5 ± 2.6 or fatigue (7.1 ± 1.8 vs.7.1 ± 1.8: caffeine and placebo conditions respectively.  There was a significantly greater increase in post-exercise blood lactate (p<0.05 and catecholamines (p<0.05 as well as a lower pre-exercise blood potassium concentration (p<0.05 in the caffeine condition. Conclusions: The results suggest that caffeine can enhance certain metabolic parameters, but these changes were unable to augment short-distance (1km, high-intensity cycling performance. Keywords: ergogenic, anaerobic exercise, performance, oxygen consumption

  13. Fatigue Evaluation Algorithms: Review

    DEFF Research Database (Denmark)

    Passipoularidis, Vaggelis; Brøndsted, Povl

    A progressive damage fatigue simulator for variable amplitude loads named FADAS is discussed in this work. FADAS (Fatigue Damage Simulator) performs ply by ply stress analysis using classical lamination theory and implements adequate stiffness discount tactics based on the failure criterion of Puck......, to model the degradation caused by failure events in ply level. Residual strength is incorporated as fatigue damage accumulation metric. Once the typical fatigue and static properties of the constitutive ply are determined,the performance of an arbitrary lay-up under uniaxial and/or multiaxial load time...... blade construction. Two versions of the algorithm, the one using single-step and the other using incremental application of each load cycle (in case of ply failure) are implemented and compared. Simulation results confirm the ability of the algorithm to take into account load sequence effects...

  14. A Life Prediction Model for Low Cycle Fatigue Based on Continuum Damage Mechanics%一种基于连续损伤力学的低周疲劳寿命预测模型

    Institute of Scientific and Technical Information of China (English)

    陈凌; 张贤明; 欧阳平

    2015-01-01

    According to the basic conservation law of continuous media and continuum damage me-chanics,the decrease of effective bearing area caused by the material fatigue damage could be expressed as a function of mean strain.The low cycle fatigue damage evolution of the micro crack stage and the fatigue crack stage were analyzed.And then,a model for the life prediction of low cycle fatigue was es-tablished.Through low cycle fatigue experiments with smooth specimens of 31 6L steel at 420℃ under stress control,the damage evolution were described and the fatigue life prediction was carried out by the method mentioned above.Results show that the micro crack stage is the main stage of low cycle fatigue life consumption of material.And compared with the experimental data,it is found that the predicted results which are obtained by the sampling data of different life periods are in good agree-ment with the experimental ones.%基于连续介质基本守恒定律和连续损伤力学,可将材料疲劳损伤造成的有效承载面积减小表示为平均应变的函数,在此基础上,按微裂纹阶段和疲劳裂纹阶段对材料低周疲劳的损伤演化进行了分析,并建立了一种低周疲劳寿命预测模型。对316L 钢光滑试样进行420℃环境下应力控制的低周疲劳试验,采用上述方法进行损伤描述和寿命预测。结果表明微裂纹阶段是材料低周疲劳寿命消耗的主要阶段,采用各寿命段采样数据获得的寿命预测结果与试验结果较符合。

  15. In Situ Imaging of High Cycle Fatigue Crack Growth in Single Crystal Nickel-Base Superalloys by Synchrotron X-Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Liu; Husseini, Naji S.; Torbet, Christopher J.; Kumah, Divine P.; Clarke, Roy; Pollock, Tresa M.; Jones, J.Wayne (Michigan)

    2008-05-01

    A novel X-ray synchrotron radiation approach is described for real-time imaging of the initiation and growth of fatigue cracks during ultrasonic fatigue (f=20 kHz). We report here on new insights on single crystal nickel-base superalloys gained with this approach. A portable ultrasonic fatigue instrument has been designed that can be installed at a high-brilliance X-ray beamline. With a load line and fatigue specimen configuration, this instrument produces stable fatigue crack propagation for specimens as thin as 150 {mu}m. The in situ cyclic loading/imaging system has been used initially to image real-time crystallographic fatigue and crack growth under positive mean axial stress in the turbine blade alloy CMSX-4.

  16. Effect of Thickness on Very High Cycle Bending Fatigue Properties of 5083 Aluminum Alloy Sheet%厚度对5083铝合金薄板超高周弯曲疲劳性能的影响

    Institute of Scientific and Technical Information of China (English)

    梁凌宇; 王弘; 董轩成

    2016-01-01

    在超声振动载荷下,对2 mm 和5 mm 厚5083铝合金薄板进行了超高周弯曲疲劳试验,研究了铝合金薄板厚度对其超高周弯曲疲劳性能的影响。结果表明:5083铝合金薄板的 S-N曲线呈连续下降特征,试样在109周次处仍会发生断裂,与一般铝合金的疲劳特征一致,即传统的疲劳极限并不存在;受尺寸效应影响,2 mm 厚薄板的弯曲疲劳强度高于5 mm 厚薄板的;尺寸效应在高周阶段对薄板疲劳性能的影响最大,超高周阶段的影响逐渐减弱;试样的疲劳裂纹起源于表面,表现为多源萌生;同应力幅值下不同厚度的5083铝合金薄板断口具有相同的解理特征。%Very high cycle bending fatigue test was carried out on 5083 aluminum alloy sheet with thickness of 2 mm and 5 mm at ultrasonic vibratory load,and the effect of thickness of aluminum alloy sheet on very high cycle bending fatigue properties of the sheet was studied.Results show that the S-N curves of the sheet exhibited continuous decline characteristics,the specimens fractured in the life cycle of 10 9 .There was no traditional fatigue limit in the testing as conventional aluminum alloys used to be.Bending fatigue strength of the sheet with thickness of 2 mm was higher than that of the sheet with thickness of 5 mm,this was the result of size effect.In high cycle stage,the effect of size effect on fatigue property was the largest,and the effect gradually weakened in very high cycle stage.It was found that all fatigue cracks emanated from the specimen surface,and the crack was multiple sources.5083 aluminum alloy sheet with different thicknesses had the same cleavage fracture characteristics at the same stress amplitude.

  17. Studies of Microtexture and Its Effect on Tensile and High-Cycle Fatigue Properties of Laser-Powder-Deposited INCONEL 718

    Science.gov (United States)

    Qi, Huan; Azer, Magdi; Deal, Andrew

    2012-11-01

    The current work studies the microstructure, texture, and mechanical properties of INCONEL 718 alloy (IN718) produced by laser direct metal deposition. The grain microstructure exhibits an alternative distribution of banded fine and coarse grain zones as a result of the rastering scanning pattern. The effects of the anisotropic crystallographic texture on the tensile and high-cycle fatigue (HCF) properties at room temperature are investigated. Tensile test results showed that the tensile strength of laser-deposited IN718 after direct aging or solution heat treatment is equivalent to the minimum-forged IN718 properties. The transverse direction (relative to the laser scanning direction) produces >10 pct stiffer modulus of elasticity but 3 to 6 pct less tensile strength compared to the longitudinal direction due to the preferential alignment of grains having and directions parallel to the tensile loading direction. Laser-deposited IN718 with good metallurgical integrity showed equivalent HCF properties compared to the direct-aged wrought IN718, which can be attributed to the banded grain size variation and cyclic change of inclining grain orientations resulted from alternating rastering deposition path.

  18. Durability Of X10CrMoVNb9-1 Steel Tubes Under Low-Cycle Fatigue And Creep Conditions After Bending With Local Induction Heating

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2015-09-01

    Full Text Available The paper contains the results of theoretical and experimental research on the tube bending process used in the manufacturing of X10CrMoVNb9-1 steel tubes with dimensions 530 × 90 mm. An innovative technology in which the tube bending is coupled with local induction heating and the results of finite-element numerical modelling of tube bending using Simufact Forming 11.0 software are presented. A change of the geometry in the cross-section of the bend area was subjected to analysis, including the ovalization of the cross-section and the wall thickness in the regions subject to tension and compression. The geometrical features of the bend determined on the basis of numerical calculations were compared with the measurement results obtained in industrial conditions. Basic mechanical properties of the tube in the as-delivered condition and of the fabricated tube bend were determined using tensile, hardness, impact, low-cycle fatigue and creep tests. It was proved that the tube bend made of the X10CrMoVNb9-1 steel, obtained by the proposed technology, meets the requirements of the applicable standards.

  19. 低周疲劳过程损伤变量的复合分析法和三阶段损伤演化模型%Combination Analyzing Method to Characterize Damage Variable and Three Stage Model of Fatigue Damage in Low-cycle Fatigue

    Institute of Scientific and Technical Information of China (English)

    吴健栋; 蔡志鹏; 汤之南; 李克俭; 王梁; 潘际銮; 霍鑫; 许晓进

    2015-01-01

    采用疲劳损伤力学的方法分析NiCrMoV钢核电汽轮机低压焊接转子1︰1模拟件接头低周疲劳过程,针对损伤变量表征方法中的弹性模量法和应力幅值法应用的局限性,并考虑循环前期循环软化造成的材料的损伤,提出适用于循环软化材料的低周疲劳全过程损伤变量表征的复合分析法,提高了疲劳过程各阶段材料损伤测量的准确性;提出低周疲劳损伤过程的三阶段损伤模型,将焊接接头的疲劳损伤过程分为应力松弛、微空洞和微裂纹的萌生和扩展以及宏观裂纹的萌生和扩展三个阶段,并用于分析焊接接头的低周疲劳损伤过程.试验结果表明,在NiCrMoV 钢汽轮机低压焊接转子接头的低周疲劳损伤过程分析中,采用复合分析法表征损伤变量较弹性模量法和应力幅值法更为合理,且三阶段疲劳损伤模型能很好地反映疲劳损伤过程.%The fatigue damage mechanics is used to analyze the low-cycle fatigue process of 1︰1 simulated sample of NiCrMoV steel nuclear turbine LP welded rotor. A combination analyzing method(CAM) is presented for the limitations of elastic modulus method(EM) and stress amplitude method(SAM) on the definition of fatigue damage variable, which considers material damage during cyclic softening and applies to low-cycle fatigue of cyclic softening materials and improves the accuracy of damage measurement of fatigue process. A new fatigue damage model—three stage model of fatigue damage(TSM-FD) is also proposed to analyze the low-cycle fatigue process of welded joint, which divides fatigue process of welded joint into three stages, as stress relaxation, initiation and propagation of micro hole and crack and initiation and propagation of macro crack. The results show that, in low-cycle fatigue analysis of NiCrMoV steel nuclear turbine LP welded rotor, CAM is more reasonable than EM and SAM to characterize damage variable, and TSM-FD can well describe the

  20. 400t/h锅炉汽包低周疲劳寿命的研究%Low-cycle Fatigue Life of 400t/h Boiler Drum

    Institute of Scientific and Technical Information of China (English)

    沈建平; 段鹏

    2012-01-01

    The boiler drum of a peaking unit was taken as research subject, and the stress state of the 400t/h boiler drum, under the boundary conditions of media pressure, work temperature load, etc. , was calculated and analyzed based on the three-dimensional finite element numerical calculation method. It is shown that stress is the most concentrated on the inner joint corner of the downtake connector along the longitudinal direction of the boiler drum. However, the mechanical stress produced by the work pressure is far more dominant than the thermal stress. With regard to this risk assessment point, the low-cycle fatigue life was studied on differential stress-cycle work condi- tions.%基于三维有限元数值计算方法,对某电站调峰机组的400 t/h锅炉汽包进行了压力和温度等载荷下的应力状态计算和分析。研究表明,下降管接管在汽包轴线方向上的内拐角处,应力集中最严重,其合成应力中由介质压力形成的机械应力为主要构成部分,温度应力所占比重较小。对此危险考核点,进行不同应力循环工况下的汽包低周疲劳寿命研究。

  1. How surface damage removal affects fatigue life

    Science.gov (United States)

    Jeelani, S.; Scott, M. A.

    1988-01-01

    The effect of the removal of work hardened surface layers from specimens of 2024-T4 aluminum alloy and AISI-4130 steel on their fatigue lives has been investigated. Specimens were fatigued at selected stress levels for a given number of cycles, and the surface layer was removed followed by subsequent fatigue cycling. Results confirm that when a material is subjected to fatigue loading, damage accumulates in the surface layers in the form of work hardening. Removal of the surface layer brings the specimen back to its pre-fatigued condition.

  2. 一种新的低周疲劳损伤累积模型及试验验证%New Low Cycle Fatigue Damage Accumulation Model and Experimental Results

    Institute of Scientific and Technical Information of China (English)

    张磊; 杨自春; 曹跃云

    2011-01-01

    基于连续介质损伤力学理论,依据疲劳损伤的加载参数与损伤变量之间的不可分割性等特点,建立了一种新的低周疲劳损伤累积模型。经过对00Cr17Ni14Mo2钢和2.25Cr1Mo钢的低周疲劳试验数据的分析,得到了相应的疲劳损伤累积模型。将该模型与不同的损伤累积模型相比较,结果表明:该累积模型的计算结果与试验结果能更好地一致,能更真实地反映损伤的非线性累积过程。该累积模型考虑了损伤和应变的耦合作用以及平均应力、疲劳极限对其的影响,且物理意义明确,具有一定的实用价值。%Based on the theory of continuum damage mechanics,a new low cycle fatigue damage model was established,which combined the unseparable characteristics of the damage variables and loading parameters.Through the analysis of test data of the low cycle fatigue damage of steel 00Cr17Ni14Mo2 and 2.25Cr1Mo,the fatigue damage evolution equations under different plastic strain amplitudes were acquired,which are in good agreement with the experimental results.While the constants of new low cycle fatigue damage model were obtained by fitting,two fatigue damage evolution equations of steel 00Cr17Ni14Mo2 and 2.25Cr1Mo were given respectively.And comparing with several fatigue damage accumulation models,the results show that except linear damage accumulation model,the rest of the models could reflect the nonlinear damage accumulation process of material.The new model established herein accords the experimental results best,which truly reflects the nonlinear damage accumulation process,and takes the coupling of damage and strain,fatigue limit,mean pressure into consideration.Therefore,the new damage model has a clear physical meaning and practical value.

  3. Low Cycle Fatigue Life Prediction of Metallic Materials under Multi-Axial Nonproportional Loading: An Overview%金属材料多轴非比例低周疲劳寿命预测概述

    Institute of Scientific and Technical Information of China (English)

    吴昊; 仲政

    2016-01-01

    工程中的大多数构件承受着比例或非比例多轴疲劳荷载作用,而非比例强化效应会大大影响其多轴疲劳寿命.精确预测金属材料在多轴非比例荷载下的低周疲劳寿命需要同时考虑等向强化、随动强化及非比例强化效应下的材料本构关系,并在临界面上计算出相应应力应变值,根据不同疲劳失效形式选取不同类型的失效模型来确定疲劳寿命.本文针对这一过程中重要知识点进行阐述,并介绍了相关模型与理论.%Many engineering components are subjected to multiaxial fatigue loading which can be proportional or non-proportional.The non-proportional hardening effect has a significant influence on multiaxial fatigue life.Accurate prediction of the low cycle fatigue life of metallic materials under multiaxial non-proportional loading should employ constitutive relations considering isotropic hardening,kinematic hardening and non-proportional hardening effects simultaneously.By calculating the corresponding stress and strain components on the critical plane,the fatigue life could be estimated with the help of different fatigue failure models.This paper gives an overview of the concepts concerning the fatigue life predictions,as well as the related models and theories.

  4. THE EFFECTS OF A STRETCH-SHORTENING CYCLE FATIGUE PROTOCOL ON KNEE KINEMATICS DURING RUNNING IN UNTRAINED CHILDREN

    Directory of Open Access Journals (Sweden)

    Tsatalas T

    2010-06-01

    Full Text Available The purpose of the current study was to examine the effects of an intensive stretch shortening-cycle (SSC protocol (100 plyometric jumps on knee kinematics during running on a treadmill in healthy children using 3D kinematics. Twelve healthy and untrained children volunteered. Their mean + age, height and weight was 10,1±0,5 years, 142± 6,1 cm and 37 ±4,6kg, respectively. Muscle damage of lower extremities was caused by 100 maximal intensity plyometric jumps performed as 10 sets of 10 continuous jumps with a 30 second restperiod between sets. Muscle damage indicators [delayed onset muscle soreness (DOMS, knee-joint flexion/extension angles during running on a treadmill (speed at 2.8 m/s] were assessed pre-, 0h, 24h, 48h and 72h post exercise. Kinematic data were captured at 100 Hz using a six-camera 3D motion analysis system (VICON 612. Repeated measures one-way ANOVA with five levels were utilised for the parameters. Allmuscle damage indicators revealed significant changes post- compared to pre-exercise data (p<0.05. Kinematic analysis revealed that the 100 plyometric jumps decreased knee-joint angles at different phases of stance (impact, support, push-off phase. These changes were more evident just after (0h the protocol and 48h after this, and remained till 72h post at a great extent (p<0.05. Lastly, children suffered from delayed muscle soreness on their thigh muscles which remained only 24 hours after this (p<0.05. Muscle damage causesalterations in treadmill running in knee kinematics of untrained children probable due to differentiation of their central nervous system running strategy

  5. Fatigue Strain and Damage Analysis of Concrete in Reinforced Concrete Beams under Constant Amplitude Fatigue Loading

    Directory of Open Access Journals (Sweden)

    Fangping Liu

    2016-01-01

    Full Text Available Concrete fatigue strain evolution plays a very important role in the evaluation of the material properties of concrete. To study fatigue strain and fatigue damage of concrete in reinforced concrete beams under constant amplitude bending fatigue loading, constant amplitude bending fatigue experiments with reinforced concrete beams with rectangular sections were first carried out in the laboratory. Then, by analyzing the shortcomings and limitations of existing fatigue strain evolution equations, the level-S nonlinear evolution model of fatigue strain was constructed, and the physical meaning of the parameters was discussed. Finally, the evolution of fatigue strain and fatigue damage of concrete in the compression zone of the experimental beam was analyzed based on the level-S nonlinear evolution model. The results show that, initially, fatigue strain grows rapidly. In the middle stages, fatigue strain is nearly a linear change. Because the experimental data for the third stage are relatively scarce, the evolution of the strain therefore degenerated into two phases. The model has strong adaptability and high accuracy and can reflect the evolution of fatigue strain. The fatigue damage evolution expression based on fatigue strain shows that fatigue strain and fatigue damage have similar variations, and, with the same load cycles, the greater the load level, the larger the damage, in line with the general rules of damage.

  6. High-Temperature Low-Cycle Fatigue Properties of GH4169 Ni-based Superalloy%GH4169镍基高温合金的高温低周疲劳性能

    Institute of Scientific and Technical Information of China (English)

    姚亮亮; 张显程; 刘峰; 涂善东; 马聪

    2016-01-01

    对国产GH4169镍基高温合金进行了总应变控制的高温低周疲劳试验,研究了其疲劳性能,分析了断口形貌.结果表明:试验合金具有较好的高温低周疲劳性能,与进口Inconel 718镍基合金的相近,但在较低的总应变范围下比Inconel 718合金的疲劳寿命要低;该合金在不同总应变范围下都表现出明显的循环软化行为;合金试样的疲劳断口呈多裂纹源性,疲劳源数量随总应变范围的降低和疲劳寿命的延长而减少;疲劳裂纹都萌生于表面,穿晶扩展到一定径向深度时,会出现沿晶扩展特征.%The total strain controlled high-temperature low-cycle fatigue experiments were conducted on the domestic GH4169 Ni-based superalloy.The fatigue properties of the alloy were studied and the fracture morphology was analyzed.The results show that the tested alloy had a superior low-cycle fatigue performance at elevated temperature,which was similar to that of imported Inconel 718 Ni-based alloy,but lower than the fatigue life of the Inconel 718 alloy at a relatively low total strain range.The cyclic stress softening behavior of the alloy was presented at different total strain ranges.The fatigue fractures of the alloy specimens showed a character of multi-crack sources and the crack source amounts decreased with the decrease of the total strain range and the prolonging of the fatigue life.The fatigue cracks all initiated at the specimen surface,and when propagated in an intergranular mode to a certain radial depth,showed a transgranular propagation characteristic.

  7. TiAl 合金择优取向层片组织的高周疲劳行为%High-cycle Fatigue Behavior of TiAl Alloy Containing Preferentially Oriented Lamellar Microstructures

    Institute of Scientific and Technical Information of China (English)

    万文娟; 韩波; 韩伟; 张继

    2016-01-01

    采用旋转弯曲的加载方式,评价了 Ti-47.5Al-2.5V-1.0Cr-0.2Zr (原子分数/%)合金择优取向层片组织的高温高周疲劳性能,并对疲劳断口进行了扫描电镜分析。结果表明:该合金表现出符合 Basquin 方程的平直 S-N 曲线,750℃条件疲劳极限相当于其抗拉强度的60%;断口观察发现,所有试样中的疲劳裂纹均以穿层片方式扩展,表明该种组织的界面对疲劳裂纹扩展具有较高的抗力。%The high-cycle fatigue performance of Ti-47.5Al-2.5V-1 .0Cr-0.2Zr (at.%)alloy with a preferentially oriented lamellar microstructure has been evaluated by means of load-controlled rotating bending fatigue tests at elevated temperature,and fracture sur-faces of fatigue specimens were also analyzed by scanning electron microscope.The results show that it exhibits a flat S-N curve fitted by Basquin equation,and its fatigue limit is equal to 60% of the ultimate tensile strength at 750 ℃.The fracture surface observation proves that all of the fatigue crack propagation in the studied samples is indeed presented with a typical translamellar mode,and indica-ting the high resistance of this microstructure to crack propagation.

  8. Thermal fatigue of beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Deksnis, E.; Ciric, D.; Falter, H. [JET Joint undertaking, Abingdon (United Kingdom)] [and others

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  9. High Cycle Random Fatigue Testing

    Science.gov (United States)

    1976-07-01

    1. All aluminum assemblies made from same mill run of 2024-T81 bare sheef ; all titanium assemblies from same mill run of dAiMV annealed sheet. 2...SI>’ piiUH.iijwiijfH’PJPWHWii.1’ ■ .i-v-^ ■■ —- --^ f+l 2024-T8| Bore Aluminum At SO^F, Riveted SheeF , Rmdom Flmyr^ Z«!o M*^’$tr^«: xmr

  10. FATIGUE OF DENTAL CERAMICS

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  11. Fatigue of dental ceramics.

    Science.gov (United States)

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-12-01

    Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. Study the Cyclic Plasticity Behavior of 508 LAS under Constant, Variable and Grid-Load-Following Loading Cycles for Fatigue Evaluation of PWR Components

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Barua, Bipul [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William K. [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-09-01

    This report provides an update of an earlier assessment of environmentally assisted fatigue for components in light water reactors. This report is a deliverable in September 2016 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2016 report, we presented a detailed thermal-mechanical stress analysis model for simulating the stress-strain state of a reactor pressure vessel and its nozzles under grid-load-following conditions. In this report, we provide stress-controlled fatigue test data for 508 LAS base metal alloy under different loading amplitudes (constant, variable, and random grid-load-following) and environmental conditions (in air or pressurized water reactor coolant water at 300°C). Also presented is a cyclic plasticity-based analytical model that can simultaneously capture the amplitude and time dependency of the component behavior under fatigue loading. Results related to both amplitude-dependent and amplitude-independent parameters are presented. The validation results for the analytical/mechanistic model are discussed. This report provides guidance for estimating time-dependent, amplitude-independent parameters related to material behavior under different service conditions. The developed mechanistic models and the reported material parameters can be used to conduct more accurate fatigue and ratcheting evaluation of reactor components.

  13. Fatigue processes in thermoplastic fibres; Les mecanismes de fatigue dans les fibres thermoplastiques

    Energy Technology Data Exchange (ETDEWEB)

    Herrera Ramirez, J.M.

    2004-09-15

    The present study examines and compares the behaviour of the two types of PA66 fibres and two types of PET fibres under fatigue loading up to failure, and the correlation between the fibres (nano)structures and their structural heterogeneities, with fatigue lifetimes. Several techniques have been used to analyze the materials, such as scanning electron microscopy (SEM), microanalysis (EDS), differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and micro-Raman spectroscopy. A meticulous analysis by scanning electron microscopy of the fracture morphology of fibres broken in tension and in fatigue, as well as a study of the fatigue life, were undertaken. The fatigue process occurs when the cyclic load amplitude is sufficiently large, however a condition for fatigue failure is that the minimum load each cycle must be lower than a threshold stress level. Failure under fatigue conditions leads to distinctive fracture morphologies which are very different from those seen after tensile or creep failure and this allows easy identification of the fatigue process. The fibres have been analyzed in the as received state and after fatigue failure in order to observe the microstructural changes resulting from the fatigue loading. The results will be compared with those obtained for fibres loaded under conditions where the fatigue process was hindered. The role of the microstructure of the fibres in determining fatigue will be discussed in this work and the possibility of improving their resistance to fatigue or eliminating the fatigue process will be discussed. (author)

  14. Review: Gigacycle fatigue data sheets for advanced engineering materials

    Directory of Open Access Journals (Sweden)

    Koji Yamaguchi, Takayuki Abe, Kazuo Kobayashi, Etsuo Takeuchi, Hisashi Hirukawa, Yoshio Maeda, Nobuo Nagashima, Masao Hayakawa, Yoshiyuki Furuya, Masuo Shimodaira and Kensuke Miyahara

    2007-01-01

    Full Text Available Gigacycle fatigue data sheets have been published since 1997 by the National Institute for Materials Science. They cover several areas such as high-cycle-number fatigue for high-strength steels and titanium alloys, the fatigue of welded joints, and high-temperature fatigue for advanced ferritic heat-resistant steels. Some unique testing machines are used to run the tests up to an extremely high number of cycles such as 1010 cycles. A characteristic of gigacycle fatigue failure is that it is initiated inside smooth specimens; the fatigue strength decreases with increasing cycle number and the fatigue limit disappears, although ordinary fatigue failure initiates from the surface of a smooth specimen and a fatigue limit appears. For welded joints, fatigue failure initiates from the notch root of the weld, because a large amount of stress is concentrated at the weld toe. The fatigue strength of welded joints has been obtained for up to 108 cycles, which is an extremely high number of cycles for large welded joints. The project of producing gigacycle fatigue data sheets is still continuing and will take a few more years to complete.

  15. Cumulative creep fatigue damage in 316 stainless steel

    Science.gov (United States)

    Mcgaw, Michael A.

    1989-01-01

    The cumulative creep-fatigue damage behavior of 316 stainless steel at 1500 F was experimentally established for the two-level loading cases of fatigue followed by fatigue, creep fatigue followed by fatigue, and fatigue followed by creep fatigue. The two-level loadings were conducted such that the lower life (high strain) cycling was applied first for a controlled number of cycles and the higher life (low strain) cycling was conducted as the second level to failure. The target life levels in this study were 100 cycles to failure for both the fatigue and creep-fatigue lowlife loading, 5000 cycles to failure for the higher life fatigue loading and 10,000 cycles to failure for the higher life creep-fatigue loading. The failed specimens are being examined both fractographically and metallographically to ascertain the nature of the damaging mechanisms that produced failure. Models of creep-fatigue damage accumulation are being evaluated and knowledge of the various damaging mechanisms is necessary to ensure that predictive capability is instilled in the final failure model.

  16. Fatigue Characteristics of Selected Light Metal Alloys

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-03-01

    Full Text Available The paper addresses results of fatigue testing of light metal alloys used in the automotive as well as aerospace and aviation industries, among others. The material subject to testing comprised hot-worked rods made of the AZ31 alloy, the Ti-6Al-4V two-phase titanium alloy and the 2017A (T451 aluminium alloy. Both low- and high-cycle fatigue tests were conducted at room temperature on the cycle asymmetry ratio of R=-1. The low-cycle fatigue tests were performed using the MTS-810 machine on two levels of total strain, i.e.Δεc= 1.0% and 1.2%. The high-cycle fatigue tests, on the other hand, were performed using a machine from VEB Werkstoffprufmaschinen-Leipzig under conditions of rotary bending. Based on the results thus obtained, one could develop fatigue life characteristics of the materials examined (expressed as the number of cycles until failure of sample Nf as well as characteristics of cyclic material strain σa=f(N under the conditions of low-cycle fatigue testing. The Ti-6Al-4V titanium alloy was found to be characterised by the highest value of fatigue life Nf, both in lowand high-cycle tests. The lowest fatigue life, on the other hand, was established for the aluminium alloys examined. Under the high-cycle fatigue tests, the life of the 2017A aluminium and the AZ31 magnesium alloy studied was determined by the value of stress amplitude σa. With the stress exceeding 150 MPa, it was the aluminium alloy which displayed higher fatigue life, whereas the magnesium alloy proved better on lower stress.

  17. Fatigue (PDQ)

    Science.gov (United States)

    ... of daily living . Better quality of life . More satisfaction with life. A greater sense of well-being. ... and decrease fatigue. The importance of eating enough food and drinking enough fluids. Physical therapy for patients ...

  18. Q235结构钢低周多轴疲劳寿命评估方法的实验研究%Experimental research on life evaluation for low cycle multiaxial fatigue of Q235 steel

    Institute of Scientific and Technical Information of China (English)

    张小元; 张克实; 黄世鸿; 顾思远

    2013-01-01

    对建筑用Q235结构钢分别在单轴和多轴载荷下进行低周疲劳试验,并利用测得的试验结果对寿命评估方法进行研究。研究结果表明:在相同Von Mises等效应变幅值下,材料的比例拉扭路径疲劳寿命高于单轴拉压疲劳寿命,而非比例路径疲劳寿命低于单轴拉压疲劳寿命。按等效应变法进行寿命预测,在非比例加载路径下的预测结果远远超出2倍寿命安全范围区;按临界面法的KBM和Socie模型进行寿命预测能够得到较好的结果,但对圆形路径的高应变幅区得到的结果则过高估计了材料的寿命。在考虑循环过程临界面法向应变影响的基础上,提出了一个改进的考虑临界面拉伸影响的模型,其对比例和非比例路径循环下低周疲劳寿命的评估与实测吻合较好。%Low cycle fatigue tests on Q235 steel under uniaxial and multiaxial loadings were conduc-ted, and the fatigue life evaluation formulas were studied based on experiments .The low-cycle ex-perimental results of strain show that the fatigue life of the metal under proportionally multiaxial load -ing is longer than that under uniaxial loading , but the fatigue life of the metal under non-proportion-ally multiaxial loading is shorter under the condition of given Von Mises'equivalent strain amplitude controlled by machine .Using the equivalent strain approach to evaluate the low-cycle fatigue life, it can be found that the life value under non-proportionally multiaxial loading was 2 times larger than that given in the experiments .Adopting KBM or Socie model of the critical plane approach , al-though the life prediction become better evidently , over estimation is still inevitable for the low-cycle fatigue under round loading path with large strain amplitude .Based on the consideration of the ten-sion effect on normal of the critical plane during the cycle , a modified critical plane model is pro-posed, in which the tension factor

  19. Ratcheting and Low-Cycle Fatigue Characteristics of AZ31B Under Corrosive Environment%AZ31B在腐蚀环境下的棘轮与低周疲劳性能研究

    Institute of Scientific and Technical Information of China (English)

    陈刚; 鲁灵涛; 崔云; 邢睿思; 高红; 陈旭

    2016-01-01

    开发了适用于镁合金圆棒试样的在线腐蚀疲劳系统,通过在空气和磷酸盐缓冲液(PBS)中分别进行循环疲劳试验,研究了腐蚀环境对 AZ31B 棘轮和低周疲劳性能的影响。结果表明:在棘轮应变演化的3个阶段中,腐蚀环境下试样在瞬态阶段和稳态阶段的棘轮应变率与空气中的相似;镁合金的腐蚀速率和棘轮应变随应力幅值和平均应力的增大而增大,孪晶、退孪晶的出现使得试样对腐蚀环境的敏感性进一步增加;在腐蚀环境中,镁合金的疲劳寿命大幅缩减,与空气中的试验相比,寿命缩减率达到50%,~90%,;为了能够反映平均应力、应力幅值、腐蚀环境以及最大压应力对 AZ31B 的低周疲劳寿命的复杂影响,采用 FP 参数模型对 AZ31B 进行了寿命预测。基于修正的FP参数模型,较好地预测了AZ31B在腐蚀环境下的低周疲劳寿命。%An on-line corrosion fatigue testing system for Mg alloy round bar specimens was developed. Through performing cyclic fatigue tests under the environments with and without phosphate buffer solution(PBS), the ratchet-ing and low-cycle fatigue properties of an as-extruded AZ31B alloy were investigated. Results show that in the three stages of ratcheting strain evolution, the ratcheting strain rates of specimens testedin air and corrosive environment were similar at the transient and steady stages. Corrosion rate and ratcheting strain of Mg alloy increased with the stress amplitude and mean stress. The occurrence of twining and de-twining further increased the sensitivity to the corrosive environment. The fatigue life of the Mg alloy in corrosive environment was significantly shorter than that in air and its reduction ratio of fatigue life to that in air could vary from 50% to 90%. Toreflect the effects of mean stress, stress amplitude, corrosion environment and maximum compressive stress on the fatigue behavior, a FP parameter model

  20. Fatigue In Tension Perpendicular to the Grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Uhre; Hoffmeyer, Preben;

    2004-01-01

    mechanism and a mechanism connected to damage introduced in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In arder to test the predictive validity of the result from the small tension specimens, fatigue experiments......Traditionally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...

  1. Fatigue in tension perpendicular to the grain

    DEFF Research Database (Denmark)

    Clorius, Christian Odin; Pedersen, Martin Bo Uhre; Hoffmeyer, Preben;

    1999-01-01

    mechanism and a mechanism connected to damage introduce in the loading sequences. The purpose of the present study is to disentangle the effect of duration of load from the effect of load oscillation in fatigue in tension perpendicular to the grain. Fatigue experiments are made on small specimens...... and on dowel type joints with slotted in steel plates. In series of ten, the small specimens are taken to fatigue failure in uniform tension at square wave shaped load cycles at 0.01 Hz and 0.1 Hz. In order to test the predictive validity of the result from the small tension specimens, fatigue experiments......Traditinally fatigue resistance is quantified as number of cycles to failure at a given stress level. A previous study by the authors showed that fatigue in compression parallel to the grain is governed partly by duration of load and partly by an effect of loading, i.e. a combination of a creep...

  2. 基于低周疲劳损伤的裂纹扩展行为数值模拟新方法%A NEW METHOD OF NUMERICAL SIMULATION FOR BEHAVIOR OF FATIGUE CRACK PROPAGATION BASED ON LOW CYCLE FATIGUE DAMAGE

    Institute of Scientific and Technical Information of China (English)

    黄学伟; 蔡力勋; 包陈; 陈龙

    2011-01-01

    Based on low cycle fatigue critical damage behavior of materials, a numerical simulation method used to predict fatigue crack propagation behavior of materials and structures was presented, and this new method is named as LFF (LCF-Low Cycle Fatigue+FCP-Fatigue Crack Propagation +FEA-Finite Element Analysis). For LFF method, a set of ANSYS command streams for the numerical simulation algorithm were developed to determine the stress and strain amplitude of nodes located at the plastic zone in the direction of crack propagation and fatigue damage of these nodes can be obtained, furtherly, the fatigue crack propagation prediction can be realized by discontinuous crack propagation assumption. For steam turbine rotor material: Cr2Ni2MoV steel, Manson-Coffin critical damage model and Paris crack propagation model of Cr2Ni2MoV steel were obtained by tests on smooth uniaxial specimens and CT (compact tensile) specimens at room temperature respectively. Results show that LFF method has better accuracy to predict fatigue crack propagation behavior of complicated cracks of CT specimens.%基于材料低周疲劳临界损伤,采用应变幅和平均应力定义了一种新的局部疲劳损伤参量,以最大主应变方向的垂直方向作为疲劳裂纹的扩展方向,提出了一种预测材料与结构裂纹在高周疲劳下疲劳裂纹扩展速率的数值模拟新方法:LFF方法(LCF-Low Cycle Fatigue+FCP-Fatigue Crack Propagation +FEA-Finite Element Analysis)。借助有限元分析商业软件,开发了一套命令流程序实现了数值模拟算法,得到裂纹扩展方向上裂尖塑性区域各节点的应力一应变幅,获得每个节点的损伤参数,进而根据疲劳裂纹非连续扩展特性建立疲劳裂纹扩展模型。以大型汽轮机转子材料Cr2Ni2MoV钢为例,通过光滑单轴试样及紧凑拉伸试样试验分别得到了室温低周疲劳临界损伤模型和裂纹扩

  3. 一种新的多轴非比例低周疲劳寿命预测临界面模型%A NEW PROPOSAL FOR MULTIAXIAL LOW-CYCLE FATIGUE LIFE PREDICTION UNDER NON-PROPORTIONAL LOADING

    Institute of Scientific and Technical Information of China (English)

    赵而年; 瞿伟廉

    2016-01-01

    工程结构在服役过程中往往承受着复杂的多轴非比例循环荷载,在长期动力载荷作用下结构构件的失效主要为多轴非比例疲劳破坏。文中基于圆管薄壁试件在拉-扭复合加载情况下的多轴疲劳试验结果,对比了广泛讨论的Kandil-Brown-Miller (KBM)模型和Fatemi-Socie (FS)模型对多轴非比例疲劳寿命的预测能力,分析了非比例加载条件引起多轴疲劳附加损伤的原因;针对FS模型对不存在非比例附加强化的材料多轴疲劳寿命预测的不足,提出了一个能考虑非比例加载路径变化和材料附加强化效应双重作用的非比例影响因子,参照FS准则提出了一种新的多轴非比例低周疲劳寿命预测临界面模型。利用5种材料的多轴非比例疲劳试验数据对该模型进行了试验验证,结果表明:采用文中提出的临界面模型预测的多轴非比例疲劳寿命与试验结果符合较好,预测精度优于FS模型;同时,该模型对不存在非比例附加强化的材料的多轴疲劳寿命预测表现出更好的适用性,且能有效的提高不同类型材料的多轴非比例疲劳寿命预测精度。%Engineering components are always in multiaxial and non-proportional stress states under complex service loading, and multiaxial fatigue is the primary failure mode during the long term vibration. In the present paper, the accuracy of multiaxial fatigue life estimation by the widely discussed Kandil-Brown-Miller (KBM) and FS model is in-vestigated while the shortcoming of Fatemi-Socie (FS) parameter on fatigue life prediction of materials without additional cycle hardening is pointed out. Considering the dual influence of the additional cycle hardening and the rotation of prin-cipal stress/strain axes caused by non-proportional loading on multiaxial fatigue, which results in more fatigue damage, a new non-proportional influence factor is proposed, which is adopted for a modification to

  4. 合金材料超高周疲劳行为的基本特征和影响因素%ESSENTIAL CHARACTERISTICS AND INFLUENTIAL FACTORS FOR VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF METALLIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    洪友士; 赵爱国; 钱桂安

    2009-01-01

    合金材料在超高周疲劳下具有与低周和高周疲劳不同的裂纹萌生和扩展行为以及不同的S-N曲线特征.材料的强度、循环加载的频率、所处的环境等都显著影响超高周疲劳的特性.本文综述了合金材料超高周疲劳行为的基本特征和影响因素的研究进展.%The research on very-high-cycle fatigue(VHCF)of metallic materials has become a new horizon in the field of metal research since 1980s.The behaviors of crack initiation and propagation,and the characteristics of S-N curve for metallic materials in the VHCF regrime all differ from those in the loW cycle and high cycle fatigue regimes.For VHCF,the cyclic stress is below the level of conventional fatigue 1imit and the crack initiation tends to shift from surface to interior.The defects of material,including inclusions,grain-boundary,phase interface and other miero-inhomogeneities may become interior crack initiation site.The S-N curve containing VHCF regime may present"duplex"or "step-wise"shape.The behaviors of VHCF for metallic materials are substantially affected by the strength of material,loading frequency,loading environment,etc.This paper attempts to review the research progress of essential characteristics and influential factors for VHCF behavior of metallic materials.In addition,the aspects for further research on VHCF of metallic materials are proposed,which are the process and mechanism of fatigue crack initiation and early growth,the effects of loading frequencv and the environment on VHCF property,and development of quantitative model for VHCF.

  5. [Auditory fatigue].

    Science.gov (United States)

    Sanjuán Juaristi, Julio; Sanjuán Martínez-Conde, Mar

    2015-01-01

    Given the relevance of possible hearing losses due to sound overloads and the short list of references of objective procedures for their study, we provide a technique that gives precise data about the audiometric profile and recruitment factor. Our objectives were to determine peripheral fatigue, through the cochlear microphonic response to sound pressure overload stimuli, as well as to measure recovery time, establishing parameters for differentiation with regard to current psychoacoustic and clinical studies. We used specific instruments for the study of cochlear microphonic response, plus a function generator that provided us with stimuli of different intensities and harmonic components. In Wistar rats, we first measured the normal microphonic response and then the effect of auditory fatigue on it. Using a 60dB pure tone acoustic stimulation, we obtained a microphonic response at 20dB. We then caused fatigue with 100dB of the same frequency, reaching a loss of approximately 11dB after 15minutes; after that, the deterioration slowed and did not exceed 15dB. By means of complex random tone maskers or white noise, no fatigue was caused to the sensory receptors, not even at levels of 100dB and over an hour of overstimulation. No fatigue was observed in terms of sensory receptors. Deterioration of peripheral perception through intense overstimulation may be due to biochemical changes of desensitisation due to exhaustion. Auditory fatigue in subjective clinical trials presumably affects supracochlear sections. The auditory fatigue tests found are not in line with those obtained subjectively in clinical and psychoacoustic trials. Copyright © 2013 Elsevier España, S.L.U. y Sociedad Española de Otorrinolaringología y Patología Cérvico-Facial. All rights reserved.

  6. Chronic Fatigue Syndrome

    Science.gov (United States)

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  7. Investigation of High Cycle Fatigue Life of MW Grade Wind Turbine Ductile Iron Hub%兆瓦级风电轮毂球铁高周疲劳寿命研究

    Institute of Scientific and Technical Information of China (English)

    刘佳; 曲迎东; 李荣德; 马广辉; 白彦华; 姜珂; 邱克强; 尤俊华; 王瑞春

    2012-01-01

    为了获得MW级风机轮毂QT350-22LT的高周疲劳寿命.通过拉-拉高周疲劳试验获得其疲劳极限,并通过数值模拟的方法确定QT350-22LT是否能够作为轮毂材料.疲劳试验在PW3-10程序控制高频万能疲劳试验机进行,采用实际生产的附铸试块进行拉-拉高周疲劳试验.试验结果表明:获得的兆瓦级风电轮毂QT350-22LT的疲劳极限值为250MPa,根据数据绘制的S-N曲线的拐点在290MPa;疲劳源的位置不同,所产生的瞬断区断口形貌也有所差别.对轮毂本身所能承受的最大应力进行有限元分析,得到最大应力为156MPa.应力集中部位的值没有超过材料的疲劳极限,这证明球铁QT350-22LT能够满足风机轮毂设计的应力要求.%The main purpose of this paper is to obtain high cycle fatigue life of MW grade the wheel hub (QT350-22 LT). Through the pull-pull high cycle fatigue tests, the fatigue limit is determined. The numerical simulation method was used to determine whether QT3 50-22 LT is able to be the hub material or not. The fatigue test equipment and materials are PW3-10 program control high frequency universal fatigue test machine and the practical production casting blocks, respectively. The results show that fatigue limit of the MW grade wind turbine hub QT350-22 LT is 250 MPa and inflection point of S-N curve draw according to data is 290 MPa; the morphologies of the transient breaking fracture are different due to the different crack sources. The maximum tensile stress of the hub is 156 MPa, which is obtained by the finite element analysis. The value of tensile stress concentration position is no more than the fatigue limit of the material, which proves that the ductile iron hub (QT350-22 LT) can satisfy the design requirement of stress.

  8. 高周疲劳损伤的磁记忆二维检测研究%Research of High-cycle Fatigue Damage by Two-dimensional Magnetic Memory Testing

    Institute of Scientific and Technical Information of China (English)

    任吉林; 陈曦; 罗声彩; 周培; 刘昌奎

    2012-01-01

    High-cycle fatigue tests of notched 40Cr steel specimens are carried out under three different fatigue stresses and two-dimensional metal magnetic memory testing (2-D MMMT). Two-dimensional signals are detected and analyzed by the method of Lissajous figure. The effects of stress concentration, fatigue damage and fatigue stress on two-dimensional magnetic signals are investigated, The relationship of the area of Lissajous figure and the degree of fatigue damage is analyzed. The results show that zero-crossing of the magnetic memory normal component and peak values of the magnetic memory tangential component appear in areas of stress concentration, and that the position of these phenomena drifts gradually closer to the notch root with the increase of fatigue damage. Location of the specimen damage can be characterized by the mutation peak characteristic of K curve of the normal component gradient and the tangential component gradient of magnetic memory signals. The maximum values of the normal component gradient and tangential component gradient of the magnetic memory signals increase gradually with the augmentation of the degree of fatigue damage in the whole trend. Therefore the maximum value is regarded as a characteristic quantity that reflects the degree of specimen damage, and the area of Lissajous figure has a good correlation with the degree of fatigue damage.%对40Cr钢缺口试件在三级应力水平下进行了高周疲劳试验和磁记忆二维检测(2- DMMMT),并引入李萨如图分析方法,研究应力集中、疲劳损伤及疲劳应力对二维磁信号的影响规律,分析李萨如图特征值与疲劳损伤程度之间的关系.结果表明:在应力集中部位会出现磁记忆法向分量过零点及切向分量峰值的现象,并且该现象的位置随着疲劳损伤程度的增加产生漂移,逐渐向缺口根部靠拢;可利用磁记忆信号切向分量梯度K曲线异变峰特征来表征构件损伤位置

  9. Fatigue damage detection using cyclostationarity

    Science.gov (United States)

    Boungou, D.; Guillet, F.; Badaoui, M. El; Lyonnet, P.; Rosario, T.

    2015-06-01

    In this paper, we present the second-order of cyclostationarity to detect and diagnose the fatigue damage of the stainless steel 316l subjected to low cycle fatigue (LCF). LCF is defined by repetitive cycling in a low stress and a short period. The vibration response of material subjected to LCF provides information linked to the solicitation and to the fatigue damage. Thus, we considered a cantilever beam with breathing cracks and assumed that under the solicitation, breathing cracks generates non-linearity in the stiffness of the material and this one decreases with the damage. We used the second-order of the cyclostationarity to reveal this non-linearity and showed that the fatigue provide a random component in the signal, which increases with the fatigue damage. Thus, in the specific case of a material subjected to LCF, with a non-linear stiffness, we propose a new methodology to detect and diagnose the fatigue damage using a vibration signal. This methodology is based on the second order of the cyclostationarity.

  10. Low-cycle fatigue studies on nuclear reactor Zircaloy-2 fuel tubes at room temperature, 300 and 350°C

    Science.gov (United States)

    Pandarinathan, P. R.; Vasudevan, P.

    1980-06-01

    Constant amplitude strain controlled fatigue tests were conducted on the Zircaloy-2 fuel tubes at room temperature, 300 and 350°C on the modified Moore type, four-point-loaded, deflection-controlled, rotating bending fatigue testing machine. The relationship between the plastic strain range, Δɛp and the number of cyles to failure, Nf was found to be of a simple power law of the form Nβf · Δɛp = constant, at all the test temperatures. Strain-hardening coefficients were determined from monotonic tension tests at these temperatures and it was concluded that the material is more or less in a cyclically stable condition.

  11. ESTIMATION OF STRUCTURAL LIFE OF HIGH CYCLE FATIGUE BASED ON RANDOM PROCESS ANALYSIS%基于随机分析的结构高周疲劳寿命估算

    Institute of Scientific and Technical Information of China (English)

    张瑜; 仇原鹰; 孔宪光

    2009-01-01

    In order to overcome the limitation that a power function with two parameters can only express middle cycle range of S-N curve, a power function with three parameters and two power functions with two parameters are utilized individually to express middle and high cycle ranges of S-N curve. Further based on random process, Miner's linear damage cumulative theory and P-S-N curve of components, the formulas are derived to evaluate fatigue life of high cycles with a certain probability for both narrowband and broadband cases. Finally the fatigue life of an antenna on a helicopter is calculated considering a random power spectrum of acceleration.%首先,为了克服二参数幂函数只适于表示中等寿命区S-N图线段的局限,文中采用三参数幂函数及两个二参数幂函数两种方法表示S-N曲线中、高周寿命段.然后,基于随机过程、Miner线性累积损伤理论及构件P-S-N曲线,分别导出窄带和宽带情况下适用于高周疲劳且具有一定可靠度的疲劳寿命计算公式.最后,对一随机加速度功率谱作用下的机载杆天线进行疲劳寿命估算.

  12. Seafarer fatigue

    DEFF Research Database (Denmark)

    Jepsen, Jørgen Riis; Zhao, Zhiwei; van Leeuwen, Wessel M. A.

    2015-01-01

    Background: The consequences of fatigue for the health and safety of seafarers has caused concern in the industry and among academics, and indicates the importance of further research into risk factors and preventive interventions at sea. This review gives an overview of the key issues relating...

  13. Random accumulated damage evaluation under multiaxial fatigue loading conditions

    Directory of Open Access Journals (Sweden)

    V. Anes

    2015-07-01

    Full Text Available Multiaxial fatigue is a very important physical phenomenon to take into account in several mechanical components; its study is of utmost importance to avoid unexpected failure of equipment, vehicles or structures. Among several fatigue characterization tools, a correct definition of a damage parameter and a load cycle counting method under multiaxial loading conditions show to be crucial to estimate multiaxial fatigue life. In this paper, the SSF equivalent stress and the virtual cycle counting method are presented and discussed, regarding their physical foundations and their capability to characterize multiaxial fatigue damage under complex loading blocks. Moreover, it is presented their applicability to evaluate random fatigue damage.

  14. Low Cycle Tensile-Tensile Fatigue Life Prediction of Ceramic Matrix Composites%陶瓷基复合材料低循环拉-拉疲劳寿命预测

    Institute of Scientific and Technical Information of China (English)

    孙志刚; 许仁红; 宋迎东

    2012-01-01

    采用细观力学方法建立预测纤维增强陶瓷基复合材料低循环拉一拉疲劳寿命的模型.该模型考虑初始加载到疲劳峰值应力时,基体出现裂纹,纤维/基体界面发生脱粘,部分纤维将发生断裂,并采用统计方法得到初始加载到峰值应力时的纤维失效体积分数;在后续循环过程中,考虑纤维相对基体在界面脱粘区滑移造成界面切应力下降,纤维失效模型与Evans界面磨损模型相结合,得到循环过程中纤维失效体积分数与界面切应力、循环数之间的关系;当纤维失效导致剩余强度下降,并小于疲劳峰值应力时,判断材料失效.采用剩余强度方法对陶瓷基复合材料的S-N曲线进行预测,并将预测的S-N曲线与试验数据进行对比,结果吻合较好.%A micro mechanics approach to predict low cycle tensile-tensile fatigue life of fiber reinforced ceramic matrix composites is presented. When first loading to fatigue maximum stress, matrix cracking, fiber/matrix interface de-bonding occur, and partial fibers fracture. The statistical approach is used to determine the percentage of fracture fibers. Upon cycling, fiber slips relative to matrix in the interface de-bonding region, which makes interface shear stress decreased. By combing fiber failure model and interface wear model, the relationship between the percentage of fiber failure and interface, or cycles, is determined. Residual strength of ceramic matrix composites decreases as fiber failure. When residual strength is lower than fatigue mavimnm stress, the material fails. The residual strength approach is used to predict the S-N curve of ceramic matrix composites, the S-N curve agrees well with experiment data.

  15. Effect of sleep quality on day cycle fatigue in ward nurses%病房护士的睡眠质量对日周性作业疲劳的影响

    Institute of Scientific and Technical Information of China (English)

    杨颖; 赵锐祎; 兰美娟; 阮春燕

    2008-01-01

    Objective To explore the effect of sleep quality on day cycle work fatigue inward nurses. Methods Through a cluster sampling of three hospitals, 479 clinical frontline nurses (Those in pregnancy or in sick leave were excluded) were investigated in Hangzhou, Zhejiang, China. Pittsburgh Sleep Quality Index (PSQI) was used to evaluate sleep quality; Self-reported work-related fatigue symptom scale was used to evaluate day cycle fatigue status; The common information was also collected. Results The sleep quality of ward nurses was generally poor, with total PSQI score of 7.31±3.45. 41.75% of ward nurses (200 nurses) had total PSQI score over 7. The total PSQI score showed a negative linear correlation with educational background (r=-0.11, P=0.01). The educational background also represented a negative correlation with sleep quality, sleep latency and sleep duration; There were no correlation between sleep and marriage, length of service, professional title and duty. Work-related fatigue was closely correlated with sleep quality: (1) Total PSQI score showed a positive correlation with four daytime points fatigue in the next day (r=0.42,r=0.34,r=0.25,r=0.33,P<0.01). (2) Total PSQI score was also related to five fatigue factors in four daytime points. (3) There was significant correlation between seven factors of sleep and fatigue levels of four time points. (4) Multiple regression analysis showed that sleep quality, day function; sleep disturbance and drug use played important roles in work fatigue. (5)There was no correlation between sleep quality and delayed off-work (r=0.06, P=0.17). Conclusion Managers should think highly of sleep quality of ward nurses, acknowledge its degree of work fatigue and apply evidence based methods to arrange work responsibility and follow sheet, then rationalize human resources management, emphasize sleep hygiene education, improve sleep quality and reduce work fatigue.%目的 探讨病房护士的睡眠质量对日周

  16. Corrosion Fatigue

    Science.gov (United States)

    1981-10-01

    the applied protection systems, (2) crevices for moisture entrapment, (3) galvanic couples when steel or titanium fasteners are used, and (4) fatigue...Activ Material Structure Exposed Normal Environment* Unexposed Atmosphere Aluminum alloys Steel 1.25 2.0 4.0 Titanium " Magnesium " (4.0) (8.0) (10.0...APPRNDIX - Chromic Acid Anodizing The surface treatment consists in the following process : D egreasing with trichlorethylene vapor, * Pickling , Composition

  17. Effect of Strain Range on the Low Cycle Fatigue in  Alloy 617 at High Temperature

    Directory of Open Access Journals (Sweden)

    Rando Tungga Dewa

    2017-02-01

    Full Text Available The aim of this study is to investigate the fully‐reversed low cycle fatigue properties of  Alloy 617 in the air at 950 °C; these tests were conducted at total strain ranges from 0.9% to 1.5%  with a constant strain rate of 10−3/s. The result of the fatigue tests showed a decrease in fatigue  resistance with an increasing total strain range. The reduction of fatigue resistance was due to the  effect of the total strain range and microstructure evolution during high temperature, such as brittle  oxides cracking. At all testing conditions, the cyclic softening mechanism was observed as a function  of the total strain range in the current high temperature condition. An analysis of low cycle fatigue  resistance was performed using the Coffin–Manson relationship and the total strain energy density;  it was found that Alloy 617 followed these relationships well. In addition, this study compared well  with previous work reported in the literature for a similar testing condition. Post‐fracture analysis  on the fracture surfaces of failed specimens revealed a more severe damage cracking at the  periphery of specimens due to the increase in the total strain range. The surface connected grain  boundary cracks induced by oxidation were obvious at low strain range. Thus, the primary crack  propagation occurred in transgranular mode from persistent slip bands.

  18. Fatigue Technology Assessment and Strategies for Fatigue Avoidance in Marine Structures

    Science.gov (United States)

    1992-06-01

    Endurance, cycles Figure 9-4 Comparison of Fatigue Strength Improvement Techniques (From Reference 9.7) I- CA a :, ., a , a MS M w a us 4-4 4. 4.1 4- M...1991 SSC-365 Marine Structural Integrity Programs ( MSIP ) by Robert G. Bea 1992 SSC-366 Threshold Corrosion Fatigue of Welded Shipbuilding Steels by G

  19. LIFE PREDICTION APPROACH FOR RANDOM MULTIAXIAL FATIGUE

    Institute of Scientific and Technical Information of China (English)

    Wang Lei; Wang Dejun

    2005-01-01

    According to the concept of critical plane, a life prediction approach for random multiaxial fatigue is presented. First, the critical plane under the multiaxial random loading is determined based on the concept of the weight-averaged maximum shear strain direction. Then the shear and normal strain histories on the determined critical plane are calculated and taken as the subject of multiaxial load simplifying and multiaxial cycle counting. Furthermore, a multiaxial fatigue life prediction model including the parameters resulted from multiaxial cycle counting is presented and applied to calculating the fatigue damage generated from each cycle. Finally, the cumulative damage is added up using Miner's linear rule, and the fatigue prediction life is given. The experiments under multiaxial loading blocks are used for the verification of the proposed method. The prediction has a good correction with the experimental results.

  20. A three dimensional discrete dislocation dynamics modelling of the early cycles of fatigue in an austenitic stainless steel 316L: dislocation microstructure and damage analysis; Modelisation physique des stades precurseurs de l'endommagement en fatigue dans l'acier inoxydable austenitique 316L

    Energy Technology Data Exchange (ETDEWEB)

    Depres, Ch

    2005-07-01

    A numerical code modelling the collective behaviour of dislocations at a mesoscopic scale (Discrete Dislocation Dynamics code) is used to analyse the cyclic plasticity that occurs in surface grains of an AISI 316L stainless steel, in order to understand the plastic mechanism involved in crack initiation in fatigue. Firstly, the analyses of both the formation and the evolution of the dislocation microstructures show the crucial role of cross-slip played in the strain localization in the form of slip bands. As the cycling proceeds, the slip bands exhibit well-organized dislocation arrangements that substitute to dislocation tangles, involving specific interaction mechanisms between primary and deviate systems. Secondly, both the surface displacements generated by plastic slip and the distortion energy induced by the dislocation microstructure have been analysed. We find that an irreversible surface relief in the form of extrusion/intrusion can be induced by cyclic slip of dislocations. The number of cycles for the crack initiation follows a Manson-Coffin type law. The analyses of the concentration of the distortion energy and its repartition in the slip bands show that beneficial energetic zones may be present at the very beginning of the cycling, and that mode-II crack propagation in the surface grains results from a succession of micro-crack initiations along primary slip plane, which is facilitated by various effects (stress concentration due to surface relief, environment effects...). Finally, a dislocation-based model for cyclic plasticity is proposed from Discrete Dislocation Dynamics results. (author)

  1. MANAGING FATIGUE IN SPORTS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ Fatigue is a multifactorial process. Depletion of energy sources, including adenosine triphosphate (ATP), phosphocreatine (PCr), plus carbohydrates (CHO) like muscle glycogen and blood glucose can contribute to fatigue.

  2. Fatigue Properties of Galvanized Higher-Strength Steel Sheets

    Directory of Open Access Journals (Sweden)

    Buršák, M.

    2007-01-01

    Full Text Available The paper analyzes the fatigues properties of galvanized microalloyed steel sheets H220LAD and H380LAD. Under flat bending conditions and the symmetrical cycle, the fatigue limit of the H220LAD sheet is σCo = ± 152 MPa and that of the H380LAD sheet is σCo = ±188 MPa, and the fatigue limit to tensile strength ratio is 0,41 and 0,37, respectively. During fatigue tests with an increasing number of cycles or an increasing stress value, the degradation of the zinc coating increases (relief formation, damage of integrity. As a result, local corrosion, but also continuation of fatigue damage after 107 cycles, and hence corrosion fatigue, can take place during operation.

  3. 热处理对Al-Si-Cu-Mg铸造铝合金低周疲劳行为的影响%Influence of Heat Treatment on Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloy

    Institute of Scientific and Technical Information of China (English)

    李锋; 陈巧; 车欣; 陈立佳

    2012-01-01

    为了确定固溶处理及固溶+时效处理对金属型铸造A1-Si-Cu-Mg铝合金低周疲劳行为的影响,在不同外加总应变幅下进行应变控制的室温低周疲劳试验.结果表明:金属型铸造Al-Si-Cu-Mg铝合金可表现为循环应变硬化、循环应变软化和循环稳定;固溶处理及固溶+时效处理可以有效地提高金属型铸造Al-Si-Cu-Mg铝合金的疲劳寿命,且固溶处理对疲劳寿命提高的幅度更大;铸态及固溶态Al-Si-Cu-Mg铝合金的弹性应变幅、塑性应变幅与疲劳断裂时的载荷反向周次之间分别呈直线关系,固溶+时效态Al-Si-Cu-Mg铝合金的弹性应变幅与疲劳断裂时的载荷反向周次之间呈直线关系,但其塑性应变幅与疲劳断裂时的载荷反向周次之间呈双线性关系;不同处理状态的铸造Al-Si-Cu-Mg铝合金的循环应力幅与塑性应变幅之间呈线性关系.%In order to determine the influence of solid-solution and solid-solution plus aging treatments on low-cycle fatigue behavior of permanent-mold cast Al-Si-Cu-Mg alloy, the strain controlled low-cycle fatigue tests were performed at room temperature and different total strain amplitudes. The experimental results show that the permanent-mold cast Al-Si-Cu-Mg alloy exhibits the cyclic strain hardening, softening and stability. The solid-solution and solid-solution plus aging treatments can effectively enhance the fatigue lives of the permanent-mold cast Al-Si-Cu-Mg alloy, and the solid-solution treatment has more significant in enhancing the fatigue lives of the alloy. A single-slope linear relationship between plastic and elastic strain amplitudes as well as reversals to failure is observed for both as-cast and solid-solution treated Al-Si-Cu-Mg alloys. For the permanent-mold cast Al-Si-Cu-Mg alloy subjected to solid-solution plus aging treatment, the relationship between elastic strain amplitude and reversals to failure also shows linear behavior, but a bilinear

  4. The impact on properties of AZ31 magnesium alloy in different direction during high cycle fatigue process%不同取样方向对AZ31镁合金高周疲劳性能的影响

    Institute of Scientific and Technical Information of China (English)

    谭力; 张喜燕; 尹瑞森; 余江平; 舒洋; 刘庆

    2016-01-01

    在轧制镁板材沿TD和RD方向分别切取疲劳试样,并对它们进行室温下的高温疲劳变形。 EBSD分析方法应用于样品的微观组织及织构变化的表征方面。发现经高周应力疲劳变形后,由于应变量非常小,RD与TD方向整体孪晶数量都不多,疲劳后相比疲劳前孪生体积分数有所增加,沿TD方向的孪生体积分数高于RD方向。经拉压循环变形后除{1012}拉伸孪生外还出现了少量的{1011}压缩孪生与{1011}-{1012}二次孪生,导致屈服强度增加,TD方向的抗拉强度与延伸率均高于RD方向。分析其断口形貌发现TD方向疲劳辉纹较小,解理断裂的区域更少,韧窝比较深,故TD试样的高周疲劳性能以及材料的塑性略优于RD试样。由于轧制织构在轧制面内基本对称,所以二者的差别并不太显著。%Samples for high cycle fatigue deformation at room temperature were cut from the hot-rolled AZ31 sheet along the rolling direction (RD) and transverse direction (TD). The electron backscatter diffraction technique(EBSD) was used to investigate the microstructure and texture evolution. Due to the strain is much lower, there are little twins generated during the high cycle deformation in both directions, but the volumes fraction of the twins increased after fatigue deformation, and the samples of transverse direction had larger numbers of twins than the rolling direction. After tension-compression cyclic deformation, both {1012} tension twin, a few compression twinning {1011}and secondary twinning {1011} -{1012} were generated, cause the yield stress reduced. Analyze the fracture of the samples, it was found that in RD samples, the larger area of fatigue striations, the more cleavage fracture and the shallower dimples than TD samples. The result shows that both the fatigue strength and elongation of the TD samples are higher than those of the RD samples. Because of the rolling texture is symmetric in the

  5. AI-Si-Cu-Mg(-Er)铸造铝合金的低周疲劳行为%Low-Cycle Fatigue Behavior of Cast AI-Si-Cu-Mg(-Er) Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    车欣; 徐志军; 陈立佳; 徐海健; 李锋

    2011-01-01

    对金属型铸造Al-Si-Cu-Mg和Al-Si-Cu-Mg-Er铝合金进行了疲劳试验,并研究了其室温下的低周疲劳行为.试验结果表明:金属型铸造Al-Si-Cu-Mg和Al-Si-Cu-Mg-Er铝合金表现为循环应变硬化和循环稳定,主要取决于外加总应变的高低;稀土元素Er的加入可提高金属型铸造Al-Si-Cu-Mg合金的循环变形抗力和疲劳寿命;金属型铸造Al-Si-Cu-Mg合金的塑性应变、弹性应变与断裂时的载荷反向次数之间呈直线关系,Al-Si-Cu-Mg-Er合金的弹性应变与疲劳断裂时的载荷反向次数之间也呈直线关系,但其塑性应变与疲劳断裂时的载荷反向次数之间则呈双线性关系.%Through the strain-controlled fatigue experiments, the low-cycle fatigue behavior of permanent-mold cast Al-Si-Cu-Mg and Al-Si-Cu-Mg-Er alloys at room temperature was investigated.The experimental results show that the Al-Si-Cu-Mg and Al-Si-Cu-Mg-Er alloys exhibit the cyclic strain hardening and cyclic stability, mainly depending on the imposed total strain amplitude. For the permanent-mold cast Al-Si-Cu-Mg alloy, the addition of Er can effectively enhance both cyclic deformation resistance and fatigue life of the alloys. A single-slope linear relation between plastic strain amplitude, elastic strain amplitude and reversals to failure is observed for permanent-mold cast Al-Si-Cu-Mg alloy. However, a two-slope linear relation between plastic strain amplitude and reversals to failure is noted for the Al-Si-Cu-Mg-Er alloy, although the corresponding relation between elastic strain amplitude and reversals to failure is linear.

  6. 涡轮盘多轴低循环疲劳寿命预测及试验验证%Multiaxial low cycle fatigue life prediction and test verification for turbine disk

    Institute of Scientific and Technical Information of China (English)

    杨俊; 李承彬; 谢寿生

    2011-01-01

    应用单轴及多轴疲劳寿命预测的Von Mises等效应变模型和临界平面模型对某两级涡轮盘传动臂销钉孔的疲劳寿命进行预测.组装和调试了全尺寸两级涡轮盘联合试验件,在旋转试验器上完成了低循环疲劳试验,得到两级涡轮盘传动臂销钉孔试验失效寿命.预测寿命与试验寿命对比分析显示单轴和VonMises等效应变模型预测误差较大;临界平面模型误差较小,尤其是拉伸型失效SWT(Smith-Watson-Topper)模型误差为9.26%.%The fatigue life of a two-stage turbine disk transmission arm pin hole was predicted by the models of uniaxial,Von Mises strain and critical plane.A full-scale two-stage turbine disk was fabricated and debugged,and then tested for LCF(low cycle fatigue).The predicted life was compared with the life evaluated by fatigue test of real turbine disk,and the result shows that the predicted errors of the critical plane model are less than those of the uniaxial model and the Von Mises strain model,especially the error of SWT(Smith-Watson-Topper)model is 9.26%.

  7. Influence of laser treatment on the fatigue of notched bar

    Institute of Scientific and Technical Information of China (English)

    ZhangHui; LingWeiye; JiangShouwei

    2003-01-01

    Fatigue cutting is a new approach for separating material. Man-made fatigue can be realized by applying a rotating bending load to a notched bar. To better utilize the new method, laser treatment is adopted in this study. After laser radiation at the notch root, the fatigue cycle of the bar drops dramatically. Based on the experimental result, we draw the conclusion that the fatigue of the bar is influenced by the shape of the hardened area. A hardened area that has a small axial dimension and a relatively large radial dimension facilitates the fatigue. The desirable hardened area can be obtained by controlling the laser treatment parameters.

  8. A preliminary bending fatigue spectrum for steel monostrand cables

    DEFF Research Database (Denmark)

    Winkler, Jan; Fischer, Gregor; Georgakis, Christos T.;

    2011-01-01

    This paper presents the results of the experimental study on the bending fatigue resistance of high-strength steel monostrand cables. From the conducted fatigue tests in the high-stress, low-cycle region, a preliminary bending fatigue spectrum is derived for the estimation of monostrand cable...... service life expectancy. The presented preliminary bending fatigue spectrum of high-strength monostrands is currently unavailable in the published literature. The presented results provide relevant information on the bending mechanism and fatigue characteristics of monostrand steel cables in tension...

  9. 场地短距离自行车大强度骑行中的疲劳定量分析%Quantitative Analysis of Fatigue during High Intensity Exercise of Track Sprint Cycling

    Institute of Scientific and Technical Information of China (English)

    乔春安

    2014-01-01

    目的:对场地自行车不同传动比下大强度骑行过程中功率、频率变化进行测评,分析传统疲劳指数、频率指数和净疲劳指数在疲劳评价中的应用价值。方法:10名男子短距离自行车运动员分别使用50:12和50:13两种传动比进行两次200 m俯冲骑行测试,使用SRM自行车专用功率记录仪采集骑行全程的功率和踏蹬频率,分别计算传统疲劳指数、频率指数和净疲劳指数。结果:运动员完成200 m俯冲骑行到达终点前30 s过程中,功率、频率前7 s同时逐渐增加,8~11 s功率增加但频率维持原来水平,功率在12~15 s左右达到最大,此时频率约为130 rpm左右,随后可见频率仍在增加,但功率逐步降低。场地自行车大坡俯冲骑行过程中,传统疲劳指数明显高于净疲劳指数,两者计算结果的差异来自与是否将频率变化包括在内。结论:净疲劳指数较传统疲劳指数更好地反映了场地自行车骑行中的功率-频率关系,并能描述不同速度下的疲劳程度。运动员可以通过适度增加传动比,降低频率来提高200 m计时赛运动成绩。%Objective:The power and cadence during the high intensity riding with different gear ratio in track sprint cycling were tested so as to ifnd out the application value of the traditional fatigue index, cadence index and net fatigue index in evaluating fatigue.Method:Ten male track sprint cyclists performed two riding tests of lfying 200m with the gear ratio of 50:12 and 50:13 respectively. The power and cadence of riding were recorded by SRM. The above-mentioned three fatigue indexes were calculated. Result: During the 30 seconds before the cyclists reached the terminal of the lfying 200m, the power and cadence increased simultaneously in the ifrst 7s. In 8-11s, the power continued to increase, but the cadence maintained the original level. The maximum power was observed around 12-15s. At that time, the

  10. 疲劳失效准则在钛合金BT9低周 疲劳寿命估算中的应用%The Application of Fatigue Failure Criteria to Low-cycle Fatigue Lifetime Prediction of Titanium Alloy BT9

    Institute of Scientific and Technical Information of China (English)

    于海生

    2001-01-01

    Strain controlled low-cycle fatigue tests of titanium alloy BT9 under pull-push, torsion and combined axial and torsional proportional loading were carried out. The experimental data of the titanium alloy BT9 were obtained. Several criteria of lifetime prediction and their precision were discussed. A modification of the generalized fatigue criterion of Makinde-Neale was brought forward based on the analysis of Brown-Miller and Makinde-Neale's theory. The lifetime predictions were conducted by using the modification for titanium alloy BT9 under multiaxial strain conditions. The predicted results are in good agreement with experimental results.%在应变控制条件下对钛合金BT9进行了单轴 拉-压、纯扭及拉-压与扭转比例加载的低周疲劳试验,得到了相应的试验结果。讨论了几 种寿命预测准则及其寿命预测精度。在分析Brown-Miller理论及Makinde-Neale广义疲劳 失效准则的基础上,提出了Makinde-Neale广义疲劳失效准则的变异方程。应用所提出的方 程对钛合金BT9进行了多轴应变条件下的寿命预测,并得出了更为符合试验结果的预测结果 。

  11. Comparison of multiaxial fatigue damage models under variable amplitude loading

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hong; Shang, De Guang; Tian, Yu Jie [Beijing Univ. of Technology, Beijing (China); Liu, Jian Zhong [Beijing Institute of Aeronautical Materials, Beijing (China)

    2012-11-15

    Based on the cycle counting method of Wang and Brown and on the linear accumulation damage rule of Miner, four multiaxial fatigue damage models without any weight factors proposed by Pan et al., Varvani Farahani, Shang and Wang, and Shang et al. are used to compute fatigue damage. The procedure is evaluated using the low cycle fatigue experimental data of 7050 T7451 aluminum alloy and En15R steel under tension/torsion variable amplitude loading. The results reveal that the procedure is convenient for engineering design and application, and that the four multiaxial fatigue damage models provide good life estimates.

  12. Predictors and Trajectories of Morning Fatigue Are Distinct from Evening Fatigue

    Science.gov (United States)

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is the most common symptom in oncology patients during chemotherapy (CTX). Little is known about the predictors of interindividual variability in initial levels and trajectories of morning fatigue severity in these patients. Objectives An evaluation was done to determine which demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of morning fatigue and to compare findings with our companion paper on evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the morning fatigue trajectories. A piecewise model fit the data best. Patients with higher body mass index (BMI), who did not exercise regularly, with a lower functional status, and who had higher levels of state anxiety, sleep disturbance and depressive symptoms, reported higher levels of morning fatigue at enrollment. Variations in the trajectories of morning fatigue were predicted by the patients’ ethnicity and younger age. Conclusion The modifiable risk factors that were associated with only morning fatigue were BMI, exercise, and state anxiety. Modifiable risk factors that were associated with both morning and evening fatigue included functional status, depressive symptoms, and sleep disturbance. Using this information, clinicians can identify patients at higher risk for more severe morning fatigue and evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828559

  13. Fatigue life extension

    Science.gov (United States)

    Matejczyk, D. E.; Lin, J.

    1985-01-01

    Potential fatigue rejuvenation processes were carried out on fatigue-damaged material both with and without observable surface-connected fatigue cracks. The fatigue life of fatigue-damaged MAR-M246(Hf)(DS), a directionally solidified nickel-base superalloy used in turbine airfoils, was extended by reheat treatment. The fatigue life of fatigue-cracked Inconel 718, a wrought nickel-base superalloy used in a wide variety of advanced rocket engine components, was extended by electron-beam welding to close off the surface-connected crack, followed by hot isostatic pressing and reheat treatment.

  14. Fatigue life of high strength steel for cold forming

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests carried out on STRENX-type high-strength cold forming steel. For high-cycle fatigue tests carried out using low cycle loading frequencies of around 30 Hz, a ROTOFLEX machine was used. For ultra high-cycle tests, a KAUP-ZU testing machine was employed, which enables fatigue tests to be performed with symetric specimen loading (R = -1 and at a frequency of f ≈ 20 kHz. The relationships σa = f(N were determined experimentally in the high and ultra high-cycle region for STRENX high-strength steel. To determine the fatigue crack initiation mechanism, the fractographic analysis of fatigue fractures was made.

  15. Material fatigue in high pressure piping

    Energy Technology Data Exchange (ETDEWEB)

    Brunne, W.C. [Pro Novum, Research and Technological Services, Ltd, Katowice, (Poland)

    1998-12-31

    The present paper describes a type of damage to four-way cross pieces on live steam and reheated steam pipelines. The results of metallographic examination and strength tests are presented. The occurring mechanisms of material degradation, i.e. low-cycle fatigue and hydrogen corrosion are discussed. The both mechanisms result in the corrosion fatigue of the material causing the failure of cross pieces. A new design of cross piece was proposed. (orig.) 5 refs.

  16. Standard guide for fretting fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide defines terminology and covers general requirements for conducting fretting fatigue tests and reporting the results. It describes the general types of fretting fatigue tests and provides some suggestions on developing and conducting fretting fatigue test programs. 1.2 Fretting fatigue tests are designed to determine the effects of mechanical and environmental parameters on the fretting fatigue behavior of metallic materials. This guide is not intended to establish preference of one apparatus or specimen design over others, but will establish guidelines for adherence in the design, calibration, and use of fretting fatigue apparatus and recommend the means to collect, record, and reporting of the data. 1.3 The number of cycles to form a fretting fatigue crack is dependent on both the material of the fatigue specimen and fretting pad, the geometry of contact between the two, and the method by which the loading and displacement are imposed. Similar to wear behavior of materials, it is important t...

  17. In situ SEM thermal fatigue of Al/graphite metal matrix composites

    Science.gov (United States)

    Zong, G. S.; Rabenberg, L.; Marcus, H. L.

    1990-01-01

    Several thermal fatigue-induced failure mechanisms are deduced for unidirectional graphite-reinforced 6061 Al-alloy MMCs subjected to in situ thermal cycling. These thermal cycling conditions are representative of MMC service cycles in aerospace environments, where thermal fatigue is primarily associated with changes in the stress states near the interfaces due to coefficient of thermal expansion mismatch between fiber and matrix. This in situ SEM thermal-cycling study clarified such factors affecting MMCs' thermal fatigue as local fiber content and distribution, void volume, fiber stiffness, thermal excursion magnitude, and number of thermal cycles. MMC microfailure modes in thermal fatigue have been deduced.

  18. 岩体冻融疲劳损伤模型与评价指标研究%FATIGUE DAMAGE MODELAND EVALUATION INDEX FOR ROCK MASS UNDER FREEZING-THAWING CYCLES

    Institute of Scientific and Technical Information of China (English)

    刘泉声; 黄诗冰; 康永水; 黄兴

    2015-01-01

    Frost heaving pressure in rock mass undergoes a process of initiation,development and dissipation under the freezing-thawing condition,which results in the fatigue degradation of the physical and mechanical properties of rock. The freezing-thawing damage model and the damage evaluation method are the key problems for the rock mass in cold regions. There are many evaluation indexes of freezing-thawing damage including the porosity,the longitudinal wave velocity and the elastic modulus. The frost heaving pressure was considered to be equivalent to the triaxial tensile stress for frozen rock mass. A freezing-thawing fatigue damage model was established based on the equivalent triaxial tensile stress. The equation describing the freezing-thawing damage variation has the same expression but the different physical meaning with that obtained under repeated uniaxial tensile stress. A new unified damage variable depending on the p-wave velocity and the porosity was deduced based on the definition of the dynamic modulus of elasticity. The damage variable includes the effect of dual physical parameters,and is a better prediction index for the uniaxial compressive strength under different freeze-thaw cycles. The loss of 40% of dynamic elastic modulus was defined as the damage threshold. With the damage threshold,the maximum failure freeze-thaw cycle was determined. The freezing-thawing damage model was solved in combination with the unified damage variable. Finally,the validity and applicability of the freezing-thawing fatigue damage model were illustrated through two examples.%岩体冻融损伤模型与评价是研究岩体经历冻胀力萌生、发展与消散反复作用后物理力学性质劣化的主要内容,现有对岩体冻融循环后的损伤评价指标主要有孔隙率、纵波波速、静动弹性模量等物理参数。冻胀力对于岩体可等效为三轴拉伸应力,首先基于三向等效拉应力建立岩体冻融疲劳损伤模型,该冻融

  19. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part I: Fatigue.

    Science.gov (United States)

    Tse, Calvin T F; McDonald, Alison C; Keir, Peter J

    2016-08-01

    Upper extremity muscle fatigue is challenging to identify during industrial tasks and places changing demands on the shoulder complex that are not fully understood. The purpose of this investigation was to examine adaptation strategies in response to isolated anterior deltoid muscle fatigue while performing simulated repetitive work. Participants completed two blocks of simulated repetitive work separated by an anterior deltoid fatigue protocol; the first block had 20 work cycles and the post-fatigue block had 60 cycles. Each work cycle was 60s in duration and included 4 tasks: handle pull, cap rotation, drill press and handle push. Surface EMG of 14 muscles and upper body kinematics were recorded. Immediately following fatigue, glenohumeral flexion strength was reduced, rating of perceived exertion scores increased and signs of muscle fatigue (increased EMG amplitude, decreased EMG frequency) were present in anterior and posterior deltoids, latissimus dorsi and serratus anterior. Along with other kinematic and muscle activity changes, scapular reorientation occurred in all of the simulated tasks and generally served to increase the width of the subacromial space. These findings suggest that immediately following fatigue people adapt by repositioning joints to maintain task performance and may also prioritize maintaining subacromial space width.

  20. Fatigue Defect of Layer Steel Fiber Reinforced Concrete

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An experimental study is carried out on fatigue defect of layer steel fiber reinforced concrete (LSFRC). Based on experimental data,the various relation curves are given corresponding to different stress levels 0.9, 0.85, and 0.8. Furthermore, the fatigue defect degree is defined, and the strain-cycle ratio equations and defect-cycle ratio equations with the correlation coefficients very close to 1, are regressed in terms of the cubic polynomial,of which the fittings are preferable.In addition,the results show that the fatigue defect of LSFRC presents three-phase development regularity too.And in comparison with the plain concrete,the third phase of the fatigue defect of LSFRC is longer, therefore the fatigue failure of LSFRC is more ductile.The mechanism of the fatigue defect is discussed too.

  1. Contribution of the low cycle fatigue on ultra high purity Ni-Cr-Fe alloys and on Ni monocrystals to the understanding of the hydrogen role in stress corrosion cracking for the alloys 600 and 690; Apport de la fatigue oligocyclique sur alliages Ni-Cr-Fe d'ultra haute purete et sur monocristaux de Ni a la comprehension sous contrainte des alliages 600 et 69O

    Energy Technology Data Exchange (ETDEWEB)

    Renaudot, N

    1999-06-01

    We discuss the role of hydrogen in cracking of Ni base alloys used for pressurised water reactor (PWR) primary tubes (alloy 600 and 690). Cracking can be explained by a Stress Corrosion Cracking (SCC) phenomenon. For this purpose, Low cycle fatigue (R = - 1) under cathodic charging at room temperature is conducted to study hydrogen effects on propagation of cracks mechanically initiated by the formation of Persistent Slip Bands (PSB). Low cycle fatigue on Ultra High Purity specimens (Ni, alloy 600 and 690) reveals the very important hydrogen effect on crack propagation rate, whatever the Cr content in the Ni base alloy. If Cr seems to have an effect over-hydrogen penetration in specimens (by a protective film formation), it have no beneficial effect when hydrogen have diffused ahead of a crack tip. Propagation rates (transgranular or intergranular) are highly increased, no matter of the absence of impurities like sulphur. Then, in PWR, the difference in the behaviour of alloy 600 and 690 could be due to a slower microcrack propagation rate for alloy 690. Protective films could play an important role in this difference, which is to study. Low cycle fatigue on Ni single crystals oriented for single slip shows, for the first time on bulk specimen, a macroscopic softening which can be explained. by hydrogen-dislocation interactions. Moreover, a simple quantitative model based on these interactions results in the same softening as the one observed experimentally. These results allow to validate experimentally one of the most important steps in the 'Corrosion Enhanced Plasticity (CEP) model', i.e. the softening ahead of a stress corrosion crack tip by hydrogen dislocation interactions. This is of importance because this model can explain cracking in numerous FCC materials-environment couple. (author)

  2. Comparison of fatigue property between friction stir and TIG welds

    Institute of Scientific and Technical Information of China (English)

    Xunhong Wang; Kuaishe Wang; Yang Shen; Kai Hu

    2008-01-01

    The alloy 5052 was welded by friction stir welding (FSW) and tungsten inert gas (TIG) welding. The effect of welding processes (FSW and TIG) on the fatigue properties of 5052 aluminum-welded joints was analyzed based on fatigue testing, and the S-N curve of the joints were established. The results show that the fatigue properties of FSW welded joints are better than those of TIG welded joints. The fatigue strength is determined as 65 Mpa under 106 cycling of fatigue life. The microstructure of joints is fine grains and narrow HAZ zone in FSW welds, which inhibit the growth of cracks and produce high fatigue life compared with that of TIG welds. Fracture morphologies also show that the fatigue fracture results from weld defects.

  3. Ultra-high Cycle Fatigue Behaviors of Directionally Solidified Superalloy DZ125 at a Frequency of 20kHz%20kHz频率下DZ125定向凝固高温合金的超高周疲劳行为研究

    Institute of Scientific and Technical Information of China (English)

    顾玉丽; 刘昌奎; 何玉怀; 陶春虎

    2011-01-01

    The ultra-high cycle fatigue behavior of DZ12S alloy was studied using the ultrasonic fatigue testing technique under the load frequency of 20kHz and load ratio of R =- 1. The results show that DZ125 alloy still failed after 108 cycles. The analysis of the failed specimens using scaning electron microscopy ( SEM ) reveals that all ultra-high cycle fatigue cracks initiated at the surface of the specimens. Quantitative estimation of the fracture initiation life is 97. 3% of the total life. Using electron backscatter diffraction ( EBSD) technique, the crystal orientation change during the ultra-high cycle fatigue of superalloy DZ12S after conventional heat treatments, the crystal rotation angle will be slightly increased with the increase of the applied stress amplitude, the depth of deformation is minimum near the final fracture zone. After the frequency correction, the ultra-high cycle fatigue S-N curve is good agreement with the traditional fatigue S-N curve.%采用超声疲劳试验技术,研究了DZ125定向凝固高温合金在频率20kHz、载荷比R=-1下的超高周疲劳失效行为.结果表明:DZ125合金在循环周次大于108下仍发生了疲劳断裂;扫描电镜观察表明,DZ125合金的超高周疲劳裂纹均起源于试样的表面,经疲劳断口定量计算,超高周疲劳的萌生寿命约占总寿命的97.3%;电子背散射衍射(EBSD)分析表明,在超声振动应力的作用下,DZ125合金晶体发生了旋转,外加应力幅越大,晶体旋转的角度会略微增大,疲劳变形区域也略微增大,接近疲劳瞬断区的变形层深度最低;超高周疲劳试验结果经频率修正后,S-N曲线与常规低频疲劳的S-N曲线能很好地衔接.

  4. Fatigue performance and cyclic softening of F82H, a ferritic martensic steel

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, J.F. [Univ. of Illinois, Urbana, IL (United States); Gelles, D.S. [Pacific Northwest National Laboratory, Richland, WA (United States)

    1996-04-01

    The room temperature fatigue performance of F82H has been examined. The fatigue life was determined in a series of strain-controlled tests where the stress level was monitored as a function of the number of accrued cycles. Fatigue lives in the range of 10{sup 3} to 10{sup 6} cycles to failure were examined. The fatigue performance was found to be controlled primarily by the elastic strain range over most of the range of fatigue lives examined. Only at low fatigue lives did the plastic strain range contribute to the response. However, when the significant plastic strain did contribute, the material showed a tendency to cyclically soften. That is the load carrying capability of the material degrades with accumulated fatigue cycles. The overall fatigue performance of the F82H alloy was found to be similiar to other advanced martensitic steels, but lower than more common low alloy steels which possess lower yield strengths.

  5. Fatigue in Rheumatoid Arthritis.

    Science.gov (United States)

    Katz, Patricia

    2017-05-01

    The purpose of this study was to review the current information on fatigue in rheumatoid arthritis (RA). Severe fatigue is common among individuals with RA and has a significant impact on quality of life (QOL). RA-related factors (e.g., inflammation, pain) are associated with greater fatigue, but other factors, such as obesity, physical inactivity, sleep disturbance, and depression, explain the majority of variation in fatigue. Medications targeting RA have little effect on fatigue. Instead, the most effective interventions seem to address non-RA-specific factors such as physical inactivity or use cognitive behavioral approaches. No recommendations have been made for tools to measure fatigue in RA, leading to potential difficulty comparing studies. Although fatigue has great impact on patients' QOL, effective interventions that are feasible for broad dissemination remain elusive. Additional multi-faceted research is needed to identify modifiable sources of fatigue. Such research would be enhanced by harmonization of fatigue measurement across studies.

  6. Fatigue in breast cancer patients on adjuvant treatment: Course and prevalence

    Directory of Open Access Journals (Sweden)

    Kazi S Manir

    2012-01-01

    Full Text Available Introduction: Fatigue is a major complain in breast cancer patients and survivors. Patterns and degree varies with schedule and type of the treatment. Different co-factors may aggravate fatigue. Multimodal approach is helpful in managing fatigue. Aim: To quantify prevalence, course and degree of fatigue in breast cancer patients on adjuvant treatment and effectiveness of different management approach. Materials and Methods: One Hundred and ten post-mastectomy breast cancer patients (Stage I to Stage III were assessed. Patients on chemotherapy were assessed one week before, day after chemotherapy and two weeks later in every cycle. Patients on External Beam Radiation Therapy (EBRT were assessed one week before and every week during radiation. Assessment was continued on second and fourth week of follow up. Functional Assessment of Chronic Illness Therapy - Fatigue subscale (FACIT-F was used for assessment. Significant cofactors were also searched for. Results: Eighty four percent patients experienced fatigue. Fatigue was more prevalent during chemotherapy (91% than EBRT (77%. Patients on Chemotherapy exhibit peak fatigue day after Chemotherapy and decreased level until the next cycle. Significant increase of fatigue was seen only in first cycle. Patient on EBRT had gradually increased fatigue during the course of treatment. Lower degree of fatigue was present in post treatment period. Anemia was a significant cofactor causing fatigue (P < 0.05. Blood Transfusion improved fatigue scores. Conclusion: Fatigue increases during chemotherapy and or EBRT. Different intervention strategies are needed to address the issue.

  7. Experimental Study on High Cycle Fatigue Behavior andγ-P-S-N Curves of Bridge Steel Q345qD%Q345qD桥梁钢高周疲劳性能及γ-P-S-N曲线试验研究

    Institute of Scientific and Technical Information of China (English)

    贾单锋; 廖小伟; 崔佳

    2016-01-01

    针对桥梁钢Q345qD的力学性能及高周疲劳特性,分别使用直径10,mm的圆棒试件和沙漏型试件进行了轴向拉伸试验及轴向疲劳试验,得到 Q345qD 完整的材性数据及应力-寿命曲线(S-N 曲线)。考虑到材料疲劳寿命离散性较大,为了便于工程应用,采用单侧容限统计方法,研究在给定置信度下各应力水平对应的 Q34qD 的安全疲劳寿命,得出了同时考虑置信度和存活率的设计疲劳曲线。研究结果表明桥梁钢 Q345qD 在常温下具有较好的疲劳性能,随应力水平的降低疲劳寿命明显增大,疲劳寿命曲线迅速趋于水平,疲劳极限在Smax=273~278,MPa之间。%The mechanical properties and high cycle fatigue behavior of bridge steel Q345qD were studied.A number of axial tensile tests and axial fatigue tests were conducted using 10,mm-diameter round bar specimens and hourglass specimens respectively.The accurate data of material properties and stress-life curve(S-N curve)were ob-tained.Taking into account the large discreteness of material fatigue life,in order to facilitate engineering applica-tions,unilateral tolerance statistical methods were adopted to study the Q345qD safety fatigue life at a given confi-dence level for each stress level.The safe life fatigue curves with confidence and survival rate were also obtained.The results show that the bridge steel Q345qD has good fatigue properties at room temperature.The fatigue life increases significantly with the decrease of stress level and the fatigue curve tends to reach the horizontal level quickly.The fatigue limit lies within the range ofSmax=273—278,MPa.

  8. Residual Tensile Strength of Plain Concrete Under Tensile Fatigue Loading

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The functional relation between the residual tensile strength of plain concrete and number of cycles was determined. 99 tappered prism specimens of plain concrete were tested under uniaxial tensile fatigue loading. Based on the probability distribution of the residual tensile strength, the empirical expressions of the residual tensile strength corresponding to the number of cycles were obtained. The residual tensile strength attenuating curves can be used to predict the residual fatigue life of the specimen under variable-amplitude fatigue loading. There is a good correlation between residual tensile strength and residual secant elastic modulus.The relationship between the residual secant elastic modulus and number of cycles was also established.

  9. Statistical optimisation techniques in fatigue signal editing problem

    Energy Technology Data Exchange (ETDEWEB)

    Nopiah, Z. M.; Osman, M. H. [Fundamental Engineering Studies Unit Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM (Malaysia); Baharin, N.; Abdullah, S. [Department of Mechanical and Materials Engineering Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM (Malaysia)

    2015-02-03

    Success in fatigue signal editing is determined by the level of length reduction without compromising statistical constraints. A great reduction rate can be achieved by removing small amplitude cycles from the recorded signal. The long recorded signal sometimes renders the cycle-to-cycle editing process daunting. This has encouraged researchers to focus on the segment-based approach. This paper discusses joint application of the Running Damage Extraction (RDE) technique and single constrained Genetic Algorithm (GA) in fatigue signal editing optimisation.. In the first section, the RDE technique is used to restructure and summarise the fatigue strain. This technique combines the overlapping window and fatigue strain-life models. It is designed to identify and isolate the fatigue events that exist in the variable amplitude strain data into different segments whereby the retention of statistical parameters and the vibration energy are considered. In the second section, the fatigue data editing problem is formulated as a constrained single optimisation problem that can be solved using GA method. The GA produces the shortest edited fatigue signal by selecting appropriate segments from a pool of labelling segments. Challenges arise due to constraints on the segment selection by deviation level over three signal properties, namely cumulative fatigue damage, root mean square and kurtosis values. Experimental results over several case studies show that the idea of solving fatigue signal editing within a framework of optimisation is effective and automatic, and that the GA is robust for constrained segment selection.

  10. 硫化氢环境中低周疲劳裂纹扩展速率的研究%LOW CYCLE FATIGUE CRACK GROWTH RATE IN H2S ENVIRONMENTS

    Institute of Scientific and Technical Information of China (English)

    王晶; 李晓阳; 张亦良

    2009-01-01

    针对高强钢在硫化氢环境中腐蚀疲劳数据极为缺乏的现状,研究高压气瓶材料4130X在硫化氢腐蚀介质中的疲劳裂纹扩展速率.结合气瓶实际运行的环境和应力状态,应用改进型WOL(wedge-opening-loading)试样,在自行改造的专用低周腐蚀疲劳试验机上,完成0.006 7 Hz超低频率下饱和H_2S溶液、中等浓度H2S溶液和空气三种环境下的腐蚀疲劳试验,并用Paris公式进行两段式拟合,得出da/dN-ΔK的数学表达式.将试样微观断口的变化与宏观应力强度因子K的变化进行对比研究,给出不同环境中三个阶段K值的定量结果.结果表明:相同条件下,H_2S环境中的疲劳裂纹扩展速率比空气环境中大20倍以上;但当H_2S浓度达到一定范围后,对da/dN影响并不按比例增长,浓度相差11倍时,da/dN相差2.4倍,H_2S腐蚀介质的存在加速了疲劳破坏.%Due to the status quo of lack of data about high-tensile steel in H_2S environment, the fatigue crack growth rate of 4130X steel used in compressed H_2S vessel was investigated. Considering its practical operating ambient and stress condition, after overcoming enormous difficulties, the self-modified WOL(wedge-opening-loading) specimens were used in the specifically designed low-cycle corrosion fatigue testing machine, in order to complete the tests under 0.006 7 Hz, in saturated H_2S, moderate concentration and air environment, respectively. Moreover, the mathematical expression of da/dN-ΔK was concluded by the fitted curve using Paris formula. Contrast study between the changes of the specimens' microscopic fracture and the stress intensity factor K was conducted. Therefore, the quantitive result of K of three stages in different environment was determined. The results show that: 1) da/dN in H_2S environment is above 20 times of that in air environment. 2) when the concentration of H2S reaches to a certain range, its effect on da/dN is not scaled up. da/dN differs by 2

  11. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  12. Thermal Acoustic Fatigue Apparatus

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Acoustic Fatigue Apparatus (TAFA) is a progressive wave tube test facility that is used to test structures for dynamic response and sonic fatigue due to...

  13. Insomnia and Fatigue

    Science.gov (United States)

    ... Styles Common Yoga Poses Special Situations Yoga and Lymphedema Risk Yoga and Metastatic Breast Cancer Side Effects ... Insomnia and Fatigue Treatment for Insomnia and Fatigue Lymphedema Lymphedema Risk Treating Lymphedema Menopausal Symptoms Mouth Sores ...

  14. Increasing Fatigue Lives of Laser-Cut Parts

    Science.gov (United States)

    Glick, Edward W.; Donovan, Michael H.

    1987-01-01

    Cut edges sanded to restore strength. Simple abrasion process removes transverse striations resulting from laser cutting of inconel 718 or equivalent alloy, increasing fatigue strengths of parts cut by laser beams. For stresses in range of 80 to 130 ksi (550 to 900 MPa) high cycle fatigue strengths restored to levels comparable to conventionally machined parts.

  15. Fatigue testing of materials under extremal conditions by acoustic method

    NARCIS (Netherlands)

    Baranov, VM; Bibilashvili, YK; Karasevich, VA; Sarychev, GA

    2004-01-01

    Increasing fuel cycle time requires fatigue testing of the fuel clad materials for nuclear reactors. The standard high-temperature fatigue tests are complicated and tedious. Solving this task is facilitated by the proposed acoustic method, which ensures observation of the material damage dynamics, m

  16. Optimal Fatigue Testing

    DEFF Research Database (Denmark)

    Faber, M. H.; Sørensen, John Dalsgaard; Kroon, I. B.

    1993-01-01

    This paper considers the reassessment of the reliability of tubular joints subjected to fatigue load. The reassessment is considered in two parts namely the task of utilizing new experimental data on fatigue life to update the reliability of the tubular joint ant the task of planning new fatigue ...

  17. Interaction of fatigue and creep of GH33 under multi-axial stress at high temperature

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Low-cycle fatigue experiments of tension-compression, torsion and tension-torsion with holding time were performed.The interaction law of creep and fatigue under multiaxial stress at high temperature was investigated, and the micro-mechanism ofequilibrium diagrams was analyzed. A united equation of fatigue life under multiaxial stress was proposed.

  18. Mechanical Behavior and Fatigue Studies of Rubber Components Used in Tracked Vehicles

    Science.gov (United States)

    2010-08-17

    relaxation as the cycles evolve. Fatigue Modeling A MultiStage Fatigue (MSF) model developed in [3] has been applied to many types of aluminum ...McDowell, K. Gall, M.F. Horstemeyer and J. Fan. “Microstructure-based Fatigue Modeling of Cast A356 - T6 Alloy.” Engineering Fracture Mechanics, vol. 70

  19. Probabilistic fatigue methodology and wind turbine reliability

    Energy Technology Data Exchange (ETDEWEB)

    Lange, C.H. [Stanford Univ., CA (United States)

    1996-05-01

    Wind turbines subjected to highly irregular loadings due to wind, gravity, and gyroscopic effects are especially vulnerable to fatigue damage. The objective of this study is to develop and illustrate methods for the probabilistic analysis and design of fatigue-sensitive wind turbine components. A computer program (CYCLES) that estimates fatigue reliability of structural and mechanical components has been developed. A FORM/SORM analysis is used to compute failure probabilities and importance factors of the random variables. The limit state equation includes uncertainty in environmental loading, gross structural response, and local fatigue properties. Several techniques are shown to better study fatigue loads data. Common one-parameter models, such as the Rayleigh and exponential models are shown to produce dramatically different estimates of load distributions and fatigue damage. Improved fits may be achieved with the two-parameter Weibull model. High b values require better modeling of relatively large stress ranges; this is effectively done by matching at least two moments (Weibull) and better by matching still higher moments. For this purpose, a new, four-moment {open_quotes}generalized Weibull{close_quotes} model is introduced. Load and resistance factor design (LRFD) methodology for design against fatigue is proposed and demonstrated using data from two horizontal-axis wind turbines. To estimate fatigue damage, wind turbine blade loads have been represented by their first three statistical moments across a range of wind conditions. Based on the moments {mu}{sub 1}{hor_ellipsis}{mu}{sub 3}, new {open_quotes}quadratic Weibull{close_quotes} load distribution models are introduced. The fatigue reliability is found to be notably affected by the choice of load distribution model.

  20. Accelerated ultrasonic fatigue testing applications and research trends

    Energy Technology Data Exchange (ETDEWEB)

    Cho, In Sik; Shin, Choongshig; Kim, Jong Yup; Jeon, Yongho [Ajou Univ., Gyeonggi (Somalia)

    2012-06-15

    Very high cycle fatigue (VHCF) behavior of aerospace components has emerged much attention due to their long service life. In this study, a piezoelectric ultrasonic fatigue testing (UFT) system has been developed by Mbrosiatec Co., Ltd. to study the high cycle fatigue (HCF) strength of Ti 6Al 4V alloy. Hourglass shaped specimens have been investigated in the range from 10'6' to 10'9' cycles at room temperature under completely reversed R=-1 loading conditions, Scanning electron microscopy (SEM) analysis revealed that failures occurred in the entire range up to the gigacycle regime, and the fractures have been found to be initiated from the surface, unlike in steels. However, it was found from the SEM microgprahs that microcracks transformed into intergranular fractures. Thus, it can be concluded from according to the results that this test method can be applicable to commercialized automotive and railroad parts that require high cycle fatigue strength.

  1. A subregional model for delamination prediction of rubber composite under fatigue loading

    Institute of Scientific and Technical Information of China (English)

    TIAN Zhen-hui; TAN Hui-feng

    2005-01-01

    Results from fatigue experiments of cross-laminated steel cord-rubber composites (SCRC) indicate that fatigue damage life can be categorized into three regimes. In terms of fatigue modes, a subregional fatigue model is developed to describe the damages evolution of SCRC under fatigue loads. Firstly, finite element analysis is introduced to determine interply stress distribution of the specimen. Then, based on the experimental fatigue data, subregional models are introduced to simulate relations between maximum strain, effective stiffness,delamination shear stress and fatigue cycles. Relations between crack density, delamination length growth rate,macro crack density and cycles are modeled by two semi-empirical models. A reasonable prediction result was achieved by the current model, where model parameters can be determined by basic outputs of fatigue testing.

  2. Adaptations to isolated shoulder fatigue during simulated repetitive work. Part II: Recovery.

    Science.gov (United States)

    McDonald, Alison C; Tse, Calvin T F; Keir, Peter J

    2016-08-01

    The shoulder allows kinematic and muscular changes to facilitate continued task performance during prolonged repetitive work. The purpose of this work was to examine changes during simulated repetitive work in response to a fatigue protocol. Participants performed 20 one-minute work cycles comprised of 4 shoulder centric tasks, a fatigue protocol, followed by 60 additional cycles. The fatigue protocol targeted the anterior deltoid and cycled between static and dynamic actions. EMG was collected from 14 upper extremity and back muscles and three-dimensional motion was captured during each work cycle. Participants completed post-fatigue work despite EMG manifestations of muscle fatigue, reduced flexion strength (by 28%), and increased perceived exertion (∼3 times). Throughout the post-fatigue work cycles, participants maintained performance via kinematic and muscular adaptations, such as reduced glenohumeral flexion and scapular rotation which were task specific and varied throughout the hour of simulated work. By the end of 60 post-fatigue work cycles, signs of fatigue persisted in the anterior deltoid and developed in the middle deltoid, yet perceived exertion and strength returned to pre-fatigue levels. Recovery from fatigue elicits changes in muscle activity and movement patterns that may not be perceived by the worker which has important implications for injury risk.

  3. Mechanisms and Modelling of Environment-Dependent Fatigue Crack Growth in a Nickel Based Superalloy

    Science.gov (United States)

    1991-12-12

    depends on the strain range, Pilling-Bedworth Ratio (PBR) and current crack length. If • oxygen penetration becomes more significant, Marshall [61...1978 [611 P. Marshall , "The Influence of Environment on Fatigue and Creep/Fatigue," in Fatigue at High Temperature, International Spring Meeting... Jhon arid W. Volker, Plenum Press, New York, NY, 1983, pp.377-390 (78] S. D. Antolovich and E. Rosa, "Low Cycle Fatigue of Rene 77 at Elevated

  4. High temperature fatigue behavior of tungsten copper composites

    Science.gov (United States)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1990-01-01

    The present study investigates the high-temperature fatigue behavior of a 9-v/o tungsten fiber-reinforced copper matrix composite. Load-controlled isothermal fatigue at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in-phase and out-of-phase between 260 and 560 C, were performed. The stress-strain response under all conditions displayed considerable inelasticity. Strain ratchetting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratchetting was always in a tensile direction, continuing until failure. The ratchetting during the out-of-phase TMF test shifted from a tensile to a compressive direction. For all cases, the fatigue lives were found to be controlled by the damage of the copper matrix. On a stress basis, TMF loading substantially reduced lives relative to isothermal cycling.

  5. Bending Fatigue of Carburized Steel at Very Long Lives

    Science.gov (United States)

    Nelson, D. V.; Long, Z.

    2016-01-01

    The bending fatigue behavior of two carburized steels is investigated for lives between approximately 105 and 108 cycles. Cracks are observed to start at sub-surface inclusions and develop features on fracture surfaces resembling "fish eyes" in appearance. This type of sub-surface cracking tends to govern fatigue strength at long lives. Previous studies of "fish eye" fatigue in carburized steel have been relatively few and have mainly considered failures originating at depths beneath a carburized case, where compressive residual stresses are minimal and hardness values approach those in the core. This study provides fatigue data for cracks originating within cases at various depths where compressive residual stresses are substantial and hardness is much higher than in the core. Fatigue strength is predicted by a simple model, accounting for the influence of residual stresses and hardness values at the different depths at which cracks started. Predictions of fatigue strength are compared with data generated in this study.

  6. Analysis of Common Fatigue Details in Steel Truss Structures

    Institute of Scientific and Technical Information of China (English)

    张玉玲; 潘际炎; 潘际銮

    2004-01-01

    Generally, the number of fatigue cycles, the range of the repeated stresses, and the type of the structural details are the key factors affecting fatigue in large-scale welded structures. Seven types of structure details were tested using a 2000-kN hydraulic-pressure-servo fatigue machine to imitate fatigue behavior in modern steel-truss-structures fabricated using thicker welded steel plates and integral joint technology. The details included longitudinal edge welds, welded attachment affecting detail, integral joint, and weld repairs on plate edges. The fatigue damage locations show that the stress (normal or shear), the shape, and the location of the weld start and end points are three major factors reducing the fatigue strength. The test results can be used for similar large structures.

  7. Mental fatigue induced by prolonged self-regulation does not exacerbate central fatigue during subsequent whole-body endurance exercise.

    Science.gov (United States)

    Pageaux, Benjamin; Marcora, Samuele M; Rozand, Vianney; Lepers, Romuald

    2015-01-01

    It has been shown that the mental fatigue induced by prolonged self-regulation increases perception of effort and reduces performance during subsequent endurance exercise. However, the physiological mechanisms underlying these negative effects of mental fatigue are unclear. The primary aim of this study was to test the hypothesis that mental fatigue exacerbates central fatigue induced by whole-body endurance exercise. Twelve subjects performed 30 min of either an incongruent Stroop task to induce a condition of mental fatigue or a congruent Stroop task (control condition) in a random and counterbalanced order. Both cognitive tasks (CTs) were followed by a whole-body endurance task (ET) consisting of 6 min of cycling exercise at 80% of peak power output measured during a preliminary incremental test. Neuromuscular function of the knee extensors was assessed before and after CT, and after ET. Rating of perceived exertion (RPE) was measured during ET. Both CTs did not induce any decrease in maximal voluntary contraction (MVC) torque (p = 0.194). During ET, mentally fatigued subjects reported higher RPE (mental fatigue 13.9 ± 3.0, control 13.3 ± 3.2, p = 0.044). ET induced a similar decrease in MVC torque (mental fatigue -17 ± 15%, control -15 ± 11%, p = 0.001), maximal voluntary activation level (mental fatigue -6 ± 9%, control -6 ± 7%, p = 0.013) and resting twitch (mental fatigue -30 ± 14%, control -32 ± 10%, p mental fatigue does not reduce the capacity of the central nervous system to recruit the working muscles. The negative effect of mental fatigue on perception of effort does not reflect a greater development of either central or peripheral fatigue. Consequently, mentally fatigued subjects are still able to perform maximal exercise, but they are experiencing an altered performance during submaximal exercise due to higher-than-normal perception of effort.

  8. Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials

    Science.gov (United States)

    Newman, John A.; James, Mark A.; Johnson, William M.; Le, Dy D.

    2008-01-01

    Results are presented for a program to determine the near-threshold fatigue crack growth behavior appropriate for metallic rotorcraft alloys. Four alloys, all commonly used in the manufacture of rotorcraft, were selected for study: Aluminum alloy 7050, 4340 steel, AZ91E Magnesium, and Titanium alloy Ti-6Al-4V (beta-STOA). The Federal Aviation Administration (FAA) sponsored this research to advance efforts to incorporate damage tolerance design and analysis as requirements for rotorcraft certification. Rotorcraft components are subjected to high cycle fatigue and are typically subjected to higher stresses and more stress cycles per flight hour than fixed-wing aircraft components. Fatigue lives of rotorcraft components are generally spent initiating small fatigue cracks that propagate slowly under near-threshold cracktip loading conditions. For these components, the fatigue life is very sensitive to the near-threshold characteristics of the material.

  9. Statistical fatigue experiment design in medium density fiberboard

    Directory of Open Access Journals (Sweden)

    Martínez Espinosa Mariano

    2000-01-01

    Full Text Available Medium Density Fiberboard (MDF is a wood-based composite widely employed in several industrial applications, in addition to its use in structures subjected to dynamic loads. Its fatigue-related aspects, however, have been consistently ignored. This work proposes to study fatigue in MDF, including the following factors: the basic concepts of MDF and fatigue and the statistical design of fatigue experiments in MDF, with the purpose of obtaining accurate information for analysis by means of statistical methods. The results of our tests revealed that the statistical model is suitable to fit the number of cycles in intermediary S and f levels and to determine the levels of the factors that maximize the total number of cycles to failure. It was also found that the proposed design is of great practical interest for fatigue strength in the tension in wood and wood derivatives.

  10. Polarization Fatigue in Ferroelectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    王忆; K.H.WONG; 吴文彬

    2002-01-01

    The fatigue problem in ferroelectric thin films is investigated based on the switched charge per unit area versus switching cycles. The temperature, dielectric permittivity, voltage bias, frequency and defect valence dependent switching polarization properties are calculated quantitatively with an extended Dawber-Scott model. The results are in agreement with the recent experiments.

  11. Fes cycling

    Directory of Open Access Journals (Sweden)

    Berkelmans Rik

    2008-01-01

    Full Text Available Many research with functional electrical stimulation (FES has been done to regain mobility and for health benefits. Better results have been reported for FES-cycling than for FES-walking. The majority of the subjects during such research are people with a spinal cord injury (SCI, cause they often lost skin sensation. Besides using surface stimulation also implanted stimulators can be used. This solves the skin sensation problem, but needs a surgery. Many physiological effects of FES-cycling has been reported, e.g., increase of muscles, better blood flow, reduction of pressure ulcers, improved self-image and some reduction of bone mineral density (BMD loss. Also people with an incomplete SCI benefit by FES-cycling, e.g. cycling time without FES, muscle strength and also the walking abilities increased. Hybrid exercise gives an even better cardiovascular training. Presently 4 companies are involved in FES-cycling. They all have a stationary mobility trainer. Two of them also use an outdoor tricycle. One combined with voluntary arm cranking. By optimizing the stimulation parameters the power output and fatigue resistance will increase, but will still be less compared to voluntary cycling.

  12. Comparison of Fatigue Properties and Fatigue Crack Growth Rates of Various Implantable Metals

    Directory of Open Access Journals (Sweden)

    Yoshimitsu Okazaki

    2012-12-01

    Full Text Available The fatigue strength, effects of a notch on the fatigue strength, and fatigue crack growth rate of Ti-15Zr-4Nb-4Ta alloy were compared with those of other implantable metals. Zr, Nb, and Ta are important alloying elements for Ti alloys for attaining superior long-term corrosion resistance and biocompatibility. The highly biocompatible Ti-15Zr-4Nb-4Ta alloy exhibited an excellent balance between strength and ductility. Its notched tensile strength was much higher than that of a smooth specimen. The strength of 20% cold-worked commercially pure (C.P. grade 4 Ti was close to that of Ti alloy. The tension-to-tension fatigue strength of an annealed Ti-15Zr-4Nb-4Ta rod at 107 cycles was approximately 740 MPa. The fatigue strength of this alloy was much improved by aging treatment after solution treatment. The fatigue strengths of C.P. grade 4 Ti and stainless steel were markedly improved by 20% cold working. The fatigue strength of Co-Cr-Mo alloy was markedly increased by hot forging. The notch fatigue strengths of 20% cold-worked C.P. grade 4 Ti, and annealed and aged Ti-15Zr-4Nb-4Ta, and annealed Ti-6Al-4V alloys were less than those of the smooth specimens. The fatigue crack growth rate of Ti-15Zr-4Nb-4Ta was the same as that of Ti-6Al-4V. The fatigue crack growth rate in 0.9% NaCl was the same as that in air. Stainless steel and Co-Cr-Mo-Ni-Fe alloy had a larger stress-intensity factor range (ΔK than Ti alloy.

  13. Effect of Nitriding on Fatigue Characteristics of Cr-Mo Alloy Steel

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Kwang Keun; Kim, Jae Hoon; Choi, Hoon Seok [Chungnam National University, Daejeon (Korea, Republic of)

    2015-06-15

    CrMo alloy steel was nitrided using two types of processing methods, ion-nitriding processing and nitrocarburizing. Both processes were conducted for a duration of 30 min. To compare the surface hardness of the alloys created by the different processes , microhardness tests were conducted, and fatigue tests of each material were performed by a cantilever rotary bending fatigue test machine (Yamamoto, YRB 200) in the very high cycle regime (N > 10{sup 7}cycle). Fractography of the fractured surfaces was conducted by scanning electron microscopy - to observe the fracture mechanisms of very high cycle fatigue and the effect of the nitriding process on the fatigue characteristics.

  14. 涡轮叶片高温多轴低周疲劳/蠕变寿命研究%Research on low cycle-multiaxial fatigue-creep life prediction at high temperature for turbine blade

    Institute of Scientific and Technical Information of China (English)

    彭立强; 王健

    2009-01-01

    SHANG Deguang multiaxial fatigue damage model was used to amend Man-son-Coffin equation of multiaxial fatigue prediction and SWT(Smith-Waston-Topper) formu-la, based on working condition of turbine rotor blade in aviation engine. A new method of fa-tigue life prediction of turbine blade was presented, which was adapted for non-proportional loading of turbine blade fatigue damage at high temperature. A case of turbine blade was cal-culated for fatigue life and the total damage of 1000 hours flying, in well agreement with the fact of blade fatigue damage. So the model of multiaxial fatigue prediction is rational and feasible.%针对航空发动机涡轮转子叶片工作环境,对Manson-Coffin多轴疲劳预测方程和SWT(Smith-Waston-Topper)公式进行修正,同时采用尚德广多轴疲劳损伤参量,给出涡轮叶片新的疲劳寿命预测方法,以适应涡轮叶片高温变幅非比例加载下疲劳损伤情况.通过算例计算了某涡轮叶片疲劳寿命及1000h的总损伤,与叶片实际疲劳破坏相吻合,验证该高温多轴疲劳损伤计算模型的合理性和可行性.

  15. Thermal fatigue of composites: Ultrasonic and SEM evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D.S.; Kasap, S.O. (Univ. of Saskatchewan, Saskatoon (Canada). Dept. of Electrical Engineering); Wacker, I.; Yannacopoulos, S. (Univ. of Saskatchewan, Saskatoon (Canada). Dept. of Mechanical Engineering)

    1994-01-01

    Results are presented on the evaluation of thermal fatigue in three fiber reinforced polymer composites, using ultrasonic techniques and scanning electron microscopy. The composites examined were (a) continuous carbon fibers in a vinylester matrix (b) continuous aramid fibers in a vinylester matrix and (c) randomly oriented aramid fibers in a polyphenylene matrix. Specimens of these composites were subjected to thermal fatigue by thermal cycling from [minus]25 C to 75 C. Changes in ultrasonic attenuation and velocity were monitored during thermal cycling, and scanning electron microscopy was used to qualitatively evaluate any damage. It was observed that ultrasonic attenuation is sensitive to thermal fatigue, increasing with increasing number of thermal cycles. SEM evaluations showed that the primary damage due to thermal fatigue is due to fiber-matrix debonding.

  16. Fatigue damage mechanisms in boron-aluminium composite laminates

    Science.gov (United States)

    Dvorak, G. J.; Johnson, W. S.

    1980-01-01

    The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.

  17. STUDY ON FATIGUE SHORT CRACK GROWTH LAW AND FATIGUE LIFE FOR MEDIUM CARBON STEELS

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    The fatigue crack initiation from notch root and the short-crack growth laws of two medium carbon alloying structural steels-35CrMo and 42CrMo are investigated under the different stress ratios R=0.1, 0.3) and three-point bending condition. The relationships between the maximum stress range at the notch root Δσmax and the number of cycles before fatigue crack initiation Ni are determined. The threshold stresses of fatigue crack initiation (Δσmax)th are got, and the smallcrack growth laws are obtained for these steels. An effective and convenient method is proposed for predicting the fatigue life of the notch specimens.

  18. Reliability Evaluation of Aluminum Alloy under High Temperature Based on Low Cycle Fatigue Crack Growth%铝合金高温低周疲劳裂纹扩展可靠性评估

    Institute of Scientific and Technical Information of China (English)

    李旭东; 张连峰; 朱武峰; 丁文勇

    2013-01-01

    Fatigue crack growth rate of AA 6151-T6 in high temperature was tested. The fatigue crack growth rate formula was obtained based on reliability theory. The result showed that fatigue crack growth of AA 6151-T6 exists threshold value in high temperature, which decreases with temperature increasing. The purpose was to provide reference for safe life prediction of AA 6151-T6 component.The present thesis made a research on the fatigue crack growth rate of AA 6151-T6 subjected to various elevated, and proposed a reliability based formula to evaluate FCG, which provided the basis of 6151-T6 aluminum alloy component safe life prediction. The method demonstrates the existence of fatigue crack growth threshold value of 6151-T6 aluminum alloy subjected to elevated temperature, which decreases with temperature increasing.%通过对不同温度下6151-T6合金的研究,获得了一种基于可靠性理论的裂纹扩展速率表达式,为预测6151-T6铝合金构件的安全寿命提供依据。该表达式表明,在高温条件下,6151-T6铝合金疲劳裂纹扩展存在门槛值,而且该门槛值会随着环境温度的升高而降低。

  19. Compassion fatigue in nurses.

    Science.gov (United States)

    Yoder, Elizabeth A

    2010-11-01

    Compassion fatigue, trigger situations, and coping strategies were investigated in hospital and home care nurses. The Professional Quality of Life Scale measured compassion fatigue, compassion satisfaction, and burnout. Narrative questions elicited trigger situations and coping strategies. Compassion fatigue scores were significantly different between nurses who worked 8- or 12-hour shifts. Fifteen percent of the participants had scores indicating risk of the compassion fatigue. There were significant differences in compassion satisfaction, depending on the unit worked and time as a nurse. The most common category of trigger situations was caring for the patient. Work-related and personal coping strategies were identified. Copyright © 2010 Elsevier Inc. All rights reserved.

  20. Simulation of Voltage Dip Event in Fixed-Speed Wind Turbines: Fatigue Evaluation

    DEFF Research Database (Denmark)

    Veluri, Badrinath; Santos-Martin, David; Jensen, Henrik Myhre

    2012-01-01

    transients affecting the fatigue life of drivetrain system due to voltage dips. A rainflow cycle counting method was developed to evaluate the fatigue life of the mechanical system. The methodology analyses the stress history and estimates the mean and amplitudes of the counted cycles, and time of duration...

  1. Myth vs. Fact: Adrenal Fatigue

    Science.gov (United States)

    ... unlikely to cover the costs. What is the theory behind adrenal fatigue? Supporters of adrenal fatigue believe ... by producing hormones like cortisol. According to the theory of adrenal fatigue, when people are faced with ...

  2. Chronic Fatigue Syndrome (CFS): Symptoms

    Science.gov (United States)

    ... CDC.gov . Chronic Fatigue Syndrome (CFS) Share Compartir Symptoms On this Page Primary Symptoms Other Symptoms What's ... a doctor distinguish CFS from other illnesses. Primary Symptoms As the name chronic fatigue syndrome suggests , fatigue ...

  3. Ultrasonic Fatigue Endurance of Thin Carbon Fiber Sheets

    Science.gov (United States)

    Domínguez Almaraz, Gonzalo M.; Ruiz Vilchez, Julio A.; Dominguez, Aymeric; Meyer, Yann

    2016-04-01

    Ultrasonic fatigue tests were carried out on thin carbon fiber sheets (0.3 mm of thickness) to determine the fatigue endurance under very high-frequency loading (20 kHz). This material, called the gas diffusion layer (GDL), plays a major role in the overall performances of proton exchange membrane fuel cells (PEMFCs). The study of its physical-chemical properties is an on-going subject in the literature; nevertheless, no knowledge is available concerning the high-frequency fatigue endurance. A principal difficulty in carrying out ultrasonic fatigue tests on this material was to determine the dimensions of testing specimen to fit the resonance condition. This aspect was solved by modal numerical simulation: The testing specimen has been a combination of a low-strength steel frame (to facilitate the attachment to the ultrasonic machine and to increase the mass of the specimen), and the carbon fiber hourglass-shape profile. Under resonance condition, a stationary elastic wave is generated along the specimen that induces high stress at the neck section and high displacements at the ends. Results show that fatigue life was close to 3 × 108 cycles when the high Von Misses stress at the neck section was 170 MPa, whereas fatigue life attains the 4.5 × 109 cycles when stress decreases to 117 MPa. Crack initiation and propagation were analyzed, and conclusions were drawn concerning the fatigue endurance of these fiber carbon sheets under ultrasonic fatigue testing.

  4. Fatigue behavior of RC T-beams

    Directory of Open Access Journals (Sweden)

    Omar A. Farghal

    2014-09-01

    Full Text Available The objective of this research is to study the fatigue performance of reinforced concrete (RC T-beams strengthened in shear with Carbon Fiber Reinforced Polymer (CFRP composite. Experiments were conducted on RC beams with and without CFRP sheets bonded on their web surfaces and subjected to static and cycling loading. The obtained results showed that the strengthened beams could survive one million cycles of cyclic loading (=50% of maximum static load with no apparent signs of damage (premature failure demonstrating the effectiveness of CFRP strengthening system on extending the fatigue life of structures. Also, for beams having the same geometry, the applied strengthening technique can significantly enhance the cycling load particularly, in case of beams provided with U-jacket sheets. Moreover, although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket sheets approved an acceptable enhancement in the structural ductility.

  5. Thermal shock fatigue behavior of TiC/Al2O3 composite ceramics

    Institute of Scientific and Technical Information of China (English)

    SI Tingzhi; LIU Ning; ZHANG Qingan; YOU Xianqing

    2008-01-01

    The thermal shock fatigue behaviors of pure hot-pressed alumina and 30 wt. % TiC/Al2O3 composites were studied. The effect of TiC and Al2O3 starting particle size on the mechanical properties of the composites was discussed. Indentation-quench test was conducted to evaluate the effect of thermal fatigue temperature difference (ΔT) and number of thermal cycles (N) on fatigue crack growth (Δα). The mechanical properties and thermal fatigue resistance of TiC/Al2O3 composites are remarkably improved by the addition of TiC. The thermal shock fatigue of monolithic alumina and TiC/Al2O3 composites is due to a "true" cycling effect (thermal fatigue). Crack deflection and bridging are the predominant reasons for the improvement of thermal shock fatigue resistance of the composites.

  6. Fatigue properties of Graphene interconnects on flexible substrates

    Science.gov (United States)

    Paradee, Gary

    This thesis represents the first determination of the fatigue behavior of Graphene as interconnect material electronic components on flexible substrates. The potential application of this interconnect material is for displays on flexible substrates where fatigue resistance is required due to the stress placed on the interconnect during mechanical bending. As the display is cyclically deformed (fatigued) during normal operation, cracks in the interconnect layer initiate and propagate leading to the lineout failure condition. The major contribution of this work is to show that Graphene is a superior interconnect material to the present state of the art Indium Tin Oxide (ITO) due to its electrical, optical and mechanical properties. The experimental approach in this thesis is based on Graphene samples which were fabricated on Silicon Nitrite (Si3N4)/Polyethylene Naphthalate (PEN) substrates. For comparison, both patterned and uniform ITO films ITO films on Si3N4/PEN were fabricated. The results of the in-depth characterization of Graphene are reported and based on Atomic Force Microscopy (AFM), Raman Spectroscopy and Scanning Electron Microscopy (SEM) are reported. The fatigue characteristics of ITO were determined at stress amplitudes ranging from 2000 MPa to 400 MPa up to 5000 cycles. The fatigue characteristics of Graphene were determined at stress amplitudes ranging from 80 GPa to 40 GPa up to 5000 cycles. The fatigue S-N curves were determined and showed that Graphene's endurance limit is 40 GPa. Beyond the endurance limit, there is no observable high cycle or low cycle fatigue indication for Graphene on a flexible substrate such as PEN. The microstructural analysis by SEM and AFM did not reveal normal fatigue crack growth and propagation. This thesis presents the first comprehensive behavior of Graphene in a bending fatigue stress environment present in numerous flexible electronic applications. The design and stress environments for safe operation has been

  7. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.

    Science.gov (United States)

    Mughrabi, Haël

    2015-03-28

    In this survey, the origin of fatigue crack initiation and damage evolution in different metallic materials is discussed with emphasis on the responsible microstructural mechanisms. After a historical introduction, the stages of cyclic deformation which precede the onset of fatigue damage are reviewed. Different types of cyclic slip irreversibilities in the bulk that eventually lead to the initiation of fatigue cracks are discussed. Examples of trans- and intercrystalline fatigue damage evolution in the low cycle, high cycle and ultrahigh cycle fatigue regimes in mono- and polycrystalline face-centred cubic and body-centred cubic metals and alloys and in different engineering materials are presented, and some microstructural models of fatigue crack initiation and early crack growth are discussed. The basic difficulties in defining the transition from the initiation to the growth of fatigue cracks are emphasized. In ultrahigh cycle fatigue at very low loading amplitudes, the initiation of fatigue cracks generally occupies a major fraction of fatigue life and is hence life controlling.

  8. Ultrasonic fatigue testing device under biaxial bending

    Directory of Open Access Journals (Sweden)

    C. Brugger

    2016-07-01

    Full Text Available A new fatigue testing device has been developed to test specimens under biaxial loading at 20 kHz. A flat smooth specimen with a disc geometry is placed on a torus frame and cyclically loaded at the center of its upper face. Disc bending generates a biaxial proportional stress state at the center of the lower face. Any positive loading ratio can be applied. A cast aluminum alloy (used to produce cylinder heads has been tested under biaxial bending using this device in order to determine its fatigue strength at 109 cycles under high hydrostatic pressure. Self-heating is moderate but macroscopic fatigue cracks after testing are very long. First results in VHCF regime are consistent with literature results obtained under similar stress state but in HCF regime and at 20 Hz.

  9. Examining fatigue in COPD

    DEFF Research Database (Denmark)

    Al-Shair, Khaled; Muellerova, Hana; Yorke, Janelle

    2012-01-01

    ABSTRACT: INTRODUCTION: Fatigue is a disruptive symptom that inhibits normal functional performance of COPD patients in daily activities. The availability of a short, simple, reliable and valid scale would improve assessment of the characteristics and influence of fatigue in COPD. METHODS......: At baseline, 2107 COPD patients from the ECLIPSE cohort completed the Functional Assessment of Chronic Illness Therapy Fatigue (FACIT-F) scale. We used well-structured classic method, the principal components analysis (PCA) and Rasch analysis for structurally examining the 13-item FACIT-F. RESULTS: Four items...... were less able to capture fatigue characteristics in COPD and were deleted. PCA was applied to the remaining 9 items of the modified FACIT-F and resulted in three interpretable dimensions: i) general (5 items); ii) functional ability (2 items); and iii) psychosocial fatigue (2 items). The modified...

  10. Effect of Fatigue Damage on Energy Absorption Properties of Honeycomb Paperboard

    Directory of Open Access Journals (Sweden)

    Zhi-geng Fan

    2015-01-01

    Full Text Available The effect of fatigue damage (FD on the energy absorption properties of precompressed honeycomb paperboard is investigated by fatigue compression experiments. The constitutive relations of honeycomb paperboard have been changed after the fatigue damage. The results show that FD has effect on plateau stress and energy absorption capacity of honeycomb paperboard after fatigue cycles but has no significant effect on densification strain. Energy absorption diagram based on the effect of FD is constructed from the stress-strain curves obtained after fatigue compression experiments. FD is a significant consideration for honeycomb paperboard after transports. The results of this paper could be used for optimization design of packaging materials.

  11. The effect of high-frequencies loading on the fatigue cracking of nodular cast iron

    Directory of Open Access Journals (Sweden)

    R. Ulewicz

    2017-01-01

    Full Text Available The article presents the results of fatigue tests using high-frequency loading of nodular cast iron. Nodular cast iron GJS-500-7, GJS-600-3 and cast iron ADI with a tensile strength of Rm = 1 125 MPa were used for the tests. The fatigue tests were conducted on a resonance testing machine. For the cast iron grades under investigation, fatigue characteristics in high and ultra-high-cycle regions were experimentally determined. After the completion of the tests, the fractographic analysis of fatigue fractures was made with the aim of determining the fatigue crack initiation location and the fracture mechanism.

  12. Fatigue Induced Alteration of the Superficial Strength Properties of 2024 Aluminum Alloy

    Institute of Scientific and Technical Information of China (English)

    K.-D. Bouzakis; I. Mirisidis; Sp. G. Pantelakis; A.N. Chamos

    2011-01-01

    aluminum alloy 2024 T3 specimens have been subjected to constant amplitude fatigue loading at R=0.1. During fatigue, an appreciable increase of the surface hardness of the material at the meso-scale can be observed and captured by means of nanoindentations. Surface hardness increases with increasing fatigue stress amplitude and advancing number of applied fatigue cycles. Observed increase of specimen surface hardening degree during fatigue causes an evolution of superficial mechanical strength properties of the alloy. Stress-strain curves associated with the evoluting superficial mechanical properties are derived, employing a developed finite element method (FEM)-supported evaluation procedure of nanoindentation experimental results.

  13. Improved Fatigue Performance of Threaded Drillstring Connections by Cold Rolling

    Energy Technology Data Exchange (ETDEWEB)

    Kristoffersen, Steinar

    2002-01-01

    pits inside the pipe. Therefore, an optimisation of the roll geometry and rolling parameters was not possible. However, a significant fatigue life improvement was achieved. Based on experiments, a roller with similar profile as the thread root is recommended. A rolling force of maximum 20 kN is recommended to minimise the possibility of damaging the thread profile. Shallow cracks were observed typically when 5% of the fatigue life had expired. Re-rolling after 50% of expected improved fatigue life, when also short cracks were observed in the notch roots further increased the fatigue improvement. Pretensioned small steel specimens with a notch were used to simulate cold rolled threads. The specimens were fatigue tested in tension with minimum load close to zero. Pretensioning increased the fatigue life from approximately 50 000 cycles to an infinite number of cycles. In these tests non-propagating cracks of typically 0.4 mm length were found. The benefit from pretensioning gradually disappeared with increasing mean stress. FE analyses indicated that an almost instant relaxation of residual stresses to a level with no monotonic strain hardening from preloading would take place when cycled at moderate mean stress. Cycled at low mean stress, an instant relaxation of the surface layer was found in analysis. All observations from notched pretensioned fatigue specimens were in good agreement with the available literature. However, preloading was found to be strain rate dependent in tests where a pretension load held for 2 minutes gave a longer fatigue life than a sinusoidal loading-unloading cycle performed over a one minute interval. Strain hardening was found not contributing to the fatigue life improvement, whereas the polishing effect from improved surface quality after cold rolling increased the fatigue initiation period. However, residual stress and subsequent early crack closure was the dominating effect at moderate cyclic mean loads. The material data required to

  14. Ratcheting fatigue behavior of Zircaloy-2 at room temperature

    Science.gov (United States)

    Rajpurohit, R. S.; Sudhakar Rao, G.; Chattopadhyay, K.; Santhi Srinivas, N. C.; Singh, Vakil

    2016-08-01

    Nuclear core components of zirconium alloys experience asymmetric stress or strain cycling during service which leads to plastic strain accumulation and drastic reduction in fatigue life as well as dimensional instability of the component. Variables like loading rate, mean stress, and stress amplitude affect the influence of asymmetric loading. In the present investigation asymmetric stress controlled fatigue tests were conducted with mean stress from 80 to 150 MPa, stress amplitude from 270 to 340 MPa and stress rate from 30 to 750 MPa/s to study the process of plastic strain accumulation and its effect on fatigue life of Zircaloy-2 at room temperature. It was observed that with increase in mean stress and stress amplitude accumulation of ratcheting strain was increased and fatigue life was reduced. However, increase in stress rate led to improvement in fatigue life due to less accumulation of ratcheting strain.

  15. Eddy current pulsed thermography for fatigue evaluation of gear

    Science.gov (United States)

    Tian, Gui Yun; Yin, Aijun; Gao, Bin; Zhang, Jishan; Shaw, Brian

    2014-02-01

    The pulsed eddy current (PEC) technique generates responses over a wide range of frequencies, containing more spectral coverage than traditional eddy current inspection. Eddy current pulsed thermography (ECPT), a newly developed non-destructive testing (NDT) technique, has advantages such as rapid inspection of a large area within a short time, high spatial resolution, high sensitivity and stand-off measurement distance. This paper investigates ECPT for the evaluation of gear fatigue tests. The paper proposes a statistical method based on single channel blind source separation to extract details of gear fatigue. The discussion of transient thermal distribution and patterns of fatigue contact surfaces as well as the non-contact surfaces have been reported. In addition, the measurement for gears with different cycles of fatigue tests by ECPTand the comparison results between ECPT with magnetic Barkhausen noise (MBN) have been evaluated. The comparison shows the competitive capability of ECPT in fatigue evaluation.

  16. Sources of fatigue damage to passive yaw wind turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Laino, D.J. [Univ. of Utah, Salt Lake City, UT (United States)

    1997-12-31

    Using an integrated computer analysis approach developed at the University of Utah, fatigue damage sources to passive yaw wind turbine blades have been investigated. Models of a rigid hub and teetering hub machine reveal the parameters important to the fatigue design of each type. The teetering hub proved much less susceptible to fatigue damage from normal operation loads. As a result, extreme events were critical to the teetering hub fatigue life. The rigid hub blades experienced extremely large gyroscopic load cycles induced by rapid yaw rates during normal operation. These yaw rates stem from turbulence activity which is shown to be dependent upon atmospheric stability. Investigation revealed that increasing yaw damping is an effective way of significantly reducing these gyroscopic fatigue loads.

  17. Fatigue strength tests of layered steel

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2013-01-01

    Full Text Available The work deals with original measurement of fatigue properties of formed layered steel material – damask steel. This is a material that exhibits a fine micro-structure as well as a regular composition of many material layers with complementary properties. The article experimentally verifies high-cycle fatigue properties of layered steel and evaluates them from the point of view of fatigue tests of conventional steel materials and a parallel application of a non-destructive – acoustic emission – testing. Finally, it discusses the influence of production on fatigue strength and the possibilities of using multi-layered steel materials in technological practice. A serious result of this pilot experiment is the fact documented no only by the fractographic observation, but mainly by the AE records that the fatigue service life of this material is high if it its not stressed by tension approximating the yield point Re. However, such stress is not common in practical use of tools made of damask steel and thus under common bending stress an exceptionally long service life of tools made of this type of material is demonstrable. The fact that damask steel behaves like a homogeneous material is mainly confirmed by the records of the AE signal at lower values of stress σa. When stressed by higher amplitudes of tension σa damask responds in AE records similarly to a laminate material that is stressed by bending.

  18. Memory for Fatigue in Chronic Fatigue Syndrome: Relationships to Fatigue Variability, Catastrophizing, and Negative Affect

    Science.gov (United States)

    Sohl, Stephanie J.; Friedberg, Fred

    2008-01-01

    Fatigue in chronic fatigue syndrome (CFS) is usually assessed with retrospective measures rather than real-time momentary symptom assessments. In this study, the authors hypothesized that in participants with CFS, discrepancies between recalled and momentary fatigue would be related to catastrophizing, anxiety, and depression and to variability of momentary fatigue. They also expected that catastrophizing, anxiety, and depression would be associated with momentary fatigue. The authors asked 53 adults with CFS to carry electronic diaries for 3 weeks and record their experiences of momentary fatigue. The authors assessed participants' fatigue recall with weekly ratings and administered questionnaires for catastrophizing, depression, and anxiety. Recall discrepancy was significantly related to the variability of momentary fatigue. In addition, catastrophizing, depression, and momentary fatigue were all significantly related to recall discrepancy. Catastrophizing, depression, anxiety, and momentary negative affect were all significantly associated with momentary fatigue. The findings suggest that momentary fatigue in patients with CFS is related to modifiable psychological factors. PMID:18400687

  19. Hydrogen enhanced thermal fatigue of y-titanium aluminide

    NARCIS (Netherlands)

    Dunfee, William; Gao, Ming; Wei, Robert P.; Wei, W.

    1995-01-01

    A study of hydrogen enhanced thermal fatigue cracking was carried out for a gamma-based Ti-48Al-2Cr alloy by cycling between room temperature and 750 or 900 °C. The results showed that hydrogen can severely attack the gamma alloy, with resulting lifetimes as low as three cycles, while no failures

  20. Fatigue Management (La Gestion de la Fatigue)

    Science.gov (United States)

    1991-12-01

    Management Pre’face Etant donne la tenidance de plus en plus marque ~e vets le maintien en service des aironefs au-delak des dates lintites...transport aircraft designed prototype sade its first flight one year about 20 years ago; from the fatigue point later. The results of the flight testing

  1. Creep-fatigue interactions in an austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S; Maiya, P S

    1978-01-01

    A phenomenological model of the interaction between creep and fatigue in Type 304 stainless steel at elevated temperatures is presented. The model is based on a crack-growth equation and an equation governing cavity growth, expressed in terms of current plastic strain and plastic strain rate. Failure is assumed to occur when a proposed interaction equation is satisfied. Various parameters of the equations can be obtained by correlation with continuously cycling fatigue and monotonic creep-rupture test data, without the use of any hold-time fatigue tests. Effects of various wave shapes such as tensile, compressive, and symmetrical hold on the low-cycle fatigue life can be computed by integrating the damage-rate equations along the appropriate loading path. Microstructural evidence in support of the proposed model is also discussed.

  2. Fatigue behavior of unirradiated V-5Cr-5Ti

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, B.G.; Stevens, C.O.; Grossbeck, M.L. [Oak Ridge National Lab., TN (United States)

    1995-04-01

    The objective of this research is to determine the low cycle fatigue behavior of V-5Cr-5Ti alloys for a range of temperatures and the extent of environmental effects at ambient temperatures. The results of in-vacuum low cycle fatigue tests are presented for unirradiated V-5Cr-5Ti tested at room temperature, 240, and 400{degree}C. A comparison of the fatigue data generated in rough and high vacuums shows that a pronounced environmental degradation of the fatiuge properties exists in this alloy at room temperature. Fatigue life was reduced by as much as 84%. Cyclic stress range data and SEM observations suggest that this reduction is due to a combination of increases in rates of crack initiation and subsequent growth. The relative contribution of each difference is dependent upon the strain range.

  3. EXPERIENCE WITH THERMOMECHANICAL FATIGUE UNDER SERVICE-TYPE LOADING

    Institute of Scientific and Technical Information of China (English)

    A.Scholz; A.Schmidt; A.Samir; C.Berger

    2004-01-01

    The thermomechanical fatigue behaviour of different high temperature alloys has been investigated and is under investigation respectively. The creep-fatigue behaviour of heat resistant steels was investigated by long-term service-type strain cycling tests simulating thermomechanical fatigue (TMF-) loading conditions at the heated surface of e.g. turbine rotors. Single-stage as well as three-stage cycles leads to similar results at the application of the damage accumulation rule. Life prediction which simulates typical combinations of cold starts, warm starts and hot starts has been established successfully for isothermal service-type loading and will be exceeded for thermomechanical loading. Long-term thermomechanical fatigue testing of Thermal Barrier Coating systems show typical delamination damage. An advanced TMF cruciform testing system enables complex multiaxial loading.

  4. Standard test method for creep-fatigue testing

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the determination of mechanical properties pertaining to creep-fatigue deformation or crack formation in nominally homogeneous materials, or both by the use of test specimens subjected to uniaxial forces under isothermal conditions. It concerns fatigue testing at strain rates or with cycles involving sufficiently long hold times to be responsible for the cyclic deformation response and cycles to crack formation to be affected by creep (and oxidation). It is intended as a test method for fatigue testing performed in support of such activities as materials research and development, mechanical design, process and quality control, product performance, and failure analysis. The cyclic conditions responsible for creep-fatigue deformation and cracking vary with material and with temperature for a given material. 1.2 The use of this test method is limited to specimens and does not cover testing of full-scale components, structures, or consumer products. 1.3 This test method is primarily ...

  5. Experiences of Fatigue at Sea

    DEFF Research Database (Denmark)

    Zhao, Zhiwei; Jepsen, Jørgen Riis; Chen, Zhonglong

    2016-01-01

    Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T-test t...

  6. Prolonged unexplained fatigue in paediatrics

    NARCIS (Netherlands)

    Bakker, R.J.

    2010-01-01

    Prolonged Unexplained Fatigue in Paediatrics. Fatigue, as the result of mental or physical exertion, will disappear after rest, drinks and food. Fatigue as a symptom of illness will recover with the recovering of the illness. But when fatigue is ongoing for a long time, and not the result of exertio

  7. Experiences of Fatigue at Sea

    DEFF Research Database (Denmark)

    Zhao, Zhiwei; Jepsen, Jørgen Riis; Chen, Zhonglong;

    2016-01-01

    Fatigue has negative impacts on the general working population as well as on seafarers. In order to study seafarers’ fatigue, a questionnaire-base survey was conducted to gain information about potential risk factors for fatigue and construct indexes indicating fatigue. The study applies T...

  8. Metabolic Factors in Fatigue

    Institute of Scientific and Technical Information of China (English)

    Mark Hargreaves

    2006-01-01

    Increased non-oxidative and oxidative ATP production via metabolic pathways in skeletal muscle is essential for the maintenance of force and power production during exercise. However, substrate depletion and accumulation of metabolic byproducts are potential causes of fatigue. Reduced PCr availability can limit power production during sprint exercise, whereas carbohydrate depletion is a major limitation to endurance performance. During sprint exercise increased Pi and H+ may contribute to fatigue, and during prolonged strenuous exercise, the accumulation of NH3, reactive oxygen species, and heat can limit performance. Appropriate training programs and nutritional interventions are potential strategies to enhance fatigue resistance and exercise performance.

  9. Fatigue 󈨛. Volume 2,

    Science.gov (United States)

    1987-06-01

    fatigue cracks grown in a nominally elastic field. EXPERIMENTAL DETAILS A low alloy steel (QIN) with a composition closely similar to HY80 , i.e. 2.5...Prediction of Steel Cords - A. PRAKASH, 645 G.A. COSTELLO, R.M. SHEMENSKI AND D.K. KIM Effect of Hold Time on Fatigue of Lead Rich 655 PbSn Solder...S. VAYNMAN, M.E. FINE AND D.A. JEANNOTTE On Cleavage in Fatigue for Rail Steels - 667 ZHU DONG, CAI QIGONG and YAO HENG Influence of Cleavage on

  10. Experimental Study on Fatigue Performance of Gussasphalt Mixture

    Institute of Scientific and Technical Information of China (English)

    WU Wenjun; HE Zhaoyi; HAO Zengheng; ZHANG Hua

    2014-01-01

    Four-point flexural fatigue test for Gussasphalt mixture specimen was carried out at a strain-controlled mode system. The results showed that the development of the tested stiffness modulus and phase angle of the mixtures with increasing load cycles exhibited three periods, initial generation, slow development and failure period. The fatigue crack generation zone formed in the third period, in which the macro mechanical properties were significantly decreased. Moreover, we also analyzed the effects of asphalt content and mixing temperature on the fatigue life of the mixture. The results showed that the first period when the specimen’s initial stiffness modulus was reduced to 80%accounted for 5%-10%of the total fatigue life;the second period in which the reduction became slow and demonstrated a liner relationship with load cycles occupied 70%-85%of the fatigue life;and the third period was about 5%-10%. The results indicated that the lower the mixing temperature, the longer the fatigue life of Gussasphalt mixture. Besides, the increasing of asphalt content has a minor effect on the fatigue life of Gussasphalt mixture

  11. Trajectories of Evening Fatigue in Oncology Outpatients Receiving Chemotherapy

    Science.gov (United States)

    Wright, Fay; Melkus, Gail D’Eramo; Hammer, Marilyn; Schmidt, Brian L.; Knobf, M. Tish; Paul, Steven M.; Cartwright, Frances; Mastick, Judy; Cooper, Bruce A.; Chen, Lee-May; Melisko, Michelle; Levine, Jon D.; Kober, Kord; Aouizerat, Bradley E.; Miaskowski, Christine

    2015-01-01

    Context Fatigue is a distressing, persistent sense of physical tiredness that is not proportional to a person’s recent activity. Fatigue impacts patients’ treatment decisions and can limit their self-care activities. While significant interindividual variability in fatigue severity has been noted, little is known about predictors of interindividual variability in initial levels and trajectories of evening fatigue severity in oncology patients receiving chemotherapy (CTX). Objectives To determine whether demographic, clinical, and symptom characteristics were associated with initial levels as well as the trajectories of evening fatigue. Methods A sample of outpatients with breast, gastrointestinal, gynecological, and lung cancer (N=586) completed demographic and symptom questionnaires a total of six times over two cycles of CTX. Fatigue severity was evaluated using the Lee Fatigue Scale. Hierarchical linear modeling (HLM) was used to answer the study objectives. Results A large amount of interindividual variability was found in the evening fatigue trajectories. A piecewise model fit the data best. Patients who were White, diagnosed with breast, gynecological, or lung cancer, and who had more years of education, child care responsibilities, lower functional status, and higher levels of sleep disturbance and depression reported higher levels of evening fatigue at enrollment. Conclusion This study identified both non-modifiable (e.g., ethnicity) and modifiable (e.g., child care responsibilities, depressive symptoms, sleep disturbance) risk factors for more severe evening fatigue. Using this information, clinicians can identify patients at higher risk for more severe evening fatigue, provide individualized patient education, and tailor interventions to address the modifiable risk factors. PMID:25828560

  12. Effect of Polarization Fatigue on Harvesting Energy Using Pyroelectric Materials

    Directory of Open Access Journals (Sweden)

    Saber Mohammadi

    2014-01-01

    Full Text Available The phenomenon of polarization fatigue in ferroelectric materials is defined and the effect of this phenomenon on harvested energy using these materials has been studied. In order to illustrate this effect, the harvested energy using PZN-4.5PT single crystal was compared in two cases of fatigued and nonfatigued samples. The results have been calculated between two temperatures of 100 and 130°C using Ericsson thermodynamic cycle.

  13. Fatigue testing of reinforced-concrete steel bars

    Science.gov (United States)

    Maropoulos, S.; Fasnakis, D.; Voulgaraki, Ch; Papanikolaou, S.; Maropoulos, A.; Antonatos, A.

    2016-11-01

    A number of low-cycle fatigue tests were conducted on reinforced-concrete steel bars of various diameters to study their behaviour under axial loading according to EN 10080 and EN 1421-3. Scanning electron microscopy was used to study the specimen fracture surfaces. The problems faced during testing are presented and a specimen preparation method is described that will aid researchers on fatigue testing to obtain accurate test results and save on material and time.

  14. An Energy-Critical Plane Based Fatigue Damage Approach for the Life Prediction of Metal Alloys

    Science.gov (United States)

    Pitatzis, N.; Savaidis, G.

    2016-11-01

    This paper presents a new energy-critical plane based fatigue damage approach for the assessment of the fatigue life under uniaxial and multiaxial proportional and non-proportional fatigue loading. The proposed approximate method, based on Farahani's multiaxial fatigue damage model, takes into account the critical plane orientations during a loading cycle and the values of the respective damage parameters on them. The uniqueness of the proposed method lies on the fact that it considers a weighted contribution of each critical plane orientation to the material damage. The relative weighting factors depend on the declination of each critical plane with respect to the critical plane, where the damage parameters exhibit their maximum values during a fatigue loading cycle. Herein, several low, mid and high-cycle fatigue loading cases are being investigated. The induced elastic-plastic stress-strain states are approximated by means of respective finite element analyses (FEA). Several experimental fatigue data derived from uniaxial and multiaxial fatigue tests on StE460 steel alloy thin-walled hourglass-type specimens have been used to verify the model's calculation accuracy. Comparison of experimental and calculated fatigue lives confirm remarkable fatigue life calculation accuracy in all cases examined.

  15. Factors Influencing Dwell Fatigue Cracking in Notches of Powder Metallurgy Superalloys

    Science.gov (United States)

    Gabb, T. P.; Telesman, J.; Ghosn, L.; Garg, A.; Gayda, J.

    2011-01-01

    The influences of heat treatment and cyclic dwells on the notch fatigue resistance of powder metallurgy disk superalloys were investigated for low solvus high refractory (LSHR) and ME3 disk alloys. Disks were processed to produce material conditions with varied microstructures and associated mechanical properties. Notched specimens were first subjected to baseline dwell fatigue cycles having a dwell at maximum load, as well as tensile, stress relaxation, creep rupture, and dwell fatigue crack growth tests at 704 C. Several material heat treatments displayed a bimodal distribution of fatigue life with the lives varying by two orders-of-magnitude, while others had more consistent fatigue lives. This response was compared to other mechanical properties, in search of correlations. The wide scatter in baseline dwell fatigue life was observed only for material conditions resistant to stress relaxation. For selected materials and conditions, additional tests were then performed with the dwells shifted in part or in total to minimum tensile load. The tests performed with dwells at minimum load exhibited lower fatigue lives than max dwell tests, and also exhibited early crack initiation and a substantial increase in the number of initiation sites. These results could be explained in part by modeling evolution of peak stresses in the notch with continued dwell fatigue cycling. Fatigue-environment interactions were determined to limit life for the fatigue cycles with dwells.

  16. Fatigue characteristics and microcosmic mechanism of Al-Si-Mg alloys under multiaxial proportional loadings

    Science.gov (United States)

    Jiang, Xiao-Song; He, Guo-Qiu; Liu, Bing; Zhu, Zheng-Yu; Zhang, Wei-Hua

    2011-08-01

    With the increasing use of Al-Si-Mg alloys in the automotive industry, the fatigue performance of Al-Si-Mg alloy has become a major concern with regard to their reliability. The fatigue characteristics and microcosmic mechanism of an Al-Si-Mg alloy under multiaxial proportional loadings were investigated in this research. As low cycle fatigue life and material strengthening behavior are closely related, the effect of equivalent strain amplitude on the multiaxial fatigue properties was analyzed. Fatigue tests were conducted to determine the influence of equivalent strain amplitude on the multiaxial proportional fatigue properties. The fatigue life exhibits a stable behavior under multiaxial proportional loadings. The dislocation structures of the Al-Si-Mg alloy were observed by transmission electron microscopy (TEM). The dislocation structure evolution of the Al-Si-Mg alloy under multiaxial proportional loadings during low cycle fatigue develops step by step by increasing fatigue cycles. Simultaneously, the dislocation structure changes with the change in equivalent strain amplitude under multiaxial proportional loadings. The experimental evidence indicates that the multiaxial fatigue behavior and life are strongly dependent on the microstructure of the material, which is caused by multiaxial proportional loadings.

  17. Improvements in the microstructure and fatigue behavior of pure copper using equal channel angular extrusion

    Institute of Scientific and Technical Information of China (English)

    J Nemati; GH Majzoobi; S Sulaiman; BTHT Baharudin; MAAzmah Hanim

    2014-01-01

    In this study, annealed pure copper was extruded using equal channel angular extrusion (ECAE) for a maximum of eight passes. The fatigue resistance of extruded specimens was evaluated for different passes and applied stresses using fatigue tests, fractography, and metallography. The mechanical properties of the extruded material were obtained at a tensile test velocity of 0.5 mm/min. It was found that the maximum increase in strength occurred after the 2nd pass. The total increase in ultimate strength after eight passes was 94%. The results of fatigue tests indicated that a significant improvement in fatigue life occurred after the 2nd pass. In subsequent passes, the fatigue life con-tinued to improve but at a considerably lower rate. The improved fatigue life was dependent on the number of passes and applied stresses. For low stresses (or high-cycle fatigue), a maximum increase in fatigue resistance of approximately 500%was observed for the extruded material after eight passes, whereas a maximum fatigue resistance of 5000%was obtained for high-applied stresses (or low-cycle fatigue). Optical microscopic examinations revealed grain refinements in the range of 32 to 4 µm. A maximum increase in impact energy absorption of 100%was achieved after eight passes. Consistent results were obtained from fractography and metallography examinations of the ex-truded material during fatigue tests.

  18. Probabilistic prediction of fatigue damage based on linear fracture mechanics

    Directory of Open Access Journals (Sweden)

    M. Krejsa

    2017-01-01

    Full Text Available Paper describes in detail and gives example of the probabilistic assessment of a steel structural element subject to fatigue load, particular attention being paid to cracks from the edge and those from surface. Fatigue crack damage depends on a number of stress range cycles. Three sizes are important for the characteristics of the propagation of fatigue cracks - the initial size, detectable size and acceptable size. The theoretical model of fatigue crack progression in paper is based on a linear fracture mechanics. When determining the required degree of reliability, it is possible to specify the time of the first inspection of the construction which will focus on the fatigue damage. Using a conditional probability, times for subsequent inspections can be determined. For probabilistic calculation of fatigue crack progression was used the original and new probabilistic methods - the Direct Optimized Probabilistic Calculation (“DOProC”, which is based on optimized numerical integration. The algorithm of the probabilistic calculation was applied in the FCProbCalc code (“Fatigue Crack Probabilistic Calculation”, using which is possible to carry out the probabilistic modelling of propagation of fatigue cracks in a user friendly environment very effectively.

  19. Effect of Surface Nanocrystallization on Fatigue Behavior of Pure Titanium

    Science.gov (United States)

    Wang, Qi; Sun, Qiaoyan; Xiao, Lin; Sun, Jun

    2016-01-01

    The high-cycle fatigue behavior was investigated in pure titanium after surface nanocrystallization (SNC Ti). Compared with the coarse-grained titanium (CG Ti) samples, the SNC Ti samples exhibit an improved fatigue life. The SNC has a remarkable influence on the fatigue cracks initiation and growth of pure titanium. The results show that, because the free-surface cracking is suppressed by the surface nanogradient structure in the SNC Ti, the fatigue cracks initiation sites change from the free surface to the subsurface. Meanwhile, the fatigue crack growth rate decreases due to the microstructural feature and residual compressive stress. The deformation twins in the subsurface of SNC Ti have a marked effect on the fatigue crack initiation and the crack growth. The former effect is due to the twin boundaries being preferential sites for crack initiation, while the latter is associated with the barriers that the twin boundaries pose to the propagation of dislocations. Furthermore, microstructural analysis indicates that the dislocation distribution in SNC Ti gradually becomes homogenous as fatigue processes. This homogeneous microstructure is also beneficial to the improvement of fatigue life.

  20. Fatigue Life Analysis of Cantilever Probe on Wafer Test

    Directory of Open Access Journals (Sweden)

    Hsiao Te-Ching

    2016-01-01

    Full Text Available This research utilizes the finite element analysis software (ANSYS to stimulate the different probe material quality (tungsten, SUS304 stainless steel, SUS316L stainless steel and SKD11 tool steel, respectively during wafer tests. Under a room temperature of (25°C, the stress and fatigue life (cycles of probing test of the cantilever probe were measured with an OverDriver (OD of 20µm, 40µm, 50µm, 60µm and 80µm, respectively. First, to obtain the magnitude of pinpoint shift of the probe under wafer test and the OverDriver is 50µm. And, calculate the fatigue life of the probe. Then, a probe model with the same characteristics as the experiment is created and the probe fatigue life analyzed with the ANSYS. After the reliability of the model is ascertained, the wafer tests of different probe materials are stimulated under different OverDriver circumstances to calculate its stress and fatigue life. The results indicate that the greatest stress measured during the wafer test of the tungsten, SUS304 stainless steel, SUS316L stainless steel and SKD11 tool steel cantilever probe are all smaller than the yield strength, and the fatigue life could reach over one hundred K cycles. When catalogued by the cantilever probe fatigue life during one hundred K cycles, the life span, in order, is tungsten < SUS316L stainless steel < SUS304 stainless steel < SKD11 tool steel.

  1. Effect of One Carpet Weaving Workstation on Upper Trapezius Fatigue

    Directory of Open Access Journals (Sweden)

    Neda Mahdavi

    2016-03-01

    Full Text Available Introduction: This study aimed to investigate the effect of carpet weaving at a proposed workstation on Upper Trapezius (UTr fatigue during a task cycle. Fatigue in the shoulder is one of the most important precursors for upper limb musculoskeletal disorders. One of the most prevalent musculoskeletal disorders between carpet weavers is disorder of the shoulder region. Methods: This cross-sectional study, included eight females and three males. During an 80-minute cycle of carpet weaving, Electromyography (EMG signals of right and left UTr were recorded by the surface EMG, continuously. After raw signals were processed, MPF and RMS were considered as EMG amplitude and frequency parameters. Time series model and JASA methods were used to assess and classify the EMG parameter changes during the working time. Results: According to the JASA method, 58%, 16%, 8% and 8% of the participants experienced fatigue, force increase, force decrease and recovery, respectively in the right UTr. Also, 50%, 25%, 8% and 16% of the participants experienced fatigue, force increase, force decrease and recovery, respectively in the left UTr. Conclusions: For the major portion of the weavers, dominant status in Left and right UTr was fatigue, at the proposed workstation during a carpet weaving task cycle. The results of the study provide detailed information for optimal design of workstations. Further studies should focus on fatigue in various muscles and time periods for designing an appropriate and ergonomics carpet weaving workstation

  2. Influence of grain orientation on evolution of surface features in fatigued polycrystalline copper: a comparison of thermal and uniaxial mechanical fatigue results

    CERN Document Server

    Aicheler, M

    2010-01-01

    Surface state plays a major role in the crack nucleation process of pure metals in the High-Cycle-Fatigue (HCF) as well as in the Ultra-High-Cycle-Fatigue (UHCF) regime. Therefore, in studies dealing with HCF or UHCF, special attention is paid to the evolution of surface degradation during fatigue life. The accelerating structures of the future Compact Linear Collider (CLIC) under study at CERN will be submitted to a high number of thermal-mechanical fatigue cycles, arising from Radio Frequency (RF) induced eddy currents, causing local superficial cyclic heating. The number of cycles during the foreseen lifetime of CLIC reaches 2x10(11). Fatigue may limit the lifetime of CLIC structures. In order to assess the effects of superficial fatigue, specific tests are defined and performed on polycrystalline Oxygen Free Electronic (OFE) grade Copper, a candidate material for the structures. Surface degradation depends on the orientation of near-surface grains. Copper samples thermally fatigued in two different fatigu...

  3. Hyperthermia and fatigue

    DEFF Research Database (Denmark)

    Nybo, Lars

    2008-01-01

    of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise......The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation...... of the dopaminergic system, but may primarily relate to inhibitory signals from the hypothalamus arising secondary to an increase in brain temperature. Fatigue is an integrated phenomenon, and psychological factors, including the anticipation of fatigue, should not be neglected and the interaction between central...

  4. Fatigue in soccer

    DEFF Research Database (Denmark)

    Mohr, Magni; Krustrup, Peter; Bangsbo, Jens

    2005-01-01

    This review describes when fatigue may develop during soccer games and the potential physiological mechanisms that cause fatigue in soccer. According to time?-?motion analyses and performance measures during match-play, fatigue or reduced performance seems to occur at three different stages......, acidity or the breakdown of creatine phosphate. Instead, it may be related to disturbances in muscle ion homeostasis and an impaired excitation of the sarcolemma. Soccer players' ability to perform maximally is inhibited in the initial phase of the second half, which may be due to lower muscle...... concentrations in a considerable number of individual muscle fibres. In a hot and humid environment, dehydration and a reduced cerebral function may also contribute to the deterioration in performance. In conclusion, fatigue or impaired performance in soccer occurs during various phases in a game, and different...

  5. Fatigue Crack Topography.

    Science.gov (United States)

    1984-01-01

    evaluating ciack initiation time and crack propagation, prgram I was used for performing the major fatigue test with the aircraft structure. In...advantage to begin with the end of the fracture, this is especially so in the case of the quantitative evaluation of striations. The overload fracture...Select the Measuring Line for Quantitative Evaluation Actually, the fatigue fracture should be inspected completely from the point of origin to the

  6. The Recognition Of Fatigue

    DEFF Research Database (Denmark)

    Elsass, Peter; Jensen, Bodil; Mørup, Rikke;

    2007-01-01

    Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87......Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87...

  7. Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue for the austentic stainless steels, and application of multiaxial fatigue criteria

    Energy Technology Data Exchange (ETDEWEB)

    Fissolo, Antoine; Gourdin, Cedric [DM2S/SEMT/LISN, Gif sur Yvette (France); Vincent, Ludovic [DMN/SRMA/LCD, Gif sur Yvette (France)

    2009-07-01

    For nuclear reactor components, uniaxial isothermal fatigue curves are used to estimate the crack initiation under thermal fatigue. However, such approach would be not sufficient in some cases where cracking was observed. To investigate differences between uniaxial and thermal fatigue damage, tests have been carried out at CEA using the thermal fatigue devices SPLASH and FAT3D: a bi-dimensional (2-D) loading status is obtained in SPLASH, whereas a tri-dimensional (3-D) loading status is obtained in FAT3D. All the analysed tests clearly show that crack initiation in thermal fatigue is faster than in uniaxial isothermal fatigue conditions: for identical levels of strain, the number of cycles required to achieve crack initiation is significantly lower. The enhanced damaging effect probably results from a pure mechanical origin: a nearly perfect biaxial state corresponds to an increased hydrostatic stress. Consequently, multiaxial fatigue criteria must be applied. The Zamrik's strain criterion and the energy criterion proposed by Ecole Polytechnique provide the best estimations. In that framework, the proposed new method coupling both RCC-MR strain estimations and Zamrik's criterion appears to be more promising for the designer. (orig.)

  8. Driver Fatigue Features Extraction

    Directory of Open Access Journals (Sweden)

    Gengtian Niu

    2014-01-01

    Full Text Available Driver fatigue is the main cause of traffic accidents. How to extract the effective features of fatigue is important for recognition accuracy and traffic safety. To solve the problem, this paper proposes a new method of driver fatigue features extraction based on the facial image sequence. In this method, first, each facial image in the sequence is divided into nonoverlapping blocks of the same size, and Gabor wavelets are employed to extract multiscale and multiorientation features. Then the mean value and standard deviation of each block’s features are calculated, respectively. Considering the facial performance of human fatigue is a dynamic process that developed over time, each block’s features are analyzed in the sequence. Finally, Adaboost algorithm is applied to select the most discriminating fatigue features. The proposed method was tested on a self-built database which includes a wide range of human subjects of different genders, poses, and illuminations in real-life fatigue conditions. Experimental results show the effectiveness of the proposed method.

  9. Cumulative creep-fatigue damage evolution in an austenitic stainless steel

    Science.gov (United States)

    Mcgaw, Michael A.

    1992-01-01

    A model of cumulative creep-fatigue damage has been developed which is based on the use of damage curve equations to describe the evolution of creep-fatigue damage for four basic creep-fatigue cycle types. These cycle types correspond to the four fundamental cycles of the Strain Range Partitioning Life Prediction approach of Manson, Halford, and Hirschberg. A concept referred to as Damage Coupling is introduced to analytically account for the differences in the nature of the damage introduced by each cycle type. For application of this model, the cumulative creep-fatigue damage behavior of type 316 stainless steel at 816 C has been experimentally established for the two-level loading cases involving fatigue and creep-fatigue, in various permutations. The tests were conducted such that the lower life (high strain) cycling was applied first, for a controlled number of cycles, and the higher life (lower strain) cycling was conducted at the second level, to failure. The proposed model correlated the majority of the observed cumulative creep-fatigue data.

  10. Rotating bending fatigue property of the Ni3Al-based single crystal superalloy IC6SX at 900°C

    Science.gov (United States)

    Jiang, Liwu; Li, Shusuo; Han, Yafang

    2017-03-01

    The high cycle fatigue behavior of a Ni3Al base single crystal superalloy IC6SX has been investigated at 900°C in this work. The specimens used for the fatigue tests were prepared by screw selection crystal method in a directional solidification furnace. The rotating bending fatigue tests were carried out at 900°Cin air, the stress ratio of R(σmax/σmin) was -1, and the rotating speed of the fatigue tests was 6500r/min(108Hz). The stress-fatigue cycle life (S-Nf) curve was obtained based on the fatigue tests, and the fracture surfaces were examined using scanning electron microscopy (SEM). It has been found that the median fatigue strength is 457.5MPa and the safety fatigue strength is 413.93MPa. And the fatigue fracture was composed of three different characteristic regions.

  11. Room temperature creep-fatigue response of selected copper alloys for high heat flux applications

    DEFF Research Database (Denmark)

    Li, M.; Singh, B.N.; Stubbins, J.F.

    2004-01-01

    Two copper alloys, dispersion-strengthened CuAl25 and precipitation-hardened CuCrZr, were examined under fatigue and fatigue with hold time loading conditions. Tests were carried out at room temperature and hold times were imposed at maximum tensile and maximum compressive strains. It was found...... times. The influence of hold times on fatigue life in the low cycle fatigue, short life regime (i.e., at high strain amplitudes) was minimal. When hold time effects were observed, fatigue lives were reduced with hold times as short as two seconds. Appreciable stress relaxation was observed during...... the hold period at all applied strain levels in both tension and compression. In all cases, stresses relaxed quickly within the first few seconds of the hold period and much more gradually thereafter. The CuAl25 alloy showed a larger effect of hold time on reduction of high cycle fatigue life than did...

  12. The Effect of Structural Quality on Fatigue Life in 319 Aluminum Alloy Castings

    Science.gov (United States)

    Özdeş, Hüseyin; Tiryakioğlu, Murat

    2016-12-01

    Tensile and fatigue life data for 319 aluminum alloy from seventeen datasets reported in four independent studies from the literature have been reanalyzed. Analysis of fatigue life data involved mean stress correction for different R ratios used in fatigue testing, inclusion of survival (runout) data along with failure data, as well as volumetric correction for Weibull distributions for different specimen sizes used in these studies. Tensile data have been transformed into the structural quality index, Q T, which is used as a measure of the structural quality of castings. A distinct relationship has been observed between the expected fatigue life and mean quality index. Moreover, fatigue strengths at 104 and 106 cycles have been found increase with quality index, providing further evidence about the relationship observed between structural quality and fatigue performance. Empirical equations between Basquin parameters and structural quality index have been developed. The use of the comprehensive methodology to estimate fatigue life is demonstrated with an example.

  13. The Effect of Structural Quality on Fatigue Life in 319 Aluminum Alloy Castings

    Science.gov (United States)

    Özdeş, Hüseyin; Tiryakioğlu, Murat

    2017-02-01

    Tensile and fatigue life data for 319 aluminum alloy from seventeen datasets reported in four independent studies from the literature have been reanalyzed. Analysis of fatigue life data involved mean stress correction for different R ratios used in fatigue testing, inclusion of survival (runout) data along with failure data, as well as volumetric correction for Weibull distributions for different specimen sizes used in these studies. Tensile data have been transformed into the structural quality index, Q T, which is used as a measure of the structural quality of castings. A distinct relationship has been observed between the expected fatigue life and mean quality index. Moreover, fatigue strengths at 104 and 106 cycles have been found increase with quality index, providing further evidence about the relationship observed between structural quality and fatigue performance. Empirical equations between Basquin parameters and structural quality index have been developed. The use of the comprehensive methodology to estimate fatigue life is demonstrated with an example.

  14. Ti–6Al–4V welded joints via electron beam welding: Microstructure, fatigue properties, and fracture behavior

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaoguang [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China); Li, Shaolin [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Qi, Hongyu, E-mail: qhy@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, Beijing 100191 (China); Co-Innovation Center for Advanced Aero-Engine, Beijing 100191 (China)

    2014-03-01

    The effect of microstructural characteristics on the fatigue properties of electron beam-welded joints of forged Ti–6Al–4V and its fracture behavior were investigated. Tensile tests and fatigue tests were conducted at room temperature in air atmosphere. The test data were analyzed in relation to microstructure, high-cycle fatigue properties, low-cycle fatigue properties, and fatigue crack propagation properties. The high-cycle fatigue test results indicated that the fatigue strength of the joint welded via electron beam welding was higher than that of the base metal because the former had a high yield strength and all high-cycle fatigue specimens were fractured in the base metal. Although the joint specimens had a lower low-cycle fatigue life than the base metal, they mainly ruptured at the fusion zone of the joint specimen and their crack initiation mechanism is load-dependent. The fatigue crack propagation test results show that the joint had a slower crack propagation rate than the base metal, which can be attributed to the larger grain in the fusion zone.

  15. Fatigue damage evaluation by metal magnetic memory testing

    Institute of Scientific and Technical Information of China (English)

    王慧鹏; 董丽虹; 董世运; 徐滨士

    2014-01-01

    Tension-compression fatigue test was performed on 0.45% C steel specimens. Normal and tangential components of magnetic memory testing signals, Hp(y) and Hp(x) signals, with their characteristics, K of Hp(y) and Hp(x)M of Hp(x), throughout the fatigue process were presented and analyzed. Abnormal peaks of Hp(y) and peak of Hp(x) reversed after loading;Hp(y) curves rotated clockwise and Hp(x) curves elevated significantly with the increase of fatigue cycle number at the first a few fatigue cycles, both Hp(y) and Hp(x) curves were stable after that, the amplitude of abnormal peaks of Hp(y) and peak value of Hp(x) increased more quickly after fatigue crack initiation. Abnormal peaks of Hp(y) and peak of Hp(x) at the notch reversed again after failure. The characteristics were found to exhibit consistent tendency in the whole fatigue life and behave differently in different stages of fatigue. In initial and crack developing stages, the characteristics increased significantly due to dislocations increase and crack propagation, respectively. In stable stage, the characteristics remained constant as a result of dislocation blocking, K value ranged from 20 to 30 A/(m·mm)-1, and Hp(x)M ranged from 270 to 300 A/m under the test parameters in this work. After failure, both abnormal peaks of Hp(y) and peak of Hp(x) reversed, K value was 133 A/(m·mm)-1 and Hp(x)M was-640 A/m. The results indicate that the characteristics of Hp(y) and Hp(x) signals were related to the accumulation of fatigue, so it is feasible and applicable to monitor fatigue damage of ferromagnetic components using metal magnetic memory testing (MMMT).

  16. Influence of grain orientation on evolution of surface features in fatigued polycrystalline copper: A comparison of thermal and uniaxial mechanical fatigue results

    Energy Technology Data Exchange (ETDEWEB)

    Aicheler, Markus, E-mail: markus.aicheler@cern.c [EN-MME-MM Metallurgy and Metrology, CERN European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland)

    2010-07-01

    Surface state plays a major role in the crack nucleation process of pure metals in the High-Cycle-Fatigue (HCF) as well as in the Ultra-High-Cycle-Fatigue (UHCF) regime. Therefore, in studies dealing with HCF or UHCF, special attention is paid to the evolution of surface degradation during fatigue life. The accelerating structures of the future Compact Linear Collider (CLIC) under study at CERN will be submitted to a high number of thermal-mechanical fatigue cycles, arising from Radio Frequency (RF) induced eddy currents, causing local superficial cyclic heating. The number of cycles during the foreseen lifetime of CLIC reaches 2x10{sup 11}. Fatigue may limit the lifetime of CLIC structures. In order to assess the effects of superficial fatigue, specific tests are defined and performed on polycrystalline Oxygen Free Electronic (OFE) grade Copper, a candidate material for the structures. Surface degradation depends on the orientation of near-surface grains. Copper samples thermally fatigued in two different fatigue experiments, pulsed laser and pulsed RF-heating, underwent postmortem Electron Backscattered Diffraction measurements. Samples fatigued by pulsed laser show the same trend in the orientation-fatigue damage behavior as samples fatigued by pulsed RF-heating. It is clearly observed that surface grains, oriented [1 1 1] with respect to the surface, show significantly more damage than surface grains oriented [1 0 0]. Results arising from a third fatigue experiment, the ultrasound (US) swinger, are compared to the results of the mentioned experiments. The US swinger is an uniaxial mechanical fatigue test enabling to apply within several days a total number of cycles representative of the life of the CLIC structures, thanks to a high repetition rate of 24 kHz. For comparison, laser fatigue experiments have much lower repetition rates. The dependence of surface degradation on grain orientation of samples tested by the US swinger was monitored during the fatigue

  17. Quantification of fatigue crack propagation of an austenitic stainless steel in mercury embrittlement

    Energy Technology Data Exchange (ETDEWEB)

    Naoe, Takashi, E-mail: naoe.takashi@jaea.go.jp [J-PARC Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Yamaguchi, Yoshihito [Nucelar Safety Research Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Futakawa, Masatoshi [J-PARC Center, Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer The effect of mercury immersion on fatigue crack propagation rate in SUS316 was investigated through fatigue tests. Black-Right-Pointing-Pointer Fatigue crack growth rate in mercury was estimated by the FRActure Surface Topography Analysis (FRASTA). Black-Right-Pointing-Pointer The fatigue crack growth rate was slightly higher in mercury than that in the air in the low cycle fatigue region. Black-Right-Pointing-Pointer This suggests that the crack propagation is accelerated by mercury immersion in high stress imposition regions. - Abstract: Liquid metals are expected to be used as nuclear materials, such as coolant for nuclear reactors and spallation targets for neutron sources, because of their good thermal conductivity and neutron production. However, in specific combinations, liquid metals have the potential to degrade structural integrity of solid metals because of Liquid Metal Embrittlement (LME). In this study, the effect of mercury immersion on fatigue crack propagation rate in SUS316 was investigated through fatigue tests with a notched specimen under mercury immersion. FRActure Surface Topography Analysis (FRASTA) with the measurement of the notch opening distance was performed to estimate the fatigue crack growth rate in mercury. The results showed that the fatigue crack growth rate was slightly higher in mercury than that in the air in the low cycle fatigue region. This suggests that the crack propagation is accelerated by mercury immersion in high stress imposition regions.

  18. Comparative Study of Fatigue Damage Models Using Different Number of Classes Combined with the Rainflow Method

    Directory of Open Access Journals (Sweden)

    S. Zengah

    2013-06-01

    Full Text Available Fatigue damage increases with applied load cycles in a cumulative manner. Fatigue damage models play a key role in life prediction of components and structures subjected to random loading. The aim of this paper is the examination of the performance of the “Damaged Stress Model”, proposed and validated, against other fatigue models under random loading before and after reconstruction of the load histories. To achieve this objective, some linear and nonlinear models proposed for fatigue life estimation and a batch of specimens made of 6082T6 aluminum alloy is subjected to random loading. The damage was cumulated by Miner’s rule, Damaged Stress Model (DSM, Henry model and Unified Theory (UT and random cycles were counted with a rain-flow algorithm. Experimental data on high-cycle fatigue by complex loading histories with different mean and amplitude stress values are analyzed for life calculation and model predictions are compared.

  19. Short fatigue cracks nucleation and growth in lean duplex stainless steel LDX 2101

    Energy Technology Data Exchange (ETDEWEB)

    Strubbia, R., E-mail: strubbia@ifir-conicet.gov.ar [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Hereñú, S.; Alvarez-Armas, I. [Instituto de Física Rosario – CONICET, Universidad Nacional de Rosario (Argentina); Krupp, U. [Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück (Germany)

    2014-10-06

    This work is focused on the fatigue damage of lean duplex stainless steels (LDSSs) LDX 2101. Special interest is placed on analyzing short fatigue crack behavior. In this sense, short crack initiation and growth during low cycle fatigue (LCF) and short crack nucleation during high cycle fatigue (HCF) of this LDSS have been studied. The active slip systems and their associated Schmid factors (SF) are determined using electron backscattered diffraction (EBSD). Additionally, the dislocation structure developed during cycling is observed by transmission electron microscopy (TEM). Regardless of the fatigue regime, LCF and HCF, short cracks nucleate along intrusion/extrusions in ferritic grains. Moreover, during the LCF phase boundaries decelerate short crack propagation. These results are rationalized by the hardness of the constitutive phases and the dependence of screw dislocation mobility in the ferrite phase on strain rate and stress amplitude.

  20. High temperature fatigue behaviour of intermetallics

    Indian Academy of Sciences (India)

    K Bhanu Sankara Rao

    2003-06-01

    There would be considerable benefits in developing new structural materials where high use temperatures and strength coupled with low density are minimum capabilities. Nickel and titanium aluminides exhibit considerable potential for near-term application in various branches of modern industry due to the number of property advantages they possess including low density, high melting temperature, high thermal conductivity, and excellent environmental resistance, and their amenability for significant improvment in creep and fatigue resistance through alloying. Reliability of intermetallics when used as engineering materials has not yet been fully established. Ductility and fracture toughness at room and intermediate temperatures continue to be lower than the desired values for production implementation. In this paper, progress made towards improving strain-controlled fatigue resistance of nickel and titanium aluminides is outlined. The effects of manufacturing processes and micro alloying on low cycle fatigue behaviour of NiAl are addressed. The effects of microstructure, temperature of testing, section thickness, brittle to ductile transition temperature, mean stress and environment on fatigue behaviour of same -TiAl alloys are discussed.

  1. Fatigue in cold-forging dies: Tool life analysis

    DEFF Research Database (Denmark)

    Skov-Hansen, P.; Bay, Niels; Grønbæk, J.;

    1999-01-01

    In the present investigation it is shown how the tool life of heavily loaded cold-forging dies can be predicted. Low-cycle fatigue and fatigue crack growth testing of the tool materials are used in combination with finite element modelling to obtain predictions of tool lives. In the models...... the number of forming cycles is calculated first to crack initiation and then during crack growth to fatal failure. An investigation of a critical die insert in an industrial cold-forging tool as regards the influence of notch radius, the amount and method of pre-stressing and the selected tool material...

  2. Fatigue properties of ductile cast iron containing chunky graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ferro, P., E-mail: ferro@gest.unipd.it [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy); Lazzarin, P.; Berto, F. [Department of Management and Engineering, University of Padova, Stradella S. Nicola 3, I-36100 Vicenza (Italy)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer Experimental determination of high cycle fatigue properties of EN-GJS-400. Black-Right-Pointing-Pointer Evaluation of the influence of chunky graphite morphology on fatigue life. Black-Right-Pointing-Pointer Metallurgical analysis and microstructural parameters determination. Black-Right-Pointing-Pointer Nodule counting and nodularity rating. - Abstract: This work deals with experimental determination of high cycle fatigue properties of EN-GJS-400 ductile cast iron containing chunky graphite. Constant amplitude axial tests were performed at room temperature under a nominal load ratio R = 0. In order to evaluate the influence of chunky graphite morphology on fatigue life, fatigue tests were carried out also on a second set of specimens without this microstructural defect. All samples were taken from the core of a large casting component. Metallurgical analyses were performed on all the samples and some important microstructural parameters (nodule count and nodularity rating, among others) were measured and compared. It was found that a mean content of 40% of chunky graphite in the microstructure (with respect to total graphite content) does not influence significantly the fatigue strength properties of the analysed cast iron. Such result was attributed to the presence of microporosity detected on the surface fracture of the specimens by means of electron scanning microscope.

  3. Probabilistic and microstructural aspects of fatigue cracks initiation in Inconel 718; Aspects probabilistes et microstructuraux de l'amorcage des fissures de fatigue dans l'alliage INCO 718

    Energy Technology Data Exchange (ETDEWEB)

    Alexandre, F

    2004-03-15

    Thermomechanical treatments have been recently developed to produce Inconel 718DA (Direct Aged). This alloy optimisation leads to an increase of the fatigue life but also the scatter. The aim of this study is on the one hand the understanding of the fatigue crack initiation mechanisms and on the other hand the modelling of the fatigue life and the scatter. An experimental study showed that the fatigue cracks were initiated from carbide particles in fine grain alloy. Interrupted tensile tests show that the particles cracking occurred at the first quarter of the fatigue cycle. Fatigue behaviour tests were also performed on various grain size 718 alloys. The last experimental part was devoted to measurements of the low cycle fatigue crack growth rates using a high focal distance microscope. For these tests, EDM micro-defects were used for the fatigue crack initiation sites. This method was also used to observe the small fatigue crack coalescence. A fatigue life model is proposed. It is based on the three fatigue crack initiation mechanisms competition: particle crack initiation on the surface, internal particle crack initiation and Stade I crack initiation. The particle fatigue crack initiation is supposed instantaneous at a critical stress level. The Tanaka and Mura model is used for analysing the Stage I crack initiation number of cycles. The fatigue crack growth rate was analysed using the Tomkins model identified on the small fatigue crack growth rate measurements. The proposed fatigue life model decomposed in three levels: a deterministic one and two probabilistic with and without crack coalescence. (author)

  4. A multiaxial incremental fatigue damage formulation using nested damage surfaces

    Directory of Open Access Journals (Sweden)

    Marco Antonio Meggiolaro

    2016-07-01

    Full Text Available Multiaxial fatigue damage calculations under non-proportional variable amplitude loadings still remains a quite challenging task in practical applications, in part because most fatigue models require cycle identification and counting to single out individual load events before quantifying the damage induced by them. Moreover, to account for the non-proportionality of the load path of each event, semi-empirical methods are required to calculate path-equivalent ranges, e.g. using a convex enclosure or the MOI (Moment Of Inertia method. In this work, a novel Incremental Fatigue Damage methodology is introduced to continuously account for the accumulation of multiaxial fatigue damage under service loads, without requiring rainflow counters or path-equivalent range estimators. The proposed approach is not based on questionable Continuum Damage Mechanics concepts or on the integration of elastoplastic work. Instead, fatigue damage itself is continuously integrated, based on damage parameters adopted by traditional fatigue models well tested in engineering practice. A framework of nested damage surfaces is introduced, allowing the calculation of fatigue damage even for general 6D multiaxial load histories. The proposed approach is validated by non-proportional tensiontorsion experiments on tubular 316L stainless steel specimens.

  5. ANSYS Creep-Fatigue Assessment tool for EUROFER97 components

    Directory of Open Access Journals (Sweden)

    M. Mahler

    2016-12-01

    Full Text Available The damage caused by creep-fatigue is an important factor for materials at high temperatures. For in-vessel components of fusion reactors the material EUROFER97 is a candidate for structural application where it is subjected to irradiation and cyclic thermo-mechanical loads. To be able to evaluate fusion reactor components reliably, creep-fatigue damage has to be taken into account. In the frame of Engineering Data and Design Integration (EDDI in EUROfusion Technology Work Programme rapid and easy design evaluation is very important to predict the critical regions under typical fusion reactor loading conditions. The presented Creep-Fatigue Assessment (CFA tool is based on the creep-fatigue rules in ASME Boiler Pressure Vessel Code (BPVC Section 3 Division 1 Subsection NH which was adapted to the material EUROFER97 and developed for ANSYS. The CFA tool uses the local stress, maximum elastic strain range and temperature from the elastic analysis of the component performed with ANSYS. For the assessment design fatigue and stress to rupture curves of EUROFER97 as well as isochronous stress vs. strain curves determined by a constitutive model considering irradiation influence are used to deal with creep-fatigue damage. As a result allowable number of cycles based on creep-fatigue damage interaction under given hold times and irradiation rates is obtained. This tool can be coupled with ANSYS MAPDL and ANSYS Workbench utilizing MAPDL script files.

  6. Effects of short-time heat treatment and subsequent chemical surface treatment on the mechanical properties, low-cycle fatigue behavior and corrosion resistance of a Ni-Ti (50.9 at.% Ni) biomedical alloy wire used for the manufacture of stents

    Energy Technology Data Exchange (ETDEWEB)

    Vojtech, D., E-mail: Dalibor.Vojtech@vscht.cz [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Voderova, M.; Kubasek, J.; Novak, P.; Seda, P.; Michalcova, A.; Fojt, J. [Department of Metals and Corrosion Engineering, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic); Hanus, J. [Department of Medical Biophysics, Charles University - Faculty of Medicine in Hradec Kralove, Simkova 870, 500 38 Hradec Kralove (Czech Republic); Mestek, O. [Department of Analytical Chemistry, Institute of Chemical Technology, Prague, Technicka 5, 166 28 Prague 6 (Czech Republic)

    2011-01-25

    Research highlights: {yields} Effect of short-time heat treatments on functional properties of a NiTi alloy. {yields} Negative effect of heat treatments on corrosion resistance. {yields} Positive effect of heat treatments on fatigue life. {yields} Positive influence of chemical treatment on both fatigue and corrosion resistance. - Abstract: Cold-drawn and straight-annealed NiTi wires (50.9% Ni) with a tensile strength of 1650 MPa were subjected to heat treatments at 450, 510 and 600 deg. C for 10 min in air to simulate the shape-setting process in the manufacture of stents. Afterwards, the wires were chemically etched in acidic baths containing HF, HNO{sub 3} and H{sub 2}O, followed by boiling in water. Variations in the internal structure, surface state and chemistry and transformation behavior of the wires due to these treatments were examined in detail by scanning and transmission electron microscopy, energy dispersion spectrometry, glow discharge spectrometry, X-ray photoelectron spectroscopy and differential scanning calorimetry. Mechanical properties were determined by tensile tests, and low-cycle fatigue behavior was measured by bend-type cyclic loading tests. Corrosion behavior was assessed by immersion tests and potentiodynamic measurements. A high tensile strength of the wire was shown to be attributable to a very fine-grained structure and work hardening. Heat treatment at 450-510 deg. C/10 min did not significantly affect the tensile strength of the wire. At 600 deg. C/10 min, the strength decreased by about 600 MPa due to recrystallization. The transformation temperatures first slightly increased after heat treatment at 450 deg. C and then reduced after treatments at higher temperatures due to changes in the composition of the B2 phase. The fatigue life was observed to prolong with both heat treatment and chemical etching. In contrast, the corrosion resistance worsened with heat treatment, but it improved significantly upon chemical etching. The

  7. Analysis of the fatigue strength under two load levels of a stainless steel based on energy dissipation

    Directory of Open Access Journals (Sweden)

    Ricotta M.

    2010-06-01

    Full Text Available In this paper the fatigue behaviour of a stainless steel AISI 304L is analysed. In the first part of the work the results obtained under constant amplitude fatigue are presented and synthesised in terms of both stress amplitude and energy released to the surroundings as heat by a unit volume of material per cycle, Q. Then some specimens have been fatigued in variable amplitude, two different load level tests: the first level was set higher while the second was lower than the constant amplitude fatigue limit. The Q values, evaluated during the second part of the fatigue test, have been compared with those calculated under constant amplitude fatigue at the same load level. The comparison allowed us to notice that the Q parameter is sensitive to the fatigue damage accumulated by the material during the first part of the fatigue test.

  8. Analysis of the fatigue strength under two load levels of a stainless steel based on energy dissipation

    Directory of Open Access Journals (Sweden)

    M. Ricotta

    2011-07-01

    Full Text Available In this paper the fatigue behaviour of a stainless steel AISI 304L is analysed. In the first part of the work the results obtained under constant amplitude fatigue are presented and synthesised in terms of both stress amplitude and energy released to the surroundings as heat by a unit volume of material per cycle, Q. Then some specimens have been fatigued in variable amplitude, two different load level tests: the first level was set higher while the second was lower than the constant amplitude fatigue limit. The Q values, evaluated during the second part of the fatigue test, have been compared with those calculated under constant amplitude fatigue at the same load level. The comparison allowed us to notice that the Q parameter is sensitive to the fatigue damage accumulated by the material during the first part of the fatigue test.

  9. Fatigue life prediction in composites

    CSIR Research Space (South Africa)

    Huston, RJ

    1994-01-01

    Full Text Available as the modulus is measured accurately. Its main disadvantage is that it can be applied only to constant amplitude fatigue loadings. REFERENCES 1. Mandell, J. F., Huang, D. D. & McGarry, F. J., Tensile fatigue performance...

  10. Fatigue properties of high-strength materials used in cold-forging tools

    DEFF Research Database (Denmark)

    Brøndsted, P.; Skov-Hansen, P.

    1998-01-01

    In the present work classical analytical models are used to describe the static stress–strain curves, low-cycle fatigue properties and fatigue crack growth behaviour of high-strength materials for use in tools for metal-forming processes such as cold forging and extrusion. The paper describes...

  11. Implementation of creep-fatigue model into finite-element code to assess cooled turbine blade.

    CSIR Research Space (South Africa)

    Dedekind, MO

    1994-01-01

    Full Text Available Turbine blades which are designed with airfoil cooling are subject to thermo-mechanical fatigue as well as creep damage. These problems arise due to thermal cycling and high operating temperatures in service. An implementation of fatigue and creep...

  12. Fatigue design 1998

    Energy Technology Data Exchange (ETDEWEB)

    Marquis, G.; Solin, J. [eds.] [VTT Manufacturing Technology, Espoo (Finland)

    1998-12-31

    These preprints contain the presentations to be delivered at the Fatigue Design 1998 symposium held on May 26-29, 1998 in Espoo. Fatigue Design 1998 is the tenth in a series of VTT symposia addressing the challenge of fatigue of materials, components and structures. Previous international events were in 1992 and 1995. The key theme of the current meeting is `RELIABILITY`. The two volumes (VTT symposium 181-182) represent 56 contributions by authors representing 26 countries. Emphasis has been given to application oriented research topics that report new technologies, new uses of existing methods and case studies. The objective of the symposium is to bring together researchers and engineers to share experiences and new innovations in designing reliable components to resist alternating loads. (orig.)

  13. Influence of flexural fatigue on chloride threshold value for the corrosion of steels in Ca(OH){sub 2} solutions

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Linhua, E-mail: hhulhjiang@gmail.com [College of Mechanics and Materials, Hohai University, 1 Xikang Rd., Nanjing, 210098 (China); Hydraulic Engineering Research Center for New Materials and Protection, Jiangsu Province, 1 Xikang Rd., Nanjing, 210098 (China); Liu, Hao; Wang, Yongliang; Zhang, Yan; Song, Zijian; Xu, Jinxia; Jin, Ming; Jiang, Peng; Xu, Yi; Gao, Hailang [College of Mechanics and Materials, Hohai University, 1 Xikang Rd., Nanjing, 210098 (China)

    2015-08-15

    The flexural fatigue was enforced on reinforced concrete beam with stress level of 0.6 and different fatigue life cycles. Steels removed from the beams were soaked in the saturated Ca(OH){sub 2} solution, which was used as a simulated concrete pore solution. The NaCl solution was chosen as the source of chloride ions. The Chloride Threshold Values (CTV) were detected by combining the open-circuit potentials (E{sub corr}) with the corrosion current densities (i{sub corr}), which were obtained by electrochemical impedance spectroscopy (EIS). The changes of microstructure caused by the flexural fatigue were observed by scanning electron microscopy (SEM). The results showed that as the fatigue cycle times increased, the CTV decreased under a certain stress level and range of fatigue life cycles. The grains became finer and cracks appeared on the surface of the steels. While the capacitive arcs under no flexural fatigue decreased gradually with the addition of chloride ions, the ones under flexural fatigue presented no regularity. Cracks at the surface were expanded because of sustaining flexural fatigue, which degenerated the later resistance to chloride ions of the steels. - Highlights: • The influence of flexural fatigue on chloride threshold value was examined. • The chloride threshold values vary with different fatigue life cycles. • The corrosion behavior depends on the surface integrity of the steels.

  14. Deformation Parameters and Fatigue of the Recycled Asphalt Mixtures

    Science.gov (United States)

    Šrámek, Juraj

    2015-12-01

    The deformational properties of asphalt mixtures measured by dynamic methods and fatigue allow a design the road to suit the expected traffic load. Quality of mixtures is also expressed by the resistance to permanent deformation. Complex modulus of stiffness and fatigue can reliably characterize the proposed mixture of asphalt pavement. The complex modulus (E*) measurement of asphalt mixtures are carried out in laboratory of Department of Construction Management at University of Žilina by two-point bending test method on trapezoid-shaped samples. Today, the fatigue is verified on trapezoid-shaped samples and is assessed by proportional strain at 1 million cycles (ɛ6). The test equipment and software is used to evaluate fatigue and deformation characteristics.

  15. A Summary of the Fatigue Properties of Wind Turbine Materials

    Energy Technology Data Exchange (ETDEWEB)

    SUTHERLAND, HERBERT J.

    1999-10-07

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

  16. Fatigue in primary biliary cirrhosis

    OpenAIRE

    Cauch-Dudek, K; Abbey, S; Stewart, D; Heathcote, E

    1998-01-01

    Background—Fatigue is a frequent and debilitating symptom in patients with primary biliary cirrhosis (PBC). 
Aims—To study fatigue in relation to sleep, depression, and liver disease severity. 
Methods—Patients with PBC completed validated self report questionnaires measuring fatigue, sleep quality, depression, and functional capacity. Verbally reported fatigue and observer rated measure of depression and ursodeoxycholic acid (UDCA) use were recorded. Liver biochemistry and ...

  17. Thermal Fatigue of Die-Casting Dies: An Overview

    Directory of Open Access Journals (Sweden)

    Abdulhadi Hassan A.

    2016-01-01

    Full Text Available Coupled studies by experimental and numerical simulations are necessary for an increased understanding of the material behaviour as related to the interaction between the thermal and mechanical conditions. This paper focus on the mechanisms of thermal fatigue in the failure of dies and cores used in the die casting of aluminum alloys. The thermal fatigue resistance is expressed by two crack parameters which are the average maximum crack and the average cracked area. Samples of various types of H13 steel were compared with a standard H13 steel by testing under identical thermal fatigue cycles. To determine the thermal constraint developed in the sample during the test, a finite difference technique was used to obtain the temperature distribution, based on temperature measurements at the boundaries. The resulting stresses and strains were computed, and the strain calculated at the edge or weakest point of the sample was used to correlate the number of cycles to crack initiation. As the strain at the edge increased, the number of cycles to failure decreased. The influence of various factors on thermal fatigue behavior was studied including austenitizing temperature, surface condition, stress relieving, casting, vacuum melting, and resulfurization. The thermal fatigue resistance improved as the austenitizing temperature increased from 1750 to 2050ºF.

  18. 搅拌摩擦对接焊6061铝合金的高周疲劳行为%High-cycle fatigue behavior of friction stir butt welded 6061 aluminium alloy

    Institute of Scientific and Technical Information of China (English)

    Hrishikesh DAS; Debayan CHAKRABORTY; Tapan KUMAR PAL

    2014-01-01

    对6061铝合金进行搅拌摩擦对接焊,其焊接工艺参数为:旋转速度600、800、1000、1200 r/min,前进速度80、100 mm/min,探针插入深度1.85 mm。基于搅拌摩擦焊参数计算得到的能量输入结果表明,在输入能量为196~405 kJ的情况下,接头在297~354 kJ的输入能量范围内有最大的抗拉强度。在不同的应力比(R=0.5,0.3,0.1,-0.3,-0.5)下,将高强度、低强度2种焊接头进行疲劳测试。结果表明,对于这2种焊接头,显微组织特征明显影响其疲劳性能,比如搅拌区、热力影响区(TMAZ)和热影响区。从接头的显微组织、裂纹扩展路径和断裂表面观察等方面对其疲劳强度进行讨论。%Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.85 mm. The calculated energy input based on the FSW parameters studied shows that the ultimate tensile strength (UTS) of the butt joint is obtained within a certain range of energy input of 297 kJ to 354 kJ out of total range of energy input studied from 196 kJ to 405 kJ. The fatigue behaviors of high-strength and low-strength joints performed at different stress ratios, i.e., 0.5, 0.3, 0.1, -0.3, -0.5, indicate that the fatigue behaviors of both the welds are sensitive to the microstructural features, such as stir zone (SZ), thermo mechanically affected zone (TMAZ) and heat affected zone (HAZ). The observed fatigue strengths were discussed in terms of the microstructure, crack path behavior and fracture surface.

  19. REPEATED ABDOMINAL EXERCISE INDUCES RESPIRATORY MUSCLE FATIGUE

    Directory of Open Access Journals (Sweden)

    J. Richard Coast

    2009-12-01

    Full Text Available Prolonged bouts of hyperpnea or resisted breathing are known to result in respiratory muscle fatigue, as are primarily non respiratory exercises such as maximal running and cycling. These exercises have a large ventilatory component, though, and can still be argued to be respiratory activities. Sit-up training has been used to increase respiratory muscle strength, but no studies have been done to determine whether this type of non-respiratory activity can lead to respiratory fatigue. The purpose of the study was to test the effect of sit-ups on various respiratory muscle strength and endurance parameters. Eight subjects performed pulmonary function, maximum inspiratory pressure (MIP and maximum expiratory pressure (MEP measurements, and an incremental breathing test before and after completing a one-time fatiguing exercise bout of sit-ups. Each subject acted as their own control performing the same measurements 3-5 days following the exercise bout, substituting rest for exercise. Following sit-up induced fatigue, significant decreases were measured in MIP [121.6 ± 26 to 113.8 ± 23 cmH2O (P <0.025], and incremental breathing test duration [9.6 ± 1.5 to 8.5 ± 0.7 minutes (P <0.05]. No significant decreases were observed from control pre-test to control post-test measurements. We conclude that after a one-time fatiguing sit-up exercise bout there is a reduction in respiratory muscle strength (MIP, MEP and endurance (incremental breathing test duration but not spirometric pulmonary function

  20. Simulation of Stochastic Loads for Fatigue Experiments

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Brincker, Rune

    1989-01-01

    A simple direct simulation method for stochastic fatigue-load generation is described in this paper. The simulation method is based on the assumption that only the peaks of the load process significantly affect the fatigue life. The method requires the conditional distribution functions of load...... process by a Markov process. Two different spectra from two tubular joints in an offshore structure (one narrow banded and one wide banded) are considered in an example. The results show that the simple direct method is quite efficient and results in a simulation speed of about 3000 load cycles per second...... ranges given the last peak values. Analytical estimates of these distribution functions are presented in the paper and compared with estimates based on a more accurate simulation method. In the more accurate simulation method samples at equidistant times are generated by approximating the stochastic load...

  1. Cyclic deformation, fatigue and fatigue crack propagation in Ni-base alloys

    Science.gov (United States)

    Antolovich, Stephen D.; Lerch, Brad

    1989-01-01

    Ni-base superalloys' cumulative glide behavior, damage accumulation, low-cycle fatigue, and crack propagation characteristics are directly dependent on deformation behavior which is in turn a strong function of microstructural characteristics. Microstructural instabilities and environmental interactions become additional factors at elevated temperatures. An account is presently given of microstructural, chemical, and processing techniques that may be used to obtain the properties that appear most critical or desirable in specific applications.

  2. High Power RF Induced Thermal Fatigue in the High Gradient CLIC Accelerating Structures

    CERN Document Server

    Arnau-Izquierdo, G; Heikkinen, S; Neupert, N; Wuensch, W

    2007-01-01

    The need for high accelerating gradients for the CLIC (Compact Linear Collider) imposes considerable constraints on the materials of the accelerating structures. The surfaces exposed to high pulsed RF (Radio Frequency) currents are subjected to cyclic thermal stresses possibly resulting in surface break up by fatigue. Various high strength alloys from the group of high conductivity copper alloys have been selected and have been tested in different states, with different surface treatments and in different stress ratios. Low to medium cycle fatigue data (up to 108 cycles) of fully compressive surface thermal stresses has been collected by means of a pulsed laser surface heating apparatus. The surface damage has been characterized by SEM observations and roughness measurements. High cycle fatigue data, up to 7x1010 cycles, of varying stress ratio has been collected in high frequency bulk fatigue tests using an ultrasonic apparatus. Up-to-date results from these experiments are presented.

  3. Caffeine, fatigue, and cognition

    NARCIS (Netherlands)

    Lorist, M.M.; Tops, M.

    2003-01-01

    Effects of caffeine and fatigue are discussed with special attention to adenosine-dopamine interactions. Effects of caffeine on human cognition are diverse. Behavioural measurements indicate a general improvement in the efficiency of information processing after caffeine, while the EEG data support

  4. Incompatibility and Mental Fatigue

    Science.gov (United States)

    Herzog, Thomas R.; Hayes, Lauren J.; Applin, Rebecca C.; Weatherly, Anna M.

    2011-01-01

    A straightforward prediction from attention restoration theory is that the level of incompatibility in a person's life should be positively correlated with that person's level of mental (or directed attention) fatigue. The authors tested this prediction by developing a new self-report measure of incompatibility in which they attempted to isolate…

  5. Caffeine, fatigue, and cognition

    NARCIS (Netherlands)

    Lorist, M.M.; Tops, M.

    2003-01-01

    Effects of caffeine and fatigue are discussed with special attention to adenosine-dopamine interactions. Effects of caffeine on human cognition are diverse. Behavioural measurements indicate a general improvement in the efficiency of information processing after caffeine, while the EEG data support

  6. Cumulative fatigue damage models

    Science.gov (United States)

    Mcgaw, Michael A.

    1988-01-01

    The problem of calculating expected component life under fatigue loading conditions is complicated by the fact that component loading histories contain, in many cases, cyclic loads of widely varying amplitudes. In such a case a cumulative damage model is required, in addition to a fatigue damage criterion, or life relationship, in order to compute the expected fatigue life. The traditional cumulative damage model used in design is the linear damage rule. This model, while being simple to use, can yield grossly unconservative results under certain loading conditions. Research at the NASA Lewis Research Center has led to the development of a nonlinear cumulative damage model, named the double damage curve approach (DDCA), that has greatly improved predictive capability. This model, which considers the life (or loading) level dependence of damage evolution, was applied successfully to two polycrystalline materials, 316 stainless steel and Haynes 188. The cumulative fatigue behavior of the PWA 1480 single-crystal material is currently being measured to determine the applicability of the DDCA for this material.

  7. Fatigue modelling for gas nitriding

    Directory of Open Access Journals (Sweden)

    H. Weil

    2016-10-01

    Full Text Available The present study aims to develop an algorithm able to predict the fatigue lifetime of nitrided steels. Linear multi-axial fatigue criteria are used to take into account the gradients of mechanical properties provided by the nitriding process. Simulations on rotating bending fatigue specimens are made in order to test the nitrided surfaces. The fatigue model is applied to the cyclic loading of a gear from a simulation using the finite element software Ansys. Results show the positive contributions of nitriding on the fatigue strength

  8. Muscle Deoxygenation Causes Muscle Fatigue

    Science.gov (United States)

    Murthy, G.; Hargens, A. R.; Lehman, S.; Rempel, D.

    1999-01-01

    Muscle fatigue is a common musculoskeletal disorder in the work place, and may be a harbinger for more disabling cumulative trauma disorders. Although the cause of fatigue is multifactorial, reduced blood flow and muscle oxygenation may be the primary factor in causing muscle fatigue during low intensity muscle exertion. Muscle fatigue is defined as a reduction in muscle force production, and also occurs among astronauts who are subjected to postural constraints while performing lengthy, repetitive tasks. The objectives of this research are to: 1) develop an objective tool to study the role of decreased muscle oxygenation on muscle force production, and 2) to evaluate muscle fatigue during prolonged glovebox work.

  9. Factors associated with intern fatigue.

    Science.gov (United States)

    Friesen, Lindsay D; Vidyarthi, Arpana R; Baron, Robert B; Katz, Patricia P

    2008-12-01

    Prior data suggest that fatigue adversely affects patient safety and resident well-being. ACGME duty hour limitations were intended, in part, to reduce resident fatigue, but the factors that affect intern fatigue are unknown. To identify factors associated with intern fatigue following implementation of duty hour limitations. Cross-sectional confidential survey of validated questions related to fatigue, sleep, and stress, as well as author-developed teamwork questions. Interns in cognitive specialties at the University of California, San Francisco. Univariate statistics characterized the distribution of responses. Pearson correlations elucidated bivariate relationships between fatigue and other variables. Multivariate linear regression models identified factors independently associated with fatigue, sleep, and stress. Of 111 eligible interns, 66 responded (59%). In a regression analysis including gender, hours worked in the previous week, sleep quality, perceived stress, and teamwork, only poorer quality of sleep and greater perceived stress were significantly associated with fatigue (p 80 h was not significantly associated with perceived stress, quality of sleep, or fatigue. Simply decreasing the number of duty hours may be insufficient to reduce intern fatigue. Residency programs may need to incorporate programmatic changes to reduce stress, improve sleep quality, and foster teamwork in order to decrease intern fatigue and its deleterious consequences.

  10. Determinants of fatigue and stress

    Directory of Open Access Journals (Sweden)

    Brähler Elmar

    2011-07-01

    Full Text Available Abstract Background Fatigue can be triggered by previous perceived stress which may lead to impairment of performance and function. The purpose of the study was to investigate the relationship between fatigue and perceived stress. Method Health determinants including sociodemographic factors for associations between fatigue and perceived stress in the general population (N = 2,483 are outlined. Fatigue and stress were assessed with the Chalder Fatigue Scale (CFS and the Perceived Stress Questionnaire (PSQ. Results Within the general population, 25.9% of male and 34.5% of female respondents reported moderate fatigue during the last six months; 9.7% of subjects reported substantial fatigue lasting six months or longer. An adjusted regression analysis (R2corr = .28, p Conclusion We conclude that the two conditions overlap most in terms of socio-economic status and self-perceived health status.

  11. Fatigue Behaviour of Composite T-Joints in Wind Turbine Blade Applications

    Science.gov (United States)

    Wang, Y.; Soutis, C.

    2017-04-01

    This paper presents a study of fatigue performance of composite T-joints used in wind-turbine blades. A T-joint with various fibre reinforcement architectures were selected to investigate its fatigue behaviour. The 3D angle interlock T-joint was found to have the best performance in both static and fatigue loading. Increasing the static properties increases fatigue performance while the increasing rate in life performance is changed with the number of fatigue cycles. A finite element (FE) model was developed that can determine the stress distribution and the initiation and propagation of a delamination crack. The location for through-thickness reinforcement is very important to improve fatigue performance of composite T-joints. Fatigue performance is significantly improved for the web with through-thickness reinforcement while fatigue performance is decreased if the through-thickness reinforcement is applied to the flange-skin regions. The interlaminar veil significantly increases the ultimate strength under static load but fatigue performance at high stress cycles is increased but not significantly.

  12. FATIGUE PROPERTIES OF AUSTEMPERED DUCTILE IRON (ADI)IN WATER ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    Q.Z.Cai; B.K.Wei; Y.Tanaka

    2004-01-01

    The acicular ferrite in austempered ductile iron(ADI)matrix around graphite was corroded preferentially in wet condition,promoting crack origination and propagation and resulting in the disappearance of ADI fatigue limit.ADI fatigue strength was gradually reduced with increasing the time of test and was reduced by 50% in wet condition at 107 cycles compared with the fatigue limit in dry condition.The fatigue strength variation of ferritic ductile iron in wet condition was similar to that of ADI.The ferritic ductile iron,however,has better corrosion resistance so that the fatigue strength was lowered only by 10% in wet condition at 107 cycles compared with the fatigue limit in dry condition.On the other hand,the fatigue limits of A DI and ferritic ductile iron were dropped by 32% and 25% in tap water dipping 480h/dry condition respectively compared with those in dry condition.The reduction of fatigue limit was attributed to corrosion pits formation correlated with stress concentration,resulting in origination and propagation of fatigue crack.

  13. Combined simulation of fatigue crack nucleation and propagation based on a damage indicator

    Directory of Open Access Journals (Sweden)

    M. Springer

    2016-10-01

    Full Text Available Fatigue considerations often distinguish between fatigue crack nucleation and fatigue crack propagation. The current work presents a modeling approach utilizing one Fatigue Damage Indicator to treat both in a unified way. The approach is implemented within the framework of the Finite Element Method. Multiaxial critical plane models with an extended damage accumulation are employed as Fatigue Indicators. Locations of fatigue crack emergence are predicted by these indicators and material degradation is utilized to model local material failure. The cyclic loading is continued on the now degraded structure and the next location prone to material failure is identified and degradation modeled. This way, fatigue crack propagation is represented by an evolving spatial zone of material failure. This propagating damage zone leads to a changing structural response of the pristine structure. By recourse to the Fatigue Damage Indicator a correlation between the number of applied load cycles and the changing structural behavior is established. Finally, the proposed approach is exemplified by cyclic bending experiments in the Low Cycle Fatigue regime

  14. Experimental study of crack initiation and propagation in high- and gigacycle fatigue in titanium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Bannikov, Mikhail, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Oborin, Vladimir, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru; Naimark, Oleg, E-mail: mbannikov@icmm.ru, E-mail: oborin@icmm.ru, E-mail: naimark@icmm.ru [Institute of Continuous Media Mechanics UrB RAS, Perm, 614013 (Russian Federation)

    2014-11-14

    Fatigue (high- and gigacycle) crack initiation and its propagation in titanium alloys with coarse and fine grain structure are studied by fractography analysis of fracture surface. Fractured specimens were analyzed by interferometer microscope and SEM to improve methods of monitoring of damage accumulation during fatigue test and to verify the models for fatigue crack kinetics. Fatigue strength was estimated for high cycle fatigue regime using the Luong method [1] by “in-situ” infrared scanning of the sample surface for the step-wise loading history for different grain size metals. Fine grain alloys demonstrated higher fatigue resistance for both high cycle fatigue and gigacycle fatigue regimes. Fracture surface analysis for plane and cylindrical samples was carried out using optical and electronic microscopy method. High resolution profilometry (interferometer-profiler New View 5010) data of fracture surface roughness allowed us to estimate scale invariance (the Hurst exponent) and to establish the existence of two characteristic areas of damage localization (different values of the Hurst exponent). Area 1 with diameter ∼300 μm has the pronounced roughness and is associated with damage localization hotspot. Area 2 shows less amplitude roughness, occupies the rest fracture surface and considered as the trace of the fatigue crack path corresponding to the Paris kinetics.

  15. Device Design and Test of Fatigue Behaviour of Expansion Anchor Subjected to Tensile Loads

    Directory of Open Access Journals (Sweden)

    Zhang Jinfeng

    2016-01-01

    Full Text Available In order to study on the fatigue behaviour of expansion anchor (M16, grade 8.8 for overhead contact system in electrification railways, a set of safe, practical loading device is designed and a fatigue test campaign was carried out at structural laboratory of China Academy of Building Research on expansion anchor embedded in concrete block. The mobile frame of the loading device was designed well by finite-element simulation. According to some fatigue performance test of expansion anchor with different size and form, the device have been assessed experimentally its dependability. The results were found that no fatigue damage phenomenon occurred in all specimens after 2×106 cycles tensile fatigue test in this specific series. It shows that in the condition of medium level or slightly lower maximum stress limit and nominal stress range, expansion bolt has good fatigue resistance. The biggest relative displacement and the residual relative displacement after test (Δδ = δ2-δ1 was also strongly lower than the symbol of the fatigue test failure index of this specific series (0.5mm in the high cycle fatigue regime. The ultimate tension failures mode after fatigue tests in all tested samples take place in the concrete anchorage zone. The reduction range of the ultimate tensile strength properties of the anchorage system was not obvious, and the concrete was seen to be the weakest link of the system.

  16. Experimental and numerical investigation of the fracture behaviour and fatigue resistance of self-compacting concrete

    OpenAIRE

    Korte, Sara

    2014-01-01

    Unlike static loads, repeated loading actions on concrete structures can cause fatigue failure. Especially civil engineering structures, such as roads, (railway) bridges, beam cranes, marine and off-shore structures, are subjected to a large number of load cycles (millions or more), caused by traffic, waves or tidal currents. With each cycle, microscopic cracks are induced in the cement matrix, which gradually propagate during the further fatigue loading process until finally failure occurs. ...

  17. Fatigue assessment of a double submerged arc welded gas pipeline

    Energy Technology Data Exchange (ETDEWEB)

    Fazzini, Pablo; Otegui, Jose Luis [Universidad Nacional Mar del Plata, Mar del Plata (Argentina). Instituto de Ciencia y Tecnologia de Materiales (INTEMA); Teutonico, Mauricio; Manfredi, Carlos [GIE S.A., Mar del Plata (Argentina)

    2005-07-01

    An uncommon blowout in a 24'' diameter, 7 mm thick API 5L X52 gas pipeline was due to fracture at the longitudinal double submerged arc weld. Oddly enough for gas pipelines, it was found that fatigue cracks had propagated from a large embedded weld defect of lack of fusion resulting from severe geometrical mismatch between inner and outer weld passes. What makes this failure particularly interesting is that: previous in line inspections failed to detect any defect, no evidence of third party damage was found, and very few large pressure cycles had been recorded during the last 5 years of service, which were believed to be representative of the entire service life of the pipeline. Fatigue tests were carried out to characterize propagation of fatigue cracks in weld metal, it was found that a large Paris exponent made the few large amplitude cycles most contributing to crack propagation. Crack growth path and striation patterns were studied. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. Crack growth path and striation patterns were studied. It was found that microstructure discontinuities govern propagation at low {delta}K, but one striation per cycle was produced at large {delta}K, due to a mostly ductile propagation mode. Fatigue growth was modelled by integrating experimental results and by extrapolating striation spacing in the fracture surface of the failed pipe. It was found that in the early life of the line many more large pressure cycles than expected had occurred. Good correspondence between predicted and actual fatigue lives was in this way obtained (author)

  18. Isothermal and thermal–mechanical fatigue of VVER-440 reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Fekete, Balazs, E-mail: fekete.mm.bme@gmail.com [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary); Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem 5, Budapest H-1111 (Hungary); Trampus, Peter [College of Dunaujvaros, Tancsics 1A, Dunaujvaros H-2400 (Hungary)

    2015-09-15

    Highlights: • We aimed to determine the thermomechanical behaviour of VVER reactor steels. • Material tests were developed and performed on GLEEBLE 3800 physical simulator. • Coffin–Manson curves and parameters were derived. • High accuracy of the strain energy based evaluation was found. • The observed dislocation evolution correlates with the mechanical behaviour. - Abstract: The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin–Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  19. Isothermal and thermal-mechanical fatigue of VVER-440 reactor pressure vessel steels

    Science.gov (United States)

    Fekete, Balazs; Trampus, Peter

    2015-09-01

    The fatigue life of the structural materials 15Ch2MFA (CrMoV-alloyed ferritic steel) and 08Ch18N10T (CrNi-alloyed austenitic steel) of VVER-440 reactor pressure vessel under completely reserved total strain controlled low cycle fatigue tests were investigated. An advanced test facility was developed for GLEEBLE-3800 physical simulator which was able to perform thermomechanical fatigue experiments under in-service conditions of VVER nuclear reactors. The low cycle fatigue results were evaluated with the plastic strain based Coffin-Manson law, and plastic strain energy based model as well. It was shown that both methods are able to predict the fatigue life of reactor pressure vessel steels accurately. Interrupted fatigue tests were also carried out to investigate the kinetic of the fatigue evolution of the materials. On these samples microstructural evaluation by TEM was performed. The investigated low cycle fatigue behavior can provide reference for remaining life assessment and lifetime extension analysis.

  20. Effects of surface morphology on fatigue behavior of reduced activation ferritic/martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.W. [Graduate School of Energy Science, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)]. E-mail: kimsw@iae_kyoto-u.ac.jp; Tanigawa, H. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-Mura, Ibaraki-ken 319-1195 (Japan); Hirose, T. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-Mura, Ibaraki-ken 319-1195 (Japan); Shiba, K. [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai-Mura, Ibaraki-ken 319-1195 (Japan); Kohyama, A. [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2007-08-01

    Depending on the pulse lengths, the operating conditions, and the thermal conductivity, oscillating temperature gradients will cause elastic and elastic-plastic cyclic deformation giving rise to (creep-)fatigue in the structural first wall and blanket components of fusion systems. In order to perform an accurate fatigue lifetime assessment for the international thermonuclear experimental reactor-test blanket module (ITER-TBM) and advanced systems utilizing the existing data base, mechanical understanding of fatigue fracture is mandatory. In this work, the low cycle fatigue (LCF) properties of F82H IEA heat were examined for three kinds of surface morphology with miniaturized hourglass-type fatigue specimens (SF-1). The assumed fatigue lifetime of cooling channels for ITER-TBM was also compared and assessed by correlating the results of LCF tests performed with SF-1 type specimens. Fracture surfaces and crack initiation sites were investigated by scanning electron microscopy (SEM)

  1. Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate

    Institute of Scientific and Technical Information of China (English)

    LU Yi-yan; HU Ling; LI Shan; WANG Kang-hao

    2016-01-01

    The objective of this work is to investigate the fatigue behavior of reinforced concrete (RC) beams strengthened with externally bonded carbon fiber reinforced polymer (CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.

  2. Review of fatigue criteria development for HTGR core supports

    Energy Technology Data Exchange (ETDEWEB)

    Ho, F.H.; Vollman, R.E.

    1979-10-01

    Fatigue criteria for HTGR core support graphite structure are presented. The criteria takes into consideration the brittle nature of the material, and emphasizes the probabilistic approach in the treatment of strength data. The stress analysis is still deterministic. The conventional cumulative damage approach is adopted here. A specified minimum S-N curve is defined as the curve with 99% probability of survival at a 95% confidence level to accommodate random variability of the material strength. A constant life diagram is constructed to reconcile the effect of mean stress. The linear damage rule is assumed to account for the effect of random cycles. An additional factor of safety of three on cycles is recommended. The uniaxial S-N curve is modified in the medium-to-high cycle range (> 2 x 10/sup 3/ cycles) for mutiaxial fatigue effects.

  3. Inclusion size effect on the fatigue crack propagation mechanism and fracture mechanics of a superalloy

    Science.gov (United States)

    Denda, Takeshi; Bretz, Perter L.; Tien, John K.

    1992-02-01

    Low cycle fatigue life of nickel-base superalloys is enhanced as a consequence of inclusion reduction in the melt process; however, the functional dependencies between fatigue characteristics and inclusions have not been well investigated. In this study, the propagation mechanism of the fatigue crack initiated from inclusions is examined in fine-grained IN718, which is a representative turbine disc material for jet engines. There is a faceted-striated crack transition on the fracture surfaces. This faceted-striated transition also appears in the da/dN vs crack length curves. It is observed that the faceted crack propagation time can be more than 50 pct of total lifetime in the low cycle fatigue test. The significance of inclusion size effect is explained on the premise that the faceted fatigue crack propagation time scales with the inclusion size, which is taken as the initial crack length. A predictive protocol for determining inclusion size effect is given.

  4. Thermal evaluation of the mean fatigue limit of a complex structure

    Science.gov (United States)

    Arnould, Olivier; Bremond, Pierre; Hild, Francois

    2005-03-01

    The study deals with the long-term reliability of a high precision pressure sensor using bellows mainly made of electroplated Ni. Bellows are expected to stay in service for many decades. Their high cycle fatigue behavior has to be known to assess the probability of airtightness loss. A specific high cycle fatigue setup, put in a resonant machine that is displacement-controlled, has been designed. An infrared thermographic technique is used to determine the mean fatigue limit of bellows. Increases in the mean temperature of the bellows with the displacement range are monitored. Several authors empirically relate the mean fatigue limit of a flat specimen to a rapid temperature change. A similar analysis is performed in the present case by using the bellows mean temperature. Finite element computations allow us to estimate a mean fatigue stress threshold for electroplated Ni. This result is compared with those obtained mechanically in a Woehler diagram.

  5. A cohesive zone framework for environmentally assisted fatigue

    DEFF Research Database (Denmark)

    del Busto, Susana; Betegón, Covadonga; Martínez Pañeda, Emilio

    2017-01-01

    We present a compelling finite element framework to model hydrogen assisted fatigue by means of a hydrogen- and cycle-dependent cohesive zone formulation. The model builds upon: (i) appropriate environmental boundary conditions, (ii) a coupled mechanical and hydrogen diffusion response, driven...

  6. Recognizing Family Dynamics in the Treatment of Chronic Fatigue Syndrome

    Science.gov (United States)

    Sperry, Len

    2012-01-01

    Chronic fatigue syndrome (CFS) is an increasingly common chronic medical condition that affects not only patients but also their families. Because family dynamics, particularly the family life cycle, can and does influence the disease process, those providing counseling to CFS patients and their families would do well to recognize these dynamics.…

  7. Deformation, fatigue and fracture behavior of two cast anisotropic superalloys

    Science.gov (United States)

    Milligan, Walter W.; Huron, Eric S.; Antolovich, Stephen D.

    1987-01-01

    Tensile and low cycle fatigue (LCF) tests were conducted on two cast anisotropic superalloys. The effects of temperature, strain rate and stress range were investigated. Deformation behavior was extensively characterized and modeled. LCF and fracture behavior were studied and correlated with deformation behavior.

  8. Towards Understanding Fatigue Disbond Growth via Cyclic Strain Energy

    NARCIS (Netherlands)

    Pascoe, J.A.; Alderliesten, R.C.; Benedictus, R.

    2014-01-01

    The concept of relating fatigue disbond growth to the strain energy release rate (SERR) is critically examined. It is highlighted that the common practise of using only the maximum SERR or only the SERR range is insufficient to correctly characterize a load cycle. As crack growth requires energy, it

  9. Fatigue design of hydraulic turbine runners

    Energy Technology Data Exchange (ETDEWEB)

    Huth, Hans-Joerg

    2005-07-01

    Turbine runners experience start-stop cycles and vibration cycles. Cracks initiated from service or manufacturing defects and propagated by start-stop cycles become critical when the stress intensity range due to vibrational loading exceeds the threshold for fatigue crack growth. In Francis turbine runners, semi-elliptical surface cracks tend to propagate from the quarter-circular transition of the welded T-joint transition between the blade and the band or crown. Assuming a crack to grow under a constant stress amplitude equal to that at the most highly loaded location at the welded joint between the blade and the band or crown of a Francis turbine runner yields a conservative estimate of the life of the runner. A more accurate prediction of fatigue life is obtained by considering the growth of a crack in the real, inhomogeneous stress field. For an idealised T-joint under pure bending, the stress field has been determined by means of plane strain finite element analysis. Finite element models of the entire Francis runner are built with respect to the calculation of fluid dynamic properties. Since in these models geometry transitions are modelled as a sharp notch, both a finite and a zero transition radius have been modelled, and the influence of the mesh size on the maximum stress has been investigated. For relatively small cracks, it is shown that the structural component geometry does not remarkably influence the stress intensity factor values, provided that the stress field in the vicinity of the crack is approximately the same. Therefore, in order to simplify the stress intensity factor retrieval and to generate a solution of extended applicability, a cracked finite-thickness plate is examined instead of the actual T-joint geometry. The stress intensity factors along the front of a semi-elliptical surface crack in such a plate are determined by means of an analysis using finite quarter-point wedge elements for different elementary loading conditions that can

  10. Fatigue properties of X80 pipeline steels with ferrite/bainite dual-phase microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zuo-peng [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Qiao, Gui-ying [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Tang, Lei [Key Lab of Applied Chemistry of Hebei Province and School of Environment and Chemical Engineering, Yanshan University, Qinhuangdao 066004 (China); Zhu, Hong-wei; Liao, Bo [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China); Xiao, Fu-ren, E-mail: frxiao@ysu.edu.cn [Key Lab of Metastable Materials Science & Technology and College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004 (China)

    2016-03-07

    Fatigue properties are important parameters for the safety design and security evaluation of gas transmission pipelines. In this work, the fatigue life at different stresses of full-thickness X80 pipeline steel plates with a ferrite/bainite dual-phase microstructure was investigated using a MTS servo-hydraulic universal testing machine; the fatigue crack propagation rate was examined with CT specimens by using an INSTRON 8874 testing machine. Results indicate that fatigue life increases as maximum stress decreases; as the maximum stress decreases to the maximum operating stress (440 MPa), the fatigue life is approximately 4.2×10{sup 5} cycles. The fatigue crack of the full-thickness fatigue life specimens is generated at the surface of rolled steel plates and then the crack propagates and grows inward until a fracture is formed. During fatigue crack growth, a transitional turning point appears in the curve of da/dN with ΔK in the Paris region. The transitional turning point that divides the Paris region to two stages is approximately ΔK≅30 MPa m{sup 1/2}. The change in the growth rate (da/dN) is related to the variation of the crack path and in the fracture mode because of the possible microstructural sensitivity of fatigue crack propagation behavior. This study also discussed the effect of duple phase ferrite/bainite microstructure on fatigue crack initiation and propagation.

  11. Potential biomarkers of fatigue identified by plasma metabolome analysis in rats.

    Directory of Open Access Journals (Sweden)

    Satoshi Kume

    Full Text Available In the present study, prior to the establishment of a method for the clinical diagnosis of chronic fatigue in humans, we validated the utility of plasma metabolomic analysis in a rat model of fatigue using capillary electrophoresis-mass spectrometry (CE-MS. In order to obtain a fatigued animal group, rats were placed in a cage filled with water to a height of 2.2 cm for 5 days. A food-restricted group, in which rats were limited to 10 g/d of food (around 50% of the control group, was also assessed. The food-restricted group exhibited weight reduction similar to that of the fatigued group. CE-MS measurements were performed to evaluate the profile of food intake-dependent metabolic changes, as well as the profile in fatigue loading, resulting in the identification of 48 metabolites in plasma. Multivariate analyses using hierarchical clustering and principal component analysis revealed that the plasma metabolome in the fatigued group showed clear differences from those in the control and food-restricted groups. In the fatigued group, we found distinctive changes in metabolites related to branched-chain amino acid metabolism, urea cycle, and proline metabolism. Specifically, the fatigued group exhibited significant increases in valine, leucine, isoleucine, and 2-oxoisopentanoate, and significant decreases in citrulline and hydroxyproline compared with the control and food-restricted groups. Plasma levels of total nitric oxide were increased in the fatigued group, indicating systemic oxidative stress. Further, plasma metabolites involved in the citrate cycle, such as cis-aconitate and isocitrate, were reduced in the fatigued group. The levels of ATP were significantly decreased in the liver and skeletal muscle, indicative of a deterioration in energy metabolism in these organs. Thus, this comprehensive metabolic analysis furthered our understanding of the pathophysiology of fatigue, and identified potential diagnostic biomarkers based on fatigue

  12. Potential biomarkers of fatigue identified by plasma metabolome analysis in rats.

    Science.gov (United States)

    Kume, Satoshi; Yamato, Masanori; Tamura, Yasuhisa; Jin, Guanghua; Nakano, Masayuki; Miyashige, Yukiharu; Eguchi, Asami; Ogata, Yoshiyuki; Goda, Nobuhito; Iwai, Kazuhiro; Yamano, Emi; Watanabe, Yasuyoshi; Soga, Tomoyoshi; Kataoka, Yosky

    2015-01-01

    In the present study, prior to the establishment of a method for the clinical diagnosis of chronic fatigue in humans, we validated the utility of plasma metabolomic analysis in a rat model of fatigue using capillary electrophoresis-mass spectrometry (CE-MS). In order to obtain a fatigued animal group, rats were placed in a cage filled with water to a height of 2.2 cm for 5 days. A food-restricted group, in which rats were limited to 10 g/d of food (around 50% of the control group), was also assessed. The food-restricted group exhibited weight reduction similar to that of the fatigued group. CE-MS measurements were performed to evaluate the profile of food intake-dependent metabolic changes, as well as the profile in fatigue loading, resulting in the identification of 48 metabolites in plasma. Multivariate analyses using hierarchical clustering and principal component analysis revealed that the plasma metabolome in the fatigued group showed clear differences from those in the control and food-restricted groups. In the fatigued group, we found distinctive changes in metabolites related to branched-chain amino acid metabolism, urea cycle, and proline metabolism. Specifically, the fatigued group exhibited significant increases in valine, leucine, isoleucine, and 2-oxoisopentanoate, and significant decreases in citrulline and hydroxyproline compared with the control and food-restricted groups. Plasma levels of total nitric oxide were increased in the fatigued group, indicating systemic oxidative stress. Further, plasma metabolites involved in the citrate cycle, such as cis-aconitate and isocitrate, were reduced in the fatigued group. The levels of ATP were significantly decreased in the liver and skeletal muscle, indicative of a deterioration in energy metabolism in these organs. Thus, this comprehensive metabolic analysis furthered our understanding of the pathophysiology of fatigue, and identified potential diagnostic biomarkers based on fatigue pathophysiology.

  13. Fatigue Analysis of Notched Laminates: A Time-Efficient Macro-Mechanical Approach

    Science.gov (United States)

    Naghipour, P.; Pineda, E. J.; Bednarcyk, B. A.; Arnold, S. M.; Waas, A. M.

    2016-01-01

    A coupled transversely isotropic deformation and damage fatigue model is implemented within the finite element method and was utilized along with a static progressive damage model to predict the fatigue life, stiffness degradation as a function of number of cycles, and post-fatigue tension and compression response of notched, multidirectional laminates. Initially, the material parameters for the fatigue model were obtained utilizing micromechanics simulations and the provided [0], [90] and [plus or minus 45] experimental composite laminate S-N (stress-cycle) data. Within the fatigue damage model, the transverse and shear properties of the plies were degraded with an isotropic scalar damage variable. The damage in the longitudinal (fiber) ply direction was suppressed, and only the strength of the fiber was degraded as a function of fatigue cycles. A maximum strain criterion was used to capture the failure in each element, and once this criterion was satisfied, the longitudinal stiffness of the element was decreased by a factor of 10 (sup 4). The resulting, degraded properties were then used to calculate the new stress state. This procedure was repeated until final failure of the composite laminate was achieved or a specified number of cycles reached. For post-fatigue tension and compression behavior, four internal state variables were used to control the damage and failure. The predictive capability of the above-mentioned approach was assessed by performing blind predictions of the notched multidirectional IM7/977-3 composite laminates response under fatigue and post-fatigue tensile and compressive loading, followed by a recalibration phase. Although three different multidirectional laminates were analyzed in the course of this study, only detailed results (i.e., stiffness degradation and post-fatigue stress-train curves as well as damage evolution states for a single laminate ([30/60/90/minus 30/minus 60] (sub 2s)) are discussed in detail here.

  14. Muscle fatigue based evaluation of bicycle design.

    Science.gov (United States)

    Balasubramanian, V; Jagannath, M; Adalarasu, K

    2014-03-01

    Bicycling posture leads to considerable discomfort and a variety of chronic injuries. This necessitates a proper bicycle design to avoid injuries and thereby enhance rider comfort. The objective of this study was to investigate the muscle activity during cycling on three different bicycle designs, i.e., rigid frame (RF), suspension (SU) and sports (SP) using surface electromyography (sEMG). Twelve male volunteers participated in this study. sEMG signals were acquired bilaterally from extensor carpi radialis (ECR), trapezius medial (TM), latissimus dorsi medial (LDM) and erector spinae (ES), during 30 min of cycling on each bicycle and after cycling. Time domain (RMS) and frequency domain (MPF) parameters were extracted from acquired sEMG signals. From the sEMG study, it was found that the fatigue in right LDM and ES were significantly (p bicycle. This was corroborated by a psychophysical assessment based on RBG pain scale. The study also showed that there was a significantly lesser fatigue with the SU bicycle than the RF and SP bicycles.

  15. Chronic fatigue and chronic fatigue syndrome: shifting boundaries and attributions.

    Science.gov (United States)

    Lloyd, A R

    1998-09-28

    The subjective symptom of "fatigue" is one of the most widespread in the general population and is a major source of healthcare utilization. Prolonged fatigue is often associated with neuropsychological and musculoskeletal symptoms that form the basis of several syndromal diagnoses including chronic fatigue syndrome, fibromyalgia, and neurasthenia, and is clearly not simply the result of a lack of force generation from the muscle. Current epidemiologic research in this area relies predominantly on self-report data to document the prevalence and associations of chronic fatigue. Of necessity, this subjective data source gives rise to uncertain diagnostic boundaries and consequent divergent epidemiologic, clinical, and pathophysiologic research findings. This review will highlight the impact of the case definition and ascertainment methods on the varying prevalence estimates of chronic fatigue syndrome and patterns of reported psychological comorbidty. It will also evaluate the evidence for a true postinfective fatigue syndrome.

  16. A methodology to evaluate the fatigue life of flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Fernando J.M. de; Sousa, Jose Renato M. de; Siqueira, Marcos Q. de; Sagrilo, Luis V.S. [Coordenacao dos Programas de Pos-graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil); Lemos, Carlos Alberto D. de [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil)

    2009-07-01

    This paper focus on a methodology to perform the fatigue analysis of flexible pipes. This methodology employs functions that convert forces and moments obtained in global analyses into stresses. The stresses are then processed by well-known cycle counting methods, and S-N curves evaluate the damage at several points in the pipe cross-section. Palmgren-Miner linear damage hypothesis is assumed in order to calculate the accumulated fatigue damage. A parametric study on the fatigue life of a flexible pipe employing this methodology is presented. The main points addressed in the study are the influence of friction between layers in the results, the importance of evaluating the fatigue life in various points of the pipe cross-section and the effect of different mean stress levels. The obtained results suggest that the consideration of friction effects strongly influences the fatigue life of flexible risers and these effects have to be accounted both in the global and local analyses of the riser. Moreover, mean stress effects are also significant and at least 8 equally spaced wires in each analyzed section of the riser must be considered in fatigue analyses. (author)

  17. Fatigue crack propagation in turbine disks of EI698 superalloy

    Directory of Open Access Journals (Sweden)

    A.A. Shanyavskiy

    2013-04-01

    Full Text Available In-service fatigue cracking of turbine disks of EI698 superalloy is discussed based on crack growth analyses. In the bolt joint for disks to shaft connecting there is high level of stress-state, which directed to earlier in-disks fatigue crack origination in low-cycle-fatigue regime. Fracture surface pattern such as fatigue striations were used for their spacing measurement and crack growth duration estimating. Developed disk tests on a special bench by the equivalent program to in-service cyclic loads have allowed discovering one-to-one correlation between fatigue striation spacing and crack increment in one flight. Number of fatigue striations and beach-marks calculations permitted to estimate crack growth period for the different stages of in-service disks cracking. Equivalent stress level for in-service cracked disks was calculated and compared with stress-level in-tested disks under stress equivalent program to in-service operated cyclic loads. Based on this result non-destructive inspection intervals were discussed and recommended for in-service disks in dependence on number of their flights at the moment of developed inspection to exclude in-flight disks fast fracture.

  18. Effect of stress ratio on long life fatigue behavior of Ti-Al alloy under flexural loading

    Institute of Scientific and Technical Information of China (English)

    XUE Hong-qian; TAO Hua; SHAO Ren-ping; B.CLAUDE

    2008-01-01

    A new ultrasonic three-point bending fatigue test device was introduced to investigate fatigue life ranging up to 1010 cycles and associated fracture behavior of Ti-Al alloy. Tests were performed at a frequency of 20kHz with stress ratio R=0.5 and R=0.7 at ambient temperature in air. Three groups of specimens with different surface roughness were applied to investigate the effect of surface roughness on fatigue life. Furthermore, optical microscopy (OM) and scanning electron microscopy (SEM) were used for microstructure characteristic and fracture surface analysis. The S-N curves obtained show that fatigue failure occurs in the range of 105-1010 cycles, and the asymptote of S-N curve inclines slightly in very high cycle regime, but is not horizontal for R=0.5. Fatigue limit appears after 108 cycles for R=0.7. Surface roughness (the maximum roughness is no more than 3μm) has no influence on the fatigue properties in the high cycle regime. A detailed investigation on fatigue fracture surface shows that the Ti-Al alloy studied here is a binary alloy in the microstructure composed of α2-Ti3Al and γ-Ti-Al with fully lamellar microstructure. Fractography shows that fatigue failures are mostly initiated on the surface of specimens, also, in very high cycle regime, subsurface fatigue crack initiation can be found. Interlamellar fatigue crack initiation is predominant in the Ti-Al alloy with fully lamellar structure. Fatigue crack growth is mainly in transgranular mode.

  19. Fatigue characterization of flowformed A356-T6

    Directory of Open Access Journals (Sweden)

    Roy Matthew J.

    2014-06-01

    Full Text Available Flowforming is an incremental rotary forming technology consisting of deforming a cylindrical workpiece through contact between a roller and a rotating mandrel. This process delivers significant local compressive plastic strain to the workpiece. The effects on fatigue resilience of a common aluminum foundry alloy (A356 processed in this manner at an elevated temperature has been shown to improve post heat treatment. Fatigue properties of material processed with a standard heat treatment following casting is compared to material which has been cast and flowformed to varying degrees and then heat treated. Flowformed material with varying degrees of rotary deformation have been tested. Endurance limits have been found to be generally governed by porosity and maximum principal stress for high cycle